prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
"""Rangeland Production Model.""" import os import logging import tempfile import shutil from builtins import range import re import math import pickle import numpy import pandas from osgeo import ogr from osgeo import osr from osgeo import gdal import pygeoprocessing from rangeland_production import utils from rangeland_production import validation LOGGER = logging.getLogger('rangeland_production.forage') # we only have these types of soils SOIL_TYPE_LIST = ['clay', 'silt', 'sand'] # temporary directory to store intermediate files PROCESSING_DIR = None # user-supplied crude protein of vegetation CRUDE_PROTEIN = None # state variables and parameters take their names from Century # _SITE_STATE_VARIABLE_FILES contains state variables that are a # property of the site, including: # carbon in each soil compartment # (structural, metabolic, som1, som2, som3) and layer (1=surface, 2=soil) # e.g., som2c_2 = carbon in soil som2; # N and P in each soil layer and compartment (1=N, 2=P) # e.g., som2e_1_1 = N in surface som2, som2e_1_2 = P in surface som2; # water in each soil layer, asmos_<layer> # state variables fully described in this table: # https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing _SITE_STATE_VARIABLE_FILES = { 'metabc_1_path': 'metabc_1.tif', 'metabc_2_path': 'metabc_2.tif', 'som1c_1_path': 'som1c_1.tif', 'som1c_2_path': 'som1c_2.tif', 'som2c_1_path': 'som2c_1.tif', 'som2c_2_path': 'som2c_2.tif', 'som3c_path': 'som3c.tif', 'strucc_1_path': 'strucc_1.tif', 'strucc_2_path': 'strucc_2.tif', 'strlig_1_path': 'strlig_1.tif', 'strlig_2_path': 'strlig_2.tif', 'metabe_1_1_path': 'metabe_1_1.tif', 'metabe_2_1_path': 'metabe_2_1.tif', 'som1e_1_1_path': 'som1e_1_1.tif', 'som1e_2_1_path': 'som1e_2_1.tif', 'som2e_1_1_path': 'som2e_1_1.tif', 'som2e_2_1_path': 'som2e_2_1.tif', 'som3e_1_path': 'som3e_1.tif', 'struce_1_1_path': 'struce_1_1.tif', 'struce_2_1_path': 'struce_2_1.tif', 'metabe_1_2_path': 'metabe_1_2.tif', 'metabe_2_2_path': 'metabe_2_2.tif', 'plabil_path': 'plabil.tif', 'secndy_2_path': 'secndy_2.tif', 'parent_2_path': 'parent_2.tif', 'occlud_path': 'occlud.tif', 'som1e_1_2_path': 'som1e_1_2.tif', 'som1e_2_2_path': 'som1e_2_2.tif', 'som2e_1_2_path': 'som2e_1_2.tif', 'som2e_2_2_path': 'som2e_2_2.tif', 'som3e_2_path': 'som3e_2.tif', 'struce_1_2_path': 'struce_1_2.tif', 'struce_2_2_path': 'struce_2_2.tif', 'asmos_1_path': 'asmos_1.tif', 'asmos_2_path': 'asmos_2.tif', 'asmos_3_path': 'asmos_3.tif', 'asmos_4_path': 'asmos_4.tif', 'asmos_5_path': 'asmos_5.tif', 'asmos_6_path': 'asmos_6.tif', 'asmos_7_path': 'asmos_7.tif', 'asmos_8_path': 'asmos_8.tif', 'asmos_9_path': 'asmos_9.tif', 'avh2o_3_path': 'avh2o_3.tif', 'minerl_1_1_path': 'minerl_1_1.tif', 'minerl_2_1_path': 'minerl_2_1.tif', 'minerl_3_1_path': 'minerl_3_1.tif', 'minerl_4_1_path': 'minerl_4_1.tif', 'minerl_5_1_path': 'minerl_5_1.tif', 'minerl_6_1_path': 'minerl_6_1.tif', 'minerl_7_1_path': 'minerl_7_1.tif', 'minerl_8_1_path': 'minerl_8_1.tif', 'minerl_9_1_path': 'minerl_9_1.tif', 'minerl_10_1_path': 'minerl_10_1.tif', 'minerl_1_2_path': 'minerl_1_2.tif', 'minerl_2_2_path': 'minerl_2_2.tif', 'minerl_3_2_path': 'minerl_3_2.tif', 'minerl_4_2_path': 'minerl_4_2.tif', 'minerl_5_2_path': 'minerl_5_2.tif', 'minerl_6_2_path': 'minerl_6_2.tif', 'minerl_7_2_path': 'minerl_7_2.tif', 'minerl_8_2_path': 'minerl_8_2.tif', 'minerl_9_2_path': 'minerl_9_2.tif', 'minerl_10_2_path': 'minerl_10_2.tif', 'snow_path': 'snow.tif', 'snlq_path': 'snlq.tif', } # _PFT_STATE_VARIABLES contains state variables that are a # property of a PFT, including: # carbon, nitrogen, and phosphorous in aboveground biomass # where 1=N, 2=P # e.g. aglivc = C in aboveground live biomass, # aglive_1 = N in aboveground live biomass; # carbon, nitrogen, and phosphorous in aboveground standing dead # biomass, stdedc and stdede; # carbon, nitrogen and phosphorous in belowground live biomass, # aglivc and aglive # state variables fully described in this table: # https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing _PFT_STATE_VARIABLES = [ 'aglivc', 'bglivc', 'stdedc', 'aglive_1', 'bglive_1', 'stdede_1', 'aglive_2', 'bglive_2', 'stdede_2', 'avh2o_1', 'crpstg_1', 'crpstg_2', ] # intermediate parameters that do not change between timesteps, # including field capacity and wilting point of each soil layer, # coefficients describing effect of soil texture on decomposition # rates _PERSISTENT_PARAMS_FILES = { 'afiel_1_path': 'afiel_1.tif', 'afiel_2_path': 'afiel_2.tif', 'afiel_3_path': 'afiel_3.tif', 'afiel_4_path': 'afiel_4.tif', 'afiel_5_path': 'afiel_5.tif', 'afiel_6_path': 'afiel_6.tif', 'afiel_7_path': 'afiel_7.tif', 'afiel_8_path': 'afiel_8.tif', 'afiel_9_path': 'afiel_9.tif', 'awilt_1_path': 'awilt_1.tif', 'awilt_2_path': 'awilt_2.tif', 'awilt_3_path': 'awilt_3.tif', 'awilt_4_path': 'awilt_4.tif', 'awilt_5_path': 'awilt_5.tif', 'awilt_6_path': 'awilt_6.tif', 'awilt_7_path': 'awilt_7.tif', 'awilt_8_path': 'awilt_8.tif', 'awilt_9_path': 'awilt_9.tif', 'wc_path': 'wc.tif', 'eftext_path': 'eftext.tif', 'p1co2_2_path': 'p1co2_2.tif', 'fps1s3_path': 'fps1s3.tif', 'orglch_path': 'orglch.tif', 'fps2s3_path': 'fps2s3.tif', 'rnewas_1_1_path': 'rnewas_1_1.tif', 'rnewas_2_1_path': 'rnewas_2_1.tif', 'rnewas_1_2_path': 'rnewas_1_2.tif', 'rnewas_2_2_path': 'rnewas_2_2.tif', 'rnewbs_1_1_path': 'rnewbs_1_1.tif', 'rnewbs_1_2_path': 'rnewbs_1_2.tif', 'rnewbs_2_1_path': 'rnewbs_2_1.tif', 'rnewbs_2_2_path': 'rnewbs_2_2.tif', 'vlossg_path': 'vlossg.tif', } # site-level values that are updated once per year _YEARLY_FILES = { 'annual_precip_path': 'annual_precip.tif', 'baseNdep_path': 'baseNdep.tif', } # pft-level values that are updated once per year _YEARLY_PFT_FILES = ['pltlig_above', 'pltlig_below'] # intermediate values for each plant functional type that are shared # between submodels, but do not need to be saved as output _PFT_INTERMEDIATE_VALUES = [ 'h2ogef_1', 'tgprod_pot_prod', 'cercrp_min_above_1', 'cercrp_min_above_2', 'cercrp_max_above_1', 'cercrp_max_above_2', 'cercrp_min_below_1', 'cercrp_min_below_2', 'cercrp_max_below_1', 'cercrp_max_below_2', 'tgprod', 'rtsh', 'flgrem', 'fdgrem'] # intermediate site-level values that are shared between submodels, # but do not need to be saved as output _SITE_INTERMEDIATE_VALUES = [ 'amov_1', 'amov_2', 'amov_3', 'amov_4', 'amov_5', 'amov_6', 'amov_7', 'amov_8', 'amov_9', 'amov_10', 'snowmelt', 'bgwfunc', 'diet_sufficiency'] # fixed parameters for each grazing animal type are adapted from the GRAZPLAN # model as described by Freer et al. 2012, "The GRAZPLAN animal biology model # for sheep and cattle and the GrazFeed decision support tool" _FREER_PARAM_DICT = { 'b_indicus': { 'CN1': 0.0115, 'CN2': 0.27, 'CN3': 0.4, 'CI1': 0.025, 'CI2': 1.7, 'CI8': 62, 'CI9': 1.7, 'CI15': 0.5, 'CI19': 0.416, 'CI20': 1.5, 'CR1': 0.8, 'CR2': 0.17, 'CR3': 1.7, 'CR4': 0.00078, 'CR5': 0.6, 'CR6': 0.00074, 'CR7': 0.5, 'CR12': 0.8, 'CR13': 0.35, 'CK1': 0.5, 'CK2': 0.02, 'CK3': 0.85, 'CK5': 0.4, 'CK6': 0.02, 'CK8': 0.133, 'CL0': 0.375, 'CL1': 4, 'CL2': 30, 'CL3': 0.6, 'CL5': 0.94, 'CL6': 3.1, 'CL15': 0.032, 'CM1': 0.09, 'CM2': 0.31, 'CM3': 0.00008, 'CM4': 0.84, 'CM6': 0.0025, 'CM7': 0.9, 'CM16': 0.0026, 'CRD1': 0.3, 'CRD2': 0.25, 'CRD4': 0.007, 'CRD5': 0.005, 'CRD6': 0.35, 'CRD7': 0.1, 'CA1': 0.05, 'CA2': 0.85, 'CA3': 5.5, 'CA4': 0.178, 'CA6': 1, 'CA7': 0.6, 'CP1': 285, 'CP4': 0.33, 'CP5': 1.8, 'CP6': 2.42, 'CP7': 1.16, 'CP8': 4.11, 'CP9': 343.5, 'CP10': 0.0164, 'CP15': 0.07, }, 'b_taurus': { 'CN1': 0.0115, 'CN2': 0.27, 'CN3': 0.4, 'CI1': 0.025, 'CI2': 1.7, 'CI8': 62, 'CI9': 1.7, 'CI15': 0.5, 'CI19': 0.416, 'CI20': 1.5, 'CR1': 0.8, 'CR2': 0.17, 'CR3': 1.7, 'CR4': 0.00078, 'CR5': 0.6, 'CR6': 0.00074, 'CR7': 0.5, 'CR12': 0.8, 'CR13': 0.35, 'CK1': 0.5, 'CK2': 0.02, 'CK3': 0.85, 'CK5': 0.4, 'CK6': 0.02, 'CK8': 0.133, 'CL0': 0.375, 'CL1': 4, 'CL2': 30, 'CL3': 0.6, 'CL5': 0.94, 'CL6': 3.1, 'CL15': 0.032, 'CM1': 0.09, 'CM2': 0.36, 'CM3': 0.00008, 'CM4': 0.84, 'CM6': 0.0025, 'CM7': 0.9, 'CM16': 0.0026, 'CRD1': 0.3, 'CRD2': 0.25, 'CRD4': 0.007, 'CRD5': 0.005, 'CRD6': 0.35, 'CRD7': 0.1, 'CA1': 0.05, 'CA2': 0.85, 'CA3': 5.5, 'CA4': 0.178, 'CA6': 1, 'CA7': 0.6, 'CP1': 285, 'CP4': 0.33, 'CP5': 1.8, 'CP6': 2.42, 'CP7': 1.16, 'CP8': 4.11, 'CP9': 343.5, 'CP10': 0.0164, 'CP15': 0.07, }, 'indicus_x_taurus': { 'CN1': 0.0115, 'CN2': 0.27, 'CN3': 0.4, 'CI1': 0.025, 'CI2': 1.7, 'CI8': 62, 'CI9': 1.7, 'CI15': 0.5, 'CI19': 0.416, 'CI20': 1.5, 'CR1': 0.8, 'CR2': 0.17, 'CR3': 1.7, 'CR4': 0.00078, 'CR5': 0.6, 'CR6': 0.00074, 'CR7': 0.5, 'CR12': 0.8, 'CR13': 0.35, 'CK1': 0.5, 'CK2': 0.02, 'CK3': 0.85, 'CK5': 0.4, 'CK6': 0.02, 'CK8': 0.133, 'CL0': 0.375, 'CL1': 4, 'CL2': 30, 'CL3': 0.6, 'CL5': 0.94, 'CL6': 3.1, 'CL15': 0.032, 'CM1': 0.09, 'CM2': 0.335, 'CM3': 0.00008, 'CM4': 0.84, 'CM6': 0.0025, 'CM7': 0.9, 'CM16': 0.0026, 'CRD1': 0.3, 'CRD2': 0.25, 'CRD4': 0.007, 'CRD5': 0.005, 'CRD6': 0.35, 'CRD7': 0.1, 'CA1': 0.05, 'CA2': 0.85, 'CA3': 5.5, 'CA4': 0.178, 'CA6': 1, 'CA7': 0.6, 'CP1': 285, 'CP4': 0.33, 'CP5': 1.8, 'CP6': 2.42, 'CP7': 1.16, 'CP8': 4.11, 'CP9': 343.5, 'CP10': 0.0164, 'CP15': 0.07, }, 'sheep': { 'CN1': 0.0157, 'CN2': 0.27, 'CN3': 0.4, 'CI1': 0.04, 'CI2': 1.7, 'CI8': 28, 'CI9': 1.4, 'CI12': 0.15, 'CI13': 0.02, 'CI14': 0.002, 'CI20': 1.5, 'CR1': 0.8, 'CR2': 0.17, 'CR3': 1.7, 'CR4': 0.00112, 'CR5': 0.6, 'CR6': 0.00112, 'CR7': 0, 'CR12': 0.8, 'CR13': 0.35, 'CK1': 0.5, 'CK2': 0.02, 'CK3': 0.85, 'CK5': 0.4, 'CK6': 0.02, 'CK8': 0.133, 'CL0': 0.486, 'CL1': 2, 'CL2': 22, 'CL3': 1, 'CL5': 0.94, 'CL6': 4.7, 'CL15': 0.045, 'CM1': 0.09, 'CM2': 0.26, 'CM3': 0.00008, 'CM4': 0.84, 'CM6': 0.02, 'CM7': 0.9, 'CM16': 0.0026, 'CRD1': 0.3, 'CRD2': 0.25, 'CRD4': 0.007, 'CRD5': 0.005, 'CRD6': 0.35, 'CRD7': 0.1, 'CA1': 0.05, 'CA2': 0.85, 'CA3': 5.5, 'CA4': 0.178, 'CA6': 1, 'CA7': 0.6, 'CW1': 24, 'CW2': 0.004, 'CW3': 0.7, 'CW5': 0.25, 'CW6': 0.072, 'CW7': 1.35, 'CW8': 0.016, 'CW9': 1, 'CW12': 0.025, 'CP1': 150, 'CP4': 0.33, 'CP5': 1.43, 'CP6': 3.38, 'CP7': 0.91, 'CP8': 4.33, 'CP9': 4.37, 'CP10': 0.965, 'CP15': 0.1, }, } # Target nodata is for general rasters that are positive, and _IC_NODATA are # for rasters that are any range _TARGET_NODATA = -1.0 _IC_NODATA = float(numpy.finfo('float32').min) # SV_NODATA is for state variables _SV_NODATA = -1.0 def execute(args): """InVEST Forage Model. [model description] Parameters: args['workspace_dir'] (string): path to target output workspace. args['results_suffix'] (string): (optional) string to append to any output file names args['starting_month'] (int): what month to start reporting where the range 1..12 is equivalent to Jan..Dec. args['starting_year'] (int): what year to start runs. this value is used to notate outputs in the form [month_int]_[year] args['n_months'] (int): number of months to run model, the model run will start reporting in `args['starting_month']`. args['aoi_path'] (string): path to polygon vector indicating the desired spatial extent of the model. This has the effect of clipping the computational area of the input datasets to be the area intersected by this polygon. args['management_threshold'] (float): biomass in kg/ha required to be left standing at each model step after offtake by grazing animals args['proportion_legume_path'] (string): path to raster containing fraction of pasture that is legume, by weight args['bulk_density_path'] (string): path to bulk density raster. args['ph_path'] (string): path to soil pH raster. args['clay_proportion_path'] (string): path to raster representing per-pixel proportion of soil component that is clay args['silt_proportion_path'] (string): path to raster representing per-pixel proportion of soil component that is silt args['sand_proportion_path'] (string): path to raster representing per-pixel proportion of soil component that is sand args['precip_dir'] (string): path to a directory containing monthly precipitation rasters. The model requires at least 12 months of precipitation and expects to find a precipitation file input for every month of the simulation, so the number of precipitation files should be the maximum of 12 and `n_months`. The file name of each precipitation raster must end with the year, followed by an underscore, followed by the month number. E.g., Precip_2016_1.tif for January of 2016. args['min_temp_dir'] (string): path to a directory containing monthly minimum temperature rasters. The model requires one minimum temperature raster for each month of the year, or each month that the model is run, whichever is smaller. The file name of each minimum temperature raster must end with the month number. E.g., Min_temperature_1.tif for January. args['max_temp_dir'] (string): path to a directory containing monthly maximum temperature rasters. The model requires one maximum temperature raster for each month of the year, or each month that the model is run, whichever is smaller. The file name of each maximum temperature raster must end with the month number. E.g., Max_temperature_1.tif for January. args['site_param_table'] (string): path to csv file giving site parameters. This file must contain a column named "site" that contains unique integers. These integer values correspond to site type identifiers which are values in the site parameter spatial index raster. Other required fields for this table are site and "fixed" parameters from the Century model, i.e., the parameters in the Century input files site.100 and fix.100. args['site_param_spatial_index_path'] (string): path to a raster file that indexes site parameters, indicating which set of site parameter values should apply at each pixel in the raster. The raster should be composed of integers that correspond to values in the field "site" in `site_param_table`. args['veg_trait_path'] (string): path to csv file giving vegetation traits for each plant functional type available for grazing. This file must contain a column named "PFT" that contains unique integers. These integer values correspond to PFT identifiers of veg spatial composition rasters. Other required fields for this table are vegetation input parameters from the Century model, for example maximum intrinsic growth rate, optimum temperature for production, minimum C/N ratio, etc. args['veg_spatial_composition_path_pattern'] (string): path to vegetation rasters, one per plant functional type available for grazing, where <PFT> can be replaced with an integer that is indexed in the veg trait csv. Example: if this value is given as `./vegetation/pft_<PFT>.tif` and the directory `./vegetation/` contains these files: "pft_1.tif" "pft_12.tif" "pft_50.tif", then the "PFT" field in the vegetation trait table must contain the values 1, 12, and 50. args['animal_trait_path'] (string): path to csv file giving animal traits for each animal type - number - duration combination. This table must contain a column named "animal_id" that contains unique integers. These integer values correspond to features in the animal management layer. Other required fields in this table are: type (allowable values: b_indicus, b_taurus, indicus_x_taurus, sheep, camelid, hindgut_fermenter) sex (allowable values: entire_m, castrate, breeding_female, NA) age (days) weight (kg) SRW (standard reference weight, kg; the weight of a mature female in median condition) SFW (standard fleece weight, kg; the average weight of fleece of a mature adult; for sheep only) birth_weight (kg) grz_months (a string of integers, separated by ','; months of the simulation when animals are present, relative to `starting_month`. For example, if `n_months` is 3, and animals are present during the entire simulation period, `grz_months` should be "1,2,3") args['animal_grazing_areas_path'] (string): path to animal vector inputs giving the location of grazing animals. Must have a field named "animal_id", containing unique integers that correspond to the values in the "animal_id" column of the animal trait csv, and a field named "num_animal" giving the number of animals grazing inside each polygon feature. args['initial_conditions_dir'] (string): optional input, path to directory containing initial conditions. If this directory is not supplied, a site_initial_table and pft_initial_table must be supplied. If supplied, this directory must contain a series of rasters with initial values for each PFT and for the site. Required rasters for each PFT: initial variables that are a property of PFT in the table https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing e.g., aglivc_<PFT>.tif Required for the site: initial variables that are a property of site in the table https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing args['site_initial_table'] (string): optional input, path to table containing initial conditions for each site state variable. If an initial conditions directory is not supplied, this table must be supplied. This table must contain a value for each site code and each state variable listed in the following table: https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing args['pft_initial_table'] (string): optional input, path to table containing initial conditions for each plant functional type state variable. If an initial conditions directory is not supplied, this table must be supplied. This table must contain a value for each plant functional type index and each state variable listed in the following table: https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing args['save_sv_rasters'] (boolean): optional input, default false. Should rasters containing all state variables be saved for each model time step? args['animal_density'] (string): optional input, density of grazing animals in animals per hectare. args['crude_protein'] (float): optional input, crude protein concentration of forage for the purposes of animal diet selection. Should be a value between 0-1. If included, this value is substituted for N content of forage when calculating digestibility and "ingestibility" of forage, and protein content of the diet, for grazing animals. Returns: None. """ LOGGER.info("model execute: %s", args) starting_month = int(args['starting_month']) starting_year = int(args['starting_year']) n_months = int(args['n_months']) try: delete_sv_folders = not args['save_sv_rasters'] except KeyError: delete_sv_folders = True try: global CRUDE_PROTEIN CRUDE_PROTEIN = args['crude_protein'] except KeyError: pass try: animal_density_path = args['animal_density'] except KeyError: args['animal_density'] = None # this set will build up the integer months that are used so we can index # them with temperature later temperature_month_set = set() # this dict will be used to build the set of input rasters associated with # a reasonable lookup ID so we can have a nice dataset to align for raster # stack operations base_align_raster_path_id_map = {} precip_dir_list = [ os.path.join(args['precip_dir'], f) for f in os.listdir(args['precip_dir'])] for month_index in range(n_months): month_i = (starting_month + month_index - 1) % 12 + 1 temperature_month_set.add(month_i) year = starting_year + (starting_month + month_index - 1) // 12 year_month_match = re.compile( r'.*[^\d]%d_%d\.[^.]+$' % (year, month_i)) file_list = [ month_file_path for month_file_path in precip_dir_list if year_month_match.match(month_file_path)] if len(file_list) == 0: raise ValueError( "No precipitation data found for year %d, month %d" % (year, month_i)) if len(file_list) > 1: raise ValueError( "Ambiguous set of files found for year %d, month %d: %s" % (year, month_i, file_list)) base_align_raster_path_id_map[ 'precip_{}'.format(month_index)] = file_list[0] # the model requires 12 months of precipitation data to calculate # atmospheric N deposition and potential production from annual precip n_precip_months = int(args['n_months']) if n_precip_months < 12: m_index = int(args['n_months']) while n_precip_months < 12: month_i = (starting_month + m_index - 1) % 12 + 1 year = starting_year + (starting_month + m_index - 1) // 12 year_month_match = re.compile( r'.*[^\d]%d_%d\.[^.]+$' % (year, month_i)) file_list = [ month_file_path for month_file_path in precip_dir_list if year_month_match.match(month_file_path)] if len(file_list) == 0: break if len(file_list) > 1: raise ValueError( "Ambiguous set of files found for year %d, month %d: %s" % (year, month_i, file_list)) base_align_raster_path_id_map[ 'precip_%d' % m_index] = file_list[0] n_precip_months = n_precip_months + 1 m_index = m_index + 1 if n_precip_months < 12: raise ValueError("At least 12 months of precipitation data required") # collect monthly temperature data min_temp_dir_list = [ os.path.join(args['min_temp_dir'], f) for f in os.listdir(args['min_temp_dir'])] for month_i in temperature_month_set: month_file_match = re.compile(r'.*[^\d]%d\.[^.]+$' % month_i) file_list = [ month_file_path for month_file_path in min_temp_dir_list if month_file_match.match(month_file_path)] if len(file_list) == 0: raise ValueError( "No minimum temperature data found for month %d" % month_i) if len(file_list) > 1: raise ValueError( "Ambiguous set of files found for month %d: %s" % (month_i, file_list)) base_align_raster_path_id_map[ 'min_temp_%d' % month_i] = file_list[0] max_temp_dir_list = [ os.path.join(args['max_temp_dir'], f) for f in os.listdir(args['max_temp_dir'])] for month_i in temperature_month_set: month_file_match = re.compile(r'.*[^\d]%d\.[^.]+$' % month_i) file_list = [ month_file_path for month_file_path in max_temp_dir_list if month_file_match.match(month_file_path)] if len(file_list) == 0: raise ValueError( "No maximum temperature data found for month %d" % month_i) if len(file_list) > 1: raise ValueError( "Ambiguous set of files found for month %d: %s" % (month_i, file_list)) base_align_raster_path_id_map[ 'max_temp_%d' % month_i] = file_list[0] # lookup to provide path to soil percent given soil type for soil_type in SOIL_TYPE_LIST: base_align_raster_path_id_map[soil_type] = ( args['%s_proportion_path' % soil_type]) if not os.path.exists(base_align_raster_path_id_map[soil_type]): raise ValueError( "Couldn't find %s for %s" % ( base_align_raster_path_id_map[soil_type], soil_type)) base_align_raster_path_id_map['bulk_d_path'] = args['bulk_density_path'] base_align_raster_path_id_map['ph_path'] = args['ph_path'] # make sure site initial conditions and parameters exist for each site # identifier base_align_raster_path_id_map['site_index'] = ( args['site_param_spatial_index_path']) n_bands = pygeoprocessing.get_raster_info( args['site_param_spatial_index_path'])['n_bands'] if n_bands > 1: raise ValueError( 'Site spatial index raster must contain only one band') site_datatype = pygeoprocessing.get_raster_info( args['site_param_spatial_index_path'])['datatype'] if site_datatype not in [1, 2, 3, 4, 5]: raise ValueError('Site spatial index raster must be integer type') # get unique values in site param raster site_index_set = set() for offset_map, raster_block in pygeoprocessing.iterblocks( (args['site_param_spatial_index_path'], 1)): site_index_set.update(numpy.unique(raster_block)) site_nodata = pygeoprocessing.get_raster_info( args['site_param_spatial_index_path'])['nodata'][0] if site_nodata in site_index_set: site_index_set.remove(site_nodata) site_param_table = utils.build_lookup_from_csv( args['site_param_table'], 'site') missing_site_index_list = list( site_index_set.difference(site_param_table.keys())) if missing_site_index_list: raise ValueError( "Couldn't find parameter values for the following site " + "indices: %s\n\t" + ", ".join(missing_site_index_list)) # make sure plant functional type parameters exist for each pft raster pft_dir = os.path.dirname(args['veg_spatial_composition_path_pattern']) pft_basename = os.path.basename( args['veg_spatial_composition_path_pattern']) files = [ f for f in os.listdir(pft_dir) if os.path.isfile( os.path.join(pft_dir, f))] pft_regex = re.compile(pft_basename.replace('<PFT>', r'(\d+)')) pft_matches = [ m for m in [pft_regex.search(f) for f in files] if m is not None] pft_id_set = set([int(m.group(1)) for m in pft_matches]) for pft_i in pft_id_set: pft_path = args['veg_spatial_composition_path_pattern'].replace( '<PFT>', '%d' % pft_i) base_align_raster_path_id_map['pft_%d' % pft_i] = pft_path veg_trait_table = utils.build_lookup_from_csv( args['veg_trait_path'], 'PFT') missing_pft_trait_list = pft_id_set.difference(veg_trait_table.keys()) if missing_pft_trait_list: raise ValueError( "Couldn't find trait values for the following plant functional " + "types: %s\n\t" + ", ".join(missing_pft_trait_list)) frtcindx_set = set([ pft_i['frtcindx'] for pft_i in veg_trait_table.values()]) if frtcindx_set.difference(set([0, 1])): raise ValueError("frtcindx parameter contains invalid values") base_align_raster_path_id_map['proportion_legume_path'] = args[ 'proportion_legume_path'] # track separate state variable files for each PFT pft_sv_dict = {} for pft_i in pft_id_set: for sv in _PFT_STATE_VARIABLES: pft_sv_dict['{}_{}_path'.format( sv, pft_i)] = '{}_{}.tif'.format(sv, pft_i) # make sure animal traits exist for each feature in animal management # layer anim_id_list = [] driver = ogr.GetDriverByName('ESRI Shapefile') datasource = driver.Open(args['animal_grazing_areas_path'], 0) layer = datasource.GetLayer() for feature in layer: anim_id_list.append(feature.GetField('animal_id')) input_animal_trait_table = utils.build_lookup_from_csv( args['animal_trait_path'], 'animal_id') missing_animal_trait_list = set( anim_id_list).difference(input_animal_trait_table.keys()) if missing_animal_trait_list: raise ValueError( "Couldn't find trait values for the following animal " + "ids: %s\n\t" + ", ".join(missing_animal_trait_list)) # if animal density is supplied, align inputs to match its resolution # otherwise, match resolution of precipitation rasters if args['animal_density']: target_pixel_size = pygeoprocessing.get_raster_info( args['animal_density'])['pixel_size'] base_align_raster_path_id_map['animal_density'] = args[ 'animal_density'] else: target_pixel_size = pygeoprocessing.get_raster_info( base_align_raster_path_id_map['precip_0'])['pixel_size'] LOGGER.info( "pixel size of aligned inputs: %s", target_pixel_size) # temporary directory for intermediate files global PROCESSING_DIR PROCESSING_DIR = os.path.join(args['workspace_dir'], "temporary_files") if not os.path.exists(PROCESSING_DIR): os.makedirs(PROCESSING_DIR) # set up a dictionary that uses the same keys as # 'base_align_raster_path_id_map' to point to the clipped/resampled # rasters to be used in raster calculations for the model. aligned_raster_dir = os.path.join( args['workspace_dir'], 'aligned_inputs') if os.path.exists(aligned_raster_dir): shutil.rmtree(aligned_raster_dir) os.makedirs(aligned_raster_dir) aligned_inputs = dict([(key, os.path.join( aligned_raster_dir, 'aligned_%s' % os.path.basename(path))) for key, path in base_align_raster_path_id_map.items()]) # align all the base inputs to be the minimum known pixel size and to # only extend over their combined intersections source_input_path_list = [ base_align_raster_path_id_map[k] for k in sorted( base_align_raster_path_id_map.keys())] aligned_input_path_list = [ aligned_inputs[k] for k in sorted(aligned_inputs.keys())] pygeoprocessing.align_and_resize_raster_stack( source_input_path_list, aligned_input_path_list, ['near'] * len(source_input_path_list), target_pixel_size, 'intersection', base_vector_path_list=[args['aoi_path']], vector_mask_options={'mask_vector_path': args['aoi_path']}) _check_pft_fractional_cover_sum(aligned_inputs, pft_id_set) file_suffix = utils.make_suffix_string(args, 'results_suffix') # create animal trait spatial index raster from management polygon aligned_inputs['animal_index'] = os.path.join( aligned_raster_dir, 'animal_spatial_index.tif') pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], aligned_inputs['animal_index'], gdal.GDT_Int32, [_TARGET_NODATA], fill_value_list=[_TARGET_NODATA]) pygeoprocessing.rasterize( args['animal_grazing_areas_path'], aligned_inputs['animal_index'], option_list=["ATTRIBUTE=animal_id"]) # create uniform animal density raster, if not supplied as input if not args['animal_density']: aligned_inputs['animal_density'] = os.path.join( aligned_raster_dir, 'animal_density.tif') _animal_density(aligned_inputs, args['animal_grazing_areas_path']) # Initialization sv_dir = os.path.join(args['workspace_dir'], 'state_variables_m-1') os.makedirs(sv_dir) initial_conditions_dir = None try: initial_conditions_dir = args['initial_conditions_dir'] except KeyError: pass if initial_conditions_dir: # check that a raster for each required state variable is supplied missing_initial_values = [] # set _SV_NODATA from initial rasters state_var_nodata = set([]) # align initial state variables to resampled inputs resample_initial_path_map = {} for sv in _SITE_STATE_VARIABLE_FILES: sv_path = os.path.join( initial_conditions_dir, _SITE_STATE_VARIABLE_FILES[sv]) state_var_nodata.update( set([pygeoprocessing.get_raster_info(sv_path)['nodata'][0]])) resample_initial_path_map[sv] = sv_path if not os.path.exists(sv_path): missing_initial_values.append(sv_path) for pft_i in pft_id_set: for sv in _PFT_STATE_VARIABLES: sv_key = '{}_{}_path'.format(sv, pft_i) sv_path = os.path.join( initial_conditions_dir, '{}_{}.tif'.format(sv, pft_i)) state_var_nodata.update( set([pygeoprocessing.get_raster_info(sv_path)['nodata'] [0]])) resample_initial_path_map[sv_key] = sv_path if not os.path.exists(sv_path): missing_initial_values.append(sv_path) if missing_initial_values: raise ValueError( "Couldn't find the following required initial values: " + "\n\t".join(missing_initial_values)) if len(state_var_nodata) > 1: raise ValueError( "Initial state variable rasters contain >1 nodata value") global _SV_NODATA _SV_NODATA = list(state_var_nodata)[0] # align initial values with inputs initial_path_list = ( [aligned_inputs['precip_0']] + [resample_initial_path_map[key] for key in sorted( resample_initial_path_map.keys())]) aligned_initial_path_list = ( [os.path.join(PROCESSING_DIR, 'aligned_input_template.tif')] + [os.path.join( sv_dir, os.path.basename(resample_initial_path_map[key])) for key in sorted(resample_initial_path_map.keys())]) pygeoprocessing.align_and_resize_raster_stack( initial_path_list, aligned_initial_path_list, ['near'] * len(initial_path_list), target_pixel_size, 'intersection', base_vector_path_list=[args['aoi_path']], raster_align_index=0, vector_mask_options={'mask_vector_path': args['aoi_path']}) sv_reg = dict( [(key, os.path.join(sv_dir, os.path.basename(path))) for key, path in resample_initial_path_map.items()]) else: # create initialization rasters from tables try: site_initial_conditions_table = utils.build_lookup_from_csv( args['site_initial_table'], 'site') except KeyError: raise ValueError( "If initial conditions rasters are not supplied, initial " + "conditions tables must be supplied") missing_site_index_list = list( site_index_set.difference(site_initial_conditions_table.keys())) if missing_site_index_list: raise ValueError( "Couldn't find initial conditions values for the following " + "site indices: %s\n\t" + ", ".join(missing_site_index_list)) try: pft_initial_conditions_table = utils.build_lookup_from_csv( args['pft_initial_table'], 'PFT') except KeyError: raise ValueError( "If initial conditions rasters are not supplied, initial " + "conditions tables must be supplied") missing_pft_index_list = pft_id_set.difference( pft_initial_conditions_table.keys()) if missing_pft_index_list: raise ValueError( "Couldn't find initial condition values for the following " "plant functional types: %s\n\t" + ", ".join( missing_pft_index_list)) sv_reg = initial_conditions_from_tables( aligned_inputs, sv_dir, pft_id_set, site_initial_conditions_table, pft_initial_conditions_table) # calculate persistent intermediate parameters that do not change during # the simulation persist_param_dir = os.path.join( args['workspace_dir'], 'intermediate_parameters') utils.make_directories([persist_param_dir]) pp_reg = utils.build_file_registry( [(_PERSISTENT_PARAMS_FILES, persist_param_dir)], file_suffix) # calculate derived animal traits that do not change during the simulation freer_parameter_df = pandas.DataFrame.from_dict( _FREER_PARAM_DICT, orient='index') freer_parameter_df['type'] = freer_parameter_df.index animal_trait_table = calc_derived_animal_traits( input_animal_trait_table, freer_parameter_df) # calculate maximum potential intake of each animal type for animal_id in animal_trait_table.keys(): revised_animal_trait_dict = calc_max_intake( animal_trait_table[animal_id]) animal_trait_table[animal_id] = revised_animal_trait_dict # calculate field capacity and wilting point LOGGER.info("Calculating field capacity and wilting point") _afiel_awilt( aligned_inputs['site_index'], site_param_table, sv_reg['som1c_2_path'], sv_reg['som2c_2_path'], sv_reg['som3c_path'], aligned_inputs['sand'], aligned_inputs['silt'], aligned_inputs['clay'], aligned_inputs['bulk_d_path'], pp_reg) # calculate other persistent parameters LOGGER.info("Calculating persistent parameters") _persistent_params( aligned_inputs['site_index'], site_param_table, aligned_inputs['sand'], aligned_inputs['clay'], pp_reg) # calculate required ratios for decomposition of structural material LOGGER.info("Calculating required ratios for structural decomposition") _structural_ratios( aligned_inputs['site_index'], site_param_table, sv_reg, pp_reg) # make yearly directory for values that are updated every twelve months year_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) year_reg = dict( [(key, os.path.join(year_dir, path)) for key, path in _YEARLY_FILES.items()]) for pft_i in pft_id_set: for file in _YEARLY_PFT_FILES: year_reg['{}_{}'.format(file, pft_i)] = os.path.join( year_dir, '{}_{}.tif'.format(file, pft_i)) # make monthly directory for monthly intermediate parameters that are # shared between submodels, but do not need to be saved as output month_temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) month_reg = {} for pft_i in pft_id_set: for val in _PFT_INTERMEDIATE_VALUES: month_reg['{}_{}'.format( val, pft_i)] = os.path.join( month_temp_dir, '{}_{}.tif'.format(val, pft_i)) for val in _SITE_INTERMEDIATE_VALUES: month_reg[val] = os.path.join(month_temp_dir, '{}.tif'.format(val)) output_dir = os.path.join(args['workspace_dir'], "output") if not os.path.exists(output_dir): os.makedirs(output_dir) # provisional state variable registry contains provisional biomass in # absence of grazing provisional_sv_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) provisional_sv_reg = utils.build_file_registry( [(_SITE_STATE_VARIABLE_FILES, provisional_sv_dir), (pft_sv_dict, provisional_sv_dir)], file_suffix) intermediate_sv_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) # Main simulation loop # for each step in the simulation for month_index in range(n_months): if (month_index % 12) == 0: # Update yearly quantities _yearly_tasks( aligned_inputs, site_param_table, veg_trait_table, month_index, pft_id_set, year_reg) current_month = (starting_month + month_index - 1) % 12 + 1 current_year = starting_year + (starting_month + month_index - 1) // 12 # track state variables from previous step prev_sv_reg = sv_reg for animal_id in animal_trait_table.keys(): if animal_trait_table[animal_id]['sex'] == 'breeding_female': revised_animal_trait_dict = update_breeding_female_status( animal_trait_table[animal_id], month_index) animal_trait_table[animal_id] = revised_animal_trait_dict revised_animal_trait_dict = calc_max_intake( animal_trait_table[animal_id]) animal_trait_table[animal_id] = revised_animal_trait_dict # enforce absence of grazing as zero biomass removed for pft_i in pft_id_set: pygeoprocessing.new_raster_from_base( aligned_inputs['pft_{}'.format(pft_i)], month_reg['flgrem_{}'.format(pft_i)], gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0]) pygeoprocessing.new_raster_from_base( aligned_inputs['pft_{}'.format(pft_i)], month_reg['fdgrem_{}'.format(pft_i)], gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0]) # populate provisional_sv_reg with provisional biomass in absence of # grazing _potential_production( aligned_inputs, site_param_table, current_month, month_index, pft_id_set, veg_trait_table, prev_sv_reg, pp_reg, month_reg) _root_shoot_ratio( aligned_inputs, site_param_table, current_month, pft_id_set, veg_trait_table, prev_sv_reg, year_reg, month_reg) _soil_water( aligned_inputs, site_param_table, veg_trait_table, current_month, month_index, prev_sv_reg, pp_reg, pft_id_set, month_reg, provisional_sv_reg) _decomposition( aligned_inputs, current_month, month_index, pft_id_set, site_param_table, year_reg, month_reg, prev_sv_reg, pp_reg, provisional_sv_reg) _death_and_partition( 'stded', aligned_inputs, site_param_table, current_month, year_reg, pft_id_set, veg_trait_table, prev_sv_reg, provisional_sv_reg) _death_and_partition( 'bgliv', aligned_inputs, site_param_table, current_month, year_reg, pft_id_set, veg_trait_table, prev_sv_reg, provisional_sv_reg) _shoot_senescence( pft_id_set, veg_trait_table, prev_sv_reg, month_reg, current_month, provisional_sv_reg) intermediate_sv_reg = copy_intermediate_sv( pft_id_set, provisional_sv_reg, intermediate_sv_dir) delta_agliv_dict = _new_growth( pft_id_set, aligned_inputs, site_param_table, veg_trait_table, month_reg, current_month, provisional_sv_reg) _apply_new_growth(delta_agliv_dict, pft_id_set, provisional_sv_reg) # estimate grazing offtake by animals relative to provisional biomass # at an intermediate step, after senescence but before new growth _calc_grazing_offtake( aligned_inputs, args['aoi_path'], args['management_threshold'], intermediate_sv_reg, pft_id_set, aligned_inputs['animal_index'], animal_trait_table, veg_trait_table, current_month, month_reg) # estimate actual biomass production for this step, integrating impacts # of grazing sv_dir = os.path.join( args['workspace_dir'], 'state_variables_m%d' % month_index) utils.make_directories([sv_dir]) sv_reg = utils.build_file_registry( [(_SITE_STATE_VARIABLE_FILES, sv_dir), (pft_sv_dict, sv_dir)], file_suffix) _potential_production( aligned_inputs, site_param_table, current_month, month_index, pft_id_set, veg_trait_table, prev_sv_reg, pp_reg, month_reg) _root_shoot_ratio( aligned_inputs, site_param_table, current_month, pft_id_set, veg_trait_table, prev_sv_reg, year_reg, month_reg) _soil_water( aligned_inputs, site_param_table, veg_trait_table, current_month, month_index, prev_sv_reg, pp_reg, pft_id_set, month_reg, sv_reg) _decomposition( aligned_inputs, current_month, month_index, pft_id_set, site_param_table, year_reg, month_reg, prev_sv_reg, pp_reg, sv_reg) _death_and_partition( 'stded', aligned_inputs, site_param_table, current_month, year_reg, pft_id_set, veg_trait_table, prev_sv_reg, sv_reg) _death_and_partition( 'bgliv', aligned_inputs, site_param_table, current_month, year_reg, pft_id_set, veg_trait_table, prev_sv_reg, sv_reg) _shoot_senescence( pft_id_set, veg_trait_table, prev_sv_reg, month_reg, current_month, sv_reg) delta_agliv_dict = _new_growth( pft_id_set, aligned_inputs, site_param_table, veg_trait_table, month_reg, current_month, sv_reg) _animal_diet_sufficiency( sv_reg, pft_id_set, aligned_inputs, animal_trait_table, veg_trait_table, current_month, month_reg) _grazing( aligned_inputs, site_param_table, month_reg, animal_trait_table, pft_id_set, sv_reg) _apply_new_growth(delta_agliv_dict, pft_id_set, sv_reg) _leach(aligned_inputs, site_param_table, month_reg, sv_reg) _write_monthly_outputs( aligned_inputs, provisional_sv_reg, sv_reg, month_reg, pft_id_set, current_year, current_month, output_dir, file_suffix) # summary results summary_output_dir = os.path.join(output_dir, 'summary_results') os.makedirs(summary_output_dir) summary_shp_path = os.path.join( summary_output_dir, 'grazing_areas_results_rpm{}.shp'.format(file_suffix)) create_vector_copy( args['animal_grazing_areas_path'], summary_shp_path) field_pickle_map, field_header_order_list = aggregate_and_pickle_results( output_dir, summary_shp_path) _add_fields_to_shapefile( field_pickle_map, field_header_order_list, summary_shp_path) # clean up shutil.rmtree(persist_param_dir) shutil.rmtree(PROCESSING_DIR) if delete_sv_folders: for month_index in range(-1, n_months): shutil.rmtree( os.path.join( args['workspace_dir'], 'state_variables_m%d' % month_index)) def raster_multiplication( raster1, raster1_nodata, raster2, raster2_nodata, target_path, target_path_nodata): """Multiply raster1 by raster2. Multiply raster1 by raster2 element-wise. In any pixel where raster1 or raster2 is nodata, the result is nodata. The result is always of float datatype. Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ def raster_multiply_op(raster1, raster2): """Multiply two rasters.""" valid_mask = ( (~numpy.isclose(raster1, raster1_nodata)) & (~numpy.isclose(raster2, raster2_nodata))) result = numpy.empty(raster1.shape, dtype=numpy.float32) result[:] = target_path_nodata result[valid_mask] = raster1[valid_mask] * raster2[valid_mask] return result pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_multiply_op, target_path, gdal.GDT_Float32, target_path_nodata) def raster_division( raster1, raster1_nodata, raster2, raster2_nodata, target_path, target_path_nodata): """Divide raster1 by raster2. Divide raster1 by raster2 element-wise. In any pixel where raster1 or raster2 is nodata, the result is nodata. The result is always of float datatype. Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ def raster_divide_op(raster1, raster2): """Divide raster1 by raster2.""" valid_mask = ( (~numpy.isclose(raster1, raster1_nodata)) & (~numpy.isclose(raster2, raster2_nodata))) raster1 = raster1.astype(numpy.float32) raster2 = raster2.astype(numpy.float32) result = numpy.empty(raster1.shape, dtype=numpy.float32) result[:] = target_path_nodata error_mask = ((raster1 != 0) & (raster2 == 0.) & valid_mask) zero_mask = ((raster1 == 0.) & (raster2 == 0.) & valid_mask) nonzero_mask = ((raster2 != 0.) & valid_mask) result[error_mask] = target_path_nodata result[zero_mask] = 0. result[nonzero_mask] = raster1[nonzero_mask] / raster2[nonzero_mask] return result pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_divide_op, target_path, gdal.GDT_Float32, target_path_nodata) def raster_list_sum( raster_list, input_nodata, target_path, target_nodata, nodata_remove=False): """Calculate the sum per pixel across rasters in a list. Sum the rasters in `raster_list` element-wise, allowing nodata values in the rasters to propagate to the result or treating nodata as zero. If nodata is treated as zero, areas where all inputs are nodata will be nodata in the output. Parameters: raster_list (list): list of paths to rasters to sum input_nodata (float or int): nodata value in the input rasters target_path (string): path to location to store the result target_nodata (float or int): nodata value for the result raster nodata_remove (bool): if true, treat nodata values in input rasters as zero. If false, the sum in a pixel where any input raster is nodata is nodata. Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ def raster_sum_op(*raster_list): """Add the rasters in raster_list without removing nodata values.""" invalid_mask = numpy.any( numpy.isclose(numpy.array(raster_list), input_nodata), axis=0) for r in raster_list: numpy.place(r, numpy.isclose(r, input_nodata), [0]) sum_of_rasters = numpy.sum(raster_list, axis=0) sum_of_rasters[invalid_mask] = target_nodata return sum_of_rasters def raster_sum_op_nodata_remove(*raster_list): """Add the rasters in raster_list, treating nodata as zero.""" invalid_mask = numpy.all( numpy.isclose(numpy.array(raster_list), input_nodata), axis=0) for r in raster_list: numpy.place(r, numpy.isclose(r, input_nodata), [0]) sum_of_rasters = numpy.sum(raster_list, axis=0) sum_of_rasters[invalid_mask] = target_nodata return sum_of_rasters if nodata_remove: pygeoprocessing.raster_calculator( [(path, 1) for path in raster_list], raster_sum_op_nodata_remove, target_path, gdal.GDT_Float32, target_nodata) else: pygeoprocessing.raster_calculator( [(path, 1) for path in raster_list], raster_sum_op, target_path, gdal.GDT_Float32, target_nodata) def raster_sum( raster1, raster1_nodata, raster2, raster2_nodata, target_path, target_nodata, nodata_remove=False): """Add raster 1 and raster2. Add raster1 and raster2, allowing nodata values in the rasters to propagate to the result or treating nodata as zero. Parameters: raster1 (string): path to one raster operand raster1_nodata (float or int): nodata value in raster1 raster2 (string): path to second raster operand raster2_nodata (float or int): nodata value in raster2 target_path (string): path to location to store the sum target_nodata (float or int): nodata value for the result raster nodata_remove (bool): if true, treat nodata values in input rasters as zero. If false, the sum in a pixel where any input raster is nodata is nodata. Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ def raster_sum_op(raster1, raster2): """Add raster1 and raster2 without removing nodata values.""" valid_mask = ( (~numpy.isclose(raster1, raster1_nodata)) & (~numpy.isclose(raster2, raster2_nodata))) result = numpy.empty(raster1.shape, dtype=numpy.float32) result[:] = target_nodata result[valid_mask] = raster1[valid_mask] + raster2[valid_mask] return result def raster_sum_op_nodata_remove(raster1, raster2): """Add raster1 and raster2, treating nodata as zero.""" numpy.place(raster1, numpy.isclose(raster1, raster1_nodata), [0]) numpy.place(raster2, numpy.isclose(raster2, raster2_nodata), [0]) result = raster1 + raster2 return result if nodata_remove: pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_sum_op_nodata_remove, target_path, gdal.GDT_Float32, target_nodata) else: pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_sum_op, target_path, gdal.GDT_Float32, target_nodata) def raster_difference( raster1, raster1_nodata, raster2, raster2_nodata, target_path, target_nodata, nodata_remove=False): """Subtract raster2 from raster1. Subtract raster2 from raster1 element-wise, allowing nodata values in the rasters to propagate to the result or treating nodata as zero. Parameters: raster1 (string): path to raster from which to subtract raster2 raster1_nodata (float or int): nodata value in raster1 raster2 (string): path to raster which should be subtracted from raster1 raster2_nodata (float or int): nodata value in raster2 target_path (string): path to location to store the difference target_nodata (float or int): nodata value for the result raster nodata_remove (bool): if true, treat nodata values in input rasters as zero. If false, the difference in a pixel where any input raster is nodata is nodata. Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ def raster_difference_op(raster1, raster2): """Subtract raster2 from raster1 without removing nodata values.""" valid_mask = ( (~numpy.isclose(raster1, raster1_nodata)) & (~numpy.isclose(raster2, raster2_nodata))) result = numpy.empty(raster1.shape, dtype=numpy.float32) result[:] = target_nodata result[valid_mask] = raster1[valid_mask] - raster2[valid_mask] return result def raster_difference_op_nodata_remove(raster1, raster2): """Subtract raster2 from raster1, treating nodata as zero.""" numpy.place(raster1, numpy.isclose(raster1, raster1_nodata), [0]) numpy.place(raster2, numpy.isclose(raster2, raster2_nodata), [0]) result = raster1 - raster2 return result if nodata_remove: pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_difference_op_nodata_remove, target_path, gdal.GDT_Float32, target_nodata) else: pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_difference_op, target_path, gdal.GDT_Float32, target_nodata) def reclassify_nodata(target_path, new_nodata_value): """Reclassify the nodata value of a raster to a new value. Convert all areas of nodata in the target raster to the new nodata value, which must be an integer. Parameters: target_path (string): path to target raster new_nodata_value (integer): new value to set as nodata Side effects: modifies the raster indicated by `target_path` Returns: None """ def reclassify_op(target_raster): reclassified_raster = numpy.copy(target_raster) reclassify_mask = (target_raster == previous_nodata_value) reclassified_raster[reclassify_mask] = new_nodata_value return reclassified_raster fd, temp_path = tempfile.mkstemp(dir=PROCESSING_DIR) shutil.copyfile(target_path, temp_path) previous_nodata_value = pygeoprocessing.get_raster_info( target_path)['nodata'][0] pygeoprocessing.raster_calculator( [(temp_path, 1)], reclassify_op, target_path, gdal.GDT_Float32, new_nodata_value) # clean up os.close(fd) os.remove(temp_path) def weighted_state_variable_sum( sv, sv_reg, aligned_inputs, pft_id_set, weighted_sum_path): """Calculate weighted sum of state variable across plant functional types. To sum a state variable across PFTs within a grid cell, the state variable must be weighted by the fractional cover of each PFT inside the grid cell. First multiply the state variable by its fractional cover, and then add up the weighted products. Parameters: sv (string): state variable to be summed across plant functional types sv_reg (dict): map of key, path pairs giving paths to state variables, including sv, the state variable to be summed aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including fractional cover of each plant functional type pft_id_set (set): set of integers identifying plant functional types weighted_sum_path (string): path to raster that should contain the weighted sum across PFTs Side effects: modifies or creates the raster indicated by `weighted_sum_path` Returns: None """ temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for pft_i in pft_id_set: val = '{}_weighted'.format(sv) temp_val_dict['{}_{}'.format(val, pft_i)] = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) weighted_path_list = [] for pft_i in pft_id_set: target_path = temp_val_dict['{}_weighted_{}'.format(sv, pft_i)] pft_nodata = pygeoprocessing.get_raster_info( aligned_inputs['pft_{}'.format(pft_i)])['nodata'][0] raster_multiplication( sv_reg['{}_{}_path'.format(sv, pft_i)], _SV_NODATA, aligned_inputs['pft_{}'.format(pft_i)], pft_nodata, target_path, _TARGET_NODATA) weighted_path_list.append(target_path) raster_list_sum( weighted_path_list, _TARGET_NODATA, weighted_sum_path, _TARGET_NODATA, nodata_remove=True) # clean up temporary files shutil.rmtree(temp_dir) def _check_pft_fractional_cover_sum(aligned_inputs, pft_id_set): """Check the sum of fractional cover across plant functional types. Parameters: aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including fractional cover of each plant functional type pft_id_set (set): set of integers identifying plant functional types Raises: ValueError if the pixel-wise sum of fractional cover values across plant functional types exceeds 1 Returns: None """ with tempfile.NamedTemporaryFile( prefix='cover_sum', dir=PROCESSING_DIR) as cover_sum_temp_file: cover_sum_path = cover_sum_temp_file.name with tempfile.NamedTemporaryFile( prefix='operand_temp', dir=PROCESSING_DIR) as operand_temp_file: operand_temp_path = operand_temp_file.name # initialize sum to zero pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], cover_sum_path, gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0]) for pft_i in pft_id_set: shutil.copyfile(cover_sum_path, operand_temp_path) pft_nodata = pygeoprocessing.get_raster_info( aligned_inputs['pft_{}'.format(pft_i)])['nodata'][0] raster_sum( aligned_inputs['pft_{}'.format(pft_i)], pft_nodata, operand_temp_path, _TARGET_NODATA, cover_sum_path, _TARGET_NODATA) # get maximum sum of fractional cover max_cover = 0. for offset_map, raster_block in pygeoprocessing.iterblocks( (cover_sum_path, 1)): valid_mask = (raster_block != _TARGET_NODATA) if raster_block[valid_mask].size > 0: max_cover = max(max_cover, numpy.amax(raster_block[valid_mask])) if max_cover > 1: raise ValueError( "Fractional cover across plant functional types exceeds 1") # clean up os.remove(cover_sum_path) def initial_conditions_from_tables( aligned_inputs, sv_dir, pft_id_set, site_initial_conditions_table, pft_initial_conditions_table): """Generate initial state variable registry from initial conditions tables. Parameters: aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including site spatial index raster and fractional cover of each plant functional type sv_dir (string): path to directory where initial state variable rasters should be stored pft_id_set (set): set of integers identifying plant functional types site_initial_conditions_table (dict): map of site spatial index to dictionaries that contain initial values for site-level state variables pft_initial_conditions_table (dict): map of plant functional type index to dictionaries that contain initial values for plant functional type-level state variables Returns: initial_sv_reg, map of key, path pairs giving paths to initial state variable rasters """ def full_masked(pft_cover, fill_val): """Create a constant raster masked by pft fractional cover. Parameters: pft_cover (numpy.ndarray): input, fractional cover of the plant functional type fill_val (float): constant value with which to fill raster in areas where fractional cover > 0 Returns: full_masked, a raster containing `fill_val` in areas where `pft_cover` > 0 """ valid_mask = ( (~numpy.isclose(pft_cover, _SV_NODATA)) & (pft_cover > 0)) full_masked = numpy.empty(pft_cover.shape, dtype=numpy.float32) full_masked[:] = _SV_NODATA full_masked[valid_mask] = fill_val return full_masked initial_sv_reg = {} # site-level state variables # check for missing state variable values required_site_state_var = set( [sv_key[:-5] for sv_key in _SITE_STATE_VARIABLE_FILES.keys()]) for site_code in site_initial_conditions_table.keys(): missing_site_state_var = required_site_state_var.difference( site_initial_conditions_table[site_code].keys()) if missing_site_state_var: raise ValueError( "The following state variables were not found in the site " + "initial conditions table: \n\t" + "\n\t".join( missing_site_state_var)) for sv_key, basename in _SITE_STATE_VARIABLE_FILES.items(): state_var = sv_key[:-5] site_to_val = dict( [(site_code, float(table[state_var])) for ( site_code, table) in site_initial_conditions_table.items()]) target_path = os.path.join(sv_dir, basename) initial_sv_reg[sv_key] = target_path pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _SV_NODATA) # PFT-level state variables for pft_i in pft_id_set: # check for missing values missing_pft_state_var = set(_PFT_STATE_VARIABLES).difference( pft_initial_conditions_table[pft_i].keys()) if missing_pft_state_var: raise ValueError( "The following state variables were not found in the plant " + "functional type initial conditions table: \n\t" + "\n\t".join( missing_pft_state_var)) for state_var in _PFT_STATE_VARIABLES: fill_val = pft_initial_conditions_table[pft_i][state_var] pft_cover_path = aligned_inputs['pft_{}'.format(pft_i)] target_path = os.path.join( sv_dir, '{}_{}.tif'.format(state_var, pft_i)) sv_key = '{}_{}_path'.format(state_var, pft_i) initial_sv_reg[sv_key] = target_path pygeoprocessing.raster_calculator( [(pft_cover_path, 1), (fill_val, 'raw')], full_masked, target_path, gdal.GDT_Float32, _SV_NODATA) return initial_sv_reg def _calc_ompc( som1c_2_path, som2c_2_path, som3c_path, bulkd_path, edepth_path, ompc_path): """Estimate total soil organic matter. Total soil organic matter is the sum of soil carbon across slow, active, and passive compartments, weighted by bulk density and total modeled soil depth. Lines 220-222, Prelim.f Parameters: som1c_2_path (string): path to active organic soil carbon raster som2c_2_path (string): path to slow organic soil carbon raster som3c_path (string): path to passive organic soil carbon raster bulkd_path (string): path to bulk density of soil raster edepth (string): path to depth of soil raster ompc_path (string): path to result, total soil organic matter Side effects: modifies or creates the raster indicated by `ompc_path` Returns: None """ def ompc_op(som1c_2, som2c_2, som3c, bulkd, edepth): """Estimate total soil organic matter. Total soil organic matter is the sum of soil carbon across slow, active, and passive compartments, weighted by bulk density and total modeled soil depth. Lines 220-222, Prelim.f Parameters: som1c_2_path (string): state variable, active organic soil carbon som2c_2_path (string): state variable, slow organic soil carbon som3c_path (string): state variable, passive organic soil carbon bulkd_path (string): input, bulk density of soil edepth_path (string): parameter, depth of soil for this calculation Returns: ompc, total soil organic matter weighted by bulk density. """ ompc = numpy.empty(som1c_2.shape, dtype=numpy.float32) ompc[:] = _TARGET_NODATA valid_mask = ( (~numpy.isclose(som1c_2, _SV_NODATA)) & (~numpy.isclose(som2c_2, _SV_NODATA)) & (~numpy.isclose(som3c, _SV_NODATA)) & (~numpy.isclose(bulkd, bulkd_nodata)) & (edepth != _IC_NODATA)) ompc[valid_mask] = ( (som1c_2[valid_mask] + som2c_2[valid_mask] + som3c[valid_mask]) * 1.724 / (10000. * bulkd[valid_mask] * edepth[valid_mask])) return ompc bulkd_nodata = pygeoprocessing.get_raster_info(bulkd_path)['nodata'][0] pygeoprocessing.raster_calculator( [(path, 1) for path in [ som1c_2_path, som2c_2_path, som3c_path, bulkd_path, edepth_path]], ompc_op, ompc_path, gdal.GDT_Float32, _TARGET_NODATA) def _calc_afiel( sand_path, silt_path, clay_path, ompc_path, bulkd_path, afiel_path): """Calculate field capacity for one soil layer. Parameters: sand_path (string): path to proportion sand in soil raster silt_path (string): path to proportion silt in soil raster clay_path (string): path to proportion clay in soil raster ompc_path (string): path to estimated total soil organic matter raster bulkd_path (string): path to bulk density of soil raster afiel_path (string): path to result raster, field capacity for this soil layer Side effects: creates the raster indicated by `afiel_path` Returns: None """ def afiel_op(sand, silt, clay, ompc, bulkd): """Calculate field capacity for one soil layer. Field capacity, maximum soil moisture retention capacity, from <NAME> Larson 1979, 'Estimating soil and water retention characteristics from particle size distribution, organic matter percent and bulk density'. Water Resources Research 15:1633. Parameters: sand_path (string): input, proportion sand in soil silt_path (string): input, proportion silt in soil clay_path (string): input, proportion clay in soil ompc_path (string): derived, estimated total soil organic matter bulkd_path (string): input, bulk density of soil Returns: afiel, field capacity for this soil layer """ afiel = numpy.empty(sand.shape, dtype=numpy.float32) afiel[:] = _TARGET_NODATA valid_mask = ( (~numpy.isclose(sand, sand_nodata)) & (~numpy.isclose(silt, silt_nodata)) & (~numpy.isclose(clay, clay_nodata)) & (ompc != _TARGET_NODATA) & (~numpy.isclose(bulkd, bulkd_nodata))) afiel[valid_mask] = ( 0.3075 * sand[valid_mask] + 0.5886 * silt[valid_mask] + 0.8039 * clay[valid_mask] + 2.208E-03 * ompc[valid_mask] + -0.1434 * bulkd[valid_mask]) return afiel sand_nodata = pygeoprocessing.get_raster_info(sand_path)['nodata'][0] silt_nodata = pygeoprocessing.get_raster_info(silt_path)['nodata'][0] clay_nodata = pygeoprocessing.get_raster_info(clay_path)['nodata'][0] bulkd_nodata = pygeoprocessing.get_raster_info(bulkd_path)['nodata'][0] pygeoprocessing.raster_calculator( [(path, 1) for path in [ sand_path, silt_path, clay_path, ompc_path, bulkd_path]], afiel_op, afiel_path, gdal.GDT_Float32, _TARGET_NODATA) def _calc_awilt( sand_path, silt_path, clay_path, ompc_path, bulkd_path, awilt_path): """Calculate wilting point for one soil layer. Wilting point, minimum soil water required by plants before wilting, from Gupta and Larson 1979, 'Estimating soil and water retention characteristics from particle size distribution, organic matter percent and bulk density'. Water Resources Research 15:1633. Parameters: sand_path (string): path to proportion sand in soil raster silt_path (string): path to proportion silt in soil raster clay_path (string): path to proportion clay in soil raster ompc_path (string): path to estimated total soil organic matter raster bulkd_path (string): path to bulk density of soil raster awilt_path (string): path to result raster, wilting point for this soil layer Side effects: creates the raster indicated by `awilt_path` Returns: None """ def awilt_op(sand, silt, clay, ompc, bulkd): """Calculate wilting point for one soil layer. Wilting point, minimum soil water required by plants before wilting, from Gupta and Larson 1979, 'Estimating soil and water retention characteristics from particle size distribution, organic matter percent and bulk density'. Water Resources Research 15:1633. Parameters: sand_path (string): input, proportion sand in soil silt_path (string): input, proportion silt in soil clay_path (string): input, proportion clay in soil ompc_path (string): derived, estimated total soil organic matter bulkd_path (string): input, bulk density of soil Returns: awilt, wilting point for this soil layer """ awilt = numpy.empty(sand.shape, dtype=numpy.float32) awilt[:] = _TARGET_NODATA valid_mask = ( (~numpy.isclose(sand, sand_nodata)) & (~numpy.isclose(silt, silt_nodata)) & (~numpy.isclose(clay, clay_nodata)) & (ompc != _TARGET_NODATA) & (~numpy.isclose(bulkd, bulkd_nodata))) awilt[valid_mask] = ( -0.0059 * sand[valid_mask] + 0.1142 * silt[valid_mask] + 0.5766 * clay[valid_mask] + 2.228E-03 * ompc[valid_mask] + 0.02671 * bulkd[valid_mask]) return awilt sand_nodata = pygeoprocessing.get_raster_info(sand_path)['nodata'][0] silt_nodata = pygeoprocessing.get_raster_info(silt_path)['nodata'][0] clay_nodata = pygeoprocessing.get_raster_info(clay_path)['nodata'][0] bulkd_nodata = pygeoprocessing.get_raster_info(bulkd_path)['nodata'][0] pygeoprocessing.raster_calculator( [(path, 1) for path in [ sand_path, silt_path, clay_path, ompc_path, bulkd_path]], awilt_op, awilt_path, gdal.GDT_Float32, _TARGET_NODATA) def _afiel_awilt( site_index_path, site_param_table, som1c_2_path, som2c_2_path, som3c_path, sand_path, silt_path, clay_path, bulk_d_path, pp_reg): """Calculate field capacity and wilting point for each soil layer. Computations based on Gupta and Larson 1979, 'Estimating soil and water retention characteristics from particle size distribution, organic matter percent and bulk density'. Water Resources Research 15:1633. Field capacity is calculated for -0.33 bar; wilting point is calculated for water content at -15 bars. Parameters: site_index_path (string): path to site spatial index raster site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters including 'edepth' field som1c_2_path (string): path to the state variable 'som1c_2', active organic soil carbon som2c_2_path (string): path to the state variable 'som2c_2', slow organic soil carbon som3c_path (string): path to the state variable 'som3c', passive organic soil carbon sand_path (string): path to raster containing proportion sand in soil silt_path (string): path to raster containing proportion silt in soil clay_path (string): path to raster containing proportion clay in soil bulk_d_path (string): path to raster containing bulk density of soil pp_reg (dict): map of key, path pairs giving paths to persistent intermediate parameters that do not change over the course of the simulation Modifies the rasters pp_reg['afiel_<layer>'] and pp_reg['awilt_<layer>'] for all soil layers. Returns: None """ def decrement_ompc(ompc_orig_path, ompc_dec_path): """Decrease estimated organic matter to 85% of its value. In each subsequent soil layer, estimated organic matter is decreased by 15%, to 85% of its previous value. Parameters: ompc_orig_path (string): path to estimated soil organic matter raster ompc_dec_path (string): path to result raster, estimated soil organic matter decreased to 85% of its previous value Side effects: modifies or creates the raster indicated by `ompc_dec_path` Returns: None """ def decrement_op(ompc_orig): """Reduce organic matter to 85% of its previous value.""" ompc_dec = numpy.empty(ompc_orig.shape, dtype=numpy.float32) ompc_dec[:] = _TARGET_NODATA valid_mask = (ompc_orig != _TARGET_NODATA) ompc_dec[valid_mask] = ompc_orig[valid_mask] * 0.85 return ompc_dec pygeoprocessing.raster_calculator( [(ompc_orig_path, 1)], decrement_op, ompc_dec_path, gdal.GDT_Float32, _TARGET_NODATA) # temporary intermediate rasters for calculating field capacity and # wilting point temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) edepth_path = os.path.join(temp_dir, 'edepth.tif') ompc_path = os.path.join(temp_dir, 'ompc.tif') site_to_edepth = dict( [(site_code, float(table['edepth'])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_edepth, edepth_path, gdal.GDT_Float32, _IC_NODATA) # estimate total soil organic matter _calc_ompc( som1c_2_path, som2c_2_path, som3c_path, bulk_d_path, edepth_path, ompc_path) # calculate field capacity and wilting point for each soil layer, # decreasing organic matter content by 85% with each layer for lyr in range(1, 10): afiel_path = pp_reg['afiel_{}_path'.format(lyr)] awilt_path = pp_reg['awilt_{}_path'.format(lyr)] _calc_afiel( sand_path, silt_path, clay_path, ompc_path, bulk_d_path, afiel_path) _calc_awilt( sand_path, silt_path, clay_path, ompc_path, bulk_d_path, awilt_path) ompc_dec_path = os.path.join(temp_dir, 'ompc{}.tif'.format(lyr)) decrement_ompc(ompc_path, ompc_dec_path) ompc_path = ompc_dec_path # clean up temporary files shutil.rmtree(temp_dir) def _persistent_params( site_index_path, site_param_table, sand_path, clay_path, pp_reg): """Calculate persistent parameters. The calculated values do not change over the course of the simulation. Parameters: site_index_path (string): path to site spatial index raster site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters sand_path (string): path to raster containing proportion sand in soil clay_path (string): path to raster containing proportion clay in soil pp_reg (dict): map of key, path pairs giving paths to persistent intermediate parameters that do not change over the course of the simulation. Modifies the persistent parameter rasters indexed by the following keys: pp_reg['wc_path'] pp_reg['eftext_path'] pp_reg['p1co2_2_path'] pp_reg['fps1s3_path'] pp_reg['fps2s3_path'] pp_reg['orglch_path'] pp_reg['vlossg_path'] Returns: None """ sand_nodata = pygeoprocessing.get_raster_info(sand_path)['nodata'][0] clay_nodata = pygeoprocessing.get_raster_info(clay_path)['nodata'][0] # temporary intermediate rasters for persistent parameters calculation temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) param_val_dict = {} for val in[ 'peftxa', 'peftxb', 'p1co2a_2', 'p1co2b_2', 'ps1s3_1', 'ps1s3_2', 'ps2s3_1', 'ps2s3_2', 'omlech_1', 'omlech_2', 'vlossg']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for ( site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) def calc_wc(afiel_1, awilt_1): """Calculate water content of soil layer 1.""" return afiel_1 - awilt_1 pygeoprocessing.raster_calculator( [(path, 1) for path in [ pp_reg['afiel_1_path'], pp_reg['awilt_1_path']]], calc_wc, pp_reg['wc_path'], gdal.GDT_Float32, _TARGET_NODATA) def calc_eftext(peftxa, peftxb, sand): """Calculate effect of soil texture on microbial decomposition. Use an empirical regression to estimate the effect of soil sand content on the microbe decomposition rate. Line 359 Prelim.f Parameters: peftxa (numpy.ndarray): parameter, regression intercept peftxb (numpy.ndarray): parameter, regression slope sand (numpy.ndarray): input, proportion sand in soil Returns: eftext, coefficient that modifies microbe decomposition rate. """ eftext = numpy.empty(sand.shape, dtype=numpy.float32) eftext[:] = _IC_NODATA valid_mask = ( (peftxa != _IC_NODATA) & (peftxb != _IC_NODATA) & (~numpy.isclose(sand, sand_nodata))) eftext[valid_mask] = ( peftxa[valid_mask] + (peftxb[valid_mask] * sand[valid_mask])) return eftext pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['peftxa'], param_val_dict['peftxb'], sand_path]], calc_eftext, pp_reg['eftext_path'], gdal.GDT_Float32, _IC_NODATA) def calc_p1co2_2(p1co2a_2, p1co2b_2, sand): """Calculate the fraction of carbon lost to CO2 from som1c_2. During decomposition from active organic soil carbon, a fraction of decomposing material is lost to CO2 as the soil respires. Line 366 Prelim.f Parameters: p1co2a_2 (numpy.ndarray): parameter, intercept of regression predicting loss to CO2 from active organic soil carbon p1co2b_2 (numpy.ndarray): parameter, slope of regression predicting loss to CO2 from active organic soil carbon sand (numpy.ndarray): input, proportion sand in soil Returns: p1co2_2, fraction of carbon that flows to CO2 from active organic soil carbon """ p1co2_2 = numpy.empty(sand.shape, dtype=numpy.float32) p1co2_2[:] = _IC_NODATA valid_mask = ( (p1co2a_2 != _IC_NODATA) & (p1co2b_2 != _IC_NODATA) & (~numpy.isclose(sand, sand_nodata))) p1co2_2[valid_mask] = ( p1co2a_2[valid_mask] + (p1co2b_2[valid_mask] * sand[valid_mask])) return p1co2_2 pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['p1co2a_2'], param_val_dict['p1co2b_2'], sand_path]], calc_p1co2_2, pp_reg['p1co2_2_path'], gdal.GDT_Float32, _IC_NODATA) def calc_fps1s3(ps1s3_1, ps1s3_2, clay): """Calculate effect of clay content on decomposition from som1c_2. Use an empirical regression to estimate the effect of clay content of soil on flow from soil organic matter with fast turnover to soil organic matter with slow turnover. Line 370 Prelim.f Parameters: ps1s3_1 (numpy.ndarray): parameter, regression intercept ps1s3_2 (numpy.ndarray): parameter, regression slope clay (numpy.ndarray): input, proportion clay in soil Returns: fps1s3, coefficient that modifies rate of decomposition from som1c_2 """ fps1s3 = numpy.empty(clay.shape, dtype=numpy.float32) fps1s3[:] = _IC_NODATA valid_mask = ( (ps1s3_1 != _IC_NODATA) & (ps1s3_2 != _IC_NODATA) & (~numpy.isclose(clay, clay_nodata))) fps1s3[valid_mask] = ( ps1s3_1[valid_mask] + (ps1s3_2[valid_mask] * clay[valid_mask])) return fps1s3 pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['ps1s3_1'], param_val_dict['ps1s3_2'], clay_path]], calc_fps1s3, pp_reg['fps1s3_path'], gdal.GDT_Float32, _IC_NODATA) def calc_fps2s3(ps2s3_1, ps2s3_2, clay): """Calculate effect of clay content on decomposition from som2c_2. Use an empirical regression to estimate the effect of clay content of soil on flow from slow soil organic carbon to soil passive organic carbon. Line 371 Prelim.f Parameters: ps2s3_1 (numpy.ndarray): parameter, regression intercept ps2s3_2 (numpy.ndarray): parameter, regression slope clay (numpy.ndarray): input, proportion clay in soil Returns: fps2s3, coefficient that modifies rate of decomposition from som2c_2 to som3c """ fps2s3 = numpy.empty(clay.shape, dtype=numpy.float32) fps2s3[:] = _IC_NODATA valid_mask = ( (ps2s3_1 != _IC_NODATA) & (ps2s3_2 != _IC_NODATA) & (~numpy.isclose(clay, clay_nodata))) fps2s3[valid_mask] = ( ps2s3_1[valid_mask] + (ps2s3_2[valid_mask] * clay[valid_mask])) return fps2s3 pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['ps2s3_1'], param_val_dict['ps2s3_2'], clay_path]], calc_fps2s3, pp_reg['fps2s3_path'], gdal.GDT_Float32, _IC_NODATA) def calc_orglch(omlech_1, omlech_2, sand): """Calculate the effect of sand content on leaching from soil. Use an empirical regression to estimate the effect of sand content of soil on rate of organic leaching from soil when there is drainage of soil water from soil layer 1 to soil layer 2. Line 110 Predec.f Parameters: omlech_1 (numpy.ndarray): parameter, regression intercept omlech_2 (numpy.ndarray): parameter, regression slope sand (numpy.ndarray): input, proportion sand in soil Returns: orglch, the fraction of organic compounds leaching from soil with drainage from soil layer 1 to layer 2 """ orglch = numpy.empty(sand.shape, dtype=numpy.float32) orglch[:] = _IC_NODATA valid_mask = ( (omlech_1 != _IC_NODATA) & (omlech_2 != _IC_NODATA) & (~numpy.isclose(sand, sand_nodata))) orglch[valid_mask] = ( omlech_1[valid_mask] + (omlech_2[valid_mask] * sand[valid_mask])) return orglch pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['omlech_1'], param_val_dict['omlech_2'], sand_path]], calc_orglch, pp_reg['orglch_path'], gdal.GDT_Float32, _IC_NODATA) def calc_vlossg(vlossg_param, clay): """Calculate proportion of gross mineralized N that is volatized. During decomposition, some N is lost to volatilization. This is a function of the gross mineralized N and is calculated according to this multiplier, which varies with soil clay content. Parameters: vlossg (numpy.ndarray): parameter, volatilization loss multiplier clay (numpy.ndarray): input, proportion clay in soil Returns: vlossg, proportion of gross mineralized N that is volatized """ valid_mask = ( (vlossg_param != _IC_NODATA) & (~numpy.isclose(clay, clay_nodata))) vlossg = numpy.empty(vlossg_param.shape, dtype=numpy.float32) vlossg[:] = _IC_NODATA max_mask = ((clay > 0.3) & valid_mask) min_mask = ((clay < 0.1) & valid_mask) vlossg[valid_mask] = -0.1 * (clay[valid_mask] - 0.3) + 0.01 vlossg[max_mask] = 0.01 vlossg[min_mask] = 0.03 vlossg[valid_mask] = vlossg[valid_mask] * vlossg_param[valid_mask] return vlossg pygeoprocessing.raster_calculator( [(path, 1) for path in [param_val_dict['vlossg'], clay_path]], calc_vlossg, pp_reg['vlossg_path'], gdal.GDT_Float32, _IC_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _aboveground_ratio(anps, tca, pcemic_1, pcemic_2, pcemic_3): """Calculate C/<iel> ratios of decomposing aboveground material. This ratio is used to test whether there is sufficient <iel> (N or P) in aboveground material for the material to decompose. Agdrat.f Parameters: anps (numpy.ndarray): state variable, N or P in the donor material tca (numpy.ndarray): state variable, total C in the donor material pcemic_1 (numpy.ndarray): parameter, maximum C/<iel> of new material pcemic_2 (numpy.ndarray): parameter, minimum C/<iel> of new material pcemic_3 (numpy.ndarray): parameter, minimum <iel> content of decomposing material that gives minimum C/<iel> of new material Returns: agdrat, the C/<iel> ratio of new material """ valid_mask = ( (~numpy.isclose(anps, _SV_NODATA)) & (~numpy.isclose(tca, _SV_NODATA)) & (pcemic_1 != _IC_NODATA) & (pcemic_2 != _IC_NODATA) & (pcemic_3 != _IC_NODATA)) cemicb = numpy.empty(anps.shape, dtype=numpy.float32) cemicb[:] = _IC_NODATA cemicb[valid_mask] = ( (pcemic_2[valid_mask] - pcemic_1[valid_mask]) / pcemic_3[valid_mask]) econt =
numpy.empty(anps.shape, dtype=numpy.float32)
numpy.empty
import tensorflow as tf import numpy as np class estimator_1st_order(object): """ This class implements a first order estimator of underlying parameter given an extensive set of evaluations """ def __init__(self, sims, fiducial_point, offsets, print_params=False, tf_dtype=tf.float32, tikohnov=0.0): """ Initsalizes the first order estimator from a given evaluation of a function around a fiducial point :param sims: prediction of the fiducial point and its perturbations, shape [2*n_params + 1, n_sims, n_output] :param fiducial_point: the fiducial point of the expansion :param offsets: the perturbations used :param print_params: whether to print out the relevant parameters or not :param tf_dtype: the tensorflow dtype (float32 or float64) :param tikohnov: Add tikohnov regularization before inverting the jacobian """ self.tf_dtype = tf_dtype # dimension check fidu_param = np.atleast_2d(fiducial_point) n_param = fidu_param.shape[-1] # get the fidu mean and cov sims = sims.astype(np.float64) fidu_sim = sims[0] # set fidu sims self.fidu_sim = fidu_sim.copy() fidu_mean = np.mean(fidu_sim, axis=0) fidu_cov = np.cov(fidu_sim, rowvar=False) # repeat the beginning fidu_sim = sims[0] fidu_mean = np.mean(fidu_sim, axis=0) fidu_cov = np.cov(fidu_sim, rowvar=False) # First we calculate the first order derivatives mean_derivatives = [] cov_derivatives = [] # to save the means means = [] covs = [] for i in range(n_param): # sims sims_minus = sims[2 * (i + 1) - 1] sims_plus = sims[2 * (i + 1)] # means mean_plus = np.mean(sims_plus, axis=0) mean_minus = np.mean(sims_minus, axis=0) # covariance cov_plus = np.cov(sims_plus, rowvar=False) cov_minus = np.cov(sims_minus, rowvar=False) # save means.append([mean_plus, mean_minus]) covs.append([cov_plus, cov_minus]) mean_derivatives.append((mean_plus - mean_minus) / (2.0 * offsets[i])) cov_derivatives.append((cov_plus - cov_minus) / (2.0 * offsets[i])) mean_jacobian = np.stack(mean_derivatives, axis=-1) cov_jacobian = np.stack(cov_derivatives, axis=-1) # calculate approximate fisher information # F = inv(J^-1 cov J^T^-1) = J^T cov^-1 J try: inv_cov = np.linalg.inv(fidu_cov) except: print("Covariance appears to be singular, using pseudo inverse...") inv_cov = np.linalg.pinv(fidu_cov) fisher =
np.einsum('ij,jk->ik', inv_cov, mean_jacobian)
numpy.einsum
import copy import numpy as np from spysort.functions import convolution, cut_sgl_evt from spysort.Events import events class align_events(events.build_events): """ Alignment of spike forms after clustering using a Brute-Force method""" def __init__(self, data, positions, goodEvts, clusters, CSize, win=[], before=14, after=30, thr=3): """ Performs a PCA-aided k-Means clustering and creates the proper indexes for further alignment of the raw data. **Parameters** data : double The input normalized data list positions : int The positions of spike events as they have been computed by the spike_detection (becareful the user has to define treat explicitly the size and the contents of the position array) clusters : double The clustered data CSize : int The number of the chosen clusters win : double The filtering window before : int The number of sampling point to keep before the peak after : int The number of sampling point to keep after the peak thr : double Filtering threshold value """ self.win = win self.thr = thr self.before = before self.after = after self.positions = positions # Converts input list data to a numpy array self.data = np.asarray(data) self.goodEvts = goodEvts # Events instance events.build_events.__init__(self, self.data, self.positions, self.win, self.before, self.after) # k-Means clustering self.kmc = clusters # Construction of the proper cluster indices self.gcpos = copy.deepcopy([self.positions[self.goodEvts] [np.array(self.kmc) == i] for i in range(CSize)]) def classify_and_align_evt(self, evt_pos, centers, abs_jitter_max=3, otherData=False, x=[]): """ One step of the Brute-Force method of realignment. It returns the name of the closest center in terms of Euclidean distance or "?" if none of the clusters' waveform does better than a uniformly null one, the new position of the event (the previous position corrected by the integer part of the estimated jitter), the remaining jitter. **Parameters** evt_pos : int A sampling point at which an event was detected. centers : dict A dictionary that contains all the necessary arrays and parameters in order to perform properly the classification and the alignment of the raw data abs_jitter_max : double The absolute maximum permitted value of the jitter **Returns** A list with the following components: The name of the closest center if it was close enough or ’?’. The nearest sampling point to the events peak. The jitter: difference between the estimated actual peak position and the nearest sampling point. """ if otherData is False: data = self.data else: data = np.asarray(x) cluster_names = sorted(list(centers)) n_sites = data.shape[0] centersM = np.array([centers[c_name]["center"] [np.tile((-self.before <= centers[c_name] ["center_idx"]).__and__(centers[c_name] ["center_idx"] <= self.after), n_sites)] for c_name in cluster_names]) evt = cut_sgl_evt(data, evt_pos, self.before, self.after) delta = -(centersM - evt) cluster_idx = np.argmin(np.sum(delta**2, axis=1)) good_cluster_name = cluster_names[cluster_idx] good_cluster_idx = np.tile((-self.before <= centers[good_cluster_name] ["center_idx"]).__and__( centers[good_cluster_name] ["center_idx"] <= self.after), n_sites) centerD = centers[good_cluster_name]["centerD"][good_cluster_idx] centerD_norm2 = np.dot(centerD, centerD) centerDD = centers[good_cluster_name]["centerDD"][good_cluster_idx] centerDD_norm2 = np.dot(centerDD, centerDD) centerD_dot_centerDD = np.dot(centerD, centerDD) h = delta[cluster_idx, :] h_order0_norm2 = np.sum(h**2) h_dot_centerD = np.dot(h, centerD) jitter0 = h_dot_centerD/centerD_norm2 # print jitter0 h_order1_norm2 = np.sum((h-jitter0*centerD)**2) if h_order0_norm2 > h_order1_norm2: h_dot_centerDD = np.dot(h, centerDD) first = (-2. * h_dot_centerD + 2. * jitter0 * (centerD_norm2 - h_dot_centerDD) + 3. * jitter0**2 * centerD_dot_centerDD + jitter0**3 * centerDD_norm2) second = (2. * (centerD_norm2 - h_dot_centerDD) + 6. * jitter0 * centerD_dot_centerDD + 3. * jitter0**2 * centerDD_norm2) jitter1 = jitter0 - first/second h_order2_norm2 = sum((h-jitter1*centerD-jitter1**2/2*centerDD)**2) if h_order1_norm2 <= h_order2_norm2: jitter1 = jitter0 else: jitter1 = 0 if np.abs(np.round(jitter1)) > 0: evt_pos -= int(np.round(jitter1)) evt = cut_sgl_evt(data, evt_pos, self.before, self.after) h = evt - centers[good_cluster_name]["center"][good_cluster_idx] h_order0_norm2 = np.sum(h**2) h_dot_centerD = np.dot(h, centerD) jitter0 = h_dot_centerD/centerD_norm2 h_order1_norm2 = np.sum((h - jitter0 * centerD)**2) if h_order0_norm2 > h_order1_norm2: h_dot_centerDD =
np.dot(h, centerDD)
numpy.dot
import numpy as np import cv2 import time import warnings warnings.filterwarnings('error') # allow the camera to warmup time.sleep(0.1) # class for lane detection class Lines(): def __init__(self): # were the lines detected at least once self.detected_first = False # were the lines detected in the last iteration? self.detected = False # average x values of the fitted lines self.bestxl = None self.bestyl = None self.bestxr = None self.bestyr = None # polynomial coefficients averaged over the last iterations self.best_fit_l = None self.best_fit_r = None # polynomial coefficients for the most recent fit self.current_fit_l = None self.current_fit_r = None # radius of curvature of the lines in meters self.left_curverad = None self.right_curverad = None # distance in meters of vehicle center from the line self.offset = None # x values for detected line pixels self.allxl = None self.allxr = None # y values for detected line pixels self.allyl = None self.allyr = None # camera calibration parameters self.cam_mtx = None self.cam_dst = None # camera distortion parameters self.M = None self.Minv = None # image shape self.im_shape = (None, None) # distance to look ahead in meters self.look_ahead = 10 self.remove_pixels = 90 # enlarge output image self.enlarge = 2.5 # warning from numpy polyfit self.poly_warning = False # set camera calibration parameters def set_cam_calib_param(self, mtx, dst): self.cam_mtx = mtx self.cam_dst = dst # undistort image def undistort(self, img): return cv2.undistort(img, self.cam_mtx, self.cam_dst, None, self.cam_mtx) # get binary image based on color thresholding def color_thresh(self, img, thresh=(0, 255)): # convert to HSV color space and separate the V channel hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HLS).astype(np.float) s_channel = hsv[:, :, 2] # threshold color channel s_binary = np.zeros_like(s_channel) s_binary[(s_channel >= thresh[0]) & (s_channel <= thresh[1])] = 1 return s_binary # get binary image based on sobel gradient thresholding def abs_sobel_thresh(self, sobel, thresh=(0, 255)): abs_sobel = np.absolute(sobel) max_s = np.max(abs_sobel) if max_s == 0: max_s = 1 scaled_sobel = np.uint8(255 * abs_sobel / max_s) sbinary = np.zeros_like(scaled_sobel) sbinary[(scaled_sobel >= thresh[0]) & (scaled_sobel <= thresh[1])] = 1 return sbinary # get binary image based on sobel magnitude gradient thresholding def mag_thresh(self, sobelx, sobely, mag_thresh=(0, 255)): abs_sobel = np.sqrt(sobelx ** 2 + sobely ** 2) max_s = np.max(abs_sobel) if max_s == 0: max_s = 1 scaled_sobel = np.uint8(255 * abs_sobel / max_s) sbinary = np.zeros_like(scaled_sobel) sbinary[(scaled_sobel >= mag_thresh[0]) & (scaled_sobel <= mag_thresh[1])] = 1 return sbinary # get binary image based on directional gradient thresholding def dir_threshold(self, sobelx, sobely, thresh=(0, np.pi / 2)): abs_sobelx = np.abs(sobelx) abs_sobely = np.abs(sobely) grad_sobel = np.arctan2(abs_sobely, abs_sobelx) sbinary = np.zeros_like(grad_sobel) sbinary[(grad_sobel >= thresh[0]) & (grad_sobel <= thresh[1])] = 1 return sbinary # get binary combining various thresholding methods def binary_extraction(self, image, ksize=3): # undistort first # image = self.undistort(image) color_bin = self.color_thresh(image, thresh=(90, 150)) # initial values 110, 255 gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize) sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize) gradx = self.abs_sobel_thresh(sobelx, thresh=(100, 190)) # initial values 40, 160 grady = self.abs_sobel_thresh(sobely, thresh=(100, 190)) # initial values 40, 160 mag_binary = self.mag_thresh(sobelx, sobely, mag_thresh=(100, 190)) # initial values 40, 160 # dir_binary = self.dir_threshold(sobelx, sobely, thresh=(0.7, 1.3)) combined = np.zeros_like(gradx) # combined[(((gradx == 1) & (grady == 1)) | ((mag_binary == 1) & (dir_binary == 1))) | (color_bin==1) ] = 1 combined[(((gradx == 1) & (grady == 1)) | (mag_binary == 1)) | (color_bin == 1)] = 1 # combined[(((gradx == 1) & (grady == 1)) | (mag_binary == 1)) ] = 1 return combined # transform perspective def trans_per(self, image): image = self.binary_extraction(image) self.binary_image = image ysize = image.shape[0] xsize = image.shape[1] # define region of interest left_bottom = (xsize / 10, ysize) apex_l = (xsize / 2 - 2600 / (self.look_ahead ** 2), ysize - self.look_ahead * 275 / 30) apex_r = (xsize / 2 + 2600 / (self.look_ahead ** 2), ysize - self.look_ahead * 275 / 30) right_bottom = (xsize - xsize / 10, ysize) # define vertices for perspective transformation src = np.array([[left_bottom], [apex_l], [apex_r], [right_bottom]], dtype=np.float32) dst = np.float32([[xsize / 3, ysize], [xsize / 4.5, 0], [xsize - xsize / 4.5, 0], [xsize - xsize / 3, ysize]]) self.M = cv2.getPerspectiveTransform(src, dst) self.Minv = cv2.getPerspectiveTransform(dst, src) if len(image.shape) > 2: warped = cv2.warpPerspective(image, self.M, image.shape[-2:None:-1], flags=cv2.INTER_LINEAR) else: warped = cv2.warpPerspective(image, self.M, image.shape[-1:None:-1], flags=cv2.INTER_LINEAR) return warped # creat window mask for lane detecion def window_mask(self, width, height, img_ref, center, level): output = np.zeros_like(img_ref) output[int(img_ref.shape[0] - (level + 1) * height):int(img_ref.shape[0] - level * height), \ max(0, int(center - width / 2)):min(int(center + width / 2), img_ref.shape[1])] = 1 return output # find widow centroids of left and right lane def find_window_centroids(self, warped, window_width, window_height, margin): window_centroids = [] # Store the (left,right) window centroid positions per level window = np.ones(window_width) # Create our window template that we will use for convolutions # First find the two starting positions for the left and right lane by using np.sum to get the vertical image slice # and then np.convolve the vertical image slice with the window template # Sum quarter bottom of image to get slice, could use a different ratio l_sum = np.sum(warped[int(3 * warped.shape[0] / 4):, :int(warped.shape[1] / 2)], axis=0) l_center = np.argmax(np.convolve(window, l_sum)) - window_width / 2 r_sum = np.sum(warped[int(3 * warped.shape[0] / 4):, int(warped.shape[1] / 2):], axis=0) r_center = np.argmax(np.convolve(window, r_sum)) - window_width / 2 + int(warped.shape[1] / 2) # Add what we found for the first layer window_centroids.append((l_center, r_center)) # Go through each layer looking for max pixel locations for level in range(1, (int)(warped.shape[0] / window_height)): # convolve the window into the vertical slice of the image image_layer = np.sum( warped[int(warped.shape[0] - (level + 1) * window_height):int(warped.shape[0] - level * window_height), :], axis=0) conv_signal = np.convolve(window, image_layer) # Find the best left centroid by using past left center as a reference # Use window_width/2 as offset because convolution signal reference is at right side of window, not center of window offset = window_width / 2 l_min_index = int(max(l_center + offset - margin, 0)) l_max_index = int(min(l_center + offset + margin, warped.shape[1])) l_center = np.argmax(conv_signal[l_min_index:l_max_index]) + l_min_index - offset # Find the best right centroid by using past right center as a reference r_min_index = int(max(r_center + offset - margin, 0)) r_max_index = int(min(r_center + offset + margin, warped.shape[1])) r_center = np.argmax(conv_signal[r_min_index:r_max_index]) + r_min_index - offset # Add what we found for that layer window_centroids.append((l_center, r_center)) return window_centroids # fit polynomials on the extracted left and right lane def get_fit(self, image): # check if the lanes were detected in the last iteration, if not search for the lanes if not self.detected: # window settings window_width = 40 window_height = 40 # break image into 9 vertical layers since image height is 720 margin = 10 # how much to slide left and right for searching window_centroids = self.find_window_centroids(image, window_width, window_height, margin) # if we found any window centers if len(window_centroids) > 0: # points used to draw all the left and right windows l_points = np.zeros_like(image) r_points = np.zeros_like(image) # go through each level and draw the windows for level in range(0, len(window_centroids)): # Window_mask is a function to draw window areas l_mask = self.window_mask(window_width, window_height, image, window_centroids[level][0], level) r_mask = self.window_mask(window_width, window_height, image, window_centroids[level][1], level) # Add graphic points from window mask here to total pixels found l_points[(image == 1) & (l_mask == 1)] = 1 r_points[(image == 1) & (r_mask == 1)] = 1 # construct images of the results template_l = np.array(l_points * 255, np.uint8) # add left window pixels template_r = np.array(r_points * 255, np.uint8) # add right window pixels zero_channel = np.zeros_like(template_l) # create a zero color channel left_right = np.array(cv2.merge((template_l, zero_channel, template_r)), np.uint8) # make color image left and right lane # get points for polynomial fit self.allyl, self.allxl = l_points.nonzero() self.allyr, self.allxr = r_points.nonzero() # check if lanes are detected if (len(self.allxl) > 0) & (len(self.allxr) > 0): try: self.current_fit_l = np.polyfit(self.allyl, self.allxl, 2) self.current_fit_r = np.polyfit(self.allyr, self.allxr, 2) self.poly_warning = False except np.RankWarning: self.poly_warning = True pass # check if lanes are detected correctly if self.check_fit(): self.detected = True # if this is the first detection initialize the best values if not self.detected_first: self.best_fit_l = self.current_fit_l self.best_fit_r = self.current_fit_r # if not then average with new else: self.best_fit_l = self.best_fit_l * 0.6 + self.current_fit_l * 0.4 self.best_fit_r = self.best_fit_r * 0.6 + self.current_fit_r * 0.4 # assign new best values based on this iteration self.detected_first = True self.bestxl = self.allxl self.bestyl = self.allyl self.bestxr = self.allxr self.bestyr = self.allyr self.left_right = left_right # set flag if lanes are not detected correctly else: self.detected = False # if lanes were detected in the last frame, search area for current frame else: non_zero_y, non_zero_x = image.nonzero() margin = 10 # search area margin left_lane_points_indx = ((non_zero_x > ( self.best_fit_l[0] * (non_zero_y ** 2) + self.best_fit_l[1] * non_zero_y + self.best_fit_l[ 2] - margin)) & ( non_zero_x < ( self.best_fit_l[0] * (non_zero_y ** 2) + self.best_fit_l[1] * non_zero_y + self.best_fit_l[2] + margin))) right_lane_points_indx = ((non_zero_x > ( self.best_fit_r[0] * (non_zero_y ** 2) + self.best_fit_r[1] * non_zero_y + self.best_fit_r[ 2] - margin)) & ( non_zero_x < ( self.best_fit_r[0] * (non_zero_y ** 2) + self.best_fit_r[1] * non_zero_y + self.best_fit_r[2] + margin))) # extracted lef lane pixels self.allxl = non_zero_x[left_lane_points_indx] self.allyl = non_zero_y[left_lane_points_indx] # extracted rightt lane pixels self.allxr = non_zero_x[right_lane_points_indx] self.allyr = non_zero_y[right_lane_points_indx] # if lines were found if (len(self.allxl) > 0) & (len(self.allxr) > 0): try: self.current_fit_l = np.polyfit(self.allyl, self.allxl, 2) self.current_fit_r = np.polyfit(self.allyr, self.allxr, 2) except np.RankWarning: self.poly_warning = True pass # check if lanes are detected correctly if self.check_fit(): # average out the best fit with new values self.best_fit_l = self.best_fit_l * 0.6 + self.current_fit_l * 0.4 self.best_fit_r = self.best_fit_r * 0.6 + self.current_fit_r * 0.4 # assign new best values based on this iteration self.bestxl = self.allxl self.bestyl = self.allyl self.bestxr = self.allxr self.bestyr = self.allyr # construct images of the results template_l = np.copy(image).astype(np.uint8) template_r = np.copy(image).astype(np.uint8) template_l[non_zero_y[left_lane_points_indx], non_zero_x[ left_lane_points_indx]] = 255 # add left window pixels template_r[non_zero_y[right_lane_points_indx], non_zero_x[ right_lane_points_indx]] = 255 # add right window pixels zero_channel = np.zeros_like(template_l) # create a zero color channel self.left_right = np.array(cv2.merge((template_l, zero_channel, template_r)), np.uint8) # make color image left and right lane # set flag if lanes are not detected correctly else: self.detected = False # check if lanes are detected correctly def check_fit(self): # Generate x and y values of the fit ploty = np.linspace(0, self.im_shape[0] - 1, self.im_shape[0]) left_fitx = self.current_fit_l[0] * ploty ** 2 + self.current_fit_l[1] * ploty + self.current_fit_l[2] right_fitx = self.current_fit_r[0] * ploty ** 2 + self.current_fit_r[1] * ploty + self.current_fit_r[2] # find max, min and mean distance between the lanes max_dist = np.amax(np.abs(right_fitx - left_fitx)) min_dist = np.amin(np.abs(right_fitx - left_fitx)) mean_dist = np.mean(np.abs(right_fitx - left_fitx)) # check if the lanes don't have a big deviation from the mean if (max_dist > 250) | (np.abs(max_dist - mean_dist) > 100) | (np.abs(mean_dist - min_dist) > 100) | ( mean_dist < 50) | self.poly_warning: return False else: return True def calculate_curvature_offset(self): if self.detected_first: # define y value near the car y_eval = self.im_shape[0] # define conversions in x and y from pixels space to meters ym_per_pix = 50 / 250 # meters per pixel in y dimension xm_per_pix = 3.7 / 75 # meters per pixel in x dimension # create new polynomials to x,y in world space try: left_fit_cr = np.polyfit(self.bestyl * ym_per_pix, self.bestxl * xm_per_pix, 2) right_fit_cr = np.polyfit(self.bestyr * ym_per_pix, self.bestxr * xm_per_pix, 2) except np.RankWarning: self.poly_warning = True pass # if the poly fit is ok proceed if not self.poly_warning: # calculate the new radii of curvature left_curverad = ((1 + ( 2 * left_fit_cr[0] * y_eval * ym_per_pix + left_fit_cr[1]) ** 2) ** 1.5) / np.absolute( 2 * left_fit_cr[0]) right_curverad = ((1 + ( 2 * right_fit_cr[0] * y_eval * ym_per_pix + right_fit_cr[1]) ** 2) ** 1.5) / np.absolute( 2 * right_fit_cr[0]) # now our radius of curvature is in meters # calculate the offset from the center of the road y_eval = y_eval * ym_per_pix midpoint_car = self.im_shape[1] / 2.0 midpoint_lane = (right_fit_cr[0] * (y_eval ** 2) + right_fit_cr[1] * y_eval + right_fit_cr[2]) + \ (left_fit_cr[0] * (y_eval ** 2) + left_fit_cr[1] * y_eval + left_fit_cr[2]) offset = midpoint_car * xm_per_pix - midpoint_lane / 2 # initialize the curvature and offset if this is the first detection if self.left_curverad == None: self.left_curverad = left_curverad self.right_curverad = right_curverad self.offset = offset # average out the curvature and offset else: self.left_curverad = self.left_curverad * 0.8 + left_curverad * 0.2 self.right_curverad = self.right_curverad * 0.8 + right_curverad * 0.2 self.offset = self.offset * 0.9 + offset * 0.1 # project results on the source image def project_on_road_debug(self, image_input): image = image_input[self.remove_pixels:, :] image = self.trans_per(image) self.im_shape = image.shape self.get_fit(image) if self.detected_first & self.detected: # create fill image temp_filler = np.zeros((self.remove_pixels, self.im_shape[1])).astype(np.uint8) filler = np.dstack((temp_filler, temp_filler, temp_filler)) # create an image to draw the lines on warp_zero = np.zeros_like(image).astype(np.uint8) color_warp = np.dstack((warp_zero, warp_zero, warp_zero)) ploty = np.linspace(0, image_input.shape[0] - 1, image_input.shape[0]) left_fitx = self.best_fit_l[0] * ploty ** 2 + self.best_fit_l[1] * ploty + self.best_fit_l[2] right_fitx = self.best_fit_r[0] * ploty ** 2 + self.best_fit_r[1] * ploty + self.best_fit_r[2] # recast the x and y points into usable format for cv2.fillPoly() pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))]) pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))]) pts = np.hstack((pts_left, pts_right)) # draw the lane onto the warped blank image cv2.fillPoly(color_warp, np.int_([pts]), (0, 255, 0)) # warp the blank back to original image space using inverse perspective matrix (Minv) newwarp = cv2.warpPerspective(color_warp, self.Minv, color_warp.shape[-2:None:-1]) left_right = cv2.warpPerspective(self.left_right, self.Minv, color_warp.shape[-2:None:-1]) # combine the result with the original image left_right_fill = np.vstack((filler, left_right)) result = cv2.addWeighted(left_right_fill, 1, image_input, 1, 0) result = cv2.addWeighted(result, 1, np.vstack((filler, newwarp)), 0.3, 0) # get curvature and offset # self.calculate_curvature_offset() # plot text on resulting image #img_text = "radius of curvature: " + str(round((self.left_curverad + self.right_curverad) / 2, 2)) + ' (m)' #if self.offset < 0: # img_text2 = "vehicle is: " + str(round(np.abs(self.offset), 2)) + ' (m) left of center' #else: # img_text2 = "vehicle is: " + str(round(np.abs(self.offset), 2)) + ' (m) right of center' small = cv2.resize(left_right_fill, (0, 0), fx=0.5, fy=0.5) small2 = cv2.resize(np.vstack((filler, self.left_right)), (0, 0), fx=0.5, fy=0.5) result2 = cv2.resize(np.hstack((result, np.vstack((small2, small)))), (0, 0), fx=self.enlarge, fy=self.enlarge) # result2 = cv2.resize(np.hstack((np.vstack((filler,np.dstack((self.binary_image*255,self.binary_image*255,self.binary_image*255)))), np.vstack((small2,small)))), (0,0), fx=self.enlarge, fy=self.enlarge) #cv2.putText(result2, img_text, (15, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 1) #cv2.putText(result2, img_text2, (15, 40), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 1) return result2 # if lanes were not detected output source image else: return_image = cv2.resize( np.hstack((image_input, cv2.resize(np.zeros_like(image_input), (0, 0), fx=0.5, fy=1.0))), (0, 0), fx=self.enlarge, fy=self.enlarge) return return_image # project results on the source image def project_on_road(self, image_input): image = image_input[self.remove_pixels:, :] image = self.trans_per(image) self.im_shape = image.shape self.get_fit(image) if self.detected_first & self.detected: # create fill image temp_filler = np.zeros((self.remove_pixels, self.im_shape[1])).astype(np.uint8) filler = np.dstack((temp_filler, temp_filler, temp_filler)) # create an image to draw the lines on warp_zero = np.zeros_like(image).astype(np.uint8) color_warp = np.dstack((warp_zero, warp_zero, warp_zero)) ploty =
np.linspace(0, image_input.shape[0] - 1, image_input.shape[0])
numpy.linspace
# Copyright (c) 2019 MindAffect B.V. # Author: <NAME> <<EMAIL>> # This file is part of pymindaffectBCI <https://github.com/mindaffect/pymindaffectBCI>. # # pymindaffectBCI is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # pymindaffectBCI is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with pymindaffectBCI. If not, see <http://www.gnu.org/licenses/> import numpy as np # time-series tests def window_axis(a, winsz, axis=0, step=1, prependwindowdim=False): ''' efficient view-based slicing of equal-sized equally-spaced windows along a selected axis of a numpy nd-array ''' if axis < 0: # no negative axis indices axis = len(a.shape)+axis # compute the shape/strides for the windowed view of a if prependwindowdim: # window dim before axis shape = a.shape[:axis] + (winsz, int((a.shape[axis]-winsz)/step)+1) + a.shape[(axis+1):] strides = a.strides[:axis] + (a.strides[axis], a.strides[axis]*step) + a.strides[(axis+1):] else: # window dim after axis shape = a.shape[:axis] + (int((a.shape[axis]-winsz)/step)+1, winsz) + a.shape[(axis+1):] strides = a.strides[:axis] + (a.strides[axis]*step, a.strides[axis]) + a.strides[(axis+1):] #print("a={}".format(a.shape)) #print("shape={} stride={}".format(shape,strides)) # return the computed view return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides) def equals_subarray(a, pat, axis=-1, match=-1): ''' efficiently find matches of a 1-d sub-array along axis within an nd-array ''' if axis < 0: # no negative dims axis = a.ndim+axis # reshape to match dims of a if not isinstance(pat, np.ndarray): pat = np.array(pat) # ensure is numpy pshape = np.ones(a.ndim+1, dtype=int); pshape[axis+1] = pat.size pat = np.array(pat.ravel(),dtype=a.dtype).reshape(pshape) # [ ... x l x...] # window a into pat-len pieces aw = window_axis(a, pat.size, axis=axis, step=1) # [ ... x t-l x l x ...] # do the match F = np.all(np.equal(aw, pat), axis=axis+1) # [... x t-l x ...] # pad to make the same shape as input padshape = list(a.shape); padshape[axis] = a.shape[axis]-F.shape[axis] if match == -1: # match at end of pattern -> pad before F = np.append(np.zeros(padshape, dtype=F.dtype), F, axis) else: # match at start of pattern -> pad after F = np.append(F, np.zeros(padshape, dtype=F.dtype), axis) return F class RingBuffer: ''' time efficient linear ring-buffer for storing packed data, e.g. continguous np-arrays ''' def __init__(self, maxsize, shape, dtype=np.float32): self.elementshape = shape self.bufshape = (int(maxsize), )+shape self.buffer = np.zeros((2*int(maxsize), np.prod(shape)), dtype=dtype) # store as 2d # position for the -1 element. N.B. start maxsize so pos-maxsize is always valid self.pos = int(maxsize) self.n = 0 # count of total number elements added to the buffer self.copypos = 0 # position of the last element copied to the 1st half self.copysize = 0 # number entries to copy as a block def clear(self): '''empty the ring-buffer and reset to empty''' self.pos=int(self.bufshape[0]) self.n =0 self.copypos=0 self.copysize=0 def append(self, x): '''add single element to the ring buffer''' return self.extend(x[np.newaxis, ...]) def extend(self, x): '''add a group of elements to the ring buffer''' # TODO[] : incremental copy to the 1st half, to spread the copy cost? nx = x.shape[0] if self.pos+nx >= self.buffer.shape[0]: flippos = self.buffer.shape[0]//2 # flippos-nx to 1st half self.buffer[:(flippos-nx), :] = self.buffer[(self.pos-(flippos-nx)):self.pos, :] # move cursor to end 1st half self.pos = flippos-nx # insert in the buffer self.buffer[self.pos:self.pos+nx, :] = x.reshape((nx, self.buffer.shape[1])) # move the cursor self.pos = self.pos+nx # update the count self.n = self.n + nx return self @property def shape(self): return (min(self.n,self.bufshape[0]),)+self.bufshape[1:] def unwrap(self): '''get a view on the valid portion of the ring buffer''' return self.buffer[self.pos-min(self.n,self.bufshape[0]):self.pos, :].reshape(self.shape) def __getitem__(self, item): return self.unwrap()[item] def __iter__(self): return iter(self.unwrap()) def extract_ringbuffer_segment(rb, bgn_ts, end_ts=None): ''' extract the data between start/end time stamps, from time-stamps contained in the last channel of a nd matrix''' # get the data / msgs from the ringbuffers X = rb.unwrap() # (nsamp,nch+1) X_ts = X[:, -1] # last channel is timestamps # TODO: binary-search to make these searches more efficient! # search backwards for trial-start time-stamp # TODO[X] : use a bracketing test.. (better with wrap-arround) bgn_samp = np.flatnonzero(np.logical_and(X_ts[:-1] < bgn_ts, bgn_ts <= X_ts[1:])) # get the index of this timestamp, guarding for after last sample if len(bgn_samp) == 0 : bgn_samp = 0 if bgn_ts <= X_ts[0] else len(X_ts)+1 else: bgn_samp = bgn_samp[0] # and just to be sure the trial-end timestamp if end_ts is not None: end_samp = np.flatnonzero(np.logical_and(X_ts[:-1] < end_ts, end_ts <= X_ts[1:])) # get index of this timestamp, guarding for after last data sample end_samp = end_samp[-1] if len(end_samp) > 0 else len(X_ts) else: # until now end_samp = len(X_ts) # extract the trial data, and make copy (just to be sure) X = X[bgn_samp:end_samp+1, :].copy() return X def unwrap(x,range=None): ''' unwrap a list of numbers to correct for truncation due to limited bit-resolution, e.g. time-stamps stored in 24bit integers''' if range is None: range = 1<< int(np.ceil(np.log2(max(x)))) wrap_ind = np.diff(x) < -range/2 unwrap = np.zeros(x.shape) unwrap[np.flatnonzero(wrap_ind)+1]=range unwrap=np.cumsum(unwrap) x = x + unwrap return x def unwrap_test(): x = np.cumsum(np.random.rand(6000,1)) xw = x%(1<<10) xuw = unwrap(x) import matplotlib.pyplot as plt plt.plot(x,label='x') plt.plot(xw,label='x (wrapped)') plt.plot(xuw,label='x (unwrapped') plt.legend() def search_directories_for_file(f,*args): """search a given set of directories for given filename, return 1st match Args: f (str): filename to search for (or a pattern) *args (): set for directory names to look in Returns: f (str): the *first* full path to where f is found, or f if not found. """ import os import glob f = os.path.expanduser(f) if os.path.exists(f) or len(glob.glob(f))>0: return f for d in args: #print('Searching dir: {}'.format(d)) df = os.path.join(d,f) if os.path.exists(df) or len(glob.glob(df))>0: f = df break return f # toy data generation #@function def randomSummaryStats(d=10, nE=2, tau=10, nY=1): import numpy as np # pure random test-case Cxx = np.random.standard_normal((d, d)) Cxy = np.random.standard_normal((nY, nE, tau, d)) Cyy = np.random.standard_normal((nY, nE, tau, nE, tau)) return (Cxx, Cxy, Cyy) def testNoSignal(d=10, nE=2, nY=1, isi=5, tau=None, nSamp=10000, nTrl=1): # Simple test-problem -- no real signal if tau is None: tau = 10*isi X = np.random.standard_normal((nTrl, nSamp, d)) stimTimes_samp = np.arange(0, X.shape[-2] - tau, isi) Me = np.random.standard_normal((nTrl, len(stimTimes_samp), nY, nE))>1 Y = np.zeros((nTrl, X.shape[-2], nY, nE)) Y[:, stimTimes_samp, :, :] = Me return (X, Y, stimTimes_samp) def testSignal(nTrl=1, d=5, nE=2, nY=30, isi=5, tau=None, offset=0, nSamp=10000, stimthresh=.6, noise2signal=1, irf=None): #simple test problem, with overlapping response import numpy as np if tau is None: tau = 10 if irf is None else len(irf) nEp = int((nSamp-tau)/isi) cb =
np.random.standard_normal((nEp, nY, nE))
numpy.random.standard_normal
import numpy as np import cv2 import torch from assets.matchers.base import BaseMatcher from experiments.service.utils import desc_similarity class KnnMatcher(BaseMatcher): def __init__(self, matcher_cfg): super().__init__(matcher_cfg) self.d_threshold = matcher_cfg.matcher_params.feat_distance_threshold def match(self, s1: torch.Tensor, s2: torch.Tensor): sim = desc_similarity(s1, s2) if sim is None: self.n_fails += 1 return np.asarray([]),
np.asarray([])
numpy.asarray
# REFS Some (most) of those functions come from the keras library (https://github.com/fchollet/keras) # Some are modified to add output images and output centerline # keras.preprocessing.image: flip_axis, random_channel_shift, apply_transform, transform_matrix_offset_center, ApplyRandomTransformations import time import numpy as np import random import scipy as sp import scipy.interpolate import scipy.ndimage import scipy.ndimage.interpolation from NnetsX import IS_CHANNELS_FIRST # from File import SavePickle INTENSITY_FACTOR = 0.2 VECTOR_FIELD_SIGMA = 5. # in pixel ROTATION_FACTOR = 10 # degree TRANSLATION_FACTOR = 0.2 # proportion of the image size SHEAR_FACTOR = 2*np.pi/180 # in radian ZOOM_FACTOR = 0.1 def flip_axis(x, axis): x = np.asarray(x).swapaxes(axis, 0) x = x[::-1, ...] x = x.swapaxes(0, axis) return x def random_channel_shift(x, intensity, channel_index=0): x = np.rollaxis(x, channel_index, 0) min_x, max_x = np.min(x), np.max(x) shift = np.random.uniform(-intensity, intensity) # TODO add a choice if we want the same shift for all channels channel_images = [np.clip(x_channel + shift, min_x, max_x) for x_channel in x] # channel_images = [np.clip(x_channel + np.random.uniform(-intensity, intensity), min_x, max_x) # for x_channel in x] x = np.stack(channel_images, axis=0) x = np.rollaxis(x, 0, channel_index+1) return x def apply_transform(x, transform_matrix, channel_index=0, fill_mode='nearest', cval=0.): x = np.rollaxis(x, channel_index, 0) final_affine_matrix = transform_matrix[:2, :2] final_offset = transform_matrix[:2, 2] channel_images = [sp.ndimage.interpolation.affine_transform(x_channel, final_affine_matrix, final_offset, order=0, mode=fill_mode, cval=cval) for x_channel in x] x = np.stack(channel_images, axis=0) x = np.rollaxis(x, 0, channel_index+1) return x def transform_matrix_offset_center(matrix, x, y): o_x = float(x) / 2 + 0.5 o_y = float(y) / 2 + 0.5 offset_matrix = np.array([[1, 0, o_x], [0, 1, o_y], [0, 0, 1]]) reset_matrix = np.array([[1, 0, -o_x], [0, 1, -o_y], [0, 0, 1]]) transform_matrix = np.dot(np.dot(offset_matrix, matrix), reset_matrix) return transform_matrix def ApplyRandomTransformations(_x, _y, _pts, _trans, _rot, _zoom, _shear, _elastix, _row_index=1, _col_index=2, _channel_index=0, _fill_mode='constant', _cval=0.): if _elastix != 0: sigma = _elastix # in pixel kernelSize = 3 sizeAll = kernelSize + 2 imgShape = (_x.shape[1], _x.shape[2]) # create the indices of the 5x5 vector field (fieldPts.shape = (25,2)) fieldPts = np.mgrid[0.:1.:complex(sizeAll), 0.:1.:complex(sizeAll)].swapaxes(0,2).swapaxes(0,1).reshape((sizeAll*sizeAll, 2)) # create the displacement (x and y) of the 5x5 vector field (border have no displacement so it's 0) (displacementX.shape = (25)) displacementX = np.zeros((sizeAll*sizeAll)) displacementY = np.zeros((sizeAll*sizeAll)) for i in range(0, sizeAll*sizeAll): if fieldPts[i][0] != 0. and fieldPts[i][0] != 1. \ and fieldPts[i][1] != 0. and fieldPts[i][1] != 1.: displacementX[i] = np.random.normal(0, sigma, 1) displacementY[i] = np.random.normal(0, sigma, 1) # transform the indice of the 5x5 vector field in the image coordinate system (TODO WARNING works only with square images) fieldPts = fieldPts*imgShape[0] # TODO check if it's not imgShape[0] - 1? # create the indices of all pixels in the image (gridX.shape = (1024,1024)) gridX, gridY = np.mgrid[0.:(imgShape[0] - 1):complex(imgShape[0]), 0.:(imgShape[1] - 1):complex(imgShape[1])] # interpolate the vector field for every pixels in the image (dxGrid.shape = (1024,1024)) dxGrid = scipy.interpolate.griddata(fieldPts, displacementX, (gridX, gridY), method='cubic') dyGrid = scipy.interpolate.griddata(fieldPts, displacementY, (gridX, gridY), method='cubic') # apply the displacement on every pixels (indices = [indices.shape[0] = 1024*1024, indices.shape[1] = 1024*1024]) indices = np.reshape(gridY + dyGrid, (-1, 1)), np.reshape(gridX + dxGrid, (-1, 1)) for chan in range(_x.shape[0]): _x[chan] = scipy.ndimage.interpolation.map_coordinates(_x[chan], indices, order=2, mode='reflect').reshape(imgShape) _x[chan] = np.clip(_x[chan], 0., 1.) if _y is not None: for chan in range(_y.shape[0]): _y[chan] = scipy.ndimage.interpolation.map_coordinates(_y[chan], indices, order=2, mode='reflect').reshape(imgShape) _y[chan] = np.clip(_y[chan], 0., 1.) #if _pts is not None: matrix = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) if _rot != 0: theta = np.pi/180*np.random.uniform(-_rot, _rot) rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) matrix = np.dot(matrix, rotation_matrix) if _trans != 0: ty = np.random.uniform(-_trans, _trans)*_x.shape[_row_index] tx = np.random.uniform(-_trans, _trans)*_x.shape[_col_index] translation_matrix = np.array([[1, 0, ty], [0, 1, tx], [0, 0, 1]]) matrix = np.dot(matrix, translation_matrix) if _shear != 0: shear = np.random.uniform(-_shear, _shear) shear_matrix = np.array([[1, -np.sin(shear), 0], [0, np.cos(shear), 0], [0, 0, 1]]) matrix = np.dot(matrix, shear_matrix) if _zoom != 0: zx, zy = np.random.uniform(1 - _zoom, 1 + _zoom, 2) zoom_matrix = np.array([[zx, 0, 0], [0, zy, 0], [0, 0, 1]]) matrix = np.dot(matrix, zoom_matrix) h, w = _x.shape[_row_index], _x.shape[_col_index] transformMatrix = transform_matrix_offset_center(matrix, h, w) _x = apply_transform(_x, transformMatrix, _channel_index, _fill_mode, _cval) if _y is not None: _y = apply_transform(_y, transformMatrix, _channel_index, _fill_mode, _cval) if _pts is not None: matrix = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) if _rot != 0: rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) matrix = np.dot(matrix, rotation_matrix) if _trans != 0: translation_matrix = np.array([[1, 0, -tx], [0, 1, -ty], [0, 0, 1]]) matrix = np.dot(translation_matrix, matrix) if _shear != 0: shear_matrix = np.array([[np.cos(shear), 0, 0], [-np.sin(shear), 1, 0], [0, 0, 1]]) shear_matrix = np.linalg.inv(shear_matrix) # TODO write the inverse properly without computing it matrix = np.dot(shear_matrix, matrix) if _zoom != 0: zoom_matrix = np.array([[1./zy, 0, 0], [0, 1./zx, 0], [0, 0, 1]]) matrix = np.dot(zoom_matrix, matrix) transformMatrix = transform_matrix_offset_center(matrix, h, w) _pts = np.dot(_pts, transformMatrix.T) return _x, _y, _pts # if _nbData = -1 then the function creates infinite data def GenerateImageOnTheFly(_createImageXFct, _GetIdFromNeedFct, _X, _previousImages, _Y, _outputTrain, _previousOutput, _setFiles, _needSetX, _needSetY, _batchSize, _epochSize , _nbData, _keepPctOriginal=0.5, _trans=TRANSLATION_FACTOR, _rot=ROTATION_FACTOR, _zoom=ZOOM_FACTOR, _shear=SHEAR_FACTOR, _elastix=VECTOR_FIELD_SIGMA, _intensity=INTENSITY_FACTOR, _hflip=True, _vflip=True, _3Dshape=False): shapeX = _X.shape shapeY = _Y.shape nbChannels = shapeX[1] + _previousImages + _previousOutput currentBatch = 0 imgX = np.empty((nbChannels, shapeX[2], shapeX[3]), dtype=np.float32) blackImage = np.zeros((shapeX[2], shapeX[3]), dtype=np.float32) if _nbData != -1: seedList = np.random.randint(999999, size=_nbData) nbSeedPerImage = _nbData//_epochSize # debug = 0 while 1: # if _nbData != -1: # shuffleList = np.arange(_nbData) # else: # shuffleList = np.arange(_epochSize) shuffleList = np.arange(_epochSize) np.random.shuffle(shuffleList) for i in range(_epochSize): if currentBatch == 0: if _3Dshape == False: if IS_CHANNELS_FIRST == True: x = np.empty((_batchSize, nbChannels, shapeX[2], shapeX[3]), dtype=np.float32) else: x = np.empty((_batchSize, shapeX[2], shapeX[3], nbChannels), dtype=np.float32) else: x = np.empty((_batchSize, 1, nbChannels, shapeX[2], shapeX[3]), dtype=np.float32) if IS_CHANNELS_FIRST == True: y = np.empty((_batchSize, shapeY[1], shapeY[2], shapeY[3]), dtype=np.float32) else: y = np.empty((_batchSize, shapeY[2], shapeY[3], shapeY[1]), dtype=np.float32) # if _nbData != -1: # rndStateNp = np.random.get_state() # rndState = random.getstate() # # np.random.seed(int(seedList[shuffleList[i]])) # # random.seed(int(seedList[shuffleList[i]])) # np.random.seed(int(seedList[shuffleList[i]*nbSeedPerImage + random.randint(0, nbSeedPerImage - 1)])) # random.seed(int(seedList[shuffleList[i]*nbSeedPerImage + random.randint(0, nbSeedPerImage - 1)])) # imgId = shuffleList[i]%len(_setFiles) imgId = shuffleList[i] _createImageXFct(imgX, imgId, _X, _previousImages, _outputTrain, _previousOutput, _setFiles, _needSetX, _needSetY, blackImage) imgY = _Y[_GetIdFromNeedFct(imgId, _setFiles, _needSetY),...] if random.random() > _keepPctOriginal: # if False: if _nbData != -1: rndStateNp = np.random.get_state() rndState = random.getstate() np.random.seed(int(seedList[shuffleList[i]*nbSeedPerImage + random.randint(0, nbSeedPerImage - 1)])) random.seed(int(seedList[shuffleList[i]*nbSeedPerImage + random.randint(0, nbSeedPerImage - 1)])) if _intensity != 0: imgX = random_channel_shift(imgX, _intensity) imgX, imgY, _ = ApplyRandomTransformations(imgX, imgY, None, _trans, _rot, _zoom, _shear, _elastix) if _hflip == True and random.random() > 0.5: imgX = flip_axis(imgX, 1) imgY = flip_axis(imgY, 1) if _vflip == True and random.random() > 0.5: imgX = flip_axis(imgX, 2) imgY = flip_axis(imgY, 2) if _nbData != -1: np.random.set_state(rndStateNp) random.setstate(rndState) if IS_CHANNELS_FIRST == True: x[currentBatch][...] = imgX[...] y[currentBatch][...] = imgY[...] else: imgXtmp =
np.rollaxis(imgX, 0, 3)
numpy.rollaxis
import matplotlib.pyplot as plt import numpy as np from scipy import ndimage from scipy.ndimage import binary_fill_holes as fillholes from skimage import img_as_ubyte from skimage.util import img_as_float from skimage.exposure import adjust_sigmoid from skimage.filters import threshold_otsu, threshold_triangle, rank, laplace, sobel from skimage.segmentation import clear_border from skimage.measure import label from skimage.morphology import closing, square, disk, remove_small_objects, opening, dilation, watershed, erosion from skimage.color import label2rgb, rgb2gray from skimage.transform import rescale import os from os.path import join from scipy import ndimage as ndi def frequency_filter(im, mu, sigma, passtype='low'): ''' This function applies a lowpass or highpass filter to an image. Paramters --------- im : (N, M) ndarray Grayscale input image. mu : float, optional Average for input in low pass filter. Default value is 500. sigma : float, optional Standard deviation for input in low pass filter. Default value is 70. passtype: string Applies a 'high' or 'low' pass filter. Default value is 'low'. Returns ------- out : ndarray Low or high pass filtered output image. Examples -------- >>> image = plt.imread('..\C3-NTG-CFbs_NTG5ECM_1mMRGD_20x_003.tif') >>> lowpass = frequency_filter(im, 500, 70, passtype='low') ''' # define x and y based on image shape y_length, x_length = np.shape(im) xi = np.linspace(0, x_length-1, x_length) yi = np.linspace(0, y_length-1, y_length) x, y = np.meshgrid(xi, yi) # define lowpass or highpass filter if passtype == 'low': gfilt = np.exp(-((x-mu)**2 + (y-mu)**2)/(2*sigma**2)) if passtype == 'high': gfilt = 1 - np.exp(-((x-mu)**2 + (y-mu)**2)/(2*sigma**2)) fim = np.fft.fft2(im) # moving to spacial domain fim_c = np.fft.fftshift(fim) # centering fim_filt = np.multiply(fim_c, gfilt) # apply the filter fim_uc = np.fft.ifftshift(fim_filt) # uncenter im_pass = np.real(np.fft.ifft2(fim_uc)) # perform inverse transform return im_pass def _check_dtype_supported(ar): ''' Used in remove_large_objects function and taken from skimage.morphology package. ''' # Should use `issubdtype` for bool below, but there's a bug in numpy 1.7 if not (ar.dtype == bool or np.issubdtype(ar.dtype, np.integer)): raise TypeError("Only bool or integer image types are supported. " "Got %s." % ar.dtype) def remove_large_objects(ar, max_size=10000, connectivity=1, in_place=False): ''' Remove connected components larger than the specified size. (Modified from skimage.morphology.remove_small_objects) Parameters ---------- ar : ndarray (arbitrary shape, int or bool type) The array containing the connected components of interest. If the array type is int, it is assumed that it contains already-labeled objects. The ints must be non-negative. max_size : int, optional (default: 10000) The largest allowable connected component size. connectivity : int, {1, 2, ..., ar.ndim}, optional (default: 1) The connectivity defining the neighborhood of a pixel. in_place : bool, optional (default: False) If `True`, remove the connected components in the input array itself. Otherwise, make a copy. Raises ------ TypeError If the input array is of an invalid type, such as float or string. ValueError If the input array contains negative values. Returns ------- out : ndarray, same shape and type as input `ar` The input array with small connected components removed. Examples -------- >>> from skimage import morphology >>> a = np.array([[0, 0, 0, 1, 0], ... [1, 1, 1, 0, 0], ... [1, 1, 1, 0, 1]], bool) >>> b = morphology.remove_large_objects(a, 6) >>> b array([[False, False, False, False, False], [ True, True, True, False, False], [ True, True, True, False, False]], dtype=bool) >>> c = morphology.remove_small_objects(a, 7, connectivity=2) >>> c array([[False, False, False, True, False], [ True, True, True, False, False], [ True, True, True, False, False]], dtype=bool) >>> d = morphology.remove_large_objects(a, 6, in_place=True) >>> d is a True ''' # Raising type error if not int or bool _check_dtype_supported(ar) if in_place: out = ar else: out = ar.copy() if max_size == 0: # shortcut for efficiency return out if out.dtype == bool: selem = ndi.generate_binary_structure(ar.ndim, connectivity) ccs = np.zeros_like(ar, dtype=np.int32) ndi.label(ar, selem, output=ccs) else: ccs = out try: component_sizes = np.bincount(ccs.ravel()) except ValueError: raise ValueError("Negative value labels are not supported. Try " "relabeling the input with `scipy.ndimage.label` or " "`skimage.morphology.label`.") if len(component_sizes) == 2: warn("Only one label was provided to `remove_small_objects`. " "Did you mean to use a boolean array?") too_large = component_sizes > max_size too_large_mask = too_large[ccs] out[too_large_mask] = 0 return out def phalloidin_labeled(im, selem=disk(3), mu=500, sigma=70, cutoff=0, gain=100, min_size=250, max_size=10000, connectivity=1): """ Signature: phalloidin_labeled(*args) Docstring: Segment and label image Extended Summary ---------------- The colorize function applies preprocessing filters (contrast and high pass) then defines the threshold value for the desired image. Thresholding is calculated by the otsu function creates a binarized image by setting pixel intensities above that thresh value to white, and the ones below to black (background). Next, it cleans up the image by filling in random noise within the cell outlines and removes small background objects. It then labels adjacent pixels with the same value and defines them as a region. It returns an RGB image with color-coded labels. Paramters --------- im : (N, M) ndarray Grayscale input image. selem : numpy.ndarray, optional Area used for separating cells. Default value is skimage.morphology.disk(3). cutoff : float, optional Cutoff of the sigmoid function that shifts the characteristic curve in horizontal direction. Default value is 0. gain : float, optional The constant multiplier in exponential's power of sigmoid function. Default value is 100. mu : float, optional Average for input in low pass filter. Default value is 500. sigma : float, optional Standard deviation for input in low pass filter. Default value is 70. min_size : int, optional The smallest allowable object size. Default value is 250. max_size : int, optional The largest allowable object size. Default value is 10000. connectivity : int, optional The connectvitivy defining the neighborhood of a pixel. Default value is 1. Returns ------- out : label_image (ndarray) segmented and object labeled for analysis Examples -------- image = plt.imread('C3-NTG-CFbs_NTG5ECM_1mMRGD_20x_003.tif') label_image = phalloidin_488_binary(image, mu=500, sigma=70, cutoff=0, gain=100) image = plt.imread('..\C3-NTG-CFbs_NTG5ECM_1mMRGD_20x_003.tif') label, overlay = phalloidin_488_segment(image, mu=500, sigma=70, cutoff=0, gain=100) """ # contrast adjustment im_con = adjust_sigmoid(im, cutoff=cutoff, gain=gain, inv=False) # contrast + low pass filter im_lo = frequency_filter(im_con, mu, sigma, passtype='low') # contrast + low pass + binary thresh = threshold_otsu(im_lo, nbins=256) im_bin = im_lo > thresh # fill holes, separate cells, and remove small/large objects im_fill = ndimage.binary_fill_holes(im_bin) im_open = opening(im_fill, selem) im_clean_i = remove_small_objects(im_open, min_size=min_size, connectivity=connectivity, in_place=False) im_clean = remove_large_objects(im_clean_i, max_size=max_size, connectivity=connectivity, in_place=False) # labelling regions that are cells label_image = label(im_clean) # coloring labels over cells image_label_overlay = label2rgb(label_image, image=im, bg_label=0) print(image_label_overlay.shape) # plot overlay image fig, ax = plt.subplots(figsize=(10, 6)) ax.imshow(image_label_overlay) ax.set_axis_off() plt.tight_layout() plt.show() return (label_image) def SMA_segment(im, mu=500, sigma=70, cutoff=0, gain=100, min_size=100, connectivity=1): """ This function binarizes a Smooth muscle actin (SMA) fluorescence microscopy channel using contrast adjustment, high pass filter, otsu thresholding, and removal of small objects. Paramters --------- im : (N, M) ndarray Grayscale input image. cutoff : float, optional Cutoff of the sigmoid function that shifts the characteristic curve in horizontal direction. Default value is 0. gain : float, optional The constant multiplier in exponential's power of sigmoid function. Default value is 100. mu : float, optional Average for input in low pass filter. Default value is 500. sigma : float, optional Standard deviation for input in low pass filter. Default value is 70. min_size : int, optional The smallest allowable object size. Default value is 100. connectivity : int, optional The connectvitivy defining the neighborhood of a pixel. Default value is 1. Returns ------- out : label_image (ndarray) segmented and object labeled for analysis, image_label_overlay (ndarray) Examples -------- >>> image = plt.imread('..\C4-NTG-CFbs_NTG5ECM_1mMRGD_20x_003.tif') >>> label, overlay = SMA_segment(image, mu=500, sigma=70, cutoff=0, gain=100) """ # contrast adjustment im_con = adjust_sigmoid(im, cutoff=cutoff, gain=gain, inv=False) # contrast + low pass filter im_lo = frequency_filter(im_con, mu, sigma, passtype='low') # contrast + low pass + binary thresh = threshold_otsu(im_lo, nbins=256) im_bin = im_lo > thresh # remove small objects im_bin_clean = remove_small_objects(im_bin, min_size=min_size, connectivity=connectivity, in_place=False) # labelling regions that are cells label_image = label(im_bin_clean) # coloring labels over cells image_label_overlay = label2rgb(label_image, image=im, bg_label=0) return label_image, image_label_overlay def colorize(image, i, x): """ Signature: colorize(*args) Docstring: segment and label image Extended Summary: ---------------- The colorize function defines the threshold value for the desired image by the triangle function and then creates a binarized image by setting pixel intensities above that thresh value to white, and the ones below to black (background). Next, it closes up the image by filling in random noise within the cell outlines and smooths/clears out the border. It then labels adjacent pixels with the same value and defines them as a region. It returns an RGB image with color-coded labels. Parameters: ---------- image : 2D array greyscale image i : int dimension of square to be used for binarization x : float dimension of image in microns according to imageJ Returns: -------- RGB image overlay int : 2D ndarray """ # resizing image image = rescale(image, x/1024, anti_aliasing=False) # applying threshold to image thresh = threshold_triangle(image) binary = closing(image > thresh, square(i)) binary = ndimage.binary_fill_holes(binary) # cleaning up boundaries of cells cleared = clear_border(binary) # labelling regions that are cells label_image = label(cleared) # coloring labels over cells image_label_overlay = label2rgb(label_image, image=image, bg_label=0) print(image_label_overlay.shape) fig, ax = plt.subplots(figsize=(10, 6)) ax.imshow(image_label_overlay) ax.set_axis_off() plt.tight_layout() plt.show() return (label_image) def sharpen_nuclei(image, selem=square(8), ksize=10, alpha=0.2, sigma=40, imshow=True): """ Highlight nucleis in the image. Make a sharp contrast between nucleis and background to highlight nucleis in the input image, achieved by mean blurring, laplace sharpening, and Gaussian high-pass filter. Selem, ksize, alpha, sigma parameters have default values while could be customize by user. Parameters ---------- image : numpy.ndarray grayscale image which needs to enhance the nucleis. selem : numpy.ndarray area used for scanning in blurring, default to be square(8). ksize : int ksize used for laplace transform, default to be 10. alpha : float coefficient used in laplace sharpening, default to be 0.2. sigma : int power coefficient in Gussian filter, default to be 40. imshow : bool, str users choose whether to show the processed images, default to be True. Returns ---------- Return to 2 processed grayscale images with sharpened nucleis(2 dimension arrays) in the image using two different sharpening styles. """ image = img_as_ubyte(image) def custom(image): imin =
np.min(image)
numpy.min
import numpy as np #import bethy_fapar as fapar class photosynthesis(): def __init__(self,datashape=None): ''' Class initialisation and setup of parameters ''' if datashape == None: self.data = np.zeros([100]) self.Tc = np.ones([100])*25 self.C3 = np.ones([100]).astype(bool) self.Ipar = (np.arange(100)/100.) * 2000. * 1e-6 self.Lcarbon = np.ones([100]) * 1 self.Rcarbon = np.ones([100]) * 1 self.Scarbon = np.ones([100]) * 1 self.pft = np.array(['C3 grass']*100) # zero C in K self.zeroC = 273.15 # gas constant J mol-1 K-1 self.R_gas = 8.314 # oxygen concentration self.Ox = 0.21 # mol(O2)mol(air)-1 self.O2 = 0.23 # Atmospheric concentration of oxygen (kg O2/kg air) # energy content of PAR quanta self.EPAR = 220. # kJmol-1 # ratio of dark respiration to PVM at 25 C self.FRDC3 = 0.011 self.FRDC4 = 0.042 # scaling for GammaStar self.GammaStarScale = 1.7e-6 # Effective quantum efficiency C4 self.ALC4 = 0.04 # Curvature parameter (C4) self.Theta = 0.83 self.molarMassAir_kg = 28.97e-3 self.molarMassCO2_kg = 44.011e-3 self.co2SpecificGravity = self.molarMassCO2_kg/self.molarMassAir_kg self.variables() self.defaults() self.initialise() def test1(self): ''' low light, span a temperature range, normal CO2 ''' self.Ipar = np.ones_like(self.data) * 200. * 1e-6 self.co2_ppmv = 390. self.Tc = np.arange(100) - 30. self.initialise() self.defaults() self.photosynthesis() import pylab as plt plt.clf() plt.plot(self.Tc,self.Wc * 1e6,label='Wc') plt.plot(self.Tc,self.Wl * 1e6,label='Wl') plt.plot(self.Tc,self.We * 1e6,label='We') plt.plot(self.Tc,self.W * 1e6,label='W') plt.legend() def photosynthesis(self): ''' Uses: self.Tc : canopy (leaf) temperature (C) self.C3 : array of True ('C3') or False ('C4') self.Ipar : incident PAR (mol m-2 s-1) self.Lcarbon : leaf C pool (kg C m-2) self.Rcarbon : root C pool (kg C m-2) self.Scarbon : respiring stem C pool (kg C m-2) ''' self.leafPhotosynthesis() self.canopyPhotosynthesis() def variables(self): ''' Set some items that might be driven from a control file Generates: self.theta : mean soil moisture concentration in the root zone, self.thetac : Critical volumetric SMC (cubic m per cubic m of soil) self.thetaw : Volumetric wilting point (cubic m per cubic m of soil) ''' self.thetaw = 0.136328 self.thetac = 0.242433 self.theta = np.ones_like(self.data) self.m_air = 28.966 self.co2_ppmv = 383. def initialise(self): ''' Initialise some items that might be driven from a control file Uses: self.data : data sizing array Generates: self.theta : mean soil moisture concentration in the root zone, self.co2c : Canopy level CO2 concentration (kg CO2/kg air). self.pstar : Surface pressure (Pa) self.m_co2 : molecular weight of CO2 self.m_air : molecular weight of dry air ''' self.m_co2 = self.m_air * self.epco2 self.co2_mmr = self.co2_ppmv * self.m_co2 / self.m_air * 1.0e-6 self.co2c = self.co2_mmr*1. def defaults(self): ''' Uses: self.C3 : array of True ('C3') or False ('C4') self.Tc : canopy (leaf) temperature (C) Generates: self.data : data sizing array self.epco2 : Ratio of molecular weights of CO2 and dry air. self.epo2 : Ratio of molecular weights of O2 and dry air. self.Oa : Partial pressume of O2 in the atmosphere self.ne : constant for Vcmax (mol CO2 m-2 s-1 kg C (kg N)-1) self.Q10_leaf: Q10 dependence leaf self.Q10_rs : Q10 dependence rs self.Q10_Kc : Q10 dependence Kc: CO2 self.Q10_Ko : Q10 dependence Ko: O2 self.Kc : Michaelis-Menten paramemeter for CO2 self.Ko : Michaelis-Menten paramemeter for O2 self.beta1 : colimitation coefficients self.beta2 : colimitation coefficients self.nl : leaf nitrogen self.Gamma : CO2 compensation point in the absence of mitochindrial respiration (Pa) self.tau : Rubisco specificity for CO2 relative to O2 self.kappao3 : ratio of leaf resistance for O3 to leaf resistance to water vapour self.Tupp : PFT-specific parameter ranges: upper (C) self.Tlow : PFT-specific parameter ranges: lower (C) self.Fo3_crit: critical value of Ozone stress limitation self.a : Ozone factor self.k : PAR extinction coefficient self.alpha : quantum efficiency mol CO2 [mol PAR photons]-1 self.omega : leaf PAR scattering coefficient self.fdr : dark respiration coefficient self.rg : growth respiration coefficient self.n0 : top leaf N concentration (kg N [kg C]-1) self.nrl : ratio of N conc in roots and leaves self.nsl : ratio of N conc in stems and leaves self.Vcmax25 : maximum rate of carboxylation of Rubisco (mol CO2 m-2 s-1) at 25 C self.Vcmax : maximum rate of carboxylation of Rubisco (mol CO2 m-2 s-1) self.fc : temperature factors for Vcmax self.aws : ratio of total stem C to respiring stem C self.gamma0 : minimum leaf turnover rate (360 days-1) self.dm : rate of change of turnover with soil moisture stress (360 days-1) self.dt : rate of change of turnover with T (360 days K)-1 self.moff : threshold soil mositure stress self.toff : threshold temperature (K) self.gammap : rate of leaf growth (360 days)-1 self.gammav : disturbance rate (360 days-1) self.gammar : root biomass turnover rate (360 days-1) self.gammaw : woody biomass turnover rate (360 days-1) self.Lmax : maximum LAI self.Lmin : minimum LAI self.sigmal : specific leaf density (kg C m-2 per unit LAI) self.awl : allometric coefficient self.bwl : allometric exponent self.etasl : ratio of live stemwood to LAI * height self.dt : time interval self.ratio : Ratio of leaf resistance for CO2 to leaf resistance for H2O. self.glmin : minimum stomatal conductance ''' self.dt = 1.0 self.data = np.zeros_like(self.C3).astype(float) self.glmin = 1.0e-10 self.pstar = 101e3 self.epco2 = 1.5194 self.epo2 = 1.106 self.ratio=1.6 #==============Jules/ triffid parameters # default self.Q10_leaf, self.Q10_rs etc. self.Q10_leaf = 2.0 self.Q10_rs = 0.57 self.Q10_Kc = 2.1 self.Q10_Ko = 1.2 # leaf nitrogen/Vcmax terms # default for self.ne mol CO2 m-2 s-1 kg C (kg N)-1 self.n0 = np.zeros_like(self.data) + 0.060 self.n0[self.pft == 'Broadleaf tree'] = 0.046 self.n0[self.pft == 'Needleleaf tree'] = 0.033 self.n0[self.pft == 'C3 grass'] = 0.073 self.ne = 0.0008*np.ones_like(self.data) self.ne[~self.C3] = 0.0004 self.nl = self.n0*np.ones_like(self.data) # CO2 compensation point self.Oa = 0.21 * self.pstar # assuming 21% of atmosphere is O2 self.tau = 2600.*self.Q10_rs**(0.1*(self.Tc-25.)) self.Gamma = (self.Oa/(2.*self.tau))*np.ones_like(self.data) self.Gamma[~self.C3] = 0. # colimitation coefficients: self.beta1 = 0.83 self.beta2 = 0.93 # use larger values here self.beta1 = 0.999 self.beta2 = 0.999 # ratio of leaf resistance for O3 to leaf resistance to water vapour self.kappao3 = 1.67 # leaf T limits (C) self.Tupp = np.zeros_like(self.data) + 36.0 self.Tlow = np.zeros_like(self.data) self.Tlow[self.pft == 'Needleleaf tree'] = -10.0 self.Tlow[self.pft == 'C4 grass'] = 13.0 self.Tupp[self.pft == 'Needleleaf tree'] = 26.0 self.Tupp[self.pft == 'C4 grass'] = 45.0 self.Vcmax25 = self.ne * self.nl self.ft = self.Q10_leaf ** (0.1 * (self.Tc-25.)) self.Vcmax = self.Vcmax25 * self.ft / ((1.0+np.exp(0.3*(self.Tc-self.Tupp)))\ *(1.0+np.exp(0.3*(self.Tlow-self.Tc)))) # O3 terms self.Fo3_crit = np.zeros_like(self.data) + 1.6 self.Fo3_crit[self.pft == 'C3 grass'] = 5.0 self.Fo3_crit[self.pft == 'C4 grass'] = 5.0 self.a = np.zeros_like(self.data) + 0.04 self.a[self.pft == 'Needleleaf tree'] = 0.02 self.a[self.pft == 'C3 grass'] = 0.25 self.a[self.pft == 'C4 grass'] = 0.13 self.a[self.pft == 'Shrub'] = 0.03 self.k = np.zeros_like(self.data) + 0.5 self.alpha = np.zeros_like(self.data) + 0.08 self.alpha[self.pft == 'C3 grass'] = 0.12 self.alpha[self.pft == 'C4 grass'] = 0.06 self.omega = np.zeros_like(self.data) + 0.15 self.omega[self.pft == 'C4 grass'] = 0.17 self.fdr = np.zeros_like(self.data) + 0.015 self.fdr[self.pft == 'C4 grass'] = 0.025 self.rg = np.zeros_like(self.data) + 0.25 self.nrl = np.zeros_like(self.data) + 1.00 self.nsl = np.zeros_like(self.data) + 1.00 self.nsl[self.pft == 'Broadleaf tree'] = 0.10 self.nsl[self.pft == 'Needleleaf tree'] = 0.10 self.aws = np.zeros_like(self.data) + 10.0 self.aws[self.pft == 'C3 grass'] = 1.0 self.aws[self.pft == 'C4 grass'] = 1.0 self.gamma0 = np.zeros_like(self.data) + 0.25 self.dm = np.zeros_like(self.data) + 0.0 self.dt = np.zeros_like(self.data) + 9.0 self.moff = np.zeros_like(self.data) + 0.0 self.toff = np.zeros_like(self.data) + 278.15 self.toff[self.pft == 'Needleleaf tree'] = 233.15 self.toff[self.pft == 'Shrub'] = 233.15 self.gammap = np.zeros_like(self.data) + 20. self.gammap[self.pft == 'Broadleaf tree'] = 15.0 self.gammav = np.zeros_like(self.data) + 0.2 self.gammav[self.pft == 'Broadleaf tree'] = 0.005 self.gammav[self.pft == 'Needleleaf tree'] = 0.007 self.gammav[self.pft == 'Shrub'] = 0.05 self.gammar = np.zeros_like(self.data) + 0.25 self.gammar[self.pft == 'Needleleaf tree'] = 0.15 self.gammaw = np.zeros_like(self.data) + 0.20 self.gammaw[self.pft == 'Broadleaf tree'] = 0.005 self.gammaw[self.pft == 'Needleleaf tree'] = 0.005 self.gammaw[self.pft == 'Shrub'] = 0.05 self.Lmax = np.zeros_like(self.data) + 4.0 self.Lmax[self.pft == 'Broadleaf tree'] = 9.00 self.Lmax[self.pft == 'Needleleaf tree'] = 5.00 self.Lmax[self.pft == 'Shrub'] = 3.00 self.Lmin = np.zeros_like(self.data) + 1.0 self.awl = np.zeros_like(self.data) + 0.65 self.awl[self.pft == 'C3 grass'] = 0.005 self.awl[self.pft == 'C4 grass'] = 0.005 self.awl[self.pft == 'Shrub'] = 0.10 self.bwl = np.zeros_like(self.data) + 1.667 self.sigmal = np.zeros_like(self.data) + 0.05 self.sigmal[self.pft == 'C3 grass'] = 0.025 self.sigmal[self.pft == 'Needleleaf tree'] = 0.10 self.sigmal[self.pft == 'Broadleaf tree'] = 0.0375 self.etasl = np.zeros_like(self.data) + 0.01 def leafPhotosynthesis(self): ''' NB: O3 treatment requires: self.ra, self.Fo3_crit, self.a, self.kappao3, self.gl, self.O3 which are starred * below. Safe failure if not present Uses: self.Tc : canopy (leaf) temperature (C) self.C3 : array of True ('C3') or False ('C4') self.Ipar : incident PAR (mol m-2 s-1) *self.O3 : molar conc. of O3 at reference level (nmol m-3) *self.ra : aerodynamic and boundary layer resistance between leaf surface and reference level (s m-1) *self.gl : leaf conductance for H20 (m s-1) [set in self.initialise()] self.thetac : soil moisture critical concentration self.thetaw : soil moisture critical concentration [set in self.variables()] self.theta : mean soil moisture concentration in the root zone, self.pstar : Surface pressure (Pa) self.co2c : Canopy level CO2 concentration (kg CO2/kg air). [set in initialiser] self.zeroC : 0 C in K self.R_gas : J mol-1 K-1 self.o2 : Canopy level O2 concentration (kg O2/kg air). [set in self.defaults()] self.Oa : Partial pressure of atmos Oxygen (Pa) self.epco2 : Ratio of molecular weights of CO2 and dry air. self.epo2 : Ratio of molecular weights of O2 and dry air. self.Vcmax : maximum rate of carboxylation of Rubisco (mol CO2 m-2 s-1) self.Gamma : CO2 compensation point in the absence of mitochindrial respiration (Pa) self.beta1 : colimitation coefficients self.beta2 : colimitation coefficients self.alpha : quantum efficiency of photosynthesis (mol CO2 mol-1 PAR) self.omega : leaf scattering coefficient for PAR *self.kappao3 : ratio of leaf resistance for O3 to leaf resistance to water vapour *self.Fo3_crit: critical value of Ozone stress limitation *self.a : Ozone factor self.ratio : Ratio of leaf resistance for CO2 to leaf resistance for H2O. Generates: self.Kc : Michaelis-Menten paramemeter for CO2 self.Ko : Michaelis-Menten paramemeter for O2 self.ci : leaf internal CO2 partial pressure (Pa) self.Wc : Rubisco-limited rate self.Wl : Light-limited rate self.We : Rate of transport of photosynthetic products self.Wp : Wc/Wl smoothed term self.W : combined limiting rate self.Rd : leaf dark respiration *self.Fo3 : leaf O3 flux self.Ap : (unstressed) leaf photosynthetic carbon uptake self.beta : water stress limitation *self.F : Ozone stress limitation self.Al : leaf photosynthetic carbon uptake Updated: self.gl : leaf stomatal conductance ''' c3 = np.where(self.C3) c4 = np.where(~self.C3) self.ca = np.ones_like(self.data) * self.co2c / self.epco2 * self.pstar self.oa = np.ones_like(self.data) * self.O2 / self.epo2 * self.pstar # we need ci here # we will estimate that here after Knorr, 1988 # for simplicity self.ci = self.ca * 0.87 self.ci[~self.C3] = self.ca * 0.67 self.Kc = 30. * self.Q10_Kc ** (0.1*(self.Tc - 25.)) self.Ko = 3e4 * self.Q10_Ko ** (0.1*(self.Tc - 25.)) self.Wc = self.Vcmax*1. self.Wc[c3] = self.Vcmax[c3] * ((self.ci-self.Gamma)/(self.ci+self.Kc*(1+self.Oa/self.Ko)))[c3] self.Wc[self.Wc<0] = 0. self.Wl = self.alpha*(1-self.omega)*self.Ipar self.Wl[c3] = self.alpha*(1-self.omega)*self.Ipar\ * ((self.ci-self.Gamma)/(self.ci+2.*self.Gamma))[c3] self.Wl[self.Wl<0] = 0. self.We = 0.5 * self.Vcmax self.We[c4] = (2.e4 * self.Vcmax * self.ci/self.pstar)[c4] self.We[self.We<0] = 0. b1 = self.beta1*np.ones_like(self.data) b2 = -(self.Wc+self.Wl) b3 = self.Wc*self.Wl self.Wp = (-b2/(2.*b1) - np.sqrt(b2*b2/(4*b1*b1) - b3/b1))/self.beta1 b1 = self.beta2*np.ones_like(self.data) b2 = -(self.Wp+self.We) b3 = self.Wp*self.We self.W = -b2/(2.*b1) - np.sqrt(b2*b2/(4*b1*b1) - b3/b1) self.Rd = self.fdr * self.Vcmax # Calculate the net rate of photosynthesis self.Ap = self.W - self.Rd self.beta = 1.0+(self.W*0.) w = np.where(self.theta <= self.thetac) self.beta[w] = ((self.theta-self.thetaw)/(self.thetac-self.thetaw))[w] w = np.where(self.theta <= self.thetaw) self.beta[w] = 0.0 # water limited net rate of photosynthesis self.Al = self.Ap * self.beta # Calculate the factor for converting mol/m3 into Pa (J/m3). conv = self.R_gas * (self.Tc + self.zeroC) # Diagnose the leaf conductance # Leaf conductance for CO2 (m/s) glco2 = (self.Al * conv) / (self.ca - self.ci) self.gl = self.ratio * glco2 # Close stomata at points with negative or zero net photosynthesis # or where the leaf resistance exceeds its maximum value. w = np.where( ( self.gl <= self.glmin ) * (self.Al <= 0)) self.gl[w] = self.glmin glco2 = self.gl/self.ratio self.gl = self.ratio * glco2 self.Al[w] = -self.Rd * self.beta # quadratic for O3 # requires: # self.ra, self.Fo3_crit, self.a, self.kappao3, self.gl, self.O3 try: a = self.gl * self.ra b = self.a * self.Fo3_crit * self.O3 - self.kappao3 \ - self.gl * self.ra * (self.a * self.Fo3_crit + 1) c = self.a * self.Fo3_crit * self.kappao3 + self.kappao3 coefs = [a,b,c] roots = np.roots(coeff) self.F = np.min(roots) gl = self.gl * self.F self.Fo3 = self.O3/(self.ra - self.kappao3 / gl) self.F = (self.Fo3-self.Fo3_crit) self.F[self.F<0.] = 0. self.F = 1. - self.a * self.F except: self.F = 1.0 self.Fo3 = 0.0 self.Al = self.Al * self.F self.gl = self.gl * self.F return def canopyPhotosynthesis(self): ''' Big leaf (Sellers equivalent) Uses: self.Lcarbon : leaf C pool (kg C m-2) self.Rcarbon : root C pool (kg C m-2) self.Scarbon : respiring stem C pool (kg C m-2) [set in self.defaults()] self.k : canopy geometry term (G function) self.rg : growth respiration coefficient self.n0 : top leaf N concentration (kg N (kg C)-1) self.sigmal : specific leaf density (kg C m-2 per unit of LAI) self.nrl : proportion of root N to leaf N self.nsl : proportion of stem N to leaf N self.aws : ratio of total stem C to respiring stem C self.etasl : ratio of live stemwood to LAI * height [set in self.leafPhotosynthesis()] self.Al : leaf assimilation self.Rd : leaf dark respiration self.beta : water limioting factor Generates: self.nm : mean leaf N concentration (kg N (kg C)-1) self.Ac : canopy assimilation self.Rdc : canopy dark respiration self.PiG : GPP self.Pi : NPP self.Rp : plant respiration self.Rpg : growth respiration self.Rpm : maintenance respiration self.Nl : leaf N conc. self.Nr : root N conc. self.Nw : wood N conc. self.Lc : leaf area index ''' self.Lc = self.Lcarbon / self.sigmal self.Ac = self.Al * (1. - np.exp(-self.k * self.Lc))/self.k self.Rdc = self.Rd * (1. - np.exp(-self.k * self.Lc))/self.k self.PiG = self.Ac + self.beta * self.Rdc self.nm = self.n0*1. #self.Scarbon = self.etasl * self.h * self.Lc self.Nl = self.nm * self.sigmal * self.Lc self.Nr = self.nrl * self.nm * self.Rcarbon self.Ns = self.nsl * self.nm * self.Scarbon self.Rpm = 0.012 * self.Rdc * (self.beta + (self.Nr + self.Ns)/(self.Nl)) self.Rpg = self.rg * (self.PiG - self.Rpm) self.Rp = self.Rpm + self.Rpg self.Pi = self.PiG - self.Rp def phenology(self): ''' Uses: self.gamma0 : minimum leaf turnover rate (360 days-1) self.dm : rate of change of turnover with soil moisture stress (360 days-1) self.dt : rate of change of turnover with T (360 days K)-1 self.moff : threshold soil mositure stress self.toff : threshold temperature (K) self.gammap : rate of leaf growth (360 days)-1 self.Tc : canopy (leaf) temperature (C) self.Lb : seasonal maximum LAI self.L : actual LAI self.dt : time interval(days) Generates: self.gammalm : leaf mortality rate Updates: self.p : phenological status ''' self.gammalm = self.gamma0 * (1. + self.dt*(self.toff-self.Tc)) self.gammalm[self.Tc > self.toff] = self.gamma0 #self.p = self.L / self.Lb self.dp_dt =
np.zeros_like(self.Tc)
numpy.zeros_like
""" Basic Equations for solving shallow water problems ##################### """ from pysph.sph.equation import Equation from pysph.sph.integrator_step import IntegratorStep from pysph.sph.integrator import Integrator from compyle.api import declare from pysph.sph.wc.linalg import gj_solve, augmented_matrix from numpy import sqrt, cos, sin, zeros, pi, exp import numpy as np import numpy M_PI = pi class CheckForParticlesToSplit(Equation): r"""Particles are tagged for splitting if the following condition is satisfied: .. math:: (A_i > A_max) and (h_i < h_max) and (x_min < x_i < x_max) and (y_min < y_i < y_max) References ---------- .. [Vacondio2010] <NAME>, <NAME> and <NAME>, "Accurate particle splitting for smoothed particle hydrodynamics in shallow water with shock capturing", Int. J. Numer. Meth. Fluids, 69 (2012), pp. 1377-1410 """ def __init__(self, dest, h_max=1e9, A_max=1e9, x_min=-1e9, x_max=1e9, y_min=-1e9, y_max=1e9): r""" Parameters ---------- h_max : float maximum smoothing length beyond which splitting is deactivated A_max : float maximum area beyond which splitting is activated x_min : float minimum distance along x-direction beyond which splitting is activated x_max : float maximum distance along x-direction beyond which splitting is deactivated y_min : float minimum distance along y-direction beyond which splitting is activated y_max : float maximum distance along y-direction beyond which splitting is deactivated """ self.A_max = A_max self.h_max = h_max self.x_min = x_min self.x_max = x_max self.y_min = y_min self.y_max = y_max super(CheckForParticlesToSplit, self).__init__(dest, None) def initialize(self, d_idx, d_A, d_h, d_x, d_y, d_pa_to_split): if (d_A[d_idx] > self.A_max and d_h[d_idx] < self.h_max and (self.x_min < d_x[d_idx] < self.x_max) and (self.y_min < d_y[d_idx] < self.y_max)): d_pa_to_split[d_idx] = 1 else: d_pa_to_split[d_idx] = 0 class ParticleSplit(object): r"""**Hexagonal particle splitting algorithm** References ---------- .. [Vacondio2010] <NAME>, <NAME> and <NAME>, "Accurate particle splitting for smoothed particle hydrodynamics in shallow water with shock capturing", Int. J. Numer. Meth. Fluids, 69 (2012), pp. 1377-1410 """ def __init__(self, pa_arr): r""" Parameters ---------- pa_arr : pysph.base.particle_array.ParticleArray particle array of fluid """ self.pa_arr = pa_arr # Ratio of mass of daughter particle located at center of hexagon to # that of its parents mass self.center_pa_mass_frac = 0.178705766141917 # Ratio of mass of daughter particle located at vertex of hexagon to # that of its parents mass self.vertex_pa_mass_frac = 0.136882287617319 # Ratio of smoothing length of daughter particle to that of its parents # smoothing length self.pa_h_ratio = 0.9 # Ratio of distance between center daughter particle and vertex # daughter particle to that of its parents smoothing length self.center_and_vertex_pa_separation_frac = 0.4 # Get index of the parent particles to split self.idx_pa_to_split = self._get_idx_of_particles_to_split() # Number of daughter particles located at the vertices of hexagon after # splitting self.num_vertex_pa_after_single_split = 6 def do_particle_split(self, solver=None): if not self.idx_pa_to_split.size: # If no particles to split then return return else: # Properties of parent particles to split h_parent = self.pa_arr.h[self.idx_pa_to_split] h0_parent = self.pa_arr.h0[self.idx_pa_to_split] m_parent = self.pa_arr.m[self.idx_pa_to_split] x_parent = self.pa_arr.x[self.idx_pa_to_split] y_parent = self.pa_arr.y[self.idx_pa_to_split] u_parent = self.pa_arr.u[self.idx_pa_to_split] v_parent = self.pa_arr.v[self.idx_pa_to_split] u_prev_step_parent = self.pa_arr.u_prev_step[self.idx_pa_to_split] v_prev_step_parent = self.pa_arr.v_prev_step[self.idx_pa_to_split] rho_parent = self.pa_arr.rho[self.idx_pa_to_split] rho0_parent = self.pa_arr.rho0[self.idx_pa_to_split] alpha_parent = self.pa_arr.alpha[self.idx_pa_to_split] # Vertex daughter particle properties update n = self.num_vertex_pa_after_single_split h_vertex_pa = self.pa_h_ratio * np.repeat(h_parent, n) h0_vertex_pa = self.pa_h_ratio *
np.repeat(h0_parent, n)
numpy.repeat
####################################################################### # Copyright (C) # # 2016 - 2017 <NAME>(<EMAIL>) # # 2016 <NAME>(<EMAIL>) # # Permission given to modify the code as long as you keep this # # declaration at the top # ####################################################################### from __future__ import print_function import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # all states: state 0-5 are upper states STATES = np.arange(0, 7) # state 6 is lower state LOWER_STATE = 6 # discount factor DISCOUNT = 0.99 # each state is represented by a vector of length 8 FEATURE_SIZE = 8 FEATURES = np.zeros((len(STATES), FEATURE_SIZE)) for i in range(LOWER_STATE): FEATURES[i, i] = 2 FEATURES[i, 7] = 1 FEATURES[LOWER_STATE, 6] = 1 FEATURES[LOWER_STATE, 7] = 2 # all possible actions DASHED = 0 SOLID = 1 ACTIONS = [DASHED, SOLID] # reward is always zero REWARD = 0 # take @action at @state, return the new state def takeAction(state, action): if action == SOLID: return LOWER_STATE return np.random.choice(STATES[: LOWER_STATE]) # target policy def targetPolicy(state): return SOLID # state distribution for the behavior policy stateDistribution = np.ones(len(STATES)) / 7 stateDistributionMat = np.matrix(np.diag(stateDistribution)) # projection matrix for minimize MSVE projectionMatrix = np.matrix(FEATURES) * \ np.linalg.pinv(np.matrix(FEATURES.T) * stateDistributionMat * np.matrix(FEATURES)) * \ np.matrix(FEATURES.T) * \ stateDistributionMat # behavior policy BEHAVIOR_SOLID_PROBABILITY = 1.0 / 7 def behaviorPolicy(state): if np.random.binomial(1, BEHAVIOR_SOLID_PROBABILITY) == 1: return SOLID return DASHED # Semi-gradient off-policy temporal difference # @state: current state # @theta: weight for each component of the feature vector # @alpha: step size # @return: next state def semiGradientOffPolicyTD(state, theta, alpha): action = behaviorPolicy(state) nextState = takeAction(state, action) # get the importance ratio if action == DASHED: rho = 0.0 else: rho = 1.0 / BEHAVIOR_SOLID_PROBABILITY delta = REWARD + DISCOUNT * np.dot(FEATURES[nextState, :], theta) - \ np.dot(FEATURES[state, :], theta) delta *= rho * alpha # derivatives happen to be the same matrix due to the linearity theta += FEATURES[state, :] * delta return nextState # Semi-gradient DP # @theta: weight for each component of the feature vector # @alpha: step size def semiGradientDP(theta, alpha): delta = 0.0 # go through all the states for currentState in STATES: expectedReturn = 0.0 # compute bellman error for each state for nextState in STATES: if nextState == LOWER_STATE: expectedReturn += REWARD + DISCOUNT * np.dot(theta, FEATURES[nextState, :]) bellmanError = expectedReturn - np.dot(theta, FEATURES[currentState, :]) # accumulate gradients delta += bellmanError * FEATURES[currentState, :] # derivatives happen to be the same matrix due to the linearity theta += alpha / len(STATES) * delta # temporal difference with gradient correction # @state: current state # @theta: weight of each component of the feature vector # @weight: auxiliary trace for gradient correction # @alpha: step size of @theta # @beta: step size of @weight def TDC(state, theta, weight, alpha, beta): action = behaviorPolicy(state) nextState = takeAction(state, action) # get the importance ratio if action == DASHED: rho = 0.0 else: rho = 1.0 / BEHAVIOR_SOLID_PROBABILITY delta = REWARD + DISCOUNT * np.dot(FEATURES[nextState, :], theta) - \ np.dot(FEATURES[state, :], theta) theta += alpha * rho * (delta * FEATURES[state, :] - DISCOUNT * FEATURES[nextState, :] * np.dot(FEATURES[state, :], weight)) weight += beta * rho * (delta - np.dot(FEATURES[state, :], weight)) * FEATURES[state, :] return nextState # expected temporal difference with gradient correction # @theta: weight of each component of the feature vector # @weight: auxiliary trace for gradient correction # @alpha: step size of @theta # @beta: step size of @weight def expectedTDC(theta, weight, alpha, beta): for currentState in STATES: # When computing expected update target, if next state is not lower state, importance ratio will be 0, # so we can safely ignore this case and assume next state is always lower state delta = REWARD + DISCOUNT * np.dot(FEATURES[LOWER_STATE, :], theta) - np.dot(FEATURES[currentState, :], theta) rho = 1 / BEHAVIOR_SOLID_PROBABILITY # Under behavior policy, state distribution is uniform, so the probability for each state is 1.0 / len(STATES) expectedUpdateTheta = 1.0 / len(STATES) * BEHAVIOR_SOLID_PROBABILITY * rho * ( delta * FEATURES[currentState, :] - DISCOUNT * FEATURES[LOWER_STATE, :] * np.dot(weight, FEATURES[currentState, :])) theta += alpha * expectedUpdateTheta expectedUpdateWeight = 1.0 / len(STATES) * BEHAVIOR_SOLID_PROBABILITY * rho * ( delta - np.dot(weight, FEATURES[currentState, :])) * FEATURES[currentState, :] weight += beta * expectedUpdateWeight # if *accumulate* expected update and actually apply update here, then it's synchronous # theta += alpha * expectedUpdateTheta # weight += beta * expectedUpdateWeight # interest is 1 for every state INTEREST = 1 # expected update of ETD # @theta: weight of each component of the feature vector # @emphasis: current emphasis # @alpha: step size of @theta # @return: expected next emphasis def expectedEmphaticTD(theta, emphasis, alpha): # we perform synchronous update for both theta and emphasis expectedUpdate = 0 expectedNextEmphasis = 0.0 # go through all the states for state in STATES: # compute rho(t-1) if state == LOWER_STATE: rho = 1.0 / BEHAVIOR_SOLID_PROBABILITY else: rho = 0 # update emphasis nextEmphasis = DISCOUNT * rho * emphasis + INTEREST expectedNextEmphasis += nextEmphasis # When computing expected update target, if next state is not lower state, importance ratio will be 0, # so we can safely ignore this case and assume next state is always lower state nextState = LOWER_STATE delta = REWARD + DISCOUNT * np.dot(FEATURES[nextState, :], theta) -
np.dot(FEATURES[state, :], theta)
numpy.dot
# -*- coding: utf-8 -*- """ Created on Sun Feb 17 15:18:25 2013 @author: ash """ import numpy as np import scipy as sp import scipy.linalg as la import scipy.sparse.linalg as las import tdvp_common as tm import matmul as m import logging log = logging.getLogger(__name__) class PinvOp: def __init__(self, p, A1, A2, l=None, r=None, left=False, pseudo=True): assert not (pseudo and (l is None or r is None)), 'For pseudo-inverse l and r must be set!' self.A1 = A1 self.A2 = A2 self.l = l self.r = r self.p = p self.left = left self.pseudo = pseudo self.D = A1.shape[1] self.shape = (self.D**2, self.D**2) self.dtype = A1.dtype self.out = np.empty((self.D, self.D), dtype=self.dtype) def matvec(self, v): x = v.reshape((self.D, self.D)) if self.left: #Multiplying from the left, but x is a col. vector, so use mat_dagger Ehx = tm.eps_l_noop_inplace(x, self.A1, self.A2, self.out) if self.pseudo: QEQhx = Ehx - self.l * m.adot(self.r, x) res = x - sp.exp(-1.j * self.p) * QEQhx else: res = x - sp.exp(-1.j * self.p) * Ehx else: Ex = tm.eps_r_noop_inplace(x, self.A1, self.A2, self.out) if self.pseudo: QEQx = Ex - self.r * m.adot(self.l, x) res = x - sp.exp(1.j * self.p) * QEQx else: res = x - sp.exp(1.j * self.p) * Ex return res.ravel() def pinv_1mE_brute(A1, A2, l, r, p=0, pseudo=True): D = A1.shape[1] E = np.zeros((D**2, D**2), dtype=A1.dtype) for s in xrange(A1.shape[0]): E += np.kron(A1[s], A2[s].conj()) l =
np.asarray(l)
numpy.asarray
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #ZPLSC elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #VEL3DK elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PARAD elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' ## #MOPAK elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': #uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/10-PHSEND103/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/10-PHSEND107/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/09-PCO2WB103/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/09-PCO2WB104/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/05-ADCPTB104/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/05-ADCPSI103/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/07-VEL3DC108/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/07-VEL3DC107/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/08-OPTAAD106/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/08-OPTAAC104/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #CSPP Data below elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'seawater_pressure' var_list[5].name = 'seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_inst/dpc_ctd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'dpc_ctd_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_wfp/dpc_ctd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'dpc_ctd_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample' var_list[0].name = 'time' var_list[1].name = 'corrected_dissolved_oxygen' var_list[2].name = 'seawater_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_inst/dpc_optode_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_wfp/dpc_optode_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3A-FLORTD104/streamed/flort_d_data_record' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/04-FLNTUA103/recovered_inst/dpc_flnturtd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a' var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient ' var_list[3].name = 'flntu_x_mmp_cds_bback_total' var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'ug/L' var_list[2].units = 'm-1 sr-1' var_list[3].units = 'm-1' var_list[4].units = 'ppb' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/03-FLCDRA103/recovered_wfp/dpc_flcdrtd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a' var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient ' var_list[3].name = 'flntu_x_mmp_cds_bback_total' var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'ug/L' var_list[2].units = 'm-1 sr-1' var_list[3].units = 'm-1' var_list[4].units = 'ppb' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2B-PHSENA108/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3C-PARADA102/streamed/parad_sa_sample' var_list[0].name = 'time' var_list[1].name = 'par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3D-SPKIRA102/streamed/spkir_data_record' var_list[0].name = 'time' var_list[1].name = 'spkir_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4A-NUTNRA102/streamed/nutnr_a_sample' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4F-PCO2WA102/streamed/pco2w_a_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4B-VELPTD106/streamed/velpt_velocity_data' var_list[0].name = 'time' var_list[1].name = 'velpt_d_eastward_velocity' var_list[2].name = 'velpt_d_northward_velocity' var_list[3].name = 'velpt_d_upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[9].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' var_list[9].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/02-VEL3DA105/recovered_inst/dpc_acm_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_a_eastward_velocity' var_list[2].name = 'vel3d_a_northward_velocity' var_list[3].name = 'vel3d_a_upward_velocity_ascending' var_list[4].name = 'vel3d_a_upward_velocity_descending' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'm/s' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/02-VEL3DA105/recovered_wfp/dpc_acm_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_a_eastward_velocity' var_list[2].name = 'vel3d_a_northward_velocity' var_list[3].name = 'vel3d_a_upward_velocity_ascending' var_list[4].name = 'vel3d_a_upward_velocity_descending' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'm/s' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4A-CTDPFA109/streamed/ctdpf_optode_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'seawater_pressure' var_list[5].name = 'seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'DOSTA' and method == 'Streamed': #uframe_dataset_name = 'CE04OSPS/PC01B/4A-DOSTAD109/streamed/ctdpf_optode_sample' uframe_dataset_name = 'CE04OSPS/PC01B/4A-CTDPFA109/streamed/ctdpf_optode_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'seawater_pressure' #also use this for the '4A-DOSTAD109/streamed/ctdpf_optode_sample' stream var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4B-PHSENA106/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4D-PCO2WA105/streamed/pco2w_a_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #Coastal Pioneer CSM Data Streams elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #WAVSS elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' #PCO2A elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PCO2A elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #FDCHP elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data =
np.array([])
numpy.array
# Copyright 2021 The Trieste Contributors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ In this module, we test the *behaviour* of trieste models against reference GPflow models (thus implicitly assuming the latter are correct). *NOTE:* Where GPflow models are used as the underlying model in an trieste model, we should *not* test that the underlying model is used in any particular way. To do so would break encapsulation. For example, we should *not* test that methods on the GPflow models are called (except in the rare case that such behaviour is an explicitly documented behaviour of the trieste model). """ from __future__ import annotations import unittest.mock from typing import Any, cast import gpflow import numpy as np import numpy.testing as npt import pytest import tensorflow as tf import tensorflow_probability as tfp from gpflow.models import SGPR, SVGP, VGP from tests.util.misc import random_seed from tests.util.models.gpflow.models import ( ModelFactoryType, gpr_model, mock_data, sgpr_model, svgp_model, two_output_svgp_model, vgp_matern_model, vgp_model, ) from tests.util.models.models import fnc_2sin_x_over_3, fnc_3x_plus_10 from trieste.data import Dataset from trieste.logging import step_number, tensorboard_writer from trieste.models import TrainableProbabilisticModel from trieste.models.config import create_model from trieste.models.gpflow import ( GaussianProcessRegression, SparseVariational, VariationalGaussianProcess, ) from trieste.models.gpflow.models import NumDataPropertyMixin from trieste.models.gpflow.sampler import RandomFourierFeatureTrajectorySampler from trieste.models.optimizer import BatchOptimizer, DatasetTransformer, Optimizer def _3x_plus_gaussian_noise(x: tf.Tensor) -> tf.Tensor: return 3.0 * x +
np.random.normal(scale=0.01, size=x.shape)
