prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
#Import necessary packages import numpy as np import numpy.ma as ma from obspy import read, Stream from obspy.clients.nrl import NRL import matplotlib.pyplot as plt import matplotlib.dates as mdates import pandas import stretching from obspy import UTCDateTime import pandas as pd import prepro as pp import glob from matplotlib import cm import pickle import ast ############################ ############################ ## FIND XCORR PKL FILES #### ############################ ############################ station=[] xcorr_pkldata=glob.glob("*daily-xcorr*.pickle") locs=pd.read_csv('stationdvv.txt') nsta=len(locs) #climate_data=pd.read_csv("envcanada_rainfall.csv") ###################### ###################### ### PARAM SETTING #### ###################### ###################### with open('prepro_para.txt') as f: contents = f.read() prepro_para = ast.literal_eval(contents) segwin = prepro_para['segwin'] # length of segment to stack over(in seconds) corrwin=prepro_para['corrwin'] # length of correlation window (in seconds) freqmin=prepro_para['freqmin'] # minimum bandpass filter frequency used in prepro_pkl.py [Hz] freqmax=prepro_para['freqmax'] # maximum bandpass filter frequency used in prepro_pkl.py [Hz] trimtime=prepro_para['trimtime'] # trimtime ("noisy" or "quiet" set in prepro_pkl.py) sps=500 # Sampling rate (in Hertz) corrlen=sps*corrwin # length of correlation window (in number samples) seglen=sps*segwin #length of window to stack correlations over (in number samples) ncorr=int(np.floor(segwin/corrwin)) # number of correlations per segment (stack) f.close() ################################# ################################# ### STRETCHING PARAM SETTING #### ################################# ################################# Epsilon = .10 # Stretching between -Epsilon to +Epsilon (multiply by 100 to get the dv in %) STRETCHING LIMITS #FOR CAUSAL t_ini=0.5 seconds t_ini = 0.5 # Time to start computing the dv/v (in second). Zero is at the zero lag time t_length = 3 # Length of the signal over which the dv/v is computed (in second) delta=500 t_ini_d = t_ini*delta # start dv/v computation at t_ini_d/delta seconds from the signal begining t_length_d = int(t_length*delta) # dv/v computation over t_length_d/delta seconds after t_ini_d/delta limit=corrwin/2. # set window length in plot (-10 to 10) timevec = np.arange(-limit, limit, 1/sps) isrc=0 # setting source index at 0 nsrc=25 # total number of sources (stations) = 25 nrec=nsrc-1 # total number of receivers = nsrc-1 = 24 nfile=nsrc*nrec # total number of station-receiver pairs maxdays=60 # maximum number of days collecting data over all stations (estimate) dv_arr_unmasked=np.zeros((nfile,maxdays)) # initialize dv/v array dv_arr=ma.masked_equal(dv_arr_unmasked,0) # mask zero values dv_avg_unmasked=np.zeros((nsrc,maxdays)) # initialize average dv/v array. stacks dv/v for 1 source + all receivers dv_avg=ma.masked_equal(dv_avg_unmasked,0) # mask zero values cc_arr_unmasked=np.zeros((nfile,maxdays)) cc_arr=ma.masked_equal(cc_arr_unmasked,0) error_arr_unmasked=np.zeros((nfile,maxdays)) error_arr=ma.masked_equal(error_arr_unmasked,0) date = np.array('2020-06-18', dtype=np.datetime64) #Based on trimming, start date should be June 18 2021 datevec=date+
np.arange(maxdays)
numpy.arange
#!/usr/bin/env python # projectS and projectC were written by <NAME>. import time start = time.time() import argparse import cv2 import os import dlib import numpy as np np.set_printoptions(precision=2) import openface from matplotlib import cm fileDir = os.path.dirname(os.path.realpath(__file__)) modelDir = os.path.join(fileDir, '..', 'models') dlibModelDir = os.path.join(modelDir, 'dlib') def getRep(bgrImg): start = time.time() if bgrImg is None: raise Exception("Unable to load image/frame") rgbImg = cv2.cvtColor(bgrImg, cv2.COLOR_BGR2RGB) if args.verbose: print(" + Original size: {}".format(rgbImg.shape)) if args.verbose: print("Loading the image took {} seconds.".format(time.time() - start)) start = time.time() # Get all bounding boxes bb = align.getAllFaceBoundingBoxes(rgbImg) if bb is None: # raise Exception("Unable to find a face: {}".format(imgPath)) return None if args.verbose: print("Face detection took {} seconds.".format(time.time() - start)) start = time.time() alignedFaces = [] for box in bb: alignedFaces.append( align.align( args.imgDim, rgbImg, box, landmarkIndices=openface.AlignDlib.OUTER_EYES_AND_NOSE)) if alignedFaces is None: raise Exception("Unable to align the frame") if args.verbose: print("Alignment took {} seconds.".format(time.time() - start)) start = time.time() reps = [] for alignedFace in alignedFaces: reps.append(net.forward(alignedFace)) if args.verbose: print("Neural network forward pass took {} seconds.".format( time.time() - start)) return reps def projectS(rho, theta, z): p = np.array([np.sqrt(3.) * rho * (np.cos(theta) + np.sin(theta)) / 2., z + 1. + rho * (np.cos(theta) - np.sin(theta)) / 2.]) p += np.array([1.5, 0.5]) p /= 3. return p def projectC(x, y, z): rho =
np.sqrt(x**2 + y**2)
numpy.sqrt
'''Libraries for Prototype selection''' import numpy as np from sklearn.datasets import load_breast_cancer from sklearn.datasets import load_iris from sklearn.datasets import load_digits import cvxpy as cvx import math as mt from sklearn.model_selection import KFold import sklearn.metrics from scipy import stats # lambda = 1/n in original paper class classifier(): """Contains functions for prototype selection""" def __init__(self, X, y, epsilon_, lambda_): """ Store data points as unique indexes, and initialize the required member variables eg. epsilon, lambda, interpoint distances, points in neighborhood :param X: training data :param y: training class :param epsilon_: radius, constant :param lambda_: weight, constant """ self.epsilon_ = epsilon_ self.lambda_ = lambda_ self.X_train = np.asarray(X) self.y_train = np.asarray(y) self.nbr_mask = None self.alpha = np.empty(len(X)) self.xi = np.empty(len(X)) # For testing self.probe = None # How many dimensions are there in train data? self.dim_num = len(self.X_train.shape) # Calculate interpoint distances self.dist = self.compute_dist(self.X_train) # Create points in neighborhood self.nbr_mask = self.dist < self.epsilon_ """Implement modules which will be useful in the train_lp() function for example 1) operations such as intersection, union etc of sets of datapoints 2) check for feasibility for the randomized algorithm approach 3) compute the objective value with current prototype set 4) fill in the train_lp() module which will make use of the above modules and member variables defined by you 5) any other module that you deem fit and useful for the purpose.""" def train_lp(self, verbose=False): """ Implement the linear programming formulation and solve using cvxpy for prototype selection Input: verbose: """ def _union_size(self, train_sets, idx): count = 0 idx_list = [tmp for tmp, x in enumerate(self.nbr_mask[idx] == True) if x] for j in idx_list: if not (j in train_sets): count += 1 return count, idx_list # Separate into L prize-collecting set cover problems train_sets = {} cls_count = np.unique(self.y_train) # cls_num = len(cls_count) for cls in cls_count: # keys in train_sets are indeices of the training data of the same class train_sets[cls] = [i for i, x in enumerate(self.y_train == cls) if x] # Initialize variables/constants alpha_ = cvx.Variable(self.dim_num) xi_ = cvx.Variable(self.dim_num) Cl = np.zeros(alpha_.shape) # Set up obj and constraints cons = [0 <= alpha_, alpha_ <= 1, 0 <= xi_] for true_idx, ref_idx in enumerate(train_sets[cls]): tmp, circle_idx = _union_size(self, train_sets[cls], ref_idx) Cl[ref_idx] = self.lambda_ + tmp nbr_list = np.zeros(alpha_.shape) nbr_list[circle_idx] = 1 cons += [1 - xi_[ref_idx] <= sum(np.asarray(nbr_list) * alpha_)] obj = cvx.Minimize(sum(Cl * alpha_) + sum(xi_)) # Solve for class "cls" prob_cls = cvx.Problem(obj, cons) prob_cls.solve() alpha_.value[alpha_.value > 1] = 1 xi_.value[xi_.value < 0] = 0 # Bernoulli rounding A_l = np.zeros(alpha_.shape) S_i = np.zeros(xi_.shape) flag = False while not flag: for t in range(int(2 * np.log(len(train_sets[cls])))): A_tilt =
np.random.binomial(1, alpha_.value)
numpy.random.binomial
import numpy as np import matplotlib.pyplot as plt from mutations import current_to_best_mutation, rand_mutation # TODO: Visualize the steps of Differential Evolution # TODO: Implement variants of the algorithm (have separate mutation and recombination methods in the class) class DifferentialEvolution: def __init__(self, f, limits, seed=None): """ Expects limits as list of intervals """ self.f = f self.dimensions = len(limits) self.limits = np.asarray(limits).T self.seed = seed self.fitness_history = None self.generation_history = None self.best_in_generation = None def _rescale(self, arr): lower, upper = self.limits diff =
np.abs(upper - lower)
numpy.abs
from __future__ import print_function, division import os, sys, warnings, platform from time import time import numpy as np if "PyPy" not in platform.python_implementation(): from scipy.io import loadmat, savemat from Florence.Tensor import makezero, itemfreq, unique2d, in2d from Florence.Utils import insensitive from .vtk_writer import write_vtu try: import meshpy.triangle as triangle has_meshpy = True except ImportError: has_meshpy = False from .HigherOrderMeshing import * from .NodeArrangement import * from .GeometricPath import * from warnings import warn from copy import deepcopy """ Mesh class providing most of the pre-processing functionalities of the Core module <NAME> - 13/06/2015 """ class Mesh(object): """Mesh class provides the following functionalities: 1. Generating higher order meshes based on a linear mesh, for tris, tets, quads and hexes 2. Generating linear tri and tet meshes based on meshpy back-end 3. Generating linear tri meshes based on distmesh back-end 4. Finding bounary edges and faces for tris and tets, in case they are not provided by the mesh generator 5. Reading Salome meshes in binary (.dat/.txt/etc) format 6. Reading gmsh files .msh 7. Checking for node numbering order of elements and fixing it if desired 8. Writing meshes to unstructured vtk file format (.vtu) in xml and binary formats, including high order elements """ def __init__(self, element_type=None): super(Mesh, self).__init__() # self.faces and self.edges ARE BOUNDARY FACES # AND BOUNDARY EDGES, RESPECTIVELY self.degree = None self.ndim = None self.edim = None self.nelem = None self.nnode = None self.elements = None self.points = None self.corners = None self.edges = None self.faces = None self.element_type = element_type self.face_to_element = None self.edge_to_element = None self.boundary_edge_to_element = None self.boundary_face_to_element = None self.all_faces = None self.all_edges = None self.interior_faces = None self.interior_edges = None # TYPE OF BOUNDARY FACES/EDGES self.boundary_element_type = None # FOR GEOMETRICAL CURVES/SURFACES self.edge_to_curve = None self.face_to_surface = None self.spatial_dimension = None self.reader_type = None self.reader_type_format = None self.reader_type_version = None self.writer_type = None self.filename = None # self.has_meshpy = has_meshpy def SetElements(self,arr): self.elements = arr def SetPoints(self,arr): self.points = arr def SetEdges(self,arr): self.edges = arr def SetFaces(self,arr): self.faces = arr def GetElements(self): return self.elements def GetPoints(self): return self.points def GetEdges(self): assert self.element_type is not None if self.element_type == "tri": self.GetEdgesTri() elif self.element_type == "quad": self.GetEdgesQuad() elif self.element_type == "pent": self.GetEdgesPent() elif self.element_type == "tet": self.GetEdgesTet() elif self.element_type == "hex": self.GetEdgesHex() else: raise ValueError('Type of element not understood') return self.all_edges def GetBoundaryEdges(self): assert self.element_type is not None if self.element_type == "tri": self.GetBoundaryEdgesTri() elif self.element_type == "quad": self.GetBoundaryEdgesQuad() elif self.element_type == "pent": self.GetBoundaryEdgesPent() elif self.element_type == "tet": self.GetBoundaryEdgesTet() elif self.element_type == "hex": self.GetBoundaryEdgesHex() else: raise ValueError('Type of element not understood') return self.edges def GetInteriorEdges(self): assert self.element_type is not None if self.element_type == "tri": self.GetInteriorEdgesTri() elif self.element_type == "quad": self.GetInteriorEdgesQuad() elif self.element_type == "pent": self.GetInteriorEdgesPent() elif self.element_type == "tet": self.GetInteriorEdgesTet() elif self.element_type == "hex": self.GetInteriorEdgesHex() else: raise ValueError('Type of element not understood') return self.interior_edges def GetFaces(self): assert self.element_type is not None if self.element_type == "tet": self.GetFacesTet() elif self.element_type == "hex": self.GetFacesHex() elif self.element_type=="tri" or self.element_type=="quad": raise ValueError("2D