numpy.random.normal
#!/usr/bin/env python from __future__ import division, absolute_import, print_function import numpy as np import scipy.optimize as opt # curve_fit, fmin, fmin_tnc import jams.functions as functions # from jams from jams.mad import mad # from jams import warnings # import pdb # ---------------------------------------------------------------------- def nee2gpp(dates, nee, t, isday, rg=False, vpd=False, undef=np.nan, method='reichstein', shape=False, masked=False, nogppnight=False): """ Calculate photosynthesis (GPP) and ecosystem respiration (Reco) from original Eddy flux data. It uses either 1. a fit of Reco vs. temperature to all nighttime data, or 2. several fits over the season of Reco vs. temperature as in Reichstein et al. (2005), or 3. the daytime method of Lasslop et al. (2010), in order to calculate Reco and then GPP = Reco - NEE. Definition ---------- def nee2gpp(dates, nee, t, isday, rg=False, vpd=False, undef=np.nan, method='reichstein', shape=False, masked=False): Input ----- Inputs are 1D arrays that can be masked or not. dates julian days nee net ecosystem exchange (uptake is <0) [umol m-2 s-1] t temperature [K] Optional Input -------------- If method = 'day' | 'lasslop', extra inputs are rg global radiation, i.e. shortwave down [W m-2] vpd vapour pressure deficit [Pa] Parameters ---------- undef undefined values in data (default: np.nan) Input arrays will be masked at undef, keeping the original mask method if 'global' | 'falge': fit of Reco vs. temperature to all nighttime data if 'local' | 'reichstein': method of Reichstein et al. (2005) if 'day' | 'lasslop': method of Lasslop et al. (2010) shape if False then outputs are 1D arrays; if True, output have the same shape as datain if a shape tuple is given, then this tuple is used to reshape masked if False: outputs are undef where nee and t are masked or undef if True: return masked arrays where outputs would be undef If method = 'night' | 'reichstein', extra parameters are nogppnight if True: Resp=NEE, GPP=0 at night, GPP always positive if False: Resp=lloyd_taylor, GPP=Resp-NEE at night (default) Ouput ----- GPP, Reco photosynthesis, ecosystem respiration Restrictions ------------ Negative respiration possible at night when gpp is forced to 0 with nogppnight=True Literature ---------- Falge et al. (2001) Gap filling strategies for defensible annual sums of net ecosystem exchange Acricultural and Forest Meteorology 107, 43-69 Lasslop et al. (2010) Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation Global Change Biology 16, 187-208 Reichstein et al. (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11, 1424-1439 Examples -------- >>> from jams.fread import fread # from jams >>> from jams.date2dec import date2dec # from jams >>> dat = fread('test_nee2gpp.csv', skip=2, transpose=True) >>> dates = date2dec(dy=dat[0,:], mo=dat[1,:], yr=dat[2,:], hr=dat[3,:], mi=dat[4,:]) >>> NEE = np.squeeze(dat[5,:]) >>> rg = np.squeeze(dat[6,:]) >>> tair = np.squeeze(dat[7,:]) >>> undef = -9999. >>> isday = np.where(rg > 10., True, False) >>> tt = np.where(tair == undef, undef, tair+273.15) >>> # partition >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, undef=undef, method='local') >>> print(GPP[1120:1128]) [-9.99900000e+03 -9.99900000e+03 -9.99900000e+03 4.40606871e+00 8.31942152e+00 1.06242542e+01 8.49245664e+00 1.12381973e+01] >>> print(Reco[1120:1128]) [1.68311981 1.81012431 1.9874173 2.17108871 2.38759152 2.64372415 2.90076664 3.18592735] >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, undef=undef, method='local') >>> print(GPP[1120:1128]) [-9.99900000e+03 -9.99900000e+03 -9.99900000e+03 4.40606871e+00 8.31942152e+00 1.06242542e+01 8.49245664e+00 1.12381973e+01] >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, undef=undef, method='global') >>> print(GPP[1120:1128]) [-9.99900000e+03 -9.99900000e+03 -9.99900000e+03 4.33166157e+00 8.18228013e+00 1.04092252e+01 8.19395317e+00 1.08427448e+01] >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, undef=undef, method='Reichstein', masked=True) >>> print(GPP[1120:1128]) [-- -- -- 4.406068706013192 8.319421516040766 10.624254150217764 8.492456637225963 11.238197347837367] >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, undef=undef, method='reichstein', shape=(np.size(NEE),1)) >>> print(GPP[1120:1128]) [[-9.99900000e+03] [-9.99900000e+03] [-9.99900000e+03] [ 4.40606871e+00] [ 8.31942152e+00] [ 1.06242542e+01] [ 8.49245664e+00] [ 1.12381973e+01]] >>> VPD = np.squeeze(dat[8,:]) >>> vpd = np.where(VPD == undef, undef, VPD*100.) >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, rg, vpd, undef=undef, method='day') >>> print(GPP[1120:1128]) [-9.99900000e+03 -9.99900000e+03 -9.99900000e+03 2.78457540e+00 6.63212545e+00 8.88902165e+00 6.74243873e+00 9.51364527e+00] >>> print(Reco[1120:1128]) [0.28786696 0.34594516 0.43893276 0.5495954 0.70029545 0.90849165 1.15074873 1.46137527] License ------- This file is part of the JAMS Python package, distributed under the MIT License. The JAMS Python package originates from the former UFZ Python library, Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany. Copyright (c) 2012-2014 <NAME>, <NAME> - mc (at) macu (dot) de Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. History ------- Written MC, Mar 2012 Modified AP, Mar 2012 - undef=np.nan MC, Nov 2012 - wrapper for individual routines nee2gpp_reichstein etc. MC, Feb 2013 - ported to Python 3 MC, May 2013 - replaced cost functions by generel cost function cost_abs if possible AP, Aug 2014 - replaced fmin with fmin_tnc to permit params<0, permit gpp<0 at any time if nogppnight=True """ # Global relationship in Reichstein et al. (2005) if ((method.lower() == 'global') | (method.lower() == 'falge')): return nee2gpp_falge(dates, nee, t, isday, undef=undef, shape=shape, masked=masked) # Local relationship = Reichstein et al. (2005) elif ((method.lower() == 'local') | (method.lower() == 'reichstein')): return nee2gpp_reichstein(dates, nee, t, isday, undef=undef, shape=shape, masked=masked, nogppnight=nogppnight) # Lasslop et al. (2010) method elif ((method.lower() == 'day') | (method.lower() == 'lasslop')): return nee2gpp_lasslop(dates, nee, t, isday, rg, vpd, undef=undef, shape=shape, masked=masked, nogppnight=nogppnight) # Include new methods here else: raise ValueError('Error nee2gpp: method not implemented yet.') # ---------------------------------------------------------------------- def nee2gpp_falge(dates, nee, t, isday, undef=np.nan, shape=False, masked=False): """ Calculate photosynthesis (GPP) and ecosystem respiration (Reco) from original Eddy flux data, using a fit of Reco vs. temperature to all nighttime data, in order to calculate Reco and then GPP = Reco - NEE. Definition ---------- def nee2gpp_falge(dates, nee, t, isday, undef=np.nan, shape=False, masked=False): Input ----- Inputs are 1D arrays that can be masked or not. dates julian days nee net ecosystem exchange (uptake is <0) [umol m-2 s-1] t temperature [K] Parameters ---------- undef undefined values in data (default: np.nan) Input arrays will be masked at undef, keeping the original mask shape if False then outputs are 1D arrays; if True, output have the same shape as datain if a shape tuple is given, then this tuple is used to reshape masked if False: outputs are undef where nee and t are masked or undef if True: return masked arrays where outputs would be undef Ouput ----- GPP, Reco photosynthesis, ecosystem respiration Restrictions ------------ None. Literature ---------- Falge et al. (2001) Gap filling strategies for defensible annual sums of net ecosystem exchange Acricultural and Forest Meteorology 107, 43-69 Examples -------- >>> from jams.fread import fread # from jams >>> from jams.date2dec import date2dec # from jams >>> dat = fread('test_nee2gpp.csv', skip=2, transpose=True) >>> dates = date2dec(dy=dat[0,:], mo=dat[1,:], yr=dat[2,:], hr=dat[3,:], mi=dat[4,:]) >>> NEE = np.squeeze(dat[5,:]) >>> rg = np.squeeze(dat[6,:]) >>> tair = np.squeeze(dat[7,:]) >>> undef = -9999. >>> isday = np.where(rg > 10., True, False) >>> tt = np.where(tair == undef, undef, tair+273.15) >>> # partition >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, undef=undef, method='global') >>> print(GPP[1120:1128]) [-9.99900000e+03 -9.99900000e+03 -9.99900000e+03 4.33166157e+00 8.18228013e+00 1.04092252e+01 8.19395317e+00 1.08427448e+01] License ------- This file is part of the JAMS Python package, distributed under the MIT License. The JAMS Python package originates from the former UFZ Python library, Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany. Copyright (c) 2012-2013 <NAME>, <NAME> - mc (at) macu (dot) de Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. History ------- Written MC, Mar 2012 Modified AP, Mar 2012 - undef=np.nan MC, Nov 2012 - individual routine MC, Feb 2013 - ported to Python 3 """ # Checks # remember shape if any inshape = nee.shape dates = np.squeeze(dates) nee = np.squeeze(nee) t = np.squeeze(t) isday = np.squeeze(isday) # Check squeezed shape if dates.ndim != 1: raise Error('Error nee2gpp_falge: squeezed dates must be 1D array.') if nee.ndim != 1: raise Error('Error nee2gpp_falge: squeezed nee must be 1D array.') if t.ndim != 1: raise Error('Error nee2gpp_falge: squeezed t must be 1D array.') if isday.ndim != 1: raise Error('Error nee2gpp_falge: squeezed isday must be 1D array.') ndata = dates.size if ((nee.size != ndata) | (t.size != ndata) | (isday.size != ndata)): raise Error('Error nee2gpp_falge: inputs must have the same size.') # Transform to masked array with 1D mask nee = np.ma.array(nee, mask=False) t = np.ma.array(t, mask=False) isday = np.ma.array(isday, mask=False) # mask also undef if np.isnan(undef): if np.ma.any(np.isnan(nee)): nee[np.isnan(nee)] = np.ma.masked if np.ma.any(np.isnan(t)): t[np.isnan(t)] = np.ma.masked if np.ma.any(np.isnan(isday)): isday[np.isnan(isday)] = np.ma.masked else: if np.ma.any(nee==undef): nee[nee==undef] = np.ma.masked if np.ma.any(t==undef): t[t==undef] = np.ma.masked if np.ma.any(isday==undef): isday[isday==undef] = np.ma.masked # Partition - Global relationship as in Falge et al. (2001) # Select valid nighttime mask = isday | nee.mask | t.mask | isday.mask ii = np.where(~mask)[0] tt = np.ma.compressed(t[ii]) net = np.ma.compressed(nee[ii]) # p, c = opt.curve_fit(functions.lloyd_fix, tt, net, p0=[2.,200.]) # global parameter, global cov matrix #p = opt.fmin(functions.cost_lloyd_fix, [2.,200.], args=(tt, net), disp=False) p = opt.fmin(functions.cost_abs, [2.,200.], args=(functions.lloyd_fix_p, tt, net), disp=False) Reco = np.ones(ndata)*undef ii = np.where(~t.mask)[0] Reco[ii] = functions.lloyd_fix(t[ii], p[0], p[1]) # GPP GPP = np.ones(ndata)*undef ii = np.where(~(t.mask | nee.mask))[0] GPP[ii] = Reco[ii] - nee[ii] # Return if masked: if np.isnan(undef): GPP = np.ma.array(GPP, mask=np.isnan(GPP)) Reco = np.ma.array(Reco, mask=np.isnan(Reco)) else: GPP = np.ma.array(GPP, mask=(GPP == undef)) Reco = np.ma.array(Reco, mask=(Reco == undef)) if shape != False: if shape != True: return np.reshape(GPP,shape), np.reshape(Reco,shape) else: return np.reshape(GPP,inshape), np.reshape(Reco,inshape) else: return GPP, Reco # ---------------------------------------------------------------------- def nee2gpp_reichstein(dates, nee, t, isday, rg=False, vpd=False, undef=np.nan, shape=False, masked=False, nogppnight=False): """ Calculate photosynthesis (GPP) and ecosystem respiration (Reco) from original Eddy flux data, using several fits of Reco vs. temperature of nighttime data over the season, as in Reichstein et al. (2005), in order to calculate Reco and then GPP = Reco - NEE. Definition ---------- def nee2gpp_reichstein(dates, nee, t, isday, undef=np.nan, shape=None, masked=False): Input ----- Inputs are 1D arrays that can be masked or not. dates julian days nee net ecosystem exchange (uptake is <0) [umol m-2 s-1] t temperature [K] Parameters ---------- undef undefined values in data (default: np.nan) Input arrays will be masked at undef, keeping the original mask shape if False then outputs are 1D arrays (default) if True, output have the same shape as datain if a shape tuple is given, then this tuple is used to reshape masked if False: outputs are undef where nee and t are masked or undef (default) if True: return masked arrays where outputs would be undef nogppnight if True: Resp=NEE, GPP=0 at night if False: Resp=lloyd_taylor, GPP=Resp-NEE at night (default) Ouput ----- GPP, Reco photosynthesis, ecosystem respiration Restrictions ------------ None. Literature ---------- Reichstein et al. (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11, 1424-1439 Examples -------- >>> from jams.fread import fread # from jams >>> from jams.date2dec import date2dec # from jams >>> dat = fread('test_nee2gpp.csv', skip=2, transpose=True) >>> dates = date2dec(dy=dat[0,:], mo=dat[1,:], yr=dat[2,:], hr=dat[3,:], mi=dat[4,:]) >>> NEE = np.squeeze(dat[5,:]) >>> rg = np.squeeze(dat[6,:]) >>> tair = np.squeeze(dat[7,:]) >>> undef = -9999. >>> isday = np.where(rg > 10., True, False) >>> tt = np.where(tair == undef, undef, tair+273.15) >>> # partition >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, undef=undef, method='local') >>> print(GPP[1120:1128]) [-9.99900000e+03 -9.99900000e+03 -9.99900000e+03 4.40606871e+00 8.31942152e+00 1.06242542e+01 8.49245664e+00 1.12381973e+01] >>> print(Reco[1120:1128]) [1.68311981 1.81012431 1.9874173 2.17108871 2.38759152 2.64372415 2.90076664 3.18592735] >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, undef=undef, method='local') >>> print(GPP[1120:1128]) [-9.99900000e+03 -9.99900000e+03 -9.99900000e+03 4.40606871e+00 8.31942152e+00 1.06242542e+01 8.49245664e+00 1.12381973e+01] >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, undef=undef, method='Reichstein', masked=True) >>> print(GPP[1120:1128]) [-- -- -- 4.406068706013192 8.319421516040766 10.624254150217764 8.492456637225963 11.238197347837367] >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, undef=undef, method='reichstein', shape=(np.size(NEE),1)) >>> print(GPP[1120:1128]) [[-9.99900000e+03] [-9.99900000e+03] [-9.99900000e+03] [ 4.40606871e+00] [ 8.31942152e+00] [ 1.06242542e+01] [ 8.49245664e+00] [ 1.12381973e+01]] License ------- This file is part of the JAMS Python package, distributed under the MIT License. The JAMS Python package originates from the former UFZ Python library, Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany. Copyright (c) 2012-2013 <NAME>, <NAME> - mc (at) macu (dot) de Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. History ------- Written MC, Mar 2012 Modified AP, Mar 2012 - undef=np.nan MC, Nov 2012 - individual routine MC, Feb 2013 - ported to Python 3 """ # Checks # remember shape if any if shape != False: if shape != True: inshape = shape else: inshape = nee.shape dates = np.squeeze(dates) nee = np.squeeze(nee) t = np.squeeze(t) isday = np.squeeze(isday) if shape == False: inshape = nee.shape # Check squeezed shape if dates.ndim != 1: raise ValueError('Error nee2gpp_reichstein: squeezed dates must be 1D array.') if nee.ndim != 1: raise ValueError('Error nee2gpp_reichstein: squeezed nee must be 1D array.') if t.ndim != 1: raise ValueError('Error nee2gpp_reichstein: squeezed t must be 1D array.') if isday.ndim != 1: raise ValueError('Error nee2gpp_reichstein: squeezed isday must be 1D array.') ndata = dates.size if ((nee.size != ndata) | (t.size != ndata) | (isday.size != ndata)): raise ValueError('Error nee2gpp_reichstein: inputs must have the same size.') # Transform to masked array with 1D mask nee = np.ma.array(nee, mask=False) t = np.ma.array(t, mask=False) isday = np.ma.array(isday, mask=False) # mask also undef if np.isnan(undef): if np.ma.any(np.isnan(nee)): nee[np.isnan(nee)] = np.ma.masked if np.ma.any(np.isnan(t)): t[np.isnan(t)] = np.ma.masked if np.ma.any(np.isnan(isday)): isday[np.isnan(isday)] = np.ma.masked else: if np.ma.any(nee==undef): nee[nee==undef] = np.ma.masked if np.ma.any(t==undef): t[t==undef] = np.ma.masked if np.ma.any(isday==undef): isday[isday==undef] = np.ma.masked # Partition - Local relationship = Reichstein et al. (2005) # Select valid nighttime mask = isday | nee.mask | t.mask | isday.mask ii = np.where(~mask)[0] if (ii.size==0): print('Warning nee2gpp_reichstein: no valid nighttime data.') if masked: GPP = np.ma.array(np.reshape(nee,inshape), mask=np.ones(inshape, dtype=bool)) Reco = np.ma.array(np.reshape(nee,inshape), mask=np.ones(inshape, dtype=bool)) else: GPP = np.ones(np.reshape(nee,inshape))*undef Reco = np.ones(np.reshape(nee,inshape))*undef return GPP, Reco jul = dates[ii] tt = np.ma.compressed(t[ii]) net = np.ma.compressed(nee[ii]) # 1. each 5 days, in 15 day period, fit if range of T > 5 locp = [] # local param locs = [] # local err dmin = np.floor(np.amin(jul)).astype(int) # be aware that julian days starts at noon, i.e. 1.0 is 12h dmax = np.ceil(np.amax(jul)).astype(int) # so the search will be from noon to noon and thus includes all nights for i in range(dmin,dmax,5): iii = np.where((jul>=i) & (jul<(i+14)))[0] niii = iii.size if niii > 6: tt1 = tt[iii] net1 = net[iii] mm = ~mad(net1, z=4.5) # make fit more robust by removing outliers if (np.ptp(tt[iii]) >= 5.) & (np.sum(mm) > 6): # print(i) #p = opt.fmin(functions.cost_lloyd_fix, [2.,200.], args=(tt1[mm], net1[mm]), disp=False) # robust params p, temp1, temp2 = opt.fmin_tnc(functions.cost_lloyd_fix, [2.,200.], bounds=[[0.,None],[0.,None]], args=(tt1[mm], net1[mm]), approx_grad=True, disp=False) try: p1, c = opt.curve_fit(functions.lloyd_fix, tt1[mm], net1[mm], p0=p, maxfev=10000) # params, covariance if np.all(np.isfinite(c)): # possible return of curvefit: c=inf s = np.sqrt(np.diag(c)) else: s = 10.*np.abs(p) except: s = 10.*np.abs(p) locp += [p] locs += [s] # if ((s[1]/p[1])<0.5) & (p[1] > 0.): pdb.set_trace() if len(locp) == 0: raise ValueError('Error nee2gpp_reichstein: No local relationship found.') print('Warning nee2gpp_reichstein: No local relationship found.') if masked: GPP = np.ma.array(np.reshape(nee,inshape), mask=np.ones(inshape, dtype=bool)) Reco = np.ma.array(np.reshape(nee,inshape), mask=np.ones(inshape, dtype=bool)) else: GPP = np.ones(np.reshape(nee,inshape))*undef Reco = np.ones(np.reshape(nee,inshape))*undef return GPP, Reco locp = np.squeeze(np.array(locp).astype(float)) locs = np.squeeze(np.array(locs).astype(float)) # 2. E0 = avg of best 3 # Reichstein et al. (2005), p. 1430, 1st paragraph. with warnings.catch_warnings(): warnings.simplefilter("ignore") iii = np.where((locp[:,1] > 0.) & (locp[:,1] < 450.) & (np.abs(locs[:,1]/locp[:,1]) < 0.5))[0] niii = iii.size if niii==0: # raise ValueError('Error nee2gpp_reichstein: No good local relationship found.') # loosen the criteria: take the best three estimates anyway iii = np.where((locp[:,1] > 0.))[0] niii = iii.size if niii<1: raise ValueError('Error nee2gpp_reichstein: No E0>0 found.') print('Warning nee2gpp_reichstein: No E0>0 found.') if masked: GPP = np.ma.array(np.reshape(nee,inshape), mask=np.ones(inshape, dtype=bool)) Reco = np.ma.array(np.reshape(nee,inshape), mask=np.ones(inshape, dtype=bool)) else: GPP = np.ones(np.reshape(nee,inshape))*undef Reco = np.ones(np.reshape(nee,inshape))*undef return GPP, Reco lp = locp[iii,:] ls = locs[iii,:] iis = np.argsort(ls[:,1]) bestp = np.mean(lp[iis[0:np.minimum(3,niii)],:],axis=0) bests = np.mean(ls[iis[0:np.minimum(3,niii)],:],axis=0) elif niii==1: bestp = np.squeeze(locp[iii,:]) bests = np.squeeze(locs[iii,:]) elif niii==2: bestp = np.mean(locp[iii,:],axis=0) bests = np.mean(locs[iii,:],axis=0) # ls = locs[iii,:] # iis = np.argsort(ls[:,1]) else: lp = locp[iii,:] ls = locs[iii,:] iis = np.argsort(ls[:,1]) bestp = np.mean(lp[iis[0:3],:],axis=0) bests =
np.mean(ls[iis[0:3],:],axis=0)
numpy.mean
#!/usr/bin/python2.5 # # Copyright 2014 <NAME>. # # Author: <NAME> (<EMAIL>) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # See http://creativecommons.org/licenses/MIT/ for more information. # # ----------------------------------------------------------------------------- # # Waveform definitions. import numpy waveforms = [] """---------------------------------------------------------------------------- Waveshaper for audio rate ----------------------------------------------------------------------------""" WAVESHAPER_SIZE = 1024 x = numpy.arange(0, WAVESHAPER_SIZE + 1) / float(WAVESHAPER_SIZE) linear = x sin = (1.0 - numpy.cos(numpy.pi * x)) / 2.0 tan = numpy.arctan(8 * numpy.cos(numpy.pi * x)) scale = tan.max() tan = (1.0 - tan / scale) / 2.0 inverse_sin = numpy.arccos(1 - 2 * x) / numpy.pi inverse_tan = numpy.arccos(numpy.tan(scale * (1.0 - 2.0 * x)) / 8.0) / numpy.pi def audio_rate_flip(x): x = numpy.array(list(-x[WAVESHAPER_SIZE:0:-1]) + list(x)) return numpy.round((x * 32767.0)).astype(int) audio_rate_tables = [] audio_rate_tables.append(('inverse_tan_audio', audio_rate_flip(inverse_tan))) audio_rate_tables.append(('inverse_sin_audio', audio_rate_flip(inverse_sin))) audio_rate_tables.append(('linear_audio', audio_rate_flip(linear))) audio_rate_tables.append(('sin_audio', audio_rate_flip(sin))) audio_rate_tables.append(('tan_audio', audio_rate_flip(tan))) waveforms.extend(audio_rate_tables) """---------------------------------------------------------------------------- Waveshaper for control rate ----------------------------------------------------------------------------""" WAVESHAPER_SIZE = 1024 x = numpy.arange(0, WAVESHAPER_SIZE + 1) / float(WAVESHAPER_SIZE) linear = x sin = (1.0 - numpy.cos(numpy.pi * x)) / 2.0 inverse_sin = numpy.arccos(1 - 2 * x) / numpy.pi expo = 1.0 - numpy.exp(-3 * x) expo_max = expo.max() expo /= expo_max expo_flipped = (1.0 - numpy.exp(-3 * (1 - x))) / expo_max log = numpy.log(1.0 - x * expo_max) / -3.0 log_flipped = numpy.log(1.0 - (1 - x) * expo_max) / -3.0 def control_rate_flip(x, y): x = numpy.array(list(x) + list(y[1:])) return numpy.round((x * 32767.0)).astype(int) control_rate_tables = [] control_rate_tables.append( ('reversed_control', control_rate_flip(log, 1.0 - log))) control_rate_tables.append( ('spiky_exp_control', control_rate_flip(log, log_flipped))) control_rate_tables.append( ('spiky_control', control_rate_flip(inverse_sin, 1.0 - inverse_sin))) control_rate_tables.append( ('linear_control', control_rate_flip(linear, 1.0 - linear))) control_rate_tables.append( ('bump_control', control_rate_flip(sin, 1.0 - sin))) control_rate_tables.append( ('bump_exp_control', control_rate_flip(expo, expo_flipped))) control_rate_tables.append( ('normal_control', control_rate_flip(expo, 1.0 - expo))) waveforms.extend(control_rate_tables) """---------------------------------------------------------------------------- Post waveshaper ----------------------------------------------------------------------------""" x = numpy.arange(0, WAVESHAPER_SIZE + 1) / (WAVESHAPER_SIZE / 2.0) - 1.0 x[-1] = x[-2] sine = numpy.sin(8 * numpy.pi * x) window = numpy.exp(-x * x * 4) ** 2 bipolar_fold = sine * window + numpy.arctan(3 * x) * (1 - window) bipolar_fold /= numpy.abs(bipolar_fold).max() waveforms.append(('bipolar_fold',
numpy.round(32767 * bipolar_fold)
numpy.round
import numpy as np from highway_env.road.road import Road, RoadNetwork from highway_env.vehicle.controller import ControlledVehicle from highway_env.vehicle.kinematics import Vehicle from highway_env.road.lane import LineType, StraightLane, SineLane, CircularLane, AbstractLane from highway_env.road.regulation import RegulatedRoad from highway_env.vehicle.objects import Obstacle from highway_env.vehicle.behavior import CustomVehicle from highway_env import utils from highway_env.road.lane import CircularLane from highway_env.utils import near_split from gym.utils import seeding import random import copy class Scenario: def __init__(self, env, scenario_number=0): self.env = env self.env.default_config = copy.deepcopy(env.config) self.road = None self.controlled_vehicles = None # self.road_types = ["intersection", "roundabout", "highway","twoway","uturn","road_merge","road_exit"] self.road_types = self.env.config['scenario']['road_types'] # self.road_types = ["road_exit"] self.complex = self.env.config['scenario']['complex'] self.simple = self.env.config['scenario']['simple'] self.road_types_idx = -1 # self.road_missions = ["merging","exit"] if scenario_number != 0: if scenario_number == 2: self.env.config.update(self.default_config_merge()) if scenario_number == 3: self.env.config.update(self.default_config_exit()) self.random_scenario = self.env.config['scenario']['random_scenario'] if self.random_scenario: # idx = np.random.randint(0, len(self.road_types)) self.road_types_idx = idx =self.env.episode%len(self.road_types) self.road_type = self.road_types[idx] self.env.config['scenario']['road_type'] = self.road_type if self.road_type == "road_merge": self.mission_type ="merging" self.env.config['screen_width'] = 2900 self.env.config['screen_height'] = 300 elif self.road_type == "road_exit": self.mission_type = "exit" self.env.config['screen_width'] = 2900 self.env.config['screen_height'] = 300 elif self.road_type == "intersection": self.env.config['screen_width'] =900 self.env.config['screen_height'] = 900 self.env.config['controlled_vehicle']['controlled_vehicle_speed'] = 15 self.mission_type = "none" elif self.road_type == "roundabout": self.env.config['screen_width'] = 900 self.env.config['screen_height'] = 900 self.mission_type = "none" elif self.road_type == "uturn": self.env.config['screen_width'] = 1000 self.env.config['screen_height'] = 500 self.mission_type = "none" else: self.env.config['screen_width'] = 2900 self.env.config['screen_height'] = 300 self.mission_type = "none" self.env.config['scenario']['mission_type'] = self.mission_type else: self.road_type = self.env.config['scenario']['road_type'] random_offset = copy.deepcopy(self.env.config['scenario']['random_offset']) delta_before, delta_converging, delta_merge = (0, 0, 0) if self.env.config['scenario']['randomize_before']: delta_before =
np.random.randint(low=random_offset[0], high=random_offset[1])
numpy.random.randint
import numpy as np import scipy.sparse as sp from sklearn import preprocessing class NMFADMM: r"""An implementation of `"NMF-ADMM" <http://statweb.stanford.edu/~dlsun/papers/nmf_admm.pdf>`_ from the ICASSP '14 paper "Alternating Direction Method of Multipliers for Non-Negative Matrix Factorization with the Beta-Divergence". The procedure learns an embedding of the normalized adjacency matrix with by using the alternating direction method of multipliers to solve a non negative matrix factorization problem. """ def __init__(self, dimensions: int = 32, iterations: int = 100, rho: float = 1.0, seed: int = None): self.dimensions = dimensions self.iterations = iterations self.rho = rho self.seed = seed def _init_weights(self): """ Initializing model weights. """ self._W = np.random.uniform(-0.1, 0.1, (self._V.shape[0], self.dimensions)) self._H = np.random.uniform(-0.1, 0.1, (self.dimensions, self._V.shape[1])) X_i, Y_i = np.nonzero(self._V) scores = self._W[X_i] * self._H[:, Y_i].T + np.random.uniform(0, 1, (self.dimensions, )) values = np.sum(scores, axis=-1) self._X = sp.coo_matrix((values, (X_i, Y_i)), shape=self._V.shape) self._W_plus = np.random.uniform(0, 0.1, (self._V.shape[0], self.dimensions)) self._H_plus = np.random.uniform(0, 0.1, (self.dimensions, self._V.shape[1])) self._alpha_X = sp.coo_matrix((
np.zeros(values.shape[0])
numpy.zeros
from tsfresh.examples.robot_execution_failures import download_robot_execution_failures, \ load_robot_execution_failures import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt from glob import glob import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import classification_report from sklearn.model_selection import StratifiedKFold from tsfresh.transformers import RelevantFeatureAugmenter from tsfresh.utilities.dataframe_functions import impute from tsfresh.feature_extraction import ComprehensiveFCParameters settings = ComprehensiveFCParameters() from tsfresh import extract_features from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA from tsfresh.feature_selection.relevance import calculate_relevance_table from pca import PCAForPandas from dtwnn import KnnDtw from boruta import BorutaPy import copy import time import sys import csv import matplotlib.colors as mcolors # adjust for testing, but the full run requires 10 stratified sample folds num_folds = 10 # tell pandas to consider infinity as a missing value (for filtering) pd.options.mode.use_inf_as_na = True # record our overall start time for time delta display in log messages mark = time.time() # return value to indicate that the test for a fold failed and should be ignored ignore_this_fold = { 'rfc': -1, 'ada': -1, 'rfc_count': -1, 'ada_count': -1, } # read both the TEST and TRAIN files for a particular # dataset into a single set, then partition the data # and label into X and y DataFrames def get_combined_raw_dataset(root_path: str): name = root_path.split('/')[2] raw_train = pd.read_csv(root_path + name + '_TRAIN.tsv', delimiter='\t', header=None) raw_test = pd.read_csv(root_path + name + '_TEST.tsv', delimiter='\t', header=None) combined = raw_train.append(raw_test) v = combined.reset_index().drop(['index'], axis=1) X = v.iloc[:,1:] y = v.iloc[:,:1] return (X, y) # convert a raw dataframe into the vertically oriented # format that tsfresh requires for feature extraction def raw_to_tsfresh(X, y): ids = [] values = [] ys = [] indices = [] for id, row in X.iterrows(): c = (y.loc[[id], :]).iloc[0][0] ys.append(int(c)) indices.append(id) first = True for v in row: if (not first): ids.append(id) values.append(float(v)) first = False d = { 'id': ids, 'value': values } return (pd.DataFrame(data=d), pd.Series(data=ys, index=indices)) # helper function to filter features out of a dataframe given # a calculated tsfresh relevance table (R) def filter_features(df, R): for id, row in R.iterrows(): if (row['relevant'] == False): df = df.drop([row['feature']], axis=1) return df # calculate the accuracy rate of a prediction def accuracy_rate(predicted, actual): correct = 0 for p, a in zip(predicted, actual): if (p == a): correct += 1 return correct / len(predicted) # a single place to configure our RFC and ADA classifiers: def build_rfc(): return RandomForestClassifier() def build_ada(): return AdaBoostClassifier() # Perform the standard FRESH algorithm def perform_fresh(X_train, y_train, X_test, y_test): log('Processing fresh') fresh_train_X, fresh_train_y = raw_to_tsfresh(X_train, y_train) fresh_test_X, fresh_test_y = raw_to_tsfresh(X_test, y_test) # Run the feature extraction and relevance tests ONLY on the train # data set. extracted_train = extract_features(fresh_train_X, column_id='id', column_value='value') extracted_train = extracted_train.dropna(axis='columns') # We run FRESH and its variants first at the default fdr level of 0.05, # but if it returns 0 features (why?) then we lower the value and try # again. filtered_train = None for fdr in [0.05, 0.01, 0.005, 0.001, 0.00001]: log('Using ' + str(fdr)) R = calculate_relevance_table(extracted_train, y_train.squeeze(), fdr_level=fdr) filtered_train = filter_features(extracted_train, R) if (filtered_train.shape[1] > 0): break # Extract features from the test set, but then apply the same relevant # features that we used from the train set extracted_test = extract_features(fresh_test_X, column_id='id', column_value='value') extracted_test = extracted_test.dropna(axis='columns') filtered_test = filter_features(extracted_test, R) # Train classifiers on the train set clf = build_rfc() trained_model = clf.fit(filtered_train, y_train.squeeze()) rfc_predicted = list(map(lambda v: int(v), clf.predict(filtered_test))) actual = y_test.squeeze().tolist() # Create and fit an AdaBoosted decision tree bdt = build_ada() trained_model = bdt.fit(filtered_train, y_train.squeeze()) ada_predicted = list(map(lambda v: int(v), bdt.predict(filtered_test))) return { 'rfc': accuracy_rate(rfc_predicted, actual), 'ada': accuracy_rate(ada_predicted, actual), 'rfc_count': len(clf.estimators_), 'ada_count': len(bdt.estimators_), } # Safely executes a feature-based fold run, catching any # exceptions so that we simply ignore this failed fold. This # was added to make FRESH and its variants more robust, as # sometimes a single fold out of 10 in FRESH would fail as # the algorithm (even at low fdr settings) would report zero # relevant features def run_safely(f, X_train, y_train, X_test, y_test): try: return f(X_train, y_train, X_test, y_test) except: return ignore_this_fold # FRESH variant with PCA run on the extracted relevant features def perform_fresh_pca_after(X_train, y_train, X_test, y_test): log('Processing fresh_pca_after') fresh_train_X, fresh_train_y = raw_to_tsfresh(X_train, y_train) fresh_test_X, fresh_test_y = raw_to_tsfresh(X_test, y_test) # Run the feature extraction and relevance tests ONLY on the train # data set. extracted_train = extract_features(fresh_train_X, column_id='id', column_value='value') # For some reason, tsfresh is extracting features that contain Nan, # Infinity or None. This breaks the PCA step. To avoid this, we # drop columns that contain these values. I know of nothing else to do here. extracted_train = extracted_train.dropna(axis='columns') filtered_train = None # execute at different fdr levels to try to make FRESH more robust for fdr in [0.05, 0.01, 0.005, 0.001]: R = calculate_relevance_table(extracted_train, y_train.squeeze(), fdr_level=fdr) filtered_train = filter_features(extracted_train, R) if (filtered_train.shape[1] > 0): break # Perform PCA on the filtered set of features pca_train = PCAForPandas(n_components=0.95, svd_solver='full') filtered_train = pca_train.fit_transform(filtered_train) # Extract features from the test set, but then apply the same relevant # features that we used from the train set extracted_test = extract_features(fresh_test_X, column_id='id', column_value='value') extracted_test = extracted_test.dropna(axis='columns') filtered_test = filter_features(extracted_test, R) filtered_test = pca_train.transform(filtered_test) # Train classifiers on the train set clf = build_rfc() trained_model = clf.fit(filtered_train, y_train.squeeze()) rfc_predicted = list(map(lambda v: int(v), clf.predict(filtered_test))) actual = y_test.squeeze().tolist() # Create and fit an AdaBoosted decision tree bdt = build_ada() trained_model = bdt.fit(filtered_train, y_train.squeeze()) ada_predicted = list(map(lambda v: int(v), bdt.predict(filtered_test))) return { 'rfc': accuracy_rate(rfc_predicted, actual), 'ada': accuracy_rate(ada_predicted, actual), 'rfc_count': len(clf.estimators_), 'ada_count': len(bdt.estimators_), } # FRESH variant that runs PCA before the filtering step def perform_fresh_pca_before(X_train, y_train, X_test, y_test): log('Processing fresh_pca_before') fresh_train_X, fresh_train_y = raw_to_tsfresh(X_train, y_train) fresh_test_X, fresh_test_y = raw_to_tsfresh(X_test, y_test) # Run the feature extraction and relevance tests ONLY on the train # data set. extracted_train = extract_features(fresh_train_X, column_id='id', column_value='value') # For some reason, tsfresh is extracting features that contain Nan, # Infinity or None. This breaks the PCA step. To avoid this, we # drop columns that contain these values. extracted_train = extracted_train.dropna(axis='columns') # Perform PCA on the complete set of extracted features pca_train = PCAForPandas(n_components=0.95, svd_solver='full') extracted_train = pca_train.fit_transform(extracted_train) filtered_train = extracted_train.reset_index(drop=True) y_train = y_train.reset_index(drop=True) # Extract features from the test set, but then apply the same relevant # features that we used from the train set extracted_test = extract_features(fresh_test_X, column_id='id', column_value='value') extracted_test = extracted_test.dropna(axis='columns') filtered_test = pca_train.transform(extracted_test) # Train classifiers on the train set clf = build_rfc() trained_model = clf.fit(filtered_train, y_train.squeeze()) rfc_predicted = list(map(lambda v: int(v), clf.predict(filtered_test))) actual = y_test.squeeze().tolist() # Create and fit an AdaBoosted decision tree bdt = build_ada() trained_model = bdt.fit(filtered_train, y_train.squeeze()) ada_predicted = list(map(lambda v: int(v), bdt.predict(filtered_test))) return { 'rfc': accuracy_rate(rfc_predicted, actual), 'ada': accuracy_rate(ada_predicted, actual), 'rfc_count': len(clf.estimators_), 'ada_count': len(bdt.estimators_), } # The Borunta based feature-extraction algorithm def perform_boruta(X_train, y_train, X_test, y_test): log('Processing boruta') rf = build_rfc() feat_selector = BorutaPy(rf, n_estimators='auto', perc=90, verbose=2, random_state=0) feat_selector.fit(X_train.values, y_train.values) X_filtered = feat_selector.transform(X_train.values) X_test_filtered = feat_selector.transform(X_test.values) trained_model = rf.fit(X_filtered, y_train.squeeze().values) rfc_predicted = list(map(lambda v: int(v), rf.predict(X_test_filtered))) actual = y_test.squeeze().tolist() bdt = build_ada() trained_model = bdt.fit(X_filtered, y_train.squeeze().values) ada_predicted = list(map(lambda v: int(v), bdt.predict(X_test_filtered))) return { 'rfc': accuracy_rate(rfc_predicted, actual), 'ada': accuracy_rate(ada_predicted, actual), 'rfc_count': len(rf.estimators_), 'ada_count': len(bdt.estimators_), } # LDA def perform_lda(X_train, y_train, X_test, y_test): log('Processing lda') X_train = X_train.values y_train = y_train.values X_test = X_test.values y_test = y_test.values sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) lda = LDA() X_train = lda.fit_transform(X_train, y_train) X_test = lda.transform(X_test) rf = build_rfc() trained_model = rf.fit(X_train, y_train.squeeze()) rfc_predicted = list(map(lambda v: int(v), rf.predict(X_test))) actual = y_test.squeeze().tolist() bdt = build_ada() trained_model = bdt.fit(X_train, y_train.squeeze()) ada_predicted = list(map(lambda v: int(v), bdt.predict(X_test))) return { 'rfc': accuracy_rate(rfc_predicted, actual), 'ada': accuracy_rate(ada_predicted, actual), 'rfc_count': len(rf.estimators_), 'ada_count': len(bdt.estimators_), } # Take the extracted features from FRESH and use them unfiltered # to make a prediction def perform_unfiltered(X_train, y_train, X_test, y_test): log('Processing unfiltered') fresh_train_X, fresh_train_y = raw_to_tsfresh(X_train, y_train) fresh_test_X, fresh_test_y = raw_to_tsfresh(X_test, y_test) # Run the feature extraction only extracted_train = extract_features(fresh_train_X, column_id='id', column_value='value') extracted_test = extract_features(fresh_test_X, column_id='id', column_value='value') extracted_train = extracted_train.dropna(axis='columns') extracted_test = extracted_test.dropna(axis='columns') # Train classifiers on the train set clf = build_rfc() trained_model = clf.fit(extracted_train, y_train.squeeze()) rfc_predicted = list(map(lambda v: int(v), clf.predict(extracted_test))) actual = y_test.squeeze().tolist() # Create and fit an AdaBoosted decision tree bdt = build_ada() trained_model = bdt.fit(extracted_train, y_train.squeeze()) ada_predicted = list(map(lambda v: int(v), bdt.predict(extracted_test))) return { 'rfc': accuracy_rate(rfc_predicted, actual), 'ada': accuracy_rate(ada_predicted, actual), 'rfc_count': len(clf.estimators_), 'ada_count': len(bdt.estimators_), } # Nearest Neighbors with Dynamic Time Warping def perform_dtw_nn(X_train, y_train, X_test, y_test): log('Processing dtw_nn') m = KnnDtw(n_neighbors=1, max_warping_window=10) m.fit(X_train.values, y_train.values) predicted, proba = m.predict(X_test.values) actual = y_test.squeeze().tolist() return accuracy_rate(predicted, actual), 0 # A simple majority vote classifier def perform_trivial(X_train, y_train, X_test, y_test): log('Processing trivial') counts = {} for v in y_train: if v not in counts: counts[v] = 1 else: counts[v] = counts.get(v) + 1 m = -1 majority = None for k in counts: v = counts.get(k) if (v > m): m = v majority = k majority = np.argmax(counts) predicted = np.full(len(y_test.squeeze().values), majority) actual = y_test.squeeze().tolist() return accuracy_rate(predicted, actual) # Process a single test/train fold def process_fold(X_train, y_train, X_test, y_test): # Fresh and it's variants fresh = run_safely(perform_fresh, X_train, y_train, X_test, y_test) fresh_b = run_safely(perform_fresh_pca_before, X_train, y_train, X_test, y_test) fresh_a = run_safely(perform_fresh_pca_after, X_train, y_train, X_test, y_test) unfiltered = run_safely(perform_unfiltered, X_train, y_train, X_test, y_test) # The other two feature-based approaches boruta = run_safely(perform_boruta, X_train, y_train, X_test, y_test) lda = run_safely(perform_lda, X_train, y_train, X_test, y_test) # Shape based DTW_NN and the majority vote classifier dtw = perform_dtw_nn(X_train, y_train, X_test, y_test) trivial = perform_trivial(X_train, y_train, X_test, y_test) return ({ 'Boruta_ada': boruta.get('ada'), 'Boruta_rfc': boruta.get('rfc'), 'DTW_NN': dtw[0], 'FRESH_PCAa_ada': fresh_a.get('ada'), 'FRESH_PCAa_rfc': fresh_a.get('rfc'), 'FRESH_PCAb_ada': fresh_b.get('ada'), 'FRESH_PCAb_rfc': fresh_b.get('rfc'), 'FRESH_ada': fresh.get('ada'), 'FRESH_rfc': fresh.get('rfc'), 'LDA_ada': lda.get('ada'), 'LDA_rfc': lda.get('rfc'), 'ada': unfiltered.get('ada'), 'rfc': unfiltered.get('rfc'), 'trivial': trivial, }, { 'Boruta_ada': boruta.get('ada_count'), 'Boruta_rfc': boruta.get('rfc_count'), 'DTW_NN': dtw[1], 'FRESH_PCAa_ada': fresh_a.get('ada_count'), 'FRESH_PCAa_rfc': fresh_a.get('rfc_count'), 'FRESH_PCAb_ada': fresh_b.get('ada_count'), 'FRESH_PCAb_rfc': fresh_b.get('ada_count'), 'FRESH_ada': fresh.get('ada_count'), 'FRESH_rfc': fresh.get('rfc_count'), 'LDA_ada': lda.get('ada_count'), 'LDA_rfc': lda.get('rfc_count'), 'ada': unfiltered.get('ada_count'), 'rfc': unfiltered.get('rfc_count'), 'trivial': 0, }) # Complete processing of one data set. Does 10-fold cross-validation # extraction and classification def process_data_set(root_path: str): combined_X, combined_y = get_combined_raw_dataset(root_path) skf = StratifiedKFold(n_splits=num_folds) skf.get_n_splits(combined_X, combined_y) total_acc = 0 results = [] fold = 1 for train_index, test_index in skf.split(combined_X, combined_y): log('Processing fold ' + str(fold)) X_train, X_test = combined_X.iloc[train_index], combined_X.iloc[test_index] y_train, y_test = combined_y.iloc[train_index], combined_y.iloc[test_index] results.append(process_fold(X_train, y_train, X_test, y_test)) fold += 1 # For this dataset, averages is a map from the name of the # pipeline (e.g. Boruta_rfc) to the average of all folds, # similar for std_devs averages, std_devs, counts = calc_statistics(results) return averages, std_devs, counts # Calculates the mean, std_dev and average counts of the # results def calc_statistics(results): averages = {} std_devs = {} counts = {} for k in results[0][0]: values = [] for r in results: f = r[0] if (f.get(k) != -1): values.append(f.get(k)) averages[k] = np.mean(values) std_devs[k] = np.std(values) for k in results[0][1]: values = [] for r in results: f = r[1] if (f.get(k) != -1): values.append(f.get(k)) counts[k] = np.mean(values) return averages, std_devs, counts # dump contents of array of strings to a file def out_to_file(file: str, lines): f = open(file, 'w') for line in lines: f.write(line + '\n') f.close() # log our progress. def log(message): elapsed = str(round(time.time() - mark, 0)) f = open('./log.txt', 'w+') f.write('[' + elapsed.rjust(15, '0') + '] ' + message + '\n') f.close() # Output the captured results to the various tsv output files def output_results(results): header = 'dataset' first = results.get(next(iter(results)))[0] for k in first: header = header + '\t' + k # averages lines = [header] for r in results: line = r aves = results.get(r)[0] for k in aves: line = line + '\t' + str(aves.get(k)) lines.append(line) out_to_file('./averages.tsv', lines) # std_devs lines = [header] for r in results: line = r aves = results.get(r)[1] for k in aves: line = line + '\t' + str(aves.get(k)) lines.append(line) out_to_file('./std_devs.tsv', lines) # counts lines = [header] for r in results: line = r aves = results.get(r)[2] for k in aves: line = line + '\t' + str(aves.get(k)) lines.append(line) out_to_file('./counts.tsv', lines) def get_dataset_dirs(): return glob("./data/*/") # builds a (X, y) DataFrame pair of a random time series with # a binary label and specified number of samples and length def build_random_ts(num_samples, length_of_ts): data = {} labels = [] for s in range (0, num_samples): labels.append(np.random.choice([1, 2])) data['y'] = labels for col in range(0, length_of_ts): key = 'feature_' + str(col + 1) values = [] for s in range (0, num_samples): values.append(np.random.normal()) data[key] = values df = pd.DataFrame.from_dict(data) X = df.iloc[:,1:] y = df.iloc[:,:1] return (X, y) # Dump the current snapshot of results to a given output filename def capture_timing_result(f, results): lines = [] for r in results: values = results.get(r) line = r for v in values: line = line + '\t' + str(v) lines.append(line) out_to_file(f, lines) # Perform the full timing test first for fixed number of # samples and then a fixed length of time series def perform_timing_test(): log('performing timing test') # The collection of tests that we run tests = [ ('Boruta', perform_boruta), ('DTW_NN', perform_dtw_nn), ('FRESH', perform_fresh), ('FRESH_PCAa', perform_fresh_pca_after), ('FRESH_PCAb', perform_fresh_pca_before), ('LDA', perform_lda), ('Full_X', perform_unfiltered) ] # keep the number of samples constant constant_samples_results = {} for test in tests: constant_samples_results[test[0]] = [] for length in [100, 1000, 2000]: log('running 1000 samples and ' + str(length) + ' length') X, y = build_random_ts(1000, length) skf = StratifiedKFold(n_splits=10) skf.get_n_splits(X, y) train_index, test_index = next(skf.split(X, y)) X_train, X_test = X.iloc[train_index], X.iloc[test_index] y_train, y_test = y.iloc[train_index], y.iloc[test_index] for test in tests: mark = time.time() try: test[1](X_train, y_train, X_test, y_test) except: log(test[0] + ' ERROR') constant_samples_results.get(test[0]).append(time.time() - mark) capture_timing_result('./fixed_samples.tsv', constant_samples_results) # keep the length constant constant_length_results = {} for test in tests: constant_length_results[test[0]] = [] for num_samples in [100, 1000, 2000]: log('running 1000 length and ' + str(length) + ' samples') X, y = build_random_ts(num_samples, 1000) skf = StratifiedKFold(n_splits=10) skf.get_n_splits(X, y) train_index, test_index = next(skf.split(X, y)) X_train, X_test = X.iloc[train_index], X.iloc[test_index] y_train, y_test = y.iloc[train_index], y.iloc[test_index] for test in tests: mark = time.time() try: test[1](X_train, y_train, X_test, y_test) except: log(test[0] + ' ERROR') constant_length_results.get(test[0]).append(time.time() - mark) capture_timing_result('./fixed_length.tsv', constant_length_results) def load_and_plot(filename, out, title, colormap, vmax): df = pd.read_csv(filename, delimiter='\t') datasets = df['dataset'].tolist() algorithms = list(df.columns.values)[1:] data = df.iloc[:,1:].values create_heatmap(out, data, datasets, algorithms, title, colormap, vmax) def make_colormap(seq): """Return a LinearSegmentedColormap seq: a sequence of floats and RGB-tuples. The floats should be increasing and in the interval (0,1). """ seq = [(None,) * 3, 0.0] + list(seq) + [1.0, (None,) * 3] cdict = {'red': [], 'green': [], 'blue': []} for i, item in enumerate(seq): if isinstance(item, float): r1, g1, b1 = seq[i - 1] r2, g2, b2 = seq[i + 1] cdict['red'].append([item, r1, r2]) cdict['green'].append([item, g1, g2]) cdict['blue'].append([item, b1, b2]) return mcolors.LinearSegmentedColormap('CustomMap', cdict) def create_boxplot(data, algorithms): fig = plt.figure(1, figsize=(9, 6)) # Create an axes instance ax = fig.add_subplot(111) # rectangular box plot bplot1 = ax.boxplot(data, vert=True, # vertical box alignment patch_artist=True, # fill with color labels=algorithms) # will be used to label x-ticks ax.set_title('Used Features') # fill with colors colors = ['pink', 'orange', 'darkgoldenrod', 'olive', 'green', 'lightseagreen', 'seagreen', 'lightgreen', 'deepskyblue', 'orchid', 'hotpink', 'palevioletred'] for patch, color in zip(bplot1['boxes'], colors): patch.set_facecolor(color) # adding horizontal grid lines ax.yaxis.grid(True) plt.setp(ax.get_xticklabels(), rotation=90, ha="right") ax.set_xlabel('Algorithm') ax.set_ylabel('Used feature counts') plt.savefig('./results/counts.png') def create_heatmap(out, data, row_labels, col_labels, title, colormap, vmax, ax=None, cbar_kw={}, cbarlabel="", **kwargs): """ Create a heatmap from a numpy array and two lists of labels. Arguments: data : A 2D numpy array of shape (N,M) row_labels : A list or array of length N with the labels for the rows col_labels : A list or array of length M with the labels for the columns Optional arguments: ax : A matplotlib.axes.Axes instance to which the heatmap is plotted. If not provided, use current axes or create a new one. cbar_kw : A dictionary with arguments to :meth:`matplotlib.Figure.colorbar`. cbarlabel : The label for the colorbar All other arguments are directly passed on to the imshow call. """ if not ax: ax = plt.gca() # Plot the heatmap im = ax.imshow(data, cmap=colormap, vmin=0, vmax=vmax, **kwargs) # Create colorbar cbar = ax.figure.colorbar(im, ax=ax, **cbar_kw) cbar.ax.set_ylabel(cbarlabel, rotation=-90, va="bottom") plt.gcf().subplots_adjust(bottom=0.25) # We want to show all ticks... ax.set_xticks(np.arange(data.shape[1])) ax.set_yticks(
np.arange(data.shape[0])
numpy.arange
import unittest import numpy as np from sklearn.datasets import ( load_breast_cancer, load_iris ) from msitrees._core import ( gini_impurity, gini_information_gain, entropy, get_class_and_proba, classif_best_split ) class TestGiniImpurity(unittest.TestCase): def test_input_type_list(self): try: gini_impurity([0, 0]) except TypeError: self.fail('Exception on allowed input type - list') def test_input_type_tuple(self): try: gini_impurity((0, 0)) except TypeError: self.fail('Exception on allowed input type - tuple') def test_input_type_numpy(self): try: gini_impurity(np.array([0, 0])) except TypeError: self.fail('Exception on allowed input type - np.ndarray') def test_input_int(self): with self.assertRaises(ValueError): gini_impurity(0) def test_input_other(self): with self.assertRaises(TypeError): gini_impurity('foo') with self.assertRaises(TypeError): gini_impurity({'foo': 1}) def test_input_wrong_shape(self): with self.assertRaises(ValueError): gini_impurity(np.array([[1, 0], [1, 0]])) def test_input_empty_list(self): with self.assertRaises(ValueError): gini_impurity([]) def test_input_empty_array(self): with self.assertRaises(ValueError): gini_impurity(np.array([])) def test_binary_max_impurity(self): arr = np.array([1, 0, 1, 0]) gini = gini_impurity(arr) self.assertAlmostEqual(gini, 0.5) def test_binary_min_impurity(self): arr = np.array([0, 0, 0, 0]) gini = gini_impurity(arr) self.assertAlmostEqual(gini, 0.0) def test_multiclass_max_impurity(self): arr = np.array(list(range(5))) max_impurity = 1 - (1 / arr.shape[0]) gini = gini_impurity(arr) self.assertAlmostEqual(gini, max_impurity) class TestEntropy(unittest.TestCase): def test_input_type_list(self): try: entropy([0, 0]) except TypeError: self.fail('Exception on allowed input type - list') def test_input_type_tuple(self): try: entropy((0, 0)) except TypeError: self.fail('Exception on allowed input type - tuple') def test_input_type_numpy(self): try: entropy(np.array([0, 0])) except TypeError: self.fail('Exception on allowed input type - np.ndarray') def test_input_int(self): with self.assertRaises(ValueError): entropy(0) def test_input_other(self): with self.assertRaises(TypeError): entropy('foo') with self.assertRaises(TypeError): entropy({'foo': 1}) def test_input_wrong_shape(self): with self.assertRaises(ValueError): entropy(np.array([[1, 0], [1, 0]])) def test_input_empty_list(self): with self.assertRaises(ValueError): entropy([]) def test_input_empty_array(self): with self.assertRaises(ValueError): entropy(np.array([])) def test_binary_max_impurity(self): arr = np.array([1, 0, 1, 0]) hs = entropy(arr) self.assertAlmostEqual(hs, 1.) def test_binary_min_impurity(self): arr = np.array([0, 0, 0, 0]) hs = entropy(arr) self.assertAlmostEqual(hs, 0.) def test_multiclass_max_impurity(self): arr = np.array([1, 2, 3, 4]) hs = entropy(arr) self.assertAlmostEqual(hs, 2.) class TestGiniInformationGain(unittest.TestCase): def test_input_type_list(self): yl = [0, 0, 0] yr = [1, 1, 1] yall = [0, 0, 0, 1, 1, 1] try: gini_information_gain(yl, yr, yall) except TypeError: self.fail('Exception on allowed input type - list') def test_input_type_tuple(self): yl = (0, 0, 0) yr = (1, 1, 1) yall = (0, 0, 0, 1, 1, 1) try: gini_information_gain(yl, yr, yall) except TypeError: self.fail('Exception on allowed input type - tuple') def test_input_type_numpy(self): yl = np.array([0, 0, 0]) yr = np.array([1, 1, 1]) yall = np.array([0, 0, 0, 1, 1, 1]) try: gini_information_gain(yl, yr, yall) except TypeError: self.fail('Exception on allowed input type - np.ndarray') def test_input_int(self): yl = np.array([0, 0, 0]) yr = np.array([1, 1, 1]) yall = np.array([0, 0, 0, 1, 1, 1]) with self.assertRaises(ValueError): gini_information_gain(0, yr, yall) with self.assertRaises(ValueError): gini_information_gain(yl, 0, yall) with self.assertRaises(ValueError): gini_information_gain(yl, yr, 0) def test_input_other(self): yl = np.array([0, 0, 0]) yr = np.array([1, 1, 1]) yall = np.array([0, 0, 0, 1, 1, 1]) with self.assertRaises(TypeError): gini_information_gain('foo', yr, yall) with self.assertRaises(TypeError): gini_information_gain(yl, 'foo', yr) with self.assertRaises(TypeError): gini_information_gain(yl, yr, 'foo11') def test_input_wrong_shape(self): badshape = np.array([[1], [1], [1]]) yl = np.array([0, 0, 0]) yr = np.array([1, 1, 1]) yall = np.array([0, 0, 0, 1, 1, 1]) with self.assertRaises(ValueError): gini_information_gain(badshape, yr, yall) with self.assertRaises(ValueError): gini_information_gain(yl, badshape, yall) with self.assertRaises(ValueError): gini_information_gain(yl, yr, badshape) def test_input_empty_array(self): yl = np.array([0, 0, 0]) yr = np.array([1, 1, 1]) yall = np.array([0, 0, 0, 1, 1, 1]) with self.assertRaises(ValueError): gini_information_gain([], yr, yall) with self.assertRaises(ValueError): gini_information_gain(yl, [], yall) with self.assertRaises(ValueError): gini_information_gain(yl, yr, []) def test_binary_perfect_split(self): yl = np.array([0, 0]) yr = np.array([1, 1]) yall = np.array([0, 0, 1, 1]) gain = gini_information_gain(yl, yr, yall) self.assertAlmostEqual(gain, 0.5) def test_binary_noisy_split(self): yl = np.array([0, 1]) yr = np.array([1, 0]) yall = np.array([0, 0, 1, 1]) gain = gini_information_gain(yl, yr, yall) self.assertAlmostEqual(gain, 0.0) def test_binary_uneven_split(self): yl = np.array([0, 0]) yr = np.array([1, 1, 1]) yall = np.array([0, 0, 1, 1, 1]) gain = gini_information_gain(yl, yr, yall) self.assertAlmostEqual(gain, 0.48) def test_multiclass_perfect_split(self): yl = np.array([1, 1]) yr = np.array([2, 2]) yall = np.array([2, 2, 1, 1]) gain = gini_information_gain(yl, yr, yall) self.assertAlmostEqual(gain, 0.5) def test_multiclass_noisy_split(self): yl = np.array([2, 1]) yr = np.array([1, 2]) yall = np.array([2, 2, 1, 1]) gain = gini_information_gain(yl, yr, yall) self.assertAlmostEqual(gain, 0.0) def test_multiclass_uneven_split(self): yl = np.array([1, 1]) yr = np.array([2, 2, 3]) yall = np.array([2, 2, 1, 1, 3]) gain = gini_information_gain(yl, yr, yall) self.assertAlmostEqual(gain, 0.3733, places=4) class TestGetClassProba(unittest.TestCase): def test_input_type_list(self): y = [1, 1, 0, 0] try: get_class_and_proba(y, 2) except TypeError: self.fail('Exception on allowed input type - list') def test_input_type_tuple(self): y = (1, 1, 0, 0) try: get_class_and_proba(y, 2) except TypeError: self.fail('Exception on allowed input type - tuple') def test_input_type_numpy(self): y = np.array([1, 1, 0, 0]) try: get_class_and_proba(y, 2) except TypeError: self.fail('Exception on allowed input type - np.ndarray') def test_input_int(self): with self.assertRaises(ValueError): get_class_and_proba(0, 0) def test_input_other(self): with self.assertRaises(TypeError): get_class_and_proba('foo', 0) def test_input_wrong_shape(self): badshape = np.array([[1], [1], [1]]) with self.assertRaises(ValueError): get_class_and_proba(badshape, 2) def test_input_empty_array(self): with self.assertRaises(ValueError): get_class_and_proba([], 0) def test_binary_class_major(self): y = np.array([0, 0, 1, 1, 1]) label, _ = get_class_and_proba(y, 2) self.assertEqual(label, 1) def test_binary_class_draw(self): y = np.array([0, 0, 1, 1]) label, _ = get_class_and_proba(y, 2) self.assertEqual(label, 0) def test_multiclass_class_major(self): y = np.array([0, 1, 2, 2]) label, _ = get_class_and_proba(y, 3) self.assertEqual(label, 2) def test_multiclass_class_draw(self): y = np.array([0, 0, 1, 1, 2, 2]) label, _ = get_class_and_proba(y, 3) self.assertEqual(label, 0) def test_binary_proba_major(self): y = np.array([0, 0, 1, 1, 1]) label, proba = get_class_and_proba(y, 2) self.assertAlmostEqual(proba[label], 0.6) self.assertAlmostEqual(proba[0], 1 - 0.6) def test_binary_proba_draw(self): y = np.array([0, 0, 1, 1]) label, proba = get_class_and_proba(y, 2) self.assertAlmostEqual(proba[label], 0.5) self.assertAlmostEqual(proba[1], 1 - 0.5) def test_multiclass_proba_major(self): y = np.array([0, 1, 2, 2]) label, proba = get_class_and_proba(y, 3) self.assertAlmostEqual(proba[label], 0.5) self.assertAlmostEqual(proba[0], 0.25) self.assertAlmostEqual(proba[1], 0.25) def test_multiclass_proba_draw(self): y = np.array([0, 0, 1, 1, 2, 2]) label, proba = get_class_and_proba(y, 3) self.assertAlmostEqual(proba[label], 0.33333, places=5) self.assertAlmostEqual(proba[1], 0.33333, places=5) self.assertAlmostEqual(proba[2], 0.33333, places=5) def test_padding_left(self): # binary classification, but # leaf only has class 1 - test # if 0 is represented with proba 0. y = np.array([1, 1]) _, proba = get_class_and_proba(y, 2) self.assertEqual(len(proba), 2) self.assertEqual(proba[0], 0.0) self.assertEqual(proba[1], 1.0) def test_padding_inner(self): # multiclass classification # with classes 0, 1, 2 but leaf # only has class 1 and 2. check # if class 1 is represented with proba 0. y =
np.array([0, 0, 2, 2])
numpy.array
# Script to perform decoding analyses on the trained layer activations and the recurrent flow # Requires tensorflow 1.13, python 3.7, scikit-learn, and pytorch 1.6.0 ############################# IMPORTING MODULES ################################## import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision import torchvision.transforms as transforms from torch.utils.data import Dataset, DataLoader from torch.utils.data.sampler import SubsetRandomSampler import numpy as np import tensorflow as tf import scipy from scipy.ndimage.interpolation import zoom from scipy.ndimage.interpolation import rotate from random import shuffle from sklearn import svm from scipy import ndimage from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data', one_hot=True) fmnist = input_data.read_data_sets('fMNIST_data', one_hot=True) ############################# FUNCTIONS DEFINED ################################## # A function to scramble image chunks def im_scram(im,parts_h): # scramble parts_h*parts_h equal parts of the given image win_prop = parts_h dimsh = np.shape(im) im_new = np.zeros(dimsh) dimsh_win = np.floor(dimsh[0]/win_prop) n_cells = np.square(np.int(dimsh[0]/dimsh_win)) cell_c = np.int(dimsh[0]/dimsh_win) ind_new = np.linspace(0,n_cells-1,n_cells).astype('int32') while np.mean(ind_new == np.linspace(0,n_cells-1,n_cells).astype('int32')) == 1: shuffle(ind_new) for i in range(n_cells): j = ind_new[i] im_new[np.int(np.mod(i,cell_c)*dimsh_win):np.int(np.mod(i,cell_c)*dimsh_win+dimsh_win), np.int(np.floor(i*1./cell_c*1.)*dimsh_win):np.int(np.floor(i*1./cell_c*1.)*dimsh_win+dimsh_win)] = im[ np.int(np.mod(j,cell_c)*dimsh_win):np.int(np.mod(j,cell_c)*dimsh_win+dimsh_win), np.int(np.floor(j*1./cell_c*1.)*dimsh_win):np.int(np.floor(j*1./cell_c*1.)*dimsh_win+dimsh_win)] return im_new # A function to generate images and the respective labels for training and testing def gen_images(n_imgs,n_set): # n_imgs required, set used (0 train, 1 val, 2 test) 8 objects in image (1 is intact), 2 levels of zoom, rotation and x/y pos for each object imgs_h = np.zeros([n_imgs,1,100,100]) imgs_h1 = np.zeros([n_imgs,1,100,100]) labs_h = np.zeros([n_imgs,20]) pos_x_h = np.zeros([n_imgs,2]) pos_y_h = np.zeros([n_imgs,2]) size_h = np.zeros([n_imgs,2]) rot_h = np.zeros([n_imgs,2]) n_objs = 8 for n_im in
np.arange(n_imgs)
numpy.arange
from casadi import * import numpy as np import scipy.linalg as scipylinalg csfp = os.path.abspath(os.path.dirname(__file__)) if csfp not in sys.path: sys.path.insert(0, csfp) from utils.OrthogonalCollocation import construct_polynomials_basis import Criteria class MBDoE: def __init__(self, Model_Def, horizon, thetas, S_thetas, collocation_degree = 4, penalize_u=False, ukf=False, theta_unc=None, S_exp = None): self.NoModels = len(Model_Def) self.Model_def = [] self.ukf = ukf for i in range(self.NoModels): self.Model_def += [Model_Def[i]()] # Take class of the dynamic system self.dc = collocation_degree # Define the degree of collocation self.N = horizon # Define the Horizon of the problem # FIXME Add different horizon for control and prediction dt, x0, Lsolver, c_code, self.shrinking_horizon = self.Model_def[0].specifications() self.dt = dt self.f = [] self.hmeas = [] self.S_theta = [] # FIXME Change the DAE to be for all the models if ukf: for i in range(self.NoModels): xd, _, u, uncertainty, ODEeq, _, self.u_min, self.u_max, self.x_min, self.x_max, _, \ _, _, self.nd, _, self.nu, self.n_ref, self.ntheta, _, self.ng, self.gfcn, \ self.Obj_M, self.Obj_L, self.Obj_D, self.R = self.Model_def[i].DAE_system(uncertain_parameters=True) # Define the System self.f += [Function('f1', [xd, u, uncertainty], [vertcat(*ODEeq)])] self.hmeas += [Function('h1', [xd, u], [xd])] # self.S_theta += [theta_unc[i]] else: for i in range(self.NoModels): xd, _, u, uncertainty, ODEeq, _, self.u_min, self.u_max, self.x_min, self.x_max, _, \ _, _, self.nd, _, self.nu, self.n_ref, self.ntheta, _, self.ng, self.gfcn, \ self.Obj_M, self.Obj_L, self.Obj_D, self.R = self.Model_def[i].DAE_system() # Define the System self.f += [Function('f1', [xd, u,uncertainty], [vertcat(*ODEeq)])] """ Define noise and disturbances for the system """ self.Q = 1e-7 * np.eye(self.nd) if S_exp == None: self.S_exp = 1e-4 * np.eye(self.nd) self.penalize_u = penalize_u # Define options for solver opts = {} opts["expand"] = True opts["ipopt.print_level"] = 5 opts["ipopt.max_iter"] = 1000 opts["ipopt.tol"] = 1e-8 opts["calc_lam_p"] = False opts["calc_multipliers"] = False opts["ipopt.print_timing_statistics"] = "no" opts["print_time"] = False self.opts = opts if not(ukf): self.MPC_construct() else: self.MPC_construct_ukf_thetas(thetas, S_thetas) def MPC_construct(self): """ ODEeq: Is the system of ODE gcn : Is the inequality constraints ObjM : Is the mayer term of DO ObjL : Is the Lagrange term of DO Obj_D: The a discretized objective for each time :return: """ N = self.N dc = self.dc dt = self.dt NoModels = self.NoModels C, D, B = construct_polynomials_basis(dc, 'radau') w = [] w0 = [] lbw = [] ubw = [] J = 0 g = [] lbg = [] ubg = [] Ts = [] t = 0 # "Lift" initial conditions x_plot = [] u_plot = [] X_models= [] X_0 = SX.sym('p_x' , self.nd) # This is a parameter that defines the Initial Conditions shrink = SX.sym('p_shrink', self.N) x_ref = SX.sym('p_ref' , self.n_ref) thetas = SX.sym('p_thetas', self.ntheta * NoModels) if self.penalize_u: U_past = SX.sym('p_u', self.nu) #This is a parameter that defines the Initial Conditions prev = U_past u_apply = [] for m in range(NoModels): Xk = SX.sym('X0', self.nd) w += [Xk] lbw += [*self.x_min] ubw += [*self.x_max] w0 += [*self.x_min] g += [Xk - X_0] lbg += [*np.zeros([self.nd])] ubg += [*np.zeros([self.nd])] x_plot += [Xk] X_his = [] theta = SX.sym('theta', self.ntheta) w += [theta] lbw += [*(0*np.ones([self.ntheta]))] #[*(0.8*np.array( [0.0923*0.62, 178.85, 447.12, 393.10, 0.001, 504.49, # 2.544*0.62*1e-4, 23.51, 800.0, 0.281, 16.89]))]#[*(0*np.ones([self.ntheta]))] ubw += [*(1000*np.ones([self.ntheta]))] #[*(1.1*np.array( [0.0923*0.62, 178.85, 447.12, 393.10, 0.001, 504.49, # 2.544*0.62*1e-4, 23.51, 800.0, 0.281, 16.89]))]#[*(500*np.ones([self.ntheta]))] w0 += [*(100*np.ones([self.ntheta]))] #[*(np.array( [0.0923*0.62, 178.85, 447.12, 393.10, 0.001, 504.49, # 2.544*0.62*1e-4, 23.51, 800.0, 0.281, 16.89]))] g += [theta - thetas[m*self.ntheta:(m+1)*(self.ntheta)]] lbg += [*np.zeros([self.ntheta])] ubg += [*np.zeros([self.ntheta])] for i in range(N): # Formulate the NLP # New NLP variable for the control if m ==0: Uk = SX.sym('U_' + str(i), self.nu) if self.penalize_u: J += (Uk-prev).T @ self.R @ (Uk - prev) * shrink[i] prev = Uk w += [Uk] lbw += [*self.u_min] ubw += [*self.u_max] w0 += [*(self.u_min)] u_plot += [Uk] u_apply += [Uk] # Integrate till the end of the interval w, lbw, ubw, w0, g, lbg, ubg, Xk, x_plot, _ = self.perform_orthogonal_collocation(dc, self.nd, w, lbw, ubw, w0, self.x_min, self.x_max, D, Xk, i, C, self.f[m], u_apply[i], dt, g, lbg, ubg, shrink[i], x_plot, B, J, x_ref,theta)#F1(x0=Xk, p=Uk, y=yk)#, DT=DTk) for ig in range(self.ng): g += [self.gfcn(Xk, x_ref, u_apply[i])[ig]*shrink[i]] lbg += [-inf] ubg += [0.] X_his = vertcat(X_his,Xk.T) X_models += [X_his] J += -Criteria.HR(X_models) # J+= self.Obj_D(Xk, x_ref, Uk) * shrink[i] # J += self.Obj_M(Xk, x_ref, Uk) if self.penalize_u: p = [] p += [X_0] p += [x_ref] p += [U_past] p += [shrink] p += [thetas] prob = {'f': J, 'x': vertcat(*w),'p': vertcat(*p), 'g': vertcat(*g)} else: p = [] p += [X_0] p += [x_ref] p += [shrink] p += [thetas] prob = {'f': J, 'x': vertcat(*w),'p': vertcat(*p), 'g': vertcat(*g)} trajectories = Function('trajectories', [vertcat(*w)] , [horzcat(*x_plot), horzcat(*u_plot)], ['w'], ['x','u']) solver = nlpsol('solver', 'ipopt', prob, self.opts) # 'bonmin', prob, {"discrete": discrete})#'ipopt', prob, {'ipopt.output_file': 'error_on_fail'+str(ind)+'.txt'})# self.solver, self.trajectories, self.w0, self.lbw, self.ubw, self.lbg, self.ubg = \ solver, trajectories, w0, lbw, ubw, lbg, ubg return solver, trajectories, w0, lbw, ubw, lbg, ubg def MPC_construct_ukf(self): """ ODEeq: Is the system of ODE gcn : Is the inequality constraints ObjM : Is the mayer term of DO ObjL : Is the Lagrange term of DO Obj_D: The a discretized objective for each time :return: """ N = self.N dc = self.dc dt = self.dt NoModels = self.NoModels C, D, B = construct_polynomials_basis(dc, 'radau') w = [] w0 = [] lbw = [] ubw = [] J = 0 g = [] lbg = [] ubg = [] Ts = [] t = 0 # "Lift" initial conditions x_plot = [] u_plot = [] X_models = [] X_0 = SX.sym('p_x', self.nd) # This is a parameter that defines the Initial Conditions shrink = SX.sym('p_shrink', self.N) x_ref = SX.sym('p_ref', self.n_ref) thetas = SX.sym('p_thetas', self.ntheta * NoModels) S_thetas = [] for m in range(NoModels): S_thetas += [SX.sym('p_S_thetas_'+str(m), self.ntheta * self.ntheta)] if self.penalize_u: U_past = SX.sym('p_u', self.nu) # This is a parameter that defines the Initial Conditions prev = U_past u_apply = [] for m in range(NoModels): # Create a square matrix for the S_theta S_theta = SX.sym('S_theta', self.ntheta**2) w += [S_theta] lbw += [*(0 * np.ones([self.ntheta**2]))] # [*(0.8*np.array( [0.0923*0.62, 178.85, 447.12, 393.10, 0.001, 504.49, # 2.544*0.62*1e-4, 23.51, 800.0, 0.281, 16.89]))]#[*(0*np.ones([self.ntheta]))] ubw += [*(1 * np.ones([self.ntheta**2]))] # [*(1.1*np.array( [0.0923*0.62, 178.85, 447.12, 393.10, 0.001, 504.49, # 2.544*0.62*1e-4, 23.51, 800.0, 0.281, 16.89]))]#[*(500*np.ones([self.ntheta]))] w0 += [*(0 * np.ones([self.ntheta**2]))] # [*(np.array( [0.0923*0.62, 178.85, 447.12, 393.10, 0.001, 504.49, # 2.544*0.62*1e-4, 23.51, 800.0, 0.281, 16.89]))] g += [S_theta - S_thetas[m]] lbg += [*np.zeros([self.ntheta**2])] ubg += [*np.zeros([self.ntheta**2])] S_theta_reshaped = S_theta.reshape((self.ntheta, self.ntheta)) Xk = SX.sym('X0', self.nd) w += [Xk] lbw += [*self.x_min] ubw += [*self.x_max] w0 += [*self.x_min] g += [Xk - X_0] lbg += [*np.zeros([self.nd])] ubg += [*np.zeros([self.nd])] x_plot += [Xk] X_his = [] theta = SX.sym('theta', self.ntheta) w += [theta] lbw += [*(0 * np.ones([self.ntheta]))] # [*(0.8*np.array( [0.0923*0.62, 178.85, 447.12, 393.10, 0.001, 504.49, # 2.544*0.62*1e-4, 23.51, 800.0, 0.281, 16.89]))]#[*(0*np.ones([self.ntheta]))] ubw += [*(1000 * np.ones([self.ntheta]))] # [*(1.1*np.array( [0.0923*0.62, 178.85, 447.12, 393.10, 0.001, 504.49, # 2.544*0.62*1e-4, 23.51, 800.0, 0.281, 16.89]))]#[*(500*np.ones([self.ntheta]))] w0 += [*(100 * np.ones([self.ntheta]))] # [*(np.array( [0.0923*0.62, 178.85, 447.12, 393.10, 0.001, 504.49, # 2.544*0.62*1e-4, 23.51, 800.0, 0.281, 16.89]))] g += [theta - thetas[m * self.ntheta:(m + 1) * (self.ntheta)]] lbg += [*np.zeros([self.ntheta])] ubg += [*np.zeros([self.ntheta])] S = SX(0.001*np.eye(self.nd)) for i in range(N): # Formulate the NLP # New NLP variable for the control if m == 0: Uk = SX.sym('U_' + str(i), self.nu) if self.penalize_u: J += (Uk - prev).T @ self.R @ (Uk - prev) * shrink[i] prev = Uk w += [Uk] lbw += [*self.u_min] ubw += [*self.u_max] w0 += [*(self.u_min)] u_plot += [Uk] u_apply += [Uk] # Integrate till the end of the interval auxiliary_vars = dc, self.nd, w, lbw, ubw, w0, \ self.x_min, self.x_max, \ D, i, C, dt, g, lbg, ubg, \ shrink[i], x_plot, B, x_ref if N<1: Xk, S, w, lbw, ubw, w0, g, lbg, ubg, _, x_plot = self.ukf1(self.f[m], Xk, S, theta, S_theta_reshaped, self.hmeas[m], self.hmeas[m](Xk, u_apply[i]), self.Q, self.S_exp, u_apply[i], auxiliary_vars) else: Xk, _, w, lbw, ubw, w0, g, lbg, ubg, _, x_plot = self.ukf1(self.f[m], Xk, S, theta, S_theta_reshaped, self.hmeas[m], self.hmeas[m](Xk, u_apply[i]), self.Q, self.S_exp, u_apply[i], auxiliary_vars) for ig in range(self.ng): g += [self.gfcn(Xk, x_ref, u_apply[i])[ig]*shrink[i]] lbg += [-inf] ubg += [0.] X_his = vertcat(X_his,Xk.T) X_models += [X_his] J += -Criteria.HR(X_models) # J+= self.Obj_D(Xk, x_ref, Uk) * shrink[i] # J += self.Obj_M(Xk, x_ref, Uk) if self.penalize_u: p = [] p += [X_0] p += [x_ref] p += [U_past] p += [shrink] p += [thetas] for i in range(self.NoModels): p += [S_thetas[i]] prob = {'f': J, 'x': vertcat(*w),'p': vertcat(*p), 'g': vertcat(*g)} else: p = [] p += [X_0] p += [x_ref] p += [shrink] p += [thetas] for i in range(self.NoModels): p += [S_thetas[i]] prob = {'f': J, 'x': vertcat(*w),'p': vertcat(*p), 'g': vertcat(*g)} trajectories = Function('trajectories', [vertcat(*w)] , [horzcat(*x_plot), horzcat(*u_plot)], ['w'], ['x','u']) solver = nlpsol('solver', 'ipopt', prob, self.opts) # 'bonmin', prob, {"discrete": discrete})#'ipopt', prob, {'ipopt.output_file': 'error_on_fail'+str(ind)+'.txt'})# self.solver, self.trajectories, self.w0, self.lbw, self.ubw, self.lbg, self.ubg = \ solver, trajectories, w0, lbw, ubw, lbg, ubg return solver, trajectories, w0, lbw, ubw, lbg, ubg def MPC_construct_ukf_no_thetas(self, thetas, S_thetas): """ ODEeq: Is the system of ODE gcn : Is the inequality constraints ObjM : Is the mayer term of DO ObjL : Is the Lagrange term of DO Obj_D: The a discretized objective for each time :return: """ N = self.N dc = self.dc dt = self.dt NoModels = self.NoModels C, D, B = construct_polynomials_basis(dc, 'radau') w = [] w0 = [] lbw = [] ubw = [] J = 0 g = [] lbg = [] ubg = [] Ts = [] t = 0 # "Lift" initial conditions x_plot = [] u_plot = [] X_models = [] S_models = [] X_0 = SX.sym('p_x', self.nd) # This is a parameter that defines the Initial Conditions shrink = SX.sym('p_shrink', self.N) x_ref = SX.sym('p_ref', self.n_ref) # thetas = SX.sym('p_thetas', self.ntheta * NoModels) # S_thetas = [] # for m in range(NoModels): # S_thetas += [SX.sym('p_S_thetas_'+str(m), self.ntheta * self.ntheta)] if self.penalize_u: U_past = SX.sym('p_u', self.nu) # This is a parameter that defines the Initial Conditions prev = U_past u_apply = [] for m in range(NoModels): # Create a square matrix for the S_theta S_theta = S_thetas[m] S_theta_reshaped = SX(S_theta.reshape((self.ntheta, self.ntheta))) Xk = SX.sym('X0', self.nd) w += [Xk] lbw += [*self.x_min] ubw += [*self.x_max] w0 += [*(self.x_min)] g += [Xk - X_0] lbg += [*np.zeros([self.nd])] ubg += [*np.zeros([self.nd])] x_plot += [Xk] X_his = [] S_his = [] # theta = SX.sym('theta', self.ntheta) # w += [theta] # lbw += [*(0 * np.ones([self.ntheta]))] # # [*(0.8*np.array( [0.0923*0.62, 178.85, 447.12, 393.10, 0.001, 504.49, # # 2.544*0.62*1e-4, 23.51, 800.0, 0.281, 16.89]))]#[*(0*np.ones([self.ntheta]))] # ubw += [*(1000 * np.ones([self.ntheta]))] # # [*(1.1*np.array( [0.0923*0.62, 178.85, 447.12, 393.10, 0.001, 504.49, # # 2.544*0.62*1e-4, 23.51, 800.0, 0.281, 16.89]))]#[*(500*np.ones([self.ntheta]))] # w0 += [*(100 * np.ones([self.ntheta]))] # # [*(np.array( [0.0923*0.62, 178.85, 447.12, 393.10, 0.001, 504.49, # # 2.544*0.62*1e-4, 23.51, 800.0, 0.281, 16.89]))] theta = SX(thetas[m])# * self.ntheta:(m + 1) * (self.ntheta)]) # lbg += [*np.zeros([self.ntheta])] # ubg += [*np.zeros([self.ntheta])] S = SX(0.0000*np.eye(self.nd)) for i in range(N): # Formulate the NLP # New NLP variable for the control if m == 0: Uk = SX.sym('U_' + str(i), self.nu) if self.penalize_u: J += (Uk - prev).T @ self.R @ (Uk - prev) * shrink[i] prev = Uk w += [Uk] lbw += [*self.u_min] ubw += [*self.u_max] w0 += [*((self.u_min+self.u_max)/2)] u_plot += [Uk] u_apply += [Uk] # Integrate till the end of the interval auxiliary_vars = dc, self.nd, w, lbw, ubw, w0, \ self.x_min, self.x_max, \ D, i, C, dt, g, lbg, ubg, \ shrink[i], [], B, x_ref if i<4: Xk, S, w, lbw, ubw, w0, g, lbg, ubg, _, _ = self.ukf1_regular(self.f[m], Xk, S, theta, S_theta_reshaped, self.hmeas[m], self.hmeas[m](Xk, u_apply[i]), self.Q, self.S_exp, u_apply[i], auxiliary_vars) else: Xk, _, w, lbw, ubw, w0, g, lbg, ubg, _, _ = self.ukf1_regular(self.f[m], Xk, S, theta, S_theta_reshaped, self.hmeas[m], self.hmeas[m](Xk, u_apply[i]), self.Q, self.S_exp, u_apply[i], auxiliary_vars) x_plot += [Xk] for ig in range(self.ng): g += [self.gfcn(Xk, x_ref, u_apply[i])[ig]*shrink[i]] lbg += [-inf] ubg += [0.] X_his = vertcat(X_his,Xk.T) S_his += [S] X_models += [X_his] S_models += [S_his] J += -Criteria.BF(X_models, S_models, 0.000001*np.eye(self.nd)) # J+= self.Obj_D(Xk, x_ref, Uk) * shrink[i] # J += self.Obj_M(Xk, x_ref, Uk) if self.penalize_u: p = [] p += [X_0] p += [x_ref] p += [U_past] p += [shrink] # p += [thetas] # for i in range(self.NoModels): # p += [S_thetas[i]] prob = {'f': J, 'x': vertcat(*w),'p': vertcat(*p), 'g': vertcat(*g)} else: p = [] p += [X_0] p += [x_ref] p += [shrink] # p += [thetas] # for i in range(self.NoModels): # p += [S_thetas[i]] prob = {'f': J, 'x': vertcat(*w),'p': vertcat(*p), 'g': vertcat(*g)} trajectories = Function('trajectories', [vertcat(*w)] , [horzcat(*x_plot), horzcat(*u_plot)], ['w'], ['x','u']) solver = nlpsol('solver', 'ipopt', prob, self.opts) # 'bonmin', prob, {"discrete": discrete})#'ipopt', prob, {'ipopt.output_file': 'error_on_fail'+str(ind)+'.txt'})# self.solver, self.trajectories, self.w0, self.lbw, self.ubw, self.lbg, self.ubg = \ solver, trajectories, w0, lbw, ubw, lbg, ubg return solver, trajectories, w0, lbw, ubw, lbg, ubg def MPC_construct_ukf_thetas(self, thetas, S_thetas): """ ODEeq: Is the system of ODE gcn : Is the inequality constraints ObjM : Is the mayer term of DO ObjL : Is the Lagrange term of DO Obj_D: The a discretized objective for each time :return: """ N = self.N dc = self.dc dt = self.dt NoModels = self.NoModels C, D, B = construct_polynomials_basis(dc, 'radau') w = [] w0 = [] lbw = [] ubw = [] J = 0 g = [] lbg = [] ubg = [] Ts = [] t = 0 # "Lift" initial conditions x_plot = [] u_plot = [] X_models = [] S_models = [] X_0 = SX.sym('p_x', self.nd) # This is a parameter that defines the Initial Conditions shrink = np.ones(self.N)#SX.sym('p_shrink', self.N) x_ref = SX.sym('p_ref', self.n_ref) # thetas = SX.sym('p_thetas', self.ntheta * NoModels) # S_thetas = [] # for m in range(NoModels): # S_thetas += [SX.sym('p_S_thetas_'+str(m), self.ntheta * self.ntheta)] if self.penalize_u: U_past = SX.sym('p_u', self.nu) # This is a parameter that defines the Initial Conditions prev = U_past u_apply = [] S_plot = [] # K = SX.sym('K_a_', self.nu*self.nd) # w += [K] # lbw += [*(-1000*np.ones(self.nu*self.nd))] # ubw += [*(1000*np.ones(self.nu*self.nd))] # w0 += [*(np.zeros(self.nu*self.nd))] # K_sq = K.reshape((self.nu,self.nd)) for m in range(NoModels): # Create a square matrix for the S_theta S_theta = S_thetas[m] S_theta_reshaped = SX(S_theta.reshape((self.ntheta, self.ntheta))) Xk = SX.sym('X0', self.nd) w += [Xk] lbw += [*self.x_min] ubw += [*self.x_max] w0 += [*(self.x_min)] g += [Xk - X_0] lbg += [*np.zeros([self.nd])] ubg += [*np.zeros([self.nd])] x_plot += [Xk] X_his = [] S_his = [] # theta = SX.sym('theta', self.ntheta) # w += [theta] # lbw += [*(0 * np.ones([self.ntheta]))] # # [*(0.8*np.array( [0.0923*0.62, 178.85, 447.12, 393.10, 0.001, 504.49, # # 2.544*0.62*1e-4, 23.51, 800.0, 0.281, 16.89]))]#[*(0*np.ones([self.ntheta]))] # ubw += [*(1000 * np.ones([self.ntheta]))] # # [*(1.1*np.array( [0.0923*0.62, 178.85, 447.12, 393.10, 0.001, 504.49, # # 2.544*0.62*1e-4, 23.51, 800.0, 0.281, 16.89]))]#[*(500*np.ones([self.ntheta]))] # w0 += [*(100 * np.ones([self.ntheta]))] # # [*(np.array( [0.0923*0.62, 178.85, 447.12, 393.10, 0.001, 504.49, # # 2.544*0.62*1e-4, 23.51, 800.0, 0.281, 16.89]))] theta = SX(thetas[m])# * self.ntheta:(m + 1) * (self.ntheta)]) # lbg += [*np.zeros([self.ntheta])] # ubg += [*np.zeros([self.ntheta])] S = SX(0.0000*np.eye(self.nd)) for i in range(N): # Formulate the NLP # New NLP variable for the control if m == 0: Uk = SX.sym('U_' + str(i), self.nu) if self.penalize_u: J += (Uk - prev).T @ self.R @ (Uk - prev) * shrink[i] prev = Uk w += [Uk] lbw += [*self.u_min] ubw += [*self.u_max] w0 += [*((self.u_min+self.u_max)/2)] u_plot += [Uk] u_apply += [Uk]# + K_sq @ (Xk)] # Integrate till the end of the interval auxiliary_vars = dc, self.nd, w, lbw, ubw, w0, \ self.x_min, self.x_max, \ D, i, C, dt, g, lbg, ubg, \ shrink[i], [], B, x_ref if i<N: Xk, S, w, lbw, ubw, w0, g, lbg, ubg, _, _ = self.ukf1_regular(self.f[m], Xk, S, theta, S_theta_reshaped, self.hmeas[m], self.hmeas[m](Xk, u_apply[i]), self.Q, self.S_exp, u_apply[i], auxiliary_vars) else: Xk, _, w, lbw, ubw, w0, g, lbg, ubg, _, _ = self.ukf1_regular(self.f[m], Xk, S, theta, S_theta_reshaped, self.hmeas[m], self.hmeas[m](Xk, u_apply[i]), self.Q, self.S_exp, u_apply[i], auxiliary_vars) x_plot += [Xk] for ig in range(self.ng): g += [self.gfcn(Xk, x_ref, u_apply[i])[ig]]# + 4.35*sqrt(S[1,1])] lbg += [-inf] ubg += [0.] X_his = vertcat(X_his,(Xk).T)#/[14,800,1] S_his += [S] if m ==0: S_plot+= [S.reshape((self.nd**2,1))] X_models += [X_his] S_models += [S_his] J += -log(Criteria.BF(X_models, S_models, self.S_exp)+1e-7)#(Criteria.AW(X_models, S_models, self.S_exp)+1e-7) # J+= self.Obj_D(Xk, x_ref, Uk) * shrink[i] # J += self.Obj_M(Xk, x_ref, Uk) if self.penalize_u: p = [] p += [X_0] p += [x_ref] p += [U_past] # p += [thetas] # for i in range(self.NoModels): # p += [S_thetas[i]] prob = {'f': J, 'x': vertcat(*w),'p': vertcat(*p), 'g': vertcat(*g)} else: p = [] p += [X_0] p += [x_ref] # p += [thetas] # for i in range(self.NoModels): # p += [S_thetas[i]] prob = {'f': J, 'x': vertcat(*w),'p': vertcat(*p), 'g': vertcat(*g)} trajectories = Function('trajectories', [vertcat(*w)] , [horzcat(*x_plot), horzcat(*u_plot), horzcat(*S_plot)], ['w'], ['x','u','S']) solver = nlpsol('solver', 'ipopt', prob, self.opts) # 'bonmin', prob, {"discrete": discrete})#'ipopt', prob, {'ipopt.output_file': 'error_on_fail'+str(ind)+'.txt'})# self.solver, self.trajectories, self.w0, self.lbw, self.ubw, self.lbg, self.ubg = \ solver, trajectories, w0, lbw, ubw, lbg, ubg return solver, trajectories, w0, lbw, ubw, lbg, ubg def solve_MPC(self, x, thetas, ref=None, u=None, t=0., S_theta=None): if self.n_ref>0: p0 = np.concatenate((x, np.array([ref]).reshape((-1,)))) else: p0 = x if self.shrinking_horizon: if t==0.: shrink = np.ones([self.N]) self.steps = self.N else: shrink = np.concatenate((np.ones([self.steps]), np.zeros([self.N-self.steps]))) else: shrink = np.ones([self.N]) if self.penalize_u: p0 = np.concatenate((p0,u)) theta = np.array(thetas) theta_reshaped = np.reshape(theta, self.ntheta*self.NoModels) p0 = np.concatenate((p0, shrink, theta_reshaped)) # # # Add the parametric unc in the problem if self.ukf: for i in range(self.NoModels): S_theta_single = S_theta[i].reshape((self.ntheta**2)) p0 = np.concatenate((p0, S_theta_single)) sol = self.solver(x0=self.w0, lbx=self.lbw, ubx=self.ubw, lbg=self.lbg, ubg=self.ubg, p=p0) w_opt = sol['x'].full().flatten() x_opt, u_opt = self. trajectories(sol['x']) if self.solver.stats()['return_status'] != 'Solve_Succeeded': print('Opt failed') if self.shrinking_horizon: self.steps += - 1 self.obj = sol['f'].full().flatten() return u_opt, x_opt, w_opt def solve_MPC_unc(self, x, ref=None, u=None, t=0.): if self.n_ref>0: p0 = np.concatenate((x, np.array([ref]).reshape((-1,)))) else: p0 = x # if self.shrinking_horizon: # if t==0.: # shrink = np.ones([self.N]) # self.steps = self.N # else: # shrink = np.concatenate((np.ones([self.steps]), np.zeros([self.N-self.steps]))) # else: # shrink = np.ones([self.N]) if self.penalize_u: p0 = np.concatenate((p0,u)) # theta = np.array(thetas) # theta_reshaped = np.reshape(theta, self.ntheta*self.NoModels) #p0 = np.concatenate((p0))#, theta_reshaped)) # # # Add the parametric unc in the problem # if self.ukf: # for i in range(self.NoModels): # S_theta_single = S_theta[i].reshape((self.ntheta**2)) # p0 = np.concatenate((p0, S_theta_single)) sol = self.solver(x0=self.w0, lbx=self.lbw, ubx=self.ubw, lbg=self.lbg, ubg=self.ubg, p=p0) w_opt = sol['x'].full().flatten() x_opt, u_opt, S_opt = self. trajectories(sol['x']) if self.solver.stats()['return_status'] != 'Solve_Succeeded': print('Opt failed') # if self.shrinking_horizon: # self.steps += - 1 self.obj = sol['f'].full().flatten() return u_opt, x_opt, w_opt, S_opt def perform_orthogonal_collocation(self,d, nx, w, lbw, ubw, w0, lbx, ubx, D, Xk, s, C, f, Uk, h, g, lbg, ubg, shrink, x_plot, B, J, x_ref,unc_theta): """ :return: """ Xc = [] for j in range(d): Xkj = SX.sym('X_' + str(s) + '_' + str(j), nx) Xc += [Xkj] w += [Xkj] lbw.extend(lbx) ubw.extend(ubx) w0.extend((self.x_min*1.2)) x_plot+= [Xkj] # Loop over collocation points Xk_end = D[0] * Xk for j in range(1, d + 1): # Expression for the state derivative at the collocation point xp = C[0, j] * Xk for r in range(d): xp = xp + C[r + 1, j] * Xc[r] # Append collocation equations fj = f(Xc[j - 1], Uk, unc_theta) * shrink # g += [(h * fj - xp)] lbg.extend([-1e-8] * nx) ubg.extend([1e-8] * nx) if not(self.ukf): for ig in range(self.ng): g += [self.gfcn(Xc[j-1], x_ref, Uk)[ig]*shrink] lbg += [-inf] ubg += [0.] # Add contribution to the end state Xk_end = Xk_end + D[j] * Xc[j - 1] # if int(j1) < np.shape(t_meas)[0]: # if np.real(k * T / N) == t_meas[j1]: # count[k] = 1 # j1 += 1 # Add contribution to quadrature function qj = 0.#self.Obj_L(Xc[j - 1], x_ref,Uk) * shrink # J += B[j]*qj*h # New NLP variable for state at end of interval Xk = SX.sym('X_' + str(s + 1), nx) w += [Xk] lbw.extend(lbx) ubw.extend(ubx) w0.extend((self.x_min*1.2)) # Add equality constraint g += [Xk_end - Xk] lbg.extend([0.] * nx) ubg.extend([0.] * nx) return w, lbw, ubw, w0, g, lbg, ubg, Xk, x_plot, J def ukf1(self, fstate, x, S, theta, S_theta, hmeas, z, Q, R, u, auxiliary_vars): dc, nd, w, lbw, ubw, w0,\ x_min, x_max,\ D, i, C, dt,g, lbg, ubg, \ shrink, x_plot, B, x_ref = auxiliary_vars x_aug = vertcat(x, theta) S_aug = diagcat(S, S_theta) L = max(np.shape(x_aug)) # 2*len(x)+1 m = z.shape[0] alpha = 1e-3 ki = 0 beta = 2 lambda1 = alpha ** 2 * (L + ki) - L c = L + lambda1 Wm = np.zeros(1 + 2 * L) Wm[0] = lambda1 / c Wm[1:] = 0.5 / c + np.zeros([1, 2 * L]) Wc = Wm.copy() Wc[0] = Wc[0] + (1 - alpha ** 2 + beta) c = np.sqrt(c) # S[-4:,-4:]= 0.999**0.5 * S[-4:,-4:] X = self.sigmas(x_aug, S_aug, c) x1, X1, S1, X2, w, lbw, ubw, w0, g, lbg, ubg, Xk, x_plot = self.ut_with_orthogonal_collocation( fstate, X[:self.nd,:], X[self.nd:,:], Wm, Wc, nd, Q, u, auxiliary_vars) z1, Z1, S2, Z2 = self.ut(hmeas, X1, Wm, Wc, m, R, u) P12 = X2 @ np.diagflat(Wc) @ Z2.T # P12 = mtimes(mtimes(X2,np.diagflat(Wc)),Z2.T) K = mtimes(mtimes(P12, pinv(S2)), pinv(S2).T) # .full()##P12 @np.linalg.pinv(S2)**2 # K = np.dot(np.dot(P12, np.linalg.pinv(S2.T)),np.linalg.pinv(S2)) #np.linalg.lstsq(S2.T,np.linalg.lstsq(S2, P12.T)[0].T)[0] # K1 = np.linalg.lstsq(S2.T, np.linalg.lstsq(S2, P12.T)[0].T)[0] x = x1 + K @ (z - z1) U = K @ S2.T for i in range(np.shape(z)[0]): S1 = self.cholupdate(S1, U[:, i], '-') S = S1 return x, S, w, lbw, ubw, w0, g, lbg, ubg, Xk, x_plot def ukf1_regular(self, fstate, x, S, theta, S_theta, hmeas, z, Q, R, u, auxiliary_vars): dc, nd, w, lbw, ubw, w0,\ x_min, x_max,\ D, i, C, dt,g, lbg, ubg, \ shrink, x_plot, B, x_ref = auxiliary_vars x_aug = vertcat(x, theta) S_aug = diagcat(S, S_theta) L = max(np.shape(x_aug)) # 2*len(x)+1 m = z.shape[0] alpha = 1e-3 ki = 0 beta = 2 lambda1 = 3 - L # L*(alpha**2-1)#alpha**2*(L+ki)-L c = L + lambda1 Wm = np.zeros(1 + 2 * L) Wm[0] = lambda1 / c Wm[1:] = 0.5 / c + np.zeros([1, 2 * L]) Wc = Wm.copy() Wc[0] = Wc[0]# + (1 - alpha ** 2 + beta) #c = np.sqrt(c) # S[-4:,-4:]= 0.999**0.5 * S[-4:,-4:] X = self.sigmas_regular(x_aug, S_aug, c) x1, X1, S1, X2, w, lbw, ubw, w0, g, lbg, ubg, Xk, x_plot = self.ut_with_orthogonal_collocation_regular( fstate, X[:self.nd,:], X[self.nd:,:], Wm, Wc, nd, Q, u, auxiliary_vars) return x1, S1, w, lbw, ubw, w0, g, lbg, ubg, Xk, x_plot def ut_regular(self,f, X, Wm, Wc, n, R, u): L = X.shape[1] y = SX(np.zeros([n, ])) Y = SX(np.zeros([n, L])) for k in range(L): Y[:, k] = (f((X[:, k]), (u))) y += Wm[k] * Y[:, k] Sum_mean_matrix_m = [] for i in range(L): Sum_mean_matrix_m = horzcat(Sum_mean_matrix_m, y) Y1 = (Y - Sum_mean_matrix_m) res = Y1 @ np.sqrt(np.diagflat(abs(Wc))) a = horzcat((Y1 @ sqrt(np.diagflat(abs(Wc))))[:, 1:L], SX(R)).T _, S = qr(a) if Wc[0] < 0: S1 = self.cholupdate(S, res[:, 0], '-') else: S1 = self.cholupdate(S, res[:, 0], '+') S = S1 # [email protected](Wc) @ Y1.T+R return y, Y, S, Y1 def ut_with_orthogonal_collocation_regular(self, f, X, theta, Wm, Wc, n, R, u, auxiliary_vars): dc, nd, w, lbw, ubw, w0,\ x_min, x_max,\ D, i, C, dt,g, lbg, ubg, \ shrink, x_plot, B, x_ref = auxiliary_vars L = X.shape[1] y = SX(np.zeros([n, ])) Y = SX(np.zeros([n, L])) for k in range(L): w, lbw, ubw, w0, g, lbg, ubg, Xk, _, _ = self.perform_orthogonal_collocation( dc, self.nd, w, lbw, ubw, w0, self.x_min, self.x_max, D, X[:,k], i, C, f, u, dt, g, lbg, ubg, shrink, x_plot, B, 0, x_ref, theta[:,k]) # F1(x0=Xk, p=Uk, y=yk)#, DT=DTk) Y[:, k] = Xk y += Wm[k] * Y[:, k] Sum_mean_matrix_m = [] for i in range(L): Sum_mean_matrix_m = horzcat(Sum_mean_matrix_m, y) Y1 = (Y - Sum_mean_matrix_m) # res = Y1 @ np.sqrt(np.diagflat(abs(Wc))) S = Wc[0]*(Y[:,[0]]-y)@(Y[:,[0]]-y).T#Y1[:,[0]] @ Y1[:,[0]].T for i in range(1,L): S += Wc[i]*(Y[:,[i]]-y)@(Y[:,[i]]-y).T#Wc[i]*Y1[:,[i]] @ Y1[:,[i]].T S +=1e-7*SX(np.eye(self.nd)) # Sk = SX.sym('X0', self.nd**2) # w += [Sk] # lbS = -20*np.ones([self.nd, self.nd])+20*np.eye(self.nd) # lbw += [*lbS.reshape((self.nd**2,1))] # ubw += [*(np.zeros([self.nd**2])+20)] # w0 += [*((1e-7)*np.eye(self.nd).reshape((self.nd**2,1)))] # g += [Sk - S.reshape((self.nd**2,1))] # lbg += [*np.zeros([self.nd**2])] # ubg += [*np.zeros([self.nd**2])] #Sk.reshape((self.nd, self.nd)) return y, Y, S, Y1, w, lbw, ubw, w0, g, lbg, ubg, Xk, x_plot def ut(self,f, X, Wm, Wc, n, R, u): L = X.shape[1] y = SX(np.zeros([n, ])) Y = SX(np.zeros([n, L])) for k in range(L): Y[:, k] = (f((X[:, k]), (u))) y += Wm[k] * Y[:, k] Sum_mean_matrix_m = [] for i in range(L): Sum_mean_matrix_m = horzcat(Sum_mean_matrix_m, y) Y1 = (Y - Sum_mean_matrix_m) res = Y1 @ np.sqrt(np.diagflat(abs(Wc))) a = horzcat((Y1 @ sqrt(np.diagflat(abs(Wc))))[:, 1:L], SX(R)).T _, S = qr(a) if Wc[0] < 0: S1 = self.cholupdate(S, res[:, 0], '-') else: S1 = self.cholupdate(S, res[:, 0], '+') S = S1 # [email protected](Wc) @ Y1.T+R return y, Y, S, Y1 def ut_with_orthogonal_collocation(self, f, X, theta, Wm, Wc, n, R, u, auxiliary_vars): dc, nd, w, lbw, ubw, w0,\ x_min, x_max,\ D, i, C, dt,g, lbg, ubg, \ shrink, x_plot, B, x_ref = auxiliary_vars L = X.shape[1] y = SX(np.zeros([n, ])) Y = SX(np.zeros([n, L])) for k in range(L): w, lbw, ubw, w0, g, lbg, ubg, Xk, x_plot, _ = self.perform_orthogonal_collocation( dc, self.nd, w, lbw, ubw, w0, self.x_min, self.x_max, D, X[:,k], i, C, f, u, dt, g, lbg, ubg, shrink, x_plot, B, 0, x_ref, theta[:,k]) # F1(x0=Xk, p=Uk, y=yk)#, DT=DTk) Y[:, k] = Xk y += Wm[k] * Y[:, k] Sum_mean_matrix_m = [] for i in range(L): Sum_mean_matrix_m = horzcat(Sum_mean_matrix_m, y) Y1 = (Y - Sum_mean_matrix_m) res = Y1 @ np.sqrt(np.diagflat(abs(Wc))) a = horzcat((Y1 @ sqrt(np.diagflat(abs(Wc))))[:, 1:L], SX(R)).T _, S = qr(a) if Wc[0] < 0: S1 = self.cholupdate(S, res[:, 0], '-') else: S1 = self.cholupdate(S, res[:, 0], '+') S = S1 # [email protected](Wc) @ Y1.T+R return y, Y, S, Y1, w, lbw, ubw, w0, g, lbg, ubg, Xk, x_plot def cholupdate(self,R, x, sign): p = max(np.shape(x)) x = x.T for k in range(p): if sign == '+': r = sqrt(R[k, k] ** 2 + x[k] ** 2) elif sign == '-': r = sqrt(R[k, k] ** 2 - x[k] ** 2) c = r / R[k, k] s = x[k] / R[k, k] R[k, k] = r if k < p - 1: if sign == '+': R[k, k + 1:p] = (R[k, k + 1:p] + s * x[k + 1:p]) / c elif sign == '-': R[k, k + 1:p] = (R[k, k + 1:p] - s * x[k + 1:p]) / c x[k + 1:p] = c * x[k + 1:p] - s * R[k, k + 1:p] return R def sigmas(self,x, S, c): A = chol(c * S.T).T # Y = x[:,np.ones([1,len(x)])] n = x.shape[0] X = horzcat(x.reshape((n, 1)), x.reshape((n, 1)) + A, x.reshape((n, 1)) - A) return X def sigmas_regular(self,x, S, c): A = chol(c * S.T).T # Y = x[:,np.ones([1,len(x)])] n = x.shape[0] X = horzcat(x.reshape((n, 1)), x.reshape((n, 1)) + A, x.reshape((n, 1)) - A) return X class cosntract_history: def __init__(self, model, N, store_u = True, set_point0 = 0.): #Define self vars dt, x0, Lsolver, c_code, specifications = model.specifications() xd, xa, u, uncertainty, ODEeq, Aeq, u_min, u_max, x_min, x_max, states, \ algebraics, inputs, nd, na, nu, n_ref, nmp, modparval, ng, gfcn, Obj_M, \ Obj_L, Obj_D, R = model.DAE_system() self.model = model # The model defined in terms of casadi self.N = N # Number of past data self.store_u = store_u self.nx = nd self.nu = nu self.nsp = len(set_point0) self.u_min = u_min self.u_max = u_max state_0, e_sp0 = x0, x0-set_point0#model.reset(set_point0) # initialize history history_x = np.array([*state_0]*N).reshape((-1,1)) history_sp = np.array([*e_sp0]*N).reshape((-1,1)) if store_u: # If u are stored as history (simple RNN structure) history_u = np.array([0]*N*self.nu).reshape((-1,1)) self.history = np.vstack((history_x,history_sp,history_u)) self.size_states = N * (self.nu + self.nx + self.nsp) else: self.history = np.vstack((history_x,history_sp)) self.size_states = N * (self.nx+self.nsp) self.history = self.history.reshape((-1,)) # start counting the past values self.past = 1 def append_history(self, new_state, u, e_sp): if self.store_u: n = self.nx+self.nu + self.nsp self.history[n:] = self.history[:n*(self.N-1)] aug_states = np.concatenate((new_state, e_sp, u)) self.history[:n] = aug_states else: n = self.nx+ self.nsp self.history[n:] = self.history[:n*(self.N-1)] aug_states = np.concatenate((new_state, e_sp)) self.history[:n] = aug_states self.past +=1 return self.history class Uncertainty_module: def __init__(self, Model_def, sensitivity=False): self.sensitivity = sensitivity dt, _, _, _, _ = Model_def().specifications() x, _, u, theta, ODEeq, _, u_min, u_max, x_min, x_max, _, \ _, _, nx, _, nu, n_ref, ntheta, _, ng, gfcn, \ Obj_M, Obj_L, Obj_D, R = Model_def().DAE_system( uncertain_parameters=True) # Define the System xdot = vertcat(*ODEeq) x_p = SX.sym('xp', nx * ntheta) if sensitivity: xpdot = [] for i in range(ntheta): xpdot = vertcat(xpdot, jacobian(xdot, x) @ (x_p[nx * i: nx * i + nx]) + jacobian(xdot, theta)[nx * i: nx * i + nx]) f = Function('f', [x, u, theta, x_p], [xdot, xpdot], ['x', 'u', 'theta', 'xp'], ['xdot', 'xpdot']) else: f = Function('f', [x, u, theta], [xdot], ['x', 'u', 'theta'], ['xdot']) self.f = f self.nu = nu self.nx = nx self.ntheta = ntheta self.dt = dt def integrator_model(self, embedded=True, sensitivity=True): """ This function constructs the integrator to be suitable with casadi environment, for the equations of the model and the objective function with variable time step. inputs: model, sizes outputs: F: Function([x, u, dt]--> [xf, obj]) """ f = self.f nu = self.nu nx = self.nx ntheta = self.ntheta dt = self.dt M = 4 # RK4 steps per interval DT = dt#.sym('DT') DT1 = DT / M X0 = SX.sym('X0', nx) U = SX.sym('U', nu) theta = SX.sym('theta', ntheta) xp0 = SX.sym('xp', np.shape(X0)[0] * np.shape(theta)[0]) X = X0 Q = 0 G = 0 S = xp0 if embedded: if sensitivity: xdot, xpdot = f(X, U, theta, xp0) dae = {'x': vertcat(X, xp0), 'p': vertcat(U, theta), 'ode': vertcat(xdot, xpdot)} opts = {'tf': dt} # interval length F = integrator('F', 'cvodes', dae, opts) else: xdot = f(X, U, theta) dae = {'x': vertcat(X), 'p': vertcat(U, theta), 'ode': vertcat(xdot)} opts = {'tf': dt} # interval length F = integrator('F', 'cvodes', dae, opts) else: if sensitivity: for j in range(M): k1, k1_a, k1_p = f(X, U, theta, S) k2, k2_a, k2_p = f(X + DT1 / 2 * k1, U, theta, S + DT1 / 2 * k1_p) k3, k3_a, k3_p = f(X + DT1 / 2 * k2, U, theta, S + DT1 / 2 * k2_p) k4, k4_a, k4_p = f(X + DT1 * k3, U, theta, S + DT1 * k3_p) X = X + DT1 / 6 * (k1 + 2 * k2 + 2 * k3 + k4) G = G + DT1 / 6 * (k1_a + 2 * k2_a + 2 * k3_a + k4_a) S = S + DT1 / 6 * (k1_p + 2 * k2_p + 2 * k3_p + k4_p) F = Function('F', [X0, U, theta, xp0], [X, G, S], ['x0', 'p', 'theta', 'xp0'], ['xf', 'g', 'xp']) else: for j in range(M): k1,_ = f(X, U, theta) k2,_ = f(X + DT1 / 2 * k1, U, theta) k3,_ = f(X + DT1 / 2 * k2, U, theta) k4,_ = f(X + DT1 * k3, U, theta) X = X + DT1 / 6 * (k1 + 2 * k2 + 2 * k3 + k4) F = Function('F', [X0, vertcat(U, theta)], [X], ['x0', 'p'], ['xf']) self.F = F return F def simulate_single_step(self,x0, u, theta, xp0): self.integrator_model(sensitivity=self.sensitivity) Fk = self.F(x0=vertcat(x0, xp0), p=vertcat(u, theta)) x11 = Fk['xf'][0:self.nx] xp1 = Fk['xf'][self.nx:] return np.array(x11), np.array(xp1) def compute_FIM(self, x_initial, u_apply, theta, S_exp, criterion='D', prior = None): if prior is None: prior = 0 steps = u_apply.shape[1] N_mc = 1 Sum_of_FIM = 0 for k in range(N_mc): x0 = x_initial xp0 = np.zeros(self.ntheta * self.nx) xp_reshaped = xp0.reshape((self.nx, self.ntheta)) FIM = xp_reshaped.T @ S_exp @ xp_reshaped + prior for i in range(steps): x11, xp1 = self.simulate_single_step(x0, u_apply[:,i], theta, xp0) x0 = x11 xp0 = xp1 xp_reshaped = xp0.reshape((self.nx, self.ntheta)) FIM += xp_reshaped.T @ np.linalg.pinv(S_exp) @ xp_reshaped if criterion == 'D': metric_FIM = log(det(FIM + 1e-8 * np.eye(self.ntheta))) elif criterion == 'A': metric_FIM = trace(FIM) else: raise Exception("Sorry, criterion " + criterion + " to be implemented") Sum_of_FIM += metric_FIM mean_FIM = Sum_of_FIM/N_mc return mean_FIM def compute_full_path(self, u_opt, N, x0, S0, theta, S_theta, z, Q, R): u_apply = u_opt.reshape((self.nu, N)) x_his = np.array([]) S_his = [] if (S_theta == 0).all(): for i in range(N): # if self.FIM_included: # x1, xp1 = self.simulate_single_step(x0[:self.nx], u_apply[:,i], theta, x0[self.nx:]) # # x0 = np.hstack((x1, xp1)) # else: x1, _ = self.simulate_single_step(x0, u_apply[:,i], theta, x0[self.nx:]) x0 = x1 if i == 0: x_his = x1.T else: x_his = np.vstack((x_his, x1.T)) return x_his else: for i in range(N): x1, S1 = self.ukf1_regular(x0, S0, theta, S_theta, z, Q, R, u_apply[:,i]) x0 = x1 S0 = S1 if i == 0: x_his =x1.T else: x_his = np.vstack((x_his,x1.T)) S_his += [S1] return x_his, S_his def ut_regular(self, X, theta, Wm, Wc, n, u): L = X.shape[1] y = (np.zeros([n, ])) Y = (np.zeros([n, L])) for k in range(L): if self.FIM_included: x11, xp1 = self.simulate_single_step(X[:self.nx,k], u, theta[:,k], X[self.nx:,k]) Xk = np.hstack((x11, xp1)) else: Xk, _ = self.simulate_single_step(X[:self.nx,k], u, theta[:,k], X[self.nx:,k]) Y[:, k] = Xk.reshape((-1,)) y += Wm[k] * Y[:, k] y = y.reshape((-1,1)) Sum_mean_matrix_m = [] for i in range(L): Sum_mean_matrix_m = horzcat(Sum_mean_matrix_m, y) Y1 = (Y - Sum_mean_matrix_m) S = Wc[0]*(Y[:,[0]]-y)@(Y[:,[0]]-y).T#Y1[:,[0]] @ Y1[:,[0]].T for i in range(1,L): S += Wc[i]*(Y[:,[i]]-y)@(Y[:,[i]]-y).T#Wc[i]*Y1[:,[i]] @ Y1[:,[i]].T S +=1e-7*(np.eye(self.nx)) return y, Y, S, Y1 def ukf1_regular(self, x, S, theta, S_theta, z, Q, R, u,FIM_included=False): self.FIM_included = FIM_included x = x.reshape((-1,1)) theta = theta.reshape((-1,1)) x_aug =
np.vstack((x, theta))
numpy.vstack
""" Greedy Word Swap with Word Importance Ranking =================================================== When WIR method is set to ``unk``, this is a reimplementation of the search method from the paper: Is BERT Really Robust? A Strong Baseline for Natural Language Attack on Text Classification and Entailment by Jin et. al, 2019. See https://arxiv.org/abs/1907.11932 and https://github.com/jind11/TextFooler. """ import numpy as np import torch from torch.nn.functional import softmax from textattack.goal_function_results import GoalFunctionResultStatus from textattack.search_methods import SearchMethod from textattack.shared.validators import ( transformation_consists_of_word_swaps_and_deletions, ) class GreedyWordSwapWIR(SearchMethod): """An attack that greedily chooses from a list of possible perturbations in order of index, after ranking indices by importance. Args: wir_method: method for ranking most important words """ def __init__(self, wir_method="unk"): self.wir_method = wir_method def _get_index_order(self, initial_text): """Returns word indices of ``initial_text`` in descending order of importance.""" len_text = len(initial_text.words) if self.wir_method == "unk": leave_one_texts = [ initial_text.replace_word_at_index(i, "[UNK]") for i in range(len_text) ] leave_one_results, search_over = self.get_goal_results(leave_one_texts) index_scores =
np.array([result.score for result in leave_one_results])
numpy.array
from SemiSupervisedLearning import visualisations import matplotlib.pyplot as plt import numpy as np import torch import pathlib def to_cuda(elements): """ Transfers every object in elements to GPU VRAM if available. elements can be a object or list/tuple of objects """ if torch.cuda.is_available(): if type(elements) == tuple or type(elements) == list: return [x.cuda() for x in elements] return elements.cuda() return elements def get_data_to_tensors(data, batch_size): train_data_subsample, test_data = [], [] for (images, classes) in data.batch_generator(training=True, batch_size=batch_size): images = normalize_images(images) images, classes = torch.from_numpy(images).float(), torch.from_numpy(classes).float() images = images.permute(0, 3, 1, 2) # change axis from NHWC to NCHW batch = (images, classes) train_data_subsample.append(batch) for (images, classes) in data.batch_generator(training=False, batch_size=batch_size): images = normalize_images(images) images, classes = torch.from_numpy(images).float(), torch.from_numpy(classes).float() images = images.permute(0, 3, 1, 2) # change axis from NHWC to NCHW batch = (images, classes) test_data.append(batch) return (train_data_subsample, test_data) def normalize_images(images): # Assuming pixel values are more or less the same for all images # We pick the first image of the batch image = images[0] pixels = np.asarray(image) means = pixels.mean(axis=(0, 1), dtype='float64') stds = pixels.std(axis=(0, 1), dtype='float64') pixels = (pixels - means) / stds # Apply normalization to all images in the batch norm_images = [] for i in range(len(images)): norm_images.append((images[i] - means) / stds) norm_images = np.array(norm_images) return norm_images def make_reconstructions(autoencoder, vis_data, num_images, batch_size, image_dimensions, title): # Extremely inefficient way of doing this # Forward all images, then selecting the ones i want to visualize images = [] reconstructions = [] labels = [] for image_batch, label in vis_data: #Make reconstruction image_batch = to_cuda(image_batch) reconstruction_batch, aux = autoencoder(image_batch) # Convert from tensor to numpy image_batch = image_batch.reshape( image_batch.shape[0], image_batch.shape[2], image_batch.shape[3], image_batch.shape[1] ) image_batch = image_batch.cpu().detach().numpy() label = label.cpu().detach().numpy() reconstruction_batch = reconstruction_batch.reshape( reconstruction_batch.shape[0], reconstruction_batch.shape[2], reconstruction_batch.shape[3], reconstruction_batch.shape[1] ) reconstruction_batch = reconstruction_batch.cpu().detach().numpy() images.extend(image_batch) labels.extend(label) reconstructions.extend(reconstruction_batch) vis_images = images[1000: 1000 + num_images] vis_reconstructions = reconstructions[1000: 1000 +num_images] vis_labels = labels[1000: 1000 + num_images] # visualisations.show_images_and_reconstructions(np.array(vis_images), title, vis_labels) visualisations.show_images_and_reconstructions(
np.array(vis_reconstructions)
numpy.array
import numpy as np import scipy.sparse as sp from sklearn.utils.fixes import loguniform from sklearn.utils.validation import check_random_state import pytest from cca_zoo.data import generate_covariance_data from cca_zoo.model_selection import GridSearchCV, RandomizedSearchCV from cca_zoo.models import ( rCCA, CCA, PLS, CCA_ALS, SCCA, PMD, ElasticCCA, KCCA, KTCCA, MCCA, GCCA, TCCA, SpanCCA, SWCCA, PLS_ALS, KGCCA, NCCA, ParkhomenkoCCA, SCCA_ADMM, PartialCCA, ) from cca_zoo.utils.plotting import cv_plot n = 50 rng = check_random_state(0) X = rng.rand(n, 4) Y = rng.rand(n, 5) Z = rng.rand(n, 6) X_sp = sp.random(n, 4, density=0.5, random_state=rng) Y_sp = sp.random(n, 5, density=0.5, random_state=rng) def test_unregularized_methods(): # Tests unregularized CCA methods. The idea is that all of these should give the same result. latent_dims = 2 cca = CCA(latent_dims=latent_dims).fit([X, Y]) iter = CCA_ALS( latent_dims=latent_dims, tol=1e-9, stochastic=False, random_state=rng ).fit([X, Y]) gcca = GCCA(latent_dims=latent_dims).fit([X, Y]) mcca = MCCA(latent_dims=latent_dims, eps=1e-9).fit([X, Y]) kcca = KCCA(latent_dims=latent_dims).fit([X, Y]) kgcca = KGCCA(latent_dims=latent_dims).fit([X, Y]) tcca = TCCA(latent_dims=latent_dims).fit([X, Y]) corr_cca = cca.score((X, Y)) corr_iter = iter.score((X, Y)) corr_gcca = gcca.score((X, Y)) corr_mcca = mcca.score((X, Y)) corr_kcca = kcca.score((X, Y)) corr_kgcca = kgcca.score((X, Y)) corr_tcca = tcca.score((X, Y)) assert np.testing.assert_array_almost_equal(corr_cca, corr_iter, decimal=1) is None assert np.testing.assert_array_almost_equal(corr_cca, corr_mcca, decimal=1) is None assert np.testing.assert_array_almost_equal(corr_cca, corr_gcca, decimal=1) is None assert np.testing.assert_array_almost_equal(corr_cca, corr_kcca, decimal=1) is None assert np.testing.assert_array_almost_equal(corr_cca, corr_tcca, decimal=1) is None assert ( np.testing.assert_array_almost_equal(corr_kgcca, corr_gcca, decimal=1) is None ) # Check standardized models have standard outputs assert ( np.testing.assert_allclose( np.linalg.norm(iter.transform((X, Y))[0], axis=0) ** 2, n, rtol=0.2 ) is None ) assert ( np.testing.assert_allclose( np.linalg.norm(cca.transform((X, Y))[0], axis=0) ** 2, n, rtol=0.2 ) is None ) assert ( np.testing.assert_allclose( np.linalg.norm(mcca.transform((X, Y))[0], axis=0) ** 2, n, rtol=0.2 ) is None ) assert ( np.testing.assert_allclose( np.linalg.norm(kcca.transform((X, Y))[0], axis=0) ** 2, n, rtol=0.2 ) is None ) assert ( np.testing.assert_allclose( np.linalg.norm(iter.transform((X, Y))[1], axis=0) ** 2, n, rtol=0.2 ) is None ) assert ( np.testing.assert_allclose( np.linalg.norm(cca.transform((X, Y))[1], axis=0) ** 2, n, rtol=0.2 ) is None ) assert ( np.testing.assert_allclose( np.linalg.norm(mcca.transform((X, Y))[1], axis=0) ** 2, n, rtol=0.2 ) is None ) assert ( np.testing.assert_allclose( np.linalg.norm(kcca.transform((X, Y))[1], axis=0) ** 2, n, rtol=0.2 ) is None ) def test_sparse_input(): # Tests unregularized CCA methods. The idea is that all of these should give the same result. latent_dims = 2 cca = CCA(latent_dims=latent_dims, centre=False).fit((X_sp, Y_sp)) iter = CCA_ALS( latent_dims=latent_dims, tol=1e-9, stochastic=False, centre=False, random_state=rng, ).fit((X_sp, Y_sp)) iter_pls = PLS_ALS(latent_dims=latent_dims, tol=1e-9, centre=False).fit( (X_sp, Y_sp) ) gcca = GCCA(latent_dims=latent_dims, centre=False).fit((X_sp, Y_sp)) mcca = MCCA(latent_dims=latent_dims, centre=False).fit((X_sp, Y_sp)) kcca = KCCA(latent_dims=latent_dims, centre=False).fit((X_sp, Y_sp)) scca = SCCA(latent_dims=latent_dims, centre=False, c=0.001).fit((X_sp, Y_sp)) corr_cca = cca.score((X, Y)) corr_iter = iter.score((X, Y)) corr_gcca = gcca.score((X, Y)) corr_mcca = mcca.score((X, Y)) corr_kcca = kcca.score((X, Y)) # Check the correlations from each unregularized method are the same assert np.testing.assert_array_almost_equal(corr_iter, corr_mcca, decimal=1) is None assert np.testing.assert_array_almost_equal(corr_iter, corr_gcca, decimal=1) is None assert np.testing.assert_array_almost_equal(corr_iter, corr_kcca, decimal=1) is None def test_unregularized_multi(): # Tests unregularized CCA methods for more than 2 views. The idea is that all of these should give the same result. latent_dims = 2 cca = rCCA(latent_dims=latent_dims).fit((X, Y, Z)) iter = CCA_ALS( latent_dims=latent_dims, stochastic=False, tol=1e-12, random_state=rng ).fit((X, Y, Z)) gcca = GCCA(latent_dims=latent_dims).fit((X, Y, Z)) mcca = MCCA(latent_dims=latent_dims).fit((X, Y, Z)) kcca = KCCA(latent_dims=latent_dims).fit((X, Y, Z)) corr_cca = cca.score((X, Y, Z)) corr_iter = iter.score((X, Y, Z)) corr_gcca = gcca.score((X, Y, Z)) corr_mcca = mcca.score((X, Y, Z)) corr_kcca = kcca.score((X, Y, Z)) # Check the correlations from each unregularized method are the same assert np.testing.assert_array_almost_equal(corr_cca, corr_iter, decimal=1) is None assert np.testing.assert_array_almost_equal(corr_cca, corr_mcca, decimal=1) is None assert np.testing.assert_array_almost_equal(corr_cca, corr_gcca, decimal=1) is None assert np.testing.assert_array_almost_equal(corr_cca, corr_kcca, decimal=1) is None def test_regularized_methods(): # Test that linear regularized methods match PLS solution when using maximum regularisation. latent_dims = 2 c = 1 kernel = KCCA(latent_dims=latent_dims, c=[c, c], kernel=["linear", "linear"]).fit( (X, Y) ) pls = PLS(latent_dims=latent_dims).fit([X, Y]) gcca = GCCA(latent_dims=latent_dims, c=[c, c]).fit([X, Y]) mcca = MCCA(latent_dims=latent_dims, c=[c, c]).fit([X, Y]) rcca = rCCA(latent_dims=latent_dims, c=[c, c]).fit([X, Y]) corr_gcca = gcca.score((X, Y)) corr_mcca = mcca.score((X, Y)) corr_kernel = kernel.score((X, Y)) corr_pls = pls.score((X, Y)) corr_rcca = rcca.score((X, Y)) # Check the correlations from each unregularized method are the same assert np.testing.assert_array_almost_equal(corr_pls, corr_mcca, decimal=1) is None assert ( np.testing.assert_array_almost_equal(corr_pls, corr_kernel, decimal=1) is None ) assert
np.testing.assert_array_almost_equal(corr_pls, corr_rcca, decimal=1)
numpy.testing.assert_array_almost_equal
r""" Routines for displacing a molecular geometry by translation or proper/improper rotation. :: 1 | 4 / \ 2 3 Example axes for displacements: 1. X1X4 stretch: :math:`r_{14}` 2. X1X4 torsion: :math:`r_{14}` (for motion of 2, 3) 3. X1X4X2 bend: :math:`r_{14} \times r_{24}` 4. X1 out-of-plane: :math:`r_{24} - r_{34}` or :math:`(r_{24} \times r_{34}) \times r_{14}` Each internal coordinate measurement has the option of changing the units (see the constants module) or taking the absolute value. """ import operator as op import pyparsing as pp import numpy as np import gimbal.constants as con class VectorParser(object): """An object for defining and evaluating vector operations on a cartesian geometry. A new VectorParser instance takes a cartesian geometry as an optional input. The instance can be called with a vector (no action), 3x3 array (cross product) or string, parsed according to the syntax in :func:`~VectorParser.generate_parser`. Attributes ---------- xyz : (N, 3) array_like, optional The cartesian geometry which defines the indices in parsed expressions. If None, only expressions without indices can be parsed. unop : dict A dictionary which defines unary operations. bnadd : dict A dictionary which defines binary addition operations. bnmul : dict A dictionary which defines binary multiplication operations. bnop : dict A dictionary which defines all binary operations. axes : dict A dictionary which defines cartesian axis labels. expr : pyparsing.Forward A pyparsing grammar used to evaluate expressions. Automatically generated when xyz is set. """ def __init__(self, xyz=None): self.unop = {'+': op.pos, '-': op.neg} self.bnadd = {'+': op.add, '-': op.sub} self.bnmul = {'*': op.mul, '/': op.truediv, 'o': np.dot, 'x': np.cross} self.bnop = self.bnadd.copy() self.bnop.update(self.bnmul) self.axes = dict(X = np.array([1., 0., 0.]), Y = np.array([0., 1., 0.]), Z = np.array([0., 0., 1.])) self.xyz = xyz def __call__(self, inp, unit=False): """Evaluates an expression based on a string. Parameters ---------- inp : str or array_like A string or array used to specify an axis. unit : bool, optional Specifies if the axis is converted to a unit vector. Returns ------- float or ndarray The result of the vector operation. Raises ------ ValueError If input is not a string, 3-vector or 3x3 array. """ if isinstance(inp, str): u = self.expr.parseString(inp, parseAll=True)[0] elif len(inp) == 3: u = np.array(inp, dtype=float) if u.size == 9: u = np.cross(u[0] - u[1], u[2] - u[1]) else: raise ValueError('Axis specification not recognized') if unit: return con.unit_vec(u) else: return u @property def xyz(self): """Gets the value of xyz.""" return self._xyz @xyz.setter def xyz(self, val): """Sets the value of xyz and generates the parser.""" self.expr = self.generate_parser(val) self._xyz = val def _eval_unary(self, tokens): """Evaluates unary operations. Parameters ---------- tokens : list A list of pyparsing tokens from a matching unary expression. Returns ------- float or ndarray The expression after unary operation. """ vals = tokens[0] return self.unop[vals[0]](vals[1]) def _eval_binary(self, tokens): """Evaluates binary operations. Parameters ---------- tokens : list A list of pyparsing tokens from a matching binary expression. Returns ------- float or ndarray The expression after binary operation. """ vals = tokens[0] newval = vals[0] it = iter(vals[1:]) for oper in it: newval = self.bnop[oper](newval, next(it)) return newval def _eval_power(self, tokens): """Evaluates power operations. Parameters ---------- tokens : list A list of pyparsing tokens from a matching power expression. Returns ------- float or ndarray The expression after power operation. """ vals = tokens[0] newval = vals[-1] for v in vals[-3::-2]: newval = v**newval return newval def generate_parser(self, xyz=None): """Creates the pyparsing expression based on geometry. The syntax is as follows: - ``i+`` are indices of xyz and return vectors. - ``i+.j`` are floating point numbers (j optional). - ``i[j]`` is the j-th (scalar) element of xyz[i]. - ``X, Y, Z`` are unit vectors along x, y and z axes (uppercase only). - ``+`` and ``-`` are addition/subtraction of vectors or scalars. - ``*`` and ``/`` are multiplication/division of vectors and scalars (elementwise). - ``o`` and ``x`` are scalar/vector products of vectors only. - ``^`` is the power of a vector/scalar by a scalar (elementwise). - ``(`` and ``)`` specify order of operation. - ``[i, j, k]`` gives a vector with scalar elements i, j and k. Parameters ---------- xyz : (N, 3), array_like, optional The cartesian geometry used in index expressions. If not provided, strings containing indices will raise an error. Returns ------- pyparsing.Forward A pyparsing grammar definition. """ expr = pp.Forward() # operand types: int, int with index, float, axis or delimited list intnum = pp.Word(pp.nums) fltind = pp.Word(pp.nums) + '[' + pp.Word(pp.nums) + ']' fltnum = pp.Combine(pp.Word(pp.nums) + '.' + pp.Optional(pp.Word(pp.nums))) alphax = pp.oneOf(' '.join(self.axes)) dllist = pp.Suppress('[') + pp.delimitedList(expr) + pp.Suppress(']') intnum.setParseAction(lambda t: xyz[int(t[0])]) fltind.setParseAction(lambda t: xyz[int(t[0])][int(t[2])]) fltnum.setParseAction(lambda t: float(t[0])) alphax.setParseAction(lambda t: self.axes[t[0]]) dllist.setParseAction(lambda t: np.array(t[:])) operand = dllist | alphax | fltnum | fltind | intnum # operators: unary, power, binary multiplication/division, # binary addition/subtraction sgnop = pp.oneOf(' '.join(self.unop)) expop = pp.Literal('^') mulop = pp.oneOf(' '.join(self.bnmul)) addop = pp.oneOf(' '.join(self.bnadd)) # set operator precedence prec = [(sgnop, 1, pp.opAssoc.RIGHT, self._eval_unary), (expop, 2, pp.opAssoc.LEFT, self._eval_power), (mulop, 2, pp.opAssoc.LEFT, self._eval_binary), (addop, 2, pp.opAssoc.LEFT, self._eval_binary)] return expr << pp.infixNotation(operand, prec) def translate(xyz, amp, axis, ind=None, units='ang'): """Translates a set of atoms along a given vector. Parameters ---------- xyz : (N, 3) array_like The atomic cartesian coordinates. amp : float The distance for translation. axis : array_like or str The axis of translation, parsed by :class:`VectorParser`. ind : array_like, optional List of atomic indices to specify which atoms are displaced. If ind is None (default) then all atoms are displaced. units : str, optional The units of length for displacement. Default is angstroms. Returns ------- (N, 3) ndarray The atomic cartesian coordinates of the displaced molecule. """ if ind is None: ind = range(len(xyz)) vp = VectorParser(xyz) u = vp(axis, unit=True) amp *= con.conv(units, 'ang') newxyz = np.copy(xyz) newxyz[ind] += amp * u return newxyz def rotmat(ang, u, det=1, units='rad', xyz=None): r"""Returns the rotational matrix based on an angle and axis. A general rotational matrix in 3D can be formed given an angle and an axis by .. math:: \mathbf{R} = \cos(a) \mathbf{I} + (\det(\mathbf{R}) - \cos(a)) \mathbf{u} \otimes \mathbf{u} + \sin(a) [\mathbf{u}]_\times for identity matrix **I**, angle *a*, axis **u**, outer product :math:`\otimes` and cross-product matrix :math:`[\mathbf{u}]_\times`. Determinants of +1 and -1 give proper and improper rotation, respectively. Thus, :math:`\det(\mathbf{R}) = -1` and :math:`a = 0` is a reflection along the axis. Action of the rotational matrix occurs about the origin. See en.wikipedia.org/wiki/Rotation_matrix and http://scipp.ucsc.edu/~haber/ph251/rotreflect_17.pdf Parameters ---------- ang : float The angle of rotation. u : array_like or str The axis of rotation, converted to a unit vector. det : int, optional The determinant of the matrix (1 or -1) used to specify proper and improper rotations. Default is 1. units : str, optional The units of angle for the rotation. Default is radians. xyz : (N, 3) array_like, optional The cartesian coordinates used in axis specification. Returns ------- (3, 3) ndarray The rotational matrix of the given angle and axis. Raises ------ ValueError When the absolute value of the determinant is not equal to 1. """ if not np.isclose(np.abs(det), 1): raise ValueError('Determinant of a rotational matrix must be +/- 1') u /= np.linalg.norm(u) amp = ang * con.conv(units, 'rad') ucross = np.array([[0, u[2], -u[1]], [-u[2], 0, u[0]], [u[1], -u[0], 0]]) return (np.cos(amp) * np.eye(3) + np.sin(amp) * ucross + (det - np.cos(amp)) * np.outer(u, u)) def angax(rotmat, units='rad'): r"""Returns the angle, axis of rotation and determinant of a rotational matrix. Based on the form of **R**, it can be separated into symmetric and antisymmetric components with :math:`(r_{ij} + r_{ji})/2` and :math:`(r_{ij} - r_{ji})/2`, respectively. Then, .. math:: r_{ii} = \cos(a) + u_i^2 (\det(\mathbf{R}) - \cos(a)), \cos(a) = (-\det(\mathbf{R}) + \sum_j r_{jj}) / 2 = (\mathrm{tr}(\mathbf{R}) - \det(\mathbf{R})) / 2. From the expression for :math:`r_{ii}`, the magnitude of :math:`u_i` can be found .. math:: |u_i| = \sqrt{\frac{1 + \det(\mathbf{R}) [2 r_{ii} - \mathrm{tr}(\mathbf{R})])}{3 - \det(\mathbf{R}) \mathrm{tr}(\mathbf{R})}}, which satisfies :math:`u \cdot u = 1`. Note that if :math:`\det(\mathbf{R}) \mathrm{tr}(\mathbf{R}) = 3`, the axis is arbitrary (identity or inversion). Otherwise, the sign can be found from the antisymmetric component of **R**. .. math:: u_i \sin(a) = (r_{jk} - r_{kj}) / 2, \quad i \neq j \neq k, \mathrm{sign}(u_i) = \mathrm{sign}(r_{jk} - r_{kj}), since :math:`\sin(a)` is positive in the range 0 to :math:`\pi`. :math:`i`, :math:`j` and :math:`k` obey the cyclic relation 3 -> 2 -> 1 -> 3 -> ... This fails when :math:`det(\mathbf{R}) \mathrm{tr}(\mathbf{R}) = -1`, in which case the symmetric component of **R** is used .. math:: u_i u_j (\det(\mathbf{R}) - \cos(a)) = (r_{ij} + r_{ji}) / 2, \mathrm{sign}(u_i) \mathrm{sign}(u_j) = \det(\mathbf{R}) \mathrm{sign}(r_{ij} + r_{ji}). The signs can then be found by letting :math:`\mathrm{sign}(u_3) = +1`, since a rotation of :math:`pi` or a reflection are equivalent for antiparallel axes. See http://scipp.ucsc.edu/~haber/ph251/rotreflect_17.pdf Parameters ---------- rotmat : (3, 3) array_like The rotational matrix. units : str, optional The output units for the angle. Default is radians. Returns ------- ang : float The angle of rotation. u : (3,) ndarray The axis of rotation as a 3D vector. det : int The determinant of the rotation matrix. Raises ------ ValueError When the absolute value of the determinant is not equal to 1. """ det = np.linalg.det(rotmat) if not np.isclose(np.abs(det), 1): raise ValueError('Determinant of a rotational matrix must be +/- 1') tr = np.trace(rotmat) ang = con.arccos((tr - det) / 2) * con.conv('rad', units) if np.isclose(det*tr, 3): u = np.array([0, 0, 1]) else: u = np.sqrt((1 + det*(2*np.diag(rotmat) - tr)) / (3 - det*tr)) if np.isclose(det*tr, -1): sgn = np.ones(3) sgn[1] = det * _nonzero_sign(rotmat[1,2] + rotmat[2,1]) sgn[0] = det * sgn[1] * _nonzero_sign(rotmat[0,1] + rotmat[1,0]) u *= sgn else: u[0] *= _nonzero_sign(rotmat[1,2] - rotmat[2,1]) u[1] *= _nonzero_sign(rotmat[2,0] - rotmat[0,2]) u[2] *= _nonzero_sign(rotmat[0,1] - rotmat[1,0]) return ang, u, det def rotate(xyz, ang, axis, ind=None, origin=np.zeros(3), det=1, units='rad'): """Rotates a set of atoms about a given vector. An origin can be specified for rotation about a specific point. If no indices are specified, all atoms are displaced. Setting det=-1 leads to an improper rotation. Parameters ---------- xyz : (N, 3) array_like The atomic cartesian coordinates. ang : float The angle of rotation. axis : array_like or str The axis of rotation, parsed by :class:`VectorParser`. ind : array_like, optional List of atomic indices to specify which atoms are displaced. If ind is None (default) then all atoms are displaced. origin : (3,) array_like, optional The origin of rotation, parsed by :class:`VectorParser`. Default is the cartesian origin. det : float, optional The determinant of the rotation. 1 (default) is a proper rotation and -1 is an improper rotation (rotation + reflection). units : str, optional The units of length for displacement. Default is angstroms. Returns ------- (N, 3) ndarray The atomic cartesian coordinates of the displaced molecule. """ if ind is None: ind = range(len(xyz)) vp = VectorParser(xyz) ax = vp(axis, unit=True) org = vp(origin) newxyz = xyz - org newxyz[ind] = newxyz[ind].dot(rotmat(ang, ax, det=det, units=units)) return newxyz + org def align_pos(xyz, test_crd, ref_crd, ind=None): """Translates a set of atoms such that two positions are coincident. Parameters ---------- xyz : (N, 3) array_like The atomic cartesian coordinates. test_crd : (3,) array_like Cartesian coordinates of the original position. test_crd : (3,) array_like Cartesian coordinates of the final position. ind : array_like, optional List of atomic indices to specify which atoms are displaced. If `ind == None` (default) then all atoms are displaced. Returns ------- (N, 3) ndarray The atomic cartesian coordinates of the displaced molecule. """ transax = ref_crd - test_crd dist = np.linalg.norm(transax) return translate(xyz, dist, transax, ind=ind) def align_axis(xyz, test_ax, ref_ax, ind=None, origin=
np.zeros(3)
numpy.zeros
import numpy as np from prml.dimreduction.pca import PCA class BayesianPCA(PCA): def fit(self, X, iter_max=100, initial="random"): """ empirical bayes estimation of pca parameters Parameters ---------- X : (sample_size, n_features) ndarray input data iter_max : int maximum number of em steps Returns ------- mean : (n_features,) ndarray sample mean fo the input data W : (n_features, n_components) ndarray projection matrix var : float variance of observation noise """ initial_list = ["random", "eigen"] self.mean = np.mean(X, axis=0) self.I = np.eye(self.n_components) if initial not in initial_list: print("availabel initializations are {}".format(initial_list)) if initial == "random": self.W = np.eye(np.size(X, 1), self.n_components) #self.W = np.random.randn(np.size(X, 1), self.n_components) self.var = 1. elif initial == "eigen": self.eigen(X) self.alpha = len(self.mean) / np.sum(self.W ** 2, axis=0).clip(min=1e-10) for i in range(iter_max): W = np.copy(self.W) stats = self._expectation(X - self.mean) self._maximization(X - self.mean, *stats) #self.alpha = len(self.mean) / np.sum(self.W ** 2, axis=0).clip(min=1e-10) #if np.allclose(W, self.W): # break self.n_iter = i + 1 self.C = self.W @ self.W.T + self.var * np.eye(np.size(X, 1)) self.Cinv =
np.linalg.inv(self.C)
numpy.linalg.inv
from matplotlib import pyplot as plt from os import path import numpy as np import cv2 as cv # Our local modules from ds_tools.shared import util def find_sift_correspondence(src_img, dest_img, visualize=False): src_img = cv.equalizeHist(src_img) dest_img = cv.equalizeHist(dest_img) sift = cv.xfeatures2d.SIFT_create() src_keypoints, src_descs = sift.detectAndCompute(src_img, None) dest_keypoints, dest_descs = sift.detectAndCompute(dest_img, None) FLANN_INDEX_KDTREE = 0 flann = cv.FlannBasedMatcher({'algorithm': FLANN_INDEX_KDTREE, 'trees': 5}, {'checks': 50}) all_matches = flann.knnMatch(src_descs, dest_descs, k=2) matches = [] for a, b in all_matches: if a.distance < 0.7 * b.distance: matches.append(a) print('Found {} matches!'.format(len(matches))) if visualize: src_points = np.float32([src_keypoints[m.queryIdx].pt for m in matches]).reshape(-1, 1, 2) dst_points =
np.float32([dest_keypoints[m.trainIdx].pt for m in matches])
numpy.float32
import os import yaml import logging import numpy as np import pandas as pd from time import time from tqdm import trange from typing import List from datetime import datetime import matplotlib.pyplot as plt from ortools.graph import pywrapgraph plt.style.use('seaborn') class Worker: """ Worker class to store all the variables associated with a given worker. """ def __init__(self, id: int, learning_rate: float, forgetting_rate: float, initial_skill: List[int], station_id: int): """ Initialise the variables associated with the current worker :param id (int): Worker ID :param learning_rate (float): Learning rate of the worker :param forgetting_rate (float): Forgetting rate of the worker :param initial_skill (list of ints): Skill levels for each station; length must be equal to the number of stations :param station_id (int): Initial station assignment """ self.id = id self.beta = np.log2(learning_rate) self.gamma = np.log2(forgetting_rate) self.initial_skill = initial_skill # Remaining skills of the worker for each station self.rem_skill = initial_skill self.assign_history = [station_id] class Station: """ Station class to store all the variables associated with a given station. """ def __init__(self, id: int, S_max: float, S_min: float, delta: float, eps: float): """ Initialise the variables associated with the current station. :param id (int): ID of the current worker :param S_max (float): Max theoretical skill level attainable :param S_min (float): Min theoretical skill level attainable :param delta (float): Practical max skill threshold :param eps (float): Practical min skill threshold """ self.id = id self.S_max = S_max self.S_min = S_min # Practically achievable skill levels self.S_UB = int(S_max - delta) self.S_LB = int(S_min + eps) self.delta = delta self.eps = eps class WorkerStationProblem: def __init__(self, num_workers: int, num_stations: int, num_time_steps: int, demands: List[int], experiment_name: str): """ Initial setup for the Worker-Station problem :param num_workers: Number of workers in the problem :param num_stations: Number of stations in the problem; Must be equal to num_workers :param num_time_steps: Number of time steps to optimize :param demands: List of ints containing demands at each time step """ assert num_workers == num_stations, "Number of workers must be equal to" \ "the number of work stations" assert num_time_steps == len(demands), "Invalid number of demands" self.num_workers = num_workers self.num_stations = num_stations self.num_time_steps = num_time_steps self.demands = demands self.source_id = 0 self.worker_id = list(range(1, self.num_workers + 1)) self.station_id = list(range(self.num_workers + 1, self.num_stations + self.num_stations + 1)) self.sink_id = self.num_stations + self.num_workers + 1 self.WIP_inventory = [0]*self.num_stations self.output_inventory = [0]*self.num_time_steps self.inventory_log = np.empty((0, 3)) self.mean_units = 0 self.actual_units = [0] * self.num_stations self.final_num_units = [] self.experiment_time = 0 self.Q = [] # List to store the Worker and Station class objects self.workers = [] self.stations = [] # Handle for the MinCostFlow solver self.solver = pywrapgraph.SimpleMinCostFlow() self.SAVE_PATH = experiment_name + '/' os.makedirs(self.SAVE_PATH, exist_ok=True) if os.path.exists(self.SAVE_PATH + experiment_name+'.log'): os.remove(self.SAVE_PATH + experiment_name+'.log') logging.basicConfig(filename=self.SAVE_PATH + experiment_name+'.log', level=logging.INFO, format='%(message)s') logging.info("Experiment Date: {} \n".format(datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) logging.info("Demands: {}".format(self.demands)) cols = [] for i in range(self.num_time_steps): cols.append('Time Step {}'.format(i+1)) self.pd_file = pd.DataFrame(columns=cols) def _build_graph(self, cost_fn): """ Function to convert the Worker-Station assignment problem into a Min-cost flow problem. Based on the above given data, this function builds a graph, which can then be passed to the solver. Reference - [1] https://developers.google.com/optimization/assignment/assignment_min_cost_flow """ """ Graph Setup - ID | Meaning --------------------- 0 | sink 1,2,..., N | workers N+1, ...,2N | stations 2N+1 | sink ---------------------- """ self.start_nodes = [0]*self.num_workers + \ sum([[i+1]*self.num_stations for i in range(self.num_workers)], []) + \ list(range(self.num_workers+1, self.num_workers + self.num_stations+1)) self.end_nodes = list(range(1, self.num_workers+1)) +\ list(range(self.num_stations+1, 2*self.num_stations+1))*self.num_workers + \ [2*self.num_stations+1]*self.num_stations """ Set the capacities all to one as this is just a simple mapping problem and we do not have any cost associated with the mapping itself. """ self.capacities = [1]*self.num_workers self.capacities += ([1]*self.num_workers)*self.num_stations self.capacities += [1]*self.num_stations """ Computation of costs - Zero costs for the links from the Source -> Worker - User-defined cost for Worker -> Station - Zero costs for links from Worker -> Sink """ self.costs = [0]*self.num_workers # Compute the Worker - Station costs for worker_id in range(self.num_workers): for station_id in range(self.num_stations): cost = cost_fn(worker_id, station_id) self.costs.append(cost) self.costs += [0]*self.num_stations """ Computation of Supplies - Source supply = number of workers - Zero supplies from Worker -> Station - Sink supply = - number of stations [Law of conservation of resources] """ self.supplies = [self.num_workers] self.supplies += [0]*(self.num_workers+self.num_stations) self.supplies += [-self.num_stations] # Add each link(arc) to the solver graph for i in range(len(self.start_nodes)): self.solver.AddArcWithCapacityAndUnitCost(self.start_nodes[i], self.end_nodes[i], self.capacities[i], self.costs[i]) # Add node supplies to the solver graph for i in range(len(self.supplies)): self.solver.SetNodeSupply(i, self.supplies[i]) def run_optimizer(self, log_history): """ Given a graph, this function runs the Mincostflow algorithm :log_history: Boolean to control when to log the history of the assignment to station. This is helpful during the second phase of optimization, which is actually the final assignment, and hence needs to be logged. :return: None """ # Find the minimum cost flow between node 0 and node 10. if self.solver.Solve() == self.solver.OPTIMAL: logging.info('Total Minimum cost = {}'.format(self.solver.OptimalCost())) for arc in range(self.solver.NumArcs()): # Can ignore arcs leading out of source or into sink. if self.solver.Tail(arc) != self.source_id and self.solver.Head(arc) != self.sink_id: # Arcs in the solution have a flow value of 1. Their start and end nodes # give an assignment of worker to task. if self.solver.Flow(arc) > 0: worker_id = self.solver.Tail(arc) station_id = self.solver.Head(arc) - self.num_workers self.theoretical_units_produced[station_id - 1] = \ self.workers[worker_id - 1].rem_skill[station_id - 1] units_produced = self.workers[worker_id - 1].rem_skill[station_id - 1] if log_history: self.workers[worker_id - 1].assign_history.append(station_id) logging.info('Worker {:d} assigned to Station {:d}, capable of {:d} units; Deficit = {:d}'.format( worker_id, station_id, units_produced, self.solver.UnitCost(arc))) elif self.solver.Solve() == self.solver.INFEASIBLE: raise RuntimeError("Infeasible problem input. Terminating code.") else: raise RuntimeError("Bad Result! Terminating code.") def _compute_units_produced(self, compute_WIP): # Compute the actual units produced & Inventory """ This calculation is simple - the current station cannot produce more than its previous station (assuming empty inventory) """ self.actual_units = [0] * self.num_stations for i in range(self.num_stations): self.actual_units[i] = self.theoretical_units_produced[i] if i > 0: """ If the current station can produce more than the previous station, then max number of units produced by the current station is equal to its previous station. """ if self.actual_units[i] > self.actual_units[i - 1]: self.actual_units[i] = min(self.theoretical_units_produced[i], self.actual_units[i - 1] + self.WIP_inventory[i]) if compute_WIP: self.WIP_inventory[i] += self.actual_units[i - 1] - self.actual_units[i] logging.info('Station {:d} practically produces {:d} units'. format(i + 1, self.actual_units[i])) if compute_WIP: logging.info("WIP Inventory {}".format(self.WIP_inventory)) self.final_num_units.append(self.actual_units[-1]) self.output_inventory[self.current_time_step] = self.final_num_units[-1] - \ self.demands[self.current_time_step] if self.current_time_step > 0: self.output_inventory[self.current_time_step] += \ self.output_inventory[self.current_time_step-1] def Solve(self): """ Function to solve for the optimum assignment using the "Cost-scaling push-relabel algorithm" Reference - [1] https://developers.google.com/optimization/reference/graph/min_cost_flow/ """ # Check if the worker and station objects have been added assert len(self.workers) == self.num_workers, "Number of given workers" \ "less than num_workers" assert len(self.stations) == self.num_stations, "Number of given stations" \ "less than num_stations" self.current_time_step = 0 # Display the skills for each worker logging.info("Initial Skill Levels:--------------------------------------------------") for worker_id in range(self.num_workers): logging.info("worker ID: {} Skill Levels: {}".format(worker_id + 1, self.workers[worker_id].rem_skill)) for _ in trange(self.num_time_steps, desc="Time Step"): start = time() self._build_graph(cost_fn= self._compute_lost_sales_cost) build_time = time() - start logging.info("================== Solving for Time Step {} ==========================" .format( self.current_time_step + 1)) logging.info("Graph Info:-----------------------------------------------------------") logging.info("Worker IDs : {}".format(self.worker_id)) logging.info("Station IDs : {}".format(self.station_id)) logging.info("Start Nodes: {}".format(self.start_nodes)) logging.info("End Nodes: {}".format(self.end_nodes)) logging.info("Capacities: {}".format(self.capacities)) logging.info("Costs: {}".format(self.costs)) logging.info("Supplies: {}".format(self.supplies)) logging.info("------------------- Minimizing Lost Sales ----------------------------") self.mean_units = 0 # Reset for each iteration self.theoretical_units_produced = [0] * self.num_stations start = time() self.run_optimizer(log_history=False) # DO NOT log history solve_time = time() - start logging.info("---------------------------------------------------------------------") self._compute_units_produced(compute_WIP=False) del self.solver self.solver = pywrapgraph.SimpleMinCostFlow() logging.info("------------------- Minimizing Standard Deviation --------------------") start = time() self._build_graph(cost_fn= self._compute_std_cost) build_time += time() - start start = time() self.run_optimizer(log_history=True) # Log final assignment solve_time += time() - start self.experiment_time += build_time + solve_time logging.info("---------------------------------------------------------------------") self._compute_units_produced(compute_WIP=True) self.inventory_log = np.append(self.inventory_log, [self.WIP_inventory], axis=0) logging.info("---------------------------------------------------------------------") logging.info('Graph building time: {:.5f}s'.format(build_time)) logging.info('Solving time: {:.5f}s'.format(solve_time)) logging.info('Total time: {:.5f}s'.format(build_time + solve_time)) logging.info("======================================================================") logging.info('\n') self.current_time_step += 1 # Update the skills for each worker logging.info("Updated Skill Levels:--------------------------------------------------") for worker_id in range(self.num_workers): for station_id in range(self.num_stations): skill_level = self.update_skills(worker_id, station_id) self.workers[worker_id].rem_skill[station_id] = skill_level logging.info("worker ID: {} Skill Levels: {}".format(worker_id+1, self.workers[worker_id].rem_skill)) del self.solver self.solver = pywrapgraph.SimpleMinCostFlow() logging.info("======================================================================") logging.info('Total experiment time: {:.5f}s'.format(self.experiment_time)) # Save output to CSV for i, worker in enumerate(self.workers): self.pd_file = self.pd_file.append(pd.Series(worker.assign_history[1:], index=self.pd_file.columns, name='Worker {}'.format(i+1))) self.pd_file.to_csv(self.SAVE_PATH + "Assignment Result.csv") def add_worker(self, lr: float, fr: float, initial_skill: List[int], station_id: int): """ Helper function to add a worker object to the problem setup :param lr: Learning rate of the worker :param fr: Forgetting rate of the worker :param initial_skill: Initial skill levels for each station :param station_id: Initial station assignment :return: """ id = len(self.workers) assert len(initial_skill) == self.num_stations, "len(initial_skill)" \ "must be equal to the number of" \ "stations" """ NOTE: station_id for assign_history is only for display purposes. Therefore, we use 1-based indexing. """ self.workers.append(Worker(id, lr, fr, initial_skill, station_id)) def add_station(self, S_max: float, S_min: float, delta: float, eps: float): """ Helper function to add Station object to the problem setup :param S_max (float): Max theoretical skill level attainable :param S_min (float): Min theoretical skill level attainable :param delta (float): Practical max skill threshold :param eps (float): Practical min skill threshold """ id = len(self.stations) self.stations.append(Station(id, S_max, S_min, delta, eps)) def update_skills(self, worker_id: int, station_id: int): """ Function to update the skill levels of a given worker and a station at the end of each time step. The skill is improved if the station id is the same as the given worker's station id; else the skill is deteriorated. :param worker_id: Worker ID :param station_id: Station ID """ if self.workers[worker_id].assign_history[-1] == station_id + 1: S = self._skill_improvement(worker_id, station_id) else: S = self._skill_deterioration(worker_id, station_id) return S def _skill_improvement(self, worker_id, station_id) -> int: """ The skill improvement formula for a given worker_id k and station_id j at time step l is given as follows - S_jkl = S_max_j - (S_max_j - S_rem_jk)e^(beta_k*l) :return: Improved skill level (int) """ l = 1 if self.current_time_step > 0 else 0 S_max = self.stations[station_id].S_max S_rem = self.workers[worker_id].rem_skill[station_id] beta = self.workers[worker_id].beta exp_term = np.exp(beta*l) S = (1 - exp_term)*S_max + S_rem*exp_term #S_max - (S_max - S_rem)*exp_term S = int(round(abs(S))) return min(S, self.stations[station_id].S_UB) def _skill_deterioration(self, worker_id, station_id) -> int: """ The skill deterioration formula for a given worker_id k and station_id j at time step l is given as follows - S_rem_jkl = S_min_j + (S_jk - S_min_j)e^(gamma_k*l) :return: Deteriorated skill level (int) """ l = 1 if self.current_time_step > 0 else 0 S_min = self.stations[station_id].S_min S_curr = self.workers[worker_id].rem_skill[station_id] gamma = self.workers[worker_id].gamma exp_term = np.exp(gamma*l) S = (1 - exp_term)*S_min + S_curr*exp_term #S_min + (S_curr - S_min)*exp_term S = int(round(abs(S))) return max(S, self.stations[station_id].S_LB) def _compute_lost_sales_cost(self, worker_id, station_id) -> int: S = self.workers[worker_id].rem_skill[station_id] # if worker_id > 0: # th = max([x if x < S else 0 for x in self.workers[worker_id - 1].rem_skill]) # else: # th = 0 current_loss = max(0, self.demands[self.current_time_step] - S) + \ max(0, S - self.demands[self.current_time_step]) return current_loss def _compute_std_cost(self, worker_id, station_id): self.mean_units = sum(self.actual_units)/len(self.actual_units) S = self.workers[worker_id].rem_skill[station_id] future_loss = 0 demand_erraticity = abs(np.diff(self.demands)).sum() # Total variation Distance future_loss_weight = 3 #int(round(np.exp(-0.00405058 *demand_erraticity + 1.54692256))) # print(future_loss_weight, demand_erraticity) for i in range(self.current_time_step + 1, self.num_time_steps): future_loss += max(0, self.demands[i] - S) + \ future_loss_weight*max(0, S - self.demands[i]) return int(round(abs((S - self.mean_units)))) + future_loss def get_plots(self, is_show = False): """ Function to display all required plots. :return: """ """ Plot 1: Worker Station Assignment """ plt.figure() for i, worker in enumerate(self.workers): plt.plot(worker.assign_history, lw=2, ls='-', marker='o', alpha=0.7, ms=10, label="Worker {}".format(i+1)) plt.xticks(np.arange(1, self.num_time_steps + 1, 1)) plt.yticks(np.arange(1, self.num_workers + 1, 1)) plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=15) plt.xlabel('Time Steps', fontsize=15) plt.ylabel('Station ID', fontsize=15) plt.title('Worker Station Assignment', fontsize=15) plt.tight_layout() plt.savefig(self.SAVE_PATH + "Worker Station Assignment.pdf", dpi=300) """ Plot 2: Demand Vs Output """ plt.figure() inds = np.arange(1, self.num_time_steps + 1) width = 0.35 plt.bar(inds - width/2, self.demands, width, label="Demands") plt.bar(inds + width / 2, self.final_num_units, width, label="Output") plt.xticks(
np.arange(1, self.num_time_steps + 1, 1)
numpy.arange
bl_info = { "name": "Import Planar Code", "author": "<NAME>", "version": (1, 0), "blender": (2, 80, 0), "location": "File > Import > Planar Code", "description": "Import planar code and construct mesh by assigning vertex positions.", "warning": "", "support": "TESTING", "wiki_url": "", "tracker_url": "", "category": "Import-Export", } import bpy import bmesh import numpy as np import mathutils as mu from bpy.props import StringProperty, IntProperty, BoolProperty import struct import collections import os import random class PlanarCodeReader: def __init__(self, filename, index, embed2d, embed3d): self.faceCounters = [] verts_loc, faces = self.read(filename, index) if (not verts_loc): return if (len(verts_loc) <= 0): return # create new mesh name = os.path.basename(filename) + "_" + str(index) mesh = bpy.data.meshes.new(name) mesh.from_pydata(verts_loc,[],faces) mesh.update(calc_edges=True) # create new bmesh bm = bmesh.new() bm.from_mesh(mesh) # enable lookup bm.verts.ensure_lookup_table() bm.edges.ensure_lookup_table() bm.faces.ensure_lookup_table() if (embed2d): pv = self.embed(bm) print(pv) if (embed3d): self.liftup(bm, pv) bm.to_mesh(mesh) # create new object obj = bpy.data.objects.new(name, mesh) # set object location obj.location = bpy.context.scene.cursor.location # link the object to collection bpy.context.scene.collection.objects.link(obj) def read(self, filename, index): self.f = open(filename, "rb") verts = [] faces = [] try: DEFAULT_HEADER = b">>planar_code<<" header = self.f.read(len(DEFAULT_HEADER)) if (header == DEFAULT_HEADER): print(index) self.skip(index) # create verts num_vert = struct.unpack('b', self.f.read(1)) i = 0 while i < num_vert[0]: # create vertex verts.append((0, 0, 0)) # read adjacant vertices adj = [] while True: tmp = struct.unpack('b', self.f.read(1)) if (tmp[0] <= 0): # 0 means separator break adj.append(tmp[0]) # add face counter lastIndex = len(adj)-1 for j in range(lastIndex): self.addIfAbsent(collections.Counter([i, adj[j]-1, adj[j+1]-1])) self.addIfAbsent(collections.Counter([i, adj[0]-1, adj[lastIndex]-1])) i += 1 for counter in self.faceCounters: faces.append(tuple(counter)) except: print(f"Error in reading {filename}") self.f.close() return self.f.close() del self.f return verts, faces def skip(self, index): # skip to target index for i in range(index): num_vert = struct.unpack('b', self.f.read(1)) n = num_vert[0] while n > 0: d = struct.unpack('b', self.f.read(1)) if (d[0] == 0): n -= 1 def addIfAbsent(self, fc): for counter in self.faceCounters: if (counter == fc): break else: self.faceCounters.append(fc) def embed(self, bm): # randomly pick up a face outerFace = bm.faces[random.randint(0, len(bm.faces)-1)] # embed an outer face to form a regular polygon inscribed into a circle n = len(outerFace.verts) inv_sqrt = 1.0 / np.sqrt(n) angle = 360.0 / n for i, v in enumerate(outerFace.verts): rad = (i * angle / 180.0) * np.pi x = inv_sqrt * np.cos(rad) y = inv_sqrt * np.sin(rad) v.co.x = x v.co.y = y rests = [] for v in bm.verts: if (not v in outerFace.verts): rests.append(v) # variables for the force F_uv on a Edge(u,v) fuv = np.zeros((len(bm.edges), 3)) # force F_v on a Vertex(v) fv = np.zeros((len(bm.verts), 3)) # Constant value n_pi = np.sqrt(len(bm.verts) / np.pi) # final double A = 2.5; avg_area = np.pi / len(bm.verts) loop = 0 # iterations while (loop < 500): # Set F_v to zero fv[:] = 0 # Calculate F_uv for Edges for j, e in enumerate(bm.edges): v = e.verts[0] u = e.verts[1] C = n_pi x = C *
np.power(v.co.x - u.co.x, 3)
numpy.power
#! /usr/bin/env python """ Forward model matched filter relying on either KLIP (Soummer et al. 2012; Pueyo 2016) and LOCI (Lafreniere et al. 2007b) for the PSF reference approximation. The original concept of matched filter applied to KLIP has been first proposed in Ruffio et al. (2019) and then adapted in Dahlqvist et al. (2021) to use the LOCI framework. For both PSF-subtraction techniques, a forward model of the PSF is computed for each pixel contained in the field of view and each frame to account for the over-subtraction and self-subtraction of potential planetary signal due to the reference PSF subtraction. The obtained model is then compared to the pixels intensities within each frame of the residual cube. The SNR associated to each pixel contained in the field of view, as well as its estimated contrast is thn obtained via a Gaussian maximum likelihood approach. """ __author__ = '<NAME>' __all__ = ['fmmf'] import numpy as np import numpy.linalg as la from skimage.draw import disk from ..var import get_annulus_segments, frame_center from ..preproc import frame_crop,cube_crop_frames,cube_derotate from ..config.utils_conf import pool_map, iterable from ..fm import cube_inject_companions from ..preproc.derotation import _find_indices_adi def fmmf(cube, pa, psf, fwhm, min_r=None,max_r=None, model='KLIP',var='FR', param={'ncomp': 20, 'tolerance': 5e-3, 'delta_rot':0.5}, crop=5, imlib='opencv', interpolation='lanczos4',ncore=1,verbose=True): """ Forward model matched filter generating SNR map and contrast map, using either KLIP or LOCI as PSF subtraction techniques. Parameters ---------- cube : numpy ndarray, 3d Input cube (ADI sequences), Dim 1 = temporal axis, Dim 2-3 = spatial axis pa : numpy ndarray, 1d Parallactic angles for each frame of the ADI sequences. psf : numpy ndarray 2d 2d array with the normalized PSF template, with an odd shape. The PSF image must be centered wrt to the array! Therefore, it is recommended to run the function ``normalize_psf`` to generate a centered and flux-normalized PSF template. fwhm: int Full width at half maximum for the instrument PSF min_r : int,optional Center radius of the first annulus considered in the FMMF detection map estimation. The radius should be larger than half the value of the 'crop' parameter . Default is None which corresponds to one FWHM. max_r : int Center radius of the last annulus considered in the FMMF detection map estimation. The radius should be smaller or equal to half the size of the image minus half the value of the 'crop' parameter. Default is None which corresponds to half the size of the image minus half the value of the 'crop' parameter. model: string, optional Selected PSF-subtraction technique for the computation of the FMMF detection map. FMMF work either with KLIP or LOCI. Default is 'KLIP'. var: str, optional Model used for the residual noise variance estimation used in the matched filtering (maximum likelihood estimation of the flux and SNR). Three different approaches are proposed: 'FR', 'FM', and 'TE'. 'FR': consider the pixels in the selected annulus with a width equal to asize but separately for every frame. 'FM': consider the pixels in the selected annulus with a width equal to asize but separately for every frame. Apply a mask one FWHM on the selected pixel and its surrounding. 'TE': rely on the method developped in PACO to estimate the residual noise variance (take the pixels in a region of one FWHM arround the selected pixel, considering every frame in the derotated cube of residuals except for the selected frame) param: dict, optional Dictionnary regrouping the parameters used by the KLIP (ncomp and delta_rot) or LOCI (tolerance and delta_rot) PSF-subtraction technique. ncomp : int, optional Number of components used for the low-rank approximation of the speckle field. Default is 20. tolerance: float, optional Tolerance level for the approximation of the speckle field via a linear combination of the reference images in the LOCI algorithm. Default is 5e-3. delta_rot : float, optional Factor for tunning the parallactic angle threshold, expressed in FWHM. Default is 0.5 (excludes 0.5xFHWM on each side of the considered frame). crop: int, optional Part of the PSF tempalte considered is the estimation of the FMMF detection map. Default is 5. imlib : str, optional Parameter used for the derotation of the residual cube. See the documentation of the ``vip_hci.preproc.frame_rotate`` function. interpolation : str, optional Parameter used for the derotation of the residual cube. See the documentation of the ``vip_hci.preproc.frame_rotate`` function. ncore : int, optional Number of processes for parallel computing. By default ('ncore=1') the algorithm works in single-process mode. verbose: bool, optional If True provide a message each time an annulus has been treated. Default True. Returns ------- flux_matrix : 2d ndarray Maximum likelihood estimate of the contrast for each pixel in the field of view snr_matrix : 2d ndarray Signal to noise ratio map (defined as the estimated contrast divided by the estimated standard deviation of the contrast). """ if crop>=2*round(fwhm)+1: raise ValueError("Maximum cropsize should be lower or equal to two"+ " FWHM,please change accordingly the value of 'crop'") if min_r is None: min_r=int(round(fwhm)) if max_r is None: max_r= cube.shape[-1]//2-(crop//2+1) res_full = pool_map(ncore, snr_contrast_esti, iterable(range(min_r,max_r)), cube, pa, psf, fwhm, model,var,param, crop, imlib, interpolation,verbose) flux_matrix=np.zeros((cube.shape[1],cube.shape[2])) snr_matrix=np.zeros((cube.shape[1],cube.shape[2])) for res_temp in res_full: indices=get_annulus_segments(cube[0], res_temp[2],1) flux_matrix[indices[0][0],indices[0][1]]=res_temp[0] snr_matrix[indices[0][0],indices[0][1]]=res_temp[1] return flux_matrix,snr_matrix def var_esti(mcube,pa,var,crop,ann_center): """ Computation of the residual noise variance """ n,y,x=mcube.shape if var=='FR': var_f=np.zeros(n) indices = get_annulus_segments(mcube[0], ann_center-int(crop/2),crop,1) poscentx=indices[0][1] poscenty=indices[0][0] for a in range(n): var_f[a]=np.var(mcube[a,poscenty,poscentx]) elif var=='FM' : indices=get_annulus_segments(mcube[0], ann_center,1,1) indicesy=indices[0][0] indicesx=indices[0][1] var_f=np.zeros((len(indicesy),n)) indices = get_annulus_segments(mcube[0], ann_center-int(crop/2),crop,1) for a in range(len(indicesy)): indc=disk((indicesy[a], indicesx[a]),3) positionx=[] positiony=[] for k in range(0,len(indices[0][1])): cond1=set(np.where(indices[0][1][k]==indc[1])[0]) cond2=set(np.where(indices[0][0][k]==indc[0])[0]) if len(cond1 & cond2)==0: positionx.append(indices[0][1][k]) positiony.append(indices[0][0][k]) for b in range((n)): var_f[a,b]=np.var(mcube[b,positiony,positionx]) elif var=='TE' : indices=get_annulus_segments(mcube[0], ann_center,1,1) indicesy=indices[0][0] indicesx=indices[0][1] var_f=np.zeros((len(indicesy),n)) mcube_derot=cube_derotate(mcube,-pa) for a in range(0,len(indicesy)): radist=np.sqrt((indicesx[a]-int(x/2))**2+(indicesy[a]-int(y/2))**2) if (indicesy[a]-int(y/2))>=0: ang_s= np.arccos((indicesx[a]-int(x/2))/radist)/np.pi*180 else: ang_s= 360-np.arccos((indicesx[a]-int(x/2))/radist)/np.pi*180 for b in range(n): twopi=2*np.pi sigposy=int(y/2 + np.sin((ang_s-pa[b])/360*twopi)*radist) sigposx=int(x/2+ np.cos((ang_s-pa[b])/360*twopi)*radist) y0 = int(sigposy - int(crop/2)) y1 = int(sigposy + int(crop/2)+1) # +1 cause endpoint is #excluded when slicing x0 = int(sigposx - int(crop/2)) x1 = int(sigposx + int(crop/2)+1) mask = np.ones(mcube_derot.shape[0],dtype=bool) mask[b]=False mcube_sel=mcube_derot[mask,y0:y1,x0:x1] var_f[a,b]=np.var(np.asarray(mcube_sel)) return var_f def snr_contrast_esti(ann_center,cube, pa, psf, fwhm, model,var,param, crop , imlib, interpolation,verbose): """ Computation of the SNR and contrast associated to the pixels contained in a given annulus via the foward model matched filter """ n,y,x=cube.shape evals_matrix=[] evecs_matrix=[] KL_basis_matrix=[] refs_mean_sub_matrix=[] sci_mean_sub_matrix=[] resicube_klip=None ind_ref_list=None coef_list=None ncomp=param['ncomp'] tolerance=param['tolerance'] delta_rot=param['delta_rot'] # Computation of the reference PSF, and the matrices # required for the computation of the PSF forward models pa_threshold = np.rad2deg(2 * np.arctan(delta_rot * fwhm / (2 * (ann_center)))) mid_range = np.abs(np.amax(pa) - np.amin(pa)) / 2 if pa_threshold >= mid_range - mid_range * 0.1: pa_threshold = float(mid_range - mid_range * 0.1) if model=='KLIP': resicube_klip=np.zeros_like(cube) indices = get_annulus_segments(cube[0], ann_center-int(round(fwhm)/2),int(round(fwhm)),1) for k in range(0,cube.shape[0]): res_temp=KLIP_patch(k,cube[:, indices[0][0], indices[0][1]], ncomp,pa, int(round(fwhm)), pa_threshold, ann_center) evals_temp=res_temp[0] evecs_temp=res_temp[1] KL_basis_temp=res_temp[2] sub_img_rows_temp=res_temp[3] refs_mean_sub_temp=res_temp[4] sci_mean_sub_temp=res_temp[5] resicube_klip[k,indices[0][0], indices[0][1]] = sub_img_rows_temp evals_matrix.append(evals_temp) evecs_matrix.append(evecs_temp) KL_basis_matrix.append(KL_basis_temp) refs_mean_sub_matrix.append(refs_mean_sub_temp) sci_mean_sub_matrix.append(sci_mean_sub_temp) mcube=cube_derotate(resicube_klip,pa,imlib=imlib, interpolation=interpolation) elif model=='LOCI': resicube, ind_ref_list,coef_list=LOCI_FM(cube, psf, ann_center, pa, int(round(fwhm)), fwhm, tolerance,delta_rot,pa_threshold) mcube=cube_derotate(resicube,pa,imlib=imlib, interpolation=interpolation) ceny, cenx = frame_center(cube[0]) indices=get_annulus_segments(mcube[0], ann_center,1,1) indicesy=indices[0][0] indicesx=indices[0][1] flux_esti=np.zeros_like(indicesy) prob_esti=np.zeros_like(indicesy) var_f=var_esti(mcube,pa,var,crop,ann_center) for i in range(0,len(indicesy)): psfm_temp=None poscenty=indicesy[i] poscentx=indicesx[i] indices = get_annulus_segments(cube[0], ann_center-int(round(fwhm)/2),int(round(fwhm)),1) an_dist = np.sqrt((poscenty-ceny)**2 + (poscentx-cenx)**2) theta = np.degrees(np.arctan2(poscenty-ceny, poscentx-cenx)) model_matrix=cube_inject_companions(np.zeros_like(cube), psf, pa, flevel=1, plsc=0.1, rad_dists=an_dist, theta=theta, n_branches=1,verbose=False) #PSF forward model computation for KLIP if model=='KLIP': psf_map=np.zeros_like(model_matrix) for b in range(0,n): psf_map_temp = perturb(b, model_matrix[:, indices[0][0], indices[0][1]], ncomp,evals_matrix, evecs_matrix,KL_basis_matrix, sci_mean_sub_matrix,refs_mean_sub_matrix, pa, fwhm, pa_threshold, ann_center) psf_map[b,indices[0][0], indices[0][1]]=psf_map_temp psf_map[b,indices[0][0], indices[0][1]]-=np.mean(psf_map_temp) psf_map_der = cube_derotate(psf_map, pa, imlib=imlib, interpolation=interpolation) psfm_temp=cube_crop_frames(psf_map_der,int(2*round(fwhm)+1), xy=(poscentx,poscenty),verbose=False) #PSF forward model computation for LOCI if model=='LOCI': values_fc = model_matrix[:, indices[0][0], indices[0][1]] cube_res_fc=np.zeros_like(model_matrix) matrix_res_fc = np.zeros((values_fc.shape[0], indices[0][0].shape[0])) for e in range(values_fc.shape[0]): recon_fc = np.dot(coef_list[e], values_fc[ind_ref_list[e]]) matrix_res_fc[e] = values_fc[e] - recon_fc cube_res_fc[:, indices[0][0], indices[0][1]] = matrix_res_fc cube_der_fc = cube_derotate(cube_res_fc-np.mean(cube_res_fc), pa, imlib=imlib, interpolation=interpolation) psfm_temp=cube_crop_frames(cube_der_fc,int(2*round(fwhm)+1), xy=(poscentx,poscenty),verbose=False) num=[] denom=[] # Matched Filter for j in range(n): if var=='FR': svar=var_f[j] elif var=='FM' : svar=var_f[i,j] elif var=='TE': svar=var_f[i,j] if psfm_temp.shape[1]==crop: psfm=psfm_temp[j] else: psfm=frame_crop(psfm_temp[j], crop,cenxy=[int(psfm_temp.shape[-1]/2), int(psfm_temp.shape[-1]/2)],verbose=False) num.append(np.multiply(frame_crop(mcube[j],crop, cenxy=[poscentx,poscenty],verbose=False),psfm).sum()/svar) denom.append(np.multiply(psfm,psfm).sum()/svar) flux_esti[i]=sum(num)/np.sqrt(sum(denom)) prob_esti[i]=sum(num)/sum(denom) if verbose==True: print("Radial distance "+"{}".format(ann_center)+" done!") return prob_esti,flux_esti,ann_center def perturb(frame,model_matrix,numbasis,evals_matrix, evecs_matrix, KL_basis_matrix,sci_mean_sub_matrix,refs_mean_sub_matrix, angle_list, fwhm, pa_threshold, ann_center): """ Function allowing the estimation of the PSF forward model when relying on KLIP for the computation of the speckle field. The code is based on the PyKLIP library considering only the ADI case with a singlle number of principal components considered. For more details about the code, consider the PyKLIP library or the original articles (Pueyo, L. 2016, ApJ, 824, 117 or <NAME>., <NAME>., <NAME>., & Pueyo, L. 2017, ApJ, 842) """ #Selection of the reference library based on the given parralactic angle threshold if pa_threshold != 0: indices_left = _find_indices_adi(angle_list, frame, pa_threshold, truncate=False) models_ref = model_matrix[indices_left] else: models_ref = model_matrix #Computation of the self-subtraction and over-subtraction for the current frame model_sci = model_matrix[frame] KL_basis=KL_basis_matrix[frame] sci_mean_sub=sci_mean_sub_matrix[frame] refs_mean_sub=refs_mean_sub_matrix[frame] evals=evals_matrix[frame] evecs=evecs_matrix[frame] max_basis = KL_basis.shape[0] N_pix = KL_basis.shape[1] models_mean_sub = models_ref - np.nanmean(models_ref, axis=1)[:,None] models_mean_sub[np.where(np.isnan(models_mean_sub))] = 0 model_sci_mean_sub = model_sci- np.nanmean(model_sci) model_sci_mean_sub[np.where(np.isnan(model_sci_mean_sub))] = 0 model_sci_mean_sub_rows = np.reshape(model_sci_mean_sub,(1,N_pix)) sci_mean_sub_rows = np.reshape(sci_mean_sub,(1,N_pix)) delta_KL = np.zeros([max_basis, N_pix]) models_mean_sub_X_refs_mean_sub_T = models_mean_sub.dot(refs_mean_sub.transpose()) for k in range(max_basis): Zk = np.reshape(KL_basis[k,:],(1,KL_basis[k,:].size)) Vk = (evecs[:,k])[:,None] diagVk_X_models_mean_sub_X_refs_mean_sub_T = (Vk.T).dot(models_mean_sub_X_refs_mean_sub_T) models_mean_sub_X_refs_mean_sub_T_X_Vk = models_mean_sub_X_refs_mean_sub_T.dot(Vk) DeltaZk = -(1/(2*
np.sqrt(evals[k])
numpy.sqrt
###################### ## Version 0.10 ####### ###################### """ ********************************************************************** Copyright(C) 2020 <NAME> email: <EMAIL> <EMAIL> This file contains the code for Polynomial regression via latent tensor reconstruction (PRLTR. PRLTR is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. PRLTR is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU General Public License along with PRLTR. If not, see <http://www.gnu.org/licenses/>. ***********************************************************************/ """ """ Polynomial regression via latent tensor reconstruction Activation funtion a(X\lambda_uU)V^{T} Version 0.10 (15.03.2021) """ """ Vector output, one view, ranks range processed as in one step polynomial encoding, a(X\lambda_{u}U)V^{T} """ ## ##################################################### import sys import time import pickle import numpy as np ## ##################################################### ## import matplotlib ## import matplotlib.pyplot as plt ## import matplotlib.cm as cmplot ## ## import matplotlib.animation as animation ## import mpl_toolkits.mplot3d.axes3d as p3 ## import mpl_toolkits.mplot3d.art3d as art3d ## ## from matplotlib.collections import Line3DCollection ## from matplotlib.colors import colorConverter ## ################################################### ## ################################################################ ## ################################################################ ## ################################################################ class store_cls: def __init__(self): self.lPstore=None return ## ################################################################ class tensor_latent_vector_cls: """ Task: to implement the latent tensor reconstruction based polynomial regression """ ## ------------------------------------------------- def __init__(self,norder=1,nordery=1,rank=10,rankuv=None): """ Task: to initialize the ltr object Input: norder input degree(oreder) of the polynomial nordery output degree, in the current version it has to be 1 !!! rank the number of rank-one layers rankuv common rank in UV^{T} U ndimx,rankuv, V nrank,nrankuv """ self.ifirstrun=1 ## =1 first fit run ## =0 next run for new data or self.norder=norder ## input degree(order) self.nordery=nordery ## output degree ## ----------------------------------------- self.nrank0=rank ## initial saved maximum rank ## initial maximum rank, in the rank extension self.nrank it is changed ## if in function fit irank_add=1 self.nrank=rank ## ------------------------------------------ self.nrankuv=rankuv ## P=UV^{T}, U ndimx,nrankuv V nrank,nrankuv self.nminrank=0 ## initial minimum rank self.lranks=[] ## accumulated (nminrank,nrank) in the rank blocks self.rankcount=0 ## number of extensions self.ndimx=0 ## view wise input dimensions self.ndimy=0 ## output dimension self.iter=0 ## iteration counter used in the ADAM update self.cregular=0.000005 self.cP=self.cregular ## regularization penalty on U,V self.cQ=self.cregular ## regularization penalty on Q self.clambda=self.cregular ## lambda regularization constant ## parameter initialization # self.xP=None ## input poly parameters (order,rank,ndimx) # self.xPnext=None ## input next poly parameters in NAG # self.xGrad=None ## the gardients of xP vectors # self.xV=None ## aggregated gradients of xP # self.xnG=None ## aggregated gradient lenght^2 self.xU=None ## input poly parameters (order,rankuv,ndimx) self.xUnext=None ## input next poly parameters in NAG self.xGradU=None ## the gardients of xU vectors self.xAU=None ## aggregated gradients of xU self.xnAU=None ## aggregated gradient lenght^2 self.xV=None ## input poly parameters (order,rank,nrankuv) self.xVnext=None ## input next poly parameters in NAG self.xGradV=None ## the gardients of xP vectors self.xAV=None ## aggregated gradients of xP self.xnAV=None ## aggregated gradient lenght^2 self.xQ=None ## output poly parameter (rank,dimy) self.xQnext=None ## output next in NAG self.xGradQ=None ## the gradients of xQ self.xAQ=None ## the aggregated gradients of xQ self.xnAQ=None ## the aggregated gradient length^2 self.xlambda=None ## lambda factors self.xlambdanext=0 ## next for NAG self.xlambdagrad=0 ## lambda gradient self.xAlambda=0 ## aggregated lambda gradients self.xnAlambda=0 ## aggrageted lambda gadient length self.xlambdaU=None ## lambda factors self.xlambdanextU=0 ## next for NAG self.xlambdagradU=0 ## lambda gradient self.xAlambdaU=0 ## aggregated lambda gradients self.xnAlambdaU=0 ## aggrageted lambda gadient length self.ilambda=1 ## xlambda is updated by gradient self.ilambdamean=0 ## =1 mean =0 independent components self.f=None ## computed function value self.yerr=[] ## rmse block error self.irandom=1 ## =1 random block =0 order preserving blocks self.iscale=1 ## =1 error average =0 no self.dscale=2 ## x-1/dscale *x^2 stepsize update ## ADAM + NAG self.sigma0=0.1 ## initial learning speed self.sigma=0.1 ## updated learning speed self.sigmabase=1 ## sigma scale self.gamma=1.0 ## discount factor self.gammanag=0.99 ## Nesterov accelerated gradient factor self.gammanag2=0.99 ## Nesterov accelerated gradient factor self.ngeps=0.00001 ## ADAM correction to avoid 0 division self.nsigma=1 ## range without sigma update self.sigmamax=1 ## maximum sigma*len_grad self.iyscale=1 ## =1 output vectors are scaled self.yscale=1 ## the scaling value self.mblock=10 ## data block size, number of examples self.mblock_gap=None ## shift of blocks self.ibias=1 ## =1 bias is computed =0 otherwise self.pbias=None ## bias vectors, matrix with size nrank,ndimy self.lbias=[] self.inormalize=1 ## force normalization in each iteration ## test environment self.istore=0 self.cstore_numerator=store_cls() self.cstore_denominator=store_cls() self.cstore_output=store_cls() self.store_bias=None self.store_yscale=None self.store_lambda=None self.store_grad=[] self.store_acc=[] self.max_grad_norm=0 ## maximum gradient norm self.maxngrad=0 ## to signal of long gradients self.Ytrain=None ## deflated output vectors ## parameter variables which can be stored after training ## and reloaded in test self.lsave=['norder','nrank','iyscale','yscale','ndimx','ndimy', \ 'xU','xV','xQ','xlambda','pbias'] ## activation function self.iactfunc=0 ## =0 identity, =1 arcsinh =2 2*sigmoid-1 =3 tanh =4 relu ## loss degree self.lossdegree=0 ## =0 L_2^2, =1 L_2, =0.5 L_2^{0.5}, ...L_2^{z} ## Kolmogorov mean self.ikolmogorov=1 ## L_1 norm approximation log(cosh(tx)) self.kolm_t=1 ## t factor in cosh ## power regularization self.regdegree=1 ## degree of regularization ## penalty constant to enforce the orthogonality all P[order,rank,:] vectors self.iortho=0 ## =1 orthogonality forced =0 not self.cortho=0.0 ## penalty constant ## nonlinear regularization \dfrac{\partial f}{\partial x \partial P} self.iregular_nonlinear=0 ## =1 regularize =0 not self.cregularnl=0.0005 ## penalty constant self.report_freq=100 ## state report frequency relative to the number of minibatches. return ## ------------------------------------------------ def init_lp(self): """ Task: to initialize the parameter vectors U,V,Q, bias,lambda lambdaU Input: Output: Modifies: self.xU, self.xV, self,xQ, self.xlambda, self. xlambdaU, self.pbias """ nrank=self.nrank nrankuv=self.nrankuv self.xU=np.random.randn(self.norder,self.ndimx,nrankuv) self.xV=np.random.randn(self.norder,nrank,self.nrankuv) self.xQ=np.random.randn(nrank,self.ndimy) self.xlambda=np.ones(nrank) self.xlambdaU=np.ones(self.ndimx) self.pbias=np.zeros((1,self.ndimy)) return # ## ------------------------------------------------ # def volume(self,irank): # """ # Task: to compute of the volume spanned by vectors # xP[0][irank],...,xP[norder-1][irank] # Output: vol scalar volume # """ # P=np.array([ self.xP[t,irank] for t in range(self.norder)]) # PP=np.dot(P,P.T) # vol=np.linalg.det(PP) # if vol<0: # vol=0 # vol=np.sqrt(vol) # return(vol) # ## ------------------------------------------------ def init_grad(self): """ Task: to initialize the gradients Input: Output: Modifies: self.xGradU the gradient of the xU self.xAU the accumulated gradient of xU self.xnAU the accumulated gradient norms of xU self.xUnext the pushforward xU ( Nesterov accelerated gradient) self.xGradV the gradient of the xV self.xAV the accumulated gradient of xV self.xnAV the accumulated gradient norms of xV self.xVnext the pushforward xU ( Nesterov accelerated gradient) self.xGradQ the gradient of the xQ self.xAQ the accumulated gradient of xQ self.xnAQ the accumulated gradient norms of xQ self.xQnext the pushforward xQ ( Nesterov accelerated gradient) """ drank=self.nrank-self.nminrank ndimx=self.ndimx ndimy=self.ndimy norder=self.norder nrankuv=self.nrankuv self.xGradU=np.zeros((norder,ndimx,nrankuv)) self.xAU=np.zeros((norder,ndimx,nrankuv)) self.xnAU=np.zeros((norder,ndimx)) self.xUnext=np.zeros((norder,ndimx,nrankuv)) self.xGradV=np.zeros((norder,drank,nrankuv)) self.xAV=np.zeros((norder,drank,nrankuv)) self.xnAV=np.zeros((norder,drank)) self.xVnext=np.zeros((norder,drank,nrankuv)) self.xGradQ=np.zeros((drank,ndimy)) self.xAQ=np.zeros((drank,ndimy)) self.xnAQ=np.zeros((drank)) self.xQnext=np.zeros((drank,ndimy)) self.xlambdagrad=np.zeros(drank) self.xAlambda=np.zeros(drank) self.xnAlambda=0 self.xlambdanext=np.zeros(drank) self.xlambdagradU=np.zeros(ndimx) self.xAlambdaU=np.zeros(ndimx) self.xnAlambdaU=0 self.xlambdanextU=np.zeros(ndimx) return ## ------------------------------------------------- def extend_poly_parameters_rank(self,nextrank): """ Task: extedn the parameter lists to the next rank Input: nextrank the extended rank beyond self.nrank Output: Modifies: self.xV, self.xQ, self.xlambda, self.pbias """ nrank=self.nrank nrankuv=self.nrankuv ndimx=self.ndimx ndimy=self.ndimy if nextrank>nrank: drank=nextrank-nrank xprev=np.copy(self.xV) self.xV=np.zeros((self.norder,nextrank,nrankuv)) for d in range(self.norder): self.xV[d]=np.vstack((xprev[d],np.random.randn(drank,nrankuv))) xprev=np.copy(self.xQ) self.xQ=np.vstack((xprev,np.random.randn(drank,ndimy))) self.xlambda=np.concatenate((self.xlambda,np.ones(drank))) self.pbias=np.vstack((self.pbias,np.zeros(ndimy))) return ## ------------------------------------------------- def update_parameters(self,**dparams): """ Task: to update the initialized parameters Input: dprams dictionary { parameter name : value } Output: Modifies: corresponding parameters """ for key,value in dparams.items(): if key in self.__dict__: self.__dict__[key]=value if self.mblock_gap is None: self.mblock_gap=self.mblock return ## ------------------------------------------------ def normalize_lp(self,ilambda=1): """ Task: to project, normalize by L2 norm, the polynomial parameters xP, xQ Input: ilambda =1 xlambda[irank], vlambda nglambda is updated with the product of lenght of the parameter vectors before normalization Output: xnormlambda the product of lenght of the parameter vectors before normalization Modifies: xP, xQ or xP[irank], xQ[irank], xlambda[irank], vlambda nglambda """ nrank=self.nrank nrankuv=self.nrankuv nminrank=self.nminrank drank=nrank-nminrank xnormlambda=np.ones(drank) xnormlambdaU=np.ones(self.ndimx) for d in range(self.norder): xnorm=np.sqrt(np.sum(self.xU[d]**2,1)) xnorm=xnorm+(xnorm==0) ## xnorm/=np.sqrt(nrankuv) self.xU[d]=self.xU[d] \ /np.outer(xnorm,np.ones(nrankuv)) xnormlambdaU*=xnorm for d in range(self.norder): xnorm=np.sqrt(np.sum(self.xV[d,nminrank:nrank]**2,1)) xnorm=xnorm+(xnorm==0) ## xnorm/=np.sqrt(nrankuv) self.xV[d,nminrank:nrank]=self.xV[d,nminrank:nrank] \ /np.outer(xnorm,np.ones(nrankuv)) ## xnormlambda*=xnorm xnorm=np.sqrt(np.sum(self.xQ[nminrank:nrank]**2,1)) xnorm=xnorm+(xnorm==0) ## xnorm/=np.sqrt(self.ndimy) self.xQ[nminrank:nrank]=self.xQ[nminrank:nrank] \ /np.outer(xnorm,np.ones(self.ndimy)) ## xnormlambda*=xnorm self.xlambdaU*=xnormlambdaU xnorm=np.sqrt(np.sum(self.xlambdaU**2)) xnorm=xnorm+(xnorm==0) xnorm/=np.sqrt(self.ndimx) self.xlambdaU/=xnorm ## xnormlambda*=xnorm self.xlambda[nminrank:nrank]*=xnormlambda self.xAlambda*=np.power(xnormlambda,0.5) ## to avoid overflow ## self.xnAlambda*=np.prod(xnormlambda) xscale=np.mean(xnormlambda) if np.min(xscale)>0: ## self.xnAlambda*=np.prod(np.power(xnormlambda,0.1)) self.xnAlambda/=xscale return(xnormlambda) ## -------------------------------------------- def update_lambda_matrix_bias(self,X,Y): """ Task: to compute the initial estimate of xlambda and the bias Input: X list of 2d arrays, the arrays of input block views Y 2d array of output block Output: xlambda real, the estimation of xlambda bias vector of bias estimation """ nrank=self.nrank nminrank=self.nminrank norder=self.norder drank=nrank-nminrank nrankuv=self.nrankuv m=len(X) ## @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ Fr=np.array([None for _ in range(norder)]) for d in range(norder): XU=np.dot(X,self.xU[d]*np.outer(self.xlambdaU,np.ones(nrankuv))) AXU=self.activation_func(XU,self.iactfunc) Fr[d]=np.dot(AXU,self.xV[d].T) ## @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ if len(Fr)>1: F=np.prod(Fr,0) else: F=np.copy(Fr[0]) Q=self.xQ[nminrank:nrank] nt,ny=Q.shape m=Y.shape[0] ## @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ em=np.ones(m) YQT=np.dot(Y,Q.T) QQT=np.dot(Q,Q.T) FTF=np.dot(F.T,F) f1=np.dot(em,F) ## @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ xright=np.dot(em,F*YQT)-np.dot(em,F*np.outer(em,np.dot(em,YQT)))/m xleft=QQT*(FTF-np.outer(f1,f1)/m) xlambda=np.dot(xright,np.linalg.pinv(xleft)) bias=np.dot(em,(Y-np.dot(F,np.outer(xlambda,np.ones(ny))*Q)))/m return(xlambda,bias) ## -------------------------------------------- def nag_next(self,gamma=0,psign=-1): """ Task: to compute the next point for Nesterov Acclerated gradient Input: gamma =0 no change , gradient scale otherwise psign =0 no change, -1 pull back, +1 push forward """ ## pull back or push forward psign=-1 ## -1 pull back, +1 push forward pgamma=psign*gamma nrank=self.nrank nminrank=self.nminrank for d in range(self.norder): self.xVnext[d]=self.xV[d,nminrank:nrank]+pgamma*self.xAV[d] self.xUnext[d]=self.xU[d]+pgamma*self.xAU[d] self.xQnext=self.xQ[nminrank:nrank]+pgamma*self.xAQ self.xlambdanext=self.xlambda[nminrank:nrank]+pgamma*self.xAlambda self.xlambdanextU=self.xlambdaU+pgamma*self.xAlambdaU return # ## ----------------------------------------------------- # def update_parameters_nag(self): # """ # Task: to update the parameters of a polynomial, cpoly, # based on the Nesterov accelerated gradient # Input: irank rank index in xP,xQ, xlambda # Modify: xV, xP, xQ, xVQ, xlambda, vlambda # """ # norder=self.norder # nrank=self.nrank # nminrank=self.nminrank # xnorm=np.zeros(norder) # for d in range(norder): # xnorm[d]=np.linalg.norm(self.xGrad[d]) # ## self.store_grad.apprnd(xnorm) # xmax=np.max(xnorm) # if xmax>self.max_grad_norm: # self.max_grad_norm=xmax # ## print('Grad norm max:',xmax) # if self.sigma*xmax>self.sigmamax: # sigmacorrect=self.sigmamax/(self.sigma*xmax) # ## print('>>>',self.sigma*xmax,sigmacorrect) # else: # sigmacorrect=1 # for d in range(norder): # self.xV[d]=self.gammanag*self.xV[d] \ # -sigmacorrect*self.sigmabase*self.sigma*self.xGrad[d] # for d in range(norder): # self.xP[d,nminrank:nrank]=self.gamma*self.xP[d,nminrank:nrank]+self.xV[d] # self.xVQ=self.gammanag*self.xVQ \ # -sigmacorrect*self.sigmabase*self.sigma*self.xGradQ # self.xQ[nminrank:nrank]=self.gamma*self.xQ[nminrank:nrank]+self.xVQ # self.vlambda=self.gammanag*self.vlambda \ # -sigmacorrect*self.sigmabase*self.sigma \ # *self.xlambdagrad # self.xlambda[nminrank:nrank]=self.gamma*self.xlambda[nminrank:nrank] \ # +self.vlambda # return # ## ----------------------------------------------------- def update_parameters_adam(self): """ Task: to update the parameters of a polynomial, cpoly, based on the ADAM additive update Input: Modify: xU,XV,xQ, xAU, xAV,xAQ, xnAU, xnAV,xnAQ, xlambda, xAlambda, xnAlambda, xlambdaU, xAlambdaU, xnAlambdaU, """ norder=self.norder nrank=self.nrank nrankuv=self.nrankuv nminrank=self.nminrank xnormU=np.zeros(norder) xnormV=np.zeros(norder) for d in range(norder): xnormU[d]=np.linalg.norm(self.xGradU[d]) xnormV[d]=np.linalg.norm(self.xGradV[d]) ## self.store_grad.apprnd(xnorm) xmax=np.max(np.vstack((xnormU,xnormV))) if xmax>self.max_grad_norm: self.max_grad_norm=xmax ## print('Grad norm max:',xmax) if self.sigma*xmax>self.sigmamax: sigmacorrect=self.sigmamax/(self.sigma*xmax) ## print('>>>',self.sigma*xmax,sigmacorrect) else: sigmacorrect=1 gammanag=self.gammanag gammanag2=self.gammanag2 for d in range(norder): ## xU --------------------------- ngrad=np.sum((sigmacorrect*self.xGradU[d])**2,1) self.xAU[d]=gammanag*self.xAU[d]+(1-gammanag) \ *sigmacorrect*self.xGradU[d] vhat=self.xAU[d]/(1-gammanag**self.iter) self.xnAU[d]=gammanag2*self.xnAU[d]+(1-gammanag2)*ngrad ngradhat=self.xnAU[d]/(1-gammanag2**self.iter) self.xU[d]=self.gamma*self.xU[d] \ -self.sigmabase*self.sigma \ *vhat/(np.outer(np.sqrt(ngradhat),np.ones(self.nrankuv))+self.ngeps) ## xV ----------------------- ngrad=np.sum((sigmacorrect*self.xGradV[d])**2,1) self.xAV[d]=gammanag*self.xAV[d]+(1-gammanag) \ *sigmacorrect*self.xGradV[d] vhat=self.xAV[d]/(1-gammanag**self.iter) self.xnAV[d]=gammanag2*self.xnAV[d]+(1-gammanag2)*ngrad ngradhat=self.xnAV[d]/(1-gammanag2**self.iter) self.xV[d,nminrank:nrank]=self.gamma*self.xV[d,nminrank:nrank] \ -self.sigmabase*self.sigma \ *vhat/(np.outer(np.sqrt(ngradhat),np.ones(self.nrankuv))+self.ngeps) ## xQ ----------------------------------------- ngrad=np.sum((sigmacorrect*self.xGradQ)**2,1) self.xAQ=gammanag*self.xAQ \ +(1-gammanag)*sigmacorrect*self.xGradQ vhat=self.xAQ/(1-gammanag**self.iter) ## print('Qgrad:',ngrad) if self.maxngrad<np.sum(ngrad): self.maxngrad=np.sum(ngrad) if self.maxngrad>1.0: print('Max Qgrad:',self.maxngrad) self.xnAQ=gammanag2*self.xnAQ \ +(1-gammanag2)*ngrad ngradhat=self.xnAQ/(1-gammanag2**self.iter) self.xQ[nminrank:nrank]=self.gamma*self.xQ[nminrank:nrank] \ -self.sigmabase*self.sigma \ *vhat/(np.outer(np.sqrt(ngradhat),np.ones(self.ndimy))+self.ngeps) ## lambda ------------------------------------------------ ngrad=np.sum((sigmacorrect*self.xlambdagrad)**2) self.xAlambda=gammanag*self.xAlambda \ +(1-gammanag)*sigmacorrect*self.xlambdagrad vhat=self.xAlambda/(1-gammanag**self.iter) self.xnAlambda=gammanag2*self.xnAlambda \ +(1-gammanag2)*ngrad ngradhat=self.xnAlambda/(1-gammanag2**self.iter) self.xlambda[nminrank:nrank]=self.gamma*self.xlambda[nminrank:nrank] \ -self.sigmabase*self.sigma \ *vhat/(np.sqrt(ngradhat)+self.ngeps) ## lambdaU ------------------------------------------------ ngrad=np.sum((sigmacorrect*self.xlambdagradU)**2) self.xAlambdaU=gammanag*self.xAlambdaU \ +(1-gammanag)*sigmacorrect*self.xlambdagradU vhat=self.xAlambdaU/(1-gammanag**self.iter) self.xnAlambdaU=gammanag2*self.xnAlambdaU \ +(1-gammanag2)*ngrad ngradhat=self.xnAlambdaU/(1-gammanag2**self.iter) self.xlambdaU=self.gamma*self.xlambdaU \ -self.sigmabase*self.sigma \ *vhat/(np.sqrt(ngradhat)+self.ngeps) return ## ------------------------------------------------ def activation_func(self,f,ifunc=0): """ Task: to compute the value of activation function Input: f array of input ifunc =0 identity =1 arcsinh ln(f+(f^2+1)^{1/2}) =2 sigmoid 2e^x/(e^x+1)-1 =3 tangent hyperbolisc Output: F array of activation values """ if ifunc==0: F=f ## identity elif ifunc==1: F=np.log(f+(f**2+1)**0.5) ## arcsinh elif ifunc==2: F=2/(1+np.exp(-f))-1 ## sigmoid elif ifunc==3: F=np.tanh(f) ## tangent hyperbolic elif ifunc==4: ## relu F=f*(f>0) return(F) ## ------------------------------------------------ def activation_func_diff(self,f,ifunc=0,ipar=1): """ Task: to compute the value of the pointwise derivative of activation function Input: f array of input ifunc =0 identity =1 arcsinh ln(f+(f^2+1)^{1/2}) =2 sigmoid e^x/(e^x+1) =3 tangent hyperbolisc Output: DF array of pointwise drivative of the activation function """ m,n=f.shape if ifunc==0: DF=np.ones((m,n)) ## identity elif ifunc==1: DF=1/(f**2+1)**0.5 ## arcsinh elif ifunc==2: ## sigmoid DF=2*np.exp(-f)/(1+np.exp(-f))**2 elif ifunc==3: DF=1/np.cosh(f)**2 ## tangent hyperbolic elif ifunc==4: ## relu DF=ipar*(f>0) return(DF) ## ------------------------------------------------ def function_value(self,X,rankcount,xU=None,xV=None,xQ=None, \ xlambda=None,xlambdaU=None,bias=None, \ ifunc=None,irange=0): """ Task: to compute the rank related function value f=\lambda \circ_r Xp_r q^T +bias Input: X list of 2d array of input data views rankcount index of rank-block xU tensor of input parameter arrays, (norder,nrank,nrankuv) xV tensor of input parameter arrays, (norder,ndimx,nrankuv) xQ matrix of output parameter arrays, (nrank,ndimy) xlambda singular values (nrank) xlambdaU data variable weight values (ndimx) bias vector of bias (ndimy) ifunc None => 0 =0 identity =1 arcsinh ln(f+(f^2+1)^{1/2}) =2 sigmoid e^x/(e^x+1) Output: f 2d array =\sum \circ_t XP^(t)T M_{\lambda} Q +bias """ nminrank,nrank=self.lranks[rankcount] drank=nrank-nminrank nrankuv=self.nrankuv m,n=X.shape ## temporal case ifunc=0 if ifunc is None: ifunc=0 f=np.zeros((m,self.ndimy)) if xU is None: xU=self.xU if xV is None: xV=self.xV[:,nminrank:nrank] if xQ is None: xQ=self.xQ[nminrank:nrank] if xlambda is None: xlambda=self.xlambda[nminrank:nrank] if xlambdaU is None: xlambdaU=self.xlambdaU if bias is None: bias=self.pbias[rankcount] ## @@@@@@@@@@@@@@@@@@@@@@@@@@@@@ F0=np.ones((m,drank)) for d in range(self.norder): XU=np.dot(X,self.xU[d]*np.outer(self.xlambdaU,np.ones(nrankuv))) AXU=self.activation_func(XU,self.iactfunc) F0*=np.dot(AXU,self.xV[d].T) ## @@@@@@@@@@@@@@@@@@@@@@@@@@@@@ F=np.dot(F0,np.outer(xlambda,np.ones(self.ndimy))*xQ) F+=np.outer(np.ones(m),bias) return(F) ## ------------------------------------------------ def gradient(self,X,y,rankcount,xU=None,xV=None,xQ=None, \ xlambda=None,xlambdaU=None,bias=None,icount=None): """ Task: to compute the gradients for xP, xQ, xlambda Input: X 2d array of input data block y 2d array of output block rankcount index of rank-block xU tensor of parameters (norder,ndimx,nrankuv) xV tensor of parameters (norder,nrank,nrankuv) xQ 2d array (nrank,ndimy) xlambda vector (nrank) xlambdaU vector (ndimx) bias vector (ndimy) Output: Modifies: self.xGradU, self.xGradV, self.xGradQ, self.xlambdagrad, self.xlambdagradU """ norder=self.norder nrankuv=self.nrankuv ndimx=self.ndimx ndimy=self.ndimy nminrank,nrank=self.lranks[rankcount] drank=nrank-nminrank m=X.shape[0] if xU is None: xU=self.xU if xV is None: xV=self.xV[:,nminrank:nrank] if xQ is None: xQ=self.xQ[nminrank:nrank] if bias is None: bias=self.pbias[self.rankcount] if xlambda is None: xlambda=self.xlambda[nminrank:nrank] if xlambdaU is None: xlambdaU=self.xlambdaU ## setting the regularization constants self.cP=self.cregular ## regularization penalty on P self.cQ=self.cregular ## regularization penalty on Q self.clambda=self.cregular ## lambda regularization constant ## scaling the loss and the regularization if self.iscale==1: scale_loss=1/(m*ndimy) scale_lambda=1/drank else: scale_loss=1 scale_lambda=1 self.xGradU=np.zeros((norder,ndimx,nrankuv)) self.xGradV=np.zeros((norder,drank,nrankuv)) self.xGradQ=np.zeros((drank,ndimy)) xXUV=np.array([None for _ in range(norder)]) xXU=np.array([None for _ in range(norder)]) xActD=np.array([None for _ in range(norder)]) ## Compute the transformations of X by P_d ## @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ for d in range(norder): XU=np.dot(X,self.xU[d]*np.outer(self.xlambdaU,np.ones(nrankuv))) AXU=self.activation_func(XU,self.iactfunc) xXU[d]=AXU xActD[d]=self.activation_func_diff(XU,self.iactfunc) xXUV[d]=np.dot(AXU,self.xV[d].T) ## @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ F0=np.prod(xXUV,0) ## \circ_d XM_{lambdaU}U^((d)}V^{(d)}T}M_{\lambda} ## entire predictor function values H=np.dot(F0,np.outer(xlambda,np.ones(ndimy))*xQ) ## error ferr=H+np.outer(np.ones(m),bias)-y ## the loss, error ## if the loss is not least square change it ## ikolmogorov=1 ## =1 kolmogorov mean variant =0 not ## kolm_t=1 ## kolmogorov mean scale factor if self.ikolmogorov==0: if self.lossdegree>0: dferr=np.linalg.norm(ferr) if dferr==0: dferr=1 dferr=dferr**self.lossdegree ferr/=dferr elif self.ikolmogorov==1: ferr=np.tanh(self.kolm_t*ferr) elif self.ikolmogorov==2: dferr=np.sqrt(np.sum(ferr**2,1)) dferr=dferr+(dferr==0) ferr=ferr*np.outer(np.tanh(self.kolm_t*dferr)/dferr,np.ones(ndimy)) ## averaging the loss on the min-batch ferr=ferr*scale_loss ## @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@2 ## computation the gradients ## ================================================= ## computing more than ones occuring terms and factors to save time ferrQT=np.dot(ferr,xQ.T) ## ================================================= ## gradient not depending on degree self.xGradQ=np.dot(F0.T,ferr)*np.outer(xlambda,np.ones(ndimy)) self.xlambdagrad=np.sum(F0*ferrQT,0) ## ================================================ ## compute F_{\subsetminus d} self.xlambdagradU=np.zeros(ndimx) if norder>1: for d in range(norder): ipx=np.arange(norder-1) if d<norder-1: ipx[d:]+=1 Zd=np.prod(xXUV[ipx],0) ## Z^{(d)} dEQF=Zd*ferrQT dEQFV=np.dot(dEQF,xV[d]*np.outer(xlambda,np.ones(nrankuv))) dEQFVH=dEQFV*xActD[d] dXEQFVH=np.dot(X.T,dEQFVH) ##Gd=np.dot(X.T,Zd*xActD[d]*ferrQT) ## @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ self.xGradV[d]=np.outer(xlambda,np.ones(nrankuv))*np.dot(dEQF.T,xXU[d]) self.xGradU[d]=dXEQFVH*np.outer(xlambdaU,np.ones(nrankuv)) self.xlambdagradU+=np.sum(dXEQFVH*xU[d],1) ## @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ else: ## Zd is empty, or = ones(m,nrank) dEQF=ferrQT dEQFV=np.dot(dEQF,xV[d]*np.outer(xlambda,np.ones(nrankuv))) dEQFVH=dEQFV*xActD[d] dXEQFVH=np.dot(X.T,dEQFVH) ## @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ self.xGradV[d]=np.outer(xlambda,np.ones(nrankuv))*np.dot(dEQF.T,xXU[d]) self.xGradU[d]=dXEQFVH*np.outer(xlambdaU,np.ones(nrankuv)) self.xlambdagradU+=np.sum(dXEQFVH*xU[d],1) ## @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ ## regularization terms if self.ilambda==1: self.xlambdagrad-=self.clambda*scale_lambda \ *np.sign(xlambda)*np.abs(xlambda)**(self.regdegree-1) return ## ------------------------------------------------ def incremental_step(self,X,y,icount): """ Task: to compute one step of the iteration Input: X 2d array of input block y 2d array of output block icount block index Modifies: via the called functions, xP,xQ and the gradient related variables """ m,n=X.shape if self.inormalize==1: self.normalize_lp() ## if first parameter =0 then no Nesterov push forward step self.nag_next(gamma=self.gammanag,psign=-1) xlambdanext=self.xlambdanext xlambdanextU=self.xlambdanextU ## xlambdanext=None self.gradient(X,y,self.rankcount,xU=self.xUnext,xV=self.xVnext,xQ=self.xQnext, \ xlambda=xlambdanext, xlambdaU=xlambdanextU, \ bias=self.pbias[self.rankcount],icount=icount) ## self.update_parameters_nag() self.update_parameters_adam() ## self.xlambda=self.normalize_lp(ilambda=0) ## self.normalize_lp(ilambda=0) f=self.function_value(X,self.rankcount,xU=None,xV=None,xQ=None, \ xlambda=None,xlambdaU=None,bias=None, \ ifunc=None,irange=1) ## bias is averaged on all processed block and data if self.ibias==1: prev_bias=self.pbias[self.rankcount] self.pbias[self.rankcount]=
np.mean(y-f,0)
numpy.mean
import numpy as np import scipy as sp import scipy.stats def rle(inarray): """ run length encoding. Partial credit to R rle function. Multi datatype arrays catered for including non Numpy returns: tuple (runlengths, startpositions, values) """ ia = np.array(inarray) # force numpy n = len(ia) if n == 0: return (None, None, None) else: y = np.array(ia[1:] != ia[:-1]) # pairwise unequal (string safe) i = np.append(np.where(y), n - 1) # must include last element posi z = np.diff(np.append(-1, i)) # run lengths p = np.cumsum(np.append(0, z))[:-1] # positions return(z, p, ia[i]) def split_list_by_lengths(values, lengths): """ >>> split_list_by_lengths([0,0,0,1,1,1,2,2,2], [2,2,5]) [[0, 0], [0, 1], [1, 1, 2, 2, 2]] """ assert np.sum(lengths) == len(values) idxs =
np.cumsum(lengths)
numpy.cumsum
# Author: <NAME> at 10/11/2021 <<EMAIL>> # Licence: MIT License # Copyright: <NAME> (2018) <<EMAIL>> import numpy as np import pytest from numpy.testing import assert_array_equal from reservoirpy.nodes.io import Input from ..model import Model from ..ops import merge from .dummy_nodes import * def test_node_link(plus_node, minus_node): clean_registry(Model) model1 = plus_node >> minus_node model2 = minus_node >> plus_node assert model1.name == "Model-0" assert model1.params["PlusNode-0"]["c"] is None assert model1.hypers["PlusNode-0"]["h"] == 1 assert model1["PlusNode-0"].input_dim is None assert model2.name == "Model-1" assert model2.params["PlusNode-0"]["c"] is None assert model2.hypers["PlusNode-0"]["h"] == 1 assert model2["PlusNode-0"].input_dim is None assert model1.edges == [(plus_node, minus_node)] assert model2.edges == [(minus_node, plus_node)] assert set(model1.nodes) == set(model2.nodes) with pytest.raises(RuntimeError): model1 & model2 with pytest.raises(RuntimeError): plus_node >> minus_node >> plus_node with pytest.raises(RuntimeError): plus_node >> plus_node def test_empty_model_init(): model = Model() assert model.is_empty def test_model_call(plus_node, minus_node): model = plus_node >> minus_node data = np.zeros((1, 5)) res = model(data) assert_array_equal(res, data) input_node = Input() branch1 = input_node >> plus_node branch2 = input_node >> minus_node model = branch1 & branch2 res = model(data) for name, arr in res.items(): assert name in [out.name for out in model.output_nodes] if name == "PlusNode-0": assert_array_equal(arr, data + 2) else: assert_array_equal(arr, data - 2) res = model(data) for name, arr in res.items(): assert name in [out.name for out in model.output_nodes] if name == "PlusNode-0": assert_array_equal(arr, data + 4) else: assert_array_equal(arr, data) res = model(data, reset=True) for name, arr in res.items(): assert name in [out.name for out in model.output_nodes] if name == "PlusNode-0": assert_array_equal(arr, data + 2) else: assert_array_equal(arr, data - 2) res = model(data, stateful=False) for name, arr in res.items(): assert name in [out.name for out in model.output_nodes] if name == "PlusNode-0": assert_array_equal(arr, data + 4) else: assert_array_equal(arr, data) for node in model.output_nodes: if node.name == "PlusNode-0": assert_array_equal(node.state(), data + 2) else: assert_array_equal(node.state(), data - 2) def test_model_with_state(plus_node, minus_node): model = plus_node >> minus_node data = np.zeros((1, 5)) res = model(data) assert_array_equal(res, data) input_node = Input() branch1 = input_node >> plus_node branch2 = input_node >> minus_node model = branch1 & branch2 res = model(data) with model.with_state(state={plus_node.name: np.zeros_like(plus_node.state())}): assert_array_equal(plus_node.state(), np.zeros_like(plus_node.state())) with pytest.raises(TypeError): with model.with_state(state=np.zeros_like(plus_node.state())): pass def test_model_run(plus_node, minus_node): input_node = Input() branch1 = input_node >> plus_node branch2 = input_node >> minus_node model = merge(branch1, branch2) data = np.zeros((3, 5)) res = model.run(data) expected_plus = np.array([[2] * 5, [4] * 5, [6] * 5]) expected_minus = np.array([[-2] * 5, [0] * 5, [-2] * 5]) for name, arr in res.items(): assert name in [out.name for out in model.output_nodes] if name == "PlusNode-0": assert_array_equal(arr, expected_plus) assert_array_equal(arr[-1][np.newaxis, :], plus_node.state()) else: assert_array_equal(arr, expected_minus) assert_array_equal(arr[-1][np.newaxis, :], minus_node.state()) res = model.run(data, reset=True) expected_plus = np.array([[2] * 5, [4] * 5, [6] * 5]) expected_minus = np.array([[-2] * 5, [0] * 5, [-2] * 5]) for name, arr in res.items(): assert name in [out.name for out in model.output_nodes] if name == "PlusNode-0": assert_array_equal(arr, expected_plus) assert_array_equal(arr[-1][np.newaxis, :], plus_node.state()) else: assert_array_equal(arr, expected_minus) assert_array_equal(arr[-1][np.newaxis, :], minus_node.state()) res = model.run(data, stateful=False) expected_plus2 =
np.array([[8] * 5, [10] * 5, [12] * 5])
numpy.array
## activation_functions.py ## ## Definitions of ReLU, leaky-ReLU and sigmoid family ## activation functions and their upper and lower bounds ## ## Copyright (C) 2018, <NAME> <<EMAIL>> and contributors ## ## This program is licenced under the BSD 2-Clause License, ## contained in the LICENCE file in this directory. ## See CREDITS for a list of contributors. ## import numpy as np from numba import jit @jit(nopython=True) def relu_ub_pn(u, l): a = u / (u - l) return a, -l * a # upper bound, unsure @jit(nopython=True) def leaky_relu_ub_pn(u, l, k): a = (u - k * l) / (u - l) b = l * u * (k - 1.0) / (u - l) return a, b @jit(nopython=True) def relu_lb_pn(u, l): # adaptive bound intercept = np.zeros_like(u) slope = np.zeros_like(u) mask = np.abs(u) > np.abs(l) slope[mask] = 1.0 return slope, intercept # lower bound, unsure (adaptive) @jit(nopython=True) def leaky_relu_lb_pn(u, l, k): # adaptive bound intercept = np.zeros_like(u) slope = np.full(len(u), k, dtype=u.dtype) mask = np.abs(u) > np.abs(l) slope[mask] = 1.0 return slope, intercept @jit(nopython=True) def relu_ub_p(u, l): return np.ones_like(u),
np.zeros_like(u)
numpy.zeros_like
import os import sys cwd = os.getcwd() sys.path.append(cwd) sys.path.append(cwd + '/utils/python_utils') sys.path.append(cwd + '/simulator/pybullet') sys.path.append(cwd + '/build/lib') import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt import time, math from collections import OrderedDict import copy import signal import shutil from pnc.robot_system.pinocchio_robot_system import PinocchioRobotSystem from pinocchio.visualize import MeshcatVisualizer import pinocchio as pin import cv2 import pybullet as p import numpy as np np.set_printoptions(precision=5) from util import pybullet_util from util import util DT = 0.001 jac_i = np.array([[1, -1]]) s_a = np.array([[0, 1]]) def IsClose(a, b, threshold=0.0001): if np.abs(a - b) < threshold: return True else: return False def UpdateRobotSystem(robot, q, qdot): robot.update_system(np.zeros(3), np.zeros(4), np.zeros(3), np.zeros(3), np.zeros(3),
np.zeros(4)
numpy.zeros
# Original Author: <NAME> 2002 # Bug-fixes in 2006 by <NAME> # The content of this file is based on scipy.optimize's anneal.py file, # which is distributed under the BSD license. from __future__ import print_function, division import numpy from numpy import asarray, tan, exp, ones, squeeze, sign, \ all, log, sqrt, pi, shape, array, minimum, where from numpy import random import numpy as np import collections from PyAstronomy.pyaC import pyaErrors as PE _double_min = numpy.finfo(float).min _double_max = numpy.finfo(float).max class base_schedule(object): def __init__(self): self.dwell = 20 self.learn_rate = 0.5 self.lower = -10 self.upper = 10 self.Ninit = 50 self.accepted = 0 self.tests = 0 self.feval = 0 self.k = 0 self.T = None def init(self, **options): self.__dict__.update(options) self.lower = asarray(self.lower) self.lower = where(self.lower == numpy.NINF, -_double_max, self.lower) self.upper = asarray(self.upper) self.upper = where(self.upper == numpy.PINF, _double_max, self.upper) self.k = 0 self.accepted = 0 self.feval = 0 self.tests = 0 def getstart_temp(self, best_state): """ Find a matching starting temperature and starting parameters vector i.e. find x0 such that func(x0) = T0. Parameters ---------- best_state : _state A _state object to store the function value and x0 found. Returns ------- x0 : array The starting parameters vector. """ assert(not self.dims is None) lrange = self.lower urange = self.upper fmax = _double_min fmin = _double_max for _ in range(self.Ninit): x0 = random.uniform(size=self.dims)*(urange-lrange) + lrange fval = self.func(x0, *self.args) self.feval += 1 if fval > fmax: fmax = fval if fval < fmin: fmin = fval best_state.cost = fval best_state.x = array(x0) self.T0 = (fmax-fmin)*1.5 return best_state.x def accept_test(self, dE): T = self.T self.tests += 1 if dE < 0: self.accepted += 1 return 1 p = exp(-dE*1.0/self.boltzmann/T) if (p > random.uniform(0.0, 1.0)): self.accepted += 1 return 1 return 0 def update_guess(self, x0): pass def update_temp(self, x0): pass # A schedule due to Lester Ingber class fast_sa(base_schedule): def init(self, **options): self.__dict__.update(options) if self.m is None: self.m = 1.0 if self.n is None: self.n = 1.0 self.c = self.m * exp(-self.n * self.quench) def update_guess(self, x0): x0 = np.asarray(x0) u = np.squeeze(np.random.uniform(0.0, 1.0, size=self.dims)) T = self.T y =
np.sign(u-0.5)
numpy.sign
# Copyright 2020-2021 OpenDR European Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from closed_shape_2D import ClosedShape2D from line import Line class Polygon(ClosedShape2D): """ Polygon Class comprised of a list of ordered vertices. A Polygon is considered a closed region, so the first and last vertices are connected by an edge. No need to duplicate the first vertex in order to close it. """ def __init__(self, vertices=None, compute_bounding_box=True, opacity=1.0): """ Constructor. :param vertices: (list|ndarray) Ordered list of [x, y] vertices comprising a closed polygon. Last edge connects the first and last vertices automatically, so no need to duplicate either of them. :param compute_bounding_box: (bool) Determines whether to compute a bounding rectangular box for this polygon. Used only because bounding boxes are themselves polygons, and must not get their own bounding box, as then they would infinitely recurse. :param opacity: (float: [0.0, 1.0]) Opacity level of the polygon. 0.0 means that it is totally transparent, while 1.0 is totally opaque. Used for line_intersect() to randomly determine if a line intersects it or not when opacity is set to a value other than 1. """ super(Polygon, self).__init__() self.vertices = None self.boundingBox = compute_bounding_box self.opacity = opacity self.min = None self.max = None if vertices is not None: self.set_vertices(vertices, compute_bounding_box) def set_vertices(self, vertices, compute_bounding_box=True): """ Sets the vertices of a polygon after being created and recomputes its bounding box if specified. :param vertices: (list|ndarray) Ordered list of vertices comprising a closed polygon. Last edge connects the first and last vertices automatically, so no need to duplicate either of them. :param compute_bounding_box: (bool) Determines whether to compute a bounding rectangular box for this polygon. Used only because bounding boxes are themselves polygons, and must not get their own bounding box, as then they would infinitely recurse. :return: None """ if not isinstance(vertices, np.ndarray): vertices = np.array(vertices) self.vertices = vertices if compute_bounding_box: self._set_bounding_box() def _set_bounding_box(self): """ Sets the polygon's bounding box from its minimum and maximum x and y values. :return: (Polygon) A polygon representing a bounding box rectangle completely enclosing its parent Polygon. """ x_s = self.vertices[:, 0] y_s = self.vertices[:, 1] self.min_x = np.min(x_s) self.min_y = np.min(y_s) self.max_x =
np.max(x_s)
numpy.max
import configparser import os import time from datetime import datetime import imageio as imageio import matplotlib.pyplot as plt import numpy as np import pandas as pd import torch from torch.utils.tensorboard import SummaryWriter from torch.utils.tensorboard.summary import hparams from DQN_Conv import AgentDQN from SQN import AgentSQN, CoordinatorSQN from grid_generators.random_start_goal import random_start_goal from gridworld import GridWorld # Model training parameters DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Use GPU class SummaryWriter(SummaryWriter): def add_hparams( self, hparam_dict, metric_dict, hparam_domain_discrete=None, run_name=None ): torch._C._log_api_usage_once("tensorboard.logging.add_hparams") if type(hparam_dict) is not dict or type(metric_dict) is not dict: raise TypeError('hparam_dict and metric_dict should be dictionary.') exp, ssi, sei = hparams(hparam_dict, metric_dict, hparam_domain_discrete) self.file_writer.add_summary(exp) self.file_writer.add_summary(ssi) self.file_writer.add_summary(sei) for k, v in metric_dict.items(): self.add_scalar(k, v) def read_config(config): rl_parameters = config['RL Parameters'] steps = rl_parameters.getint("steps") episodes = rl_parameters.getint("episodes") train_period = rl_parameters.getint("train_period") start_goal_reset_period = rl_parameters.getint("start_goal_reset_period") grid_reset_period = rl_parameters.getint("grid_reset_period") effects = rl_parameters.getboolean("effects") return steps, episodes, train_period, start_goal_reset_period, grid_reset_period, effects def read_grid_config(config): return config.getint("Grid Parameters", "grid_size") def read_agents_config(config, env): n = config.getint("Agents Parameters", "n") model = config.get("Agents Parameters", "model") grid_size = config.getint("Grid Parameters", "grid_size") coordinator = None if model == "SQN": coordinator = AgentSQN(0, obs_shape=env.observation_space.shape, device=DEVICE, config=config) else: raise NotImplementedError return n, coordinator, model def read_env_config(config): # Environmental conditions to be considered env_parameters = config['Environmental Effects'] col_wind = env_parameters.getint("col_wind") range_random_wind = env_parameters.getint("range_random_wind") probabilities = env_parameters.getint("probabilities") return col_wind, range_random_wind, probabilities def create_gif(filename, env, agents, reset_start_goal=True, reset_grid=True, steps=100, episodes=1): """ render result and create gif of the result""" filenames = [] fig = plt.figure() plt.ion() grid_size = len(env.grid) for episode in range(episodes): obs = env.reset(reset_start_goal, reset_grid) for step in range(steps): env.render() plt.savefig(f'images/gif_frame/E{episode:03}S{step:05}.png') plt.cla() filenames.append(f'images/gif_frame/E{episode:03}S{step:05}.png') actions = [agents[i].select_action(obs[i]) for i in range(len(agents))] obs, rewards, done, info = env.step(actions) if done: break print(f"Episode finished after {step + 1} time steps") env.render() plt.savefig(f'images/gif_frame/final.png') plt.cla() filenames.append(f'images/gif_frame/final.png') plt.ioff() with imageio.get_writer(f'images/gif/{filename}.gif', mode='I') as writer: for filename in filenames: image = imageio.imread(filename) writer.append_data(image) # TODO : try to save fig as numpy array to preserve data and speed up the rendering for filename in set(filenames): os.remove(filename) def create_comment(config): steps = config["RL Parameters"]["steps"] episodes = config["RL Parameters"]["episodes"] train_period = config["RL Parameters"]["train_period"] start_goal_reset_period = config["RL Parameters"]["start_goal_reset_period"] grid_reset_period = config["RL Parameters"]["grid_reset_period"] alpha = config["SQN Parameters"]["alpha"] update_period = config["SQN Parameters"]["update_period"] batch_size = config["SQN Parameters"]["batch_size"] free = config["Gridworld Parameters"]["FREE"] goal = config["Gridworld Parameters"]["GOAL"] out_of_b = config["Gridworld Parameters"]["OUT_OF_BOUNDS"] obstacle = config["Gridworld Parameters"]["OBSTACLE"] return f" steps={steps} episodes={episodes} train_period={train_period} start_goal_reset_period={start_goal_reset_period}" \ f" grid_reset_period={grid_reset_period} alpha={alpha} update_period={update_period} batch_size={batch_size}" \ f" rwd_free={free} rwd_goal={goal} rwd_out_of_b={out_of_b} rwd_obstacle={obstacle}" def create_hparams(config): hyperparameters = { "steps": config["RL Parameters"]["steps"], "episodes": config["RL Parameters"]["episodes"], "train_period": config["RL Parameters"]["train_period"], "start_goal_reset_period": config["RL Parameters"]["start_goal_reset_period"], "grid_reset_period": config["RL Parameters"]["grid_reset_period"], "alpha": config["SQN Parameters"]["alpha"], "update_period": config["SQN Parameters"]["update_period"], "batch_size": config["SQN Parameters"]["batch_size"], # rewards: "FREE": config["Gridworld Parameters"]["FREE"], "GOAL": config["Gridworld Parameters"]["GOAL"], "OUT_OF_BOUNDS": config["Gridworld Parameters"]["OUT_OF_BOUNDS"], "OBSTACLES": config["Gridworld Parameters"]["OBSTACLE"] } return hyperparameters def main(config: configparser.ConfigParser): print(DEVICE) steps, episodes, train_period, start_goal_reset_period, grid_reset_period, effects = read_config(config) step_done = 0 ################# # GRID CREATION # ################# grid_size = read_grid_config(config) # Square grid size # init_grid = np.genfromtxt('sample_grid/init_grid.csv', delimiter=',') # generate a grid from a csv file # init_grid = random_maze(start, goal, width=grid_size, height=grid_size, complexity=0.5, density=0.5) init_grid = np.zeros((grid_size, grid_size)) # empty grid #################### # STARTS AND GOALS # #################### # start = (0, 0) # goal = (grid_size - 1, grid_size - 1) # place goal in bottom-right corner start, goal = random_start_goal(width=grid_size, start_bounds=((0, 1), (0, grid_size)), goal_bounds=((grid_size - 7, grid_size), (0, grid_size))) ####################### # GRIDWORLDMARLS CREATION # ####################### n = config.getint("Agents Parameters", "n") if not effects: # Ordinary gridworldMARL env = GridWorld(n_agents=n, grid=init_grid) else: # Stochastic windy gridworldMARL col_wind, range_random_wind, probabilities = read_env_config(config) env = GridWorld(n_agents=n, grid=init_grid, col_wind=col_wind, range_random_wind=range_random_wind, probabilities=probabilities) env.read_reward_config(config) ################### # AGENTS CREATION # ################### # create Agent : giving a start or goal position fix it, otherwise it is randomly generated at each reset # agent_1 = AgentSQN(2, window_size=init_grid.shape[0], device=device, start=start, goal=goal) # agent_1 = AgentSQN(2, window_size=grid_size, device=DEVICE) # agent_1 = AgentSQN(2, window_size=5, device=device, start=start_position) # agent_1 = AgentSQN(2, window_size=5, device=device, goal=goal) n_agents, coordinator, model = read_agents_config(config, env) ######## # MAIN # ######## # verification print("Hyperparameters :") print("steps", steps) print("episodes", episodes) print("train_period", train_period) print("start_goal_reset_period", start_goal_reset_period) print("grid_reset_period", grid_reset_period) print("alpha", coordinator.alpha) print("update_period", coordinator.update_steps) print("batch_size", coordinator.batch_size) print("reward free", env.rewards["free"]) print("reward goal", env.rewards["goal"]) print("reward obstacle", env.rewards["obstacles"]) now = datetime.now().strftime('%Y%m%d%H%M%S') # Tensorboard initialisation (for logging values) log_dir = os.path.join("/content/runs", now) comment = create_comment(config) tb = SummaryWriter(log_dir=log_dir, comment=comment) plt.ion() total_reward_s = [] cumulated_reward = np.zeros(n_agents) cumulated_rewards = [] total_steps = [] total_loss_s = [] times = [] starts = [] goals = [] # save config file in logs with good datetime with open(f"logs/configs/{now}.ini", "w") as configfile: config.write(configfile) print("Start") try: obs = env.reset(reset_starts_goals=True, reset_grid=True) # put reset_grid=True if you want a random init grid env.render() plt.savefig(f"images/{now}.png") plt.savefig(f"images/{now}.svg", format="svg") plt.show() train_period_s = np.linspace(start=2000, stop=train_period, num=50, endpoint=True, dtype=int) train_period_delay_s = np.linspace(start=0, stop=8000, num=50, endpoint=True, dtype=int) radius_s = np.linspace(start=2, stop=10, num=9, endpoint=True, dtype=int) radius_delays = np.linspace(start=0, stop=16000, num=9, endpoint=True, dtype=int) print(radius_delays) radius_index = 0 radius = radius_s[0] # train_period_index = 0 # train_period = train_period_s[0] reset_start_goal = True reset_grid = True start_time = time.time() for episode in range(episodes): # if episode <=8000 and episode == train_period_delay_s[train_period_index]: # train_period = train_period_s[train_period_index] # train_period_index += 1 # print(f"New training period is {train_period} steps") if episode <= 16000 and episode == radius_delays[radius_index]: radius = radius_s[radius_index] radius_index += 1 print(f"Radius increased to {radius} cells") # if start_goal_period elapsed: change start and goal reset_start_goal = episode > 0 and episode % start_goal_reset_period == 0 # if reset_grid_period elapsed: change grid reset_grid = episode > 0 and episode % grid_reset_period == 0 obs = env.reset(reset_starts_goals=reset_start_goal, radius=3, reset_grid=reset_grid) starts.append([agent.init_pos for agent in env.agents]) goals.append([agent.init_goal for agent in env.agents]) working_agents = set(range(n_agents)) # set of agents with on-going mission total_reward = np.zeros(n_agents) total_loss = 0 for step in range(steps): # env.render() # create new observations using the local obs of each agent and adding the pos and goal of other agents obs = [torch.cat([obs[i]] + [obs[j][:, -2:] for j in range(n_agents) if j != i], dim=1) for i in range(n_agents)] # select and perform actions actions = [coordinator.select_action(obs[i]) for i in range(n_agents)] new_obs, rewards, done, info = env.step(actions) # store the transition in memory for i in range(n_agents): if i in working_agents: # only add relevant transitions: if agent mission was already done, don't add transition in replay memory action = actions[i] reward = torch.tensor([rewards[i]], device=DEVICE) total_reward[i] += reward.item() # compute new_observation the same way as before new_observation = torch.cat([new_obs[i]] + [new_obs[j][:, -2:] for j in range(n_agents) if j != i], dim=1) coordinator.add_to_buffer(obs[i], action, reward, new_observation, done[i]) if done[i]: # if agent mission is done, remove it from working agents (to prevent adding future transitions) reason = "" if reward == env.rewards["goal"]: reason = "REACHED GOAL" elif reward == env.rewards["battery_depleted"]: reason = "BATTERY DEPLETED" print(f"Agent {i} is done after {step + 1} time steps ({reason})") working_agents.remove(i) # move to the next state obs = new_obs step_done += 1 # Perform one step of the optimisation if step_done > 0 and step_done % train_period == 0: loss = coordinator.train() total_loss += loss * coordinator.batch_size step_done =0 if all(done): break # # Perform one step of the optimisation # if episode > 0 and episode % train_period == 0: # for i in range(n_agents): # loss = coordinator.train() # total_loss += loss * coordinator.batch_size print(f"Episode {episode} finished after {step + 1} time steps") total_reward_s.append(total_reward) total_steps.append(step + 1) total_loss_s.append(total_loss) cumulated_reward += np.array(total_reward) cumulated_rewards.append(cumulated_reward.copy()) times.append(time.time() - start_time) # Tensorboard logging # for agent in agents: # suffix = f"agent_{agent.id}" # # agent target network parameters # for name, weight in agent.target_model.named_parameters(): # tb.add_histogram(f"{suffix}.{name}", weight, episode) # # tb.add_histogram(f"{suffix}.{name}.grad", weight.grad, episode) tb.add_scalar("Loss", total_loss, episode) tb.add_scalar("Total Reward", total_reward[0], episode) tb.add_scalar("Cumulated Reward", cumulated_reward[0], episode) tb.add_scalar("Total steps", step + 1, episode) if episode > 0 and episode % 10000 == 0: t_rwd_s = np.array(total_reward_s) for i in range(n_agents): coordinator.save(f"logs/models/{now}_{i}_{episode}.pt") data = {"Loss": total_loss_s, "Total Steps": total_steps, "Times": times} for i in range(n_agents): data[f"Total Reward per episode {i}"] = t_rwd_s[:, i] training_data = pd.DataFrame(data=data) training_data.to_csv(f"logs/csv/{now}.csv") # save cumulated reward plot plt.clf() fig, ax = plt.subplots(nrows=n_agents, ncols=1, sharex=True, sharey=True, squeeze=0) fig.suptitle(("Cumulated Reward per episode for " + model)) for i in range(n_agents): ax[i, 0].set_title(f"Agent {i}") ax[i, 0].plot(t_rwd_s[:,i]) plt.xlabel("Epochs") plt.savefig(f"logs/cumulated_rewards/{now}.png") tb.add_figure("Cumulated Reward Plot", plt.gcf()) plt.clf() print("Complete") print("--- %s seconds ---" % (time.time() - start_time)) except Exception as e: raise e finally: results_path = "logs/results/open_grid_random_gcs" total_reward_s = np.array(total_reward_s) cumulated_rewards = np.array(cumulated_rewards) starts =np.array(starts, dtype='int,int') goals=np.array(goals, dtype='int,int') # save models for i in range(n_agents): coordinator.save(f"{results_path}/models/{now}_{i}.pt") # save config file in logs with good datetime with open(f"{results_path}/configs/{now}.ini", "w") as configfile: config.write(configfile) data = {"Loss": total_loss_s, "Total Steps": total_steps, "Times": times} for i in range(n_agents): data[f"Total Reward per episode {i}"] = total_reward_s[:, i] data[f"Starts {i}"] = starts[:,i] data[f"Goals {i}"] = goals[:,i] training_data = pd.DataFrame(data=data) training_data.to_csv(f"{results_path}/csv/{now}.csv") # save cumulated reward plot plt.clf() fig, ax = plt.subplots(nrows=n_agents, ncols=1, sharex=True, sharey=True, squeeze=0) fig.suptitle(("Cumulated Reward per episode for " + model)) for i in range(n_agents): ax[i, 0].set_title(f"Agent {i}") ax[i, 0].plot(total_reward_s[:,i]) plt.xlabel("Epochs") plt.savefig(f"{results_path}/cumulated_rewards/{now}.png") tb.add_figure("Cumulated Reward Plot", plt.gcf()) plt.clf() # save total steps plot plt.title(("Total steps for " + model)) plt.xlabel("Epochs") plt.plot(total_steps) plt.savefig(f"{results_path}/total_steps/{now}.png") tb.add_figure("Total steps Plot", plt.gcf()) plt.clf() # Calculate improvement over training duration # Equivalent to the # of times the agent reaches the goal within the designated number of timesteps improvement =
np.zeros_like(total_steps)
numpy.zeros_like
# Setting up all folders we can import from by adding them to python path import sys, os, pdb curr_path = os.getcwd(); sys.path.append(curr_path+'/..'); # Importing stuff from all folders in python path import numpy as np from focusfun import * from refocus import * from KSpaceFunctions import * # TESTING CODE FOR FOCUS_DATA Below import scipy.io as sio from scipy.signal import hilbert, gausspulse from scipy.interpolate import RectBivariateSpline import matplotlib.pyplot as plt # Methods of Recovery #method = 'Adjoint'; method = 'Tikhonov'; # Pulse Definition fc = 5.0e6; # Hz fracBW = 0.7; fs = 20e6; # Hz # Create Pulse in Both Time and Frequency Domain Nf = 1024; t = np.arange(-Nf,Nf+1)/fs; # (s) Time Vector centered about t=0 impResp = gausspulse(t, fc=fc, bw=fracBW); # Calculate Transmit Pulse n = impResp.size; P_f = np.fft.fftshift(np.fft.fft(impResp)); f = np.mod(np.fft.fftshift(np.arange(n)*fs/n)+fs/2,fs)-fs/2; P_f = (f/(f+fc/10))*np.abs(P_f); P_f = P_f[f>0]; f = f[f>0]; # Aperture Definition c = 1540; # m/usec LAMBDA = c/fc; elemSpace = 0.15e-3; # m Nelem = 96; xpos = np.arange(-(Nelem-1)/2, 1+(Nelem-1)/2)*elemSpace; tx_origin_x = np.arange(-0.00365, 0.00370, 0.00005); # Transmit Origin in [m] focDepth = 0.020; # m # Transmit Apodization X_XDCR, TX_ORIGIN_X = np.meshgrid(xpos, tx_origin_x); rect = lambda x: np.heaviside(x+1/2,1/2)-np.heaviside(x-1/2,1/2); sigma_rect = 0.008; # [m] tx_apod = rect((X_XDCR-TX_ORIGIN_X)/sigma_rect); # Simulation Space and Time Nx0 = 256; m = 2; n = 2; dov = 0.060; # m x = np.arange(-(Nx0*m-1)/2,1+(Nx0*m-1)/2)*(elemSpace/m); Nu1 = np.round(dov/(elemSpace/n)); z = (np.arange(Nu1))*(elemSpace/n); t = np.arange(0,2,0.05)*np.abs(focDepth)/c; ## Ground-Truth Multistatic-Transmit Synthetic Aperture # Calculate [K-Space, Wavefield, etc.] for Each Individual Transmit Element multistatic_pwResp = np.zeros((x.size, f.size, Nelem), dtype=np.complex); # Pulse-Wave Frequency Response multistatic_kspace = np.zeros((z.size, x.size, Nelem), dtype=np.complex); # K-Space Response for elem_idx in np.arange(Nelem): single_element = np.zeros(Nelem); single_element[elem_idx] = 1; # Single Element Apodization # Pulse-Wave Frequency Response kx, multistatic_pwResp[:,:,elem_idx] = \ pwResp(x, elemSpace, single_element, np.zeros(Nelem), P_f, f, c); # K-Space Response kz, multistatic_kspace[:,:,elem_idx] = \ pwResp2kSpace(kx, f, multistatic_pwResp[:,:,elem_idx], z, c); Kx, Kz = np.meshgrid(kx, kz); # K-Space Grid K = np.sqrt(Kx**2 + Kz**2); # Radius in K-Space ## Transmit Pulse-Wave Frequency Response for Each Transmit Beam # Pulse-Wave Frequency Response for Each Transmit Beam tx_pwResp = np.zeros((x.size, f.size, tx_origin_x.size), dtype=np.complex); tx_delays = np.zeros((tx_origin_x.size, Nelem), dtype=np.complex); for tx_origin_x_idx in np.arange(tx_origin_x.size): # Calculating Transmit Delays for Each Transmit Beam if np.isinf(focDepth): tx_delays[tx_origin_x_idx, :] = np.zeros(xpos.shape); else: tx_delays[tx_origin_x_idx, :] = (np.sign(focDepth) * \ np.sqrt((xpos-tx_origin_x[tx_origin_x_idx])**2+focDepth**2)-focDepth)/c; # Pulse-Wave Frequency Response for Each Transmit Beam kx, tx_pwResp[:,:,tx_origin_x_idx] = pwResp(x, elemSpace, \ tx_apod[tx_origin_x_idx, :], tx_delays[tx_origin_x_idx, :], P_f, f, c); # Calculate K-Space Response For Each Transmit Beam tx_kspace = np.zeros((z.size, x.size, tx_origin_x.size), dtype=np.complex); # K-Space Response for tx_origin_x_idx in np.arange(tx_origin_x.size): # K-Space Response _, tx_kspace[:,:,tx_origin_x_idx] = \ pwResp2kSpace(kx, f, tx_pwResp[:,:,tx_origin_x_idx], z, c); # Reconstruct Transmit Wavefield for Transmit Beam tx_origin_x_idx = 74; _, _, psf_t = kspace2wavefield(kx, kz, (Kz>0)*tx_kspace[:,:,tx_origin_x_idx], c, t); # K-Space of a Single Transmit Beam plt.figure(); imagesc(kx, kz, np.abs(tx_kspace[:,:,tx_origin_x_idx]), \ (0, np.max(np.abs(tx_kspace[:,:,tx_origin_x_idx]))) ); plt.xlabel('lateral frequency [1/m]'); plt.ylabel('axial frequency [1/m]'); plt.title('K-Space of Selected Transmit Beam'); ## Simulate Multistatic Synthetic Aperture Recovery Techniques # Decode Multistatic data Using REFoCUS if method == 'Adjoint': multistatic_recov_pwResp = \ multistatic_recov(kx, f, tx_pwResp, tx_apod, tx_delays, Hinv_adjoint, lambda f: 1); elif method == 'Tikhonov': multistatic_recov_pwResp = \ multistatic_recov(kx, f, tx_pwResp, tx_apod, tx_delays, Hinv_tikhonov, 1e-3); # Calculate K-Space Responses For Each Recovered Element multistatic_recov_kspace = np.zeros((z.size, x.size, Nelem), dtype=np.complex); # K-Space Response for elem_idx in np.arange(Nelem): # K-Space Response _, multistatic_recov_kspace[:,:,elem_idx] = \ pwResp2kSpace(kx, f, multistatic_recov_pwResp[:,:,elem_idx], z, c); ## K-Space and Wavefield for Single Element Transmits # K-Space of the Adjoint-Based Transmit Response plt.figure(); plt.subplot(1,2,1); imagesc(kx, kz, np.mean(
np.abs(multistatic_kspace)
numpy.abs
#Copyright (c) 2014, <NAME> #All rights reserved. # #Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: # #1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.# # #2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. # #THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE #DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR #SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF #THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy as np #select based on maximum distance to dot product=0 hyperplane. #this version does not normalize to get actual euclidean distance def lwta_select_func(self): nodes_per_group = self.nodes_per_group num_groups = self.weighted_sums.shape[0]/nodes_per_group batch_size = self.weighted_sums.shape[1] #print('weighted_sums shape: ' + str(self.weighted_sums.shape)) #print('num_groups: ' + str(num_groups) + ' nodes_per_group: ' + str(nodes_per_group) + ' batch_size: ' + str(batch_size)) #note we remove the bias node for this grouping activations_grouped = np.reshape(self.weighted_sums[0:-1,:],(num_groups,nodes_per_group,batch_size)) #need to swap axes for the broadcasting to work properly activations_grouped = np.swapaxes(activations_grouped,0,1); #we want "True" neurons that are selected FOR REMOVAL activations_selected = (activations_grouped != np.max(activations_grouped,axis=0)) #swap axes back and reshape back to 2d matrix activations_selected = np.swapaxes(activations_selected,0,1) activations_selected = np.reshape(activations_selected,(num_groups*nodes_per_group,batch_size)) #append the bias back #print('selected neurons dtype: ' + str(activations_selected.dtype)) self.selected_neurons = np.append(activations_selected,np.ones((1,activations_selected.shape[1]),dtype=np.bool),axis=0) #print('selected neurons dtype: ' + str(self.selected_neurons.dtype)) self.output[self.selected_neurons] = 0; def maxout_select_func(self): nodes_per_group = self.nodes_per_group num_groups = self.weighted_sums.shape[0]/nodes_per_group batch_size = self.weighted_sums.shape[1] #print('weighted_sums shape: ' + str(self.weighted_sums.shape)) #print('num_groups: ' + str(num_groups) + ' nodes_per_group: ' + str(nodes_per_group) + ' batch_size: ' + str(batch_size)) #note we remove the bias node for this grouping activations_grouped = np.reshape(self.weighted_sums[0:-1,:],(num_groups,nodes_per_group,batch_size)) #need to swap axes for the broadcasting to work properly activations_grouped =
np.swapaxes(activations_grouped,0,1)
numpy.swapaxes
# Copyright 2019-2021 ETH Zurich and the DaCe authors. All rights reserved. """ Tests dace.program as class methods """ import dace import numpy as np import sys import time class MyTestClass: """ Test class with various values, lifetimes, and call types. """ classvalue = 2 def __init__(self, n=5) -> None: self.n = n @dace.method def method_jit(self, A): return A + self.n @dace.method def method(self, A: dace.float64[20]): return A + self.n @dace.method def __call__(self, A: dace.float64[20]): return A * self.n @dace.method def other_method_caller(self, A: dace.float64[20]): return self.method(A) + 2 + self(A) @staticmethod @dace.program def static(A: dace.float64[20]): return A + A @staticmethod @dace.program def static_withclass(A: dace.float64[20]): return A + MyTestClass.classvalue @classmethod @dace.method def clsmethod(cls, A): return A + cls.classvalue class MyTestCallAttributesClass: class SDFGMethodTestClass: def __sdfg__(self, *args, **kwargs): @dace.program def call(A): A[:] = 7.0 return call.__sdfg__(*args) def __sdfg_signature__(self): return ['A'], [] def __init__(self, n=5) -> None: self.n = n self.call_me = MyTestCallAttributesClass.SDFGMethodTestClass() @dace.method def method_jit(self, A): self.call_me(A) return A + self.n @dace.method def __call__(self, A): self.call_me(A) return A * self.n @dace.method def method(self, A: dace.float64[20]): self.call_me(A) return A + self.n @dace.method def method_jit_with_scalar_arg(self, A, b): self.call_me(A) return A + b def test_method_jit(): A = np.random.rand(20) cls = MyTestClass(10) assert np.allclose(cls.method_jit(A), A + 10) def test_method(): A = np.random.rand(20) cls = MyTestClass(10) assert np.allclose(cls.method(A), A + 10) def test_method_cache(): A = np.random.rand(20) cls1 = MyTestClass(10) cls2 = MyTestClass(11) assert np.allclose(cls1.method(A), A + 10) assert np.allclose(cls1.method(A), A + 10) assert np.allclose(cls2.method(A), A + 11) def test_callable(): A = np.random.rand(20) cls = MyTestClass(12) assert np.allclose(cls(A), A * 12) def test_static(): A = np.random.rand(20) assert np.allclose(MyTestClass.static(A), A + A) def test_static_withclass(): A = np.random.rand(20) # TODO(later): Make cache strict w.r.t. globals and locals used in program # assert np.allclose(MyTestClass.static_withclass(A), A + 2) # Modify value MyTestClass.classvalue = 3 assert np.allclose(MyTestClass.static_withclass(A), A + 3) def test_classmethod(): # Only available in Python 3.9+ if sys.version_info >= (3, 9): A = np.random.rand(20) # Modify value first MyTestClass.classvalue = 4 assert np.allclose(MyTestClass.clsmethod(A), A + 4) def test_nested_methods(): A = np.random.rand(20) cls = MyTestClass() assert np.allclose(cls.other_method_caller(A), (A * 5) + (A + 5) + 2) def mydec(a): def mutator(func): dp = dace.program(func) @dace.program def mmm(A: dace.float64[20]): res = dp(A, a) return res sdfg = mmm.to_sdfg() return sdfg return mutator def someprog(A: dace.float64[20], a: dace.float64): res = A + a return res def someprog_indirection(a): return mydec(a)(someprog) def test_decorator(): @dace.program(constant_functions=True) def otherprog(A: dace.float64[20]): res = np.empty_like(A) someprog_indirection(3)(A=A, __return=res) return res sdfg = otherprog.to_sdfg() A = np.random.rand(20) assert np.allclose(sdfg(A), A + 3) def test_sdfgattr_method_jit(): A = np.random.rand(20) cls = MyTestCallAttributesClass(10) assert np.allclose(cls.method_jit(A), 17) def test_sdfgattr_callable_jit(): A = np.random.rand(20) cls = MyTestCallAttributesClass(12) assert np.allclose(cls(A), 84) def test_sdfgattr_method_annotated_jit(): A = np.random.rand(20) cls = MyTestCallAttributesClass(14) assert np.allclose(cls.method(A), 21) def test_sdfgattr_method_jit_with_scalar(): A = np.random.rand(20) cls = MyTestCallAttributesClass(10) assert np.allclose(cls.method_jit_with_scalar_arg(A, 2.0), 9.0) def test_nested_field_in_map(): class B: def __init__(self) -> None: self.field = np.random.rand(10, 10) @dace.method def callee(self): return self.field[1, 1] class A: def __init__(self, nested: B): self.nested = nested @dace.method def tester(self): val =
np.ndarray([2], np.float64)
numpy.ndarray
import numpy as np import numpy.ma as ma #import sys import os from scipy import linalg from scipy.signal import detrend, butter, lfilter from scipy import signal from scipy.interpolate import griddata from joblib import Parallel, delayed #from joblib import load, dump #from netCDF4 import Dataset import tempfile import shutil import xarray as xr #import dist #import math import datetime from numpy.linalg import eig, inv import scipy.spatial.qhull as qhull # def distance(origin,destination,radius=6371): ''' # Haversine formula # Author: <NAME> # # INPUT DATA # origin :: (lat1, lon1) # destination :: (lat2, lon2) # # RETURNS # # d :: distance in km ''' # lat1, lon1 = origin lat2, lon2 = destination #radius = 6371 # km # dlat = np.radians(lat2-lat1) dlon = np.radians(lon2-lon1) # a = np.sin(dlat/2) * np.sin(dlat/2) + np.cos(np.radians(lat1))* np.cos(np.radians(lat2)) * np.sin(dlon/2) * np.sin(dlon/2) c = 2 * np.arctan2(np.sqrt(a), np.sqrt(1-a)) d = radius * c # return d def rot_m(theta): ''' # Create a rotation matrix for a given angle (rotations counter-clokwise) ''' # c,s = np.cos(theta), np.sin(theta) # return np.array(((c,-s), (s, c))) def create_A(angles=range(90)): ''' # Create a counter-clockwise rotation matrix A in the matrix equation k=A*K # note that this *counter-clockwise* so make sure the angle makes sense # for your case. For example if your data is at 10 deg rotation from x-y plane # you should call the function with angles=np.array([360-10]) # -> this will rotate a full circle back to x-y plane # # A[angle0,:]=[cos(angle0)**2, sin(angle0)**2, sin(2*angle0)] # A[angle0,:]=[sin(angle0)**2, cos(angle0)**2, -sin(2*angle0)] # . # . # . # A[angleN,:]=[cos(angleN)**2, sin(angleN)**2, sin(2*angleN)] # A[angleN,:]=[sin(angleN)**2, cos(angleN)**2, -sin(2*angleN)] # # the input variable is a list (or an array) of angles ''' # A=np.zeros((len(angles)*2,3)) c=0 for ang in angles: A[c,0]=np.cos(np.radians(ang))**2 A[c,1]=np.sin(np.radians(ang))**2 A[c,2]=np.sin(np.radians(2*ang)) A[c+1,0]=np.sin(np.radians(ang))**2 A[c+1,1]=np.cos(np.radians(ang))**2 A[c+1,2]=-np.sin(np.radians(2*ang)) c=c+2 # return A def griddata_interp_weights(in_points, out_points, d=2): ''' # This function returns the triangulations weights used by scipy.griddata # the weights can then be used with the griddata_interpolation below to # produce the same results as griddata, but without the need to re-calculate the weights # -> overall much faster than looping over griddata calls # # * This is direct copy from https://stackoverflow.com/questions/20915502/speedup-scipy-griddata-for-multiple-interpolations-between-two-irregular-grids # Big thanks to Jaime/unutbu for saving my day ''' tri = qhull.Delaunay(in_points) simplex = tri.find_simplex(out_points) vertices = np.take(tri.simplices, simplex, axis=0) temp = np.take(tri.transform, simplex, axis=0) delta = out_points - temp[:, d] bary = np.einsum('njk,nk->nj', temp[:, :d, :], delta) return vertices, np.hstack((bary, 1 - bary.sum(axis=1, keepdims=True))) def griddata_interpolation(values, vtx, wts): ''' # This is essentially the interpolation part of griddata # Use griddata_interp_weights to get the vtx, wts (vertices and weights) # and then call this function to do the interpolation ''' return np.einsum('nj,nj->n', np.take(values, vtx), wts) def smooth2D_loop(k2,h2,n,ymax,xmax,jind,iind,lat,lon,datain,data_out,weights_out,use_weights,weights_only,use_median,use_dist,xscaling): """This is the loop to be run paralllel by smooth2D_parallel. Should not be called directly. """ for k in range(k2,min([k2+h2,len(jind)])): j = jind[k] i = iind[k] nx = xscaling*n jind2 = [] iind2 = [] dxy = [] c = 0 for ib in range(-nx,nx+1): for jb in range(-n,n+1): if ((j+jb)>=ymax or (j+jb)<0): jind2.append(j) else: jind2.append(j+jb) if (i+ib)>=xmax: #note that xmin case is automatically covered thanks to python indexing iind2.append((i+ib)-xmax) elif (i+ib)<0: iind2.append(xmax+(i+ib)) else: iind2.append(i+ib) if datain.mask[jind2[-1],iind2[-1]]: jind2[-1]=j iind2[-1]=i if use_weights and use_dist: if len(lon.shape)==1: dxy.append(distance([lat[j],lon[i]],[lat[jind2[c]],lon[iind2[c]]])) else: dxy.append(distance([lat[j,i],lon[j,i]],[lat[jind2[c],iind2[c]],lon[jind2[c],iind2[c]]])) c=c+1 if k%10000.==0: print(k, c, j, i) if use_weights: if use_dist: dxy=np.array(dxy) else: if len(lon.shape)==1: lon2,lat2=np.meshgrid(lon,lat) else: lon2=lon lat2=lat dxy=np.cos(lat2[jind2,iind2]*np.pi/180.) if ma.sum(dxy)==0: weights=np.ones(len(dxy)) diind=np.argsort(dxy) else: diind=np.argsort(dxy) weights=(float(ma.sum(np.sort(dxy)))-np.sort(dxy))/ma.sum(float(ma.sum(np.sort(dxy)))-np.sort(dxy)) weights_out[k,:,0]=weights weights_out[k,:,1]=np.array(jind2)[diind] weights_out[k,:,2]=np.array(iind2)[diind] else: weights_out[k,:,0]=0 weights_out[k,:,1]=np.array(jind2) weights_out[k,:,2]=np.array(iind2) if not weights_only: if use_weights: data_out[j,i]=ma.sum(datain[jind2[diind],iind2[diind]]*weights)/ma.sum(weights) elif use_median: data_out[j,i]=ma.median(datain[jind2,iind2]) else: data_out[j,i]=ma.mean(datain[jind2,iind2]) def smooth2D_parallel(lon,lat,datain,n=1,num_cores=30,use_weights=False,weights_only=False,use_median=False,save_weights=False,save_path='', use_dist=False, xscaling=2): """ 2D smoothing of (preferably masked) array datain (should be shape (lat,lon)), will be using halo of n, if n=1 (default) then the each point will be 9 point average. Option to use distance weights. Parameters ---------- lon : longitudes of the input data (1D or 2D array) lat : latitudes of the input data (1D or 2D array) datain : input data (should be shape (lat,lon)) and prefereably masked n : Size of the halo over which the smoothing is applied. If n=1 (default) then the each point will be 9 point average Use xscaling to use a different halo in x direction xscaling : Scale the halo in x-direction (default 2), this is reasonable if data is on lat, lon grid num_cores : number of cores to use (default 30) use_weights : Controls if specific weights will be calculated (default is False) If False then will return the indices of the grid cells that should be used for smoothing with equal weights (set to 0). If True then weights will be calculated (see below for different options) use_dist : If true then the weights will be calculated based on distance (in km) from the central cell. Default is False in which case distance in degrees will be used. weights_only : If True only calculate weights, do not apply to the data (dataout will be empty). Default is False i.e. weights will be applied! use_median : Only used if weights_only=False and use_weights=False In this case one has an option to smooth either by calculating the median (use_median=True) or by using the mean of the surrounding points (use_median=False) save_weights : If True the weights will be saved to npz file (default is False). This is usefull if the domain is large and the smoothing will be applied often save_path : Location in which the weights will be saved. Default is to save in the work directory """ #dataout=ma.zeros(datain.shape) ymax,xmax=datain.shape if ma.is_masked(datain): jind,iind=ma.where(1-datain.mask) else: jind,iind=ma.where(np.ones(datain.shape)) # h2 = len(jind)/num_cores folder1 = tempfile.mkdtemp() path1 = os.path.join(folder1, 'dum1.mmap') data_out = np.memmap(path1, dtype=float, shape=(datain.shape), mode='w+') # folder2 = tempfile.mkdtemp() path2 = os.path.join(folder2, 'dum2.mmap') weights_out = np.memmap(path2, dtype=float, shape=((len(jind),len(range(-n,n+1))*len(range(-2*n,2*n+1)),3)), mode='w+') #weights_out=np.memmap(path2, dtype=float, shape=((len(jind),len(range(-n,n+1))**2,3)), mode='w+') # Parallel(n_jobs=num_cores)(delayed(smooth2D_loop)(k2,h2,n,ymax,xmax,jind,iind,lat,lon,datain,data_out,weights_out,use_weights,weights_only,use_median,use_dist,xscaling) for k2 in range(0,len(jind),h2)) data_out=ma.masked_array(np.asarray(data_out),mask=datain.mask) weights_out=np.asarray(weights_out) if save_weights: np.savez(save_path+str(n)+'_degree_smoothing_weights_coslat_y'+str(n)+'_x'+str(xscaling*n)+'.npz',weights_out=weights_out,jind=jind,iind=iind) try: shutil.rmtree(folder1) except OSError: pass # try: shutil.rmtree(folder2) except OSError: pass # return data_out,weights_out def smooth_with_weights_loop(k2,h2,datain,data_out,weights,jind,iind,use_weights,use_median,loop=False): if loop: for k in range(k2,min([k2+h2,len(jind)])): if k%10000.==0: print(k) j=jind[k] i=iind[k] c=0 if use_weights: data_out[j,i]=ma.sum(datain[weights[k,:,1].astype('int'),weights[k,:,2].astype('int')]*weights[k,:,0])/ma.sum(weights[k,:,0]) elif use_median: data_out[j,i]=ma.median(datain[weights[k,:,1].astype('int'),weights[k,:,2].astype('int')]) else: data_out[j,i]=ma.mean(datain[weights[k,:,1].astype('int'),weights[k,:,2].astype('int')]) else: k3=min([k2+h2,len(jind)]) if use_weights: data_out[k2:k2+h2]=ma.sum(datain[weights[k2:k3,:,1].astype('int'),weights[k2:k3,:,2].astype('int')]*weights[k2:k3,:,0],-1)/ma.sum(weights[k2:k3,:,0]) elif use_median: data_out[k2:k3]=ma.median(datain[weights[k2:k3,:,1].astype('int'),weights[k2:k3,:,2].astype('int')],-1) else: data_out[k2:k3]=ma.mean(datain[weights[k2:k3,:,1].astype('int'),weights[k2:k3,:,2].astype('int')],-1) def smooth_with_weights_parallel(datain,n=1,num_cores=30,weights=None,jind=None,iind=None,use_weights=False,use_median=False,loop=False,save_path=''): """ Given that one has already calculated and saved smoothing weights/indices with smooth2D_parallel one can simply apply them with this script Turns out this is fastest to do in serial!! so do that instead!1 """ # load the data if needed - don't use this if you're smoothing a timeseries if weights is None: data=np.load(save_path+str(n)+'_degree_smoothing_weights_new.npz') weights=data['weights_out'][:] jind=data['jind'][:] iind=data['iind'][:] # prepara for the parallel loop h2=len(jind)/num_cores folder1 = tempfile.mkdtemp() path1 = os.path.join(folder1, 'dum1.mmap') if loop: data_out=np.memmap(path1, dtype=float, shape=(datain.shape), mode='w+') # Parallel(n_jobs=num_cores)(delayed(smooth_with_weights_loop)(k2,h2,datain,data_out,weights,jind,iind,use_weights,use_median,loop) for k2 in range(0,len(jind),h2)) else: data_out=np.memmap(path1, dtype=float, shape=(len(jind)), mode='w+') # Parallel(n_jobs=num_cores)(delayed(smooth_with_weights_loop)(k2,h2,datain.flatten(),data_out,weights,jind,iind,use_weights,use_median,loop) for k2 in range(0,len(jind),h2)) # this should work but seemps to be slow # Parallel(n_jobs=num_cores)(delayed(smooth_with_weights_loop)(k2,h2,datain,data_out,weights,jind,iind,use_weights,use_median,loop) for k2 in range(0,len(jind),h2)) # mask output if loop: data_out=ma.masked_array(np.asarray(data_out),mask=datain.mask) else: data_out2=np.zeros(datain.shape) data_out2[jind,iind]=data_out data_out=ma.masked_array(data_out2,mask=datain.mask) # close temp file try: shutil.rmtree(folder1) except OSError: pass # return data_out def butter_bandstop(lowcut, highcut, fs, btype, order=5): nyq = 0.5 * fs low = lowcut / nyq high = highcut / nyq b, a = butter(order, [low, high], btype=btype) return b, a def butter_bandstop_filter(data, lowcut, highcut, fs, order=5, ax=-1, btype='bandstop'): """ bandstop filter, usage: x_grid = MicroInverse_utils.butter_bandstop_filter((x_grid-np.nanmean(x_grid,0)), 7./375., 7/355., 1, order=3,ax=0) """ b, a = butter_bandstop(lowcut, highcut, fs, btype, order=order) y = signal.filtfilt(b, a, data, axis=ax) return y def Implement_Notch_Filter(data, lowcut, highcut, fs=1, order=3, ripple=20, atten=20, filter_type='butter', ax=-1, btype='bandstop'): """ Required input defintions are as follows Parameters ---------- fs : Sampling frequency lowcut,highcut : The bandwidth bounds you wish to filter ripple : The maximum passband ripple that is allowed in db order : The filter order. For FIR notch filters this is best set to 2 or 3, IIR filters are best suited for high values of order. This algorithm is hard coded to FIR filters filter_type : 'butter', 'bessel', 'cheby1', 'cheby2', 'ellip' data : the data to be filtered """ nyq = 0.5 * fs # low = freq - band/2.0 # high = freq + band/2.0 low = lowcut/nyq high = highcut/nyq b, a = signal.iirfilter(order, [low, high], rp=ripple, rs=atten, btype=btype,analog=False, ftype=filter_type) filtered_data = signal.filtfilt(b, a, data,axis=ax) # return filtered_data def remove_climatology_loop(jj,h2,dum,dum_out,dt,rem6month): """ Remove climatology, i.e. 12 month and optionally 6 month (rem6month=True, default setting) from the data """ print(jj, 'removing climatology...') dum1=dum[:,jj:jj+h2] # .data f1=1*dt/365. f2=2*dt/365. t=np.arange(dum1.shape[0]) # x1 = np.ones((len(t),3)) x1[:,1] = np.cos((2*np.pi)*f1*t) x1[:,2] = np.sin((2*np.pi)*f1*t) # if rem6month: x2 = np.ones((len(t),3)) x2[:,1] = np.cos((2*np.pi)*f2*t) x2[:,2] = np.sin((2*np.pi)*f2*t) # inds=np.where(np.isfinite(dum1[0,:]))[0] # if len(inds)>0: # do nothing if only land points otherwise enter the loop for j in inds: y = dum1[:,j] # fit one year signal beta = np.linalg.lstsq(x1, y, rcond=None)[0] y12mo = beta[0]+beta[1]*np.cos((2*np.pi)*f1*t)+beta[2]*np.sin((2*np.pi)*f1*t) # if rem6month: # fit 6 month signal beta=np.linalg.lstsq(x2, y, rcond=None)[0] y6mo = beta[0]+beta[1]*np.cos((2*np.pi)*f2*t)+beta[2]*np.sin((2*np.pi)*f2*t) dum_out[:,jj+j]=y-y12mo-y6mo else: dum_out[:,jj+j]=y-y12mo def remove_climatology(var,dt,num_cores=18,rem6month=True): """ Remove annual cycle (fitted sine curve) from a numpy.array which has dimensions (nt,nx*ny) Parameters ---------- var : numpy.array Data from which annual cycle is to be removed. Dimensions (nt,nx*ny), no nan's allowed! dt : int timestep in days num_cores : int, optional Number of cores for multiprocessing (default 18) rem6month : bool, optional If True (default) also 6 month (180 day) signal is removed Returns ------- output : numpy.array The output array from which the annual cycle has been removed """ # num_cores=20 h2=var.shape[-1]//num_cores # var=var-np.nanmean(var,0) # folder1 = tempfile.mkdtemp() path1 = os.path.join(folder1, 'dum1.mmap') dum=np.memmap(path1, dtype=float, shape=(var.shape), mode='w+') dum[:]=var[:] # folder2 = tempfile.mkdtemp() path2 = os.path.join(folder2, 'dum2.mmap') X_par=np.memmap(path2, dtype=float, shape=(var.shape), mode='w+') # # Parallel(n_jobs=num_cores)(delayed(remove_climatology_loop)(jj,h2,dum1,X_par) for jj in range(0,var.shape[-1],h2)) # Parallel(n_jobs=num_cores)(delayed(remove_climatology_loop)(jj,h2,dum[:,jj:jj+h2],X_par[:,jj:jj+h2]) for jj in range(0,var.shape[-1],h2)) Parallel(n_jobs=num_cores)(delayed(remove_climatology_loop)(jj,h2,dum,X_par,dt,rem6month) for jj in range(0,var.shape[-1],h2)) # Parallel(n_jobs=num_cores)(delayed(remove_climatology_loop)(jj,h2,dum1,X_par) for jj in range(0,block_num_lons)) # output=np.asarray(X_par) try: shutil.rmtree(folder1) except OSError: pass try: shutil.rmtree(folder2) except OSError: pass # return output def remove_climatology2(dum,rem6month=True): """ Remove climatology, serial code """ print('removing climatology...') f1=1/365. f2=2/365. t=np.arange(dum.shape[0]) dum=dum-np.nanmean(dum,0) dum2=np.zeros(dum.shape) for j in range(dum.shape[-1]): y = dum[:,j].data # fit one year signal x = np.ones((len(y),3)) x[:,1] = np.cos((2*np.pi)*f1*t) x[:,2] = np.sin((2*np.pi)*f1*t) beta, resid, rank, sigma = np.linalg.lstsq(x, y) y12mo = beta[0]+beta[1]*np.cos((2*np.pi)*f1*t)+beta[2]*np.sin((2*np.pi)*f1*t) # # fit 6 month signal if rem6month: x = np.ones((len(y),3)) x[:,1] = np.cos((2*np.pi)*f2*t) x[:,2] = np.sin((2*np.pi)*f2*t) beta, resid, rank, sigma = np.linalg.lstsq(x, y) y6mo = beta[0]+beta[1]*np.cos((2*np.pi)*f2*t)+beta[2]*np.sin((2*np.pi)*f2*t) dum2[:,j]=y-y12mo-y6mo else: dum2[:,j]=y-y12mo return dum2 def read_files(j,nts,jinds,iinds,filepath,fnames2,var_par,varname,sum_over_depth, depth_lim, depth_lim0, model_data=False): """ Read files in parallel. This function should not be called directly, but via load_files() function var_par should be of shape (len(filenames), time_steps_per_file, ny, nx) """ # fname=fnames2[j] print(fname) ds = xr.open_dataset(filepath+fname,decode_times=False) ds = ds.squeeze() #just in case depth etc. # # reading a file with a timeseries of 2D field (i.e. 3D matrix) if len(var_par.shape)==3 and sum_over_depth==False: nt,ny,nx=ds[varname].shape nts[j]=nt # this is a quick fix without a need to change upstream calls - supposedly faster? if False: jlen=np.unique(jinds).shape[0] ilen=np.unique(iinds).shape[0] j1=np.reshape(jinds,(jlen,ilen))[:,0] i1=np.reshape(iinds,(jlen,ilen))[1,:] exec('dum=ds.'+varname+'[:,j1,i1].values') dum=ds[varname][:,j1,i1].values dum=np.reshape(dum,(nt,-1)) else: # old version - very slow! dum=ds[varname].values[:,jinds,iinds] dum[np.where(dum>1E30)]=np.nan # var_par[j,:nt,:]=dum var_par[j,nt:,:]=np.nan # in order to calculate the climatology # reading a model data file, with a timeseries of 3D field (i.e. 4D matrix) and calculating the volume mean over depth) elif len(var_par.shape)==3 and sum_over_depth==True and model_data==True: nt,nz,ny,nx=ds[varname].shape zaxis=ds['st_edges_ocean'].values dz=np.diff(zaxis)[depth_lim0:depth_lim] nts[j]=nt var_par[j,:nt,:]=np.sum(np.swapaxes(ds[varname].values[:,depth_lim0:depth_lim,jinds,iinds],1,0).T*dz,-1).T/np.sum(dz) # reading a file with only one 2D field in one file elif len(var_par.shape)==2 and sum_over_depth==False: ny,nx=ds[varname].squeeze().shape var_par[j,:]=ds[varname].squeeze().values[jinds,iinds] var_par[np.where(var_par>1E30)]=np.nan # reading a file with only one 3D field in one file, and calculating the volume mean over depth elif len(var_par.shape)==2 and sum_over_depth==True: # this is for sum(dz*T)/sum(dz) so weighted mean temperature - areas where depth is less than depth_lim are nan # var_par[j,:]=np.sum(ds[varname].values[depth_lim0:depth_lim,jinds,iinds].T*np.diff(ds['depth'].values)[depth_lim0:depth_lim],-1).T/np.sum(np.diff(ds['depth'].values)[depth_lim0:depth_lim]) # this is for dz*T # var_par[j,:]=np.nansum(ds[varname].values[depth_lim0:depth_lim,jinds,iinds].T*np.diff(ds['depth'].values)[depth_lim0:depth_lim],-1).T # # this is for nansum(dz*T)/nansum(dz) so weighted mean temperature - areas where depth is less than depth_lim will have a temperature var_par[j,:]=np.nansum(ds[varname].values[depth_lim0:depth_lim,jinds,iinds].T*np.diff(ds['depth'].values)[depth_lim0:depth_lim],-1).T/np.nansum(abs(np.sign(ds[varname].values[depth_lim0:depth_lim,jinds,iinds].T))*np.diff(ds['depth'].values)[depth_lim0:depth_lim],-1).T # consider making another one here which is heat content ds[varname]*density where density=gsw.density(ds[varname],ds['salinity'],p=0) # print('closing the file') ds.close() def load_data(filepath,fnames,jinds,iinds,varname,num_cores=20,dim4D=True, sum_over_depth=False, depth_lim=13, model_data=False, remove_clim=False,dt=1, depth_lim0=0): """ Load a timeseries of a 2D field (where possibly summing over depth if a 3D variable) in parallel Parameters ---------- filepath : str Directory path pointing to the data folder Can be empty string if path is included in fnames fnames : list List of file names jinds : list List of non-nan indices in y-direction. iinds : list List of non-nan indices in x-direction Note that one should create jinds and iinds as follows 1) create a 2D mask: 1 where nan, else 0 usually landmask for ocean data 2) then do the following jinds,iinds = np.where(mask) jinds,iinds = np.meshgrid(jinds,iinds) jinds = jinds.flatten() iinds = iinds.flatten() varname : str Name of the variable of interest in the data file num_cores : int Number of cores to use (default 20) dim4D : bool True (default) if a file has more than one timestep sum_over_depth : bool False (default) if the data has a depth axis and one wants a sum over a depth range. depth_lim0 : integer Upper limit for the depth average depth_lim0 : integer Lower limit for the depth average remove_clim : boolean If True a daily climatology will be removed. Best used only if the data is at daily time resolution dt : integer Time resolution of the input data in days Returns ------- var : numpy.array Timeseries of the requested variable (varname). Has the shape (time,jinds,iinds). var_clim : numpy.array Climatology of the requested variable (varname). None if remove_clim=False (default) """ # create temp files to host the shared memory variables folder1 = tempfile.mkdtemp() folder2 = tempfile.mkdtemp() path1 = os.path.join(folder1, 'dum0.mmap') path2 = os.path.join(folder2, 'dum1.mmap') if dim4D: # incase the files have more than one timestep in each file vshape=(len(fnames),366,len(jinds)) var_par=np.memmap(path1, dtype=float, shape=vshape, mode='w+') else: # incase there is only one timestep in a file vshape=(len(fnames),len(jinds)) var_par=np.memmap(path1, dtype=float, shape=vshape, mode='w+') # nts will keep track of number of days in a year nts=np.memmap(path2, dtype=float, shape=(len(fnames)), mode='w+') fnames2=np.memmap(path2, dtype='U'+str(len(fnames[0])+1), shape=(len(fnames)), mode='w+') fnames2[:]=fnames #np.asarray(fnames[:]) # launch the parallel reading Parallel(n_jobs=num_cores)(delayed(read_files)(j,nts,jinds,iinds,filepath,fnames2,var_par,varname,sum_over_depth, depth_lim, depth_lim0, model_data=model_data) for j,fname in enumerate(fnames)) if dim4D: print('removing climatology') var_clim=np.nanmean(var_par,0) if remove_clim: print('removing climatology') # smooth the daily climatology with monthly filter, as the climatology will be still noisy at daily scales var_clim=np.concatenate([var_clim[-120//dt:,],var_clim,var_clim[:120//dt,]],axis=0) b,a=signal.butter(3,2./(30/dt)) jnonan=np.where(np.isfinite(np.sum(var_clim,0))) var_clim[:,jnonan]=signal.filtfilt(b,a,var_clim[:,jnonan],axis=0) var_clim=var_clim[120//dt:120//dt+366//dt,] # # this is the on off switch for removing the climatology var_clim=var_clim*int(remove_clim) var=var_par[0,:int(nts[0]),:]-var_clim[:int(nts[0]),:] # concatenate the data - note that here nts is used to strip down the 366th day when it's not a leap year # and include the 366th day when it is a leap year for j in range(1,len(fnames)): print(j) var=np.concatenate([var,var_par[j,:int(nts[j]),:]-var_clim[:int(nts[j]),:]],axis=0) # else: # if only one timestep per file var=np.asarray(var_par) var[np.where(var==0)]=np.nan if remove_clim: print('removing climatology') year0=datetime.date(int(fnames[0][-20:-16]),int(fnames[0][-16:-14]),int(fnames[0][-14:-12])).isocalendar()[0] year1=datetime.date(int(fnames[-1][-20:-16]),int(fnames[-1][-16:-14]),int(fnames[-1][-14:-12])).isocalendar()[0] var2=np.ones((year1-year0+1,int(np.ceil(366./dt)),var.shape[1]))*np.nan # for j, fname in enumerate(fnames): year = int(fname[-20:-16]) month = int(fname[-16:-14]) day = int(fname[-14:-12]) c,c1 = datetime.date(year,month,day).isocalendar()[:2] c = c-year0 c1 = c1-1 var2[c,c1,:] = var[j,:] # var_clim=np.nanmean(var2,0) ind=np.where(np.nansum(var2,-1)[0,:]>0)[0] var=var2[0,ind,:]-var_clim[ind,:] for j in range(1,var2.shape[0]): ind=np.where(np.nansum(var2,-1)[j,:]>0)[0] var=np.concatenate([var,var2[j,ind,:]-var_clim[ind,:]],axis=0) else: var_clim=None # print('close files') # try: shutil.rmtree(folder1) except OSError: pass try: shutil.rmtree(folder2) except OSError: pass # return var, var_clim # def parallel_inversion_9point(j,x_grid,block_vars,Stencil_center,Stencil_size,block_num_samp,block_num_lats,block_num_lons,block_lat,block_lon,Tau,Dt_secs,inversion_method='integral',dx_const=None, dy_const=None, DistType='interp', radius=6371, nn=4): """ """ for i in range(2,block_num_lats-2): if np.isfinite(np.sum(x_grid[i,j,:])): xn = np.zeros((Stencil_size,block_num_samp)) # count non-border neighbors of grid point numnebs = 0 # for inn in range(i-1,i+2): for jnn in range(j-1,j+2): if np.isfinite(x_grid[inn,jnn,0]): numnebs=numnebs+1 # only invert if point has 9 non-border neighbors if numnebs==9: ib = i jb = j # sads = [-1,+1,-2,+2,-3,+3,-4,+4] # indices for ds - Stencil_center will be the central point - these are spiraling out jads = [-1,+1, 0, 0,-1,+1,+1,-1] # left,right,down,up,down-left,up-right,right-down,left-up iads = [ 0, 0,-1,+1,-1,+1,-1,+1] # s_ads = [-1,+1,-2,+2,-3,+3,-4,+4,-5,+5,-6,+6,-7,+7,-8,+8,-9,+9,-10,+10,-11,+11,-12,+12] j_ads = [-1,+1, 0, 0,-1,+1,+1,-1,-2,-2,-2,+2,+2,+2,-1, 0,+1,+1, 0, -1, -2, +2, +2, -2] i_ads = [ 0, 0,-1,+1,-1,+1,-1,+1,+1, 0,-1,+1, 0,-1,-2,-2,-2,+2, +2, +2, -2, +2, -2, +2] # ds = np.zeros(len(s_ads)+1) # distance to the Stencil_center dx = np.zeros(len(s_ads)+1) dy = np.zeros(len(s_ads)+1) ang2 = [180,0,270,90,225,45,315,135] # left,right,down,up, down-left,up-right,right-down,left-up ds2 = np.zeros((len(ang2),len(ds))) cent = len(s_ads)//2 # # CALCULATE THE DISTANCE BETWEEN THE CENTRAL AND SURROUNDING POINTS for s,ss in enumerate(s_ads): # ds[cent+ss] = distance([block_lat[ib,jb],block_lon[ib,jb]],[block_lat[ib+i_ads[s],jb+j_ads[s]],block_lon[ib+i_ads[s],jb+j_ads[s]]], radius=radius)*1000 dx[cent+ss] = np.sign(j_ads[s])*distance([block_lat[ib,jb],block_lon[ib,jb]],[block_lat[ib,jb],block_lon[ib+i_ads[s],jb+j_ads[s]]], radius=radius)*1000 dy[cent+ss] = np.sign(i_ads[s])*distance([block_lat[ib,jb],block_lon[ib,jb]],[block_lat[ib+i_ads[s],jb+j_ads[s]],block_lon[ib,jb]], radius=radius)*1000 # ang=np.arctan2(dy,dx)*180/np.pi ang[np.where(ang<0)]=ang[np.where(ang<0)]+360 # if DistType in ['interp'] and np.any(dx_const==None) and np.any(dy_const==None): # we need to interpolate x_grid values to be at the same distance from the central point - this is because the inversion doesn't know about the distance. # # CHOOSE A DISTANCE TO USE - HERE 1km off from the median of the 4 closest cells dr = np.nanmedian(ds[[cent-2,cent-1,cent+1,cent+2]])+1E3 ds2[:,Stencil_center] = dr # find out how far each point is from the unit circle point facing each grid cell. # axis=0 loops over each point of interest, and axis=1 loops over all the surrounding points for s,a2 in enumerate(ang2): for s2,ss2 in enumerate(s_ads): ds2[s,cent+ss2]=np.sqrt(ds[cent+ss2]**2+dr**2-2*dr*ds[cent+ss2]*np.cos((ang[cent+ss2]-a2)*np.pi/180.)) # # calculate weighted mean of the surrounding cells (linear interpolation) ds2[:,cent] = dr winds = np.argsort(ds2,axis=1) # ds2_sort = np.sort(ds2,axis=1) weigths = ((1/ds2_sort[:,:nn]).T/(np.sum(1/ds2_sort[:,:nn],1))).T # 6 closest points weigths[np.where(np.isnan(weigths))] = 1 # xn[Stencil_center+np.array(sads),:] = np.sum(x_grid[ib+np.array(i_ads),jb+np.array(j_ads),:][winds[:,:nn],:].T*weigths.T,1).T xn[Stencil_center,:] = x_grid[ib,jb,:] else: # dr = ds xn[Stencil_center+np.array(sads),:] = x_grid[ib+np.array(iads),jb+np.array(jads),:] xn[Stencil_center,:] = x_grid[ib,jb,:] # # use only those stencil members that are finite - setting others to zero fin_inds=np.isfinite(xn[:,0]) xn[np.where(~fin_inds)[0],:]=0 Stencil_center2=Stencil_center # integral method if inversion_method in ['integral']: xnlag = np.concatenate((xn[:,Tau:], np.zeros((xn.shape[0],Tau))),axis=1) a=np.dot(xnlag,xn.T) b=np.dot(xn,xn.T) a[np.where(np.isnan(a))]=0 b[np.where(np.isnan(b))]=0 tmp = np.dot(a, np.linalg.pinv(b)) #pseudo-inverse # tmp = np.dot(a.data, np.linalg.inv(b.data)) tmp[np.isnan(tmp)] = 0 tmp[np.isinf(tmp)] = 0 # if np.isfinite(np.sum(tmp)) and np.sum(abs(tmp-tmp[0]))>1E-10: try: bb = (1./(Tau*Dt_secs))*linalg.logm(tmp) except (ValueError,ZeroDivisionError,OverflowError): bn = np.zeros(Stencil_size) else: bn = np.real(bb[Stencil_center,:]) else: bn=np.zeros(Stencil_size) bn[~np.isfinite(bn)] = 0 # inverse by derivative method elif inversion_method in ['derivative']: xnfut = np.concatenate((xn[:,1:], np.zeros((xn.shape[0],1))),axis=1) xnlag = np.concatenate((np.zeros((xn.shape[0],Tau)), xn[:,1:xn.shape[1]-Tau+1]),axis=1) a=np.dot((xnfut-xn),xnlag.T) b=np.dot(xn,xnlag.T) a[np.where(np.isnan(a))]=0 b[np.where(np.isnan(b))]=0 tmp = np.dot(a, np.linalg.pinv(b)) bn_matrix = (1./Dt_secs)*tmp bn = np.real(bn_matrix[Stencil_center2,:]) bn[np.isnan(bn)] = 0 bn[np.isinf(bn)] = 0 # Alternative integral method elif inversion_method in ['integral_2']: xnfut = np.concatenate((xn[:,1:], np.zeros((Stencil_size,1))),axis=1) xnlag = np.concatenate((np.zeros((Stencil_size,Tau)), xn[:,1:xn.shape[1]-Tau+1]),axis=1) a=np.dot(xnfut,xnlag.T) b=np.dot(xn,xnlag.T) a[np.where(np.isnan(a))]=0 b[np.where(np.isnan(b))]=0 # tmp = np.linalg.lstsq(b.T, a.T)[0] #one way to do it tmp = np.dot(a, np.linalg.pinv(b)) #another way tmp[np.isnan(tmp)] = 0 tmp[np.isinf(tmp)] = 0 if np.isfinite(np.sum(tmp)) and np.sum(abs(tmp-tmp[0]))>1E-10: #check that not all the values are the same try: bb = (1./(Dt_secs))*linalg.logm(tmp) #this is not working for somereason except (ValueError,ZeroDivisionError,OverflowError): bn = np.zeros(Stencil_size) else: bn = np.real(bb[Stencil_center,:]) else: bn=np.zeros(Stencil_size) bn[~np.isfinite(bn)] = 0 else: bn = np.zeros(tmp.shape[0]) ############################################ # -- solve for U K and R from row of bn -- # ############################################ # actually just save bn - calculate the rest later block_vars[0,:,i,j]=bn block_vars[1,:,i,j]=dr block_vars[2,:,i,j]=fin_inds def parallel_monte_carlo_inversion(j,x_grid,block_vars,Stencil_center,Stencil_size,block_num_samp,block_num_lats,block_num_lons,block_lat,block_lon,Tau,Dt_secs,block_vars2=None,inversion_method='integral',dx_const=None,dy_const=None, DistType='mean',radius=6371,dt_min=365*5, ens=30, percentiles=[25,50,75]): """ Invert 2D data using a 5 point stencil. This function should be not be called directly, instad call the inversion() function. """ sads=[-1,+1,-2,+2,-1,+1,-2,+2][:4] jads=[-1,+1, 0, 0,-1,+1,+1,-1][:4] iads=[ 0, 0,-1,+1,-1,+1,-1,+1][:4] # s_ads=[-1,+1,-2,+2,-3,+3,-4,+4,-5,+5,-6,+6,-7,+7,-8,+8,-9,+9,-10,+10,-11,+11,-12,+12] j_ads=[-1,+1, 0, 0,-1,+1,+1,-1,-2,-2,-2,+2,+2,+2,-1, 0,+1,+1, 0, -1, -2, +2, +2, -2] i_ads=[ 0, 0,-1,+1,-1,+1,-1,+1,+1, 0,-1,+1, 0,-1,-2,-2,-2,+2, +2, +2, -2, +2, -2, +2] # tstep = (block_num_samp-dt_min)//ens # for i in range(1,block_num_lats-1): numnebs=np.sum(np.isfinite(x_grid[i+np.array(iads),j+np.array(jads),0])) if numnebs==len(sads): xn = np.zeros((Stencil_size,block_num_samp)) ib = i jb = j if DistType in ['mean'] and np.any(dx_const==None) and np.any(dy_const==None): # USING MEAN DISTANCE ds=np.zeros(Stencil_size) for s,ss in enumerate(sads): ds[Stencil_center+ss]=distance([block_lat[ib,jb],block_lon[ib,jb]],[block_lat[ib+iads[s],jb+jads[s]],block_lon[ib+iads[s],jb+jads[s]]],radius=radius)*1000 # xn[Stencil_center+np.array(sads),:]=x_grid[i+np.array(iads),j+np.array(jads),:] xn[Stencil_center,:] = x_grid[i,j,:] # calculate the mean dx,dy along two major axes dx = np.mean(ds[Stencil_center+np.array(sads[:2])]) dy = np.mean(ds[Stencil_center+np.array(sads[2:])]) elif DistType in ['interp'] and np.any(dx_const==None) and np.any(dy_const==None): # INTERPOLATED VERSION # Interpolate x_grid values to be at the same distance from the central point - this is because the inversion doesn't know about the distance. # first find the minimum distance - we will interpolate all the other points to be at this distance cent=len(s_ads)/2 ds=np.zeros(len(s_ads)+1) ang=np.zeros(len(s_ads)+1) for s,ss in enumerate(s_ads): ds[cent+ss]=distance([block_lat[ib,jb],block_lon[ib,jb]],[block_lat[ib+i_ads[s],jb+j_ads[s]],block_lon[ib+i_ads[s],jb+j_ads[s]]],radius=radius)*1000 ang[cent+np.array(s_ads)]=np.arctan2(i_ads,j_ads)*180/np.pi ang[np.where(ang<0)]=ang[np.where(ang<0)]+360 # dr=np.median(ds[np.where(ds>0)]) ds2=np.zeros((5,len(ds))) # find out how far each point is from the unit circle point facing each grid cell. for s,ss in enumerate(sads): for s2,ss2 in enumerate(s_ads): ds2[2+ss,cent+ss2]=np.sqrt(ds[cent+ss2]**2+dr**2-2*dr*ds[cent+ss2]*np.cos((ang[cent+ss2]-ang[cent+ss])*np.pi/180.)) # ds2=np.delete(ds2,2,axis=0) # remove the central point from the points of interest - we know the value already ds2=np.delete(ds2,cent,axis=1) # remove the central point from the points that affect interpolation - we don't want to transform any information outside winds=np.argsort(ds2,axis=1) # ds2_sort=np.sort(ds2,axis=1) # weigths=((1/ds2_sort[:,:3]).T/(np.sum(1/ds2_sort[:,:3],1))).T # weigths[np.where(np.isnan(weigths))]=1 # interpolate the surrounding points to the new unit circle xn[Stencil_center+np.array(sads),:]=np.sum(x_grid[i+np.array(i_ads),j+np.array(j_ads),:][winds[:,:3],:].T*weigths.T,1).T xn[Stencil_center,:] = x_grid[i,j,:] # distance is the same to each direction dx=dy=dr # elif np.any(dx_const!=None) and np.any(dy_const!=None): # if the xn[Stencil_center+np.array(sads),:]=x_grid[i+np.array(iads),j+np.array(jads),:] xn[Stencil_center,:] = x_grid[i,j,:] dx=dx_const dy=dy_const else: # ORIGINAL VERSION # calc distances dx = distance([block_lat[ib,jb],block_lon[ib,jb-1]],[block_lat[ib,jb],block_lon[ib,jb]],radius=radius)*1000 dy = distance([block_lat[ib,jb],block_lon[ib,jb]],[block_lat[ib-1,jb],block_lon[ib,jb]],radius=radius)*1000 # correct negative distances due to blocks spanning meridian if (block_lon[ib,jb]*block_lon[ib,jb+1]<0): dx = distance([block_lat[ib,jb],block_lon[ib,jb-1]],[block_lat[ib,jb],block_lon[ib,jb]],radius=radius)*1000 # if (block_lat[ib,jb]*block_lat[ib+1,jb]<0): dy = distance([block_lat[ib,jb],block_lon[ib,jb]],[block_lat[ib-1,jb],block_lon[ib,jb]],radius=radius)*1000 # fill xn with timeseries of center point and neighbors for ci in range(Stencil_center): if ci==0: xn[Stencil_center-1,:] = x_grid[i,j-1,:] xn[Stencil_center+1,:] = x_grid[i,j+1,:] elif ci==1: xn[Stencil_center-2,:] = x_grid[i+1,j,:] xn[Stencil_center+2,:] = x_grid[i-1,j,:] xn[Stencil_center,:] = x_grid[i,j,:] # if inversion_method in ['integral']: # tstep = (block_num_samp-dt_min)//ens bn = np.zeros((Stencil_size,ens)) res = np.zeros((Stencil_size,ens)) # for e in range(ens): t0=e*tstep t1=e*tstep+dt_min if block_num_samp-(t1+Tau)>=0: xnlag = xn[:,t0+Tau:t1+Tau] else: xnlag=np.concatenate([xn[:,t0+Tau:t1+Tau], np.zeros((Stencil_size,(t1+Tau)-block_num_samp))],axis=1) # a=np.dot(xnlag,xn[:,t0:t1].T) b=np.dot(xn[:,t0:t1],xn[:,t0:t1].T) a[np.where(np.isnan(a))]=0 b[np.where(np.isnan(b))]=0 tmp = np.dot(a.data, np.linalg.pinv(b.data)) tmp[np.isnan(tmp)] = 0 tmp[np.isinf(tmp)] = 0 # this is very robust - time variability is perhaps more interesting res[:,e] = abs((a-np.dot(tmp,b))[Stencil_center,:]/a[Stencil_center,:]) # if np.isfinite(np.sum(tmp)) and np.sum(abs(tmp-tmp[0]))>1E-10: #check that not all the values are the same try: bb, bb_err = linalg.logm(tmp,disp=False) bb = (1./(Tau*Dt_secs))*bb bb_err = (1./(Tau*Dt_secs))*bb_err #bb, bb_err = (1./(Tau*Dt_secs))*linalg.logm(tmp,disp=False) except (ValueError,ZeroDivisionError,OverflowError): bn[:,e] = np.zeros(Stencil_size) else: bn[:,e] = np.real(bb[Stencil_center,:]) #res[:,e] = np.real(bb_err[]) else: bn[:,e]=np.zeros(Stencil_size) # #bb = (1./(Tau*Dt_secs))*linalg.logm(tmp) #bn[:,e] = np.real(bb[Stencil_center,:]) # ############################################ # -- solve for U K and R from row of bn -- # ############################################ # block_vars[:,0,i,j] = -dx*(bn[Stencil_center+1,:]-bn[Stencil_center-1,:]) #-dx*np.nanpercentile(bn[Stencil_center+1,:]-bn[Stencil_center-1,:],percentiles) # u block_vars[:,1,i,j] = -dy*(bn[Stencil_center+2,:]-bn[Stencil_center-2,:]) #-dy*np.nanpercentile(bn[Stencil_center+2,:]-bn[Stencil_center-2,:],percentiles) # v block_vars[:,2,i,j] = 1./2*dx**2*(bn[Stencil_center+1,:]+bn[Stencil_center-1,:]) #1./2*dx**2*np.nanpercentile(bn[Stencil_center+1,:]+bn[Stencil_center-1,:],percentiles) # Kx block_vars[:,3,i,j] = 1./2*dy**2*(bn[Stencil_center+2,:]+bn[Stencil_center-2,:]) #1./2*dy**2*np.nanpercentile(bn[Stencil_center+2,:]+bn[Stencil_center-2,:],percentiles) # Ky block_vars[:,4,i,j] = -1./np.nansum(bn,0) #np.nanpercentile(-1./np.nansum(bn,0),percentiles) # R if not (block_vars2 is None): block_vars2[:,i,j] = np.nanmean(res,0) def parallel_inversion(j,x_grid,block_vars,Stencil_center,Stencil_size,block_num_samp,block_num_lats,block_num_lons,block_lat,block_lon,Tau,Dt_secs,rot=False,block_vars2=None,inversion_method='integral',dx_const=None,dy_const=None, DistType='mean',radius=6371): """ Invert 2D data using a 5 point stencil. This function should be not be called directly, instad call the inversion() function Possibility to use either 'classic' north-south, east-west stencil (rot=False, default), or a stencil rotated 45 deg counter-clockwise (west). """ # # if not rot: # indices for the surrounding 8 points sads=[-1,+1,-2,+2,-1,+1,-2,+2][:4] # indices for ds - Stencil_center will be the central point - these are spiraling out jads=[-1,+1, 0, 0,-1,+1,+1,-1][:4] # left,right,down,up,down-left,up-right,right-down,left-up iads=[ 0, 0,-1,+1,-1,+1,-1,+1][:4] # indices for the surrounding 24 points -important to have the same first 4 points (the rest don't matter) s_ads=[-1,+1,-2,+2,-3,+3,-4,+4,-5,+5,-6,+6,-7,+7,-8,+8,-9,+9,-10,+10,-11,+11,-12,+12] j_ads=[-1,+1, 0, 0,-1,+1,+1,-1,-2,-2,-2,+2,+2,+2,-1, 0,+1,+1, 0, -1, -2, +2, +2, -2] i_ads=[ 0, 0,-1,+1,-1,+1,-1,+1,+1, 0,-1,+1, 0,-1,-2,-2,-2,+2, +2, +2, -2, +2, -2, +2] else: # x and y axis are rotated 45 to the left # indices for the surrounding 8 points sads=[-1,+1,-2,+2,-1,+1,-2,+2][4:] # indices for ds - Stencil_center will be the central point - these are spiraling out jads=[-1,+1, 0, 0,-1,+1,+1,-1][4:] # left,right,down,up,down-left,up-right,right-down,left-up iads=[ 0, 0,-1,+1,-1,+1,-1,+1][4:] # indices for the surroundig 24 points s_ads=[-1,+1,-2,+2,-3,+3,-4,+4,-5,+5,-6,+6,-7,+7,-8,+8,-9,+9,-10,+10,-11,+11,-12,+12] j_ads=[-1,+1,+1,-1,-1,+1, 0, 0,-2,-2,+2,+2,+2,+2,-2,-2,-2,+2, 0, 0, +1, +1, -1, -1] i_ads=[-1,+1,-1,+1, 0, 0,-1,+1,-2,-1,+2,+1,-2,-1,+2,+1, 0, 0, -2, +2, +2, -2, +2, -2] for i in range(1,block_num_lats-1): #change this back if no interpolatiion is used # for i in range(2,block_num_lats-2): #if interpolation is used numnebs=np.sum(np.isfinite(x_grid[i+np.array(iads),j+np.array(jads),0])) # only invert all the points in the stencil are finite if numnebs==len(sads): xn = np.zeros((Stencil_size,block_num_samp)) ib = i jb = j # calculate the dx and dy and fill the stencil if DistType in ['mean'] and np.any(dx_const==None) and np.any(dy_const==None): # USING MEAN DISTANCE ds=np.zeros(Stencil_size) for s,ss in enumerate(sads): ds[Stencil_center+ss]=distance([block_lat[ib,jb],block_lon[ib,jb]],[block_lat[ib+iads[s],jb+jads[s]],block_lon[ib+iads[s],jb+jads[s]]],radius=radius)*1000 # xn[Stencil_center+np.array(sads),:]=x_grid[i+np.array(iads),j+np.array(jads),:] xn[Stencil_center,:] = x_grid[i,j,:] # calculate the mean dx,dy along two major axes dx = np.mean(ds[Stencil_center+np.array(sads[:2])]) dy = np.mean(ds[Stencil_center+np.array(sads[2:])]) elif DistType in ['interp'] and np.any(dx_const==None) and np.any(dy_const==None): # INTERPOLATED VERSION # Interpolate x_grid values to be at the same distance from the central point - this is because the inversion doesn't know about the distance. # first find the minimum distance - we will interpolate all the other points to be at this distance cent=len(s_ads)/2 ds=np.zeros(len(s_ads)+1) ang=np.zeros(len(s_ads)+1) for s,ss in enumerate(s_ads): ds[cent+ss]=distance([block_lat[ib,jb],block_lon[ib,jb]],[block_lat[ib+i_ads[s],jb+j_ads[s]],block_lon[ib+i_ads[s],jb+j_ads[s]]],radius=radius)*1000 ang[cent+np.array(s_ads)]=np.arctan2(i_ads,j_ads)*180/np.pi ang[np.where(ang<0)]=ang[np.where(ang<0)]+360 # dr=np.median(ds[np.where(ds>0)]) ds2=np.zeros((5,len(ds))) # find out how far each point is from the unit circle point facing each grid cell. for s,ss in enumerate(sads): for s2,ss2 in enumerate(s_ads): ds2[2+ss,cent+ss2]=np.sqrt(ds[cent+ss2]**2+dr**2-2*dr*ds[cent+ss2]*np.cos((ang[cent+ss2]-ang[cent+ss])*np.pi/180.)) # ds2=np.delete(ds2,2,axis=0) # remove the central point from the points of interest - we know the value already ds2=np.delete(ds2,cent,axis=1) # remove the central point from the points that affect interpolation - we don't want to transform any information outside winds=np.argsort(ds2,axis=1) # ds2_sort=np.sort(ds2,axis=1) # weigths=((1/ds2_sort[:,:3]).T/(np.sum(1/ds2_sort[:,:3],1))).T # weigths[np.where(np.isnan(weigths))]=1 # interpolate the surrounding points to the new unit circle xn[Stencil_center+np.array(sads),:]=np.sum(x_grid[i+np.array(i_ads),j+np.array(j_ads),:][winds[:,:3],:].T*weigths.T,1).T xn[Stencil_center,:] = x_grid[i,j,:] # distance is the same to each direction dx=dy=dr # elif np.any(dx_const!=None) and np.any(dy_const!=None): # if the xn[Stencil_center+np.array(sads),:]=x_grid[i+np.array(iads),j+np.array(jads),:] xn[Stencil_center,:] = x_grid[i,j,:] dx=dx_const dy=dy_const else: # ORIGINAL VERSION # calc distances dx = distance([block_lat[ib,jb],block_lon[ib,jb-1]],[block_lat[ib,jb],block_lon[ib,jb]],radius=radius)*1000 dy = distance([block_lat[ib,jb],block_lon[ib,jb]],[block_lat[ib-1,jb],block_lon[ib,jb]],radius=radius)*1000 # correct negative distances due to blocks spanning meridian if (block_lon[ib,jb]*block_lon[ib,jb+1]<0): dx = distance([block_lat[ib,jb],block_lon[ib,jb-1]],[block_lat[ib,jb],block_lon[ib,jb]],radius=radius)*1000 # if (block_lat[ib,jb]*block_lat[ib+1,jb]<0): dy = distance([block_lat[ib,jb],block_lon[ib,jb]],[block_lat[ib-1,jb],block_lon[ib,jb]],radius=radius)*1000 # fill xn with timeseries of center point and neighbors for ci in range(Stencil_center): if ci==0: xn[Stencil_center-1,:] = x_grid[i,j-1,:] xn[Stencil_center+1,:] = x_grid[i,j+1,:] elif ci==1: xn[Stencil_center-2,:] = x_grid[i+1,j,:] xn[Stencil_center+2,:] = x_grid[i-1,j,:] xn[Stencil_center,:] = x_grid[i,j,:] # TODO : HERE IS AN OPTION TO RUN ALL THE TAUS AT ONCE if False: #inversion_method in ['integral'] and False: bns=np.zeros((Stencil_size,Tau-1)) for tau in range(1,Tau): xnlag = np.concatenate((xn[:,tau:], np.zeros((Stencil_size,tau))),axis=1) a=np.dot(xnlag,xn.T) b=np.dot(xn,xn.T) a[np.where(np.isnan(a))]=0 b[np.where(np.isnan(b))]=0 tmp = np.dot(a, np.linalg.pinv(b)) tmp[np.isnan(tmp)] = 0 tmp[np.isinf(tmp)] = 0 if np.isfinite(np.sum(tmp)) and np.sum(abs(tmp-tmp[0]))>1E-10: try: bb = (1./(tau*Dt_secs))*linalg.logm(tmp) except (ValueError,ZeroDivisionError,OverflowError): continue else: bns[:,tau-1] = np.real(bb[Stencil_center,:]) # bns[~np.isfinite(bns)] = 0 # select the case when the central cell is most negative b_ind=np.where(bns[Stencil_center,:].squeeze()==np.min(bns[Stencil_center,:],0))[0] if len(b_ind)>1: b_ind=b_ind[0] bn=bns[:,b_ind[0]] # elif inversion_method in ['integral']: # inverse by integral method xnlag = np.concatenate((xn[:,Tau:], np.zeros((Stencil_size,Tau))),axis=1) # tmp = (np.dot(xnlag,xn.T))/(np.dot(xn,xn.T)) # in matlab: tmp = (xnlag*xn')/(xn*xn') let's take a=xnlag*xn' and b=xn*xn' # this line in matlab basically means solving for xb=a # what we can do in python is # xb = a: solve b.T x.T = a.T # see http://stackoverflow.com/questions/1007442/mrdivide-function-in-matlab-what-is-it-doing-and-how-can-i-do-it-in-python # a=np.dot(xnlag,xn.T) b=np.dot(xn,xn.T) a[np.where(np.isnan(a))]=0 b[np.where(np.isnan(b))]=0 # tmp = np.linalg.lstsq(b.data.T, a.data.T)[0] # one way to do it tmp = np.dot(a, np.linalg.pinv(b)) # another way tmp[np.isnan(tmp)] = 0 tmp[np.isinf(tmp)] = 0 if np.isfinite(np.sum(tmp)) and np.sum(abs(tmp-tmp[0]))>1E-10: #check that not all the values are the same try: bb = (1./(Tau*Dt_secs))*linalg.logm(tmp) except (ValueError,ZeroDivisionError,OverflowError): bn = np.zeros(Stencil_size) else: bn = np.real(bb[Stencil_center,:]) else: bn=np.zeros(Stencil_size) # bn[~np.isfinite(bn)] = 0 # # inverse by derivative method elif inversion_method in ['derivative']: # central differential xnfut = np.concatenate((xn[:,1:], np.zeros((Stencil_size,1))),axis=1) xnpast = np.concatenate((np.zeros((Stencil_size,1)), xn[:,:-1]),axis=1) xnlag = np.concatenate((np.zeros((Stencil_size,Tau)), xn[:,1:xn.shape[1]-Tau+1]),axis=1) a=np.dot((xnfut-xnpast),xnlag.T) b=np.dot(xn,xnlag.T) a[np.where(np.isnan(a))]=0 b[np.where(np.isnan(b))]=0 #tmp = np.linalg.lstsq(b.data.T, a.data.T)[0] #one way to do it tmp = np.dot(a.data, np.linalg.pinv(b.data)) if np.isfinite(np.sum(tmp)) and np.sum(abs(tmp-tmp[0]))>1E-10: bn_matrix = (0.5/Dt_secs)*tmp bn = np.real(bn_matrix[Stencil_center,:]) bn[~np.isfinite(bn)] = 0 else: bn = np.zeros(Stencil_size) elif inversion_method in ['integral_2']: # alternative integral - but no wit backward time difference xnfut = np.concatenate((xn[:,1:], np.zeros((Stencil_size,1))),axis=1) xnlag = np.concatenate((np.zeros((Stencil_size,Tau)), xn[:,1:xn.shape[1]-Tau+1]),axis=1) a=np.dot(xnfut,xnlag.T) b=np.dot(xn,xnlag.T) a[np.where(np.isnan(a))]=0 b[np.where(np.isnan(b))]=0 #tmp = np.linalg.lstsq(b.data.T, a.data.T)[0] #one way to do it tmp = np.dot(a.data, np.linalg.pinv(b.data)) #another way tmp[np.isnan(tmp)] = 0 tmp[
np.isinf(tmp)
numpy.isinf
import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import tensorflow as tf import sys import os import pickle as pickle from six.moves import urllib import tarfile import scipy.stats.mstats from load_cifar10 import load_data10 # training parameters initial_learning_rate = 0.001 training_epochs = 200 batch_size = 128 # architecture parameters n_labels = 10 crop_length = 32 n_channels = 3 image_width = 32 n_input = 32 * 32 mode = 'normal' # 'normal', 'mix', or 'fast' nonlinearity_name = 'relu' try: num_to_make = int(sys.argv[1]) print('Number of foolers to generate:', num_to_make) except: print('Defaulted to making one fooling image') num_to_make = 1 try: mode = sys.argv[2] # 'normal', 'mix', or 'fast' print('Chosen mode:', mode) except: print('Defaulted to normal mode since no mode given through command line') mode = 'normal' def str2bool(v): return v.lower() in ("yes", "true", "t", "1") graph = tf.Graph() with graph.as_default(): x = tf.placeholder(dtype=tf.float32, shape=[None, crop_length, crop_length, n_channels]) y = tf.placeholder(dtype=tf.int64, shape=[None]) is_training = tf.constant(False) # tf.placeholder(tf.bool) W = {} bn = {} params = pickle.load(open("./r32.pkl", "rb"), encoding='latin1') bn['beta0'] = tf.Variable(params[0]) bn['gamma0'] = tf.Variable(params[1]) bn['mu0'] = tf.constant(params[2]) bn['inv_std0'] = tf.constant(params[3]) for layer in range(1, 32): # awkward offset because of bn for input l_str = str(layer) W['filter' + l_str] = tf.Variable(np.moveaxis(params[layer * 5 - 1], [0, 1, 2, 3], [3, 2, 0, 1])) bn['beta' + l_str] = tf.Variable(params[layer * 5 + 0]) bn['gamma' + l_str] = tf.Variable(params[layer * 5 + 1]) bn['mu' + l_str] = tf.constant(params[layer * 5 + 2]) bn['inv_std' + l_str] = tf.constant(params[layer * 5 + 3]) W['w_out'] = tf.Variable(params[159]) W['b_out'] = tf.Variable(params[160]) def feedforward(_x, n=5): rho = tf.nn.relu def residual_block(h, layer_number=1, input_num_filters=32, increase_dim=False): l_num = str(layer_number) if increase_dim: first_stride = [1, 2, 2, 1] out_num_filters = input_num_filters * 2 else: first_stride = [1, 1, 1, 1] out_num_filters = input_num_filters stack1 = rho((tf.nn.conv2d(h, W['filter' + l_num], strides=first_stride, padding='SAME') - bn['mu' + l_num]) * bn['inv_std' + l_num] * bn['gamma' + l_num] + bn['beta' + l_num]) l_num = str(layer_number + 1) stack2 = (tf.nn.conv2d(stack1, W['filter' + l_num], strides=[1, 1, 1, 1], padding='SAME') - bn['mu' + l_num]) * bn['inv_std' + l_num] * bn['gamma' + l_num] + bn['beta' + l_num] if increase_dim: # upgrade tensorflow h[:, fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b, ::2, :] # array_ops.strided_slice(h, [0,0,0,0], [2000,-1,-1,input_num_filters], [1,2,2,1]) h_squished = tf.nn.max_pool(h, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME') padded = tf.pad(h_squished, [[0, 0], [0, 0], [0, 0], [out_num_filters // 4, out_num_filters // 4]]) block = rho(stack2 + padded) else: block = rho(stack2 + h) return block x_input = (_x - bn['mu0']) * bn['inv_std0'] * bn['gamma0'] + bn['beta0'] # bsize x 32 x 32 x 16 l = rho((tf.nn.conv2d(x_input, W['filter1'], strides=[1, 1, 1, 1], padding='SAME') - bn['mu1']) * bn['inv_std1'] * bn['gamma1'] + bn['beta1']) # bsize x 32 x 32 x 16 for i in range(n): l = residual_block(l, layer_number=2 * i + 2) # bsize x 16 x 16 x 32 l = residual_block(l, increase_dim=True, layer_number=2 * n + 2, input_num_filters=16) for i in range(1, n): l = residual_block(l, layer_number=2 * n + 2 * i + 2) # bsize x 8 x 8 x 64 l = residual_block(l, increase_dim=True, layer_number=4 * n + 2, input_num_filters=32) for i in range(1, n): l = residual_block(l, layer_number=4 * n + 2 * i + 2) l = tf.reduce_mean(l, reduction_indices=[1, 2]) return tf.matmul(l, W['w_out']) + W['b_out'] def normal(_x): return feedforward(_x) def energy_blur(_x): _x = tf.reshape(_x, [-1, image_width, image_width, 3]) # 5x5, sigma = 0.7 filter = tf.reshape(tf.constant([[0.000252, 0.00352, 0.008344, 0.00352, 0.000252], [0.00352, 0.049081, 0.11634, 0.049081, 0.00352], [0.008344, 0.11634, 0.275768, 0.11634, 0.008344], [0.00352, 0.049081, 0.11634, 0.049081, 0.00352], [0.000252, 0.00352, 0.008344, 0.00352, 0.000252]], dtype=tf.float32), [5, 5, 1, 1]) h, s, v = tf.split(3, 3, _x) h = tf.nn.conv2d(tf.square(h), filter, strides=[1, 1, 1, 1], padding='SAME') h = tf.sqrt(tf.reshape(h, [-1, 32, 32, 1]) + 1e-12) s = tf.nn.conv2d(tf.square(s), filter, strides=[1, 1, 1, 1], padding='SAME') s = tf.sqrt(tf.reshape(s, [-1, 32, 32, 1]) + 1e-12) v = tf.nn.conv2d(tf.square(v), filter, strides=[1, 1, 1, 1], padding='SAME') v = tf.sqrt(tf.reshape(v, [-1, 32, 32, 1]) + 1e-12) _x = tf.concat(3, [h, s, v]) return feedforward(_x) pred_normal = normal(x) loss_normal = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(pred_normal, y)) pred_energy_blur = energy_blur(x) loss_energy_blur = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(pred_energy_blur, y)) if mode == 'normal' or mode == 'fast': pred = pred_normal loss = loss_normal elif mode == 'mix': pred = (pred_normal + pred_energy_blur) / 2. loss = loss_normal + loss_energy_blur sess = tf.InteractiveSession(graph=graph) tf.initialize_all_variables().run() train_dataset, train_labels, test_dataset, test_labels = load_data10(randomize=False) # mean_img = np.reshape(np.mean(train_dataset, 0), (32, 32, 3)) train_dataset = train_dataset.astype(np.float32) test_dataset = test_dataset.astype(np.float32) # pred = sess.run(pred, feed_dict={x: train_dataset[0:3000,:,:,:]}) # error = np.argmax(pred, 1) != np.argmax(train_labels[0:3000, :], 1) # print(np.mean(error)) class_names = ['airplane', 'auto', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] def show_image(image, rescale=False, add_mean=False): img = image.copy() img = img.reshape(32,32,3) # if add_mean: # img += mean_img # if rescale: # low, high = np.min(img), np.max(img) # img = (img - low) / (high - low) plt.imshow(img) plt.gca().axis('off') def make_fooling_image(image, target, reg=1e-3, step=1/255., max_iters=100, confidence_thresh=0.5): # NOTE: we clip as a consequence of our discussion about improperly plotted images orig_image = image.copy() # paranoia fooling_image = image.copy() for _ in range(max_iters): dFool, predictions = sess.run([tf.gradients(loss, x)[0], pred], feed_dict={x: fooling_image, y: [target]}) fooling_image[0] -= step * (np.squeeze(dFool[0]) + reg * (fooling_image[0] - orig_image[0])) fooling_image[0] = np.clip(fooling_image[0], 0, 1) fool_prob = sess.run(tf.nn.softmax(predictions)[0, target]) if fool_prob > confidence_thresh: break return fooling_image def make_fooling_image_fast(image, target, reg=1e-3, step=10/255.): # NOTE: we clip as a consequence of our discussion about improperly plotted images orig_image = image.copy() # paranoia fooling_image = image.copy() dFool = sess.run(tf.gradients(loss, x)[0], feed_dict={x: fooling_image, y: [target]}) fooling_image[0] -= step * np.sign(
np.squeeze(dFool[0])
numpy.squeeze
#!/usr/bin/env python2 import rospy from tf import TransformBroadcaster, TransformerROS, transformations as tfs import tf from geometry_msgs.msg import Transform import numpy as np rospy.init_node('handeye_calibration_publisher') print("Publishing handeye matrix!") while rospy.get_time() == 0.0: pass d = np.load("calibration_data.npz") observed_pts = d['arr_0'] measured_pts = d['arr_1'] def get_rigid_transform(A, B): assert len(A) == len(B) N = A.shape[0]; # Total points centroid_A = np.mean(A, axis=0) centroid_B = np.mean(B, axis=0) AA = A - np.tile(centroid_A, (N, 1)) # Centre the points BB = B - np.tile(centroid_B, (N, 1)) H = np.dot(np.transpose(AA), BB) # Dot is matrix multiplication for array U, S, Vt = np.linalg.svd(H) R =
np.dot(Vt.T, U.T)
numpy.dot
# Copyright 2020 The FastEstimator Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import os import tempfile import unittest from unittest.mock import patch import numpy as np import fastestimator as fe from fastestimator.dataset import NumpyDataset from fastestimator.op.tensorop.model import ModelOp from fastestimator.test.unittest_util import OneLayerTorchModel, one_layer_tf_model from fastestimator.trace import Trace from fastestimator.trace.io.test_report import TestCase, TestReport from fastestimator.util import to_number class SampleTrace(Trace): """ custom trace that gets average of all samples """ def on_begin(self, data): self.buffer = [] def on_batch_end(self, data): self.buffer.append(to_number(data[self.inputs[0]])) def on_epoch_end(self, data): data.write_without_log(self.outputs[0], np.mean(np.concatenate(self.buffer))) class TestTestReport(unittest.TestCase): @classmethod def setUpClass(cls): dataset = NumpyDataset({ "x": np.array([[1, 1, 1], [1, -1, -0.5]], dtype=np.float32), "id":
np.array([0, 1], dtype=np.int32)
numpy.array
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot =
N.array([1,0,0,0,1,0,0,0,1])
numpy.array
import copy import glob import os import time from collections import deque import gym import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision import torchvision.transforms as transforms # from torch.utils.tensorboard import SumxmaryWriter from a2c_ppo_acktr import algo, utils from a2c_ppo_acktr.algo import gail, gail_lipschitz, ppo_lipschitz import a2c_ppo_acktr.arguments as arguments #import get_args, get_init, get_init_Lipschitz from a2c_ppo_acktr.envs import make_vec_envs from a2c_ppo_acktr.model import Policy from a2c_ppo_acktr.storage import RolloutStorage from evaluation import evaluate from a2c_ppo_acktr.envs import VecPyTorch from baselines.common.atari_wrappers import FrameStack, ClipRewardEnv, WarpFrame from procgen import ProcgenEnv import argparse import sys sys.path.append(os.getcwd()) import pickle from a2c_ppo_acktr.utils import init from utils import myutils import mujoco_py from os import listdir from os.path import isfile, join import math import psutil import tracemalloc import linecache # from memory_profiler import profile # breakpoint() # ------------ REWARD NETWORKS ------------ class net_MLP(nn.Module): def __init__(self, input_size, rew_sign, rew_mag, FC1_dim = 256, FC2_dim = 256, FC3_dim = 256, out_dim=1): super().__init__() # an affine operation: y = Wx + b self.n_dim = input_size self.fc1 = nn.Linear(self.n_dim, FC1_dim) self.fc2 = nn.Linear(FC1_dim, FC2_dim) self.fc3 = nn.Linear(FC2_dim, FC3_dim) self.fc4 = nn.Linear(FC3_dim, out_dim) self.rew_sign = rew_sign self.rew_mag = rew_mag def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = F.relu(self.fc3(x)) if self.rew_sign == "free": x = self.fc4(x) elif self.rew_sign == "neg": x = - F.relu(self.fc4(x)) elif self.rew_sign == "pos": x = F.relu(self.fc4(x)) elif self.rew_sign == "pos_sigmoid": x = self.rew_mag*torch.sigmoid(self.fc4(x)) elif self.rew_sign == "neg_sigmoid": x = - self.rew_mag*torch.sigmoid(self.fc4(x)) elif self.rew_sign == "tanh": x = self.rew_mag*torch.tanh(self.fc4(x)) return x def _num_flat_features(self, x): size = x.size()[1:] # all dimensions except the batch dimension num_features = 1 for s in size: num_features *= s return num_features class net_CNN(nn.Module): def __init__(self, observation_space_shape, rew_sign, rew_mag, final_conv_channels=10): super().__init__() depth = observation_space_shape[0] n_dim = observation_space_shape[1] init_ = lambda m: init(m, nn.init.orthogonal_, lambda x: nn.init. constant_(x, 0), nn.init.calculate_gain('relu')) self.rew_sign = rew_sign self.rew_mag = rew_mag def conv2d_size_out(size, kernel_size, stride): return (size - (kernel_size - 1) - 1) // stride + 1 conv1_output_width = conv2d_size_out(n_dim, 8,4) conv2_output_width = conv2d_size_out(conv1_output_width, 4,2) conv3_output_width = conv2d_size_out(conv2_output_width, 3,1) conv4_output_width = conv2d_size_out(conv3_output_width, 7,1) FC_input_size = conv4_output_width * conv4_output_width * final_conv_channels self.conv1 = nn.Conv2d(depth, 32, 8, stride=4) self.conv2 = nn.Conv2d(32, 64, 4, stride=2) self.conv3 = nn.Conv2d(64, 64, 3, stride=1) self.conv4 = nn.Conv2d(64, final_conv_channels, 7, stride=1) self.FC = nn.Linear(FC_input_size, 1) # self.main = nn.Sequential( # nn.Conv2d(n_dim, 32, 8, stride=4), nn.ReLU(), # nn.Conv2d(32, 64, 4, stride=2), nn.ReLU(), # nn.Conv2d(64, 66, 3, stride=1), nn.ReLU(), # nn.Conv2d(64, final_conv_channels, 7, stride=1), nn.ReLU(), # Flatten(), # nn.Linear(FC_input_size, 1) # ) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = F.relu(self.conv3(x)) x = F.relu(self.conv4(x)) x = x.view(x.size(0), -1) # flatten if self.rew_sign == "free": x = self.FC(x) elif self.rew_sign == "neg": x = - F.relu(self.FC(x)) elif self.rew_sign == "pos": x = F.relu(self.FC(x)) elif self.rew_sign == "pos_sigmoid": x = self.rew_mag*torch.sigmoid(self.FC(x)) elif self.rew_sign == "neg_sigmoid": x = - self.rew_mag*torch.sigmoid(self.FC(x)) elif self.rew_sign == "tanh": x = self.rew_mag*torch.tanh(self.FC(x)) return x def num_flat_features(self, x): size = x.size()[1:] # all dimensions except the batch dimension num_features = 1 for s in size: num_features *= s return num_features # Auxiliary functions class reward_cl(): def __init__(self, device, observation_space_shape, lr, rew_sign, rew_mag, rew_kwargs): # new networks self.device = device if len(observation_space_shape) == 1: # num_stacked_obs = 4 self.reward_net = net_MLP(observation_space_shape[0], rew_sign, rew_mag, FC1_dim=rew_kwargs['FC_dim'], FC2_dim=rew_kwargs['FC_dim'], out_dim=1).to(self.device) elif len(observation_space_shape) == 3: self.reward_net = net_CNN(observation_space_shape, rew_sign, rew_mag).to(self.device) # NOTE: by commenting the following lines, we rely on Pytorch's initialization. # Pytorch uses Kaiming Initialization which is good for linear layers with ReLu activations # self.init_weights_var = 0.05 # self._init_weights(self.reward_net) self.lr = lr # create the optimizer self.optimizer = optim.Adam(self.reward_net.parameters(), lr=self.lr, betas=(0.9, 0.999), eps=1e-06, weight_decay=0.001, amsgrad=False) # theta based variables self.reward_input_batch = None self.theta_size = self._get_size_theta() # self.grad_R_theta = np.zeros((self.MDP.n_dim, self.theta_size)) def _get_size_theta(self): size = 0 for f in self.reward_net.parameters(): # SHOULD BE DOUBLE CHECKED 1234567891011 dims = f.size() layer_size = 1 for dim in dims: layer_size *= dim size += layer_size return size def _init_weights(self, reward_net): with torch.no_grad(): for layer_w in reward_net.parameters(): torch.nn.init.normal_(layer_w, mean=0.0, std=self.init_weights_var) # torch.nn.init.xavier_normal_(layer_w, gain=1.0) def reward_net_input_method(self,obs): return obs def reward_net_input_batch_traj_method(self, traj): reward_input_batch = torch.cat([torch.unsqueeze(trans, dim=0) for trans in traj], dim=0) # reward_input_batch.requires_grad_(True) return reward_input_batch def reward_net_input_batch_traj_method_stacked(self, traj): stacked_obs_list = [] for idx in range(len(traj)): if idx == 0: stacked_obs = torch.cat([traj[0][0], traj[0][0], traj[0][0], traj[0][0]], dim=1) elif idx == 1: stacked_obs = torch.cat([traj[1][0], traj[0][0], traj[0][0], traj[0][0]], dim=1) elif idx == 2: stacked_obs = torch.cat([traj[2][0], traj[1][0], traj[0][0], traj[0][0]], dim=1) else: stacked_obs = torch.cat([traj[idx][0], traj[idx-1][0], traj[idx-2][0], traj[idx-3][0]], dim=1) stacked_obs_list.append(stacked_obs) return torch.cat(stacked_obs_list, dim=0) def _get_flat_grad(self): # this part is to get the thetas to be used for l2 regularization # grads_flat = torch.zeros(self.theta_size) grads_flat_list = [] start_pos = 0 for idx, weights in enumerate(self.reward_net.parameters()): # SHOULD BE DOUBLE CHECKED 1234567891011 num_flat_features = self._num_flat_features(weights) try: grads = copy.deepcopy(weights.grad.view(-1, num_flat_features)) except Exception as e: print("No gradient error") # grads_flat[start_pos:start_pos+num_flat_features] = grads[:] # start_pos += num_flat_features grads_flat_list.append(grads) grads_flat = torch.unsqueeze(torch.cat(grads_flat_list, dim=1), dim=0) return grads_flat def get_flat_weights(self): # this part is to get the thetas to be used for l2 regularization weights_flat = torch.zeros(self.theta_size) start_pos = 0 for weights in self.reward_net.parameters(): # SHOULD BE DOUBLE CHECKED 1234567891011 num_flat_features = self._num_flat_features(weights) weights = copy.deepcopy(weights.view(-1, num_flat_features).detach()) weights_flat[start_pos:start_pos+num_flat_features] = weights[:] start_pos += num_flat_features return weights_flat def _num_flat_features(self, x): size = x.size() # all dimensions except the batch dimension num_features = 1 for s in size: num_features *= s return num_features def _get_size_theta(self): size = 0 for f in self.reward_net.parameters(): # SHOULD BE DOUBLE CHECKED 1234567891011 dims = f.size() layer_size = 1 for dim in dims: layer_size *= dim size += layer_size return size class train_sparse_rank(): def __init__(self, kwargs, myargs, init_params): if not myargs.seed == -12345: # seed is provided as command line argument and nothing needs to be done pass else: if os.getenv('SEED'): myargs.seed = int(os.getenv('SEED')) else: raise ValueError('SEED not provided as command line argument or as an enviornment variable') if myargs.save_name: add_to_save_name = f"-{myargs.save_name}" else: add_to_save_name = "" if myargs.shaping: shaping_str = "-shaping" else: shaping_str = "" if myargs.sparse_cntr: sparse_cntr_str = f"-sparseCntr" else: sparse_cntr_str = "" if myargs.sparseness: sparseness_str = f"-sp{myargs.sparseness}" else: sparseness_str = "" myargs.save_name = f"RLfRD-{myargs.env_name}{shaping_str}-{myargs.sparse_rew_type}-{myargs.rew_sign}{sparseness_str}{sparse_cntr_str}" + add_to_save_name + f"-s{myargs.seed}" self.kwargs = kwargs self.myargs = myargs self.init_params = init_params self.device = myutils.assign_gpu_device(self.myargs) self.log_dir = myargs.log_dir + "/" + myargs.save_name eval_log_dir = self.log_dir + "_eval" self.log_file_name = myargs.env_name # utils.cleanup_log_dir(log_dir) # utils.cleanup_log_dir(eval_log_dir) if not myargs.continue_: utils.create_dir(self.log_dir) # utils.create_dir(eval_log_dir) # self.save_path_trained_models is for storing the trained model self.save_path_trained_models = os.path.join(myargs.save_dir, myargs.algo, myargs.save_name) if self.myargs.train_from_given_ranked_demos: self.save_path_new_trajs = self.myargs.ranked_demos_address + "/train" self.save_path_new_trajs_val = self.myargs.ranked_demos_address + "/val" else: self.save_path_new_trajs = os.path.join(myargs.save_dir, myargs.algo, myargs.save_name, "new_trajs") if not myargs.continue_: utils.create_dir(self.save_path_trained_models) if not self.myargs.train_from_given_ranked_demos: utils.create_dir(self.save_path_new_trajs) # # Create forlder for tensorboard # self.writer = SummaryWriter(f'runs/visualization') torch.manual_seed(myargs.seed) torch.cuda.manual_seed_all(myargs.seed) np.random.seed(myargs.seed) if myargs.cuda and torch.cuda.is_available() and myargs.cuda_deterministic: torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.set_num_threads(1) self.envs = make_vec_envs(myargs.env_name, myargs.seed, myargs.num_processes, myargs.gamma, self.log_dir, self.device, allow_early_resets=True, num_frame_stack=2, **kwargs) # envs = ProcgenEnv(num_envs=myargs.env_name, env_name="heistpp", **kwargs) # envs = gym.make(myargs.env_name, **kwargs) self.is_atari = myargs.is_atari if myargs.env_name in ["MountainCar-v0", "Reacher-v2", "Acrobot-v1", "Thrower-v2"]: hidden_size_policy = 10 else: hidden_size_policy = 64 if self.myargs.continue_: # Load the pretrained policy print(f'Loading policy for continuing run {self.myargs.save_name} .....') model_save_address_policy = os.path.join(self.save_path_trained_models, self.myargs.save_name + f"_policy.pt") self.actor_critic, ob_rms = torch.load(model_save_address_policy, map_location=self.device) else: self.actor_critic = Policy( self.envs.observation_space.shape, self.envs.action_space, self.device, base_kwargs={'recurrent': myargs.recurrent_policy, 'hidden_size': hidden_size_policy}) self.actor_critic.to(self.device) if myargs.algo == 'a2c': self.agent = algo.A2C_ACKTR( self.actor_critic, myargs.value_loss_coef, myargs.entropy_coef, lr=myargs.lr, eps=myargs.eps, alpha=myargs.alpha, max_grad_norm=myargs.max_grad_norm) elif myargs.algo == 'ppo': self.agent = algo.PPO( self.actor_critic, myargs.clip_param, myargs.ppo_epoch, myargs.num_mini_batch, myargs.value_loss_coef, myargs.entropy_coef, lr=myargs.lr, eps=myargs.eps, max_grad_norm=myargs.max_grad_norm) elif myargs.algo == 'acktr': self.agent = algo.A2C_ACKTR( self.actor_critic, myargs.value_loss_coef, myargs.entropy_coef, acktr=True) # Initialize the reward function # self.reward_obj = reward_cl(myargs.num_processes, self.device, self.envs.observation_space.shape, myargs.rew_lr, myargs.rew_sign, myargs.rew_mag) self.num_rew_nets = myargs.num_rew_nets if self.myargs.env_name in ["MountainCar-v0", "Reacher-v2", "Acrobot-v1", "Thrower-v2"]: FC_dim_rew = 10 else: FC_dim_rew = 60 self.reward_objs = [reward_cl(self.device, self.envs.observation_space.shape, myargs.rew_lr, myargs.rew_sign, myargs.rew_mag, rew_kwargs={'FC_dim':FC_dim_rew}) for i in range(self.num_rew_nets)] if self.myargs.continue_: # Load the pretrained reward function print(f'Loading the reward function for continuing run {self.myargs.save_name} .....') for reward_idx, reward_obj in enumerate(self.reward_objs): model_save_address = os.path.join(self.save_path_trained_models, self.myargs.save_name + f"_reward_{reward_idx}.pt") checkpoint = torch.load(model_save_address, map_location=self.device) self.reward_objs[reward_idx].reward_net.load_state_dict(checkpoint['model_state_dict']) self.reward_objs[reward_idx].optimizer.load_state_dict(checkpoint['optimizer_state_dict']) self.reward_objs[reward_idx].reward_net.train() self.rollouts = RolloutStorage(myargs.num_steps, myargs.num_processes, self.envs.observation_space.shape, self.envs.action_space, self.actor_critic.recurrent_hidden_state_size) obs = self.envs.reset() self.rollouts.obs[0].copy_(obs) self.rollouts.to(self.device) with torch.no_grad(): rew_nets_step_list = [reward_obj.reward_net(obs) for reward_obj in self.reward_objs] self.old_rews_nets_step = torch.mean(torch.cat(rew_nets_step_list, dim=1), dim=1) if not myargs.continue_: with open(self.log_dir + f"/policy_stats.txt", "w") as file: file.write("overal_tr_iter_idx, updates , num timesteps , FPS, number of Last training episodes, dist_entropy, value_loss, action_loss, mean reward, median reward, min reward, max reward \n") with open(self.log_dir + f"/rew_weights_stats.txt", "w") as file: file.write("reward_mean, reward_std \n") with open(self.log_dir + f"/rew_losses.txt", "w") as file: file.write("g_value \n") with open(self.log_dir + f"/rew_losses_val.txt", "w") as file: file.write("g_value \n") with open(self.log_dir + "/buffer_stats.txt", "w") as file: file.write("mean, range, std, mean_new, range_new, std_new \n") # if not myargs.run_type == "pretrain_only": # self.new_trajs_list = deque(maxlen= self.init_params['size_of_new_trajs_list']) # deque for storing new trajs produced by the policy # self.new_trajs_returns_list = deque(maxlen= self.init_params['size_of_new_trajs_list']) self.new_trajs_list = [] self.new_trajs_list_val = [] if self.myargs.train_from_given_ranked_demos: self.sample_trajs_from_memory = True if "devv" in self.myargs.save_name: max_train_load = 50 else: max_train_load = -1 # ************************************************* # Load new_trajs_returns_list with open(f"{self.save_path_new_trajs}/trajs_returns_all.pkl", "rb") as file: new_trajs_returns_list_temp = pickle.load(file) self.new_trajs_returns_list = new_trajs_returns_list_temp[:max_train_load] print("loading training ranked trajs ....") start_loading_trajs = time.time() for idx in range(len(self.new_trajs_returns_list[0:max_train_load])): # print(f"loading traj {idx}th out of {len(self.new_trajs_returns_list)} trajs ....") traj = torch.load(self.save_path_new_trajs+f"/traj_{idx}.pt", map_location=self.device) self.new_trajs_list.append(traj) print(f"Total time loading training ranked trajs: {time.time()-start_loading_trajs}") # ************************************************* # Load new_trajs_returns_list_val with open(f"{self.save_path_new_trajs_val}/trajs_returns_all.pkl", "rb") as file: new_trajs_returns_list_val_temp = pickle.load(file) self.new_trajs_returns_list_val = new_trajs_returns_list_val_temp[:max_train_load] print("loading val ranked trajs ....") start_loading_trajs = time.time() for idx in range(len(self.new_trajs_returns_list_val[0:max_train_load])): # print(f"loading traj {idx}th out of {len(self.new_trajs_returns_list)} trajs ....") traj = torch.load(self.save_path_new_trajs_val+f"/traj_{idx}.pt", map_location=self.device) self.new_trajs_list_val.append(traj) print(f"Total time loading val ranked trajs: {time.time()-start_loading_trajs}") else: self.new_trajs_returns_list = [] self.sample_trajs_from_memory = False self.new_trajs_last_idx = 0 self.size_of_new_trajs_list = init_params['size_of_new_trajs_list'] if self.myargs.skip_rew_eval: print(f"Skip loading validation trajectories ..... {self.myargs.save_name}") elif self.myargs.run_type == "main_opt_demos": # print(f"Loading policies and producing validation trajectories ..... {self.myargs.save_name}") # save_path_policy = os.path.join("./trained_models", self.myargs.algo, f"{self.myargs.algo}_GT_{self.myargs.env_name}-stacked") # names = listdir(save_path_policy) # eval_trajs_list = [] # eval_trajs_return_list = [] # if "devv" in self.myargs.save_name: # skip = 50 # else: # skip = 5 # for name in names[0:-1:skip]: # address = os.path.join(save_path_policy,name) # actor_critic, ob_rms = torch.load(address, map_location=self.device) # actor_critic.to(self.device) # produced_traj = self.produce_trajs_from_policy_sparsified_reward(actor_critic, 1, self.myargs.sparseness, self.init_params['produced_traj_length'], self.myargs.env_name, is_random=False) # produced_traj, produced_traj_return = myutils.trajs_calc_return_no_device(produced_traj, self.myargs.discounted_rew, self.myargs.gamma) # eval_trajs_list.append(produced_traj[0]) # eval_trajs_return_list.append(produced_traj_return[0]) # # for i in range(68): # # print (f'np.mean: { torch.mean( torch.tensor([item[0][0,i] for item in produced_traj[0] ])) }') self.val_pairs, self.val_pairs_returns =[], [] if self.myargs.train_from_given_ranked_demos: try: self.val_pairs, self.val_pairs_returns, _ = myutils.create_pairs_distance_apart_device_memory(self.new_trajs_list_val, self.new_trajs_returns_list_val, self.init_params['num_eval_pairs'], self.myargs.priority_sampling, self.device, self.init_params["difference_factor"]) # # pairs, returns = myutils.create_pairs_no_step_no_subsample(ranked_traj_list, traj_returns, batch_size, self.myargs.priority_sampling) # # if any pair is returned, the returns should be different as this is guaranteed in myutils.create_pairs_no_step # # pairs.extend(pairs_raw), returns.extend(returns_raw) except Exception as e: print("********************************************** \n \ ********************************* \n \ problems with create_pairs for evaluation ......") # del eval_trajs_list # del eval_trajs_return_list # if myargs.num_opt_demo > 0 and not myargs.continue_: # print(f"Loading policies and producing demo trajectories ..... {self.myargs.save_name}") # # names = [myargs.saved_models_name+"_"+str(item)+".pt" for item in suffix_list] # self.demos_opt, self.demos_opt_returns = [], [] # produced_trajs = [] # for name in names[-myargs.num_opt_demo:]: # address = os.path.join(save_path_policy,name) # actor_critic, ob_rms = torch.load(address, map_location=self.device) # actor_critic.to(self.device) # produced_traj = self.produce_trajs_from_policy_sparsified_reward(actor_critic, 1, self.myargs.sparseness, self.init_params['produced_traj_length'], self.myargs.env_name, is_random=False) # produced_trajs.append(produced_traj[0]) # self._add_trajs_to_new_trajs_list_hardDrive(produced_trajs, 0, self.init_params['limited_buffer_length'], self.log_dir, add_only_non_zero_trajs=False, address=self.save_path_new_trajs) # else: # pass # if self.myargs.num_overal_updates > 0: # if a non-zero value is provided for myargs.num_overal_updates, # # the value of self.init_params["num_overal_updates"] will be overwritten # self.init_params["num_overal_updates"] = self.myargs.num_overal_updates # print(f"Loading training trajectories ..... {self.myargs.save_name}") # with open(trajs_address + '/all_trajectories', 'rb') as f: # trajs_init = torch.load(f, map_location=self.device) # trajs_total_num = len(trajs_init) # traj_idxs_tr = np.arange(0, trajs_total_num, init_params['training_trajectory_skip']) # traj_idxs_val = traj_idxs_tr[:-3] + 1 # demos_train_init = [trajs_init[idx] for idx in traj_idxs_tr] # demos_val_init = [trajs_init[idx] for idx in traj_idxs_val] # self.demos_train, self.demos_train_returns = myutils.trajs_calc_return_no_device(demos_train_init) # self.demos_val, self.demos_val_returns = myutils.trajs_calc_return_no_device(demos_val_init) # self.ranked_trajs_list, self.returns = myutils.cut_trajs_calc_return_no_device(trajs, self.init_params['demo_horizon']) # FOLLOWING 4 LINES ARE USED IF WE USE OLD METHOD OF SAMPLLING SUM-TRAJECTORIES FROM INITIAL DEMONSTRATIONS # self.demos_subsampled_list, self.demos_returns_subsampled = myutils.subsample_demos(trajs, self.init_params['subsample_length'], self.init_params['subsample_increment'], self.init_params['demo_horizon']) # self.demos_subsampled_list_val, self.demos_returns_subsampled_val = myutils.subsample_demos(trajs_val, self.init_params['subsample_length'], self.init_params['subsample_increment'], self.init_params['demo_horizon']) # self.demos_subsampled_list, self.demos_returns_subsampled = myutils.subsample_demos_true_return(trajs, self.init_params['subsample_length'], self.init_params['subsample_increment'], self.init_params['demo_horizon']) # self.demos_subsampled_list_val, self.demos_returns_subsampled_val = myutils.subsample_demos_true_return(trajs_val, self.init_params['subsample_length'], self.init_params['subsample_increment'], self.init_params['demo_horizon']) if not myargs.continue_: self._save_attributes_and_hyperparameters() def train(self): # if self.myargs.pretrain in ["yes"]: # print(f"pretraining the reward function ....{self.myargs.save_name}") # # UPDATE REWARD based on initial set of demonstrations ***************************************************** # # Pre-train the policy based on the pre-trained reward # if self.myargs.run_type == "pretrain_only": # print(f"***************** Stopped right after pretraining *****************") # return # MAIN TRAINING LOOP start_time = time.time() # num_pol_updates_at_each_overal_update = int(self.myargs.num_env_steps_tr) // self.myargs.num_steps // self.myargs.num_processes // self.init_params["num_overal_updates"] self.init_params["num_overal_updates"] = int(self.myargs.num_env_steps_tr) // self.myargs.num_steps // self.myargs.num_processes // self.init_params["num_pol_updates_at_each_overal_update"] num_pol_updates_at_each_overal_update = self.init_params["num_pol_updates_at_each_overal_update"] if self.myargs.continue_: start_rew_updates = True start_shaping = True add_only_non_zero_trajs = False # This is true until set to False start_pol_updates = True # read the last overal_rew_tr_iter_idx rew_weights_stats_loaded = np.loadtxt(f"{self.log_dir}/rew_weights_stats.txt", skiprows=1) overal_rew_tr_iter_idx = int(rew_weights_stats_loaded[-1,-1]) policy_stats_loaded = np.loadtxt(f"{self.log_dir}/policy_stats.txt", skiprows=1) overal_pol_tr_iter_idx = int(policy_stats_loaded[-1,0]) del rew_weights_stats_loaded del policy_stats_loaded # Load new_trajs_returns_list trajs_return_save_address = f"{self.save_path_new_trajs}/trajs_returns_all.pkl" with open(trajs_return_save_address, "rb") as file: self.new_trajs_returns_list = pickle.load(file) else: start_rew_updates = False start_shaping = False add_only_non_zero_trajs = True # This is true until set to False overal_rew_tr_iter_idx = 0 overal_pol_tr_iter_idx = 0 if self.myargs.shaping: start_pol_updates = True else: start_pol_updates = False previous_overal_rew_tr_iter_idx = overal_rew_tr_iter_idx overal_rew_pretrain_iter_idx = 0 # this includes pre-training iterations total_time_policy = 0 total_time_reward = 0 while overal_rew_tr_iter_idx < self.init_params["num_overal_updates"] + previous_overal_rew_tr_iter_idx: print(f"Training iter number: {overal_rew_tr_iter_idx}") # UPDATE POLICY ***************************************************** if "devv" in self.myargs.save_name: num_pol_updates_at_each_overal_update = 1 # pass # note, the policy will not actually be updated if start_rew_updates == False if start_pol_updates: overal_pol_tr_iter_idx += 1 self.update_policy(overal_pol_tr_iter_idx, overal_rew_tr_iter_idx, num_pol_updates_at_each_overal_update, start_pol_updates, start_shaping, add_only_non_zero_trajs, dont_collect_trajs=False) # print(f"Memory usage in MiB line 576: {self.memory_usage_psutil()}") # print("memory usage in line 576") # print(torch.cuda.memory_summary(abbreviated=True)) # UPDATE REWARD ***************************************************** if not start_rew_updates and np.count_nonzero(self.new_trajs_returns_list)>=self.myargs.min_good_trajs: # This if statement should only be executed once # the following line is to add some bad trajectories from the untrained policy to increase the variance in the buffer self.update_policy(overal_pol_tr_iter_idx, overal_rew_tr_iter_idx, num_pol_updates_at_each_overal_update, start_pol_updates, start_shaping, add_only_non_zero_trajs=False, dont_collect_trajs=False) if np.std(self.new_trajs_returns_list) > 0.0: # we can't start reward learning unless there is a positive variance in the buffer start_rew_updates = True start_shaping = True start_pol_updates = True add_only_non_zero_trajs = False if start_rew_updates: overal_rew_tr_iter_idx += 1 _, _ = self.update_reward(overal_rew_tr_iter_idx) # print(f"Memory usage in MiB line 599: {self.memory_usage_psutil()}") else: print(f"No reward update for this iteration") # save both the policy and the reward every self.init_params['save_reward_int'] overal iterations if overal_rew_tr_iter_idx % self.init_params['save_reward_int'] == 0 and overal_rew_tr_iter_idx != 0 and start_rew_updates: # SAVE REWARD NETWORKS for reward_idx, reward_obj in enumerate(self.reward_objs): # model_save_address = os.path.join(self.save_path_trained_models, f"{self.myargs.save_name}_reward_{reward_idx}_iter_{overal_rew_tr_iter_idx}.pt") model_save_address = os.path.join(self.save_path_trained_models, f"{self.myargs.save_name}_reward_{reward_idx}.pt") torch.save({'stage': 'train', 'model_state_dict': reward_obj.reward_net.state_dict(), 'optimizer_state_dict': reward_obj.optimizer.state_dict()}, model_save_address) # SAVE POLICY # model_save_address = os.path.join(self.save_path_trained_models, f"{self.myargs.save_name}_policy_iter_{overal_rew_tr_iter_idx}.pt") model_save_address = os.path.join(self.save_path_trained_models, f"{self.myargs.save_name}_policy.pt") torch.save([ self.actor_critic, getattr(utils.get_vec_normalize(self.envs), 'ob_rms', None) ], model_save_address) if overal_rew_tr_iter_idx == 0: overal_rew_pretrain_iter_idx += 1 print(f"overal_rew_pretrain_iter_idx: {overal_rew_pretrain_iter_idx}") if overal_rew_pretrain_iter_idx > self.init_params["num_overal_updates"]/2: print("Pretrain took too long and training did not start. Breaking the program now ...") break # this breaks the while loop # # sample trajectories from the new policy and add to the buffer # produced_trajs = self.produce_trajs_from_policy_sparsified_reward(self.actor_critic, self.init_params['num_trajs_produced_each_iter'], self.myargs.sparseness, self.init_params['produced_traj_length'], is_random=False) # rew_mean, rew_range, rew_std, rew_mean_new, rew_range_new, rew_std_new = self._add_trajs_to_new_trajs_list_hardDrive(produced_trajs) # with open(self.log_dir + '/buffer_stats.txt', 'a') as f: # f.write(f"{rew_mean:.10f} {rew_range:.10f} {rew_std:.10f} {rew_mean_new:.10f} {rew_range_new:.10f} {rew_std_new:.10f} \n") total_training_time = time.time() - start_time print(f"Total training time: {total_training_time}") if not self.myargs.dont_remove_buffer: # REMOVE THE REPLAY BUFFER FROM THE HARD-DRIVE TO AVOID TAKING TOO MUCH SPACE save_path_new_trajs_rel = os.path.relpath(self.save_path_new_trajs, start = os.curdir) print ("REMOVE THE REPLAY BUFFER FROM THE HARD DRIVE TO AVOID TAKING TOO MUCH SPACE ...") os.system(f'rm -rf {save_path_new_trajs_rel}') def train_from_given_ranked_demos(self): # if self.myargs.pretrain in ["yes"]: # print(f"pretraining the reward function ....