mesh does not have faces") else: raise ValueError('Type of element not understood') return self.all_faces def GetBoundaryFaces(self): assert self.element_type is not None if self.element_type == "tet": self.GetBoundaryFacesTet() elif self.element_type == "hex": self.GetBoundaryFacesHex() elif self.element_type=="tri" or self.element_type=="quad": raise ValueError("2D mesh does not have faces") else: raise ValueError('Type of element not understood') return self.faces def GetInteriorFaces(self): assert self.element_type is not None if self.element_type == "tet": self.GetInteriorFacesTet() elif self.element_type == "hex": self.GetInteriorFacesHex() elif self.element_type=="tri" or self.element_type=="quad": raise ValueError("2D mesh does not have faces") else: raise ValueError('Type of element not understood') return self.interior_faces def GetElementsEdgeNumbering(self): assert self.element_type is not None if self.element_type == "tri": return self.GetElementsEdgeNumberingTri() elif self.element_type == "quad": return self.GetElementsEdgeNumberingQuad() else: raise ValueError('Type of element not understood') return self.edge_to_element def GetElementsWithBoundaryEdges(self): assert self.element_type is not None if self.element_type == "tri": return self.GetElementsWithBoundaryEdgesTri() elif self.element_type == "quad": return self.GetElementsWithBoundaryEdgesQuad() else: raise ValueError('Type of element not understood') return self.boundary_edge_to_element def GetElementsFaceNumbering(self): assert self.element_type is not None if self.element_type == "tet": return self.GetElementsFaceNumberingTet() elif self.element_type == "hex": return self.GetElementsFaceNumberingHex() elif self.element_type=="tri" or self.element_type=="quad": raise ValueError("2D mesh does not have faces") else: raise ValueError('Type of element not understood') return self.face_to_element def GetElementsWithBoundaryFaces(self): assert self.element_type is not None if self.element_type == "tet": return self.GetElementsWithBoundaryFacesTet() elif self.element_type == "hex": return self.GetElementsWithBoundaryFacesHex() elif self.element_type=="tri" or self.element_type=="quad": raise ValueError("2D mesh does not have faces") else: raise ValueError('Type of element not understood') return self.boundary_face_to_element @property def Bounds(self): """Returns bounds of a mesh i.e. the minimum and maximum coordinate values in every direction """ assert self.points is not None if self.points.shape[1] == 3: bounds = np.array([[np.min(self.points[:,0]), np.min(self.points[:,1]), np.min(self.points[:,2])], [np.max(self.points[:,0]), np.max(self.points[:,1]), np.max(self.points[:,2])]]) makezero(bounds) return bounds elif self.points.shape[1] == 2: bounds = np.array([[np.min(self.points[:,0]), np.min(self.points[:,1])], [np.max(self.points[:,0]), np.max(self.points[:,1])]]) makezero(bounds) return bounds elif self.points.shape[1] == 1: bounds = np.array([[np.min(self.points[:,0])], [np.max(self.points[:,0])]]) makezero(bounds) return bounds else: raise ValueError("Invalid dimension for mesh coordinates") def GetEdgesTri(self): """Find all edges of a triangular mesh. Sets all_edges property and returns it returns: arr: numpy ndarray of all edges""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.all_edges,np.ndarray): if self.all_edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.all_edges.shape[1]==2 and p > 1: pass else: return self.all_edges node_arranger = NodeArrangementTri(p-1)[0] # CHECK IF FACES ARE ALREADY AVAILABLE if isinstance(self.all_edges,np.ndarray): if self.all_edges.shape[0] > 1 and self.all_edges.shape[1] == p+1: warn("Mesh edges seem to be already computed. I am going to recompute them") # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY edges = np.zeros((3*self.elements.shape[0],p+1),dtype=np.uint64) edges[:self.elements.shape[0],:] = self.elements[:,node_arranger[0,:]] edges[self.elements.shape[0]:2*self.elements.shape[0],:] = self.elements[:,node_arranger[1,:]] edges[2*self.elements.shape[0]:,:] = self.elements[:,node_arranger[2,:]] # REMOVE DUPLICATES edges, idx = unique2d(edges,consider_sort=True,order=False,return_index=True) edge_to_element = np.zeros((edges.shape[0],2),np.int64) edge_to_element[:,0] = idx % self.elements.shape[0] edge_to_element[:,1] = idx // self.elements.shape[0] self.edge_to_element = edge_to_element # DO NOT SET all_edges IF THE CALLER FUNCTION IS GetBoundaryEdgesTet import inspect curframe = inspect.currentframe() calframe = inspect.getouterframes(curframe, 2)[1][3] if calframe != "GetBoundaryEdgesTet": self.all_edges = edges return edges def GetBoundaryEdgesTri(self): """Find boundary edges (lines) of triangular mesh""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.edges,np.ndarray): if self.edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.edges.shape[1] == 2 and p > 1: pass else: return node_arranger = NodeArrangementTri(p-1)[0] # CONCATENATE ALL THE EDGES MADE FROM ELEMENTS all_edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]], self.elements[:,node_arranger[2,:]]),axis=0) # GET UNIQUE ROWS uniques, idx, inv = unique2d(all_edges,consider_sort=True,order=False,return_index=True,return_inverse=True) # ROWS THAT APPEAR ONLY ONCE CORRESPOND TO BOUNDARY EDGES freqs_inv = itemfreq(inv) edges_ext_flags = freqs_inv[freqs_inv[:,1]==1,0] # NOT ARRANGED self.edges = uniques[edges_ext_flags,:] # DETERMINE WHICH FACE OF THE ELEMENT THEY ARE boundary_edge_to_element = np.zeros((edges_ext_flags.shape[0],2),dtype=np.int64) # FURTHER RE-ARRANGEMENT / ARANGE THE NODES BASED ON THE ORDER THEY APPEAR # IN ELEMENT CONNECTIVITY # THIS STEP IS NOT NECESSARY INDEED - ITS JUST FOR RE-ARANGMENT OF EDGES all_edges_in_edges = in2d(all_edges,self.edges,consider_sort=True) all_edges_in_edges = np.where(all_edges_in_edges==True)[0] boundary_edge_to_element[:,0] = all_edges_in_edges % self.elements.shape[0] boundary_edge_to_element[:,1] = all_edges_in_edges // self.elements.shape[0] # ARRANGE FOR ANY ORDER OF BASES/ELEMENTS AND ASSIGN DATA MEMBERS self.edges = self.elements[boundary_edge_to_element[:,0][:,None],node_arranger[boundary_edge_to_element[:,1],:]] self.edges = self.edges.astype(np.uint64) self.boundary_edge_to_element = boundary_edge_to_element return self.edges def GetInteriorEdgesTri(self): """Computes interior edges of a triangular mesh returns: interior_edges ndarray of interior edges edge_flags ndarray of edge flags: 0 for interior and 1 for boundary """ if not