{self.myargs.save_name}") # # UPDATE REWARD based on initial set of demonstrations ***************************************************** # # Pre-train the policy based on the pre-trained reward # if self.myargs.run_type == "pretrain_only": # print(f"***************** Stopped right after pretraining *****************") # return # MAIN TRAINING LOOP start_time = time.time() # num_pol_updates_at_each_overal_update = int(self.myargs.num_env_steps_tr) // self.myargs.num_steps // self.myargs.num_processes num_policy_updates = int(self.myargs.num_env_steps_tr) // self.myargs.num_steps // self.myargs.num_processes // self.init_params["num_pol_updates_at_each_overal_update"] start_rew_updates = True start_shaping = True overal_rew_tr_iter_idx = 0 overal_pol_tr_iter_idx = 0 start_pol_updates = True add_only_non_zero_trajs = False total_time_policy = 0 total_time_reward = 0 while overal_rew_tr_iter_idx < self.init_params['num_rew_updates']: print(f"Training iter number for reward: {overal_rew_tr_iter_idx}") self.update_reward(overal_rew_tr_iter_idx) overal_rew_tr_iter_idx += 1 # SAVE REWARD NETWORKS for reward_idx, reward_obj in enumerate(self.reward_objs): # model_save_address = os.path.join(self.save_path_trained_models, f"{self.myargs.save_name}_reward_{reward_idx}_iter_{overal_rew_tr_iter_idx}.pt") model_save_address = os.path.join(self.save_path_trained_models, f"{self.myargs.save_name}_reward_{reward_idx}.pt") torch.save({'stage': 'train', 'model_state_dict': reward_obj.reward_net.state_dict(), 'optimizer_state_dict': reward_obj.optimizer.state_dict()}, model_save_address) while overal_pol_tr_iter_idx < num_policy_updates: print(f"Training iter number for policy: {overal_pol_tr_iter_idx}") self.update_policy(overal_pol_tr_iter_idx, overal_rew_tr_iter_idx, self.init_params["num_pol_updates_at_each_overal_update"], start_pol_updates, start_shaping, add_only_non_zero_trajs, dont_collect_trajs=True) overal_pol_tr_iter_idx += 1 # SAVE POLICY # model_save_address = os.path.join(self.save_path_trained_models, f"{self.myargs.save_name}_policy_iter_{overal_rew_tr_iter_idx}.pt") model_save_address = os.path.join(self.save_path_trained_models, f"{self.myargs.save_name}_policy.pt") torch.save([ self.actor_critic, getattr(utils.get_vec_normalize(self.envs), 'ob_rms', None) ], model_save_address) def update_reward(self, overal_tr_iter_idx): start = time.time() if self.myargs.use_linear_lr_decay_rew: # decrease learning rate linearly for reward_obj in self.reward_objs: utils.update_linear_schedule( reward_obj.optimizer, overal_tr_iter_idx, self.init_params["num_overal_updates"], self.myargs.rew_lr) elif self.myargs.use_increase_decrease_lr_rew: for reward_obj in self.reward_objs: utils.update_linear_schedule_increase_decrease( reward_obj.optimizer, overal_tr_iter_idx, self.init_params["num_overal_updates"], self.myargs.rew_lr) # Update g according to produced trajectories pairs, returns, pair_select_time_total, rew_update_time_total, load_trajs_time_total = self.grad_g_theta_update(overal_tr_iter_idx, self.init_params['num_rew_training_batches'], self.num_rew_nets, self.init_params['batch_size'], demos_or_policy='demos', pretrain_or_train="pretrain", discounted_rew=self.myargs.discounted_rew) # # save reward after each self.init_params['save_reward_int'] overal iterations # if overal_tr_iter_idx % self.init_params['save_reward_int'] == 0 and overal_tr_iter_idx != 0: # for reward_idx, reward_obj in enumerate(self.reward_objs): # model_save_address = os.path.join(self.save_path_trained_models, self.myargs.save_name + f"_reward_{reward_idx}_" + str(overal_tr_iter_idx) + ".pt") # torch.save(reward_obj.reward_net, model_save_address) rew_time_total = time.time()-start print(f"rew_time_total: {rew_time_total}, pair_select_time_total: {pair_select_time_total}, load_trajs_time_total: {load_trajs_time_total}, in one training_iter \n") return pairs, returns def update_policy(self, overal_tr_iter_idx, overal_rew_tr_iter_idx, num_updates, start_pol_updates, start_shaping, add_only_non_zero_trajs, dont_collect_trajs): kwargs, myargs = self.kwargs, self.myargs episode_rews_from_info = deque(maxlen=myargs.num_processes) episode_rew_net_return = deque(maxlen=myargs.num_processes) start = time.time() total_update_time = 0 total_step_time = 0 total_dense_rew_calc_time = 0 if myargs.use_linear_lr_decay: # decrease learning rate linearly utils.update_linear_schedule( self.agent.optimizer, overal_tr_iter_idx, self.init_params["num_overal_updates"], self.agent.optimizer.lr if myargs.algo == "acktr" else myargs.lr) elif myargs.use_increase_decrease_lr_pol: utils.update_linear_schedule_increase_decrease( self.agent.optimizer, overal_tr_iter_idx, self.init_params["num_overal_updates"], self.agent.optimizer.lr if myargs.algo == "acktr" else myargs.lr) unrolled_trajs_all = deque(maxlen=self.init_params["size_of_new_trajs_list"]) no_run, no_run_no_cntr = self._specify_env_rew_type(self.is_atari) for j in range(num_updates): # At each j, each of the policy will be unrolled on each of the myargs.num_processes environments # for myargs.num_steps steps return_nets_episode = torch.zeros((myargs.num_rew_nets, myargs.num_processes), device=self.device) return_GT_episode_cntr = np.zeros(myargs.num_processes) return_GT_episode_run = np.zeros(myargs.num_processes) num_succ_run_forward = np.zeros(myargs.num_processes) displacement_forward_till_rew = np.zeros(myargs.num_processes) steps_till_rew = np.zeros(myargs.num_processes) displacement_forward_episode_total = np.zeros(myargs.num_processes) num_succ_not_done = np.zeros(myargs.num_processes) return_sparse_episode = np.zeros(myargs.num_processes) return_dense_plus_cntr_episode = np.zeros(myargs.num_processes) num_succ_run_forward_avg_steps = np.zeros(myargs.num_processes) num_succ_not_done_avg_steps = np.zeros(myargs.num_processes) num_steps_taken_to_rew = np.zeros(myargs.num_processes) displacement_total_from_infos = np.zeros(myargs.num_processes) unrolled_trajs = [[] for _ in range(myargs.num_processes)] for step in range(myargs.num_steps): # Sample actions with torch.no_grad(): value, action, action_log_prob, recurrent_hidden_states = self.actor_critic.act( self.rollouts.obs[step], self.rollouts.recurrent_hidden_states[step], self.rollouts.masks[step]) if myargs.env_name in ["CartPole-v0", "MountainCar-v0", "Acrobot-v1"]: # Added by <NAME> # action = action[0] action_fed = torch.squeeze(action) else: action_fed = action step_time_start = time.time() obs, reward_GT, done, infos = self.envs.step(action_fed) total_step_time += time.time() - step_time_start # reward for current state action pair and next obs rews_run_step, rews_cntr_step = self._calc_rews_run_cntr_step(no_run_no_cntr, no_run, infos) if self.is_atari or myargs.sparse_rew_type == "GT": reward_GT = torch.squeeze(reward_GT) reward_sparse = reward_GT else: (reward_sparse, displacement_forward_till_rew, steps_till_rew, displacement_forward_episode_total, num_succ_run_forward, num_steps_taken_to_rew, num_succ_not_done) = self.calc_sparse_reward(done, infos, displacement_forward_till_rew, steps_till_rew, displacement_forward_episode_total, num_succ_run_forward, num_steps_taken_to_rew, num_succ_not_done, reward_GT, myargs.num_processes, myargs) num_succ_run_forward_avg_steps += num_succ_run_forward num_succ_not_done_avg_steps += num_succ_not_done rew_calc_start_time = time.time() with torch.no_grad(): rew_nets_step_list = [reward_obj.reward_net(obs) for reward_obj in self.reward_objs] total_dense_rew_calc_time += time.time() - rew_calc_start_time for rew_idx in range(len(self.reward_objs)): return_nets_episode[rew_idx, :] += rew_nets_step_list[rew_idx].reshape(myargs.num_processes) # add rewards of the networks to the network calculated returns for info in infos: if 'episode' in info.keys(): episode_rews_from_info.append(info['episode']['r']) # info stores the undiscounted return of each trajectory # If done then clean the history of observations. masks = torch.FloatTensor( [[0.0] if done_ else [1.0] for done_ in done]) bad_masks = torch.FloatTensor( [[0.0] if 'bad_transition' in info.keys() else [1.0] for info in infos]) rews_nets_step = torch.mean(torch.cat(rew_nets_step_list, dim=1), dim=1) if self.myargs.sparse_cntr: cntr_coeff = torch.zeros(len(rews_cntr_step), device=self.device) non_zero_idxs = torch.nonzero(reward_sparse) if non_zero_idxs.size()[0] > 0: for idx in non_zero_idxs: cntr_coeff[idx] = self.myargs.cntr_coeff else: cntr_coeff = torch.ones(len(rews_cntr_step), device=self.device) * self.myargs.cntr_coeff if self.myargs.shaping: if start_shaping: # Whether we use discounting in learning a reward or not, we use discounting when applying shaping total_rews_step = reward_sparse.to(self.device) + cntr_coeff * torch.tensor(rews_cntr_step, device=self.device) + self.myargs.gamma * rews_nets_step - self.old_rews_nets_step else: total_rews_step = reward_sparse.to(self.device) + cntr_coeff * torch.tensor(rews_cntr_step, device=self.device) else: total_rews_step = self.myargs.rew_coeff * rews_nets_step + cntr_coeff * torch.tensor(rews_cntr_step, device=self.device) total_rews_GT_step = reward_sparse.to(self.device) + cntr_coeff * torch.tensor(rews_cntr_step, device=self.device) total_rews_step_torch = torch.unsqueeze(total_rews_step, dim=1) for idx_proc, _done in enumerate(done): return_GT_episode_cntr[idx_proc] += rews_cntr_step[idx_proc] # * myargs.gamma**step return_GT_episode_run[idx_proc] += rews_run_step[idx_proc] # * myargs.gamma**step return_sparse_episode[idx_proc] += reward_sparse[idx_proc] return_dense_plus_cntr_episode[idx_proc] += total_rews_step[idx_proc].item() if step < self.init_params["produced_traj_length"] and not dont_collect_trajs: for idx, obs_item in enumerate(obs): unrolled_trajs[idx].append([obs_item.clone().detach().cpu(), reward_sparse[idx] ]) if start_pol_updates: self.rollouts.insert(obs, recurrent_hidden_states, action, action_log_prob, value, total_rews_step_torch, masks, bad_masks) self.old_rews_nets_step = rews_nets_step.clone() if not dont_collect_trajs: self._add_trajs_to_new_trajs_list_hardDrive(unrolled_trajs, overal_rew_tr_iter_idx, self.init_params['limited_buffer_length'], self.log_dir, add_only_non_zero_trajs, address=self.save_path_new_trajs, is_val=False) # for traj in unrolled_trajs: # unrolled_trajs_all.append(traj) return_GT_episode_total_my_calc = return_GT_episode_cntr + return_GT_episode_run # END OF EIPISODE OR MAXIMUM NUMBER OF STEPS for idx in range(myargs.num_processes): episode_rew_net_return.append(torch.mean(return_nets_episode[:, idx]).item()) if start_pol_updates: start_update = time.time() with torch.no_grad(): next_value = self.actor_critic.get_value( self.rollouts.obs[-1], self.rollouts.recurrent_hidden_states[-1], self.rollouts.masks[-1]).detach() self.rollouts.compute_returns(next_value, myargs.use_gae, myargs.gamma, myargs.gae_lambda, myargs.use_proper_time_limits) value_loss, action_loss, dist_entropy = self.agent.update(self.rollouts) num_succ_run_forward_avg_steps /= myargs.num_steps num_succ_not_done_avg_steps /= myargs.num_steps self.rollouts.after_update() total_update_time += time.time() - start_update if len(episode_rews_from_info) > 1: total_num_steps = (j + 1) * myargs.num_processes * myargs.num_steps end = time.time() with open(self.log_dir + f"/policy_stats.txt", "a") as file: file.write( f'{overal_tr_iter_idx:>5} {j:>5} \ {total_num_steps:>8} {int(total_num_steps / (end - start)):.10f} \ {len(episode_rews_from_info):>4} {dist_entropy:.10} \ {value_loss:.10} {action_loss:.10}\ {np.mean(episode_rews_from_info):.10} {np.median(episode_rews_from_info):.10} \ {np.min(episode_rews_from_info):.10} {np.max(episode_rews_from_info):.10} {np.std(episode_rews_from_info):.10}\ {np.mean(episode_rew_net_return):.10} {np.std(episode_rew_net_return):.10} \ {np.mean(return_GT_episode_cntr):.10} {np.std(return_GT_episode_cntr):.10} \ {np.mean(return_GT_episode_run):.10} {np.std(return_GT_episode_run):.10} \ {np.mean(return_sparse_episode):.10} {np.std(return_sparse_episode):.10} \ {np.mean(return_dense_plus_cntr_episode):.10} {np.std(return_dense_plus_cntr_episode):.10} \ {np.mean(num_succ_run_forward_avg_steps):.10} {np.std(num_succ_run_forward_avg_steps):.10} \ {np.mean(num_succ_not_done_avg_steps):.10} {np.std(num_succ_not_done_avg_steps):.10} \ {np.mean(displacement_forward_episode_total):.10} {np.std(displacement_forward_episode_total):.10} \n' ) total_time = time.time()-start print(f"total policy_time in one training_iter: {total_time}") print(f"total policy update time in one overal training iter: {total_update_time}") print(f"total step time: {total_step_time}") print(f"total_dense_rew_calc_time: {total_dense_rew_calc_time}") def _add_trajs_to_new_trajs_list_hardDrive(self, produced_trajs, overal_tr_iter_idx, limited_buffer_length, log_dir, add_only_non_zero_trajs, address, is_val=False): """ Stores new trajs into the hard drive to save memory In the pretraining phase, it only adds trajectories with non-zero return to the buffer """ # print("Saving produced trajs on hard drive ....") produced_trajs_list_all, produced_trajs_returns_all = myutils.trajs_calc_return_no_device(produced_trajs, self.myargs.discounted_rew, self.myargs.gamma) if add_only_non_zero_trajs: produced_trajs_list, produced_trajs_returns = [], [] for traj, ret in zip(produced_trajs_list_all, produced_trajs_returns_all): if ret > 0: produced_trajs_list.append(traj) produced_trajs_returns.append(ret) else: produced_trajs_list, produced_trajs_returns = produced_trajs_list_all, produced_trajs_returns_all if limited_buffer_length: start_idx, end_idx = self._calc_start_stop_and_update_new_trajs_last_idx(len(produced_trajs_list)) for idx, total_idx in enumerate(np.arange(start_idx, end_idx+1)): traj_save_address = f"{address}/traj_{total_idx}.pt" torch.save(produced_trajs_list[idx], traj_save_address) if not is_val: self.new_trajs_returns_list[start_idx:end_idx+1] = produced_trajs_returns[:] elif is_val: self.new_trajs_returns_list_val[start_idx:end_idx+1] = produced_trajs_returns[:] else: if not is_val: last_idx = len(self.new_trajs_returns_list) for idx, traj in enumerate(produced_trajs_list): total_idx = idx + last_idx traj_save_address = f"{address}/traj_{total_idx}.pt" torch.save(produced_trajs_list[idx], traj_save_address) self.new_trajs_returns_list.extend(produced_trajs_returns) elif is_val: last_idx = len(self.new_trajs_returns_list_val) for idx, traj in enumerate(produced_trajs_list): total_idx = idx + last_idx traj_save_address = f"{address}/traj_{total_idx}.pt" torch.save(produced_trajs_list[idx], traj_save_address) self.new_trajs_returns_list_val.extend(produced_trajs_returns) trajs_return_save_address = f"{address}/trajs_returns_all.pkl" with open(trajs_return_save_address, "wb") as file: if not is_val: pickle.dump(self.new_trajs_returns_list, file) else: pickle.dump(self.new_trajs_returns_list_val, file) # Get statistics of the buffer and the new trajs if len(produced_trajs_returns) > 0: rew_mean = np.mean(self.new_trajs_returns_list) rew_range = np.abs(np.max(self.new_trajs_returns_list) - np.min(self.new_trajs_returns_list)) rew_std = np.std(self.new_trajs_returns_list) rew_mean_new = np.mean(produced_trajs_returns) rew_range_new = np.abs(np.max(produced_trajs_returns) - np.min(produced_trajs_returns)) rew_std_new = np.std(produced_trajs_returns) else: rew_mean_new, rew_range_new, rew_std_new = 0, 0, 0 if len(self.new_trajs_returns_list) > 0: rew_mean = np.mean(self.new_trajs_returns_list) rew_range = np.abs(np.max(self.new_trajs_returns_list) - np.min(self.new_trajs_returns_list)) rew_std = np.std(self.new_trajs_returns_list) else: rew_mean, rew_range, rew_std = 0, 0, 0 if log_dir != "NONE": with open( f"{log_dir}/buffer_stats.txt", 'a') as file: file.write(f"{rew_mean:.10f} {rew_range:.10f} {rew_std:.10f} {rew_mean_new:.10f} {rew_range_new:.10f} {rew_std_new:.10f} {overal_tr_iter_idx:>5}\n") def _add_trajs_to_new_trajs_list_memory_FIFO(self, produced_trajs, start_rew_updates): """ first in first out """ produced_trajs_list_all, produced_trajs_returns_all = myutils.trajs_calc_return_no_device(produced_trajs, self.myargs.discounted_rew, self.myargs.gamma) if not start_rew_updates: produced_trajs_list, produced_trajs_returns = [], [] for traj, rew in zip(produced_trajs_list_all, produced_trajs_returns_all): if rew > 0: produced_trajs_list.append(traj) produced_trajs_returns.append(rew) else: produced_trajs_list, produced_trajs_returns = produced_trajs_list_all, produced_trajs_returns_all start_idx, end_idx = self._calc_start_stop_and_update_new_trajs_last_idx(len(produced_trajs_list)) self.new_trajs_list[start_idx:end_idx] = produced_trajs_list[:] self.new_trajs_returns_list[start_idx:end_idx] = produced_trajs_returns[:] if len(produced_trajs_returns) > 0: rew_mean = np.mean(self.new_trajs_returns_list) rew_range = np.abs(np.max(self.new_trajs_returns_list) - np.min(self.new_trajs_returns_list)) rew_std = np.std(self.new_trajs_returns_list) rew_mean_new = np.mean(produced_trajs_returns) rew_range_new = np.abs(np.max(produced_trajs_returns) - np.min(produced_trajs_returns)) rew_std_new = np.std(produced_trajs_returns) else: rew_mean_new, rew_range_new, rew_std_new = 0, 0, 0 if len(self.new_trajs_returns_list) > 0: rew_mean = np.mean(self.new_trajs_returns_list) rew_range = np.abs(np.max(self.new_trajs_returns_list) - np.min(self.new_trajs_returns_list)) rew_std = np.std(self.new_trajs_returns_list) else: rew_mean, rew_range, rew_std = 0, 0, 0 return rew_mean, rew_range, rew_std, rew_mean_new, rew_range_new, rew_std_new def _add_trajs_to_new_trajs_list_memory_RW(self, produced_trajs): """ only replaces the worst trajectories trajectories stored on ram RW --> stands for Replce worst """ # poduced_trajs = myutils.produce_trajs_from_policy(self.actor_critic, self.init_params['num_trajs_produced_each_iter'], self.init_params['produced_traj_length'], self.kwargs, self.myargs) produced_trajs_list_all, produced_trajs_returns_all = myutils.trajs_calc_return_no_device(produced_trajs, self.myargs.discounted_rew, self.myargs.gamma) if not start_rew_updates: produced_trajs_list, produced_trajs_returns = [], [] for traj, rew in zip(produced_trajs_list_all, produced_trajs_returns_all): if rew > 0: produced_trajs_list.append(traj) produced_trajs_returns.append(rew) else: produced_trajs_list, produced_trajs_returns = produced_trajs_list_all, produced_trajs_returns_all start_idx, end_idx = self._calc_start_stop_and_update_new_trajs_last_idx_v1(len(produced_trajs_list)) if len(self.new_trajs_returns_list) > 1: self.new_trajs_returns_list, self.new_trajs_list = (list(t) for t in zip(*sorted(zip(self.new_trajs_returns_list, self.new_trajs_list)))) self.new_trajs_list[start_idx:end_idx] = produced_trajs_list[:] self.new_trajs_returns_list[start_idx:end_idx] = produced_trajs_returns[:] if len(produced_trajs_returns) > 0: rew_mean = np.mean(self.new_trajs_returns_list) rew_range = np.abs(np.max(self.new_trajs_returns_list) - np.min(self.new_trajs_returns_list)) rew_std = np.std(self.new_trajs_returns_list) rew_mean_new = np.mean(produced_trajs_returns) rew_range_new = np.abs(np.max(produced_trajs_returns) - np.min(produced_trajs_returns)) rew_std_new = np.std(produced_trajs_returns) else: rew_mean_new, rew_range_new, rew_std_new = 0, 0, 0 if len(self.new_trajs_returns_list) > 0: rew_mean = np.mean(self.new_trajs_returns_list) rew_range = np.abs(np.max(self.new_trajs_returns_list) - np.min(self.new_trajs_returns_list)) rew_std = np.std(self.new_trajs_returns_list) else: rew_mean, rew_range, rew_std = 0, 0, 0 return rew_mean, rew_range, rew_std, rew_mean_new, rew_range_new, rew_std_new def _calc_start_stop_and_update_new_trajs_last_idx(self, num_trajs): # first in first out if self.new_trajs_last_idx+num_trajs >= self.init_params["size_of_new_trajs_list"]: self.new_trajs_last_idx = self.myargs.num_opt_demo start_idx, end_idx = self.new_trajs_last_idx, self.new_trajs_last_idx+num_trajs-1 self.new_trajs_last_idx += num_trajs return start_idx, end_idx def _calc_start_stop_and_update_new_trajs_last_idx_v1(self, num_trajs): # only replaces the last elements (of the sorted buffer) if self.new_trajs_last_idx+num_trajs <= self.init_params["size_of_new_trajs_list"]: start_idx, end_idx = self.new_trajs_last_idx, self.new_trajs_last_idx+num_trajs self.new_trajs_last_idx += num_trajs else: start_idx, end_idx = self.init_params["size_of_new_trajs_list"]-1-num_trajs, self.init_params["size_of_new_trajs_list"]-1 return start_idx, end_idx def grad_g_theta_update(self, overal_tr_iter_idx, num_batches, num_rew_nets, batch_size, demos_or_policy, pretrain_or_train, discounted_rew): """ this function should only be called when it's possible to produce trajectory pairs from the buffer """ # zero the gradient buffer for all the reward networks criterion = torch.nn.CrossEntropyLoss(weight=None, reduction='mean') losses_all_nets = [] accuracies_all_nets = [] # print(f"***************** Updating reward_obj: {rew_obj_idx} \n") loss_per_rew_net = [] accuracy_per_rew_net = [] pairs_all = [] returns_all = [] pair_select_time_total = 0 load_trajs_time_total = 0 rew_update_time_total = 0 for batch_counter in range(num_batches): # Iterate over all reward networks for training for rew_obj_idx, reward_obj in enumerate(self.reward_objs): loss_item, accuracy, pairs, returns, pair_select_time, rew_update_time, time_loading_trajs = self._grad_individual_rew_obj(batch_size, reward_obj, criterion, discounted_rew) pair_select_time_total += pair_select_time rew_update_time_total += rew_update_time load_trajs_time_total += time_loading_trajs pairs_all.extend(pairs) returns_all.extend(returns) if loss_item != "no pair": loss_per_rew_net.append(loss_item) accuracy_per_rew_net.append(accuracy) # Here, after all updates, we write onto the rew_losses assert len(loss_per_rew_net) > 0 mean_g = np.mean(loss_per_rew_net) std_g = np.std(loss_per_rew_net) mean_accuracy = np.mean(accuracy_per_rew_net) std_accuracy = np.std(accuracy_per_rew_net) with open(self.log_dir + f"/rew_losses.txt", "a") as file: file.write(f" {mean_g:.10f} {std_g:.10f} {mean_accuracy:.10f} {std_accuracy:.10f} {pair_select_time_total:>5} {rew_update_time_total:>5} {overal_tr_iter_idx:>5} \n") # log magnitute of reward weights reward_weights_list = [torch.norm(reward_obj.get_flat_weights()) for reward_obj in self.reward_objs] reward_weights_mean = np.mean([item.item() for item in reward_weights_list]) reward_weights_std = np.std([item.item() for item in reward_weights_list]) reward_weights_min = np.min([item.item() for item in reward_weights_list]) reward_weights_max = np.max([item.item() for item in reward_weights_list]) with open(self.log_dir + f"/rew_weights_stats.txt", "a") as file: file.write(f" {reward_weights_mean:.10f} {reward_weights_std:.10f} {reward_weights_min:.10f} {reward_weights_max:.10f} {overal_tr_iter_idx:>5} \n") # validation is performed after all batches are used for training if not self.myargs.skip_rew_eval: # Iterate over all reward networks for validation start = time.time() loss_per_rew_net = [] accuracy_per_rew_net = [] for rew_obj_idx, reward_obj in enumerate(self.reward_objs): if self.val_pairs: loss_item, accuracy = self._individual_rew_obj_validation(self.val_pairs, self.val_pairs_returns, reward_obj, criterion, self.myargs.discounted_rew) loss_per_rew_net.append(loss_item) accuracy_per_rew_net.append(accuracy) mean_g = np.mean(loss_per_rew_net) std_g = np.std(loss_per_rew_net) mean_accuracy = np.mean(accuracy_per_rew_net) std_accuracy = np.std(accuracy_per_rew_net) end = time.time() total_time_rew_eval = end - start with open(self.log_dir + f"/rew_losses_val.txt", "a") as file: file.write(f" {mean_g:.10f} {std_g:.10f} {mean_accuracy:.10f} {std_accuracy:.10f} {total_time_rew_eval:>5} {overal_tr_iter_idx:>5} \n") return pairs_all, returns_all, pair_select_time_total, rew_update_time_total, load_trajs_time_total def _individual_rew_obj_validation(self, pairs, returns, reward_obj, criterion, discounted_rew): """ uses the validation pairs and returns to compute the validaion accuracy of the reward networks """ # *********************************** with torch.no_grad(): return_traj_preds_list = [] for (traj_i, traj_j), (rank_i, rank_j) in zip(pairs, returns): # return_traj = torch.zeros((num_pairs,1), requires_grad=True, device=self.device) # grad_theta = torch.zeros(agent.theta_size) # return_theta_traj_j = self.return_theta_traj_calc(traj_j return_traj_j, idx) # return_theta_traj_i = self.return_theta_traj_calc(traj_j return_traj_i, idx) assert rank_i != rank_j reward_input_batch_j = reward_obj.reward_net_input_batch_traj_method(traj_j) reward_input_batch_i = reward_obj.reward_net_input_batch_traj_method(traj_i) reward_output_batch_j = reward_obj.reward_net(reward_input_batch_j) reward_output_batch_i = reward_obj.reward_net(reward_input_batch_i) if discounted_rew: num_rows = reward_output_batch_j.size()[0] weights = torch.tensor([self.myargs.gamma**idx for idx in range(num_rows)], device=self.device) weights = torch.unsqueeze(weights, dim=1) reward_sum_j = torch.unsqueeze(torch.sum(weights * reward_output_batch_j, dim=0), dim=0) # element-wise multiplication reward_sum_i = torch.unsqueeze(torch.sum(weights * reward_output_batch_i, dim=0), dim=0) else: reward_sum_j = torch.unsqueeze(torch.sum(reward_output_batch_j, dim=0), dim=0) reward_sum_i = torch.unsqueeze(torch.sum(reward_output_batch_i, dim=0), dim=0) if rank_j > rank_i: return_sum_pair = torch.cat([reward_sum_j, reward_sum_i], dim=1) return_traj_preds_list.append(return_sum_pair) elif rank_j < rank_i: return_sum_pair = torch.cat([reward_sum_i, reward_sum_j], dim=1) return_traj_preds_list.append(return_sum_pair) if len(return_traj_preds_list) > 0: # update the reward function after every batch_size number of pairs return_traj_preds = torch.cat(return_traj_preds_list, dim=0) high_return_idx = torch.zeros((len(return_traj_preds_list)), dtype=torch.long, requires_grad=False, device=self.device) accuracy = self.calc_accuracy(return_traj_preds) loss = criterion(return_traj_preds, high_return_idx) return loss.item(), accuracy else: return "no pair", "no pair" def _grad_individual_rew_obj(self, batch_size, reward_obj, criterion, discounted_rew): """ reads collected returns from self.new_trajs_returns_list and uses self.save_path_new_trajs """ start = time.time() if self.sample_trajs_from_memory: pairs, returns, time_loading_trajs = myutils.create_pairs_distance_apart_device_memory(self.new_trajs_list, self.new_trajs_returns_list, batch_size, self.myargs.priority_sampling, self.device, self.init_params["difference_factor"]) else: pairs, returns, time_loading_trajs = myutils.create_pairs_distance_apart_device_hardDrive(self.save_path_new_trajs, self.new_trajs_returns_list, batch_size, self.myargs.priority_sampling, self.device) pair_select_time = time.time() - start # pairs, returns = myutils.create_pairs_no_step_no_subsample(ranked_traj_list, traj_returns, batch_size, self.myargs.priority_sampling) # if any pair is returned, the returns should be different as this is guaranteed in myutils.create_pairs_no_step # pairs.extend(pairs_raw), returns.extend(returns_raw) # *********************************** start = time.time() reward_obj.reward_net.zero_grad() return_traj_preds_list = [] if pairs: for (traj_i, traj_j), (rank_i, rank_j) in zip(pairs, returns): # return_traj = torch.zeros((num_pairs,1), requires_grad=True, device=self.device) # grad_theta = torch.zeros(agent.theta_size) # return_theta_traj_j = self.return_theta_traj_calc(traj_j return_traj_j, idx) # return_theta_traj_i = self.return_theta_traj_calc(traj_j return_traj_i, idx) assert rank_i != rank_j reward_input_batch_j = reward_obj.reward_net_input_batch_traj_method(traj_j) reward_input_batch_i = reward_obj.reward_net_input_batch_traj_method(traj_i) reward_output_batch_j = reward_obj.reward_net(reward_input_batch_j) reward_output_batch_i = reward_obj.reward_net(reward_input_batch_i) if discounted_rew: num_rows = reward_output_batch_j.size()[0] weights = torch.tensor([self.myargs.gamma**idx for idx in range(num_rows)], device=self.device) weights = torch.unsqueeze(weights, dim=1) reward_sum_j = torch.unsqueeze(torch.sum(weights * reward_output_batch_j, dim=0), dim=0) # element-wise multiplication reward_sum_i = torch.unsqueeze(torch.sum(weights * reward_output_batch_i, dim=0), dim=0) else: reward_sum_j = torch.unsqueeze(torch.sum(reward_output_batch_j, dim=0), dim=0) reward_sum_i = torch.unsqueeze(torch.sum(reward_output_batch_i, dim=0), dim=0) if rank_j > rank_i: return_sum_pair = torch.cat([reward_sum_j, reward_sum_i], dim=1) return_traj_preds_list.append(return_sum_pair) elif rank_j < rank_i: return_sum_pair = torch.cat([reward_sum_i, reward_sum_j], dim=1) return_traj_preds_list.append(return_sum_pair) # update the reward function after every batch_size number of pairs return_traj_preds = torch.cat(return_traj_preds_list, dim=0) high_return_idx = torch.zeros((len(return_traj_preds_list)), dtype=torch.long, requires_grad=False, device=self.device) accuracy = self.calc_accuracy(return_traj_preds) loss = criterion(return_traj_preds, high_return_idx) loss.backward() reward_obj.optimizer.step() rew_update_time = time.time() - start return loss.item(), accuracy, pairs, returns, pair_select_time, rew_update_time, time_loading_trajs else: return "no pair", "no pair", "no pair", "no pair", pair_select_time, 0, 0 def calc_accuracy(self, return_traj_preds): num_total = return_traj_preds.size()[0] num_correct = 0 for i in range(num_total): if return_traj_preds[i,0] > return_traj_preds[i,1]: num_correct += 1 return num_correct / num_total def calc_sparse_reward(self, done, infos, displacement_forward_till_rew, steps_till_rew, displacement_forward_episode_total, num_succ_run_forward, num_steps_taken_to_rew, num_succ_not_done, reward_GT, num_envs, myargs): """ unitsV2 uses myargs.num_steps as the maximum possible number of steps """ sparseness = myargs.sparseness vel_thresh = 0 reward_sparse = torch.zeros(num_envs) displacement_forward_step = np.zeros(num_envs) if myargs.sparse_rew_type == "steps": if myargs.env_name in ["InvertedPendulum-v2", "CartPole-v0"]: for idx, done_proc in enumerate(done): if not done_proc: num_succ_not_done[idx] += 1 else: num_succ_not_done[idx] = 0 if num_succ_not_done[idx] >= sparseness: reward_sparse[idx] = 1 else: reward_sparse[idx] = 0 elif myargs.env_name == "InvertedDoublePendulum-v2": for idx, info in enumerate(infos): angle_range = sparseness angles = info["angles"] if abs(angles[1]) < angle_range*math.pi/180: reward_sparse[idx] = 1 else: reward_sparse[idx] = 0 else: for idx, info in enumerate(infos): if info['reward_run'] > vel_thresh: num_succ_run_forward[idx] += 1 else: num_succ_run_forward[idx] = 0 if num_succ_run_forward[idx] >= sparseness: reward_sparse[idx] = 1 else: reward_sparse[idx] = 0 elif myargs.sparse_rew_type in ["unitsV2", "units"]: for idx, info in enumerate(infos): displacement_forward_step[idx] = info["x_position"] - info["x_position_before"] displacement_forward_till_rew += displacement_forward_step displacement_forward_episode_total += displacement_forward_step steps_till_rew += np.ones(num_envs) for idx in range(np.shape(displacement_forward_till_rew)[0]): # reward_sparse[idx] = myargs.num_steps * (displacement_forward_till_rew[idx] // sparseness) / steps_till_rew[idx] if displacement_forward_till_rew[idx] > sparseness: if myargs.sparse_rew_type == "unitsV2": reward_sparse[idx] = (2 - (steps_till_rew[idx] / myargs.num_steps)) * (displacement_forward_till_rew[idx] // sparseness) elif myargs.sparse_rew_type == "units": reward_sparse[idx] = displacement_forward_till_rew[idx] // sparseness displacement_forward_till_rew[idx] = 0 steps_till_rew[idx] = 0 else: reward_sparse[idx] = 0 # elif myargs.sparse_rew_type in ["episodic"]: # steps_till_rew += np.ones(num_envs) # if myargs.env_name in ["Reacher-v2", "MountainCar-v0"]: # done = [item['done_dist'] for item in infos] # for idx, done_proc in enumerate(done): # if done_proc: # reward_sparse[idx] = 1000/steps_till_rew[idx] # steps_till_rew[idx] = 0 # else: # reward_sparse[idx] = 0 # This is redundant, reward_sparse is zero by default elif myargs.sparse_rew_type in ["episodic"]: if myargs.env_name in ["MountainCar-v0", "Reacher-v2", "Acrobot-v1", "Thrower-v2"] or myargs.env_name in ["HalfCheetah-v3", "Hopper-v3", "Walker2d-v3", "Swimmer-v3"]: done = [item['done_dist'] for item in infos] for idx, done_proc in enumerate(done): if done_proc: reward_sparse[idx] = 1000 else: raise Exception("Issues with myargs.sparse_rew_type") # IF done is reached, several variables need to be set to zero # Whether does is reached because of end of episode, or because of failure # or reaching a goal state for idx, done_ in enumerate(done): if done_: displacement_forward_till_rew[idx] = 0 steps_till_rew[idx] = 0 num_succ_run_forward[idx] = 0 num_steps_taken_to_rew[idx] = 0 # reward_sparse[idx] = 0 # Farzan: We don't need to manually set the sparse reward to zero, the masks will take care of this return reward_sparse, displacement_forward_till_rew, steps_till_rew, displacement_forward_episode_total, num_succ_run_forward, num_steps_taken_to_rew, num_succ_not_done def produce_trajs_from_policy_sparsified_reward(self, actor_critic, number_trajs, sparseness, traj_length, env_name, is_random): ''' This function attaches the sparsified reward to the produced states. ''' kwargs, myargs = self.kwargs, self.myargs torch.set_num_threads(1) # CREATE AN ENVIRONMENT num_envs = 1 log_dir = None seed = np.random.randint(0, 10000) env = make_vec_envs(myargs.env_name, seed, num_envs, myargs.gamma, log_dir, self.device, allow_early_resets=False, num_frame_stack=2, **kwargs) # We need to use the same statistics for normalization as used in training # vec_norm = utils.get_vec_normalize(env) vel_thresh = 0 all_trajs = [] for traj_idx in range(number_trajs): traj = [] recurrent_hidden_states = torch.zeros(1,actor_critic.recurrent_hidden_state_size) masks = torch.zeros(1, 1) obs = env.reset() # LOOP FOR ONE TRAJECTORY transition_counter = 0 # num_succ_run_forward = 0 # num_succ_not_done = 0 num_succ_run_forward = np.zeros(num_envs) num_succ_not_done = np.zeros(num_envs) displacement_forward_till_rew = np.zeros(num_envs) steps_till_rew = np.zeros(num_envs) displacement_forward_episode_total = np.zeros(num_envs) num_steps_taken_to_rew = np.zeros(num_envs) while transition_counter <= traj_length: transition_counter += 1 if not is_random: with torch.no_grad(): value, action, _, recurrent_hidden_states = actor_critic.act( obs, recurrent_hidden_states, masks, deterministic=False) else: action = env.action_space.sample() action = torch.tensor(action, device=self.device) if env_name in ["CartPole-v0", "MountainCar-v0", "Acrobot-v1"]: # Added by <NAME> # action = action[0] action_fed = torch.squeeze(action) else: action_fed = action obs, reward_dense, done, infos = env.step(action_fed) (reward_sparse, displacement_forward_till_rew, steps_till_rew, displacement_forward_episode_total, num_succ_run_forward, num_steps_taken_to_rew, num_succ_not_done) = self.calc_sparse_reward(done, infos, displacement_forward_till_rew, steps_till_rew, displacement_forward_episode_total, num_succ_run_forward, num_steps_taken_to_rew, num_succ_not_done, reward_GT, num_envs, myargs) # if myargs.rew_cntr == "True": # reward_cntr = torch.tensor(infos[0]['reward_cntr'], device=self.device) # total_rews_step_sparse = reward_sparse + self.myargs.cntr_coeff * reward_cntr # elif myargs.rew_cntr == "False": traj.append([obs[0].clone().detach().cpu(), reward_sparse]) # ALL TRAJS ARE PRODUCED AT THIS POINT all_trajs.append(traj) env.close() return all_trajs def produce_trajs_from_policy(self, actor_critic, number_trajs, traj_length, kwargs, myargs): # torch.set_num_threads(1) # print (f"******************** myargs.cuda_num: {myargs.cuda_num}") # print (f"******************** myargs.cuda: {myargs.cuda}") # CUDA_VISIBLE_DEVICES_raw_str = os.environ["CUDA_VISIBLE_DEVICES"] # print(f"******************** CUDA_VISIBLE_DEVICES: {CUDA_VISIBLE_DEVICES_raw_str} ********************") # if not myargs.cuda_num: # CUDA_VISIBLE_DEVICES_raw_str_splitted = CUDA_VISIBLE_DEVICES_raw_str.split(",") # CUDA_VISIBLE_DEVICES_raw_str_splitted_list_int = [int(item) for item in CUDA_VISIBLE_DEVICES_raw_str_splitted] # cuda_num = f"cuda" # :{CUDA_VISIBLE_DEVICES_raw_str_splitted_list_int[0]} # print(f"******************** No cuda_num provided, cuda_num set to what slurm sets NVIDIA_VISIBLE_DEVICES") # print(f"******************** cuda_num: {cuda_num} ********************") # self.device = torch.device(cuda_num if myargs.cuda else "cpu") # else: # print(f"******************** cuda-num provided") # self.device = torch.device(myargs.cuda_num if myargs.cuda else "cpu") # print(f"******************** self.device: {self.device} \n******************** type(self.device): {type(self.device)} ") # print(f"torch.cuda.is_available(): {torch.cuda.is_available()}") # CREATE AN ENVIRONMENT log_dir = None seed = np.random.randint(0, 10000) num_envs = 1 env = make_vec_envs(myargs.env_name, seed, num_envs, myargs.gamma, log_dir, self.device, allow_early_resets=True, num_frame_stack=2, **kwargs) # We need to use the same statistics for normalization as used in training vec_norm = utils.get_vec_normalize(env) all_trajs = [] for traj_idx in range(number_trajs): traj = [] recurrent_hidden_states = torch.zeros(1,actor_critic.recurrent_hidden_state_size) masks = torch.zeros(1, 1) obs = env.reset() # traj.append([obs,0]) # LOOP FOR ONE TRAJECTORY transition_counter = 0 while transition_counter <= traj_length: transition_counter += 1 with torch.no_grad(): value, action, _, recurrent_hidden_states = actor_critic.act( obs, recurrent_hidden_states, masks, deterministic=False) # Obser reward and next obs obs, reward, done, _ = env.step(action) # traj.append([copy.deepcopy(obs),copy.deepcopy(reward)]) traj.append([obs[0].clone().detach().cpu(), copy.deepcopy(reward)]) # ALL TRAJS ARE PRODUCED AT THIS POINT all_trajs.append(traj) env.close() return all_trajs def _save_attributes_and_hyperparameters(self): print ("saving attributes_and_hyperparameters .....") with open(self.log_dir + "/init_params.txt", "w") as file: for key in self.init_params: file.write(f"{key} : {self.init_params[key]} \n" ) args_dict = vars(self.myargs) with open(self.log_dir +"/args_dict.pkl", "wb") as f: pickle.dump(args_dict, f) with open(self.log_dir + "/myargs.txt", "w") as file: for key in args_dict: file.write(f"{key} : {args_dict[key]} \n" ) with open(self.log_dir +"/kwargs.pkl", "wb") as f: pickle.dump(self.kwargs, f) with open(self.log_dir + "/kwargs.txt", "w") as file: for key in self.kwargs: file.write(f"{key} : {self.kwargs[key]} \n" ) def _specify_env_rew_type(self, is_atari): no_run_no_cntr = False no_run = False if is_atari: no_run_no_cntr, no_run = True, True elif self.myargs.env_name in ["MountainCar-v0", "Acrobot-v1", "CartPole-v0", "InvertedPendulum-v2", "InvertedDoublePendulum-v2"]: no_run_no_cntr = True elif self.myargs.env_name in ["Reacher-v2", "Thrower-v2", "MountainCarContinuous-v0"]: no_run = True else: pass return no_run, no_run_no_cntr def _calc_rews_run_cntr_step(self, no_run_no_cntr, no_run, infos): if no_run_no_cntr: rews_cntr_step = [0 for item in infos] rews_run_step = [0 for item in infos] elif no_run: rews_cntr_step = [item['reward_cntr'] for item in infos] rews_run_step = [0 for item in infos] else: rews_cntr_step = [item['reward_cntr'] for item in infos] rews_run_step = [item['reward_run'] for item in infos] return rews_run_step, rews_cntr_step def memory_usage_psutil(self): # return the memory usage in MB import psutil process = psutil.Process(os.getpid()) mem = process.memory_info().rss / float(2 ** 20) return mem class produce_ranked_trajs(train_sparse_rank): # ADDED BY <NAME> # ***************************** """ Purpose: Reads checkpointed policies and produces a given number of rollouts for each policy """ def __init__(self, kwargs, myargs): if not myargs.seed == -12345: # seed is provided as command line argument and nothing needs to be done pass else: if os.getenv('SEED'): myargs.seed = int(os.getenv('SEED')) else: raise ValueError('SEED not provided as command line argument or as an enviornment variable') myargs.save_name = myargs.save_name + f"-s{myargs.seed}" myargs.saved_models_name = myargs.saved_models_name + f"-s{myargs.seed}" self.kwargs, self.myargs = kwargs, myargs # creating the folders self.saved_models_name = myargs.saved_models_name trajs_address = os.path.join("./ranked_trajs", myargs.save_name) self.save_path_new_trajs = os.path.join(trajs_address, "train") # overwrites the self.save_path_new_trajs in the parent class self.save_path_new_trajs_val = os.path.join(trajs_address, "val") self.new_trajs_list = [] self.new_trajs_returns_list = [] self.new_trajs_returns_list_val = [] self.new_trajs_last_idx = 0 utils.create_dir(trajs_address) utils.create_dir(self.save_path_new_trajs) utils.create_dir(self.save_path_new_trajs_val) # num_updates = int(myargs.num_env_steps_tr) // myargs.num_steps // myargs.num_processes # suffix_list = np.arange(0, num_updates, myargs.save_interval) # names = [myargs.saved_models_name+"_"+str(item)+".pt" for item in suffix_list] from os import listdir from os.path import isfile, join # names.append(myargs.saved_models_name+"_"+str(num_updates-1)+".pt") policies = [] log_dir = "NONE" torch.set_num_threads(1) self.device = myutils.assign_gpu_device(myargs) np.random.seed(myargs.seed) saved_models_address = os.path.join("./trained_models", myargs.algo, self.saved_models_name) names = listdir(saved_models_address) for name in names: address = os.path.join(saved_models_address,name) actor_critic, _ = torch.load(address, map_location=self.device) policies.append(actor_critic) # ***************************** END # if "devv" in myargs.save_name: # num_skip_policy = 20 # for dev put this 10 # else: # num_skip_policy = 2 validation_ratio = 10 produced_trajs = [] num_pol_samples = 1 print(f"Loading policies and producing demo trajectories ..... {myargs.save_name}") for pol_counter, actor_critic in enumerate(policies[0:-1]): print(f"policy number: {pol_counter}") actor_critic.to(self.device) produced_traj = self.produce_trajs_from_policy_sparsified_reward(actor_critic, 1, myargs.sparseness, myargs.traj_length, myargs.env_name, is_random=False) if pol_counter % validation_ratio == 0 and pol_counter > 0: self._add_trajs_to_new_trajs_list_hardDrive([produced_traj[0]], 0, False, log_dir, add_only_non_zero_trajs=False, address=self.save_path_new_trajs_val, is_val=True) else: self._add_trajs_to_new_trajs_list_hardDrive([produced_traj[0]], 0, False, log_dir, add_only_non_zero_trajs=False, address=self.save_path_new_trajs, is_val=False) # save the returns with open(self.save_path_new_trajs + "/new_trajs_returns_list.pkl", "wb") as f: pickle.dump(self.new_trajs_returns_list, f) # produced_trajs = [] # print(f"Loading policies and producing validation trajectories ..... {myargs.save_name}") # for counter, actor_critic in enumerate(policies[1:-1:num_skip_policy]): # print(f"policy number: {counter}") # actor_critic.to(self.device) # produced_traj = self.produce_trajs_from_policy(actor_critic, 1, myargs.traj_length, kwargs, myargs) # produced_trajs.append(produced_traj[0]) # rew_mean, rew_range, rew_std, rew_mean_new, rew_range_new, rew_std_new = self._add_trajs_to_new_trajs_list_hardDrive(produced_trajs, add_only_non_zero_trajs=False, address=self.save_path_new_trajs_val, is_val=True) # # save the returns # with open(self.save_path_new_trajs_val + "/new_trajs_returns_list.pkl", "wb") as f: # pickle.dump(self.new_trajs_returns_list_val, f) # for policy_counter, policy in enumerate(policies): # if policy_counter % num_skip_policy == 0: # print(f"policy number: {policy_counter}") # for _ in range(num_pol_samples): # actor_critic = policy # actor_critic = actor_critic.to(device) # traj = [] # # CREATE AN ENVIRONMENT # seed = np.random.randint(1,100000) # env = make_vec_envs(myargs.env_name, seed, 1, # myargs.gamma, log_dir, device, False, num_frame_stack=2, **kwargs) # # We need to use the same statistics for normalization as used in training # vec_norm = utils.get_vec_normalize(env) # if vec_norm is not None: # vec_norm.eval() # vec_norm.ob_rms = ob_rms # recurrent_hidden_states = torch.zeros(1,actor_critic.recurrent_hidden_state_size) # masks = torch.zeros(1, 1) # obs = env.reset() # # LOOP FOR ONE TRAJECTORY # done = False # done_penalty = torch.tensor(-1000) # TODO: this should be investigated # episode_reward = 0 # counter = 0 # while counter <= myargs.traj_length: # counter += 1 # with torch.no_grad(): # value, action, _, recurrent_hidden_states = actor_critic.act( # obs, recurrent_hidden_states, masks, deterministic=False) # # env.render() # # Obser reward and next obs # obs, reward, done, info = env.step(action) # # if done: # # reward = done_penalty # traj.append([copy.deepcopy(obs),reward]) # # if 'episode' in info[0].keys(): # # episode_reward = info['episode']['r'] # # ALL TRAJS ARE PRODUCED AT THIS POINT # all_trajs.append(traj) # with open(trajs_address + '/all_trajectories', 'wb') as f: # torch.save(all_trajs, f) class train_GT_policy(train_sparse_rank): def __init__(self, kwargs, myargs): # ADDED BY <NAME> # ***************************** START # log_dir = os.path.expanduser(myargs.log_dir) + "/" + myargs.save_name self.kwargs, self.myargs = kwargs, myargs self.init_params = [] self.log_dir = myargs.log_dir + "/" + myargs.save_name self.eval_log_dir = self.log_dir + "_eval" log_file_name = myargs.env_name # utils.cleanup_log_dir(log_dir) # utils.cleanup_log_dir(eval_log_dir) utils.create_dir(self.log_dir) utils.create_dir(self.eval_log_dir) # save_path_policy is for storing the trained model save_path_policy = os.path.join(myargs.save_dir, myargs.algo, myargs.save_name) utils.create_dir(save_path_policy) # ***************************** END self._save_attributes_and_hyperparameters() torch.manual_seed(myargs.seed) torch.cuda.manual_seed_all(myargs.seed) np.random.seed(myargs.seed) if myargs.cuda and torch.cuda.is_available() and myargs.cuda_deterministic: torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.set_num_threads(1) device = myutils.assign_gpu_device(myargs) envs = make_vec_envs(myargs.env_name, myargs.seed, myargs.num_processes, myargs.gamma, self.log_dir, device, allow_early_resets=False, num_frame_stack=2, **kwargs) # envs = gym.make(myargs.env_name, **kwargs) # envs = VecPyTorch(envs, device) # The followint block added by <NAME> # envs = ProcgenEnv(num_envs=myargs.num_processes, env_name="heistpp", **kwargs) # if len(envs.observation_space.shape) == 3: # envs = WarpFrame(envs, dict_space_key="rgb") # if len(envs.observation_space.shape) == 1 and myargs.do_normalize == "True": # if gamma is None: # envs = VecNormalize(envs, ret=False) # else: # envs = VecNormalize(envs, gamma=gamma) # envs = VecPyTorch(envs, device, myargs) if self.myargs.env_name in ["MountainCar-v0", "Reacher-v2", "Acrobot-v1", "Thrower-v2"]: hidden_size_policy = 10 else: hidden_size_policy = 64 actor_critic = Policy( envs.observation_space.shape, envs.action_space, device, base_kwargs={'recurrent': myargs.recurrent_policy, 'hidden_size': hidden_size_policy}) actor_critic.to(device) if myargs.algo == 'a2c': agent = algo.A2C_ACKTR( actor_critic, myargs.value_loss_coef, myargs.entropy_coef, lr=myargs.lr, eps=myargs.eps, alpha=myargs.alpha, max_grad_norm=myargs.max_grad_norm) elif myargs.algo == 'ppo': agent = algo.PPO( actor_critic, myargs.clip_param, myargs.ppo_epoch, myargs.num_mini_batch, myargs.value_loss_coef, myargs.entropy_coef, lr=myargs.lr, eps=myargs.eps, max_grad_norm=myargs.max_grad_norm) elif myargs.algo == 'acktr': agent = algo.A2C_ACKTR( actor_critic, myargs.value_loss_coef, myargs.entropy_coef, acktr=True) if myargs.gail: assert len(envs.observation_space.shape) == 1 discr = gail.Discriminator( envs.observation_space.shape[0] + envs.action_space.shape[0], 100, device) file_name = os.path.join( myargs.gail_experts_dir, "trajs_{}.pt".format( myargs.env_name.split('-')[0].lower())) expert_dataset = gail.ExpertDataset( file_name, num_trajectories=4, subsample_frequency=20) drop_last = len(expert_dataset) > myargs.gail_batch_size gail_train_loader = torch.utils.data.DataLoader( dataset=expert_dataset, batch_size=myargs.gail_batch_size, shuffle=True, drop_last=drop_last) rollouts = RolloutStorage(myargs.num_steps, myargs.num_processes, envs.observation_space.shape, envs.action_space, actor_critic.recurrent_hidden_state_size) obs = envs.reset() rollouts.obs[0].copy_(obs) rollouts.to(device) episode_rews_from_info = deque(maxlen=10) start = time.time() num_updates = int(myargs.num_env_steps_tr) // myargs.num_steps // myargs.num_processes with open(self.log_dir + "/" + log_file_name + ".txt", "w") as file: file.write("Updates , num timesteps , FPS, number of Last training episodes, dist_entropy, value_loss, action_loss, mean reward, median reward, min reward, max reward \n") with open(self.eval_log_dir + "/" + log_file_name + "_eval.txt", "w") as file: file.write("num_episodes, median_reward, max_reward \n") # UPDATE POLICY ***************************************************** for j in range(num_updates): if j % 5 == 0 and j != 0: print (f'update number {j}, ...... {myargs.env_name}, total_time: {time.time()-start}') if myargs.use_linear_lr_decay: # decrease learning rate linearly utils.update_linear_schedule( agent.optimizer, j, num_updates, agent.optimizer.lr if myargs.algo == "acktr" else myargs.lr) for step in range(myargs.num_steps): # Sample actions with torch.no_grad(): value, action, action_log_prob, recurrent_hidden_states = actor_critic.act( rollouts.obs[step], rollouts.recurrent_hidden_states[step], rollouts.masks[step]) # Obser reward and next obs if myargs.env_name in ["CartPole-v0", "MountainCar-v0", "Acrobot-v1"]: # Added by <NAME> # action = action[0] action_fed = torch.squeeze(action) else: action_fed = action obs, reward, done, infos = envs.step(action_fed) # reward = torch.zeros((8,1)) # envs.render() for info in infos: if 'episode' in info.keys(): episode_rews_from_info.append(info['episode']['r']) # If done then clean the history of observations. masks = torch.FloatTensor( [[0.0] if done_ else [1.0] for done_ in done]) bad_masks = torch.FloatTensor( [[0.0] if 'bad_transition' in info.keys() else [1.0] for info in infos]) rollouts.insert(copy.deepcopy(obs), recurrent_hidden_states, action, action_log_prob, value, reward, masks, bad_masks) # Update value function at the end of episode with torch.no_grad(): next_value = actor_critic.get_value( rollouts.obs[-1], rollouts.recurrent_hidden_states[-1], rollouts.masks[-1]).detach() if myargs.gail: if j >= 10: envs.venv.eval() gail_epoch = myargs.gail_epoch if j < 10: gail_epoch = 100 # Warm up for _ in range(gail_epoch): discr.update(gail_train_loader, rollouts, utils.get_vec_normalize(envs)._obfilt) for step in range(myargs.num_steps): rollouts.rewards[step] = discr.predict_reward( rollouts.obs[step], rollouts.actions[step], myargs.gamma, rollouts.masks[step]) rollouts.compute_returns(next_value, myargs.use_gae, myargs.gamma, myargs.gae_lambda, myargs.use_proper_time_limits) value_loss, action_loss, dist_entropy = agent.update(rollouts) rollouts.after_update() # save policy if (j % myargs.save_interval == 0 or j == num_updates - 1) and myargs.save_dir != "": model_save_address = os.path.join(save_path_policy, myargs.save_name + "_" + str(j) + ".pt") torch.save([ actor_critic, getattr(utils.get_vec_normalize(envs), 'ob_rms', None) ], model_save_address) if j % myargs.log_interval == 0 and len(episode_rews_from_info) > 1: total_num_steps = (j + 1) * myargs.num_processes * myargs.num_steps end = time.time() # print( # "Updates {}, num timesteps {}, FPS {} \n Last {} training episodes: mean/median reward {:.1f}/{:.1f}, min/max reward {:.1f}/{:.1f}\n" # .format(j, total_num_steps, # int(total_num_steps / (end - start)), # len(episode_rews_from_info), np.mean(episode_rews_from_info), # np.median(episode_rews_from_info), np.min(episode_rews_from_info), # np.max(episode_rews_from_info), dist_entropy, value_loss, # action_loss)) # with open(log_dir + "/" + log_file_name + ".txt", "a") as file2: # file2.write("Updates {}, num timesteps {}, FPS {} \n Last {} training episodes: mean/median reward {:.1f}/{:.1f}, min/max reward {:.1f}/{:.1f}\n" # .format(j, total_num_steps, # int(total_num_steps / (end - start)), # len(episode_rews_from_info), np.mean(episode_rews_from_info), # np.median(episode_rews_from_info), np.min(episode_rews_from_info), # np.max(episode_rews_from_info), dist_entropy, value_loss, # action_loss)) with open(self.log_dir + "/" + log_file_name + ".txt", "a") as file: file.write(f'{j:>5} {total_num_steps:>8} {int(total_num_steps / (end - start)):>7} {len(episode_rews_from_info):>4}\ {dist_entropy:.10} {value_loss:.10} {action_loss:.10} {np.mean(episode_rews_from_info):.10} \ {np.median(episode_rews_from_info):.10} {np.min(episode_rews_from_info):.10}\ {np.max(episode_rews_from_info):.10} \n') # if (myargs.eval_interval is not None and len(episode_rewards) > 1 # and j % myargs.eval_interval == 0): # ob_rms = utils.get_vec_normalize(envs).ob_rms # evaluate(actor_critic, ob_rms, myargs.env_name, myargs.seed, # myargs.num_processes, self.eval_log_dir, device) class train_baseline_sparse_rew(train_sparse_rank): def __init__(self, kwargs, myargs, init_params): if myargs.seed == -12345: # this means the seed is not provided by the user in command line arguments, it must be read from enviornment variables if os.getenv('SEED'): myargs.seed = int(os.getenv('SEED')) else: raise ValueError('SEED not provided as command line argument or as an enviornment variable') else: # seed is provided as command line argument and nothing needs to be done pass myargs.save_name = myargs.save_name + f"-s{myargs.seed}" self.kwargs = kwargs self.myargs = myargs self.init_params = init_params self.device = myutils.assign_gpu_device(self.myargs) # Read ranked trajs self.log_dir = myargs.log_dir + "/" + myargs.save_name eval_log_dir = self.log_dir + "_eval" self.log_file_name = myargs.env_name # utils.cleanup_log_dir(log_dir) # utils.cleanup_log_dir(eval_log_dir) if not myargs.continue_: utils.create_dir(self.log_dir) # utils.create_dir(eval_log_dir) # self.save_path_trained_models is for storing the trained model self.save_path_trained_models = os.path.join(myargs.save_dir, myargs.algo, myargs.save_name) if not myargs.continue_: utils.create_dir(self.save_path_trained_models) # # Create forlder for tensorboard # self.writer = SummaryWriter(f'runs/visualization') torch.manual_seed(myargs.seed) torch.cuda.manual_seed_all(myargs.seed) np.random.seed(myargs.seed) if myargs.cuda and torch.cuda.is_available() and myargs.cuda_deterministic: torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.set_num_threads(1) self.envs = make_vec_envs(myargs.env_name, myargs.seed, myargs.num_processes, myargs.gamma, self.log_dir, self.device, allow_early_resets=False, num_frame_stack=2, **kwargs) # envs = ProcgenEnv(num_envs=myargs.env_name, env_name="heistpp", **kwargs) self.is_atari = self.myargs.is_atari # envs = gym.make(myargs.env_name, **kwargs) if self.myargs.env_name in ["MountainCar-v0", "Reacher-v2", "Acrobot-v1", "Thrower-v2"]: hidden_size_policy = 10 else: hidden_size_policy = 64 if self.myargs.continue_: # Load the pretrained policy print(f'Loading policy for continuing run {self.myargs.save_name} .....') model_save_address_policy = os.path.join(self.save_path_trained_models, self.myargs.save_name + ".pt") self.actor_critic, ob_rms = torch.load(model_save_address_policy, map_location=self.device) else: self.actor_critic = Policy( self.envs.observation_space.shape, self.envs.action_space, self.device, base_kwargs={'recurrent': myargs.recurrent_policy, 'hidden_size': hidden_size_policy}) self.actor_critic.to(self.device) if myargs.algo == 'a2c': self.agent = algo.A2C_ACKTR( self.actor_critic, myargs.value_loss_coef, myargs.entropy_coef, lr=myargs.lr, eps=myargs.eps, alpha=myargs.alpha, max_grad_norm=myargs.max_grad_norm) elif myargs.algo == 'ppo': self.agent = algo.PPO( self.actor_critic, myargs.clip_param, myargs.ppo_epoch, myargs.num_mini_batch, myargs.value_loss_coef, myargs.entropy_coef, lr=myargs.lr, eps=myargs.eps, max_grad_norm=myargs.max_grad_norm) elif myargs.algo == 'acktr': self.agent = algo.A2C_ACKTR( self.actor_critic, myargs.value_loss_coef, myargs.entropy_coef, acktr=True) self.rollouts = RolloutStorage(myargs.num_steps, myargs.num_processes, self.envs.observation_space.shape, self.envs.action_space, self.actor_critic.recurrent_hidden_state_size) obs = self.envs.reset() self.rollouts.obs[0].copy_(obs) self.rollouts.to(self.device) if not myargs.continue_: with open(self.log_dir + f"/policy.txt", "w") as file: file.write("overal_tr_iter_idx, updates , num timesteps , FPS, number of Last training episodes, dist_entropy, value_loss, action_loss, mean reward, median reward, min reward, max reward \n") self._save_attributes_and_hyperparameters() def train(self): # UPDATE POLICY ***************************************************** self.update_policy(pretrain_or_train="train") def update_policy(self, pretrain_or_train): if self.myargs.continue_: # read the last policy_stats_loaded = np.loadtxt(f"{self.log_dir}/policy.txt", skiprows=1) last_j = int(policy_stats_loaded[-1,1]) del policy_stats_loaded first_time_min_good_trajs = True else: last_j = 0 first_time_min_good_trajs = False kwargs, myargs = self.kwargs, self.myargs episode_rews_from_info = deque(maxlen=myargs.num_processes) self.unrolled_trajs_all = [] start = time.time() sparseness = myargs.sparseness num_updates = int(myargs.num_env_steps_tr) // myargs.num_steps // myargs.num_processes vel_thresh = 0 no_run, no_run_no_cntr = self._specify_env_rew_type(self.is_atari) for j in range(last_j+1, last_j+1+num_updates): # at each j, each of the policies will be unrolled for up to myargs.num_steps steps, or until they get to an # absorbing state (like failure) if j % 5 == 0: total_time = time.time() - start print(f"Policy update {myargs.save_name}: {j}, total_time: {total_time}") if myargs.use_linear_lr_decay: # decrease learning rate linearly utils.update_linear_schedule( self.agent.optimizer, j, num_updates, self.agent.optimizer.lr if myargs.algo == "acktr" else myargs.lr) num_succ_run_forward = np.zeros(myargs.num_processes) num_succ_not_done = np.zeros(myargs.num_processes) return_GT_episode_cntr = np.zeros(myargs.num_processes) return_GT_episode_run = np.zeros(myargs.num_processes) return_sparse_episode = np.zeros(myargs.num_processes) return_sparse_plus_cntr_episode = np.zeros(myargs.num_processes) return_GT_episode_total = np.zeros(myargs.num_processes) displacement_forward_till_rew = np.zeros(myargs.num_processes) steps_till_rew =
np.zeros(myargs.num_processes)
numpy.zeros
#!/usr/bin/env python2 """ Script for running an FCIQMC calculation. For help, run python fri.py -h """ import numpy import argparse from resipy import fci_utils from resipy import fci_c_utils from resipy import sparse_vector from resipy import compress_utils from resipy import io_utils from resipy import near_uniform def main(): args = _parse_args() _describe_args(args) h_core, eris, symm, hf_en = io_utils.read_in_hf(args.hf_path, args.frozen) # Generate lookup tables for later use byte_nums, byte_idx = fci_utils.gen_byte_table() symm_lookup = fci_utils.gen_symm_lookup(8, symm) n_orb = symm.shape[0] hf_det = fci_utils.gen_hf_bitstring(n_orb, args.n_elec - args.frozen) rngen_ptrs = near_uniform.initialize_mt(args.procs) # Initialize solution vector if args.restart: ini_idx = numpy.load(args.restart + 'vec_idx.npy') ini_val = numpy.load(args.restart + 'vec_val.npy').astype(numpy.float64) en_shift = numpy.genfromtxt(args.restart + 'S.txt')[-1] cmp_idx, cmp_vals = compress_utils.fri_1D(ini_val, args.sparsity) ini_idx = ini_idx[cmp_idx] ini_val = cmp_vals last_norm = numpy.abs(cmp_vals).sum() else: ini_idx = numpy.array([hf_det], dtype=numpy.int64) ini_val = numpy.array([1.]) # energy shift for controlling normalization en_shift = args.initial_shift last_norm = 1. one_norm = last_norm sol_vec = sparse_vector.SparseVector(ini_idx, ini_val) occ_orbs = fci_c_utils.gen_orb_lists(sol_vec.indices, args.n_elec - args.frozen, byte_nums, byte_idx) results = io_utils.setup_results(args.result_int, args.result_dir, args.rayleigh, args.interval, args.sampl_mode) if args.sampl_mode != "all": n_doub_ref = fci_utils.count_doubex(occ_orbs[0], symm, symm_lookup) n_sing_ref = fci_utils.count_singex( hf_det, occ_orbs[0], symm, symm_lookup) num_hf = n_sing_ref + n_doub_ref p_doub = n_doub_ref * 1.0 / num_hf if args.sampl_mode != "all" and args.dist == "heat-bath_PP": from resipy import heat_bath occ1_probs, occ2_probs, exch_probs = heat_bath.set_up(args.frozen, eris) if (args.sampl_mode == "fri" or args.sampl_mode == "fri_strat") and args.dist == "near_uniform": from resipy import fri_near_uni # Elements in the HF column of FCI matrix hf_col = fci_utils.gen_hf_ex( hf_det, occ_orbs[0], n_orb, symm, eris, args.frozen) for iterat in range(args.max_iter): mat_eval = 0 if args.sampl_mode == "all": # Choose all double excitations doub_orbs, doub_idx = fci_c_utils.all_doub_ex( sol_vec.indices, occ_orbs, symm) doub_probs = numpy.ones_like(doub_idx, dtype=numpy.float64) # Choose all single excitations sing_orbs, sing_idx = fci_c_utils.all_sing_ex( sol_vec.indices, occ_orbs, symm) sing_probs = numpy.ones_like(sing_idx, dtype=numpy.float64) mat_eval = doub_probs.shape[0] + sing_probs.shape[0] elif args.sampl_mode == "multinomial": n_col, = compress_utils.sys_resample(numpy.abs(sol_vec.values) / one_norm, args.H_sample - sol_vec.values.shape[0], ret_counts=True) n_col += 1 n_doub_col, n_sing_col = near_uniform.bin_n_sing_doub( n_col, p_doub) if args.sampl_mode == "multinomial": # Sample single excitations sing_orbs, sing_probs, sing_idx = near_uniform.sing_multin( sol_vec.indices, occ_orbs, symm, symm_lookup, n_sing_col, rngen_ptrs) sing_probs *= (1 - p_doub) * n_col[sing_idx] if args.dist == "near_uniform" and args.sampl_mode == "multinomial": # Sample double excitations doub_orbs, doub_probs, doub_idx = near_uniform.doub_multin( sol_vec.indices, occ_orbs, symm, symm_lookup, n_doub_col, rngen_ptrs) doub_probs *= p_doub * n_col[doub_idx] elif args.dist == "near_uniform" and args.sampl_mode == "fri": # Compress both excitations doub_orbs, doub_probs, doub_idx, sing_orbs, sing_probs, sing_idx = fri_near_uni.cmp_hier(sol_vec, args.H_sample, p_doub, occ_orbs, symm, symm_lookup) elif args.dist == "near_uniform" and args.sampl_mode == "fri_strat": # Compress both excitations doub_orbs, doub_probs, doub_idx, sing_orbs, sing_probs, sing_idx = fri_near_uni.cmp_hier_strat(sol_vec, args.H_sample, p_doub, occ_orbs, symm, symm_lookup, num_hf, rngen_ptrs) elif args.dist == "heat-bath_PP" and args.sampl_mode == "multinomial": # Sample double excitations doub_orbs, doub_probs, doub_idx = heat_bath.doub_multin( occ1_probs, occ2_probs, exch_probs, sol_vec.indices, occ_orbs, symm, symm_lookup, n_doub_col, rngen_ptrs) doub_probs *= p_doub * n_col[doub_idx] elif args.dist == "heat-bath_PP" and args.sampl_mode == "fri": doub_orbs, doub_probs, doub_idx, sing_orbs, sing_probs, sing_idx = heat_bath.fri_comp( sol_vec, args.H_sample, occ1_probs, occ2_probs, exch_probs, p_doub, occ_orbs, symm, symm_lookup) doub_matrel = fci_c_utils.doub_matr_el_nosgn( doub_orbs, eris, args.frozen) # Retain nonzero elements doub_nonz = doub_matrel != 0 doub_idx = doub_idx[doub_nonz] doub_orbs = doub_orbs[doub_nonz] doub_matrel = doub_matrel[doub_nonz] doub_probs = doub_probs[doub_nonz] # Calculate determinants and matrix elements doub_dets, doub_signs = fci_utils.doub_dets_parity( sol_vec.indices[doub_idx], doub_orbs) # origin_idx = numpy.searchsorted(deter_dets, sol_vec.indices[doub_idx]) doub_matrel *= args.epsilon / doub_probs * \ doub_signs * -sol_vec.values[doub_idx] # Start forming next iterate spawn_dets = doub_dets spawn_vals = doub_matrel sing_dets, sing_matrel = fci_c_utils.single_dets_matrel_nosgn( sol_vec.indices[sing_idx], sing_orbs, eris, h_core, occ_orbs[sing_idx], args.frozen) # Retain nonzero elements sing_nonz = sing_matrel != 0 sing_idx = sing_idx[sing_nonz] sing_dets = sing_dets[sing_nonz] sing_matrel = sing_matrel[sing_nonz] sing_probs = sing_probs[sing_nonz] sing_orbs = sing_orbs[sing_nonz] # Calculate determinants and matrix elements sing_signs = fci_c_utils.excite_signs(sing_orbs[:, 1], sing_orbs[:, 0], sing_dets) sing_matrel *= args.epsilon / sing_probs * -sol_vec.values[sing_idx] * sing_signs # Add to next iterate spawn_dets = numpy.append(spawn_dets, sing_dets) spawn_vals = numpy.append(spawn_vals, sing_matrel) # Diagonal matrix elements diag_matrel = fci_c_utils.diag_matrel( occ_orbs, h_core, eris, args.frozen) - hf_en diag_vals = 1 - args.epsilon * (diag_matrel - en_shift) diag_vals *= sol_vec.values next_vec = sparse_vector.SparseVector(sol_vec.indices, diag_vals) # Add vectors in sparse format next_vec.add(spawn_dets, spawn_vals) one_norm = next_vec.one_norm() if (iterat + 1) % args.interval == 0: en_shift -= args.damping / args.interval / args.epsilon *
numpy.log(one_norm / last_norm)
numpy.log
""" Tools for creating and manipulating 1,2, and 3D meshes. .. inheritance-diagram:: proteus.MeshTools :parts: 1 """ from __future__ import print_function from __future__ import absolute_import from __future__ import division from builtins import input from builtins import zip from builtins import next from builtins import str from builtins import range from past.utils import old_div from builtins import object from .EGeometry import * import numpy as np import array import h5py import os from xml.etree import ElementTree as ET from .Archiver import * from .LinearAlgebraTools import ParVec_petsc4py from .Profiling import logEvent,memory from . import Domain from . import Comm from subprocess import check_call, check_output class Node(object): """A numbered point in 3D Euclidean space :ivar N: node number :ivar p: Euclidean coordinates Comparison operators and a hash value are defined using the 3-tuple of coordinates. This allows using Node objects and tuples of node objects as dictionary keys, but in that use case one should be careful not to modify the node coordinates. >>> n0 = Node(nodeNumber=0,x=0.0,y=0.0,z=0.0) >>> n1 = Node(nodeNumber=1,x=1.0,y=1.0,z=1.0) >>> n1 >= n0 True """ xUnitVector = EVec(1.0,0.0,0.0) yUnitVector = EVec(0.0,1.0,0.0) zUnitVector = EVec(0.0,0.0,1.0) def __init__(self,nodeNumber=0,x=0.0,y=0.0,z=0.0): self.N=nodeNumber self.p=EVec(x,y,z) self.basis = [Node.xUnitVector, Node.yUnitVector, Node.zUnitVector] self.elementBoundaries=[] self.barycenter = self.p self.length = 1.0 self.diameter=self.length self.innerDiameter=self.length self.hasGeometricInfo = True self.unitNormal = Node.xUnitVector self.nodes=(self,) def computeGeometricInfo(self): pass def __str__(self): return str(self.N)+":"+str(self.p) def __hash__(self): return hash((self.p[X],self.p[Y],self.p[Z])) def __lt__(self,other): return (self.p[X],self.p[Y],self.p[Z]) < \ (other.p[X],other.p[Y],other.p[Z]) def __le__(self,other): return (self.p[X],self.p[Y],self.p[Z]) <= \ (other.p[X],other.p[Y],other.p[Z]) def __eq__(self,other): return (self.p[X],self.p[Y],self.p[Z]) == \ (other.p[X],other.p[Y],other.p[Z]) def __ne__(self,other): return (self.p[X],self.p[Y],self.p[Z]) != \ (other.p[X],other.p[Y],other.p[Z]) def __gt__(self,other): return (self.p[X],self.p[Y],self.p[Z]) > \ (other.p[X],other.p[Y],other.p[Z]) def __ge__(self,other): return (self.p[X],self.p[Y],self.p[Z]) >= \ (other.p[X],other.p[Y],other.p[Z]) class Element(object): """An numbered polytope in R^n :ivar N: element number :ivar nodes: sorted tuple of nodes defining the polytope The nodes data member can be used as a dictionary key for the polytope as long as the nodes aren't later modified. """ def __init__(self,elementNumber=0,nodes=[]): self.N = elementNumber nodeList = nodes nodeList.sort() self.nodes = tuple(nodeList) self.elementBoundaries=[] class Edge(Element): xUnitVector = EVec(1.0,1.0,0.0) yUnitVector = EVec(0.0,1.0,0.0) zUnitVector = EVec(0.0,0.0,1.0) """ 1D Element--a line connecting two Nodes The nodes are stored as a lexicographically sorted node list. """ def __init__(self,edgeNumber=0,nodes=[]): #Element.__init__(self,edgeNumber,nodes) #inline Element.__init__ self.N = edgeNumber nodeList = nodes nodeList.sort() self.nodes = tuple(nodeList) #self.nodes=nodes #self.nodes=nodes[:] #self.nodes.sort() self.elementBoundaries = [self.nodes[1],self.nodes[0]] self.hasGeometricInfo = False def computeGeometricInfo(self): if not self.hasGeometricInfo: self.basis = [self.nodes[1].p - self.nodes[0].p, Edge.yUnitVector, Edge.zUnitVector] self.barycenter = old_div((self.nodes[0].p + self.nodes[1].p),2.0) self.length = enorm(self.basis[0]) self.normal = EVec(-self.basis[0][Y], self.basis[0][X],0.0) norm = enorm(self.normal) if norm: self.unitNormal = old_div(self.normal,norm) else: #in 3D edge normals don't make sense in general so above #may divide by zero if edge has zero projection onto x-y plane self.normal = EVec(0.0, -self.basis[0][Z], self.basis[0][Y]) self.unitNormal = old_div(self.normal,enorm(self.normal)) self.diameter=self.length self.innerDiameter = self.length self.hasGeometricInfo = True self.nodeUnitNormalList=[] self.nodeUnitNormalList.append(old_div(-self.basis[0],self.length)) self.nodeUnitNormalList.append(old_div(self.basis[0],self.length)) self.elementBoundaryUnitNormalList=self.nodeUnitNormalList self.elementBoundaryJacobianList=[Edge.xUnitVector,Edge.xUnitVector] def getNodesFromEdges(edges): """Extract the subset of nodes from a list of edges.""" nodes={} for e in edges: for n in e.nodes: nodes[n]=n return list(nodes.values()) class Polygon(Element): """An abstract 2D element--a closed set of Edges connecting a set of Nodes. The nodes and edges are stored as lexicographically sorted lists.""" def __init__(self,polygonNumber=0,nodes=[]): Element.__init__(self,polygonNumber,nodes) #the edges have to be set up by the specific polygon self.edges=[] def getEdgesFromPolygons(polygons): """Extract the subset of edges from a list of polygons""" edges={} for p in polygons: for e in p.edges: edges[e.nodes] = e return list(edges.values()) class Triangle(Polygon): """A 2D triangular element""" edgeMap = {(1,2):0,(0,2):1,(0,1):2} zUnitVector = EVec(0.0,0.0,1.0) def __init__(self,triangleNumber=0,nodes=[],edgeDict=None): #Polygon.__init__(self,triangleNumber,nodes) #inline self.edges=[] #Element.__init__ #inline self.N = triangleNumber nodeList = nodes nodeList.sort() self.nodes = tuple(nodeList) #self.nodes=nodes[:] #self.nodes.sort() # edgeNodeList = [(self.nodes[1],self.nodes[2]), (self.nodes[0],self.nodes[2]), (self.nodes[0],self.nodes[1])] if edgeDict is None: self.edges = [Edge(eN,list(edgeNodes)) for \ eN,edgeNodes in enumerate(edgeNodeList)] else: self.edges = [edgeDict[edgeNodes] for edgeNodes in edgeNodeList] self.hasGeometricInfo=False self.elementBoundaries=self.edges def computeGeometricInfo(self): if not self.hasGeometricInfo: self.barycenter = old_div((self.nodes[0].p + self.nodes[1].p + self.nodes[2].p),3.0) self.basis = [ n.p - self.nodes[0].p for n in self.nodes[1:]] self.basis.append(Triangle.zUnitVector) self.linearMap = ETen(self.basis[0],self.basis[1],self.basis[2]) self.normal = ecross(self.basis[0],self.basis[1]) normNormal = enorm(self.normal) self.unitNormal = old_div(self.normal,normNormal) self.area = 0.5*normNormal for e in self.edges: e.computeGeometricInfo() self.diameter = max([e.length for e in self.edges]) self.innerDiameter = 4.0*self.area/sum( [e.length for e in self.edges]) self.edgeUnitNormalList=[] for nNt,eN in Triangle.edgeMap.items(): unitNormal = self.edges[eN].unitNormal if edot(unitNormal,self.nodes[nNt[0]].p - self.nodes[eN].p) < 0: unitNormal*=-1.0 self.edgeUnitNormalList.append(unitNormal) self.elementBoundaryUnitNormalList = self.edgeUnitNormalList self.hasGeometricInfo=True class Quadrilateral(Polygon): """A 2D quadrilateral element""" def __init__(self,quadrilateralNumber=0,edges=[],simple=True): Polygon.__init__(self,quadrilateralNumber) self.edges = edges nodeList = getNodesFromEdges(self.edges) nodeList = self.sortNodes(nodeList) self.nodes = tuple(nodeList) self.hasGeometricInfo = False self.elementBoundaries = self.edges # This boolean flags whether the quadrilateral is simple # (eg. a rectangle). Certain features are more difficult # to implement if this is not the case. self.simple = True def sortNodes(self,nodeList): newList = [None] * 4 coordinate_list = [1,1,1] # initialize coordinate mins and maxs xMin = nodeList[0].p[X] xMax = nodeList[0].p[X] yMin = nodeList[0].p[Y] yMax = nodeList[0].p[Y] zMin = nodeList[0].p[Z] zMax = nodeList[0].p[Z] for node in nodeList: if xMin > node.p[X]: xMin = node.p[X] if xMax < node.p[X]: xMax = node.p[X] if yMin > node.p[Y]: yMin = node.p[Y] if yMax < node.p[Y]: yMax = node.p[Y] if zMin > node.p[Z]: zMin = node.p[Z] if zMax < node.p[Z]: zMax = node.p[Z] # indentify degenerate coordinate space. # NOTE - this is not entirely accurate, but assumes # 2D quadrilateral objects are orthogonal to one of # the cononical coordinate axes if xMin==xMax: coordinate_list[0] = 0 if yMin==yMax: coordinate_list[1] = 0 if zMin==zMax: coordinate_list[2] = 0 if sum(coordinate_list) !=2: assert 0, 'Invalid 2D quadrilateral object' for i, t in enumerate(coordinate_list): if t == 0: case = i # x is degenerate variable if case == 0: var1 = 1 # y marked as first node var2 = 2 # z marked as second var1_min = yMin var1_max = yMax var2_min = zMin var2_max = zMax # y is degenerate variable elif case == 1: var1 = 0 # x marked as first node var2 = 2 # z marked as second var1_min = xMin var1_max = xMax var2_min = zMin var2_max = zMax # z is degenerate variable elif case == 2: var1 = 0 # x marked as first node var2 = 1 # y marked as second var1_min = xMin var1_max = xMax var2_min = yMin var2_max = yMax else: assert 0, 'Invalide Quadrilateral Mesh Case' for node in nodeList: if node.p[var1]==var1_min and node.p[var2]==var2_min: newList[0] = node elif node.p[var1]==var1_min and node.p[var2]==var2_max: newList[1] = node elif node.p[var1]==var1_max and node.p[var2]==var2_max: newList[2] = node elif node.p[var1]==var1_max and node.p[var2]==var2_min: newList[3] = node for i,item in enumerate(newList): if not newList[i]: assert 0,'Quadrialteral Mesh Generation Error '+str(newList)+" i = "+str(i) return newList def computeGeometricInfo(self): if not self.hasGeometricInfo: for e in self.edges: e.computeGeometricInfo() #the nodes must lie in a plane #use triangles to compute area #grab one triangle t0 = Triangle(0,list(self.nodes[0:3])) t0.computeGeometricInfo() #find the nodes that lie on the new edge,diagonal0 for et in t0.edges: edgeIsNew=True for e in self.edges: if e.nodes == et.nodes: edgeIsNew=False if edgeIsNew: break diagonal0=et t1 = Triangle(0,[self.nodes[3], diagonal0.nodes[0], diagonal0.nodes[1]]) t1.computeGeometricInfo() #get normal from one of the triangles self.unitNormal = t0.unitNormal self.area = t0.area + t1.area #find the long diagonal diagonalNode=0 for n in self.nodes[0:3]: if n != diagonal0.nodes[0] and n != diagonal0.nodes[1]: diagonalNode=n break; diagonal1 = Edge(0,[n,self.nodes[3]]) diagonal1.computeGeometricInfo() self.diameter = max(diagonal1.length,diagonal0.length) self.innerDiameter = 4.0*self.area/sum( [e.length for e in self.edges]) # Calculate the coordinate of a simple quad if self.simple==True: self.xmin = self.nodes[0].p[X] self.ymin = self.nodes[0].p[Y] self.xmax = self.nodes[0].p[X] self.ymax = self.nodes[0].p[Y] for node in self.nodes: if node.p[X] < self.xmin: self.xmin = node.p[X] elif node.p[X] > self.xmax: self.xmax = node.p[X] else: pass if node.p[Y] < self.ymin: self.ymin = node.p[Y] elif node.p[Y] > self.ymax: self.ymax = node.p[Y] else: pass self.xmid = old_div((self.xmin+self.xmax),2.) self.ymid = old_div((self.ymin+self.ymax),2.) self.zmid = 0. class Polyhedron(Element): """ An abstract 3D Element--a closed set of Polygons connecting a set of Edges. The nodes and edges are stored as lexicographically sorted lists. """ def __init__(self,polyhedronNumber=0,nodes=[]): Element.__init__(self,polyhedronNumber,nodes) self.edges=[] self.polygons=[] def __cmp__(self,other): return compareNodes(self.nodes,other.nodes) class Tetrahedron(Polyhedron): """A 3D tetrahedral element""" triangleMap = {(1,2,3):0,(0,2,3):1,(0,1,3):2,(0,1,2):3} edgeMap = {(0,1): 0, (0,2): 1, (0,3): 2, (1,2): 3, (1,3): 4, (2,3): 5} def __init__(self,tetrahedronNumber,nodes,edgeDict=None,triangleDict=None): #Polyhedron.__init__(self,tetrahedronNumber,nodes) #inline #Element.__init__ #inline self.N = tetrahedronNumber nodeList = nodes nodeList.sort() self.nodes = tuple(nodeList) #self.nodes=nodes[:] #self.nodes.sort() # triangleNodeList = [(self.nodes[1], self.nodes[2], self.nodes[3]), (self.nodes[0], self.nodes[2], self.nodes[3]), (self.nodes[0], self.nodes[1], self.nodes[3]), (self.nodes[0], self.nodes[1], self.nodes[2])] if triangleDict is None: self.triangles = [Triangle(triangleNumber=tN, nodes=list(triangleNodes)) for tN,triangleNodes in enumerate(triangleNodeList)] else: self.triangles = [triangleDict[triangleNodes] for triangleNodes in triangleNodeList] self.polygons=self.triangles edgeNodeList = [(self.nodes[0],self.nodes[1]), (self.nodes[0],self.nodes[2]), (self.nodes[0],self.nodes[3]), (self.nodes[1],self.nodes[2]), (self.nodes[1],self.nodes[3]), (self.nodes[2],self.nodes[3])] if edgeDict is None: self.edges = [Edge(edgeNumber=eN,nodes=list(edgeNodes)) for eN,edgeNodes in enumerate(edgeNodeList)] else: self.edges = [edgeDict[edgeNodes] for edgeNodes in edgeNodeList] self.hasGeometricInfo=False self.elementBoundaries = self.triangles def computeGeometricInfo(self): if not self.hasGeometricInfo: for t in self.triangles: t.computeGeometricInfo() self.barycenter =old_div((self.nodes[0].p + self.nodes[1].p + self.nodes[2].p + self.nodes[3].p),4.0) self.basis = [n.p - self.nodes[0].p for n in self.nodes[1:]] self.linearMap = ETen(self.basis[0],self.basis[1],self.basis[2]) self.volume = old_div(abs(edet(self.linearMap)),6.0) self.diameter = max([t.diameter for t in self.triangles]) #Zhang's formula for rho=innerDiameter of a simplex self.innerDiameter = 6.0*self.volume/sum([t.area for t in self.triangles]) self.triangleUnitNormalList=[] for nNt,tN in Tetrahedron.triangleMap.items(): unitNormal = self.triangles[tN].unitNormal if edot(unitNormal,self.nodes[nNt[0]].p - self.nodes[tN].p) < 0: unitNormal *= -1.0 self.triangleUnitNormalList.append(unitNormal) self.elementBoundaryUnitNormalList = self.triangleUnitNormalList self.hasGeometricInfo=True class Hexahedron(Polyhedron): """A 3D hexahedral element""" def __init__(self,HN,quadrilaterals): Polyhedron.__init__(self,HN) self.N = HN self.quadrilaterals = quadrilaterals self.polygons = self.quadrilaterals self.edges = getEdgesFromPolygons(quadrilaterals) #self.nodes = getNodesFromEdges(self.edges) #self.nodes.sort() nodeList = getNodesFromEdges(self.edges) nodeList.sort() self.nodes = tuple(nodeList) self.hasGeometricInfo=False self.elementBoundaries = self.quadrilaterals #todo add enum34 and replace with real Python enum class MeshParallelPartitioningTypes(object): """ fake an enum for parallel partitioning options """ element = 0 ; node = 1 class Mesh(object): """A partition of a domain in R^n into elements. This is the base class for meshes. Contains routines for plotting the edges of the mesh in Matlab Attributes ---------- elementBoundariesArray : array type This array lists the global edge number associated with every edge or face of an element. """ #cek adding parallel support def __init__(self): #array interface self.nSubdomains_global=1 self.sN = 0 #node coordinates indexed by node number self.nNodes_global=0 self.nNodes_subdomain=0 self.nodeArray=None self.nodeVelocityArray=None self.nNodes_element=0 #element node numbers, indexed by element number self.nElements_global=0 self.nElements_proc=0 self.elementNodesArray=None self.max_nElements_node=0 self.nElements_node=None #mwf warning not calculated in buildPythonFromC self.nodeElementsArray=None self.nodeElementOffsets=None #element boundary numbers, indexed by element number self.nElementBoundaries_element=0 self.elementBoundariesArray=None #element numbers, indexed by element boundary number and left(0) and right(1) element self.nElementBoundaries_global=0 self.elementBoundaryElementsArray=None #local element boundary numbers, indexed by element boundary number and left(0) and right(1) element self.elementBoundaryLocalElementBoundariesArray=None #neighboring element numbers, indexed by local element boundary number self.elementNeighborsArray=None #node numbers, indexed by element boundary number self.elementBoundaryNodesArray=None #element boundary numbers, indexed by interior/exterior #element boundary number self.interiorElementBoundariesArray=None self.nInteriorElementBoundaries_global=0 self.exteriorElementBoundariesArray=None self.nExteriorElementBoundaries_global=0 #edge node numbers, indexed by edge number self.nEdges_global=0 self.edgeNodesArray=None self.nodeStarArray=None self.nodeStarOffsets=None self.h=0.0 self.hMin=0.0 self.hasGeometricInfo=False self.boundaryMesh=None #physical coordinates of element barycenters and elementBoundary barycenters self.elementBarycentersArray=None self.elementBoundaryBarycentersArray=None self.nodeDiametersArray=None self.nodeSupportArray=None #unique labels for classes of elements, elementBoundaries, nodes, self.elementMaterialTypes=None self.elementBoundaryMaterialTypes=None self.nodeMaterialTypes=None #parallel stuff self.nElements_owned=self.nElements_global self.nNodes_owned=self.nNodes_global self.nElementBoundaries_owned=self.nElementBoundaries_global self.nEdges_owned=self.nEdges_global self.elementOffsets_subdomain_owned=[0,self.nElements_global] self.elementNumbering_subdomain2global=np.arange(self.nElements_global,dtype='i') self.nodeOffsets_subdomain_owned=[0,self.nNodes_global] self.nodeNumbering_subdomain2global=np.arange(self.nNodes_global,dtype='i') self.elementBoundaryOffsets_subdomain_owned=[0,self.nElementBoundaries_global] self.elementBoundaryNumbering_subdomain2global=np.arange(self.nElementBoundaries_global,dtype='i') self.edgeOffsets_subdomain_owned=[0,self.nEdges_global] self.edgeNumbering_subdomain2global=np.arange(self.nEdges_global,dtype='i') self.subdomainMesh=self self.globalMesh = None self.arGridCollection=None self.arGrid=None self.nLayersOfOverlap = None self.parallelPartitioningType = MeshParallelPartitioningTypes.element def partitionMesh(self,nLayersOfOverlap=1,parallelPartitioningType=MeshParallelPartitioningTypes.node): from . import cmeshTools from . import Comm from . import cpartitioning comm = Comm.get() self.comm=comm logEvent(memory("partitionMesh 1","MeshTools"),level=4) logEvent("Partitioning mesh among %d processors using partitioningType = %d" % (comm.size(),parallelPartitioningType)) self.subdomainMesh=self.__class__() self.subdomainMesh.globalMesh = self self.subdomainMesh.cmesh=cmeshTools.CMesh() self.nLayersOfOverlap = nLayersOfOverlap; self.parallelPartitioningType = parallelPartitioningType logEvent(memory("partitionMesh 2","MeshTools"),level=4) if parallelPartitioningType == MeshParallelPartitioningTypes.node: #mwf for now always gives 1 layer of overlap (self.elementOffsets_subdomain_owned, self.elementNumbering_subdomain2global, self.nodeOffsets_subdomain_owned, self.nodeNumbering_subdomain2global, self.elementBoundaryOffsets_subdomain_owned, self.elementBoundaryNumbering_subdomain2global, self.edgeOffsets_subdomain_owned, self.edgeNumbering_subdomain2global) = cpartitioning.partitionNodes(comm.comm.tompi4py(), nLayersOfOverlap, self.cmesh, self.subdomainMesh.cmesh) else: (self.elementOffsets_subdomain_owned, self.elementNumbering_subdomain2global, self.nodeOffsets_subdomain_owned, self.nodeNumbering_subdomain2global, self.elementBoundaryOffsets_subdomain_owned, self.elementBoundaryNumbering_subdomain2global, self.edgeOffsets_subdomain_owned, self.edgeNumbering_subdomain2global) = cpartitioning.partitionElements(comm.comm.tompi4py(), nLayersOfOverlap, self.cmesh, self.subdomainMesh.cmesh) # logEvent(memory("partitionMesh 3","MeshTools"),level=4) self.subdomainMesh.buildFromC(self.subdomainMesh.cmesh) self.subdomainMesh.nElements_owned = self.elementOffsets_subdomain_owned[comm.rank()+1] - self.elementOffsets_subdomain_owned[comm.rank()] self.subdomainMesh.nNodes_owned = self.nodeOffsets_subdomain_owned[comm.rank()+1] - self.nodeOffsets_subdomain_owned[comm.rank()] self.subdomainMesh.nElementBoundaries_owned = self.elementBoundaryOffsets_subdomain_owned[comm.rank()+1] - self.elementBoundaryOffsets_subdomain_owned[comm.rank()] self.subdomainMesh.nEdges_owned = self.edgeOffsets_subdomain_owned[comm.rank()+1] - self.edgeOffsets_subdomain_owned[comm.rank()] comm.barrier() logEvent(memory("partitionMesh 4","MeshTools"),level=4) logEvent("Number of Subdomain Elements Owned= "+str(self.subdomainMesh.nElements_owned)) logEvent("Number of Subdomain Elements = "+str(self.subdomainMesh.nElements_global)) logEvent("Number of Subdomain Nodes Owned= "+str(self.subdomainMesh.nNodes_owned)) logEvent("Number of Subdomain Nodes = "+str(self.subdomainMesh.nNodes_global)) logEvent("Number of Subdomain elementBoundaries Owned= "+str(self.subdomainMesh.nElementBoundaries_owned)) logEvent("Number of Subdomain elementBoundaries = "+str(self.subdomainMesh.nElementBoundaries_global)) logEvent("Number of Subdomain Edges Owned= "+str(self.subdomainMesh.nEdges_owned)) logEvent("Number of Subdomain Edges = "+str(self.subdomainMesh.nEdges_global)) comm.barrier() logEvent("Finished partitioning") par_nodeDiametersArray = ParVec_petsc4py(self.subdomainMesh.nodeDiametersArray, bs=1, n=self.subdomainMesh.nNodes_owned, N=self.nNodes_global, nghosts=self.subdomainMesh.nNodes_global - self.subdomainMesh.nNodes_owned, subdomain2global=self.nodeNumbering_subdomain2global) par_nodeDiametersArray.scatter_forward_insert() # comm.beginSequential() # from Profiling import memory # memory() # logEvent(memory("Partitioning Mesh","Mesh"),level=1) # del self.cmesh # #cmeshTools.deleteMeshDataStructures(self.cmesh) # logEvent(memory("Without global mesh","Mesh"),level=1) # comm.endSequential() def partitionMeshFromFiles(self,filebase,base,nLayersOfOverlap=1,parallelPartitioningType=MeshParallelPartitioningTypes.node): from . import cmeshTools from . import Comm from . import cpartitioning comm = Comm.get() self.comm=comm logEvent(memory("partitionMesh 1","MeshTools"),level=4) logEvent("Partitioning mesh among %d processors using partitioningType = %d" % (comm.size(),parallelPartitioningType)) self.subdomainMesh=self.__class__() self.subdomainMesh.globalMesh = self self.subdomainMesh.cmesh=cmeshTools.CMesh() self.nLayersOfOverlap = nLayersOfOverlap; self.parallelPartitioningType = parallelPartitioningType logEvent(memory("partitionMesh 2","MeshTools"),level=4) if parallelPartitioningType == MeshParallelPartitioningTypes.node: logEvent("Starting nodal partitioning")#mwf for now always gives 1 layer of overlap logEvent("filebase {0:s}".format(filebase)) logEvent("base {0:d}".format(base)) logEvent("nLayersOfOverlap {0:d}".format(nLayersOfOverlap)) logEvent("parallelPartitioningType {0:d}".format(parallelPartitioningType)) if isinstance(self,TetrahedralMesh): (self.elementOffsets_subdomain_owned, self.elementNumbering_subdomain2global, self.nodeOffsets_subdomain_owned, self.nodeNumbering_subdomain2global, self.elementBoundaryOffsets_subdomain_owned, self.elementBoundaryNumbering_subdomain2global, self.edgeOffsets_subdomain_owned, self.edgeNumbering_subdomain2global) = cpartitioning.partitionNodesFromTetgenFiles(comm.comm.tompi4py(), filebase, base, nLayersOfOverlap, self.cmesh, self.subdomainMesh.cmesh) elif isinstance(self,TriangularMesh): (self.elementOffsets_subdomain_owned, self.elementNumbering_subdomain2global, self.nodeOffsets_subdomain_owned, self.nodeNumbering_subdomain2global, self.elementBoundaryOffsets_subdomain_owned, self.elementBoundaryNumbering_subdomain2global, self.edgeOffsets_subdomain_owned, self.edgeNumbering_subdomain2global) = cpartitioning.partitionNodesFromTriangleFiles(comm.comm.tompi4py(), filebase, base, nLayersOfOverlap, self.cmesh, self.subdomainMesh.cmesh) else: assert 0,"can't partition non-simplex mesh" else: logEvent("Starting element partitioning") (self.elementOffsets_subdomain_owned, self.elementNumbering_subdomain2global, self.nodeOffsets_subdomain_owned, self.nodeNumbering_subdomain2global, self.elementBoundaryOffsets_subdomain_owned, self.elementBoundaryNumbering_subdomain2global, self.edgeOffsets_subdomain_owned, self.edgeNumbering_subdomain2global) = cpartitioning.partitionElementsFromTetgenFiles(comm.comm.tompi4py(), filebase, base, nLayersOfOverlap, self.cmesh, self.subdomainMesh.cmesh) # logEvent(memory("partitionMesh 3","MeshTools"),level=4) self.buildFromCNoArrays(self.cmesh) self.subdomainMesh.buildFromC(self.subdomainMesh.cmesh) self.subdomainMesh.nElements_owned = self.elementOffsets_subdomain_owned[comm.rank()+1] - self.elementOffsets_subdomain_owned[comm.rank()] self.subdomainMesh.nNodes_owned = self.nodeOffsets_subdomain_owned[comm.rank()+1] - self.nodeOffsets_subdomain_owned[comm.rank()] self.subdomainMesh.nElementBoundaries_owned = self.elementBoundaryOffsets_subdomain_owned[comm.rank()+1] - self.elementBoundaryOffsets_subdomain_owned[comm.rank()] self.subdomainMesh.nEdges_owned = self.edgeOffsets_subdomain_owned[comm.rank()+1] - self.edgeOffsets_subdomain_owned[comm.rank()] comm.barrier() logEvent(memory("partitionMesh 4","MeshTools"),level=4) logEvent("Number of Subdomain Elements Owned= "+str(self.subdomainMesh.nElements_owned)) logEvent("Number of Subdomain Elements = "+str(self.subdomainMesh.nElements_global)) logEvent("Number of Subdomain Nodes Owned= "+str(self.subdomainMesh.nNodes_owned)) logEvent("Number of Subdomain Nodes = "+str(self.subdomainMesh.nNodes_global)) logEvent("Number of Subdomain elementBoundaries Owned= "+str(self.subdomainMesh.nElementBoundaries_owned)) logEvent("Number of Subdomain elementBoundaries = "+str(self.subdomainMesh.nElementBoundaries_global)) logEvent("Number of Subdomain Edges Owned= "+str(self.subdomainMesh.nEdges_owned)) logEvent("Number of Subdomain Edges = "+str(self.subdomainMesh.nEdges_global)) comm.barrier() logEvent("Finished partitioning") par_nodeDiametersArray = ParVec_petsc4py(self.subdomainMesh.nodeDiametersArray, bs=1, n=self.subdomainMesh.nNodes_owned, N=self.nNodes_global, nghosts=self.subdomainMesh.nNodes_global - self.subdomainMesh.nNodes_owned, subdomain2global=self.nodeNumbering_subdomain2global) par_nodeDiametersArray.scatter_forward_insert() # comm.beginSequential() # from Profiling import memory # memory() # logEvent(memory("Partitioning Mesh","Mesh"),level=1) # del self.cmesh # #cmeshTools.deleteMeshDataStructures(self.cmesh) # logEvent(memory("Without global mesh","Mesh"),level=1) # comm.endSequential() def writeMeshXdmf(self,ar,name='',t=0.0,init=False,meshChanged=False,Xdmf_ElementTopology="Triangle",tCount=0, EB=False): if self.arGridCollection is not None: init = False elif not init: grids = ar.domain.findall("Grid") self.arGridCollection = grids[0] if EB: assert(len(grids) > 1) self.arEBGridCollection = grids[1] if init: self.arGridCollection = SubElement(ar.domain,"Grid",{"Name":"Mesh "+name, "GridType":"Collection", "CollectionType":"Temporal"}) if EB: self.arEBGridCollection = SubElement(ar.domain,"Grid",{"Name":"EBMesh "+name, "GridType":"Collection", "CollectionType":"Temporal"}) if self.arGrid is None or self.arTime.get('Value') != "{0:e}".format(t): # #topology and geometry # if ar.global_sync: self.arGrid = SubElement(self.arGridCollection,"Grid",{"GridType":"Uniform"}) self.arTime = SubElement(self.arGrid,"Time",{"Value":"%e" % (t,),"Name":"%i" % (tCount,)}) topology = SubElement(self.arGrid,"Topology", {"Type":Xdmf_ElementTopology, "NumberOfElements":"%i" % (self.globalMesh.nElements_global,)}) elements = SubElement(topology,"DataItem", {"Format":ar.dataItemFormat, "DataType":"Int", "Dimensions":"%i %i" % (self.globalMesh.nElements_global,self.nNodes_element)}) geometry = SubElement(self.arGrid,"Geometry",{"Type":"XYZ"}) nodes = SubElement(geometry,"DataItem", {"Format":ar.dataItemFormat, "DataType":"Float", "Precision":"8", "Dimensions":"%i %i" % (self.globalMesh.nNodes_global,3)}) if ar.hdfFile is not None: elements.text = ar.hdfFilename+":/elements"+name+str(tCount) nodes.text = ar.hdfFilename+":/nodes"+name+str(tCount) if init or meshChanged: ar.create_dataset_sync('elements'+name+str(tCount), offsets=self.globalMesh.elementOffsets_subdomain_owned, data=self.globalMesh.nodeNumbering_subdomain2global[self.elementNodesArray[:self.nElements_owned]]) ar.create_dataset_sync('nodes'+name+str(tCount), offsets=self.globalMesh.nodeOffsets_subdomain_owned, data=self.nodeArray[:self.nNodes_owned]) else: assert False, "global_sync not supported with text heavy data" else: self.arGrid = SubElement(self.arGridCollection,"Grid",{"GridType":"Uniform"}) self.arTime = SubElement(self.arGrid,"Time",{"Value":"%e" % (t,),"Name":"%i" % (tCount,)}) topology = SubElement(self.arGrid,"Topology", {"Type":Xdmf_ElementTopology, "NumberOfElements":"%i" % (self.nElements_owned,)}) elements = SubElement(topology,"DataItem", {"Format":ar.dataItemFormat, "DataType":"Int", "Dimensions":"%i %i" % (self.nElements_owned,self.nNodes_element)}) geometry = SubElement(self.arGrid,"Geometry",{"Type":"XYZ"}) nodes = SubElement(geometry,"DataItem", {"Format":ar.dataItemFormat, "DataType":"Float", "Precision":"8", "Dimensions":"%i %i" % (self.nNodes_global,3)}) if ar.hdfFile is not None: elements.text = ar.hdfFilename+":/elements"+str(ar.comm.rank())+name+str(tCount) nodes.text = ar.hdfFilename+":/nodes"+str(ar.comm.rank())+name+str(tCount) if init or meshChanged: ar.create_dataset_async('elements'+str(ar.comm.rank())+name+str(tCount),data=self.elementNodesArray[:self.nElements_owned]) ar.create_dataset_async('nodes'+str(ar.comm.rank())+name+str(tCount),data=self.nodeArray) else: SubElement(elements,"xi:include",{"parse":"text","href":"./"+ar.textDataDir+"/elements"+name+".txt"}) SubElement(nodes,"xi:include",{"parse":"text","href":"./"+ar.textDataDir+"/nodes"+name+".txt"}) if init or meshChanged: numpy.savetxt(ar.textDataDir+"/elements"+name+".txt",self.elementNodesArray[:self.nElements_owned],fmt='%d') numpy.savetxt(ar.textDataDir+"/nodes"+name+".txt",self.nodeArray) # #element boundary topology and geometry # if EB: self.arEBGrid = SubElement(self.arEBGridCollection,"Grid",{"GridType":"Uniform"}) self.arEBTime = SubElement(self.arEBGrid,"Time",{"Value":"%e" % (t,),"Name":"%i" % (tCount,)}) Xdmf_ElementEBTopology = "Triangle" #cek hack ebtopology = SubElement(self.arEBGrid,"Topology", {"Type":Xdmf_ElementEBTopology, "NumberOfElements":"%i" % (self.nElementBoundaries_global,)}) ebelements = SubElement(ebtopology,"DataItem", {"Format":ar.dataItemFormat, "DataType":"Int", "Dimensions":"%i %i" % (self.nElementBoundaries_global,self.nNodes_elementBoundary)}) ebgeometry = SubElement(self.arEBGrid,"Geometry",{"Type":"XYZ"}) ebnodes = SubElement(ebgeometry,"DataItem", {"Format":ar.dataItemFormat, "DataType":"Float", "Precision":"8", "Dimensions":"%i %i" % (self.nNodes_global,3)}) if ar.hdfFile is not None: ebelements.text = ar.hdfFilename+":/elementBoundaries"+str(ar.comm.rank())+name+str(tCount) ebnodes.text = ar.hdfFilename+":/nodes"+str(ar.comm.rank())+name+str(tCount) if init or meshChanged: ar.create_dataset_async('elementBoundaries'+str(ar.comm.rank())+name+str(tCount), data = self.elementBoundaryNodesArray) #ar.create_dataset_async('nodes'+`ar.comm.rank()`+name+`tCount`, data = self.nodeArray) else: SubElement(ebelements,"xi:include",{"parse":"text","href":"./"+ar.textDataDir+"/elementBoundaries"+name+".txt"}) SubElement(ebnodes,"xi:include",{"parse":"text","href":"./"+ar.textDataDir+"/nodes"+name+".txt"}) if init or meshChanged: np.savetxt(ar.textDataDir+"/elementBoundaries"+name+".txt",self.elementBoundaryNodesArray,fmt='%d') # Add the local->global index maps for collect.py and for # reverse mapping in hotstarts from a global XDMF file. if self.globalMesh is not None and not ar.global_sync: nodeMapAtt = SubElement(self.arGrid,"Attribute", {"Name":"NodeMapL2G", "AttributeType":"Scalar", "Center":"Node"}) nodeMap = SubElement(nodeMapAtt,"DataItem", {"Format":ar.dataItemFormat, "DataType":"Int", "Precision":"4", "Dimensions":"%i" % (self.nNodes_global,)}) elemMapAtt = SubElement(self.arGrid,"Attribute", {"Name":"CellMapL2G", "AttributeType":"Scalar", "Center":"Cell"}) elemMap = SubElement(elemMapAtt,"DataItem", {"Format":ar.dataItemFormat, "DataType":"Int", "Precision":"4", "Dimensions":"%i" % (self.nElements_owned,)}) if ar.hdfFile is not None: nodeMap.text = ar.hdfFilename+":/nodeMapL2G"+str(ar.comm.rank())+name+str(tCount) elemMap.text = ar.hdfFilename+":/cellMapL2G"+str(ar.comm.rank())+name+str(tCount) if init or meshChanged: ar.create_dataset_async('nodeMapL2G'+str(ar.comm.rank())+name+str(tCount), data=self.globalMesh.nodeNumbering_subdomain2global) ar.create_dataset_async('cellMapL2G'+str(ar.comm.rank())+name+str(tCount), data=self.globalMesh.elementNumbering_subdomain2global[:self.nElements_owned]) else: SubElement(nodeMap,"xi:include",{"parse":"text","href":"./"+ar.textDataDir+"/nodeMapL2G"+name+".txt"}) SubElement(nodeMap,"xi:include",{"parse":"text","href":"./"+ar.textDataDir+"/cellMapL2G"+name+".txt"}) if init or meshChanged: np.savetxt(ar.textDataDir+"/nodeMapL2G"+name+".txt",self.globalMesh.nodeNumbering_subdomain2global) np.savetxt(ar.textDataDir+"/cellMapL2G"+name+".txt",self.globalMesh.elementNumbering_subdomain2global[:self.nElements_owned]) # #material types # if ar.global_sync: nodeMaterialTypes = SubElement(self.arGrid,"Attribute",{"Name":"nodeMaterialTypes", "AttributeType":"Scalar", "Center":"Node"}) nodeMaterialTypesValues = SubElement(nodeMaterialTypes,"DataItem", {"Format":ar.dataItemFormat, "DataType":"Int", "Dimensions":"%i" % (self.globalMesh.nNodes_global,)}) elementMaterialTypes = SubElement(self.arGrid,"Attribute",{"Name":"elementMaterialTypes", "AttributeType":"Scalar", "Center":"Cell"}) elementMaterialTypesValues = SubElement(elementMaterialTypes,"DataItem", {"Format":ar.dataItemFormat, "DataType":"Int", "Dimensions":"%i" % (self.globalMesh.nElements_global,)}) if EB: ebnodeMaterialTypes = SubElement(self.arEBGrid,"Attribute",{"Name":"ebnodeMaterialTypes", "AttributeType":"Scalar", "Center":"Node"}) ebnodeMaterialTypesValues = SubElement(ebnodeMaterialTypes,"DataItem", {"Format":ar.dataItemFormat, "DataType":"Int", "Dimensions":"%i" % (self.globalMesh.nNodes_global,)}) elementBoundaryMaterialTypes = SubElement(self.arEBGrid,"Attribute",{"Name":"elementBoundaryMaterialTypes", "AttributeType":"Scalar", "Center":"Cell"}) elementBoundaryMaterialTypesValues = SubElement(elementBoundaryMaterialTypes,"DataItem", {"Format":ar.dataItemFormat, "DataType":"Int", "Dimensions":"%i" % (self.globalMesh.nElementBoundaries_global,)}) if ar.hdfFile is not None: nodeMaterialTypesValues.text = ar.hdfFilename+":/"+"nodeMaterialTypes"+"_t"+str(tCount) ar.create_dataset_sync("nodeMaterialTypes"+"_t"+str(tCount), offsets=self.globalMesh.nodeOffsets_subdomain_owned, data=self.nodeMaterialTypes[:self.nNodes_owned]) elementMaterialTypesValues.text = ar.hdfFilename+":/"+"elementMaterialTypes"+"_t"+str(tCount) ar.create_dataset_sync("elementMaterialTypes"+"_t"+str(tCount), offsets=self.globalMesh.elementOffsets_subdomain_owned, data=self.elementMaterialTypes[:self.nElements_owned]) if EB: ebnodeMaterialTypesValues.text = ar.hdfFilename+":/"+"nodeMaterialTypes"+"_t"+str(tCount) elementBoundaryMaterialTypesValues.text = ar.hdfFilename+":/"+"elementBoundaryMaterialTypes"+"_t"+str(tCount) ar.create_dataset_sync("elementBoundaryMaterialTypes"+"_t"+str(tCount), offsets = self.globalMesh.elementBoundaryOffsets_subdomain_owned, data=self.elementBoundaryMaterialTypes[:self.nElementBoundaries_owned]) else: assert False, "global_sync not supported with text heavy data" else: nodeMaterialTypes = SubElement(self.arGrid,"Attribute",{"Name":"nodeMaterialTypes", "AttributeType":"Scalar", "Center":"Node"}) nodeMaterialTypesValues = SubElement(nodeMaterialTypes,"DataItem", {"Format":ar.dataItemFormat, "DataType":"Int", "Dimensions":"%i" % (self.nNodes_global,)}) elementMaterialTypes = SubElement(self.arGrid,"Attribute",{"Name":"elementMaterialTypes", "AttributeType":"Scalar", "Center":"Cell"}) elementMaterialTypesValues = SubElement(elementMaterialTypes,"DataItem", {"Format":ar.dataItemFormat, "DataType":"Int", "Dimensions":"%i" % (self.nElements_owned,)}) if EB: ebnodeMaterialTypes = SubElement(self.arEBGrid,"Attribute",{"Name":"ebnodeMaterialTypes", "AttributeType":"Scalar", "Center":"Node"}) ebnodeMaterialTypesValues = SubElement(ebnodeMaterialTypes,"DataItem", {"Format":ar.dataItemFormat, "DataType":"Int", "Dimensions":"%i" % (self.nNodes_global,)}) elementBoundaryMaterialTypes = SubElement(self.arEBGrid,"Attribute",{"Name":"elementBoundaryMaterialTypes", "AttributeType":"Scalar", "Center":"Cell"}) elementBoundaryMaterialTypesValues = SubElement(elementBoundaryMaterialTypes,"DataItem", {"Format":ar.dataItemFormat, "DataType":"Int", "Dimensions":"%i" % (self.nElementBoundaries_global,)}) if ar.hdfFile is not None: nodeMaterialTypesValues.text = ar.hdfFilename+":/"+"nodeMaterialTypes"+"_p"+str(ar.comm.rank())+"_t"+str(tCount) ar.create_dataset_async("nodeMaterialTypes"+"_p"+str(ar.comm.rank())+"_t"+str(tCount), data=self.nodeMaterialTypes) elementMaterialTypesValues.text = ar.hdfFilename+":/"+"elementMaterialTypes"+"_p"+str(ar.comm.rank())+"_t"+str(tCount) ar.create_dataset_async("elementMaterialTypes"+"_p"+str(ar.comm.rank())+"_t"+str(tCount), data=self.elementMaterialTypes[:self.nElements_owned]) if EB: ebnodeMaterialTypesValues.text = ar.hdfFilename+":/"+"nodeMaterialTypes"+"_p"+str(ar.comm.rank())+"_t"+str(tCount) elementBoundaryMaterialTypesValues.text = ar.hdfFilename+":/"+"elementBoundaryMaterialTypes"+"_p"+str(ar.comm.rank())+"_t"+str(tCount) ar.create_dataset_async("elementBoundaryMaterialTypes"+"_p"+str(ar.comm.rank())+"_t"+str(tCount), data=self.elementBoundaryMaterialTypes) else: numpy.savetxt(ar.textDataDir+"/"+"nodeMaterialTypes"+str(tCount)+".txt",self.nodeMaterialTypes) SubElement(nodeMaterialTypesValues,"xi:include",{"parse":"text","href":"./"+ar.textDataDir+"/"+"nodeMaterialTypes"+str(tCount)+".txt"}) numpy.savetxt(ar.textDataDir+"/"+"elementMaterialTypes"+str(tCount)+".txt",self.elementMaterialTypes[:self.nElements_owned]) SubElement(elementMaterialTypesValues,"xi:include",{"parse":"text","href":"./"+ar.textDataDir+"/"+"elementMaterialTypes"+str(tCount)+".txt"}) #done with material types def buildFromC(self,cmesh): from . import cmeshTools # logEvent(memory("buildFromC","MeshTools"),level=4) self.cmesh = cmesh (self.nElements_global, self.nNodes_global, self.nNodes_element, self.nNodes_elementBoundary, self.nElementBoundaries_element, self.nElementBoundaries_global, self.nInteriorElementBoundaries_global, self.nExteriorElementBoundaries_global, self.max_nElements_node, self.nEdges_global, self.max_nNodeNeighbors_node, self.elementNodesArray, self.nodeElementsArray, self.nodeElementOffsets, self.elementNeighborsArray, self.elementBoundariesArray, self.elementBoundaryNodesArray, self.elementBoundaryElementsArray, self.elementBoundaryLocalElementBoundariesArray, self.interiorElementBoundariesArray, self.exteriorElementBoundariesArray, self.edgeNodesArray, self.nodeStarArray, self.nodeStarOffsets, self.elementMaterialTypes, self.elementBoundaryMaterialTypes, self.nodeMaterialTypes, self.nodeArray, self.nx,self.ny, self.nz, #NURBS self.px,self.py, self.pz, #NURBS self.elementIJK, #NURBS self.weights, #NURBS self.U_KNOT, #NURBS self.V_KNOT, #NURBS self.W_KNOT, #NURBS self.elementDiametersArray, self.elementInnerDiametersArray, self.elementBoundaryDiametersArray, self.elementBarycentersArray, self.elementBoundaryBarycentersArray, self.nodeDiametersArray, self.nodeSupportArray, self.h, self.hMin, self.sigmaMax, self.volume) = cmeshTools.buildPythonMeshInterface(self.cmesh) # print("from C") # print (self.nElements_global, # self.nNodes_global, # self.nNodes_element, # self.nNodes_elementBoundary, # self.nElementBoundaries_element, # self.nElementBoundaries_global, # self.nInteriorElementBoundaries_global, # self.nExteriorElementBoundaries_global, # self.max_nElements_node, # self.nEdges_global, # self.max_nNodeNeighbors_node, # self.elementNodesArray, # self.nodeElementsArray, # self.nodeElementOffsets, # self.elementNeighborsArray, # self.elementBoundariesArray, # self.elementBoundaryNodesArray, # self.elementBoundaryElementsArray, # self.elementBoundaryLocalElementBoundariesArray, # self.interiorElementBoundariesArray, # self.exteriorElementBoundariesArray, # self.edgeNodesArray, # self.nodeStarArray, # self.nodeStarOffsets, # self.elementMaterialTypes, # self.elementBoundaryMaterialTypes, # self.nodeMaterialTypes, # self.nodeArray, # self.elementDiametersArray, # self.elementInnerDiametersArray, # self.elementBoundaryDiametersArray, # self.elementBarycentersArray, # self.elementBoundaryBarycentersArray, # self.nodeDiametersArray, # self.nodeSupportArray, # self.h, # self.hMin, # self.volume) self.hasGeometricInfo = True #default to single processor self.nNodes_owned = self.nNodes_global self.nElements_owned = self.nElements_global self.nElementBoundaries_owned = self.nElementBoundaries_global self.nEdges_owned = self.nEdges_global logEvent(memory("buildFromC","MeshTools"),level=4) def buildFromCNoArrays(self,cmesh): from . import cmeshTools # logEvent(memory("buildFromC","MeshTools"),level=4) self.cmesh = cmesh (self.nElements_global, self.nNodes_global, self.nNodes_element, self.nNodes_elementBoundary, self.nElementBoundaries_element, self.nElementBoundaries_global, self.nInteriorElementBoundaries_global, self.nExteriorElementBoundaries_global, self.max_nElements_node, self.nEdges_global, self.max_nNodeNeighbors_node, self.h, self.hMin, self.sigmaMax, self.volume) = cmeshTools.buildPythonMeshInterfaceNoArrays(self.cmesh) self.hasGeometricInfo = False logEvent(memory("buildFromCNoArrays","MeshTools"),level=4) def buildNodeStarArrays(self): import itertools if self.nodeStarArray is None: self.nodeStarList=[] for n in range(self.nNodes_global): self.nodeStarList.append(set()) for i_ele in range(self.nElements_global): #: is this OK for parallel mesh? for n1,n2 in itertools.permutations(self.elementNodesArray[i_ele],2):#: works for combination of triangle and quadrilateral #: if n1<self.nNodes_global: #: Saving only locally owned node is not enough; should include ghost node self.nodeStarList[n1].add(n2) #: does not contain itself; use set() instead of list since each pair is visited 1 or 2 times for 2D mesh self.nodeStarOffsets = np.zeros((self.nNodes_global+1,),'i') lenNodeStarArray=0 for nN in range(1,self.nNodes_global+1): self.nodeStarOffsets[nN] = self.nodeStarOffsets[nN-1] + len(self.nodeStarList[nN-1]) self.nodeStarArray =np.fromiter(itertools.chain.from_iterable(self.nodeStarList),'i') del self.nodeStarList def buildArraysFromLists(self): #nodes self.nNodes_global = len(self.nodeList) self.nodeArray = np.zeros((self.nNodes_global,3),'d') nodeElementsList=[] for nN,n in enumerate(self.nodeList): self.nodeArray[nN][:] = n.p nodeElementsList.append([]) #elements self.nNodes_element = len(self.elementList[0].nodes) self.nElements_global = len(self.elementList) self.elementNodesArray = np.zeros((self.nElements_global, self.nNodes_element), 'i') for en,e in enumerate(self.elementList): for nN_element,n in enumerate(e.nodes): self.elementNodesArray[en,nN_element]=n.N nodeElementsList[n.N].append(en) #elements per node nodeElementsDict={} for eN in range(self.nElements_global): for nN_element in range(self.nNodes_element): nN = self.elementNodesArray[eN,nN_element] if nN in nodeElementsDict: nodeElementsDict[nN].append(eN) else: nodeElementsDict[nN] = [eN] self.max_nElements_node = max(len(nodeElementsDict[nN]) for nN in range(self.nNodes_global)) self.nElements_node = np.zeros((self.nNodes_global),'i') #mwf make a 1d array now #self.nodeElementsArrayOld = np.zeros((self.nNodes_global,self.max_nElements_node),'i') self.nodeElementOffsets = np.zeros((self.nNodes_global+1,),'i') for nN in range(len(nodeElementsDict)): elementList = nodeElementsDict[nN] self.nElements_node[nN] = len(elementList) self.nodeElementOffsets[nN+1] = self.nodeElementOffsets[nN]+self.nElements_node[nN] #for eN_element,eN in enumerate(elementList): # self.nodeElementsArrayOld[nN,eN_element]=eN self.nodeElementsArray = np.zeros((self.nodeElementOffsets[self.nNodes_global],),'i') for nN,elementList in nodeElementsDict.items(): for eN_element,eN in enumerate(elementList): self.nodeElementsArray[self.nodeElementOffsets[nN]+eN_element]=eN # # #elementBoundariesArray self.nElementBoundaries_element = len( self.elementList[0].elementBoundaries) self.elementBoundariesArray = np.zeros( (self.nElements_global,self.nElementBoundaries_element), 'i') #collect set of element boundaries while we're looping elementBoundaryNumbers=set() for eN,e in enumerate(self.elementList): for ebN_element,eb in enumerate(e.elementBoundaries): self.elementBoundariesArray[eN,ebN_element]=eb.N elementBoundaryNumbers.add(eb.N) self.nElementBoundaries_global=len(elementBoundaryNumbers) #elementBoundaryElementsArray self.elementBoundaryElementsArray=np.ones( (self.nElementBoundaries_global,2),'i') self.elementBoundaryElementsArray*=-1 self.elementBoundaryLocalElementBoundariesArray=np.zeros( (self.nElementBoundaries_global,2),'i') elementBoundaryElementsCardArray =np.zeros( (self.nElementBoundaries_global),'i') for eN in range(self.nElements_global): for ebN_element in range(self.nElementBoundaries_element): ebN = self.elementBoundariesArray[eN,ebN_element] elementBoundaryElementsCardArray[ebN]+=1 eN_boundaryElement=elementBoundaryElementsCardArray[ebN]-1 self.elementBoundaryElementsArray[ebN,eN_boundaryElement]=eN self.elementBoundaryLocalElementBoundariesArray[ebN,eN_boundaryElement]=ebN_element if elementBoundaryElementsCardArray[ebN] > 2: logEvent("WARNING, element neighbors of boundary element > 2") elementBoundaryElementsCardArray[ebN]=2 #interior and exterior self.nExteriorElementBoundaries_global=2*self.nElementBoundaries_global\ - np.sum( elementBoundaryElementsCardArray) self.nInteriorElementBoundaries_global= self.nElementBoundaries_global-\ self.nExteriorElementBoundaries_global self.exteriorElementBoundariesArray=np.zeros( (self.nExteriorElementBoundaries_global,),'i') self.interiorElementBoundariesArray=np.zeros( (self.nInteriorElementBoundaries_global,),'i') interior=0 exterior=0 for ebN in range(self.nElementBoundaries_global): if elementBoundaryElementsCardArray[ebN]==1: self.exteriorElementBoundariesArray[exterior]=ebN exterior+=1 else: self.interiorElementBoundariesArray[interior]=ebN interior+=1 del elementBoundaryElementsCardArray self.nNodes_elementBoundary = len(self.elementBoundaryList[0].nodes) self.elementBoundaryNodesArray = np.zeros((self.nElementBoundaries_global, self.nNodes_elementBoundary), 'i') for ebN,eb in enumerate(self.elementBoundaryList): for nN_element,n in enumerate(eb.nodes): self.elementBoundaryNodesArray[ebN,nN_element]=n.N #element neighbors self.elementNeighborsArray = np.zeros((self.nElements_global,self.nElementBoundaries_element),'i') for eN in range(self.nElements_global): for ebN_element in range(self.nElementBoundaries_element): ebN = self.elementBoundariesArray[eN,ebN_element] eN_left = self.elementBoundaryElementsArray[ebN,0] eN_right = self.elementBoundaryElementsArray[ebN,1] if eN == eN_left: self.elementNeighborsArray[eN,ebN_element] = eN_right elif eN == eN_right: self.elementNeighborsArray[eN,ebN_element] = eN_left else: self.elementNeighborsArray[eN,ebN_element] = -1 #edges self.edgeNodesArray = np.zeros( (len(self.edgeList),2),'i') for en,e in enumerate(self.edgeList): self.edgeNodesArray[en,0]=e.nodes[0].N self.edgeNodesArray[en,1]=e.nodes[1].N #geometric info self.computeGeometricInfo() self.elementDiametersArray = np.zeros((self.nElements_global,),'d') self.elementInnerDiametersArray = np.zeros((self.nElements_global,),'d') for en in range(self.nElements_global): self.elementDiametersArray[en] = self.elementList[en].diameter self.elementInnerDiametersArray[en]=self.elementList[en].innerDiameter self.elementBoundaryDiametersArray = np.zeros((self.nElementBoundaries_global,),'d') for eN,e in enumerate(self.elementList): for ebN_element,eb in enumerate(e.elementBoundaries): self.elementBoundaryDiametersArray[self.elementBoundariesArray[eN,ebN_element]] = eb.diameter self.elementMaterialTypes = np.zeros((self.nElements_global,),'i') self.elementBoundaryMaterialTypes = np.zeros((self.nElementBoundaries_global,),'i') self.nodeMaterialTypes = np.zeros((self.nNodes_global,),'i') # self.elementBarycentersArray = np.zeros((self.nElements_global,3),'d') self.elementBoundaryBarycentersArray = np.zeros((self.nElementBoundaries_global,3),'d') for eN in range(self.nElements_global): self.elementBarycentersArray[eN,:] = 0.0 for ebN in range(self.nNodes_element): self.elementBarycentersArray[eN,:] += self.nodeArray[self.elementNodesArray[eN,ebN],:] self.elementBarycentersArray[eN,:] /= float(self.nNodes_element) for ebN in range(self.nElementBoundaries_global): self.elementBoundaryBarycentersArray[ebN,:] = 0.0 for nN in range(self.nNodes_elementBoundary): self.elementBoundaryBarycentersArray[ebN,:] += self.nodeArray[self.elementBoundaryNodesArray[ebN,nN],:] self.elementBoundaryBarycentersArray[ebN,:] /= float(self.nNodes_elementBoundary) # #now get rid of lists del self.nodeList del self.elementList del self.elementBoundaryList del self.edgeList #self.partitionMesh() def computeGeometricInfo(self): self.elementList[0].computeGeometricInfo() self.h=self.elementList[0].diameter self.hMin=self.h for e in self.elementList[1:]: e.computeGeometricInfo() self.h = max(self.h,e.diameter) self.hMin=min(self.hMin,e.diameter) for eb in e.elementBoundaries: e.computeGeometricInfo() self.hasGeometricInfo=True def buildMatlabMeshDataStructures(self,meshFileBase='meshMatlab',writeToFile=True): """ build array data structures for matlab finite element mesh representation and write to a file to view and play with in matlatb. The current matlab support is mostly for 2d, but this will return basic arrays for 1d and 3d too in matlab can then print mesh with pdemesh(p,e,t) if one has pdetoolbox where p is the vertex or point matrix e is the edge matrix, and t is the element matrix e will be the elementBoundary matrix in 1d and 3d, but perhaps should remain the edge array? points matrix is [nd x num vertices] format : row 1 = x coord, row 2 = y coord for nodes in mesh row 3 = z coord for nodes in mesh ... edge matrix is [2*nd+3 x num faces] format: row 1 = start vertex number ... row nd = end vertex number row nd+1 = start value in edge parameterization, should be 0 row nd+2 = next value in edge parameterization, should be 1 or 2 row nd+nd= end value in edge parameterization, should be 2 or 1 row 2*nd+1 = global face id, base 1 row 2*nd+2 = subdomain on left? always 1 for now row 2*nd+3 = subdomain on right? always 0 for now element matrix is [nd+2 x num elements] row 1 = vertex 1 global number row 2 = vertex 2 global number ... row nd+1 = vertex 3 global number row 4 = triangle subdomain number where 1,2,3 is a local counter clockwise numbering of vertices in triangle """ matlabBase = 1 nd = self.nNodes_element-1 p = np.zeros((nd,self.nNodes_global),'d') e = np.zeros((2*nd+3,self.nElementBoundaries_global),'d') t = np.zeros((nd+2,self.nElements_global),'d') #load p,e,t and write file if writeToFile: mfile = open(meshFileBase+'.m','w') else: mfile = open('/dev/null','w') # if writeToFile: mfile.write('p = [ ... \n') for nN in range(self.nNodes_global): for I in range(nd): p[I,nN]=self.nodeArray[nN,I] if writeToFile: mfile.write('%g ' % p[I,nN]) mfile.write('\n') if writeToFile: mfile.write(']; \n') mfile.write("p = p\';\n") #need transpose for matlab if writeToFile: mfile.write('e = [ ... \n') for ebN in range(self.nElementBoundaries_global): eN_left = self.elementBoundaryElementsArray[ebN,0] eN_right= self.elementBoundaryElementsArray[ebN,1]#-1 --> exterior for nN in range(self.nNodes_elementBoundary): e[nN,ebN]=self.elementBoundaryNodesArray[ebN,nN] + matlabBase #global node number of start node base 1 #assume for now existing parameterization ok for nN in range(self.nNodes_elementBoundary): e[self.nNodes_elementBoundary+nN,ebN]=nN #edge param. is 0 to 1 e[2*self.nNodes_elementBoundary+1,ebN] = ebN+matlabBase e[2*self.nNodes_elementBoundary+1,ebN] = self.elementMaterialTypes[eN_left] #subdomain to left if eN_right >= 0: e[2*self.nNodes_elementBoundary+2,ebN]= self.elementMaterialTypes[eN_right] #subdomain to right else: e[2*self.nNodes_elementBoundary+2,ebN]= -1 if writeToFile: for i in range(e.shape[0]): mfile.write(' %g ' % e[i,ebN]) mfile.write(' \n ') if writeToFile: mfile.write(']; \n') mfile.write("e = e\';\n") #need transpose for matlab #write triangles last if writeToFile: mfile.write('t = [ ... \n') for eN in range(self.nElements_global): for nN in range(self.nNodes_element): t[nN,eN]=self.elementNodesArray[eN,nN]+matlabBase #global node number for vertex nN t[self.nNodes_element,eN]=self.elementMaterialTypes[eN] #subdomain id if writeToFile: for i in range(t.shape[0]): mfile.write('%g ' % t[i,eN]) mfile.write('\n') if writeToFile: mfile.write(']; \n'); mfile.write("t = t\';\n") #need transpose for matlab mfile.close() return p,e,t def writeEdgesMatlab(self,filename): """store coordinates in files formatted for Matlab""" xfile=filename+'_x.grf' yfile=filename+'_y.grf' zfile=filename+'_z.grf' print('Storing edge information in %s, %s, and %s' % \ (xfile,yfile,zfile)) xOut = open(xfile,'w') yOut = open(yfile,'w') zOut = open(zfile,'w') for edge in self.edgeList: xOut.write('%14.8e ' % edge.nodes[0].p[X] ) yOut.write('%14.8e ' % edge.nodes[0].p[Y] ) zOut.write('%14.8e ' % edge.nodes[0].p[Z] ) xOut.write('\n') yOut.write('\n') zOut.write('\n') for edge in self.edgeList: xOut.write('%14.8e ' % edge.nodes[1].p[X]) yOut.write('%14.8e ' % edge.nodes[1].p[Y]) zOut.write('%14.8e ' % edge.nodes[1].p[Z]) xOut.write('\n') yOut.write('\n') zOut.write('\n') xOut.close() yOut.close() zOut.close() def viewTetrahedraMatlab(self,filename): """plot the edges""" cmdfile = filename +'.m' xfile=filename+'_x.grf' yfile=filename+'_y.grf' zfile=filename+'_z.grf' xedges=filename+'_x' yedges=filename+'_y' zedges=filename+'_z' #the following is for debugging: plot each tet seperately nT = old_div(len(self.edgeList),6) plotcommand = "-r \"load " + xfile + \ ", load " + yfile + \ ", load " + zfile plots='' for i in range(nT): plots = plots + \ ", figure(" +str(i+1)+")" \ ", axis([0 1 0 1 0 1]), plot3("+xedges+\ "(:,"+str(i)+"*6+1:("+str(i)+"+1)*6),"+yedges+\ "(:,"+str(i)+"*6+1:("+str(i)+"+1)*6),"+zedges+\ "(:,"+str(i)+"*6+1:("+str(i)+"+1)*6),\'b-\') " plotcommand = plotcommand + plots +'\"' cmdOut = open(cmdfile,'w') cmdOut.write(plotcommand) cmdOut.close() print('Calling matlab to view mesh') os.execlp('matlab', 'matlab', '-nodesktop', '-nosplash', '-r', filename) def viewMeshMatlab(self,filename): """plot the edges""" cmdfile = filename +'.m' xfile=filename+'_x.grf' yfile=filename+'_y.grf' zfile=filename+'_z.grf' xedges=filename+'_x' yedges=filename+'_y' zedges=filename+'_z' plotcommand = "load " + xfile + \ ", load " + yfile + \ ", load " + zfile + \ ", figure " + \ ", axis([0 1 0 1 0 1]), plot3("+xedges+\ ","+yedges+\ ","+zedges+\ ",\'b-\')" print(plotcommand) cmdOut = open(cmdfile,'w') cmdOut.write(plotcommand) cmdOut.close() print('Calling matlab to view mesh') os.execlp('matlab', 'matlab', '-nodesktop', '-nosplash', '-r', filename) # from os import popen # matlab = popen('matlab','w') # matlab.write(plotcommand+'\n') # matlab.flush() # raw_input('Please press return to continue...\n') def writeEdgesGnuplot(self,filename): """store coordinates in files formatted for Matlab""" datfile=filename+'.dat' print('Storing edge information in %s' % datfile) edgesOut = open(datfile,'w') for edge in self.edgeList: dataline = '%14.8e %14.8e %14.8e \n' % \ (edge.nodes[0].p[X], edge.nodes[0].p[Y], edge.nodes[0].p[Z]) edgesOut.write(dataline) dataline = '%14.8e %14.8e %14.8e \n \n \n' % \ (edge.nodes[1].p[X], edge.nodes[1].p[Y], edge.nodes[1].p[Z]) edgesOut.write(dataline) edgesOut.close() def writeEdgesGnuplot2(self,filename): """store coordinates in files formatted for Matlab""" datfile=filename+'.dat' print('Storing edge information in %s' % datfile) edgesOut = open(datfile,'w') for n0,n1 in self.edgeNodesArray: dataline = '%14.8e %14.8e %14.8e \n' % \ (self.nodeArray[n0][0], self.nodeArray[n0][1], self.nodeArray[n0][2]) edgesOut.write(dataline) dataline = '%14.8e %14.8e %14.8e \n \n \n' % \ (self.nodeArray[n1][0], self.nodeArray[n1][1], self.nodeArray[n1][2]) edgesOut.write(dataline) edgesOut.close() def viewMeshGnuplot(self,filename): cmdfile = filename +'.cmd' datfile = filename +'.dat' cmd = "set pointsize 2.5 \n set term x11 \n splot \'"+datfile+"\' with linespoints pointsize 2.5 pt 2\n"+\ "set xlabel \'x\' \n set ylabel \'y\' \n set zlabel \'z\' \n " cmdOut = open(cmdfile,'w') cmdOut.write(cmd) cmdOut.close() from os import execlp print('Calling gnuplot to view mesh') execlp('gnuplot','gnuplot',cmdfile,'-') def viewMeshGnuplotPipe(self,filename): cmdfile = filename +'.cmd' datfile = filename +'.dat' cmd = "set pointsize 1.5 \n set term x11 \n splot \'"+datfile+"\' with linespoints pointsize 2.5 pt 2 \n"+\ "set xlabel \'x\' \n set ylabel \'y\' \n set zlabel \'z\' \n " cmdOut = open(cmdfile,'w') cmdOut.write(cmd) cmdOut.close() from os import execlp print('Calling gnuplot to view mesh') from os import popen gnuplot = popen('gnuplot','w') gnuplot.write(cmd+'\n') gnuplot.flush() input('Please press return to continue... \n') def viewMeshGnuplotPipePar(self,filenames): from os import popen gnuplot = popen('gnuplot','w') for i,filename in enumerate(filenames): cmdfile = filename +'.cmd' datfile = filename +'.dat' cmd = ("set term x11 %i \n splot \'" % (i,))+datfile+"\' with linespoints \n"+\ "set xlabel \'x\' \n set ylabel \'y\' \n set zlabel \'z\'" cmdOut = open(cmdfile,'w') cmdOut.write(cmd) cmdOut.close() from os import execlp print('Calling gnuplot to view mesh') gnuplot.write(cmd+'\n') gnuplot.flush() input('Please press return to continue... \n') def convertFromPUMI(self, domain, MeshAdapt, faceList,regList, parallel=False, dim=3): from . import cmeshTools from . import MeshAdaptPUMI from . import cpartitioning from . import Comm comm = Comm.get() self.cmesh = cmeshTools.CMesh() if parallel: self.subdomainMesh=self.__class__() self.subdomainMesh.globalMesh = self self.subdomainMesh.cmesh = cmeshTools.CMesh() MeshAdapt.constructFromParallelPUMIMesh(self.cmesh, self.subdomainMesh.cmesh) if(domain.AdaptManager.reconstructedFlag==1): logEvent("Material arrays updating based on reconstructed model.\n") MeshAdapt.updateMaterialArrays(self.subdomainMesh.cmesh); elif(domain.AdaptManager.reconstructedFlag==2): logEvent("Material arrays updating based on better reconstructed model.\n") MeshAdapt.updateMaterialArrays2(self.subdomainMesh.cmesh); else: logEvent("Material arrays updating based on geometric model.\n") for i in range(len(faceList)): for j in range(len(faceList[i])): #MeshAdapt.updateMaterialArrays(self.subdomainMesh.cmesh,(dim-1), i+1, # faceList[i][j]) MeshAdapt.updateMaterialArrays(self.subdomainMesh.cmesh,(dim-1), domain.boundaryLabels[i], faceList[i][j]) for i in range(len(regList)): for j in range(len(regList[i])): MeshAdapt.updateMaterialArrays(self.subdomainMesh.cmesh,dim, i+1, regList[i][j]) if dim == 3: cmeshTools.allocateGeometricInfo_tetrahedron(self.subdomainMesh.cmesh) cmeshTools.computeGeometricInfo_tetrahedron(self.subdomainMesh.cmesh) if dim == 2: cmeshTools.allocateGeometricInfo_triangle(self.subdomainMesh.cmesh) cmeshTools.computeGeometricInfo_triangle(self.subdomainMesh.cmesh) self.buildFromCNoArrays(self.cmesh) (self.elementOffsets_subdomain_owned, self.elementNumbering_subdomain2global, self.nodeOffsets_subdomain_owned, self.nodeNumbering_subdomain2global, self.elementBoundaryOffsets_subdomain_owned, self.elementBoundaryNumbering_subdomain2global, self.edgeOffsets_subdomain_owned, self.edgeNumbering_subdomain2global) = ( cpartitioning.convertPUMIPartitionToPython(comm.comm.tompi4py(), self.cmesh, self.subdomainMesh.cmesh)) self.subdomainMesh.buildFromC(self.subdomainMesh.cmesh) self.subdomainMesh.nElements_owned = ( self.elementOffsets_subdomain_owned[comm.rank()+1] - self.elementOffsets_subdomain_owned[comm.rank()]) self.subdomainMesh.nNodes_owned = ( self.nodeOffsets_subdomain_owned[comm.rank()+1] - self.nodeOffsets_subdomain_owned[comm.rank()]) self.subdomainMesh.nElementBoundaries_owned = ( self.elementBoundaryOffsets_subdomain_owned[comm.rank()+1] - self.elementBoundaryOffsets_subdomain_owned[comm.rank()]) self.subdomainMesh.nEdges_owned = ( self.edgeOffsets_subdomain_owned[comm.rank()+1] - self.edgeOffsets_subdomain_owned[comm.rank()]) comm.barrier() par_nodeDiametersArray = ( ParVec_petsc4py(self.subdomainMesh.nodeDiametersArray, bs=1, n=self.subdomainMesh.nNodes_owned, N=self.nNodes_global, nghosts = self.subdomainMesh.nNodes_global - self.subdomainMesh.nNodes_owned, subdomain2global = self.nodeNumbering_subdomain2global)) par_nodeDiametersArray.scatter_forward_insert() comm.barrier() else: MeshAdapt.constructFromSerialPUMIMesh(self.cmesh) if(domain.AdaptManager.reconstructedFlag==1): logEvent("Material arrays updating based on reconstructed model.\n") MeshAdapt.updateMaterialArrays(self.cmesh); elif(domain.AdaptManager.reconstructedFlag==2): logEvent("Material arrays updating based on better reconstructed model.\n") MeshAdapt.updateMaterialArrays2(self.cmesh); else: for i in range(len(faceList)): for j in range(len(faceList[i])): #MeshAdapt.updateMaterialArrays(self.cmesh,(dim-1), i+1, faceList[i][j]) MeshAdapt.updateMaterialArrays(self.cmesh,(dim-1), domain.boundaryLabels[i], faceList[i][j]) for i in range(len(regList)): for j in range(len(regList[i])): MeshAdapt.updateMaterialArrays(self.cmesh,dim, i+1, regList[i][j]) if dim == 3: cmeshTools.allocateGeometricInfo_tetrahedron(self.cmesh) cmeshTools.computeGeometricInfo_tetrahedron(self.cmesh) if dim == 2: cmeshTools.allocateGeometricInfo_triangle(self.cmesh) cmeshTools.computeGeometricInfo_triangle(self.cmesh) self.buildFromC(self.cmesh) logEvent("meshInfo says : \n"+self.meshInfo()) class MultilevelMesh(Mesh): """A hierchical multilevel mesh""" def __init__(self,levels=1): self.meshList=[] self.elementParents=None def buildFromC(self,cmultilevelMesh): from . import cmeshTools self.cmultilevelMesh = cmultilevelMesh (self.nLevels, self.cmeshList, self.elementParentsArrayList, self.elementChildrenArrayList, self.elementChildrenOffsetsList) = cmeshTools.buildPythonMultilevelMeshInterface(cmultilevelMesh) def refine(self): pass def locallyRefine(self,elementTagArray): pass def buildArrayLists(self): self.nLevels = len(self.meshList) self.calculateElementParents() self.elementParentsArrayList=[[]] self.elementChildrenArrayList=[] self.elementChildrenOffsetsList=[] for l in range(1,self.nLevels): self.elementParentsArrayList.append(self.elementParents[l]) len_children=0 for children in list(self.elementChildren[l-1].values()): len_children += len(children) self.elementChildrenArrayList.append(np.zeros((len_children,),'i')) self.elementChildrenOffsetsList.append(np.zeros((self.meshList[l-1].nElements_global+1,),'i')) index=0 for eN_p,children in enumerate(self.elementChildren[l-1].values()): self.elementChildrenOffsetsList[l-1][eN_p] = index for ec in children: self.elementChildrenArrayList[l-1][index] = ec.N index += 1 self.elementChildrenOffsetsList[l-1][-1] = index def calculateElementParents(self,recalculate=False): """ get array elementParents[l,e] = e_c, where element e_c is the parent of element e elementParents[0,:] = -1 """ if (self.elementParents is None or recalculate): self.elementParents = {} nLevels = len(self.meshList) for l in range(nLevels): nE = self.meshList[l].nElements_global self.elementParents[l] = np.ones((nE,),'i') self.elementParents[l][:]=-1 for l in range(0,nLevels-1): nEc = self.meshList[l].nElements_global for ec in range(nEc): for ef in self.elementChildren[l][ec]: #print """l=%s ec= %s ef.N= %s """ % (l,ec,ef.N) self.elementParents[l+1][ef.N] = ec #ef #ec #l class PointMesh(Mesh): #Elements=Nodes """ 0D mesh """ def __init__(self,points): self.nodeArray=points self.nNodes_global = points.shape[0] self.elementNodesArray=np.arange(self.nNodes_global,dtype='i') self.nElements_global = self.nNodes_global MX=0 MY=1 MZ=2 I=0 J=1 K=1 class EdgeGrid(Mesh): """A 1D regular grid on an interval""" def __init__(self,nx=2,Lx=1.0): Mesh.__init__(self) #dimensions and ranges self.nx=nx self.ex=nx-1 self.nRange_x = list(range(nx)) self.eRange_x = list(range(self.ex)) #lengths self.Lx=Lx self.dx = old_div(Lx,self.ex) #node coordinates self.nodeGridArray = np.zeros((self.nx,3),'d') for i in self.nRange_x: self.nodeGridArray[i,MX] = i*self.dx #edge node numbers self.edgeNodesArray=np.zeros((self.ex,2),'i') #try to do this like we'll do 2d and 3d #edge nodes en=2 edgeNodeNumbers = np.zeros((en,),'i') #reference edge eI=1 refEdge_nodeIndeces = [-eI,eI] refEdge_NodeDict={} for rn,rnii in enumerate(refEdge_nodeIndeces): refEdge_NodeDict[rnii] = rn for i in self.eRange_x: #edge number eN=i #fine grid index of edge ii = 2*i + 1 #fine grid index of edge nodes for rn,rnii in enumerate(refEdge_nodeIndeces): nii = rnii + ii edgeNodeNumbers[rn]=old_div(nii,2) self.edgeNodesArray[eN,:]=edgeNodeNumbers #Mesh interface self.nNodes_global=self.nx self.nEdges_global=self.ex self.nElements_global=self.ex self.nElementBoundaries_global=self.nx self.nodeArray=self.nodeGridArray self.elementNodesArray=self.edgeNodesArray self.elementBoundariesArray=self.nodeArray self.boundaryMesh=PointMesh(np.array([self.nodeArray[0], self.nodeArray[-1]],dtype='d')) class QuadrilateralGrid(Mesh): """A 2D regular grid of quadrilateral cells""" def __init__(self,nx=2,ny=2,Lx=1.0,Ly=1.0): Mesh.__init__(self) #nodes self.nx=nx self.ny=ny self.nxy=nx*ny #edges self.eXx=nx-1 self.eXy=ny self.eXxy=self.eXx*self.eXy self.eYx=nx self.eYy=ny-1 self.eYxy = self.eYx*self.eYy self.eXYx = self.eXx + self.eYx self.eXYy = self.eXy + self.eYy self.eXYxy = self.eXxy + self.eYxy #quads self.qx = nx-1 self.qy = ny-1 self.qxy = self.qx*self.qy #ranges self.nRange_x = list(range(self.nx)) self.nRange_y = list(range(self.ny)) self.qRange_x = list(range(self.qx)) self.qRange_y = list(range(self.qx)) #lengths self.Lx=Lx self.Ly=Ly self.dx = old_div(Lx,self.eXx) self.dy = old_div(Ly,self.eYy) #node coordinates self.nodeGridArray=np.zeros((nx,ny,3),'d') for i in self.nRange_x: for j in self.nRange_y: self.nodeGridArray[i,j,MX]=i*self.dx self.nodeGridArray[i,j,MY]=j*self.dy #edge node numbers en=2 edgeNodeNumbers = np.zeros((en,),'i') self.edgeNodesArray=np.zeros((self.eXYxy,en),'i') #quad node numbers qn=4 quadNodeNumbers = np.zeros((qn,),'i') self.quadrilateralNodesArray=np.zeros((self.qxy,qn),'i') #quad edge numbers qe=4 quadEdgeNumbers = np.zeros((qe,),'i') self.quadrilateralEdgesArray=np.zeros((self.qxy,qe),'i') #reference quad refQuad_NodeIndeces = [(-1,-1), (-1, 1), ( 1,-1), ( 1, 1)] refQuad_NodeIndeces.sort() #a map between reference node indeces and numbers refQuad_NodeDict={} for rn,rniijj in enumerate(refQuad_NodeIndeces): refQuad_NodeDict[rniijj]=rn refQuad_EdgeIndeces = [(-1,0), ( 0,-1), ( 0, 1), ( 1, 0)] refQuad_EdgeIndeces.sort() refQuad_EdgeNodes=[] #use the map between indeces and numbers to #map edge indeces to the edge's node numbers for reiijj in refQuad_EdgeIndeces: if reiijj[I] == 0: refQuad_EdgeNodes.append([ refQuad_NodeDict[(-1,reiijj[J])], refQuad_NodeDict[( 1,reiijj[J])]]) else: refQuad_EdgeNodes.append([ refQuad_NodeDict[(reiijj[I],-1)], refQuad_NodeDict[(reiijj[I], 1)]]) for i in self.qRange_x: for j in self.qRange_y: #quad number qN = i*self.qy + j #fine grid indeces of quad ii = 2*i + 1 jj = 2*j + 1 #nodes for rn,rniijj in enumerate(refQuad_NodeIndeces): nii = rniijj[I] + ii njj = rniijj[J] + jj nN = (old_div(nii,2))*self.ny + old_div(njj,2) quadNodeNumbers[rn]=nN self.quadrilateralNodesArray[qN][:]=quadNodeNumbers #edges for re,reiijj in enumerate(refQuad_EdgeIndeces): eii = reiijj[I] + ii ejj = reiijj[J] + jj eN = (old_div(eii,2))*self.eXYy + (eii%2)*self.eYy + old_div(ejj,2) quadEdgeNumbers[re]=eN #nodes for n,rn in enumerate(refQuad_EdgeNodes[re]): self.edgeNodesArray[eN][n] = quadNodeNumbers[rn] self.quadrilateralEdgesArray[qN][:]=quadEdgeNumbers #Mesh interface (dimensions) self.nNodes_global=self.nxy self.nEdges_global=self.eXYxy self.nElements_global=self.qxy self.nElementBoundaries_global=self.eXYxy self.nodeArray=np.reshape(self.nodeGridArray,(self.nxy,3)) self.elementNodesArray=self.quadrilateralNodesArray self.elementBoundariesArray=self.edgeNodesArray #todo extract boundary mesh class RectangularGrid(Mesh): """A regular partition into rectangles. Nodes, edges, and faces can be indexed by (i,j,k) as follows. The edges and faces are divided according to orientation (i.e. x-edge...). An (i,j,k) index is associated with the type of edge or face having node (i,j,k) as the first node in a lexicographically sorted list of nodes corresponding to the edge or face.""" def __init__(self,nx=1,ny=1,nz=1,Lx=1.0,Ly=1.0,Lz=1.0): Mesh.__init__(self) self.Lx = Lx self.Ly = Ly self.Lz = Lz #nodes self.nx=nx self.ny=ny self.nz=nz self.nxy = nx*ny; self.nxyz = nx*ny*nz; #edges self.nXex=nx-1 #number of x-edges in the x dimension self.nXey=ny self.nXez=nz self.nYex=nx self.nYey=ny-1 self.nYez=nz self.nZex=nx self.nZey=ny self.nZez=nz-1 #number of edges of all types associated with a row of nodes self.nXYZex = self.nXex + self.nYex + self.nZex #number of edges associated with an xy plane of nodes self.nXexy=self.nXex*self.nXey self.nYexy=self.nYex*self.nYey self.nZexy=self.nZex*self.nZey self.nXYZexy = self.nXexy + self.nYexy + self.nZexy #number of edges of each type in the grid self.nXexyz = self.nXexy*self.nXez self.nYexyz = self.nYexy*self.nYez self.nZexyz = self.nZexy*self.nZez #total number of edges self.nXYZexyz = self.nXexyz + self.nYexyz + self.nZexyz #quadrilaterals self.nXYhx=nx-1 #number of XY quadrilaterals in x-dimension self.nXYhy=ny-1 self.nXYhz=nz self.nXZhx=nx-1 self.nXZhy=ny self.nXZhz=nz-1 self.nYZhx=nx self.nYZhy=ny-1 self.nYZhz=nz-1 #number of quadrilaterals of all types associate with a row of nodes self.nXY_XZ_YZhx =self.nXYhx + self.nXZhx + self.nYZhx #number of quadrilaterals associated with an xy plane of nodes self.nXYhxy=self.nXYhx*self.nXYhy self.nXZhxy=self.nXZhx*self.nXZhy self.nYZhxy=self.nYZhx*self.nYZhy self.nXY_XZ_YZhxy =self.nXYhxy + self.nXZhxy + self.nYZhxy #number of quadrilaterals of each type in the grid self.nXYhxyz = self.nXYhxy*self.nXYhz self.nXZhxyz = self.nXZhxy*self.nXZhz self.nYZhxyz = self.nYZhxy*self.nYZhz #total number of quadrilaterals self.nXY_XZ_YZhxyz =self.nXYhxyz + self.nXZhxyz + self.nYZhxyz #hexahedra self.nHx=nx-1 self.nHy=ny-1 self.nHz=nz-1 self.nHxy = self.nHx*self.nHy self.nHxyz = self.nHxy*self.nHz #encode red and black self.black=0 self.red=1 #dimensions of hexahedra if self.nHx>0: hx = old_div(float(Lx),(nx-1)) else: hx = 1.0 if self.nHy>0: hy = old_div(float(Ly),(ny-1)) else: hy=1.0 if self.nHz>0: hz = old_div(float(Lz),(nz-1)) else: hz=1.0 self.nodeDict={} self.xedgeDict={} self.yedgeDict={} self.zedgeDict={} self.xedgeList=[] self.yedgeList=[] self.zedgeList=[] self.XYQuadrilateralDict={} self.XZQuadrilateralDict={} self.YZQuadrilateralDict={} self.XYQuadrilateralList=[] self.XZQuadrilateralList=[] self.YZQuadrilateralList=[] self.hexahedronDict={} self.hexahedronList=[] self.nodeList=[] for k in range(self.nz): for j in range(self.ny): for i in range(self.nx): n = self.getNodeNumber(i,j,k) x = i*hx y = j*hy z = k*hz self.nodeDict[(i,j,k)]=Node(n,x,y,z) self.nodeList.append(self.nodeDict[(i,j,k)]) for k in range(self.nXez): for j in range(self.nXey): for i in range(self.nXex): en = self.getXEdgeNumber(i,j,k) self.xedgeDict[(i,j,k)] = Edge(en, [self.getNode(i,j,k), self.getNode(i+1,j,k)]) self.xedgeList.append(self.xedgeDict[(i,j,k)]) for k in range(self.nYez): for j in range(self.nYey): for i in range(self.nYex): en = self.getYEdgeNumber(i,j,k) self.yedgeDict[(i,j,k)] = Edge(en, [self.getNode(i,j,k), self.getNode(i,j+1,k)]) self.yedgeList.append(self.yedgeDict[(i,j,k)]) for k in range(self.nZez): for j in range(self.nZey): for i in range(self.nZex): en = self.getZEdgeNumber(i,j,k) self.zedgeDict[(i,j,k)] = Edge(en, [self.getNode(i,j,k), self.getNode(i,j,k+1)]) self.zedgeList.append(self.zedgeDict[(i,j,k)]) for k in range(self.nXYhz): for j in range(self.nXYhy): for i in range(self.nXYhx): qn = self.getXYQuadrilateralNumber(i,j,k) edges = [self.getXEdge(i,j,k), self.getXEdge(i,j+1,k), self.getYEdge(i,j,k), self.getYEdge(i+1,j,k)] self.XYQuadrilateralDict[(i,j,k)] = Quadrilateral(qn,edges) self.XYQuadrilateralList.append( self.XYQuadrilateralDict[(i,j,k)]) for k in range(self.nXZhz): for j in range(self.nXZhy): for i in range(self.nXZhx): qn = self.getXZQuadrilateralNumber(i,j,k) edges = [self.getXEdge(i,j,k), self.getXEdge(i,j,k+1), self.getZEdge(i,j,k), self.getZEdge(i+1,j,k)] self.XZQuadrilateralDict[(i,j,k)] = Quadrilateral(qn,edges) self.XZQuadrilateralList.append( self.XZQuadrilateralDict[(i,j,k)]) for k in range(self.nYZhz): for j in range(self.nYZhy): for i in range(self.nYZhx): qn = self.getYZQuadrilateralNumber(i,j,k) edges = [self.getYEdge(i,j,k), self.getYEdge(i,j,k+1), self.getZEdge(i,j,k), self.getZEdge(i,j+1,k)] self.YZQuadrilateralDict[(i,j,k)] = Quadrilateral(qn,edges) self.YZQuadrilateralList.append( self.YZQuadrilateralDict[(i,j,k)]) for k in range(self.nHz): for j in range(self.nHy): for i in range(self.nHx): Hn = self.getHexahedronNumber(i,j,k) quadrilaterals = [self.getXYQuadrilateral(i,j,k), self.getXYQuadrilateral(i,j,k+1), self.getXZQuadrilateral(i,j,k), self.getXZQuadrilateral(i,j+1,k), self.getYZQuadrilateral(i,j,k), self.getYZQuadrilateral(i+1,j,k)] self.hexahedronDict[(i,j,k)] = Hexahedron(Hn, quadrilaterals) self.hexahedronList.append(self.hexahedronDict[(i,j,k)]) #build lists for mesh base class self.edgeList = self.xedgeList + \ self.yedgeList + \ self.zedgeList #figure out if this is a 1D,2D, or 3D grid if self.nz > 1: self.elementList = self.hexahedronList self.elementDict = self.hexahedronDict elif self.ny > 1: self.elementList = self.XYQuadrilateralList self.elementDict = self.XYQuadrilateralDict else: self.elementList = self.xedgeList self.elementDict = self.xedgeDict #self.buildArraysFromLists() #todo: extract boundary mesh def getNodeNumber(self,i,j,k): return i + j*self.nx + k*self.nxy def getNode(self,i,j,k): return self.nodeDict[(i,j,k)] def getXEdgeNumber(self,ie,je,ke): return ie + je*self.nXex + ke*self.nXexy def getYEdgeNumber(self,ie,je,ke): return ie + je*self.nYex + ke*self.nYexy def getZEdgeNumber(self,ie,je,ke): return ie + je*self.nZex + ke*self.nZexy def getXEdge(self,ie,je,ke): return self.xedgeDict[(ie,je,ke)] def getYEdge(self,ie,je,ke): return self.yedgeDict[(ie,je,ke)] def getZEdge(self,ie,je,ke): return self.zedgeDict[(ie,je,ke)] def getXYQuadrilateralNumber(self,ih,jh,kh): return ih + jh*self.nXYhx + kh*self.nXYhxy def getXZQuadrilateralNumber(self,ih,jh,kh): return ih + jh*self.nXZhx + kh*self.nXZhxy def getYZQuadrilateralNumber(self,ih,jh,kh): return ih + jh*self.nYZhx + kh*self.nYZhxy def getXYQuadrilateral(self,ih,jh,kh): return self.XYQuadrilateralDict[(ih,jh,kh)] def getXZQuadrilateral(self,ih,jh,kh): return self.XZQuadrilateralDict[(ih,jh,kh)] def getYZQuadrilateral(self,ih,jh,kh): return self.YZQuadrilateralDict[(ih,jh,kh)] def getHexahedronNumber(self,iH,jH,kH): return iH + jH*self.nHx + kH*self.nHxy def getHexahedron(self,iH,jH,kH): return self.hexahedronDict[(iH,jH,kH)] def getColor(self,i,j,k): return (i%2 + j%2 + k%2)%2 def refine(self,oldMesh,refineFactorX=2,refineFactorY=2,refineFactorZ=2): NX = oldMesh.nx NY = oldMesh.ny NZ = oldMesh.nz if NX > 1: NX = (NX-1)*refineFactorX + 1 else: refineFactorX=1 if NY > 1: NY = (NY-1)*refineFactorY + 1 else: refineFactorY=1 if NZ > 1: NZ = (NZ-1)*refineFactorZ + 1 else: refineFactorZ=1 RectangularGrid.__init__(self,NX,NY,NZ, oldMesh.Lx,oldMesh.Ly,oldMesh.Lz) childrenDict={} for IJK,e in oldMesh.elementDict.items(): I = IJK[0] J = IJK[1] K = IJK[2] childrenDict[e.N]=[] for xOffset in range(refineFactorX): for yOffset in range(refineFactorY): for zOffset in range(refineFactorZ): i = I*refineFactorX + xOffset j = J*refineFactorY + yOffset k = K*refineFactorZ + zOffset childrenDict[e.N].append(self.elementDict[(i,j,k)]) return childrenDict class MultilevelRectangularGrid(MultilevelMesh): """A hierarchical multilevel grid""" def __init__(self,levels,nx,ny=1,nz=1, Lx=1.0,Ly=1.0,Lz=1.0, refinementLevels=1): MultilevelMesh.__init__(self) self.refineFactorList=[EVec(0,0,0)] self.meshList.append(RectangularGrid(nx,ny,nz,Lx,Ly,Lz)) self.elementChildren = [] logEvent(self.meshList[0].meshInfo()) for l in range(1,refinementLevels+1): self.refine() logEvent(self.meshList[-1].meshInfo()) def refine(): self.meshList.append(RectangularMesh()) childrenDict = self.meshList[-1].refine(self.meshList[-2]) self.elementChildren.append(childrenDict) class TetrahedralMesh(Mesh): """A mesh of tetrahedra. The nodes, edges, triangles, and tetrahedra are indexed by their node tuples. The corresponding lists are derived from the dictionaries, and sorted lexicographically. The global node numbers are redefined to give a lexicographic ordering. The mesh can be generated from a rectangular grid and refined using either 4T or Freudenthal-Bey global refinement. Attributes ---------- elementNodesArray : array_like A list of lists storing the node values associated with each element in the triangulation. The first index refers to the element number, while the second index refers to the global node value. nodeArray : array_like A list of lists storing node coordinates. The first index referes to the global node number, while the second index refers to the x, y and z coordinates of the node respectively. """ def __init__(self): Mesh.__init__(self) self.nodeDict={} self.edgeDict={} self.triangleDict={} self.triangleList=[] self.tetrahedronDict={} self.tetrahedronList=[] self.oldToNewNode=[] self.boundaryMesh=TriangularMesh() def meshType(self): return 'simplex' def computeGeometricInfo(self): from . import cmeshTools cmeshTools.computeGeometricInfo_tetrahedron(self.cmesh) def generateTetrahedralMeshFromRectangularGrid(self,nx,ny,nz,Lx,Ly,Lz): from . import cmeshTools self.cmesh = cmeshTools.CMesh() logEvent("Generating grid and mesh") cmeshTools.generateTetrahedralMeshFromRectangularGrid(nx,ny,nz,Lx,Ly,Lz,self.cmesh) logEvent("Allocating geometric info") cmeshTools.allocateGeometricInfo_tetrahedron(self.cmesh) logEvent("Computing geometric info") cmeshTools.computeGeometricInfo_tetrahedron(self.cmesh) self.buildFromC(self.cmesh) def rectangularToTetrahedral6T(self,grid): #copy the nodes from the rectangular mesh #I want to be able to renumber later without #changing the grid nodes, so I do deep copies here self.nodeList = [Node(n.N,n.p[X],n.p[Y],n.p[Z]) for n in grid.nodeList] self.nodeDict = dict([(n,n) for n in self.nodeList]) for i in range(grid.nHx): for j in range(grid.nHy): for k in range(grid.nHz): #associate the element (i,j,k) with the #left, front, bottom node #do a top down numbering to match Ong's dissertation n1 = self.nodeList[grid.getNodeNumber(i,j,k+1)] n2 = self.nodeList[grid.getNodeNumber(i,j+1,k+1)] n3 = self.nodeList[grid.getNodeNumber(i+1,j+1,k+1)] n4 = self.nodeList[grid.getNodeNumber(i+1,j,k+1)] n5 = self.nodeList[grid.getNodeNumber(i,j,k)] n6 = self.nodeList[grid.getNodeNumber(i,j+1,k)] n7 = self.nodeList[grid.getNodeNumber(i+1,j+1,k)] n8 = self.nodeList[grid.getNodeNumber(i+1,j,k)] self.newTetrahedron(nodes=[n1,n2,n3,n6]) self.newTetrahedron(nodes=[n1,n3,n5,n6]) self.newTetrahedron(nodes=[n3,n5,n6,n7]) self.newTetrahedron(nodes=[n1,n3,n4,n5]) self.newTetrahedron(nodes=[n3,n4,n5,n7]) self.newTetrahedron(nodes=[n4,n5,n7,n8]) self.finalize() def rectangularToTetrahedral5T(self,grid): #copy the nodes from the rectangular mesh #I want to be able to renumber later without #changing the grid nodes, so I do deep copies here self.nodeList = [Node(n.N,n.p[X],n.p[Y],n.p[Z]) for n in grid.nodeList] self.nodeDict = dict([(n,n) for n in self.nodeList]) for i in range(grid.nHx): for j in range(grid.nHy): for k in range(grid.nHz): #associate the element (i,j,k) with the #left, front, bottom node #get the left,front,bottom,node and its color if (grid.getColor(i,j,k) == grid.black): b0 = self.nodeList[grid.getNodeNumber(i,j,k)] rx = self.nodeList[grid.getNodeNumber(i+1,j,k)] ry = self.nodeList[grid.getNodeNumber(i,j+1,k)] rz = self.nodeList[grid.getNodeNumber(i,j,k+1)] r0 = self.nodeList[grid.getNodeNumber(i+1,j+1,k+1)] bx = self.nodeList[grid.getNodeNumber(i,j+1,k+1)] by = self.nodeList[grid.getNodeNumber(i+1,j,k+1)] bz = self.nodeList[grid.getNodeNumber(i+1,j+1,k)] else: r0 = self.nodeList[grid.getNodeNumber(i,j,k)] bx = self.nodeList[grid.getNodeNumber(i+1,j,k)] by = self.nodeList[grid.getNodeNumber(i,j+1,k)] bz = self.nodeList[grid.getNodeNumber(i,j,k+1)] b0 = self.nodeList[grid.getNodeNumber(i+1,j+1,k+1)] rx = self.nodeList[grid.getNodeNumber(i,j+1,k+1)] ry = self.nodeList[grid.getNodeNumber(i+1,j,k+1)] rz = self.nodeList[grid.getNodeNumber(i+1,j+1,k)] self.newTetrahedron(nodes=[rx,by,bz,b0]) self.newTetrahedron(nodes=[ry,bz,bx,b0]) self.newTetrahedron(nodes=[rz,b0,bx,by]) self.newTetrahedron(nodes=[r0,bx,by,bz]) self.newTetrahedron(nodes=[b0,bx,by,bz]) self.finalize() rectangularToTetrahedral = rectangularToTetrahedral6T def fixLocalNumbering(self): for TN in range(len(self.tetrahedronList)): self.tetrahedronList[TN].computeGeometricInfo() if edet(self.tetrahedronList[TN].linearMap) < 0: newNodes = list(self.tetrahedronList[TN].nodes) newNodes[2] = self.tetrahedronList[TN].nodes[1] newNodes[1] = self.tetrahedronList[TN].nodes[2] self.tetrahedronList[TN].nodes = newNodes def finalize(self): self.buildLists() #self.fixLocalNumbering() self.buildBoundaryMaps() self.buildArraysFromLists() self.hMax = 0.0 self.hMin = 1.0e16 self.sigmaMax = 0.0 self.totalVolume = 0.0 for T in self.tetrahedronList: T.computeGeometricInfo() self.hMax = max(T.diameter,self.hMax) self.hMin = min(T.diameter,self.hMin) self.sigmaMax = max(old_div(T.diameter,T.innerDiameter),self.sigmaMax) self.totalVolume += T.volume def buildLists(self): self.buildListsNodes() self.buildListsEdges() self.buildListsTriangles() self.buildListsTetrahedra() self.elementList = self.tetrahedronList self.elementBoundaryList = self.triangleList def buildListsNodes(self): keyList = list(self.nodeDict.keys()) keyList.sort() self.nodeList=[] self.oldToNewNode=list(range(len(self.nodeDict))) for nN,k in enumerate(keyList): self.oldToNewNode[self.nodeDict[k].N]=nN self.nodeDict[k].N = nN self.nodeList.append(self.nodeDict[k]) def buildListsEdges(self): keyList = list(self.edgeDict.keys()) keyList.sort() self.edgeList=[] for eN,k in enumerate(keyList): self.edgeDict[k].N = eN self.edgeList.append(self.edgeDict[k]) def buildListsTriangles(self): keyList = list(self.triangleDict.keys()) keyList.sort() self.triangleList=[] for tN,k in enumerate(keyList): self.triangleDict[k].N = tN self.triangleList.append(self.triangleDict[k]) self.polygonList = self.triangleList def buildListsTetrahedra(self): keyList = list(self.tetrahedronDict.keys()) keyList.sort() self.tetrahedronList=[] for TN,k in enumerate(keyList): self.tetrahedronDict[k].N = TN self.tetrahedronList.append(self.tetrahedronDict[k]) self.polyhedronList = self.tetrahedronList def buildBoundaryMaps(self): """ Extract a mapping tn -> list((TN,tnLocal)) that provides all elements with the boundary face (triangle) tn and the local triangle number for that triangle. Likewise build mappings for edges and nodes Also extract a list of the triangles with only one associate element; these are the external boundary triangles. Then extract the edges and nodes from the boundary triangles. """ self.triangleMap=[[] for t in self.triangleList] self.edgeMap=[[] for e in self.edgeList] self.nodeMap=[[] for n in self.nodeList] self.boundaryTriangles=set() self.interiorTriangles=set() self.boundaryEdges=set() self.boundaryNodes=set() self.interiorEdges=set() self.interiorNodes=set() logEvent("Building triangle,edge, and node maps") for T in self.tetrahedronList: for localTriangleNumber,t in enumerate(T.triangles): self.triangleMap[t.N].append((T.N,localTriangleNumber)) for localEdgeNumber,e in enumerate(T.edges): self.edgeMap[e.N].append((T.N,localEdgeNumber)) for localNodeNumber,n in enumerate(T.nodes): self.nodeMap[n.N].append((T.N,localNodeNumber)) logEvent("Extracting boundary and interior triangles") for tN,etList in enumerate(self.triangleMap): if len(etList) == 1: self.boundaryTriangles.add(self.triangleList[tN]) else: self.interiorTriangles.add(self.triangleList[tN]) logEvent("Extracting boundary edges and nodes") for t in self.boundaryTriangles: self.boundaryEdges.update(t.edges) self.boundaryNodes.update(t.nodes) logEvent("Extracting interior edges and nodes") for t in self.interiorTriangles: self.interiorEdges.update(t.edges) self.interiorNodes.update(t.nodes) self.boundaryMesh.buildFromSets(self.boundaryTriangles, self.boundaryEdges,self.boundaryNodes) def newTetrahedron(self,nodes): T = Tetrahedron(tetrahedronNumber=len(self.tetrahedronDict), nodes=nodes) self.tetrahedronDict[T.nodes] = T self.registerTriangles(T) return T def registerEdges(self,t): for en,e in enumerate(t.edges): if e.nodes in self.edgeDict: t.edges[en]=self.edgeDict[e.nodes] else: eN=len(self.edgeDict) e.N=eN self.edgeDict[e.nodes]=e def registerTriangles(self,T): for tn,t in enumerate(T.triangles): if t.nodes in self.triangleDict: T.triangles[tn]=self.triangleDict[t.nodes] else: t.N=len(self.triangleDict) self.triangleDict[t.nodes]=t self.registerEdges(t) def registerNode(self,node): if node in self.nodeDict: node = self.nodeDict[node] else: node.N = len(self.nodeDict) self.nodeDict[node] = node return node def readMeshADH(self,filename,adhBase=1): meshIn = open(filename+'.3dm','r') firstLine = meshIn.readline() firstWords = firstLine.split() logEvent("Reading object=%s from file=%s" % (firstWords[0],filename)) line = meshIn.readline() columns = line.split() tets = [] tetEdges=set() tetTriangles=set() logEvent("Reading "+str(filename)+" and building node lists for tetrahedra,triangles, and edges") #assume test are ordered by tet number while (columns[0] == 'E4T'): nodeNumbers = [int(c) - adhBase for c in columns[2:6]] nodeNumbers.sort() tets.append(array.array('i',nodeNumbers)) tetTriangles.update([(nodeNumbers[1],nodeNumbers[2],nodeNumbers[3]), (nodeNumbers[0],nodeNumbers[2],nodeNumbers[3]), (nodeNumbers[0],nodeNumbers[1],nodeNumbers[3]), (nodeNumbers[0],nodeNumbers[1],nodeNumbers[2])]) tetEdges.update([(nodeNumbers[0],nodeNumbers[1]), (nodeNumbers[0],nodeNumbers[2]), (nodeNumbers[0],nodeNumbers[3]), (nodeNumbers[1],nodeNumbers[2]), (nodeNumbers[1],nodeNumbers[3]), (nodeNumbers[2],nodeNumbers[3])]) line = meshIn.readline() columns = line.split() print("Building node list and dict") #assume nodes are ordered by node number while (len(columns) == 5): newNode = Node(int(columns[1]) - adhBase, float(columns[2]), float(columns[3]), float(columns[4])) self.nodeList.append(newNode) self.nodeDict[newNode]=newNode line = meshIn.readline() columns = line.split() print("Number of tetrahedra:"+str(len(tets))) print("Number of triangles :"+str(len(tetTriangles))) print("Number of edges :"+str(len(tetEdges))) print("Number of nodes :"+str(len(self.nodeList))) print("Number of objects :"+str(len(tetEdges)+len(tetTriangles)+len(tets)+len(self.nodeList))) print("Building edge list") self.edgeList =[Edge(edgeNumber=eN,nodes=[self.nodeList[nN[0]],self.nodeList[nN[1]]]) \ for eN,nN in enumerate(tetEdges)] print("Building edge dict") self.edgeDict = dict([(e.nodes,e) for e in self.edgeList]) print("Building triangle list") self.triangleList =[Triangle(triangleNumber=tN,nodes=[self.nodeList[nN[0]],self.nodeList[nN[1]],self.nodeList[nN[2]]],edgeDict=self.edgeDict) \ for tN,nN in enumerate(tetTriangles)] print("Building triangle dict") self.triangleDict = dict([(t.nodes,t) for t in self.triangleList]) print("Building tetredron list") self.tetrahedronList = [Tetrahedron(tetrahedronNumber=TN, nodes=[self.nodeList[nN[0]],self.nodeList[nN[1]],self.nodeList[nN[2]],self.nodeList[nN[3]]], edgeDict=self.edgeDict, triangleDict=self.triangleDict) \ for TN,nN in enumerate(tets)] self.elementList = self.tetrahedronList self.elementBoundaryList = self.triangleList print("Building tetrahedron dict") self.tetrahedronDict = dict([(T.nodes,T) for T in self.tetrahedronList]) print("Building boundary maps") self.buildBoundaryMaps() def writeMeshXdmf(self,ar,name='',t=0.0,init=False,meshChanged=False,tCount=0, EB=False): #print "Warning mwf hack for EB printing for tet writeMeshXdmf for now" #EB = True Mesh.writeMeshXdmf(self,ar,name,t,init,meshChanged,"Tetrahedron",tCount,EB=EB) def writeMeshEnsight(self,filename,description=None): base=1 #write the casefile caseOut=open(filename+'.case','w') caseOut.write('FORMAT\n'+'type: ensight gold\n') caseOut.write('GEOMETRY\n'+'model: '+filename+'.geo\n') caseOut.close() meshOut=open(filename+'.geo','w') meshOut.write('Ensight Gold\n') meshOut.write('Unstructured Tetrahedral Mesh\n') meshOut.write('node id given\n') meshOut.write('element id given\n') #extents = 'extents\n %12.5E %12.5E\n %12.5E %12.5E\n %12.5E %12.5E\n' % (self.xmin,self.xmax,self.ymin,self.ymax,self.zmin,self.zmax) #meshOut.write('extents\n'+`self.xmin`+' '+`self.xmax`+'\n') meshOut.write('part \n'+'%10i\n' % 1) if description: meshOut.write(description+'\n') else: meshOut.write('A Mesh\n') meshOut.write('coordinates\n'+'%10i\n' % self.nNodes_global) for nN in range(self.nNodes_global): meshOut.write('%10i\n' % (nN+base)) for nN in range(self.nNodes_global): meshOut.write('%12.5E\n' % self.nodeArray[nN,0]) for nN in range(self.nNodes_global): meshOut.write('%12.5E\n' % self.nodeArray[nN,1]) for nN in range(self.nNodes_global): meshOut.write('%12.5E\n' % self.nodeArray[nN,2]) meshOut.write('tetra4\n'+'%10i\n' % self.nElements_global) for eN in range(self.nElements_global): meshOut.write('%10i\n' % (eN+base)) for eN in range(self.nElements_global): meshOut.write('%10i%10i%10i%10i\n' % tuple((nN+base) for nN in self.elementNodesArray[eN,:])) meshOut.close() def appendMeshEnsight(self,filename,description=None): base=1 #write the casefile caseOut=open(filename+'.case','a') caseOut.write('GEOMETRY\n'+'model: '+filename+'.geo\n') caseOut.close() meshOut=open(filename+'.geo','w') meshOut.write('Unstructured Tetrahedral Mesh\n\n') meshOut.write('node id given\n') meshOut.write('element id given\n') #extents = 'extents\n %12.5E %12.5E\n %12.5E %12.5E\n %12.5E %12.5E\n' % (self.xmin,self.xmax,self.ymin,self.ymax,self.zmin,self.zmax) #meshOut.write('extents\n'+`self.xmin`+' '+`self.xmax`+'\n') meshOut.write('part \n'+'%10i\n' % 1) if description: meshOut.write(description+'\n') else: meshOut.write("A Mesh") meshOut.write('coordinates\n'+'%10i\n' % len(self.nodeList)) for n in self.nodeList: nN = n.N+base meshOut.write('%10i\n' % nN) for n in self.nodeList: meshOut.write('%12.5E\n' % n.p[X]) for n in self.nodeList: meshOut.write('%12.5E\n' % n.p[Y]) for n in self.nodeList: meshOut.write('%12.5E\n' % n.p[Z]) meshOut.write('tetra4\n'+'%10i\n' % len(self.elementList)) for e in self.elementList: eN = e.N + base meshOut.write('%10i\n' % eN) for e in self.elementList: meshOut.write('%10i%10i%10i%10i\n' % tuple(n.N+base for n in e.nodes)) meshOut.close() def writeMeshADH(self,filename,adhBase=1): from . import cmeshTools cmeshTools.write3dmFiles(self.cmesh,filename,adhBase) def writeBoundaryFacesADH(self,filename,adhBase=1): boundaryFacesOut=open(filename,'w') for t in self.boundaryTriangles: TN = self.triangleMap[t.N][0][0] T = self.tetrahedronList[TN] localFaceNumber = self.triangleMap[t.N][0][1] T.computeGeometricInfo() DJ = edet(T.linearMap) if DJ < 0: #print "Negative determinant ="+`DJ`+" Swapping two nodes" newNodes = list(T.nodes) newNodes[3] = T.nodes[2] newNodes[2] = T.nodes[3] newBasis = [n - newNodes[0] for n in newNodes[1:]] newMap = ETen(newBasis[0],newBasis[1],newBasis[2]) #print "New Determinant "+`edet(newMap)` if localFaceNumber == T.nodes[2]: localFaceNumber = T.nodes[3] elif localFaceNumber == T.nodes[3]: localFaceNumber = T.nodes[2] line = 'FCS %5i %5i %5i' % \ (T.N + adhBase, localFaceNumber + adhBase, 1) #print line boundaryFacesOut.write(line+'\n') boundaryFacesOut.close() def writeBoundaryNodesADH(self,filename,adhBase=1): boundaryNodesOut=open(filename,'w') for n in self.boundaryNodes: line = 'NDS %5i %5i' % \ (n.N + adhBase, 1) #print line boundaryNodesOut.write(line+'\n') boundaryNodesOut.close() def refine4T(self,oldMesh): childrenDict={} for T in oldMesh.tetrahedronList: #deep copy old nodes because we'll renumber TNodes = [Node(eN,n.p[X],n.p[Y],n.p[Z]) for eN,n in enumerate(T.nodes)] for lnN,n in enumerate(TNodes): TNodes[lnN]=self.registerNode(n) #add new node T.computeGeometricInfo() newNode = Node(len(self.nodeDict), T.barycenter[X], T.barycenter[Y], T.barycenter[Z]) newNode = self.registerNode(newNode) T1=self.newTetrahedron([TNodes[0],TNodes[1],TNodes[2],newNode]) T2=self.newTetrahedron([TNodes[1],TNodes[2],TNodes[3],newNode]) T3=self.newTetrahedron([TNodes[2],TNodes[3],TNodes[0],newNode]) T4=self.newTetrahedron([TNodes[3],TNodes[0],TNodes[1],newNode]) childrenDict[T.N]=[T1,T2,T3,T4] self.finalize() return childrenDict def refineFreudenthalBey(self,oldMesh): logEvent("Refining the mesh using Freudenthal-Bey refinement") childrenDict={} for T in list(oldMesh.tetrahedronDict.values()): #deep copy old nodes because we'll renumber TNodes = [Node(nN,n.p[X],n.p[Y],n.p[Z]) for nN,n in \ enumerate(T.nodes)] for lnN,n in enumerate(TNodes): TNodes[lnN]=self.registerNode(n) #add new nodes (midpoints of edges) #use local edge tuples as keys newNodes={} for et,en in T.edgeMap.items(): T.edges[en].computeGeometricInfo() p = T.edges[en].barycenter newNodes[et] = Node(en,p[X],p[Y],p[Z]) #set the global node numbers for k,n in newNodes.items(): newNodes[k]=self.registerNode(n) #add corner tets T1=self.newTetrahedron([TNodes[0], newNodes[(0,1)], newNodes[(0,2)], newNodes[(0,3)]]) T2=self.newTetrahedron([TNodes[1], newNodes[(0,1)], newNodes[(1,2)], newNodes[(1,3)]]) T3=self.newTetrahedron([TNodes[2], newNodes[(0,2)], newNodes[(1,2)], newNodes[(2,3)]]) T4=self.newTetrahedron([TNodes[3], newNodes[(0,3)], newNodes[(1,3)], newNodes[(2,3)]]) #add center tets #choose the shortest diagonal of the octahedron dLengths = [enorm(newNodes[(0,1)].p-newNodes[(2,3)].p), enorm(newNodes[(0,2)].p-newNodes[(1,3)].p), enorm(newNodes[(0,3)].p-newNodes[(1,2)].p)] shortestEdgeLength = min(dLengths) if shortestEdgeLength == dLengths[0]: #diagonal (0,1)(2,3) T5=self.newTetrahedron([newNodes[(0,1)], newNodes[(2,3)], newNodes[(0,3)], newNodes[(1,3)]]) T6=self.newTetrahedron([newNodes[(0,1)], newNodes[(2,3)], newNodes[(0,3)], newNodes[(0,2)]]) T7=self.newTetrahedron([newNodes[(0,1)], newNodes[(2,3)], newNodes[(0,2)], newNodes[(1,2)]]) T8=self.newTetrahedron([newNodes[(0,1)], newNodes[(2,3)], newNodes[(1,2)], newNodes[(1,3)]]) elif shortestEdgeLength == dLengths[1]: #diagonal (0,2)(1,3) T5=self.newTetrahedron([newNodes[(0,2)], newNodes[(1,3)], newNodes[(0,3)], newNodes[(2,3)]]) T6=self.newTetrahedron([newNodes[(0,2)], newNodes[(1,3)], newNodes[(2,3)], newNodes[(1,2)]]) T7=self.newTetrahedron([newNodes[(0,2)], newNodes[(1,3)], newNodes[(1,2)], newNodes[(0,1)]]) T8=self.newTetrahedron([newNodes[(0,2)], newNodes[(1,3)], newNodes[(0,1)], newNodes[(0,3)]]) else: #diagonal (0,3)(1,2) T5=self.newTetrahedron([newNodes[(0,3)], newNodes[(1,2)], newNodes[(0,1)], newNodes[(1,3)]]) T6=self.newTetrahedron([newNodes[(0,3)], newNodes[(1,2)], newNodes[(1,3)], newNodes[(2,3)]]) T7=self.newTetrahedron([newNodes[(0,3)], newNodes[(1,2)], newNodes[(2,3)], newNodes[(0,2)]]) T8=self.newTetrahedron([newNodes[(0,3)], newNodes[(1,2)], newNodes[(0,2)], newNodes[(0,1)]]) childrenDict[T.N]=[T1,T2,T3,T4,T5,T6,T7,T8] self.finalize() return childrenDict #for debugging: print each tet #self.edgeList=[] #Tlist = self.tetrahedronDict.values() #for T in Tlist: # self.edgeList = self.edgeList + T.edges def refine(self,oldMesh): return self.refineFreudenthalBey(oldMesh) def generateFromTetgenFiles(self,filebase,base,skipGeometricInit=False,parallel=False): from . import cmeshTools logEvent(memory("declaring CMesh"),level=4) self.cmesh = cmeshTools.CMesh() logEvent(memory("Initializing CMesh"),level=4) if parallel: cmeshTools.generateFromTetgenFilesParallel(self.cmesh,filebase,base) else: cmeshTools.generateFromTetgenFiles(self.cmesh,filebase,base) logEvent(memory("calling cmeshTools.generateFromTetgenFiles","cmeshTools"),level=4) if skipGeometricInit == False: cmeshTools.allocateGeometricInfo_tetrahedron(self.cmesh) cmeshTools.computeGeometricInfo_tetrahedron(self.cmesh) self.buildFromC(self.cmesh) logEvent(memory("calling buildFromC"),level=4) def generateFrom3DMFile(self,filebase,base=1): from . import cmeshTools self.cmesh = cmeshTools.CMesh() cmeshTools.generateFrom3DMFile(self.cmesh,filebase,base) cmeshTools.allocateGeometricInfo_tetrahedron(self.cmesh) cmeshTools.computeGeometricInfo_tetrahedron(self.cmesh) self.buildFromC(self.cmesh) def writeTetgenFiles(self,filebase,base): from . import cmeshTools cmeshTools.writeTetgenFiles(self.cmesh,filebase,base) def meshInfo(self): minfo = """Number of tetrahedra : %d Number of triangles : %d Number of edges : %d Number of nodes : %d max(sigma_k) : %f min(h_k) : %f\n""" % (self.nElements_global, self.nElementBoundaries_global, self.nEdges_global, self.nNodes_global, self.sigmaMax, self.hMin) if self.subdomainMesh != self: sinfo = self.subdomainMesh.meshInfo() info = "*** Global ***\n" + minfo + "\n*** Local ***\n" + sinfo return info return minfo class HexahedralMesh(Mesh): """A mesh of hexahedra. """ def __init__(self): Mesh.__init__(self) self.nodeDict={} self.edgeDict={} self.faceDict={} self.faceList=[] self.elemDict={} self.elemList=[] self.oldToNewNode=[] self.boundaryMesh=QuadrilateralMesh() def meshType(self): return 'cuboid' def computeGeometricInfo(self): from . import cmeshTools print("no info yet for hexahedral mesh") #cmeshTools.computeGeometricInfo_tetrahedron(self.cmesh) def generateHexahedralMeshFromRectangularGrid(self,nx,ny,nz,Lx,Ly,Lz): from . import cmeshTools self.cmesh = cmeshTools.CMesh() cmeshTools.generateHexahedralMeshFromRectangularGrid(nx,ny,nz,0,0,0,Lx,Ly,Lz,self.cmesh) cmeshTools.allocateGeometricInfo_hexahedron(self.cmesh) cmeshTools.computeGeometricInfo_hexahedron(self.cmesh) self.buildFromC(self.cmesh) def finalize(self): self.buildLists() #self.fixLocalNumbering() self.buildBoundaryMaps() self.buildArraysFromLists() self.hMax = 0.0 self.hMin = 1.0e16 self.sigmaMax = 0.0 self.totalVolume = 0.0 for T in self.tetrahedronList: T.computeGeometricInfo() self.hMax = max(T.diameter,self.hMax) self.hMin = min(T.diameter,self.hMin) self.sigmaMax = max(old_div(T.diameter,T.innerDiameter),self.sigmaMax) self.totalVolume += T.volume def buildLists(self): self.buildListsNodes() self.buildListsEdges() self.buildListsFaces() self.buildListsElems() self.elementList = self.elemList self.elementBoundaryList = self.faceList def buildListsNodes(self): keyList = list(self.nodeDict.keys()) keyList.sort() self.nodeList=[] self.oldToNewNode=list(range(len(self.nodeDict))) for nN,k in enumerate(keyList): self.oldToNewNode[self.nodeDict[k].N]=nN self.nodeDict[k].N = nN self.nodeList.append(self.nodeDict[k]) def buildListsEdges(self): keyList = list(self.edgeDict.keys()) keyList.sort() self.edgeList=[] for eN,k in enumerate(keyList): self.edgeDict[k].N = eN self.edgeList.append(self.edgeDict[k]) def buildListsFaces(self): keyList = list(self.faceDict.keys()) keyList.sort() self.triangleList=[] for tN,k in enumerate(keyList): self.faceDict[k].N = tN self.faceList.append(self.faceDict[k]) self.polygonList = self.faceList def buildListsElems(self): keyList = list(self.elemDict.keys()) keyList.sort() self.elemList=[] for TN,k in enumerate(keyList): self.elemDict[k].N = TN self.elemList.append(self.elemDict[k]) self.polyhedronList = self.elemList def buildBoundaryMaps(self): """ Extract a mapping tn -> list((TN,tnLocal)) that provides all elements with the boundary face tn and the local triangle number for that face Likewise build mappings for edges and nodes Also extract a list of the triangles with only one associate element; these are the external boundary triangles. Then extract the edges and nodes from the boundary triangles. """ self.faceMap=[[] for t in self.faceList] self.edgeMap=[[] for e in self.edgeList] self.nodeMap=[[] for n in self.nodeList] self.boundaryTriangles=set() self.interiorTriangles=set() self.boundaryEdges=set() self.boundaryNodes=set() self.interiorEdges=set() self.interiorNodes=set() logEvent("Building triangle,edge, and node maps") for T in self.elemList: for localFaceNumber,t in enumerate(T.faces): self.faceMap[t.N].append((T.N,localFaceNumber)) for localEdgeNumber,e in enumerate(T.edges): self.edgeMap[e.N].append((T.N,localEdgeNumber)) for localNodeNumber,n in enumerate(T.nodes): self.nodeMap[n.N].append((T.N,localNodeNumber)) logEvent("Extracting boundary and interior triangles") for tN,etList in enumerate(self.faceMap): if len(etList) == 1: self.boundaryFaces.add(self.faceList[tN]) else: self.interiorFaces.add(self.faceList[tN]) logEvent("Extracting boundary edges and nodes") for t in self.boundaryTriangles: self.boundaryEdges.update(t.edges) self.boundaryNodes.update(t.nodes) logEvent("Extracting interior edges and nodes") for t in self.interiorTriangles: self.interiorEdges.update(t.edges) self.interiorNodes.update(t.nodes) self.boundaryMesh.buildFromSets(self.boundaryFaces, self.boundaryEdges,self.boundaryNodes) def registerEdges(self,t): for en,e in enumerate(t.edges): if e.nodes in self.edgeDict: t.edges[en]=self.edgeDict[e.nodes] else: eN=len(self.edgeDict) e.N=eN self.edgeDict[e.nodes]=e def registerFaces(self,T): for tn,t in enumerate(T.faces): if t.nodes in self.faceDict: T.faces[tn]=self.faceDict[t.nodes] else: t.N=len(self.faceDict) self.faceDict[t.nodes]=t self.registerEdges(t) def registerNode(self,node): if node in self.nodeDict: node = self.nodeDict[node] else: node.N = len(self.nodeDict) self.nodeDict[node] = node return node # def refine(self,oldMesh): # return self.refineFreudenthalBey(oldMesh) def meshInfo(self): minfo = """Number of hexahedra : %d Number of faces : %d Number of edges : %d Number of nodes : %d max(sigma_k) : %d min(h_k) : %d\n""" % (self.nElements_global, self.nElementBoundaries_global, self.nEdges_global, self.nNodes_global, self.sigmaMax, self.hMin) if self.subdomainMesh != self: sinfo = self.subdomainMesh.meshInfo() info = "*** Global ***\n" + minfo + "\n*** Local ***\n" + sinfo return info return minfo def writeMeshXdmf(self,ar,name='',t=0.0,init=False,meshChanged=False,tCount=0,EB=False): Mesh.writeMeshXdmf(self,ar,name,t,init,meshChanged,"Hexahedron",tCount,EB=EB) def generateFromHexFile(self,filebase,base=0): from . import cmeshTools self.cmesh = cmeshTools.CMesh() cmeshTools.generateFromHexFile(self.cmesh,filebase,base) cmeshTools.allocateGeometricInfo_hexahedron(self.cmesh) cmeshTools.computeGeometricInfo_hexahedron(self.cmesh) self.buildFromC(self.cmesh) class Mesh2DM(Mesh): """A triangular mesh based on an ADH 3dm file""" def __init__(self,filename,adhBase=1): meshIn = open(filename+'.3dm','r') firstLine = meshIn.readline() firstWords = firstLine.split() logEvent("Reading object=%s from file=%s" % (firstWords[0],filename)) line = meshIn.readline() columns = line.split() #read in the tetrahedra and nodes as memory-efficiently as possible tn0 = array.array('i') tn1 = array.array('i') tn2 = array.array('i') material = array.array('i') nx = array.array('d') ny = array.array('d') nz = array.array('d') print("Reading "+str(filename)) #assume tets are ordered by tet number while (len(columns) > 0 and (columns[0] == 'E3T' or columns[0] == 'GE3')): tn0.append(int(columns[2])) tn1.append(int(columns[3])) tn2.append(int(columns[4])) material.append(int(columns[5])) line = meshIn.readline() columns = line.split() #allow for missing lines while (len(columns) == 0): line = meshIn.readline() columns = line.split() #assume nodes are ordered by node number while (len(columns) == 5): nx.append(float(columns[2])) ny.append(float(columns[3])) nz.append(float(columns[4])) line = meshIn.readline() columns = line.split() meshIn.close() print("Allocating node and element arrays") self.nTriangles_global = len(tn0) self.triangleArray = np.zeros( (self.nTriangles_global,3),'i') tA = self.triangleArray self.triangleMaterialArray = np.zeros( (self.nTriangles_global,),'i') tMA = self.triangleMaterialArray self.nNodes_global = len(nx) self.nodeArray = np.zeros((self.nNodes_global,3),'d') for tN in range(self.nTriangles_global): tA[tN,0] = tn0[tN] - adhBase tA[tN,1] = tn1[tN] - adhBase tA[tN,2] = tn2[tN] - adhBase tMA[tN] = material[tN] - adhBase for nN in range(self.nNodes_global): self.nodeArray[nN,0]= nx[nN] self.nodeArray[nN,1]= ny[nN] self.nodeArray[nN,2]= nz[nN] print("Deleting temporary storage") del tn0,tn1,tn2,nx,ny,nz self.nElements_global = self.nTriangles_global self.elementNodesArray = self.triangleArray self.elementMaterialTypes = self.triangleMaterialArray print("Number of triangles:"+str(self.nElements_global)) print("Number of nodes :"+str(self.nNodes_global)) #archive with Xdmf self.nNodes_element = 3 self.arGridCollection = None self.arGrid = None; self.arTime = None def buildEdgeArrays(self): print("Extracting edges triangles dictionary") edges_triangles={} t=self.triangleArray self.nInteriorEdges_global=0 for N in range(self.nTriangles_global): #sort node numbers so the nodes can #uniquely identify the triangles/edges n = list(t[N,:]) n.sort() edges = [(n[0],n[1]), (n[0],n[2]), (n[1],n[2])] for t in triangles: if t in edges_triangles: edges_triangles[t].append(N) self.nInteriorTriangles_global+=1 else: edges_triangles[t]=[N] print("Building edge and exterior arrays") self.nEdges_global = len(edges_triangles) self.edgeArray = np.zeros( (self.nEdges_global,2),'i') self.edgeMaterialArray = np.zeros( (self.nEdges_global,2),'i') self.interiorEdgeArray = np.zeros( (self.nInteriorEdges_global,),'i') self.nExteriorEdges_global = self.nEdges_global - \ self.nInteriorEdges_global self.exteriorEdgeArray = np.zeros( (self.nExteriorEdges_global,),'i') eN=0 ieN=0 eeN=0 exteriorNodes=set() eA = self.edgeArray eMA = self.edgeMaterialArray tMA = self.triangleMaterialArray for eNodes,tlist in edges_triangles.items(): eA[eN,0]=eNodes[0] eA[eN,1]=eNodes[1] if len(tlist)==2: self.interiorEdgeArray[ieN]=eN eMA[eN][0]= tMA[tlist[0]] eMA[eN][1]= tMA[Tlist[1]] ieN+=1 else: exteriorNodes.update(tNodes) self.exteriorEdgeArray[eeN]=eN eMA[eN][0]=tMA[tlist[0]] eeN+=1 eN+=1 self.nExteriorNodes_global = len(exteriorNodes) self.exteriorNodeArray = np.zeros( (self.nExteriorNodes_global,),'i') self.globalToExteriorNodeArray = np.zeros( (self.nNodes_global,),'i') for nExtN,nN in enumerate(exteriorNodes): self.exteriorNodeArray[nExtN]=nN self.globalToExteriorNodeArray[nN]=nExtN print("Number of edges :"+str(self.nEdges_global)) print("Number on interior :"+str(self.nInteriorEdges_global)) print("Number on exterior :"+str(self.nExteriorEdges_global)) print("Number of exterior nodes:"+str(self.nExteriorNodes_global)) #at this point we can easily build a boundary mesh by renumbering using #exteriorNodeArray and exteriorEdgeArray to renumber #and the info in nodeArray and edgeArray def writeBoundaryMeshADH(self,filename,adhBase=1): #I'll print it using node numbers from the 3D mesh meshOut = open(filename+'Boundary.3dm','w') meshOut.write('MESH1D\n') for eeN in range(self.nExteriorEdges_global): eN = self.exteriorEdgeArray[eeN] n0 = self.edgeArray[eN][0] + adhBase n1 = self.edgeArray[eN][1] + adhBase m = self.edgeMaterialArray[eN][0] + adhBase line = 'E3T %5i %5i %5i %5i' % \ (tN+adhBase,n0,n1,m) meshOut.write(line+'\n') meshOut.close() def writeMeshEnsight(self,filename,description=None): base=1 #write the casefile caseOut=open(filename+'.case','w') caseOut.write('FORMAT\n'+'type: ensight gold\n') caseOut.write('GEOMETRY\n'+'model: '+filename+'.geo\n') caseOut.close() meshOut=open(filename+'.geo','w') meshOut.write('Ensight Gold\n') meshOut.write('Unstructured Triangular Mesh\n') meshOut.write('node id given\n') meshOut.write('element id given\n') #extents = 'extents\n %12.5E %12.5E\n %12.5E %12.5E\n %12.5E %12.5E\n' % (self.xmin,self.xmax,self.ymin,self.ymax,self.zmin,self.zmax) #meshOut.write('extents\n'+`self.xmin`+' '+`self.xmax`+'\n') meshOut.write('part \n'+'%10i\n' % 1) if description: meshOut.write(description+'\n') else: meshOut.write('A Mesh\n') meshOut.write('coordinates\n'+'%10i\n' % self.nNodes_global) for nN in range(self.nNodes_global): ensightNodeNumber = (nN+base) meshOut.write('%10i\n' % ensightNodeNumber) for nN in range(self.nNodes_global): meshOut.write('%12.5E\n' % self.nodeArray[nN,0]) for nN in range(self.nNodes_global): meshOut.write('%12.5E\n' % self.nodeArray[nN,1]) for nN in range(self.nNodes_global): meshOut.write('%12.5E\n' % self.nodeArray[nN,2]) meshOut.write('tria3\n'+'%10i\n' % self.nTriangles_global) for tN in range(self.nTriangles_global): ensightElementNumber = tN + base meshOut.write('%10i\n' % ensightElementNumber) tA = self.triangleArray for tN in range(self.nTriangles_global): meshOut.write('%10i%10i%10i\n' % (tA[tN,0]+base,tA[tN,1]+base,tA[tN,2]+base)) meshOut.close() def writeMeshXdmf(self,ar,name='',t=0.0,init=False,meshChanged=False,Xdmf_ElementTopology="Triangle",tCount=0): if self.arGridCollection is not None: init = False elif not init: self.arGridCollection = ar.domain.find("Grid") if init: self.arGridCollection = SubElement(ar.domain,"Grid",{"Name":"Mesh "+name, "GridType":"Collection", "CollectionType":"Temporal"}) if self.arGrid is None or self.arTime.get('Value') != "{0:e}".format(t): # #topology and geometry # if ar.global_sync: self.arGrid = SubElement(self.arGridCollection,"Grid",{"GridType":"Uniform"}) self.arTime = SubElement(self.arGrid,"Time",{"Value":str(t),"Name":str(tCount)}) topology = SubElement(self.arGrid,"Topology", {"Type":Xdmf_ElementTopology, "NumberOfElements":"%i" % (self.globalMesh.nElements_global,)}) elements = SubElement(topology,"DataItem", {"Format":ar.dataItemFormat, "DataType":"Int", "Dimensions":"%i %i" % (self.globalMesh.nElements_global, self.nNodes_element)}) geometry = SubElement(self.arGrid,"Geometry",{"Type":"XYZ"}) nodes = SubElement(geometry,"DataItem", {"Format":ar.dataItemFormat, "DataType":"Float", "Precision":"8", "Dimensions":"%i %i" % (self.globalMesh.nNodes_global,3)}) #material types elementMaterialTypes = SubElement(self.arGrid,"Attribute",{"Name":"elementMaterialTypes", "AttributeType":"Scalar", "Center":"Cell"}) elementMaterialTypesValues = SubElement(elementMaterialTypes,"DataItem", {"Format":ar.dataItemFormat, "DataType":"Int", "Dimensions":"%i" % (self.globalMesh.nElements_global,)}) if ar.hdfFile is not None: elements.text = ar.hdfFilename+":/elements"+name+str(tCount) nodes.text = ar.hdfFilename+":/nodes"+name+str(tCount) elementMaterialTypesValues.text = ar.hdfFilename+":/"+"elementMaterialTypes"+"_t"+str(tCount) if init or meshChanged: ar.create_dataset_sync('elements'+name+str(tCount), offsets = self.globalMesh.elementOffsets_subdomain_owned, data = self.globalMesh.nodeNumbering_subdomain2global[self.elementNodesArray[:self.nElements_owned]]) ar.create_dataset_sync('nodes'+name+str(tCount), offsets = self.globalMesh.nodeOffsets_subdomain_owned, data = self.nodeArray[:self.nNodes_owned]) ar.create_dataset_sync("elementMaterialTypes"+"_t"+str(tCount), offsets = self.globalMesh.elementOffsets_subdomain_owned, data = self.elementMaterialTypes[:self.nElements_owned]) else: assert False, "global_sync with text heavy data not supported" else: self.arGrid = SubElement(self.arGridCollection,"Grid",{"GridType":"Uniform"}) self.arTime = SubElement(self.arGrid,"Time",{"Value":str(t),"Name":str(tCount)}) topology = SubElement(self.arGrid,"Topology", {"Type":Xdmf_ElementTopology, "NumberOfElements":"%i" % (self.nElements_owned,)}) elements = SubElement(topology,"DataItem", {"Format":ar.dataItemFormat, "DataType":"Int", "Dimensions":"%i %i" % (self.nElements_owned,self.nNodes_element)}) geometry = SubElement(self.arGrid,"Geometry",{"Type":"XYZ"}) nodes = SubElement(geometry,"DataItem", {"Format":ar.dataItemFormat, "DataType":"Float", "Precision":"8", "Dimensions":"%i %i" % (self.nNodes_global,3)}) #material types elementMaterialTypes = SubElement(self.arGrid,"Attribute",{"Name":"elementMaterialTypes", "AttributeType":"Scalar", "Center":"Cell"}) elementMaterialTypesValues = SubElement(elementMaterialTypes,"DataItem", {"Format":ar.dataItemFormat, "DataType":"Int", "Dimensions":"%i" % (self.nElements_owned,)}) if ar.hdfFile is not None: elements.text = ar.hdfFilename+":/elements"+str(ar.comm.rank())+name+str(tCount) nodes.text = ar.hdfFilename+":/nodes"+str(ar.comm.rank())+name+str(tCount) elementMaterialTypesValues.text = ar.hdfFilename+":/"+"elementMaterialTypes"+"_p"+str(ar.comm.rank())+"_t"+str(tCount) if init or meshChanged: ar.create_dataset_async('elements'+str(ar.comm.rank())+name+str(tCount), data = self.elementNodesArray[:self.nElements_owned]) ar.create_dataset_async('nodes'+str(ar.comm.rank())+name+str(tCount), data = self.nodeArray) ar.create_dataset_async("elementMaterialTypes"+"_p"+str(ar.comm.rank())+"_t"+str(tCount), data = self.elementMaterialTypes[:self.nElements_owned]) else: SubElement(elements,"xi:include",{"parse":"text","href":"./"+ar.textDataDir+"/elements"+name+".txt"}) SubElement(nodes,"xi:include",{"parse":"text","href":"./"+ar.textDataDir+"/nodes"+name+".txt"}) SubElement(elementMaterialTypesValues,"xi:include",{"parse":"text","href":"./"+ar.textDataDir+"/"+"elementMaterialTypes"+str(tCount)+".txt"}) if init or meshChanged: np.savetxt(ar.textDataDir+"/elements"+name+".txt",self.elementNodesArray[:self.nElements_owned],fmt='%d') np.savetxt(ar.textDataDir+"/nodes"+name+".txt",self.nodeArray) np.savetxt(ar.textDataDir+"/"+"elementMaterialTypes"+str(tCount)+".txt",self.elementMaterialTypes[:self.nElements_owned]) class Mesh3DM(Mesh): """ A Mesh for reading in tetrahedral meshes in the .3dm format """ def __init__(self,filename,adhBase=1): meshIn = open(filename+'.3dm','r') firstLine = meshIn.readline() firstWords = firstLine.split() print("Reading object=%s from file=%s" % (firstWords[0],filename)) line = meshIn.readline() columns = line.split() #read in the tetrahedra and nodes as memory-efficiently as possible Tn0 = array.array('i') Tn1 = array.array('i') Tn2 = array.array('i') Tn3 = array.array('i') material = array.array('i') nx = array.array('d') ny = array.array('d') nz = array.array('d') print("Reading "+str(filename)) #assume tets are ordered by tet number while (len(columns) > 0 and (columns[0] == 'E4T' or columns[0] == 'GE4')): Tn0.append(int(columns[2])) Tn1.append(int(columns[3])) Tn2.append(int(columns[4])) Tn3.append(int(columns[5])) material.append(int(columns[6])) line = meshIn.readline() columns = line.split() #assume nodes are ordered by node number while (len(columns) == 5): nx.append(float(columns[2])) ny.append(float(columns[3])) nz.append(float(columns[4])) line = meshIn.readline() columns = line.split() meshIn.close() print("Allocating node and element arrays") self.nTetrahedra_global = len(Tn0) self.tetrahedronArray = np.zeros( (self.nTetrahedra_global,4),'i') TA = self.tetrahedronArray self.tetrahedronMaterialArray = np.zeros( (self.nTetrahedra_global,),'i') TMA = self.tetrahedronMaterialArray self.nNodes_global = len(nx) self.nodeArray = np.zeros((self.nNodes_global,3),'d') for TN in range(self.nTetrahedra_global): TA[TN,0] = Tn0[TN] - adhBase TA[TN,1] = Tn1[TN] - adhBase TA[TN,2] = Tn2[TN] - adhBase TA[TN,3] = Tn3[TN] - adhBase TMA[TN] = material[TN] - adhBase for nN in range(self.nNodes_global): self.nodeArray[nN,0]= nx[nN] self.nodeArray[nN,1]= ny[nN] self.nodeArray[nN,2]= nz[nN] print("Deleting temporary storage") del Tn0,Tn1,Tn2,Tn3,nx,ny,nz self.nElements_global = self.nTetrahedra_global self.elementNodesArray = self.tetrahedronArray self.elementMaterialTypes = self.tetrahedronMaterialArray self.arGridCollection=None print("Number of tetrahedra:"+str(self.nElements_global)) print("Number of nodes :"+str(self.nNodes_global)) def buildTriangleArrays(self): print("Extracting triangles tetrahedra dictionary") triangles_tetrahedra={} T=self.tetrahedronArray self.nInteriorTriangles_global=0 for N in range(self.nTetrahedra_global): #sort node numbers so the nodes can #uniquely identify the triangles/edges n = list(T[N,:]) n.sort() triangles = [(n[0],n[1],n[2]), (n[0],n[1],n[3]), (n[0],n[2],n[3]), (n[1],n[2],n[3])] for t in triangles: if t in triangles_tetrahedra: triangles_tetrahedra[t].append(N) self.nInteriorTriangles_global+=1 else: triangles_tetrahedra[t]=[N] print("Building triangle and exterior arrays") self.nTriangles_global = len(triangles_tetrahedra) self.triangleArray = np.zeros( (self.nTriangles_global,3),'i') self.triangleMaterialArray = np.zeros( (self.nTriangles_global,2),'i') self.interiorTriangleArray = np.zeros( (self.nInteriorTriangles_global,),'i') self.nExteriorTriangles_global = self.nTriangles_global - \ self.nInteriorTriangles_global self.exteriorTriangleArray = np.zeros( (self.nExteriorTriangles_global,),'i') tN=0 itN=0 etN=0 exteriorNodes=set() tA = self.triangleArray tMA = self.triangleMaterialArray TMA = self.tetrahedronMaterialArray for tNodes,Tlist in triangles_tetrahedra.items(): tA[tN,0]=tNodes[0] tA[tN,1]=tNodes[1] tA[tN,2]=tNodes[2] if len(Tlist)==2: self.interiorTriangleArray[itN]=tN tMA[tN][0]= TMA[Tlist[0]] tMA[tN][1]= TMA[Tlist[1]] itN+=1 else: exteriorNodes.update(tNodes) self.exteriorTriangleArray[etN]=tN tMA[tN][0]=TMA[Tlist[0]] etN+=1 tN+=1 self.nExteriorNodes_global = len(exteriorNodes) self.exteriorNodeArray = np.zeros( (self.nExteriorNodes_global,),'i') self.globalToExteriorNodeArray = np.zeros( (self.nNodes_global,),'i') for nExtN,nN in enumerate(exteriorNodes): self.exteriorNodeArray[nExtN]=nN self.globalToExteriorNodeArray[nN]=nExtN print("Number of triangles :"+str(self.nTriangles_global)) print("Number on interior :"+str(self.nInteriorTriangles_global)) print("Number on exterior :"+str(self.nExteriorTriangles_global)) print("Number of exterior nodes:"+str(self.nExteriorNodes_global)) #at this point we can easily build a boundary mesh by renumbering using #exteriorNodeArray and exteriorTriangleArray to renumber #and the info in nodeArray and triangleArray def buildEdgeArray(self): print("Extracting set of edges") edges = set() t=self.triangleArray for N in range(self.nTriangles_global): #triangle nodes are assumed sorted edges.update([(t[N,0],t[N,1]), (t[N,0],t[N,2]), (t[N,1],t[N,2])]) print("Building edgeArray") self.nEdges_global = len(edges) self.edgeArray = np.zeros( (self.nEdges_global,2),'i') eN=0 for e in edges: self.edgeArray[eN][0] = e[0] self.edgeArray[eN][1] = e[1] del edges print("Number of edges :"+str(self.nEdges_global)) def writeBoundaryMeshADH(self,filename,adhBase=1): #I'll print it using node numbers from the 3D mesh meshOut = open(filename+'Boundary.3dm','w') meshOut.write('MESH2D\n') for tN in self.exteriorTriangleArray: n0 = self.triangleArray[tN][0] + adhBase n1 = self.triangleArray[tN][1] + adhBase n2 = self.triangleArray[tN][2] + adhBase m = self.triangleMaterialArray[tN][0] + adhBase line = 'E3T %5i %5i %5i %5i %5i' % \ (tN+adhBase,n0,n1,n2,m) meshOut.write(line+'\n') for nN in self.exteriorNodeArray: n = self.nodeArray[nN] line = 'ND %5i %14.8e %14.8e %14.8e' % \ (nN + adhBase,n[0],n[1],n[2]) #print line meshOut.write(line+'\n') meshOut.close() def writeMeshEnsight(self,filename,description=None): base=1 #write the casefile caseOut=open(filename+'.case','w') caseOut.write('FORMAT\n'+'type: ensight gold\n') caseOut.write('GEOMETRY\n'+'model: '+filename+'.geo\n') caseOut.close() meshOut=open(filename+'.geo','w') meshOut.write('Ensight Gold\n') meshOut.write('Unstructured Tetrahedral Mesh\n') meshOut.write('node id given\n') meshOut.write('element id given\n') #extents = 'extents\n %12.5E %12.5E\n %12.5E %12.5E\n %12.5E %12.5E\n' % (self.xmin,self.xmax,self.ymin,self.ymax,self.zmin,self.zmax) #meshOut.write('extents\n'+`self.xmin`+' '+`self.xmax`+'\n') meshOut.write('part \n'+'%10i\n' % 1) if description: meshOut.write(description+'\n') else: meshOut.write('A Mesh\n') meshOut.write('coordinates\n'+'%10i\n' % self.nNodes_global) for nN in range(self.nNodes_global): ensightNodeNumber = (nN+base) meshOut.write('%10i\n' % ensightNodeNumber) for nN in range(self.nNodes_global): meshOut.write('%12.5E\n' % self.nodeArray[nN,0]) for nN in range(self.nNodes_global): meshOut.write('%12.5E\n' % self.nodeArray[nN,1]) for nN in range(self.nNodes_global): meshOut.write('%12.5E\n' % self.nodeArray[nN,2]) meshOut.write('tetra4\n'+'%10i\n' % self.nTetrahedra_global) for TN in range(self.nTetrahedra_global): ensightElementNumber = TN + base meshOut.write('%10i\n' % ensightElementNumber) TA = self.tetrahedronArray for TN in range(self.nTetrahedra_global): meshOut.write('%10i%10i%10i%10i\n' % (TA[TN,0]+base, TA[TN,1]+base, TA[TN,2]+base, TA[TN,3]+base)) meshOut.close() def writeBoundaryMeshEnsight(self,filename,description=None): base=1 #write the casefile caseOut=open(filename+'Boundary.case','w') caseOut.write('FORMAT\n'+'type: ensight gold\n') caseOut.write('GEOMETRY\n'+'model: '+filename+'Boundary.geo\n') caseOut.close() meshOut=open(filename+'Boundary.geo','w') meshOut.write('Unstructured Triangular Surface Mesh\n\n') meshOut.write('node id given\n') meshOut.write('element id given\n') meshOut.write('part \n'+'%10i\n' % 1) if description: meshOut.write(description+'\n') else: meshOut.write('A Mesh\n') meshOut.write('coordinates\n'+'%10i\n' % self.nExteriorNodes_global) for nN in range(self.nExteriorNodes_global): ensightNodeNumber = (nN+base) meshOut.write('%10i\n' % ensightNodeNumber) for nN in range(self.nExteriorNodes_global): meshOut.write('%12.5E\n' % self.nodeArray[self.exteriorNodeArray[nN],0]) for nN in range(self.nExteriorNodes_global): meshOut.write('%12.5E\n' % self.nodeArray[self.exteriorNodeArray[nN],1]) for nN in range(self.nExteriorNodes_global): meshOut.write('%12.5E\n' % self.nodeArray[self.exteriorNodeArray[nN],2]) meshOut.write('tria3\n'+'%10i\n' % self.nExteriorTriangles_global) for tN in range(self.nExteriorTriangles_global): ensightElementNumber = tN + base meshOut.write('%10i\n' % ensightElementNumber) tA = self.triangleArray for tN in self.exteriorTriangleArray: meshOut.write('%10i%10i%10i\n' % (self.globalToExteriorNodeArray[tA[tN,0]]+base, self.globalToExteriorNodeArray[tA[tN,1]]+base, self.globalToExteriorNodeArray[tA[tN,2]]+base)) meshOut.close() def writeMeshXdmf(self,ar,name='',t=0.0,init=False,meshChanged=False,Xdmf_ElementTopology="Tetrahedron",tCount=0): if self.arGridCollection is not None: init = False elif not init: self.arGridCollection = ar.domain.find("Grid") if init: self.arGridCollection = SubElement(ar.domain,"Grid",{"Name":"Mesh "+name, "GridType":"Collection", "CollectionType":"Temporal"}) if self.arGrid is None or self.arTime.get('Value') != "{0:e}".format(t): if ar.global_sync: # #topology and geometry # self.arGrid = SubElement(self.arGridCollection,"Grid",{"GridType":"Uniform"}) self.arTime = SubElement(self.arGrid,"Time",{"Value":str(t),"Name":str(tCount)}) topology = SubElement(self.arGrid,"Topology", {"Type":Xdmf_ElementTopology, "NumberOfElements":"%i" % (self.globalMesh.nElements_global,)}) elements = SubElement(topology,"DataItem", {"Format":ar.dataItemFormat, "DataType":"Int", "Dimensions":"%i %i" % (self.globalMesh.nElements_owned, self.nNodes_element)}) geometry = SubElement(self.arGrid,"Geometry",{"Type":"XYZ"}) nodes = SubElement(geometry,"DataItem", {"Format":ar.dataItemFormat, "DataType":"Float", "Precision":"8", "Dimensions":"%i %i" % (self.globalMesh.nNodes_global,3)}) #material types elementMaterialTypes = SubElement(self.arGrid,"Attribute",{"Name":"elementMaterialTypes", "AttributeType":"Scalar", "Center":"Cell"}) elementMaterialTypesValues = SubElement(elementMaterialTypes,"DataItem", {"Format":ar.dataItemFormat, "DataType":"Int", "Dimensions":"%i" % (self.globalMesh.nElements_owned,)}) if ar.hdfFile is not None: elements.text = ar.hdfFilename+":/elements"+name+str(tCount) nodes.text = ar.hdfFilename+":/nodes"+name+str(tCount) elementMaterialTypesValues.text = ar.hdfFilename+":/"+"elementMaterialTypes"+"_t"+str(tCount) if init or meshChanged: ar.create_dataset_sync('elements'+name+str(tCount), offsets = self.globalMesh.elementOffsets_subdomain_owned, data = self.globalMesh.nodeNumbering_subdomain2global[self.elementNodesArray[:self.nElements_owned]]) ar.create_dataset_sync('nodes'+name+str(tCount), offsets = self.globalMesh.nodeOffsets_subdomain_owned, data = self.nodeArray[:self.nNodes_owned]) ar.create_dataset_sync("elementMaterialTypes"+"_t"+str(tCount), offsets = self.globalMesh.elementOffsets_subdomain_owned, data = self.elementMaterialTypes[:self.nElements_owned]) else: assert False, "global_sync not supported with text heavy data" else: # #topology and geometry # self.arGrid = SubElement(self.arGridCollection,"Grid",{"GridType":"Uniform"}) self.arTime = SubElement(self.arGrid,"Time",{"Value":str(t),"Name":str(tCount)}) topology = SubElement(self.arGrid,"Topology", {"Type":Xdmf_ElementTopology, "NumberOfElements":"%i" % (self.nElements_owned,)}) elements = SubElement(topology,"DataItem", {"Format":ar.dataItemFormat, "DataType":"Int", "Dimensions":"%i %i" % (self.nElements_owned,self.nNodes_element)}) geometry = SubElement(self.arGrid,"Geometry",{"Type":"XYZ"}) nodes = SubElement(geometry,"DataItem", {"Format":ar.dataItemFormat, "DataType":"Float", "Precision":"8", "Dimensions":"%i %i" % (self.nNodes_global,3)}) #material types elementMaterialTypes = SubElement(self.arGrid,"Attribute",{"Name":"elementMaterialTypes", "AttributeType":"Scalar", "Center":"Cell"}) elementMaterialTypesValues = SubElement(elementMaterialTypes,"DataItem", {"Format":ar.dataItemFormat, "DataType":"Int", "Dimensions":"%i" % (self.nElements_owned,)}) if ar.hdfFile is not None: elements.text = ar.hdfFilename+":/elements"+str(ar.comm.rank())+name+str(tCount) nodes.text = ar.hdfFilename+":/nodes"+str(ar.comm.rank())+name+str(tCount) elementMaterialTypesValues.text = ar.hdfFilename+":/"+"elementMaterialTypes"+"_p"+str(ar.comm.rank())+"_t"+str(tCount) if init or meshChanged: ar.create_dataset_async('elements'+str(ar.comm.rank())+name+str(tCount), data = self.elementNodesArray[:self.nElements_owned]) ar.create_dataset_async('nodes'+str(ar.comm.rank())+name+str(tCount), data = self.nodeArray) ar.create_dataset_async("elementMaterialTypes"+"_p"+str(ar.comm.rank())+"_t"+str(tCount), data = self.elementMaterialTypes[:self.nElements_owned]) else: SubElement(elements,"xi:include",{"parse":"text","href":"./"+ar.textDataDir+"/elements"+name+".txt"}) SubElement(nodes,"xi:include",{"parse":"text","href":"./"+ar.textDataDir+"/nodes"+name+".txt"}) SubElement(elementMaterialTypesValues,"xi:include",{"parse":"text","href":"./"+ar.textDataDir+"/"+"elementMaterialTypes"+str(tCount)+".txt"}) if init or meshChanged: np.savetxt(ar.textDataDir+"/elements"+name+".txt",self.elementNodesArray[:self.nElements_owned],fmt='%d') np.savetxt(ar.textDataDir+"/nodes"+name+".txt",self.nodeArray) np.savetxt(ar.textDataDir+"/"+"elementMaterialTypes"+str(tCount)+".txt",self.elementMaterialTypes[:self.nElements_owned]) class MultilevelTetrahedralMesh(MultilevelMesh): """A hierarchical multilevel mesh with tetrahedral cells""" def __init__(self, nx, ny, nz, x=0.0, y=0.0, z=0.0, Lx=1.0, Ly=1.0, Lz=1.0, refinementLevels=1, skipInit=False, nLayersOfOverlap=1, parallelPartitioningType=MeshParallelPartitioningTypes.node): from . import cmeshTools from . import Comm MultilevelMesh.__init__(self) self.useC = True self.nLayersOfOverlap = nLayersOfOverlap; self.parallelPartitioningType = parallelPartitioningType logEvent("Generating tetrahedral mesh") if not skipInit: if self.useC: self.meshList.append(TetrahedralMesh()) self.meshList[0].generateTetrahedralMeshFromRectangularGrid(nx,ny,nz,Lx,Ly,Lz) self.cmultilevelMesh = cmeshTools.CMultilevelMesh(self.meshList[0].cmesh,refinementLevels) self.buildFromC(self.cmultilevelMesh) self.meshList[0].nodeArray[:,0] += x self.meshList[0].nodeArray[:,1] += y self.meshList[0].nodeArray[:,2] += z self.meshList[0].partitionMesh(nLayersOfOverlap=nLayersOfOverlap,parallelPartitioningType=parallelPartitioningType) for l in range(1,refinementLevels): self.meshList.append(TetrahedralMesh()) self.meshList[l].cmesh = self.cmeshList[l] self.meshList[l].buildFromC(self.cmeshList[l]) self.meshList[l].partitionMesh(nLayersOfOverlap=nLayersOfOverlap,parallelPartitioningType=parallelPartitioningType) else: grid=RectangularGrid(nx,ny,nz,Lx,Ly,Lz) self.meshList.append(TetrahedralMesh()) self.meshList[0].rectangularToTetrahedral(grid) self.meshList[0].nodeArray[:,0] += x self.meshList[0].nodeArray[:,1] += y self.meshList[0].nodeArray[:,2] += z self.elementChildren=[] logEvent(self.meshList[0].meshInfo()) for l in range(1,refinementLevels): self.refine() logEvent(self.meshList[-1].meshInfo()) self.buildArrayLists() def generateFromExistingCoarseMesh(self,mesh0,refinementLevels,nLayersOfOverlap=1, parallelPartitioningType=MeshParallelPartitioningTypes.node): from . import cmeshTools #blow away or just trust garbage collection self.nLayersOfOverlap=nLayersOfOverlap;self.parallelPartitioningType=parallelPartitioningType self.meshList = [] self.elementParents = None self.cmultilevelMesh = None if self.useC: self.meshList.append(mesh0) logEvent("cmeshTools.CMultilevelMesh") self.cmultilevelMesh = cmeshTools.CMultilevelMesh(self.meshList[0].cmesh,refinementLevels) logEvent("buildFromC") self.buildFromC(self.cmultilevelMesh) logEvent("partitionMesh") self.meshList[0].partitionMesh(nLayersOfOverlap=nLayersOfOverlap,parallelPartitioningType=parallelPartitioningType) for l in range(1,refinementLevels): self.meshList.append(TetrahedralMesh()) self.meshList[l].cmesh = self.cmeshList[l] self.meshList[l].buildFromC(self.meshList[l].cmesh) self.meshList[l].partitionMesh(nLayersOfOverlap=nLayersOfOverlap,parallelPartitioningType=parallelPartitioningType) else: grid=RectangularGrid(nx,ny,nz,Lx,Ly,Lz) self.meshList.append(TetrahedralMesh()) self.meshList[0].rectangularToTetrahedral(grid) self.meshList[0].subdomainMesh = self.meshList[0] self.elementChildren=[] logEvent(self.meshList[0].meshInfo()) for l in range(1,refinementLevels): self.refine() self.meshList[l].subdomainMesh = self.meshList[l] logEvent(self.meshList[-1].meshInfo()) self.buildArrayLists() def generatePartitionedMeshFromPUMI(self,mesh0,refinementLevels,nLayersOfOverlap=1): from . import cmeshTools self.meshList = [] self.meshList.append(mesh0) self.cmultilevelMesh = cmeshTools.CMultilevelMesh(self.meshList[0].cmesh,refinementLevels) self.buildFromC(self.cmultilevelMesh) self.elementParents = None self.elementChildren=[] def generatePartitionedMeshFromTetgenFiles(self,filebase,base,mesh0,refinementLevels,nLayersOfOverlap=1, parallelPartitioningType=MeshParallelPartitioningTypes.node): from . import cmeshTools if filebase==None: filebase="mesh" assert(refinementLevels==1) assert(parallelPartitioningType==MeshParallelPartitioningTypes.node) assert(nLayersOfOverlap<=1) mesh0.cmesh = cmeshTools.CMesh() #blow away or just trust garbage collection self.nLayersOfOverlap=nLayersOfOverlap;self.parallelPartitioningType=parallelPartitioningType self.meshList = [] self.elementParents = None self.cmultilevelMesh = None self.meshList.append(mesh0) logEvent("cmeshTools.CMultilevelMesh") self.cmultilevelMesh = cmeshTools.CMultilevelMesh(self.meshList[0].cmesh,refinementLevels) logEvent("buildFromC") self.buildFromC(self.cmultilevelMesh) logEvent("partitionMesh") self.meshList[0].partitionMeshFromFiles(filebase,base,nLayersOfOverlap=nLayersOfOverlap,parallelPartitioningType=parallelPartitioningType) def refine(self): self.meshList.append(TetrahedralMesh()) childrenDict = self.meshList[-1].refine(self.meshList[-2]) self.elementChildren.append(childrenDict) def computeGeometricInfo(self): for m in self.meshList: m.computeGeometricInfo() class MultilevelHexahedralMesh(MultilevelMesh): """A hierarchical multilevel mesh with hexahedral cells""" def __init__(self, nx, ny, nz, px=0, py=0, pz=0, x=0.0, y=0.0, z=0.0, Lx=1.0, Ly=1.0, Lz=1.0, refinementLevels=1, skipInit=False, nLayersOfOverlap=1, parallelPartitioningType=MeshParallelPartitioningTypes.node): from . import cmeshTools from . import Comm MultilevelMesh.__init__(self) if refinementLevels == 1: self.useC = True else: self.useC = False self.nLayersOfOverlap = nLayersOfOverlap; self.parallelPartitioningType = parallelPartitioningType logEvent("Generating hexahedral mesh") if not skipInit: if self.useC: self.meshList.append(HexahedralMesh()) self.meshList[0].generateHexahedralMeshFromRectangularGrid(nx,ny,nz,Lx,Ly,Lz) self.meshList[0].nodeArray[:,0] += x self.meshList[0].nodeArray[:,1] += y self.meshList[0].nodeArray[:,2] += z self.cmultilevelMesh = cmeshTools.CMultilevelMesh(self.meshList[0].cmesh,refinementLevels) self.buildFromC(self.cmultilevelMesh) self.meshList[0].partitionMesh(nLayersOfOverlap=nLayersOfOverlap,parallelPartitioningType=parallelPartitioningType) for l in range(1,refinementLevels): self.meshList.append(HexahedralMesh()) self.meshList[l].cmesh = self.cmeshList[l] self.meshList[l].buildFromC(self.cmeshList[l]) self.meshList[l].partitionMesh(nLayersOfOverlap=nLayersOfOverlap,parallelPartitioningType=parallelPartitioningType) else: grid=RectangularGrid(nx,ny,nz,Lx,Ly,Lz) self.meshList.append(HexahedralMesh()) self.elementChildren=[] self.meshList[0].sigmaMax=0.0 logEvent(self.meshList[0].meshInfo()) for l in range(1,refinementLevels): self.refine() self.meshList[-1].sigmaMax=0.0 logEvent(self.meshList[-1].meshInfo()) self.buildArrayLists() def generateFromExistingCoarseMesh(self,mesh0,refinementLevels,nLayersOfOverlap=1, parallelPartitioningType=MeshParallelPartitioningTypes.node): from . import cmeshTools #blow away or just trust garbage collection self.nLayersOfOverlap=nLayersOfOverlap;self.parallelPartitioningType=parallelPartitioningType self.meshList = [] self.elementParents = None self.cmultilevelMesh = None self.meshList.append(mesh0) self.cmultilevelMesh = cmeshTools.CMultilevelMesh(self.meshList[0].cmesh,refinementLevels) self.buildFromC(self.cmultilevelMesh) self.meshList[0].partitionMesh(nLayersOfOverlap=nLayersOfOverlap,parallelPartitioningType=parallelPartitioningType) for l in range(1,refinementLevels): self.meshList.append(HexahedralMesh()) self.meshList[l].cmesh = self.cmeshList[l] self.meshList[l].buildFromC(self.meshList[l].cmesh) self.meshList[l].partitionMesh(nLayersOfOverlap=nLayersOfOverlap,parallelPartitioningType=parallelPartitioningType) def refine(self): raise NotImplementedError self.meshList.append(HexahedralMesh()) childrenDict = self.meshList[-1].refine(self.meshList[-2]) self.elementChildren.append(childrenDict) def computeGeometricInfo(self): for m in self.meshList: m.computeGeometricInfo() def buildReferenceSimplex(nd=2): """ Create and return a Proteus mesh object for the reference element. Parameters ---------- nd : int Dimension of reference element Returns ------- mesh : :class:`proteus.MeshTools.TriangularMesh` Simplex mesh """ from proteus import Domain assert(nd in [1,2,3]) if nd==1: pass # Note sure what needs to go here?! unit_simplex_domain = Domain.unitSimplex(nd) polyfile = "reference_element" unit_simplex_domain.writePoly(polyfile) if nd==2: runTriangle(polyfile, "Yp") mesh = genMeshWithTriangle(polyfile, nbase=1) mesh.partitionMesh() mesh.globalMesh = mesh return mesh if nd==3: runTetgen(polyfile, "Yp") mesh = genMeshWithTetgen(polyfile, nbase = 1) return mesh class TriangularMesh(Mesh): """A mesh of triangles The nodes, edges, and triangles are indexed by their node tuples. The corresponding lists are derived from the dictionaries, and sorted lexicographically. The global node numbers are redefined to give a lexicographic ordering. The mesh can be generated from a rectangular grid and refined using either 3t or Freudenthal-Bey global refinement. """ def __init__(self): Mesh.__init__(self) self.nodeDict={} self.edgeDict={} self.triangleDict={} self.triangleList=[] self.oldToNewNode=[] def meshType(self): return 'simplex' def computeGeometricInfo(self): from . import cmeshTools cmeshTools.computeGeometricInfo_triangle(self.cmesh) def generateTriangularMeshFromRectangularGrid(self,nx,ny,Lx,Ly,triangleFlag=1): from . import cmeshTools self.cmesh = cmeshTools.CMesh() cmeshTools.generateTriangularMeshFromRectangularGrid(nx,ny,Lx,Ly,self.cmesh,triangleFlag) cmeshTools.allocateGeometricInfo_triangle(self.cmesh) cmeshTools.computeGeometricInfo_triangle(self.cmesh) self.buildFromC(self.cmesh) def rectangularToTriangularOriented(self,grid): #copy the nodes from the rectangular mesh #I want to be able to renumber latter without #changing the grid nodes, so I do deep copies here self.nodeList = [Node(n.N,n.p[X],n.p[Y],n.p[Z]) for n in grid.nodeList] self.nodeDict = dict([(n,n) for n in self.nodeList]) for i in range(grid.nHx): for j in range(grid.nHy): k=0 n0 = self.nodeList[grid.getNodeNumber(i,j,k)] n1 = self.nodeList[grid.getNodeNumber(i,j+1,k)] n2 = self.nodeList[grid.getNodeNumber(i+1,j,k)] n3 = self.nodeList[grid.getNodeNumber(i+1,j+1,k)] self.newTriangle([n0,n1,n3]) self.newTriangle([n0,n2,n3]) self.finalize() #self.buildListsEdges() #self.buildListsTriangles() def rectangularToTriangularOrientedOtherWay(self,grid): #copy the nodes from the rectangular mesh #I want to be able to renumber latter without #changing the grid nodes, so I do deep copies here self.nodeList = [Node(n.N,n.p[X],n.p[Y],n.p[Z]) for n in grid.nodeList] self.nodeDict = dict([(n,n) for n in self.nodeList]) for i in range(grid.nHx): for j in range(grid.nHy): k=0 n0 = self.nodeList[grid.getNodeNumber(i,j,k)] n1 = self.nodeList[grid.getNodeNumber(i,j+1,k)] n2 = self.nodeList[grid.getNodeNumber(i+1,j,k)] n3 = self.nodeList[grid.getNodeNumber(i+1,j+1,k)] self.newTriangle([n0,n2,n1]) self.newTriangle([n2,n3,n1]) self.finalize() #self.buildListsEdges() #self.buildListsTriangles() def rectangularToTriangularRedBlack(self,grid): #copy the nodes from the rectangular mesh #I want to be able to renumber latter without #changing the grid nodes, so I do deep copies here self.nodeList = [Node(n.N,n.p[X],n.p[Y],n.p[Z]) for n in grid.nodeList] self.nodeDict = dict([(n,n) for n in self.nodeList]) self.triangleDict={} for i in range(grid.nHx): for j in range(grid.nHy): k=0 #associate the element (i,j,k) with the #left, front, bottom node #get the left,front,bottom,node and its color if (grid.getColor(i,j,k) == grid.black): b0 = self.nodeList[grid.getNodeNumber(i,j,k)] r0 = self.nodeList[grid.getNodeNumber(i+1,j,k)] r1 = self.nodeList[grid.getNodeNumber(i,j+1,k)] b1 = self.nodeList[grid.getNodeNumber(i+1,j+1,k)] else: r0 = self.nodeList[grid.getNodeNumber(i,j,k)] b0 = self.nodeList[grid.getNodeNumber(i+1,j,k)] b1 = self.nodeList[grid.getNodeNumber(i,j+1,k)] r1 = self.nodeList[grid.getNodeNumber(i+1,j+1,k)] self.newTriangle([b0,r0,r1]) self.newTriangle([b1,r0,r1]) self.finalize() #self.buildListsEdges() #self.buildListsTriangles() #mwf debug switch to redblac rectangularToTriangular = rectangularToTriangularOrientedOtherWay#rectangularToTriangularOriented def generateFromTriangleMesh(self,ctrirep,base): from .import cmeshTools self.cmesh = cmeshTools.CMesh() cmeshTools.generateFromTriangleMesh(self.cmesh,ctrirep,base) cmeshTools.allocateGeometricInfo_triangle(self.cmesh) cmeshTools.computeGeometricInfo_triangle(self.cmesh) self.buildFromC(self.cmesh) def generateFromTriangleFiles(self,filebase,base): from .import cmeshTools self.cmesh = cmeshTools.CMesh() cmeshTools.generateFromTriangleFiles(self.cmesh,filebase,base) cmeshTools.allocateGeometricInfo_triangle(self.cmesh) cmeshTools.computeGeometricInfo_triangle(self.cmesh) self.buildFromC(self.cmesh) def writeTriangleFiles(self,filebase,base): from .import cmeshTools cmeshTools.writeTriangleFiles(self.cmesh,filebase,base) def generateFrom2DMFile(self,filebase,base=1): from .import cmeshTools self.cmesh = cmeshTools.CMesh() cmeshTools.generateFrom2DMFile(self.cmesh,filebase,base) cmeshTools.allocateGeometricInfo_triangle(self.cmesh) cmeshTools.computeGeometricInfo_triangle(self.cmesh) self.buildFromC(self.cmesh) def constructTriangularMeshOnRectangle(self,Lx,Ly,nx,ny,writeMesh=0, meshFileBase='mesh2d'): """ wrapper function for making a triangular mesh on the rectangle [0,Lx] x [0,Ly]. """ nz = 1 Lz = 1.0 grid2d = RectangularGrid(nx,ny,nz,Lx,Ly,Lz) #grid2d.writeEdgesGnuplot('grid2d') #grid2d.viewMeshGnuplotPipe('grid2d') self.rectangularToTriangular(grid2d) if writeMesh == 1: #print mesh in gnuplot format self.writeEdgesGnuplot(meshFileBase) #can view with #self.viewMeshGnuplotPipe(meshFileBase) elif writeMesh == 2: self.writeEdgesMatlab(meshFileBase) #view in matlab with meshFileBase.m #end else return self def buildFromSets(self,triangleSet,edgeSet,nodeSet): self.nodeList = list(nodeSet) self.nodeDict = dict([(n,n) for n in self.nodeList]) self.edgeList = list(edgeSet) self.edgeDict = dict([(e.nodes,e) for e in self.edgeList]) self.triangleList = list(triangleSet) self.triangleDict = dict([(t.nodes,t) for t in self.triangleList]) self.elementList = self.triangleList self.elementBoundaryList = self.edgeList def fixLocalNumbering(self): for tN in range(len(self.triangleList)): self.triangleList[tN].computeGeometricInfo() if edet(self.triangleList[tN].linearMap) < 0: newNodes = list(self.triangleList[tN].nodes) newNodes[2] = self.triangleList[tN].nodes[1] newNodes[1] = self.triangleList[tN].nodes[2] self.triangleList[tN].nodes = newNodes def finalize(self): self.buildLists() #self.fixLocalNumbering() self.buildArraysFromLists() #todo: build boundary mesh def buildLists(self): self.buildListsNodes() self.buildListsEdges() self.buildListsTriangles() self.elementList = self.triangleList self.elementBoundaryList = self.edgeList def buildListsNodes(self): keyList = list(self.nodeDict.keys()) keyList.sort() self.nodeList=[] self.oldToNewNode=list(range(len(self.nodeDict))) for nN,k in enumerate(keyList): self.oldToNewNode[self.nodeDict[k].N]=nN self.nodeDict[k].N = nN self.nodeList.append(self.nodeDict[k]) def buildListsEdges(self): keyList = list(self.edgeDict.keys()) keyList.sort() self.edgeList=[] for eN,k in enumerate(keyList): self.edgeDict[k].N = eN self.edgeList.append(self.edgeDict[k]) def buildListsTriangles(self): keyList = list(self.triangleDict.keys()) keyList.sort() self.triangleList=[] for tN,k in enumerate(keyList): self.triangleDict[k].N = tN self.triangleList.append(self.triangleDict[k]) self.polygonList = self.triangleList def newTriangle(self,nodes): t = Triangle(len(self.triangleDict),nodes) self.triangleDict[t.nodes] = t self.registerEdges(t) return t def registerEdges(self,t): for en,e in enumerate(t.edges): if e.nodes in self.edgeDict: t.edges[en]=self.edgeDict[e.nodes] else: eN=len(self.edgeDict) e.N=eN self.edgeDict[e.nodes]=e def registerNode(self,node): if node in self.nodeDict: node = self.nodeDict[node] else: node.N = len(self.nodeDict) self.nodeDict[node] = node return node def buildLevelSetMesh(self,value,nodalValues): levelSetMesh = EdgeMesh() self.levelSetNodeNumbers = set() for t in self.triangleList: nodes={} for e in t.edges: nl = e.nodes[0] vl = nodalValues[nl.N] nr = e.nodes[1] vr = nodalValues[nr.N] if ((vl >= value and value >= vr) or (vl <= value and value <= vr)): if vl == vr: newNl = Node(len(levelSetMesh.nodeDict), nl.p[X], nl.p[Y], nl.p[Z]) newNl = levelSetMesh.registerNode(newNl) newNr = Node(len(levelSetMesh.nodeDict), nr.p[X], nr.p[Y], nr.p[Z]) newNr = levelSetMesh.registerNode(newNr) levelSetMesh.newEdge([newNl,newNr]) self.levelSetNodeNumbers.add(nl.N) self.levelSetNodeNumbers.add(nr.N) elif value == vl: newNode = Node(len(levelSetMesh.nodeDict), nl.p[X], nl.p[Y], nl.p[Z]) nodes[newNode] = newNode self.levelSetNodeNumbers.add(nl.N) elif value == vr and len(nodes) < 2: newNode = Node(len(levelSetMesh.nodeDict), nr.p[X], nr.p[Y], nr.p[Z]) nodes[newNode] = newNode self.levelSetNodeNumbers.add(nr.N) else: wr = old_div((value - vl), (vr - vl)) wl = old_div((value - vr), (vl - vr)) newPoint = nl.p*wl + nr.p*wr newNode = Node(len(levelSetMesh.nodeDict), newPoint[X], newPoint[Y], newPoint[Z]) nodes[newNode] = newNode self.levelSetNodeNumbers.add(nl.N) self.levelSetNodeNumbers.add(nr.N) elif vl < value: self.levelSetNodeNumbers.add(nl.N) elif vr < value: self.levelSetNodeNumbers.add(nr.N) if len(nodes) == 0: pass elif len(nodes) == 1: print("singleton") elif len(nodes) == 2: newNodes=[] for n in list(nodes.values()): newNodes.append(levelSetMesh.registerNode(n)) levelSetMesh.newEdge(newNodes) else: print("unexpected case in buildLevelSetMesh") print(t.N) for e in t.edges: print(e.N) for n in e.nodes: print(n.N) print(n.p) print("level set triangle") for n in list(nodes.values()): print(n.p) if len(levelSetMesh.edgeDict) == 0: print("level set does not cross any edges") return None else: levelSetMesh.finalize() return levelSetMesh def refine3t(self,oldMesh): childrenDict={} for t in oldMesh.triangleList: #deep copy old nodes because we'll renumber tNodes = [Node(eN,n.p[X],n.p[Y],n.p[Z]) for eN,n in enumerate(t.nodes)] for lnN,n in enumerate(tNodes): tNodes[lnN]=self.registerNode(n) #add new node t.computeGeometricInfo() newNode = Node(len(self.nodeDict), t.barycenter[X], t.barycenter[Y], t.barycenter[Z]) newNode = self.registerNode(newNode) t1=self.newTriangle([tNodes[0],tNodes[1],newNode]) t2=self.newTriangle([tNodes[1],tNodes[2],newNode]) t3=self.newTriangle([tNodes[2],tNodes[0],newNode]) childrenDict[t.N]=[t1,t2,t3] self.finalize() return childrenDict def refineFreudenthalBey(self,oldMesh): logEvent("Refining the mesh using Freudenthal-Bey refinement") childrenDict={} for t in list(oldMesh.triangleDict.values()): #deep copy old nodes because we'll renumber tNodes = [Node(nN,n.p[X],n.p[Y],n.p[Z]) for nN,n in enumerate(t.nodes)] for lnN,n in enumerate(tNodes): tNodes[lnN]=self.registerNode(n) #add new nodes (midpoints of edges) #use local edge tuples as keys newNodes={} for et,en in t.edgeMap.items(): t.edges[en].computeGeometricInfo() p = t.edges[en].barycenter newNodes[et] = Node(en,p[X],p[Y],p[Z]) #set the global node numbers for k,n in newNodes.items(): newNodes[k]=self.registerNode(n) #add corner triangles t1=self.newTriangle([tNodes[0], newNodes[(0,1)], newNodes[(0,2)]]) t2=self.newTriangle([tNodes[1], newNodes[(0,1)], newNodes[(1,2)]]) t3=self.newTriangle([tNodes[2], newNodes[(0,2)], newNodes[(1,2)]]) #add center triangle t4=self.newTriangle([newNodes[(0,1)], newNodes[(1,2)], newNodes[(0,2)]]) childrenDict[t.N]=[t1,t2,t3,t4] self.finalize() return childrenDict #for debugging: print each tet #self.edgeList=[] #Tlist = self.tetrahedronDict.values() #for T in Tlist: # self.edgeList = self.edgeList + T.edges def refine(self,oldMesh): return self.refineFreudenthalBey(oldMesh) def meshInfo(self): minfo = """Number of triangles : %d Number of edges : %d Number of nodes : %d\n""" % (self.nElements_global, self.nElementBoundaries_global, self.nNodes_global) if self.subdomainMesh != self: sinfo = self.subdomainMesh.meshInfo() info = "*** Global ***\n" + minfo + "\n*** Local ***\n" + sinfo return info return minfo def readMeshADH(self,filename,adhBase=1,suffix='3dm'): meshIn = open(filename+'.'+suffix,'r') firstLine = meshIn.readline() firstWords = firstLine.split() print("Reading object=%s from file=%s" % (firstWords[0],filename)) line = meshIn.readline() columns = line.split() triangles = [] triangleEdges=set() logEvent("Reading "+str(filename)+ \ " and building node lists for triangles, and edges") #assume triangles are ordered by triangle number while (columns[0] == 'E3T'): nodeNumbers = [int(c) - adhBase for c in columns[2:5]] nodeNumbers.sort() triangles.append(array.array('i',nodeNumbers)) triangleEdges.update([(nodeNumbers[0],nodeNumbers[1]), (nodeNumbers[0],nodeNumbers[2]), (nodeNumbers[1],nodeNumbers[2])]) line = meshIn.readline() columns = line.split() print("Building node list and dict") #assume nodes are ordered by node number while (len(columns) == 5): newNode = Node(int(columns[1]) - adhBase, float(columns[2]), float(columns[3]), float(columns[4])) self.nodeList.append(newNode) self.nodeDict[newNode]=newNode line = meshIn.readline() columns = line.split() print("Number of triangles :"+str(len(triangles))) print("Number of edges :"+str(len(triangleEdges))) print("Number of nodes :"+str(len(self.nodeList))) print("Number of objects :"+\ str(len(triangleEdges)+len(triangles)+len(self.nodeList))) print("Building edge list") self.edgeList =[Edge(edgeNumber=eN,nodes=[self.nodeList[nN[0]], self.nodeList[nN[1]]]) for eN,nN in enumerate(triangleEdges)] print("Building edge dict") self.edgeDict = dict([(e.nodes,e) for e in self.edgeList]) print("Building triangle list") self.triangleList =[Triangle(triangleNumber=tN, nodes=[self.nodeList[nN[0]], self.nodeList[nN[1]], self.nodeList[nN[2]]], edgeDict=self.edgeDict) for tN,nN in enumerate(triangles)] print("Building triangle dict") self.triangleDict = dict([(t.nodes,t) for t in self.triangleList]) self.elementList = self.triangleList self.elementBoundaryList = self.edgeList def writeMeshXdmf(self,ar,name='',t=0.0,init=False,meshChanged=False,tCount=0,EB=False): Mesh.writeMeshXdmf(self,ar,name,t,init,meshChanged,"Triangle",tCount,EB=EB) def writeMeshEnsight(self,filename,description=None): base=1 #write the casefile caseOut=open(filename+'.case','w') caseOut.write('FORMAT\n'+'type: ensight gold\n') caseOut.write('GEOMETRY\n'+'model: '+filename+'.geo\n') caseOut.close() meshOut=open(filename+'.geo','w') meshOut.write('Ensight Gold\n') meshOut.write('Unstructured Triangular Mesh\n') meshOut.write('node id given\n') meshOut.write('element id given\n') meshOut.write('part \n'+'%10i\n' % 1) if description: meshOut.write(description+'\n') else: meshOut.write('A Mesh\n') meshOut.write('coordinates\n'+'%10i\n' % self.nNodes_global) for nN in range(self.nNodes_global): meshOut.write('%10i\n' % (nN+base)) for nN in range(self.nNodes_global): meshOut.write('%12.5E\n' % self.nodeArray[nN,0]) for nN in range(self.nNodes_global): meshOut.write('%12.5E\n' % self.nodeArray[nN,1]) for nN in range(self.nNodes_global): meshOut.write('%12.5E\n' % self.nodeArray[nN,2]) meshOut.write('tria3\n'+'%10i\n' % self.nElements_global) for eN in range(self.nElements_global): meshOut.write('%10i\n' % (eN+base)) for eN in range(self.nElements_global): meshOut.write('%10i%10i%10i\n' % tuple((nN+base) for nN in self.elementNodesArray[eN,:])) meshOut.close() def appendMeshEnsight(self,filename,description=None): base=1 #write the casefile caseOut=open(filename+'.case','a') caseOut.write('GEOMETRY\n'+'model: '+filename+'.geo\n') caseOut.close() meshOut=open(filename+'.geo','w') meshOut.write('Unstructured Triangular Mesh\n\n') meshOut.write('node id given\n') meshOut.write('element id given\n') meshOut.write('part \n'+'%10i\n' % 1) if description: meshOut.write(description+'\n') else: meshOut.write('The whole mesh\n') meshOut.write('coordinates\n'+'%10i\n' % len(self.nodeList)) for n in self.nodeList: nN = n.N+base meshOut.write('%10i\n' % nN) for n in self.nodeList: meshOut.write('%12.5E\n' % n.p[X]) for n in self.nodeList: meshOut.write('%12.5E\n' % n.p[Y]) for n in self.nodeList: meshOut.write('%12.5E\n' % n.p[Z]) meshOut.write('tria3\n'+'%10i\n' % len(self.elementList)) for e in self.elementList: eN = e.N + base meshOut.write('%10i\n' % eN) for e in self.elementList: meshOut.write('%10i%10i%10i\n' % tuple(n.N+base for n in e.nodes)) meshOut.close() def writeMeshADH(self,filename,adhBase=1): from .import cmeshTools cmeshTools.write2dmFiles(self.cmesh,filename,adhBase) def writeAsymptote(self,fileprefix,L,x,units="m"): """ Write a representation of the triangular mesh in the Asymptote vector graphics language """ unitsize=old_div(4.0,L[0]) f = open(fileprefix+".asy",'w') fileString=""" unitsize(4.0 inches / %(Lx)f); size(5 inches); real Lx=%(Lx)f; real Ly=%(Ly)f; real offset=0.0125Lx; real x=%(x)f; real y=%(y)f; string strx="$%(Lx)2.2f\mbox{%(units)s}$"; string stry="$%(Ly)2.2f\mbox{%(units)s}$"; draw(strx,(x,y-offset)--(x+Lx,y-offset),S,black,Bars,Arrows,PenMargins); draw(stry,(x-offset,y)--(x-offset,y+Ly),W,black,Bars,Arrows,PenMargins); import graph; import palette; pen[] regionPens = Rainbow(NColors=%(nRegionFlags)d); pen[] boundaryPens = Rainbow(NColors=%(nBoundaryFlags)d); """ % {'Lx':L[0],'Ly':L[1],'x':x[0],'y':x[1],'units':units, 'nRegionFlags':(max(self.elementMaterialTypes) - min(self.elementMaterialTypes)), 'nBoundaryFlags':(max(self.elementBoundaryMaterialTypes)-min(self.elementBoundaryMaterialTypes))} #now draw triangles for t,tFlag in zip(self.elementNodesArray,self.elementMaterialTypes): fileString+="fill((%f,%f)--(%f,%f)--(%f,%f)--cycle,regionPens[%d]);\n" % (self.nodeArray[t[0]][0],self.nodeArray[t[0]][1], self.nodeArray[t[1]][0],self.nodeArray[t[1]][1], self.nodeArray[t[2]][0],self.nodeArray[t[2]][1], tFlag-min(self.elementMaterialTypes)) for eb,ebFlag in zip(self.elementBoundaryNodesArray,self.elementBoundaryMaterialTypes): if True:#ebFlag > 0: fileString+="draw((%f,%f)--(%f,%f),boundaryPens[%d]+linewidth(0.01));\n" % (self.nodeArray[eb[0]][0],self.nodeArray[eb[0]][1], self.nodeArray[eb[1]][0],self.nodeArray[eb[1]][1], ebFlag-min(self.elementBoundaryMaterialTypes)) f.write(fileString) f.close() # def buildMatlabMeshDataStructures(self,meshFileBase='meshMatlab',writeToFile=True): # """ # build array data structures for matlab finite element mesh representation # and write to a file to view and play with in matlatb # in matlab can then print mesh with # pdemesh(p,e,t) # where # p is the vertex or point matrix # e is the edge matrix, and # t is the element matrix # points matrix is [2 x num vertices] # format : # row 1 = x coord, # row 2 = y coord for nodes in mesh # edge matrix is [7 x num edges] # format: # row 1 = start vertex number # row 2 = end vertex number # row 3 = start value in edge parameterization, should be 0 # row 4 = end value in edge parameterization, should be 1 # row 5 = global edge id, base 1 # row 6 = subdomain on left? always 1 for now # row 7 = subdomain on right? always 0 for now # element matrix is [4 x num elements] # row 1 = vertex 1 global number # row 2 = vertex 2 global number # row 3 = vertex 3 global number # row 4 = triangle subdomain number # where 1,2,3 is a local counter clockwise numbering of vertices in # triangle # """ # matlabBase = 1 # p = np.zeros((2,self.nNodes_global),'d') # e = np.zeros((7,self.nElementBoundaries_global),'d') # t = np.zeros((4,self.nElements_global),'d') # #load p,e,t and write file # if writeToFile: # mfile = open(meshFileBase+'.m','w') # else: # mfile = open('/dev/null','w') # # # if writeToFile: # mfile.write('p = [ ... \n') # for nN in range(self.nNodes_global): # p[0,nN]=self.nodeArray[nN,0] # p[1,nN]=self.nodeArray[nN,1] # if writeToFile: # mfile.write('%g %g \n' % tuple(p[:,nN])) # if writeToFile: # mfile.write(']; \n') # mfile.write("p = p\';\n") #need transpose for matlab # if writeToFile: # mfile.write('e = [ ... \n') # for ebN in range(self.nElementBoundaries_global): # e[0,ebN]=self.elementBoundaryNodesArray[ebN,0] + matlabBase #global node number of start node base 1 # e[1,ebN]=self.elementBoundaryNodesArray[ebN,1] + matlabBase #global node number of end node base 1 # e[2,ebN]=0.0 #edge param. is 0 to 1 # e[3,ebN]=1.0 # e[4,ebN]=ebN + matlabBase #global edge number base 1 # e[5,ebN]=0 #subdomain to left # e[6,ebN]=1 #subdomain to right # if writeToFile: # mfile.write('%g %g %g %g %g %g %g \n' % tuple(e[:,ebN])) # if writeToFile: # mfile.write(']; \n') # mfile.write("e = e\';\n") #need transpose for matlab # #write triangles last # if writeToFile: # mfile.write('t = [ ... \n') # for eN in range(self.nElements_global): # t[0,eN]=self.elementNodesArray[eN,0]+matlabBase #global node number for vertex 0 # t[1,eN]=self.elementNodesArray[eN,1]+matlabBase #global node number for vertex 0 # t[2,eN]=self.elementNodesArray[eN,2]+matlabBase #global node number for vertex 0 # t[3,eN]=1 #subdomain id # if writeToFile: # mfile.write('%g %g %g %g \n' % tuple(t[:,eN])) # if writeToFile: # mfile.write(']; \n'); # mfile.write("t = t\';\n") #need transpose for matlab class QuadrilateralMesh(Mesh): """A mesh of quads The nodes, edges, and triangles are indexed by their node tuples. The corresponding lists are derived from the dictionaries, and sorted lexicographically. The global node numbers are redefined to give a lexicographic ordering. The mesh can be generated from a rectangular grid and refined using either 3t or Freudenthal-Bey global refinement. """ def __init__(self): Mesh.__init__(self) self.nodeDict={} self.edgeDict={} self.quadDict={} self.quadList=[] self.oldToNewNode=[] # tempoaray self.max_nNodeNeighbors_node = 4 def buildFromSets(self,faceSet,edgeSet,nodeSet): self.nodeList = list(nodeSet) self.nodeDict = dict([(n,n) for n in self.nodeList]) self.edgeList = list(edgeSet) self.edgeDict = dict([(e.nodes,e) for e in self.edgeList]) self.quadList = list(faceSet) self.quadDict = dict([(t.nodes,t) for t in self.faceList]) self.elementList = self.triangleList self.elementBoundaryList = self.edgeList def rectangularToQuadrilateral(self,grid,x=0.0,y=0.0,z=0.0): ''' WIP - I think this is the first function that needs to be written so that MultilevelQuadrilateralMesh can work. This function does not call C functions. ''' self.nodeList = [Node(n.N,n.p[X]+x,n.p[Y]+y,n.p[Z]+z) for n in grid.nodeList] # Is the following line necessary? self.nodeDict = dict([(n,n) for n in self.nodeList]) for i in range(grid.nHx): for j in range(grid.nHy): k=0 n0 = self.nodeList[grid.getNodeNumber(i,j,k)] n1 = self.nodeList[grid.getNodeNumber(i,j+1,k)] n2 = self.nodeList[grid.getNodeNumber(i+1,j+1,k)] n3 = self.nodeList[grid.getNodeNumber(i+1,j,k)] e0 = Edge(nodes=[n0,n1]) e1 = Edge(nodes=[n1,n2]) e2 = Edge(nodes=[n2,n3]) e3 = Edge(nodes=[n3,n0]) self.newQuadrilateral([e0,e1,e2,e3]) self.finalize() self.buildNodeDiameterArray() def generateQuadrilateralMeshFromRectangularGrid(self,nx,ny,Lx,Ly): from .import cmeshTools self.cmesh = cmeshTools.CMesh() cmeshTools.generateQuadrilateralMeshFromRectangularGrid(nx,ny,0,0,Lx,Ly,self.cmesh) cmeshTools.allocateGeometricInfo_quadrilateral(self.cmesh) cmeshTools.computeGeometricInfo_quadrilateral(self.cmesh) self.buildFromC(self.cmesh) def generateFromQuadFileIFISS(self,meshfile): ''' WIP - read a matlab.mat file containing IFISS vertices and elements ''' import scipy.io griddata = scipy.io.loadmat(meshfile+'.mat') self.nodeList = [Node(nN,n[0],n[1],0.0) for nN,n in enumerate(griddata['vertices'])] # Is the following line necessary? self.nodeDict = dict([(n,n) for n in self.nodeList]) for q in griddata['quads']: n0,n3,n2,n1 = q # clockwise ordering needed e0 = Edge(nodes=[self.nodeList[n0],self.nodeList[n1]]) e1 = Edge(nodes=[self.nodeList[n1],self.nodeList[n2]]) e2 = Edge(nodes=[self.nodeList[n2],self.nodeList[n3]]) e3 = Edge(nodes=[self.nodeList[n3],self.nodeList[n0]]) self.newQuadrilateral([e0,e1,e2,e3]) self.finalize() for F,nN in griddata['bdyflags']: self.nodeMaterialTypes[nN] = F for ebNE in range(self.nExteriorElementBoundaries_global): ebN = self.exteriorElementBoundariesArray[ebNE] n0,n1 = self.elementBoundaryNodesArray[ebN] self.elementBoundaryMaterialTypes[ebN]=max(self.nodeMaterialTypes[n0], self.nodeMaterialTypes[n1]) def meshType(self): return 'cuboid' def meshInfo(self): minfo = """Number of quadrilaterals : %d Number of edges : %d Number of nodes : %d\n""" % (self.nElements_global, self.nElementBoundaries_global, self.nNodes_global) if self.subdomainMesh != self: sinfo = self.subdomainMesh.meshInfo() info = "*** Global ***\n" + minfo + "\n*** Local ***\n" + sinfo return info return minfo def newQuadrilateral(self,edges): q = Quadrilateral(len(self.quadDict),edges) self.quadDict[q.nodes] = q self.registerEdges(q) return q def registerEdges(self,q): '''check if an edge is in the mesh dictionary if it is, point to existing entry otherwise, create a new entry ''' for en,e in enumerate(q.edges): if e.nodes in self.edgeDict: q.edges[en]=self.edgeDict[e.nodes] else: eN=len(self.edgeDict) e.N=eN self.edgeDict[e.nodes]=e def registerNode(self,node): ''' check if a node is in the mesh dictionary if it is, point to existing entry otherwise, create a new entry ''' if node in self.nodeDict: node = self.nodeDict[node] else: node.N = len(self.nodeDict) self.nodeDict[node] = node return node def refine(self,oldMesh): logEvent("Refining Using Standard Quadrilateral Refinement") childrenDict={} for q in list(oldMesh.quadDict.values()): qNodes = [Node(nN,n.p[X],n.p[Y],n.p[Z]) for nN,n in enumerate(q.nodes)] for lnN,n in enumerate(qNodes): qNodes[lnN] = self.registerNode(n) q.computeGeometricInfo() newNodeLeft = Node(len(self.nodeDict),q.xmin,q.ymid,q.zmid) newNodeLeft = self.registerNode(newNodeLeft) newNodeTop = Node(len(self.nodeDict),q.xmid,q.ymax,q.zmid) newNodeTop = self.registerNode(newNodeTop) newNodeRight = Node(len(self.nodeDict),q.xmax,q.ymid,q.zmid) newNodeRight = self.registerNode(newNodeRight) newNodeBottom = Node(len(self.nodeDict),q.xmid,q.ymin,q.zmid) newNodeBottom = self.registerNode(newNodeBottom) newNodeMid = Node(len(self.nodeDict),q.xmid,q.ymid,q.zmid) newNodeMid = self.registerNode(newNodeMid) e1 = Edge(nodes=[qNodes[0],newNodeLeft]) e2 = Edge(nodes=[newNodeLeft,newNodeMid]) e3 = Edge(nodes=[newNodeMid,newNodeBottom]) e4 = Edge(nodes=[newNodeBottom,qNodes[0]]) e5 = Edge(nodes=[newNodeLeft,qNodes[1]]) e6 = Edge(nodes=[qNodes[1],newNodeTop]) e7 = Edge(nodes=[newNodeTop,newNodeMid]) e8 = Edge(nodes=[newNodeTop,qNodes[2]]) e9 = Edge(nodes=[qNodes[2], newNodeRight]) e10 = Edge(nodes=[newNodeRight, newNodeMid]) e11 = Edge(nodes=[qNodes[3],newNodeBottom]) e12 = Edge(nodes=[newNodeRight,qNodes[3]]) q1 = self.newQuadrilateral([e1,e2,e3,e4]) self.registerEdges(q1) q2 = self.newQuadrilateral([e5,e6,e7,e2]) self.registerEdges(q2) q3 = self.newQuadrilateral([e3,e10,e12,e11]) self.registerEdges(q3) q4 = self.newQuadrilateral([e7,e8,e9,e10]) self.registerEdges(q4) childrenDict[q.N]=[q1,q2,q3,q4] self.finalize() return childrenDict def finalize(self): ''' WIP ''' self.buildLists() self.buildArraysFromLists() def buildLists(self): ''' WIP ''' self.buildListsNodes() self.buildListsEdges() self.buildListsQuadrilaterals() self.elementList = self.quadList self.elementBoundaryList = self.edgeList def buildListsNodes(self): keyList = list(self.nodeDict.keys()) keyList.sort() self.nodeList=[] self.oldToNewNode=list(range(len(self.nodeDict))) for nN,k in enumerate(keyList): self.oldToNewNode[self.nodeDict[k].N]=nN self.nodeDict[k].N = nN self.nodeList.append(self.nodeDict[k]) def buildListsEdges(self): keyList = list(self.edgeDict.keys()) keyList.sort() self.edgeList=[] for eN,k in enumerate(keyList): self.edgeDict[k].N = eN self.edgeList.append(self.edgeDict[k]) def buildListsQuadrilaterals(self): keyList = list(self.quadDict.keys()) keyList.sort() self.quadList = [] for qN,q in enumerate(keyList): self.quadDict[q].N = qN self.quadList.append(self.quadDict[q]) self.polygonList = self.quadList def writeMeshXdmf(self,ar,name='',t=0.0,init=False,meshChanged=False,tCount=0,EB=False): Mesh.writeMeshXdmf(self,ar,name,t,init,meshChanged,"Quadrilateral",tCount,EB=EB) def buildNodeDiameterArray(self): nNodes = len(self.nodeArray) self.nodeDiametersArray = np.zeros(nNodes) self.nodeSupportArray = np.zeros(nNodes) self.volume = 0. for eN in range(self.nElements_global): area = self._calc_quad_area(eN) self.volume += area hMax = self.elementDiametersArray[eN] for nN in range(self.nNodes_element): nodeDiameter = hMax*area idx = self.elementNodesArray[eN][nN] self.nodeDiametersArray[idx]+=nodeDiameter self.nodeSupportArray[idx]+=area for nN in range(nNodes): self.nodeDiametersArray[nN] /= self.nodeSupportArray[nN] @staticmethod def _calc_pt_distance(pt1,pt2): """ Calculate the distance between two points. Arguments --------- pt1: lst Coordinates of the first point pt2: lst Coordinates of the second point Returns ------- distance : float """ d = 0. for i,j in zip(pt1,pt2): d += (i-j)**2 return math.sqrt(d) def _calc_hmax(self,i): """ Find the largest edge length of an element. Arguments --------- i : int Element number Returns ------- hmax : float The largest edge length of element i """ hMax = 0. element_nodes = self.nodeArray[self.elementNodesArray[i]] for j, nN_L in enumerate(element_nodes): print('nN_L = ' + str(nN_L)) for nN_R in element_nodes[j+1:]: print('nN_R = ' + str(nN_R)) hMax = max(hMax,self._calc_pt_distance(nN_L,nN_R)) return hMax def _calc_quad_area(self,i): """ Calculates the area of a quadrilateral. Arguments --------- i : int The quadrilateral whose volume is being calculated. Returns ------- A : float The quadrilateral's area """ n = [n0,n1,n2,n3] = self.nodeArray[self.elementNodesArray[0]] d = [self._calc_pt_distance(n0,n[1]), self._calc_pt_distance(n0,n[-1])] A = d[0]*d[1] return A class MultilevelTriangularMesh(MultilevelMesh): """A hierarchical multilevel mesh of triangular cells""" from .import cmeshTools def __init__(self, nx, ny, nz, x=0.0, y=0.0, z=0.0, Lx=1.0, Ly=1.0, Lz=1.0, refinementLevels=1, skipInit=False, nLayersOfOverlap=1, parallelPartitioningType=MeshParallelPartitioningTypes.node,triangleFlag=0): from . import cmeshTools MultilevelMesh.__init__(self) self.useC = True self.nLayersOfOverlap=nLayersOfOverlap; self.parallelPartitioningType = parallelPartitioningType #self.useC = False if not skipInit: if self.useC: self.meshList.append(TriangularMesh()) self.meshList[0].generateTriangularMeshFromRectangularGrid(nx,ny,Lx,Ly,triangleFlag=triangleFlag) self.cmultilevelMesh = cmeshTools.CMultilevelMesh(self.meshList[0].cmesh,refinementLevels) self.buildFromC(self.cmultilevelMesh) self.meshList[0].nodeArray[:,0] += x self.meshList[0].nodeArray[:,1] += y self.meshList[0].nodeArray[:,2] += z self.meshList[0].partitionMesh(nLayersOfOverlap=nLayersOfOverlap,parallelPartitioningType=parallelPartitioningType) for l in range(1,refinementLevels): self.meshList.append(TriangularMesh()) self.meshList[l].cmesh = self.cmeshList[l] self.meshList[l].buildFromC(self.meshList[l].cmesh) self.meshList[l].partitionMesh(nLayersOfOverlap=nLayersOfOverlap,parallelPartitioningType=parallelPartitioningType) else: grid=RectangularGrid(nx,ny,nz,Lx,Ly,Lz) self.meshList.append(TriangularMesh()) self.meshList[0].rectangularToTriangular(grid) self.meshList[0].nodeArray[:,0] += x self.meshList[0].nodeArray[:,1] += y self.meshList[0].nodeArray[:,2] += z self.meshList[0].subdomainMesh = self.meshList[0] self.elementChildren=[] logEvent(self.meshList[0].meshInfo()) for l in range(1,refinementLevels): self.refine() self.meshList[l].subdomainMesh = self.meshList[l] logEvent(self.meshList[-1].meshInfo()) self.buildArrayLists() # #mwf what's the best way to build from an existing mesh def generateFromExistingCoarseMesh(self,mesh0,refinementLevels,nLayersOfOverlap=1, parallelPartitioningType=MeshParallelPartitioningTypes.node): from .import cmeshTools #blow away or just trust garbage collection self.nLayersOfOverlap = nLayersOfOverlap; self.parallelPartitioningType = parallelPartitioningType self.meshList = [] self.elementParents = None self.cmultilevelMesh = None if self.useC: self.meshList.append(mesh0) self.cmultilevelMesh = cmeshTools.CMultilevelMesh(self.meshList[0].cmesh,refinementLevels) self.buildFromC(self.cmultilevelMesh) self.meshList[0].partitionMesh(nLayersOfOverlap=nLayersOfOverlap,parallelPartitioningType=parallelPartitioningType) for l in range(1,refinementLevels): self.meshList.append(TriangularMesh()) self.meshList[l].cmesh = self.cmeshList[l] self.meshList[l].buildFromC(self.meshList[l].cmesh) self.meshList[l].partitionMesh(nLayersOfOverlap=nLayersOfOverlap,parallelPartitioningType=parallelPartitioningType) else: grid=RectangularGrid(nx,ny,nz,Lx,Ly,Lz) self.meshList.append(TriangularMesh()) self.meshList[0].rectangularToTriangular(grid) self.meshList[0].subdomainMesh = self.meshList[0] self.elementChildren=[] logEvent(self.meshList[0].meshInfo()) for l in range(1,refinementLevels): self.refine() self.meshList[l].subdomainMesh = self.meshList[l] logEvent(self.meshList[-1].meshInfo()) self.buildArrayLists() def generatePartitionedMeshFromPUMI(self,mesh0,refinementLevels,nLayersOfOverlap=1): from .import cmeshTools self.meshList = [] self.meshList.append(mesh0) self.cmultilevelMesh = cmeshTools.CMultilevelMesh(self.meshList[0].cmesh,refinementLevels) self.buildFromC(self.cmultilevelMesh) self.elementParents = None self.elementChildren=[] def generatePartitionedMeshFromTriangleFiles(self,filebase,base,mesh0,refinementLevels,nLayersOfOverlap=1, parallelPartitioningType=MeshParallelPartitioningTypes.node): from . import cmeshTools if filebase==None: filebase="mesh" assert(refinementLevels==1) assert(parallelPartitioningType==MeshParallelPartitioningTypes.node) assert(nLayersOfOverlap<=1) mesh0.cmesh = cmeshTools.CMesh() #blow away or just trust garbage collection self.nLayersOfOverlap=nLayersOfOverlap;self.parallelPartitioningType=parallelPartitioningType self.meshList = [] self.elementParents = None self.cmultilevelMesh = None self.meshList.append(mesh0) logEvent("cmeshTools.CMultilevelMesh") self.cmultilevelMesh = cmeshTools.CMultilevelMesh(self.meshList[0].cmesh,refinementLevels) logEvent("buildFromC") self.buildFromC(self.cmultilevelMesh) logEvent("partitionMesh") self.meshList[0].partitionMeshFromFiles(filebase,base,nLayersOfOverlap=nLayersOfOverlap,parallelPartitioningType=parallelPartitioningType) def refine(self): self.meshList.append(TriangularMesh()) childrenDict = self.meshList[-1].refine(self.meshList[-2]) self.elementChildren.append(childrenDict) def computeGeometricInfo(self): for m in self.meshList: m.computeGeometricInfo() def locallyRefine(self,elementTagArray,flagForRefineType=0): """ simple local refinement assuming elementTagArray[eN]=1 --> bisect flagForRefineType = 0 -- newest node, 1 -- 4T, 2 -- U4T """ logEvent("MultilevelTriangularMesh:locallyRefine") if flagForRefineType == 0: logEvent("MultilevelTriangularMesh: calling cmeshTools.setNewestNodeBases") self.cmeshTools.setNewestNodeBases(2,self.cmultilevelMesh) if self.useC: logEvent("MultilevelTriangularMesh: calling locallRefineMultilevelMesh") self.cmeshTools.locallyRefineMultilevelMesh(2,self.cmultilevelMesh,elementTagArray,flagForRefineType) logEvent("MultilevelTriangularMesh: calling buildFromC") self.buildFromC(self.cmultilevelMesh) self.meshList.append(TriangularMesh()) self.meshList[self.nLevels-1].cmesh = self.cmeshList[self.nLevels-1] self.meshList[self.nLevels-1].buildFromC(self.meshList[self.nLevels-1].cmesh) self.meshList[self.nLevels-1].partitionMesh(nLayersOfOverlap=self.nLayersOfOverlap,parallelPartitioningType=self.parallelPartitioningType) else: print("""locallyRefine not implemented for self.useC= %s """ % (self.useC)) # class MultilevelQuadrilateralMesh(MultilevelMesh): """ A heirarchical multilevel mesh of quadrilaterals WIP """ def __init__(self, nx,ny,nz, x=0.0,y=0.0,z=0.0, Lx=1.0,Ly=1.0,Lz=1.0, refinementLevels=1, skipInit=False, nLayersOfOverlap=1, parallelPartitioningType=MeshParallelPartitioningTypes.node,triangleFlag=0, useC=True): from .import cmeshTools MultilevelMesh.__init__(self) self.useC = useC # Implementing with C will take a bit more work. Disabling for now. if refinementLevels > 1: logEvent("Quad refinement is not supported in C routines, switching off c-mesh"); self.useC = False # Currently quad refinement is not supported in C routines. self.nLayersOfOverlap=nLayersOfOverlap ; self.parallelPartitioningType = parallelPartitioningType if not skipInit: if self.useC: self.meshList.append(QuadrilateralMesh()) self.meshList[0].generateQuadrilateralMeshFromRectangularGrid(nx,ny,Lx,Ly) self.meshList[0].nodeArray[:,0] += x self.meshList[0].nodeArray[:,1] += y self.cmultilevelMesh = cmeshTools.CMultilevelMesh(self.meshList[0].cmesh,refinementLevels) self.buildFromC(self.cmultilevelMesh) self.meshList[0].partitionMesh(nLayersOfOverlap=nLayersOfOverlap,parallelPartitioningType=parallelPartitioningType) for l in range(1,refinementLevels): self.meshList.append(QuadrilateralMesh()) self.meshList[l].cmesh = self.cmeshList[l] self.meshList[l].buildFromC(self.cmeshList[l]) self.meshList[l].partitionMesh(nLayersOfOverlap=nLayersOfOverlap,parallelPartitioningType=parallelPartitioningType) else: grid=RectangularGrid(nx,ny,nz,Lx,Ly,Lz) self.meshList.append(QuadrilateralMesh()) self.meshList[0].rectangularToQuadrilateral(grid,x,y,z) self.meshList[0].subdomainMesh = self.meshList[0] self.elementChildren=[] logEvent(self.meshList[0].meshInfo()) self.meshList[0].globalMesh = self.meshList[0] # The following four lines should be called elsewhere...Most of this is don in # the c-function calls that are not implemented yet for 2D quads self.meshList[0].nElements_owned = self.meshList[0].nElements_global self.meshList[0].nodeNumbering_subdomain2global = np.zeros((self.meshList[0].nNodes_global,), 'd') self.meshList[0].elementNumbering_subdomain2global = np.zeros((self.meshList[0].nElements_global,), 'd') self.meshList[0].nodeOffsets_subdomain_owned[-1] = self.meshList[0].nNodes_global self.meshList[0].nNodes_owned = self.meshList[0].nNodes_global self.meshList[0].elementOffsets_subdomain_owned[-1] = self.meshList[0].nElements_global for node in range(self.meshList[0].nNodes_global): self.meshList[0].nodeNumbering_subdomain2global.itemset(node,node) for element in range(self.meshList[0].nElements_global): self.meshList[0].elementNumbering_subdomain2global.itemset(element,element) self.meshList[0].buildNodeStarArrays() for l in range(1,refinementLevels): self.refine() self.meshList[l].subdomainMesh = self.meshList[l] logEvent(self.meshList[-1].meshInfo()) self.meshList[l].buildNodeStarArrays() self.buildArrayLists() # print("from Python") # print (self.meshList[0].nElements_global, # self.meshList[0].nNodes_global, # self.meshList[0].nNodes_element, # self.meshList[0].nNodes_elementBoundary, # self.meshList[0].nElementBoundaries_element, # self.meshList[0].nElementBoundaries_global, # self.meshList[0].nInteriorElementBoundaries_global, # self.meshList[0].nExteriorElementBoundaries_global, # self.meshList[0].max_nElements_node, # self.meshList[0].nEdges_global, # self.meshList[0].max_nNodeNeighbors_node, # self.meshList[0].elementNodesArray, # self.meshList[0].nodeElementsArray, # self.meshList[0].nodeElementOffsets, # self.meshList[0].elementNeighborsArray, # self.meshList[0].elementBoundariesArray, # self.meshList[0].elementBoundaryNodesArray, # self.meshList[0].elementBoundaryElementsArray, # self.meshList[0].elementBoundaryLocalElementBoundariesArray, # self.meshList[0].interiorElementBoundariesArray, # self.meshList[0].exteriorElementBoundariesArray, # self.meshList[0].edgeNodesArray, # self.meshList[0].nodeStarArray, # self.meshList[0].nodeStarOffsets, # self.meshList[0].elementMaterialTypes, # self.meshList[0].elementBoundaryMaterialTypes, # self.meshList[0].nodeMaterialTypes, # self.meshList[0].nodeArray, # self.meshList[0].elementDiametersArray, # self.meshList[0].elementInnerDiametersArray, # self.meshList[0].elementBoundaryDiametersArray, # self.meshList[0].elementBarycentersArray, # self.meshList[0].elementBoundaryBarycentersArray, # self.meshList[0].nodeDiametersArray, # self.meshList[0].nodeSupportArray, # self.meshList[0].h, # self.meshList[0].hMin, # self.meshList[0].volume) def refine(self): self.meshList.append(QuadrilateralMesh()) self.meshList[-1].globalMesh = self.meshList[-1] childrenDict = self.meshList[-1].refine(self.meshList[-2]) # The following four lines should be called elsewhere...Most of this is don in # the c-function calls that are not implemented yet for 2D quads self.meshList[-1].nElements_owned = self.meshList[-1].nElements_global self.meshList[-1].nodeNumbering_subdomain2global = np.zeros((self.meshList[-1].nNodes_global,), 'i') self.meshList[-1].elementNumbering_subdomain2global = np.zeros((self.meshList[-1].nElements_global,), 'i') self.meshList[-1].nodeOffsets_subdomain_owned[-1] = self.meshList[-1].nNodes_global self.meshList[-1].nNodes_owned = self.meshList[-1].nNodes_global self.meshList[-1].elementOffsets_subdomain_owned[-1] = self.meshList[-1].nElements_global for node in range(self.meshList[-1].nNodes_global): self.meshList[-1].nodeNumbering_subdomain2global.itemset(node,node) for element in range(self.meshList[-1].nElements_global): self.meshList[-1].elementNumbering_subdomain2global.itemset(element,element) self.elementChildren.append(childrenDict) class InterpolatedBathymetryMesh(MultilevelTriangularMesh): """A triangular mesh that interpolates bathymetry from a point cloud""" def __init__(self, domain, triangleOptions, atol=1.0e-4, rtol=1.0e-4, maxElementDiameter=None, maxLevels=20, maxNodes=100000, bathyType="points",#"grid" bathyAssignmentScheme="interpolation",#"localAveraging","L2-projection","H1-projection" errorNormType="L2", #L1,Linfty refineType=0, ): from scipy import interpolate as scipy_interpolate if maxElementDiameter: self.maxElementDiameter = maxElementDiameter else: self.maxElementDiameter = np.inf self.atol = atol self.rtol = rtol self.maxLevels=maxLevels self.maxNodes=maxNodes self.domain = domain self.triangleOptions = triangleOptions self.bathyType=bathyType self.bathyAssignmentScheme=bathyAssignmentScheme self.errorNormType = errorNormType logEvent("InterpolatedBathymetryMesh: Calling Triangle to generate 2D coarse mesh for "+self.domain.name) runTriangle(domain.polyfile, self.triangleOptions) logEvent("InterpolatedBathymetryMesh: Converting to Proteus Mesh") self.coarseMesh = TriangularMesh() self.coarseMesh.generateFromTriangleFiles(filebase=domain.polyfile,base=1) MultilevelTriangularMesh.__init__(self,0,0,0,skipInit=True,nLayersOfOverlap=0, parallelPartitioningType=MeshParallelPartitioningTypes.node) self.generateFromExistingCoarseMesh(self.coarseMesh,1, parallelPartitioningType=MeshParallelPartitioningTypes.node) self.computeGeometricInfo() #allocate some arrays based on the bathymetry data logEvent("InterpolatedBathymetryMesh:Allocating data structures for bathymetry interpolation algorithm") if bathyType == "points": self.nPoints_global = self.domain.bathy.shape[0] self.pointElementsArray_old = -np.ones((self.nPoints_global,),'i') self.pointElementsArray = -np.ones((self.nPoints_global,),'i') self.pointNodeWeightsArray = np.zeros((self.nPoints_global,3),'d') self.bathyInterpolant = scipy_interpolate.LinearNDInterpolator(self.domain.bathy[:,:2],self.domain.bathy[:,2]) self.bathyNearestNeighbor = scipy_interpolate.NearestNDInterpolator(self.domain.bathy[:,:2], self.domain.bathy[:,2]) elif bathyType == "grid": self.nPoints_global = self.domain.bathy.shape[0] self.pointElementsArray_old = -np.ones((self.nPoints_global,),'i') self.pointElementsArray = -np.ones((self.nPoints_global,),'i') self.pointNodeWeightsArray = np.zeros((self.nPoints_global,3),'d') x = self.domain.bathy[:self.domain.bathyGridDim[1],0] y = self.domain.bathy[:self.domain.bathyGridDim[0]*self.domain.bathyGridDim[1]:self.domain.bathyGridDim[1],1] z = self.domain.bathy[:,2].reshape(self.domain.bathyGridDim).transpose() self.bathyInterpolant = scipy_interpolate.RectBivariateSpline(x,y,z,kx=1,ky=1) #self.bathyInterpolant = scipy_interpolate.interp2d(x,y,z) # logEvent("InterpolatedBathymetryMesh: Locating points on initial mesh") self.locatePoints_initial(self.meshList[-1]) logEvent("InterpolatedBathymetryMesh:setting mesh bathymetry from data") self.setMeshBathymetry(self.meshList[-1]) logEvent("InterpolatedBathymetryMesh: tagging elements for refinement") self.tagElements(self.meshList[-1]) levels = 0 error = 1.0; while error >= 1.0 and self.meshList[-1].nNodes_global < self.maxNodes and levels < self.maxLevels: levels += 1 logEvent("InterpolatedBathymetryMesh: Locally refining, level = %i" % (levels,)) self.locallyRefine(self.meshList[-1].elementTags,flagForRefineType=refineType) logEvent("InterpolatedBathymetryMesh: interpolating bathymetry from parent mesh to refined mesh") self.interpolateBathymetry() logEvent("InterpolatedBathymetryMesh: Locating points on child mesh") self.locatePoints_refined(self.meshList[-1]) logEvent("InterpolatedBathymetryMesh: setting mesh bathmetry from data") self.setMeshBathymetry(self.meshList[-1]) logEvent("InterpolatedBathymetryMesh: tagging elements for refinement") error = self.tagElements(self.meshList[-1]) logEvent("InterpolatedBathymetryMesh: error = %f atol = %f rtol = %f number of elements tagged = %i" % (error,self.atol,self.rtol,self.meshList[-1].elementTags.sum())) def setMeshBathymetry(self,mesh): if self.bathyAssignmentScheme == "interpolation": self.setMeshBathymetry_interpolate(mesh) elif self.bathyAssignmentScheme == "localAveraging": self.setMeshBathymetry_localAveraging(mesh) elif self.bathyAssignmentScheme == "L2-projection": raise NotImplementedError elif self.bathyAssignmentScheme == "H1-projection": raise NotImplementedError def setMeshBathymetry_interpolate(self,mesh): if self.bathyType == 'grid': mesh.nodeArray[:,2] = self.bathyInterpolant.ev(mesh.nodeArray[:,0],mesh.nodeArray[:,1]) else: mesh.nodeArray[:,2] = self.bathyInterpolant(mesh.nodeArray[:,0],mesh.nodeArray[:,1]) nI = np.isnan(mesh.nodeArray[:,2]) mesh.nodeArray[nI,2] = self.bathyNearestNeighbor(mesh.nodeArray[nI,0],mesh.nodeArray[nI,1]) def setMeshBathymetry_localAveraging(self,mesh): """ calculate the arithmetic mean bathymetry of points inside each triangle and then assign the area-weighted average of the element means to each node """ from .FemTools import AffineMaps,ReferenceSimplex,LinearOnSimplexWithNodalBasis interpolationSpace = LinearOnSimplexWithNodalBasis(nd=2) #maps = AffineMaps(mesh,interpolationSpace.referenceElement,interpolationSpace) #maps.useC = True #calculate mean element height for each element #uses arithmetic mean, so it assumes the "patch" associated with each point the same size (weight) mesh.elementMeanZ = np.zeros((mesh.nElements_global,),'d') for pN in range(self.nPoints_global): eN = self.pointElementsArray[pN] if eN >= 0: if mesh.nPoints_element[eN] > 0: mesh.elementMeanZ[eN] += old_div(self.domain.bathy[pN,2],float(mesh.nPoints_element[eN])) mesh.nodeArray[mesh.elementNodesArray[eN,0],2] = 0.0 mesh.nodeArray[mesh.elementNodesArray[eN,1],2] = 0.0 mesh.nodeArray[mesh.elementNodesArray[eN,2],2] = 0.0 #now assign the mesh node bathmetry as an area weighted average of the element mean sumArray = mesh.nodeArray[:,2].copy() sumArray[:]=0.0 for eN in range(mesh.nElements_global): if mesh.nPoints_element[eN] > 0:#only calculate a contribution if this element contains a point #calculate triangle area and assign weighted average of element means to node xiArray = np.zeros((2,),'d') # grad_psi = np.zeros((interpolationSpace.dim, interpolationSpace.referenceElement.dim), 'd') dx = np.zeros((interpolationSpace.referenceElement.dim), 'd') jacobian = np.zeros((interpolationSpace.referenceElement.dim, interpolationSpace.referenceElement.dim), 'd') inverseJacobian = np.zeros((interpolationSpace.referenceElement.dim, interpolationSpace.referenceElement.dim), 'd') for j in interpolationSpace.range_dim: grad_psi[j,:] = interpolationSpace.basisGradients[j](xiArray)#evaluate at zero because we can (psi is linear) jacobian.flat[:]=0.0 inverseJacobian.flat[:]=0.0 for j in interpolationSpace.range_dim: J = mesh.elementNodesArray[eN,j] for m in interpolationSpace.referenceElement.range_dim: for n in interpolationSpace.referenceElement.range_dim: jacobian[m,n] += mesh.nodeArray[J,m]*grad_psi[j,n] J = mesh.elementNodesArray[eN,0] inverseJacobian = inv(jacobian) area = 0.5*det(jacobian) sumArray[mesh.elementNodesArray[eN,0]] += old_div(area,mesh.nodeSupportArray[mesh.elementNodesArray[eN,0]]) sumArray[mesh.elementNodesArray[eN,1]] += old_div(area,mesh.nodeSupportArray[mesh.elementNodesArray[eN,1]]) sumArray[mesh.elementNodesArray[eN,2]] += old_div(area,mesh.nodeSupportArray[mesh.elementNodesArray[eN,2]]) mesh.nodeArray[mesh.elementNodesArray[eN,0],2] += area*mesh.elementMeanZ[eN]/mesh.nodeSupportArray[mesh.elementNodesArray[eN,0]] mesh.nodeArray[mesh.elementNodesArray[eN,1],2] += area*mesh.elementMeanZ[eN]/mesh.nodeSupportArray[mesh.elementNodesArray[eN,1]] mesh.nodeArray[mesh.elementNodesArray[eN,2],2] += area*mesh.elementMeanZ[eN]/mesh.nodeSupportArray[mesh.elementNodesArray[eN,2]] #cek debug #print "sum of a nodes element areas divided by node support shoudl be 1 ",sumArray def locatePoints(self,mesh): """ locate the element containing each point this should only be used on very coarse meshes """ from .FemTools import AffineMaps,ReferenceSimplex,LinearOnSimplexWithNodalBasis interpolationSpace = LinearOnSimplexWithNodalBasis(nd=2) #maps = AffineMaps(mesh,interpolationSpace.referenceElement,interpolationSpace) #maps.useC = False #find the elements that contain bathymetry points and calculate: # - for each element, the number of bathmetry points in that element # - for each node, the total area of the nodes elements that containing bathmetry points # - the area of each element # - the total area covered by elements containing bathmetry points mesh.nPoints_element = np.zeros((mesh.nElements_global,),'i') mesh.nodeSupportArray = np.zeros((mesh.nNodes_global,),'d') mesh.area_element = np.zeros((mesh.nElements_global,),'d') self.pointElementsArray[:] = -1 self.totalArea = 0.0 for eN in range(mesh.nElements_global): #map points to reference space and test if it lies in the reference triangle xiArray = np.zeros((2,),'d') xiArray[:] = 0.0 # grad_psi = np.zeros((interpolationSpace.dim, interpolationSpace.referenceElement.dim), 'd') dx = np.zeros((interpolationSpace.referenceElement.dim), 'd') jacobian = np.zeros((interpolationSpace.referenceElement.dim, interpolationSpace.referenceElement.dim), 'd') inverseJacobian = np.zeros((interpolationSpace.referenceElement.dim, interpolationSpace.referenceElement.dim), 'd') for j in interpolationSpace.range_dim: grad_psi[j,:] = interpolationSpace.basisGradients[j](xiArray[0])#evalute at zero because we can (psi is linear) jacobian.flat[:]=0.0 inverseJacobian.flat[:]=0.0 for j in interpolationSpace.range_dim: J = mesh.elementNodesArray[eN,j] for m in interpolationSpace.referenceElement.range_dim: for n in interpolationSpace.referenceElement.range_dim: jacobian[m,n] += mesh.nodeArray[J,m]*grad_psi[j,n] J = mesh.elementNodesArray[eN,0] inverseJacobian = inv(jacobian) area = 0.5*det(jacobian) mesh.area_element[eN] = area self.totalArea += area for pN in range(self.nPoints_global):#can optimize by skipping previously found points xiArray[:] = 0.0 dx[:]=self.domain.bathy[pN,:2] for m in interpolationSpace.referenceElement.range_dim: dx[m]-=mesh.nodeArray[J,m] for m in interpolationSpace.referenceElement.range_dim: for n in interpolationSpace.referenceElement.range_dim: xiArray[m] += inverseJacobian[m,n]*dx[n] #barycentric coordinates are non-negative so we're in this element if xiArray[0] >=0.0 and xiArray[1] >= 0.0 and 1.0 - xiArray[0] - xiArray[1] >= 0.0: self.pointElementsArray[pN] = eN self.pointNodeWeightsArray[pN,0] = interpolationSpace.basis[0](xiArray) self.pointNodeWeightsArray[pN,1] = interpolationSpace.basis[1](xiArray) self.pointNodeWeightsArray[pN,2] = interpolationSpace.basis[2](xiArray) #count the number of points inside each element for pN in range(self.nPoints_global): if self.pointElementsArray[pN] >= 0: mesh.nPoints_element[self.pointElementsArray[pN]] += 1 #add up the support area for each node for eN in range(mesh.nElements_global): if mesh.nPoints_element[eN] > 0: mesh.nodeSupportArray[mesh.elementNodesArray[eN,0]] += mesh.area_element[eN] mesh.nodeSupportArray[mesh.elementNodesArray[eN,1]] += mesh.area_element[eN] mesh.nodeSupportArray[mesh.elementNodesArray[eN,2]] += mesh.area_element[eN] def locatePoints_refined(self,mesh): """ locate the element containing each point this should only be used on very coarse meshes """ from .FemTools import AffineMaps,ReferenceSimplex,LinearOnSimplexWithNodalBasis interpolationSpace = LinearOnSimplexWithNodalBasis(nd=2) #maps = AffineMaps(mesh,interpolationSpace.referenceElement,interpolationSpace) #maps.useC = False #find the elements that contain bathymetry points and calculate: # - for each element, the number of bathmetry points in that element # - for each node, the total area of the nodes elements that containing bathmetry points # - the area of each element # - the total area covered by elements containing bathmetry points mesh.nPoints_element = np.zeros((mesh.nElements_global,),'i') mesh.nodeSupportArray = np.zeros((mesh.nNodes_global,),'d') mesh.area_element = np.zeros((mesh.nElements_global,),'d') self.totalArea = 0.0 self.pointElementsArray_old[:] = self.pointElementsArray self.pointElementsArray[:] = -1 for pN in range(self.nPoints_global): eN_parent = self.pointElementsArray_old[pN] for eN in self.elementChildrenArrayList[-1][self.elementChildrenOffsetsList[-1][eN_parent]:self.elementChildrenOffsetsList[-1][eN_parent+1]]: xiArray = np.zeros((2,),'d') xiArray[:] = 0.0 grad_psi = np.zeros((interpolationSpace.dim, interpolationSpace.referenceElement.dim), 'd') dx = np.zeros((interpolationSpace.referenceElement.dim), 'd') jacobian = np.zeros((interpolationSpace.referenceElement.dim, interpolationSpace.referenceElement.dim), 'd') inverseJacobian = np.zeros((interpolationSpace.referenceElement.dim, interpolationSpace.referenceElement.dim), 'd') for j in interpolationSpace.range_dim: grad_psi[j,:] = interpolationSpace.basisGradients[j](xiArray[0])#evalute at zero because we can (psi is linear) jacobian.flat[:]=0.0 inverseJacobian.flat[:]=0.0 for j in interpolationSpace.range_dim: J = mesh.elementNodesArray[eN,j] for m in interpolationSpace.referenceElement.range_dim: for n in interpolationSpace.referenceElement.range_dim: jacobian[m,n] += mesh.nodeArray[J,m]*grad_psi[j,n] J = mesh.elementNodesArray[eN,0] inverseJacobian = inv(jacobian) area = 0.5*det(jacobian) mesh.area_element[eN] = area self.totalArea += area xiArray[:] = 0.0 dx[:]=self.domain.bathy[pN,:2] for m in interpolationSpace.referenceElement.range_dim: dx[m]-=mesh.nodeArray[J,m] for m in interpolationSpace.referenceElement.range_dim: for n in interpolationSpace.referenceElement.range_dim: xiArray[m] += inverseJacobian[m,n]*dx[n] #barycentric coordinates are non-negative so we're in this element if xiArray[0] >=0.0 and xiArray[1] >= 0.0 and 1.0 - xiArray[0] - xiArray[1] >= 0.0: self.pointElementsArray[pN] = eN self.pointNodeWeightsArray[pN,0] = interpolationSpace.basis[0](xiArray) self.pointNodeWeightsArray[pN,1] = interpolationSpace.basis[1](xiArray) self.pointNodeWeightsArray[pN,2] = interpolationSpace.basis[2](xiArray) #count the number of points inside each element for pN in range(self.nPoints_global): if self.pointElementsArray[pN] >= 0: mesh.nPoints_element[self.pointElementsArray[pN]] += 1 #add up the support area for each node for eN in range(mesh.nElements_global): if mesh.nPoints_element[eN] > 0: mesh.nodeSupportArray[mesh.elementNodesArray[eN,0]] += mesh.area_element[eN] mesh.nodeSupportArray[mesh.elementNodesArray[eN,1]] += mesh.area_element[eN] mesh.nodeSupportArray[mesh.elementNodesArray[eN,2]] += mesh.area_element[eN] def locatePoints_initial(self,mesh): """ locate the element containing each point first find the nearest node, then loop over that node's elements """ from scipy.spatial import cKDTree from .FemTools import AffineMaps,ReferenceSimplex,LinearOnSimplexWithNodalBasis interpolationSpace = LinearOnSimplexWithNodalBasis(nd=2) #find the elements that contain bathymetry points and calculate: # - for each element, the number of bathmetry points in that element # - for each node, the total area of the nodes elements that contain bathmetry points # - the area of each element # - the total area covered by elements containing bathmetry points mesh.nPoints_element = np.zeros((mesh.nElements_global,),'i') mesh.nodeSupportArray = np.zeros((mesh.nNodes_global,),'d') mesh.area_element = np.zeros((mesh.nElements_global,),'d') self.totalArea = 0.0 self.pointElementsArray[:] = -1 tree = cKDTree(mesh.nodeArray[:,:2]) xiArray = np.zeros((2,),'d') grad_psi = np.zeros((interpolationSpace.dim, interpolationSpace.referenceElement.dim), 'd') dx = np.zeros((interpolationSpace.referenceElement.dim), 'd') jacobian = np.zeros((interpolationSpace.referenceElement.dim, interpolationSpace.referenceElement.dim), 'd') inverseJacobian = np.zeros((interpolationSpace.referenceElement.dim, interpolationSpace.referenceElement.dim), 'd') for pN in range(self.nPoints_global): (distance,nN) = tree.query(self.domain.bathy[pN,:2]) for eN in mesh.nodeElementsArray[mesh.nodeElementOffsets[nN]:mesh.nodeElementOffsets[nN+1]]: xiArray[:] = 0.0 for j in interpolationSpace.range_dim: grad_psi[j,:] = interpolationSpace.basisGradients[j](xiArray[0])#evalute at zero because we can (psi is linear) jacobian.flat[:]=0.0 inverseJacobian.flat[:]=0.0 for j in interpolationSpace.range_dim: J = mesh.elementNodesArray[eN,j] for m in interpolationSpace.referenceElement.range_dim: for n in interpolationSpace.referenceElement.range_dim: jacobian[m,n] += mesh.nodeArray[J,m]*grad_psi[j,n] J = mesh.elementNodesArray[eN,0] inverseJacobian = inv(jacobian) area = 0.5*det(jacobian) mesh.area_element[eN] = area xiArray[:] = 0.0 dx[:]=self.domain.bathy[pN,:2] for m in interpolationSpace.referenceElement.range_dim: dx[m]-=mesh.nodeArray[J,m] for m in interpolationSpace.referenceElement.range_dim: for n in interpolationSpace.referenceElement.range_dim: xiArray[m] += inverseJacobian[m,n]*dx[n] #if the barycentric coordinates are non-negative we're in this element if xiArray[0] >=0.0 and xiArray[1] >= 0.0 and 1.0 - xiArray[0] - xiArray[1] >= 0.0: self.pointElementsArray[pN] = eN self.pointNodeWeightsArray[pN,0] = interpolationSpace.basis[0](xiArray) self.pointNodeWeightsArray[pN,1] = interpolationSpace.basis[1](xiArray) self.pointNodeWeightsArray[pN,2] = interpolationSpace.basis[2](xiArray) self.totalArea += mesh.area_element.sum() #count the number of points inside each element for pN in range(self.nPoints_global): if self.pointElementsArray[pN] >= 0: mesh.nPoints_element[self.pointElementsArray[pN]] += 1 #add up the support area for each node for eN in range(mesh.nElements_global): if mesh.nPoints_element[eN] > 0: mesh.nodeSupportArray[mesh.elementNodesArray[eN,0]] += mesh.area_element[eN] mesh.nodeSupportArray[mesh.elementNodesArray[eN,1]] += mesh.area_element[eN] mesh.nodeSupportArray[mesh.elementNodesArray[eN,2]] += mesh.area_element[eN] def interpolateBathymetry(self): """ interpolate bathymetry for the refinement from the parent mesh """ from proteus.FemTools import C0_AffineLinearOnSimplexWithNodalBasis,DOFBoundaryConditions,MultilevelProjectionOperators mlMeshTemp = MultilevelMesh(levels=2) mlMeshTemp.meshList = self.meshList[-2:] mlMeshTemp.nLevels=2 mlMeshTemp.cmeshList = self.cmeshList[-2:] mlMeshTemp.elementParentsArrayList = self.elementParentsArrayList[-2:] mlMeshTemp.elementChildrenArrayList = self.elementChildrenArrayList[-1:] mlMeshTemp.elementChildrenOffsetsList = self.elementChildrenOffsetsList[-1:] nd=2 TrialSpaceTypeDict = {0:C0_AffineLinearOnSimplexWithNodalBasis} trialSpaceDictParent = dict([ (cj,TrialSpaceType(mlMeshTemp.meshList[0],nd)) for (cj,TrialSpaceType) in TrialSpaceTypeDict.items()]) trialSpaceDictChild = dict([ (cj,TrialSpaceType(mlMeshTemp.meshList[1],nd)) for (cj,TrialSpaceType) in TrialSpaceTypeDict.items()]) trialSpaceDictList = [trialSpaceDictParent,trialSpaceDictChild] offsetListList=[[0],[0]] strideListList=[[1],[1]] def getDBC(x,flag): return None bcDictList=[dict([(0,DOFBoundaryConditions(trialSpaceDictParent[0],getPointwiseBoundaryConditions=getDBC,weakDirichletConditions=False))]), dict([(0,DOFBoundaryConditions(trialSpaceDictChild[0],getPointwiseBoundaryConditions=getDBC,weakDirichletConditions=False))])] self.meshTransfers = MultilevelProjectionOperators( mlMeshTemp, trialSpaceDictList, offsetListList, strideListList, bcDictList) zParent = self.meshList[-2].nodeArray[:,2].copy() zChild = self.meshList[-1].nodeArray[:,2].copy() self.meshTransfers.prolongList[-1].matvec(zParent,zChild) self.meshList[-1].nodeArray[:,2] = zChild def tagElements(self,mesh): """ loop over points and calculate whether the interpolation error is within the tolerance this should only be used on very coarse meshes """ mesh.elementTags = np.zeros((mesh.nElements_global,),'i') mesh.errorAverage_element = np.zeros((mesh.nElements_global,),'d') errorInfty = 0.0 mesh.elementTags[mesh.elementDiametersArray > self.maxElementDiameter ] = 1 for pN in range(self.nPoints_global): eN = self.pointElementsArray[pN] if eN >= 0: zInterp = self.pointNodeWeightsArray[pN,0]*mesh.nodeArray[mesh.elementNodesArray[eN,0],2] + \ self.pointNodeWeightsArray[pN,1]*mesh.nodeArray[mesh.elementNodesArray[eN,1],2] + \ self.pointNodeWeightsArray[pN,2]*mesh.nodeArray[mesh.elementNodesArray[eN,2],2] errorPointwise = fabs(zInterp - self.domain.bathy[pN,2])/(fabs(self.domain.bathy[pN,2])*self.rtol + self.atol) errorInfty = max(errorPointwise,errorInfty) mesh.errorAverage_element[eN] += (errorPointwise/float(mesh.nPoints_element[eN])) #print "error average",mesh.errorAverage_element[eN] if errorPointwise >= 1.0: mesh.elementTags[eN] = 1 if self.errorNormType == "L1": mesh.elementTags[:] = 0 errorL1 = 0.0 for eN in range(mesh.nElements_global): errorL1 += mesh.errorAverage_element[eN]*mesh.area_element[eN] if mesh.errorAverage_element[eN] >= 1.0: mesh.elementTags[eN] = 1 errorL1 /= self.totalArea#normalize by domain error to make error have units of length return errorL1 if self.errorNormType == "L2": mesh.elementTags[:] = 0 errorL2 = 0.0 for eN in range(mesh.nElements_global): errorL2 += (mesh.errorAverage_element[eN])**2 * mesh.area_element[eN] if mesh.errorAverage_element[eN] >= 1.0: mesh.elementTags[eN] = 1 errorL2 = old_div(sqrt(errorL2),self.totalArea)#normalize by domain error to make error have units of length return errorL2 else: print("Interpolation Error, L_infty ",errorInfty) return errorInfty class EdgeMesh(Mesh): """A mesh of edges The nodes, and edges are indexed by their node tuples. The corresponding lists are derived from the dictionaries, and sorted lexicographically. The global node numbers are redefined to give a lexicographic ordering. """ def __init__(self): Mesh.__init__(self) self.nodeDict={} self.edgeDict={} self.oldToNewNode=[] def computeGeometricInfo(self): from .import cmeshTools cmeshTools.computeGeometricInfo_edge(self.cmesh) def generateEdgeMeshFromRectangularGrid(self,nx,Lx): from .import cmeshTools self.cmesh = cmeshTools.CMesh() cmeshTools.generateEdgeMeshFromRectangularGrid(nx,Lx,self.cmesh) cmeshTools.allocateGeometricInfo_edge(self.cmesh) cmeshTools.computeGeometricInfo_edge(self.cmesh) self.buildFromC(self.cmesh) #mwf debug #print "EdgeMesh rect->edge after build nodes=%s " % (self.nodeArray) def rectangularToEdge(self,grid): #copy the nodes from the rectangular mesh #I want to be able to renumber latter without #changing the grid nodes, so I do deep copies here self.nodeList = [Node(n.N,n.p[X],n.p[Y],n.p[Z]) for n in grid.nodeList] self.nodeDict = dict([(n,n) for n in self.nodeList]) for e in grid.edgeList: self.newEdge([self.nodeDict[e.nodes[0]],self.nodeDict[e.nodes[1]]]) self.finalize() #self.buildListsEdges() def finalize(self): self.buildLists() self.buildArraysFromLists() #todo: build boundary mesh def buildLists(self): self.buildListsNodes() self.buildListsEdges() self.elementList = self.edgeList self.elementBoundaryList = self.nodeList def buildListsNodes(self): keyList = list(self.nodeDict.keys()) keyList.sort() self.nodeList=[] self.oldToNewNode=list(range(len(self.nodeDict))) for nN,k in enumerate(keyList): self.oldToNewNode[self.nodeDict[k].N]=nN self.nodeDict[k].N = nN self.nodeList.append(self.nodeDict[k]) def buildListsEdges(self): keyList = list(self.edgeDict.keys()) keyList.sort() self.edgeList=[] for eN,k in enumerate(keyList): self.edgeDict[k].N = eN self.edgeList.append(self.edgeDict[k]) def newEdge(self,nodes): e = Edge(len(self.edgeDict),nodes) self.edgeDict[e.nodes] = e return e def registerNode(self,node): if node in self.nodeDict: node = self.nodeDict[node] else: node.N = len(self.nodeDict) self.nodeDict[node] = node return node def refine2e(self,oldMesh): childrenDict={} for e in oldMesh.edgeList: #deep copy old nodes because we'll renumber eNodes = [Node(eN,n.p[X],n.p[Y],n.p[Z]) for eN,n in enumerate(e.nodes)] for lnN,n in enumerate(eNodes): eNodes[lnN]=self.registerNode(n) #add new node e.computeGeometricInfo() newNode = Node(len(self.nodeDict), e.barycenter[X], e.barycenter[Y], e.barycenter[Z]) newNode = self.registerNode(newNode) e1=self.newEdge([eNodes[0],newNode]) e2=self.newEdge([newNode,eNodes[1]]) childrenDict[e.N]=[e1,e2] self.finalize() return childrenDict def refine(self,oldMesh): return self.refine2e(oldMesh) def meshInfo(self): minfo = """Number of edges : %d Number of nodes : %d\n""" % (self.nElements_global,self.nNodes_global) if self.subdomainMesh != self: sinfo = self.subdomainMesh.meshInfo() info = "*** Global ***\n" + minfo + "\n*** Local ***\n" + sinfo return info return minfo def writeMeshADH(self,filename): pass def writeMeshXdmf(self,ar,name='',t=0.0,init=False,meshChanged=False,tCount=0): Mesh.writeMeshXdmf(self,ar,name,t,init,meshChanged,"Polyline",tCount) def writeMeshEnsight(self,filename,description=None): base=1 #write the casefile caseOut=open(filename+'.case','w') caseOut.write('FORMAT\n'+'type: ensight gold\n') caseOut.write('GEOMETRY\n'+'model: '+filename+'.geo\n') caseOut.close() meshOut=open(filename+'.geo','w') meshOut.write('Ensight Gold\n') meshOut.write('Unstructured Edge Mesh\n') meshOut.write('node id given\n') meshOut.write('element id given\n') meshOut.write('part \n'+'%10i\n' % 1) if description: meshOut.write(description+'\n') else: meshOut.write('A Mesh\n') meshOut.write('coordinates\n'+'%10i\n' % self.nNodes_global) for nN in range(self.nNodes_global): meshOut.write('%10i\n' % (nN+base)) for nN in range(self.nNodes_global): meshOut.write('%12.5E\n' % self.nodeArray[nN,0]) for nN in range(self.nNodes_global): meshOut.write('%12.5E\n' % self.nodeArray[nN,1]) for nN in range(self.nNodes_global): meshOut.write('%12.5E\n' % self.nodeArray[nN,2]) meshOut.write('bar2\n'+'%10i\n' % self.nElements_global) for eN in range(self.nElements_global): meshOut.write('%10i\n' % (eN+base)) for eN in range(self.nElements_global): meshOut.write('%10i%10i\n' % tuple((nN+base) for nN in self.elementNodesArray[eN,:])) meshOut.close() class MultilevelEdgeMesh(MultilevelMesh): """A hierarchical multilevel mesh of intervals (edges)""" from .import cmeshTools def __init__(self, nx, ny, nz, x=0.0, y=0.0, z=0.0, Lx=1.0, Ly=1.0, Lz=1.0, refinementLevels=1, nLayersOfOverlap=1, parallelPartitioningType=MeshParallelPartitioningTypes.node): from . import cmeshTools MultilevelMesh.__init__(self) self.useC=True self.nLayersOfOverlap=nLayersOfOverlap; self.parallelPartitioningType = parallelPartitioningType if self.useC: self.meshList.append(EdgeMesh()) self.meshList[0].generateEdgeMeshFromRectangularGrid(nx,Lx) self.cmultilevelMesh = cmeshTools.CMultilevelMesh(self.meshList[0].cmesh,refinementLevels) self.buildFromC(self.cmultilevelMesh) self.meshList[0].nodeArray[:,0] += x self.meshList[0].nodeArray[:,1] += y self.meshList[0].nodeArray[:,2] += z self.meshList[0].partitionMesh(nLayersOfOverlap=nLayersOfOverlap,parallelPartitioningType=parallelPartitioningType) for l in range(1,refinementLevels): self.meshList.append(EdgeMesh()) self.meshList[l].cmesh = self.cmeshList[l] self.meshList[l].buildFromC(self.meshList[l].cmesh) self.meshList[l].partitionMesh(nLayersOfOverlap=nLayersOfOverlap,parallelPartitioningType=parallelPartitioningType) else: grid=RectangularGrid(nx,ny,nz,Lx,Ly,Lz) self.meshList.append(EdgeMesh()) self.meshList[0].rectangularToEdge(grid) self.meshList[0].nodeArray[:,0] += x self.meshList[0].nodeArray[:,1] += y self.meshList[0].nodeArray[:,2] += z self.elementChildren=[] print(self.meshList[0].meshInfo()) for l in range(1,refinementLevels): self.refine() print(self.meshList[-1].meshInfo()) def refine(self): self.meshList.append(EdgeMesh()) childrenDict = self.meshList[-1].refine(self.meshList[-2]) self.elementChildren.append(childrenDict) def computeGeometricInfo(self): for m in self.meshList: m.computeGeometricInfo() def locallyRefine(self,elementTagArray): """ simple local refinement assuming elementTagArray[eN]=1 --> bisect """ if self.useC: self.cmeshTools.locallyRefineMultilevelMesh(1,self.cmultilevelMesh,elementTagArray) self.buildFromC(self.cmultilevelMesh) self.meshList.append(EdgeMesh()) self.meshList[self.nLevels-1].cmesh = self.cmeshList[self.nLevels-1] self.meshList[self.nLevels-1].buildFromC(self.meshList[self.nLevels-1].cmesh) self.meshList[self.nLevels-1].partitionMesh(nLayersOfOverlap=self.nLayersOfOverlap,parallelPartitioningType=self.parallelPartitioningType) else: print("""locallyRefine not implemented for self.useC= %s """ % (self.useC)) # # class MultilevelSimplicialMesh(MultilevelMesh): """A wrapper for all the simplicial hierarchical meshes in 1,2, and 3D""" def __init__(self,nd,nx,ny=1,nz=1,Lx=1.0,Ly=1.0,Lz=1.0,refinementLevels=1): if nd==1: MultilevelEdgeMesh.__init__(self,nx,ny,nz, Lx,Ly,Lz, refinementLevels) elif nd==2: MultilevelTriangularMesh.__init__(self,nx,ny,nz, Lx,Ly,Lz, refinementLevels) elif nd==3: MultilevelTetrahedralMesh.__init__(self,nx,ny,nz, Lz,Ly,Lz, refineMentLevels) def refine(self): if nd==1: MultilevelEdgeMesh.refine(self) elif nd==2: MultilevelTrianglularMesh.refine(self) elif nd==3: MultilevelTetrahedralMesh.refine(self) ## @} ###utility functions for reading meshes from Xdmf def findXMLgridElement(xmf,MeshTag='Spatial_Domain',id_in_collection=-1,verbose=0): """Try to find the element of the xml tree xmf that holds a uniform grid with the name given in MeshTag by searching through Temporal Grid Collections and Grid Collections. If MeshTag isn't found, uses the first entry in the Domain """ Domain = xmf.getroot()[-1] GridCollection = None Grid = None for collection in Domain: if 'Name' in collection.attrib and MeshTag in collection.attrib['Name']: GridCollection = collection break if GridCollection is None: GridCollection = Domain[0] logEvent("Trying GridCollection.tag= %s" % (GridCollection.tag),4) if GridCollection.attrib['GridType'] == 'Collection': Grid = GridCollection[-1] elif GridCollection.attrib['GridType'] == 'Uniform': Grid = GridCollection assert Grid.tag == 'Grid' assert Grid.attrib['GridType'] == 'Uniform' return Grid def extractPropertiesFromXdmfGridNode(Grid): """unpack the Topology, Geometry, NodeMaterials, and ElementMaterials nodes from xdmf node for a uniform grid """ #Geometry first Topology = None; Geometry = None; NodeMaterials= None; ElementMaterials = None for i,leaf in enumerate(Grid): logEvent("Grid leaf %d tag= %s " % (i,leaf.tag),4) if leaf.tag == 'Topology': Topology = Grid[i] logEvent("Topology found in leaf %d " % i,4) elif leaf.tag == 'Geometry': Geometry = Grid[i] logEvent("Geometry found in leaf %d " % i,4) elif leaf.tag == 'Attribute' and leaf.attrib['Name'] == 'nodeMaterialTypes': NodeMaterials = Grid[i] logEvent("NodeMaterials found in leaf %d " % i,4) elif leaf.tag == 'Attribute' and leaf.attrib['Name'] == 'elementMaterialTypes': ElementMaterials = Grid[i] logEvent("ElementMaterials found in leaf %d " % i,4) return Topology,Geometry,NodeMaterials,ElementMaterials def readUniformElementTopologyFromXdmf(elementTopologyName,Topology,hdf5,topologyid2name,topology2nodes): """ Read xmdf element topology information when there are uniform elements in the mesh Type of element given by elementTopologyName Heavy data stored in hdf5 topologyid2name -- lookup for number of nodes in a given element type returns nElements_global -- the number of elements in the mesh nNodes_element -- number of nodes per element elementNodesArray -- element --> node connectivity stored as flattened array accessed using elementNodes_offset elementNodes_offset -- offsets into the elementNodesArray storage for element connectivity, element eN nodes are in elementNodesArray[elementNodes_offset[eN]:elementNodes_offset[eN+1]] """ nNodes_element = topology2nodes[elementTopologyName] entry = Topology[0].text.split(':')[-1] logEvent("Reading elementNodesArray from %s " % entry,3) elementNodesArray = hdf5["/"+entry][:] assert elementNodesArray.shape[1] == nNodes_element nElements_global = elementNodesArray.shape[0] logEvent("nElements_global,nNodes_element= (%d,%d) " % (nElements_global,nNodes_element),3) elementNodes_offset = np.arange(nElements_global*nNodes_element+1,step=nNodes_element,dtype='i') return nElements_global, nNodes_element, elementNodesArray, elementNodes_offset def readMixedElementTopologyFromXdmf(elementTopologyName,Topology,hdf5,topologyid2name,topology2nodes): """ Read xmdf element topology information when there are mixed elements in the mesh Heavy data stored in hdf5 topologyid2name -- lookup for number of nodes in a given element type returns nElements_global -- the number of elements in the mesh elementNodesArray -- element --> node connectivity stored as flattened array accessed using elementNodes_offset elementNodes_offset -- offsets into the elementNodesArray storage for element connectivity, element eN nodes are inelementNodesArray[elementNodes_offset[eN]:elementNodes_offset[eN+1]] """ assert elementTopologyName == 'Mixed' entry = Topology[0].text.split(':')[-1] logEvent("Reading xdmf_topology from %s " % entry,3) xdmf_topology = hdf5["/"+entry][:] #build elementNodesArray and offsets now nElements_global = 0 i = 0 while i < len(xdmf_topology): nElements_global += 1 nNodes_local = topology2nodes[topologyid2name[xdmf_topology[i]]] i += nNodes_local+1 # logEvent("Mixed topology found %s elements " % nElements_global,3) elementNodes_offset = np.zeros((nElements_global+1,),'i') i = 0; eN = 0 while i < len(xdmf_topology): nNodes_local = topology2nodes[topologyid2name[xdmf_topology[i]]] elementNodes_offset[eN+1] = elementNodes_offset[eN] + nNodes_local eN += 1; i += nNodes_local+1 elementNodesArray = np.zeros((elementNodes_offset[nElements_global],),'i') i = 0; eN = 0 while i < len(self.xdmf_topology): nNodes_local = topology2nodes[topologyid2name[xdmf_topology[i]]] elementNodesArray[elementNodes_offset[eN]:elementNodes_offset[eN+1]][:] = xdmf_topology[i+1:i+1+nNodes_local][:] eN += 1; i += nNodes_local+1 return nElements_global, elementNodesArray, elementNodes_offset def readMeshXdmf(xmf_archive_base,heavy_file_base,MeshTag="Spatial_Domain",hasHDF5=True,verbose=0): """Read in a mesh from XDMF, assuming heavy data is in hdf5 :return: a BasicMeshInfo object with the minimal information read """ # start trying to read an xdmf archive with name xmf_archive_base.xmf # assumes heavy_file_base.h5 has heavy data # root Element is Xdmf # last child of Xdmf which should be a Domain Element # find child of Domain that is a Temporal Grid Collection with a name containing MeshTag, if None use first collection # last child of Temporal Grid Collection should be a Uniform Grid at final time # Attribute (usually 1) of child is Topology # set elementTopologyName to Type # if Type != Mixed # get text attribute and read this entry from hdf5 file # set nNodes_element based on Type, nElements_global from leading dimension of elementNodesArray # create elementNodes_offset from Type and flatten elementNodesArray # else # get text attribute and read this entry from hdf5 file to place in into xdmf_topology # generate elementNodesArray from xdmf_topology, calculating the number of elements using # walk through xdmf_topology # Attribute (usually 2) of child is Geometry --> load data into nodeArray # set nNodes_global from nodeArray # If has Attribute nodeMaterials read this from hdf file, else set to default of all zeros # If has Attribute elementMaterialTypes, read this from hdf file, else set to default of all zeros assert os.path.isfile(xmf_archive_base+'.xmf') assert os.path.isfile(heavy_file_base+'.h5') ###information about allowed Xdmf topologies #Xdmf cell type id to Name topologyid2name = {2:'Polyline',4:'Triangle',5:'Quadrilateral',6:'Tetrahedron',8:'Wedge',9:'Hexahedron', 112:'Mixed'} #Mixed isn't actually used 0x070 #Topology name to number of local nodes topology2nodes = {'Polyline':2,'Triangle':3,'Quadrilateral':4,'Tetrahedron':4,'Wedge':6,'Hexahedron':8} #for output class BasicMeshInfo(object): def __init__(self): self.nNodes_global = None self.nodeArray = None self.nodeMaterialTypes = None self.nNodes_element = None self.nElements_global = None self.elementTopologyName = None self.elementNodesArray = None self.elementNodes_offset = None self.elementMaterialTypes = None self.nNodes_owned = None self.nElements_owned = None # # MeshInfo = BasicMeshInfo() xmf = ET.parse(xmf_archive_base+'.xmf') hdf5= h5py.File(heavy_file_base+'.h5',"r") assert hasHDF5 Grid = findXMLgridElement(xmf,MeshTag,id_in_collection=-1,verbose=verbose) Topology,Geometry,NodeMaterials,ElementMaterials = extractPropertiesFromXdmfGridNode(Grid) assert Geometry is not None entry = Geometry[0].text.split(':')[-1] logEvent("Reading nodeArray from %s " % entry,3) MeshInfo.nodeArray = hdf5["/"+entry][:] MeshInfo.nNodes_global = MeshInfo.nodeArray.shape[0] if NodeMaterials is not None: entry = NodeMaterials[0].text.split(':')[-1] logEvent("Reading nodeMaterialTypes from %s " % entry,4) MeshInfo.nodeMaterialTypes = hdf5["/"+entry][:] else: MeshInfo.nodeMaterialTypes = np.zeros((MeshInfo.nNodes_global,),'i') assert Topology is not None if 'Type' in Topology.attrib: MeshInfo.elementTopologyName = Topology.attrib['Type'] elif 'TopologyType' in Topology.attrib: MeshInfo.elementTopologyName = Topology.attrib['TopologyType'] assert MeshInfo.elementTopologyName is not None logEvent("elementTopologyName= %s " % MeshInfo.elementTopologyName,3) assert MeshInfo.elementTopologyName in list(topologyid2name.values()) if MeshInfo.elementTopologyName != 'Mixed': MeshInfo.nElements_global, MeshInfo.nNodes_element, \ MeshInfo.elementNodesArray, MeshInfo.elementNodes_offset = readUniformElementTopologyFromXdmf(MeshInfo.elementTopologyName,Topology, hdf5,topologyid2name,topology2nodes) else: MeshInfo.nElements_global, MeshInfo.elementNodesArray, \ MeshInfo.elementNodes_offset = readMixedElementTopologyFromXdmf(MeshInfo.elementTopologyName,Topology,hdf5,topologyid2name,topology2nodes) # if ElementMaterials is not None: entry = ElementMaterials[0].text.split(':')[-1] logEvent("Reading elementMaterialTypes from %s " % entry,3) MeshInfo.elementMaterialTypes = hdf5["/"+entry][:] else: MeshInfo.elementMaterialTypes =
np.zeros((MeshInfo.nElements_global,),'i')
numpy.zeros
from typing import List import numpy as np from numpy import sqrt Gx_0 = np.array([ [0], ]) Gx_1 = np.array([ [0, 0, 0], [0, 0, -1], [0, 1, 0], ]) Gx_2 = np.array([ [0, 1, 0, 0, 0], [-1, 0, 0, 0, 0], [0, 0, 0, -sqrt(3), 0], [0, 0, sqrt(3), 0, -1], [0, 0, 0, 1, 0], ]) Gx_3 = np.array([ [0, sqrt(6)/2, 0, 0, 0, 0, 0], [-sqrt(6)/2, 0, sqrt(10)/2, 0, 0, 0, 0], [0, -sqrt(10)/2, 0, 0, 0, 0, 0], [0, 0, 0, 0, -sqrt(6), 0, 0], [0, 0, 0, sqrt(6), 0, -sqrt(10)/2, 0], [0, 0, 0, 0, sqrt(10)/2, 0, -sqrt(6)/2], [0, 0, 0, 0, 0, sqrt(6)/2, 0], ]) Gx_4 = np.array([ [0, sqrt(2), 0, 0, 0, 0, 0, 0, 0], [-sqrt(2), 0, sqrt(14)/2, 0, 0, 0, 0, 0, 0], [0, -sqrt(14)/2, 0, 3*sqrt(2)/2, 0, 0, 0, 0, 0], [0, 0, -3*sqrt(2)/2, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -sqrt(10), 0, 0, 0], [0, 0, 0, 0, sqrt(10), 0, -3*sqrt(2)/2, 0, 0], [0, 0, 0, 0, 0, 3*sqrt(2)/2, 0, -sqrt(14)/2, 0], [0, 0, 0, 0, 0, 0, sqrt(14)/2, 0, -sqrt(2)], [0, 0, 0, 0, 0, 0, 0, sqrt(2), 0], ]) Gx_5 = np.array([ [0, sqrt(10)/2, 0, 0, 0, 0, 0, 0, 0, 0, 0], [-sqrt(10)/2, 0, 3*sqrt(2)/2, 0, 0, 0, 0, 0, 0, 0, 0], [0, -3*sqrt(2)/2, 0, sqrt(6), 0, 0, 0, 0, 0, 0, 0], [0, 0, -sqrt(6), 0, sqrt(7), 0, 0, 0, 0, 0, 0], [0, 0, 0, -sqrt(7), 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, -sqrt(15), 0, 0, 0, 0], [0, 0, 0, 0, 0, sqrt(15), 0, -sqrt(7), 0, 0, 0], [0, 0, 0, 0, 0, 0, sqrt(7), 0, -sqrt(6), 0, 0], [0, 0, 0, 0, 0, 0, 0, sqrt(6), 0, -3*sqrt(2)/2, 0], [0, 0, 0, 0, 0, 0, 0, 0, 3*sqrt(2)/2, 0, -sqrt(10)/2], [0, 0, 0, 0, 0, 0, 0, 0, 0, sqrt(10)/2, 0], ]) Gx_6 = np.array([ [0, sqrt(3), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [-sqrt(3), 0, sqrt(22)/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, -sqrt(22)/2, 0, sqrt(30)/2, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, -sqrt(30)/2, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, -3, 0, sqrt(10), 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, -sqrt(10), 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, -sqrt(21), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, sqrt(21), 0, -sqrt(10), 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, sqrt(10), 0, -3, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 3, 0, -sqrt(30)/2, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, sqrt(30)/2, 0, -sqrt(22)/2, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, sqrt(22)/2, 0, -sqrt(3)], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, sqrt(3), 0], ]) Gx_7 = np.array([ [0, sqrt(14)/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [-sqrt(14)/2, 0, sqrt(26)/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, -sqrt(26)/2, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, -3, 0, sqrt(11), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, -sqrt(11), 0, 5*sqrt(2)/2, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, -5*sqrt(2)/2, 0, 3*sqrt(6)/2, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -3*sqrt(6)/2, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, -2*sqrt(7), 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 2*sqrt(7), 0, -3*sqrt(6)/2, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 3*sqrt(6)/2, 0, -5*sqrt(2)/2, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 5*sqrt(2)/2, 0, -sqrt(11), 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, sqrt(11), 0, -3, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, -sqrt(26)/2, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, sqrt(26)/2, 0, -sqrt(14)/2], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, sqrt(14)/2, 0], ]) Gx_8 = np.array([ [0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [-2, 0, sqrt(30)/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, -sqrt(30)/2, 0, sqrt(42)/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, -sqrt(42)/2, 0, sqrt(13), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, -sqrt(13), 0, sqrt(15), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, -sqrt(15), 0, sqrt(66)/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -sqrt(66)/2, 0, sqrt(70)/2, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, -sqrt(70)/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, -6, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 6, 0, -sqrt(70)/2, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, sqrt(70)/2, 0, -sqrt(66)/2, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, sqrt(66)/2, 0, -sqrt(15), 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, sqrt(15), 0, -sqrt(13), 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, sqrt(13), 0, -sqrt(42)/2, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, sqrt(42)/2, 0, -sqrt(30)/2, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, sqrt(30)/2, 0, -2], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0], ]) Gx_9 = np.array([ [0, 3*sqrt(2)/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [-3*sqrt(2)/2, 0, sqrt(34)/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, -sqrt(34)/2, 0, 2*sqrt(3), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, -2*sqrt(3), 0, sqrt(15), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, -sqrt(15), 0, sqrt(70)/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, -sqrt(70)/2, 0, sqrt(78)/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -sqrt(78)/2, 0, sqrt(21), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, -sqrt(21), 0, sqrt(22), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, -sqrt(22), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3*sqrt(5), 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 3*sqrt(5), 0, -sqrt(22), 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, sqrt(22), 0, -sqrt(21), 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, sqrt(21), 0, -sqrt(78)/2, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, sqrt(78)/2, 0, -sqrt(70)/2, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, sqrt(70)/2, 0, -sqrt(15), 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, sqrt(15), 0, -2*sqrt(3), 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*sqrt(3), 0, -sqrt(34)/2, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, sqrt(34)/2, 0, -3*sqrt(2)/2], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3*sqrt(2)/2, 0], ]) Gx_10 = np.array([ [0, sqrt(5), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [-sqrt(5), 0, sqrt(38)/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, -sqrt(38)/2, 0, 3*sqrt(6)/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, -3*sqrt(6)/2, 0, sqrt(17), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, -sqrt(17), 0, 2*sqrt(5), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, -2*sqrt(5), 0, 3*sqrt(10)/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -3*sqrt(10)/2, 0, 7*sqrt(2)/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, -7*sqrt(2)/2, 0, sqrt(26), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, -sqrt(26), 0, 3*sqrt(3), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, -3*sqrt(3), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -sqrt(55), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, sqrt(55), 0, -3*sqrt(3), 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3*sqrt(3), 0, -sqrt(26), 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, sqrt(26), 0, -7*sqrt(2)/2, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7*sqrt(2)/2, 0, -3*sqrt(10)/2, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3*sqrt(10)/2, 0, -2*sqrt(5), 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*sqrt(5), 0, -sqrt(17), 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, sqrt(17), 0, -3*sqrt(6)/2, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3*sqrt(6)/2, 0, -sqrt(38)/2, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, sqrt(38)/2, 0, -sqrt(5)], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, sqrt(5), 0], ]) Gx_11 = np.array([ [0, sqrt(22)/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [-sqrt(22)/2, 0, sqrt(42)/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, -sqrt(42)/2, 0, sqrt(15), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, -sqrt(15), 0, sqrt(19), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, -sqrt(19), 0, 3*sqrt(10)/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, -3*sqrt(10)/2, 0, sqrt(102)/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -sqrt(102)/2, 0, 2*sqrt(7), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, -2*sqrt(7), 0, sqrt(30), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, -sqrt(30), 0, 3*sqrt(14)/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, -3*sqrt(14)/2, 0, sqrt(130)/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, -sqrt(130)/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -sqrt(66), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, sqrt(66), 0, -sqrt(130)/2, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, sqrt(130)/2, 0, -3*sqrt(14)/2, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3*sqrt(14)/2, 0, -sqrt(30), 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
sqrt(30)
numpy.sqrt
from __future__ import absolute_import import os import sys import numpy as np import nibabel as nib from spinalcordtoolbox.utils import __sct_dir__ sys.path.append(os.path.join(__sct_dir__, 'scripts')) from spinalcordtoolbox.image import Image from spinalcordtoolbox.deepseg_lesion import core as deepseg_lesion import sct_utils as sct def test_model_file_exists(): for model_name in deepseg_lesion.MODEL_LST: model_path = os.path.join(sct.__sct_dir__, 'data', 'deepseg_lesion_models', '{}_lesion.h5'.format(model_name)) assert os.path.isfile(model_path) def test_segment(): contrast_test = 't2' model_path = os.path.join(sct.__sct_dir__, 'data', 'deepseg_lesion_models', '{}_lesion.h5'.format(contrast_test)) # create fake data data = np.zeros((48,48,96)) xx, yy = np.mgrid[:48, :48] circle = (xx - 24) ** 2 + (yy - 24) ** 2 for zz in range(data.shape[2]): data[:,:,zz] += np.logical_and(circle < 400, circle >= 200) * 2400 # CSF data[:,:,zz] += (circle < 200) * 500 # SC data[16:22, 16:22, 64:90] = 1000 # fake lesion affine = np.eye(4) nii = nib.nifti1.Nifti1Image(data, affine) img = Image(data, hdr=nii.header, dim=nii.header.get_data_shape()) seg = deepseg_lesion.segment_3d(model_path, contrast_test, img.copy()) assert
np.any(seg.data[16:22, 16:22, 64:90])
numpy.any
# Copyright 2020 <NAME> (@usimarit) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from tensorflow_asr.utils import setup_environment setup_environment() import librosa import numpy as np import matplotlib.pyplot as plt from tensorflow_asr.featurizers.speech_featurizers import read_raw_audio, TFSpeechFeaturizer, NumpySpeechFeaturizer def main(argv): speech_file = argv[1] feature_type = argv[2] speech_conf = { "sample_rate": 16000, "frame_ms": 25, "stride_ms": 10, "feature_type": feature_type, "preemphasis": 0.97, "normalize_signal": True, "normalize_feature": True, "normalize_per_feature": False, "num_feature_bins": 80, } signal = read_raw_audio(speech_file, speech_conf["sample_rate"]) nsf = NumpySpeechFeaturizer(speech_conf) sf = TFSpeechFeaturizer(speech_conf) ft = nsf.stft(signal) print(ft.shape, np.mean(ft)) ft = sf.stft(signal).numpy() print(ft.shape,
np.mean(ft)
numpy.mean
import numpy as np class Perceptron: def __init__(self, w, threshold=0.5): self.weight = w self.threshold = threshold def work(self, x): sum = np.sum(self.weight * x) if sum <= self.threshold: return 0 else: # sum > self.threshold return 1 AND_weight = np.array([0.5, 0.5]) AND_threshold = 0.7 OR_weight = np.array([0.5, 0.5]) OR_threshold = 0.3 NAND_weight = np.array([-0.5, -0.5]) NAND_threshold = -0.7 AND = Perceptron(AND_weight, AND_threshold) OR = Perceptron(OR_weight, OR_threshold) NAND = Perceptron(NAND_weight, NAND_threshold) for input in [(0, 0), (0, 1), (1, 0), (1, 1)]: AND_output = AND.work(
np.array([input[0], input[1]])
numpy.array
import numpy import six from chainer import cuda from chainer import function from chainer.utils import type_check from chainer.utils import walker_alias class NegativeSampling(function.Function): """Implementation of negative sampling. In natural language processing, especially language modeling, the number of vocabulary is very large. Therefore, you need to spend a lot of time to calculate the gradient of the embedding matrix. Instead, in negative sampling trick, you only need to calculate the gradient for a few sampled negative examples. The objective function is below: .. math:: f(x, p) = \log\sigma(x^\\top w_p) + \\ k E_{i \sim P(i)}[\log\sigma(- x^\\top w_i)], where :math:`\sigma(\cdot)` is a sigmoid function, :math:`w_i` is the weight vector for the word :math:`i`, and :math:`p` is a positive example. It is approximeted with :math:`k` examples :math:`N` sampled from probability :math:`P(i)`, like this: .. math:: f(x, p) \\approx \log\sigma(x^\\top w_p) + \\ \sum_{n \in N} \log\sigma(-x^\\top w_n). Each sample of :math:`N` is drawn from the word distribution :math:`P(w)`. This is calculated as :math:`P(w) = \\frac{1}{Z} c(w)^\\alpha`, where :math:`c(w)` is the unigram count of the word :math:`w`, :math:`\\alpha` is a hyper-parameter, and :math:`Z` is the normalization constant. Args: in_size (int): Dimension of input vectors. counts (int list): Number of each identifiers. sample_size (int): Number of negative samples. power (float): Power factor :math:`\\alpha`. See: `Distributed Representations of Words and Phrases and their\ Compositionality <http://arxiv.org/abs/1310.4546>`_ """ parameter_names = ('W',) gradient_names = ('gW',) def __init__(self, in_size, counts, sample_size, power=0.75): self.sample_size = sample_size p = numpy.array(counts, numpy.float32) p = numpy.power(p, p.dtype.type(power)) self.sampler = walker_alias.WalkerAlias(p) vocab_size = len(counts) self.W = numpy.zeros((vocab_size, in_size)).astype(numpy.float32) self.gW = numpy.zeros_like(self.W) def _make_samples(self, t): if hasattr(self, 'samples'): return self.samples size = int(t.shape[0]) # first one is the positive, and others are sampled negatives samples = self.sampler.sample((size, self.sample_size + 1)) if isinstance(samples, numpy.ndarray): samples.T[0] = t else: cuda.elementwise( 'T t, int32 m', 'raw T s', 's[i * m] = t;', 'negative_sampling_assign' )(t, self.sample_size + 1, samples) self.samples = samples def check_type_forward(self, in_types): type_check.expect(in_types.size() == 2) x_type, t_type = in_types type_check.expect( x_type.dtype == numpy.float32, x_type.ndim == 2, t_type.dtype == numpy.int32, t_type.ndim == 1, x_type.shape[0] == t_type.shape[0] ) def to_gpu(self, device=None): super(NegativeSampling, self).to_gpu(device) self.sampler.to_gpu() def to_cpu(self): super(NegativeSampling, self).to_cpu() self.sampler.to_cpu() def forward_cpu(self, inputs): x, t = inputs self._make_samples(t) loss = numpy.float32(0.0) for i, (ix, k) in enumerate(six.moves.zip(x, self.samples)): w = self.W[k] f = w.dot(ix) f[0] *= -1 # positive sample loss += numpy.sum(numpy.logaddexp(f, 0)) return
numpy.array(loss, numpy.float32)
numpy.array
# This file is part of the pyMOR project (https://www.pymor.org). # Copyright pyMOR developers and contributors. All rights reserved. # License: BSD 2-Clause License (https://opensource.org/licenses/BSD-2-Clause) import os import tempfile import numpy as np import pytest import scipy.io as spio import scipy.sparse as sps from pymor.models.iosys import LTIModel, SecondOrderModel def _build_matrices_lti(with_D, with_E): A = sps.csc_matrix([[1, 2], [3, 4]]) B = np.array([[1], [2]]) C =
np.array([[1, 2]])
numpy.array
# Append + memory saver + 1 core # Memory conservative version print("Setting up environment...") from npy_append_array import NpyAppendArray import numpy as np import sys # Read in arguments from command line parameters = np.genfromtxt(sys.argv[1], delimiter = ',', names = True) filepath = sys.argv[2] nchunks = int(sys.argv[3]) # Parse relevant parameters sims = parameters.shape[0] indivs = parameters['indvs'].astype('int32')[0] snps = parameters['snps'].astype('int32')[0] m = int(sims / nchunks) np.save('cnn_params.npy', parameters) del parameters # Creating chunk generator print("Creating chunk generator...") def chunkify(nchunks=nchunks, filepath=filepath): chunk_size = int((sims / nchunks) * (indivs+8)) chunk_end = 0 chunk_count = -1 while chunk_end < chunk_size * nchunks: chunk_start = chunk_end chunk_end = chunk_end + chunk_size chunk_count += 1 with open(filepath) as f: chunk = f.readlines()[chunk_start:chunk_end] yield chunk, chunk_count # Extract data from input file print("Creating data extractor...") def data_extractor(chunk, chunk_count): cc = chunk_count # Initialize appendable array in first chunk if cc == 0: # Find position data print("Initializing position data...") tmp_p = np.empty((m, snps)) posits = [z for z in chunk if "pos" in z] for i in range(len(posits)): tmp_p[i] = np.fromstring(posits[i][11:], sep=" ") pos_dat_initialize = tmp_p np.save('pos_dat.npy', pos_dat_initialize) global pos_dat_array pos_dat_array = NpyAppendArray('pos_dat.npy') del tmp_p # Find simulation data print("Initializing simulation data...") tmp_bd = np.empty((m, indivs, snps)) inds = np.array([i for i, s in enumerate(chunk) if 'pos' in s]) inds = inds + 1 big_dat_inds = np.zeros(shape=0, dtype='int') for i in range(indivs): big_dat_inds = np.append(big_dat_inds, inds + i) big_dat_inds = np.sort(big_dat_inds) k=0 for i in range(int(m)): for j in range(indivs): tmp_bd[i,j] = np.array(list(chunk[big_dat_inds[k]].strip())) k+=1 big_dat_initialize = tmp_bd np.save('big_dat.npy', big_dat_initialize) global big_dat_array big_dat_array = NpyAppendArray('big_dat.npy') del tmp_bd del chunk else: # Find position data print("Extracting position data...") tmp_p = np.empty((m, snps)) posits = [z for z in chunk if "pos" in z] for i in range(len(posits)): tmp_p[i] =
np.fromstring(posits[i][11:], sep=" ")
numpy.fromstring
import copy import numpy as np from scipy.special import wofz from scipy.integrate import quad from typing import List, Tuple import autoarray as aa from autogalaxy.profiles.mass_profiles import MassProfile from autogalaxy.profiles.mass_profiles.mass_profiles import ( MassProfileMGE, MassProfileCSE, ) from autogalaxy.profiles.mass_profiles.mass_profiles import psi_from class StellarProfile: pass class EllGaussian(MassProfile, StellarProfile): def __init__( self, centre: Tuple[float, float] = (0.0, 0.0), elliptical_comps: Tuple[float, float] = (0.0, 0.0), intensity: float = 0.1, sigma: float = 0.01, mass_to_light_ratio: float = 1.0, ): """ The elliptical Gaussian light profile. Parameters ---------- centre The (y,x) arc-second coordinates of the profile centre. elliptical_comps The first and second ellipticity components of the elliptical coordinate system, (see the module `autogalaxy -> convert.py` for the convention). intensity Overall intensity normalisation of the light profile (units are dimensionless and derived from the data the light profile's image is compared too, which is expected to be electrons per second). sigma The sigma value of the Gaussian. """ super(EllGaussian, self).__init__( centre=centre, elliptical_comps=elliptical_comps ) super(MassProfile, self).__init__( centre=centre, elliptical_comps=elliptical_comps ) self.mass_to_light_ratio = mass_to_light_ratio self.intensity = intensity self.sigma = sigma def deflections_yx_2d_from(self, grid: aa.type.Grid2DLike): """ Calculate the deflection angles at a given set of arc-second gridded coordinates. Parameters ---------- grid The grid of (y,x) arc-second coordinates the deflection angles are computed on. """ return self.deflections_2d_via_analytic_from(grid=grid) @aa.grid_dec.grid_2d_to_structure @aa.grid_dec.transform @aa.grid_dec.relocate_to_radial_minimum def deflections_2d_via_analytic_from(self, grid: aa.type.Grid2DLike): """ Calculate the deflection angles at a given set of arc-second gridded coordinates. Parameters ---------- grid The grid of (y,x) arc-second coordinates the deflection angles are computed on. """ deflections = ( self.mass_to_light_ratio * self.intensity * self.sigma * np.sqrt((2 * np.pi) / (1.0 - self.axis_ratio ** 2.0)) * self.zeta_from(grid=grid) ) return self.rotate_grid_from_reference_frame( np.multiply( 1.0, np.vstack((-1.0 * np.imag(deflections), np.real(deflections))).T ) ) @aa.grid_dec.grid_2d_to_structure @aa.grid_dec.transform @aa.grid_dec.relocate_to_radial_minimum def deflections_2d_via_integral_from(self, grid: aa.type.Grid2DLike): """ Calculate the deflection angles at a given set of arc-second gridded coordinates. Parameters ---------- grid The grid of (y,x) arc-second coordinates the deflection angles are computed on. Note: sigma is divided by sqrt(q) here. """ def calculate_deflection_component(npow, index): deflection_grid = self.axis_ratio * grid[:, index] for i in range(grid.shape[0]): deflection_grid[i] *= ( self.intensity * self.mass_to_light_ratio * quad( self.deflection_func, a=0.0, b=1.0, args=( grid[i, 0], grid[i, 1], npow, self.axis_ratio, self.sigma / np.sqrt(self.axis_ratio), ), )[0] ) return deflection_grid deflection_y = calculate_deflection_component(1.0, 0) deflection_x = calculate_deflection_component(0.0, 1) return self.rotate_grid_from_reference_frame( np.multiply(1.0, np.vstack((deflection_y, deflection_x)).T) ) @staticmethod def deflection_func(u, y, x, npow, axis_ratio, sigma): eta_u = np.sqrt(axis_ratio) * np.sqrt( (u * ((x ** 2) + (y ** 2 / (1 - (1 - axis_ratio ** 2) * u)))) ) return np.exp(-0.5 * np.square(np.divide(eta_u, sigma))) / ( (1 - (1 - axis_ratio ** 2) * u) ** (npow + 0.5) ) @aa.grid_dec.grid_2d_to_structure @aa.grid_dec.transform @aa.grid_dec.relocate_to_radial_minimum def convergence_2d_from(self, grid: aa.type.Grid2DLike): """Calculate the projected convergence at a given set of arc-second gridded coordinates. Parameters ---------- grid The grid of (y,x) arc-second coordinates the convergence is computed on. """ return self.convergence_func(self.grid_to_eccentric_radii(grid)) def convergence_func(self, grid_radius: float) -> float: return self.mass_to_light_ratio * self.image_2d_via_radii_from(grid_radius) @aa.grid_dec.grid_2d_to_structure def potential_2d_from(self, grid: aa.type.Grid2DLike): return np.zeros(shape=grid.shape[0]) def image_2d_via_radii_from(self, grid_radii: np.ndarray): """Calculate the intensity of the Gaussian light profile on a grid of radial coordinates. Parameters ---------- grid_radii The radial distance from the centre of the profile. for each coordinate on the grid. Note: sigma is divided by sqrt(q) here. """ return np.multiply( self.intensity, np.exp( -0.5 * np.square( np.divide(grid_radii, self.sigma / np.sqrt(self.axis_ratio)) ) ), ) @property def axis_ratio(self): axis_ratio = super().axis_ratio return axis_ratio if axis_ratio < 0.9999 else 0.9999 def zeta_from(self, grid: aa.type.Grid2DLike): q2 = self.axis_ratio ** 2.0 ind_pos_y = grid[:, 0] >= 0 shape_grid = np.shape(grid) output_grid = np.zeros((shape_grid[0]), dtype=np.complex128) scale_factor = self.axis_ratio / (self.sigma * np.sqrt(2.0 * (1.0 - q2))) xs_0 = grid[:, 1][ind_pos_y] * scale_factor ys_0 = grid[:, 0][ind_pos_y] * scale_factor xs_1 = grid[:, 1][~ind_pos_y] * scale_factor ys_1 = -grid[:, 0][~ind_pos_y] * scale_factor output_grid[ind_pos_y] = -1j * ( wofz(xs_0 + 1j * ys_0) - np.exp(-(xs_0 ** 2.0) * (1.0 - q2) - ys_0 * ys_0 * (1.0 / q2 - 1.0)) * wofz(self.axis_ratio * xs_0 + 1j * ys_0 / self.axis_ratio) ) output_grid[~ind_pos_y] = np.conj( -1j * ( wofz(xs_1 + 1j * ys_1) - np.exp(-(xs_1 ** 2.0) * (1.0 - q2) - ys_1 * ys_1 * (1.0 / q2 - 1.0)) * wofz(self.axis_ratio * xs_1 + 1j * ys_1 / self.axis_ratio) ) ) return output_grid def with_new_normalization(self, normalization): mass_profile = copy.copy(self) mass_profile.mass_to_light_ratio = normalization return mass_profile # noinspection PyAbstractClass class AbstractEllSersic(MassProfile, MassProfileMGE, MassProfileCSE, StellarProfile): def __init__( self, centre: Tuple[float, float] = (0.0, 0.0), elliptical_comps: Tuple[float, float] = (0.0, 0.0), intensity: float = 0.1, effective_radius: float = 0.6, sersic_index: float = 0.6, mass_to_light_ratio: float = 1.0, ): """ The Sersic mass profile, the mass profiles of the light profiles that are used to fit and subtract the lens \ model_galaxy's light. Parameters ---------- centre The (y,x) arc-second coordinates of the profile centre. elliptical_comps The first and second ellipticity components of the elliptical coordinate system, (see the module `autogalaxy -> convert.py` for the convention). intensity Overall flux intensity normalisation in the light profiles (electrons per second). effective_radius The radius containing half the light of this profile. sersic_index Controls the concentration of the profile (lower -> less concentrated, higher -> more concentrated). mass_to_light_ratio The mass-to-light ratio of the light profiles """ super(AbstractEllSersic, self).__init__( centre=centre, elliptical_comps=elliptical_comps ) super(MassProfile, self).__init__( centre=centre, elliptical_comps=elliptical_comps ) super(MassProfileMGE, self).__init__() super(MassProfileCSE, self).__init__() self.mass_to_light_ratio = mass_to_light_ratio self.intensity = intensity self.effective_radius = effective_radius self.sersic_index = sersic_index def deflections_yx_2d_from(self, grid: aa.type.Grid2DLike): return self.deflections_2d_via_cse_from(grid=grid) @aa.grid_dec.grid_2d_to_structure @aa.grid_dec.transform @aa.grid_dec.relocate_to_radial_minimum def deflections_2d_via_mge_from(self, grid: aa.type.Grid2DLike): """ Calculate the projected 2D deflection angles from a grid of (y,x) arc second coordinates, by computing and summing the convergence of each individual cse used to decompose the mass profile. The cored steep elliptical (cse) decomposition of a the elliptical NFW mass profile (e.g. `decompose_convergence_via_cse`) is using equation (12) of Oguri 2021 (https://arxiv.org/abs/2106.11464). Parameters ---------- grid The grid of (y,x) arc-second coordinates the convergence is computed on. """ return self._deflections_2d_via_mge_from( grid=grid, sigmas_factor=np.sqrt(self.axis_ratio) ) @aa.grid_dec.grid_2d_to_structure @aa.grid_dec.transform @aa.grid_dec.relocate_to_radial_minimum def deflections_2d_via_cse_from(self, grid: aa.type.Grid2DLike): """ Calculate the projected 2D deflection angles from a grid of (y,x) arc second coordinates, by computing and summing the convergence of each individual cse used to decompose the mass profile. The cored steep elliptical (cse) decomposition of a the elliptical NFW mass profile (e.g. `decompose_convergence_via_cse`) is using equation (12) of Oguri 2021 (https://arxiv.org/abs/2106.11464). Parameters ---------- grid The grid of (y,x) arc-second coordinates the convergence is computed on. """ return self._deflections_2d_via_cse_from(grid=grid) @aa.grid_dec.grid_2d_to_structure @aa.grid_dec.transform @aa.grid_dec.relocate_to_radial_minimum def convergence_2d_from(self, grid: aa.type.Grid2DLike): """Calculate the projected convergence at a given set of arc-second gridded coordinates. Parameters ---------- grid The grid of (y,x) arc-second coordinates the convergence is computed on. """ return self.convergence_func(self.grid_to_eccentric_radii(grid)) @aa.grid_dec.grid_2d_to_structure @aa.grid_dec.transform @aa.grid_dec.relocate_to_radial_minimum def convergence_2d_via_mge_from(self, grid: aa.type.Grid2DLike): """ Calculate the projected convergence at a given set of arc-second gridded coordinates. Parameters ---------- grid The grid of (y,x) arc-second coordinates the convergence is computed on. """ eccentric_radii = self.grid_to_eccentric_radii(grid=grid) return self._convergence_2d_via_mge_from(grid_radii=eccentric_radii) @aa.grid_dec.grid_2d_to_structure @aa.grid_dec.transform @aa.grid_dec.relocate_to_radial_minimum def convergence_2d_via_cse_from(self, grid: aa.type.Grid2DLike): """ Calculate the projected 2D convergence from a grid of (y,x) arc second coordinates, by computing and summing the convergence of each individual cse used to decompose the mass profile. The cored steep elliptical (cse) decomposition of a the elliptical NFW mass profile (e.g. `decompose_convergence_via_cse`) is using equation (12) of Oguri 2021 (https://arxiv.org/abs/2106.11464). Parameters ---------- grid The grid of (y,x) arc-second coordinates the convergence is computed on. """ elliptical_radii = self.grid_to_elliptical_radii(grid=grid) return self._convergence_2d_via_cse_from(grid_radii=elliptical_radii) def convergence_func(self, grid_radius: float) -> float: return self.mass_to_light_ratio * self.image_2d_via_radii_from(grid_radius) @aa.grid_dec.grid_2d_to_structure def potential_2d_from(self, grid: aa.type.Grid2DLike): return np.zeros(shape=grid.shape[0]) def image_2d_via_radii_from(self, radius: np.ndarray): """ Returns the intensity of the profile at a given radius. Parameters ---------- radius The distance from the centre of the profile. """ return self.intensity * np.exp( -self.sersic_constant * (((radius / self.effective_radius) ** (1.0 / self.sersic_index)) - 1) ) def decompose_convergence_via_mge(self) -> Tuple[List, List]: radii_min = self.effective_radius / 100.0 radii_max = self.effective_radius * 20.0 def sersic_2d(r): return ( self.mass_to_light_ratio * self.intensity * np.exp( -self.sersic_constant * (((r / self.effective_radius) ** (1.0 / self.sersic_index)) - 1.0) ) ) return self._decompose_convergence_via_mge( func=sersic_2d, radii_min=radii_min, radii_max=radii_max ) def decompose_convergence_via_cse(self,) -> Tuple[List, List]: """ Decompose the convergence of the Sersic profile into cored steep elliptical (cse) profiles. This decomposition uses the standard 2d profile of a Sersic mass profile. Parameters ---------- func The function representing the profile that is decomposed into CSEs. radii_min: The minimum radius to fit radii_max: The maximum radius to fit total_cses The number of CSEs used to approximate the input func. sample_points: int (should be larger than 'total_cses') The number of data points to fit Returns ------- Tuple[List, List] A list of amplitudes and core radii of every cored steep elliptical (cse) the mass profile is decomposed into. """ upper_dex, lower_dex, total_cses, sample_points = cse_settings_from( effective_radius=self.effective_radius, sersic_index=self.sersic_index, sersic_constant=self.sersic_constant, mass_to_light_gradient=0.0, ) scaled_effective_radius = self.effective_radius / np.sqrt(self.axis_ratio) radii_min = scaled_effective_radius / 10.0 ** lower_dex radii_max = scaled_effective_radius * 10.0 ** upper_dex def sersic_2d(r): return ( self.mass_to_light_ratio * self.intensity * np.exp( -self.sersic_constant * ( ((r / scaled_effective_radius) ** (1.0 / self.sersic_index)) - 1.0 ) ) ) return self._decompose_convergence_via_cse_from( func=sersic_2d, radii_min=radii_min, radii_max=radii_max, total_cses=total_cses, sample_points=sample_points, ) @property def sersic_constant(self): """A parameter derived from Sersic index which ensures that effective radius contains 50% of the profile's total integrated light. """ return ( (2 * self.sersic_index) - (1.0 / 3.0) + (4.0 / (405.0 * self.sersic_index)) + (46.0 / (25515.0 * self.sersic_index ** 2)) + (131.0 / (1148175.0 * self.sersic_index ** 3)) - (2194697.0 / (30690717750.0 * self.sersic_index ** 4)) ) @property def ellipticity_rescale(self): return 1.0 - ((1.0 - self.axis_ratio) / 2.0) @property def elliptical_effective_radius(self): """ The effective_radius of a Sersic light profile is defined as the circular effective radius. This is the \ radius within which a circular aperture contains half the profiles's total integrated light. For elliptical \ systems, this won't robustly capture the light profile's elliptical shape. The elliptical effective radius instead describes the major-axis radius of the ellipse containing \ half the light, and may be more appropriate for highly flattened systems like disk galaxies. """ return self.effective_radius / np.sqrt(self.axis_ratio) def with_new_normalization(self, normalization): mass_profile = copy.copy(self) mass_profile.mass_to_light_ratio = normalization return mass_profile class EllSersic(AbstractEllSersic, MassProfileMGE, MassProfileCSE): @aa.grid_dec.grid_2d_to_structure @aa.grid_dec.transform @aa.grid_dec.relocate_to_radial_minimum def deflections_2d_via_integral_from(self, grid: aa.type.Grid2DLike): """ Calculate the deflection angles at a given set of arc-second gridded coordinates. Parameters ---------- grid The grid of (y,x) arc-second coordinates the deflection angles are computed on. """ def calculate_deflection_component(npow, index): sersic_constant = self.sersic_constant deflection_grid = self.axis_ratio * grid[:, index] for i in range(grid.shape[0]): deflection_grid[i] *= ( self.intensity * self.mass_to_light_ratio * quad( self.deflection_func, a=0.0, b=1.0, args=( grid[i, 0], grid[i, 1], npow, self.axis_ratio, self.sersic_index, self.effective_radius, sersic_constant, ), )[0] ) return deflection_grid deflection_y = calculate_deflection_component(1.0, 0) deflection_x = calculate_deflection_component(0.0, 1) return self.rotate_grid_from_reference_frame( np.multiply(1.0, np.vstack((deflection_y, deflection_x)).T) ) @staticmethod def deflection_func( u, y, x, npow, axis_ratio, sersic_index, effective_radius, sersic_constant ): eta_u = np.sqrt(axis_ratio) * np.sqrt( (u * ((x ** 2) + (y ** 2 / (1 - (1 - axis_ratio ** 2) * u)))) ) return np.exp( -sersic_constant * (((eta_u / effective_radius) ** (1.0 / sersic_index)) - 1) ) / ((1 - (1 - axis_ratio ** 2) * u) ** (npow + 0.5)) class SphSersic(EllSersic): def __init__( self, centre: Tuple[float, float] = (0.0, 0.0), intensity: float = 0.1, effective_radius: float = 0.6, sersic_index: float = 0.6, mass_to_light_ratio: float = 1.0, ): """ The Sersic mass profile, the mass profiles of the light profiles that are used to fit and subtract the lens model_galaxy's light. Parameters ---------- centre The (y,x) arc-second coordinates of the profile centre intensity Overall flux intensity normalisation in the light profiles (electrons per second) effective_radius The circular radius containing half the light of this profile. sersic_index Controls the concentration of the profile (lower -> less concentrated, higher -> more concentrated). mass_to_light_ratio The mass-to-light ratio of the light profile. """ super().__init__( centre=centre, elliptical_comps=(0.0, 0.0), intensity=intensity, effective_radius=effective_radius, sersic_index=sersic_index, mass_to_light_ratio=mass_to_light_ratio, ) class EllExponential(EllSersic): def __init__( self, centre: Tuple[float, float] = (0.0, 0.0), elliptical_comps: Tuple[float, float] = (0.0, 0.0), intensity: float = 0.1, effective_radius: float = 0.6, mass_to_light_ratio: float = 1.0, ): """ The EllExponential mass profile, the mass profiles of the light profiles that are used to fit and subtract the lens model_galaxy's light. Parameters ---------- centre The (y,x) arc-second coordinates of the profile centre. elliptical_comps The first and second ellipticity components of the elliptical coordinate system, (see the module `autogalaxy -> convert.py` for the convention). intensity Overall flux intensity normalisation in the light profiles (electrons per second). effective_radius The circular radius containing half the light of this profile. mass_to_light_ratio The mass-to-light ratio of the light profiles """ super().__init__( centre=centre, elliptical_comps=elliptical_comps, intensity=intensity, effective_radius=effective_radius, sersic_index=1.0, mass_to_light_ratio=mass_to_light_ratio, ) class SphExponential(EllExponential): def __init__( self, centre: Tuple[float, float] = (0.0, 0.0), intensity: float = 0.1, effective_radius: float = 0.6, mass_to_light_ratio: float = 1.0, ): """ The Exponential mass profile, the mass profiles of the light profiles that are used to fit and subtract the lens model_galaxy's light. Parameters ---------- centre The (y,x) arc-second coordinates of the profile centre. intensity Overall flux intensity normalisation in the light profiles (electrons per second). effective_radius The circular radius containing half the light of this profile. mass_to_light_ratio The mass-to-light ratio of the light profiles. """ super().__init__( centre=centre, elliptical_comps=(0.0, 0.0), intensity=intensity, effective_radius=effective_radius, mass_to_light_ratio=mass_to_light_ratio, ) class EllDevVaucouleurs(EllSersic): def __init__( self, centre: Tuple[float, float] = (0.0, 0.0), elliptical_comps: Tuple[float, float] = (0.0, 0.0), intensity: float = 0.1, effective_radius: float = 0.6, mass_to_light_ratio: float = 1.0, ): """ The EllDevVaucouleurs mass profile, the mass profiles of the light profiles that are used to fit and subtract the lens model_galaxy's light. Parameters ---------- centre The (y,x) arc-second coordinates of the profile centre. elliptical_comps The first and second ellipticity components of the elliptical coordinate system, (see the module `autogalaxy -> convert.py` for the convention). intensity Overall flux intensity normalisation in the light profiles (electrons per second). effective_radius The radius containing half the light of this profile. mass_to_light_ratio The mass-to-light ratio of the light profile. """ super().__init__( centre=centre, elliptical_comps=elliptical_comps, intensity=intensity, effective_radius=effective_radius, sersic_index=4.0, mass_to_light_ratio=mass_to_light_ratio, ) class SphDevVaucouleurs(EllDevVaucouleurs): def __init__( self, centre: Tuple[float, float] = (0.0, 0.0), intensity: float = 0.1, effective_radius: float = 0.6, mass_to_light_ratio: float = 1.0, ): """ The DevVaucouleurs mass profile, the mass profiles of the light profiles that are used to fit and subtract the lens model_galaxy's light. Parameters ---------- centre The (y,x) arc-second coordinates of the profile centre. intensity Overall flux intensity normalisation in the light profiles (electrons per second). effective_radius The circular radius containing half the light of this profile. mass_to_light_ratio The mass-to-light ratio of the light profiles. """ super().__init__( centre=centre, elliptical_comps=(0.0, 0.0), intensity=intensity, effective_radius=effective_radius, mass_to_light_ratio=mass_to_light_ratio, ) class EllSersicRadialGradient(AbstractEllSersic): def __init__( self, centre: Tuple[float, float] = (0.0, 0.0), elliptical_comps: Tuple[float, float] = (0.0, 0.0), intensity: float = 0.1, effective_radius: float = 0.6, sersic_index: float = 0.6, mass_to_light_ratio: float = 1.0, mass_to_light_gradient: float = 0.0, ): """ Setup a Sersic mass and light profiles. Parameters ---------- centre The (y,x) arc-second coordinates of the profile centre. elliptical_comps The first and second ellipticity components of the elliptical coordinate system, (see the module `autogalaxy -> convert.py` for the convention). intensity Overall flux intensity normalisation in the light profiles (electrons per second). effective_radius The circular radius containing half the light of this profile. sersic_index Controls the concentration of the profile (lower -> less concentrated, higher -> more concentrated). mass_to_light_ratio The mass-to-light ratio of the light profile. mass_to_light_gradient The mass-to-light radial gradient. """ super().__init__( centre=centre, elliptical_comps=elliptical_comps, intensity=intensity, effective_radius=effective_radius, sersic_index=sersic_index, mass_to_light_ratio=mass_to_light_ratio, ) self.mass_to_light_gradient = mass_to_light_gradient @aa.grid_dec.grid_2d_to_structure @aa.grid_dec.transform @aa.grid_dec.relocate_to_radial_minimum def deflections_2d_via_integral_from(self, grid: aa.type.Grid2DLike): """ Calculate the deflection angles at a given set of arc-second gridded coordinates. Parameters ---------- grid The grid of (y,x) arc-second coordinates the deflection angles are computed on. """ def calculate_deflection_component(npow, index): sersic_constant = self.sersic_constant deflection_grid = self.axis_ratio * grid[:, index] for i in range(grid.shape[0]): deflection_grid[i] *= ( self.intensity * self.mass_to_light_ratio * quad( self.deflection_func, a=0.0, b=1.0, args=( grid[i, 0], grid[i, 1], npow, self.axis_ratio, self.sersic_index, self.effective_radius, self.mass_to_light_gradient, sersic_constant, ), )[0] ) return deflection_grid deflection_y = calculate_deflection_component(1.0, 0) deflection_x = calculate_deflection_component(0.0, 1) return self.rotate_grid_from_reference_frame( np.multiply(1.0, np.vstack((deflection_y, deflection_x)).T) ) @staticmethod def deflection_func( u, y, x, npow, axis_ratio, sersic_index, effective_radius, mass_to_light_gradient, sersic_constant, ): eta_u = np.sqrt(axis_ratio) * np.sqrt( (u * ((x ** 2) + (y ** 2 / (1 - (1 - axis_ratio ** 2) * u)))) ) return ( (((axis_ratio * eta_u) / effective_radius) ** -mass_to_light_gradient) * np.exp( -sersic_constant * (((eta_u / effective_radius) ** (1.0 / sersic_index)) - 1) ) / ((1 - (1 - axis_ratio ** 2) * u) ** (npow + 0.5)) ) @aa.grid_dec.grid_2d_to_structure @aa.grid_dec.transform @aa.grid_dec.relocate_to_radial_minimum def convergence_2d_from(self, grid: aa.type.Grid2DLike): """Calculate the projected convergence at a given set of arc-second gridded coordinates. Parameters ---------- grid The grid of (y,x) arc-second coordinates the convergence is computed on. """ return self.convergence_func(self.grid_to_eccentric_radii(grid)) def convergence_func(self, grid_radius: float) -> float: return ( self.mass_to_light_ratio * ( ((self.axis_ratio * grid_radius) / self.effective_radius) ** -self.mass_to_light_gradient ) * self.image_2d_via_radii_from(grid_radius) ) def decompose_convergence_via_mge(self): radii_min = self.effective_radius / 100.0 radii_max = self.effective_radius * 20.0 def sersic_radial_gradient_2D(r): return ( self.mass_to_light_ratio * self.intensity * ( ((self.axis_ratio * r) / self.effective_radius) ** -self.mass_to_light_gradient ) * np.exp( -self.sersic_constant * (((r / self.effective_radius) ** (1.0 / self.sersic_index)) - 1.0) ) ) return self._decompose_convergence_via_mge( func=sersic_radial_gradient_2D, radii_min=radii_min, radii_max=radii_max ) def decompose_convergence_via_cse(self) -> Tuple[List, List]: """ Decompose the convergence of the Sersic profile into singular isothermal elliptical (sie) profiles. This decomposition uses the standard 2d profile of a Sersic mass profile. Parameters ---------- func The function representing the profile that is decomposed into CSEs. radii_min: The minimum radius to fit radii_max: The maximum radius to fit total_sies The number of SIEs used to approximate the input func. sample_points: int (should be larger than 'total_sies') The number of data points to fit Returns ------- Tuple[List, List] A list of amplitudes and core radii of every singular isothernal ellipsoids (sie) the mass profile is decomposed into. """ upper_dex, lower_dex, total_cses, sample_points = cse_settings_from( effective_radius=self.effective_radius, sersic_index=self.sersic_index, sersic_constant=self.sersic_constant, mass_to_light_gradient=self.mass_to_light_gradient, ) scaled_effective_radius = self.effective_radius / np.sqrt(self.axis_ratio) radii_min = scaled_effective_radius / 10.0 ** lower_dex radii_max = scaled_effective_radius * 10.0 ** upper_dex def sersic_radial_gradient_2D(r): return ( self.mass_to_light_ratio * self.intensity * ( ((self.axis_ratio * r) / scaled_effective_radius) ** -self.mass_to_light_gradient ) * np.exp( -self.sersic_constant * ( ((r / scaled_effective_radius) ** (1.0 / self.sersic_index)) - 1.0 ) ) ) return self._decompose_convergence_via_cse_from( func=sersic_radial_gradient_2D, radii_min=radii_min, radii_max=radii_max, total_cses=total_cses, sample_points=sample_points, ) class SphSersicRadialGradient(EllSersicRadialGradient): def __init__( self, centre: Tuple[float, float] = (0.0, 0.0), intensity: float = 0.1, effective_radius: float = 0.6, sersic_index: float = 0.6, mass_to_light_ratio: float = 1.0, mass_to_light_gradient: float = 0.0, ): """ Setup a Sersic mass and light profiles. Parameters ---------- centre The (y,x) arc-second coordinates of the profile centre. intensity Overall flux intensity normalisation in the light profiles (electrons per second). effective_radius The circular radius containing half the light of this profile. sersic_index Controls the concentration of the profile (lower -> less concentrated, higher -> more concentrated). mass_to_light_ratio The mass-to-light ratio of the light profile. mass_to_light_gradient The mass-to-light radial gradient. """ super().__init__( centre=centre, elliptical_comps=(0.0, 0.0), intensity=intensity, effective_radius=effective_radius, sersic_index=sersic_index, mass_to_light_ratio=mass_to_light_ratio, mass_to_light_gradient=mass_to_light_gradient, ) class EllSersicCore(EllSersic): def __init__( self, centre: Tuple[float, float] = (0.0, 0.0), elliptical_comps: Tuple[float, float] = (0.0, 0.0), effective_radius: float = 0.6, sersic_index: float = 4.0, radius_break: float = 0.01, intensity_break: float = 0.05, gamma: float = 0.25, alpha: float = 3.0, mass_to_light_ratio: float = 1.0, ): """ The elliptical cored-Sersic light profile. Parameters ---------- centre The (y,x) arc-second coordinates of the profile centre. elliptical_comps The first and second ellipticity components of the elliptical coordinate system, (see the module `autogalaxy -> convert.py` for the convention). intensity Overall intensity normalisation of the light profile (units are dimensionless and derived from the data the light profile's image is compared too, which is expected to be electrons per second). effective_radius The circular radius containing half the light of this profile. sersic_index Controls the concentration of the profile (lower -> less concentrated, higher -> more concentrated). radius_break The break radius separating the inner power-law (with logarithmic slope gamma) and outer Sersic function. intensity_break The intensity at the break radius. gamma The logarithmic power-law slope of the inner core profiles alpha : Controls the sharpness of the transition between the inner core / outer Sersic profiles. """ super().__init__( centre=centre, elliptical_comps=elliptical_comps, intensity=intensity_break, effective_radius=effective_radius, sersic_index=sersic_index, mass_to_light_ratio=mass_to_light_ratio, ) self.radius_break = radius_break self.intensity_break = intensity_break self.alpha = alpha self.gamma = gamma def deflections_yx_2d_from(self, grid: aa.type.Grid2DLike): return self.deflections_2d_via_mge_from(grid=grid) def image_2d_via_radii_from(self, grid_radii: np.ndarray): """ Calculate the intensity of the cored-Sersic light profile on a grid of radial coordinates. Parameters ---------- grid_radii The radial distance from the centre of the profile. for each coordinate on the grid. """ return np.multiply( np.multiply( self.intensity_prime, np.power( np.add( 1, np.power(np.divide(self.radius_break, grid_radii), self.alpha), ), (self.gamma / self.alpha), ), ), np.exp( np.multiply( -self.sersic_constant, ( np.power( np.divide( np.add( np.power(grid_radii, self.alpha), (self.radius_break ** self.alpha), ), (self.effective_radius ** self.alpha), ), (1.0 / (self.alpha * self.sersic_index)), ) ), ) ), ) def decompose_convergence_via_mge(self): radii_min = self.effective_radius / 50.0 radii_max = self.effective_radius * 20.0 def core_sersic_2D(r): return ( self.mass_to_light_ratio * self.intensity_prime * (1.0 + (self.radius_break / r) ** self.alpha) ** (self.gamma / self.alpha) * np.exp( -self.sersic_constant * ( (r ** self.alpha + self.radius_break ** self.alpha) / self.effective_radius ** self.alpha ) ** (1.0 / (self.sersic_index * self.alpha)) ) ) return self._decompose_convergence_via_mge( func=core_sersic_2D, radii_min=radii_min, radii_max=radii_max ) @property def intensity_prime(self): """Overall intensity normalisation in the rescaled Core-Sersic light profiles (electrons per second)""" return ( self.intensity_break * (2.0 ** (-self.gamma / self.alpha)) * np.exp( self.sersic_constant * ( ((2.0 ** (1.0 / self.alpha)) * self.radius_break) / self.effective_radius ) ** (1.0 / self.sersic_index) ) ) class SphSersicCore(EllSersicCore): def __init__( self, centre: Tuple[float, float] = (0.0, 0.0), effective_radius: float = 0.6, sersic_index: float = 4.0, radius_break: float = 0.01, intensity_break: float = 0.05, gamma: float = 0.25, alpha: float = 3.0, ): """ The elliptical cored-Sersic light profile. Parameters ---------- centre The (y,x) arc-second coordinates of the profile centre. intensity Overall intensity normalisation of the light profile (units are dimensionless and derived from the data the light profile's image is compared too, which is expected to be electrons per second). effective_radius The circular radius containing half the light of this profile. sersic_index Controls the concentration of the profile (lower -> less concentrated, higher -> more concentrated). radius_break The break radius separating the inner power-law (with logarithmic slope gamma) and outer Sersic function. intensity_break The intensity at the break radius. gamma The logarithmic power-law slope of the inner core profiles alpha : Controls the sharpness of the transition between the inner core / outer Sersic profiles. """ super().__init__( centre=centre, elliptical_comps=(0.0, 0.0), effective_radius=effective_radius, sersic_index=sersic_index, radius_break=radius_break, intensity_break=intensity_break, gamma=gamma, alpha=alpha, ) self.radius_break = radius_break self.intensity_break = intensity_break self.alpha = alpha self.gamma = gamma class EllChameleon(MassProfile, StellarProfile): def __init__( self, centre: Tuple[float, float] = (0.0, 0.0), elliptical_comps: Tuple[float, float] = (0.0, 0.0), intensity: float = 0.1, core_radius_0: float = 0.01, core_radius_1: float = 0.02, mass_to_light_ratio: float = 1.0, ): """ The elliptical Chamelon mass profile. Parameters ---------- centre The (y,x) arc-second coordinates of the profile centre. elliptical_comps The first and second ellipticity components of the elliptical coordinate system, (see the module `autogalaxy -> convert.py` for the convention). intensity Overall intensity normalisation of the light profile (units are dimensionless and derived from the data the light profile's image is compared too, which is expected to be electrons per second). core_radius_0 : the core size of the first elliptical cored Isothermal profile. core_radius_1 : core_radius_0 + core_radius_1 is the core size of the second elliptical cored Isothermal profile. We use core_radius_1 here is to avoid negative values. Profile form: mass_to_light_ratio * intensity *\ (1.0 / Sqrt(x^2 + (y/q)^2 + core_radius_0^2) - 1.0 / Sqrt(x^2 + (y/q)^2 + (core_radius_0 + core_radius_1)**2.0)) """ super(EllChameleon, self).__init__( centre=centre, elliptical_comps=elliptical_comps ) super(MassProfile, self).__init__( centre=centre, elliptical_comps=elliptical_comps ) self.mass_to_light_ratio = mass_to_light_ratio self.intensity = intensity self.core_radius_0 = core_radius_0 self.core_radius_1 = core_radius_1 def deflections_yx_2d_from(self, grid: aa.type.Grid2DLike): return self.deflections_2d_via_analytic_from(grid=grid) @aa.grid_dec.grid_2d_to_structure @aa.grid_dec.transform @aa.grid_dec.relocate_to_radial_minimum def deflections_2d_via_analytic_from(self, grid: aa.type.Grid2DLike): """ Calculate the deflection angles at a given set of arc-second gridded coordinates. Following Eq. (15) and (16), but the parameters are slightly different. Parameters ---------- grid The grid of (y,x) arc-second coordinates the deflection angles are computed on. """ factor = ( 2.0 * self.mass_to_light_ratio * self.intensity / (1 + self.axis_ratio) * self.axis_ratio / np.sqrt(1.0 - self.axis_ratio ** 2.0) ) core_radius_0 = np.sqrt( (4.0 * self.core_radius_0 ** 2.0) / (1.0 + self.axis_ratio) ** 2 ) core_radius_1 = np.sqrt( (4.0 * self.core_radius_1 ** 2.0) / (1.0 + self.axis_ratio) ** 2 ) psi0 = psi_from( grid=grid, axis_ratio=self.axis_ratio, core_radius=core_radius_0 ) psi1 = psi_from( grid=grid, axis_ratio=self.axis_ratio, core_radius=core_radius_1 ) deflection_y0 = np.arctanh( np.divide( np.multiply(
np.sqrt(1.0 - self.axis_ratio ** 2.0)
numpy.sqrt
from __future__ import division from __future__ import absolute_import from builtins import object from past.utils import old_div from nose.tools import (assert_equal, assert_not_equal, raises, assert_almost_equal) from nose.plugins.skip import SkipTest from .test_helpers import assert_items_almost_equal, assert_items_equal import pandas as pd import numpy as np import openpathsampling as paths import logging logging.getLogger('openpathsampling.initialization').setLevel(logging.CRITICAL) logging.getLogger('openpathsampling.ensemble').setLevel(logging.CRITICAL) logging.getLogger('openpathsampling.storage').setLevel(logging.CRITICAL) logging.getLogger('openpathsampling.netcdfplus').setLevel(logging.CRITICAL) class TestWHAM(object): def setup(self): self.exact = [1.0, 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625] self.iface1 = [2.0, 1.0, 0.5, 0.25, 0.125, 0.0625, 0.0] self.iface2 = [1.0, 1.0, 1.0, 0.5, 0.25, 0.125, 0.0625] self.iface3 = [3.0, 3.0, 3.0, 3.0, 3.0, 1.5, 0.75] # self.iface1 = [1.0, 0.5, 0.25, 0.125, 0.0625, 0.0, 0.0] # self.iface2 = [1.0, 1.0, 1.0, 0.5, 0.25, 0.125, 0.0625] # self.iface3 = [1.0, 1.0, 1.0, 1.0, 1.0, 0.5, 0.25] # self.iface1 = [2.0, 0.5, 0.125, 0.0] # self.iface2 = [1.0, 1.0, 0.25, 0.0625] # self.iface3 = [3.0, 3.0, 3.0, 0.75] # self.index = [0.0, 0.2, 0.4, 0.6] self.columns = ["Interface 1", "Interface 2", "Interface 3"] self.index = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6] self.input_df = pd.DataFrame( data=
np.array([self.iface1, self.iface2, self.iface3])
numpy.array