isinstance(self.all_edges,np.ndarray): self.GetEdgesTri() if not isinstance(self.edges,np.ndarray): self.GetBoundaryEdgesTri() sorted_all_edges = np.sort(self.all_edges,axis=1) sorted_boundary_edges = np.sort(self.edges,axis=1) x = [] for i in range(self.edges.shape[0]): current_sorted_boundary_edge = np.tile(sorted_boundary_edges[i,:], self.all_edges.shape[0]).reshape(self.all_edges.shape[0],self.all_edges.shape[1]) interior_edges = np.linalg.norm(current_sorted_boundary_edge - sorted_all_edges,axis=1) pos_interior_edges = np.where(interior_edges==0)[0] if pos_interior_edges.shape[0] != 0: x.append(pos_interior_edges) edge_aranger = np.arange(self.all_edges.shape[0]) edge_aranger = np.setdiff1d(edge_aranger,np.array(x)[:,0]) interior_edges = self.all_edges[edge_aranger,:] # GET FLAGS FOR BOUNDRAY AND INTERIOR edge_flags = np.ones(self.all_edges.shape[0],dtype=np.int64) edge_flags[edge_aranger] = 0 self.interior_edges = interior_edges return interior_edges, edge_flags def GetFacesTet(self): """Find all faces (surfaces) in the tetrahedral mesh (boundary & interior). Sets all_faces property and returns it returns: arr: numpy ndarray of all faces """ # DETERMINE DEGREE p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.all_faces,np.ndarray): if self.all_faces.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.all_faces.shape[1] == 3 and p > 1: pass else: return self.all_faces node_arranger = NodeArrangementTet(p-1)[0] fsize = int((p+1.)*(p+2.)/2.) # GET ALL FACES FROM THE ELEMENT CONNECTIVITY faces = np.zeros((4*self.elements.shape[0],fsize),dtype=np.uint64) faces[:self.elements.shape[0],:] = self.elements[:,node_arranger[0,:]] faces[self.elements.shape[0]:2*self.elements.shape[0],:] = self.elements[:,node_arranger[1,:]] faces[2*self.elements.shape[0]:3*self.elements.shape[0],:] = self.elements[:,node_arranger[2,:]] faces[3*self.elements.shape[0]:,:] = self.elements[:,node_arranger[3,:]] # REMOVE DUPLICATES self.all_faces, idx = unique2d(faces,consider_sort=True,order=False,return_index=True) face_to_element = np.zeros((self.all_faces.shape[0],2),np.int64) face_to_element[:,0] = idx % self.elements.shape[0] face_to_element[:,1] = idx // self.elements.shape[0] self.face_to_element = face_to_element return self.all_faces def GetEdgesTet(self): """Find all edges (lines) of tetrahedral mesh (boundary & interior)""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.all_edges,np.ndarray): if self.all_edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.all_edges.shape[1] == 2 and p > 1: pass else: return self.all_edges # FIRST GET BOUNDARY FACES if isinstance(self.all_faces,np.ndarray): if self.all_faces.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.all_faces.shape[1] == 3 and p > 1: self.GetFacesTet() else: self.GetFacesTet() # BUILD A 2D MESH tmesh = Mesh() # tmesh = deepcopy(self) tmesh.element_type = "tri" tmesh.elements = self.all_faces tmesh.nelem = tmesh.elements.shape[0] del tmesh.faces del tmesh.points # COMPUTE ALL EDGES self.all_edges = tmesh.GetEdgesTri() return self.all_edges def GetBoundaryFacesTet(self): """Find boundary faces (surfaces) of a tetrahedral mesh""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.faces,np.ndarray): if self.faces.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.faces.shape[1] == 3 and p > 1: pass else: return node_arranger = NodeArrangementTet(p-1)[0] # CONCATENATE ALL THE FACES MADE FROM ELEMENTS all_faces = np.concatenate((self.elements[:,:3],self.elements[:,[0,1,3]], self.elements[:,[0,2,3]],self.elements[:,[1,2,3]]),axis=0) # GET UNIQUE ROWS uniques, idx, inv = unique2d(all_faces,consider_sort=True,order=False,return_index=True,return_inverse=True) # ROWS THAT APPEAR ONLY ONCE CORRESPOND TO BOUNDARY FACES freqs_inv = itemfreq(inv) faces_ext_flags = freqs_inv[freqs_inv[:,1]==1,0] # NOT ARRANGED self.faces = uniques[faces_ext_flags,:] # DETERMINE WHICH FACE OF THE ELEMENT THEY ARE boundary_face_to_element = np.zeros((faces_ext_flags.shape[0],2),dtype=np.int64) # THE FOLLOWING WILL COMPUTE FACES BASED ON SORTING AND NOT TAKING INTO ACCOUNT # THE ELEMENT CONNECTIVITY # boundary_face_to_element[:,0] = np.remainder(idx[faces_ext_flags],self.elements.shape[0]) # boundary_face_to_element[:,1] = np.floor_divide(idx[faces_ext_flags],self.elements.shape[0]) # OR EQUIVALENTLY # boundary_face_to_element[:,0] = idx[faces_ext_flags] % self.elements.shape[0] # boundary_face_to_element[:,1] = idx[faces_ext_flags] // self.elements.shape[0] # FURTHER RE-ARRANGEMENT / ARANGE THE NODES BASED ON THE ORDER THEY APPEAR # IN ELEMENT CONNECTIVITY # THIS STEP IS NOT NECESSARY INDEED - ITS JUST FOR RE-ARANGMENT OF FACES all_faces_in_faces = in2d(all_faces,self.faces,consider_sort=True) all_faces_in_faces = np.where(all_faces_in_faces==True)[0] # boundary_face_to_element = np.zeros((all_faces_in_faces.shape[0],2),dtype=np.int64) boundary_face_to_element[:,0] = all_faces_in_faces % self.elements.shape[0] boundary_face_to_element[:,1] = all_faces_in_faces // self.elements.shape[0] # ARRANGE FOR ANY ORDER OF BASES/ELEMENTS AND ASSIGN DATA MEMBERS self.faces = self.elements[boundary_face_to_element[:,0][:,None],node_arranger[boundary_face_to_element[:,1],:]] self.faces = self.faces.astype(np.uint64) self.boundary_face_to_element = boundary_face_to_element def GetBoundaryEdgesTet(self): """Find boundary edges (lines) of tetrahedral mesh. Note that for tetrahedrals this function is more robust than Salome's default edge generator """ p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.edges,np.ndarray): if self.edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.edges.shape[1] == 2 and p > 1: pass else: return # FIRST GET BOUNDARY FACES if not isinstance(self.faces,np.ndarray): self.GetBoundaryFacesTet() # BUILD A 2D MESH tmesh = Mesh() tmesh.element_type = "tri" tmesh.elements = self.faces tmesh.nelem = tmesh.elements.shape[0] del tmesh.faces del tmesh.points # ALL THE EDGES CORRESPONDING TO THESE BOUNDARY FACES ARE BOUNDARY EDGES self.edges = tmesh.GetEdgesTri() def GetInteriorFacesTet(self): """Computes interior faces of a tetrahedral mesh returns: interior_faces ndarray of interior faces face_flags 1D array of face flags: 0 for interior and 1 for boundary """ if not isinstance(self.all_faces,np.ndarray): self.GetFacesTet() if not isinstance(self.faces,np.ndarray): self.GetBoundaryFacesTet() face_flags = in2d(self.all_faces.astype(self.faces.dtype),self.faces,consider_sort=True) face_flags[face_flags==True] = 1 face_flags[face_flags==False] = 0 interior_faces = self.all_faces[face_flags==False,:] return interior_faces, face_flags def GetInteriorEdgesTet(self): """Computes interior faces of a tetrahedral mesh returns: interior_edges ndarray of interior edges edge_flags 1D array of edge flags: 0 for interior and 1 for boundary """ if not isinstance(self.all_edges,np.ndarray): self.GetEdgesTet() if not isinstance(self.edges,np.ndarray): self.GetBoundaryEdgesTet() edge_flags = in2d(self.all_edges.astype(self.edges.dtype),self.edges,consider_sort=True) edge_flags[edge_flags==True] = 1 edge_flags[edge_flags==False] = 0 interior_edges = self.all_edges[edge_flags==False,:] self.interior_edges = interior_edges return interior_edges, edge_flags def GetEdgesQuad(self): """Find the all edges of a quadrilateral mesh. Sets all_edges property and returns it returns: arr: numpy ndarray of all edges""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.all_edges,np.ndarray): if self.all_edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.all_edges.shape[1]==2 and p > 1: pass else: return self.all_edges node_arranger = NodeArrangementQuad(p-1)[0] # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]], self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]]),axis=0).astype(np.uint64) # REMOVE DUPLICATES edges, idx = unique2d(edges,consider_sort=True,order=False,return_index=True) edge_to_element = np.zeros((edges.shape[0],2),np.int64) edge_to_element[:,0] = idx % self.elements.shape[0] edge_to_element[:,1] = idx // self.elements.shape[0] self.edge_to_element = edge_to_element # DO NOT SET all_edges IF THE CALLER FUNCTION IS GetBoundaryEdgesHex import inspect curframe = inspect.currentframe() calframe = inspect.getouterframes(curframe, 2)[1][3] if calframe != "GetBoundaryEdgesHex": self.all_edges = edges return edges def GetBoundaryEdgesQuad(self): """Find boundary edges (lines) of a quadrilateral mesh""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.edges,np.ndarray): if self.edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.edges.shape[1] == 2 and p > 1: pass else: return node_arranger = NodeArrangementQuad(p-1)[0] # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY all_edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]], self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]]),axis=0).astype(np.uint64) # GET UNIQUE ROWS uniques, idx, inv = unique2d(all_edges,consider_sort=True,order=False,return_index=True,return_inverse=True) # ROWS THAT APPEAR ONLY ONCE CORRESPOND TO BOUNDARY EDGES freqs_inv = itemfreq(inv) edges_ext_flags = freqs_inv[freqs_inv[:,1]==1,0] # NOT ARRANGED self.edges = uniques[edges_ext_flags,:] # DETERMINE WHICH FACE OF THE ELEMENT THEY ARE boundary_edge_to_element = np.zeros((edges_ext_flags.shape[0],2),dtype=np.int64) # FURTHER RE-ARRANGEMENT / ARANGE THE NODES BASED ON THE ORDER THEY APPEAR # IN ELEMENT CONNECTIVITY # THIS STEP IS NOT NECESSARY INDEED - ITS JUST FOR RE-ARANGMENT OF EDGES all_edges_in_edges = in2d(all_edges,self.edges,consider_sort=True) all_edges_in_edges = np.where(all_edges_in_edges==True)[0] boundary_edge_to_element[:,0] = all_edges_in_edges % self.elements.shape[0] boundary_edge_to_element[:,1] = all_edges_in_edges // self.elements.shape[0] # ARRANGE FOR ANY ORDER OF BASES/ELEMENTS AND ASSIGN DATA MEMBERS self.edges = self.elements[boundary_edge_to_element[:,0][:,None],node_arranger[boundary_edge_to_element[:,1],:]] self.edges = self.edges.astype(np.uint64) self.boundary_edge_to_element = boundary_edge_to_element return self.edges def GetInteriorEdgesQuad(self): """Computes interior edges of a quadrilateral mesh returns: interior_faces ndarray of interior edges edge_flags ndarray of edge flags: 0 for interior and 1 for boundary """ if not isinstance(self.all_edges,np.ndarray): self.GetEdgesQuad() if not isinstance(self.edges,np.ndarray): self.GetBoundaryEdgesQuad() sorted_all_edges = np.sort(self.all_edges,axis=1) sorted_boundary_edges = np.sort(self.edges,axis=1) x = [] for i in range(self.edges.shape[0]): current_sorted_boundary_edge = np.tile(sorted_boundary_edges[i,:], self.all_edges.shape[0]).reshape(self.all_edges.shape[0],self.all_edges.shape[1]) interior_edges = np.linalg.norm(current_sorted_boundary_edge - sorted_all_edges,axis=1) pos_interior_edges = np.where(interior_edges==0)[0] if pos_interior_edges.shape[0] != 0: x.append(pos_interior_edges) edge_aranger = np.arange(self.all_edges.shape[0]) edge_aranger = np.setdiff1d(edge_aranger,np.array(x)[:,0]) interior_edges = self.all_edges[edge_aranger,:] # GET FLAGS FOR BOUNDRAY AND INTERIOR edge_flags = np.ones(self.all_edges.shape[0],dtype=np.int64) edge_flags[edge_aranger] = 0 self.interior_edges = interior_edges return interior_edges, edge_flags def GetFacesHex(self): """Find all faces (surfaces) in the hexahedral mesh (boundary & interior). Sets all_faces property and returns it returns: arr: numpy ndarray of all faces """ # DETERMINE DEGREE p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.all_faces,np.ndarray): if self.all_faces.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.all_faces.shape[1] == 4 and p > 1: pass else: return self.all_faces node_arranger = NodeArrangementHex(p-1)[0] fsize = int((p+1)**3) # GET ALL FACES FROM THE ELEMENT CONNECTIVITY faces = np.concatenate((np.concatenate(( np.concatenate((np.concatenate((np.concatenate((self.elements[:,node_arranger[0,:]], self.elements[:,node_arranger[1,:]]),axis=0),self.elements[:,node_arranger[2,:]]),axis=0), self.elements[:,node_arranger[3,:]]),axis=0),self.elements[:,node_arranger[4,:]]),axis=0), self.elements[:,node_arranger[5,:]]),axis=0).astype(np.int64) # REMOVE DUPLICATES self.all_faces, idx = unique2d(faces,consider_sort=True,order=False,return_index=True) face_to_element = np.zeros((self.all_faces.shape[0],2),np.int64) face_to_element[:,0] = idx % self.elements.shape[0] face_to_element[:,1] = idx // self.elements.shape[0] self.face_to_element = face_to_element return self.all_faces def GetEdgesHex(self): """Find all edges (lines) of tetrahedral mesh (boundary & interior)""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.all_edges,np.ndarray): if self.all_edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.all_edges.shape[1] == 2 and p > 1: pass else: return self.all_edges # FIRST GET BOUNDARY FACES if not isinstance(self.all_faces,np.ndarray): self.GetFacesHex() # BUILD A 2D MESH tmesh = Mesh() # tmesh = deepcopy(self) tmesh.element_type = "quad" tmesh.elements = self.all_faces tmesh.nelem = tmesh.elements.shape[0] del tmesh.faces del tmesh.points # COMPUTE ALL EDGES self.all_edges = tmesh.GetEdgesQuad() return self.all_edges def GetBoundaryFacesHex(self): """Find boundary faces (surfaces) of a hexahedral mesh""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.faces,np.ndarray): if self.faces.