from __future__ import print_function, division, absolute_import import functools import sys import warnings # unittest only added in 3.4 self.subTest() if sys.version_info[0] < 3 or sys.version_info[1] < 4: import unittest2 as unittest else: import unittest # unittest.mock is not available in 2.7 (though unittest2 might contain it?) try: import unittest.mock as mock except ImportError: import mock import matplotlib matplotlib.use('Agg') # fix execution of tests involving matplotlib on travis import numpy as np import six.moves as sm import imgaug as ia from imgaug import augmenters as iaa from imgaug import parameters as iap from imgaug import dtypes as iadt from imgaug.testutils import (array_equal_lists, keypoints_equal, reseed, runtest_pickleable_uint8_img) import imgaug.augmenters.arithmetic as arithmetic_lib import imgaug.augmenters.contrast as contrast_lib class TestAdd(unittest.TestCase): def setUp(self): reseed() def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _ = iaa.Add(value="test") except Exception: got_exception = True assert got_exception got_exception = False try: _ = iaa.Add(value=1, per_channel="test") except Exception: got_exception = True assert got_exception def test_add_zero(self): # no add, shouldnt change anything base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Add(value=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) def test_add_one(self): # add > 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Add(value=1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) def test_minus_one(self): # add < 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Add(value=-1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) def test_uint8_every_possible_value(self): # uint8, every possible addition for base value 127 for value_type in [float, int]: for per_channel in [False, True]: for value in np.arange(-255, 255+1): aug = iaa.Add(value=value_type(value), per_channel=per_channel) expected = np.clip(127 + value_type(value), 0, 255) img = np.full((1, 1), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == expected img = np.full((1, 1, 3), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert np.all(img_aug == expected) def test_add_floats(self): # specific tests with floats aug = iaa.Add(value=0.75) img = np.full((1, 1), 1, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == 2 img = np.full((1, 1), 1, dtype=np.uint16) img_aug = aug.augment_image(img) assert img_aug.item(0) == 2 aug = iaa.Add(value=0.45) img = np.full((1, 1), 1, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == 1 img = np.full((1, 1), 1, dtype=np.uint16) img_aug = aug.augment_image(img) assert img_aug.item(0) == 1 def test_stochastic_parameters_as_value(self): # test other parameters base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.Add(value=iap.DiscreteUniform(1, 10)) observed = aug.augment_images(images) assert 100 + 1 <= np.average(observed) <= 100 + 10 aug = iaa.Add(value=iap.Uniform(1, 10)) observed = aug.augment_images(images) assert 100 + 1 <= np.average(observed) <= 100 + 10 aug = iaa.Add(value=iap.Clip(iap.Normal(1, 1), -3, 3)) observed = aug.augment_images(images) assert 100 - 3 <= np.average(observed) <= 100 + 3 aug = iaa.Add(value=iap.Discretize(iap.Clip(iap.Normal(1, 1), -3, 3))) observed = aug.augment_images(images) assert 100 - 3 <= np.average(observed) <= 100 + 3 def test_keypoints_dont_change(self): # keypoints shouldnt be changed base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.Add(value=1) aug_det = iaa.Add(value=1).to_deterministic() observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) def test_tuple_as_value(self): # varying values base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.Add(value=(0, 10)) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.7) assert nb_changed_aug_det == 0 def test_per_channel(self): # test channelwise aug = iaa.Add(value=iap.Choice([0, 1]), per_channel=True) observed = aug.augment_image(np.zeros((1, 1, 100), dtype=np.uint8)) uq = np.unique(observed) assert observed.shape == (1, 1, 100) assert 0 in uq assert 1 in uq assert len(uq) == 2 def test_per_channel_with_probability(self): # test channelwise with probability aug = iaa.Add(value=iap.Choice([0, 1]), per_channel=0.5) seen = [0, 0] for _ in sm.xrange(400): observed = aug.augment_image(np.zeros((1, 1, 20), dtype=np.uint8)) assert observed.shape == (1, 1, 20) uq = np.unique(observed) per_channel = (len(uq) == 2) if per_channel: seen[0] += 1 else: seen[1] += 1 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.Add(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_unusual_channel_numbers(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.Add(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_get_parameters(self): # test get_parameters() aug = iaa.Add(value=1, per_channel=False) params = aug.get_parameters() assert isinstance(params[0], iap.Deterministic) assert isinstance(params[1], iap.Deterministic) assert params[0].value == 1 assert params[1].value == 0 def test_heatmaps(self): # test heatmaps (not affected by augmenter) base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 aug = iaa.Add(value=10) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_other_dtypes_bool(self): image = np.zeros((3, 3), dtype=bool) aug = iaa.Add(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.Add(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.Add(value=-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.Add(value=-2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) def test_other_dtypes_uint_int(self): for dtype in [np.uint8, np.uint16, np.int8, np.int16]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) for _ in sm.xrange(10): image = np.full((1, 1, 3), 20, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) == 1 image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 image = np.full((1, 1, 3), 20, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) == 1 image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 def test_other_dtypes_float(self): # float for dtype in [np.float16, np.float32]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) if dtype == np.float16: atol = 1e-3 * max_value else: atol = 1e-9 * max_value _allclose = functools.partial(np.allclose, atol=atol, rtol=0) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) for _ in sm.xrange(10): image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) def test_pickleable(self): aug = iaa.Add((0, 50), per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=10) class TestAddElementwise(unittest.TestCase): def setUp(self): reseed() def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _aug = iaa.AddElementwise(value="test") except Exception: got_exception = True assert got_exception got_exception = False try: _aug = iaa.AddElementwise(value=1, per_channel="test") except Exception: got_exception = True assert got_exception def test_add_zero(self): # no add, shouldnt change anything base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.AddElementwise(value=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) def test_add_one(self): # add > 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.AddElementwise(value=1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) def test_add_minus_one(self): # add < 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.AddElementwise(value=-1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) def test_uint8_every_possible_value(self): # uint8, every possible addition for base value 127 for value_type in [int]: for per_channel in [False, True]: for value in np.arange(-255, 255+1): aug = iaa.AddElementwise(value=value_type(value), per_channel=per_channel) expected = np.clip(127 + value_type(value), 0, 255) img = np.full((1, 1), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == expected img = np.full((1, 1, 3), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert np.all(img_aug == expected) def test_stochastic_parameters_as_value(self): # test other parameters base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.AddElementwise(value=iap.DiscreteUniform(1, 10)) observed = aug.augment_images(images) assert np.min(observed) >= 100 + 1 assert np.max(observed) <= 100 + 10 aug = iaa.AddElementwise(value=iap.Uniform(1, 10)) observed = aug.augment_images(images) assert np.min(observed) >= 100 + 1 assert np.max(observed) <= 100 + 10 aug = iaa.AddElementwise(value=iap.Clip(iap.Normal(1, 1), -3, 3)) observed = aug.augment_images(images) assert np.min(observed) >= 100 - 3 assert np.max(observed) <= 100 + 3 aug = iaa.AddElementwise(value=iap.Discretize(iap.Clip(iap.Normal(1, 1), -3, 3))) observed = aug.augment_images(images) assert np.min(observed) >= 100 - 3 assert np.max(observed) <= 100 + 3 def test_keypoints_dont_change(self): # keypoints shouldnt be changed base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.AddElementwise(value=1) aug_det = iaa.AddElementwise(value=1).to_deterministic() observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) def test_tuple_as_value(self): # varying values base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.AddElementwise(value=(0, 10)) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.7) assert nb_changed_aug_det == 0 def test_samples_change_by_spatial_location(self): # values should change between pixels base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.AddElementwise(value=(-50, 50)) nb_same = 0 nb_different = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_flat = observed_aug.flatten() last = None for j in sm.xrange(observed_aug_flat.size): if last is not None: v = observed_aug_flat[j] if v - 0.0001 <= last <= v + 0.0001: nb_same += 1 else: nb_different += 1 last = observed_aug_flat[j] assert nb_different > 0.9 * (nb_different + nb_same) def test_per_channel(self): # test channelwise aug = iaa.AddElementwise(value=iap.Choice([0, 1]), per_channel=True) observed = aug.augment_image(np.zeros((100, 100, 3), dtype=np.uint8)) sums = np.sum(observed, axis=2) values = np.unique(sums) assert all([(value in values) for value in [0, 1, 2, 3]]) def test_per_channel_with_probability(self): # test channelwise with probability aug = iaa.AddElementwise(value=iap.Choice([0, 1]), per_channel=0.5) seen = [0, 0] for _ in sm.xrange(400): observed = aug.augment_image(np.zeros((20, 20, 3), dtype=np.uint8)) sums = np.sum(observed, axis=2) values = np.unique(sums) all_values_found = all([(value in values) for value in [0, 1, 2, 3]]) if all_values_found: seen[0] += 1 else: seen[1] += 1 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.AddElementwise(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_unusual_channel_numbers(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.AddElementwise(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_get_parameters(self): # test get_parameters() aug = iaa.AddElementwise(value=1, per_channel=False) params = aug.get_parameters() assert isinstance(params[0], iap.Deterministic) assert isinstance(params[1], iap.Deterministic) assert params[0].value == 1 assert params[1].value == 0 def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.AddElementwise(value=10) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_other_dtypes_bool(self): # bool image = np.zeros((3, 3), dtype=bool) aug = iaa.AddElementwise(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.AddElementwise(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.AddElementwise(value=-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.AddElementwise(value=-2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) def test_other_dtypes_uint_int(self): # uint, int for dtype in [np.uint8, np.uint16, np.int8, np.int16]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) for _ in sm.xrange(10): image = np.full((5, 5, 3), 20, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 assert np.all(image_aug[..., 0] == image_aug[..., 1]) image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 image = np.full((5, 5, 3), 20, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 assert np.all(image_aug[..., 0] == image_aug[..., 1]) image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 def test_other_dtypes_float(self): # float for dtype in [np.float16, np.float32]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) if dtype == np.float16: atol = 1e-3 * max_value else: atol = 1e-9 * max_value _allclose = functools.partial(np.allclose, atol=atol, rtol=0) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) for _ in sm.xrange(10): image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) def test_pickleable(self): aug = iaa.AddElementwise((0, 50), per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=2) class AdditiveGaussianNoise(unittest.TestCase): def setUp(self): reseed() def test_loc_zero_scale_zero(self): # no noise, shouldnt change anything base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 images = np.array([base_img]) aug = iaa.AdditiveGaussianNoise(loc=0, scale=0) observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) def test_loc_zero_scale_nonzero(self): # zero-centered noise base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 images = np.array([base_img]) images_list = [base_img] keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.AdditiveGaussianNoise(loc=0, scale=0.2 * 255) aug_det = aug.to_deterministic() observed = aug.augment_images(images) assert not np.array_equal(observed, images) observed = aug_det.augment_images(images) assert not np.array_equal(observed, images) observed = aug.augment_images(images_list) assert not array_equal_lists(observed, images_list) observed = aug_det.augment_images(images_list) assert not array_equal_lists(observed, images_list) observed = aug.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints) observed = aug_det.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints) def test_std_dev_of_added_noise_matches_scale(self): # std correct? base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0, scale=0.2 * 255) images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 nb_iterations = 1000 values = [] for i in sm.xrange(nb_iterations): images_aug = aug.augment_images(images) values.append(images_aug[0, 0, 0, 0]) values = np.array(values) assert np.min(values) == 0 assert 0.1 < np.std(values) / 255.0 < 0.4 def test_nonzero_loc(self): # non-zero loc base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0.25 * 255, scale=0.01 * 255) images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 nb_iterations = 1000 values = [] for i in sm.xrange(nb_iterations): images_aug = aug.augment_images(images) values.append(images_aug[0, 0, 0, 0] - 128) values = np.array(values) assert 54 < np.average(values) < 74 # loc=0.25 should be around 255*0.25=64 average def test_tuple_as_loc(self): # varying locs base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=(0, 0.5 * 255), scale=0.0001 * 255) aug_det = aug.to_deterministic() images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.95) assert nb_changed_aug_det == 0 def test_stochastic_parameter_as_loc(self): # varying locs by stochastic param base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=iap.Choice([-20, 20]), scale=0.0001 * 255) images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 seen = [0, 0] for i in sm.xrange(200): observed = aug.augment_images(images) mean = np.mean(observed) diff_m20 = abs(mean - (128-20)) diff_p20 = abs(mean - (128+20)) if diff_m20 <= 1: seen[0] += 1 elif diff_p20 <= 1: seen[1] += 1 else: assert False assert 75 < seen[0] < 125 assert 75 < seen[1] < 125 def test_tuple_as_scale(self): # varying stds base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0, scale=(0.01 * 255, 0.2 * 255)) aug_det = aug.to_deterministic() images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.95) assert nb_changed_aug_det == 0 def test_stochastic_parameter_as_scale(self): # varying stds by stochastic param base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0, scale=iap.Choice([1, 20])) images = np.ones((1, 20, 20, 1), dtype=np.uint8) * 128 seen = [0, 0, 0] for i in sm.xrange(200): observed = aug.augment_images(images) std = np.std(observed.astype(np.int32) - 128) diff_1 = abs(std - 1) diff_20 = abs(std - 20) if diff_1 <= 2: seen[0] += 1 elif diff_20 <= 5: seen[1] += 1 else: seen[2] += 1 assert seen[2] <= 5 assert 75 < seen[0] < 125 assert 75 < seen[1] < 125 def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _ = iaa.AdditiveGaussianNoise(loc="test") except Exception: got_exception = True assert got_exception got_exception = False try: _ = iaa.AdditiveGaussianNoise(scale="test") except Exception: got_exception = True assert got_exception def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0.5, scale=10) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_pickleable(self): aug = iaa.AdditiveGaussianNoise(scale=(0.1, 10), per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=2) class TestDropout(unittest.TestCase): def setUp(self): reseed() def test_p_is_zero(self): # no dropout, shouldnt change anything base_img = np.ones((512, 512, 1), dtype=np.uint8) * 255 images = np.array([base_img]) images_list = [base_img] aug = iaa.Dropout(p=0) observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) # 100% dropout, should drop everything aug = iaa.Dropout(p=1.0) observed = aug.augment_images(images) expected = np.zeros((1, 512, 512, 1), dtype=np.uint8) assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = [np.zeros((512, 512, 1), dtype=np.uint8)] assert array_equal_lists(observed, expected) def test_p_is_50_percent(self): # 50% dropout base_img = np.ones((512, 512, 1), dtype=np.uint8) * 255 images = np.array([base_img]) images_list = [base_img] keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.Dropout(p=0.5) aug_det = aug.to_deterministic() observed = aug.augment_images(images) assert not np.array_equal(observed, images) percent_nonzero = len(observed.flatten().nonzero()[0]) \ / (base_img.shape[0] * base_img.shape[1] * base_img.shape[2]) assert 0.35 <= (1 - percent_nonzero) <= 0.65 observed = aug_det.augment_images(images) assert not np.array_equal(observed, images) percent_nonzero = len(observed.flatten().nonzero()[0]) \ / (base_img.shape[0] * base_img.shape[1] * base_img.shape[2]) assert 0.35 <= (1 - percent_nonzero) <= 0.65 observed = aug.augment_images(images_list) assert not array_equal_lists(observed, images_list) percent_nonzero = len(observed[0].flatten().nonzero()[0]) \ / (base_img.shape[0] * base_img.shape[1] * base_img.shape[2]) assert 0.35 <= (1 - percent_nonzero) <= 0.65 observed = aug_det.augment_images(images_list) assert not array_equal_lists(observed, images_list) percent_nonzero = len(observed[0].flatten().nonzero()[0]) \ / (base_img.shape[0] * base_img.shape[1] * base_img.shape[2]) assert 0.35 <= (1 - percent_nonzero) <= 0.65 observed = aug.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints) observed = aug_det.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints) def test_tuple_as_p(self): # varying p aug = iaa.Dropout(p=(0.0, 1.0)) aug_det = aug.to_deterministic() images = np.ones((1, 8, 8, 1), dtype=np.uint8) * 255 last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.95) assert nb_changed_aug_det == 0 def test_list_as_p(self): aug = iaa.Dropout(p=[0.0, 0.5, 1.0]) images = np.ones((1, 20, 20, 1), dtype=np.uint8) * 255 nb_seen = [0, 0, 0, 0] nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) n_dropped = np.sum(observed_aug == 0) p_observed = n_dropped / observed_aug.size if 0 <= p_observed <= 0.01: nb_seen[0] += 1 elif 0.5 - 0.05 <= p_observed <= 0.5 + 0.05: nb_seen[1] += 1 elif 1.0-0.01 <= p_observed <= 1.0: nb_seen[2] += 1 else: nb_seen[3] += 1 assert np.allclose(nb_seen[0:3], nb_iterations*0.33, rtol=0, atol=75) assert nb_seen[3] < 30 def test_stochastic_parameter_as_p(self): # varying p by stochastic parameter aug = iaa.Dropout(p=iap.Binomial(1-iap.Choice([0.0, 0.5]))) images = np.ones((1, 20, 20, 1), dtype=np.uint8) * 255 seen = [0, 0, 0] for i in sm.xrange(400): observed = aug.augment_images(images) p = np.mean(observed == 0) if 0.4 < p < 0.6: seen[0] += 1 elif p < 0.1: seen[1] += 1 else: seen[2] += 1 assert seen[2] <= 10 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test___init___bad_datatypes(self): # test exception for wrong parameter datatype got_exception = False try: _aug = iaa.Dropout(p="test") except Exception: got_exception = True assert got_exception def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.Dropout(p=1.0) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_pickleable(self): aug = iaa.Dropout(p=0.5, per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=3) class TestCoarseDropout(unittest.TestCase): def setUp(self): reseed() def test_p_is_zero(self): base_img = np.ones((16, 16, 1), dtype=np.uint8) * 100 aug = iaa.CoarseDropout(p=0, size_px=4, size_percent=None, per_channel=False, min_size=4) observed = aug.augment_image(base_img) expected = base_img assert np.array_equal(observed, expected) def test_p_is_one(self): base_img = np.ones((16, 16, 1), dtype=np.uint8) * 100 aug = iaa.CoarseDropout(p=1.0, size_px=4, size_percent=None, per_channel=False, min_size=4) observed = aug.augment_image(base_img) expected = np.zeros_like(base_img) assert np.array_equal(observed, expected) def test_p_is_50_percent(self): base_img = np.ones((16, 16, 1), dtype=np.uint8) * 100 aug = iaa.CoarseDropout(p=0.5, size_px=1, size_percent=None, per_channel=False, min_size=1) averages = [] for _ in sm.xrange(50): observed = aug.augment_image(base_img) averages.append(np.average(observed)) assert all([v in [0, 100] for v in averages]) assert 50 - 20 < np.average(averages) < 50 + 20 def test_size_percent(self): base_img = np.ones((16, 16, 1), dtype=np.uint8) * 100 aug = iaa.CoarseDropout(p=0.5, size_px=None, size_percent=0.001, per_channel=False, min_size=1) averages = [] for _ in sm.xrange(50): observed = aug.augment_image(base_img) averages.append(np.average(observed)) assert all([v in [0, 100] for v in averages]) assert 50 - 20 < np.average(averages) < 50 + 20 def test_per_channel(self): aug = iaa.CoarseDropout(p=0.5, size_px=1, size_percent=None, per_channel=True, min_size=1) base_img = np.ones((4, 4, 3), dtype=np.uint8) * 100 found = False for _ in sm.xrange(100): observed = aug.augment_image(base_img) avgs = np.average(observed, axis=(0, 1)) if len(set(avgs)) >= 2: found = True break assert found def test_stochastic_parameter_as_p(self): # varying p by stochastic parameter aug = iaa.CoarseDropout(p=iap.Binomial(1-iap.Choice([0.0, 0.5])), size_px=50) images = np.ones((1, 100, 100, 1), dtype=np.uint8) * 255 seen = [0, 0, 0] for i in sm.xrange(400): observed = aug.augment_images(images) p = np.mean(observed == 0) if 0.4 < p < 0.6: seen[0] += 1 elif p < 0.1: seen[1] += 1 else: seen[2] += 1 assert seen[2] <= 10 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test___init___bad_datatypes(self): # test exception for bad parameters got_exception = False try: _ = iaa.CoarseDropout(p="test") except Exception: got_exception = True assert got_exception def test___init___size_px_and_size_percent_both_none(self): got_exception = False try: _ = iaa.CoarseDropout(p=0.5, size_px=None, size_percent=None) except Exception: got_exception = True assert got_exception def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.CoarseDropout(p=1.0, size_px=2) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_pickleable(self): aug = iaa.CoarseDropout(p=0.5, size_px=10, per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=10, shape=(40, 40, 3)) class TestDropout2d(unittest.TestCase): def setUp(self): reseed() def test___init___defaults(self): aug = iaa.Dropout2d(p=0) assert isinstance(aug.p, iap.Binomial) assert np.isclose(aug.p.p.value, 1.0) assert aug.nb_keep_channels == 1 def test___init___p_is_float(self): aug = iaa.Dropout2d(p=0.7) assert isinstance(aug.p, iap.Binomial) assert np.isclose(aug.p.p.value, 0.3) assert aug.nb_keep_channels == 1 def test___init___nb_keep_channels_is_int(self): aug = iaa.Dropout2d(p=0, nb_keep_channels=2) assert isinstance(aug.p, iap.Binomial) assert np.isclose(aug.p.p.value, 1.0) assert aug.nb_keep_channels == 2 def test_no_images_in_batch(self): aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) heatmaps = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) heatmaps = ia.HeatmapsOnImage(heatmaps, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=heatmaps) assert np.allclose(heatmaps_aug.arr_0to1, heatmaps.arr_0to1) def test_p_is_1(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=0) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == image.dtype.name assert np.sum(image_aug) == 0 def test_p_is_1_heatmaps(self): aug = iaa.Dropout2d(p=1.0, nb_keep_channels=0) arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) hm = ia.HeatmapsOnImage(arr, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=hm) assert np.allclose(heatmaps_aug.arr_0to1, 0.0) def test_p_is_1_segmentation_maps(self): aug = iaa.Dropout2d(p=1.0, nb_keep_channels=0) arr = np.int32([ [0, 1], [0, 1] ]) segmaps = ia.SegmentationMapsOnImage(arr, shape=(2, 2, 3)) segmaps_aug = aug(segmentation_maps=segmaps) assert np.allclose(segmaps_aug.arr, 0.0) def test_p_is_1_cbaois(self): cbaois = [ ia.KeypointsOnImage([ia.Keypoint(x=0, y=1)], shape=(2, 2, 3)), ia.BoundingBoxesOnImage([ia.BoundingBox(x1=0, y1=1, x2=2, y2=3)], shape=(2, 2, 3)), ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)), ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ] cbaoi_names = ["keypoints", "bounding_boxes", "polygons", "line_strings"] aug = iaa.Dropout2d(p=1.0, nb_keep_channels=0) for name, cbaoi in zip(cbaoi_names, cbaois): with self.subTest(datatype=name): cbaoi_aug = aug(**{name: cbaoi}) assert cbaoi_aug.shape == (2, 2, 3) assert cbaoi_aug.items == [] def test_p_is_1_heatmaps__keep_one_channel(self): aug = iaa.Dropout2d(p=1.0, nb_keep_channels=1) arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) hm = ia.HeatmapsOnImage(arr, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=hm) assert np.allclose(heatmaps_aug.arr_0to1, hm.arr_0to1) def test_p_is_1_segmentation_maps__keep_one_channel(self): aug = iaa.Dropout2d(p=1.0, nb_keep_channels=1) arr = np.int32([ [0, 1], [0, 1] ]) segmaps = ia.SegmentationMapsOnImage(arr, shape=(2, 2, 3)) segmaps_aug = aug(segmentation_maps=segmaps) assert np.allclose(segmaps_aug.arr, segmaps.arr) def test_p_is_1_cbaois__keep_one_channel(self): cbaois = [ ia.KeypointsOnImage([ia.Keypoint(x=0, y=1)], shape=(2, 2, 3)), ia.BoundingBoxesOnImage([ia.BoundingBox(x1=0, y1=1, x2=2, y2=3)], shape=(2, 2, 3)), ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)), ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ] cbaoi_names = ["keypoints", "bounding_boxes", "polygons", "line_strings"] aug = iaa.Dropout2d(p=1.0, nb_keep_channels=1) for name, cbaoi in zip(cbaoi_names, cbaois): with self.subTest(datatype=name): cbaoi_aug = aug(**{name: cbaoi}) assert cbaoi_aug.shape == (2, 2, 3) assert np.allclose( cbaoi_aug.items[0].coords, cbaoi.items[0].coords ) def test_p_is_0(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == image.dtype.name assert np.array_equal(image_aug, image) def test_p_is_0_heatmaps(self): aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) hm = ia.HeatmapsOnImage(arr, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=hm) assert np.allclose(heatmaps_aug.arr_0to1, hm.arr_0to1) def test_p_is_0_segmentation_maps(self): aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) arr = np.int32([ [0, 1], [0, 1] ]) segmaps = ia.SegmentationMapsOnImage(arr, shape=(2, 2, 3)) segmaps_aug = aug(segmentation_maps=segmaps) assert np.allclose(segmaps_aug.arr, segmaps.arr) def test_p_is_0_cbaois(self): cbaois = [ ia.KeypointsOnImage([ia.Keypoint(x=0, y=1)], shape=(2, 2, 3)), ia.BoundingBoxesOnImage([ia.BoundingBox(x1=0, y1=1, x2=2, y2=3)], shape=(2, 2, 3)), ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)), ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ] cbaoi_names = ["keypoints", "bounding_boxes", "polygons", "line_strings"] aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) for name, cbaoi in zip(cbaoi_names, cbaois): with self.subTest(datatype=name): cbaoi_aug = aug(**{name: cbaoi}) assert cbaoi_aug.shape == (2, 2, 3) assert np.allclose( cbaoi_aug.items[0].coords, cbaoi.items[0].coords ) def test_p_is_075(self): image = np.full((1, 1, 3000), 255, dtype=np.uint8) aug = iaa.Dropout2d(p=0.75, nb_keep_channels=0) image_aug = aug(image=image) nb_kept = np.sum(image_aug == 255) nb_dropped = image.shape[2] - nb_kept assert image_aug.shape == image.shape assert image_aug.dtype.name == image.dtype.name assert np.isclose(nb_dropped, image.shape[2]*0.75, atol=75) def test_force_nb_keep_channels(self): image = np.full((1, 1, 3), 255, dtype=np.uint8) images = np.array([image] * 1000) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=1) images_aug = aug(images=images) ids_kept = [np.nonzero(image[0, 0, :]) for image in images_aug] ids_kept_uq = np.unique(ids_kept) nb_kept = np.sum(images_aug == 255) nb_dropped = (len(images) * images.shape[3]) - nb_kept assert images_aug.shape == images.shape assert images_aug.dtype.name == images.dtype.name # on average, keep 1 of 3 channels # due to p=1.0 we expect to get exactly 2/3 dropped assert np.isclose(nb_dropped, (len(images)*images.shape[3])*(2/3), atol=1) # every channel dropped at least once, i.e. which one is kept is random assert sorted(ids_kept_uq.tolist()) == [0, 1, 2] def test_some_images_below_nb_keep_channels(self): image_2c = np.full((1, 1, 2), 255, dtype=np.uint8) image_3c = np.full((1, 1, 3), 255, dtype=np.uint8) images = [image_2c if i % 2 == 0 else image_3c for i in sm.xrange(100)] aug = iaa.Dropout2d(p=1.0, nb_keep_channels=2) images_aug = aug(images=images) for i, image_aug in enumerate(images_aug): assert np.sum(image_aug == 255) == 2 if i % 2 == 0: assert np.sum(image_aug == 0) == 0 else: assert np.sum(image_aug == 0) == 1 def test_all_images_below_nb_keep_channels(self): image = np.full((1, 1, 2), 255, dtype=np.uint8) images = np.array([image] * 100) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=3) images_aug = aug(images=images) nb_kept = np.sum(images_aug == 255) nb_dropped = (len(images) * images.shape[3]) - nb_kept assert nb_dropped == 0 def test_get_parameters(self): aug = iaa.Dropout2d(p=0.7, nb_keep_channels=2) params = aug.get_parameters() assert isinstance(params[0], iap.Binomial) assert np.isclose(params[0].p.value, 0.3) assert params[1] == 2 def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.full(shape, 255, dtype=np.uint8) aug = iaa.Dropout2d(1.0, nb_keep_channels=0) image_aug = aug(image=image) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_other_dtypes_bool(self): image = np.full((1, 1, 10), 1, dtype=bool) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=3) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == "bool" assert np.sum(image_aug == 1) == 3 assert np.sum(image_aug == 0) == 7 def test_other_dtypes_uint_int(self): dts = ["uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64"] for dt in dts: min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) values = [min_value, int(center_value), max_value] for value in values: with self.subTest(dtype=dt, value=value): image = np.full((1, 1, 10), value, dtype=dt) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=3) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == dt if value == 0: assert np.sum(image_aug == value) == 10 else: assert np.sum(image_aug == value) == 3 assert np.sum(image_aug == 0) == 7 def test_other_dtypes_float(self): dts = ["float16", "float32", "float64", "float128"] for dt in dts: min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) values = [min_value, -10.0, center_value, 10.0, max_value] atol = 1e-3*max_value if dt == "float16" else 1e-9 * max_value _isclose = functools.partial(np.isclose, atol=atol, rtol=0) for value in values: with self.subTest(dtype=dt, value=value): image = np.full((1, 1, 10), value, dtype=dt) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=3) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == dt if _isclose(value, 0.0): assert np.sum(_isclose(image_aug, value)) == 10 else: assert ( np.sum(_isclose(image_aug, np.float128(value))) == 3) assert np.sum(image_aug == 0) == 7 def test_pickleable(self): aug = iaa.Dropout2d(p=0.5, random_state=1) runtest_pickleable_uint8_img(aug, iterations=3, shape=(1, 1, 50)) class TestTotalDropout(unittest.TestCase): def setUp(self): reseed() def test___init___p(self): aug = iaa.TotalDropout(p=0) assert isinstance(aug.p, iap.Binomial) assert np.isclose(aug.p.p.value, 1.0) def test_p_is_1(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) aug = iaa.TotalDropout(p=1.0) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == image.dtype.name assert np.sum(image_aug) == 0 def test_p_is_1_multiple_images_list(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) images = [image, image, image] aug = iaa.TotalDropout(p=1.0) images_aug = aug(images=images) for image_aug, image_ in zip(images_aug, images): assert image_aug.shape == image_.shape assert image_aug.dtype.name == image_.dtype.name assert np.sum(image_aug) == 0 def test_p_is_1_multiple_images_array(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) images = np.array([image, image, image], dtype=np.uint8) aug = iaa.TotalDropout(p=1.0) images_aug = aug(images=images) assert images_aug.shape == images.shape assert images_aug.dtype.name == images.dtype.name assert np.sum(images_aug) == 0 def test_p_is_1_heatmaps(self): aug = iaa.TotalDropout(p=1.0) arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) hm = ia.HeatmapsOnImage(arr, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=hm) assert np.allclose(heatmaps_aug.arr_0to1, 0.0) def test_p_is_1_segmentation_maps(self): aug = iaa.TotalDropout(p=1.0) arr = np.int32([ [0, 1], [0, 1] ]) segmaps = ia.SegmentationMapsOnImage(arr, shape=(2, 2, 3)) segmaps_aug = aug(segmentation_maps=segmaps) assert np.allclose(segmaps_aug.arr, 0.0) def test_p_is_1_cbaois(self): cbaois = [ ia.KeypointsOnImage([ia.Keypoint(x=0, y=1)], shape=(2, 2, 3)), ia.BoundingBoxesOnImage([ia.BoundingBox(x1=0, y1=1, x2=2, y2=3)], shape=(2, 2, 3)), ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)), ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ] cbaoi_names = ["keypoints", "bounding_boxes", "polygons", "line_strings"] aug = iaa.TotalDropout(p=1.0) for name, cbaoi in zip(cbaoi_names, cbaois): with self.subTest(datatype=name): cbaoi_aug = aug(**{name: cbaoi}) assert cbaoi_aug.shape == (2, 2, 3) assert cbaoi_aug.items == [] def test_p_is_0(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) aug = iaa.TotalDropout(p=0.0) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == image.dtype.name assert np.array_equal(image_aug, image) def test_p_is_0_multiple_images_list(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) images = [image, image, image] aug = iaa.TotalDropout(p=0.0) images_aug = aug(images=images) for image_aug, image_ in zip(images_aug, images): assert image_aug.shape == image_.shape assert image_aug.dtype.name == image_.dtype.name assert np.array_equal(image_aug, image_) def test_p_is_0_multiple_images_array(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) images = np.array([image, image, image], dtype=np.uint8) aug = iaa.TotalDropout(p=0.0) images_aug = aug(images=images) for image_aug, image_ in zip(images_aug, images): assert image_aug.shape == image_.shape assert image_aug.dtype.name == image_.dtype.name assert np.array_equal(image_aug, image_) def test_p_is_0_heatmaps(self): aug = iaa.TotalDropout(p=0.0) arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) hm = ia.HeatmapsOnImage(arr, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=hm) assert np.allclose(heatmaps_aug.arr_0to1, hm.arr_0to1) def test_p_is_0_segmentation_maps(self): aug = iaa.TotalDropout(p=0.0) arr = np.int32([ [0, 1], [0, 1] ]) segmaps = ia.SegmentationMapsOnImage(arr, shape=(2, 2, 3)) segmaps_aug = aug(segmentation_maps=segmaps) assert np.allclose(segmaps_aug.arr, segmaps.arr) def test_p_is_0_cbaois(self): cbaois = [ ia.KeypointsOnImage([ia.Keypoint(x=0, y=1)], shape=(2, 2, 3)), ia.BoundingBoxesOnImage([ia.BoundingBox(x1=0, y1=1, x2=2, y2=3)], shape=(2, 2, 3)), ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)), ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ] cbaoi_names = ["keypoints", "bounding_boxes", "polygons", "line_strings"] aug = iaa.TotalDropout(p=0.0) for name, cbaoi in zip(cbaoi_names, cbaois): with self.subTest(datatype=name): cbaoi_aug = aug(**{name: cbaoi}) assert cbaoi_aug.shape == (2, 2, 3) assert np.allclose( cbaoi_aug.items[0].coords, cbaoi.items[0].coords ) def test_p_is_075_multiple_images_list(self): images = [np.full((1, 1, 1), 255, dtype=np.uint8)] * 3000 aug = iaa.TotalDropout(p=0.75) images_aug = aug(images=images) nb_kept = np.sum([np.sum(image_aug == 255) for image_aug in images_aug]) nb_dropped = len(images) - nb_kept for image_aug in images_aug: assert image_aug.shape == images[0].shape assert image_aug.dtype.name == images[0].dtype.name assert np.isclose(nb_dropped, len(images)*0.75, atol=75) def test_p_is_075_multiple_images_array(self): images = np.full((3000, 1, 1, 1), 255, dtype=np.uint8) aug = iaa.TotalDropout(p=0.75) images_aug = aug(images=images) nb_kept = np.sum(images_aug == 255) nb_dropped = len(images) - nb_kept assert images_aug.shape == images.shape assert images_aug.dtype.name == images.dtype.name assert np.isclose(nb_dropped, len(images)*0.75, atol=75) def test_get_parameters(self): aug = iaa.TotalDropout(p=0.0) params = aug.get_parameters() assert params[0] is aug.p def test_unusual_channel_numbers(self): shapes = [ (5, 1, 1, 4), (5, 1, 1, 5), (5, 1, 1, 512), (5, 1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): images = np.zeros(shape, dtype=np.uint8) aug = iaa.TotalDropout(1.0) images_aug = aug(images=images) assert np.all(images_aug == 0) assert images_aug.dtype.name == "uint8" assert images_aug.shape == shape def test_zero_sized_axes(self): shapes = [ (5, 0, 0), (5, 0, 1), (5, 1, 0), (5, 0, 1, 0), (5, 1, 0, 0), (5, 0, 1, 1), (5, 1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): images = np.full(shape, 255, dtype=np.uint8) aug = iaa.TotalDropout(1.0) images_aug = aug(images=images) assert images_aug.dtype.name == "uint8" assert images_aug.shape == images.shape def test_other_dtypes_bool(self): image = np.full((1, 1, 10), 1, dtype=bool) aug = iaa.TotalDropout(p=1.0) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == "bool" assert np.sum(image_aug == 1) == 0 def test_other_dtypes_uint_int(self): dts = ["uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64"] for dt in dts: min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) values = [min_value, int(center_value), max_value] for value in values: for p in [1.0, 0.0]: with self.subTest(dtype=dt, value=value, p=p): images = np.full((5, 1, 1, 3), value, dtype=dt) aug = iaa.TotalDropout(p=p) images_aug = aug(images=images) assert images_aug.shape == images.shape assert images_aug.dtype.name == dt if np.isclose(p, 1.0) or value == 0: assert np.sum(images_aug == 0) == 5*3 else: assert np.sum(images_aug == value) == 5*3 def test_other_dtypes_float(self): dts = ["float16", "float32", "float64", "float128"] for dt in dts: min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) values = [min_value, -10.0, center_value, 10.0, max_value] atol = 1e-3*max_value if dt == "float16" else 1e-9 * max_value _isclose = functools.partial(np.isclose, atol=atol, rtol=0) for value in values: for p in [1.0, 0.0]: with self.subTest(dtype=dt, value=value, p=p): images = np.full((5, 1, 1, 3), value, dtype=dt) aug = iaa.TotalDropout(p=p) images_aug = aug(images=images) assert images_aug.shape == images.shape assert images_aug.dtype.name == dt if np.isclose(p, 1.0): assert np.sum(_isclose(images_aug, 0.0)) == 5*3 else: assert ( np.sum(_isclose(images_aug, np.float128(value))) == 5*3) def test_pickleable(self): aug = iaa.TotalDropout(p=0.5, random_state=1) runtest_pickleable_uint8_img(aug, iterations=30, shape=(4, 4, 2)) class TestMultiply(unittest.TestCase): def setUp(self): reseed() def test_mul_is_one(self): # no multiply, shouldnt change anything base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Multiply(mul=1.0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) def test_mul_is_above_one(self): # multiply >1.0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Multiply(mul=1.2) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = np.ones((1, 3, 3, 1), dtype=np.uint8) * 120 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [np.ones((3, 3, 1), dtype=np.uint8) * 120] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = np.ones((1, 3, 3, 1), dtype=np.uint8) * 120 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [np.ones((3, 3, 1), dtype=np.uint8) * 120] assert array_equal_lists(observed, expected) def test_mul_is_below_one(self): # multiply <1.0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Multiply(mul=0.8) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = np.ones((1, 3, 3, 1), dtype=np.uint8) * 80 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [np.ones((3, 3, 1), dtype=np.uint8) * 80] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = np.ones((1, 3, 3, 1), dtype=np.uint8) * 80 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [np.ones((3, 3, 1), dtype=np.uint8) * 80] assert array_equal_lists(observed, expected) def test_keypoints_dont_change(self): # keypoints shouldnt be changed base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.Multiply(mul=1.2) aug_det = iaa.Multiply(mul=1.2).to_deterministic() observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) def test_tuple_as_mul(self): # varying multiply factors base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.Multiply(mul=(0, 2.0)) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.95) assert nb_changed_aug_det == 0 def test_per_channel(self): aug = iaa.Multiply(mul=iap.Choice([0, 2]), per_channel=True) observed = aug.augment_image(np.ones((1, 1, 100), dtype=np.uint8)) uq = np.unique(observed) assert observed.shape == (1, 1, 100) assert 0 in uq assert 2 in uq assert len(uq) == 2 def test_per_channel_with_probability(self): # test channelwise with probability aug = iaa.Multiply(mul=iap.Choice([0, 2]), per_channel=0.5) seen = [0, 0] for _ in sm.xrange(400): observed = aug.augment_image(np.ones((1, 1, 20), dtype=np.uint8)) assert observed.shape == (1, 1, 20) uq = np.unique(observed) per_channel = (len(uq) == 2) if per_channel: seen[0] += 1 else: seen[1] += 1 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _ = iaa.Multiply(mul="test") except Exception: got_exception = True assert got_exception got_exception = False try: _ = iaa.Multiply(mul=1, per_channel="test") except Exception: got_exception = True assert got_exception def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.ones(shape, dtype=np.uint8) aug = iaa.Multiply(1) image_aug = aug(image=image) assert np.all(image_aug == 2) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_unusual_channel_numbers(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.ones(shape, dtype=np.uint8) aug = iaa.Multiply(2) image_aug = aug(image=image) assert np.all(image_aug == 2) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_get_parameters(self): # test get_parameters() aug = iaa.Multiply(mul=1, per_channel=False) params = aug.get_parameters() assert isinstance(params[0], iap.Deterministic) assert isinstance(params[1], iap.Deterministic) assert params[0].value == 1 assert params[1].value == 0 def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.Multiply(mul=2) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_other_dtypes_bool(self): # bool image = np.zeros((3, 3), dtype=bool) aug = iaa.Multiply(1.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.Multiply(1.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.Multiply(2.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.Multiply(0.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.Multiply(-1.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) def test_other_dtypes_uint_int(self): # uint, int for dtype in [np.uint8, np.uint16, np.int8, np.int16]: dtype = np.dtype(dtype) min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) image = np.full((3, 3), 10, dtype=dtype) aug = iaa.Multiply(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 10) image = np.full((3, 3), 10, dtype=dtype) aug = iaa.Multiply(10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 100) image = np.full((3, 3), 10, dtype=dtype) aug = iaa.Multiply(0.5) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 5) image = np.full((3, 3), 0, dtype=dtype) aug = iaa.Multiply(0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 0) if np.dtype(dtype).kind == "u": image = np.full((3, 3), 10, dtype=dtype) aug = iaa.Multiply(-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 0) else: image = np.full((3, 3), 10, dtype=dtype) aug = iaa.Multiply(-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == -10) image = np.full((3, 3), int(center_value), dtype=dtype) aug = iaa.Multiply(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == int(center_value)) image = np.full((3, 3), int(center_value), dtype=dtype) aug = iaa.Multiply(1.2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == int(1.2 * int(center_value))) if np.dtype(dtype).kind == "u": image = np.full((3, 3), int(center_value), dtype=dtype) aug = iaa.Multiply(100) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.Multiply(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) # non-uint8 currently don't increase the itemsize if dtype.name == "uint8": image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.Multiply(10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.Multiply(0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 0) # non-uint8 currently don't increase the itemsize if dtype.name == "uint8": image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.Multiply(-2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) # non-uint8 currently don't increase the itemsize if dtype.name == "uint8": for _ in sm.xrange(10): image = np.full((1, 1, 3), 10, dtype=dtype) aug = iaa.Multiply(iap.Uniform(0.5, 1.5)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(5 <= image_aug, image_aug <= 15)) assert len(np.unique(image_aug)) == 1 image = np.full((1, 1, 100), 10, dtype=dtype) aug = iaa.Multiply(iap.Uniform(0.5, 1.5), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(5 <= image_aug, image_aug <= 15)) assert len(np.unique(image_aug)) > 1 image = np.full((1, 1, 3), 10, dtype=dtype) aug = iaa.Multiply(iap.DiscreteUniform(1, 3)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) == 1 image = np.full((1, 1, 100), 10, dtype=dtype) aug = iaa.Multiply(iap.DiscreteUniform(1, 3), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 def test_other_dtypes_float(self): # float for dtype in [np.float16, np.float32]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) if dtype == np.float16: atol = 1e-3 * max_value else: atol = 1e-9 * max_value _allclose = functools.partial(np.allclose, atol=atol, rtol=0) image = np.full((3, 3), 10.0, dtype=dtype) aug = iaa.Multiply(1.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 10.0) image = np.full((3, 3), 10.0, dtype=dtype) aug = iaa.Multiply(2.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 20.0) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), max_value, dtype=dtype) # aug = iaa.Multiply(-10) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert _allclose(image_aug, min_value) image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.Multiply(0.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 0.0) image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.Multiply(0.5) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 0.5*max_value) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), min_value, dtype=dtype) # aug = iaa.Multiply(-2.0) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert _allclose(image_aug, max_value) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.Multiply(0.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 0.0) # using tolerances of -100 - 1e-2 and 100 + 1e-2 is not enough for float16, had to be increased to -/+ 1e-1 # deactivated, because itemsize increase was deactivated """ for _ in sm.xrange(10): image = np.full((1, 1, 3), 10.0, dtype=dtype) aug = iaa.Multiply(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-100 - 1e-1 < image_aug, image_aug < 100 + 1e-1)) assert np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 10.0, dtype=dtype) aug = iaa.Multiply(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-100 - 1e-1 < image_aug, image_aug < 100 + 1e-1)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) image = np.full((1, 1, 3), 10.0, dtype=dtype) aug = iaa.Multiply(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-100 - 1e-1 < image_aug, image_aug < 100 + 1e-1)) assert np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 10.0, dtype=dtype) aug = iaa.Multiply(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-100 - 1e-1 < image_aug, image_aug < 100 + 1e-1)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) """ def test_pickleable(self): aug = iaa.Multiply((0.5, 1.5), per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=20) class TestMultiplyElementwise(unittest.TestCase): def setUp(self): reseed() def test_mul_is_one(self): # no multiply, shouldnt change anything base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.MultiplyElementwise(mul=1.0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) def test_mul_is_above_one(self): # multiply >1.0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.MultiplyElementwise(mul=1.2) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = np.ones((1, 3, 3, 1), dtype=np.uint8) * 120 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [np.ones((3, 3, 1), dtype=np.uint8) * 120] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = np.ones((1, 3, 3, 1), dtype=np.uint8) * 120 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [np.ones((3, 3, 1), dtype=np.uint8) * 120] assert array_equal_lists(observed, expected) def test_mul_is_below_one(self): # multiply <1.0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.MultiplyElementwise(mul=0.8) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = np.ones((1, 3, 3, 1), dtype=np.uint8) * 80 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [np.ones((3, 3, 1), dtype=np.uint8) * 80] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = np.ones((1, 3, 3, 1), dtype=np.uint8) * 80 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [np.ones((3, 3, 1), dtype=np.uint8) * 80] assert array_equal_lists(observed, expected) def test_keypoints_dont_change(self): # keypoints shouldnt be changed base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.MultiplyElementwise(mul=1.2) aug_det = iaa.Multiply(mul=1.2).to_deterministic() observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) def test_tuple_as_mul(self): # varying multiply factors base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.MultiplyElementwise(mul=(0, 2.0)) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.95) assert nb_changed_aug_det == 0 def test_samples_change_by_spatial_location(self): # values should change between pixels base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.MultiplyElementwise(mul=(0.5, 1.5)) nb_same = 0 nb_different = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_flat = observed_aug.flatten() last = None for j in sm.xrange(observed_aug_flat.size): if last is not None: v = observed_aug_flat[j] if v - 0.0001 <= last <= v + 0.0001: nb_same += 1 else: nb_different += 1 last = observed_aug_flat[j] assert nb_different > 0.95 * (nb_different + nb_same) def test_per_channel(self): # test channelwise aug = iaa.MultiplyElementwise(mul=iap.Choice([0, 1]), per_channel=True) observed = aug.augment_image(np.ones((100, 100, 3), dtype=np.uint8)) sums = np.sum(observed, axis=2) values = np.unique(sums) assert all([(value in values) for value in [0, 1, 2, 3]]) assert observed.shape == (100, 100, 3) def test_per_channel_with_probability(self): # test channelwise with probability aug = iaa.MultiplyElementwise(mul=iap.Choice([0, 1]), per_channel=0.5) seen = [0, 0] for _ in sm.xrange(400): observed = aug.augment_image(np.ones((20, 20, 3), dtype=np.uint8)) assert observed.shape == (20, 20, 3) sums = np.sum(observed, axis=2) values = np.unique(sums) all_values_found = all([(value in values) for value in [0, 1, 2, 3]]) if all_values_found: seen[0] += 1 else: seen[1] += 1 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _aug = iaa.MultiplyElementwise(mul="test") except Exception: got_exception = True assert got_exception got_exception = False try: _aug = iaa.MultiplyElementwise(mul=1, per_channel="test") except Exception: got_exception = True assert got_exception def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.ones(shape, dtype=np.uint8) aug = iaa.MultiplyElementwise(2) image_aug = aug(image=image) assert np.all(image_aug == 2) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_unusual_channel_numbers(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.ones(shape, dtype=np.uint8) aug = iaa.MultiplyElementwise(2) image_aug = aug(image=image) assert np.all(image_aug == 2) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_get_parameters(self): # test get_parameters() aug = iaa.MultiplyElementwise(mul=1, per_channel=False) params = aug.get_parameters() assert isinstance(params[0], iap.Deterministic) assert isinstance(params[1], iap.Deterministic) assert params[0].value == 1 assert params[1].value == 0 def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.MultiplyElementwise(mul=2) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_other_dtypes_bool(self): # bool image = np.zeros((3, 3), dtype=bool) aug = iaa.MultiplyElementwise(1.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.MultiplyElementwise(1.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.MultiplyElementwise(2.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.MultiplyElementwise(0.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.MultiplyElementwise(-1.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) def test_other_dtypes_uint_int(self): # uint, int for dtype in [np.uint8, np.uint16, np.int8, np.int16]: dtype = np.dtype(dtype) min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) image = np.full((3, 3), 10, dtype=dtype) aug = iaa.MultiplyElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 10) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), 10, dtype=dtype) # aug = iaa.MultiplyElementwise(10) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert np.all(image_aug == 100) image = np.full((3, 3), 10, dtype=dtype) aug = iaa.MultiplyElementwise(0.5) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 5) image = np.full((3, 3), 0, dtype=dtype) aug = iaa.MultiplyElementwise(0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 0) # partially deactivated, because itemsize increase was deactivated if dtype.name == "uint8": if dtype.kind == "u": image = np.full((3, 3), 10, dtype=dtype) aug = iaa.MultiplyElementwise(-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 0) else: image = np.full((3, 3), 10, dtype=dtype) aug = iaa.MultiplyElementwise(-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == -10) image = np.full((3, 3), int(center_value), dtype=dtype) aug = iaa.MultiplyElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == int(center_value)) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), int(center_value), dtype=dtype) # aug = iaa.MultiplyElementwise(1.2) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert np.all(image_aug == int(1.2 * int(center_value))) # deactivated, because itemsize increase was deactivated if dtype.name == "uint8": if dtype.kind == "u": image = np.full((3, 3), int(center_value), dtype=dtype) aug = iaa.MultiplyElementwise(100) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.MultiplyElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), max_value, dtype=dtype) # aug = iaa.MultiplyElementwise(10) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert np.all(image_aug == max_value) image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.MultiplyElementwise(0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 0) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), max_value, dtype=dtype) # aug = iaa.MultiplyElementwise(-2) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert np.all(image_aug == min_value) # partially deactivated, because itemsize increase was deactivated if dtype.name == "uint8": for _ in sm.xrange(10): image = np.full((5, 5, 3), 10, dtype=dtype) aug = iaa.MultiplyElementwise(iap.Uniform(0.5, 1.5)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(5 <= image_aug, image_aug <= 15)) assert len(np.unique(image_aug)) > 1 assert np.all(image_aug[..., 0] == image_aug[..., 1]) image = np.full((1, 1, 100), 10, dtype=dtype) aug = iaa.MultiplyElementwise(iap.Uniform(0.5, 1.5), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(5 <= image_aug, image_aug <= 15)) assert len(np.unique(image_aug)) > 1 image = np.full((5, 5, 3), 10, dtype=dtype) aug = iaa.MultiplyElementwise(iap.DiscreteUniform(1, 3)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 assert np.all(image_aug[..., 0] == image_aug[..., 1]) image = np.full((1, 1, 100), 10, dtype=dtype) aug = iaa.MultiplyElementwise(iap.DiscreteUniform(1, 3), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 def test_other_dtypes_float(self): # float for dtype in [np.float16, np.float32]: dtype = np.dtype(dtype) min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) if dtype == np.float16: atol = 1e-3 * max_value else: atol = 1e-9 * max_value _allclose = functools.partial(np.allclose, atol=atol, rtol=0) image = np.full((3, 3), 10.0, dtype=dtype) aug = iaa.MultiplyElementwise(1.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 10.0) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), 10.0, dtype=dtype) # aug = iaa.MultiplyElementwise(2.0) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert _allclose(image_aug, 20.0) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), max_value, dtype=dtype) # aug = iaa.MultiplyElementwise(-10) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert _allclose(image_aug, min_value) image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.MultiplyElementwise(0.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 0.0) image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.MultiplyElementwise(0.5) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 0.5*max_value) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), min_value, dtype=dtype) # aug = iaa.MultiplyElementwise(-2.0) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert _allclose(image_aug, max_value) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.MultiplyElementwise(0.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 0.0) # using tolerances of -100 - 1e-2 and 100 + 1e-2 is not enough for float16, had to be increased to -/+ 1e-1 # deactivated, because itemsize increase was deactivated """ for _ in sm.xrange(10): image = np.full((50, 1, 3), 10.0, dtype=dtype) aug = iaa.MultiplyElementwise(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-100 - 1e-1 < image_aug, image_aug < 100 + 1e-1)) assert not np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 10.0, dtype=dtype) aug = iaa.MultiplyElementwise(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-100 - 1e-1 < image_aug, image_aug < 100 + 1e-1)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) image = np.full((50, 1, 3), 10.0, dtype=dtype) aug = iaa.MultiplyElementwise(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-100 - 1e-1 < image_aug, image_aug < 100 + 1e-1)) assert not np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 10, dtype=dtype) aug = iaa.MultiplyElementwise(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-100 - 1e-1 < image_aug, image_aug < 100 + 1e-1)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) """ def test_pickleable(self): aug = iaa.MultiplyElementwise((0.5, 1.5), per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=3) class TestReplaceElementwise(unittest.TestCase): def setUp(self): reseed() def test_mask_is_always_zero(self): # no replace, shouldnt change anything base_img = np.ones((3, 3, 1), dtype=np.uint8) + 99 images = np.array([base_img]) images_list = [base_img] aug = iaa.ReplaceElementwise(mask=0, replacement=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) def test_mask_is_always_one(self): # replace at 100 percent prob., should change everything base_img = np.ones((3, 3, 1), dtype=np.uint8) + 99 images = np.array([base_img]) images_list = [base_img] aug = iaa.ReplaceElementwise(mask=1, replacement=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = np.zeros((1, 3, 3, 1), dtype=np.uint8) assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [np.zeros((3, 3, 1), dtype=np.uint8)] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = np.zeros((1, 3, 3, 1), dtype=np.uint8) assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [np.zeros((3, 3, 1), dtype=np.uint8)] assert array_equal_lists(observed, expected) def test_mask_is_stochastic_parameter(self): # replace half aug = iaa.ReplaceElementwise(mask=iap.Binomial(p=0.5), replacement=0) img = np.ones((100, 100, 1), dtype=np.uint8) nb_iterations = 100 nb_diff_all = 0 for i in sm.xrange(nb_iterations): observed = aug.augment_image(img) nb_diff = np.sum(img != observed) nb_diff_all += nb_diff p = nb_diff_all / (nb_iterations * 100 * 100) assert 0.45 <= p <= 0.55 def test_mask_is_list(self): # mask is list aug = iaa.ReplaceElementwise(mask=[0.2, 0.7], replacement=1) img = np.zeros((20, 20, 1), dtype=np.uint8) seen = [0, 0, 0] for i in sm.xrange(400): observed = aug.augment_image(img) p = np.mean(observed) if 0.1 < p < 0.3: seen[0] += 1 elif 0.6 < p < 0.8: seen[1] += 1 else: seen[2] += 1 assert seen[2] <= 10 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test_keypoints_dont_change(self): # keypoints shouldnt be changed base_img = np.ones((3, 3, 1), dtype=np.uint8) + 99 keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.ReplaceElementwise(mask=iap.Binomial(p=0.5), replacement=0) aug_det = iaa.ReplaceElementwise(mask=iap.Binomial(p=0.5), replacement=0).to_deterministic() observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) def test_replacement_is_stochastic_parameter(self): # different replacements aug = iaa.ReplaceElementwise(mask=1, replacement=iap.Choice([100, 200])) img = np.zeros((1000, 1000, 1), dtype=np.uint8) img100 = img + 100 img200 = img + 200 observed = aug.augment_image(img) nb_diff_100 = np.sum(img100 != observed) nb_diff_200 = np.sum(img200 != observed) p100 = nb_diff_100 / (1000 * 1000) p200 = nb_diff_200 / (1000 * 1000) assert 0.45 <= p100 <= 0.55 assert 0.45 <= p200 <= 0.55 # test channelwise aug = iaa.MultiplyElementwise(mul=iap.Choice([0, 1]), per_channel=True) observed = aug.augment_image(np.ones((100, 100, 3), dtype=np.uint8)) sums = np.sum(observed, axis=2) values = np.unique(sums) assert all([(value in values) for value in [0, 1, 2, 3]]) def test_per_channel_with_probability(self): # test channelwise with probability aug = iaa.ReplaceElementwise(mask=iap.Choice([0, 1]), replacement=1, per_channel=0.5) seen = [0, 0] for _ in sm.xrange(400): observed = aug.augment_image(np.zeros((20, 20, 3), dtype=np.uint8)) assert observed.shape == (20, 20, 3) sums = np.sum(observed, axis=2) values = np.unique(sums) all_values_found = all([(value in values) for value in [0, 1, 2, 3]]) if all_values_found: seen[0] += 1 else: seen[1] += 1 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _aug = iaa.ReplaceElementwise(mask="test", replacement=1) except Exception: got_exception = True assert got_exception got_exception = False try: _aug = iaa.ReplaceElementwise(mask=1, replacement=1, per_channel="test") except Exception: got_exception = True assert got_exception def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.ReplaceElementwise(1.0, 1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_unusual_channel_numbers(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.ReplaceElementwise(1.0, 1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_get_parameters(self): # test get_parameters() aug = iaa.ReplaceElementwise(mask=0.5, replacement=2, per_channel=False) params = aug.get_parameters() assert isinstance(params[0], iap.Binomial) assert isinstance(params[0].p, iap.Deterministic) assert isinstance(params[1], iap.Deterministic) assert isinstance(params[2], iap.Deterministic) assert 0.5 - 1e-6 < params[0].p.value < 0.5 + 1e-6 assert params[1].value == 2 assert params[2].value == 0 def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.ReplaceElementwise(mask=1, replacement=0.5) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_other_dtypes_bool(self): # bool aug = iaa.ReplaceElementwise(mask=1, replacement=0) image = np.full((3, 3), False, dtype=bool) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) aug = iaa.ReplaceElementwise(mask=1, replacement=1) image = np.full((3, 3), False, dtype=bool) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) aug = iaa.ReplaceElementwise(mask=1, replacement=0) image = np.full((3, 3), True, dtype=bool) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) aug = iaa.ReplaceElementwise(mask=1, replacement=1) image = np.full((3, 3), True, dtype=bool) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) aug = iaa.ReplaceElementwise(mask=1, replacement=0.7) image = np.full((3, 3), False, dtype=bool) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) aug = iaa.ReplaceElementwise(mask=1, replacement=0.2) image = np.full((3, 3), False, dtype=bool) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) def test_other_dtypes_uint_int(self): # uint, int for dtype in [np.uint8, np.uint16, np.uint32, np.int8, np.int16, np.int32]: dtype = np.dtype(dtype) min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) aug = iaa.ReplaceElementwise(mask=1, replacement=1) image = np.full((3, 3), 0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 1) aug = iaa.ReplaceElementwise(mask=1, replacement=2) image = np.full((3, 3), 1, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 2) # deterministic stochastic parameters are by default int32 for # any integer value and hence cannot cover the full uint32 value # range if dtype.name != "uint32": aug = iaa.ReplaceElementwise(mask=1, replacement=max_value) image = np.full((3, 3), min_value, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) aug = iaa.ReplaceElementwise(mask=1, replacement=min_value) image = np.full((3, 3), max_value, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) aug = iaa.ReplaceElementwise(mask=1, replacement=iap.Uniform(1.0, 10.0)) image = np.full((100, 1), 0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(1 <= image_aug, image_aug <= 10)) assert len(np.unique(image_aug)) > 1 aug = iaa.ReplaceElementwise(mask=1, replacement=iap.DiscreteUniform(1, 10)) image = np.full((100, 1), 0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(1 <= image_aug, image_aug <= 10)) assert len(np.unique(image_aug)) > 1 aug = iaa.ReplaceElementwise(mask=0.5, replacement=iap.DiscreteUniform(1, 10), per_channel=True) image = np.full((1, 1, 100), 0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(0 <= image_aug, image_aug <= 10)) assert len(np.unique(image_aug)) > 2 def test_other_dtypes_float(self): # float for dtype in [np.float16, np.float32, np.float64]: dtype = np.dtype(dtype) min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) atol = 1e-3*max_value if dtype == np.float16 else 1e-9 * max_value _allclose = functools.partial(np.allclose, atol=atol, rtol=0) aug = iaa.ReplaceElementwise(mask=1, replacement=1.0) image = np.full((3, 3), 0.0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.allclose(image_aug, 1.0) aug = iaa.ReplaceElementwise(mask=1, replacement=2.0) image = np.full((3, 3), 1.0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.allclose(image_aug, 2.0) # deterministic stochastic parameters are by default float32 for # any float value and hence cannot cover the full float64 value # range if dtype.name != "float64": aug = iaa.ReplaceElementwise(mask=1, replacement=max_value) image = np.full((3, 3), min_value, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) aug = iaa.ReplaceElementwise(mask=1, replacement=min_value) image = np.full((3, 3), max_value, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) aug = iaa.ReplaceElementwise(mask=1, replacement=iap.Uniform(1.0, 10.0)) image = np.full((100, 1), 0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(1 <= image_aug, image_aug <= 10)) assert not np.allclose(image_aug[1:, :], image_aug[:-1, :], atol=0.01) aug = iaa.ReplaceElementwise(mask=1, replacement=iap.DiscreteUniform(1, 10)) image = np.full((100, 1), 0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(1 <= image_aug, image_aug <= 10)) assert not np.allclose(image_aug[1:, :], image_aug[:-1, :], atol=0.01) aug = iaa.ReplaceElementwise(mask=0.5, replacement=iap.DiscreteUniform(1, 10), per_channel=True) image = np.full((1, 1, 100), 0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(0 <= image_aug, image_aug <= 10)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1], atol=0.01) def test_pickleable(self): aug = iaa.ReplaceElementwise(mask=0.5, replacement=(0, 255), per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=3) # not more tests necessary here as SaltAndPepper is just a tiny wrapper around # ReplaceElementwise class TestSaltAndPepper(unittest.TestCase): def setUp(self): reseed() def test_p_is_fifty_percent(self): base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 aug = iaa.SaltAndPepper(p=0.5) observed = aug.augment_image(base_img) p = np.mean(observed != 128) assert 0.4 < p < 0.6 def test_p_is_one(self): base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 aug = iaa.SaltAndPepper(p=1.0) observed = aug.augment_image(base_img) nb_pepper = np.sum(observed < 40) nb_salt = np.sum(observed > 255 - 40) assert nb_pepper > 200 assert nb_salt > 200 def test_pickleable(self): aug = iaa.SaltAndPepper(p=0.5, per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=3) class TestCoarseSaltAndPepper(unittest.TestCase): def setUp(self): reseed() def test_p_is_fifty_percent(self): base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 aug = iaa.CoarseSaltAndPepper(p=0.5, size_px=100) observed = aug.augment_image(base_img) p = np.mean(observed != 128) assert 0.4 < p < 0.6 def test_size_px(self): aug1 = iaa.CoarseSaltAndPepper(p=0.5, size_px=100) aug2 = iaa.CoarseSaltAndPepper(p=0.5, size_px=10) base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 ps1 = [] ps2 = [] for _ in sm.xrange(100): observed1 = aug1.augment_image(base_img) observed2 = aug2.augment_image(base_img) p1 = np.mean(observed1 != 128) p2 = np.mean(observed2 != 128) ps1.append(p1) ps2.append(p2) assert 0.4 < np.mean(ps2) < 0.6 assert np.std(ps1)*1.5 < np.std(ps2) def test_p_is_list(self): aug = iaa.CoarseSaltAndPepper(p=[0.2, 0.5], size_px=100) base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 seen = [0, 0, 0] for _ in sm.xrange(200): observed = aug.augment_image(base_img) p = np.mean(observed != 128) diff_020 = abs(0.2 - p) diff_050 = abs(0.5 - p) if diff_020 < 0.025: seen[0] += 1 elif diff_050 < 0.025: seen[1] += 1 else: seen[2] += 1 assert seen[2] < 10 assert 75 < seen[0] < 125 assert 75 < seen[1] < 125 def test_p_is_tuple(self): aug = iaa.CoarseSaltAndPepper(p=(0.0, 1.0), size_px=50) base_img = np.zeros((50, 50, 1), dtype=np.uint8) + 128 ps = [] for _ in sm.xrange(200): observed = aug.augment_image(base_img) p = np.mean(observed != 128) ps.append(p) nb_bins = 5 hist, _ = np.histogram(ps, bins=nb_bins, range=(0.0, 1.0), density=False) tolerance = 0.05 for nb_seen in hist: density = nb_seen / len(ps) assert density - tolerance < density < density + tolerance def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _ = iaa.CoarseSaltAndPepper(p="test", size_px=100) except Exception: got_exception = True assert got_exception got_exception = False try: _ = iaa.CoarseSaltAndPepper(p=0.5, size_px=None, size_percent=None) except Exception: got_exception = True assert got_exception def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.CoarseSaltAndPepper(p=1.0, size_px=2) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_pickleable(self): aug = iaa.CoarseSaltAndPepper(p=0.5, size_px=(4, 15), per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=20) # not more tests necessary here as Salt is just a tiny wrapper around # ReplaceElementwise class TestSalt(unittest.TestCase): def setUp(self): reseed() def test_p_is_fifty_percent(self): base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 aug = iaa.Salt(p=0.5) observed = aug.augment_image(base_img) p = np.mean(observed != 128) assert 0.4 < p < 0.6 # Salt() occasionally replaces with 127, which probably should be the center-point here anyways assert np.all(observed >= 127) def test_p_is_one(self): base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 aug = iaa.Salt(p=1.0) observed = aug.augment_image(base_img) nb_pepper = np.sum(observed < 40) nb_salt = np.sum(observed > 255 - 40) assert nb_pepper == 0 assert nb_salt > 200 def test_pickleable(self): aug = iaa.Salt(p=0.5, per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=3) class TestCoarseSalt(unittest.TestCase): def setUp(self): reseed() def test_p_is_fifty_percent(self): base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 aug = iaa.CoarseSalt(p=0.5, size_px=100) observed = aug.augment_image(base_img) p = np.mean(observed != 128) assert 0.4 < p < 0.6 def test_size_px(self): aug1 = iaa.CoarseSalt(p=0.5, size_px=100) aug2 = iaa.CoarseSalt(p=0.5, size_px=10) base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 ps1 = [] ps2 = [] for _ in sm.xrange(100): observed1 = aug1.augment_image(base_img) observed2 = aug2.augment_image(base_img) p1 = np.mean(observed1 != 128) p2 = np.mean(observed2 != 128) ps1.append(p1) ps2.append(p2) assert 0.4 < np.mean(ps2) < 0.6 assert np.std(ps1)*1.5 < np.std(ps2) def test_p_is_list(self): aug = iaa.CoarseSalt(p=[0.2, 0.5], size_px=100) base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 seen = [0, 0, 0] for _ in sm.xrange(200): observed = aug.augment_image(base_img) p = np.mean(observed != 128) diff_020 = abs(0.2 - p) diff_050 = abs(0.5 - p) if diff_020 < 0.025: seen[0] += 1 elif diff_050 < 0.025: seen[1] += 1 else: seen[2] += 1 assert seen[2] < 10 assert 75 < seen[0] < 125 assert 75 < seen[1] < 125 def test_p_is_tuple(self): aug = iaa.CoarseSalt(p=(0.0, 1.0), size_px=50) base_img = np.zeros((50, 50, 1), dtype=np.uint8) + 128 ps = [] for _ in sm.xrange(200): observed = aug.augment_image(base_img) p = np.mean(observed != 128) ps.append(p) nb_bins = 5 hist, _ = np.histogram(ps, bins=nb_bins, range=(0.0, 1.0), density=False) tolerance = 0.05 for nb_seen in hist: density = nb_seen / len(ps) assert density - tolerance < density < density + tolerance def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _ = iaa.CoarseSalt(p="test", size_px=100) except Exception: got_exception = True assert got_exception def test_size_px_or_size_percent_not_none(self): got_exception = False try: _ = iaa.CoarseSalt(p=0.5, size_px=None, size_percent=None) except Exception: got_exception = True assert got_exception def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.CoarseSalt(p=1.0, size_px=2) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_pickleable(self): aug = iaa.CoarseSalt(p=0.5, size_px=(4, 15), per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=20) # not more tests necessary here as Salt is just a tiny wrapper around # ReplaceElementwise class TestPepper(unittest.TestCase): def setUp(self): reseed() def test_probability_is_fifty_percent(self): base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 aug = iaa.Pepper(p=0.5) observed = aug.augment_image(base_img) p = np.mean(observed != 128) assert 0.4 < p < 0.6 assert np.all(observed <= 128) def test_probability_is_one(self): base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 aug = iaa.Pepper(p=1.0) observed = aug.augment_image(base_img) nb_pepper = np.sum(observed < 40) nb_salt = np.sum(observed > 255 - 40) assert nb_pepper > 200 assert nb_salt == 0 def test_pickleable(self): aug = iaa.Pepper(p=0.5, per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=3) class TestCoarsePepper(unittest.TestCase): def setUp(self): reseed() def test_p_is_fifty_percent(self): base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 aug = iaa.CoarsePepper(p=0.5, size_px=100) observed = aug.augment_image(base_img) p = np.mean(observed != 128) assert 0.4 < p < 0.6 def test_size_px(self): aug1 = iaa.CoarsePepper(p=0.5, size_px=100) aug2 = iaa.CoarsePepper(p=0.5, size_px=10) base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 ps1 = [] ps2 = [] for _ in sm.xrange(100): observed1 = aug1.augment_image(base_img) observed2 = aug2.augment_image(base_img) p1 = np.mean(observed1 != 128) p2 = np.mean(observed2 != 128) ps1.append(p1) ps2.append(p2) assert 0.4 < np.mean(ps2) < 0.6 assert np.std(ps1)*1.5 < np.std(ps2) def test_p_is_list(self): aug = iaa.CoarsePepper(p=[0.2, 0.5], size_px=100) base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 seen = [0, 0, 0] for _ in sm.xrange(200): observed = aug.augment_image(base_img) p = np.mean(observed != 128) diff_020 = abs(0.2 - p) diff_050 = abs(0.5 - p) if diff_020 < 0.025: seen[0] += 1 elif diff_050 < 0.025: seen[1] += 1 else: seen[2] += 1 assert seen[2] < 10 assert 75 < seen[0] < 125 assert 75 < seen[1] < 125 def test_p_is_tuple(self): aug = iaa.CoarsePepper(p=(0.0, 1.0), size_px=50) base_img = np.zeros((50, 50, 1), dtype=np.uint8) + 128 ps = [] for _ in sm.xrange(200): observed = aug.augment_image(base_img) p = np.mean(observed != 128) ps.append(p) nb_bins = 5 hist, _ = np.histogram(ps, bins=nb_bins, range=(0.0, 1.0), density=False) tolerance = 0.05 for nb_seen in hist: density = nb_seen / len(ps) assert density - tolerance < density < density + tolerance def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _ = iaa.CoarsePepper(p="test", size_px=100) except Exception: got_exception = True assert got_exception def test_size_px_or_size_percent_not_none(self): got_exception = False try: _ = iaa.CoarsePepper(p=0.5, size_px=None, size_percent=None) except Exception: got_exception = True assert got_exception def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.CoarsePepper(p=1.0, size_px=2) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_pickleable(self): aug = iaa.CoarsePepper(p=0.5, size_px=(4, 15), per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=20) class Test_invert(unittest.TestCase): @mock.patch("imgaug.augmenters.arithmetic.invert_") def test_mocked_defaults(self, mock_invert): mock_invert.return_value = "foo" arr = np.zeros((1,), dtype=np.uint8) observed = iaa.invert(arr) assert observed == "foo" args = mock_invert.call_args_list[0] assert np.array_equal(mock_invert.call_args_list[0][0][0], arr) assert args[1]["min_value"] is None assert args[1]["max_value"] is None assert args[1]["threshold"] is None assert args[1]["invert_above_threshold"] is True @mock.patch("imgaug.augmenters.arithmetic.invert_") def test_mocked(self, mock_invert): mock_invert.return_value = "foo" arr = np.zeros((1,), dtype=np.uint8) observed = iaa.invert(arr, min_value=1, max_value=10, threshold=5, invert_above_threshold=False) assert observed == "foo" args = mock_invert.call_args_list[0] assert np.array_equal(mock_invert.call_args_list[0][0][0], arr) assert args[1]["min_value"] == 1 assert args[1]["max_value"] == 10 assert args[1]["threshold"] == 5 assert args[1]["invert_above_threshold"] is False def test_uint8(self): values = np.array([0, 20, 45, 60, 128, 255], dtype=np.uint8) expected = np.array([ 255, 255-20, 255-45, 255-60, 255-128, 255-255 ], dtype=np.uint8) observed = iaa.invert(values) assert np.array_equal(observed, expected) assert observed is not values # most parts of this function are tested via Invert class Test_invert_(unittest.TestCase): def test_arr_is_noncontiguous_uint8(self): zeros = np.zeros((4, 4, 3), dtype=np.uint8) max_vr_flipped = np.fliplr(np.copy(zeros + 255)) observed = iaa.invert_(max_vr_flipped) expected = zeros assert observed.dtype.name == "uint8" assert np.array_equal(observed, expected) def test_arr_is_view_uint8(self): zeros = np.zeros((4, 4, 3), dtype=np.uint8) max_vr_view = np.copy(zeros + 255)[:, :, [0, 2]] observed = iaa.invert_(max_vr_view) expected = zeros[:, :, [0, 2]] assert observed.dtype.name == "uint8" assert np.array_equal(observed, expected) def test_uint(self): dtypes = ["uint8", "uint16", "uint32", "uint64"] for dt in dtypes: with self.subTest(dtype=dt): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) center_value = int(center_value) values = np.array([0, 20, 45, 60, center_value, max_value], dtype=dt) expected = np.array([ max_value - 0, max_value - 20, max_value - 45, max_value - 60, max_value - center_value, min_value ], dtype=dt) observed = iaa.invert_(np.copy(values)) assert np.array_equal(observed, expected) def test_uint_with_threshold_50_inv_above(self): threshold = 50 dtypes = ["uint8", "uint16", "uint32", "uint64"] for dt in dtypes: with self.subTest(dtype=dt): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) center_value = int(center_value) values = np.array([0, 20, 45, 60, center_value, max_value], dtype=dt) expected = np.array([ 0, 20, 45, max_value - 60, max_value - center_value, min_value ], dtype=dt) observed = iaa.invert_(np.copy(values), threshold=threshold, invert_above_threshold=True) assert np.array_equal(observed, expected) def test_uint_with_threshold_0_inv_above(self): threshold = 0 dtypes = ["uint8", "uint16", "uint32", "uint64"] for dt in dtypes: with self.subTest(dtype=dt): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) center_value = int(center_value) values = np.array([0, 20, 45, 60, center_value, max_value], dtype=dt) expected = np.array([ max_value - 0, max_value - 20, max_value - 45, max_value - 60, max_value - center_value, min_value ], dtype=dt) observed = iaa.invert_(np.copy(values), threshold=threshold, invert_above_threshold=True) assert np.array_equal(observed, expected) def test_uint8_with_threshold_255_inv_above(self): threshold = 255 dtypes = ["uint8"] for dt in dtypes: with self.subTest(dtype=dt): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) center_value = int(center_value) values = np.array([0, 20, 45, 60, center_value, max_value], dtype=dt) expected = np.array([ 0, 20, 45, 60, center_value, min_value ], dtype=dt) observed = iaa.invert_(np.copy(values), threshold=threshold, invert_above_threshold=True) assert np.array_equal(observed, expected) def test_uint8_with_threshold_256_inv_above(self): threshold = 256 dtypes = ["uint8"] for dt in dtypes: with self.subTest(dtype=dt): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) center_value = int(center_value) values = np.array([0, 20, 45, 60, center_value, max_value], dtype=dt) expected = np.array([ 0, 20, 45, 60, center_value, max_value ], dtype=dt) observed = iaa.invert_(np.copy(values), threshold=threshold, invert_above_threshold=True) assert np.array_equal(observed, expected) def test_uint_with_threshold_50_inv_below(self): threshold = 50 dtypes = ["uint8", "uint16", "uint32", "uint64"] for dt in dtypes: with self.subTest(dtype=dt): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) center_value = int(center_value) values = np.array([0, 20, 45, 60, center_value, max_value], dtype=dt) expected = np.array([ max_value - 0, max_value - 20, max_value - 45, 60, center_value, max_value ], dtype=dt) observed = iaa.invert_(np.copy(values), threshold=threshold, invert_above_threshold=False) assert np.array_equal(observed, expected) def test_uint_with_threshold_50_inv_above_with_min_max(self): threshold = 50 # uint64 does not support custom min/max, hence removed it here dtypes = ["uint8", "uint16", "uint32"] for dt in dtypes: with self.subTest(dtype=dt): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) center_value = int(center_value) values = np.array([0, 20, 45, 60, center_value, max_value], dtype=dt) expected = np.array([ 0, # not clipped to 10 as only >thresh affected 20, 45, 100 - 50, 100 - 90, 100 - 90 ], dtype=dt) observed = iaa.invert_(np.copy(values), min_value=10, max_value=100, threshold=threshold, invert_above_threshold=True) assert np.array_equal(observed, expected) def test_int_with_threshold_50_inv_above(self): threshold = 50 dtypes = ["int8", "int16", "int32", "int64"] for dt in dtypes: with self.subTest(dtype=dt): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) center_value = int(center_value) values = np.array([-45, -20, center_value, 20, 45, max_value], dtype=dt) expected = np.array([ -45, -20, center_value, 20, 45, min_value ], dtype=dt) observed = iaa.invert_(np.copy(values), threshold=threshold, invert_above_threshold=True) assert np.array_equal(observed, expected) def test_int_with_threshold_50_inv_below(self): threshold = 50 dtypes = ["int8", "int16", "int32", "int64"] for dt in dtypes: with self.subTest(dtype=dt): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) center_value = int(center_value) values = np.array([-45, -20, center_value, 20, 45, max_value], dtype=dt) expected = np.array([ (-1) * (-45) - 1, (-1) * (-20) - 1, (-1) * center_value - 1, (-1) * 20 - 1, (-1) * 45 - 1, max_value ], dtype=dt) observed = iaa.invert_(np.copy(values), threshold=threshold, invert_above_threshold=False) assert np.array_equal(observed, expected) def test_float_with_threshold_50_inv_above(self): threshold = 50 dtypes = ["float16", "float32", "float64", "float128"] for dt in dtypes: with self.subTest(dtype=dt): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) center_value = center_value values = np.array([-45.5, -20.5, center_value, 20.5, 45.5, max_value], dtype=dt) expected = np.array([ -45.5, -20.5, center_value, 20.5, 45.5, min_value ], dtype=dt) observed = iaa.invert_(np.copy(values), threshold=threshold, invert_above_threshold=True) assert np.allclose(observed, expected, rtol=0, atol=1e-4) def test_float_with_threshold_50_inv_below(self): threshold = 50 dtypes = ["float16", "float32", "float64", "float128"] for dt in dtypes: with self.subTest(dtype=dt): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) center_value = center_value values = np.array([-45.5, -20.5, center_value, 20.5, 45.5, max_value], dtype=dt) expected = np.array([ (-1) * (-45.5), (-1) * (-20.5), (-1) * center_value, (-1) * 20.5, (-1) * 45.5, max_value ], dtype=dt) observed = iaa.invert_(np.copy(values), threshold=threshold, invert_above_threshold=False) assert np.allclose(observed, expected, rtol=0, atol=1e-4) class Test_solarize(unittest.TestCase): @mock.patch("imgaug.augmenters.arithmetic.solarize_") def test_mocked_defaults(self, mock_sol): arr = np.zeros((1,), dtype=np.uint8) mock_sol.return_value = "foo" observed = iaa.solarize(arr) args = mock_sol.call_args_list[0][0] kwargs = mock_sol.call_args_list[0][1] assert args[0] is not arr assert np.array_equal(args[0], arr) assert kwargs["threshold"] == 128 assert observed == "foo" @mock.patch("imgaug.augmenters.arithmetic.solarize_") def test_mocked(self, mock_sol): arr = np.zeros((1,), dtype=np.uint8) mock_sol.return_value = "foo" observed = iaa.solarize(arr, threshold=5) args = mock_sol.call_args_list[0][0] kwargs = mock_sol.call_args_list[0][1] assert args[0] is not arr assert np.array_equal(args[0], arr) assert kwargs["threshold"] == 5 assert observed == "foo" def test_uint8(self): arr = np.array([0, 10, 50, 150, 200, 255], dtype=np.uint8) arr = arr.reshape((2, 3, 1)) observed = iaa.solarize(arr) expected = np.array([0, 10, 50, 255-150, 255-200, 255-255], dtype=np.uint8).reshape((2, 3, 1)) assert observed.dtype.name == "uint8" assert np.array_equal(observed, expected) def test_compare_with_pil(self): import PIL.Image import PIL.ImageOps def _solarize_pil(image, threshold): img = PIL.Image.fromarray(image) return np.asarray(PIL.ImageOps.solarize(img, threshold)) image = np.mod(np.arange(20*20*3), 255).astype(np.uint8)\ .reshape((20, 20, 3)) for threshold in np.arange(256): image_pil = _solarize_pil(image, threshold) image_iaa = iaa.solarize(image, threshold) assert np.array_equal(image_pil, image_iaa) class Test_solarize_(unittest.TestCase): @mock.patch("imgaug.augmenters.arithmetic.invert_") def test_mocked_defaults(self, mock_sol): arr = np.zeros((1,), dtype=np.uint8) mock_sol.return_value = "foo" observed = iaa.solarize_(arr) args = mock_sol.call_args_list[0][0] kwargs = mock_sol.call_args_list[0][1] assert args[0] is arr assert kwargs["threshold"] == 128 assert observed == "foo" @mock.patch("imgaug.augmenters.arithmetic.invert_") def test_mocked(self, mock_sol): arr = np.zeros((1,), dtype=np.uint8) mock_sol.return_value = "foo" observed = iaa.solarize_(arr, threshold=5) args = mock_sol.call_args_list[0][0] kwargs = mock_sol.call_args_list[0][1] assert args[0] is arr assert kwargs["threshold"] == 5 assert observed == "foo" class TestInvert(unittest.TestCase): def setUp(self): reseed() def test_p_is_one(self): zeros = np.zeros((4, 4, 3), dtype=np.uint8) observed = iaa.Invert(p=1.0).augment_image(zeros + 255) expected = zeros assert observed.dtype.name == "uint8" assert np.array_equal(observed, expected) def test_p_is_zero(self): zeros = np.zeros((4, 4, 3), dtype=np.uint8) observed = iaa.Invert(p=0.0).augment_image(zeros + 255) expected = zeros + 255 assert observed.dtype.name == "uint8" assert np.array_equal(observed, expected) def test_max_value_set(self): zeros = np.zeros((4, 4, 3), dtype=np.uint8) observed = iaa.Invert(p=1.0, max_value=200).augment_image(zeros + 200) expected = zeros assert observed.dtype.name == "uint8" assert np.array_equal(observed, expected) def test_min_value_and_max_value_set(self): zeros = np.zeros((4, 4, 3), dtype=np.uint8) observed = iaa.Invert(p=1.0, max_value=200, min_value=100).augment_image(zeros + 200) expected = zeros + 100 assert observed.dtype.name == "uint8" assert np.array_equal(observed, expected) observed = iaa.Invert(p=1.0, max_value=200, min_value=100).augment_image(zeros + 100) expected = zeros + 200 assert observed.dtype.name == "uint8" assert np.array_equal(observed, expected) def test_min_value_and_max_value_set_with_float_image(self): # with min/max and float inputs zeros = np.zeros((4, 4, 3), dtype=np.uint8) zeros_f32 = zeros.astype(np.float32) observed = iaa.Invert(p=1.0, max_value=200, min_value=100).augment_image(zeros_f32 + 200) expected = zeros_f32 + 100 assert observed.dtype.name == "float32" assert np.array_equal(observed, expected) observed = iaa.Invert(p=1.0, max_value=200, min_value=100).augment_image(zeros_f32 + 100) expected = zeros_f32 + 200 assert observed.dtype.name == "float32" assert np.array_equal(observed, expected) def test_p_is_80_percent(self): nb_iterations = 1000 nb_inverted = 0 aug = iaa.Invert(p=0.8) img = np.zeros((1, 1, 1), dtype=np.uint8) + 255 expected = np.zeros((1, 1, 1), dtype=np.uint8) for i in sm.xrange(nb_iterations): observed = aug.augment_image(img) if np.array_equal(observed, expected): nb_inverted += 1 pinv = nb_inverted / nb_iterations assert 0.75 <= pinv <= 0.85 nb_iterations = 1000 nb_inverted = 0 aug = iaa.Invert(p=iap.Binomial(0.8)) img = np.zeros((1, 1, 1), dtype=np.uint8) + 255 expected = np.zeros((1, 1, 1), dtype=np.uint8) for i in sm.xrange(nb_iterations): observed = aug.augment_image(img) if np.array_equal(observed, expected): nb_inverted += 1 pinv = nb_inverted / nb_iterations assert 0.75 <= pinv <= 0.85 def test_per_channel(self): aug = iaa.Invert(p=0.5, per_channel=True) img = np.zeros((1, 1, 100), dtype=np.uint8) + 255 observed = aug.augment_image(img) assert len(np.unique(observed)) == 2 # TODO split into two tests def test_p_is_stochastic_parameter_per_channel_is_probability(self): nb_iterations = 1000 aug = iaa.Invert(p=iap.Binomial(0.8), per_channel=0.7) img = np.zeros((1, 1, 20), dtype=np.uint8) + 255 seen = [0, 0] for i in sm.xrange(nb_iterations): observed = aug.augment_image(img) uq = np.unique(observed) if len(uq) == 1: seen[0] += 1 elif len(uq) == 2: seen[1] += 1 else: assert False assert 300 - 75 < seen[0] < 300 + 75 assert 700 - 75 < seen[1] < 700 + 75 def test_threshold(self): arr = np.array([0, 10, 50, 150, 200, 255], dtype=np.uint8) arr = arr.reshape((2, 3, 1)) aug = iaa.Invert(p=1.0, threshold=128, invert_above_threshold=True) observed = aug.augment_image(arr) expected = np.array([0, 10, 50, 255-150, 255-200, 255-255], dtype=np.uint8).reshape((2, 3, 1)) assert observed.dtype.name == "uint8" assert
np.array_equal(observed, expected)
numpy.array_equal
from __future__ import print_function from orphics import maps,io,cosmology,stats from pixell import enmap,curvedsky as cs import numpy as np import os,sys from tilec import utils as tutils import healpy as hp #Port of healpix module coord_v_convert.f90 to python by JLS #Feb 28, 2017 from numpy import sin,cos from numpy import arctan2 as atan2 from numpy import sqrt froot = "/scratch/r/rbond/msyriac/data/depot/hpymap/" DTOR = np.pi/180.0 def angdist(v1,v2): sprod=np.dot(v1,v2) v3=np.cross(v1,v2) vprod=sqrt(np.dot(v3,v3)) return atan2(vprod,sprod) def py_coordsys2euler_zyz(iepoch, oepoch, isys, osys): #, psi, theta, phi) v1=np.asarray([1.0, 0.0, 0.0]) v2=np.asarray([0.0, 1.0, 0.0]) v3=np.asarray([0.0, 0.0, 1.0]) v1p=py_xcc_v_convert(v1,iepoch,oepoch,isys,osys) v2p=py_xcc_v_convert(v2,iepoch,oepoch,isys,osys) v3p=py_xcc_v_convert(v3,iepoch,oepoch,isys,osys) v1p=v1p/sqrt(np.dot(v1p,v1p)) v2p=v2p/sqrt(np.dot(v1p,v1p)) v3p=v3p/sqrt(np.dot(v1p,v1p)) theta=angdist(v3,v3p) psi=atan2(v2p[2],-v1p[2]) phi=atan2(v3p[1],v3p[0]) return psi,theta,phi def py_xcc_v_convert(ivector,iepoch,oepoch,isys,osys): isys=isys.lower() osys=osys.lower() isys=isys[0] osys=osys[0] if (isys=='c'): isys='q' if (osys=='c'): osys='q' if (isys=='q'): ivector=py_xcc_dp_q_to_e(ivector,iepoch) if (isys=='g'): ivector=py_xcc_dp_g_to_e(ivector,iepoch) if (iepoch!=oepoch): ivector=py_xcc_dp_precess(ivector,iepoch,oepoch) if (osys=='q'): ivector=py_xcc_dp_e_to_q(ivector,oepoch) if (osys=='g'): ivector=py_xcc_dp_e_to_g(ivector,oepoch) return ivector def py_xcc_dp_e_to_q(ivector,epoch): T = (epoch - 1900.e0) / 100.e0 epsilon = 23.452294e0 - 0.0130125e0*T - 1.63889e-6*T**2 + 5.02778e-7*T**3 hvector=np.zeros(ivector.shape) dc = cos(DTOR * epsilon) ds = sin(DTOR * epsilon) hvector[0] = ivector[0] hvector[1] = dc*ivector[1] - ds*ivector[2] hvector[2] = dc*ivector[2] + ds*ivector[1] return hvector def py_xcc_dp_q_to_e(ivector,epoch): hvector=np.zeros(ivector.shape) T = (epoch - 1900.e0) / 100.e0 epsilon = 23.452294e0 - 0.0130125e0*T - 1.63889e-6*T**2 + 5.02778e-7*T**3 dc = cos(DTOR * epsilon) ds = sin(DTOR * epsilon) hvector[0] = ivector(1) hvector[1] = dc*ivector[1] + ds*ivector[2] hvector[2] = dc*ivector[2] - ds*ivector[1] return hvector def py_xcc_dp_e_to_g(ivector,epoch): T=np.asarray([-0.054882486e0, -0.993821033e0, -0.096476249e0, 0.494116468e0, -0.110993846e0, 0.862281440e0, -0.867661702e0, -0.000346354e0, 0.497154957e0]) T=np.reshape(T,[3,3]) #T=T.transpose() if (epoch != 2000.0): ivector=py_xcc_dp_precess(ivector,epoch,2000.0) return np.dot(T,ivector) def py_xcc_dp_g_to_e(ivector,epoch): T=np.asarray([-0.054882486e0, -0.993821033e0, -0.096476249e0, 0.494116468e0, -0.110993846e0, 0.862281440e0, -0.867661702e0, -0.000346354e0, 0.497154957e0]) T=np.reshape(T,[3,3]) T=T.transpose() hvector=np.dot(T,ivector) if (epoch != 2000.0): return py_xcc_dp_precess(hvector,2000.0,epoch) else: return hvector assert(1==0) #never get here def py_xcc_dp_q_to_e(ivector,epoch): # Set-up: T = (epoch - 1900.0) / 100.0 epsilon = 23.452294 - 0.0130125*T - 1.63889e-6*T**2 + 5.02778e-7*T**3 hvector=np.zeros(ivector.shape) # Conversion dc =
cos(DTOR * epsilon)
numpy.cos
import numpy as np import cv2 import augmentation from skimage.util import img_as_float def _compute_scale_and_crop(image_size, crop_size, padding, random_crop): padded_size = crop_size[0] + padding[0], crop_size[1] + padding[1] # Compute size ratio from the padded region size to the image_size scale_y = float(image_size[0]) / float(padded_size[0]) scale_x = float(image_size[1]) / float(padded_size[1]) # Take the minimum as this is the factor by which we must scale to take a `padded_size` sized chunk scale_factor = min(scale_y, scale_x) # Compute the size of the region that we must extract from the image region_height = int(float(crop_size[0]) * scale_factor + 0.5) region_width = int(float(crop_size[1]) * scale_factor + 0.5) # Compute the additional space available if scale_x > scale_y: # Crop in X extra_x = image_size[1] - region_width extra_y = padding[0] else: # Crop in Y extra_y = image_size[0] - region_height extra_x = padding[1] # Either choose the centre piece or choose a random piece if random_crop: pos_y = np.random.randint(0, extra_y + 1, size=(1,))[0] pos_x = np.random.randint(0, extra_x + 1, size=(1,))[0] else: pos_y = extra_y // 2 pos_x = extra_x // 2 return (pos_y, pos_x), (region_height, region_width) def _compute_scales_and_crops(image_sizes, crop_size, padding, random_crop): padded_size = crop_size[0] + padding[0], crop_size[1] + padding[1] # Compute size ratio from the padded region size to the image_size image_sizes = image_sizes.astype(float) scale_ys = image_sizes[:, 0] / float(padded_size[0]) scale_xs = image_sizes[:, 1] / float(padded_size[1]) # Take the minimum as this is the factor by which we must scale to take a `padded_size` sized chunk scale_factors = np.minimum(scale_ys, scale_xs) # Compute the size of the region that we must extract from the image region_sizes = (np.array(crop_size)[None, :] * scale_factors[:, None] + 0.5).astype(int) # Compute the additional space available extra_space = np.repeat(np.array(padding, dtype=int)[None, :], image_sizes.shape[0], axis=0) # Crop in X crop_in_x = scale_xs > scale_ys extra_space[crop_in_x, 1] = image_sizes[crop_in_x, 1] - region_sizes[crop_in_x, 1] # Crop in Y crop_in_y = ~crop_in_x extra_space[crop_in_y, 0] = image_sizes[crop_in_y, 0] - region_sizes[crop_in_y, 0] # Either choose the centre piece or choose a random piece if random_crop: t =
np.random.uniform(0.0, 1.0, size=image_sizes.shape)
numpy.random.uniform
import numpy as np from eqdes import fns from eqdes.extensions.exceptions import DesignError def assess(fb, storey_forces, mom_ratio=0.6, verbose=0): """ Distribute the applied loads to a frame structure Parameters ---------- fb: FrameBuilding object mom_ratio: float ratio of overturning moment that is resisted by column base hinges verbose: level of verbosity Returns ------- [beam moments, column base moments, seismic axial loads in exterior columns] """ if hasattr(fb, 'column_depth') and np.std(fb.column_depth) > 1e-2: print('Does not work with odd column depths') print(fb.column_depth) raise NotImplementedError mom_running = 0 mom_storey = np.zeros(fb.n_storeys) v_storey = np.zeros(fb.n_storeys) for i in range(fb.n_storeys): if i == 0: v_storey[-1 - i] = storey_forces[-1 - i] else: v_storey[-1 - i] = v_storey[-i] + storey_forces[-1 - i] mom_storey[-1 - i] = (v_storey[-1 - i] * fb.interstorey_heights[-1 - i] + mom_running) mom_running = mom_storey[-1 - i] cumulative_total_shear = sum(v_storey) base_shear = sum(storey_forces) # Column_base_moment_total=mom_storey[0]*Base_moment_contribution column_base_moment_total = base_shear * mom_ratio * fb.interstorey_heights[0] moment_column_bases = (column_base_moment_total / fb.n_bays * np.ones((fb.n_bays + 1))) moment_column_bases[0] = moment_column_bases[0] / 2 moment_column_bases[-1] = moment_column_bases[-1] / 2 axial_seismic = (mom_storey[0] - column_base_moment_total) / sum(fb.bay_lengths) if verbose == 1: print('Storey shear forces: \n', v_storey) print('Moments', mom_storey) print('Total overturning moment: ', mom_storey[0]) print('column_base_moment_total: ', column_base_moment_total) print('Seismic axial: ', axial_seismic) beam_shear_force = np.zeros(fb.n_storeys) for i in range(int(np.ceil(fb.n_storeys / fb.beam_group_size))): group_shear = np.average( v_storey[i * fb.beam_group_size:(i + 1) * fb.beam_group_size]) / cumulative_total_shear * axial_seismic if verbose > 1: print('group shear: ', group_shear) for j in range(int(fb.beam_group_size)): if i * fb.beam_group_size + j == fb.n_storeys: if verbose: print('odd number of storeys') break beam_shear_force[i * fb.beam_group_size + j] = group_shear if (sum(beam_shear_force) - axial_seismic) / axial_seismic > 1e-2: raise DesignError('Beam shear force incorrect!') moment_beams_cl =
np.zeros((fb.n_storeys, fb.n_bays, 2))
numpy.zeros
import copy import logging.config import os import pickle # for Logging handling import sys import time import numpy as np from numpy.linalg import LinAlgError from scipy.optimize import minimize import model logger = logging.getLogger(__name__) def nonzero_indices(a): """Get an index with non-zero element. Parameters ---------- a : numpy.ndarray array Returns ------- np.nonzero() : numpy.ndarray Index with non-zero element """ return (np.nonzero(a)[0]) def create_directory(dir_name): """create directory Parameters ---------- dir_name : str(file path) create directory name Returns ------- None """ if not os.path.isdir(dir_name): os.makedirs(dir_name) else: pass def calc_diff(C_pre, C_pos, t_pre, t_pos, rss_pre, rss_pos): """calculate difference Parameters ---------- C_pre : numpy.ndarray initialize control points C_pos : numpy.ndarray control points t_pre : numpy.ndarray initialize parameters t_pos : numpy.ndarray parameters rss_pre : int initialize rss rss_pos : int rss Returns ------- np.abs() : numpy.ndarray absolute value """ if t_pre.shape[1] > t_pos.shape[1]: t_pos = np.c_[t_pos, 1 - np.sum(t_pos, axis=1)] else: t_pre = np.c_[t_pre, 1 - np.sum(t_pre, axis=1)] t_pos = np.c_[t_pos, 1 - np.sum(t_pos, axis=1)] ratio_sum = 0 for key in C_pre: ratio_sum += np.linalg.norm(C_pre[key] - C_pos[key]) / np.linalg.norm( C_pre[key]) diff = rss_pre - rss_pos logger.debug("{} {} {}".format(rss_pre, rss_pos, diff)) return (np.abs(diff)) def calc_gd_igd(dd1, dd2): """Calculate gd and igd. Parameters ---------- dd1 : numpy.ndarray estimated bezier simplex sample dd2 : numpy.ndarray validation data Returns ------- gd : float Generational Distance igd : float Inverted Generational Distance """ gd = 0 igd = 0 for i in range(dd2.shape[0]): d2 = dd2[i, :] tmp = dd1 - d2 norm = np.linalg.norm(tmp, 1, axis=1) v = np.min(norm) gd += v for i in range(dd1.shape[0]): d1 = dd1[i, :] tmp = dd2 - d1 norm = np.linalg.norm(tmp, 1, axis=1) v = np.min(norm) igd += v return (gd / dd2.shape[0], igd / dd1.shape[0]) class BorgesPastvaTrainer: """Polynomial Regression Trainer. Attributes ---------- dimSpace : int degree dimSimplex : int dimension degree : int dimension of constol point """ def __init__(self, dimSpace, degree, dimSimplex): """Borges Pastva Trainer initialize. Parameters ---------- dimSpace : int degree degree : int dimension of constol point dimSimplex : int dimension Returns ---------- None """ self.dimSpace = dimSpace # degree of bezier simplex self.dimSimplex = dimSimplex # dimension of bezier simplex self.degree = degree # dimension of constol point self.bezier_simplex = model.BezierSimplex(dimSpace=self.dimSpace, dimSimplex=self.dimSimplex, degree=self.degree) def initialize_control_point(self, data): """Initialize control point. Parameters ---------- data : list test data Returns ---------- C : dict control point """ bezier_simplex = model.BezierSimplex(dimSpace=self.dimSpace, dimSimplex=self.dimSimplex, degree=self.degree) C = bezier_simplex.initialize_control_point(data) return (C) def gradient(self, c, t): """Calculate gradient. Parameters ---------- c : dict control point t : [t[0], t[1], t[2], t[3]] parameter Returns ---------- g : float gradient """ g = {} x = {} for d in range(self.dimSimplex - 1): x[d] = np.zeros(self.dimSpace) for d in range(self.dimSimplex - 1): for key in self.bezier_simplex.Mf_all.keys(): for i in range(self.dimSpace): x[d][i] += self.bezier_simplex.monomial_diff( multi_index=key, d0=d, d1=None)( *t[0:self.dimSimplex - 1]) * c[key][i] for d in x: g[(d, )] = x[d] return (g) def hessian(self, c, t): """Calculate hessian. Parameters ---------- c : dict control point t : [t[0], t[1], t[2], t[3]] parameter Returns ---------- h : dict hessian matrix """ h = {} x = {} for d1 in range(self.dimSimplex - 1): for d2 in range(self.dimSimplex - 1): x[(d1, d2)] = np.zeros(self.dimSpace) for d1 in range(self.dimSimplex - 1): for d2 in range(self.dimSimplex - 1): for key in self.bezier_simplex.Mf_all.keys(): for i in range(self.dimSpace): x[(d1, d2)][i] += self.bezier_simplex.monomial_diff( multi_index=key, d0=d1, d1=d2)( *t[0:self.dimSimplex - 1]) * c[key][i] for (d1, d2) in x: h[(d1, d2)] = x[(d1, d2)] return (h) def initialize_parameter(self, c, data): """Initialize parameter. Parameters ---------- c : dict control point data : numpy.ndarray sample points Returns ---------- tt_ : numpy.ndarray nearest parameter of each sample points xx_ : numpy.ndarray nearest points on the current bezier simplex """ tt, xx = self.bezier_simplex.meshgrid(c) tt_ = np.empty([data.shape[0], self.dimSimplex]) xx_ = np.empty([data.shape[0], self.dimSpace]) for i in range(data.shape[0]): a = data[i, :] tmp = xx - a norm = np.linalg.norm(tmp, axis=1) amin = np.argmin(norm) tt_[i, :] = tt[amin, :] xx_[i, :] = xx[amin, :] return (tt_, xx_) def inner_product(self, c, t, x): """Inner product. Parameters ---------- c : dict control point t : [t[0], t[1], t[2], t[3]] parameter x : numpy.ndarray point Returns ---------- f : numpy.ndarray point """ g = self.gradient(c, t) b = self.bezier_simplex.sampling(c, t) f = np.array(np.zeros(self.dimSimplex - 1)) for d in range(self.dimSimplex - 1): f[d] = sum(g[(d, )][i] * (b[i] - x[i]) for i in range(self.dimSpace)) return (f) def inner_product_jaccobian(self, c, t, x): """Inner product(jaccobian). Parameters ---------- c : dict control point t : [t[0], t[1], t[2], t[3]] parameter x : numpy.ndarray point Returns ---------- j : numpy.ndarray jaccobian matrix """ g = self.gradient(c, t) b = self.bezier_simplex.sampling(c, t) h = self.hessian(c, t) j = np.zeros([self.dimSimplex - 1, self.dimSimplex - 1]) for d1 in range(self.dimSimplex - 1): for d2 in range(self.dimSimplex - 1): j[d1, d2] = sum(h[(d1, d2)][i] * (b[i] - x[i]) + g[(d1, )][i] * g[(d2, )][i] for i in range(self.dimSpace)) return (j) def newton_method(self, c, t_init, x, newton_itr=20, tolerance=10**(-5)): """Newton method. Parameters ---------- c : dict control point t_init : list parameter x : numpy.ndarray point newton_itr : int iterate value tolerance : int tolerance Returns ---------- t_k : numpy.ndarray output point """ t_k = copy.deepcopy(t_init) for k in range(newton_itr): f = self.inner_product(c, t_k, x) if np.linalg.norm(f) > tolerance: j = self.inner_product_jaccobian(c, t_k, x) # for Logging handling try: d =
np.linalg.solve(j, f)
numpy.linalg.solve
import math import numpy as np import numpy.matlib import matplotlib.pyplot as plt class CFARNeuralNet: def __init__(self, x_train, train_labels, validation, validation_labels, activation, activation_derivative, hiddens, learning_rate=0.3, decay_rate=0.002, xavier_init=True): self.x_train = x_train self.train_labels = train_labels self.validation = validation self.validation_labels = validation_labels self.accuracies = [] self.tested_models = [] self.n_samples, img_size = self.x_train.shape self.n_labels = np.unique(train_labels).size self.eta = learning_rate self.decay = decay_rate self.hiddens = hiddens self.activation = activation self.activation_derivative = activation_derivative self.errors = np.array self.y_train = np.zeros((self.train_labels.shape[0], self.n_labels)) for i in range(0, self.train_labels.shape[0]): self.y_train[i, self.train_labels[i].astype(int)] = 1 n_input_layer = img_size n_output_layer = self.n_labels if xavier_init: self.weight1 = np.random.randn(self.hiddens[0], n_input_layer) * np.sqrt(1 / n_input_layer) if self.hiddens[1] > 0: self.weight2 = np.random.randn(self.hiddens[1], self.hiddens[0]) * np.sqrt(1 / self.hiddens[0]) self.weight3 = np.random.randn(n_output_layer, self.hiddens[1]) * np.sqrt(1 / self.hiddens[1]) else: self.weight2 = np.random.randn(n_output_layer, self.hiddens[0]) * np.sqrt(1 / self.hiddens[0]) else: self.weight1 = np.random.uniform(0, 1, (self.hiddens[0], n_input_layer)) self.weight2 = np.random.uniform(0, 1, (n_output_layer, self.hiddens[0])) self.weight1 = np.divide(self.weight1, np.matlib.repmat(np.sum(self.weight1, 1)[:, None], 1, n_input_layer)) self.weight2 = np.divide(self.weight2, np.matlib.repmat(np.sum(self.weight2, 1)[:, None], 1, self.hiddens[0])) if self.hiddens[1] > 0: self.weight3 = np.random.uniform(0, 1, (n_output_layer, self.hiddens[1])) self.weight3 = np.divide(self.weight3, np.matlib.repmat(np.sum(self.weight3, 1)[:, None], 1, self.hiddens[1])) self.weight2 = np.random.uniform(0, 1, (self.hiddens[1], self.hiddens[1])) self.weight2 = np.divide(self.weight2, np.matlib.repmat(np.sum(self.weight2, 1)[:, None], 1, self.hiddens[0])) self.bias_weight1 = np.ones((self.hiddens[0],)) * (-self.x_train.mean()) self.bias_weight2 = np.zeros((n_output_layer,)) if self.hiddens[1] > 0: self.bias_weight3 = np.ones((n_output_layer,)) * (-0.5) self.bias_weight2 = np.ones((self.hiddens[1],)) * (-0.5) def __dropout(self, activation, dropout_prob=0.0001): if dropout_prob < 0 or dropout_prob > 1: return activation activation /= dropout_prob mult = np.random.rand(*activation.shape) < dropout_prob activation *= mult return activation def train(self, n_epochs=100, n_batches=100): self.errors = np.zeros((n_epochs,)) batch_size = math.ceil(self.n_samples / n_batches) for i in range(0, n_epochs): shuffled_idxs = np.random.permutation(self.n_samples) for j in range(0, n_batches): delta_weight1 = np.zeros(self.weight1.shape) delta_weight2 = np.zeros(self.weight2.shape) delta_bias1 = np.zeros(self.bias_weight1.shape) delta_bias2 = np.zeros(self.bias_weight2.shape) delta_weight3 = np.array delta_bias3 = np.array if self.hiddens[1] > 0: delta_weight3 = np.zeros(self.weight3.shape) delta_bias3 = np.zeros(self.bias_weight3.shape) for k in range(0, batch_size): idx = shuffled_idxs[j * batch_size + k] x = self.x_train[idx] desired_output = self.y_train[idx] act1 = np.dot(self.weight1, x) + self.bias_weight1 out1 = self.activation(act1) act2 = np.dot(self.weight2, out1) + self.bias_weight2 if self.hiddens[1] > 0: out2 = self.activation(act2) act3 = np.dot(self.weight3, out2) + self.bias_weight3 out3 = softmax(act3) e_n = desired_output - out3 out3delta = e_n delta_weight3 += np.outer(out3delta, out2) delta_bias3 += out3delta out2delta = self.activation_derivative(out2) * np.dot(self.weight3.T, out3delta) else: out2 = softmax(act2) e_n = desired_output - out2 out2delta = e_n delta_weight2 += np.outer(out2delta, out1) delta_bias2 += out2delta out1delta = self.activation_derivative(out1) * np.dot(self.weight2.T, out2delta) delta_weight1 +=
np.outer(out1delta, x)
numpy.outer
r"""Tools for Hankel transformations.""" import numpy as np from mpmath import fp as mpm from scipy.special import gamma, j0, j1, jn from scipy.special import jn_zeros as _jn_zeros from scipy.special import jv, yv SRPI2 = np.sqrt(np.pi / 2.0) def psi(t): """Compute the variable transform from Ogata 2005.""" return t * np.tanh(np.pi * np.sinh(t) / 2) def d_psi(t): """Compute the derivative of the variable transform from Ogata 2005.""" t = np.array(t, dtype=float) a = np.ones_like(t) mask = t < 6 t = t[mask] a[mask] = (np.pi * t * np.cosh(t) + np.sinh(np.pi * np.sinh(t))) / ( 1.0 + np.cosh(np.pi * np.sinh(t)) ) return a def weight(nu, zeros): """Get weights for the summation in the hankel transformation.""" return yv(nu, np.pi * zeros) / kernel(np.pi * zeros, nu + 1) def roots(N, nu): """Get the first N Roots of the Bessel J(nu) functions divided by pi.""" if np.isclose(nu, np.floor(nu)): return _jn_zeros(nu, N) / np.pi if np.isclose(nu, 0.5): # J(0.5) is just sqrt(2/(x*pi))*sin(x) return np.arange(1, N + 1) if np.isclose(nu, -0.5): # J(-0.5) is just sqrt(2/(x*pi))*cos(x) return np.arange(1, N + 1) - 0.5 return np.array([mpm.besseljzero(nu, i + 1) for i in range(N)]) / np.pi def j_lim(nu): """ Compute the timit factor of Bessel J(nu, 0) = 0.5 ** nu / Gamma(nu + 1). Parameters ---------- nu : float Order of the Bessel function. Returns ------- float The factor. """ return 0.5 ** nu / gamma(nu + 1) def kernel(x, nu, alt=False): """ Compute kernel functions for the hankel transformation. J(nu, x) or for alt=True: J(nu, x) * sqrt(x). Parameters ---------- x : array-like input values. nu : int or float order of the bessel function. alt : bool, optional Whether the alternative defintion of the hankel transform should be used: J(nu, x)*sqrt(x). The default is False. Returns ------- array-like The needed function for the hankel transformation. Notes ----- J(nu, x) is approximately (x/2)^nu / Gamma(nu+1) for small x. """ if alt: if np.isclose(nu, 0): return j0(x) * np.sqrt(x) if np.isclose(nu, 1): return j1(x) * np.sqrt(x) if np.isclose(nu, 0.5): # J[0.5] = sqrt(2/(x*pi))*sin(x) return np.sin(x) / SRPI2 if np.isclose(nu, -0.5): # J[-0.5] = sqrt(2/(x*pi))*cos(x) return np.cos(x) / SRPI2 if np.isclose(nu, np.floor(nu)): return jn(int(nu), x) * np.sqrt(x) return jv(nu, x) * np.sqrt(x) if np.isclose(nu, 0): return j0(x) if np.isclose(nu, 1): return j1(x) if np.isclose(nu, np.floor(nu)): return jn(int(nu), x) return jv(nu, x) def safe_power(x, p): """ Safely calculate x**p. Parameters ---------- x : array-like value. p : float exponent. Returns ------- array-like The result x**p. """ return np.ones_like(x) if np.isclose(p, 0) else
np.array(x ** p)
numpy.array
import os import numpy as np import flopy import warnings from io import StringIO from struct import pack from tempfile import TemporaryFile from textwrap import dedent from flopy.utils.util_array import Util2d, Util3d, Transient2d, Transient3d from ci_framework import base_test_dir, FlopyTestSetup base_dir = base_test_dir(__file__, rel_path="temp", verbose=True) def test_load_txt_free(): a = np.ones((10,), dtype=np.float32) * 250.0 fp = StringIO("10*250.0") fa = Util2d.load_txt(a.shape, fp, a.dtype, "(FREE)") np.testing.assert_equal(fa, a) assert fa.dtype == a.dtype a = np.arange(10, dtype=np.int32).reshape((2, 5)) fp = StringIO( dedent( """\ 0 1,2,3, 4 5 6, 7, 8 9 """ ) ) fa = Util2d.load_txt(a.shape, fp, a.dtype, "(FREE)") np.testing.assert_equal(fa, a) assert fa.dtype == a.dtype a = np.ones((2, 5), dtype=np.float32) a[1, 0] = 2.2 fp = StringIO( dedent( """\ 5*1.0 2.2 2*1.0, +1E-00 1.0 """ ) ) fa = Util2d.load_txt(a.shape, fp, a.dtype, "(FREE)") np.testing.assert_equal(fa, a) assert fa.dtype == a.dtype def test_load_txt_fixed(): a = np.arange(10, dtype=np.int32).reshape((2, 5)) fp = StringIO( dedent( """\ 01234X 56789 """ ) ) fa = Util2d.load_txt(a.shape, fp, a.dtype, "(5I1)") np.testing.assert_equal(fa, a) assert fa.dtype == a.dtype fp = StringIO( dedent( """\ 0123X 4 5678 9 """ ) ) fa = Util2d.load_txt(a.shape, fp, a.dtype, "(4I1)") np.testing.assert_equal(fa, a) assert fa.dtype == a.dtype a = np.array([[-1, 1, -2, 2, -3], [3, -4, 4, -5, 5]], np.int32) fp = StringIO( dedent( """\ -1 1-2 2-3 3 -44 -55 """ ) ) fa = Util2d.load_txt(a.shape, fp, a.dtype, "(5I2)") np.testing.assert_equal(fa, a) assert fa.dtype == a.dtype def test_load_block(): a = np.ones((2, 5), dtype=np.int32) * 4 fp = StringIO( dedent( """\ 1 1 2 1 5 4 """ ) ) fa = Util2d.load_block(a.shape, fp, a.dtype) np.testing.assert_equal(fa, a) assert fa.dtype == a.dtype a = np.ones((2, 5), dtype=np.float32) * 4 a[0:2, 1:2] = 9.0 a[0, 2:4] = 6.0 fp = StringIO( dedent( """\ 3 1 2 1 5 4.0 1 2 2 2 9.0 1 1 3 4 6.0 """ ) ) fa = Util2d.load_block(a.shape, fp, a.dtype) np.testing.assert_equal(fa, a) assert fa.dtype == a.dtype a = np.zeros((2, 5), dtype=np.int32) a[0, 2:4] = 8 fp = StringIO( dedent( """\ 1 1 1 3 4 8 """ ) ) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") fa = Util2d.load_block(a.shape, fp, a.dtype) assert len(w) == 1 assert "blocks do not cover full array" in str(w[-1].message) np.testing.assert_equal(fa, a) assert fa.dtype == a.dtype def test_load_bin(): model_ws = f"{base_dir}_test_load_bin" test_setup = FlopyTestSetup(test_dirs=model_ws) def temp_file(data): # writable file that is destroyed as soon as it is closed f = TemporaryFile(dir=model_ws) f.write(data) f.seek(0) return f # INTEGER a = np.arange(3 * 4, dtype=np.int32).reshape((3, 4)) - 1 fp = temp_file(a.tobytes()) fh, fa = Util2d.load_bin((3, 4), fp, np.int32) assert fh is None # no header_dtype np.testing.assert_equal(fa, a) assert fa.dtype == a.dtype # check warning if wrong integer type is used to read 4-byte integers # e.g. on platforms where int -> int64 with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") fp.seek(0) fh, fa = Util2d.load_bin((3, 4), fp, np.int64) fp.close() assert len(w) == 1 assert a.dtype == np.int32 assert fh is None # no header_dtype np.testing.assert_equal(fa, a) # REAL real_header_fmt = "2i2f16s3i" header_data = (1, 2, 3.5, 4.5, b"Hello", 6, 7, 8) real_header = pack(real_header_fmt, *header_data) assert len(real_header) == 44 a = np.arange(10).reshape((2, 5)) fp = temp_file(real_header + pack("10f", *list(range(10)))) fh, fa = Util2d.load_bin((2, 5), fp, np.float32, "Head") fp.close() for h1, h2 in zip(fh[0], header_data): assert h1 == h2 np.testing.assert_equal(a.astype(np.float32), fa) assert fa.dtype == np.float32 # DOUBLE PRECISION dbl_header_fmt = "2i2d16s3i" dbl_header = pack(dbl_header_fmt, *header_data) assert len(dbl_header) == 52 fp = temp_file(real_header + pack("10d", *list(range(10)))) fh, fa = Util2d.load_bin((2, 5), fp, np.float64, "Head") fp.close() for h1, h2 in zip(fh[0], header_data): assert h1 == h2 np.testing.assert_equal(a.astype(np.float64), fa) assert fa.dtype == np.float64 def test_transient2d(): ml = flopy.modflow.Modflow() dis = flopy.modflow.ModflowDis(ml, nlay=10, nrow=10, ncol=10, nper=3) t2d = Transient2d(ml, (10, 10), np.float32, 10.0, "fake") a1 = t2d.array assert a1.shape == (3, 1, 10, 10), a1.shape t2d.cnstnt = 2.0 assert np.array_equal(t2d.array, np.zeros((3, 1, 10, 10)) + 20.0) t2d[0] = 1.0 t2d[2] = 999 assert np.array_equal(t2d[0].array, np.ones((ml.nrow, ml.ncol))) assert np.array_equal(t2d[2].array, np.ones((ml.nrow, ml.ncol)) * 999) m4d = t2d.array t2d2 = Transient2d.from_4d(ml, "rch", {"rech": m4d}) m4d2 = t2d2.array assert np.array_equal(m4d, m4d2) def test_transient3d(): nlay = 3 nrow = 4 ncol = 5 nper = 5 ml = flopy.modflow.Modflow() dis = flopy.modflow.ModflowDis( ml, nlay=nlay, nrow=nrow, ncol=ncol, nper=nper ) # Make a transient 3d array of a constant value t3d = Transient3d(ml, (nlay, nrow, ncol), np.float32, 10.0, "fake") a1 = t3d.array assert a1.shape == (nper, nlay, nrow, ncol), a1.shape # Make a transient 3d array with changing entries and then verify that # they can be reproduced through indexing a = np.arange((nlay * nrow * ncol), dtype=np.float32).reshape( (nlay, nrow, ncol) ) t3d = {0: a, 2: 1025, 3: a, 4: 1000.0} t3d = Transient3d(ml, (nlay, nrow, ncol), np.float32, t3d, "fake") assert np.array_equal(t3d[0].array, a) assert np.array_equal(t3d[1].array, a) assert np.array_equal(t3d[2].array, np.zeros((nlay, nrow, ncol)) + 1025.0) assert np.array_equal(t3d[3].array, a) assert np.array_equal(t3d[4].array, np.zeros((nlay, nrow, ncol)) + 1000.0) # Test changing a value t3d[0] = 1.0 assert np.array_equal(t3d[0].array,
np.zeros((nlay, nrow, ncol))
numpy.zeros
""" Test Surrogates Overview ======================== """ # Author: <NAME> <<EMAIL>> # License: new BSD from PIL import Image import numpy as np import scripts.surrogates_overview as exo import scripts.image_classifier as imgclf import sklearn.datasets import sklearn.linear_model SAMPLES = 10 BATCH = 50 SAMPLE_IRIS = False IRIS_SAMPLES = 50000 def test_bilmey_image(): """Tests surrogate image bLIMEy.""" # Load the image doggo_img = Image.open('surrogates_overview/img/doggo.jpg') doggo_array = np.array(doggo_img) # Load the classifier clf = imgclf.ImageClassifier() explain_classes = [('tennis ball', 852), ('golden retriever', 207), ('Labrador retriever', 208)] # Configure widgets to select occlusion colour, segmentation granularity # and explained class colour_selection = { i: i for i in ['mean', 'black', 'white', 'randomise-patch', 'green'] } granularity_selection = {'low': 13, 'medium': 30, 'high': 50} # Generate explanations blimey_image_collection = {} for gran_name, gran_number in granularity_selection.items(): blimey_image_collection[gran_name] = {} for col_name in colour_selection: blimey_image_collection[gran_name][col_name] = \ exo.build_image_blimey( doggo_array, clf.predict_proba, explain_classes, explanation_size=5, segments_number=gran_number, occlusion_colour=col_name, samples_number=SAMPLES, batch_size=BATCH, random_seed=42) exp = [] for gran_ in blimey_image_collection: for col_ in blimey_image_collection[gran_]: exp.append(blimey_image_collection[gran_][col_]['surrogates']) assert len(exp) == len(EXP_IMG) for e, E in zip(exp, EXP_IMG): assert sorted(list(e.keys())) == sorted(list(E.keys())) for key in e.keys(): assert e[key]['name'] == E[key]['name'] assert len(e[key]['explanation']) == len(E[key]['explanation']) for e_, E_ in zip(e[key]['explanation'], E[key]['explanation']): assert e_[0] == E_[0] assert np.allclose(e_[1], E_[1], atol=.001, equal_nan=True) def test_bilmey_tabular(): """Tests surrogate tabular bLIMEy.""" # Load the iris data set iris = sklearn.datasets.load_iris() iris_X = iris.data # [:, :2] # take the first two features only iris_y = iris.target iris_labels = iris.target_names iris_feature_names = iris.feature_names label2class = {lab: i for i, lab in enumerate(iris_labels)} # Fit the classifier logreg = sklearn.linear_model.LogisticRegression(C=1e5) logreg.fit(iris_X, iris_y) # explained class _dtype = iris_X.dtype explained_instances = { 'setosa': np.array([5, 3.5, 1.5, 0.25]).astype(_dtype), 'versicolor': np.array([5.5, 2.75, 4.5, 1.25]).astype(_dtype), 'virginica': np.array([7, 3, 5.5, 2.25]).astype(_dtype) } petal_length_idx = iris_feature_names.index('petal length (cm)') petal_length_bins = [1, 2, 3, 4, 5, 6, 7] petal_width_idx = iris_feature_names.index('petal width (cm)') petal_width_bins = [0, .5, 1, 1.5, 2, 2.5] discs_ = [] for i, ix in enumerate(petal_length_bins): # X-axis for iix in petal_length_bins[i + 1:]: for j, jy in enumerate(petal_width_bins): # Y-axis for jjy in petal_width_bins[j + 1:]: discs_.append({ petal_length_idx: [ix, iix], petal_width_idx: [jy, jjy] }) for inst_i in explained_instances: for cls_i in iris_labels: for disc_i, disc in enumerate(discs_): inst = explained_instances[inst_i] cls = label2class[cls_i] exp = exo.build_tabular_blimey( inst, cls, iris_X, iris_y, logreg.predict_proba, disc, IRIS_SAMPLES, SAMPLE_IRIS, 42) key = '{}&{}&{}'.format(inst_i, cls, disc_i) exp_ = EXP_TAB[key] assert exp['explanation'].shape[0] == exp_.shape[0] assert np.allclose( exp['explanation'], exp_, atol=.001, equal_nan=True) EXP_IMG = [ {207: {'explanation': [(13, -0.24406872165780585), (11, -0.20456180387430317), (9, -0.1866779131424261), (4, 0.15001224157793785), (3, 0.11589480417160983)], 'name': 'golden retriever'}, 208: {'explanation': [(13, -0.08395966359346249), (0, -0.0644986107387837), (9, 0.05845584633658977), (1, 0.04369763085720947), (11, -0.035958188394941866)], 'name': '<NAME>'}, 852: {'explanation': [(13, 0.3463529698715463), (11, 0.2678050131923326), (4, -0.10639863421417416), (6, 0.08345792378117327), (9, 0.07366945242386444)], 'name': '<NAME>'}}, {207: {'explanation': [(13, -0.0624167912596456), (7, 0.06083359545295548), (3, 0.0495953943686462), (11, -0.04819787147412231), (2, -0.03858823761391199)], 'name': '<NAME>'}, 208: {'explanation': [(13, -0.08408428146916162), (7, 0.07704235920590158), (3, 0.06646468388122273), (11, -0.0638326572126609), (2, -0.052621478002380796)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.35248212611685886), (13, 0.2516925608037859), (2, 0.13682853028454384), (9, 0.12930134856644754), (6, 0.1257747954095489)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.21351937934930917), (10, 0.16933456312772083), (11, -0.13447244552856766), (8, 0.11058919217055371), (2, -0.06269239798368743)], 'name': '<NAME>'}, 208: {'explanation': [(8, 0.05995551486884414), (9, -0.05375302972380482), (11, -0.051997353324246445), (6, 0.04213181405953071), (2, -0.039169895361928275)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.31382219776986503), (11, 0.24126214884275987), (13, 0.21075924370226598), (2, 0.11937652039885377), (8, -0.11911265319329697)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.39254403293049134), (9, 0.19357165018747347), (6, 0.16592079671652987), (0, 0.14042059731407297), (1, 0.09793027079765507)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.19351859273276703), (1, -0.15262967987262344), (3, 0.12205127112235375), (2, 0.11352141032313934), (6, -0.11164209893429898)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.17213007100844877), (0, -0.1583030948868859), (3, -0.13748574615069775), (5, 0.13273283867075436), (11, 0.12309551170070354)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.4073533182995105), (10, 0.20711667988142463), (8, 0.15360813290032324), (6, 0.1405424759832785), (1, 0.1332920685413575)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.14747910525112617), (1, -0.13977061235228924), (2, 0.10526833898161611), (6, -0.10416022118399552), (3, 0.09555992655161764)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.2232260929107954), (7, 0.21638443149433054), (5, 0.21100464215582274), (13, 0.145614853795006), (1, -0.11416523431311262)], 'name': '<NAME>'}}, {207: {'explanation': [(1, 0.14700178977744183), (0, 0.10346667279328238), (2, 0.10346667279328238), (7, 0.10346667279328238), (8, 0.10162900633690726)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.10845134816658476), (8, -0.1026920429226184), (6, -0.10238154733842847), (18, 0.10094164937411244), (16, 0.08646888450232793)], 'name': '<NAME>'}, 852: {'explanation': [(18, -0.20542297091894474), (13, 0.2012751176130666), (8, -0.19194747162742365), (20, 0.14686930696710473), (15, 0.11796990086271067)], 'name': '<NAME>'}}, {207: {'explanation': [(13, 0.12446259821701779), (17, 0.11859084421095789), (15, 0.09690553833007137), (12, -0.08869743701731962), (4, 0.08124900427893789)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.09478194981909983), (20, -0.09173392507039077), (9, 0.08768898801254493), (17, -0.07553994244536394), (4, 0.07422905503397653)], 'name': '<NAME>'}, 852: {'explanation': [(21, 0.1327882942965061), (1, 0.1238236573086363), (18, -0.10911712271717902), (19, 0.09707191051320978), (6, 0.08593672504338913)], 'name': '<NAME>'}}, {207: {'explanation': [(6, 0.14931728779865114), (14, 0.14092073957103526), (1, 0.11071480021464616), (4, 0.10655287976934531), (8, 0.08705404649152573)], 'name': '<NAME>'}, 208: {'explanation': [(8, -0.12242580400886727), (9, 0.12142729544158742), (14, -0.1148252787068248), (16, -0.09562322208795092), (4, 0.09350160975513132)], 'name': '<NAME>'}, 852: {'explanation': [(6, 0.04227675072263027), (9, -0.03107924340879173), (14, 0.028007115650713045), (13, 0.02771190348545554), (19, 0.02640441416071482)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.14313680656283245), (18, 0.12866508562342843), (8, 0.11809779264185447), (0, 0.11286255403442104), (2, 0.11286255403442104)], 'name': '<NAME>'}, 208: {'explanation': [(9, 0.2397917428082761), (14, -0.19435572812170654), (6, -0.1760894833446507), (18, -0.12243333818399058), (15, 0.10986343675377105)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.15378038774613365), (9, -0.14245940635481966), (6, 0.10213601012183973), (20, 0.1009180838986786), (3, 0.09780065767815548)], 'name': '<NAME>'}}, {207: {'explanation': [(15, 0.06525850448807077), (9, 0.06286791243851698), (19, 0.055189970374185854), (8, 0.05499197604401475), (13, 0.04748220842936177)], 'name': '<NAME>'}, 208: {'explanation': [(6, -0.31549091899770765), (5, 0.1862302670824446), (8, -0.17381478451341995), (10, -0.17353516098662508), (14, -0.13591542421754205)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.2163853942943355), (6, 0.17565046338282214), (1, 0.12446193028474549), (9, -0.11365789839746396), (10, 0.09239073691962967)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.1141207265647932), (36, -0.08861425922625768), (30, 0.07219209872026074), (9, -0.07150939547859836), (38, -0.06988288637544438)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.10531073909547647), (13, 0.08279642208039652), (34, -0.0817952443980797), (33, -0.08086848205765082), (12, 0.08086848205765082)], 'name': '<NAME>'}, 852: {'explanation': [(13, -0.1330452414595897), (4, 0.09942366413042845), (12, -0.09881995683190645), (33, 0.09881995683190645), (19, -0.09596925317560831)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08193926967758253), (35, 0.06804043021426347), (15, 0.06396269230810163), (11, 0.062255657227065296), (8, 0.05529200233091672)], 'name': '<NAME>'}, 208: {'explanation': [(19, 0.05711957286614678), (27, -0.050230108135410824), (16, -0.04743034616549999), (5, -0.046717346734255705), (9, -0.04419100026638039)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.08390967998497496), (30, -0.07037680222442452), (22, 0.07029819368543713), (8, -0.06861396187180349), (37, -0.06662511956402824)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.048418845359024805), (9, -0.0423869575883795), (30, 0.04012650790044438), (36, -0.03787242980067195), (10, 0.036557999380695635)], 'name': '<NAME>'}, 208: {'explanation': [(10, 0.12120686823129677), (17, 0.10196564232230493), (7, 0.09495133975425854), (25, -0.0759657891182803), (2, -0.07035244568286837)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.0770578003457272), (28, 0.0769372258280398), (6, -0.06044725989272927), (22, 0.05550155775286349), (31, -0.05399028046597057)], 'name': '<NAME>'}}, {207: {'explanation': [(14, 0.05371383110181226), (0, -0.04442539316084218), (18, 0.042589475382826494), (19, 0.04227647855354252), (17, 0.041685661662754295)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.14419601354489464), (17, 0.11785174500536676), (36, 0.1000501679652906), (10, 0.09679790134851017), (35, 0.08710376081189208)], 'name': '<NAME>'}, 852: {'explanation': [(8, -0.02486237985832769), (3, -0.022559886154747102), (11, -0.021878686669239856), (36, 0.021847953817988534), (19, -0.018317598300716522)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08098729255605368), (35, 0.06639102704982619), (15, 0.06033721190370432), (34, 0.05826267856117829), (28, 0.05549505160798173)], 'name': '<NAME>'}, 208: {'explanation': [(17, 0.13839012042250542), (10, 0.11312187488346881), (7, 0.10729071207480922), (25, -0.09529127965797404), (11, -0.09279834572979286)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.028385651836694076), (22, 0.023364702783498722), (8, -0.023097812578270233), (30, -0.022931236620034406), (37, -0.022040170736525342)], 'name': '<NAME>'}} ] EXP_TAB = { 'setosa&0&0': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&1': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&2': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&3': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&4': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&5': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&6': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&7': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&8': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&9': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&10': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&11': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&12': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&13': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&14': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&15': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&16': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&17': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&18': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&19': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&20': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&21': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&22': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&23': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&24': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&25': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&26': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&27': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&28': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&29': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&30': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&31': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&32': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&33': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&34': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&35': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&36': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&37': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&38': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&39': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&40': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&41': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&42': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&43': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&44': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&45': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&46': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&47': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&48': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&49': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&50': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&51': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&52': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&53': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&54': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&55': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&56': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&57': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&58': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&59': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&60': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&61': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&62': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&63': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&64': np.array([0.3094460464703627, 0.11400643817329122]), 'setosa&0&65': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&66': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&67': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&68': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&69': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&70': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&71': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&72': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&73': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&74': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&75': np.array([0.0, 0.95124502153736]), 'setosa&0&76': np.array([0.0, 0.9708703761803881]), 'setosa&0&77': np.array([0.0, 0.5659706098422994]), 'setosa&0&78': np.array([0.0, 0.3962828716108186]), 'setosa&0&79': np.array([0.0, 0.2538069363248767]), 'setosa&0&80': np.array([0.0, 0.95124502153736]), 'setosa&0&81': np.array([0.0, 0.95124502153736]), 'setosa&0&82': np.array([0.0, 0.95124502153736]), 'setosa&0&83': np.array([0.0, 0.95124502153736]), 'setosa&0&84': np.array([0.0, 0.9708703761803881]), 'setosa&0&85': np.array([0.0, 0.9708703761803881]), 'setosa&0&86': np.array([0.0, 0.9708703761803881]), 'setosa&0&87': np.array([0.0, 0.5659706098422994]), 'setosa&0&88': np.array([0.0, 0.5659706098422994]), 'setosa&0&89': np.array([0.0, 0.3962828716108186]), 'setosa&0&90': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&91': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&92': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&93': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&94': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&95': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&96': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&97': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&98': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&99': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&100': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&101': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&102': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&103': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&104': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&105': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&106': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&107': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&108': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&109': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&110': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&111': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&112': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&113': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&114': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&115': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&116': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&117': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&118': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&119': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&120': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&121': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&122': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&123': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&124': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&125': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&126': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&127': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&128': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&129': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&130': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&131': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&132': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&133': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&134': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&135': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&136': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&137': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&138': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&139': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&140': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&141': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&142': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&143': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&144': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&145': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&146': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&147': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&148': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&149': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&150': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&151': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&152': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&153': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&154': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&155': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&156': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&157': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&158': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&159': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&160': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&161': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&162': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&163': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&164': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&165': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&166': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&167': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&168': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&169': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&170': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&171': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&172': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&173': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&174': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&175': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&176': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&177': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&178': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&179': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&180': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&181': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&182': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&183': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&184': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&185': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&186': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&187': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&188': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&189': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&190': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&191': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&192': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&193': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&194': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&195': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&196': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&197': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&198': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&199': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&200': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&201': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&202': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&203': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&204': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&205': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&206': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&207': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&208': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&209': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&210': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&211': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&212': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&213': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&214': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&215': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&216': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&217': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&218': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&219': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&220': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&221': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&222': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&223': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&224': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&225':
np.array([0.19685199412911678, 0.7845879230594391])
numpy.array
import numpy as np import os from scipy.spatial import ConvexHull from sklearn.cluster import KMeans from sklearn.decomposition import PCA import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plt import matplotlib.cm as cm class Generator(object): def __init__( self, num_examples_train, num_examples_test, num_clusters, dataset_path, batch_size ): self.num_examples_train = num_examples_train self.num_examples_test = num_examples_test self.batch_size = batch_size self.dataset_path = dataset_path self.input_size = 2 self.task = 'kmeans' # clusters_train = [4, 8, 16] clusters_train = [num_clusters] clusters_test = [num_clusters] self.clusters = {'train': clusters_train, 'test': clusters_test} self.data = {'train': {}, 'test': {}} def load_dataset(self): for mode in ['train', 'test']: for cl in self.clusters[mode]: path = os.path.join(self.dataset_path, mode + str(cl)) path = path + 'kmeans_gauss.npz' if os.path.exists(path): print('Reading {} dataset for {} scales' .format(mode, cl)) npz = np.load(path) self.data[mode][cl] = {'x': npz['x'], 'y': npz['y']} else: x, y = self.create(clusters=cl, mode=mode) self.data[mode][cl] = {'x': x, 'y': y} # save np.savez(path, x=x, y=y) print('Created {} dataset for {} scales' .format(mode, cl)) def get_batch(self, batch=0, clusters=3, mode="train"): bs = self.batch_size batch_x = self.data[mode][clusters]['x'][batch * bs: (batch + 1) * bs] batch_y = self.data[mode][clusters]['y'][batch * bs: (batch + 1) * bs] return batch_x, batch_y def compute_length(self, clusters): length = np.random.randint(10 * clusters, 10 * clusters + 1) max_length = 10 * clusters return length, max_length def kmeans_example(self, length, clusters): points = np.random.uniform(0, 1, [length, 2]) kmeans = KMeans(n_clusters=clusters).fit(points) labels = kmeans.labels_.astype(int) target = np.array(labels) # target = np.zeros([length]) return points, target def pca_example(self, length): points = np.random.uniform(0, 1, [length, 2]) ind1 = np.where(points[:, 0] < 0.5)[0] target = np.zeros([length]) target[ind1] = 1 return points, target def gaussian_example(self, length, clusters): centers = np.random.uniform(0, 1, [clusters, 2]) per_cl = length // clusters Pts = [] cov = 0.001 * np.eye(2, 2) target = np.zeros([length]) for c in range(clusters): points = np.random.multivariate_normal(centers[c], cov, per_cl) target[c * per_cl: (c + 1) * per_cl] = c Pts.append(points) points = np.reshape(Pts, [-1, 2]) rand_perm = np.random.permutation(length) points = points[rand_perm] target = target[rand_perm] return points, target def plot_example(self, x, y, clusters, length): plt.figure(0) plt.clf() colors = cm.rainbow(np.linspace(0, 1, clusters)) for c in range(clusters): ind = np.where(y == c)[0] plt.scatter(x[ind, 0], x[ind, 1], c=colors[c]) path = '/home/anowak/DynamicProgramming/DP/plots/example.png' plt.savefig(path) def create(self, clusters=3, mode='train'): if mode == 'train': num_examples = self.num_examples_train else: num_examples = self.num_examples_test _, max_length = self.compute_length(clusters) x = -1 *
np.ones([num_examples, max_length, self.input_size])
numpy.ones
# coding: utf-8 # Copyright (c) Max-Planck-Institut für Eisenforschung GmbH - Computational Materials Design (CM) Department # Distributed under the terms of "New BSD License", see the LICENSE file. from pyiron_base._tests import PyironTestCase from pyiron_continuum.mesh import ( RectMesh, callable_to_array, takes_scalar_field, takes_vector_field, has_default_accuracy ) import numpy as np import pyiron_continuum.mesh as mesh_mod class TestDecorators(PyironTestCase): @classmethod def setUpClass(cls): super().setUpClass() cls.mesh = RectMesh([1, 2, 3], [30, 20, 10]) @staticmethod def give_vector(mesh): return np.ones(mesh.shape) @staticmethod def give_scalar(mesh): return np.ones(mesh.divisions) def test_callable_to_array(self): scalar_field = self.give_scalar(self.mesh) @callable_to_array def method(mesh, callable_or_array, some_kwarg=1): return callable_or_array + some_kwarg self.assertTrue(np.allclose(scalar_field + 1, method(self.mesh, self.give_scalar)), msg="Accept functions") self.assertTrue(np.allclose(scalar_field + 1, method(self.mesh, scalar_field)), msg="Accept arrays") self.assertTrue(np.allclose(scalar_field + 2, method(self.mesh, self.give_scalar, some_kwarg=2)), msg="Pass kwargs") def test_takes_scalar_field(self): scalar_field = self.give_scalar(self.mesh) @takes_scalar_field def method(mesh, scalar_field, some_kwarg=1): return some_kwarg self.assertEqual(1, method(self.mesh, scalar_field), msg="Accept arrays") self.assertEqual(2, method(self.mesh, scalar_field, some_kwarg=2), msg="Pass kwargs") self.assertEqual(1, method(self.mesh, scalar_field.tolist()), msg="Should work with listlike stuff too") self.assertRaises(TypeError, method, self.mesh, np.ones(2)) # Reject the wrong shape self.assertRaises(TypeError, method, self.mesh, "not even numeric") # Duh def test_takes_vector_field(self): vector_field = self.give_vector(self.mesh) @takes_vector_field def method(mesh, vector_field, some_kwarg=1): return some_kwarg self.assertEqual(1, method(self.mesh, vector_field), msg="Accept arrays") self.assertEqual(2, method(self.mesh, vector_field, some_kwarg=2), msg="Pass kwargs") self.assertEqual(1, method(self.mesh, vector_field.tolist()), msg="Should work with listlike stuff too") self.assertRaises(TypeError, method, self.mesh, np.ones(2)) # Reject the wrong shape self.assertRaises(TypeError, method, self.mesh, "not even numeric") # Duh def test_has_default_accuracy(self): some_field = self.give_vector(self.mesh) @has_default_accuracy def method(mesh, field, accuracy=None, some_kwarg=1): return accuracy + some_kwarg mesh = RectMesh(1, 1, accuracy=2) self.assertEqual(3, method(mesh, some_field), 'Use mesh accuracy') self.assertEqual(0, method(mesh, some_field, accuracy=4, some_kwarg=-4), 'Use passed accuracy') self.assertRaises(ValueError, method, mesh, some_field, accuracy=1) # Even accuracy only self.assertRaises(ValueError, method, mesh, some_field, accuracy=0) # Positive accuracy only @has_default_accuracy def method(mesh, field, accuracy_not_a_kwarg=42): return None self.assertRaises(TypeError, method, mesh, some_field) # Methods need to define accuracy class TestRectMesh(PyironTestCase): @staticmethod def scalar_sines(mesh): L = mesh.lengths omega = (2 * np.pi / L).reshape(len(L), *[1] * mesh.dim) return np.prod(np.sin(omega * mesh.mesh), axis=0) def vector_sines(self, mesh): scalar = self.scalar_sines(mesh) return np.array(mesh.dim * [scalar]) @property def docstring_module(self): return mesh_mod def test_input(self): L = np.pi n = 2 mesh = RectMesh(L, n) self.assertTrue(np.allclose(mesh.bounds, [[0, L]]), msg='Expected float to be converted to (1,2) array.') self.assertTrue(np.all(mesh.divisions == [n]), msg='Expected int to be converted to (1,) array.') mesh = RectMesh([L, L], n) self.assertTrue(np.allclose(mesh.bounds, [[0, L], [0, L]]), msg='Expected 1D bounds to be interpreted as endpoints of 2D bounds.') self.assertTrue(np.all(mesh.divisions == [n, n]), msg='Expected divisions to be extended to match bounds.') mesh = RectMesh([[0, L], [L / 2, L]], [n, 2 * n]) self.assertTrue(np.allclose(mesh.bounds, [[0, L], [L / 2, L]]), msg='Expected float to be converted to (1,2) array.') self.assertTrue(np.all(mesh.divisions == [n, 2 * n]), msg='Expected divisions to be preserved.') bounds = np.array([1, 2, 3, 4]) self.assertAlmostEqual( bounds.prod(), RectMesh(bounds=bounds).volume, msg="Four dimensions should be ok, and hyper-volume should be a product of side lengths" ) self.assertRaises(ValueError, RectMesh, [[0, 1, 2]], 1) # Bounds can't exceed shape (n, 2) self.assertRaises(ValueError, RectMesh, [[1, 1 + 1e-12]]) # Bounds must enclose a space noticeably > 0 self.assertRaises(ValueError, RectMesh, 1, [1, 1]) # Divisions must be a single value or match bounds self.assertRaises(TypeError, RectMesh, 1, np.pi) # Only int-like divisions self.assertRaises(TypeError, RectMesh, 1, [[1]]) # Or lists of ints, but nothing else like lists of lists def test_construction(self): L = np.pi n = 2 mesh = RectMesh(L, n) self.assertTrue(np.allclose(mesh.mesh, [0, L / 2]), msg='1D should get simplified') self.assertAlmostEqual(mesh.steps, L / 2, msg='1D should get simplified') mesh.simplify_1d = False self.assertTrue(np.allclose(mesh.steps, [L / 2]), msg='1D should stay list-like') mesh = RectMesh([L, 2 * L], n) self.assertTrue( np.allclose( mesh.mesh, [ [ [0, 0], [L / 2, L / 2], ], [ [0, L], [0, L], ] ] ) ) self.assertTrue(np.allclose(mesh.steps, [L / 2, L])) with self.assertRaises(ValueError): RectMesh([[1, 1+1E-12]]) # Mesh needs finite length def test_update(self): L = np.pi n = 2 mesh = RectMesh([L, L], n) init_mesh = np.array(mesh.mesh) mesh.bounds = [2 * L, 2 * L] self.assertTrue(np.allclose(mesh.mesh, 2 * init_mesh), msg='Should have doubled extent') mesh.divisions = 2 * n self.assertEqual(2 * n, len(mesh.mesh[0]), msg='Should have doubled sampling density') def test_length(self): mesh = RectMesh([[0, 1], [1, 3]], 2) self.assertAlmostEqual(1, mesh.lengths[0], msg='Real-space length in x-direction should be 1') self.assertAlmostEqual(2, mesh.lengths[1], msg='Real-space length in y-direction should be 3-1=2') def test_derivative(self): L = np.pi omega = 2 * np.pi / L mesh = RectMesh(L, 100) x = mesh.mesh[0] def solution(order): """derivatives of sin(omega * x)""" fnc = np.cos(omega * x) if order % 2 == 1 else np.sin(omega * x) sign = -1 if order % 4 in [2, 3] else 1 return sign * omega**order * fnc for order in [1, 2, 3, 4]: errors = [ np.linalg.norm(solution(order) - mesh.derivative(self.scalar_sines, order=order, accuracy=accuracy)) for accuracy in [2, 4, 6] ] self.assertTrue(np.all(np.diff(errors) < 0), msg="Increasing accuracy should give decreasing error.") self.assertRaises(ValueError, mesh.derivative, mesh.mesh[0], order=1, accuracy=3) # No odd accuracies def test_grad(self): L = np.pi omega = 2 * np.pi / L mesh = RectMesh([L, L, L], [100, 200, 300]) x, y, z = mesh.mesh solution = np.array([ omega * np.cos(x * omega) * np.sin(y * omega) * np.sin(z * omega), omega * np.sin(x * omega) * np.cos(y * omega) * np.sin(z * omega), omega * np.sin(x * omega) *
np.sin(y * omega)
numpy.sin
# -*- coding: utf-8 -*- # Author: <NAME> # License: MIT import os import numpy as np import scipy as sc from ..tools import femio from ..basefem import BaseFEM, get_file_path class Periodic3D(BaseFEM): """A class for a finite element model of a 3D bi-periodic medium using Gmsh_ and GetDP_. .. _Gmsh: http://gmsh.info/ .. _GetDP: http://getdp.info/ """ def __init__( self, analysis="direct", A=1, lambda0=1, theta_deg=0.0, phi_deg=0, psi_deg=0, period_x=1, period_y=1, thick_L1=0.1, #: flt: thickness layer 1 (superstrate) thick_L2=0.1, #: flt: thickness layer 2 thick_L3=0.1, #: flt: thickness layer 3 (interp) thick_L4=0.1, #: flt: thickSness layer 4 thick_L5=0.1, #: flt: thickness layer 5 thick_L6=0.1, #: flt: thickness layer 6 (substrate) PML_top=1.0, # : flt: thickness pml top PML_bot=1.0, # : flt: thickness pml bot a_pml=1, #: flt: PMLs parameter, real part b_pml=1, #: flt: PMLs parameter, imaginary part eps_L1=1 - 0 * 1j, #: flt: permittivity layer 1 (superstrate) eps_L2=1 - 0 * 1j, #: flt: permittivity layer 2 eps_L3=1 - 0 * 1j, #: flt: permittivity layer 3 eps_L4=1 - 0 * 1j, #: flt: permittivity layer 4 eps_L5=1 - 0 * 1j, #: flt: permittivity layer 5 eps_L6=1 - 0 * 1j, #: flt: permittivity layer 6 (substrate) el_order=1, ): super().__init__() self.dir_path = get_file_path(__file__) self.analysis = analysis self.A = A self.lambda0 = lambda0 self.theta_deg = theta_deg self.phi_deg = phi_deg self.psi_deg = psi_deg # opto-geometric parameters ------------------------------------------- #: flt: periods self.period_x = period_x self.period_y = period_y self.thick_L1 = thick_L1 #: flt: thickness layer 1 (superstrate) self.thick_L2 = thick_L2 #: flt: thickness layer 2 self.thick_L3 = thick_L3 #: flt: thickness layer 3 (interp) self.thick_L4 = thick_L4 #: flt: thickSness layer 4 self.thick_L5 = thick_L5 #: flt: thickness layer 5 self.thick_L6 = thick_L6 #: flt: thickness layer 6 (substrate) self.PML_top = PML_top #: flt: thickness pml top self.PML_bot = PML_bot #: flt: thickness pml bot #: flt: PMLs parameter, real part self.a_pml = a_pml #: flt: PMLs parameter, real part self.b_pml = b_pml #: flt: PMLs parameter, imaginary part self.eps_L1 = eps_L1 #: flt: permittivity layer 1 (superstrate) self.eps_L2 = eps_L2 #: flt: permittivity layer 2 self.eps_L3 = eps_L3 #: flt: permittivity layer 3 self.eps_L4 = eps_L4 #: flt: permittivity layer 4 self.eps_L5 = eps_L5 #: flt: permittivity layer 5 self.eps_L6 = eps_L6 #: flt: permittivity layer 6 (substrate) self.el_order = el_order self.bg_mesh = False # 2 #: design domain number (check .geo/.pro files) self.dom_des = 5000 # postprocessing ------------------------------------------------- #: int: number of diffraction orders #: for postprocessing diffraction efficiencies self.N_d_order = 0 self.orders = False self.cplx_effs = False self.eff_verbose = False #: int: number of x integration points #: for postprocessing diffraction efficiencies self.ninterv_integ = 60 #: int: number of z slices points #: for postprocessing diffraction efficiencies self.nb_slice = 3 #: flt: such that `scan_dist = min(h_sup, hsub)/scan_dist_ratio` self.scan_dist_ratio = 5 self.dim = 3 self.adjoint = False @property def celltype(self): return "tetra" @property def zmin_interp(self): return self.thick_L5 + self.thick_L4 @property def zmax_interp(self): return self.zmin_interp + self.thick_L3 @property def scan_dist(self): return min(self.thick_L1, self.thick_L6) / self.scan_dist_ratio @property def theta_0(self): return np.pi / 180.0 * (self.theta_deg) @property def phi_0(self): return np.pi / 180.0 * (self.phi_deg) @property def psi_0(self): return np.pi / 180.0 * (self.psi_deg) @property def corners_des(self): return ( -self.period_x / 2, +self.period_x / 2, -self.period_y / 2, +self.period_y / 2, +self.zmin_interp, +self.zmax_interp, ) # @property # def N_d_order(self): # N = self.d/self.lambda0 * (np.sqrt([self.eps_L1, self.eps_L6]) - np.sin(self.theta)) # return int(max(N)) def _make_param_dict(self): param_dict = super()._make_param_dict() layer_diopter = self.ancillary_problem() nb_layer = 6 layer = [] for k1 in range(0, nb_layer): layer.append({}) layer[0]["epsilon"] = self.eps_L1 layer[1]["epsilon"] = self.eps_L2 layer[2]["epsilon"] = self.eps_L3 layer[3]["epsilon"] = self.eps_L4 layer[4]["epsilon"] = self.eps_L5 layer[5]["epsilon"] = self.eps_L6 layer[0]["thickness"] = self.thick_L1 layer[1]["thickness"] = self.thick_L2 layer[2]["thickness"] = self.thick_L3 layer[3]["thickness"] = self.thick_L4 layer[4]["thickness"] = self.thick_L5 layer[5]["thickness"] = self.thick_L6 layer[nb_layer - 2]["hh"] = 0 layer[nb_layer - 1]["hh"] = ( layer[nb_layer - 2]["hh"] - layer[nb_layer - 1]["thickness"] ) for k in range(nb_layer - 3, -1, -1): layer[k]["hh"] = layer[k + 1]["hh"] + layer[k + 1]["thickness"] for i5 in range(0, nb_layer): param_dict["thick_L" + str(i5 + 1)] = layer[i5]["thickness"] param_dict["hh_L" + str(i5 + 1)] = layer[i5]["hh"] param_dict["PML_bot_hh"] = layer[-1]["hh"] - self.PML_bot param_dict["PML_top_hh"] = layer[0]["hh"] + self.thick_L1 param_dict["Expj_subs_re"] = layer_diopter[1]["Psi"][0].real param_dict["Exmj_subs_re"] = layer_diopter[1]["Psi"][1].real param_dict["Eypj_subs_re"] = layer_diopter[1]["Psi"][2].real param_dict["Eymj_subs_re"] = layer_diopter[1]["Psi"][3].real param_dict["Ezpj_subs_re"] = layer_diopter[1]["Psi"][4].real param_dict["Ezmj_subs_re"] = layer_diopter[1]["Psi"][5].real param_dict["Expj_subs_im"] = layer_diopter[1]["Psi"][0].imag param_dict["Exmj_subs_im"] = layer_diopter[1]["Psi"][1].imag param_dict["Eypj_subs_im"] = layer_diopter[1]["Psi"][2].imag param_dict["Eymj_subs_im"] = layer_diopter[1]["Psi"][3].imag param_dict["Ezpj_subs_im"] = layer_diopter[1]["Psi"][4].imag param_dict["Ezmj_subs_im"] = layer_diopter[1]["Psi"][5].imag param_dict["gamma_subs_re"] = layer_diopter[1]["gamma"].real param_dict["gamma_subs_im"] = layer_diopter[1]["gamma"].imag param_dict["Expj_super_re "] = layer_diopter[0]["Psi"][0].real param_dict["Exmj_super_re "] = layer_diopter[0]["Psi"][1].real param_dict["Eypj_super_re "] = layer_diopter[0]["Psi"][2].real param_dict["Eymj_super_re "] = layer_diopter[0]["Psi"][3].real param_dict["Ezpj_super_re "] = layer_diopter[0]["Psi"][4].real param_dict["Ezmj_super_re "] = layer_diopter[0]["Psi"][5].real param_dict["Expj_super_im "] = layer_diopter[0]["Psi"][0].imag param_dict["Exmj_super_im "] = layer_diopter[0]["Psi"][1].imag param_dict["Eypj_super_im "] = layer_diopter[0]["Psi"][2].imag param_dict["Eymj_super_im "] = layer_diopter[0]["Psi"][3].imag param_dict["Ezpj_super_im "] = layer_diopter[0]["Psi"][4].imag param_dict["Ezmj_super_im "] = layer_diopter[0]["Psi"][5].imag param_dict["gamma_super_re "] = layer_diopter[0]["gamma"].real param_dict["gamma_super_im "] = layer_diopter[0]["gamma"].imag return param_dict def compute_solution(self, **kwargs): res_list = ["helmholtz_vector", "helmholtz_vector_modal"] return super().compute_solution(res_list=res_list) def postpro_absorption(self): self.postprocess("postopQ") path = self.tmppath("Q.txt") Q = np.loadtxt(path, skiprows=0, usecols=[1]) + 1j * np.loadtxt( path, skiprows=0, usecols=[1] ) return Q.real def _postpro_fields_cuts(self): npt_integ = self.ninterv_integ + 1 nb_slice = self.nb_slice path_t = self.tmppath("Etot_XYcut.out") path_r = self.tmppath("Edif_XYcut.out") if os.path.isfile(path_t): os.remove(path_t) if os.path.isfile(path_r): os.remove(path_r) self.postprocess("Ed" + " -order 2") Ex_t2, Ey_t2, Ez_t2 = femio.load_table_vect(path_t) Ex_t2 = Ex_t2.reshape(npt_integ, npt_integ, nb_slice, order="F") Ey_t2 = Ey_t2.reshape(npt_integ, npt_integ, nb_slice, order="F") Ez_t2 = Ez_t2.reshape(npt_integ, npt_integ, nb_slice, order="F") Ex_r2, Ey_r2, Ez_r2 = femio.load_table_vect(path_r) Ex_r2 = Ex_r2.reshape(npt_integ, npt_integ, nb_slice, order="F") Ey_r2 = Ey_r2.reshape(npt_integ, npt_integ, nb_slice, order="F") Ez_r2 = Ez_r2.reshape(npt_integ, npt_integ, nb_slice, order="F") return Ex_r2, Ey_r2, Ez_r2, Ex_t2, Ey_t2, Ez_t2 def postpro_epsilon(self): self.postprocess("postop_epsilon" + " -order 2") def diffraction_efficiencies(self): Ex_r2, Ey_r2, Ez_r2, Ex_t2, Ey_t2, Ez_t2 = self._postpro_fields_cuts() npt_integ = self.ninterv_integ + 1 # print('gmsh cuts done !') period_x, period_y = self.period_x, self.period_y N_d_order = self.N_d_order lambda0 = self.lambda0 theta_0 = self.theta_0 phi_0 = self.phi_0 nb_slice = self.nb_slice x_t =
np.linspace(-period_x / 2, period_x / 2, npt_integ)
numpy.linspace
# Copyright 2018-2020 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Unit tests for the :func:`pennylane.math.is_independent` function. """ import pytest import numpy as np from pennylane import numpy as pnp import pennylane as qml from pennylane.math import is_independent from pennylane.math.is_independent import _get_random_args try: import jax have_jax = True except ImportError: have_jax = False try: import torch have_torch = True except ImportError: have_torch = False try: import tensorflow as tf have_tf = True except ImportError: have_tf = False dependent_lambdas = [ lambda x: x, lambda x: (x, x), lambda x: [x] * 10, lambda x: (2.0 * x, x), lambda x: 0.0 * x, lambda x, y: (0.0 * x, 0.0 * y), lambda x: x if x > 0 else 0.0, # RELU for x>0 is okay numerically lambda x: x if x > 0 else 0.0, # RELU for x<0 is okay numerically lambda x: 1.0 if abs(x) < 1e-5 else 0.0, # delta for x=0 is okay numerically lambda x: x if abs(x) < 1e-5 else 0.0, # x*delta for x=0 is okay lambda x: 1.0 if x > 0 else 0.0, # Heaviside is okay numerically lambda x: 1.0 if x > 0 else 0.0, # Heaviside is okay numerically lambda x: qml.math.log(1 + qml.math.exp(100.0 * x)) / 100.0, # Softplus is okay lambda x: qml.math.log(1 + qml.math.exp(100.0 * x)) / 100.0, # Softplus is okay ] args_dependent_lambdas = [ (np.array(1.2),), (2.19,), (2.19,), (1.0,), (np.ones((2, 3)),), (np.array([2.0, 5.0]), 1.2), (1.6,), (-2.0,), (0.0,), (0.0,), (-2.0,), (2.0,), (-0.2,), (0.9,), ] lambdas_expect_torch_fail = [ False, False, False, False, True, True, False, False, False, True, False, False, False, False, ] overlooked_lambdas = [ lambda x: 1.0 if abs(x) < 1e-5 else 0.0, # delta for x!=0 is not okay lambda x: 1.0 if abs(x) < 1e-5 else 0.0, # delta for x!=0 is not okay ] args_overlooked_lambdas = [ (2.0,), (-2.0,), ] class TestIsIndependentAutograd: """Tests for is_independent, which tests a function to be independent of its inputs, using Autograd.""" interface = "autograd" @pytest.mark.parametrize("num", [0, 1, 2]) @pytest.mark.parametrize( "args", [ (0.2,), (1.1, 3.2, 0.2), (np.array([[0, 9.2], [-1.2, 3.2]]),), (0.3, [1, 4, 2], np.array([0.3, 9.1])), ], ) @pytest.mark.parametrize("bounds", [(-1, 1), (0.1, 1.0211)]) def test_get_random_args(self, args, num, bounds): """Tests the utility ``_get_random_args`` using a fixed seed.""" seed = 921 rnd_args = _get_random_args(args, self.interface, num, seed, bounds) assert len(rnd_args) == num np.random.seed(seed) for _rnd_args in rnd_args: expected = tuple( np.random.random(np.shape(arg)) * (bounds[1] - bounds[0]) + bounds[0] for arg in args ) assert all(np.allclose(_exp, _rnd) for _exp, _rnd in zip(expected, _rnd_args)) dev = qml.device("default.qubit", wires=1) @qml.qnode(dev, interface=interface) def const_circuit(x, y): qml.RX(0.1, wires=0) return qml.expval(qml.PauliZ(0)) constant_functions = [ const_circuit, lambda x: np.arange(20).reshape((2, 5, 2)), lambda x: (np.ones(3), -0.1), qml.jacobian(lambda x, y: 4 * x - 2.1 * y, argnum=[0, 1]), ] args_constant = [ (0.1, np.array([-2.1, 0.1])), (1.2,), (np.ones((2, 3)),), (np.ones((3, 8)) * 0.1, -0.2 *
np.ones((3, 8))
numpy.ones
# Copyright © 2019. <NAME>. All rights reserved. import numpy as np import pandas as pd from collections import OrderedDict import math import warnings from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA from sklearn.neighbors import NearestNeighbors from sklearn.metrics import silhouette_score from scipy.spatial.distance import cdist from scipy.stats import chi2 from scipy.ndimage.filters import gaussian_filter1d from .utils import Epoch from .utils import printProgressBar, get_spike_positions def calculate_metrics(spike_times, spike_clusters, amplitudes, pc_features, pc_feature_ind, params, duration, channel_locations=None, cluster_ids=None, epochs=None, seed=None, verbose=True): """ Calculate metrics for all units on one probe Inputs: ------ spike_times : numpy.ndarray (num_spikes x 0) Spike times in seconds (same timebase as epochs) spike_clusters : numpy.ndarray (num_spikes x 0) Cluster IDs for each spike time pc_features : numpy.ndarray (num_spikes x num_pcs x num_channels) Pre-computed PCs for blocks of channels around each spike pc_feature_ind : numpy.ndarray (num_units x num_channels) Channel indices of PCs for each unit epochs : list of Epoch objects contains information on Epoch start and stop times duration : length of recording (seconds) channel_locations : numpy.ndarray (num_channels x 2) Channel locations (if None, a linear geometry is assumed) params : dict of parameters 'isi_threshold' : minimum time for isi violations 'min_isi' 'num_channels_to_compare' 'max_spikes_for_unit' 'max_spikes_for_nn' 'n_neighbors' 'drift_metrics_interval_s' 'drift_metrics_min_spikes_per_interval' Outputs: -------- metrics : pandas.DataFrame one column for each metric one row per unit per epoch """ metrics = pd.DataFrame() if epochs is None: epochs = [Epoch('complete_session', 0, np.inf)] total_units = np.max(spike_clusters) + 1 total_epochs = len(epochs) for epoch in epochs: in_epoch = np.logical_and(spike_times >= epoch.start_time, spike_times < epoch.end_time) spikes_in_epoch = np.sum(in_epoch) spikes_for_nn = min(spikes_in_epoch, params['max_spikes_for_nn']) spikes_for_silhouette = min(spikes_in_epoch, params['n_silhouette']) print("Calculating isi violations") isi_viol = calculate_isi_violations(spike_times=spike_times[in_epoch], spike_clusters=spike_clusters[in_epoch], total_units=total_units, isi_threshold=params['isi_threshold'], min_isi=params['min_isi'], duration=duration, verbose=verbose) print("Calculating presence ratio") presence_ratio = calculate_presence_ratio(spike_times=spike_times[in_epoch], spike_clusters=spike_clusters[in_epoch], total_units=total_units, duration=duration, verbose=verbose) print("Calculating firing rate") firing_rate = calculate_firing_rates(spike_times=spike_times[in_epoch], spike_clusters=spike_clusters[in_epoch], total_units=total_units, duration=duration, verbose=verbose) print("Calculating amplitude cutoff") amplitude_cutoff = calculate_amplitude_cutoff(spike_clusters=spike_clusters[in_epoch], amplitudes=amplitudes[in_epoch], total_units=total_units, verbose=verbose) print("Calculating PC-based metrics") isolation_distance, l_ratio, d_prime, nn_hit_rate, nn_miss_rate = \ calculate_pc_metrics(spike_clusters=spike_clusters[in_epoch], total_units=total_units, pc_features=pc_features[in_epoch, :, :], pc_feature_ind=pc_feature_ind, num_channels_to_compare=params['num_channels_to_compare'], max_spikes_for_cluster=params['max_spikes_for_unit'], spikes_for_nn=spikes_for_nn, n_neighbors=params['n_neighbors'], channel_locations= channel_locations, seed=seed, verbose=verbose) print("Calculating silhouette score") silhouette_score = calculate_silhouette_score(spike_clusters=spike_clusters[in_epoch], total_units=total_units, pc_features=pc_features[in_epoch, :, :], pc_feature_ind=pc_feature_ind, spikes_for_silhouette=spikes_for_silhouette, seed=seed, verbose=verbose) print("Calculating drift metrics") max_drift, cumulative_drift = calculate_drift_metrics(spike_times=spike_times[in_epoch], spike_clusters=spike_clusters[in_epoch], total_units=total_units, pc_features=pc_features[in_epoch, :, :], pc_feature_ind=pc_feature_ind, interval_length=params['drift_metrics_interval_s'], min_spikes_per_interval= params['drift_metrics_min_spikes_per_interval'], channel_locations= channel_locations, verbose=verbose) if cluster_ids is None: cluster_ids_out = np.arange(total_units) else: cluster_ids_out = cluster_ids epoch_name = [epoch.name] * len(cluster_ids_out) metrics = pd.concat((metrics, pd.DataFrame(data=OrderedDict((('cluster_id', cluster_ids_out), ('firing_rate', firing_rate), ('presence_ratio', presence_ratio), ('isi_violation', isi_viol), ('amplitude_cutoff', amplitude_cutoff), ('isolation_distance', isolation_distance), ('l_ratio', l_ratio), ('d_prime', d_prime), ('nn_hit_rate', nn_hit_rate), ('nn_miss_rate', nn_miss_rate), ('silhouette_score', silhouette_score), ('max_drift', max_drift), ('cumulative_drift', cumulative_drift), ('epoch_name', epoch_name), ))))) return metrics # =============================================================== # HELPER FUNCTIONS TO LOOP THROUGH CLUSTERS: # =============================================================== def calculate_isi_violations(spike_times, spike_clusters, total_units, isi_threshold, min_isi, duration, spike_cluster_subset=None, verbose=True): if spike_cluster_subset is not None: cluster_ids = spike_cluster_subset else: cluster_ids = np.unique(spike_clusters) viol_rates = np.zeros((total_units,)) for idx, cluster_id in enumerate(cluster_ids): if verbose: printProgressBar(cluster_id + 1, total_units) for_this_cluster = (spike_clusters == cluster_id) viol_rates[cluster_id], num_violations = isi_violations(spike_times[for_this_cluster], duration=duration, isi_threshold=isi_threshold, min_isi=min_isi) return viol_rates def calculate_presence_ratio(spike_times, spike_clusters, total_units, duration, spike_cluster_subset=None, verbose=True): if spike_cluster_subset is not None: cluster_ids = spike_cluster_subset else: cluster_ids = np.unique(spike_clusters) ratios = np.zeros((total_units,)) for idx, cluster_id in enumerate(cluster_ids): if verbose: printProgressBar(cluster_id + 1, total_units) for_this_cluster = (spike_clusters == cluster_id) ratios[cluster_id] = presence_ratio(spike_times[for_this_cluster], duration=duration) return ratios def calculate_num_spikes(spike_times, spike_clusters, total_units, spike_cluster_subset=None, verbose=True): num_spikes = np.zeros((total_units,)) if spike_cluster_subset is not None: cluster_ids = spike_cluster_subset else: cluster_ids = np.unique(spike_clusters) for idx, cluster_id in enumerate(cluster_ids): if verbose: printProgressBar(cluster_id + 1, total_units) for_this_cluster = (spike_clusters == cluster_id) num_spikes[cluster_id] = len(spike_times[for_this_cluster]) return num_spikes def calculate_firing_rates(spike_times, spike_clusters, total_units, duration, spike_cluster_subset=None, verbose=True): if spike_cluster_subset is not None: cluster_ids = spike_cluster_subset else: cluster_ids = np.unique(spike_clusters) firing_rates = np.zeros((total_units,)) for idx, cluster_id in enumerate(cluster_ids): if verbose: printProgressBar(cluster_id + 1, total_units) for_this_cluster = (spike_clusters == cluster_id) firing_rates[cluster_id] = firing_rate(spike_times[for_this_cluster], duration=duration) return firing_rates def calculate_amplitude_cutoff(spike_clusters, amplitudes, total_units, spike_cluster_subset=None, verbose=True): if spike_cluster_subset is not None: cluster_ids = spike_cluster_subset else: cluster_ids = np.unique(spike_clusters) amplitude_cutoffs = np.zeros((total_units,)) for idx, cluster_id in enumerate(cluster_ids): if verbose: printProgressBar(cluster_id + 1, total_units) for_this_cluster = (spike_clusters == cluster_id) amplitude_cutoffs[cluster_id] = amplitude_cutoff(amplitudes[for_this_cluster]) return amplitude_cutoffs def calculate_pc_metrics(spike_clusters, total_units, pc_features, pc_feature_ind, num_channels_to_compare, max_spikes_for_cluster, spikes_for_nn, n_neighbors, channel_locations, min_num_pcs=10, metric_names=None, seed=None, spike_cluster_subset=None, verbose=True): """ Computes metrics from projection of waveforms to principal components including: isolation distance, l ratio, d prime, nn hit rate, nn miss rate Parameters ---------- spike_clusters: numpy.ndarray (num_spikes,) Unit ID for each spike time total_units: int Total number of units pc_features: numpy.ndarray (num_spikes, num_pcs, num_channels) Pre-computed PCs for blocks of channels around each spike pc_feature_ind: numpy.ndarray (num_units, num_channels) Channel indices of PCs for each unit num_channels_to_compare: int Number of channels around the max channel over which to compute the metrics (e.g. only units from these channels will be considered for the nearest neighbor metrics) max_spikes_for_cluster: int Total number of spikes to use for computing the metrics spikes_for_nn: int Number of spikes in a unit to use for computing nearest neighbor metrics (nn_hit_rate, nn_miss_rate) n_neighbors: int Number of nearest neighbor spikes to compare membership channel_locations: array, (channels, 2) (x,y) location of channels; used to identify neighboring channels min_num_pcs: int, default=10 Minimum number of spikes a unit must have to compute these metrics metric_names: list of str, default=None List of metrics to compute seed: int, default=None Random seed for subsampling spikes from the unit spike_cluster_subset: numpy.array (units,), default=None If specified compute metrics for only these units verbose: bool, default=True Prints out progress bar if True Returns (all 1d numpy.arrays) ------- isolation_distances l_ratios d_primes nn_hit_rates nn_miss_rates """ if metric_names is None: metric_names = ['isolation_distance', 'l_ratio', 'd_prime', 'nearest_neighbor'] if num_channels_to_compare > channel_locations.shape[0]: num_channels_to_compare = channel_locations.shape[0] all_cluster_ids = np.unique(spike_clusters) if spike_cluster_subset is not None: cluster_ids = spike_cluster_subset else: cluster_ids = all_cluster_ids peak_channels = np.zeros((total_units,), dtype='uint16') neighboring_channels = np.zeros((total_units, num_channels_to_compare)) isolation_distances = np.zeros((total_units,)) l_ratios = np.zeros((total_units,)) d_primes = np.zeros((total_units,)) nn_hit_rates = np.zeros((total_units,)) nn_miss_rates = np.zeros((total_units,)) for idx, cluster_id in enumerate(all_cluster_ids): for_unit = np.squeeze(spike_clusters == cluster_id) pc_max = np.argmax(np.mean(pc_features[for_unit, 0, :], 0)) peak_channels[idx] = pc_feature_ind[idx, pc_max] # find neighboring channels neighboring_channels[idx] = find_neighboring_channels(pc_feature_ind[idx, pc_max], pc_feature_ind[idx, :], num_channels_to_compare, channel_locations) for idx, cluster_id in enumerate(cluster_ids): if verbose: printProgressBar(idx + 1, total_units) peak_channel = peak_channels[idx] # units_for_channel: index (not ID) of units defined at the target unit's peak channel units_for_channel, channel_index = np.unravel_index(np.where(pc_feature_ind.flatten() == peak_channel)[0], pc_feature_ind.shape) # units_in_range: list of bool, True for units whose peak channels are in the neighborhood of target unit units_in_range = [channel in neighboring_channels[idx] for channel in peak_channels[units_for_channel]] channels_to_use = neighboring_channels[idx] # only get index of units who are in the neighborhood of target unit units_for_channel = units_for_channel[units_in_range] spike_counts = np.zeros(units_for_channel.shape) for idx2, cluster_id2 in enumerate(units_for_channel): spike_counts[idx2] = np.sum(spike_clusters == all_cluster_ids[cluster_id2]) # index of target unit within the subset of units in its neighborhood (including itself) this_unit_idx = np.where(units_for_channel == idx)[0] if spike_counts[this_unit_idx] > max_spikes_for_cluster: relative_counts = spike_counts / spike_counts[this_unit_idx] * max_spikes_for_cluster else: relative_counts = spike_counts all_pcs = np.zeros((0, pc_features.shape[1], channels_to_use.size)) all_labels = np.zeros((0,)) for idx2, cluster_id2 in enumerate(units_for_channel): try: channel_mask = make_channel_mask(cluster_id2, pc_feature_ind, channels_to_use) except IndexError: # Occurs when pc_feature_ind does not contain all channels of interest # In that case, we will exclude this unit for the calculation print('Unit outside the range set by channel_to_use, skipping...') pass else: subsample = int(relative_counts[idx2]) index_mask = make_index_mask(spike_clusters, all_cluster_ids[cluster_id2], min_num=0, max_num=subsample, seed=seed) pcs = get_unit_pcs(pc_features, index_mask, channel_mask) labels = np.ones((pcs.shape[0],)) * all_cluster_ids[cluster_id2] all_pcs = np.concatenate((all_pcs, pcs), 0) all_labels = np.concatenate((all_labels, labels), 0) all_pcs = np.reshape(all_pcs, (all_pcs.shape[0], pc_features.shape[1] * channels_to_use.size)) if all_pcs.shape[0] > min_num_pcs: if 'isolation_distance' in metric_names or 'l_ratio' in metric_names: isolation_distances[idx], l_ratios[idx] = mahalanobis_metrics(all_pcs, all_labels, cluster_id) else: isolation_distances[idx] = np.nan l_ratios[idx] = np.nan if 'd_prime' in metric_names: d_primes[idx] = lda_metrics(all_pcs, all_labels, cluster_id) else: d_primes[idx] = np.nan if 'nearest_neighbor' in metric_names: nn_hit_rates[idx], nn_miss_rates[idx] = nearest_neighbors_metrics(all_pcs, all_labels, cluster_id, spikes_for_nn, n_neighbors) else: nn_hit_rates[idx] = np.nan nn_miss_rates[idx] = np.nan else: print(f'Unit {str(cluster_id)} only has ' + str( all_pcs.shape[0]) + ' spikes, which is not enough to compute metric; assigning nan...') isolation_distances[idx] = np.nan l_ratios[idx] = np.nan d_primes[idx] = np.nan nn_hit_rates[idx] = np.nan nn_miss_rates[idx] = np.nan return isolation_distances, l_ratios, d_primes, nn_hit_rates, nn_miss_rates def calculate_silhouette_score(spike_clusters, total_units, pc_features, pc_feature_ind, spikes_for_silhouette, seed=None, spike_cluster_subset=None, verbose=True): random_spike_inds = np.random.RandomState(seed=seed).permutation(spike_clusters.size) random_spike_inds = random_spike_inds[:spikes_for_silhouette] num_pc_features = pc_features.shape[1] num_channels = np.max(pc_feature_ind) + 1 all_pcs = np.zeros((spikes_for_silhouette, num_channels * num_pc_features)) for idx, i in enumerate(random_spike_inds): unit_id = spike_clusters[i] channels = pc_feature_ind[unit_id, :] for j in range(0, num_pc_features): all_pcs[idx, channels + num_channels * j] = pc_features[i, j, :] cluster_labels = spike_clusters[random_spike_inds] all_cluster_ids = np.unique(spike_clusters) if spike_cluster_subset is not None: cluster_ids = spike_cluster_subset else: cluster_ids = all_cluster_ids SS = np.empty((total_units, total_units)) SS[:] = np.nan seen_unit_pairs = set() for idx1, i in enumerate(cluster_ids): if verbose: printProgressBar(idx1 + 1, len(cluster_ids)) for idx2, j in enumerate(all_cluster_ids): if (i, j) not in seen_unit_pairs and (j, i) not in seen_unit_pairs and i != j: inds = np.in1d(cluster_labels, np.array([i, j])) X = all_pcs[inds, :] labels = cluster_labels[inds] if len(labels) > 2: SS[i, j] = silhouette_score(X, labels, random_state=seed) seen_unit_pairs.add((i, j)) with warnings.catch_warnings(): warnings.simplefilter("ignore") a = np.nanmin(SS, 0) b = np.nanmin(SS, 1) return np.array([np.nanmin([a, b]) for a, b in zip(a, b)]) def calculate_drift_metrics(spike_times, spike_clusters, total_units, pc_features, pc_feature_ind, interval_length, min_spikes_per_interval, vertical_channel_spacing=10, channel_locations=None, spike_cluster_subset=None, verbose=True): max_drift = np.zeros((total_units,)) cumulative_drift = np.zeros((total_units,)) positions = get_spike_positions(spike_clusters, pc_features, pc_feature_ind, channel_locations, vertical_channel_spacing) interval_starts = np.arange(np.min(spike_times), np.max(spike_times), interval_length) interval_ends = interval_starts + interval_length if spike_cluster_subset is not None: cluster_ids = spike_cluster_subset else: cluster_ids = np.unique(spike_clusters) for idx, cluster_id in enumerate(cluster_ids): if verbose: printProgressBar(cluster_id + 1, len(cluster_ids)) in_cluster = spike_clusters == cluster_id times_for_cluster = spike_times[in_cluster] positions_for_cluster = positions[in_cluster] median_positions = [] for t1, t2 in zip(interval_starts, interval_ends): in_range = (times_for_cluster > t1) * (times_for_cluster < t2) if np.sum(in_range) >= min_spikes_per_interval: median_positions.append(np.median(positions_for_cluster[in_range], 0)) else: median_positions.append([np.nan, np.nan]) median_positions = np.array(median_positions) # Extract emi-matrix of shifts in positions (used to extract max_drift and cum_drift) position_diffs = np.zeros((len(median_positions), len(median_positions))) for i, pos_i in enumerate(median_positions): for j, pos_j in enumerate(median_positions): if j > i: if not np.isnan(pos_i[0]) and not
np.isnan(pos_j[0])
numpy.isnan
# -*- coding: utf-8 -*- """ Created on Tue Nov 15 12:05:40 2016 @author: sjjoo """ #%% #import sys import mne #import imageio from mne.utils import run_subprocess, logger import os from os import path as op import copy #import shutil import numpy as np from numpy.random import randn from scipy import stats as stats #import scipy.io as sio import time from functools import partial from mne.stats import (spatio_temporal_cluster_1samp_test, summarize_clusters_stc) from mne import set_config import matplotlib.pyplot as plt import matplotlib.font_manager as font_manager from pandas import DataFrame from sklearn import linear_model import statsmodels.api as sm #import csv os.chdir(os.path.join("D:\\", "git","BrainTools","projects","NLR_MEG")) from plotit3 import plotit3 from plotsig3 import plotsig3 from plotit2 import plotit2 from plotsig2 import plotsig2 from plotcorr3 import plotcorr3 set_config('MNE_MEMMAP_MIN_SIZE', '1M') set_config('MNE_CACHE_DIR', '.tmp') mne.set_config('MNE_USE_CUDA', 'true') this_env = copy.copy(os.environ) fs_dir = 'D://subjects' this_env['SUBJECTS_DIR'] = fs_dir raw_dir = os.path.join("D:\\","NLR_MEG") os.chdir(raw_dir) import seaborn as sns sns.set(style="darkgrid") #%% subs = ['NLR_102_RS','NLR_103_AC','NLR_105_BB','NLR_110_HH','NLR_127_AM', 'NLR_130_RW','NLR_132_WP','NLR_133_ML','NLR_145_AC','NLR_150_MG', 'NLR_151_RD','NLR_152_TC','NLR_160_EK','NLR_161_AK','NLR_163_LF', 'NLR_164_SF','NLR_170_GM','NLR_172_TH','NLR_174_HS','NLR_179_GM', 'NLR_180_ZD','NLR_187_NB','NLR_201_GS','NLR_203_AM', 'NLR_204_AM','NLR_205_AC','NLR_206_LM','NLR_207_AH','NLR_211_LB', 'NLR_GB310','NLR_KB218','NLR_JB423','NLR_GB267','NLR_JB420', 'NLR_HB275','NLR_197_BK','NLR_GB355','NLR_GB387','NLR_HB205', 'NLR_IB217','NLR_IB319','NLR_JB227','NLR_JB486','NLR_KB396', 'NLR_IB357'] session1 = ['102_rs160618','103_ac150609','105_bb150713','110_hh160608','127_am151022', '130_rw151221','132_wp160919','133_ml151124','145_ac160621','150_mg160606', '151_rd160620','152_tc160422','160_ek160627','161_ak160627','163_lf160707', '164_sf160707','170_gm160613','172_th160614','174_hs160620','179_gm160701', '180_zd160621','187_nb161017','201_gs150818','203_am150831', '204_am150829','205_ac151123','206_lm151119','207_ah160608','211_lb160617', 'nlr_gb310170614','nlr_kb218170619','nlr_jb423170620','nlr_gb267170620','nlr_jb420170621', 'nlr_hb275170622','197_bk170622','nlr_gb355170606','nlr_gb387170608','nlr_hb205170825', 'nlr_ib217170831','nlr_ib319170825','nlr_jb227170811','nlr_jb486170803','nlr_kb396170808', 'nlr_ib357170912'] subs2 = ['NLR_102_RS','NLR_110_HH','NLR_145_AC','NLR_150_MG', 'NLR_152_TC','NLR_160_EK','NLR_161_AK','NLR_162_EF','NLR_163_LF', # 162, 201 only had the second session 'NLR_164_SF','NLR_170_GM','NLR_172_TH','NLR_174_HS','NLR_179_GM', # 'NLR_170_GM': no EOG channel 'NLR_180_ZD','NLR_201_GS', 'NLR_204_AM','NLR_205_AC','NLR_207_AH','NLR_210_SB','NLR_211_LB', 'NLR_GB310','NLR_KB218','NLR_GB267','NLR_JB420', 'NLR_HB275','NLR_GB355'] session2 = ['102_rs160815','110_hh160809','145_ac160823','150_mg160825', '152_tc160623','160_ek160915','161_ak160916','162_ef160829','163_lf160920', '164_sf160920','170_gm160822','172_th160825','174_hs160829','179_gm160913', '180_zd160826','201_gs150925', '204_am151120','205_ac160202','207_ah160809','210_sb160822','211_lb160823', 'nlr_gb310170829','nlr_kb218170829','nlr_gb267170911','nlr_jb420170828','nlr_hb275170828','nlr_gb355170907'] subIndex1 = np.nonzero(np.in1d(subs,subs2))[0] subIndex2 = np.empty([1,len(subIndex1)],dtype=int)[0] for i in range(0,len(subIndex1)): subIndex2[i] = np.nonzero(np.in1d(subs2,subs[subIndex1[i]]))[0] twre_index = [87,93,108,66,116,85,110,71,84,92,87,86,63,81,60,55,71,63,68,67,64,127,79, 73,59,84,79,91,57,67,77,57,80,53,72,58,85,79,116,117,107,78,66,101,67] twre_index = np.array(twre_index) brs = [87,102,108,78,122,91,121,77,91,93,93,88,75,90,66,59,81,84,81,72,71,121, 81,75,66,90,93,101,56,78,83,69,88,60,88,73,82,81,115,127,124,88,68,110,96] brs = np.array(brs) twre_index1 = twre_index[subIndex1] twre_index2_all = [90,76,94,115, 85,75,82,64,75, 63,83,77,84,75, 68,79, 62,90,105,75,71, 69,83,76,62,73,94] twre_index2_all = np.array(twre_index2_all) twre_index2 = twre_index2_all[subIndex2] brs1 = brs[subIndex1] brs2_all = [98,88,102,110,99,91,88,79,105,86,81,88,89,77,83,81,86,98,116,104,86,90,91,97,57,99,102] brs2_all = np.array(brs2_all) brs2 = brs2_all[subIndex2] twre_diff = np.subtract(twre_index2,twre_index1) brs_diff = np.subtract(brs2,brs1) swe_raw = [62, 76, 74, 42, 75, 67, 76, 21, 54, 35, 21, 61, 45, 48, 17, 11, 70, 19, 10, 57, 12, 86, 53, 51, 13, 28, 54, 25, 27, 10, 66, 18, 18, 20, 37, 23, 17, 36, 79, 82, 74, 64, 42, 78, 35] swe_raw = np.array(swe_raw) lwid = [49,60,60,51,62,54,65,23,44,35,31,52,44,39,27,30,57,33,24,48,19,66,45, 43,22,33,51,36,35,25,55,34,26,26,39,27,24,29,61,71,65,56,36,62,51] lwid = np.array(lwid) rf = [88,103,95,67,120,85,108,71,91,87,88,76,76,93,60,40,86,61,66,81,59,130,93,85,49,76,90,96,42,64,74,49,84,56, 76,61,80,89,111,120,132,88,65,102,72] rf = np.array(rf) age = [125.6885, 132.9501, 122.0434, 138.4349, 97.6347, 138.1420, 108.2457, 98.0631, 105.8147, 89.9132, 87.6465, 131.8660, 123.7174, 95.959, 112.416, 133.8042, 152.4639, 103.4823, 89.8475, 138.4020, 93.8568, 117.0814, 123.6202, 122.9304, 109.1656, 90.6058, 111.9593,86.0381,147.2063,95.8699,148.0802,122.5896,88.7162,123.0495,110.6645,105.3069,88.9143,95.2879,106.2852, 122.2915,114.4389,136.1496,128.6246,137.9216,122.7528] age = np.divide(age, 12) wasi_vocab = [51,62,52,39,80,59,56,np.nan,52,47,64,44,49,48,55,53,44,44,53,45,62, 76,45,55,48,56,41,43,40,52,54,50,62,67,59,48,60,60,62,79,74,44,49,50,60] wasi_mr = [47,64,44,58,60,51,56,np.nan,56,43,37,37,51,55,36,33,52,48,49,41,51, 56,56,53,42,41,46,51,34,51,50,51,55,53,44,44,47,59,66,74,65,53,54,47,60] n_subjects = len(subs) c_table = ( (0.6510, 0.8078, 0.8902), # Blue, Green, Red, Orange, Purple, yellow (0.1216, 0.4706, 0.7059), (0.6980, 0.8745, 0.5412), (0.2000, 0.6275, 0.1725), (0.9843, 0.6039, 0.6000), (0.8902, 0.1020, 0.1098), (0.9922, 0.7490, 0.4353), (1.0000, 0.4980, 0), (0.7922, 0.6980, 0.8392), (0.4157, 0.2392, 0.6039), (1.0000, 1.0000, 0.6000), (0.6941, 0.3490, 0.1569)) fname_data = op.join(raw_dir, 'session1_data_loose_depth8_normal.npy') #%% """ Here we load the data for Session 1 """ t0 = time.time() os.chdir(raw_dir) X13 = np.load(fname_data) orig_times = np.load('session1_times.npy') tstep = np.load('session1_tstep.npy') n_epochs = np.load('session1_n_averages.npy') tmin = -0.1 """ Downsample the data """ ss = 3 # was originally 2 sample = np.arange(0,len(orig_times),ss) sRate = 600 / ss times = orig_times[sample] tstep = ss*tstep X11 = X13[:,sample,:,:] del X13 X11 = np.abs(X11) print("\n\nElasped time: %0.2d mins %0.2d secs\n\n" % (divmod(time.time()-t0, 60))) #%% """ Grouping subjects """ reading_thresh = 80 m1 = np.logical_and(np.transpose(twre_index) > reading_thresh, np.transpose(age) <= 13) m2 = np.logical_and(np.transpose(twre_index) <= reading_thresh, np.transpose(age) <= 13) #m1 = np.logical_and(np.transpose(brs) >= reading_thresh, np.transpose(age) <= 13) #m2 = np.logical_and(np.transpose(brs) < reading_thresh, np.transpose(age) <= 13) #m1 = np.logical_and(np.transpose(swe_raw) >= np.median(swe_raw), np.transpose(age) <= 13) #m2 = np.logical_and(np.transpose(swe_raw) < np.median(swe_raw), np.transpose(age) <= 13) orig_twre = twre_index orig_age = age orig_swe = swe_raw m3 = np.mean(n_epochs,axis=1) < 40 m1[np.where(m3)] = False m2[np.where(m3)] = False twre_index = twre_index[np.where(~m3)[0]] age = age[np.where(~m3)[0]] #swe_raw = swe_raw[np.where(~m3)[0]] good_readers = np.where(m1)[0] poor_readers = np.where(m2)[0] a1 = np.transpose(age) > np.mean(age) a2 = np.logical_not(a1) a1[np.where(m3)] = False a2[np.where(m3)] = False old_readers = np.where(a1)[0] young_readers = np.where(a2)[0] #wasi_vocab_G = [wasi_vocab[i] for i in good_readers] #wasi_vocab_P = [wasi_vocab[i] for i in poor_readers] #wasi_mr_G = [wasi_mr[i] for i in good_readers] #wasi_mr_P = [wasi_mr[i] for i in poor_readers] #age_G = [orig_age[i] for i in good_readers] #age_P = [orig_age[i] for i in poor_readers] #twre_G = [orig_twre[i] for i in good_readers] #twre_P = [orig_twre[i] for i in poor_readers] # #n,p = stats.ttest_ind(wasi_vocab_G,wasi_vocab_P,nan_policy='omit') #n,p = stats.ttest_ind(wasi_mr_G,wasi_mr_P,nan_policy='omit') #n,p = stats.ttest_ind(age_G,age_P,nan_policy='omit') #n,p = stats.ttest_ind(twre_G,twre_P,nan_policy='omit') all_subject = [] all_subject.extend(good_readers) all_subject.extend(poor_readers) all_subject.sort() fs_vertices = [np.arange(10242)] * 2 n_epoch = np.empty((45,4)) n_epoch[:,0] = [np.int(n_epochs[i,0]) for i in range(0,45)] n_epoch[:,1] = [np.int(n_epochs[i,3]) for i in range(0,45)] n_epoch[:,2] = [np.int(n_epochs[i,5]) for i in range(0,45)] n_epoch[:,3] = [np.int(n_epochs[i,8]) for i in range(0,45)] removal = np.sum(60 - n_epoch, axis = 1) a = [removal[i] for i in zip(good_readers)] b = [removal[i] for i in zip(poor_readers)] c = [removal[i] for i in zip(all_subject)] d = [removal[i] for i in zip(young_readers)] e = [removal[i] for i in zip(old_readers)] stats.ttest_ind(a,b) stats.ttest_ind(d,e) stats.pearsonr(c,age) stats.pearsonr(c,twre_index) figureDir = '%s/figures' % raw_dir plt.figure() plt.clf() ax = plt.subplot() fit = np.polyfit(age, c, deg=1) ax.plot(age, fit[0] * age + fit[1], color=[0,0,0]) ax.plot(age, c, 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) plt.xlabel('Age') plt.ylabel('# of rejected trials') os.chdir(figureDir) # plt.savefig('Corr_reject_age.png',dpi=600,papertype='letter',format='png') # plt.savefig('Corr_reject_age.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plt.figure() plt.clf() ax = plt.subplot() fit = np.polyfit(twre_index, c, deg=1) ax.plot(twre_index, fit[0] * twre_index + fit[1], color=[0,0,0]) ax.plot(twre_index, c, 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) plt.xlabel('Reading skill') plt.ylabel('# of rejected trials') os.chdir(figureDir) # plt.savefig('Corr_reject_reading.png',dpi=600,papertype='letter',format='png') # plt.savefig('Corr_reject_reading.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #%% """ Read HCP labels """ labels = mne.read_labels_from_annot('fsaverage', parc='HCPMMP1', surf_name='white', subjects_dir=fs_dir) #regexp=aparc_label_name #aparc_label_name = 'PHT_ROI'#'_IP'#'IFSp_ROI'#'STSvp_ROI'#'STSdp_ROI'#'PH_ROI'#'TE2p_ROI' #'SFL_ROI' #'IFSp_ROI' #'TE2p_ROI' #'inferiortemporal' #'pericalcarine' anat_label = mne.read_labels_from_annot('fsaverage', parc='aparc.a2009s',surf_name='white', subjects_dir=fs_dir) #, regexp=aparc_label_name) #%% #TE2p_mask_lh = mne.Label.get_vertices_used(TE2p_label[0]) #TE2p_mask_rh = mne.Label.get_vertices_used(TE2p_label[1]) PHT_label_lh = [label for label in labels if label.name == 'L_PHT_ROI-lh'][0] PHT_label_rh = [label for label in labels if label.name == 'R_PHT_ROI-rh'][0] TE1p_label_lh = [label for label in labels if label.name == 'L_TE1p_ROI-lh'][0] TE1p_label_rh = [label for label in labels if label.name == 'R_TE1p_ROI-rh'][0] TE2p_label_lh = [label for label in labels if label.name == 'L_TE2p_ROI-lh'][0] TE2p_label_rh = [label for label in labels if label.name == 'R_TE2p_ROI-rh'][0] TE2a_label_lh = [label for label in labels if label.name == 'L_TE2a_ROI-lh'][0] TE2a_label_rh = [label for label in labels if label.name == 'R_TE2a_ROI-rh'][0] TF_label_lh = [label for label in labels if label.name == 'L_TF_ROI-lh'][0] TF_label_rh = [label for label in labels if label.name == 'R_TF_ROI-rh'][0] PH_label_lh = [label for label in labels if label.name == 'L_PH_ROI-lh'][0] PH_label_rh = [label for label in labels if label.name == 'R_PH_ROI-rh'][0] FFC_label_lh = [label for label in labels if label.name == 'L_FFC_ROI-lh'][0] FFC_label_rh = [label for label in labels if label.name == 'R_FFC_ROI-rh'][0] a8C_label_lh = [label for label in labels if label.name == 'L_8C_ROI-lh'][0] a8C_label_rh = [label for label in labels if label.name == 'R_8C_ROI-rh'][0] p946v_label_lh = [label for label in labels if label.name == 'L_p9-46v_ROI-lh'][0] p946v_label_rh = [label for label in labels if label.name == 'R_p9-46v_ROI-rh'][0] IFSp_label_lh = [label for label in labels if label.name == 'L_IFSp_ROI-lh'][0] IFSp_label_rh = [label for label in labels if label.name == 'R_IFSp_ROI-rh'][0] IFSa_label_lh = [label for label in labels if label.name == 'L_IFSa_ROI-lh'][0] IFSa_label_rh = [label for label in labels if label.name == 'R_IFSa_ROI-rh'][0] IFJp_label_lh = [label for label in labels if label.name == 'L_IFJp_ROI-lh'][0] IFJp_label_rh = [label for label in labels if label.name == 'R_IFJp_ROI-rh'][0] IFJa_label_lh = [label for label in labels if label.name == 'L_IFJa_ROI-lh'][0] IFJa_label_rh = [label for label in labels if label.name == 'R_IFJa_ROI-rh'][0] a45_label_lh = [label for label in labels if label.name == 'L_45_ROI-lh'][0] a45_label_rh = [label for label in labels if label.name == 'R_45_ROI-rh'][0] a44_label_lh = [label for label in labels if label.name == 'L_44_ROI-lh'][0] a44_label_rh = [label for label in labels if label.name == 'R_44_ROI-rh'][0] a43_label_lh = [label for label in labels if label.name == 'L_43_ROI-lh'][0] a43_label_rh = [label for label in labels if label.name == 'R_43_ROI-rh'][0] a9_46v_lh = [label for label in labels if label.name == 'L_a9-46v_ROI-lh'][0] a9_46v_rh = [label for label in labels if label.name == 'R_a9-46v_ROI-rh'][0] PGi_label_lh = [label for label in labels if label.name == 'L_PGi_ROI-lh'][0] PGi_label_rh = [label for label in labels if label.name == 'R_PGi_ROI-rh'][0] PGs_label_lh = [label for label in labels if label.name == 'L_PGs_ROI-lh'][0] PGs_label_rh = [label for label in labels if label.name == 'R_PGs_ROI-rh'][0] STSvp_label_lh = [label for label in labels if label.name == 'L_STSvp_ROI-lh'][0] STSvp_label_rh = [label for label in labels if label.name == 'R_STSvp_ROI-rh'][0] STSdp_label_lh = [label for label in labels if label.name == 'L_STSdp_ROI-lh'][0] STSdp_label_rh = [label for label in labels if label.name == 'R_STSdp_ROI-rh'][0] STSva_label_lh = [label for label in labels if label.name == 'L_STSva_ROI-lh'][0] STSva_label_rh = [label for label in labels if label.name == 'R_STSva_ROI-rh'][0] STSda_label_lh = [label for label in labels if label.name == 'L_STSda_ROI-lh'][0] STSda_label_rh = [label for label in labels if label.name == 'R_STSda_ROI-rh'][0] TPOJ1_label_lh = [label for label in labels if label.name == 'L_TPOJ1_ROI-lh'][0] TPOJ1_label_rh = [label for label in labels if label.name == 'R_TPOJ1_ROI-rh'][0] TPOJ2_label_lh = [label for label in labels if label.name == 'L_TPOJ2_ROI-lh'][0] TPOJ2_label_rh = [label for label in labels if label.name == 'R_TPOJ2_ROI-rh'][0] V1_label_lh = [label for label in labels if label.name == 'L_V1_ROI-lh'][0] V1_label_rh = [label for label in labels if label.name == 'R_V1_ROI-rh'][0] V4_label_lh = [label for label in labels if label.name == 'L_V4_ROI-lh'][0] V4_label_rh = [label for label in labels if label.name == 'R_V4_ROI-rh'][0] LIPd_label_lh = [label for label in labels if label.name == 'L_LIPd_ROI-lh'][0] LIPd_label_rh = [label for label in labels if label.name == 'R_LIPd_ROI-rh'][0] LIPv_label_lh = [label for label in labels if label.name == 'L_LIPv_ROI-lh'][0] LIPv_label_rh = [label for label in labels if label.name == 'R_LIPv_ROI-rh'][0] IPS1_label_lh = [label for label in labels if label.name == 'L_IPS1_ROI-lh'][0] IPS1_label_rh = [label for label in labels if label.name == 'R_IPS1_ROI-rh'][0] _7Am_label_lh = [label for label in labels if label.name == 'L_7Am_ROI-lh'][0] _7Am_label_rh = [label for label in labels if label.name == 'R_7Am_ROI-rh'][0] VIP_label_lh = [label for label in labels if label.name == 'L_VIP_ROI-lh'][0] VIP_label_rh = [label for label in labels if label.name == 'R_VIP_ROI-rh'][0] _7AL_label_lh = [label for label in labels if label.name == 'L_7AL_ROI-lh'][0] _7AL_label_rh = [label for label in labels if label.name == 'R_7AL_ROI-rh'][0] PBelt_label_lh = [label for label in labels if label.name == 'L_PBelt_ROI-lh'][0] PBelt_label_rh = [label for label in labels if label.name == 'R_PBelt_ROI-rh'][0] PSL_label_lh = [label for label in labels if label.name == 'L_PSL_ROI-lh'][0] PSL_label_rh = [label for label in labels if label.name == 'R_PSL_ROI-rh'][0] LBelt_label_lh = [label for label in labels if label.name == 'L_LBelt_ROI-lh'][0] LBelt_label_rh = [label for label in labels if label.name == 'R_LBelt_ROI-rh'][0] A1_label_lh = [label for label in labels if label.name == 'L_A1_ROI-lh'][0] A1_label_rh = [label for label in labels if label.name == 'R_A1_ROI-rh'][0] MBelt_label_lh = [label for label in labels if label.name == 'L_MBelt_ROI-lh'][0] MBelt_label_rh = [label for label in labels if label.name == 'R_MBelt_ROI-rh'][0] RI_label_lh = [label for label in labels if label.name == 'L_RI_ROI-lh'][0] RI_label_rh = [label for label in labels if label.name == 'R_RI_ROI-rh'][0] A4_label_lh = [label for label in labels if label.name == 'L_A4_ROI-lh'][0] A4_label_rh = [label for label in labels if label.name == 'R_A4_ROI-rh'][0] PFcm_label_lh = [label for label in labels if label.name == 'L_PFcm_ROI-lh'][0] PFcm_label_rh = [label for label in labels if label.name == 'R_PFcm_ROI-rh'][0] PFm_label_lh = [label for label in labels if label.name == 'L_PFm_ROI-lh'][0] PFm_label_rh = [label for label in labels if label.name == 'R_PFm_ROI-rh'][0] _4_label_lh = [label for label in labels if label.name == 'L_4_ROI-lh'][0] _4_label_rh = [label for label in labels if label.name == 'R_4_ROI-rh'][0] _1_label_lh = [label for label in labels if label.name == 'L_1_ROI-lh'][0] _1_label_rh = [label for label in labels if label.name == 'R_1_ROI-rh'][0] _2_label_lh = [label for label in labels if label.name == 'L_2_ROI-lh'][0] _2_label_rh = [label for label in labels if label.name == 'R_2_ROI-rh'][0] _3a_label_lh = [label for label in labels if label.name == 'L_3a_ROI-lh'][0] _3a_label_rh = [label for label in labels if label.name == 'R_3a_ROI-rh'][0] _3b_label_lh = [label for label in labels if label.name == 'L_3b_ROI-lh'][0] _3b_label_rh = [label for label in labels if label.name == 'R_3b_ROI-rh'][0] _43_label_lh = [label for label in labels if label.name == 'L_43_ROI-lh'][0] _43_label_rh = [label for label in labels if label.name == 'R_43_ROI-rh'][0] _6r_label_lh = [label for label in labels if label.name == 'L_6r_ROI-lh'][0] _6r_label_rh = [label for label in labels if label.name == 'R_6r_ROI-rh'][0] OP1_label_lh = [label for label in labels if label.name == 'L_OP1_ROI-lh'][0] OP1_label_rh = [label for label in labels if label.name == 'R_OP1_ROI-rh'][0] OP23_label_lh = [label for label in labels if label.name == 'L_OP2-3_ROI-lh'][0] OP23_label_rh = [label for label in labels if label.name == 'R_OP2-3_ROI-rh'][0] OP4_label_lh = [label for label in labels if label.name == 'L_OP4_ROI-lh'][0] OP4_label_rh = [label for label in labels if label.name == 'R_OP4_ROI-rh'][0] PFop_label_lh = [label for label in labels if label.name == 'L_PFop_ROI-lh'][0] PFop_label_rh = [label for label in labels if label.name == 'R_PFop_ROI-rh'][0] A5_label_lh = [label for label in labels if label.name == 'L_A5_ROI-lh'][0] A5_label_rh = [label for label in labels if label.name == 'R_A5_ROI-rh'][0] STV_label_lh = [label for label in labels if label.name == 'L_STV_ROI-lh'][0] STV_label_rh = [label for label in labels if label.name == 'R_STV_ROI-rh'][0] RI_label_lh = [label for label in labels if label.name == 'L_RI_ROI-lh'][0] RI_label_rh = [label for label in labels if label.name == 'R_RI_ROI-rh'][0] PF_label_lh = [label for label in labels if label.name == 'L_PF_ROI-lh'][0] PF_label_rh = [label for label in labels if label.name == 'R_PF_ROI-rh'][0] PFt_label_lh = [label for label in labels if label.name == 'L_PFt_ROI-lh'][0] PFt_label_rh = [label for label in labels if label.name == 'R_PFt_ROI-rh'][0] p47r_label_lh = [label for label in labels if label.name == 'L_p47r_ROI-lh'][0] p47r_label_rh = [label for label in labels if label.name == 'R_p47r_ROI-rh'][0] FOP5_label_lh = [label for label in labels if label.name == 'L_FOP5_ROI-lh'][0] FOP5_label_rh = [label for label in labels if label.name == 'R_FOP5_ROI-rh'][0] FOP4_label_lh = [label for label in labels if label.name == 'L_FOP4_ROI-lh'][0] FOP4_label_rh = [label for label in labels if label.name == 'R_FOP4_ROI-rh'][0] FOP3_label_lh = [label for label in labels if label.name == 'L_FOP3_ROI-lh'][0] FOP3_label_rh = [label for label in labels if label.name == 'R_FOP3_ROI-rh'][0] FOP2_label_lh = [label for label in labels if label.name == 'L_FOP2_ROI-lh'][0] FOP2_label_rh = [label for label in labels if label.name == 'R_FOP2_ROI-rh'][0] Ig_label_lh = [label for label in labels if label.name == 'L_Ig_ROI-lh'][0] Ig_label_rh = [label for label in labels if label.name == 'R_Ig_ROI-rh'][0] AVI_label_lh = [label for label in labels if label.name == 'L_AVI_ROI-lh'][0] AVI_label_rh = [label for label in labels if label.name == 'R_AVI_ROI-rh'][0] _47l_label_lh = [label for label in labels if label.name == 'L_47l_ROI-lh'][0] _47l_label_rh = [label for label in labels if label.name == 'R_47l_ROI-rh'][0] temp1_label_lh = [label for label in anat_label if label.name == 'Pole_occipital-lh'][0] #temp1_label_rh = [label for label in anat_label if label.name == 'parsopercularis-rh'][0] temp2_label_lh = [label for label in anat_label if label.name == 'S_occipital_ant-lh'][0] #temp2_label_rh = [label for label in anat_label if label.name == 'parsorbitalis-rh'][0] temp3_label_lh = [label for label in anat_label if label.name == 'G_and_S_occipital_inf-lh'][0] #temp3_label_rh = [label for label in anat_label if label.name == 'parstriangularis-rh'][0] temp4_label_lh = [label for label in anat_label if label.name == 'S_calcarine-lh'][0] #temp4_label_rh = [label for label in anat_label if label.name == 'precentral-rh'][0] #%% """ Lexical task: Word - Noise """ data11 = X11[:,:,all_subject,5] - X11[:,:,all_subject,8] data11 = np.transpose(data11,[2,1,0]) data11_good = X11[:,:,good_readers,5] - X11[:,:,good_readers,8] data11_good = np.transpose(data11_good,[2,1,0]) data11_poor = X11[:,:,poor_readers,5] - X11[:,:,poor_readers,8] data11_poor = np.transpose(data11_poor,[2,1,0]) """ Dot task: Word - Noise """ data12 = X11[:,:,all_subject,0] - X11[:,:,all_subject,3] data12 = np.transpose(data12,[2,1,0]) data12_good = X11[:,:,good_readers,0] - X11[:,:,good_readers,3] data12_good = np.transpose(data12_good,[2,1,0]) data12_poor = X11[:,:,poor_readers,0] - X11[:,:,poor_readers,3] data12_poor = np.transpose(data12_poor,[2,1,0]) """ Lexical task: High contrast - Low contrast """ #data12 = X11[:,31:65,all_subject,5] - X11[:,31:65,all_subject,7] #data12 = np.transpose(data12,[2,1,0]) #data12[:,:,medial_vertices] = 0. #%% """ Spatio-temporal clustering: session 1 Lexical task""" t0 = time.time() print("\n\n Start time: %s \n\n" % time.ctime()) p_threshold = 0.05 t_threshold = -stats.distributions.t.ppf(p_threshold / 2., n_subjects - 1) s_space = mne.grade_to_tris(5) # Left hemisphere s_space_lh = s_space[s_space[:,0] < 10242] #connectivity = mne.spatial_tris_connectivity(s_space_lh, remap_vertices = True) connectivity = mne.spatial_tris_connectivity(s_space) T_obs, clusters, cluster_p_values, H0 = clu = \ mne.stats.spatio_temporal_cluster_1samp_test(data11[:,:,:], n_permutations=1024, connectivity=connectivity, n_jobs=12, threshold=t_threshold) good_cluster_inds = np.where(cluster_p_values < p_threshold)[0] #fsave_vertices = [np.arange(10242), np.array([], int)] fsave_vertices = [np.arange(10242), np.arange(10242)] #fsave_vertices = [np.arange(10242), np.array([], int)] stc_all_cluster_vis = summarize_clusters_stc(clu, tstep=tstep, vertices=fsave_vertices, subject='fsaverage') print("\n\n Elasped time: %0.2d mins %0.2d secs" % (divmod(time.time()-t0, 60))) #%% """ Just source estimates """ stat_fun = partial(mne.stats.ttest_1samp_no_p) p_threshold = 0.05 t_threshold = -stats.distributions.t.ppf(p_threshold / 2., len(good_readers) - 1) temp3 = mne.SourceEstimate(np.transpose(stat_fun(data12_good[:,:,:])), fs_vertices, tmin, tstep, subject='fsaverage') brain3_1 = temp3.plot(hemi='both', subjects_dir=fs_dir, views = 'lat', initial_time=0.35, #['lat','ven','med'] clim=dict(kind='value', lims=[1.7, t_threshold, 3.5]))#clim=dict(kind='value', lims=[2, t_threshold, 7]), size=(800,800)) #%% """ Spatio-temporal clustering: session 1 Dot task""" dur_thresh = 100 t0 = time.time() T_obs, clusters, cluster_p_values, H0 = clu = \ mne.stats.permutation_cluster_1samp_test(data12[:,166:199,:], n_permutations=1024, connectivity=connectivity, n_jobs=12, threshold=t_threshold) good_cluster_inds = np.where(cluster_p_values < 0.05)[0] fsave_vertices = [np.arange(10242), np.arange(10242)] dot_stc_all_cluster_vis = summarize_clusters_stc(clu, tstep=tstep, vertices=fsave_vertices, subject='fsaverage') print("\n\nElasped time: %0.2d mins %0.2d secs" % (divmod(time.time()-t0, 60))) brain3 = dot_stc_all_cluster_vis.plot( hemi='lh', views='lateral', subjects_dir=fs_dir, time_label='Duration significant (ms)', size=(800, 800), smoothing_steps=20, clim=dict(kind='value', lims=[0, 10, 50]),background='white',foreground='black') #%% """ ROI definition """ dur_thresh = 100 """ plot(self, subject=None, surface='inflated', hemi='lh', colormap='auto', time_label='auto', smoothing_steps=10, transparent=None, alpha=1.0, time_viewer=False, subjects_dir=None, figure=None, views='lat', colorbar=True, clim='auto', cortex='classic', size=800, background='black', foreground='white', initial_time=None, time_unit='s') """ brain1 = stc_all_cluster_vis.plot( hemi='lh', views='lateral', subjects_dir=fs_dir, time_label='Duration significant (ms)', size=(800, 800), smoothing_steps=20, clim=dict(kind='value', lims=[40, dur_thresh, 200]),background='white',foreground='black') """ Sort out vertices here """ #temp_frontal_label_l = mne.Label(FOP4_label_lh.vertices, hemi='lh',name=u'sts_l',pos=FOP4_label_lh.pos, \ # values= FOP4_label_lh.values) # #brain1.add_label(temp_frontal_label_l, borders=True, color=c_table[8]) # #lh_label = stc_all_cluster_vis.in_label(temp_frontal_label_l) #data = lh_label.data #lh_label.data[data < dur_thresh] = 0. # #temp_labels, _ = mne.stc_to_label(lh_label, src='fsaverage', smooth=False, # subjects_dir=fs_dir, connected=False) #temp = stc_all_cluster_vis.in_label(temp_labels) #frontal_vertices_l = temp.vertices[0] # #new_label = mne.Label(frontal_vertices_l, hemi='lh') #brain1.add_label(new_label, borders=True, color=c_table[8]) """ Done """ os.chdir('figures') #brain1.save_image('Lexical_LH_STClustering.pdf', antialiased=True) #brain1.save_image('Lexical_LH_STClustering.png', antialiased=True) os.chdir('..') brain1.add_label(A1_label_lh, borders=True, color=[0,0,0]) # Show A1 temp_auditory_label_l = mne.Label(A4_label_lh.vertices, hemi='lh',name=u'sts_l',pos=A4_label_lh.pos,values= A4_label_lh.values) + \ mne.Label(A5_label_lh.vertices, hemi='lh',name=u'sts_l',pos=A5_label_lh.pos,values= A5_label_lh.values) + \ mne.Label(STSdp_label_lh.vertices, hemi='lh',name=u'sts_l',pos=STSdp_label_lh.pos,values= STSdp_label_lh.values)+ \ mne.Label(TPOJ1_label_lh.vertices, hemi='lh',name=u'sts_l',pos=TPOJ1_label_lh.pos,values= TPOJ1_label_lh.values)+ \ mne.Label(PBelt_label_lh.vertices, hemi='lh',name=u'sts_l',pos=PBelt_label_lh.pos,values= PBelt_label_lh.values)+ \ mne.Label(LBelt_label_lh.vertices, hemi='lh',name=u'sts_l',pos=LBelt_label_lh.pos,values= LBelt_label_lh.values) #brain1.add_label(temp_auditory_label_l, borders=True, color=c_table[2]) lh_label = stc_all_cluster_vis.in_label(temp_auditory_label_l) data = lh_label.data lh_label.data[data < dur_thresh] = 0. temp_labels, _ = mne.stc_to_label(lh_label, src='fsaverage', smooth=False, subjects_dir=fs_dir, connected=False) temp = stc_all_cluster_vis.in_label(temp_labels) stg_vertices_l = temp.vertices[0] new_label = mne.Label(stg_vertices_l, hemi='lh') brain1.add_label(new_label, borders=True, color=c_table[1]) #brain1.remove_labels() temp_auditory2_label_l = mne.Label(PFcm_label_lh.vertices, hemi='lh',name=u'sts_l',pos=PFcm_label_lh.pos,values= PFcm_label_lh.values) + \ mne.Label(RI_label_lh.vertices, hemi='lh',name=u'sts_l',pos=RI_label_lh.pos,values= RI_label_lh.values)+ \ mne.Label(PF_label_lh.vertices, hemi='lh',name=u'sts_l',pos=PF_label_lh.pos,values= PF_label_lh.values) #brain1.add_label(temp_auditory2_label_l, borders=True, color=c_table[0]) lh_label = stc_all_cluster_vis.in_label(temp_auditory2_label_l) data = lh_label.data lh_label.data[data < dur_thresh] = 0. temp_labels, _ = mne.stc_to_label(lh_label, src='fsaverage', smooth=False, subjects_dir=fs_dir, connected=False) temp = stc_all_cluster_vis.in_label(temp_labels) tpj_vertices_l = temp.vertices[0] tpj_vertices_l = np.sort(np.concatenate((tpj_vertices_l, \ [16, 2051, 2677, 2678, 2679, 5042, 8296, 8297, 8299, 8722, 8723, 9376]))) new_label = mne.Label(tpj_vertices_l, hemi='lh') brain1.add_label(new_label, borders=True, color=c_table[0]) #brain1.add_label(_1_label_lh, borders=True, color=c_table[4]) temp_motor_label_l = mne.Label(_3a_label_lh.vertices, hemi='lh',name=u'sts_l',pos=_3a_label_lh.pos,values= _3a_label_lh.values) + \ mne.Label(_3b_label_lh.vertices, hemi='lh',name=u'sts_l',pos=_3b_label_lh.pos,values= _3b_label_lh.values) + \ mne.Label(_4_label_lh.vertices, hemi='lh',name=u'sts_l',pos=_4_label_lh.pos,values= _4_label_lh.values) + \ mne.Label(_1_label_lh.vertices, hemi='lh',name=u'sts_l',pos=_1_label_lh.pos,values= _1_label_lh.values) #brain1.add_label(temp_motor_label_l, borders=True, color=c_table[4]) lh_label = stc_all_cluster_vis.in_label(temp_motor_label_l) data = lh_label.data lh_label.data[data < dur_thresh] = 0. temp_labels, _ = mne.stc_to_label(lh_label, src='fsaverage', smooth=False, subjects_dir=fs_dir, connected=False) temp = stc_all_cluster_vis.in_label(temp_labels) motor_vertices_l = temp.vertices[0] new_label = mne.Label(motor_vertices_l, hemi='lh') brain1.add_label(new_label, borders=True, color=c_table[4]) temp_broca_label_l = \ mne.Label(a44_label_lh.vertices, hemi='lh',name=u'sts_l',pos=a44_label_lh.pos,values= a44_label_lh.values) + \ mne.Label(a45_label_lh.vertices, hemi='lh',name=u'sts_l',pos=a45_label_lh.pos,values= a45_label_lh.values) + \ mne.Label(AVI_label_lh.vertices, hemi='lh',name=u'sts_l',pos=AVI_label_lh.pos,values= AVI_label_lh.values) + \ mne.Label(FOP5_label_lh.vertices, hemi='lh',name=u'sts_l',pos=FOP5_label_lh.pos,values= FOP5_label_lh.values) + \ mne.Label(_47l_label_lh.vertices, hemi='lh',name=u'sts_l',pos=_47l_label_lh.pos,values= _47l_label_lh.values) #brain1.add_label(temp_broca_label_l, borders=True, color=c_table[6]) lh_label = stc_all_cluster_vis.in_label(temp_broca_label_l) data = lh_label.data lh_label.data[data < dur_thresh] = 0. temp_labels, _ = mne.stc_to_label(lh_label, src='fsaverage', smooth=False, subjects_dir=fs_dir, connected=False) temp = stc_all_cluster_vis.in_label(temp_labels) broca_vertices_l = temp.vertices[0] broca_vertices_l = np.sort(np.concatenate((broca_vertices_l,[1187,3107,3108,3109,6745,7690,7691]))) new_label = mne.Label(broca_vertices_l, hemi='lh') brain1.add_label(new_label, borders=True, color=c_table[6]) temp_sylvian_label_l = mne.Label(OP23_label_lh.vertices, hemi='lh',name=u'sts_l',pos=OP23_label_lh.pos,values= OP23_label_lh.values) + \ mne.Label(Ig_label_lh.vertices, hemi='lh',name=u'sts_l',pos=Ig_label_lh.pos,values= Ig_label_lh.values) + \ mne.Label(OP4_label_lh.vertices, hemi='lh',name=u'sts_l',pos=OP4_label_lh.pos,values= OP4_label_lh.values) + \ mne.Label(OP1_label_lh.vertices, hemi='lh',name=u'sts_l',pos=OP1_label_lh.pos,values= OP1_label_lh.values) + \ mne.Label(FOP2_label_lh.vertices, hemi='lh',name=u'sts_l',pos=FOP2_label_lh.pos,values= FOP2_label_lh.values) + \ mne.Label(_6r_label_lh.vertices, hemi='lh',name=u'sts_l',pos=_6r_label_lh.pos,values= _6r_label_lh.values) #brain1.add_label(temp_sylvian_label_l, borders=True, color=c_table[8]) lh_label = stc_all_cluster_vis.in_label(temp_sylvian_label_l) data = lh_label.data lh_label.data[data < dur_thresh] = 0. temp_labels, _ = mne.stc_to_label(lh_label, src='fsaverage', smooth=False, subjects_dir=fs_dir, connected=False) temp = stc_all_cluster_vis.in_label(temp_labels) sylvian_vertices_l = temp.vertices[0] sylvian_vertices_l = np.sort(np.concatenate((sylvian_vertices_l,[905,1892,2825,2526,4157,4158,4159,6239,8290,8293,9194,9203]))) new_label = mne.Label(sylvian_vertices_l, hemi='lh') brain1.add_label(new_label, borders=True, color=c_table[8]) # right hemisphere #brain2 = stc_all_cluster_vis.plot( # hemi='rh', views='lateral', subjects_dir=fs_dir, # time_label='Duration significant (ms)', size=(800, 800), # smoothing_steps=20, clim=dict(kind='value', lims=[40, dur_thresh, 200]),background='white',foreground='black') # #stg_vertices_r = A5_label_rh.vertices #stg_vertices_r = np.sort([2001,2002,2419,2420,2421,2418,2754,2417,13075,13076,13077,13078,\ # 13079,13080,13081,12069,12070,12071,12072]) #new_label = mne.Label(stg_vertices_r, hemi='rh') #brain2.add_label(new_label, borders=True, color=c_table[5]) # #os.chdir('figures') #brain2.save_image('RH_STClustering.pdf', antialiased=True) #brain2.save_image('RH_STClustering.png', antialiased=True) #os.chdir('..') # V1 #lh_label = dot_stc_all_cluster_vis.in_label(V1_label_lh) #data = lh_label.data #lh_label.data[data < 50] = 0. # #temp_labels, _ = mne.stc_to_label(lh_label, src='fsaverage', smooth=False, # subjects_dir=fs_dir, connected=False) #temp = dot_stc_all_cluster_vis.in_label(temp_labels) #tV1_vertices_l = temp.vertices[0] #new_label = mne.Label(tV1_vertices_l, hemi='lh') #brain1.add_label(new_label, borders=True, color='r') # #M = np.mean(np.mean(tX11[tV1_vertices_l,:,:,:],axis=0),axis=1) #errM = np.std(np.mean(tX11[tV1_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(all_subject)) #t0 = time.time() #plotit2(times, M, errM, 5, 0, yMin=0, yMax=2.7, subject = 'all') #plotsig2(times,nReps,X, 5, 0, all_subject, boot_pVal) np.save('STG_Vert', stg_vertices_l) np.save('IFG_Vert', broca_vertices_l) np.save('TPJ_Vert', tpj_vertices_l) np.save('Motor_Vert', motor_vertices_l) np.save('Sylvian_Vert', sylvian_vertices_l) np.save('STG_Vert_r', stg_vertices_r) #%% figureDir = '%s/figures' % raw_dir nReps = 3000 boot_pVal = 0.05 #%% """ Left STG: Word vs. Noise """ stg_vertices_l = np.load('STG_Vert.npy') temp1 = X11[:,:,all_subject,:] M = np.mean(np.mean(temp1[stg_vertices_l,:,:,:],axis=0),axis=1) errM = np.std(np.mean(temp1[stg_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(all_subject)) MM = np.mean(temp1[stg_vertices_l,:,:,:],axis=0) diffScore = np.mean((MM[:,:,5]-MM[:,:,8]), axis = 1) diffScore2 = np.mean((MM[:,:,0]-MM[:,:,3]), axis = 1) del temp1 plt.figure() plt.clf() plt.plot(times, diffScore) plt.ylim([-0.4,0.7]) plt.fill_between([0.35,0.55],-0.4,0.7,facecolor=[0,0,0],alpha=0.4) plt.xlabel('Time after stimulus onset (s)') plt.ylabel('Word - Scramble') plt.title('STG: Lexical task') os.chdir(figureDir) plt.savefig('STG_Word_Scramble_lex.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_Word_Scramble_lex.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plt.figure() plt.clf() plt.plot(times, diffScore2) plt.ylim([-0.4,0.7]) plt.fill_between([0.35,0.55],-0.4,0.7,facecolor=[0,0,0],alpha=0.4) plt.xlabel('Time after stimulus onset (s)') plt.ylabel('Word - Scramble') plt.title('STG: Fixation task') os.chdir(figureDir) plt.savefig('STG_Word_Scramble_fix.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_Word_Scramble_fix.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') temp1 = X11[:,:,good_readers,:] M1 = np.mean(np.mean(temp1[stg_vertices_l,:,:,:],axis=0),axis=1) errM1 = np.std(np.mean(temp1[stg_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(good_readers)) diffM1 = np.mean(np.mean(temp1[stg_vertices_l,:,:,5],axis=0),axis=1) - np.mean(np.mean(temp1[stg_vertices_l,:,:,8],axis=0),axis=1) diffM2 = np.mean(np.mean(temp1[stg_vertices_l,:,:,0],axis=0),axis=1) - np.mean(np.mean(temp1[stg_vertices_l,:,:,3],axis=0),axis=1) del temp1 temp1 = X11[:,:,poor_readers,:] M2 = np.mean(np.mean(temp1[stg_vertices_l,:,:,:],axis=0),axis=1) errM2 = np.std(np.mean(temp1[stg_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(poor_readers)) diffM3 = np.mean(np.mean(temp1[stg_vertices_l,:,:,5],axis=0),axis=1) - np.mean(np.mean(temp1[stg_vertices_l,:,:,8],axis=0),axis=1) diffM4 = np.mean(np.mean(temp1[stg_vertices_l,:,:,0],axis=0),axis=1) - np.mean(np.mean(temp1[stg_vertices_l,:,:,3],axis=0),axis=1) del temp1 # For calculating p-values X = np.mean(X11[stg_vertices_l,:,:,:],axis=0) ############################################################################### """ Timecourse: Lexical task """ task1 = 5 task2 = 8 plotit2(times, M, errM, task1, task2, yMin=0, yMax=2.3, subject = 'all: STG') plotsig2(times,nReps,X, task1, task2, all_subject, boot_pVal) os.chdir(figureDir) plt.savefig('STG_lexical_all.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_lexical_all.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M1, errM1, task1, task2, yMin=0, yMax=2.7, subject = 'typical: STG') plotsig2(times,nReps,X, task1, task2, good_readers, boot_pVal) plt.fill_between([0.35,0.55],0.0,2.7,facecolor=[0,0,0],alpha=0.4) os.chdir(figureDir) plt.savefig('STG_lexical_good.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_lexical_good.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M2, errM2, task1, task2, yMin=0, yMax=2.7, subject = 'struggling: STG') plotsig2(times,nReps,X, task1, task2, poor_readers, boot_pVal) plt.fill_between([0.35,0.55],0.0,2.7,facecolor=[0,0,0],alpha=0.4) os.chdir(figureDir) plt.savefig('STG_lexical_poor.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_lexical_poor.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') """ Timecourse: Dot task """ task1 = 0 task2 = 3 plotit2(times, M, errM, task1, task2, yMin=0, yMax=2.3, subject = 'all: STG') plotsig2(times,nReps,X, task1, task2, all_subject, boot_pVal) os.chdir(figureDir) plt.savefig('STG_dot_all.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_dot_all.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M1, errM1, task1, task2, yMin=0, yMax=2.7, subject = 'typical: STG') plotsig2(times,nReps,X, task1, task2, good_readers, boot_pVal) plt.fill_between([0.35,0.55],0.0,2.7,facecolor=[0,0,0],alpha=0.4) os.chdir(figureDir) plt.savefig('STG_dot_good.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_dot_good.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M2, errM2, task1, task2, yMin=0, yMax=2.7, subject = 'struggling: STG') plotsig2(times,nReps,X, task1, task2, poor_readers, boot_pVal) plt.fill_between([0.35,0.55],0.0,2.7,facecolor=[0,0,0],alpha=0.4) os.chdir(figureDir) plt.savefig('STG_dot_poor.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_dot_poor.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #%% """ Correlation """ temp1 = X11[:,:,all_subject,:] M = np.mean(temp1[stg_vertices_l,:,:,:],axis=0) temp1 = X11[:,:,good_readers,:] M1 = np.mean(temp1[stg_vertices_l,:,:,:],axis=0) temp2 = X11[:,:,poor_readers,:] M2 = np.mean(temp2[stg_vertices_l,:,:,:],axis=0) del temp1, temp2 #%% """ Plot """ t1 = 350 t_window1 = np.multiply(np.divide(np.add([t1,t1+200],[100,100]),1000.), sRate) t_window1 = [np.int(i) for i in t_window1] task = 5 lowNoise1_good = np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1_poor = np.mean(M2[t_window1[0]:t_window1[1],:,task], axis = 0) - np.mean(M2[t_window1[0]:t_window1[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_read = np.concatenate((orig_twre[good_readers],orig_twre[poor_readers])) plt.figure() plt.clf() ax = plt.subplot() fit = np.polyfit(temp_meg, temp_read, deg=1) ax.plot(temp_meg, fit[0] * temp_meg + fit[1], color=[0,0,0]) ax.plot(temp_meg, temp_read, 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) ax.plot(lowNoise1_good, orig_twre[good_readers], 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) plt.xlim([-1.5,4.5]) os.chdir('figures') plt.savefig('STG_corr_lexical_350.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_corr_lexical_350.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') r, p = stats.pearsonr(temp_read,temp_meg) print('lexical(all): correlation = %.4f, p = %.4f' %(r, p)) r, p = stats.pearsonr(orig_twre[good_readers],lowNoise1_good) print('lexical(good): correlation = %.4f, p = %.4f' %(r, p)) r, p = stats.pearsonr(orig_twre[poor_readers],lowNoise1_poor) print('lexical(poor): correlation = %.4f, p = %.4f' %(r, p)) temp_meg_lex = temp_meg """ Correlation: Dot task """ t1 = 300 t_window1_dot = np.multiply(np.divide(np.add([t1,t1+100],[100,100]),1000.), sRate) t_window1_dot = [np.int(i) for i in t_window1_dot] task = 0 lowNoise1_good = np.mean(M1[np.int(t_window1_dot[0]):np.int(t_window1_dot[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1_dot[0]):np.int(t_window1_dot[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1_poor = np.mean(M2[t_window1_dot[0]:t_window1_dot[1],:,task], axis = 0) - np.mean(M2[t_window1_dot[0]:t_window1_dot[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_read = np.concatenate((orig_twre[good_readers],orig_twre[poor_readers])) plt.figure() plt.clf() ax = plt.subplot() fit = np.polyfit(temp_meg, temp_read, deg=1) ax.plot(temp_meg, fit[0] * temp_meg + fit[1], color=[0,0,0]) ax.plot(temp_meg, temp_read, 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) ax.plot(lowNoise1_good, orig_twre[good_readers], 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) plt.xlim([-1.5,4.5]) os.chdir('figures') plt.savefig('STG_corr_dot_350.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_corr_dot_350.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') r, p = stats.pearsonr(temp_read,temp_meg) print('Dot(all): correlation = %.4f, p = %.4f' %(r, p)) r, p = stats.pearsonr(orig_twre[good_readers],lowNoise1_good) print('Dot(good): correlation = %.4f, p = %.4f' %(r, p)) r, p = stats.pearsonr(orig_twre[poor_readers],lowNoise1_poor) print('Dot(poor): correlation = %.4f, p = %.4f' %(r, p)) temp_meg_fix = temp_meg """ Corr: Difference score lexical vs. fixation """ plt.figure() plt.clf() ax = plt.subplot() fit = np.polyfit(temp_meg_fix, temp_meg_lex, deg=1) ax.plot(temp_meg_fix, fit[0] * temp_meg_fix + fit[1], color=[0,0,0]) ax.plot(temp_meg_fix, temp_meg_lex, 'o', markerfacecolor=[0.5,0.5,0.5], markeredgecolor=[1,1,1], markersize=10) #ax.plot(temp3_good, temp2_good, 'o', markerfacecolor=c_table[3], markeredgecolor=[1,1,1], markersize=10) plt.axis('square') plt.ylim([-1.5, 4.5]) plt.xlim([-1.5, 4.5]) r, p = stats.pearsonr(temp_meg_fix,temp_meg_lex) print('STG: lexical vs. dot task (all): correlation = %.4f, p = %.7f' %(r, p)) os.chdir(figureDir) plt.savefig('STG_lexical_dot_350.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_lexical_dot_350.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #%% """Equivalence test""" import statsmodels sstep = 10 p = np.empty((int(len(range(0,800,sstep))),1)) lower_p = np.empty((int(len(range(0,800,sstep))),1)) upper_p = np.empty((int(len(range(0,800,sstep))),1)) for tt, ttime in zip(range(0, len(range(0,800,sstep))),range(0,800,sstep)): t_window1 = np.multiply(np.divide(np.add([ttime,ttime+sstep],[100,100]),1000.), sRate) t_window1 = [np.int(i) for i in t_window1] task = 5 lowNoise1_good = np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1_poor = np.mean(M2[t_window1[0]:t_window1[1],:,task], axis = 0) - np.mean(M2[t_window1[0]:t_window1[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_meg_lex = temp_meg """ Correlation: Dot task """ t_window1_dot = np.multiply(np.divide(np.add([ttime,ttime+sstep],[100,100]),1000.), sRate) t_window1_dot = [np.int(i) for i in t_window1_dot] task = 0 lowNoise1_good = np.mean(M1[np.int(t_window1_dot[0]):np.int(t_window1_dot[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1_dot[0]):np.int(t_window1_dot[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1_poor = np.mean(M2[t_window1_dot[0]:t_window1_dot[1],:,task], axis = 0) - np.mean(M2[t_window1_dot[0]:t_window1_dot[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_meg_fix = temp_meg err = 0.8 * np.std(temp_meg_lex - temp_meg_fix) # p[tt], a, b = statsmodels.stats.weightstats.ttost_paired(temp_meg_lex, temp_meg_fix, err, -err) xx, lower_p[tt] = stats.ttest_1samp(temp_meg_lex-temp_meg_fix,-err) xx, upper_p[tt] = stats.ttest_1samp(temp_meg_lex-temp_meg_fix,err) p[tt] = max(lower_p[tt], upper_p[tt])*2 plt.figure() plt.clf() plt.plot(range(0,800,sstep), p) plt.plot([0, 800],[0.05,0.05],'--') plt.xlabel('Time after stimulus onset (ms)') plt.ylabel('P-value from the equivalence test') os.chdir(figureDir) plt.savefig('STG_equivalence.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_equivalence.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #tempa = np.random.normal(100,5,(1,100)) #tempb = np.random.normal(10,5,(1,100)) #err = 0.8*5 #tempp, fjsdk, fjdskl = statsmodels.stats.weightstats.ttost_paired(tempa[0], tempb[0], err, -err) #xxx, xxxx = stats.ttest_rel(tempa[0],tempb[0]) #%% """Correlation over time""" sstep = 10 tstart = 0 n_ttest = np.empty((len(range(tstart,800,sstep)),1)) p_ttest = np.empty((len(range(tstart,800,sstep)),1)) r_lex = np.empty((len(range(tstart,800,sstep)),1)) p_lex = np.empty((len(range(tstart,800,sstep)),1)) r_dot = np.empty((len(range(tstart,800,sstep)),1)) p_dot = np.empty((len(range(tstart,800,sstep)),1)) r_bet = np.empty((len(range(tstart,800,sstep)),1)) p_bet = np.empty((len(range(tstart,800,sstep)),1)) temp_meg_lex = np.empty((len(all_subject),len(range(tstart,800,sstep)))) temp_meg_fix = np.empty((len(all_subject),len(range(tstart,800,sstep)))) for ii, t1 in zip(range(0,len(range(tstart,800,sstep))), range(tstart,800,sstep)): t_window1 = np.multiply(np.divide(np.add([t1,t1+10],[100,100]),1000.), sRate) t_window1 = [np.int(i) for i in t_window1] task = 5 lowNoise1_good = np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1 = np.mean(M[np.int(t_window1[0]):np.int(t_window1[1]),:,task], axis = 0) - np.mean(M[np.int(t_window1[0]):np.int(t_window1[1]),:,task+3], axis = 0) lowNoise1_poor = np.mean(M2[t_window1[0]:t_window1[1],:,task], axis = 0) - np.mean(M2[t_window1[0]:t_window1[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_read = np.concatenate((orig_twre[good_readers],orig_twre[poor_readers])) r_lex[ii], p_lex[ii] = stats.pearsonr(temp_read,temp_meg) n_ttest[ii], p_ttest[ii] = stats.ttest_1samp(lowNoise1,0) temp_meg_lex[:,ii] = temp_meg task = 0 lowNoise1_good = np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1_dot[0]):np.int(t_window1_dot[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1_poor = np.mean(M2[t_window1[0]:t_window1[1],:,task], axis = 0) - np.mean(M2[t_window1_dot[0]:t_window1_dot[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_read = np.concatenate((orig_twre[good_readers],orig_twre[poor_readers])) r_dot[ii], p_dot[ii] = stats.pearsonr(temp_read,temp_meg) temp_meg_fix[:,ii] = temp_meg r_bet[ii], p_bet[ii] = stats.pearsonr(temp_meg_fix[:,ii],temp_meg_lex[:,ii]) #%% """Correlation over time""" c = ( (0.6196, 0.0039, 0.2588), (0.8353, 0.2431, 0.3098), (0.9569, 0.4275, 0.2627), (0.9922, 0.6824, 0.3804), (0.9961, 0.8784, 0.5451), (1.0000, 1.0000, 0.7490) ) plt.figure() plt.clf() x = range(tstart,800,sstep) plt.plot(x, r_lex, color=[0,0,0]) plt.fill_between([430,530],-0.4,0.7,facecolor=[0,0,0],alpha=0.4) plt.ylim([-0.4,0.7]) plt.xlabel('Time after stimulus onet (ms)') plt.ylabel('Correlation (r-value)') plt.title('STG: Lexical task') for ttt in range(0, len(range(tstart,800,sstep))): if p_lex[ttt] >= 0.05: al = plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[0], markeredgecolor=c[0], markersize=10, alpha = 0.0) elif p_lex[ttt] < 0.05 and p_lex[ttt] >= 0.01: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[1], markeredgecolor=c[1], markersize=10) elif p_lex[ttt] < 0.01 and p_lex[ttt] >= 0.005: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[2], markeredgecolor=c[2], markersize=10) elif p_lex[ttt] < 0.005 and p_lex[ttt] >= 0.001: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[3], markeredgecolor=c[3], markersize=10) else: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[4], markeredgecolor=c[4], markersize=10) os.chdir(figureDir) plt.savefig('STG_corr_lex_overtime.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_corr_lex_overtime.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plt.figure() plt.clf() x = range(tstart,800,sstep) plt.plot(x, r_dot, color=[0,0,0]) plt.fill_between([430,530],-0.4,0.7,facecolor=[0,0,0],alpha=0.4) plt.ylim([-0.4,0.7]) plt.xlabel('Time after stimulus onet (ms)') plt.ylabel('Correlation (r-value)') plt.title('STG: Fixation task') for ttt in range(0, len(range(tstart,800,sstep))): if p_dot[ttt] >= 0.05: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[0], markeredgecolor=c[0], markersize=10, alpha = 0.0) elif p_dot[ttt] < 0.05 and p_lex[ttt] >= 0.01: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[1], markeredgecolor=c[1], markersize=10) elif p_dot[ttt] < 0.01 and p_lex[ttt] >= 0.005: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[2], markeredgecolor=c[2], markersize=10) elif p_dot[ttt] < 0.005 and p_lex[ttt] >= 0.001: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[3], markeredgecolor=c[3], markersize=10) else: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[4], markeredgecolor=c[4], markersize=10) os.chdir(figureDir) plt.savefig('STG_corr_dot_overtime.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_corr_dot_overtime.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plt.figure() plt.clf() x = range(tstart,800,sstep) plt.plot(x, r_bet, color=[0,0,0]) plt.fill_between([430,530],-0.4,0.7,facecolor=[0,0,0],alpha=0.4) plt.ylim([-0.4,0.7]) plt.xlabel('Time after stimulus onet (ms)') plt.ylabel('Correlation between tasks (r-value)') plt.title('STG') for ttt in range(0, len(range(tstart,800,sstep))): if p_bet[ttt] >= 0.05: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[0], markeredgecolor=c[0], markersize=10, alpha = 0.0) elif p_bet[ttt] < 0.05 and p_lex[ttt] >= 0.01: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[1], markeredgecolor=c[1], markersize=10) elif p_bet[ttt] < 0.01 and p_lex[ttt] >= 0.005: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[2], markeredgecolor=c[2], markersize=10) elif p_bet[ttt] < 0.005 and p_lex[ttt] >= 0.001: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[3], markeredgecolor=c[3], markersize=10) else: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[4], markeredgecolor=c[4], markersize=10) os.chdir(figureDir) plt.savefig('STG_corr_bettasks_overtime.png',dpi=600,papertype='letter',format='png') plt.savefig('STG_corr_bettasks_overtime.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #%% del M, M1, M2 #%% """ Broca """ broca_vertices_l = np.load('IFG_Vert.npy') temp1 = X11[:,:,all_subject,:] M = np.mean(np.mean(temp1[broca_vertices_l,:,:,:],axis=0),axis=1) errM = np.std(np.mean(temp1[broca_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(all_subject)) del temp1 plt.figure() plt.clf() plt.plot(times, M[:,5]-M[:,8]) plt.ylim([-0.4,0.7]) plt.fill_between([0.35,0.55],-0.4,0.7,facecolor=[0,0,0],alpha=0.4) plt.xlabel('Time after stimulus onset (s)') plt.ylabel('Word - Scramble') plt.title('IFG: Lexical task') os.chdir(figureDir) plt.savefig('IFG_Word_Scramble_lex.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_Word_Scramble_lex.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plt.figure() plt.clf() plt.plot(times, M[:,0]-M[:,3]) plt.ylim([-0.4,0.7]) plt.fill_between([0.35,0.55],-0.4,0.7,facecolor=[0,0,0],alpha=0.4) plt.xlabel('Time after stimulus onset (s)') plt.ylabel('Word - Scramble') plt.title('IFG: Fixation task') os.chdir(figureDir) plt.savefig('IFG_Word_Scramble_fix.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_Word_Scramble_fix.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') temp1 = X11[:,:,good_readers,:] M1 = np.mean(np.mean(temp1[broca_vertices_l,:,:,:],axis=0),axis=1) errM1 = np.std(np.mean(temp1[broca_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(good_readers)) del temp1 temp1 = X11[:,:,poor_readers,:] M2 = np.mean(np.mean(temp1[broca_vertices_l,:,:,:],axis=0),axis=1) errM2 = np.std(np.mean(temp1[broca_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(poor_readers)) del temp1 # For calculating p-values X = np.mean(X11[broca_vertices_l,:,:,:],axis=0) ############################################################################### """ Timecourse: Lexical task """ task1 = 5 task2 = 8 plotit2(times, M, errM, task1, task2, yMin=0, yMax=2.3, subject = 'all: IFG') plotsig2(times,nReps,X, task1, task2, all_subject, boot_pVal) os.chdir(figureDir) plt.savefig('IFG_lexical_all.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_lexical_all.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M1, errM1, task1, task2, yMin=0, yMax=2.7, subject = 'typical: IFG') plotsig2(times,nReps,X, task1, task2, good_readers, boot_pVal) plt.fill_between([0.35,0.55],0.0,2.7,facecolor=[0,0,0],alpha=0.4) os.chdir(figureDir) plt.savefig('IFG_lexical_good.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_lexical_good.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M2, errM2, task1, task2, yMin=0, yMax=2.7, subject = 'struggling: IFG') plotsig2(times,nReps,X, task1, task2, poor_readers, boot_pVal) plt.fill_between([0.35,0.55],0.0,2.7,facecolor=[0,0,0],alpha=0.4) os.chdir(figureDir) plt.savefig('IFG_lexical_poor.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_lexical_poor.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') """ Timecourse: Dot task """ task1 = 0 task2 = 3 plotit2(times, M, errM, task1, task2, yMin=0, yMax=2.3, subject = 'all: IFG') plotsig2(times,nReps,X, task1, task2, all_subject, boot_pVal) os.chdir(figureDir) plt.savefig('IFG_dot_all.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_dot_all.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M1, errM1, task1, task2, yMin=0, yMax=2.7, subject = 'typical: IFG') plotsig2(times,nReps,X, task1, task2, good_readers, boot_pVal) plt.fill_between([0.35,0.55],0.0,2.7,facecolor=[0,0,0],alpha=0.4) os.chdir(figureDir) plt.savefig('IFG_dot_good.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_dot_good.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M2, errM2, task1, task2, yMin=0, yMax=2.7, subject = 'struggling: IFG') plotsig2(times,nReps,X, task1, task2, poor_readers, boot_pVal) plt.fill_between([0.35,0.55],0.0,2.7,facecolor=[0,0,0],alpha=0.4) os.chdir(figureDir) plt.savefig('IFG_dot_poor.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_dot_poor.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #%% """ Correlation: Lexical """ temp1 = X11[:,:,good_readers,:] M1 = np.mean(temp1[broca_vertices_l,:,:,:],axis=0) temp2 = X11[:,:,poor_readers,:] M2 = np.mean(temp2[broca_vertices_l,:,:,:],axis=0) del temp1, temp2 #%% """Plot""" t1 = 350 t_window1 = np.multiply(np.divide(np.add([t1,t1+200],[100,100]),1000.), sRate) t_window1 = [np.int(i) for i in t_window1] task = 5 lowNoise1_good = np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1_poor = np.mean(M2[t_window1[0]:t_window1[1],:,task], axis = 0) - np.mean(M2[t_window1[0]:t_window1[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_read = np.concatenate((orig_twre[good_readers],orig_twre[poor_readers])) plt.figure() plt.clf() ax = plt.subplot() fit = np.polyfit(temp_meg, temp_read, deg=1) ax.plot(temp_meg, fit[0] * temp_meg + fit[1], color=[0,0,0]) ax.plot(temp_meg, temp_read, 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) ax.plot(lowNoise1_good, orig_twre[good_readers], 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) plt.xlim([-2,3]) os.chdir('figures') plt.savefig('IFG_corr_lexical_350.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_corr_lexical_350.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') r, p = stats.pearsonr(temp_read,temp_meg) print('lexical(all): correlation = %.4f, p = %.4f' %(r, p)) r, p = stats.pearsonr(orig_twre[good_readers],lowNoise1_good) print('lexical(good): correlation = %.4f, p = %.4f' %(r, p)) r, p = stats.pearsonr(orig_twre[poor_readers],lowNoise1_poor) print('lexical(poor): correlation = %.4f, p = %.4f' %(r, p)) temp_meg_lex = temp_meg """ Correlation: Dot task """ #t1 = 400 t_window1_dot = np.multiply(np.divide(np.add([t1,t1+200],[100,100]),1000.), sRate) t_window1_dot = [np.int(i) for i in t_window1_dot] task = 0 lowNoise1_good = np.mean(M1[np.int(t_window1_dot[0]):np.int(t_window1_dot[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1_dot[0]):np.int(t_window1_dot[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1_poor = np.mean(M2[t_window1_dot[0]:t_window1_dot[1],:,task], axis = 0) - np.mean(M2[t_window1_dot[0]:t_window1_dot[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_read = np.concatenate((orig_twre[good_readers],orig_twre[poor_readers])) plt.figure() plt.clf() ax = plt.subplot() fit = np.polyfit(temp_meg, temp_read, deg=1) ax.plot(temp_meg, fit[0] * temp_meg + fit[1], color=[0,0,0]) ax.plot(temp_meg, temp_read, 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) ax.plot(lowNoise1_good, orig_twre[good_readers], 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) plt.xlim([-1.5,4]) os.chdir('figures') plt.savefig('IFG_corr_dot_350.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_corr_dot_350.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') r, p = stats.pearsonr(temp_read,temp_meg) print('Dot(all): correlation = %.4f, p = %.4f' %(r, p)) r, p = stats.pearsonr(orig_twre[good_readers],lowNoise1_good) print('Dot(good): correlation = %.4f, p = %.4f' %(r, p)) r, p = stats.pearsonr(orig_twre[poor_readers],lowNoise1_poor) print('Dot(poor): correlation = %.4f, p = %.4f' %(r, p)) temp_meg_fix = temp_meg """ Corr: Difference score lexical vs. fixation """ plt.figure() plt.clf() ax = plt.subplot() fit = np.polyfit(temp_meg_fix, temp_meg_lex, deg=1) ax.plot(temp_meg_fix, fit[0] * temp_meg_fix + fit[1], color=[0,0,0]) ax.plot(temp_meg_fix, temp_meg_lex, 'o', markerfacecolor=[0.5,0.5,0.5], markeredgecolor=[1,1,1], markersize=10) #ax.plot(temp3_good, temp2_good, 'o', markerfacecolor=c_table[3], markeredgecolor=[1,1,1], markersize=10) plt.axis('square') plt.ylim([-1.5, 4.5]) plt.xlim([-1.5, 4]) r, p = stats.pearsonr(temp_meg_fix,temp_meg_lex) print('STG: lexical vs. dot task (all): correlation = %.4f, p = %.7f' %(r, p)) os.chdir(figureDir) plt.savefig('IFG_lexical_dot_350.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_lexical_dot_350.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #%% """Correlation over time""" """ Correlation """ temp1 = X11[:,:,all_subject,:] M = np.mean(temp1[broca_vertices_l,:,:,:],axis=0) temp1 = X11[:,:,good_readers,:] M1 = np.mean(temp1[broca_vertices_l,:,:,:],axis=0) temp2 = X11[:,:,poor_readers,:] M2 = np.mean(temp2[broca_vertices_l,:,:,:],axis=0) del temp1, temp2 sstep = 10 tstart = 200 n_ttest = np.empty((len(range(tstart,800,sstep)),1)) p_ttest = np.empty((len(range(tstart,800,sstep)),1)) r_lex = np.empty((len(range(tstart,800,sstep)),1)) p_lex = np.empty((len(range(tstart,800,sstep)),1)) r_dot = np.empty((len(range(tstart,800,sstep)),1)) p_dot = np.empty((len(range(tstart,800,sstep)),1)) r_bet = np.empty((len(range(tstart,800,sstep)),1)) p_bet = np.empty((len(range(tstart,800,sstep)),1)) temp_meg_lex = np.empty((len(all_subject),len(range(tstart,800,sstep)))) temp_meg_fix = np.empty((len(all_subject),len(range(tstart,800,sstep)))) for ii, t1 in zip(range(0,len(range(tstart,800,sstep))), range(tstart,800,sstep)): t_window1 = np.multiply(np.divide(np.add([t1,t1+50],[100,100]),1000.), sRate) t_window1 = [np.int(i) for i in t_window1] task = 5 lowNoise1_good = np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1 = np.mean(M[np.int(t_window1[0]):np.int(t_window1[1]),:,task], axis = 0) - np.mean(M[np.int(t_window1[0]):np.int(t_window1[1]),:,task+3], axis = 0) lowNoise1_poor = np.mean(M2[t_window1[0]:t_window1[1],:,task], axis = 0) - np.mean(M2[t_window1[0]:t_window1[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_read = np.concatenate((orig_twre[good_readers],orig_twre[poor_readers])) r_lex[ii], p_lex[ii] = stats.pearsonr(temp_read,temp_meg) n_ttest[ii], p_ttest[ii] = stats.ttest_1samp(lowNoise1,0) temp_meg_lex[:,ii] = temp_meg task = 0 lowNoise1_good = np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1_dot[0]):np.int(t_window1_dot[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1_poor = np.mean(M2[t_window1[0]:t_window1[1],:,task], axis = 0) - np.mean(M2[t_window1_dot[0]:t_window1_dot[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_read = np.concatenate((orig_twre[good_readers],orig_twre[poor_readers])) r_dot[ii], p_dot[ii] = stats.pearsonr(temp_read,temp_meg) temp_meg_fix[:,ii] = temp_meg r_bet[ii], p_bet[ii] = stats.pearsonr(temp_meg_fix[:,ii],temp_meg_lex[:,ii]) #%% """Correlation over time""" c = ( (0.6196, 0.0039, 0.2588), (0.8353, 0.2431, 0.3098), (0.9569, 0.4275, 0.2627), (0.9922, 0.6824, 0.3804), (0.9961, 0.8784, 0.5451), (1.0000, 1.0000, 0.7490) ) plt.figure() plt.clf() x = range(tstart,800,sstep) plt.plot(x, r_lex, color=[0,0,0]) plt.fill_between([430,530],-0.4,0.7,facecolor=[0,0,0],alpha=0.4) plt.ylim([-0.4,0.7]) plt.xlabel('Time after stimulus onet (ms)') plt.ylabel('Correlation (r-value)') plt.title('IFG: Lexical task') for ttt in range(0, len(range(tstart,800,sstep))): if p_lex[ttt] >= 0.05: al = plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[0], markeredgecolor=c[0], markersize=10, alpha = 0.0) elif p_lex[ttt] < 0.05 and p_lex[ttt] >= 0.01: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[1], markeredgecolor=c[1], markersize=10) elif p_lex[ttt] < 0.01 and p_lex[ttt] >= 0.005: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[2], markeredgecolor=c[2], markersize=10) elif p_lex[ttt] < 0.005 and p_lex[ttt] >= 0.001: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[3], markeredgecolor=c[3], markersize=10) else: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[4], markeredgecolor=c[4], markersize=10) os.chdir(figureDir) plt.savefig('IFG_corr_lex_overtime.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_corr_lex_overtime.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plt.figure() plt.clf() x = range(tstart,800,sstep) plt.plot(x, r_dot, color=[0,0,0]) plt.fill_between([430,530],-0.4,0.7,facecolor=[0,0,0],alpha=0.4) plt.ylim([-0.4,0.7]) plt.xlabel('Time after stimulus onet (ms)') plt.ylabel('Correlation (r-value)') plt.title('IFG: Fixation task') for ttt in range(0, len(range(tstart,800,sstep))): if p_dot[ttt] >= 0.05: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[0], markeredgecolor=c[0], markersize=10, alpha = 0.0) elif p_dot[ttt] < 0.05 and p_lex[ttt] >= 0.01: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[1], markeredgecolor=c[1], markersize=10) elif p_dot[ttt] < 0.01 and p_lex[ttt] >= 0.005: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[2], markeredgecolor=c[2], markersize=10) elif p_dot[ttt] < 0.005 and p_lex[ttt] >= 0.001: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[3], markeredgecolor=c[3], markersize=10) else: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[4], markeredgecolor=c[4], markersize=10) os.chdir(figureDir) plt.savefig('IFG_corr_dot_overtime.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_corr_dot_overtime.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plt.figure() plt.clf() x = range(tstart,800,sstep) plt.plot(x, r_bet, color=[0,0,0]) plt.fill_between([430,530],-0.4,0.7,facecolor=[0,0,0],alpha=0.4) plt.ylim([-0.4,0.7]) plt.xlabel('Time after stimulus onet (ms)') plt.ylabel('Correlation between tasks (r-value)') plt.title('IFG') for ttt in range(0, len(range(tstart,800,sstep))): if p_bet[ttt] >= 0.05: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[0], markeredgecolor=c[0], markersize=10, alpha = 0.0) elif p_bet[ttt] < 0.05 and p_lex[ttt] >= 0.01: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[1], markeredgecolor=c[1], markersize=10) elif p_bet[ttt] < 0.01 and p_lex[ttt] >= 0.005: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[2], markeredgecolor=c[2], markersize=10) elif p_bet[ttt] < 0.005 and p_lex[ttt] >= 0.001: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[3], markeredgecolor=c[3], markersize=10) else: plt.plot(x[ttt], 0.0, 's', markerfacecolor=c[4], markeredgecolor=c[4], markersize=10) os.chdir(figureDir) plt.savefig('IFG_corr_bettasks_overtime.png',dpi=600,papertype='letter',format='png') plt.savefig('IFG_corr_bettasks_overtime.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #%% """ TPJ """ tpj_vertices_l = np.load('TPJ_Vert.npy') temp1 = X11[:,:,all_subject,:] M = np.mean(np.mean(temp1[tpj_vertices_l,:,:,:],axis=0),axis=1) errM = np.std(np.mean(temp1[tpj_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(all_subject)) del temp1 temp1 = X11[:,:,good_readers,:] M1 = np.mean(np.mean(temp1[tpj_vertices_l,:,:,:],axis=0),axis=1) errM1 = np.std(np.mean(temp1[tpj_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(good_readers)) diffM1 = np.mean(np.mean(temp1[tpj_vertices_l,:,:,5],axis=0),axis=1) - np.mean(np.mean(temp1[tpj_vertices_l,:,:,8],axis=0),axis=1) diffM2 = np.mean(np.mean(temp1[tpj_vertices_l,:,:,0],axis=0),axis=1) - np.mean(np.mean(temp1[tpj_vertices_l,:,:,3],axis=0),axis=1) del temp1 temp1 = X11[:,:,poor_readers,:] M2 = np.mean(np.mean(temp1[tpj_vertices_l,:,:,:],axis=0),axis=1) errM2 = np.std(np.mean(temp1[tpj_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(poor_readers)) diffM3 = np.mean(np.mean(temp1[tpj_vertices_l,:,:,5],axis=0),axis=1) - np.mean(np.mean(temp1[tpj_vertices_l,:,:,8],axis=0),axis=1) diffM4 = np.mean(np.mean(temp1[tpj_vertices_l,:,:,0],axis=0),axis=1) - np.mean(np.mean(temp1[tpj_vertices_l,:,:,3],axis=0),axis=1) del temp1 # For calculating p-values X = np.mean(X11[tpj_vertices_l,:,:,:],axis=0) ############################################################################### """ Timecourse: Lexical task """ task1 = 5 task2 = 8 plotit2(times, M, errM, task1, task2, yMin=0, yMax=2.3, subject = 'all: TPJ') plotsig2(times,nReps,X, task1, task2, all_subject, boot_pVal) os.chdir(figureDir) plt.savefig('TPJ_lexical_all.png',dpi=600,papertype='letter',format='png') plt.savefig('TPJ_lexical_all.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M1, errM1, task1, task2, yMin=0, yMax=2.7, subject = 'typical: TPJ') plotsig2(times,nReps,X, task1, task2, good_readers, boot_pVal) os.chdir(figureDir) plt.savefig('TPJ_lexical_good.png',dpi=600,papertype='letter',format='png') plt.savefig('TPJ_lexical_good.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M2, errM2, task1, task2, yMin=0, yMax=2.7, subject = 'struggling: TPJ') plotsig2(times,nReps,X, task1, task2, poor_readers, boot_pVal) os.chdir(figureDir) plt.savefig('TPJ_lexical_poor.png',dpi=600,papertype='letter',format='png') plt.savefig('TPJ_lexical_poor.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') """ Timecourse: Dot task """ task1 = 0 task2 = 3 plotit2(times, M, errM, task1, task2, yMin=0, yMax=2.3, subject = 'all: TPJ') plotsig2(times,nReps,X, task1, task2, all_subject, boot_pVal) os.chdir(figureDir) plt.savefig('TPJ_dot_all.png',dpi=600,papertype='letter',format='png') plt.savefig('TPJ_dot_all.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M1, errM1, task1, task2, yMin=0, yMax=2.7, subject = 'typical: TPJ') plotsig2(times,nReps,X, task1, task2, good_readers, boot_pVal) os.chdir(figureDir) plt.savefig('TPJ_dot_good.png',dpi=600,papertype='letter',format='png') plt.savefig('TPJ_dot_good.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') plotit2(times, M2, errM2, task1, task2, yMin=0, yMax=2.7, subject = 'struggling: TPJ') plotsig2(times,nReps,X, task1, task2, poor_readers, boot_pVal) os.chdir(figureDir) plt.savefig('TPJ_dot_poor.png',dpi=600,papertype='letter',format='png') plt.savefig('TPJ_dot_poor.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') """ Correlation: Lexical """ temp1 = X11[:,:,good_readers,:] M1 = np.mean(temp1[tpj_vertices_l,:,:,:],axis=0) temp2 = X11[:,:,poor_readers,:] M2 = np.mean(temp2[tpj_vertices_l,:,:,:],axis=0) del temp1, temp2 t_window1 = np.multiply(np.divide(np.add([400,500],[100,100]),1000.), sRate) t_window1 = [np.int(i) for i in t_window1] task = 5 lowNoise1_good = np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1_poor = np.mean(M2[t_window1[0]:t_window1[1],:,task], axis = 0) - np.mean(M2[t_window1[0]:t_window1[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_read = np.concatenate((orig_twre[good_readers],orig_twre[poor_readers])) plt.figure() plt.clf() ax = plt.subplot() fit = np.polyfit(temp_meg, temp_read, deg=1) ax.plot(temp_meg, fit[0] * temp_meg + fit[1], color=[0,0,0]) ax.plot(temp_meg, temp_read, 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) ax.plot(lowNoise1_good, orig_twre[good_readers], 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) os.chdir('figures') plt.savefig('TPJ_corr_lexical.png',dpi=600,papertype='letter',format='png') plt.savefig('TPJ_corr_lexical.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') np.corrcoef(temp_read,temp_meg) r, p = stats.pearsonr(temp_read,temp_meg) print('lexical(all): correlation = %.4f, p = %.4f' %(r, p)) np.corrcoef(orig_twre[good_readers],lowNoise1_good) r, p = stats.pearsonr(orig_twre[good_readers],lowNoise1_good) print('lexical(good): correlation = %.4f, p = %.4f' %(r, p)) np.corrcoef(orig_twre[poor_readers],lowNoise1_poor) r, p = stats.pearsonr(orig_twre[poor_readers],lowNoise1_poor) print('lexical(poor): correlation = %.4f, p = %.4f' %(r, p)) """ Correlation: Dot task """ t_window1_dot = np.multiply(np.divide(np.add([300,400],[100,100]),1000.), sRate) t_window1_dot = [np.int(i) for i in t_window1_dot] task = 0 lowNoise1_good = np.mean(M1[np.int(t_window1_dot[0]):np.int(t_window1_dot[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1_dot[0]):np.int(t_window1_dot[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) lowNoise1_poor = np.mean(M2[t_window1_dot[0]:t_window1_dot[1],:,task], axis = 0) - np.mean(M2[t_window1_dot[0]:t_window1_dot[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) temp_meg = np.concatenate((lowNoise1_good,lowNoise1_poor)) temp_read = np.concatenate((orig_twre[good_readers],orig_twre[poor_readers])) plt.figure() plt.clf() ax = plt.subplot() fit = np.polyfit(temp_meg, temp_read, deg=1) ax.plot(temp_meg, fit[0] * temp_meg + fit[1], color=[0,0,0]) ax.plot(temp_meg, temp_read, 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) ax.plot(lowNoise1_good, orig_twre[good_readers], 'o', markerfacecolor=[.5, .5, .5], markeredgecolor=[1,1,1], markersize=10) os.chdir('figures') plt.savefig('TPJ_corr_dot.png',dpi=600,papertype='letter',format='png') plt.savefig('TPJ_corr_dot.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') np.corrcoef(temp_read,temp_meg) r, p = stats.pearsonr(temp_read,temp_meg) print('Dot(all): correlation = %.4f, p = %.4f' %(r, p)) np.corrcoef(orig_twre[good_readers],lowNoise1_good) r, p = stats.pearsonr(orig_twre[good_readers],lowNoise1_good) print('Dot(good): correlation = %.4f, p = %.4f' %(r, p)) np.corrcoef(orig_twre[poor_readers],lowNoise1_poor) r, p = stats.pearsonr(orig_twre[poor_readers],lowNoise1_poor) print('Dot(poor): correlation = %.4f, p = %.4f' %(r, p)) """ Task effects: Word response in lexical vs. dot task """ t0 = time.time() task1 = 0 task2 = 5 temp2_good = np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task2], axis = 0) temp2_poor = np.mean(M2[np.int(t_window1[0]):np.int(t_window1[1]),:,task2], axis = 0) temp3_good = np.mean(M1[np.int(t_window1_dot[0]):np.int(t_window1_dot[1]),:,task1], axis = 0) temp3_poor = np.mean(M2[np.int(t_window1_dot[0]):np.int(t_window1_dot[1]),:,task1], axis = 0) temp2 = np.concatenate((temp2_good,temp2_poor)) # lexical temp3 = np.concatenate((temp3_good,temp3_poor)) # dot plt.figure() plt.clf() ax = plt.subplot() fit = np.polyfit(temp3, temp2, deg=1) ax.plot(temp3, fit[0] * temp3 + fit[1], color=[0,0,0]) ax.plot(temp3_poor, temp2_poor, 'o', markerfacecolor=[.5,.5,.5], markeredgecolor=[1,1,1], markersize=10) ax.plot(temp3_good, temp2_good, 'o', markerfacecolor=[.5,.5,.5], markeredgecolor=[1,1,1], markersize=10) plt.axis('square') plt.ylim([0, 7]) plt.xlim([0, 7]) r, p = stats.pearsonr(temp3,temp2) print('TPJ: lexical vs. dot task (all): correlation = %.4f, p = %.7f' %(r, p)) os.chdir(figureDir) plt.savefig('TPJ_lexical_dot.png',dpi=600,papertype='letter',format='png') plt.savefig('TPJ_lexical_dot.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') del M, M1, M2 #%% """ Motor """ M = np.mean(np.mean(tX11[motor_vertices_l,:,:,:],axis=0),axis=1) errM = np.std(np.mean(tX11[motor_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(all_subject)) temp1 = X11[:,:,good_readers,:] M1 = np.mean(np.mean(temp1[motor_vertices_l,:,:,:],axis=0),axis=1) errM1 = np.std(np.mean(temp1[motor_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(good_readers)) del temp1 temp1 = X11[:,:,poor_readers,:] M2 = np.mean(np.mean(temp1[motor_vertices_l,:,:,:],axis=0),axis=1) errM2 = np.std(np.mean(temp1[motor_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(poor_readers)) del temp1 # For calculating p-values X = np.mean(X11[motor_vertices_l,:,:,:],axis=0) ############################################################################### t0 = time.time() plotit2(times, M, errM, 0, 3, yMin=0, yMax=2.3, subject = 'all') plotsig2(times,nReps,X, 0, 3, all_subject, boot_pVal) C = np.mean(X11[motor_vertices_l,:,:,0],axis=0) - np.mean(X11[motor_vertices_l,:,:,3],axis=0) #corr = plotcorr3(times, C[:,all_subject], twre_index) #plt.text(times[np.where(corr == np.max(corr))[0][0]],0.5,np.str(times[np.where(corr == np.max(corr))[0][0]])) #plt.text(times[np.where(corr == np.max(corr))[0][0]],0.4,np.str(np.max(corr))) os.chdir(figureDir) plt.savefig('Motor_dot_all.png',dpi=600,papertype='letter',format='png') plt.savefig('Motor_dot_all.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #print "\n\nElasped time: %0.2d mins %0.2d secs" % (divmod(time.time()-t0, 60)) t0 = time.time() plotit2(times, M1, errM1, 0, 3, yMin=0, yMax=2.7, subject = 'typical') plotsig2(times,nReps,X, 0, 3, good_readers, boot_pVal) os.chdir(figureDir) plt.savefig('Motor_dot_good.png',dpi=600,papertype='letter',format='png') plt.savefig('Motor_dot_good.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #print "\n\nElasped time: %0.2d mins %0.2d secs" % (divmod(time.time()-t0, 60)) t0 = time.time() plotit2(times, M2, errM2, 0, 3, yMin=0, yMax=2.7, subject = 'struggling') plotsig2(times,nReps,X, 0, 3, poor_readers, boot_pVal) os.chdir(figureDir) plt.savefig('Motor_dot_poor.png',dpi=600,papertype='letter',format='png') plt.savefig('Motor_dot_poor.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #print "\n\nElasped time: %0.2d mins %0.2d secs" % (divmod(time.time()-t0, 60)) ############################################################################### t0 = time.time() plotit2(times, M, errM, 5, 8, yMin=0, yMax=2.3, subject = 'all') plotsig2(times,nReps,X, 5, 8, all_subject, boot_pVal) #C = np.mean(X11[motor_vertices_l,:,:,5],axis=0) - np.mean(X11[motor_vertices_l,:,:,8],axis=0) #corr2 = plotcorr3(times, C[:,all_subject], twre_index) #plt.text(times[np.where(corr2 == np.max(corr2))[0][0]],0.5,np.str(times[np.where(corr2 == np.max(corr2))[0][0]])) #plt.text(times[np.where(corr2 == np.max(corr2))[0][0]],0.4,np.str(np.max(corr2))) os.chdir(figureDir) plt.savefig('Motor_lexical_all.png',dpi=600,papertype='letter',format='png') plt.savefig('Motor_lexical_all.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #print "\n\nElasped time: %0.2d mins %0.2d secs" % (divmod(time.time()-t0, 60)) t0 = time.time() plotit2(times, M1, errM1, 5, 8, yMin=0, yMax=2.7, subject = 'typical') plotsig2(times,nReps,X, 5, 8, good_readers, boot_pVal) os.chdir(figureDir) plt.savefig('Motor_lexical_good.png',dpi=600,papertype='letter',format='png') plt.savefig('Motor_lexical_good.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #print "\n\nElasped time: %0.2d mins %0.2d secs" % (divmod(time.time()-t0, 60)) t0 = time.time() plotit2(times, M2, errM2, 5, 8, yMin=0, yMax=2.7, subject = 'struggling') plotsig2(times,nReps,X, 5, 8, poor_readers, boot_pVal) os.chdir(figureDir) plt.savefig('Motor_lexical_poor.png',dpi=600,papertype='letter',format='png') plt.savefig('Motor_lexical_poor.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #print "\n\nElasped time: %0.2d mins %0.2d secs" % (divmod(time.time()-t0, 60)) #%% """ Sylvian """ M = np.mean(np.mean(tX11[sylvian_vertices_l,:,:,:],axis=0),axis=1) errM = np.std(np.mean(tX11[sylvian_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(all_subject)) temp1 = X11[:,:,good_readers,:] M1 = np.mean(np.mean(temp1[sylvian_vertices_l,:,:,:],axis=0),axis=1) errM1 = np.std(np.mean(temp1[sylvian_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(good_readers)) del temp1 temp1 = X11[:,:,poor_readers,:] M2 = np.mean(np.mean(temp1[sylvian_vertices_l,:,:,:],axis=0),axis=1) errM2 = np.std(np.mean(temp1[sylvian_vertices_l,:,:,:],axis=0),axis=1) / np.sqrt(len(poor_readers)) del temp1 # For calculating p-values X = np.mean(X11[sylvian_vertices_l,:,:,:],axis=0) ############################################################################### t0 = time.time() plotit2(times, M, errM, 0, 3, yMin=0, yMax=2.7, subject = 'all') plotsig2(times,nReps,X, 0, 3, all_subject, boot_pVal) #C = np.mean(X11[sylvian_vertices_l,:,:,0],axis=0) - np.mean(X11[sylvian_vertices_l,:,:,3],axis=0) #corr = plotcorr3(times, C[:,all_subject], twre_index) #plt.text(times[np.where(corr == np.max(corr))[0][0]],0.5,np.str(times[np.where(corr == np.max(corr))[0][0]])) #plt.text(times[np.where(corr == np.max(corr))[0][0]],0.4,np.str(np.max(corr))) os.chdir(figureDir) plt.savefig('Sylvian_dot_all.png',dpi=600,papertype='letter',format='png') plt.savefig('Sylvian_dot_all.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #print "\n\nElasped time: %0.2d mins %0.2d secs" % (divmod(time.time()-t0, 60)) t0 = time.time() plotit2(times, M1, errM1, 0, 3, yMin=0, yMax=2.7, subject = 'typical') plotsig2(times,nReps,X, 0, 3, good_readers, boot_pVal) os.chdir(figureDir) plt.savefig('Sylvian_dot_good.png',dpi=600,papertype='letter',format='png') plt.savefig('Sylvian_dot_good.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #print "\n\nElasped time: %0.2d mins %0.2d secs" % (divmod(time.time()-t0, 60)) t0 = time.time() plotit2(times, M2, errM2, 0, 3, yMin=0, yMax=2.7, subject = 'struggling') plotsig2(times,nReps,X, 0, 3, poor_readers, boot_pVal) os.chdir(figureDir) plt.savefig('Sylvian_dot_poor.png',dpi=600,papertype='letter',format='png') plt.savefig('Sylvian_dot_poor.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #print "\n\nElasped time: %0.2d mins %0.2d secs" % (divmod(time.time()-t0, 60)) ############################################################################### t0 = time.time() plotit2(times, M, errM, 5, 8, yMin=0, yMax=2.7, subject = 'all') plotsig2(times,nReps,X, 5, 8, all_subject, boot_pVal) #C = np.mean(X11[sylvian_vertices_l,:,:,5],axis=0) - np.mean(X11[sylvian_vertices_l,:,:,8],axis=0) #corr2 = plotcorr3(times, C[:,all_subject], twre_index) #plt.text(times[np.where(corr2 == np.max(corr2))[0][0]],0.5,np.str(times[np.where(corr2 == np.max(corr2))[0][0]])) #plt.text(times[np.where(corr2 == np.max(corr2))[0][0]],0.4,np.str(np.max(corr2))) os.chdir(figureDir) plt.savefig('Sylvian_lexical_all.png',dpi=600,papertype='letter',format='png') plt.savefig('Sylvian_lexical_all.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #print "\n\nElasped time: %0.2d mins %0.2d secs" % (divmod(time.time()-t0, 60)) t0 = time.time() plotit2(times, M1, errM1, 5, 8, yMin=0, yMax=2.7, subject = 'typical') plotsig2(times,nReps,X, 5, 8, good_readers, boot_pVal) os.chdir(figureDir) plt.savefig('Sylvian_lexical_good.png',dpi=600,papertype='letter',format='png') plt.savefig('Sylvian_lexical_good.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #print "\n\nElasped time: %0.2d mins %0.2d secs" % (divmod(time.time()-t0, 60)) t0 = time.time() plotit2(times, M2, errM2, 5, 8, yMin=0, yMax=2.7, subject = 'struggling') plotsig2(times,nReps,X, 5, 8, poor_readers, boot_pVal) os.chdir(figureDir) plt.savefig('Sylvian_lexical_poor.png',dpi=600,papertype='letter',format='png') plt.savefig('Sylvian_lexical_poor.pdf',dpi=600,papertype='letter',format='pdf') os.chdir('..') #print "\n\nElasped time: %0.2d mins %0.2d secs" % (divmod(time.time()-t0, 60)) #%% """ Making bar plots """ t_window1 = np.multiply(np.divide(np.add([300,600],[100,100]),1000.), sRate) t_window1 = [np.int(i) for i in t_window1] dot_window1 = np.multiply(np.divide(np.add([300,600],[100,100]),1000.), sRate) dot_window1 = [np.int(i) for i in dot_window1] t_window2 = np.multiply(np.divide(np.add([600,700],[100,100]),1000.), sRate) t_window2 = [np.int(i) for i in t_window2] dot_early = np.multiply(np.divide(np.add([300,400],[100,100]),1000.), sRate) dot_early = [np.int(i) for i in dot_early] dot_late = np.multiply(np.divide(np.add([500,600],[100,100]),1000.), sRate) dot_late = [np.int(i) for i in dot_late] #temp_vertices = broca_vertices_l temp_vertices = stg_vertices_l # AUD 1 # Lexical task task = 5 temp1 = X11[:,:,good_readers,:] M1 = np.mean(temp1[temp_vertices,:,:,:],axis=0) lowNoise1_good = np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task], axis = 0) - np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task+3], axis = 0) lowNoise1_good_err = np.std(lowNoise1_good) / np.sqrt(len(lowNoise1_good)) medNoise1_good = np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task+1], axis = 0) - np.mean(M1[np.int(t_window1[0]):np.int(t_window1[1]),:,task+3], axis = 0) medNoise1_good_err = np.std(medNoise1_good) / np.sqrt(len(medNoise1_good)) del temp1 temp2 = X11[:,:,poor_readers,:] M2 = np.mean(temp2[temp_vertices,:,:,:],axis=0) lowNoise1_poor = np.mean(M2[t_window1[0]:t_window1[1],:,task], axis = 0) - np.mean(M2[t_window1[0]:t_window1[1],:,task+3], axis = 0) lowNoise1_poor_err = np.std(lowNoise1_poor) / np.sqrt(len(lowNoise1_poor)) medNoise1_poor = np.mean(M2[t_window1[0]:t_window1[1],:,task+1], axis = 0) - np.mean(M2[t_window1[0]:t_window1[1],:,task+3], axis = 0) medNoise1_poor_err = np.std(medNoise1_poor) / np.sqrt(len(medNoise1_poor)) #lowNoise2_poor = np.mean(M2[t_window2[0]:t_window2[1],:,task], axis = 0) - np.mean(M2[t_window2[0]:t_window2[1],:,task+3], axis = 0) #lowNoise2_poor_err = np.std(lowNoise2_poor) / np.sqrt(len(lowNoise2_poor)) #medNoise2_poor = np.mean(M2[t_window2[0]:t_window2[1],:,task+1], axis = 0) - np.mean(M2[t_window2[0]:t_window2[1],:,task+3], axis = 0) #medNoise2_poor_err = np.std(medNoise2_poor) / np.sqrt(len(medNoise2_poor)) del temp2 # Dot task task = 0 temp1 = X11[:,:,good_readers,:] M1 = np.mean(temp1[temp_vertices,:,:,:],axis=0) dot_lowNoise1_good = np.mean(M1[dot_window1[0]:dot_window1[1],:,task], axis = 0) - np.mean(M1[dot_window1[0]:dot_window1[1],:,task+3], axis = 0) dot_lowNoise1_good_err = np.std(dot_lowNoise1_good) / np.sqrt(len(dot_lowNoise1_good)) dot_medNoise1_good = np.mean(M1[dot_window1[0]:dot_window1[1],:,task+1], axis = 0) - np.mean(M1[dot_window1[0]:dot_window1[1],:,task+3], axis = 0) dot_medNoise1_good_err = np.std(dot_medNoise1_good) / np.sqrt(len(dot_medNoise1_good)) dot_lowNoise2_early_good = np.mean(M1[dot_early[0]:dot_early[1],:,task], axis = 0) - np.mean(M1[dot_early[0]:dot_early[1],:,task+3], axis = 0) dot_lowNoise2_early_good_err = np.std(dot_lowNoise2_early_good) / np.sqrt(len(dot_lowNoise2_early_good)) dot_lowNoise2_late_good = np.mean(M1[dot_late[0]:dot_late[1],:,task], axis = 0) - np.mean(M1[dot_late[0]:dot_late[1],:,task+3], axis = 0) dot_lowNoise2_late_good_err = np.std(dot_lowNoise2_late_good) / np.sqrt(len(dot_lowNoise2_late_good)) del temp1 temp2 = X11[:,:,poor_readers,:] M2 = np.mean(temp2[temp_vertices,:,:,:],axis=0) dot_lowNoise1_poor = np.mean(M2[dot_window1[0]:dot_window1[1],:,task], axis = 0) - np.mean(M2[dot_window1[0]:dot_window1[1],:,task+3], axis = 0) dot_lowNoise1_poor_err = np.std(dot_lowNoise1_poor) / np.sqrt(len(dot_lowNoise1_poor)) dot_medNoise1_poor = np.mean(M2[dot_window1[0]:dot_window1[1],:,task+1], axis = 0) - np.mean(M2[dot_window1[0]:dot_window1[1],:,task+3], axis = 0) dot_medNoise1_poor_err = np.std(dot_medNoise1_poor) / np.sqrt(len(dot_medNoise1_poor)) dot_lowNoise2_early_poor = np.mean(M2[dot_early[0]:dot_early[1],:,task], axis = 0) - np.mean(M2[dot_early[0]:dot_early[1],:,task+3], axis = 0) dot_lowNoise2_early_poor_err = np.std(dot_lowNoise2_early_poor) / np.sqrt(len(dot_lowNoise2_early_poor)) dot_lowNoise2_late_poor = np.mean(M2[dot_late[0]:dot_late[1],:,task], axis = 0) - np.mean(M2[dot_late[0]:dot_late[1],:,task+3], axis = 0) dot_lowNoise2_late_poor_err = np.std(dot_lowNoise2_late_poor) / np.sqrt(len(dot_lowNoise2_late_poor)) del temp2 """ Correlation """ aaa = np.array(subs) temp_meg1 = np.concatenate((dot_lowNoise1_good,dot_lowNoise1_poor)) temp_read = np.concatenate((orig_twre[good_readers],orig_twre[poor_readers])) temp_brs = np.concatenate((brs[good_readers],brs[poor_readers])) temp_rf =
np.concatenate((rf[good_readers],rf[poor_readers]))
numpy.concatenate
# -*- coding: utf-8 -*- from __future__ import division, absolute_import, print_function __all__ = [ 'is_matrix', 'is_square', 'is_column', 'is_row', 'is_diag', 'is_symmetirc', 'col', 'row', 'deg2rad', 'rad2deg', 'cart2pol', 'pol2cart', 'cart2sph', 'sph2cart', 'rotate_matrix_rad', 'rotate_matrix_deg', 'ellip_volume', 'ellip_point', 'ellip_uniform', 'cholcov', 'multi_normal', 'disc_random' ] import numbers import numpy as np import scipy.linalg as lg import scipy.special as sl from collections.abc import Iterable def is_matrix(x): return isinstance(x, np.ndarray) and len(x.shape) == 2 def is_square(x): return is_matrix(x) and x.shape[0] == x.shape[1] def is_column(x): return is_matrix(x) and x.shape[1] == 1 def is_row(x): return is_matrix(x) and x.shape[0] == 1 def is_diag(x): return is_matrix(x) and (x == np.diag(x.diagonal())).all() def is_symmetirc(x): return not
np.any(x - x.T)
numpy.any
#!/usr/bin/env python # Copyright 2014-2020 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from pyscf import lib from pyscf import ao2mo from pyscf.cc.rintermediates import _get_vvvv # noqa from pyscf.cc.ccsd import BLKMIN # Ref: Gauss and Stanton, J. Chem. Phys. 103, 3561 (1995) Table III def make_tau(t2, t1, r1, fac=1, out=None): t1a, t1b = t1 r1a, r1b = r1 tau1aa = make_tau_aa(t2[0], t1a, r1a, fac, out) tau1bb = make_tau_aa(t2[2], t1b, r1b, fac, out) tau1ab = make_tau_ab(t2[1], t1, r1, fac, out) return tau1aa, tau1ab, tau1bb def make_tau_aa(t2aa, t1a, r1a, fac=1, out=None): tau1aa = np.einsum('ia,jb->ijab', t1a, r1a) tau1aa-= np.einsum('ia,jb->jiab', t1a, r1a) tau1aa = tau1aa - tau1aa.transpose(0,1,3,2) tau1aa *= fac * .5 tau1aa += t2aa return tau1aa def make_tau_ab(t2ab, t1, r1, fac=1, out=None): t1a, t1b = t1 r1a, r1b = r1 tau1ab = np.einsum('ia,jb->ijab', t1a, r1b) tau1ab+= np.einsum('ia,jb->ijab', r1a, t1b) tau1ab *= fac * .5 tau1ab += t2ab return tau1ab def Foo(t1, t2, eris): t1a, t1b = t1 t2aa, t2ab, t2bb = t2 nocca, noccb, nvira, nvirb = t2ab.shape eris_ovov = np.asarray(eris.ovov) eris_OVOV = np.asarray(eris.OVOV) eris_ovOV = np.asarray(eris.ovOV) tilaa, tilab, tilbb = make_tau(t2, t1, t1, fac=0.5) Fooa = lib.einsum('inef,menf->mi', tilaa, eris_ovov) Fooa += lib.einsum('iNeF,meNF->mi', tilab, eris_ovOV) Foob = lib.einsum('inef,menf->mi', tilbb, eris_OVOV) Foob += lib.einsum('nIfE,nfME->MI', tilab, eris_ovOV) eris_ovoo = np.asarray(eris.ovoo) eris_OVOO = np.asarray(eris.OVOO) eris_OVoo = np.asarray(eris.OVoo) eris_ovOO = np.asarray(eris.ovOO) Fooa += np.einsum('ne,nemi->mi', t1a, eris_ovoo) Fooa -= np.einsum('ne,meni->mi', t1a, eris_ovoo) Fooa += np.einsum('NE,NEmi->mi', t1b, eris_OVoo) Foob += np.einsum('ne,nemi->mi', t1b, eris_OVOO) Foob -= np.einsum('ne,meni->mi', t1b, eris_OVOO) Foob += np.einsum('ne,neMI->MI', t1a, eris_ovOO) fooa = eris.focka[:nocca,:nocca] foob = eris.fockb[:noccb,:noccb] fova = eris.focka[:nocca,nocca:] fovb = eris.fockb[:noccb,noccb:] Fova, Fovb = Fov(t1, t2, eris) Fooa += fooa + 0.5*lib.einsum('me,ie->mi', Fova+fova, t1a) Foob += foob + 0.5*lib.einsum('me,ie->mi', Fovb+fovb, t1b) return Fooa, Foob def Fvv(t1, t2, eris): t1a, t1b = t1 t2aa, t2ab, t2bb = t2 nocca, noccb, nvira, nvirb = t2ab.shape Fvva = 0 Fvvb = 0 tauaa, tauab, taubb = make_tau(t2, t1, t1) #:eris_ovvv = lib.unpack_tril(np.asarray(eris.ovvv).reshape(nocca*nvira,-1)).reshape(nocca,nvira,nvira,nvira) #:ovvv = eris_ovvv - eris_ovvv.transpose(0,3,2,1) #:self.Fvva = np.einsum('mf,mfae->ae', t1a, ovvv) mem_now = lib.current_memory()[0] max_memory = max(0, lib.param.MAX_MEMORY - mem_now) blksize = min(nocca, max(BLKMIN, int(max_memory*1e6/8/(nvira**3*3)))) for p0,p1 in lib.prange(0, nocca, blksize): ovvv = eris.get_ovvv(slice(p0,p1)) # ovvv = eris.ovvv[p0:p1] ovvv = ovvv - ovvv.transpose(0,3,2,1) Fvva += np.einsum('mf,mfae->ae', t1a[p0:p1], ovvv) ovvv = None #:eris_OVVV = lib.unpack_tril(np.asarray(eris.OVVV).reshape(noccb*nvirb,-1)).reshape(noccb,nvirb,nvirb,nvirb) #:OVVV = eris_OVVV - eris_OVVV.transpose(0,3,2,1) #:self.Fvvb = np.einsum('mf,mfae->ae', t1b, OVVV) #:self.wOVVO = lib.einsum('jf,mebf->mbej', t1b, OVVV) #:self.wOVOO = 0.5 * lib.einsum('mebf,ijef->mbij', OVVV, taubb) blksize = min(noccb, max(BLKMIN, int(max_memory*1e6/8/(nvirb**3*3)))) for p0, p1 in lib.prange(0, noccb, blksize): OVVV = eris.get_OVVV(slice(p0,p1)) # OVVV = eris.OVVV[p0:p1] OVVV = OVVV - OVVV.transpose(0,3,2,1) Fvvb += np.einsum('mf,mfae->ae', t1b[p0:p1], OVVV) OVVV = None #:eris_ovVV = lib.unpack_tril(np.asarray(eris.ovVV).reshape(nocca*nvira,-1)).reshape(nocca,nvira,nvirb,nvirb) #:self.Fvvb += np.einsum('mf,mfAE->AE', t1a, eris_ovVV) #:self.woVvO = lib.einsum('JF,meBF->mBeJ', t1b, eris_ovVV) #:self.woVVo = lib.einsum('jf,mfBE->mBEj',-t1a, eris_ovVV) #:self.woVoO = 0.5 * lib.einsum('meBF,iJeF->mBiJ', eris_ovVV, tauab) #:self.woVoO += 0.5 * lib.einsum('mfBE,iJfE->mBiJ', eris_ovVV, tauab) blksize = min(nocca, max(BLKMIN, int(max_memory*1e6/8/(nvira*nvirb**2*3)))) for p0,p1 in lib.prange(0, nocca, blksize): ovVV = eris.get_ovVV(slice(p0,p1)) # ovVV = eris.ovVV[p0:p1] Fvvb += np.einsum('mf,mfAE->AE', t1a[p0:p1], ovVV) ovVV = None #:eris_OVvv = lib.unpack_tril(np.asarray(eris.OVvv).reshape(noccb*nvirb,-1)).reshape(noccb,nvirb,nvira,nvira) #:self.Fvva += np.einsum('MF,MFae->ae', t1b, eris_OVvv) #:self.wOvVo = lib.einsum('jf,MEbf->MbEj', t1a, eris_OVvv) #:self.wOvvO = lib.einsum('JF,MFbe->MbeJ',-t1b, eris_OVvv) #:self.wOvOo = 0.5 * lib.einsum('MEbf,jIfE->MbIj', eris_OVvv, tauab) #:self.wOvOo += 0.5 * lib.einsum('MFbe,jIeF->MbIj', eris_OVvv, tauab) blksize = min(noccb, max(BLKMIN, int(max_memory*1e6/8/(nvirb*nvira**2*3)))) for p0, p1 in lib.prange(0, noccb, blksize): OVvv = eris.get_OVvv(slice(p0,p1)) # OVvv = eris.OVvv[p0:p1] Fvva += np.einsum('MF,MFae->ae', t1b[p0:p1], OVvv) OVvv = None eris_ovov = np.asarray(eris.ovov) eris_OVOV = np.asarray(eris.OVOV) eris_ovOV = np.asarray(eris.ovOV) tilaa, tilab, tilbb = make_tau(t2, t1, t1, fac=0.5) Fvva -= lib.einsum('mnaf,menf->ae', tilaa, eris_ovov) Fvva -= lib.einsum('mNaF,meNF->ae', tilab, eris_ovOV) Fvvb -= lib.einsum('mnaf,menf->ae', tilbb, eris_OVOV) Fvvb -= lib.einsum('nMfA,nfME->AE', tilab, eris_ovOV) fvva = eris.focka[nocca:,nocca:] fvvb = eris.fockb[noccb:,noccb:] fova = eris.focka[:nocca,nocca:] fovb = eris.fockb[:noccb,noccb:] Fova, Fovb = Fov(t1, t2, eris) Fvva += fvva - 0.5*lib.einsum('me,ma->ae', Fova+fova, t1a) Fvvb += fvvb - 0.5*lib.einsum('me,ma->ae', Fovb+fovb, t1b) return Fvva, Fvvb def Fov(t1, t2, eris): t1a, t1b = t1 t2aa, t2ab, t2bb = t2 nocca, noccb, nvira, nvirb = t2ab.shape fova = eris.focka[:nocca,nocca:] fovb = eris.fockb[:noccb,noccb:] eris_ovov = np.asarray(eris.ovov) eris_OVOV = np.asarray(eris.OVOV) eris_ovOV = np.asarray(eris.ovOV) ovov = eris_ovov - eris_ovov.transpose(0,3,2,1) OVOV = eris_OVOV - eris_OVOV.transpose(0,3,2,1) Fova = np.einsum('nf,menf->me', t1a, ovov) Fova+= np.einsum('NF,meNF->me', t1b, eris_ovOV) Fova += fova Fovb = np.einsum('nf,menf->me', t1b, OVOV) Fovb+= np.einsum('nf,nfME->ME', t1a, eris_ovOV) Fovb += fovb return Fova, Fovb def Woooo(t1, t2, eris): t1a, t1b = t1 t2aa, t2ab, t2bb = t2 eris_ovoo = np.asarray(eris.ovoo) eris_OVOO = np.asarray(eris.OVOO) eris_OVoo = np.asarray(eris.OVoo) eris_ovOO = np.asarray(eris.ovOO) ovoo = eris_ovoo - eris_ovoo.transpose(2,1,0,3) OVOO = eris_OVOO - eris_OVOO.transpose(2,1,0,3) woooo = lib.einsum('je,nemi->minj', t1a, ovoo) wOOOO = lib.einsum('je,nemi->minj', t1b, OVOO) wooOO = lib.einsum('JE,NEmi->miNJ', t1b, eris_OVoo) woOOo = lib.einsum('je,meNI->mINj',-t1a, eris_ovOO) woooo += np.asarray(eris.oooo) wOOOO += np.asarray(eris.OOOO) wooOO += np.asarray(eris.ooOO) woooo = woooo - woooo.transpose(0,3,2,1) wOOOO = wOOOO - wOOOO.transpose(0,3,2,1) wooOO = wooOO - woOOo.transpose(0,3,2,1) eris_ovov = np.asarray(eris.ovov) eris_OVOV = np.asarray(eris.OVOV) eris_ovOV = np.asarray(eris.ovOV) ovov = eris_ovov - eris_ovov.transpose(0,3,2,1) OVOV = eris_OVOV - eris_OVOV.transpose(0,3,2,1) tauaa, tauab, taubb = make_tau(t2, t1, t1) woooo += 0.5*lib.einsum('ijef,menf->minj', tauaa, ovov) wOOOO += 0.5*lib.einsum('ijef,menf->minj', taubb, OVOV) wooOO += lib.einsum('iJeF,meNF->miNJ', tauab, eris_ovOV) wOOoo = None return woooo, wooOO, wOOoo, wOOOO def Wooov(t1, t2, eris): t1a, t1b = t1 t2aa, t2ab, t2bb = t2 dtype = np.result_type(t1a, t1b, t2aa, t2ab, t2bb) eris_ovoo = np.asarray(eris.ovoo) eris_OVOO = np.asarray(eris.OVOO) eris_OVoo = np.asarray(eris.OVoo) eris_ovOO = np.asarray(eris.ovOO) ovoo = eris_ovoo - eris_ovoo.transpose(2,1,0,3) OVOO = eris_OVOO - eris_OVOO.transpose(2,1,0,3) wooov = np.array( ovoo.transpose(2,3,0,1), dtype=dtype) wOOOV = np.array( OVOO.transpose(2,3,0,1), dtype=dtype) wooOV = np.array(eris_OVoo.transpose(2,3,0,1), dtype=dtype) wOOov = np.array(eris_ovOO.transpose(2,3,0,1), dtype=dtype) eris_ovoo = eris_OVOO = eris_ovOO = eris_OVoo = None eris_ovov = np.asarray(eris.ovov) eris_OVOV = np.asarray(eris.OVOV) eris_ovOV = np.asarray(eris.ovOV) ovov = eris_ovov - eris_ovov.transpose(0,3,2,1) OVOV = eris_OVOV - eris_OVOV.transpose(0,3,2,1) wooov += lib.einsum('if,mfne->mine', t1a, ovov) wOOOV += lib.einsum('if,mfne->mine', t1b, OVOV) wooOV += lib.einsum('if,mfNE->miNE', t1a, eris_ovOV) wOOov += lib.einsum('IF,neMF->MIne', t1b, eris_ovOV) return wooov, wooOV, wOOov, wOOOV def Woovo(t1, t2, eris): t1a, t1b = t1 t2aa, t2ab, t2bb = t2 nocca, noccb, nvira, nvirb = t2ab.shape dtype = np.result_type(t1a, t1b, t2aa, t2ab, t2bb) wovoo = np.zeros((nocca,nvira,nocca,nocca), dtype=dtype) wOVOO = np.zeros((noccb,nvirb,noccb,noccb), dtype=dtype) woVoO = np.zeros((nocca,nvirb,nocca,noccb), dtype=dtype) wOvOo = np.zeros((noccb,nvira,noccb,nocca), dtype=dtype) tauaa, tauab, taubb = make_tau(t2, t1, t1) #:eris_ovvv = lib.unpack_tril(np.asarray(eris.ovvv).reshape(nocca*nvira,-1)).reshape(nocca,nvira,nvira,nvira) #:ovvv = eris_ovvv - eris_ovvv.transpose(0,3,2,1) #:self.wovoo = 0.5 * lib.einsum('mebf,ijef->mbij', eris_ovvv, tauaa) #:self.wovoo -= 0.5 * lib.einsum('mfbe,ijef->mbij', eris_ovvv, tauaa) mem_now = lib.current_memory()[0] max_memory = max(0, lib.param.MAX_MEMORY - mem_now) blksize = min(nocca, max(BLKMIN, int(max_memory*1e6/8/(nvira**3*3)))) for p0,p1 in lib.prange(0, nocca, blksize): ovvv = eris.get_ovvv(slice(p0,p1)) # ovvv = eris.ovvv[p0:p1] ovvv = ovvv - ovvv.transpose(0,3,2,1) wovoo[p0:p1] = 0.5 * lib.einsum('mebf,ijef->mbij', ovvv, tauaa) ovvv = None #:eris_OVVV = lib.unpack_tril(np.asarray(eris.OVVV).reshape(noccb*nvirb,-1)).reshape(noccb,nvirb,nvirb,nvirb) #:OVVV = eris_OVVV - eris_OVVV.transpose(0,3,2,1) #:self.wOVOO = 0.5 * lib.einsum('mebf,ijef->mbij', OVVV, taubb) blksize = min(noccb, max(BLKMIN, int(max_memory*1e6/8/(nvirb**3*3)))) for p0, p1 in lib.prange(0, noccb, blksize): OVVV = eris.get_OVVV(slice(p0,p1)) # OVVV = eris.OVVV[p0:p1] OVVV = OVVV - OVVV.transpose(0,3,2,1) wOVOO[p0:p1] = 0.5 * lib.einsum('mebf,ijef->mbij', OVVV, taubb) OVVV = None #:eris_ovVV = lib.unpack_tril(np.asarray(eris.ovVV).reshape(nocca*nvira,-1)).reshape(nocca,nvira,nvirb,nvirb) #:self.Fvvb += np.einsum('mf,mfAE->AE', t1a, eris_ovVV) #:self.woVvO = lib.einsum('JF,meBF->mBeJ', t1b, eris_ovVV) #:self.woVVo = lib.einsum('jf,mfBE->mBEj',-t1a, eris_ovVV) #:self.woVoO = 0.5 * lib.einsum('meBF,iJeF->mBiJ', eris_ovVV, tauab) #:self.woVoO += 0.5 * lib.einsum('mfBE,iJfE->mBiJ', eris_ovVV, tauab) blksize = min(nocca, max(BLKMIN, int(max_memory*1e6/8/(nvira*nvirb**2*3)))) for p0,p1 in lib.prange(0, nocca, blksize): ovVV = eris.get_ovVV(slice(p0,p1)) # ovVV = eris.ovVV[p0:p1] woVoO[p0:p1] = 0.5 * lib.einsum('meBF,iJeF->mBiJ', ovVV, tauab) woVoO[p0:p1]+= 0.5 * lib.einsum('mfBE,iJfE->mBiJ', ovVV, tauab) ovVV = None #:eris_OVvv = lib.unpack_tril(np.asarray(eris.OVvv).reshape(noccb*nvirb,-1)).reshape(noccb,nvirb,nvira,nvira) #:self.Fvva += np.einsum('MF,MFae->ae', t1b, eris_OVvv) #:self.wOvVo = lib.einsum('jf,MEbf->MbEj', t1a, eris_OVvv) #:self.wOvvO = lib.einsum('JF,MFbe->MbeJ',-t1b, eris_OVvv) #:self.wOvOo = 0.5 * lib.einsum('MEbf,jIfE->MbIj', eris_OVvv, tauab) #:self.wOvOo += 0.5 * lib.einsum('MFbe,jIeF->MbIj', eris_OVvv, tauab) blksize = min(noccb, max(BLKMIN, int(max_memory*1e6/8/(nvirb*nvira**2*3)))) for p0, p1 in lib.prange(0, noccb, blksize): OVvv = eris.get_OVvv(slice(p0,p1)) # OVvv = eris.OVvv[p0:p1] wOvOo[p0:p1] = 0.5 * lib.einsum('MEbf,jIfE->MbIj', OVvv, tauab) wOvOo[p0:p1]+= 0.5 * lib.einsum('MFbe,jIeF->MbIj', OVvv, tauab) OVvv = None eris_ovov = np.asarray(eris.ovov) eris_OVOV = np.asarray(eris.OVOV) eris_ovOV = np.asarray(eris.ovOV) ovov = eris_ovov - eris_ovov.transpose(0,3,2,1) OVOV = eris_OVOV - eris_OVOV.transpose(0,3,2,1) tilaa, tilab, tilbb = make_tau(t2, t1, t1, fac=0.5) eris_ovoo = np.asarray(eris.ovoo) eris_OVOO = np.asarray(eris.OVOO) eris_OVoo = np.asarray(eris.OVoo) eris_ovOO = np.asarray(eris.ovOO) ovoo = eris_ovoo - eris_ovoo.transpose(2,1,0,3) OVOO = eris_OVOO - eris_OVOO.transpose(2,1,0,3) tmpaa = lib.einsum('nemi,jnbe->mbij', ovoo, t2aa) tmpaa+= lib.einsum('NEmi,jNbE->mbij', eris_OVoo, t2ab) tmpbb = lib.einsum('nemi,jnbe->mbij', OVOO, t2bb) tmpbb+= lib.einsum('neMI,nJeB->MBIJ', eris_ovOO, t2ab) woVoO += lib.einsum('nemi,nJeB->mBiJ', ovoo, t2ab) woVoO += lib.einsum('NEmi,JNBE->mBiJ', eris_OVoo, t2bb) woVoO -= lib.einsum('meNI,jNeB->mBjI', eris_ovOO, t2ab) wOvOo += lib.einsum('NEMI,jNbE->MbIj', OVOO, t2ab) wOvOo += lib.einsum('neMI,jnbe->MbIj', eris_ovOO, t2aa) wOvOo -= lib.einsum('MEni,nJbE->MbJi', eris_OVoo, t2ab) wovoo += tmpaa - tmpaa.transpose(0,1,3,2) wOVOO += tmpbb - tmpbb.transpose(0,1,3,2) tmp1aa = lib.einsum('njbf,menf->mbej', t2aa, ovov) tmp1aa-= lib.einsum('jNbF,meNF->mbej', t2ab, eris_ovOV) tmp1bb = lib.einsum('njbf,menf->mbej', t2bb, OVOV) tmp1bb-= lib.einsum('nJfB,nfME->MBEJ', t2ab, eris_ovOV) tmp1ab = lib.einsum('NJBF,meNF->mBeJ', t2bb, eris_ovOV) tmp1ab-= lib.einsum('nJfB,menf->mBeJ', t2ab, ovov) tmp1ba = lib.einsum('njbf,nfME->MbEj', t2aa, eris_ovOV) tmp1ba-= lib.einsum('jNbF,MENF->MbEj', t2ab, OVOV) tmp1abba =-lib.einsum('jNfB,mfNE->mBEj', t2ab, eris_ovOV) tmp1baab =-lib.einsum('nJbF,neMF->MbeJ', t2ab, eris_ovOV) tmpaa = lib.einsum('ie,mbej->mbij', t1a, tmp1aa) tmpbb = lib.einsum('ie,mbej->mbij', t1b, tmp1bb) tmpab = lib.einsum('ie,mBeJ->mBiJ', t1a, tmp1ab) tmpab-= lib.einsum('IE,mBEj->mBjI', t1b, tmp1abba) tmpba = lib.einsum('IE,MbEj->MbIj', t1b, tmp1ba) tmpba-= lib.einsum('ie,MbeJ->MbJi', t1a, tmp1baab) wovoo -= tmpaa - tmpaa.transpose(0,1,3,2) wOVOO -= tmpbb - tmpbb.transpose(0,1,3,2) woVoO -= tmpab wOvOo -= tmpba eris_ovov = eris_OVOV = eris_ovOV = None eris_ovoo = np.asarray(eris.ovoo) eris_OVOO = np.asarray(eris.OVOO) eris_ovOO = np.asarray(eris.ovOO) eris_OVoo = np.asarray(eris.OVoo) wovoo += eris_ovoo.transpose(3,1,2,0) - eris_ovoo.transpose(2,1,0,3) wOVOO += eris_OVOO.transpose(3,1,2,0) - eris_OVOO.transpose(2,1,0,3) woVoO += eris_OVoo.transpose(3,1,2,0) wOvOo += eris_ovOO.transpose(3,1,2,0) eris_ovoo = eris_OVOO = eris_ovOO = eris_OVoo = None eris_ovvo = np.asarray(eris.ovvo) eris_OVVO = np.asarray(eris.OVVO) eris_OVvo = np.asarray(eris.OVvo) eris_ovVO = np.asarray(eris.ovVO) eris_oovv = np.asarray(eris.oovv) eris_OOVV = np.asarray(eris.OOVV) eris_OOvv = np.asarray(eris.OOvv) eris_ooVV =
np.asarray(eris.ooVV)
numpy.asarray
#TODO: Determine optimal alpha-reweighting for weighted cross entropy and for focal loss #TODO: Add weighting to multi-class dice #TODO: Fix sigmoid cross-entropy for categorical outputs #TODO: Add more custom metrics (HD95, detection rate, etc.) #TODO: Fix classification loss(es) to work with mirrored strategy (https://www.tensorflow.org/tutorials/distribute/custom_training) import numpy as np import tensorflow as tf from itertools import product from sorcery import unpack_keys from model_callbacks import DecayAlphaParameter #binary cross-entropy for classification using logits def binary_cross_entropy_classification(y_true, y_pred): #re-weight cross-entropy loss using desired sample weighting if y_true.shape[-1] == 1: y_true_onehot = one_hot_encode(tf.squeeze(y_true, axis=-1), LossParameters.num_classes) else: y_true_onehot = one_hot_encode(y_true[...,0], LossParameters.num_classes) sample_weight = tf.reduce_sum(tf.multiply(y_true_onehot, LossParameters.weights[:,0]), axis=-1) return tf.losses.BinaryCrossentropy(from_logits=True)(y_true, y_pred, sample_weight=sample_weight) #binary accuracy metric for classification using logits def binary_accuracy(y_true, y_pred): return tf.reduce_mean(tf.metrics.binary_accuracy(y_true, y_pred, threshold=0.0)) #binary accuracy metric for classification using logits (specifically for use as validation monitor since it will average over all patient crops) def binary_accuracy_batch(y_true, y_pred): y_true_batch = tf.reduce_mean(y_true, axis=0) y_pred_batch = tf.reduce_mean(y_pred, axis=0) return tf.reduce_mean(tf.metrics.binary_accuracy(y_true_batch, y_pred_batch, threshold=0.0)) #multi-class sorensen-dice coefficient metric def dice_coef_metric(y_true, y_pred): #activate outputs if y_true.shape[-1] != 1: y_true = tf.expand_dims(y_true[...,0], -1) y_true_onehot, y_pred_prob = activate_ouputs(y_true, y_pred) #can treat batch as a "pseudo-volume", or collect dice metrics on each volume in the batch individually axes_to_sum = find_axes_to_sum(y_true_onehot) #calculate dice metric per class intersection = tf.reduce_sum(tf.multiply(y_true_onehot, y_pred_prob), axis=axes_to_sum) union = tf.add(tf.reduce_sum(y_true_onehot, axis=axes_to_sum), tf.reduce_sum(y_pred_prob, axis=axes_to_sum)) numerator = tf.add(tf.multiply(intersection, 2.), LossParameters.smooth) denominator = tf.add(union, LossParameters.smooth) dice_metric_per_class = tf.divide(numerator, denominator) #return average dice metric over classes (choosing to use or not use the background class) return calculate_final_dice_metric(dice_metric_per_class) #multi-class hard sorensen-dice coefficient metric (only should be used as metric, not as loss) def hard_dice_coef_metric(y_true, y_pred): #activate outputs if y_true.shape[-1] != 1: y_true = tf.expand_dims(y_true[...,0], -1) y_true_onehot, y_pred_prob = activate_ouputs(y_true, y_pred) #can treat batch as a "pseudo-volume", or collect dice metrics on each volume in the batch individually axes_to_sum = find_axes_to_sum(y_true_onehot) #argmax to find predicted class and then one-hot the predicted vector y_pred_onehot = one_hot_encode(tf.math.argmax(y_pred_prob, axis=-1), LossParameters.num_classes) #calculate dice metric per class intersection = tf.reduce_sum(tf.multiply(y_true_onehot, y_pred_onehot), axis=axes_to_sum) union = tf.add(tf.reduce_sum(y_true_onehot, axis=axes_to_sum), tf.reduce_sum(y_pred_onehot, axis=axes_to_sum)) numerator = tf.multiply(intersection, 2.) denominator = union dice_metric_per_class = tf.divide(numerator, denominator) #replace any NaN values with 1.0 (NaN only occurs when both the ground truth predicted label is empty, which should give a true dice score of 1.0) dice_metric_per_class = tf.where(tf.math.is_nan(dice_metric_per_class), tf.ones_like(dice_metric_per_class), dice_metric_per_class) #return average dice metric over classes (choosing to use or not use the background class) return calculate_final_dice_metric(dice_metric_per_class) #multi-class sorensen-dice coefficient loss def dice_coef_loss(y_true, y_pred): return tf.subtract(1., dice_coef_metric(y_true, y_pred)) #multi-class jaccard similarity coefficient metric def jaccard_coef_metric(y_true, y_pred): #activate outputs if y_true.shape[-1] != 1: y_true = tf.expand_dims(y_true[...,0], -1) y_true_onehot, y_pred_prob = activate_ouputs(y_true, y_pred) #can treat batch as a "pseudo-volume", or collect dice metrics on each volume in the batch individually axes_to_sum = find_axes_to_sum(y_true_onehot) intersection = tf.reduce_sum(tf.multiply(y_true_onehot, y_pred_prob), axis=axes_to_sum) union = tf.add(tf.reduce_sum(y_true_onehot, axis=axes_to_sum), tf.reduce_sum(y_pred_prob, axis=axes_to_sum)) numerator = tf.add(intersection, LossParameters.smooth) denominator = tf.add(tf.subtract(union, intersection), LossParameters.smooth) jaccard_metric_per_class = tf.divide(numerator, denominator) #return average jaccard metric over classes (choosing to use or not use the background class) return calculate_final_dice_metric(jaccard_metric_per_class) #jaccard similarity coefficient loss def jaccard_coef_loss(y_true, y_pred): return tf.subtract(1., jaccard_coef_metric(y_true, y_pred)) #weighted categorical cross entropy loss def weighted_cross_entropy_loss(y_true, y_pred): if y_true.shape[-1] != 1: y_true = tf.expand_dims(y_true[...,0], -1) y_true_onehot, y_pred_prob, cross_entropy_matrix = cross_entropy_loss_matrix(y_true, y_pred) return tf.multiply(weight_matrix(y_true_onehot, y_pred_prob), cross_entropy_matrix) #weighted binary cross entropy with boundary loss def weighted_boundary_loss(y_true, y_pred): return tf.multiply(y_true[...,1], weighted_cross_entropy_loss(y_true, y_pred)) #categorical focal loss def focal_loss(y_true, y_pred): if y_true.shape[-1] != 1: y_true = tf.expand_dims(y_true[...,0], -1) y_true_onehot, y_pred_prob, cross_entropy_matrix = cross_entropy_loss_matrix(y_true, y_pred) alpha_term = weight_matrix(y_true_onehot, y_pred_prob) gamma_term = focal_weight(y_true_onehot, y_pred_prob) return tf.multiply(tf.multiply(alpha_term, gamma_term), cross_entropy_matrix) #combined dice loss and weighted cross entropy loss def joint_dice_cross_entropy_loss(y_true, y_pred): loss_contribution1 = tf.multiply(DecayAlphaParameter.alpha1, dice_coef_loss(y_true, y_pred)) loss_contribution2 = tf.multiply(DecayAlphaParameter.alpha2, weighted_cross_entropy_loss(y_true, y_pred)) return tf.add(loss_contribution1, loss_contribution2) #combined dice loss and binary boundary loss def joint_dice_boundary_loss(y_true, y_pred): loss_contribution1 = tf.multiply(DecayAlphaParameter.alpha1, dice_coef_loss(y_true, y_pred)) loss_contribution2 = tf.multiply(DecayAlphaParameter.alpha2, weighted_boundary_loss(y_true, y_pred)) return tf.add(loss_contribution1, loss_contribution2) #combined dice loss and focal loss def joint_dice_focal_loss(y_true, y_pred): loss_contribution1 = tf.multiply(DecayAlphaParameter.alpha1, dice_coef_loss(y_true, y_pred)) loss_contribution2 = tf.multiply(DecayAlphaParameter.alpha2, focal_loss(y_true, y_pred)) return tf.add(loss_contribution1, loss_contribution2) #combined dice loss and focal loss using adaptive weighting based on current dice score def adaptive_dice_focal_loss(y_true, y_pred): batch_dice_loss = dice_coef_loss(y_true, y_pred) batch_focal_loss = focal_loss(y_true, y_pred) weighting_value = tf.divide(1., tf.add(1., tf.math.exp(tf.multiply(-50., tf.subtract(batch_dice_loss, .35))))) loss_contribution1 = tf.multiply(weighting_value, batch_dice_loss) loss_contribution2 = tf.multiply(tf.subtract(1., weighting_value), batch_focal_loss) return tf.add(loss_contribution1, loss_contribution2) #dice metric for brats segmentation (converts sparse ground truth into overlapping set of regions to be used with sigmoid) def brats_dice_coef_metric(y_true, y_pred): #activate outputs y_pred_prob = sigmoid_probability(y_pred) if y_true.shape[-1] == 1: y_true_onehot_orig = one_hot_encode(tf.squeeze(y_true, axis=-1), 4) else: y_true_onehot_orig = one_hot_encode(y_true[...,0], 4) #convert ground truth to proper region labels background = y_true_onehot_orig[...,0] enhancing_tumor = y_true_onehot_orig[...,3] tumor_core = tf.add(y_true_onehot_orig[...,1], enhancing_tumor) whole_tumor = tf.add(y_true_onehot_orig[...,2], tumor_core) y_true_onehot = tf.stack([background, enhancing_tumor, tumor_core, whole_tumor], axis=-1) #can treat batch as a "pseudo-volume", or collect dice metrics on each volume in the batch individually axes_to_sum = find_axes_to_sum(y_true_onehot) #add "fake" background channel to predicted y_pred_prob = tf.concat([tf.expand_dims(background, axis=-1), y_pred_prob], axis=-1) #calculate dice metric per class intersection = tf.reduce_sum(tf.multiply(y_true_onehot, y_pred_prob), axis=axes_to_sum) union = tf.add(tf.reduce_sum(y_true_onehot, axis=axes_to_sum), tf.reduce_sum(y_pred_prob, axis=axes_to_sum)) numerator = tf.add(tf.multiply(intersection, 2.), LossParameters.smooth) denominator = tf.add(union, LossParameters.smooth) dice_metric_per_class = tf.divide(numerator, denominator) #return average dice metric over classes (choosing to use or not use the background class) return calculate_final_dice_metric(dice_metric_per_class) #dice coefficient loss for use with brats dataset def brats_dice_coef_loss(y_true, y_pred): return tf.subtract(1., brats_dice_coef_metric(y_true, y_pred)) #hard dice metric for brats segmentation (converts sparse ground truth into overlapping set of regions to be used with sigmoid) def hard_brats_dice_coef_metric(y_true, y_pred): #activate outputs y_pred_prob = sigmoid_probability(y_pred) if y_true.shape[-1] == 1: y_true_onehot_orig = one_hot_encode(tf.squeeze(y_true, axis=-1), 4) else: y_true_onehot_orig = one_hot_encode(y_true[...,0], 4) #convert ground truth to proper region labels background = y_true_onehot_orig[...,0] enhancing_tumor = y_true_onehot_orig[...,3] tumor_core = tf.add(y_true_onehot_orig[...,1], enhancing_tumor) whole_tumor = tf.add(y_true_onehot_orig[...,2], tumor_core) y_true_onehot = tf.stack([background, enhancing_tumor, tumor_core, whole_tumor], axis=-1) #can treat batch as a "pseudo-volume", or collect dice metrics on each volume in the batch individually axes_to_sum = find_axes_to_sum(y_true_onehot) #add "fake" background channel to predicted y_pred_prob = tf.concat([tf.expand_dims(background, axis=-1), y_pred_prob], axis=-1) #calculate dice metric per class y_pred_binary = tf.cast(tf.greater_equal(y_pred_prob, 0.5), tf.float32) intersection = tf.reduce_sum(tf.multiply(y_true_onehot, y_pred_binary), axis=axes_to_sum) union = tf.add(tf.reduce_sum(y_true_onehot, axis=axes_to_sum), tf.reduce_sum(y_pred_binary, axis=axes_to_sum)) numerator = tf.multiply(intersection, 2.) denominator = union dice_metric_per_class = tf.divide(numerator, denominator) #replace any NaN values with 1.0 (NaN only occurs when both the ground truth predicted label is empty, which should give a true dice score of 1.0) dice_metric_per_class = tf.where(tf.math.is_nan(dice_metric_per_class), tf.ones_like(dice_metric_per_class), dice_metric_per_class) #return average dice metric over classes (choosing to use or not use the background class) return calculate_final_dice_metric(dice_metric_per_class) #dice metric for only brats whole tumor def brats_region_dice_coef_metric(y_true, y_pred): if y_true.shape[-1] != 1: y_true = tf.expand_dims(y_true[...,0], -1) enhancing_tumor = tf.cast(y_true == 3, tf.float32) tumor_core = tf.add(tf.cast(y_true == 1, tf.float32), enhancing_tumor) whole_tumor = tf.add(tf.cast(y_true == 2, tf.float32), tumor_core) y_true_region = tumor_core return dice_coef_metric(y_true_region, y_pred) #dice loss for only brats whole tumor def brats_region_dice_coef_loss(y_true, y_pred): return tf.subtract(1., brats_region_dice_coef_metric(y_true, y_pred)) #dice loss for only brats whole tumor def brats_region_dice_and_boundary_loss(y_true, y_pred): loss1 = tf.subtract(1., brats_region_dice_coef_metric(y_true, y_pred)) loss2 = weighted_boundary_loss(y_true, y_pred) return loss1 + loss2 #hard dice metric for only brats whole tumor def hard_brats_region_dice_coef_metric(y_true, y_pred): if y_true.shape[-1] != 1: y_true = tf.expand_dims(y_true[...,0], -1) enhancing_tumor = tf.cast(y_true == 3, tf.float32) tumor_core = tf.add(tf.cast(y_true == 1, tf.float32), enhancing_tumor) whole_tumor = tf.add(tf.cast(y_true == 2, tf.float32), tumor_core) y_true_region = tumor_core return hard_dice_coef_metric(y_true_region, y_pred) #joint dice and focal loss for brats segmentation (messy but works) def brats_dice_and_focal_loss(y_true, y_pred): #activate outputs y_pred_prob = sigmoid_probability(y_pred) y_true_onehot_orig = one_hot_encode(tf.squeeze(y_true, axis=-1), 4) #convert ground truth to proper region labels background = y_true_onehot_orig[...,0] enhancing_tumor = y_true_onehot_orig[...,3] tumor_core = tf.add(y_true_onehot_orig[...,1], enhancing_tumor) whole_tumor = tf.add(y_true_onehot_orig[...,2], tumor_core) y_true_onehot = tf.stack([background, enhancing_tumor, tumor_core, whole_tumor], axis=-1) #can treat batch as a "pseudo-volume", or collect dice metrics on each volume in the batch individually axes_to_sum = find_axes_to_sum(y_true_onehot) #add "fake" background channel to predicted y_pred_prob = tf.concat([tf.expand_dims(background, axis=-1), y_pred_prob], axis=-1) #calculate dice metric per class intersection = tf.reduce_sum(tf.multiply(y_true_onehot, y_pred_prob), axis=axes_to_sum) union = tf.add(tf.reduce_sum(y_true_onehot, axis=axes_to_sum), tf.reduce_sum(y_pred_prob, axis=axes_to_sum)) numerator = tf.add(tf.multiply(intersection, 2.), LossParameters.smooth) denominator = tf.add(union, LossParameters.smooth) dice_metric_per_class = tf.divide(numerator, denominator) #return average dice loss over classes (choosing to use or not use the background class) if LossParameters.dice_over_batch == False: dice_metric_per_class = tf.reduce_mean(dice_metric_per_class, axis=0) dice_loss = tf.subtract(1., dice_metric_per_class[1:]) #loop over classes and get binary focal loss of each for i in range(0,3): y_true_class = tf.expand_dims(y_true_onehot[...,i+1], axis=-1) y_pred_class = tf.expand_dims(y_pred[...,i], axis=-1) y_pred_sigmoid = sigmoid_probability(y_pred_class) y_pred_class_prob = tf.concat([tf.subtract(1., y_pred_sigmoid), y_pred_sigmoid], axis=-1) y_true_class_onehot = one_hot_encode(tf.squeeze(y_true_class, axis=-1), 2) #cross-entropy cross_entropy_matrix = tf.losses.binary_crossentropy(y_true_class, y_pred_class, from_logits=True) #alpha term alpha_term = tf.zeros_like(y_pred_class_prob[...,0]) y_pred_class_onehot = one_hot_encode(tf.math.argmax(y_pred_class_prob, axis=-1), 2) #enhancing tumor if i == 0: temp_weights =
np.array([[2., 2.], [1., 1.]], dtype=np.float32)
numpy.array
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class Clip(Base): @staticmethod def export(): # type: () -> None node = onnx.helper.make_node( 'Clip', inputs=['x'], outputs=['y'], min=-1.0, max=1.0 ) x = np.array([-2, 0, 2]).astype(np.float32) y = np.clip(x, -1, 1) # expected output [-1., 0., 1.] expect(node, inputs=[x], outputs=[y], name='test_clip_example') x = np.random.randn(3, 4, 5).astype(np.float32) y = np.clip(x, -1.0, 1.0) expect(node, inputs=[x], outputs=[y], name='test_clip') node = onnx.helper.make_node( 'Clip', inputs=['x'], outputs=['y'], min=-5.0, max=5.0, ) x = np.array([-1, 0, 1]).astype(np.float32) y = np.array([-1, 0, 1]).astype(np.float32) expect(node, inputs=[x], outputs=[y], name='test_clip_inbounds') x = np.array([-6, 0, 6]).astype(np.float32) y = np.array([-5, 0, 5]).astype(np.float32) expect(node, inputs=[x], outputs=[y], name='test_clip_outbounds') x = np.array([-1, 0, 6]).astype(np.float32) y =
np.array([-1, 0, 5])
numpy.array
# -*- coding: utf-8 -*- from itertools import product import numpy as np import pytest from numpy.testing import assert_allclose, assert_equal from bounded_rand_walkers.cpp import bound_map from bounded_rand_walkers.utils import ( DelaunayArray, approx_edges, cluster_indices, get_centres, in_bounds, label, match_ref, normalise, ) def test_get_centres(): assert_allclose(get_centres([1, 2, 3, 4]), [1.5, 2.5, 3.5]) assert_allclose(get_centres([-1, 1, 3, 4]), [0, 2, 3.5]) @pytest.mark.parametrize( "x,exp_indices,exp_labelled", [ ( np.array([1, 1, 0, 0, 1, 0]), np.array([[0, 2], [4, 5]]), np.array([1, 1, 0, 0, 2, 0]), ), ( np.array([0, 1, 0, 0, 1, 1]), np.array([[1, 2], [4, 6]]), np.array([0, 1, 0, 0, 2, 2]), ), ( np.array([0, 1, 0, 0, 1, 0]), np.array([[1, 2], [4, 5]]),
np.array([0, 1, 0, 0, 2, 0])
numpy.array
# -*- coding: utf-8 -*- """ Created on 4 Jun 2021 @author: Alexandre """ import numpy as np from pyro.dynamic import statespace ############################################################################### class SingleMass( statespace.StateSpaceSystem ): """Single Mass with linear spring and damper Attributes ---------- """ ############################ def __init__(self, m=1, k=2, b=0): """ """ # params self.m = m self.k = k self.b = b self.l1 = 2 self.l2 = 1 # Matrix ABCD self.compute_ABCD() # initialize standard params statespace.StateSpaceSystem.__init__( self, self.A, self.B, self.C, self.D) # Name and labels self.name = 'Linear-Spring-Damper' self.input_label = [ 'Force'] self.input_units = [ '[N]'] self.output_label = ['Position'] self.output_units = ['[m]'] self.state_label = [ 'Position','Velocity'] self.state_units = [ '[m]', '[m/s]'] self.linestyle = '-' ########################################################################### def compute_ABCD(self): """ """ self.A = np.array([ [ 0 , 1 ], [ -self.k/self.m , -self.b/self.m ] ]) self.B = np.array([ [ 0 ], [ 1 /self.m ]]) self.C = np.array([ [ 1 , 0 ]]) self.D = np.array([ [ 0 ]]) ########################################################################### # Graphical output ########################################################################### ############################# def xut2q( self, x , u , t ): """ Compute configuration variables ( q vector ) """ q = np.array([ x[0], u[0] ]) # Hack to illustrate force vector return q ########################################################################### def forward_kinematic_domain(self, q ): """ """ l = self.l1 * 2 domain = [ (-l+self.l1,l+self.l1) , (-l,l) , (-l,l) ]# return domain ########################################################################### def forward_kinematic_lines(self, q ): """ Compute points p = [x;y;z] positions given config q ---------------------------------------------------- - points of interest for ploting Outpus: lines_pts = [] : a list of array (n_pts x 3) for each lines """ lines_pts = [] # list of array (n_pts x 3) for each lines lines_style = [] lines_color = [] # ground line pts = np.zeros(( 2 , 3 )) pts[0,:] = np.array([-self.l1,-self.l2,0]) pts[1,:] = np.array([-self.l1,+self.l2,0]) lines_pts.append( pts ) lines_style.append( '-') lines_color.append( 'k') # mass pts = np.zeros(( 5 , 3 )) pts[0,:] = np.array([q[0] - self.l2/2,+self.l2/2,0]) pts[1,:] = np.array([q[0] + self.l2/2,+self.l2/2,0]) pts[2,:] = np.array([q[0] + self.l2/2,-self.l2/2,0]) pts[3,:] = np.array([q[0] - self.l2/2,-self.l2/2,0]) pts[4,:] = pts[0,:] lines_pts.append( pts ) lines_style.append( '-') lines_color.append( 'b') # spring pts = np.zeros(( 15 , 3 )) d = q[0] + self.l1 - self.l2/2 h = self.l2 / 3 pts[0,:] = np.array([d*0.00 - self.l1,0,0]) pts[1,:] = np.array([d*0.20 - self.l1,0,0]) pts[2,:] = np.array([d*0.25 - self.l1,+h,0]) pts[3,:] = np.array([d*0.30 - self.l1,-h,0]) pts[4,:] = np.array([d*0.35 - self.l1,+h,0]) pts[5,:] = np.array([d*0.40 - self.l1,-h,0]) pts[6,:] = np.array([d*0.45 - self.l1,+h,0]) pts[7,:] = np.array([d*0.50 - self.l1,-h,0]) pts[8,:] = np.array([d*0.55 - self.l1,+h,0]) pts[9,:] = np.array([d*0.60 - self.l1,-h,0]) pts[10,:] = np.array([d*0.65 - self.l1,+h,0]) pts[11,:] = np.array([d*0.70 - self.l1,-h,0]) pts[12,:] = np.array([d*0.75 - self.l1,+h,0]) pts[13,:] = np.array([d*0.80 - self.l1,0,0]) pts[14,:] = np.array([d*1.00 - self.l1,0,0]) lines_pts.append( pts ) lines_style.append( '-') lines_color.append( 'k') return lines_pts , lines_style , lines_color ########################################################################### def forward_kinematic_lines_plus(self, x , u , t ): """ plots the force vector """ lines_pts = [] # list of array (n_pts x 3) for each lines lines_style = [] lines_color = [] # force arrow pts = np.zeros(( 5 , 3 )) xf = x[0] # base of force x coordinate f = u[0] # force amplitude pts[0,:] = np.array([xf + self.l2/2,0,0]) pts[1,:] = np.array([xf + self.l2/2 + f,0,0]) pts[2,:] = np.array([xf + self.l2/2 + f - self.l2/4*f,+self.l2/4*f,0]) pts[3,:] = np.array([xf + self.l2/2 + f,0,0]) pts[4,:] = np.array([xf + self.l2/2 + f - self.l2/4*f,-self.l2/4*f,0]) lines_pts.append( pts ) lines_style.append( '-') lines_color.append( 'r') return lines_pts , lines_style , lines_color ############################################################################### class TwoMass( statespace.StateSpaceSystem ): """Two Mass with linear spring and damper Attributes ---------- """ ############################ def __init__(self, m=1, k=2, b=0.2, output_mass = 2): """ """ # params self.m1 = m self.k1 = k self.b1 = b self.m2 = m self.k2 = k self.b2 = b self.l1 = 2 self.l2 = 1 # sensor output self.output_mass = output_mass # Matrix ABCD self.compute_ABCD() # initialize standard params statespace.StateSpaceSystem.__init__( self, self.A, self.B, self.C, self.D) # Name and labels self.name = 'Two mass with linear spring-dampers' self.input_label = ['Force'] self.input_units = ['[N]'] self.output_label = ['x2'] self.output_units = ['[m]'] self.state_label = [ 'x1','x2', 'dx1', 'dx2'] self.state_units = [ '[m]', '[m]', '[m/s]', '[m/s]'] self.linestyle = '-' ########################################################################### def compute_ABCD(self): """ """ self.A = np.array([ [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ], [ -(self.k1+self.k2)/self.m1, +self.k2/self.m1, -self.b1/self.m1, 0], [ +self.k2/self.m2, -self.k2/self.m2, 0, -self.b2/self.m2]]) self.B = np.array([ [ 0 ], [ 0 ], [ 0 ], [ 1/self.m2 ]]) if self.output_mass == 2: self.C = np.array([ [ 0 , 1 , 0 , 0 ]]) self.output_label = ['x2'] elif self.output_mass ==1: self.C = np.array([ [ 1 , 0 , 0 , 0 ]]) self.output_label = ['x1'] else: self.C = np.array([ [ 0 , 1 , 0 , 0 ]]) self.output_label = ['x2'] self.D = np.array([ [ 0 ]]) ########################################################################### # Graphical output ########################################################################### ############################# def xut2q( self, x , u , t ): """ Compute configuration variables ( q vector ) """ q = np.array([ x[0], x[1], u[0] ]) return q ########################################################################### def forward_kinematic_domain(self, q ): """ """ l = self.l1 * 3 domain = [ (-l+self.l1,l+self.l1) , (-l,l) , (-l,l) ]# return domain ########################################################################### def forward_kinematic_lines(self, q ): """ Compute points p = [x;y;z] positions given config q ---------------------------------------------------- - points of interest for ploting Outpus: lines_pts = [] : a list of array (n_pts x 3) for each lines """ lines_pts = [] # list of array (n_pts x 3) for each lines lines_style = [] lines_color = [] # ground line pts = np.zeros(( 2 , 3 )) pts[0,:] = np.array([-self.l1*2,-self.l2,0]) pts[1,:] = np.array([-self.l1*2,+self.l2,0]) lines_pts.append( pts ) lines_style.append( '-') lines_color.append( 'k') # mass 1 pts = np.zeros(( 5 , 3 )) x1 = q[0] - self.l1 pts[0,:] = np.array([ x1 - self.l2/2,+self.l2/2,0]) pts[1,:] = np.array([ x1 + self.l2/2,+self.l2/2,0]) pts[2,:] = np.array([ x1 + self.l2/2,-self.l2/2,0]) pts[3,:] = np.array([ x1 - self.l2/2,-self.l2/2,0]) pts[4,:] = pts[0,:] lines_pts.append( pts ) lines_style.append( '-') lines_color.append( 'g') # mass 2 pts = np.zeros(( 5 , 3 )) x2 = q[1] pts[0,:] = np.array([x2 - self.l2/2,+self.l2/2,0]) pts[1,:] = np.array([x2 + self.l2/2,+self.l2/2,0]) pts[2,:] = np.array([x2 + self.l2/2,-self.l2/2,0]) pts[3,:] = np.array([x2 - self.l2/2,-self.l2/2,0]) pts[4,:] = pts[0,:] lines_pts.append( pts ) lines_style.append( '-') lines_color.append( 'b') # spring 1 pts = np.zeros(( 15 , 3 )) d = q[0] + self.l1 - self.l2/2 h = self.l2 / 3 pts[0,:] = np.array([d*0.00 - self.l1*2,0,0]) pts[1,:] = np.array([d*0.20 - self.l1*2,0,0]) pts[2,:] = np.array([d*0.25 - self.l1*2,+h,0]) pts[3,:] = np.array([d*0.30 - self.l1*2,-h,0]) pts[4,:] = np.array([d*0.35 - self.l1*2,+h,0]) pts[5,:] = np.array([d*0.40 - self.l1*2,-h,0]) pts[6,:] = np.array([d*0.45 - self.l1*2,+h,0]) pts[7,:] = np.array([d*0.50 - self.l1*2,-h,0]) pts[8,:] = np.array([d*0.55 - self.l1*2,+h,0]) pts[9,:] = np.array([d*0.60 - self.l1*2,-h,0]) pts[10,:] = np.array([d*0.65 - self.l1*2,+h,0]) pts[11,:] = np.array([d*0.70 - self.l1*2,-h,0]) pts[12,:] = np.array([d*0.75 - self.l1*2,+h,0]) pts[13,:] = np.array([d*0.80 - self.l1*2,0,0]) pts[14,:] = np.array([d*1.00 - self.l1*2,0,0]) lines_pts.append( pts ) lines_style.append( '-') lines_color.append( 'k') # spring 2 pts = np.zeros(( 15 , 3 )) d = q[1] - q[0] + self.l1 - self.l2 h = self.l2 / 3 pts[0,:] = np.array([d*0.00 + x1 + self.l2/2,0,0]) pts[1,:] = np.array([d*0.20 + x1+self.l2/2,0,0]) pts[2,:] = np.array([d*0.25 + x1+self.l2/2,+h,0]) pts[3,:] = np.array([d*0.30 + x1+self.l2/2,-h,0]) pts[4,:] = np.array([d*0.35 + x1+self.l2/2,+h,0]) pts[5,:] = np.array([d*0.40 + x1+self.l2/2,-h,0]) pts[6,:] = np.array([d*0.45 + x1+self.l2/2,+h,0]) pts[7,:] = np.array([d*0.50 + x1+self.l2/2,-h,0]) pts[8,:] = np.array([d*0.55 + x1+self.l2/2,+h,0]) pts[9,:] = np.array([d*0.60 + x1+self.l2/2,-h,0]) pts[10,:] = np.array([d*0.65 + x1+self.l2/2,+h,0]) pts[11,:] = np.array([d*0.70 + x1+self.l2/2,-h,0]) pts[12,:] = np.array([d*0.75 + x1+self.l2/2,+h,0]) pts[13,:] = np.array([d*0.80 + x1+self.l2/2,0,0]) pts[14,:] = np.array([d*1.00 + x1+self.l2/2,0,0]) lines_pts.append( pts ) lines_style.append( '-') lines_color.append( 'k') return lines_pts , lines_style , lines_color ########################################################################### def forward_kinematic_lines_plus(self, x , u , t ): """ plots the force vector """ lines_pts = [] # list of array (n_pts x 3) for each lines lines_style = [] lines_color = [] # force arrow pts = np.zeros(( 5 , 3 )) xf = x[1] # base of force x coordinate f = u[0] # force amplitude pts[0,:] = np.array([xf + self.l2/2,0,0]) pts[1,:] = np.array([xf + self.l2/2 + f,0,0]) pts[2,:] = np.array([xf + self.l2/2 + f - self.l2/4*f,+self.l2/4*f,0]) pts[3,:] = np.array([xf + self.l2/2 + f,0,0]) pts[4,:] = np.array([xf + self.l2/2 + f - self.l2/4*f,-self.l2/4*f,0]) lines_pts.append( pts ) lines_style.append( '-') lines_color.append( 'r') return lines_pts , lines_style , lines_color ############################################################################### class ThreeMass( statespace.StateSpaceSystem ): """Three Mass with linear spring and damper Attributes ---------- """ ############################ def __init__(self, m=1, k=2, b=0.2, output_mass = 2): """ """ # params self.m1 = m self.k1 = k self.b1 = b self.m2 = m self.k2 = k self.b2 = b self.m3 = m self.k3 = k self.b3 = b self.l1 = 2 self.l2 = 1 # sensor output self.output_mass = output_mass # Matrix ABCD self.compute_ABCD() # initialize standard params statespace.StateSpaceSystem.__init__( self, self.A, self.B, self.C, self.D) # Name and labels self.name = 'Three mass with linear spring-dampers' self.input_label = ['Force'] self.input_units = ['[N]'] self.output_label = ['x3'] self.output_units = ['[m]'] self.state_label = [ 'x1','x2', 'x3', 'dx1', 'dx2', 'dx3'] self.state_units = [ '[m]', '[m]', '[m]', '[m/s]', '[m/s]','[m/s]'] self.linestyle = '-' ########################################################################### def compute_ABCD(self): """ """ k1 = self.k1 k2 = self.k2 k3 = self.k3 m1 = self.m1 m2 = self.m2 m3 = self.m3 b1 = self.b1 b2 = self.b2 b3 = self.b3 self.A = np.array([ [ 0, 0, 0, 1, 0, 0 ], [ 0, 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 0, 1 ], [ -(k1+k2)/m1, +k2/m1, 0, -b1/m1, 0, 0 ], [ +k2/m2, -(k2+k3)/m2, +k3/m2, 0, -b2/m2, 0 ], [ 0, +k3/m3, -k3/m3, 0, 0, -b3/m3 ]]) self.B = np.array([ [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 1/m2 ]]) if self.output_mass == 3: self.C = np.array([ [ 0 , 0 , 1 , 0 , 0 , 0 ]]) self.output_label = ['x3'] elif self.output_mass == 2: self.C = np.array([ [ 0 , 1 , 0 , 0 , 0 , 0 ]]) self.output_label = ['x2'] elif self.output_mass == 1: self.C = np.array([ [ 1 , 0 , 0 , 0 , 0 , 0 ]]) self.output_label = ['x1'] else: self.C = np.array([ [ 0 , 0 , 1 , 0 , 0 , 0 ]]) self.output_label = ['x3'] self.D = np.array([ [ 0 ]]) ########################################################################### # Graphical output ########################################################################### ############################# def xut2q( self, x , u , t ): """ Compute configuration variables ( q vector ) """ q = np.array([ x[0], x[1], x[2], u[0] ]) return q ########################################################################### def forward_kinematic_domain(self, q ): """ """ l = self.l1 * 3 domain = [ (-l+self.l1,l+self.l1) , (-l,l) , (-l,l) ]# return domain ########################################################################### def forward_kinematic_lines(self, q ): """ Compute points p = [x;y;z] positions given config q ---------------------------------------------------- - points of interest for ploting Outpus: lines_pts = [] : a list of array (n_pts x 3) for each lines """ lines_pts = [] # list of array (n_pts x 3) for each lines lines_style = [] lines_color = [] # ground line pts = np.zeros(( 2 , 3 )) pts[0,:] = np.array([-self.l1*2,-self.l2,0]) pts[1,:] = np.array([-self.l1*2,+self.l2,0]) lines_pts.append( pts ) lines_style.append( '-') lines_color.append( 'k') # mass 1 pts = np.zeros(( 5 , 3 )) x1 = q[0] - self.l1 pts[0,:] = np.array([ x1 - self.l2/2,+self.l2/2,0]) pts[1,:] = np.array([ x1 + self.l2/2,+self.l2/2,0]) pts[2,:] = np.array([ x1 + self.l2/2,-self.l2/2,0]) pts[3,:] = np.array([ x1 - self.l2/2,-self.l2/2,0]) pts[4,:] = pts[0,:] lines_pts.append( pts ) lines_style.append( '-') lines_color.append( 'm') # mass 2 pts = np.zeros(( 5 , 3 )) x2 = q[1] pts[0,:] = np.array([x2 - self.l2/2,+self.l2/2,0]) pts[1,:] = np.array([x2 + self.l2/2,+self.l2/2,0]) pts[2,:] = np.array([x2 + self.l2/2,-self.l2/2,0]) pts[3,:] = np.array([x2 - self.l2/2,-self.l2/2,0]) pts[4,:] = pts[0,:] lines_pts.append( pts ) lines_style.append( '-') lines_color.append( 'g') #mass 3 pts = np.zeros(( 5 , 3 )) x3 = q[2] + self.l1 pts[0,:] = np.array([x3 - self.l2/2,+self.l2/2,0]) pts[1,:] = np.array([x3 + self.l2/2,+self.l2/2,0]) pts[2,:] = np.array([x3 + self.l2/2,-self.l2/2,0]) pts[3,:] = np.array([x3 - self.l2/2,-self.l2/2,0]) pts[4,:] = pts[0,:] lines_pts.append( pts ) lines_style.append( '-') lines_color.append( 'b') # spring 1 pts = np.zeros(( 15 , 3 )) d = q[0] + self.l1 - self.l2/2 h = self.l2 / 3 pts[0,:] = np.array([d*0.00 - self.l1*2,0,0]) pts[1,:] = np.array([d*0.20 - self.l1*2,0,0]) pts[2,:] = np.array([d*0.25 - self.l1*2,+h,0]) pts[3,:] = np.array([d*0.30 - self.l1*2,-h,0]) pts[4,:] = np.array([d*0.35 - self.l1*2,+h,0]) pts[5,:] = np.array([d*0.40 - self.l1*2,-h,0]) pts[6,:] = np.array([d*0.45 - self.l1*2,+h,0]) pts[7,:] = np.array([d*0.50 - self.l1*2,-h,0]) pts[8,:] = np.array([d*0.55 - self.l1*2,+h,0]) pts[9,:] = np.array([d*0.60 - self.l1*2,-h,0]) pts[10,:] = np.array([d*0.65 - self.l1*2,+h,0]) pts[11,:] = np.array([d*0.70 - self.l1*2,-h,0]) pts[12,:] = np.array([d*0.75 - self.l1*2,+h,0]) pts[13,:] = np.array([d*0.80 - self.l1*2,0,0]) pts[14,:] = np.array([d*1.00 - self.l1*2,0,0]) lines_pts.append( pts ) lines_style.append( '-') lines_color.append( 'k') # spring 2 pts = np.zeros(( 15 , 3 )) d = q[1] - q[0] + self.l1 - self.l2 pts[0,:] = np.array([d*0.00 + x1 + self.l2/2,0,0]) pts[1,:] = np.array([d*0.20 + x1+self.l2/2,0,0]) pts[2,:] = np.array([d*0.25 + x1+self.l2/2,+h,0]) pts[3,:] = np.array([d*0.30 + x1+self.l2/2,-h,0]) pts[4,:] = np.array([d*0.35 + x1+self.l2/2,+h,0]) pts[5,:] = np.array([d*0.40 + x1+self.l2/2,-h,0]) pts[6,:] = np.array([d*0.45 + x1+self.l2/2,+h,0]) pts[7,:] = np.array([d*0.50 + x1+self.l2/2,-h,0]) pts[8,:] = np.array([d*0.55 + x1+self.l2/2,+h,0]) pts[9,:] = np.array([d*0.60 + x1+self.l2/2,-h,0]) pts[10,:] = np.array([d*0.65 + x1+self.l2/2,+h,0]) pts[11,:] = np.array([d*0.70 + x1+self.l2/2,-h,0]) pts[12,:] = np.array([d*0.75 + x1+self.l2/2,+h,0]) pts[13,:] = np.array([d*0.80 + x1+self.l2/2,0,0]) pts[14,:] = np.array([d*1.00 + x1+self.l2/2,0,0]) lines_pts.append( pts ) lines_style.append( '-') lines_color.append( 'k') # spring 3 pts = np.zeros(( 15 , 3 )) d = q[2] - q[1] + self.l1 - self.l2 pts[0,:] = np.array([d*0.00 + x2 + self.l2/2,0,0]) pts[1,:] = np.array([d*0.20 + x2+self.l2/2,0,0]) pts[2,:] = np.array([d*0.25 + x2+self.l2/2,+h,0]) pts[3,:] = np.array([d*0.30 + x2+self.l2/2,-h,0]) pts[4,:] = np.array([d*0.35 + x2+self.l2/2,+h,0]) pts[5,:] = np.array([d*0.40 + x2+self.l2/2,-h,0]) pts[6,:] = np.array([d*0.45 + x2+self.l2/2,+h,0]) pts[7,:] = np.array([d*0.50 + x2+self.l2/2,-h,0]) pts[8,:] = np.array([d*0.55 + x2+self.l2/2,+h,0]) pts[9,:] = np.array([d*0.60 + x2+self.l2/2,-h,0]) pts[10,:] = np.array([d*0.65 + x2+self.l2/2,+h,0]) pts[11,:] = np.array([d*0.70 + x2+self.l2/2,-h,0]) pts[12,:] = np.array([d*0.75 + x2+self.l2/2,+h,0]) pts[13,:] = np.array([d*0.80 + x2+self.l2/2,0,0]) pts[14,:] = np.array([d*1.00 + x2+self.l2/2,0,0]) lines_pts.append( pts ) lines_style.append( '-') lines_color.append( 'k') return lines_pts , lines_style , lines_color ########################################################################### def forward_kinematic_lines_plus(self, x , u , t ): """ plots the force vector """ lines_pts = [] # list of array (n_pts x 3) for each lines lines_style = [] lines_color = [] # force arrow pts = np.zeros(( 5 , 3 )) xf = x[2] + self.l1 f = u[0] pts[0,:] = np.array([xf + self.l2/2,0,0]) pts[1,:] = np.array([xf + self.l2/2 + f,0,0]) pts[2,:] =
np.array([xf + self.l2/2 + f - self.l2/4*f,+self.l2/4*f,0])
numpy.array
import cv2 import matplotlib import matplotlib.pyplot as plt import numpy as np import torch from src.utils.custom_config import custom_parser_config from seg_trainer import SegmentationModule matplotlib.use('TKAgg', warn=False, force=True) if __name__ == "__main__": input_img = cv2.imread( "/home/anirudh/NJ/Interview/Pheno-Inspect/git_proj/coding_task_make-a-model/dataset/sugarbeet_weed_dataset/items/" "68653b6d-f406-442d-833e-31ffb43cf578/map/tileLayers/rgb/tiles/0-0-1.png") input_img = input_img[np.newaxis, ...] input_img = np.swapaxes(input_img, 1, 3) input_img = torch.from_numpy(input_img).float() MODEL_CHKP_PATH = "/home/anirudh/NJ/Interview/Pheno-Inspect/git_proj/coding_task_make-a-model/src/" \ "lightning_logs/version_198/checkpoints/epoch=91-step=183.ckpt" seg_inference = SegmentationModule(config_data=custom_parser_config, batch_size=5, epochs=150, gpu=1, train_mode=False) seg_inference.model.eval() seg_inference.load_state_dict(torch.load(MODEL_CHKP_PATH), strict=False) with torch.no_grad(): print(input_img.shape) output_seg = seg_inference(input_img) output_seg = torch.argmax(output_seg, 1) print(output_seg.shape) print(np.unique(output_seg)) output_seg = np.swapaxes(output_seg, 0, 2) print(np.unique(output_seg)) result =
np.squeeze(output_seg)
numpy.squeeze
"""Unittests for the map module.""" import unittest import numpy as np import pandas as pd import pandas.testing as pdt import pygeos import pyproj import geopandas as gpd import shapely.wkt import numpy.testing as npt import gnssmapper.common as cm import gnssmapper.geo as geo class TestObservationMethods(unittest.TestCase): def setUp(self): self.rays = gpd.GeoSeries([shapely.geometry.LineString([[527990, 183005, 0], [528020, 183005, 15]]), shapely.geometry.LineString([[527990, 183005, 10], [528020, 183005, 25]])], crs="epsg:27700") def test_rays(self) -> None: r = [[0, 0, 0], [1, 1, 1]] s = [[10000, 0, 0],[10001, 1, 1]] expected = [pygeos.Geometry("LineString (0 0 0,1000 0 0)"), pygeos.Geometry("LineString (1 1 1,1001 1 1)")] out=geo.rays(r,s) self.assertTrue(np.all(pygeos.predicates.equals(out,expected))) def test_to_crs(self) -> None: target = pyproj.crs.CRS(cm.constants.epsg_wgs84) transformed= geo.to_crs(self.rays,target) self.assertTrue(np.all(s.has_z for s in transformed)) self.assertEqual(target,transformed.crs) df = gpd.GeoDataFrame(geometry = self.rays,crs=self.rays.crs) transformed_df = geo.to_crs(df,target) self.assertTrue(np.all(s.has_z for s in transformed_df.geometry)) self.assertEqual(target,transformed_df.crs) class TestShapelyMethods(unittest.TestCase): def setUp(self): self.building = shapely.wkt.loads("POLYGON((528010 183010, 528010 183000,528000 183000, 528000 183010,528010 183010))") def test_intersection(self): five = shapely.geometry.LineString([[527990,183005,0],[528020,183005,15]]) point = geo.intersection([five],[self.building],[10]) self.assertAlmostEqual(np.array(point[0])[2],5) def test_intersection_projected(self): fifteen = shapely.geometry.LineString([[527990,183005,10],[528020,183005,25]]) point = geo.intersection_projected([fifteen], [self.building]) npt.assert_array_almost_equal(np.array(list(point)[0].coords).flatten(), [528000, 183005, 15]) inside = shapely.geometry.LineString([[528005,183005,10],[528020,183005,25]]) inside_point = geo.intersection_projected([inside], [self.building]) npt.assert_array_almost_equal(np.array(list(inside_point)[0].coords).flatten(), [528010, 183005, 15]) outside = shapely.geometry.LineString([[527990,183015,10],[528020,183015,25]]) outside_point = geo.intersection_projected([outside], [self.building]) self.assertTrue(list(outside_point)[0].is_empty) empty = shapely.geometry.LineString() empty_point = geo.intersection_projected([empty], [self.building]) self.assertTrue(list(empty_point)[0].is_empty) def test_intersection_projected_height(self): fifteen = shapely.geometry.LineString([[527990,183005,10],[528020,183005,25]]) point = geo.intersection_projected_height([fifteen],[self.building]) self.assertAlmostEqual(point[0],15) def test_intersects(self): five = shapely.geometry.LineString([[527990, 183005, 0], [528020, 183005, 15]]) fifteen = shapely.geometry.LineString([[527990, 183005, 10], [528020, 183005, 25]]) rays = [five, fifteen] buildings = [self.building, self.building] heights=[10,10] npt.assert_array_almost_equal(geo.intersects(rays,buildings,heights),[True,False]) class TestFresnel(unittest.TestCase): def setUp(self): self.buildings = [shapely.wkt.loads("POLYGON((528010 183010, 528010 183000,528000 183000, 528000 183010,528010 183010))")] def test_fresnel_integral(self): v=np.array([-1,0,1,2.4]) o=np.array([-20*
np.log(1.12)
numpy.log
import importlib from hydroDL import kPath, utils from hydroDL.app import waterQuality as wq from hydroDL.master import basins from hydroDL.data import usgs, gageII, gridMET, ntn from hydroDL.master import slurm from hydroDL.post import axplot, figplot import numpy as np import matplotlib.pyplot as plt import os import pandas as pd import json import scipy from astropy.timeseries import LombScargle import matplotlib.gridspec as gridspec dirSel = os.path.join(kPath.dirData, 'USGS', 'inventory', 'siteSel') with open(os.path.join(dirSel, 'dictRB_Y30N5.json')) as f: dictSite = json.load(f) codeLst = sorted(usgs.newC) ep = 500 reTest = False siteNoLst = dictSite['comb'] nSite = len(siteNoLst) # load all sequence outNameLSTM = '{}-{}-{}-{}'.format('rbWN5', 'comb', 'QTFP_C', 'comb-B10') dictLSTM, dictWRTDS, dictObs = wq.loadModel( siteNoLst, outNameLSTM, codeLst) corrMat, rmseMat = wq.dictErr(dictLSTM, dictWRTDS, dictObs, codeLst) # load basin attributes dfG = gageII.readData(siteNoLst=siteNoLst) dfG = gageII.updateRegion(dfG) dfG = gageII.updateCode(dfG) # significance test dfS = pd.DataFrame(index=codeLst, columns=['rmse', 'corr']) for k, code in enumerate(codeLst): a = corrMat[:, k, 1] b = corrMat[:, k, 2] aa, bb = utils.rmNan([a, b], returnInd=False) s, p = scipy.stats.ttest_ind(aa, bb) # s, p = scipy.stats.wilcoxon(aa, bb) dfS.at[code, 'corr'] = p a = rmseMat[:, k, 1] b = rmseMat[:, k, 2] aa, bb = utils.rmNan([a, b], returnInd=False) s, p = scipy.stats.ttest_ind(aa, bb) # s, p = scipy.stats.wilcoxon(aa, bb) dfS.at[code, 'rmse'] = p # a cdf for rsq of seasonality and linearity codeLst2 = ['00915', '00925', '00930', '00935', '00940', '00945', '00955', '70303', '80154'] [nfy, nfx] = [4, 2] fig, axes = plt.subplots(4, 2) for k, code in enumerate(codeLst2): j, i = utils.index2d(k, 4, 2) indS = [siteNoLst.index(siteNo) for siteNo in dictSite[code]] ic = codeLst.index(code) axplot.plotCDF(axes[j, i], [corrMat[indS, ic, 1]**2, corrMat[indS, ic, 2]**2], legLst=['LSTM', 'WRTDS']) axes[j, i].set_title(code) fig.show() code = '00405' indS = [siteNoLst.index(siteNo) for siteNo in dictSite[code]] ic = codeLst.index(code) fig, ax = plt.subplots(1, 1) ax.plot(corrMat[indS, ic, 1]**2, corrMat[indS, ic, 2]**2, '*') fig.show() np.sum(corrMat[indS, ic, 1]**2 > corrMat[indS, ic, 2]**2)
np.sum(corrMat[indS, ic, 1]**2 > corrMat[indS, ic, 2]**2)
numpy.sum
import pandas import pickle import numpy as np import matplotlib.pyplot as plt import sklearn from sklearn import linear_model EXPERIMENT_DATA = pickle.load(open('EXPERIMENT_SET_pandas.pkl','rb')) EVALUATION_SET = pickle.load(open('EVALUATION_SET_pandas.pkl','rb')) EXPERIMENT_DATA = EXPERIMENT_DATA[EXPERIMENT_DATA["GRAD"] == "YES"] EXPERIMENT_DATA = EXPERIMENT_DATA[["RM","YIELD","BAGSOLD"]] def obtainw(l, X, Y): dataSize = X.shape[1] I_D =
np.identity(dataSize)
numpy.identity
# classes to hold the physical components of the system # e.g. the stellar light, dark matter, black hole, globular clusters import numpy as np import logging from dynamite import mges as mge class System(object): """The physical system being modelled e.g. system is a galaxy. A system is composed of ``Components`` e.g. the galaxy is composed of stars, black hole, dark matter halo. This object is automatically created when the configuration file is read. """ def __init__(self, *args): self.logger = logging.getLogger(f'{__name__}.{__class__.__name__}') self.n_cmp = 0 self.cmp_list = [] self.n_pot = 0 self.n_kin = 0 self.n_pop = 0 self.parameters = None self.distMPc = None self.name = None self.position_angle = None for component in args: self.add_component(component) def add_component(self, cmp): """add a component to the system Parameters ---------- cmp : a ``dyn.physical_system.Component`` object Returns ------- None updated the system componenent attributes """ self.cmp_list += [cmp] self.n_cmp += 1 self.n_pot += cmp.contributes_to_potential self.n_kin += len(cmp.kinematic_data) self.n_pop += len(cmp.population_data) def validate(self): """ Validate the system Ensures the System has the required attributes: at least one component, no duplicate component names, and the ml parameter, and that the sformat string for the ml parameter is set. Raises ------ ValueError : if required attributes or components are missing, or if there is no ml parameter Returns ------- None. """ if len(self.cmp_list) != len(set(self.cmp_list)): raise ValueError('No duplicate component names allowed') if (self.distMPc is None) or (self.name is None) \ or (self.position_angle is None): text = 'System needs distMPc, name, and position_angle attributes' self.logger.error(text) raise ValueError(text) if not self.cmp_list: text = 'System has no components' self.logger.error(text) raise ValueError(text) if len(self.parameters) != 1 and self.parameters[0].name != 'ml': text = 'System needs ml as its sole parameter' self.logger.error(text) raise ValueError(text) self.parameters[0].update(sformat = '01.2f') # sformat of ml parameter def validate_parset(self, par): """ Validates the system's parameter values Kept separate from the validate method to facilitate easy calling from the ``ParameterGenerator`` class. Returns `True` if all parameters are non-negative, except for logarithmic parameters which are not checked. Parameters ---------- par : dict { "p":val, ... } where "p" are the system's parameters and val are their respective raw values Returns ------- isvalid : bool True if the parameter set is valid, False otherwise """ p_raw_values = [par[p.name] for p in self.parameters if not p.logarithmic] isvalid = np.all(np.sign(p_raw_values) >= 0) if not isvalid: self.logger.debug(f'Invalid system parameters {par}: at least ' 'one negative non-log parameter.') return bool(isvalid) def __repr__(self): return f'{self.__class__.__name__} with {self.__dict__}' def get_component_from_name(self, cmp_name): """get_component_from_name Parameters ---------- cmp_name : string component name (as specified in the congi file) Returns ------- a ``dyn.physical_system.Component`` object """ cmp_list_list = np.array([cmp0.name for cmp0 in self.cmp_list]) idx = np.where(cmp_list_list == cmp_name) self.logger.debug(f'Checking for 1 and only 1 component {cmp_name}...') error_msg = f"There should be 1 and only 1 component named {cmp_name}" assert len(idx[0]) == 1, error_msg self.logger.debug('...check ok.') component = self.cmp_list[idx[0][0]] return component def get_component_from_class(self, cmp_class): """get_component_from_class Parameters ---------- cmp_class : string name of the component type/class Raises ------- ValueError : if there are more than one component of the same class. # TODO: remove this limit, e.g. if we had two MGE-based components one for stars, one for gas Returns ------- a ``dyn.physical_system.Component`` object """ self.logger.debug('Checking for 1 and only 1 component of class ' f'{cmp_class}...') components = filter(lambda c: isinstance(c,cmp_class), self.cmp_list) component = next(components, False) if component is False or next(components, False) is not False: error_msg = 'Actually... there should be 1 and only 1 ' \ f'component of class {cmp_class}' self.logger.error(error_msg) raise ValueError(error_msg) self.logger.debug('...check ok.') return component def get_all_dark_components(self): """Get all components which are Dark Returns ------- list a list of Component objects, keeping only the dark components """ dark_cmp = [c for c in self.cmp_list if isinstance(c, DarkComponent)] return dark_cmp def get_all_dark_non_plummer_components(self): """Get all Dark components which are not plummer Useful in legacy orbit libraries for finding the dark halo component. For legacy models, the black hole is always a plummer, so any Dark but non plummer components must represent the dark halo. Returns ------- list a list of Component objects, keeping only the dark components """ dark_cmp = self.get_all_dark_components() dark_non_plum_cmp = [c for c in dark_cmp if not isinstance(c, Plummer)] return dark_non_plum_cmp def get_all_kinematic_data(self): """get_all_kinematic_data Loop over all components, extract their kinemtics into a list. Returns ------- list all_kinematics in a list """ all_kinematics = [] for component in self.cmp_list: all_kinematics += component.kinematic_data return all_kinematics class Component(object): """A component of the physical system e.g. the stellar component, black hole, or dark halo of a galaxy Parameters ---------- name : string a short but descriptive name of the component visible : Bool whether this is visible <--> whether it has an associated MGE contributes_to_potential : Bool whether this contributes_to_potential **not currently used** symmetry : string one of 'spherical', 'axisymm', or 'triax' **not currently used** kinematic_data : list a list of ``dyn.kinemtics.Kinematic`` data for this component parameters : list a list of ``dyn.parameter_space.Parameter`` objects for this component population_data : list a list of ``dyn.populations.Population`` data for this component **not currently used** """ def __init__(self, name = None, visible=None, contributes_to_potential=None, symmetry=None, kinematic_data=[], population_data=[], parameters=[]): self.logger = logging.getLogger(f'{__name__}.{__class__.__name__}') if name == None: self.name = self.__class__.__name__ else: self.name = name self.visible = visible self.contributes_to_potential = contributes_to_potential self.symmetry = symmetry self.kinematic_data = kinematic_data self.population_data = population_data self.parameters = parameters def validate(self, par=None): """ Validate the component Ensure it has the required attributes and parameters. Additionally, the sformat strings for the parameters are set. Parameters ---------- par : a list with parameter names. Mandatory. Raises ------ ValueError : if a required attribute is missing or the required parameters do not exist Returns ------- None. """ errstr = f'Component {self.__class__.__name__} needs attribute ' if self.visible is None: text = errstr + 'visible' self.logger.error(text) raise ValueError(text) if self.contributes_to_potential is None: text = errstr + 'contributes_to_potential' self.logger.error(text) raise ValueError(text) if not self.parameters: text = errstr + 'parameters' self.logger.error(text) raise ValueError(text) pars = [self.get_parname(p.name) for p in self.parameters] if set(pars) != set(par): text = f'{self.__class__.__name__} needs parameters ' + \ f'{par}, not {pars}.' self.logger.error(text) raise ValueError(text) def validate_parset(self, par): """ Validates the component's parameter values. Kept separate from the validate method to facilitate easy calling from the parameter generator class. This is a `placeholder` method which returns `True` if all parameters are non-negative, except for logarithmic parameters which are not checked. Specific validation should be implemented for each component subclass. Parameters ---------- par : dict { "p":val, ... } where "p" are the component's parameters and val are their respective raw values Returns ------- isvalid : bool True if the parameter set is valid, False otherwise """ p_raw_values = [par[self.get_parname(p.name)] for p in self.parameters if not p.logarithmic] isvalid = np.all(np.sign(p_raw_values) >= 0) if not isvalid: self.logger.debug(f'Invalid parset {par}: at least one negative ' 'non-log parameter.') return isvalid def get_parname(self, par): """ Strip the component name suffix from the parameter name. Parameters ---------- par : str The full parameter name "parameter-component". Returns ------- pure_parname : str The parameter name without the component name suffix. """ try: pure_parname = par[:par.rindex(f'-{self.name}')] except: self.logger.error(f'Component name {self.name} not found in ' f'parameter string {par}') raise return pure_parname def __repr__(self): return (f'\n{self.__class__.__name__}({self.__dict__}\n)') class VisibleComponent(Component): """Any visible component of the sytem, with an MGE Parameters ---------- mge_pot : a ``dyn.mges.MGE`` object describing the (projected) surface-mass density mge_lum : a ``dyn.mges.MGE`` object describing the (projected) surface-luminosity density """ def __init__(self, mge_pot=None, mge_lum=None, **kwds): # visible components have MGE surface density self.mge_pot = mge_pot self.mge_lum = mge_lum super().__init__(visible=True, **kwds) self.logger = logging.getLogger(f'{__name__}.{__class__.__name__}') def validate(self, **kwds): super().validate(**kwds) if not (isinstance(self.mge_pot, mge.MGE) and \ isinstance(self.mge_lum, mge.MGE)): text = f'{self.__class__.__name__}.mge_pot and ' \ f'{self.__class__.__name__}.mge_lum ' \ 'must be mges.MGE objects' self.logger.error(text) raise ValueError(text) if len(self.mge_pot.data) != len(self.mge_lum.data): text = f'{self.__class__.__name__}.mge_pot and ' \ f'{self.__class__.__name__}.mge_lum ' \ 'must be of equal length' self.logger.error(text) raise ValueError(text) class AxisymmetricVisibleComponent(VisibleComponent): def __init__(self, **kwds): super().__init__(symmetry='axisymm', **kwds) def validate(self): par = ['par1', 'par2'] super().validate(par=par) class TriaxialVisibleComponent(VisibleComponent): """Triaxial component with a MGE projected density Has parameters (p,q,u) = (b/a, c/a, sigma_obs/sigma_intrinsic) used for deprojecting the MGE. A given (p,q,u) correspond to a fixed set of `viewing angles` for the triaxial ellipsoid. """ def __init__(self, **kwds): super().__init__(symmetry='triax', **kwds) self.logger = logging.getLogger(f'{__name__}.{__class__.__name__}') self.qobs = np.nan def validate(self): """ Validate the TriaxialVisibleComponent In addition to validating parameter names and setting their sformat strings, also set self.qobs (minimal flattening from mge data) Returns ------- None. """ par = ['q', 'p', 'u'] super().validate(par=par) self.qobs = np.amin(self.mge_pot.data['q']) if self.qobs is np.nan: raise ValueError(f'{self.__class__.__name__}.qobs is np.nan') def validate_parset(self, par): """ Validate the p, q, u parset Validates the triaxial component's p, q, u parameter set. Requires self.qobs to be set. A parameter set is valid if the resulting (theta, psi, phi) are not np.nan. Parameters ---------- par : dict { "p":val, ... } where "p" are the component's parameters and val are their respective values Returns ------- bool True if the parameter set is valid, False otherwise """ tpp = self.triax_pqu2tpp(par['p'], par['q'], par['u']) return bool(not np.any(
np.isnan(tpp)
numpy.isnan
''' A simple rejection sampling script for custom statistical distributions Author: <NAME> - <EMAIL> Usage: $ python rejection.py -h for help and basic instruction ''' from __future__ import print_function, division print(__doc__) try: import numpy as np except ImportError: print("Numpy not installed, try - pip install numpy") import sys sys.exit() # # CUSTOM PDF CLASS ########################################################## # class custom_df: ''' Custom_df class defines the custom distribution function from the user. __init__ : Define the piecewise components of the distribution along with any other parameters you need. df : Distribution function - accepts a n-length vector only. sample : Sample the distribution function - accepts a single float only. ''' def __init__(self): self.lgn = lambda m, a, mc, s: a * np.exp(-(np.log10(m) - \ np.log10(mc))**2.0 / (2*s**2.0)) self.pwr = lambda m, a, s: a*m**(-s) self.p = [0.093, 0.2, 0.55, 0.0415, 1.35] def df(self,x): assert((isinstance(x, float) != True)), \ "Distribution not found - passed values are a float - use .sample" # # Define your custom distribution here that accepts a vector. # idx = np.min(np.where(x >= 1.0)[0]) n = np.empty(len(x)) n[:idx] = self.lgn(x[:idx], self.p[0], self.p[1], self.p[2]) n[idx:] = self.pwr(x[idx:], self.p[3], self.p[4]) return n def sample(self,x): assert(isinstance(x, float)), \ "Sample not taken - passed values are a tuple - use .df" # # Define how to sample the distribution given a single value # if x > 1.0: dn = self.pwr(x, self.p[3], self.p[4]) else: dn = self.lgn(x, self.p[0], self.p[1], self.p[2]) return dn # # END CUSTOM PDF CLASS ###################################################### # # # # MAIN PROGRAM # import argparse INPUT = argparse.ArgumentParser(description='rejection.py user parameters') # # USER PARAMETER INPUT # REQUIRED PARAMETERS: # a = lower limit of distribution # b = upper limit of distribution # INPUT.add_argument('a', metavar='a', type=float, nargs=1, help='lower limit of distribution') INPUT.add_argument('b', metavar='b', type=float, nargs=1, help='upper limit of distribution') # # USER PARAMETER INPUT # OPTIONAL PARAMETERS: # plot = True or False # logspace = True or False # output = True or False # verbose = True or False # exploratory = True or False # INPUT.add_argument('-np', '--no-plot', dest='noplot', action='store_false', help='Do not produce plot') INPUT.add_argument('-lg', '--logspace', dest='logspace', action='store_true', help='Independent axis in evenly sampled in logspace') INPUT.add_argument('-o', '--output', dest='output', action='store_true', help='Write .csv output file') INPUT.add_argument('-v', '--verbose', dest='verbose', action='store_true', help='Tells you more information during run') INPUT.add_argument('-ex', '--exploratory', dest='explore', action='store_true', help='No sampling - plots distribution for exploration') OPTS = INPUT.parse_args() # # USER PARAMETER CHECK AND READOUT # This section will fail if: # Parameters 'a' is not less than 'b' # assert OPTS.a[0] < OPTS.b[0], "INPUT ERROR - CHECK DISTRIBUTION RANGE" if OPTS.verbose: print("\nPYTHON SCRIPT: rejection") print() print("INPUT DISTRIBUTION LIMIT a) :", OPTS.a[0]) print("INPUT DISTRIBUTION LIMIT b) :", OPTS.b[0]) print("LOGSPACE :", OPTS.logspace) print("EXPLORATORY :", OPTS.explore) # # Main rejection sampling loop # # # # Checks if user specifies logspace at execution # if OPTS.logspace: X =
np.logspace(OPTS.a[0], OPTS.b[0], 1000)
numpy.logspace