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.faces.shape[1] == 4 and p > 1: pass else: return node_arranger = NodeArrangementHex(p-1)[0] # CONCATENATE ALL THE FACES MADE FROM ELEMENTS all_faces = np.concatenate((np.concatenate(( np.concatenate((np.concatenate((np.concatenate((self.elements[:,node_arranger[0,:]], self.elements[:,node_arranger[1,:]]),axis=0),self.elements[:,node_arranger[2,:]]),axis=0), self.elements[:,node_arranger[3,:]]),axis=0),self.elements[:,node_arranger[4,:]]),axis=0), self.elements[:,node_arranger[5,:]]),axis=0).astype(np.int64) # GET UNIQUE ROWS uniques, idx, inv = unique2d(all_faces,consider_sort=True,order=False,return_index=True,return_inverse=True) # ROWS THAT APPEAR ONLY ONCE CORRESPOND TO BOUNDARY FACES freqs_inv = itemfreq(inv) faces_ext_flags = freqs_inv[freqs_inv[:,1]==1,0] # NOT ARRANGED self.faces = uniques[faces_ext_flags,:] # DETERMINE WHICH FACE OF THE ELEMENT THEY ARE boundary_face_to_element = np.zeros((faces_ext_flags.shape[0],2),dtype=np.int64) # FURTHER RE-ARRANGEMENT / ARANGE THE NODES BASED ON THE ORDER THEY APPEAR # IN ELEMENT CONNECTIVITY # THIS STEP IS NOT NECESSARY INDEED - ITS JUST FOR RE-ARANGMENT OF FACES all_faces_in_faces = in2d(all_faces,self.faces,consider_sort=True) all_faces_in_faces = np.where(all_faces_in_faces==True)[0] # boundary_face_to_element = np.zeros((all_faces_in_faces.shape[0],2),dtype=np.int64) boundary_face_to_element[:,0] = all_faces_in_faces % self.elements.shape[0] boundary_face_to_element[:,1] = all_faces_in_faces // self.elements.shape[0] # ARRANGE FOR ANY ORDER OF BASES/ELEMENTS AND ASSIGN DATA MEMBERS self.faces = self.elements[boundary_face_to_element[:,0][:,None],node_arranger[boundary_face_to_element[:,1],:]] self.faces = self.faces.astype(np.uint64) self.boundary_face_to_element = boundary_face_to_element def GetBoundaryEdgesHex(self): """Find boundary edges (lines) of hexahedral mesh. """ p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.edges,np.ndarray): if self.edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.edges.shape[1] == 2 and p > 1: pass else: return # FIRST GET BOUNDARY FACES if not isinstance(self.faces,np.ndarray): self.GetBoundaryFacesHex() # BUILD A 2D MESH tmesh = Mesh() tmesh.element_type = "quad" tmesh.elements = self.faces tmesh.nelem = tmesh.elements.shape[0] del tmesh.faces del tmesh.points # ALL THE EDGES CORRESPONDING TO THESE BOUNDARY FACES ARE BOUNDARY EDGES self.edges = tmesh.GetEdgesQuad() def GetInteriorFacesHex(self): """Computes interior faces of a hexahedral mesh returns: interior_faces ndarray of interior faces face_flags 1D array of face flags: 0 for interior and 1 for boundary """ if not isinstance(self.all_faces,np.ndarray): self.GetFacesHex() if not isinstance(self.faces,np.ndarray): self.GetBoundaryFacesHex() face_flags = in2d(self.all_faces.astype(self.faces.dtype),self.faces,consider_sort=True) face_flags[face_flags==True] = 1 face_flags[face_flags==False] = 0 interior_faces = self.all_faces[face_flags==False,:] return interior_faces, face_flags def GetInteriorEdgesHex(self): """Computes interior faces of a hexahedral mesh returns: interior_edges ndarray of interior edges edge_flags 1D array of edge flags: 0 for interior and 1 for boundary """ if not isinstance(self.all_edges,np.ndarray): self.GetEdgesHex() if not isinstance(self.edges,np.ndarray): self.GetBoundaryEdgesHex() edge_flags = in2d(self.all_edges.astype(self.edges.dtype),self.edges,consider_sort=True) edge_flags[edge_flags==True] = 1 edge_flags[edge_flags==False] = 0 interior_edges = self.all_edges[edge_flags==False,:] self.interior_edges = interior_edges return interior_edges, edge_flags def GetEdgesPent(self): """Find the all edges of a pentagonal mesh. Sets all_edges property and returns it returns: arr: numpy ndarray of all edges""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.all_edges,np.ndarray): if self.all_edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.all_edges.shape[1]==2 and p > 1: pass else: return self.all_edges node_arranger = np.array([ [0,1], [1,2], [2,3], [3,4], [4,0], ]) # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]], self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]], self.elements[:,node_arranger[4,:]]),axis=0).astype(np.uint64) # REMOVE DUPLICATES edges, idx = unique2d(edges,consider_sort=True,order=False,return_index=True) edge_to_element = np.zeros((edges.shape[0],2),np.int64) edge_to_element[:,0] = idx % self.elements.shape[0] edge_to_element[:,1] = idx // self.elements.shape[0] self.edge_to_element = edge_to_element self.all_edges = edges return edges def GetBoundaryEdgesPent(self): """Find boundary edges (lines) of a pentagonal mesh""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.edges,np.ndarray): if self.edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.edges.shape[1] == 2 and p > 1: pass else: return node_arranger = np.array([ [0,1], [1,2], [2,3], [3,4], [4,0], ]) # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY all_edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]], self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]], self.elements[:,node_arranger[4,:]]),axis=0).astype(np.uint64) # GET UNIQUE ROWS uniques, idx, inv = unique2d(all_edges,consider_sort=True,order=False,return_index=True,return_inverse=True) # ROWS THAT APPEAR ONLY ONCE CORRESPOND TO BOUNDARY EDGES freqs_inv = itemfreq(inv) edges_ext_flags = freqs_inv[freqs_inv[:,1]==1,0] # NOT ARRANGED self.edges = uniques[edges_ext_flags,:] # DETERMINE WHICH FACE OF THE ELEMENT THEY ARE boundary_edge_to_element = np.zeros((edges_ext_flags.shape[0],2),dtype=np.int64) # FURTHER RE-ARRANGEMENT / ARANGE THE NODES BASED ON THE ORDER THEY APPEAR # IN ELEMENT CONNECTIVITY # THIS STEP IS NOT NECESSARY INDEED - ITS JUST FOR RE-ARANGMENT OF EDGES all_edges_in_edges = in2d(all_edges,self.edges,consider_sort=True) all_edges_in_edges = np.where(all_edges_in_edges==True)[0] boundary_edge_to_element[:,0] = all_edges_in_edges % self.elements.shape[0] boundary_edge_to_element[:,1] = all_edges_in_edges // self.elements.shape[0] # ARRANGE FOR ANY ORDER OF BASES/ELEMENTS AND ASSIGN DATA MEMBERS self.edges = self.elements[boundary_edge_to_element[:,0][:,None],node_arranger[boundary_edge_to_element[:,1],:]] self.edges = self.edges.astype(np.uint64) self.boundary_edge_to_element = boundary_edge_to_element return self.edges def GetInteriorEdgesPent(self): """Computes interior edges of a pentagonal mesh returns: interior_faces ndarray of interior edges edge_flags ndarray of edge flags: 0 for interior and 1 for boundary """ if not isinstance(self.all_edges,np.ndarray): self.GetEdgesPent() if not isinstance(self.edges,np.ndarray): self.GetBoundaryEdgesPent() sorted_all_edges = np.sort(self.all_edges,axis=1) sorted_boundary_edges = np.sort(self.edges,axis=1) x = [] for i in range(self.edges.shape[0]): current_sorted_boundary_edge = np.tile(sorted_boundary_edges[i,:], self.all_edges.shape[0]).reshape(self.all_edges.shape[0],self.all_edges.shape[1]) interior_edges = np.linalg.norm(current_sorted_boundary_edge - sorted_all_edges,axis=1) pos_interior_edges = np.where(interior_edges==0)[0] if pos_interior_edges.shape[0] != 0: x.append(pos_interior_edges) edge_aranger = np.arange(self.all_edges.shape[0]) edge_aranger = np.setdiff1d(edge_aranger,np.array(x)[:,0]) interior_edges = self.all_edges[edge_aranger,:] # GET FLAGS FOR BOUNDRAY AND INTERIOR edge_flags = np.ones(self.all_edges.shape[0],dtype=np.int64) edge_flags[edge_aranger] = 0 self.interior_edges = interior_edges return interior_edges, edge_flags def GetHighOrderMesh(self,p=1, silent=True, **kwargs): """Given a linear tri, tet, quad or hex mesh compute high order mesh based on it. This is a static method linked to the HigherOrderMeshing module""" if not isinstance(p,int): raise ValueError("p must be an integer") else: if p < 1: raise ValueError("Value of p={} is not acceptable. Provide p>=1.".format(p)) if self.degree is None: self.InferPolynomialDegree() C = p-1 if 'C' in kwargs.keys(): if kwargs['C'] != p - 1: raise ValueError("Did not understand the specified interpolation degree of the mesh") del kwargs['C'] # DO NOT COMPUTE IF ALREADY COMPUTED FOR THE SAME ORDER if self.degree == None: self.degree = self.InferPolynomialDegree() if self.degree == p: return # SITUATIONS WHEN ANOTHER HIGH ORDER MESH IS REQUIRED, WITH ONE HIGH # ORDER MESH ALREADY AVAILABLE if self.degree != 1 and self.degree - 1 != C: dum = self.GetLinearMesh(remap=True) self.__dict__.update(dum.__dict__) if not silent: print('Generating p = '+str(C+1)+' mesh based on the linear mesh...') t_mesh = time() # BUILD A NEW MESH BASED ON THE LINEAR MESH if self.element_type == 'line': nmesh = HighOrderMeshLine(C,self,**kwargs) if self.element_type == 'tri': if self.edges is None: self.GetBoundaryEdgesTri() # nmesh = HighOrderMeshTri(C,self,**kwargs) nmesh = HighOrderMeshTri_SEMISTABLE(C,self,**kwargs) elif self.element_type == 'tet': # nmesh = HighOrderMeshTet(C,self,**kwargs) nmesh = HighOrderMeshTet_SEMISTABLE(C,self,**kwargs) elif self.element_type == 'quad': if self.edges is None: self.GetBoundaryEdgesQuad() nmesh = HighOrderMeshQuad(C,self,**kwargs) elif self.element_type == 'hex': nmesh = HighOrderMeshHex(C,self,**kwargs) self.points = nmesh.points self.elements = nmesh.elements.astype(np.uint64) if isinstance(self.corners,np.ndarray): # NOT NECESSARY BUT GENERIC self.corners = nmesh.corners.astype(np.uint64) if isinstance(self.edges,np.ndarray): self.edges = nmesh.edges.astype(np.uint64) if isinstance(self.faces,np.ndarray): if isinstance(nmesh.faces,np.ndarray): self.faces = nmesh.faces.astype(np.uint64) self.nelem = nmesh.nelem self.nnode = self.points.shape[0] self.element_type = nmesh.info self.degree = C+1 self.ChangeType() if not silent: print('Finished generating the high order mesh. Time taken', time()-t_mesh,'sec') def EdgeLengths(self,which_edges='boundary'): """Computes length of edges, for 2D and 3D meshes which_edges: [str] 'boundary' for boundary edges only and 'all' for all edges """ assert self.points is not None assert self.element_type is not None lengths = None if which_edges == 'boundary': if self.edges is None: self.GetBoundaryEdges() edge_coords = self.points[self.edges[:,:2],:] lengths = np.linalg.norm(edge_coords[:,1,:] - edge_coords[:,0,:],axis=1) elif which_edges == 'all': if self.all_edges is None: self.GetEdges() edge_coords = self.points[self.all_edges[:,:2],:] lengths = np.linalg.norm(edge_coords[:,1,:] - edge_coords[:,0,:],axis=1) return lengths def Lengths(self,): """Computes length of all types of elements """ self.__do_essential_memebers_exist__() if self.element_type == "line": coords = self.points[self.elements[:,:2],:] lengths = np.linalg.norm(coords[:,1,:] - coords[:,0,:],axis=1) else: self.GetEdges() coord = self.all_edges coords = self.points[self.elements[:,:2],:] lengths = np.linalg.norm(coords[:,1,:] - coords[:,0,:],axis=1) return lengths def Areas(self, with_sign=False, gpoints=None): """Find areas of all 2D elements [tris, quads]. For 3D elements returns surface areas of all faces input: with_sign: [str] compute with/without sign gpoints: [ndarray] given coordinates to use instead of self.points returns: 1D array of nelem x 1 containing areas """ assert self.elements is not None assert self.element_type is not None if gpoints is None: assert self.points is not None gpoints = self.points if self.element_type == "tri": points = np.ones((gpoints.shape[0],3),dtype=np.float64) points[:,:2] = gpoints # FIND AREAS OF ALL THE ELEMENTS area = 0.5*np.linalg.det(points[self.elements[:,:3],:]) elif self.element_type == "quad": # NODE ORDERING IS IRRELEVANT, AS IT IS THESE AREAS # WHICH DETERMINE NODE ORDERING # AREA OF QUAD ABCD = AREA OF ABC + AREA OF ACD points = np.ones((gpoints.shape[0],3),dtype=np.float64) points[:,:2] = gpoints # FIND AREAS ABC area0 = np.linalg.det(points[self.elements[:,:3],:]) # FIND AREAS ACD area1 = np.linalg.det(points[self.elements[:,[0,2,3]],:]) # FIND AREAS OF ALL THE ELEMENTS area = 0.5*(area0+area1) elif self.element_type == "tet": # GET ALL THE FACES faces = self.GetFacesTet() points = np.ones((gpoints.shape[0],3),dtype=np.float64) points[:,:2]=gpoints[:,:2] area0 = np.linalg.det(points[faces[:,:3],:]) points[:,:2]=gpoints[:,[2,0]] area1 = np.linalg.det(points[faces[:,:3],:]) points[:,:2]=gpoints[:,[1,2]] area2 = np.linalg.det(points[faces[:,:3],:]) area = 0.5*np.linalg.norm(area0+area1+area2) elif self.element_type == "hex": from Florence.Tensor import unique2d C = self.InferPolynomialDegree() - 1 area = 0 node_arranger = NodeArrangementHex(C)[0] for i in range(node_arranger.shape[0]): # print node_arranger[i,:] # AREA OF FACES points = np.ones((gpoints.shape[0],3),dtype=np.float64) if i==0 or i==1: points[:,:2] = gpoints[:,:2] elif