""" Interact with the FRITZ ZTF-II marshal """ import os import warnings import pandas import json import requests import numpy as np from astropy import time from astropy.io import fits from .io import LOCALSOURCE, _load_id_ FRITZSOURCE = os.path.join(LOCALSOURCE,"fritz") if not os.path.isdir(FRITZSOURCE): os.mkdir(FRITZSOURCE) FID_TO_NAME = {1:"ztfg", 2:"ztfr", 3:"ztfi"} ZTFCOLOR = {"ztfr":"tab:red", "ztfg":"tab:green", "ztfi":"tab:orange"} _BASE_FRITZ_URL = "https://fritz.science/" FRITZSOURCE = os.path.join(LOCALSOURCE,"fritz") #################### # # # GENERIC TOOLS # # # #################### # ---------- # # Downloads # # ---------- # def api(method, endpoint, data=None, load=True, token=None, **kwargs): """ """ if token is None: token = _load_id_('fritz') headers = {'Authorization': f"token {token}"} response = requests.request(method, endpoint, json=data, headers=headers, **kwargs) if not load: return response try: downloaded = json.loads(response.content) except: warnings.warn("cannot load the response.content") downloaded = None if downloaded["status"] not in ["success"]: raise IOError(f"downloading status of '{method} {endpoint}' is not success: {downloaded['status']}") return downloaded["data"] def bulk_download(fobject, names, nprocess=4, show_progress=True, asdict=False, force_dl=False, client=None, store=True): """ Multiprocessed download of Fritz{fobject}. This makes use of the Fritz{fobject}.from_name() classmethods Parameters ---------- fobject: [string] What you want to download. - "lightcurve" (or "photometry"), "spectra" (or "spectrum"), "alerts", or "source" names: [list of string] list of names for which you want to download data. nprocess: [int] -optional- list of parallel download processes. force_dl: [bool] -optional- Should this redownload existing data ? store: [bool] -optional- Should the downloaded data be stored ? asdict: [bool] -optional- Should this return a dictionary or a list - asdict=True: {name: fritz{fobject}} - asdict=False: [fritz{fobject}] Returns ------- Dictionary {name: fritz{fobject}} """ KNOW_OBJECT = ["lightcurve","photometry", "spectra", "spectrum", "alerts","source"] if fobject not in KNOW_OBJECT: raise ValueError(f"Unknown fritz object {fobject}") if fobject == "spectrum": fobject = "spectra" if fobject == "photometry": fobject = "lightcurve" if client is not None: from dask import delayed dl_func = eval(f"_single_download_{fobject}_") d_download = [delayed(dl_func)([name, force_dl, store]) for name in names] return client.compute(d_download) from .utils.tools import is_running_from_notebook import multiprocessing nnames = len(names) # # - Progress bar or not if show_progress: from astropy.utils.console import ProgressBar bar = ProgressBar( nnames, ipython_widget=is_running_from_notebook()) else: bar = None # # - Input objects = {} force_dl = [force_dl]*nnames store = [store]*nnames # # - Multiprocessing with multiprocessing.Pool(nprocess) as p: # Da Loop for j, flc in enumerate( p.imap(eval(f"_single_download_{fobject}_"), zip(names, force_dl, store) ) ): if bar is not None: bar.update(j) objects[names[j]] = flc if bar is not None: bar.update(nnames) return objects if asdict else list(objects.values()) def _single_download_lightcurve_(args): """ """ name, force_dl, store = args return FritzPhotometry.from_name(name, force_dl=force_dl, store=store) def _single_download_spectra_(args): """ """ name, force_dl, store = args return FritzSpectrum.from_name(name, force_dl=force_dl, store=store) def _single_download_alerts_(args): """ """ name, force_dl, store = args return FritzAlerts.from_name(name, force_dl=force_dl, store=store) def _single_download_source_(args): """ """ name, force_dl, store = args return FritzSource.from_name(name, force_dl=force_dl, store=store) # =============== # # # # LightCurve # # # # =============== # def download_lightcurve(name, get_object=False, token=None, clean_groupcolumn=True, format=None, magsys=None, store=False, verbose=False, **kwargs): """ Parameters ---------- format: [string] -optional- = skyportal api option = flux or mag (None means default) magsys: [string] -optional- = skyportal api option = ab or vega (None means default) **kwargs are ignored (here for backward compatibilities) """ # # - start: addon addon = [] if format is not None: addon.append(f"format={format}") if magsys is not None: addon.append(f"magsys={magsys}") addon = "" if len(addon)==0 else "?"+"&".join(addon) # - end: addon # q_url = _BASE_FRITZ_URL+f'api/sources/{name}/photometry{addon}' if verbose: print(f"queried URL: {q_url}") lcdata = api('get', q_url, load=True, token=token) lcdata = pandas.DataFrame(lcdata) if clean_groupcolumn: lcdata["groups"] = [[i_["id"] for i_ in lcdata["groups"].iloc[i]] for i in range(len(lcdata))] # - output if not store and not get_object: return lcdata flcdata = FritzPhotometry( lcdata ) if store: flcdata.store() return flcdata if get_object else lcdata # =============== # # # # Spectra # # # # =============== # def download_spectra(name, get_object=False, token=None, store=False, verbose=False): """ """ q_url = _BASE_FRITZ_URL+f'api/sources/{name}/spectra' if verbose: print(f"queried URL: {q_url}") list_of_dict = api('get', q_url, load=True, token=token) # # - Any problem ? if list_of_dict is None or len(list_of_dict)==0: warnings.warn(f"no spectra downloaded. {q_url} download is empty") return None spectra = list_of_dict["spectra"] if spectra is None or len(spectra)==0: warnings.warn(f"no spectra downloaded. {q_url} download is empty") return None # - No ? Good # if not store and not get_object: return spectra if spectra is None or len(spectra)==0: return None if len(spectra)==1: fspectra = FritzSpectrum(spectra[0]) if store: fspectra.store() else: fspectra = [FritzSpectrum(spec_) for spec_ in spectra] if store: [fspec_.store() for fspec_ in fspectra] return fspectra if get_object else spectra # =============== # # # # Alers # # # # =============== # def download_alerts(name, candid=None, allfields=None, get_object=False, token=None, store=False, verbose=False): """ looking for api/alerts/{name}{addon} Parameters ---------- candid: [int/str] alert candid like: 1081317100915015025 """ # # - start: addon addon = [] if candid is not None: addon.append(f"candid={candid}") if allfields is not None: addon.append(f"includeAllFields={allfields}") addon = "" if len(addon)==0 else "?"+"&".join(addon) # - end: addon # q_url = _BASE_FRITZ_URL+f'api/alerts/{name}{addon}' if verbose: print(f"queried URL: {q_url}") alerts = api('get',q_url, load=True, token=token) # - output if not store and not get_object: return alerts falerts = FritzAlerts.from_alerts(alerts) if store: falerts.store() return falerts if get_object else alerts # =============== # # # # Source # # # # =============== # def download_source(name, get_object=False, token=None, store=False, verbose=False): """ """ addon='' q_url = _BASE_FRITZ_URL+f'api/sources/{name}{addon}' if verbose: print(f"queried URL: {q_url}") source = api('get', q_url, load=True, token=token) if not store and not get_object: return source fsource = FritzSource(source) if store: fsource.store() return fsource if get_object else source # =============== # # --------------- # # - Sample - # # --------------- # # =============== # def download_sample( groupid, get_object=False, savesummary=False, savedafter=None, savedbefore=None, name=None, includephotometry=None, includerequested=None, addon=None, token=None, store=False, verbose=False): """ includephotometry: [bool] -optional- Includes the photometric table inside sources["photometry"] """ # # - start: addon if addon is None: addon = [] elif type(addon) is str: addon = [addon] if savesummary: addon.append(f"saveSummary=true") if store: warnings.warn("store option not available if savesummary=True.") store=False if groupid is not None and groupid not in ["*", "all"]: addon.append(f"group_ids={groupid}") if savedafter is not None: addon.append(f"savedAfter={time.Time(savedafter).isot}") if savedbefore is not None: addon.append(f"savedBefore={time.Time(savedbefore).isot}") if name is not None: addon.append(f"sourceID={name}") if includephotometry is not None: addon.append(f"includePhotometry={includephotometry}") if includerequested is not None: addon.append(f"includeRequested={includerequested}") addon = "" if len(addon)==0 else "?"+"&".join(addon) # - end: addon # q_url = _BASE_FRITZ_URL+f"api/sources{addon}" if verbose: print(f"queried URL: {q_url}") sources = api('get', q_url, load=True, token=token) if not store and not get_object: return sources sample = FritzSample(sources, groupid) if store: sample.store() return sample if get_object else sources # # Group # def download_groups(get_object=False, token=None, store=True, verbose=False): """ """ q_url = _BASE_FRITZ_URL+f'api/groups' if verbose: print(f"queried URL: {q_url}") groups = api('get',q_url, load=True, token=token) if not store and not get_object: return groups fgroups = FritzGroups(groups) if store: fgroups.store() return fgroups if get_object else groups # -------------- # # Data I/O # # -------------- # # # Spectra # def parse_spectrum_filename(filename): """ """ directory = os.path.dirname(filename) basename = os.path.basename(filename).split(".")[0] extension = filename.split(".")[-1] if not basename.startswith("fritz"): raise ValueError("Cannot parse the given name. Not a fritz_bla file.") _, instspectrum, name, *orig = basename.split("_") originalname = "_".join(orig) return {"instrument":instspectrum.replace("spectrum",""), "name":name, "original_file_filename":originalname, "extension":extension, "directory":directory} #################### # # # Classes # # # #################### # -------------- # # Photometry/ # # LightCurve # # -------------- # class FritzPhotometry( object ): """ """ def __init__(self, dataframe=None): """ """ if dataframe is not None: self.set_data(dataframe) @classmethod def from_fritz(cls, name): """ """ print("FritzPhotometry.from_fritz(name) is DEPRECATED, use FritzPhotometry.from_name(name)") return cls.from_name(name) @classmethod def from_name(cls, name, force_dl=False, store=False, **kwargs): """ """ if not force_dl: filename = cls._build_filename_(name, **kwargs) if os.path.isfile(filename): extension = filename.split(".")[-1] return getattr(cls,f"read_{extension}")(filename) return cls( download_lightcurve(name, get_object=False, store=store) ) # ============= # # Method # # ============= # # --------- # # I/O # # --------- # def store(self, fileout=None, dirout="default", extension="csv", **kwargs): """ calls the self.to_{extension} with the default naming convention. """ # can differ to extension if fileout given if fileout is None: fileout = self._build_filename_(self.name, dirout=dirout, extension=extension) if extension in ["csv","json","parquet",]: return getattr(self,f"to_{extension}")(fileout, **kwargs) if extension in ["hdf","hd5","hdf5","h5"]: return self.to_hdf(fileout, **kwargs) raise ValueError(f"only 'csv','json', 'hdf5' extension implemented ; {extension} given") # - read file @classmethod def read_parquet(cls, filename, **kwargs): """ """ return cls(pandas.read_parquet(filename, **kwargs)) @classmethod def read_csv(cls, filename, **kwargs): """ """ return cls(pandas.read_csv(filename, **kwargs)) @classmethod def read_hdf(cls, filename, key="data",**kwargs): """ """ return cls(pandas.read_hdf(filename, key=key, **kwargs)) @classmethod def read_json(cls, filename, **kwargs): """ """ return cls(pandas.read_json(filename, **kwargs)) # - to file def to_parquet(self, fileout, **kwargs): """ export the data as parquet using pandas.to_parquet """ self.data.to_parquet(fileout, **{**{"index":False},**kwargs}) def to_csv(self, fileout, **kwargs): """ export the data as csv using pandas.to_csv """ self.data.to_csv(fileout, **{**{"index":False},**kwargs}) def to_hdf(self, fileout, **kwargs): """ export the data as csv using pandas.to_hdf """ self.data.to_hdf(fileout, key="data", **{**{"index":False},**kwargs}) def to_json(self, fileout, **kwargs): """ export the data as csv using pandas.to_json. """ self.data.to_json(fileout, **{**{"index":False},**kwargs}) @staticmethod def _build_filename_(name, dirout=None, extension="csv"): """ """ if dirout is None or dirout == "default": dirout = os.path.join(FRITZSOURCE,"lightcurve") if not os.path.isdir(dirout): os.makedirs(dirout, exist_ok=True) return os.path.join(dirout,f"fritz_lightcurve_{name}.{extension}") # --------- # # SETTER # # --------- # def set_data(self, dataframe, reshape=True): """ """ self._data = dataframe # --------- # # GETTER # # --------- # def get_keys(self, keys, full=False, perband=False, groupby=None, usestat=None, index=None, **kwargs): """ Parameters ---------- full: [bool] -optional- Returns the full data[["ra","dec"]] = If True, the rest is ignored = // if full=False perband: [bool] -optional- Returns the `usestat` coordinate grouped per band groupby: [string/None] -optional- Returns the `usestat` coordinate grouped per given key. usestat: [string] -optional- How should be alert coordinates be combined. any pandas statistics (mean, median, min, max etc.) Returns ------- """ data_ = self.get_data(**kwargs).loc[index] if index is not None else self.get_data(**kwargs) if full: return data_[keys] if perband: if groupby is None: groupby = "filter" else: groupby = np.atleast_1d(groupby).tolist()+["filter"] # = Grouped if groupby is not None: grouped = data_.groupby(groupby)[keys] if usestat is None: return grouped return getattr(grouped, usestat)() # = not grouped if usestat is None: return data_[keys] return getattr(data_[keys],usestat)() def get_coordinates(self, full=False, method="median", detected=True, perband=False, groupby=None, **kwargs): """ get the coordinates of the alerts Parameters ---------- full: [bool] -optional- do you want all the Ra, DEC of the alerts (detected) method: [numpy's method] -optional- how should the ra, dec be combined (nanmean, nanmedian etc) = ignored if full=True = detected: [bool] -optional- only consider the detected alerts entries (ra,dec are NaN if not) Returns ------- DataFrame """ return self.get_keys(keys=["ra","dec"], detected=detected, usestat=method, full=full, perband=perband, groupby=groupby, **kwargs) def get_data(self, detected=None, filters="*", time_range=None, query=None): """ get a filtered version of the data. Example: -------- self.get_data(filters="ztfg", detected=True, time_range=["2020-10-16",None]) Parameters ---------- detected: [bool or None] -optional- Do you want: - True: the detected entries only - False: the upper limits only - None: both (e.g. no filtering) filters: [string (list_of) or None] -optional- Which filters you want. - None or '*'/'all': no filtering - str: this filter only (e.g. 'ztfg') - list of str: any of these filters (e.g., ['ztfg','ztfr'] time_range: [2d-array or None] -optional- start and stop time range, None means no limit. query: [str or list] -optional- any other query you want to add. Queries are ' and '.join(query) at the end. Returns ------- dataframe """ if query is None: query = [] else: query = list(np.atleast_1d(query)) # - Detected Filtering if detected is not None: if not detected: query.append("mag == 'NaN'") else: query.append("mag != 'NaN'") # - Filters Filtering if filters is not None and filters not in ["*","all","any"]: filters = list(np.atleast_1d(filters)) query.append("filter == @filters") # - Time Filtering if time_range is not None: tstart, tend = time_range if tstart is None and tend is None: pass else: tindex = pandas.DatetimeIndex(time.Time(self.data["mjd"], format="mjd").datetime) if tstart is None: query.append(f"@tindex<'{tend}'") elif tend is None: query.append(f"'{tstart}'<@tindex") else: query.append(f"'{tstart}'<@tindex<'{tend}'") # - Returns if len(query)==0: return self.data return self.data.query(" and ".join(query)) def get_filters(self): """ list of filter in the data """ return np.unique(self.data["filter"]).astype(str) def show(self, ax=None, savefile=None, filtering={}): """ """ import matplotlib.pyplot as mpl from matplotlib import dates as mdates if ax is None: fig = mpl.figure(figsize=[5,3]) ax = fig.add_axes([0.15,0.15,0.75,0.75]) else: fig = ax.figure base_prop = dict(ls="None", mec="0.9", mew=0.5, ecolor="0.7",marker="o", ms=7) base_up = dict(ls="None", label="_no_legend_") if filtering is None: data = self.data.copy() else: data = self.get_data(**filtering) # - Detected for filter_ in np.unique(data["filter"]): if filter_ not in ZTFCOLOR: warnings.warn(f"Unknown instrument: {filter_} | magnitude not shown") continue datadet_ = data.query("filter == @filter_ and mag != 'NaN'") ax.errorbar(time.Time(datadet_["mjd"], format="mjd").datetime, datadet_["mag"], yerr= datadet_["magerr"], label=filter_, color=ZTFCOLOR[filter_], **base_prop) ax.invert_yaxis() for filter_ in np.unique(data["filter"]): if filter_ not in ZTFCOLOR: continue # Upper limits datadet_ = data.query("filter == @filter_ and mag == 'NaN'") ax.errorbar(time.Time(datadet_["mjd"], format="mjd").datetime, datadet_["limiting_mag"], yerr= 0.1, lolims=True, alpha=0.3, **{**base_up,**{"color":ZTFCOLOR[filter_]}}) locator = mdates.AutoDateLocator() formatter = mdates.ConciseDateFormatter(locator) ax.xaxis.set_major_locator(locator) ax.xaxis.set_major_formatter(formatter) ax.set_ylabel("mag") if savefile is not None: fig.savefig(savefile) return fig # ============= # # Properties # # ============= # @property def data(self): """ """ return self._data @property def name(self): """ short cut of self.obj_id""" return self.obj_id @property def obj_id(self): """ """ obj_id = np.unique(self.data["obj_id"]) if len(obj_id)==1: return obj_id[0] if len(obj_id)>1: warnings.warn(f"several obj_id {obj_id}") return obj_id if len(obj_id)==0: warnings.warn(f"no obj_id") return None # ----------- # # # # SOURCES # # # # ----------- # class FritzSource( object ): def __init__(self, fritzdict=None): """ """ if fritzdict is not None: self.set_fritzdict(fritzdict) @classmethod def from_name(cls, name, force_dl=False, store=False, **kwargs): """ """ if not force_dl: filename = cls._build_filename_(name, **kwargs) if os.path.isfile(filename): extension = filename.split(".")[-1] return getattr(cls,f"read_{extension}")(filename) return cls( download_source(name, get_object=False, store=store, **kwargs) ) # I/O def store(self, fileout=None, dirout=None, extension="json", **kwargs): """ calls the self.to_{extension} with default naming convention. """ # can differ to extension if fileout given if fileout is None: fileout = self._build_filename_(self.name, dirout=dirout, extension=extension) if extension == "json": return getattr(self,f"to_{extension}")(fileout, **kwargs) raise ValueError(f"only 'json' extension implemented ; {extension} given") @staticmethod def _build_filename_(name, dirout=None, extension="json"): """ """ if dirout is None or dirout == "default": dirout = os.path.join(FRITZSOURCE,"source") if not os.path.isdir(dirout): os.makedirs(dirout, exist_ok=True) return os.path.join(dirout,f"fritz_source_{name}.{extension}") # - to file def to_json(self, filename): """ """ import json with open(filename,'w') as fileout_: json.dump(self.fritzdict, fileout_) # - read file @classmethod def read_json(cls, filename): """ """ this = cls() with open(filename, 'r') as filename_: this.set_fritzdict(json.load(filename_)) this.set_filename(filename) return this # ============ # # Method # # ============ # # ------- # # SETTER # # ------- # def set_fritzdict(self, fritzdict): """ """ self._fritzdict = fritzdict def set_filename(self, filename): """ """ self._filename = filename # ------- # # GETTER # # ------- # def get_coordinates(self, as_skycoords=False): """ """ if as_skycoords: from astropy import coordinates, units return coordinates.SkyCoord(self.ra, self.dec, unit=units.deg) return self.ra, self.dec def get_classification(self, full=True, squeeze=True): """ """ fullclassi = self.fritzdict["classifications"] if full: return fullclassi classi = [c_.get("classification",None) for c_ in fullclassi] if squeeze: classi = np.unique(classi) if len(classi)==1: return classi[0] return classi def get_redshift(self, full=True): """ """ if not full: return self.fritzdict.get("redshift",None) return {k:self.fritzdict[k] for k in ["redshift","redshift_history"]} def get_annotation(self, squeeze=True): """ """ annot = self.fritzdict["annotations"] if len(annot)==1 and squeeze: return annot[0] return annot def get_time(self, which=["created_at","last_detected_at"], squeeze=True, format=None, asarray=False): """ Parameters ---------- which: [str or list of] -optional- Which time key you want (could be a combination) - created_at - last_detected_at squeeze: [bool] -optional- get the value directly if only one 'which' format: [str or None] -optional- The format of the output: - None or 'str': as given by Fritz - 'time': as astropy.time.Time - "jd", "mjd", "datetime", etc.: any astropy.time.Time attribute asarray: [bool] -optional- Shall this return a dictionary or an array = ignored if squeeze and which is a single key = Returns ------- value, dict or array (see squeeze and asarray) """ which = np.atleast_1d(which) # # = start: Formating if format is None or format in ["str","default","string"]: times = {k:self.fritzdict[k] for k in which} else: if format in ["time","Time","astropy","astropy.time", "astropy.Time"]: times = {k:time.Time(self.fritzdict[k]) for k in which} else: times = {k:getattr(time.Time(self.fritzdict[k].split(".")[0]),format) for k in which} # = end: Formating # if len(which)==1 and squeeze: return times[which[0]] if asarray: return np.asarray([times[w] for w in which]) return times def get_metaquery(self, priorcreation=100, postlast=100, size=0.01, add_query=None): """ get entry for ZTFQuery.query.load_metaquery(**this_output) """ jdmin, jdmax = self.get_time(which=["created_at", "last_detected_at"], format="jd", asarray=True)+ [-priorcreation, postlast] return dict( radec=[self.ra,self.dec], size=size, sql_query=f"obsjd BETWEEN {jdmin} and {jdmax}") # ------- # # PLOTTER # # ------- # def view_on_fritz(self): """ opens your browser at the corresponding fritz source page""" if self.name is None: raise AttributeError("self.name is not set. Cannot launch target Marshal page.") import webbrowser return webbrowser.open(_BASE_FRITZ_URL+f'source/{self.name}', new=2) # ============ # # Properties # # ============ # @property def fritzdict(self): """ dictionary given by fritz for the spectrum """ return self._fritzdict def has_fritzdict(self): """ Test if fritzdict has been set. True means yes.""" return hasattr(self, "_fritzdict") and self._fritzdict is not None @property def name(self): """ short cut to self.id""" return self.id @property def id(self): """ """ return self.fritzdict["id"] @property def ra(self): """ Target Right Ascention """ return self.fritzdict["ra"] @property def dec(self): """ Target Declination """ return self.fritzdict["dec"] @property def redshift(self): """ Target Redshift, see also self.get_redshift() """ return self.get_redshift(full=False) @property def classification(self): """ Target Classification, see also self.get_classification() """ return self.get_classification(full=False) @property def fritzkey(self): """ Fritz Internal Key """ return self.fritzdict["internal_key"] # -------------- # # # # Spectro # # # # -------------- # def parse_ascii(datastring, sep=None, hkey="#", hsep=": ", isvariance=None): """ """ header_key = [l for l in datastring if l.startswith("#")] if len(header_key)>0: header = pandas.DataFrame([l.replace(hkey,"").split(hsep) for l in header_key if len(l.replace(hkey,"").split(hsep))==2], columns=["key","value"])#.set_index("key")["value"] header["key"] = header["key"].str.strip() header = header.set_index("key")#["value"] else: header = None lbda, flux, *error = np.asarray([l.split(sep) for l in datastring if not l.startswith(hkey) and len(l)>2], dtype="float").T if len(error) == 0: error = None elif len(error) == 1: error = error[0] else: warnings.warn("Cannot parse the last columns (lbda, flux, several_columns) ; ignored.") error = None if error is not None: if isvariance is None: isvariance = np.all(np.abs(flux/error)>1e3) if isvariance: error = np.sqrt(error) if error is not None: data = pandas.DataFrame(np.asarray([lbda, flux, error]).T, columns=["lbda", "flux", "error"]) else: data = pandas.DataFrame(np.asarray([lbda, flux]).T, columns=["lbda", "flux"]) return data, header class FritzSpectrum( object ): """ """ _IMPLEMENTED_ORIGINALFORMAT = ["sedm"] def __init__(self, fritzdict=None, **kwargs): """ """ if fritzdict is not None: self.set_fritzdict(fritzdict, **kwargs) # --------- # # From # # --------- # @classmethod def from_fritz(cls, name, entry=None, spectra_ok=True): """ """ print("FritzSpectrum.from_fritz(name) is DEPRECATED, use FritzSpectrum.from_name(name)") return cls.from_name(name, entry=entry, spectra_ok=spectra_ok) @classmethod def from_name(cls, name, warn=True, force_dl=False, store=False, **kwargs): """ """ if not force_dl: from glob import glob local_spectra = glob(cls._build_filename_(name, "*", "*", **kwargs)) if len(local_spectra)>0: spectra = [] for filename in local_spectra: extension = filename.split(".")[-1] spectra.append(getattr(cls,f"read_{extension}")(filename)) if len(spectra)==1: return spectra[0] if warn: warnings.warn(f"{name} has several spectra, list of FritzSpectrum returned") return spectra # No Local spectra or force download. spectra = download_spectra(name, get_object=False, store=store) if spectra is None or len(spectra) == 0: if warn: warnings.warn(f"No spectra downloaded for {name}") return None if len(spectra) == 1: return cls(spectra[0]) if warn: warnings.warn(f"{name} has several spectra, list of FritzSpectrum returned") return [cls(spec_) for spec_ in spectra] def store(self, fileout=None, dirout=None, extension="ascii", **kwargs): """ calls the self.to_{extension} with default naming convention. """ # can differ to extension if fileout given if fileout is None: fileout = self._build_filename_(self.name, self.instrument, self.filekey, dirout=dirout, extension=extension) if extension in ["txt", "dat","data", "ascii"]: extension = "ascii" if extension in ["fits", "json", "ascii", "txt"]: out = getattr(self,f"to_{extension}")(fileout, **kwargs) self.set_filename(fileout) return out raise ValueError(f"only 'fits','json', 'txt'/'dat'/'ascii' extension implemented ; {extension} given") # - to file def to_fits(self, fileout, overwrite=True): """ Store the data in fits format """ from astropy.io.fits import HDUList, Header from astropy.io.fits import PrimaryHDU, ImageHDU fitsheader = Header() if self.header is not None: for k,v in self.header.infer_objects().iterrows(): fitsheader.set(k, v.value) hdul = [] # -- Data saving hdul.append( PrimaryHDU(self.flux, fitsheader) ) if self.has_error(): hdul.append( ImageHDU(self.error, name='ERROR') ) if not self._is_lbdastep_constant_(): hdul.append( ImageHDU(self.lbda, name='LBDA') ) hdulist = HDUList(hdul) hdulist.writeto(fileout, overwrite=overwrite) def to_hdf(self, filename, datakey="data", headerkey="header", **kwargs): """ Store the data to hdf5 format """ self.data.to_hdf(filename, key=datakey) pandas.DataFrame(self.header).to_hdf(filename, key=headerkey) def to_ascii(self, fileout): """ Store the data in text format """ fileout_ = open(fileout, "w") for k,v in self.header.to_dict().items(): fileout_.write("# %s: %s\n"%(k.upper(),v)) if self.has_error(): for l_,f_,v_ in zip(self.lbda, self.flux, self.error): fileout_.write(f"{l_:.1f} {f_:.3e} {v_:.3e}\n") else: for l_,f_ in zip(self.lbda, self.flux): fileout_.write(f"{l_:.1f} {f_:.3e}\n") fileout_.close() def to_json(self, fileout): """ Store the data in json format """ import json with open(fileout,'w') as fileout_: json.dump(self.fritzdict, fileout_) # - read file @classmethod def read_fits(cls, filename, dataext=0, headerext=0, errortable="ERROR", lbdatable="LBDA"): """ load and build the object given the fits file """ fits_ = fits.open(filename) # Flux flux = fits_[dataext].data # Header header = dict(fits_[headerext].header) colnames = [f_.name.lower() for f_ in fits_] # Error (if any) if errortable.lower() in colnames: error = fits_[colnames.index(errortable.lower())].data else: error = None # Wavelength if lbdatable.lower() in colnames: lbda = fits_[colnames.index(lbdatable.lower())].data else: lbda = cls._header_to_lbda_(header) this = cls() this.setup(lbda, flux, header, error=error) # useful information to store fritzdict = cls._filename_to_fritzdict_(filename) this.set_fritzdict(fritzdict, load_spectrum=False) this.set_filename(filename) return this @classmethod def read_hdf(cls, filename, datakey="data", headerkey="header", **kwargs): """ load and build the object given the hdf5 file """ data = pandas.read_hdf(filename, key=datakey) header = pandas.read_hdf(filename, key=headerkey) fritzdict = cls._filename_to_fritzdict_(filename) this = cls() this.set_data(data) this.set_header(header) this.set_fritzdict(fritzdict, load_spectrum=False) this.set_filename(filename) return this @classmethod def read_ascii(cls, filename, **kwargs): """ load and build the object given the text file """ data, header = parse_ascii(open(filename).read().splitlines(), **kwargs) fritzdict = cls._filename_to_fritzdict_(filename) this = cls() this.set_data(data) this.set_header(header) this.set_fritzdict(fritzdict, load_spectrum=False) this.set_filename(filename) return this @classmethod def read_json(cls, filename): """ load and build the object given the json file """ this = cls() with open(filename, 'r') as filename_: this.set_fritzdict(json.load(filename_)) this.set_filename(filename) return this @staticmethod def _build_filename_(name, instrument, key="", dirout=None, extension="ascii"): """ """ if dirout is None or dirout == "default": dirout = os.path.join(FRITZSOURCE,"spectra",name) if not os.path.isdir(dirout): os.makedirs(dirout, exist_ok=True) return os.path.join(dirout,f"fritz_spectrum_{instrument.lower()}_{key}_{name.lower()}.{extension}") @staticmethod def _filename_to_fritzdict_(filename, warn=False): """ """ try: dictfile = parse_spectrum_filename(filename) except: if warn: warnings.warn("Cannot parse the input name, so information (instrument, obj_id) might be missing") dictfile = None if dictfile is not None: fritzdict = {"instrument_name":dictfile["instrument"], "obj_id":dictfile["name"], "original_file_string":None, "original_file_filename":dictfile["original_file_filename"] } else: fritzdict = {} return fritzdict # ============= # # Method # # ============= # # --------- # # LOADER # # --------- # def load_spectrum(self, from_original_file=None, **kwargs): """ """ if from_original_file is None: from_original_file = self.instrument in self._IMPLEMENTED_ORIGINALFORMAT if from_original_file: if not self.instrument in self._IMPLEMENTED_ORIGINALFORMAT: warnings.warn(f"No original format file implemented for {self.instrument}. Back to fritzformat") from_original_file=False if not from_original_file: self._loadspec_fritzformat_(**kwargs) else: self._loadspec_fileformat_(**kwargs) def _loadspec_fritzformat_(self, ignore_warnings=True): """ """ lbda = np.asarray(self.fritzdict["wavelengths"], dtype="float") flux = np.asarray(self.fritzdict["fluxes"], dtype="float") error = self.fritzdict.get("errors", None) try: header = {k:v for k,v in dict(self.fritzdict["altdata"]) if len(k>0)} if self.fritzdict.get("altdata") is not None else None except: warnings.warn("Cannot convert the fritz' altdata into a header. header set to None") header = None self.setup(lbda, flux, header, error=error) def _loadspec_fileformat_(self): """ """ if self.instrument == "sedm": data, header = parse_ascii( self.fritzdict["original_file_string"].splitlines() ) else: raise NotImplementedError(f"only sedm fileformat implemented {self.instrument} given. Contact Mickael if you need that.") self.set_data(data) self.set_header(header) def _lbda_to_header_(self, header=None): """ """ if not self._is_lbdastep_constant_(): raise ValueError("step is not regular, cannot convert lbda to header keys") if header is None: header = self.header if type(header)==dict: header["CDELT"] = self._lbdastep[0] header["CRVAL"] = self.lbda[0] header["NAXIS"] = len(self.lbda) else: header.loc["CDELT"] = self._lbdastep[0] header.loc["CRVAL"] = self.lbda[0] header.loc["NAXIS"] = len(self.lbda) return header @classmethod def _header_to_lbda_(cls, header): """ """ # Both format exist if "CDELT1" in header: step = header.get("CDELT1") start = header.get("CRVAL1") size = header.get("NAXIS1") else: step = header.get("CDELT") start = header.get("CRVAL") size = header.get("NAXIS") return np.arange(size)*step + start # --------- # # SETTER # # --------- # def setup(self, lbda, flux, header, error=None): """ Build the spectrum given the input this calls self.set_data() and self.set_header() """ if error is None: data = pandas.DataFrame(
np.asarray([lbda, flux], dtype="float")
numpy.asarray
__copyright__ = "Copyright (c) 2020 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import numpy as np def reduce_mean(data: 'np.ndarray', mask_2d: 'np.ndarray') -> 'np.ndarray': emb_dim = data.shape[2] mask = np.tile(mask_2d, (emb_dim, 1, 1)) mask = np.rollaxis(mask, 0, 3) output = mask * data return np.sum(output, axis=1) / np.sum(mask, axis=1) def reduce_max(data: 'np.ndarray', mask_2d: 'np.ndarray') -> 'np.ndarray': emb_dim = data.shape[2] mask = np.tile(mask_2d, (emb_dim, 1, 1)) mask = np.rollaxis(mask, 0, 3) output = mask * data neg_mask = (mask_2d - 1) * 1e10 neg_mask = np.tile(neg_mask, (emb_dim, 1, 1)) neg_mask =
np.rollaxis(neg_mask, 0, 3)
numpy.rollaxis
#!/usr/bin/env python2.7 # Author : <NAME> (<EMAIL>) # # Description : This code reads the KSTAR MIR data via the iKSTAR server # # Acknowledgement : Dr. Y. Nam and Prof. G.S. Yun # import numpy as np import h5py MNUM = 10000000 # totla number of samples in an ECEI channel VN = 16 # number of vertical arrays class KstarMir(object): def __init__(self, shot, clist): self.shot = shot if 12272 < shot and shot < 14942: self.data_path = '/eceidata/exp_2015/' elif 14941 < shot and shot < 17356: self.data_path = '/eceidata2/exp_2016/' elif 17963 < shot and shot < 19392: self.data_path = '/eceidata2/exp_2017/' elif 19391 < shot and shot < 21779: self.data_path = '/eceidata2/exp_2018/' elif 21778 < shot and shot < 24100: self.data_path = '/eceidata2/exp_2019/' elif 24100 < shot: self.data_path = '/eceidata2/exp_2020/' self.clist = expand_clist(clist) # file name self.fname = "{:s}{:06d}/MIR.{:06d}.h5".format(self.data_path, shot, shot) # get attributes with h5py.File(self.fname, 'r') as f: # get attributes dset = f['MIR'] self.tt = dset.attrs['TriggerTime'] # in [s] self.toff = self.tt[0]+0.001 self.fs = dset.attrs['SampleRate'][0]*1000.0 # in [Hz] same sampling rate self.bt = dset.attrs['TFcurrent']*0.0995556 # [kA] -> [T] # self.mfl = dset.attrs['MFL'] # can't find attribute # self.mirh = dset.attrs['MIRH'] # self.mirf = dset.attrs['MIRF'] # self.lo = dset.attrs['MLo'] # self.rf1 = dset.attrs['MRF1'] # self.rf2 = dset.attrs['MRF2'] # self.rf3 = dset.attrs['MRF3'] # self.rf4 = dset.attrs['MRF4'] print('MIR file = {}'.format(self.fname)) # get channel posistion self.channel_position() def get_data(self, trange, norm=0, atrange=[1.0, 1.01], res=0, verbose=1): self.trange = trange # norm = 0 : no normalization # norm = 1 : normalization by trange average # norm = 2 : normalization by atrange average # res = 0 : no resampling if norm == 0: if verbose == 1: print('Data is not normalized MIR') elif norm == 1: if verbose == 1: print('Data is normalized by trange std MIR') elif norm == 2: if verbose == 1: print('Data is normalized by atrange std MIR') # get time base time, idx1, idx2 = self.time_base(trange) if norm == 2: atime, aidx1, aidx2 = self.time_base(atrange) # get data with h5py.File(self.fname, 'r') as f: # time series length tnum = idx2 - idx1 # number of channels cnum = len(self.clist) data = np.zeros((cnum, tnum)) for i in range(0, cnum): vn = int(self.clist[i][4:6]) fn = int(self.clist[i][6:8]) inode = 'MD{:02d}{:02d}'.format(1 + (fn-1)*2,vn) qnode = 'MD{:02d}{:02d}'.format(fn*2,vn) inode = "/MIR/" + inode + "/Voltage" qnode = "/MIR/" + qnode + "/Voltage" iv = f[inode][idx1:idx2]/10000.0 qv = f[qnode][idx1:idx2]/10000.0 # remove offset iv = iv - np.mean(iv) qv = qv - np.mean(qv) if norm == 1: iv = iv/np.std(iv) qv = qv/np.std(qv) elif norm == 2: iav = f[inode][aidx1:aidx2]/10000.0 qav = f[qnode][aidx1:aidx2]/10000.0 iv = iv/
np.std(iav)
numpy.std
#!/usr/bin/env python # Part of the psychopy_ext library # Copyright 2010-2015 <NAME> # The program is distributed under the terms of the GNU General Public License, # either version 3 of the License, or (at your option) any later version. """ A library of simple models of vision Simple usage:: import glob from psychopy_ext import models ims = glob.glob('Example_set/*.jpg') # get all jpg images hmax = models.HMAX() # if you want to see how similar your images are to each other hmax.compare(ims) # or to simply get the output and use it further out = hmax.run(ims) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function # from __future__ import unicode_literals import sys, os, glob, itertools, warnings, inspect, argparse, imp import tempfile, shutil import pickle from collections import OrderedDict import numpy as np import scipy.ndimage import pandas import seaborn as sns import matlab_wrapper import sklearn.manifold import sklearn.preprocessing, sklearn.metrics, sklearn.cluster import skimage.feature, skimage.data from psychopy_ext import stats, plot, report, utils try: imp.find_module('caffe') HAS_CAFFE = True except: try: os.environ['CAFFE'] # put Python bindings in the path sys.path.insert(0, os.path.join(os.environ['CAFFE'], 'python')) HAS_CAFFE = True except: HAS_CAFFE = False if HAS_CAFFE: # Suppress GLOG output for python bindings GLOG_minloglevel = os.environ.pop('GLOG_minloglevel', None) os.environ['GLOG_minloglevel'] = '5' import caffe from caffe.proto import caffe_pb2 from google.protobuf import text_format HAS_CAFFE = True # Turn GLOG output back on for subprocess calls if GLOG_minloglevel is None: del os.environ['GLOG_minloglevel'] else: os.environ['GLOG_minloglevel'] = GLOG_minloglevel class Model(object): def __init__(self, model, labels=None, verbose=True, *args, **kwargs): self.name = ALIASES[model] self.nice_name = NICE_NAMES[model] self.safename = self.name self.labels = labels self.args = args self.kwargs = kwargs self.verbose = verbose def download_model(self, path=None): """Downloads and extracts a model :Kwargs: path (str, default: '') Where model should be extracted """ self._setup() if self.model.model_url is None: print('Model {} is already available'.format(self.nice_name)) elif self.model.model_url == 'manual': print('WARNING: Unfortunately, you need to download {} manually. ' 'Follow the instructions in the documentation.'.format(self.nice_name)) else: print('Downloading and extracting {}...'.format(self.nice_name)) if path is None: path = os.getcwd() text = raw_input('Where do you want the model to be extracted? ' '(default: {})\n'.format(path)) if text != '': path = text outpath, _ = utils.extract_archive(self.model.model_url, folder_name=self.safename, path=path) if self.name == 'phog': with open(os.path.join(outpath, 'anna_phog.m')) as f: text = f.read() with open(os.path.join(outpath, 'anna_phog.m'), 'wb') as f: s = 'dlmwrite(s,p);' f.write(text.replace(s, '% ' + s, 1)) print('Model {} is available here: {}'.format(self.nice_name, outpath)) print('If you want to use this model, either give this path when ' 'calling the model or add it to your path ' 'using {} as the environment variable.'.format(self.safename.upper())) def _setup(self): if not hasattr(self, 'model'): if self.name in CAFFE_MODELS: self.model = CAFFE_MODELS[self.name](model=self.name, *self.args, **self.kwargs) else: self.model = KNOWN_MODELS[self.name](*self.args, **self.kwargs) self.model.labels = self.labels self.isflat = self.model.isflat self.model.verbose = self.verbose def run(self, *args, **kwargs): self._setup() return self.model.run(*args, **kwargs) def train(self, *args, **kwargs): self._setup() return self.model.train(*args, **kwargs) def test(self, *args, **kwargs): self._setup() return self.model.test(*args, **kwargs) def predict(self, *args, **kwargs): self._setup() return self.model.predict(*args, **kwargs) def gen_report(self, *args, **kwargs): self._setup() return self.model.gen_report(*args, **kwargs) class _Model(object): def __init__(self, labels=None): self.name = 'Model' self.safename = 'model' self.isflat = False self.labels = labels self.model_url = None def gen_report(self, test_ims, train_ims=None, html=None): print('input images:', test_ims) print('processing:', end=' ') if html is None: html = report.Report(path=reppath) html.open() close_html = True else: close_html = False resps = self.run(test_ims=test_ims, train_ims=train_ims) html.writeh('Dissimilarity', h=1) dis = dissimilarity(resps) plot_data(dis, kind='dis') html.writeimg('dis', caption='Dissimilarity across stimuli' '(blue: similar, red: dissimilar)') html.writeh('MDS', h=1) mds_res = mds(dis) plot_data(mds_res, kind='mds', icons=test_ims) html.writeimg('mds', caption='Multidimensional scaling') if self.labels is not None: html.writeh('Linear separability', h=1) lin = linear_clf(dis, y) plot_data(lin, kind='linear_clf', chance=1./len(np.unique(self.labels))) html.writeimg('lin', caption='Linear separability') if close_html: html.close() def run(self, test_ims, train_ims=None, layers='output', return_dict=True): """ This is the main function to run the model. :Args: test_ims (str, list, tuple, np.ndarray) Test images :Kwargs: - train_ims (str, list, tuple, np.ndarray) Training images - layers ('all'; 'output', 'top', None; str, int; list of str or int; default: None) Which layers to record and return. 'output', 'top' and None return the output layer. - return_dict (bool, default: True`) Whether a dictionary should be returned. If False, only the last layer is returned as an np.ndarray. """ if train_ims is not None: self.train(train_ims) output = self.test(test_ims, layers=layers, return_dict=return_dict) return output def train(self, train_ims): """ A placeholder for a function for training a model. If the model is not trainable, then it will default to this function here that does nothing. """ self.train_ims = im2iter(train_ims) def test(self, test_ims, layers='output', return_dict=True): """ A placeholder for a function for testing a model. :Args: test_ims (str, list, tuple, np.ndarray) Test images :Kwargs: - layers ('all'; 'output', 'top', None; str, int; list of str or int; default: 'output') Which layers to record and return. 'output', 'top' and None return the output layer. - return_dict (bool, default: True`) Whether a dictionary should be returned. If False, only the last layer is returned as an np.ndarray. """ self.layers = layers # self.test_ims = im2iter(test_ims) def predict(self, ims, topn=5): """ A placeholder for a function for predicting a label. """ pass def _setup_layers(self, layers, model_keys): if self.safename in CAFFE_MODELS: filt_layers = self._filter_layers() else: filt_layers = model_keys if layers in [None, 'top', 'output']: self.layers = [filt_layers[-1]] elif layers == 'all': self.layers = filt_layers elif isinstance(layers, (str, unicode)): self.layers = [layers] elif isinstance(layers, int): self.layers = [filt_layers[layers]] elif isinstance(layers, (list, tuple, np.ndarray)): if isinstance(layers[0], int): self.layers = [filt_layers[layer] for layer in layers] elif isinstance(layers[0], (str, unicode)): self.layers = layers else: raise ValueError('Layers can only be: None, "all", int or str, ' 'list of int or str, got', layers) else: raise ValueError('Layers can only be: None, "all", int or str, ' 'list of int or str, got', layers) def _fmt_output(self, output, layers, return_dict=True): self._setup_layers(layers, output.keys()) outputs = [output[layer] for layer in self.layers] if not return_dict: output = output[self.layers[-1]] return output def _im2iter(self, ims): """ Converts input into in iterable. This is used to take arbitrary input value for images and convert them to an iterable. If a string is passed, a list is returned with a single string in it. If a list or an array of anything is passed, nothing is done. Otherwise, if the input object does not have `len`, an Exception is thrown. """ if isinstance(ims, (str, unicode)): out = [ims] else: try: len(ims) except: raise ValueError('input image data type not recognized') else: try: ndim = ims.ndim except: out = ims else: if ndim == 1: out = ims.tolist() elif self.isflat: if ndim == 2: out = [ims] elif ndim == 3: out = ims else: raise ValueError('images must be 2D or 3D, got %d ' 'dimensions instead' % ndim) else: if ndim == 3: out = [ims] elif ndim == 4: out = ims else: raise ValueError('images must be 3D or 4D, got %d ' 'dimensions instead' % ndim) return out def load_image(self, *args, **kwargs): return utils.load_image(*args, **kwargs) def dissimilarity(self, resps, kind='mean_euclidean', **kwargs): return dissimilarity(resps, kind=kind, **kwargs) def mds(self, dis, ims=None, ax=None, seed=None, kind='metric'): return mds(dis, ims=ims, ax=ax, seed=seed, kind=kind) def cluster(self, *args, **kwargs): return cluster(*args, **kwargs) def linear_clf(self, resps, y, clf=None): return linear_clf(resps, y, clf=clf) def plot_data(data, kind=None, **kwargs): if kind in ['dis', 'dissimilarity']: if isinstance(data, dict): data = data.values()[0] g = sns.heatmap(data, **kwargs) elif kind == 'mds': g = plot.mdsplot(data, **kwargs) elif kind in ['clust', 'cluster']: g = sns.factorplot('layer', 'dissimilarity', data=df, kind='point') elif kind in ['lin', 'linear_clf']: g = sns.factorplot('layer', 'accuracy', data=df, kind='point') if chance in kwargs: ax.axhline(kwargs['chance'], ls='--', c='.2') else: try: sns.factorplot(x='layers', y=data.columns[-1], data=data) except: raise ValueError('Plot kind "{}" not recognized.'.format(kind)) return g def dissimilarity(resps, kind='mean_euclidean', **kwargs): """ Computes dissimilarity between all rows in a matrix. :Args: resps (numpy.array) A NxM array of model responses. Each row contains an output vector of length M from a model, and distances are computed between each pair of rows. :Kwargs: - kind (str or callable, default: 'mean_euclidean') Distance metric. Accepts string values or callables recognized by :func:`~sklearn.metrics.pairwise.pairwise_distances`, and also 'mean_euclidean' that normalizes Euclidean distance by the number of features (that is, divided by M), as used, e.g., by Grill-Spector et al. (1999), Op de Beeck et al. (2001), Panis et al. (2011). .. note:: Up to version 0.6, 'mean_euclidean' was called 'euclidean', and 'cosine' was called 'gaborjet'. Also note that 'correlation' used to be called 'corr' and is now returning dissimilarities in the range [0,2] per scikit-learn convention. - \*\*kwargs Keyword arguments for :func:`~sklearn.metric.pairwise.pairwise_distances` :Returns: A square NxN matrix, typically symmetric unless otherwise defined by the metric, and with NaN's in the diagonal. """ if kind == 'mean_euclidean': dis_func = lambda x: sklearn.metrics.pairwise.pairwise_distances(x, metric='euclidean', **kwargs) / np.sqrt(x.shape[1]) else: dis_func = lambda x: sklearn.metrics.pairwise.pairwise_distances(x, metric=kind, **kwargs) if isinstance(resps, (dict, OrderedDict)): dis = OrderedDict() for layer, resp in resps.items(): dis[layer] = dis_func(resp) diag = np.diag_indices(dis[layer].shape[0]) dis[layer][diag] = np.nan else: dis = dis_func(resps) dis[np.diag_indices(dis.shape[0])] = np.nan return dis def mds(dis, ims=None, kind='metric', seed=None): """ Multidimensional scaling :Args: dis Dissimilarity matrix :Kwargs: - ims Image paths - seed A seed if you need to reproduce MDS results - kind ({'classical', 'metric'}, default: 'metric') 'Classical' is based on MATLAB's cmdscale, 'metric' uses :func:`~sklearn.manifold.MDS`. """ df = [] if ims is None: if isinstance(dis, dict): ims = map(str, range(len(dis.values()[0]))) else: ims = map(str, range(len(dis))) for layer_name, this_dis in dis.items(): if kind == 'classical': vals = stats.classical_mds(this_dis) else: mds_model = sklearn.manifold.MDS(n_components=2, dissimilarity='precomputed', random_state=seed) this_dis[np.isnan(this_dis)] = 0 vals = mds_model.fit_transform(this_dis) for im, (x,y) in zip(ims, vals): imname = os.path.splitext(os.path.basename(im))[0] df.append([layer_name, imname, x, y]) df = pandas.DataFrame(df, columns=['layer', 'im', 'x', 'y']) # df = stats.factorize(df) # if self.layers != 'all': # if not isinstance(self.layers, (tuple, list)): # self.layers = [self.layers] # df = df[df.layer.isin(self.layers)] # plot.mdsplot(df, ax=ax, icons=icons, zoom=zoom) return df def cluster(resps, labels, metric=None, clust=None, bootstrap=True, stratified=False, niter=1000, ci=95, *func_args, **func_kwargs): if metric is None: metric = sklearn.metrics.adjusted_rand_score struct = labels if stratified else None n_clust = len(np.unique(labels)) if clust is None: clust = sklearn.cluster.AgglomerativeClustering(n_clusters=n_clust, linkage='ward') df = [] def mt(data, labels): labels_pred = clust.fit_predict(data) qual = metric(labels, labels_pred) return qual print('clustering...', end=' ') for layer, data in resps.items(): labels_pred = clust.fit_predict(data) qualo = metric(labels, labels_pred) if bootstrap: pct = stats.bootstrap_resample(data1=data, data2=labels, niter=niter, func=mt, struct=struct, ci=None, *func_args, **func_kwargs) for i, p in enumerate(pct): df.append([layer, qualo, i, p]) else: pct = [np.nan, np.nan] df.append([layer, qualo, 0, np.nan]) df = pandas.DataFrame(df, columns=['layer', 'iter', 'bootstrap', 'dissimilarity']) # df = stats.factorize(df) return df def linear_clf(resps, y, clf=None): if clf is None: clf = sklearn.svm.LinearSVC df = [] n_folds = len(y) / len(np.unique(y)) for layer, resp in resps.items(): # normalize to 0 mean and variance 1 for each feature (column-wise) resp = sklearn.preprocessing.StandardScaler().fit_transform(resp) cv = sklearn.cross_validation.StratifiedKFold(y, n_folds=n_folds, shuffle=True) # from scikit-learn docs: # need not match cross_val_scores precisely!!! preds = sklearn.cross_validation.cross_val_predict(clf(), resp, y, cv=cv) for yi, pred in zip(y, preds): df.append([layer, yi, pred, yi==pred]) df = pandas.DataFrame(df, columns=['layer', 'actual', 'predicted', 'accuracy']) # df = stats.factorize(df) return df class Pixelwise(_Model): def __init__(self): """ Pixelwise model The most simple model of them all. Uses pixel values only. """ super(Pixelwise, self).__init__() self.name = 'Pixelwise' self.safename = 'px' def test(self, test_ims, layers='output', return_dict=False): self.layers = [self.safename] ims = self._im2iter(test_ims) resps = np.vstack([self.load_image(im).ravel() for im in ims]) resps = self._fmt_output(OrderedDict([(self.safename, resps)]), layers, return_dict=return_dict) return resps class Retinex(_Model): def __init__(self): """ Retinex algorithm Based on A. Torralba's implementation presented at PAVIS 2014. .. warning:: Experimental """ super(Retinex, self).__init__() self.name = 'Retinex' self.safename = 'retinex' def gen(self, im, thres=20./256, plot=True, save=False): im = self.load_image(im) # 2D derivative der = np.array([[0, 0, 0], [-1, 1, 0], [0, 0, 0]]) im_paint = np.zeros(im.shape) im_illum = np.zeros(im.shape) for chno in range(3): ch = im[:,:,chno] outv = scipy.ndimage.convolve(ch, der) outh = scipy.ndimage.convolve(ch, der.T) out = np.dstack([outv, outh]) # threshold paint = np.copy(out) paint[np.abs(paint) < thres] = 0 illum = np.copy(out) illum[np.abs(illum) >= thres] = 0 # plt.imshow(paint[:,:,0]); plt.show() # plt.imshow(paint[:,:,1]); plt.show() # plt.imshow(illum[:,:,0]); plt.show() # plt.imshow(illum[:,:,1]); plt.show() # Pseudo-inverse (using the trick from Weiss, ICCV 2001; equations 5-7) im_paint[:,:,chno] = self._deconvolve(paint, der) im_illum[:,:,chno] = self._deconvolve(illum, der) im_paint = (im_paint - np.min(im_paint)) / (np.max(im_paint) - np.min(im_paint)) im_illum = (im_illum - np.min(im_illum)) / (np.max(im_illum) - np.min(im_illum)) # paintm = scipy.misc.imread('paint2.jpg') # illumm = scipy.misc.imread('illum2.jpg') # print np.sum((im_paint-paintm)**2) # print np.sum((im_illum-illumm)**2) if plot: sns.plt.subplot(131) sns.plt.imshow(im) sns.plt.subplot(132) sns.plt.imshow(im_paint) sns.plt.subplot(133) sns.plt.imshow(im_illum) sns.plt.show() if save: name, ext = imname.splitext() scipy.misc.imsave('%s_paint.%s' %(name, ext), im_paint) scipy.misc.imsave('%s_illum.%s' %(name, ext), im_illum) def _deconvolve(self, out, der): # der = np.dstack([der, der.T]) d = [] gi = [] for i, deri in enumerate([der, der.T]): d.append(scipy.ndimage.convolve(out[...,i], np.flipud(np.fliplr(deri)))) gi.append(scipy.ndimage.convolve(deri, np.flipud(np.fliplr(deri)), mode='constant')) d = np.sum(d, axis=0) gi = np.sum(gi, axis=0) gi = np.pad(gi, (der.shape[0]/2, der.shape[1]/2), mode='constant') gi = scipy.ndimage.convolve(gi, np.array([[1,0,0], [0,0,0], [0,0,0]])) mxsize = np.max(out.shape[:2]) g = np.fft.fft2(gi, s=(mxsize*2, mxsize*2)) g[g==0] = 1 h = 1/g h[g==0] = 0 tr = h * np.fft.fft2(d, s=(mxsize*2,mxsize*2)) ii = np.fft.fftshift(np.real(np.fft.ifft2(tr))) n = (gi.shape[0] - 5) / 2 im = ii[mxsize - n : mxsize + out.shape[0] - n, mxsize - n : mxsize + out.shape[1] - n] return im class Zoccolan(_Model): """ Based on 10.1073/pnas.0811583106 .. warning:: Not implemented fully """ def __init__(self): super(Zoccolan, self).__init__() self.name = 'Zoccolan' self.safename = 'zoccolan' # receptive field sizes in degrees #self.rfs = np.array([.6,.8,1.]) #self.rfs = np.array([.2,.35,.5]) self.rfs = [10, 20, 30] # deg visual angle self.oris = np.linspace(0, np.pi, 12) self.phases = [0, np.pi] self.sfs = range(1, 11) # cycles per RF size self.winsize = [5, 5] # size of each patch on the grid # window size will be fixed in pixels and we'll adjust degrees accordingly # self.win_size_px = 300 def get_gabors(self, rf): lams = float(rf[0])/self.sfs # lambda = 1./sf #1./np.array([.1,.25,.4]) sigma = rf[0]/2./np.pi # rf = [100,100] gabors = np.zeros(( len(oris),len(phases),len(lams), rf[0], rf[1] )) i = np.arange(-rf[0]/2+1,rf[0]/2+1) #print i j = np.arange(-rf[1]/2+1,rf[1]/2+1) ii,jj = np.meshgrid(i,j) for o, theta in enumerate(self.oris): x = ii*np.cos(theta) + jj*np.sin(theta) y = -ii*np.sin(theta) + jj*np.cos(theta) for p, phase in enumerate(self.phases): for s, lam in enumerate(lams): fxx = np.cos(2*np.pi*x/lam + phase) * np.exp(-(x**2+y**2)/(2*sigma**2)) fxx -= np.mean(fxx) fxx /= np.linalg.norm(fxx) #if p==0: #plt.subplot(len(oris),len(lams),count+1) #plt.imshow(fxx,cmap=mpl.cm.gray,interpolation='bicubic') #count+=1 gabors[o,p,s,:,:] = fxx plt.show() return gabors def run(self, ims): ims = self.input2array(ims) output = [self.test(im) for im in ims] def test(self, im): field = im.shape num_tiles = (15,15)#[field[0]/10.,field[0]/10.] size = (field[0]/num_tiles[0], field[0]/num_tiles[0]) V1 = []#np.zeros( gabors.shape + num_tiles ) # tiled_im = im.reshape((num_tiles[0],size[0],num_tiles[1],size[1])) # tiled_im = np.rollaxis(tiled_im, 1, start=3) # flat_im = im.reshape((num_tiles[0],num_tiles[1],-1)) for r, rf in enumerate(self.rfs): def apply_filter(window, this_filter): this_resp = np.dot(this_filter,window)/np.linalg.norm(this_filter) # import pdb; pdb.set_trace() return np.max((0,this_resp)) # returns at least zero def filter_bank(this_filter,rf): #print 'done0' resp = scipy.ndimage.filters.generic_filter( im, apply_filter, size=rf,mode='nearest', extra_arguments = (this_filter,)) # import pdb; pdb.set_trace() #print 'done1' ii,jj = np.meshgrid(np.arange(0,field[0],size[0]), np.arange(0,field[1],size[1]) ) selresp = resp[jj,ii] # maxresp = scipy.ndimage.filters.maximum_filter( # resp, # size = size, # mode = 'nearest' # ) return np.ravel(selresp) gabors = self.get_gabors(rf) #import pdb; pdb.set_trace() gabors = gabors.reshape(gabors.shape[:3]+(-1,)) # gabors_norms = np.apply_along_axis(np.linalg.norm, -1, gabors) # import pdb; pdb.set_trace() # V1.append( np.apply_along_axis(filter_bank, -1, gabors,rf) ) V1resp = np.zeros(gabors.shape[:-1]+num_tiles) # import pdb; pdb.set_trace() for i,wi in enumerate(np.arange(0,field[0]-rf[0],size[0])): for j,wj in enumerate(np.arange(0,field[1]-rf[1],size[1])): window = im[wi:wi+rf[0],wj:wj+rf[1]] resp = np.inner(gabors,np.ravel(window)) resp[resp<0] = 0 V1resp[:,:,:,i,j] = resp #/gabors_norms # print 'done' V1.append(V1resp) return [V1] class GaborJet(_Model): def __init__(self, nscales=5, noris=8, imsize=256, grid_size=0): """ Python implementation of the Gabor-Jet model from Biederman lab. A given image is transformed with a Gabor wavelet and certain values on a grid are chosen for the output. Further details are in `Xu et al., 2009 <http://dx.doi.org/10.1016/j.visres.2009.08.021>`_. Original implementation copyright 2004 '<NAME> <http://geon.usc.edu/GWTgrid_simple.m>`_. :Kwargs: - nscales (int, default: 5) Spatial frequency scales - noris (int, default: 8) Orientation spacing; angle = np.pi/noris - imsize ({128, 256}, default: 256) The image can only be 128x128 px or 256x256 px size. If the image has a different size, it will be rescaled **without** maintaining the original aspect ratio. - grid_size (int, default: 0) How many positions within an image to take: - 0: grid of 10x10 - 1: grid of 12x12 - else: grid of imsize x imsize """ super(GaborJet, self).__init__() self.name = 'GaborJet' self.safename = 'gaborjet' self.isflat = True self.nscales = nscales self.noris = noris self.imsize = imsize # generate the grid if grid_size == 0: s = imsize/128. rangeXY = np.arange(20*s, 110*s+1, 10*s) - 1 # 10x10 elif grid_size == 1: s = imsize/128. rangeXY = np.arange(10*s, 120*s+1, 10*s) - 1 # 12x12 else: rangeXY = np.arange(imsize) # 128x128 or 256x256 self.rangeXY = rangeXY.astype(int) [xx,yy] = np.meshgrid(rangeXY,rangeXY) self.grid = xx + 1j*yy self.grid = self.grid.T.ravel() # transpose just to match MatLab's grid(:) behavior self.grid_pos = np.hstack([self.grid.imag, self.grid.real]).T def test(self, test_ims, cell_type='complex', sigma=2*np.pi, layers='magnitudes', return_dict=False ): """ Apply GaborJet to given images. :Args: test_ims: str or list of str Image(s) to process with the model. :Kwargs: - cell_type (str, default: 'complex') Choose between 'complex'(40 output values) and 'simple' (80 values) - sigma (float, default: 2*np.pi) Control the size of gaussian envelope - layers ({'all', 'phases', 'magnitudes'}, default: 'magnitudes') Not truly layers, but two output possibilities: either Fourier magnitudes or phases. - return_dict (bool, default: True) Whether only magnitude should be returned. If True, then also phase and grid positions are returned in a dict. :Returns: Magnitude and, depending on 'return_dict', phase. """ mags = [] phases = [] imlist = self._im2iter(test_ims) for imno, im in enumerate(imlist): sys.stdout.write("\rRunning %s... %d%%" % (self.name, 100*imno/len(imlist))) sys.stdout.flush() im = self.load_image(im, resize=(self.imsize, self.imsize), flatten=True) mag, phase = self._test(im, cell_type=cell_type, sigma=sigma) mags.append(mag.ravel()) phases.append(phase.ravel()) sys.stdout.write("\rRunning %s... done\n" % self.name) output = OrderedDict([('phases', np.array(phases)), ('magnitudes', np.array(mags))]) output = self._fmt_output(output, layers, return_dict=return_dict) return output def _test(self, im, cell_type='complex', sigma=2*np.pi): # FFT of the image im_freq = np.fft.fft2(im) # setup the paramers kx_factor = 2 * np.pi / self.imsize ky_factor = 2 * np.pi / self.imsize # setup space coordinates xy = np.arange(-self.imsize/2, self.imsize/2).astype(float) [tx,ty] = np.meshgrid(xy, xy) tx *= kx_factor ty *= -ky_factor # initiallize useful variables nvars = self.nscales * self.noris if cell_type == 'complex': mag = np.zeros((len(self.grid), nvars)) phase = np.zeros((len(self.grid), nvars)) else: mag = np.zeros((len(self.grid), 2*nvars)) phase = np.zeros((len(self.grid), nvars)) for scale in range(self.nscales): k0 = np.pi/2 * (1/np.sqrt(2))**scale for ori in range(self.noris): ka = np.pi * ori / self.noris k0x = k0 * np.cos(ka) k0y = k0 * np.sin(ka) # generate a kernel specified scale and orientation, which has DC on the center # this is a FFT of a Morlet wavelet (http://en.wikipedia.org/wiki/Morlet_wavelet) freq_kernel = 2*np.pi * ( np.exp( -(sigma/k0)**2/2 * ((k0x-tx)**2 + (k0y-ty)**2) ) -\ np.exp( -(sigma/k0)**2/2 * (k0**2+tx**2+ty**2) ) ) # use fftshift to change DC to the corners freq_kernel = np.fft.fftshift(freq_kernel) # convolve the image with a kernel of the specified scale and orientation conv = im_freq*freq_kernel # calculate magnitude and phase iconv = np.fft.ifft2(conv) # import ipdb; ipdb.set_trace() #eps = np.finfo(float).eps**(3./4) #real = np.real(iTmpFilterImage) #real[real<eps] = 0 #imag = np.imag(iTmpFilterImage) #imag[imag<eps] = 0 #iTmpFilterImage = real + 1j*imag ph = np.angle(iconv) ph = ph[self.rangeXY,:][:,self.rangeXY] + np.pi ind = scale*self.noris+ori phase[:,ind] = ph.ravel() if cell_type == 'complex': mg = np.abs(iconv) # get magnitude and phase at specific positions mg = mg[self.rangeXY,:][:,self.rangeXY] mag[:,ind] = mg.ravel() else: mg_real = np.real(iconv) mg_imag = np.imag(iconv) # get magnitude and phase at specific positions mg_real = mg_real[self.rangeXY,:][:,self.rangeXY] mg_imag = mg_imag[self.rangeXY,:][:,self.rangeXY] mag[:,ind] = mg_real.ravel() mag[:,nvars+ind] = mg_imag.ravel() # use magnitude for dissimilarity measures return mag, phase def dissimilarity(self, kind='cosine', *args, **kwargs): """ Default dissimilarity for :class:`GaborJet` is `cosine`. """ return super(GaborJet, self).dissimilarity(kind=kind, *args, **kwargs) class HMAX99(_Model): """ HMAX for Python Based on the original HMAX (`Riesenhuber & Poggio, 1999 <http://dx.doi.org/10.1038/14819>`_) Code rewritten using a Pure MATLAB implementation by <NAME> at the MIT Center for Biological and Computational Learning. Most of the structure, variable names and some of the comments come from this implementation. More comments have been added and code was optimized as much as possible while trying to maintain its structure close to the original. View-tuned units have been added by <NAME>ck. The output was tested against the Pure MatLab output which can be tested against the Standard C/MATLAB code featured at `Riesenhuber's lab <http://riesenhuberlab.neuro.georgetown.edu/hmax/index.html#code>`_. .. note:: This implementation is not the most current HMAX implementation that doesn't rely on hardcoding features anymore (e.g., Serre et al., 2007). Use :class:`HMAX_HMIN` or :class:`HMAX_PNAS` to access MATLAB interface to a more current version of HMAX. .. note:: Images are resized to 256 x 256 as required by the original implementation Original VTU implementation copyright 2007 <NAME> Original MatLab implementation copyright 2004 <NAME> Since the original code did not specify a license type, I assume GNU GPL v3 since it is used in `Jim Mutch's latest implementation of HMAX <http://cbcl.mit.edu/jmutch/cns/>`_ :Kwargs: - matlab (boolean, default: False) If *True*, Gaussian filters will be implemented using the original models implementation which mimicks MatLab's behavior. Otherwise, a more efficient numerical method is used. - filter_type ({'gaussian', 'gabor'}, default: 'gaussian') Type of V1 filter. We default to gaussian as it was used originally in HMAX'99. However, many people prefer using Gabor filters as they presumambly model V1 better. """ def __init__(self, matlab=False, filter_type='gaussian'): super(HMAX99, self).__init__() self.name = "HMAX'99" self.safename = 'hmax99' self.isflat = True self.n_ori = 4 # number of orientations # S1 filter sizes for scale band 1, 2, 3, and 4 self.filter_sizes_all = [[7, 9], [11, 13, 15], [17, 19, 21], [23, 25, 27, 29]] # specify (per scale band) how many S1 units will be used to pool over self.C1_pooling_all = [4, 6, 9, 12] self.S2_config = [2,2] # how many C1 outputs to put into one "window" in S2 in each direction if filter_type == 'gaussian': # "typically" used if matlab: # exact replica of the MatLab implementation self.filts = self.get_gaussians_matlab(self.filter_sizes_all, self.n_ori) else: # a faster and more elegant implementation self.filts = self.get_gaussians(self.filter_sizes_all, self.n_ori) self.mask_name = 'square' elif filter_type == 'gabor': self.filts = self.get_gabors(self.filter_sizes_all, self.n_ori) self.mask_name = 'circle' else: raise ValueError("filter type not recognized") self.istrained = False # initially VTUs are not set up def train(self, train_ims): """ Train the model That is, supply view-tuned units (VTUs) with C2 responses to 'prototype' images, to which these VTUs will be maximally tuned. :Args: train_ims (str, list, tuple, np.ndarray) Training images """ try: self.tuning = pickle.load(open(train_ims,'rb')) print('done') except: self.tuning = self.test(train_ims, op='training', layers='C2', return_dict=False) self.istrained = True def test(self, test_ims, op='testing', layers='output', return_dict=True): """ Test the model on the given image :Args: test_ims (str, list, tuple, np.ndarray) Test images. """ ims = self._im2iter(test_ims) # Get number of filter sizes out = OrderedDict() size_S1 = sum([len(fs) for fs in self.filter_sizes_all]) S1 = np.zeros((256, 256, size_S1, self.n_ori)) out['C1'] = np.zeros((len(ims), 256, 256, self.n_ori, len(self.filter_sizes_all))) # S2 has an irregular shape which depends on the spatial frequency band S2 = [] C2_tmp = np.zeros(((self.S2_config[0]*self.S2_config[1])**self.n_ori, len(self.filter_sizes_all))) out['C2'] = np.zeros((len(ims), C2_tmp.shape[0])) for imno, im in enumerate(ims): # im *= 255 sys.stdout.write("\rRunning HMAX'99... %s: %d%%" %(op, 100*imno/len(ims))) sys.stdout.flush() im = self.load_image(im, flatten=True, resize=(256,256)) # Go through each scale band S1_idx = 0 for which_band in range(len(self.filter_sizes_all)): # calculate S1 responses S1_tmp = self.get_S1(im, which_band) num_filter = len(self.filter_sizes_all[which_band]) # store S1 responses for each scale band S1[..., S1_idx:S1_idx + num_filter, :] = S1_tmp S1_idx += num_filter # calculate other layers C1_tmp = self.get_C1(S1_tmp, which_band) out['C1'][imno, ..., which_band] = C1_tmp S2_tmp = self.get_S2(C1_tmp, which_band) S2.append(S2_tmp) C2_tmp[:, which_band] = self.get_C2(S2_tmp, which_band) out['C2'][imno] = np.max(C2_tmp, -1) # max over all scale bands # calculate VTU if trained if self.istrained: out['VTU'] = self.get_VTU(out['C2']) sys.stdout.write("\rRunning HMAX'99... %s: done\n" %op) output = self._fmt_output(out, layers, return_dict=return_dict) return output def get_gaussians( self, filter_sizes_all, n_ori = 4, sigDivisor = 4. ): """ Generates 2D difference of Gaussians (DoG) filters. This function is a faster, more accurate and more elegant version of the original gaussian_filters_matlab but will not produce identical filters as the original (but very close). For practical purposes, this one is prefered. In case you want to mimic the identical behavior of the original HMAX, use gaussian_filters_matlab. :Args: filter_sizes_all (list of depth 2) A nested list (grouped by filter bands) of integer filter sizes :Kwargs: - n_ori (int, default: 4) A number of filter orientations. Orientations are spaced by np.pi/n_ori. - sigDivisor (float, default: 4.) A parameter to adjust DoG filter frequency. :Returns: A nested list of filters of all orientations """ gaussians = [] # loop over filter bands for fNo, filter_sizes in enumerate(filter_sizes_all): gaussians.append([]) # loop over filter sizes within a filter band for filter_size in filter_sizes: fxx = np.zeros((filter_size,filter_size,n_ori)) sigmaq = (filter_size/sigDivisor)**2 i =
np.arange(-filter_size/2+1,filter_size/2+1)
numpy.arange
import numpy as np import ibllib.dsp as dsp from ibllib.dsp import smooth from ibllib.dsp.utils import parabolic_max from brainbox.processing import bincount2D def estimate_drift(spike_times, spike_amps, spike_depths, display=False): """ Electrode drift for spike sorted data. :param spike_times: :param spike_amps: :param spike_depths: :param display: :return: drift (ntimes vector) in input units (usually um) :return: ts (ntimes vector) time scale in seconds """ # binning parameters DT_SECS = 1 # output sampling rate of the depth estimation (seconds) DEPTH_BIN_UM = 2 # binning parameter for depth AMP_BIN_LOG10 = [1.25, 3.25] # binning parameter for amplitudes (log10 in uV) N_AMP = 1 # number of amplitude bins NXCORR = 50 # positive and negative lag in depth samples to look for depth NT_SMOOTH = 9 # length of the Gaussian smoothing window in samples (DT_SECS rate) # experimental: try the amp with a log scale nd = int(np.ceil(np.nanmax(spike_depths) / DEPTH_BIN_UM)) tmin, tmax = (np.min(spike_times), np.max(spike_times)) nt = int((np.ceil(tmax) - np.floor(tmin)) / DT_SECS) # 3d histogram of spikes along amplitude, depths and time atd_hist = np.zeros((N_AMP, nt, nd), dtype=np.single) abins = (np.log10(spike_amps * 1e6) - AMP_BIN_LOG10[0]) / np.diff(AMP_BIN_LOG10) * N_AMP abins = np.minimum(np.maximum(0, np.floor(abins)), N_AMP - 1) for i, abin in enumerate(
np.unique(abins)
numpy.unique
import torch import numpy as np import pytest from bgflow.nn.flow.crd_transform.ic_helper import ( det2x2, det3x3, dist_deriv, angle_deriv, torsion_deriv, ic2xy0_deriv, ic2xyz_deriv, init_xyz2ics, init_ics2xyz, ) from bgflow.nn.flow.crd_transform.ic import ( GlobalInternalCoordinateTransformation, RelativeInternalCoordinateTransformation, MixedCoordinateTransformation, decompose_z_matrix, ) # TODO Floating point precision is brittle! # Revision should include numerically more robust # implementations - especially for angular values. TOLERANCES = { torch.device("cuda:0"): {torch.float32: (1e-2, 1e-3), torch.float64: (1e-6, 1e-6)}, torch.device("cpu"): {torch.float32: (1e-4, 1e-4), torch.float64: (1e-7, 1e-7)} } N_REPETITIONS = 50 @pytest.fixture() def alanine_ics(): """Examplary z-matrix, fixed atoms, and positions for capped alanine.""" rigid_block = np.array([6, 8, 9, 10, 14]) relative_z_matrix = np.array( [ [0, 1, 4, 6], [1, 4, 6, 8], [2, 1, 4, 0], [3, 1, 4, 0], [4, 6, 8, 14], [5, 4, 6, 8], [7, 6, 8, 4], [11, 10, 8, 6], [12, 10, 8, 11], [13, 10, 8, 11], [15, 14, 8, 16], [16, 14, 8, 6], [17, 16, 14, 15], [18, 16, 14, 8], [19, 18, 16, 14], [20, 18, 16, 19], [21, 18, 16, 19], ] ) global_z_matrix = np.array( [ [0, -1, -1, -1], [1, 0, -1, -1], [2, 1, 0, -1], [3, 1, 0, 2], [4, 1, 0, 2], [5, 4, 1, 0], [6, 4, 1, 5], [7, 6, 4, 1], [8, 6, 4, 7], [9, 8, 6, 4], [10, 8, 6, 9], [14, 8, 6, 9], [11, 10, 8, 6], [12, 10, 8, 11], [13, 10, 8, 11], [15, 14, 8, 6], [16, 14, 8, 15], [17, 16, 14, 15], [18, 16, 17, 14], [19, 18, 16, 14], [20, 18, 19, 16], [21, 18, 20, 16], ] ) xyz = np.array( [ [1.375, 1.25, 1.573], [1.312, 1.255, 1.662], [1.327, 1.306, 1.493], [1.377, 1.143, 1.549], [1.511, 1.31, 1.618], [1.606, 1.236, 1.63], [1.523, 1.441, 1.633], [1.445, 1.5, 1.607], [1.645, 1.515, 1.667], [1.703, 1.459, 1.74], [1.73, 1.53, 1.54], [1.792, 1.619, 1.554], [1.78, 1.439, 1.508], [1.663, 1.555, 1.457], [1.618, 1.646, 1.734], [1.509, 1.703, 1.709], [1.715, 1.705, 1.809], [1.798, 1.653, 1.831], [1.703, 1.847, 1.852], [1.801, 1.871, 1.892], [1.674, 1.911, 1.768], [1.631, 1.858, 1.933], ] ) return relative_z_matrix, global_z_matrix, rigid_block, xyz.reshape(1, -1) def rad2deg(x): return x * 180.0 / np.pi def deg2rad(x): return x * np.pi / 180.0 # def test_outer(device, dtype, atol=1e-6, rtol=1e-5): # for _ in range(N_REPETITIONS): # x, y = torch.Tensor(2, 5, 7, 3).to(device, dtype).normal_() # A = outer(x, y).view(-1) # B = [] # for i in range(5): # for j in range(7): # for k in range(3): # for l in range(3): # B.append(x[i, j, k] * y[i, j, l]) # B = torch.Tensor(B).to(device, dtype) # assert torch.allclose(A, B, atol=atol, rtol=rtol) def test_det2x2(device, dtype, atol=1e-6, rtol=1e-5): for _ in range(N_REPETITIONS): x = torch.Tensor(7, 5, 3, 2, 2).to(device, dtype).normal_() assert torch.allclose(det2x2(x), x.det(), atol=atol, rtol=rtol) def test_det3x3(device, dtype, atol=5e-6, rtol=5e-5): for _ in range(N_REPETITIONS): x = torch.Tensor(7, 5, 3, 3, 3).to(device, dtype).normal_() if not torch.allclose(det3x3(x), x.det(), atol=atol, rtol=rtol): print(det3x3(x) - x.det()) assert torch.allclose(det3x3(x), x.det(), atol=atol, rtol=rtol) def test_dist_deriv(device, dtype, atol=1e-6, rtol=1e-5): x1 = torch.Tensor([0, 0, 0]).to(device, dtype) x2 = torch.Tensor([1, 1, 0]).to(device, dtype) d, J = dist_deriv(x1, x2) sqrt2 = torch.Tensor([2]).to(device, dtype).sqrt() assert torch.allclose(d, sqrt2, atol=atol, rtol=rtol) assert torch.allclose(J, -x2 / sqrt2) def test_angle_deriv(device, dtype): atol = 1e-2 if dtype is torch.float32 and device is torch.device("cuda:0") else 1e-4 rtol = 1e-3 if dtype is torch.float32 else 1e-5 atol, rtol = TOLERANCES[device][dtype] np.random.seed(123122) # check 45 deg angle x1 = torch.Tensor([0, 1, 0]).to(device, dtype) x2 = torch.Tensor([0, 0, 0]).to(device, dtype) x3 = torch.Tensor([1, 1, 0]).to(device, dtype) a, J = angle_deriv(x1, x2, x3) assert torch.allclose(a, torch.tensor(deg2rad(45.0), device=device, dtype=dtype)) assert torch.allclose(J, torch.Tensor([-1, 0, 0]).to(device, dtype), atol=atol) # check random angle for i in range(N_REPETITIONS): # random reference angle # TODO: more stable angle derivatives a_ref = np.random.uniform( 1e-2, np.pi - 1e-2 ) # prevent angles with numerical issues x1 = ( torch.Tensor([np.cos(a_ref), np.sin(a_ref), 0]) .to(device, dtype) .requires_grad_(True) ) # construct system in standard basis x2 = torch.Tensor([0, 0, 0]).to(device, dtype) x3 = torch.Tensor([1, 0, 0]).to(device, dtype) # apply random rotation to system R = torch.tensor( np.linalg.qr(np.random.uniform(size=(3, 3)))[0], dtype=dtype, device=device ) x1, x2, x3 = (x @ R for x in (x1, x2, x3)) a, J = angle_deriv(x1, x2, x3) # compute Jacobian with autograd J_ref = torch.autograd.grad(a.sum(), x1)[0] assert torch.allclose( a, torch.tensor(a_ref, dtype=dtype, device=device), atol=atol, rtol=rtol ) assert torch.allclose(J, J_ref, atol=atol, rtol=rtol) def test_torsion_deriv(device, dtype): atol, rtol = TOLERANCES[device][dtype] np.random.seed(202422) for i in range(N_REPETITIONS): # random reference angle a_ref =
np.random.uniform(0, np.pi)
numpy.random.uniform
import numpy as np import datajoint as dj from PIL import ImageColor from collections import Counter import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns import itertools import pandas as pd from pipeline import experiment, ephys, psth, lab, histology, ccf, psth_foraging from pipeline.plot.util import (_plot_with_sem, _extract_one_stim_dur, _plot_stacked_psth_diff, _plot_avg_psth, _jointplot_w_hue) from pipeline.plot import unit_psth from pipeline.util import (_get_units_hemisphere, _get_trial_event_times, _get_stim_onset_time, _get_clustering_method) from . import PhotostimError _plt_xmin = -3 _plt_xmax = 2 def plot_clustering_quality(probe_insertion, clustering_method=None, axs=None): probe_insertion = probe_insertion.proj() if clustering_method is None: try: clustering_method = _get_clustering_method(probe_insertion) except ValueError as e: raise ValueError(str(e) + '\nPlease specify one with the kwarg "clustering_method"') amp, snr, spk_rate, isi_violation = (ephys.Unit * ephys.UnitStat * ephys.ProbeInsertion.InsertionLocation & probe_insertion & {'clustering_method': clustering_method}).fetch( 'unit_amp', 'unit_snr', 'avg_firing_rate', 'isi_violation') metrics = {'amp': amp, 'snr': snr, 'isi': np.array(isi_violation) * 100, # to percentage 'rate': np.array(spk_rate)} label_mapper = {'amp': 'Amplitude', 'snr': 'Signal to noise ratio (SNR)', 'isi': 'ISI violation (%)', 'rate': 'Firing rate (spike/s)'} fig = None if axs is None: fig, axs = plt.subplots(2, 3, figsize = (12, 8)) fig.subplots_adjust(wspace=0.4) assert axs.size == 6 for (m1, m2), ax in zip(itertools.combinations(list(metrics.keys()), 2), axs.flatten()): ax.plot(metrics[m1], metrics[m2], '.k') ax.set_xlabel(label_mapper[m1]) ax.set_ylabel(label_mapper[m2]) # cosmetic ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) return fig def plot_unit_characteristic(probe_insertion, clustering_method=None, axs=None): probe_insertion = probe_insertion.proj() if clustering_method is None: try: clustering_method = _get_clustering_method(probe_insertion) except ValueError as e: raise ValueError(str(e) + '\nPlease specify one with the kwarg "clustering_method"') if clustering_method in ('kilosort2'): q_unit = (ephys.Unit * ephys.ProbeInsertion.InsertionLocation.proj('depth') * ephys.UnitStat * lab.ElectrodeConfig.Electrode.proj() * lab.ProbeType.Electrode.proj('x_coord', 'y_coord') & probe_insertion & {'clustering_method': clustering_method} & 'unit_quality != "all"').proj( ..., x='x_coord', y='y_coord') else: q_unit = (ephys.Unit * ephys.ProbeInsertion.InsertionLocation.proj('depth') * ephys.UnitStat & probe_insertion & {'clustering_method': clustering_method} & 'unit_quality != "all"').proj( ..., x='unit_posx', y='unit_posy') amp, snr, spk_rate, x, y, insertion_depth = q_unit.fetch( 'unit_amp', 'unit_snr', 'avg_firing_rate', 'x', 'y', 'depth') metrics = pd.DataFrame(list(zip(*(amp/amp.max(), snr/snr.max(), spk_rate/spk_rate.max(), x, insertion_depth.astype(float) + y)))) metrics.columns = ['amp', 'snr', 'rate', 'x', 'y'] # --- prepare for plotting shank_count = (ephys.ProbeInsertion & probe_insertion).aggr(lab.ElectrodeConfig.Electrode * lab.ProbeType.Electrode, shank_count='count(distinct shank)').fetch1('shank_count') m_scale = get_m_scale(shank_count) ymin = metrics.y.min() - 100 ymax = metrics.y.max() + 200 xmax = 1.3 * metrics.x.max() xmin = -1/6*xmax cosmetic = {'legend': None, 'linewidth': 1.75, 'alpha': 0.9, 'facecolor': 'none', 'edgecolor': 'k'} # --- plot fig = None if axs is None: fig, axs = plt.subplots(1, 3, figsize=(10, 8)) fig.subplots_adjust(wspace=0.6) assert axs.size == 3 sns.scatterplot(data=metrics, x='x', y='y', s=metrics.amp*m_scale, ax=axs[0], **cosmetic) sns.scatterplot(data=metrics, x='x', y='y', s=metrics.snr*m_scale, ax=axs[1], **cosmetic) sns.scatterplot(data=metrics, x='x', y='y', s=metrics.rate*m_scale, ax=axs[2], **cosmetic) # manually draw the legend lg_ypos = ymax data = pd.DataFrame({'x': [0.1*xmax, 0.4*xmax, 0.75*xmax], 'y': [lg_ypos, lg_ypos, lg_ypos], 'size_ratio': np.array([0.2, 0.5, 0.8])}) for ax, ax_maxval in zip(axs.flatten(), (amp.max(), snr.max(), spk_rate.max())): sns.scatterplot(data=data, x='x', y='y', s=data.size_ratio*m_scale, ax=ax, **dict(cosmetic, facecolor='k')) for _, r in data.iterrows(): ax.text(r['x']-4, r['y']+70, (r['size_ratio']*ax_maxval).astype(int)) # cosmetic for title, ax in zip(('Amplitude', 'SNR', 'Firing rate'), axs.flatten()): ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_title(title) ax.set_xlim((xmin, xmax)) ax.plot([0.5*xmin, xmax], [lg_ypos-80, lg_ypos-80], '-k') ax.set_ylim((ymin, ymax + 150)) return fig def plot_unit_selectivity(probe_insertion, clustering_method=None, axs=None): probe_insertion = probe_insertion.proj() if clustering_method is None: try: clustering_method = _get_clustering_method(probe_insertion) except ValueError as e: raise ValueError(str(e) + '\nPlease specify one with the kwarg "clustering_method"') if clustering_method in ('kilosort2'): q_unit = (psth.PeriodSelectivity * ephys.Unit * ephys.ProbeInsertion.InsertionLocation * lab.ElectrodeConfig.Electrode.proj() * lab.ProbeType.Electrode.proj('x_coord', 'y_coord') * experiment.Period & probe_insertion & {'clustering_method': clustering_method} & 'period_selectivity != "non-selective"').proj(..., x='unit_posx', y='unit_posy').proj( ..., x='x_coord', y='y_coord') else: q_unit = (psth.PeriodSelectivity * ephys.Unit * ephys.ProbeInsertion.InsertionLocation * experiment.Period & probe_insertion & {'clustering_method': clustering_method} & 'period_selectivity != "non-selective"').proj(..., x='unit_posx', y='unit_posy') attr_names = ['unit', 'period', 'period_selectivity', 'contra_firing_rate', 'ipsi_firing_rate', 'x', 'y', 'depth'] selective_units = q_unit.fetch(*attr_names) selective_units = pd.DataFrame(selective_units).T selective_units.columns = attr_names selective_units.period_selectivity.astype('category') # --- account for insertion depth (manipulator depth) selective_units.y = selective_units.depth.values.astype(float) + selective_units.y # --- get ipsi vs. contra firing rate difference f_rate_diff = np.abs(selective_units.ipsi_firing_rate - selective_units.contra_firing_rate) selective_units['f_rate_diff'] = f_rate_diff / f_rate_diff.max() # --- prepare for plotting shank_count = (ephys.ProbeInsertion & probe_insertion).aggr(lab.ElectrodeConfig.Electrode * lab.ProbeType.Electrode, shank_count='count(distinct shank)').fetch1('shank_count') m_scale = get_m_scale(shank_count) cosmetic = {'legend': None, 'linewidth': 0.0001} ymin = selective_units.y.min() - 100 ymax = selective_units.y.max() + 100 xmax = 1.3 * selective_units.x.max() xmin = -1/6*xmax # a bit of hack to get the 'open circle' pts = np.linspace(0, np.pi * 2, 24) circ = np.c_[np.sin(pts) / 2, -np.cos(pts) / 2] vert = np.r_[circ, circ[::-1] * .7] open_circle = mpl.path.Path(vert) # --- plot fig = None if axs is None: fig, axs = plt.subplots(1, 3, figsize=(10, 8)) fig.subplots_adjust(wspace=0.6) assert axs.size == 3 for (title, df), ax in zip(((p, selective_units[selective_units.period == p]) for p in ('sample', 'delay', 'response')), axs): sns.scatterplot(data=df, x='x', y='y', s=df.f_rate_diff.values.astype(float)*m_scale, hue='period_selectivity', marker=open_circle, palette={'contra-selective': 'b', 'ipsi-selective': 'r'}, ax=ax, **cosmetic) contra_p = (df.period_selectivity == 'contra-selective').sum() / len(df) * 100 # cosmetic ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_title(f'{title}\n% contra: {contra_p:.2f}\n% ipsi: {100-contra_p:.2f}') ax.set_xlim((xmin, xmax)) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_ylim((ymin, ymax)) return fig def plot_unit_bilateral_photostim_effect(probe_insertion, clustering_method=None, axs=None): probe_insertion = probe_insertion.proj() if not (psth.TrialCondition().get_trials('all_noearlylick_both_alm_stim') & probe_insertion): raise PhotostimError('No Bilateral ALM Photo-stimulation present') if clustering_method is None: try: clustering_method = _get_clustering_method(probe_insertion) except ValueError as e: raise ValueError(str(e) + '\nPlease specify one with the kwarg "clustering_method"') dv_loc = (ephys.ProbeInsertion.InsertionLocation & probe_insertion).fetch1('depth') no_stim_cond = (psth.TrialCondition & {'trial_condition_name': 'all_noearlylick_nostim'}).fetch1('KEY') bi_stim_cond = (psth.TrialCondition & {'trial_condition_name': 'all_noearlylick_both_alm_stim'}).fetch1('KEY') units = ephys.Unit & probe_insertion & {'clustering_method': clustering_method} & 'unit_quality != "all"' metrics = pd.DataFrame(columns=['unit', 'x', 'y', 'frate_change']) # get photostim onset and duration stim_durs = np.unique((experiment.Photostim & experiment.PhotostimEvent * psth.TrialCondition().get_trials('all_noearlylick_both_alm_stim') & probe_insertion).fetch('duration')) stim_dur = _extract_one_stim_dur(stim_durs) stim_time = _get_stim_onset_time(units, 'all_noearlylick_both_alm_stim') # XXX: could be done with 1x fetch+join for u_idx, unit in enumerate(units.fetch('KEY', order_by='unit')): if clustering_method in ('kilosort2'): x, y = (ephys.Unit * lab.ElectrodeConfig.Electrode.proj() * lab.ProbeType.Electrode.proj('x_coord', 'y_coord') & unit).fetch1('x_coord', 'y_coord') else: x, y = (ephys.Unit & unit).fetch1('unit_posx', 'unit_posy') # obtain unit psth per trial, for all nostim and bistim trials nostim_trials = ephys.Unit.TrialSpikes & unit & psth.TrialCondition.get_trials(no_stim_cond['trial_condition_name']) bistim_trials = ephys.Unit.TrialSpikes & unit & psth.TrialCondition.get_trials(bi_stim_cond['trial_condition_name']) nostim_psths, nostim_edge = psth.compute_unit_psth(unit, nostim_trials.fetch('KEY'), per_trial=True) bistim_psths, bistim_edge = psth.compute_unit_psth(unit, bistim_trials.fetch('KEY'), per_trial=True) # compute the firing rate difference between contra vs. ipsi within the stimulation time window ctrl_frate = np.array([nostim_psth[np.logical_and(nostim_edge >= stim_time, nostim_edge <= stim_time + stim_dur)].mean() for nostim_psth in nostim_psths]) stim_frate = np.array([bistim_psth[np.logical_and(bistim_edge >= stim_time, bistim_edge <= stim_time + stim_dur)].mean() for bistim_psth in bistim_psths]) frate_change = (stim_frate.mean() - ctrl_frate.mean()) / ctrl_frate.mean() frate_change = abs(frate_change) if frate_change < 0 else 0.0001 metrics.loc[u_idx] = (int(unit['unit']), x, float(dv_loc) + y, frate_change) metrics.frate_change = metrics.frate_change / metrics.frate_change.max() # --- prepare for plotting shank_count = (ephys.ProbeInsertion & probe_insertion).aggr(lab.ElectrodeConfig.Electrode * lab.ProbeType.Electrode, shank_count='count(distinct shank)').fetch1('shank_count') m_scale = get_m_scale(shank_count) fig = None if axs is None: fig, axs = plt.subplots(1, 1, figsize=(4, 8)) xmax = 1.3 * metrics.x.max() xmin = -1/6*xmax cosmetic = {'legend': None, 'linewidth': 1.75, 'alpha': 0.9, 'facecolor': 'none', 'edgecolor': 'k'} sns.scatterplot(data=metrics, x='x', y='y', s=metrics.frate_change*m_scale, ax=axs, **cosmetic) axs.spines['right'].set_visible(False) axs.spines['top'].set_visible(False) axs.set_title('% change') axs.set_xlim((xmin, xmax)) return fig def plot_pseudocoronal_slice(probe_insertion, shank_no=1): # ---- Electrode sites ---- annotated_electrodes = (lab.ElectrodeConfig.Electrode * lab.ProbeType.Electrode * ephys.ProbeInsertion * histology.ElectrodeCCFPosition.ElectrodePosition & probe_insertion & {'shank': shank_no}) electrode_coords = np.array(list(zip(*annotated_electrodes.fetch( 'ccf_z', 'ccf_y', 'ccf_x', order_by='ccf_y')))) # (AP, DV, ML) probe_track_coords = np.array(list(zip(*(histology.LabeledProbeTrack.Point & probe_insertion & {'shank': shank_no}).fetch( 'ccf_z', 'ccf_y', 'ccf_x', order_by='ccf_y')))) voxel_res = ccf.CCFLabel.CCF_R3_20UM_RESOLUTION lr_max, dv_max, _ = ccf.get_ccf_xyz_max() pseudocoronal_points, shank_ccfs = histology.retrieve_pseudocoronal_slice(probe_insertion, shank_no) dv_pts, lr_pts, ap_pts, color_codes = pseudocoronal_points.T dv_pts = dv_pts.astype(int) lr_pts = lr_pts.astype(int) color_codes = color_codes.astype(str) # ---- paint annotation color code ---- coronal_slice = np.full((dv_max + 1, lr_max + 1, 3), np.nan) for color in set(color_codes): matched_ind = np.where(color_codes == color)[0] dv_ind = dv_pts[matched_ind] # rows lr_ind = lr_pts[matched_ind] # cols try: c_rgb = ImageColor.getcolor("#" + color, "RGB") except ValueError as e: print(str(e)) continue coronal_slice[dv_ind, lr_ind, :] = np.full((len(matched_ind), 3), c_rgb) # ---- paint the interpolated track of this probe/shank in gray ---- in_probe_range = np.logical_and(shank_ccfs[:, 1] >= probe_track_coords[:, 1].min(), shank_ccfs[:, 1] <= probe_track_coords[:, 1].max()) in_electrode_range = np.logical_and(shank_ccfs[:, 1] >= electrode_coords[:, 1].min(), shank_ccfs[:, 1] <= electrode_coords[:, 1].max()) tracks_coords = shank_ccfs[np.logical_and(in_probe_range, ~in_electrode_range), :] coronal_slice[tracks_coords[:, 1], tracks_coords[:, 0], :] = np.full( (tracks_coords.shape[0], 3), ImageColor.getcolor("#FFFFFF", "RGB")) # ---- paint electrode sites on this probe/shank in black ---- coronal_slice[electrode_coords[:, 1], electrode_coords[:, 2], :] = np.full( (electrode_coords.shape[0], 3), ImageColor.getcolor("#080808", "RGB")) # ---- downsample the 2D slice to the voxel resolution ---- coronal_slice = coronal_slice[::voxel_res, ::voxel_res, :] # paint outside region white nan_r, nan_c = np.where(np.nansum(coronal_slice, axis=2) == 0) coronal_slice[nan_r, nan_c, :] = np.full((len(nan_r), 3), ImageColor.getcolor("#FFFFFF", "RGB")) # ---- plot ---- fig, ax = plt.subplots(1, 1) ax.imshow(coronal_slice.astype(np.uint8), extent=[0, lr_max, dv_max, 0]) ax.invert_xaxis() ax.set_xticks([]) ax.set_yticks([]) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.spines['left'].set_visible(False) return fig def plot_driftmap(probe_insertion, clustering_method=None, shank_no=1): probe_insertion = probe_insertion.proj() assert histology.InterpolatedShankTrack & probe_insertion if clustering_method is None: try: clustering_method = _get_clustering_method(probe_insertion) except ValueError as e: raise ValueError(str(e) + '\nPlease specify one with the kwarg "clustering_method"') units = (ephys.Unit * lab.ElectrodeConfig.Electrode & probe_insertion & {'clustering_method': clustering_method} & 'unit_quality != "all"') units = (units.proj('spike_times', 'spike_depths', 'unit_posy') * ephys.ProbeInsertion.proj() * lab.ProbeType.Electrode.proj('shank') & {'shank': shank_no}) # ---- ccf region ---- annotated_electrodes = (lab.ElectrodeConfig.Electrode * lab.ProbeType.Electrode * ephys.ProbeInsertion * histology.ElectrodeCCFPosition.ElectrodePosition * ccf.CCFAnnotation * ccf.CCFBrainRegion.proj(..., annotation='region_name') & probe_insertion & {'shank': shank_no}) pos_y, ccf_y, color_code = annotated_electrodes.fetch( 'y_coord', 'ccf_y', 'color_code', order_by='y_coord DESC') # CCF position of most ventral recording site last_electrode_site = np.array((histology.InterpolatedShankTrack.DeepestElectrodePoint & probe_insertion & {'shank': shank_no}).fetch1( 'ccf_x', 'ccf_y', 'ccf_z')) # CCF position of the brain surface where this shank crosses brain_surface_site = np.array((histology.InterpolatedShankTrack.BrainSurfacePoint & probe_insertion & {'shank': shank_no}).fetch1( 'ccf_x', 'ccf_y', 'ccf_z')) # CCF position of most ventral recording site, with respect to the brain surface y_ref = -
np.linalg.norm(last_electrode_site - brain_surface_site)
numpy.linalg.norm
import numpy as np from scipy.signal import correlate2d rho = np.random.random((4,4)) + 1j * np.random.random((4,4)) res0 = correlate2d(rho, rho, 'full', 'fill', 0) # unwrapped res1 = np.fft.fftshift(np.fft.ifftn(np.abs(np.fft.fftn(rho, s=2*np.array(rho.shape)-1))**2)) np.allclose(res0, np.flip(res1, axis=(0,1)).conj()) res0 = correlate2d(rho, rho, 'same', 'wrap') # wrapped res1 = np.fft.fftshift(np.fft.ifftn(np.abs(np.fft.fftn(rho))**2)) np.allclose(res0, np.flip(res1, axis=(0,1)).conj()) # real values rho = np.random.random((4,4)) res0 = correlate2d(rho, rho, 'full', 'fill', 0) # unwrapped res1 = np.fft.fftshift(np.fft.irfftn(np.abs(np.fft.rfftn(rho, s=2*np.array(rho.shape)-1))**2, s=2*np.array(rho.shape)-1)) np.allclose(res0,
np.flip(res1, axis=(0,1))
numpy.flip
import os # supress tensorflow logging other than errors os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import numpy as np import tensorflow as tf from keras import backend as K from keras.datasets import mnist from keras.models import Sequential, load_model from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Convolution2D, MaxPooling2D from keras.utils import np_utils import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from attacks.fgsm import fgsm def random_orthogonal(i): """Return a random vector orthogonal to i.""" v = np.random.random(i.shape) i /= np.linalg.norm(i) a = np.dot(v, i) / np.dot(i, i) j = v - a*i b = np.linalg.norm(j) j /= b return j, (a, i) img_rows = 28 img_cols = 28 img_chan = 1 nb_classes = 10 input_shape=(img_rows, img_cols, img_chan) print('\nLoading mnist') (X_train, y_train), (X_test, y_test) = mnist.load_data() X_train = X_train.astype('float32') / 255. X_test = X_test.astype('float32') / 255. X_train = X_train.reshape(-1, img_rows, img_cols, img_chan) X_test = X_test.reshape(-1, img_rows, img_cols, img_chan) print('\nX_train shape:', X_train.shape) print('y_train shape:', y_train.shape) # one hot encoding y_train = np_utils.to_categorical(y_train, nb_classes) y_test = np_utils.to_categorical(y_test, nb_classes) sess = tf.InteractiveSession() K.set_session(sess) if False: print('\nLoading model0') model0 = load_model('model/figure_2_model0.h5') else: print('\nBuilding model0') model0 = Sequential([ Convolution2D(32, 3, 3, input_shape=input_shape), Activation('relu'), Convolution2D(32, 3, 3), Activation('relu'), MaxPooling2D(pool_size=(2, 2)), # Dropout(0.25), Flatten(), Dense(128), Activation('relu'), # Dropout(0.5), Dense(10), Activation('softmax')]) model0.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) print('\nTraining model0') model0.fit(X_train, y_train, nb_epoch=10) print('\nSaving model0') os.makedirs('model', exist_ok=True) model0.save('model/figure_2_model0.h5') x = tf.placeholder(tf.float32, (None, img_rows, img_cols, img_chan)) y = tf.placeholder(tf.int32, (None, )) x_adv = fgsm(model0, x, eps=0.25, nb_epoch=1) print('\nTesting against clean data') score = model0.evaluate(X_test, y_test) print('\nloss: {0:.4f} acc: {1:.4f}'.format(score[0], score[1])) if False: print('\nLoading adversarial datasets') X_adv = np.load('data/figure_2.npy') else: print('\nGenerating adversarial') batch_size = 64 X_adv = np.empty(X_test.shape) nb_sample = X_test.shape[0] nb_batch = int(np.ceil(nb_sample/batch_size)) for batch in range(nb_batch): print('batch {0}/{1}'.format(batch+1, nb_batch), end='\r') start = batch * batch_size end = min(nb_sample, start+batch_size) tmp = sess.run(x_adv, feed_dict={x: X_test[start:end], K.learning_phase(): 0}) X_adv[start:end] = tmp print('\nSaving adversarials') os.makedirs('data', exist_ok=True) np.save('data/figure_2.npy', X_adv) print('\nTesting against adversarial data') score = model0.evaluate(X_adv, y_test) print('\nloss: {0:.4f} acc: {1:.4f}'.format(score[0], score[1])) if False: print('\nLoading model1') model1 = load_model('model/figure_2_model1.h5') else: print('\nBuilding model1') model1 = Sequential([ Convolution2D(32, 3, 3, input_shape=input_shape), Activation('relu'), Convolution2D(32, 3, 3), Activation('relu'), MaxPooling2D(pool_size=(2, 2)), Dropout(0.25), Flatten(), Dense(128), Activation('relu'), Dropout(0.5), Dense(10), Activation('softmax')]) model1.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) x_adv_tmp = fgsm(model1, x, eps=0.3, nb_epoch=1) print('\nDummy testing') model1.evaluate(X_test[:10], y_test[:10], verbose=0) print('\nPreparing training/validation dataset') validation_split = 0.1 N = int(X_train.shape[0]*validation_split) X_tmp_train, X_tmp_val = X_train[:-N], X_train[-N:] y_tmp_train, y_tmp_val = y_train[:-N], y_train[-N:] print('\nTraining model1') nb_epoch = 10 batch_size = 64 nb_sample = X_tmp_train.shape[0] nb_batch = int(np.ceil(nb_sample/batch_size)) for epoch in range(nb_epoch): print('Epoch {0}/{1}'.format(epoch+1, nb_epoch)) for batch in range(nb_batch): print(' batch {0}/{1} '.format(batch+1, nb_batch), end='\r', flush=True) start = batch * batch_size end = min(nb_sample, start+batch_size) X_tmp_adv = sess.run(x_adv_tmp, feed_dict={ x: X_tmp_train[start:end], K.learning_phase(): 0}) y_tmp_adv = y_tmp_train[start:end] X_batch = np.vstack((X_tmp_train[start:end], X_tmp_adv)) y_batch = np.vstack((y_tmp_train[start:end], y_tmp_adv)) score = model1.train_on_batch(X_batch, y_batch) score = model1.evaluate(X_tmp_val, y_tmp_val) print(' loss: {0:.4f} acc: {1:.4f}' .format(score[0], score[1])) print('\nSaving model1') os.makedirs('model', exist_ok=True) model1.save('model/figure_2_model1.h5') print('\nTesting against adversarial') score = model1.evaluate(X_adv, y_test) print('\nloss: {0:.4f} acc: {1:.4f}'.format(score[0], score[1])) print('\nPreparing predictions') y0_0 = model0.predict(X_test) y0_1 = model0.predict(X_adv) y1_0 = model1.predict(X_test) y1_1 = model1.predict(X_adv) z_test = np.argmax(y_test, axis=1) z0_0 = np.argmax(y0_0, axis=1) z0_1 =
np.argmax(y0_1, axis=1)
numpy.argmax
"""Spatial statistical tools to estimate uncertainties related to DEMs""" from __future__ import annotations import math as m import multiprocessing as mp import os import warnings from functools import partial from typing import Callable, Union, Iterable, Optional, Sequence, Any import itertools import matplotlib import matplotlib.pyplot as plt import matplotlib.colors as colors from numba import njit import numpy as np import pandas as pd from scipy import integrate from scipy.optimize import curve_fit from skimage.draw import disk from scipy.interpolate import RegularGridInterpolator, LinearNDInterpolator, griddata from scipy.stats import binned_statistic, binned_statistic_2d, binned_statistic_dd from geoutils.spatial_tools import subsample_raster, get_array_and_mask from geoutils.georaster import RasterType, Raster with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) import skgstat as skg from skgstat import models def nmad(data: np.ndarray, nfact: float = 1.4826) -> float: """ Calculate the normalized median absolute deviation (NMAD) of an array. Default scaling factor is 1.4826 to scale the median absolute deviation (MAD) to the dispersion of a normal distribution (see https://en.wikipedia.org/wiki/Median_absolute_deviation#Relation_to_standard_deviation, and e.g. http://dx.doi.org/10.1016/j.isprsjprs.2009.02.003) :param data: input data :param nfact: normalization factor for the data :returns nmad: (normalized) median absolute deviation of data. """ if isinstance(data, np.ma.masked_array): data_arr = get_array_and_mask(data, check_shape=False)[0] else: data_arr = np.asarray(data) return nfact * np.nanmedian(np.abs(data_arr - np.nanmedian(data_arr))) def interp_nd_binning(df: pd.DataFrame, list_var_names: Union[str,list[str]], statistic : Union[str, Callable[[np.ndarray],float]] = nmad, min_count: Optional[int] = 100) -> Callable[[tuple[np.ndarray, ...]], np.ndarray]: """ Estimate an interpolant function for an N-dimensional binning. Preferably based on the output of nd_binning. For more details on the input dataframe, and associated list of variable name and statistic, see nd_binning. If the variable pd.DataSeries corresponds to an interval (as the output of nd_binning), uses the middle of the interval. Otherwise, uses the variable as such. Workflow of the function: Fills the no-data present on the regular N-D binning grid with nearest neighbour from scipy.griddata, then provides an interpolant function that linearly interpolates/extrapolates using scipy.RegularGridInterpolator. :param df: dataframe with statistic of binned values according to explanatory variables (preferably output of nd_binning) :param list_var_names: explanatory variable data series to select from the dataframe (containing interval or float dtype) :param statistic: statistic to interpolate, stored as a data series in the dataframe :param min_count: minimum number of samples to be used as a valid statistic (replaced by nodata) :return: N-dimensional interpolant function :examples # Using a dataframe created from scratch >>> df = pd.DataFrame({"var1": [1, 2, 3, 1, 2, 3, 1, 2, 3], "var2": [1, 1, 1, 2, 2, 2, 3, 3, 3], "statistic": [1, 2, 3, 4, 5, 6, 7, 8, 9]}) # In 2 dimensions, the statistic array looks like this # array([ # [1, 2, 3], # [4, 5, 6], # [7, 8, 9] # ]) >>> fun = interp_nd_binning(df, list_var_names=["var1", "var2"], statistic="statistic", min_count=None) # Right on point. >>> fun((2, 2)) array(5.) # Interpolated linearly inside the 2D frame. >>> fun((1.5, 1.5)) array(3.) # Extrapolated linearly outside the 2D frame. >>> fun((-1, 1)) array(-1.) """ # if list of variable input is simply a string if isinstance(list_var_names,str): list_var_names = [list_var_names] # check that the dataframe contains what we need for var in list_var_names: if var not in df.columns: raise ValueError('Variable "'+var+'" does not exist in the provided dataframe.') statistic_name = statistic if isinstance(statistic,str) else statistic.__name__ if statistic_name not in df.columns: raise ValueError('Statistic "' + statistic_name + '" does not exist in the provided dataframe.') if min_count is not None and 'count' not in df.columns: raise ValueError('Statistic "count" is not in the provided dataframe, necessary to use the min_count argument.') if df.empty: raise ValueError('Dataframe is empty.') df_sub = df.copy() # if the dataframe is an output of nd_binning, keep only the dimension of interest if 'nd' in df_sub.columns: df_sub = df_sub[df_sub.nd == len(list_var_names)] # compute the middle values instead of bin interval if the variable is a pandas interval type for var in list_var_names: check_any_interval = [isinstance(x, pd.Interval) for x in df_sub[var].values] if any(check_any_interval): df_sub[var] = pd.IntervalIndex(df_sub[var]).mid.values # otherwise, leave as is # check that explanatory variables have valid binning values which coincide along the dataframe df_sub = df_sub[np.logical_and.reduce([np.isfinite(df_sub[var].values) for var in list_var_names])] if df_sub.empty: raise ValueError('Dataframe does not contain a nd binning with the variables corresponding to the list of variables.') # check that the statistic data series contain valid data if all(~np.isfinite(df_sub[statistic_name].values)): raise ValueError('Dataframe does not contain any valid statistic values.') # remove statistic values calculated with a sample count under the minimum count if min_count is not None: df_sub.loc[df_sub['count'] < min_count,statistic_name] = np.nan values = df_sub[statistic_name].values ind_valid = np.isfinite(values) # re-check that the statistic data series contain valid data after filtering with min_count if all(~ind_valid): raise ValueError("Dataframe does not contain any valid statistic values after filtering with min_count = "+str(min_count)+".") # get a list of middle values for the binning coordinates, to define a nd grid list_bmid = [] shape = [] for var in list_var_names: bmid = sorted(np.unique(df_sub[var][ind_valid])) list_bmid.append(bmid) shape.append(len(bmid)) # griddata first to perform nearest interpolation with NaNs (irregular grid) # valid values values = values[ind_valid] # coordinates of valid values points_valid = tuple([df_sub[var].values[ind_valid] for var in list_var_names]) # grid coordinates bmid_grid = np.meshgrid(*list_bmid, indexing='ij') points_grid = tuple([bmid_grid[i].flatten() for i in range(len(list_var_names))]) # fill grid no data with nearest neighbour values_grid = griddata(points_valid, values, points_grid, method='nearest') values_grid = values_grid.reshape(shape) # RegularGridInterpolator to perform linear interpolation/extrapolation on the grid # (will extrapolate only outside of boundaries not filled with the nearest of griddata as fill_value = None) interp_fun = RegularGridInterpolator(tuple(list_bmid), values_grid, method='linear', bounds_error=False, fill_value=None) return interp_fun def nd_binning(values: np.ndarray, list_var: Iterable[np.ndarray], list_var_names=Iterable[str], list_var_bins: Optional[Union[int,Iterable[Iterable]]] = None, statistics: Iterable[Union[str, Callable, None]] = ['count', np.nanmedian ,nmad], list_ranges : Optional[Iterable[Sequence]] = None) \ -> pd.DataFrame: """ N-dimensional binning of values according to one or several explanatory variables. Values input is a (N,) array and variable input is a list of flattened arrays of similar dimensions (N,). For more details on the format of input variables, see documentation of scipy.stats.binned_statistic_dd. :param values: values array (N,) :param list_var: list (L) of explanatory variables array (N,) :param list_var_names: list (L) of names of the explanatory variables :param list_var_bins: count, or list (L) of counts or custom bin edges for the explanatory variables; defaults to 10 bins :param statistics: list (X) of statistics to be computed; defaults to count, median and nmad :param list_ranges: list (L) of minimum and maximum ranges to bin the explanatory variables; defaults to min/max of the data :return: """ # we separate 1d, 2d and nd binning, because propagating statistics between different dimensional binning is not always feasible # using scipy because it allows for several dimensional binning, while it's not straightforward in pandas if list_var_bins is None: list_var_bins = (10,) * len(list_var_names) elif isinstance(list_var_bins,int): list_var_bins = (list_var_bins,) * len(list_var_names) # flatten the arrays if this has not been done by the user values = values.ravel() list_var = [var.ravel() for var in list_var] # remove no data values valid_data = np.logical_and.reduce([np.isfinite(values)]+[np.isfinite(var) for var in list_var]) values = values[valid_data] list_var = [var[valid_data] for var in list_var] statistics_name = [f if isinstance(f,str) else f.__name__ for f in statistics] # get binned statistics in 1d: a simple loop is sufficient list_df_1d = [] for i, var in enumerate(list_var): df_stats_1d = pd.DataFrame() # get statistics for j, statistic in enumerate(statistics): stats_binned_1d, bedges_1d = binned_statistic(var,values,statistic=statistic,bins=list_var_bins[i],range=list_ranges)[:2] # save in a dataframe df_stats_1d[statistics_name[j]] = stats_binned_1d # we need to get the middle of the bins from the edges, to get the same dimension length df_stats_1d[list_var_names[i]] = pd.IntervalIndex.from_breaks(bedges_1d,closed='left') # report number of dimensions used df_stats_1d['nd'] = 1 list_df_1d.append(df_stats_1d) # get binned statistics in 2d: all possible 2d combinations list_df_2d = [] if len(list_var)>1: combs = list(itertools.combinations(list_var_names, 2)) for i, comb in enumerate(combs): var1_name, var2_name = comb # corresponding variables indexes i1, i2 = list_var_names.index(var1_name), list_var_names.index(var2_name) df_stats_2d = pd.DataFrame() for j, statistic in enumerate(statistics): stats_binned_2d, bedges_var1, bedges_var2 = binned_statistic_2d(list_var[i1],list_var[i2],values,statistic=statistic ,bins=[list_var_bins[i1],list_var_bins[i2]] ,range=list_ranges)[:3] # get statistics df_stats_2d[statistics_name[j]] = stats_binned_2d.flatten() # derive interval indexes and convert bins into 2d indexes ii1 = pd.IntervalIndex.from_breaks(bedges_var1,closed='left') ii2 = pd.IntervalIndex.from_breaks(bedges_var2,closed='left') df_stats_2d[var1_name] = [i1 for i1 in ii1 for i2 in ii2] df_stats_2d[var2_name] = [i2 for i1 in ii1 for i2 in ii2] # report number of dimensions used df_stats_2d['nd'] = 2 list_df_2d.append(df_stats_2d) # get binned statistics in nd, without redoing the same stats df_stats_nd = pd.DataFrame() if len(list_var)>2: for j, statistic in enumerate(statistics): stats_binned_2d, list_bedges = binned_statistic_dd(list_var,values,statistic=statistic,bins=list_var_bins,range=list_ranges)[0:2] df_stats_nd[statistics_name[j]] = stats_binned_2d.flatten() list_ii = [] # loop through the bin edges and create IntervalIndexes from them (to get both for bedges in list_bedges: list_ii.append(pd.IntervalIndex.from_breaks(bedges,closed='left')) # create nd indexes in nd-array and flatten for each variable iind = np.meshgrid(*list_ii) for i, var_name in enumerate(list_var_names): df_stats_nd[var_name] = iind[i].flatten() # report number of dimensions used df_stats_nd['nd'] = len(list_var_names) # concatenate everything list_all_dfs = list_df_1d + list_df_2d + [df_stats_nd] df_concat = pd.concat(list_all_dfs) # commenting for now: pd.MultiIndex can be hard to use # df_concat = df_concat.set_index(list_var_names) return df_concat def create_circular_mask(shape: Union[int, Sequence[int]], center: Optional[list[float]] = None, radius: Optional[float] = None) -> np.ndarray: """ Create circular mask on a raster, defaults to the center of the array and it's half width :param shape: shape of array :param center: center :param radius: radius :return: """ w, h = shape if center is None: # use the middle of the image center = (int(w / 2), int(h / 2)) if radius is None: # use the smallest distance between the center and image walls radius = min(center[0], center[1], w - center[0], h - center[1]) # skimage disk is not inclusive (correspond to distance_from_center < radius and not <= radius) mask = np.zeros(shape, dtype=bool) with warnings.catch_warnings(): warnings.filterwarnings("ignore", "invalid value encountered in true_divide") rr, cc = disk(center=center,radius=radius,shape=shape) mask[rr, cc] = True # manual solution # Y, X = np.ogrid[:h, :w] # dist_from_center = np.sqrt((X - center[0]) ** 2 + (Y - center[1]) ** 2) # mask = dist_from_center < radius return mask def create_ring_mask(shape: Union[int, Sequence[int]], center: Optional[list[float]] = None, in_radius: float = 0., out_radius: Optional[float] = None) -> np.ndarray: """ Create ring mask on a raster, defaults to the center of the array and a circle mask of half width of the array :param shape: shape of array :param center: center :param in_radius: inside radius :param out_radius: outside radius :return: """ w, h = shape if out_radius is None: center = (int(w / 2), int(h / 2)) out_radius = min(center[0], center[1], w - center[0], h - center[1]) with warnings.catch_warnings(): warnings.filterwarnings("ignore", "invalid value encountered in true_divide") mask_inside = create_circular_mask((w,h),center=center,radius=in_radius) mask_outside = create_circular_mask((w,h),center=center,radius=out_radius) mask_ring = np.logical_and(~mask_inside,mask_outside) return mask_ring def _subsample_wrapper(values: np.ndarray, coords: np.ndarray, shape: tuple[int,int] = None, subsample: int = 10000, subsample_method: str = 'pdist_ring', inside_radius = None, outside_radius = None, random_state: None | np.random.RandomState | np.random.Generator | int = None) -> tuple[np.ndarray, np.ndarray]: """ (Not used by default) Wrapper for subsampling pdist methods """ nx, ny = shape # Define state for random subsampling (to fix results during testing) if random_state is None: rnd = np.random.default_rng() elif isinstance(random_state, (np.random.RandomState, np.random.Generator)): rnd = random_state else: rnd = np.random.RandomState(np.random.MT19937(np.random.SeedSequence(random_state))) # Subsample spatially for disk/ring methods if subsample_method in ['pdist_disk', 'pdist_ring']: # Select random center coordinates center_x = rnd.choice(nx, 1)[0] center_y = rnd.choice(ny, 1)[0] if subsample_method == 'pdist_ring': subindex = create_ring_mask((nx, ny), center=[center_x, center_y], in_radius=inside_radius, out_radius=outside_radius) else: subindex = create_circular_mask((nx, ny), center=[center_x, center_y], radius=inside_radius) index = subindex.flatten() values_sp = values[index] coords_sp = coords[index, :] else: values_sp = values coords_sp = coords index = subsample_raster(values_sp, subsample=subsample, return_indices=True, random_state=rnd) values_sub = values_sp[index[0]] coords_sub = coords_sp[index[0], :] return values_sub, coords_sub def _aggregate_pdist_empirical_variogram(values: np.ndarray, coords: np.ndarray, subsample: int, shape: tuple, subsample_method: str, gsd: float, pdist_multi_ranges: Optional[list[float]] = None, **kwargs) -> pd.DataFrame: """ (Not used by default) Aggregating subfunction of sample_empirical_variogram for pdist methods. The pairwise differences are calculated within each subsample. """ # If no multi_ranges are provided, define a logical default behaviour with the pixel size and grid size if subsample_method in ['pdist_disk', 'pdist_ring']: if pdist_multi_ranges is None: # Define list of ranges as exponent 2 of the resolution until the maximum range pdist_multi_ranges = [] # We start at 10 times the ground sampling distance new_range = gsd * 10 while new_range < kwargs.get('maxlag') / 2: pdist_multi_ranges.append(new_range) new_range *= 2 pdist_multi_ranges.append(kwargs.get('maxlag')) # Define subsampling parameters list_inside_radius, list_outside_radius = ([] for i in range(2)) binned_ranges = [0] + pdist_multi_ranges for i in range(len(binned_ranges) - 1): # Radiuses need to be passed as pixel sizes, dividing by ground sampling distance outside_radius = binned_ranges[i + 1]/gsd if subsample_method == 'pdist_ring': inside_radius = binned_ranges[i]/gsd else: inside_radius = None list_outside_radius.append(outside_radius) list_inside_radius.append(inside_radius) else: # For random point selection, no need for multi-range parameters pdist_multi_ranges = [kwargs.get('maxlag')] list_outside_radius = [None] list_inside_radius = [None] # Estimate variogram with specific subsampling at multiple ranges list_df_range = [] for j in range(len(pdist_multi_ranges)): values_sub, coords_sub = _subsample_wrapper(values, coords, shape = shape, subsample = subsample, subsample_method = subsample_method, inside_radius = list_inside_radius[j], outside_radius = list_outside_radius[j], random_state= kwargs.get('random_state')) if len(values_sub) == 0: continue df_range = _get_pdist_empirical_variogram(values=values_sub, coords=coords_sub, **kwargs) # Aggregate runs list_df_range.append(df_range) df = pd.concat(list_df_range) return df def _get_pdist_empirical_variogram(values: np.ndarray, coords: np.ndarray, **kwargs) -> pd.DataFrame: """ Get empirical variogram from skgstat.Variogram object calculating pairwise distances within the sample :param values: values :param coords: coordinates :return: empirical variogram (variance, lags, counts) """ # Remove random_state keyword argument that is not used kwargs.pop('random_state') # Get arguments of Variogram class init function vgm_args = skg.Variogram.__init__.__code__.co_varnames[:skg.Variogram.__init__.__code__.co_argcount] # Check no other argument is left to be passed remaining_kwargs = kwargs.copy() for arg in vgm_args: remaining_kwargs.pop(arg, None) if len(remaining_kwargs) != 0: warnings.warn('Keyword arguments: '+','.join(list(remaining_kwargs.keys()))+ ' were not used.') # Filter corresponding arguments before passing filtered_kwargs = {k:kwargs[k] for k in vgm_args if k in kwargs} # Derive variogram with default MetricSpace (equivalent to scipy.pdist) V = skg.Variogram(coordinates=coords, values=values, normalize=False, fit_method=None, **filtered_kwargs) # Get bins, empirical variogram values, and bin count bins, exp = V.get_empirical() count = V.bin_count # Write to dataframe df = pd.DataFrame() df = df.assign(exp=exp, bins=bins, count=count) return df def _get_cdist_empirical_variogram(values: np.ndarray, coords: np.ndarray, subsample_method: str, **kwargs) -> pd.DataFrame: """ Get empirical variogram from skgstat.Variogram object calculating pairwise distances between two sample collections of a MetricSpace (see scikit-gstat documentation for more details) :param values: values :param coords: coordinates :return: empirical variogram (variance, lags, counts) """ # Rename the "subsample" argument into "samples", which is used by skgstat Metric subclasses kwargs['samples'] = kwargs.pop('subsample') # Rename the "random_state" argument into "rnd", also used by skgstat Metric subclasses kwargs['rnd'] = kwargs.pop('random_state') # Define MetricSpace function to be used, fetch possible keywords arguments if subsample_method == 'cdist_point': # List keyword arguments of the Probabilistic class init function ms_args = skg.ProbabalisticMetricSpace.__init__.__code__.co_varnames[:skg.ProbabalisticMetricSpace.__init__.__code__.co_argcount] ms = skg.ProbabalisticMetricSpace else: # List keyword arguments of the RasterEquidistant class init function ms_args = skg.RasterEquidistantMetricSpace.__init__.__code__.co_varnames[:skg.RasterEquidistantMetricSpace.__init__.__code__.co_argcount] ms = skg.RasterEquidistantMetricSpace # Get arguments of Variogram class init function vgm_args = skg.Variogram.__init__.__code__.co_varnames[:skg.Variogram.__init__.__code__.co_argcount] # Check no other argument is left to be passed, accounting for MetricSpace arguments remaining_kwargs = kwargs.copy() for arg in vgm_args + ms_args: remaining_kwargs.pop(arg, None) if len(remaining_kwargs) != 0: warnings.warn('Keyword arguments: ' + ', '.join(list(remaining_kwargs.keys())) + ' were not used.') # Filter corresponding arguments before passing to MetricSpace function filtered_ms_kwargs = {k: kwargs[k] for k in ms_args if k in kwargs} M = ms(coords=coords, **filtered_ms_kwargs) # Filter corresponding arguments before passing to Variogram function filtered_var_kwargs = {k: kwargs[k] for k in vgm_args if k in kwargs} V = skg.Variogram(M, values=values, normalize=False, fit_method=None, **filtered_var_kwargs) # Get bins, empirical variogram values, and bin count bins, exp = V.get_empirical() count = V.bin_count # Write to dataframe df = pd.DataFrame() df = df.assign(exp=exp, bins=bins, count=count) return df def _wrapper_get_empirical_variogram(argdict: dict) -> pd.DataFrame: """ Multiprocessing wrapper for get_pdist_empirical_variogram and get_cdist_empirical variogram :param argdict: Keyword argument to pass to get_pdist/cdist_empirical_variogram :return: empirical variogram (variance, lags, counts) """ if argdict['verbose']: print('Working on run '+str(argdict['i']) + ' out of '+str(argdict['imax'])) argdict.pop('i') argdict.pop('imax') if argdict['subsample_method'] in ['cdist_equidistant', 'cdist_point']: # Simple wrapper for the skgstat Variogram function for cdist methods get_variogram = _get_cdist_empirical_variogram else: # Aggregating several skgstat Variogram after iterative subsampling of specific points in the Raster get_variogram = _aggregate_pdist_empirical_variogram return get_variogram(**argdict) def sample_empirical_variogram(values: Union[np.ndarray, RasterType], gsd: float = None, coords: np.ndarray = None, subsample: int = 10000, subsample_method: str = 'cdist_equidistant', n_variograms: int = 1, n_jobs: int = 1, verbose=False, random_state: None | np.random.RandomState | np.random.Generator | int = None, **kwargs) -> pd.DataFrame: """ Sample empirical variograms with binning adaptable to multiple ranges and spatial subsampling adapted for raster data. By default, subsampling is based on RasterEquidistantMetricSpace implemented in scikit-gstat. This method samples more effectively large grid data by isolating pairs of spatially equidistant ensembles for distributed pairwise comparison. In practice, two subsamples are drawn for pairwise comparison: one from a disk of certain radius within the grid, and another one from rings of larger radii that increase steadily between the pixel size and the extent of the raster. Those disk and rings are sampled several times across the grid using random centers. If values are provided as a Raster subclass, nothing else is required. If values are provided as a 2D array (M,N), a ground sampling distance is sufficient to derive the pairwise distances. If values are provided as a 1D array (N), an array of coordinates (N,2) or (2,N) is expected. If the coordinates do not correspond to all points of the grid, a ground sampling distance is needed to correctly get the grid size. Spatial subsampling method argument subsample_method can be one of "cdist_equidistant", "cdist_point", "pdist_point", "pdist_disk" and "pdist_ring". The cdist methods use MetricSpace classes of scikit-gstat and do pairwise comparison of two ensembles as in scipy.spatial.cdist. The pdist methods use methods to subsample the Raster points directly and do pairwise comparison within a single ensemble as in scipy.spatial.pdist. For the cdist methods, the variogram is estimated in a single run from the MetricSpace. For the pdist methods, an iterative process is required: a list of ranges subsampled independently is used. Variograms are derived independently for several runs and ranges using each pairwise sample, and later aggregated. If the subsampling method selected is "random_point", the multi-range argument is ignored as range has no effect on this subsampling method. For pdist methods, keyword arguments are passed to skgstat.Variogram. For cdist methods, keyword arguments are passed to both skgstat.Variogram and skgstat.MetricSpace. :param values: values :param gsd: ground sampling distance :param coords: coordinates :param subsample: number of samples to randomly draw from the values :param subsample_method: spatial subsampling method :param n_variograms: number of independent empirical variogram estimations :param n_jobs: number of processing cores :param verbose: print statements during processing :param random_state: random state or seed number to use for calculations (to fix random sampling during testing) :return: empirical variogram (variance, lags, counts) """ # First, check all that the values provided are OK if isinstance(values, Raster): gsd = values.res[0] values, mask = get_array_and_mask(values.data) elif isinstance(values, (np.ndarray, np.ma.masked_array)): values, mask = get_array_and_mask(values) else: raise TypeError('Values must be of type np.ndarray, np.ma.masked_array or Raster subclass.') values = values.squeeze() # Then, check if the logic between values, coords and gsd is respected if (gsd is not None or subsample_method in ['cdist_equidistant', 'pdist_disk','pdist_ring']) and values.ndim == 1: raise TypeError('Values array must be 2D when using any of the "cdist_equidistant", "pdist_disk" and ' '"pdist_ring" methods, or providing a ground sampling distance instead of coordinates.') elif coords is not None and values.ndim != 1: raise TypeError('Values array must be 1D when providing coordinates.') elif coords is not None and (coords.shape[0] != 2 and coords.shape[1] != 2): raise TypeError('The coordinates array must have one dimension with length equal to 2') # Check the subsample method provided exists, otherwise list options if subsample_method not in ['cdist_equidistant','cdist_point','pdist_point','pdist_disk','pdist_ring']: raise TypeError('The subsampling method must be one of "cdist_equidistant, "cdist_point", "pdist_point", ' '"pdist_disk" or "pdist_ring".') # Check that, for several runs, the binning function is an Iterable, otherwise skgstat might provide variogram # values over slightly different binnings due to randomly changing subsample maximum lags if n_variograms > 1 and 'bin_func' in kwargs.keys() and not isinstance(kwargs.get('bin_func'), Iterable): warnings.warn('Using a named binning function of scikit-gstat might provide different binnings for each ' 'independent run. To remediate that issue, pass bin_func as an Iterable of right bin edges, ' '(or use default bin_func).') # Defaulting to coordinates if those are provided if coords is not None: nx = None ny = None # Making the shape of coordinates consistent if they are transposed if coords.shape[0] == 2 and coords.shape[1] != 2: coords = np.transpose(coords) # If no coordinates provided, we use the shape of the array and the provided ground sampling distance to derive # relative coordinates (starting at zero) else: nx, ny = np.shape(values) x, y = np.meshgrid(np.arange(0, values.shape[0] * gsd, gsd), np.arange(0, values.shape[1] * gsd, gsd)) coords = np.dstack((x.flatten(), y.flatten())).squeeze() values = values.flatten() # Get the ground sampling distance from the coordinates before keeping only valid data, if it was not provided if gsd is None: gsd = np.mean([coords[0, 0] - coords[0, 1], coords[0, 0] - coords[1, 0]]) # Get extent extent = (np.min(coords[:, 0]), np.max(coords[:, 0]), np.min(coords[:, 1]), np.max(coords[:, 1])) # Get the maximum lag from the coordinates before keeping only valid data, if it was not provided if 'maxlag' not in kwargs.keys(): # We define maximum lag as the maximum distance between coordinates (needed to provide custom bins, otherwise # skgstat rewrites the maxlag with the subsample of coordinates provided) maxlag = np.sqrt((np.max(coords[:, 0])-np.min(coords[:, 1]))**2 + (np.max(coords[:, 1]) - np.min(coords[:, 1]))**2) kwargs.update({'maxlag': maxlag}) # Keep only valid data for cdist methods, remove later for pdist methods if 'cdist' in subsample_method: ind_valid = np.isfinite(values) values = values[ind_valid] coords = coords[ind_valid, :] if 'bin_func' not in kwargs.keys(): # If no bin_func is provided, we provide an Iterable to provide a custom binning function to skgstat, # because otherwise bins might be unconsistent across runs bin_func = [] right_bin_edge = np.sqrt(2) * gsd while right_bin_edge < kwargs.get('maxlag'): bin_func.append(right_bin_edge) # We use the default exponential increasing factor of RasterEquidistantMetricSpace, adapted for grids right_bin_edge *= np.sqrt(2) bin_func.append(kwargs.get('maxlag')) kwargs.update({'bin_func': bin_func}) # Prepare necessary arguments to pass to variogram subfunctions args = {'values': values, 'coords': coords, 'subsample_method': subsample_method, 'subsample': subsample, 'verbose': verbose} if subsample_method in ['cdist_equidistant','pdist_ring','pdist_disk', 'pdist_point']: # The shape is needed for those three methods args.update({'shape': (nx, ny)}) if subsample_method == 'cdist_equidistant': # The coordinate extent is needed for this method args.update({'extent':extent}) else: args.update({'gsd': gsd}) # If a random_state is passed, each run needs to be passed an independent child random state, otherwise they will # provide exactly the same sampling and results if random_state is not None: # Define the random state if only a seed is provided if isinstance(random_state, (np.random.RandomState, np.random.Generator)): rnd = random_state else: rnd = np.random.RandomState(np.random.MT19937(np.random.SeedSequence(random_state))) # Create a list of child random states if n_variograms == 1: # No issue if there is only one variogram run list_random_state = [rnd] else: # Otherwise, pass a list of seeds list_random_state = list(rnd.choice(n_variograms, n_variograms, replace=False)) else: list_random_state = [None for i in range(n_variograms)] # Derive the variogram # Differentiate between 1 core and several cores for multiple runs # All variogram runs have random sampling inherent to their subfunctions, so we provide the same input arguments if n_jobs == 1: if verbose: print('Using 1 core...') list_df_run = [] for i in range(n_variograms): argdict = {'i': i, 'imax': n_variograms, 'random_state': list_random_state[i], **args, **kwargs} df_run = _wrapper_get_empirical_variogram(argdict=argdict) list_df_run.append(df_run) else: if verbose: print('Using ' + str(n_jobs) + ' cores...') pool = mp.Pool(n_jobs, maxtasksperchild=1) argdict = [{'i': i, 'imax': n_variograms, 'random_state': list_random_state[i], **args, **kwargs} for i in range(n_variograms)] list_df_run = pool.map(_wrapper_get_empirical_variogram, argdict, chunksize=1) pool.close() pool.join() # Aggregate multiple ranges subsampling df = pd.concat(list_df_run) # For a single run, no multi-run sigma estimated if n_variograms == 1: df['err_exp'] = np.nan # For several runs, group results, use mean as empirical variogram, estimate sigma, and sum the counts else: df_grouped = df.groupby('bins', dropna=False) df_mean = df_grouped[['exp']].mean() df_std = df_grouped[['exp']].std() df_count = df_grouped[['count']].sum() df_mean['bins'] = df_mean.index.values df_mean['err_exp'] = df_std['exp'] df_mean['count'] = df_count['count'] df = df_mean return df def fit_sum_model_variogram(list_model: list[str], empirical_variogram: pd.DataFrame, bounds: list[tuple[float, float]] = None, p0: list[float] = None) -> tuple[Callable, list[float]]: """ Fit a multi-range variogram model to an empirical variogram, weighted least-squares based on sampling errors :param list_model: list of K variogram models to sum for the fit: from short-range to long-ranges :param empirical_variogram: empirical variogram :param bounds: bounds of ranges and sills for each model (shape K x 4 = K x range lower, range upper, sill lower, sill upper) :param p0: initial guess of ranges and sills each model (shape K x 2 = K x range first guess, sill first guess) :return: modelled variogram function, coefficients """ # TODO: expand to other models than spherical, exponential, gaussian (more than 2 arguments) # Define a sum of variogram function def vgm_sum(h, *args): fn = 0 i = 0 for model in list_model: fn += skg.models.spherical(h, args[i], args[i+1]) # fn += vgm(h, model=model,crange=args[i],psill=args[i+1]) i += 2 return fn # First, filter outliers empirical_variogram = empirical_variogram[np.isfinite(empirical_variogram.exp.values)] # Use shape of empirical variogram to assess rough boundaries/first estimates n_average = np.ceil(len(empirical_variogram.exp.values) / 10) exp_movaverage = np.convolve(empirical_variogram.exp.values, np.ones(int(n_average)) / n_average, mode='valid') grad = np.gradient(exp_movaverage, 2) # Maximum variance of the process max_var = np.max(exp_movaverage) # Simplify things for scipy: let's provide boundaries and first guesses if bounds is None: bounds = [] for i in range(len(list_model)): # Use largest boundaries possible for our problem psill_bound = [0, max_var] range_bound = [0, empirical_variogram.bins.values[-1]] # Add bounds and guesses with same order as function arguments bounds.append(range_bound) bounds.append(psill_bound) if p0 is None: p0 = [] for i in range(len(list_model)): # Use psill evenly distributed psill_p0 = ((i+1)/len(list_model))*max_var # Use corresponding ranges # !! This fails when no empirical value crosses this (too wide binning/nugget) # ind = np.array(np.abs(exp_movaverage-psill_p0)).argmin() # range_p0 = empirical_variogram.bins.values[ind] range_p0 = ((i+1)/len(list_model)) * empirical_variogram.bins.values[-1] p0.append(range_p0) p0.append(psill_p0) bounds = np.transpose(np.array(bounds)) # If the error provided is all NaNs (single variogram run), or all zeros (two variogram runs), run without weights if np.all(np.isnan(empirical_variogram.err_exp.values)) or np.all(empirical_variogram.err_exp.values == 0): cof, cov = curve_fit(vgm_sum, empirical_variogram.bins.values, empirical_variogram.exp.values, method='trf', p0=p0, bounds=bounds) # Otherwise, use a weighted fit else: # We need to filter for possible no data in the error valid = np.isfinite(empirical_variogram.err_exp.values) cof, cov = curve_fit(vgm_sum, empirical_variogram.bins.values[valid], empirical_variogram.exp.values[valid], method='trf', p0=p0, bounds=bounds, sigma=empirical_variogram.err_exp.values[valid]) # Provide the output function (couldn't find a way to pass this through functool.partial as arguments are unordered) def vgm_sum_fit(h): fn = 0 i = 0 for model in list_model: fn += skg.models.spherical(h, cof[i], cof[i+1]) i += 2 return fn return vgm_sum_fit, cof def exact_neff_sphsum_circular(area: float, crange1: float, psill1: float, crange2: float, psill2: float) -> float: """ Number of effective samples derived from exact integration of sum of 2 spherical variogram models over a circular area. The number of effective samples serves to convert between standard deviation/partial sills and standard error over the area. If SE is the standard error, SD the standard deviation and N_eff the number of effective samples, we have: SE = SD / sqrt(N_eff) => N_eff = SD^2 / SE^2 => N_eff = (PS1 + PS2)/SE^2 where PS1 and PS2 are the partial sills estimated from the variogram models, and SE is estimated by integrating the variogram models with parameters PS1/PS2 and R1/R2 where R1/R2 are the correlation ranges. Source: <NAME> al. (2009), appendix: http://dx.doi.org/10.3189/002214309789470950 :param area: circular area :param crange1: range of short-range variogram model :param psill1: partial sill of short-range variogram model :param crange2: range of long-range variogram model :param psill2: partial sill of long-range variogram model :return: number of effective samples """ # short range variogram c1 = psill1 # partial sill a1 = crange1 # short correlation range # long range variogram c1_2 = psill2 a1_2 = crange2 # long correlation range h_equiv = np.sqrt(area / np.pi) # hypothesis of a circular shape to integrate variogram model if h_equiv > a1_2: std_err = np.sqrt(c1 * a1 ** 2 / (5 * h_equiv ** 2) + c1_2 * a1_2 ** 2 / (5 * h_equiv ** 2)) elif (h_equiv < a1_2) and (h_equiv > a1): std_err = np.sqrt(c1 * a1 ** 2 / (5 * h_equiv ** 2) + c1_2 * (1-h_equiv / a1_2+1 / 5 * (h_equiv / a1_2) ** 3)) else: std_err = np.sqrt(c1 * (1-h_equiv / a1+1 / 5 * (h_equiv / a1) ** 3) + c1_2 * (1-h_equiv / a1_2+1 / 5 * (h_equiv / a1_2) ** 3)) return (psill1 + psill2)/std_err**2 def neff_circ(area: float, list_vgm: list[tuple[float, str, float]]) -> float: """ Number of effective samples derived from numerical integration for any sum of variogram models a circular area (generalization of Rolstad et al. (2009): http://dx.doi.org/10.3189/002214309789470950) The number of effective samples N_eff serves to convert between standard deviation/partial sills and standard error over the area: SE = SD / sqrt(N_eff) if SE is the standard error, SD the standard deviation. :param area: area :param list_vgm: variogram functions to sum (range, model name, partial sill) :returns: number of effective samples """ psill_tot = 0 for vario in list_vgm: psill_tot += vario[2] def hcov_sum(h): fn = 0 for vario in list_vgm: crange, model, psill = vario fn += h*(cov(h, crange, model=model, psill=psill)) return fn h_equiv = np.sqrt(area / np.pi) full_int = integrate_fun(hcov_sum, 0, h_equiv) std_err = np.sqrt(2*np.pi*full_int / area) return psill_tot/std_err**2 def neff_rect(area: float, width: float, crange1: float, psill1: float, model1: str = 'Sph', crange2: float = None, psill2: float = None, model2: str = None) -> float: """ Number of effective samples derived from numerical integration for a sum of 2 variogram functions over a rectangular area :param area: area :param width: width of rectangular area :param crange1: correlation range of first variogram :param psill1: partial sill of first variogram :param model1: model of first variogram :param crange2: correlation range of second variogram :param psill2: partial sill of second variogram :param model2: model of second variogram :returns: number of effective samples """ def hcov_sum(h, crange1=crange1, psill1=psill1, model1=model1, crange2=crange2, psill2=psill2, model2=model2): if crange2 is None or psill2 is None or model2 is None: return h*(cov(h, crange1, model=model1, psill=psill1)) else: return h*(cov(h, crange1, model=model1, psill=psill1)+cov(h, crange2, model=model2, psill=psill2)) width = min(width, area/width) full_int = integrate_fun(hcov_sum, 0, width/2) bin_int = np.linspace(width/2, area/width, 100) for i in range(len(bin_int)-1): low = bin_int[i] upp = bin_int[i+1] mid = bin_int[i] + (bin_int[i+1] - bin_int[i])/2 piec_int = integrate_fun(hcov_sum, low, upp) full_int += piec_int * 2/np.pi*np.arctan(width/(2*mid)) std_err = np.sqrt(2*np.pi*full_int / area) if crange2 is None or psill2 is None or model2 is None: return psill1 / std_err ** 2 else: return (psill1 + psill2) / std_err ** 2 def integrate_fun(fun: Callable, low_b: float, upp_b: float) -> float: """ Numerically integrate function between upper and lower bounds :param fun: function :param low_b: lower bound :param upp_b: upper bound :return: integral """ return integrate.quad(fun, low_b, upp_b)[0] def cov(h: float, crange: float, model: str = 'Sph', psill: float = 1., kappa: float = 1/2, nugget: float = 0) -> Callable: """ Covariance function based on variogram function (COV = STD - VGM) :param h: spatial lag :param crange: correlation range :param model: model :param psill: partial sill :param kappa: smoothing parameter for Exp Class :param nugget: nugget :returns: covariance function """ return (nugget + psill) - vgm(h, crange, model=model, psill=psill, kappa=kappa) def vgm(h: float, crange: float, model: str = 'Sph', psill: float = 1., kappa: float = 1/2, nugget: float = 0): """ Compute variogram model function (Spherical, Exponential, Gaussian or Exponential Class) :param h: spatial lag :param crange: correlation range :param model: model :param psill: partial sill :param kappa: smoothing parameter for Exp Class :param nugget: nugget :returns: variogram function """ c0 = nugget # nugget c1 = psill # partial sill a1 = crange # correlation range s = kappa # smoothness parameter for Matern class if model == 'Sph': # spherical model if h < a1: vgm = c0 + c1 * (3 / 2 * h / a1-1 / 2 * (h / a1) ** 3) else: vgm = c0 + c1 elif model == 'Exp': # exponential model vgm = c0 + c1 * (1-np.exp(-h / a1)) elif model == 'Gau': # gaussian model vgm = c0 + c1 * (1-np.exp(- (h / a1) ** 2)) elif model == 'Exc': # stable exponential model vgm = c0 + c1 * (1-np.exp(-(h / a1)**s)) return vgm def std_err_finite(std: float, neff_tot: float, neff: float) -> float: """ Standard error of subsample of a finite ensemble :param std: standard deviation :param neff_tot: maximum number of effective samples :param neff: number of effective samples :return: standard error """ return std * np.sqrt(1 / neff_tot * (neff_tot - neff) / neff_tot) def std_err(std: float, neff: float) -> float: """ Standard error :param std: standard deviation :param neff: number of effective samples :return: standard error """ return std * np.sqrt(1 / neff) def distance_latlon(tup1: tuple, tup2: tuple, earth_rad: float = 6373000) -> float: """ Distance between two lat/lon coordinates projected on a spheroid ref: https://stackoverflow.com/questions/19412462/getting-distance-between-two-points-based-on-latitude-longitude :param tup1: lon/lat coordinates of first point :param tup2: lon/lat coordinates of second point :param earth_rad: radius of the earth in meters :return: distance """ lat1 = m.radians(abs(tup1[1])) lon1 = m.radians(abs(tup1[0])) lat2 = m.radians(abs(tup2[1])) lon2 = m.radians(abs(tup2[0])) dlon = lon2 - lon1 dlat = lat2 - lat1 a = m.sin(dlat / 2)**2 + m.cos(lat1) * m.cos(lat2) * m.sin(dlon / 2)**2 c = 2 * m.atan2(m.sqrt(a), m.sqrt(1 - a)) distance = earth_rad * c return distance def kernel_sph(xi: float, x0: float, a1: float) -> float: # TODO: homogenize kernel/variogram use """ Spherical kernel :param xi: position of first point :param x0: position of second point :param a1: range of kernel :return: covariance between the two points """ if np.abs(xi - x0) > a1: return 0 else: return 1 - 3 / 2 * np.abs(xi-x0) / a1 + 1 / 2 * (np.abs(xi-x0) / a1) ** 3 def part_covar_sum(argsin: tuple) -> float: """ Multiprocessing wrapper for covariance summing :param argsin: Tupled argument for covariance calculation :return: covariance sum """ list_tuple_errs, corr_ranges, list_area_tot, list_lat, list_lon, i_range = argsin n = len(list_tuple_errs) part_var_err = 0 for i in i_range: for j in range(n): d = distance_latlon((list_lon[i], list_lat[i]), (list_lon[j], list_lat[j])) for k in range(len(corr_ranges)): part_var_err += kernel_sph(0, d, corr_ranges[k]) * list_tuple_errs[i][k] * list_tuple_errs[j][k] * \ list_area_tot[i] * list_area_tot[j] return part_var_err def double_sum_covar(list_tuple_errs: list[float], corr_ranges: list[float], list_area_tot: list[float], list_lat: list[float], list_lon: list[float], nproc: int = 1) -> float: """ Double sum of covariances for propagating multi-range correlated errors between disconnected spatial ensembles :param list_tuple_errs: list of tuples of correlated errors by range, by ensemble :param corr_ranges: list of correlation ranges :param list_area_tot: list of areas of ensembles :param list_lat: list of center latitude of ensembles :param list_lon: list of center longitude of ensembles :param nproc: number of cores to use for multiprocessing :returns: sum of covariances """ n = len(list_tuple_errs) if nproc == 1: print('Deriving double covariance sum with 1 core...') var_err = 0 for i in range(n): for j in range(n): d = distance_latlon((list_lon[i], list_lat[i]), (list_lon[j], list_lat[j])) for k in range(len(corr_ranges)): var_err += kernel_sph(0, d, corr_ranges[k]) * list_tuple_errs[i][k] * list_tuple_errs[j][k] * \ list_area_tot[i] * list_area_tot[j] else: print('Deriving double covariance sum with '+str(nproc)+' cores...') pack_size = int(np.ceil(n/nproc)) argsin = [(list_tuple_errs, corr_ranges, list_area_tot, list_lon, list_lat, np.arange( i, min(i+pack_size, n))) for k, i in enumerate(np.arange(0, n, pack_size))] pool = mp.Pool(nproc, maxtasksperchild=1) outputs = pool.map(part_covar_sum, argsin, chunksize=1) pool.close() pool.join() var_err = np.sum(np.array(outputs)) area_tot = 0 for j in range(len(list_area_tot)): area_tot += list_area_tot[j] var_err /= np.nansum(area_tot) ** 2 return np.sqrt(var_err) def patches_method(values: np.ndarray, gsd: float, area: float, mask: Optional[np.ndarray] = None, perc_min_valid: float = 80., statistics: Iterable[Union[str, Callable, None]] = ['count', np.nanmedian ,nmad], patch_shape: str = 'circular', n_patches: int = 1000, verbose: bool = False, random_state: None | int | np.random.RandomState | np.random.Generator = None) -> pd.DataFrame: """ Patches method for empirical estimation of the standard error over an integration area :param values: values :param gsd: ground sampling distance :param mask: mask of sampled terrain :param area: size of integration area :param perc_min_valid: minimum valid area in the patch :param statistics: list of statistics to compute in the patch :param patch_shape: shape of patch ['circular' or 'rectangular'] :param n_patches: maximum number of patches to sample :param verbose: print statement to console :param random_state: random state or seed number to use for calculations (to fix random sampling during testing) :return: tile, mean, median, std and count of each patch """ # Define state for random subsampling (to fix results during testing) if random_state is None: rnd = np.random.default_rng() elif isinstance(random_state, (np.random.RandomState, np.random.Generator)): rnd = random_state else: rnd = np.random.RandomState(np.random.MT19937(np.random.SeedSequence(random_state))) statistics_name = [f if isinstance(f,str) else f.__name__ for f in statistics] values, mask_values = get_array_and_mask(values) values = values.squeeze() # Use all grid if no mask is provided if mask is None: mask = np.ones(np.shape(values),dtype=bool) # First, remove non sampled area (but we need to keep the 2D shape of raster for patch sampling) valid_mask = np.logical_and(~mask_values, mask) values[~valid_mask] = np.nan # Divide raster in cadrants where we can sample nx, ny = np.shape(values) valid_count = len(values[~np.isnan(values)]) count = nx * ny if verbose: print('Number of valid pixels: ' + str(count)) nb_cadrant = int(np.floor(np.sqrt((count * gsd ** 2) / area) + 1)) # For rectangular quadrants nx_sub = int(np.floor((nx - 1) / nb_cadrant)) ny_sub = int(np.floor((ny - 1) / nb_cadrant)) # For circular patches rad = np.sqrt(area/np.pi) / gsd # Create list of all possible cadrants list_cadrant = [[i, j] for i in range(nb_cadrant) for j in range(nb_cadrant)] u = 0 # Keep sampling while there is cadrants left and below maximum number of patch to sample remaining_nsamp = n_patches list_df = [] while len(list_cadrant) > 0 and u < n_patches: # Draw a random coordinate from the list of cadrants, select more than enough random points to avoid drawing # randomly and differencing lists several times list_idx_cadrant = rnd.choice(len(list_cadrant), size=min(len(list_cadrant), 10*remaining_nsamp)) for idx_cadrant in list_idx_cadrant: if verbose: print('Working on a new cadrant') # Select center coordinates i = list_cadrant[idx_cadrant][0] j = list_cadrant[idx_cadrant][1] if patch_shape == 'rectangular': patch = values[nx_sub * i:nx_sub * (i + 1), ny_sub * j:ny_sub * (j + 1)].flatten() elif patch_shape == 'circular': center_x = np.floor(nx_sub*(i+1/2)) center_y = np.floor(ny_sub*(j+1/2)) mask = create_circular_mask((nx, ny), center=[center_x, center_y], radius=rad) patch = values[mask] else: raise ValueError('Patch method must be rectangular or circular.') nb_pixel_total = len(patch) nb_pixel_valid = len(patch[np.isfinite(patch)]) if nb_pixel_valid >= np.ceil(perc_min_valid / 100. * nb_pixel_total): u=u+1 if u > n_patches: break if verbose: print('Found valid cadrant ' + str(u) + ' (maximum: ' + str(n_patches) + ')') df = pd.DataFrame() df = df.assign(tile=[str(i) + '_' + str(j)]) for j, statistic in enumerate(statistics): if isinstance(statistic, str): if statistic == 'count': df[statistic] = [nb_pixel_valid] else: raise ValueError('No other string than "count" are supported for named statistics.') else: df[statistics_name[j]] = [statistic(patch)] list_df.append(df) # Get remaining samples to draw remaining_nsamp = n_patches - u # Remove cadrants already sampled from list list_cadrant = [c for j, c in enumerate(list_cadrant) if j not in list_idx_cadrant] if len(list_df)>0: df_all = pd.concat(list_df) else: warnings.warn('No valid patch found covering this area: returning dataframe containing only nans' ) df_all = pd.DataFrame() for j, statistic in enumerate(statistics): df_all[statistics_name[j]] = [np.nan] return df_all def plot_vgm(df: pd.DataFrame, list_fit_fun: Optional[list[Callable[[float],float]]] = None, list_fit_fun_label: Optional[list[str]] = None, ax: matplotlib.axes.Axes | None = None, xscale='linear', xscale_range_split: Optional[list] = None, xlabel = None, ylabel = None, xlim = None, ylim = None): """ Plot empirical variogram, and optionally also plot one or several model fits. Input dataframe is expected to be the output of xdem.spatialstats.sample_empirical_variogram. Input function model is expected to be the output of xdem.spatialstats.fit_sum_model_variogram. :param df: dataframe of empirical variogram :param list_fit_fun: list of model function fits :param list_fit_fun_label: list of model function fits labels :param ax: plotting ax to use, creates a new one by default :param xscale: scale of x axis :param xscale_range_split: list of ranges at which to split the figure :param xlabel: label of x axis :param ylabel: label of y axis :param xlim: limits of x axis :param ylim: limits of y axis :return: """ # Create axes if they are not passed if ax is None: fig = plt.figure() elif isinstance(ax, matplotlib.axes.Axes): ax = ax fig = ax.figure else: raise ValueError("ax must be a matplotlib.axes.Axes instance or None") if ylabel is None: ylabel = r'Variance [$\mu$ $\pm \sigma$]' if xlabel is None: xlabel = 'Spatial lag (m)' init_gridsize = [10, 10] # Create parameters to split x axis into different linear scales # If there is no split, get parameters for a single subplot if xscale_range_split is None: nb_subpanels=1 if xscale == 'log': xmin = [np.min(df.bins)/2] else: xmin = [0] xmax = [np.max(df.bins)] xgridmin = [0] xgridmax = [init_gridsize[0]] gridsize = init_gridsize # Otherwise, derive a list for each subplot else: # Add initial zero if not in input if xscale_range_split[0] != 0: if xscale == 'log': first_xmin = np.min(df.bins)/2 else: first_xmin = 0 xscale_range_split = [first_xmin] + xscale_range_split # Add maximum distance if not in input if xscale_range_split[-1] != np.max(df.bins): xscale_range_split.append(np.max(df.bins)) # Scale grid size by the number of subpanels nb_subpanels = len(xscale_range_split)-1 gridsize = init_gridsize.copy() gridsize[0] *= nb_subpanels # Create list of parameters to pass to ax/grid objects of subpanels xmin, xmax, xgridmin, xgridmax = ([] for i in range(4)) for i in range(nb_subpanels): xmin.append(xscale_range_split[i]) xmax.append(xscale_range_split[i+1]) xgridmin.append(init_gridsize[0]*i) xgridmax.append(init_gridsize[0]*(i+1)) # Need a grid plot to show the sample count and the statistic grid = plt.GridSpec(gridsize[1], gridsize[0], wspace=0.5, hspace=0.5) # Loop over each subpanel for k in range(nb_subpanels): # First, an axis to plot the sample histogram ax0 = fig.add_subplot(grid[:3, xgridmin[k]:xgridmax[k]]) ax0.set_xscale(xscale) ax0.set_xticks([]) # Plot the histogram manually with fill_between interval_var = [0] + list(df.bins) for i in range(len(df)): count = df['count'].values[i] ax0.fill_between([interval_var[i], interval_var[i+1]], [0] * 2, [count] * 2, facecolor=plt.cm.Greys(0.75), alpha=1, edgecolor='white', linewidth=0.5) if k == 0: ax0.set_ylabel('Sample count') # Scientific format to avoid undesired additional space on the label side ax0.ticklabel_format(axis='y', style='sci', scilimits=(0, 0)) else: ax0.set_yticks([]) # Ignore warnings for log scales ax0.set_xlim((xmin[k], xmax[k])) # Now, plot the statistic of the data ax = fig.add_subplot(grid[3:, xgridmin[k]:xgridmax[k]]) # Get the bins center bins_center = np.subtract(df.bins, np.diff([0] + df.bins.tolist()) / 2) # If all the estimated errors are all NaN (single run), simply plot the empirical variogram if np.all(np.isnan(df.err_exp)): ax.scatter(bins_center, df.exp, label='Empirical variogram', color='blue', marker='x') # Otherwise, plot the error estimates through multiple runs else: ax.errorbar(bins_center, df.exp, yerr=df.err_exp, label='Empirical variogram (1-sigma s.d)', fmt='x') # If a list of functions is passed, plot the modelled variograms if list_fit_fun is not None: for i, fit_fun in enumerate(list_fit_fun): x = np.linspace(xmin[k], xmax[k], 1000) y = fit_fun(x) if list_fit_fun_label is not None: ax.plot(x, y, linestyle='dashed', label=list_fit_fun_label[i], zorder=30) else: ax.plot(x, y, linestyle='dashed', color='black', zorder=30) if list_fit_fun_label is None: ax.plot([],[],linestyle='dashed',color='black',label='Model fit') ax.set_xscale(xscale) if nb_subpanels>1 and k == (nb_subpanels-1): ax.xaxis.set_ticks(
np.linspace(xmin[k], xmax[k], 3)
numpy.linspace
from abc import ABC, abstractmethod from functools import cached_property from typing import Tuple, Optional, List, Callable import ConfigSpace as CS import numpy as np import ConfigSpace.hyperparameters as CSH from matplotlib import pyplot as plt from pyPDP.algorithms import Algorithm from pyPDP.algorithms.ice import ICE, ICECurve from pyPDP.blackbox_functions import BlackboxFunction from pyPDP.surrogate_models import SurrogateModel from pyPDP.utils.typing import SelectedHyperparameterType from pyPDP.utils.utils import unscale_float, calculate_log_delta, ConfigSpaceHolder, get_hyperparameters from scipy.stats import norm Sample = Tuple[np.ndarray, np.ndarray] # configurations, variances class Region(ConfigSpaceHolder): def __init__( self, x_points: np.ndarray, y_points: np.ndarray, y_variances: np.ndarray, config_space: CS.ConfigurationSpace, selected_hyperparameter: SelectedHyperparameterType ): """ :param x_points: Shape: (num_points_in_region, num_grid_points, num_features) :param y_points: Shape: (num_points_in_region, num_grid_points) :param y_variances: Shape: (num_points_in_region, num_grid_points) """ super().__init__(config_space) self.x_points = x_points self.y_points = y_points self.y_variances = y_variances if isinstance(selected_hyperparameter, CSH.Hyperparameter): selected_hyperparameter = [selected_hyperparameter] self.selected_hyperparameter = tuple(selected_hyperparameter) assert len(self.x_points) == len(self.y_points) == len(self.y_variances) assert self.x_points.shape[1] == self.y_points.shape[1] == self.y_variances.shape[1] def __len__(self): return len(self.x_points) @cached_property def mean_confidence(self) -> float: return np.mean(np.sqrt(self.y_variances)).item() @cached_property def loss(self) -> float: # l2 loss calculation according to paper mean_variances =
np.mean(self.y_variances, axis=0)
numpy.mean
#Importing Libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt #Importing Dataset train = pd.read_csv('train.csv') train.info() null = train.isnull().sum() #Droping new price column because it has maximum nan value and also Unnamed:0 because it is equivalent to index train = train.drop(['Unnamed: 0', 'New_Price'], axis=1) # Droping nan values train = train.dropna() train = train.reset_index(drop=True) null = train.isnull().sum() train['Location'].value_counts() train['Fuel_Type'].value_counts() train['Transmission'].value_counts() train['Owner_Type'].value_counts() # Lets split some columns to make a new feature train_df = train.copy() name = train_df['Name'].str.split(" ", n =2, expand = True) train_df['Company'] = name[0] train_df['Model'] = name[1] train_df['Mileage'] = train_df['Mileage'].str.split(" ", n=1, expand = True).get(0) train_df['Engine'] = train_df['Engine'].str.split(" ", n=1, expand = True).get(0) train_df['Power'] = train_df['Power'].str.split(" ", n=1, expand = True).get(0) train_df = train_df.drop(['Name'], axis = 1) train_df['Mileage'] = train_df['Mileage'].astype(float) train_df['Engine'] = train_df['Engine'].astype(int) train_df.replace("null", np.nan, inplace = True) train_df = train_df.dropna() train_df = train_df.reset_index(drop=True) train_df['Power'] = train_df['Power'].astype(float) train_df['Company'].value_counts() train_df['Company'] = train_df['Company'].replace('ISUZU', 'Isuzu') #Handiling Rare Categorical Feature cat_features = [feature for feature in train_df.columns if train_df[feature].dtype == 'O'] for feature in cat_features: temp = train_df.groupby(feature)['Price'].count()/len(train_df) temp_df = temp[temp>0.01].index train_df[feature] = np.where(train_df[feature].isin(temp_df), train_df[feature], 'Rare') train_df['Company'].value_counts() train_df.info() train_df['Seats'] = train_df['Seats'].astype(int) #E.D.A. features = [feature for feature in train_df.columns] import seaborn as sns plt.scatter(x = "Year", y = "Price" , data = train_df ) sns.boxplot(x = 'Company' , y= 'Price', data= train_df) for feature in features: df =train.copy() df[feature].hist(bins=20) plt.xlabel(feature) plt.ylabel('Count') plt.title(feature) plt.show() sns.distplot(train_df['Price']) #as we can see price is not depends on location so we can drop this column train_df = train_df.drop(['Location'], axis = 1) #Encoding Categorical data columns = ['Fuel_Type','Transmission','Owner_Type','Company','Model'] def categorical_ohe(multicolumns): df = train_df.copy() i = 0 for feilds in multicolumns: print(feilds) d1 = pd.get_dummies(train_df[feilds]) train_df.drop([feilds], axis = 1) if i == 0: df = d1.copy() else: df = pd.concat([df, d1], axis =1) i =i +1 df = pd.concat([df,train_df], axis =1) return df final_df = categorical_ohe(columns) final_df = final_df.loc[:,~final_df.columns.duplicated()] import datetime now = datetime.datetime.now() final_df['Year'] = final_df['Year'].apply(lambda x : now.year - x) corr = final_df.corr() #From correlation chart we can see that Kilometers_Driven and Seats are not impacting much on price prediction so we can drop them data = final_df.drop(final_df[columns], axis =1 ) #Droping Categorical Columns x = data.to_csv('data.csv', index = False) X= data.drop(['Price','Rare','Kilometers_Driven','Seats'], axis = 1) y = data['Price'] #Splitting Dataset into training and test data from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size= 0.2, random_state = 0) #Feature Scaling from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaler.fit(X) X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) #Fitting Model from sklearn.ensemble import RandomForestRegressor rf = RandomForestRegressor(n_estimators = 100, random_state= 0) rf.fit(X_train,y_train) y_pred = rf.predict(X_test) from sklearn.tree import DecisionTreeRegressor dt = DecisionTreeRegressor(random_state = 0) dt.fit(X_train, y_train) dt_pred = dt.predict(X_test) from sklearn.svm import SVR svr = SVR(kernel = 'rbf') svr.fit(X_train, y_train) svr_pred = svr.predict(X_test) from xgboost import XGBRegressor xgb = XGBRegressor() xgb.fit(X_train,y_train) y_pred1 = xgb.predict(X_test) from sklearn.metrics import r2_score r2_score(y_test, svr_pred) r2_score(y_test, y_pred) r2_score(y_test, dt_pred) r2_score(y_test, y_pred1) def predict_price(Company,Model, Fuel_Type, Transmission, Owner_Type, Year, Mileage, Engine, Power): com_index = np.where(X.columns==Company)[0][0] model_index = np.where(X.columns==Model)[0][0] fuel_index = np.where(X.columns==Fuel_Type)[0][0] trans_index = np.where(X.columns==Transmission)[0][0] owner_index =
np.where(X.columns==Owner_Type)
numpy.where
import numpy as np import Weighted_SVM as WS from cvxopt import matrix, solvers import cvxopt import scipy.sparse as sparse def scipy_sparse_to_spmatrix(A): coo = A.tocoo() SP = cvxopt.spmatrix(coo.data.tolist(), coo.row.tolist(), coo.col.tolist(), size=A.shape) return(SP) def Uni_arr(X): # designed for getting different arrays R,C = X.shape Set = [X[0].tolist()] for i in np.arange(1,R): temp = sum([X[i].tolist()==j for j in Set]) if temp == 0: Set.append(X[i].tolist()) return(Set) class algor(object): def __init__(self,Data,w2v): # Data[0]: number of observations * word frequency # Data[1]: covariates # Data[2]: label self.X = Data[0] self.factor = Data[1] self.FacNum = np.shape(np.mat(self.factor))[1] self.Y = Data[2] self.w2v = w2v.T # self.w2v is dimension of word embedding * number of words self.wordNum = np.shape(self.w2v)[1] # The number of sentiment words used self.LoBeta = np.shape(self.w2v)[0] # The length of Beta self.ite = 0.0001 self.K = int(np.max(self.Y)) # 0,1,...,K self.BETA = np.zeros(self.LoBeta) self.W = [] # the set for W self.BETA_0 = [] # the set for various beta_0 self.IndexBeta_0 = [] self.XforInput = [] self.RH = [] # used in step 1: B(t_ij) w_{x_{ij}} self.LH = [] # used in step 2: beta * D self.Vec_S = [] # The contant vector in step 3 self.AindexBeta0 = np.unique(self.IndexBeta_0) self.IndexFY = [] self.Dict_embed = {} self.Dict_beta0 = {} self.DB = np.matmul(self.w2v,self.X.T.toarray()) self.SLL = [] self.Err = [] self.Err_1 = [] self.Beta_set = [self.BETA] def Initialization(self): self.YforInput = [] self.BETA = np.random.normal(0,0.1,self.LoBeta) Cov_set = Uni_arr(self.factor) for i in Cov_set: Temp = np.ones(self.wordNum) BTemp = 0-np.sort(np.random.uniform(-1, 1, int(self.K))) self.Dict_embed.update({str(i):Temp}) self.Dict_beta0.update({str(i):BTemp}) for i in range(len(self.Y)): for j in range(int(self.K)): self.YforInput.append(2 * ((self.Y[i]-j)>0)-1) self.a = np.zeros(len(self.YforInput)) def Build_BW(self): # calculating B * W of beta * D (B * W) # D * B #DB = np.matmul(self.w2v,self.X.T.toarray()) temp = [] EmbedTemp = [] for i in range(len(self.Y)): Embed_Temp = self.Dict_embed.get(str(self.factor[i].tolist())) EmbedTemp.append(Embed_Temp.tolist()) EmbedTemp = np.array(EmbedTemp) BW = np.multiply(self.X.toarray(),EmbedTemp) X_out = np.matmul(BW,self.w2v.T) return(X_out) def Build_BWB(self): BWP = np.matmul(self.BETA,self.w2v) Out = self.X.toarray() * BWP return(Out) def Loss(self,Lam_1,Lam_2): NB = np.linalg.norm(self.BETA)**2 * Lam_1 *0.5 NW = sum([np.linalg.norm(i)**2 for i in list(self.Dict_embed.values())]) * Lam_2*0.5 N_size = np.shape(self.X)[0] Part = np.matmul(self.BETA, self.w2v) Result = [] L = 0. for i in range(N_size): Beta_0 = self.Dict_beta0.get(str(self.factor[i])) W = self.Dict_embed.get(str(self.factor[i])) Part_2 = np.multiply(self.X[i].toarray()[0], W) Y_F = np.dot(Part, Part_2) + Beta_0 Y_B = 2*(self.Y[i] - np.array([i for i in range(int(self.K))])>0)-1 Re = 1 - Y_F * Y_B Re1 = sum([np.max([0,i]) for i in Re]) L += Re1 return(L+NB+NW) def Predict(self,X,cov): N_size = np.shape(X)[0] Part = np.matmul(self.BETA,self.w2v) Result = [] for i in range(N_size): Beta_0 = self.Dict_beta0.get(str(cov[i])) W = self.Dict_embed.get(str(cov[i])) Part_2 = np.multiply(X[i].toarray()[0],W) Y_F = np.sign(np.dot(Part,Part_2)+Beta_0) Result.append(sum(Y_F==1)) return(np.array(Result)) def Upd_Beta(self,Lam_1): sample_weight = [] Data_input = [] TempMat = self.Build_BW() for i in range(len(self.Y)): B0temp = self.Dict_beta0.get(str(self.factor[i].tolist())) for j in range(int(self.K)): temp = 1 - self.YforInput[i * int(self.K) + j] * B0temp[j] sample_weight.append(temp) temp_Data_input = (TempMat[i] / temp).tolist() Data_input.append(temp_Data_input) sample_weight =
np.array(sample_weight)
numpy.array
import numpy as np import copy import scipy from scipy.stats import norm from scipy import io,signal import matplotlib.cm as cm import matplotlib.pyplot as plt from weighted_median import * def check_str_bool(s): return s in ['True' ,'true', '1', 't', 'y','YES' ,'Yes','yes', 'yeah','Yeah', 'yup', 'certainly', 'uh-huh'] class vec_properties: def __init__(self,source,ws,time_unit,time_scale_to_seconds,length_unit,length_scale_to_meter): self.source = source self.ws = ws self.time_unit = time_unit self.time_scale_to_seconds = time_scale_to_seconds self.length_unit = length_unit self.length_scale_to_meter = length_scale_to_meter self.velocity_units = length_unit+'/'+time_unit def show(self): print( 'source: ',self.source,'\n', 'window size: ',self.ws,'\n', 'dt: ',self.time_scale_to_seconds,'\n', 'pixel to meter: ',self.length_scale_to_meter,'\n', 'velocity units: ',self.velocity_units,'\n') class field_properties: def __init__(self,frame,time,images_path,source,time_unit,time_scale_to_seconds,length_unit,length_scale_to_meter): self.frame = frame self.time = time self.images_path = images_path self.source = source self.history = '' self.time_unit = time_unit self.time_scale_to_seconds = time_scale_to_seconds self.length_unit = length_unit self.length_scale_to_meter = length_scale_to_meter self.velocity_units = length_unit+'/'+time_unit def show(self): print( 'frame: ',self.frame,'\n', 'absolute time: ',self.time,'\n', 'images_path: ',self.images_path,'\n', 'source: ',self.source,'\n', 'dt: ',self.time_scale_to_seconds,'\n', 'pixel to meter: ',self.length_scale_to_meter,'\n', 'length units: ',self.length_scale_to_meter,'\n', 'velocity units: ',self.velocity_units) class run_properties: pass class vector: def __init__(self,X,Y,U,V,S2N,properties): self.X = X self.Y = Y self.U = U self.V = V self.S2N = S2N self.properties = properties def convert_units(self,output_length_unit,output_time_unit): LS = {'mm':0.001, 'cm':0.01, 'm':1.0,'meter':1.0,'meters':1.0, 'km':1000.} TS = {'ms':0.001, 's':1.0,'second':1.0,'seconds':1.0, 'min':60.,'mins':60.,'h':3600.,'hour':3600.,'hours':3600.} LS[self.properties.length_unit]=float(self.properties.length_scale_to_meter) TS[self.properties.time_unit]=float(self.properties.time_scale_to_seconds) self.X = self.X*(LS[self.properties.length_unit]/LS[output_length_unit]) self.Y = self.Y*(LS[self.properties.length_unit]/LS[output_length_unit]) self.U = self.U*(LS[self.properties.length_unit]/LS[output_length_unit])*(TS[output_time_unit]/TS[self.properties.time_unit]) self.V = self.V*(LS[self.properties.length_unit]/LS[output_length_unit])*(TS[output_time_unit]/TS[self.properties.time_unit]) self.properties.length_unit = output_length_unit self.properties.length_scale_to_meter = LS[output_length_unit] self.properties.time_unit = output_time_unit self.properties.time_scale_to_seconds = TS[output_time_unit] self.properties.velocity_units = output_length_unit+'/'+output_time_unit class field: def __init__(self,field_properties): self.data = {} self.filtered = {} self.properties = field_properties def __add__(self,other): check_list = [] check_list.append(self.properties.length_unit == other.properties.length_unit) check_list.append(self.properties.length_scale_to_meter == other.properties.length_scale_to_meter) check_list.append(self.properties.time_unit == other.properties.time_unit) check_list.append(self.properties.time_scale_to_seconds == other.properties.time_scale_to_seconds) check_list.append(self.properties.velocity_units == other.properties.velocity_units) if all(check_list): sum_properties = self.properties sum_properties.source = 'Sum' sum_properties.frame = self.properties.frame + ' & ' + other.properties.frame sum_properties.time = self.properties.time + ' & ' + other.properties.time sum_properties.images_path = self.properties.images_path + ' & ' + other.properties.images_path sum_field = field(sum_properties) for xy in list(self.data.keys()): sum_field.add_vec(self.data[xy]) for xy in list(other.data.keys()): sum_field.add_vec(other.data[xy]) return sum_field else: print( 'Field properties do not match') def add_vec(self, vector): self.data[vector.X,vector.Y] = vector def check_if_grid_point_exists(self,x,y): xy = list(self.data.keys()) return (x,y) in xy def move_to_filtered(self,vector): self.filtered[vector.X,vector.Y] = copy.deepcopy(vector) vector.U = np.nan vector.V = np.nan vector.properties.source = 'filtered' def transfer(self,other): for xy in list(other.data.keys()): self.add_vec(other.data[xy]) def convert_field_units(self,output_length_unit,output_time_unit): XY = list(self.data.keys()) if self.properties.length_unit == None or self.properties.length_unit == '': self.properties.length_unit = str(input('field length units')) if self.properties.length_scale_to_meter== None or self.properties.length_scale_to_meter == '': self.length_scale_to_meter = str(input('field length units to meters')) if self.properties.time_unit == None or self.properties.time_unit == '': self.properties.time_unit = str(input('field time units')) if self.properties.time_scale_to_seconds== None or self.properties.time_scale_to_seconds == '': self.properties.time_scale_to_seconds = str(input('field time units to seconds')) for xy in XY: self.data[xy].properties.length_unit = self.properties.length_unit self.data[xy].properties.length_scale_to_meter = self.properties.length_scale_to_meter self.data[xy].properties.time_unit = self.properties.time_unit self.data[xy].properties.time_scale_to_seconds = self.properties.time_scale_to_seconds self.data[xy].convert_units(output_length_unit,output_time_unit) self.add_vec(self.data[xy]) self.remove_vec(xy[0],xy[1]) XY0 = list(self.data.keys())[0] self.properties.length_unit = self.data[XY0].properties.length_unit self.properties.length_scale_to_meter = self.data[XY0].properties.length_scale_to_meter self.properties.time_unit = self.data[XY0].properties.time_unit self.properties.time_scale_to_seconds = self.data[XY0].properties.time_scale_to_seconds self.properties.velocity_units = self.data[XY0].properties.velocity_units def remove_vec(self,X,Y,vector=None): if vector is not None: del self.data[vector.X,vector.Y] else: del self.data[X,Y] def return_vel(self,x,y): u = self.data[x,y].U v = self.data[x,y].V return u,v def return_n_closest_neighbors(self,x,y,n=4): X,Y = self.return_grid() dist = np.sqrt((X-x)**2+(Y-y)**2) n_closest_neighbors = [ [(X[ind],Y[ind]),dist[ind]] for ind in dist.argsort()[:n]] return n_closest_neighbors def return_closest_neighbors_radius(self,x,y,radius): X,Y = self.return_grid() dist = np.sqrt((X-x)**2+(Y-y)**2) indecies = np.where(dist<radius) closest_neighbors = [[(X[indecies[0][i]],Y[indecies[0][i]]),dist[indecies[0][i]]] for i in range(len(indecies[0]))] return closest_neighbors def return_grid(self): XY = list(self.data.keys()) X,Y = zip(*XY) X = np.array(X) Y = np.array(Y) return X,Y def return_all_velocities(self): XY = list(self.data.keys()) U = np.array([self.data[xy[0],xy[1]].U for xy in XY]) V = np.array([self.data[xy[0],xy[1]].V for xy in XY]) return U,V def sub_average(self): XY = list(self.data.keys()) umean,ustd,vmean,vstd = self.mean_velocity() for i in range(len(XY)): self.data[XY[i]].U = self.data[XY[i]].U - umean self.data[XY[i]].V = self.data[XY[i]].V - vmean def create_mesh_grid(self): X,Y = self.return_grid() U,V = self.return_all_velocities() X_mesh_grid = sorted(list(set(X))) Y_mesh_grid = sorted(list(set(Y))) X_mesh_grid,Y_mesh_grid = np.meshgrid(X_mesh_grid,Y_mesh_grid) U_mesh_grid = np.empty(X_mesh_grid.shape) U_mesh_grid.fill(np.nan) V_mesh_grid = np.empty(X_mesh_grid.shape) V_mesh_grid.fill(np.nan) for vec_ind in range(len(X)): x = X[vec_ind] y = Y[vec_ind] col = np.array(np.where(X_mesh_grid[0,:]==x))[0,0] row = np.array(np.where(Y_mesh_grid[:,0]==y))[0,0] U_mesh_grid[row,col] = U[vec_ind] V_mesh_grid[row,col] = V[vec_ind] return X_mesh_grid,Y_mesh_grid[::-1],U_mesh_grid[::-1],V_mesh_grid[::-1] def s2n_filter(self,threshold): XY = list(self.data.keys()) for xy in XY: if self.data[xy].S2N < threshold: self.move_to_filtered(self.data[xy]) def hist_filter(self,percentage): def TrueXor(*args): return sum(args) == 1 hist_u,hist_v,hist2d = self.velocity_histogram() #strech boundry edges hist_u[1][0] = hist_u[1][0]-1 hist_u[1][-1] = hist_u[1][-1]+1 hist_v[1][0] = hist_v[1][0]-1 hist_v[1][-1] = hist_v[1][-1]+1 hist2d[1][0] = hist2d[1][0]-1 hist2d[1][-1] = hist2d[1][-1]+1 hist2d[2][0] = hist2d[2][0]-1 hist2d[2][-1] = hist2d[2][-1]+1 XY = list(self.data.keys()) number_of_vectors = len(XY) for xy in XY: u = self.data[xy].U v = self.data[xy].V if np.isfinite(u) and not np.isfinite(v): if hist_u[0][np.digitize(u,hist_u[1])-1] / number_of_vectors > percentage/100: u_iter,v_iter = self.inverse_distance_interpolation(xy[0],xy[1]) if np.isfinite(v_iter): self.data[xy].V = v_iter v = v_iter else: self.move_to_filtered(self.data[xy]) if np.isfinite(v) and not np.isfinite(u): if hist_v[0][np.digitize(v,hist_v[1])-1] / number_of_vectors > percentage/100: u_iter,v_iter = self.inverse_distance_interpolation(xy[0],xy[1]) if np.isfinite(u_iter): self.data[xy].U = u_iter u = u_iter else: self.move_to_filtered(self.data[xy]) if np.isfinite(v) and np.isfinite(u): U_histpos = np.digitize(u,hist2d[1])-1 V_histpos = np.digitize(v,hist2d[2])-1 if hist2d[0][U_histpos,V_histpos] / number_of_vectors < percentage/100: self.move_to_filtered(self.data[xy]) def Z_filter(self,threshold,neighbors=4,power=1): XY = list(self.data.keys()) for xy in XY: u = self.data[xy].U v = self.data[xy].V closest_neighbors = self.return_n_closest_neighbors(self.data[xy].X,self.data[xy].Y,neighbors+1)[1:] neighbor_pos , dis = zip(*closest_neighbors) weights = [(1/d)**power for d in dis] U,V = zip(*[self.return_vel(pos[0],pos[1]) for pos in neighbor_pos]) median_U = weighted_median(U,weights) median_V = weighted_median(V,weights) median_absolute_deviation_U = weighted_median([np.abs(u_neighbor - median_U) for u_neighbor in U],weights) median_absolute_deviation_V = weighted_median([np.abs(v_neighbor - median_V) for v_neighbor in V],weights) if 0.6745*(u - median_U) / max(median_absolute_deviation_U,0.01) > threshold: self.move_to_filtered(self.data[xy]) continue if 0.6745*(v - median_V) / max(median_absolute_deviation_V,0.01) > threshold: self.move_to_filtered(self.data[xy]) continue def max_arg_filter(self,U_bound,V_bound): XY = list(self.data.keys()) for xy in XY: U_check = True V_check = True if self.data[xy].U > U_bound[1] or self.data[xy].U < U_bound[0]: U_check=False if self.data[xy].V > V_bound[1] or self.data[xy].V < V_bound[0]: V_check=False if U_check and not V_check: u_itr,v_itr = self.inverse_distance_interpolation(xy[0],xy[1]) self.data[xy].V = v_itr elif V_check and not U_check: u_itr,v_itr = self.inverse_distance_interpolation(xy[0],xy[1]) self.data[xy].U = u_itr elif not V_check and not U_check: self.move_to_filtered(self.data[xy]) def mean_velocity(self): U,V = self.return_all_velocities() return np.nanmean(U),np.nanstd(U),np.nanmean(V),np.nanstd(V) def velocity_histogram(self,bins=10): def remove_nans(u,v): u = list(u) v = list(v) nan_index=[] for i in range(len(u)): if not np.isfinite(u[i]) or not np.isfinite(v[i]): nan_index.append(i) for index in sorted(nan_index, reverse=True): del u[index] del v[index] return np.array(u),np.array(v) U,V = self.return_all_velocities() hist_U = np.histogram(U[np.isfinite(U)],bins) hist_V = np.histogram(V[np.isfinite(V)],bins) U,V = remove_nans(U,V) hist2d = np.histogram2d(U, V, bins) return hist_U,hist_V,hist2d def extract_area(self,x_boundry,y_boundry): area = field(self.properties) X,Y = self.return_grid() for i in range(len(X)): if x_boundry[0]<=X[i]<=x_boundry[1] and y_boundry[0]<=Y[i]<=y_boundry[1]: area.add_vec(self.data[X[i],Y[i]]) return area def vel_gradients(self): X,Y,U,V = self.create_mesh_grid() Udx,Udy = np.gradient(U) Vdx,Vdy = np.gradient(V) return X,Y,Udx,Udy,Vdx,Vdy def vel_differntial(self): def least_square_diff(field,grid,axis=0): if axis==0: shape = field.shape dif = np.zeros(shape) for row in range(shape[0]): for col in range(2,shape[1]-2): rs = 2*field[row,col+2]+field[row,col+1] ls = -field[row,col-1]-2*field[row,col-2] dis = 10*(grid[row,col+1]-grid[row,col]) dif[row,col] = (rs+ls)/dis #dif[row,col] = (2*field[row,col+2]+field[row,col+1]-field[row,col-1]-2*field[row,col-2])/10*(grid[row,col+1]-grid[row,col]) return dif elif axis==1: shape = field.shape dif = np.zeros(shape) for row in range(2,shape[0]-2): for col in range(shape[1]): us = 2*field[row-2,col]+field[row-1,col] ds = -field[row+1,col]-2*field[row+2,col] dis = 10*(grid[row-1,col]-grid[row,col]) dif[row,col] = (us+ds)/dis #dif[row,col] = (2*field[row-2,col]+field[row-1,col]-field[row+1,col]-2*field[row+2,col])/10*(grid[row-1,col]-grid[row,col]) return dif X,Y,U,V = self.create_mesh_grid() dU_x = least_square_diff(U,X) dU_y = least_square_diff(U,Y,axis=1) dV_x = least_square_diff(V,X) dV_y = least_square_diff(V,Y,axis=1) return dU_x,dU_y,dV_x,dV_y def profile(self,axis='y'): X,Y,U,V = self.create_mesh_grid() if axis=='y' or axis=='Y': U_profile = np.nanmean(U,axis=1)[::-1] V_profile = np.nanmean(V,axis=1)[::-1] Y_profile = Y[:,0] return U_profile,V_profile,Y_profile else: U_profile = np.nanmean(U,axis=0)[::-1] V_profile = np.nanmean(V,axis=0)[::-1] X_profile = X[0,:] return U_profile,V_profile,X_profile def vorticity_field(self): dU_x,dU_y,dV_x,dV_y = self.vel_differntial() vort = dV_x-dU_y return vort[2:-2,2:-2] def inverse_distance_interpolation(self,x,y,number_of_neighbors=5,radius=None,inverse_power=2): def weigted_velocity(neighbors_vels,weights): weight_sum=0 weigted_vels=[] for i in range(len(neighbors_vels)): if not np.isnan(neighbors_vels[i]): weight_sum += weights[i] weigted_vels.append(weights[i]*neighbors_vels[i]) return np.nansum(weigted_vels)/weight_sum if self.check_if_grid_point_exists(x,y): if radius is not None: indecies,distances = zip(*self.return_closest_neighbors_radius(x,y,radius)) else: indecies,distances = zip(*self.return_n_closest_neighbors(x,y,n=number_of_neighbors+1)) weights = list(np.array(distances[1:])**-float(inverse_power)) neighbors_vel = [self.return_vel(ind[0],ind[1]) for ind in indecies[1:]] u_vels,v_vels = zip(*neighbors_vel) inter_u = weigted_velocity(u_vels,weights) inter_v = weigted_velocity(v_vels,weights) return inter_u,inter_v else: if radius is not None: indecies,distances = zip(*self.return_closest_neighbors_radius(x,y,radius)) else: indecies,distances = zip(*self.return_n_closest_neighbors(x,y,n=number_of_neighbors)) weights = list(np.array(distances)**-float(inverse_power)) neighbors_vel = [self.return_vel(ind[0],ind[1]) for ind in indecies] u_vels,v_vels = zip(*neighbors_vel) inter_u = weigted_velocity(u_vels,weights) inter_v = weigted_velocity(v_vels,weights) return inter_u,inter_v def interpf(self): X,Y = self.return_grid() for ind in range(X.shape[0]): pos = (X[ind],Y[ind]) u_cur,v_cur = self.return_vel(pos[0],pos[1]) if np.isnan(u_cur) and
np.isnan(v_cur)
numpy.isnan