i==2 or i==3: points[:,:2] = gpoints[:,[0,2]] elif i==4 or i==5: points[:,:2] = gpoints[:,1:] # FIND AREAS ABC area0 = np.linalg.det(points[self.elements[:,node_arranger[i,:3]],:]) # FIND AREAS ACD area1 = np.linalg.det(points[self.elements[:,node_arranger[i,1:]],:]) # FIND AREAS OF ALL THE ELEMENTS area += 0.5*np.linalg.norm(area0+area1) # print area raise ValueError('Hex areas implementation requires further checks') else: raise NotImplementedError("Computing areas for", self.element_type, "elements not implemented yet") if with_sign is False: if self.element_type == "tri" or self.element_type == "quad": area = np.abs(area) elif self.element_type == "tet": raise NotImplementedError('Numbering order of tetrahedral faces could not be determined') return area def Volumes(self, with_sign=False, gpoints=None): """Find Volumes of all 3D elements [tets, hexes] input: with_sign: [str] compute with/without sign gpoints: [ndarray] given coordinates to use instead of self.points returns: 1D array of nelem x 1 containing volumes """ assert self.elements is not None assert self.element_type is not None if self.points.shape[1] == 2: raise ValueError("2D mesh does not have volume") if gpoints is None: assert self.points is not None gpoints = self.points if self.element_type == "tet": a = gpoints[self.elements[:,0],:] b = gpoints[self.elements[:,1],:] c = gpoints[self.elements[:,2],:] d = gpoints[self.elements[:,3],:] det_array = np.dstack((a-d,b-d,c-d)) # FIND VOLUME OF ALL THE ELEMENTS volume = 1./6.*np.linalg.det(det_array) elif self.element_type == "hex": # Refer: https://en.wikipedia.org/wiki/Parallelepiped a = gpoints[self.elements[:,0],:] b = gpoints[self.elements[:,1],:] c = gpoints[self.elements[:,3],:] d = gpoints[self.elements[:,4],:] det_array = np.dstack((b-a,c-a,d-a)) # FIND VOLUME OF ALL THE ELEMENTS volume = np.linalg.det(det_array) else: raise NotImplementedError("Computing volumes for", self.element_type, "elements not implemented yet") if with_sign is False: volume = np.abs(volume) return volume def Sizes(self, with_sign=False): """Computes the size of elements for all element types. This is a generic method that for 1D=lengths, for 2D=areas and for 3D=volumes. It works for planar and curved elements """ self.__do_essential_memebers_exist__() try: from Florence import DisplacementFormulation except ImportError: raise ValueError("This functionality requires Florence's support") if self.element_type != "line": # FOR LINE ELEMENTS THIS APPROACH DOES NOT WORK AS JACOBIAN IS NOT WELL DEFINED formulation = DisplacementFormulation(self) sizes = np.zeros(self.nelem) if not with_sign: for elem in range(self.nelem): LagrangeElemCoords = self.points[self.elements[elem,:],:] sizes[elem] = formulation.GetVolume(formulation.function_spaces[0], LagrangeElemCoords, LagrangeElemCoords, False, elem=elem) else: for elem in range(self.nelem): LagrangeElemCoords = self.points[self.elements[elem,:],:] sizes[elem] = formulation.GetSignedVolume(formulation.function_spaces[0], LagrangeElemCoords, LagrangeElemCoords, False, elem=elem) return sizes else: warn("Sizes of line elements could be incorrect if the mesh is curvilinear") return self.Lengths() def AspectRatios(self,algorithm='edge_based'): """Compute aspect ratio of the mesh element-by-element. For 2D meshes aspect ratio is aspect ratio is defined as the ratio of maximum edge length to minimum edge length. For 3D meshes aspect ratio can be either length or area based. input: algorithm: [str] 'edge_based' or 'face_based' returns: aspect_ratio: [1D array] of size (self.nelem) containing aspect ratio of elements """ assert self.points is not None assert self.element_type is not None aspect_ratio = None if algorithm == 'edge_based': if self.element_type == "tri": edge_coords = self.points[self.elements[:,:3],:] AB = np.linalg.norm(edge_coords[:,1,:] - edge_coords[:,0,:],axis=1) AC = np.linalg.norm(edge_coords[:,2,:] - edge_coords[:,0,:],axis=1) BC = np.linalg.norm(edge_coords[:,2,:] - edge_coords[:,1,:],axis=1) minimum = np.minimum(np.minimum(AB,AC),BC) maximum = np.maximum(np.maximum(AB,AC),BC) aspect_ratio = 1.0*maximum/minimum elif self.element_type == "quad": edge_coords = self.points[self.elements[:,:4],:] AB = np.linalg.norm(edge_coords[:,1,:] - edge_coords[:,0,:],axis=1) BC = np.linalg.norm(edge_coords[:,2,:] - edge_coords[:,1,:],axis=1) CD = np.linalg.norm(edge_coords[:,3,:] - edge_coords[:,2,:],axis=1) DA = np.linalg.norm(edge_coords[:,0,:] - edge_coords[:,3,:],axis=1) minimum = np.minimum(np.minimum(np.minimum(AB,BC),CD),DA) maximum = np.maximum(np.maximum(np.maximum(AB,BC),CD),DA) aspect_ratio = 1.0*maximum/minimum elif self.element_type == "tet": edge_coords = self.points[self.elements[:,:4],:] AB = np.linalg.norm(edge_coords[:,1,:] - edge_coords[:,0,:],axis=1) AC = np.linalg.norm(edge_coords[:,2,:] - edge_coords[:,0,:],axis=1) AD = np.linalg.norm(edge_coords[:,3,:] - edge_coords[:,0,:],axis=1) BC = np.linalg.norm(edge_coords[:,2,:] - edge_coords[:,1,:],axis=1) BD = np.linalg.norm(edge_coords[:,3,:] - edge_coords[:,1,:],axis=1) CD = np.linalg.norm(edge_coords[:,3,:] - edge_coords[:,2,:],axis=1) minimum = np.minimum(np.minimum(np.minimum(np.minimum(np.minimum(AB,AC),AD),BC),BD),CD) maximum = np.maximum(np.maximum(np.maximum(np.maximum(np.maximum(AB,AC),AD),BC),BD),CD) aspect_ratio = 1.0*maximum/minimum elif self.element_type == "hex": edge_coords = self.points[self.elements[:,:8],:] AB = np.linalg.norm(edge_coords[:,1,:] - edge_coords[:,0,:],axis=1) BC = np.linalg.norm(edge_coords[:,2,:] - edge_coords[:,1,:],axis=1) CD = np.linalg.norm(edge_coords[:,3,:] - edge_coords[:,2,:],axis=1) DA = np.linalg.norm(edge_coords[:,0,:] - edge_coords[:,3,:],axis=1) minimum0 = np.minimum(np.minimum(np.minimum(AB,BC),CD),DA) maximum0 = np.maximum(np.maximum(np.maximum(AB,BC),CD),DA) AB = np.linalg.norm(edge_coords[:,5,:] - edge_coords[:,4,:],axis=1) BC = np.linalg.norm(edge_coords[:,6,:] - edge_coords[:,5,:],axis=1) CD = np.linalg.norm(edge_coords[:,7,:] - edge_coords[:,6,:],axis=1) DA = np.linalg.norm(edge_coords[:,4,:] - edge_coords[:,7,:],axis=1) minimum1 = np.minimum(np.minimum(np.minimum(AB,BC),CD),DA) maximum1 = np.maximum(np.maximum(np.maximum(AB,BC),CD),DA) AB = np.linalg.norm(edge_coords[:,4,:] - edge_coords[:,0,:],axis=1) BC = np.linalg.norm(edge_coords[:,5,:] - edge_coords[:,1,:],axis=1) CD = np.linalg.norm(edge_coords[:,6,:] - edge_coords[:,2,:],axis=1) DA = np.linalg.norm(edge_coords[:,7,:] - edge_coords[:,3,:],axis=1) minimum2 = np.minimum(np.minimum(np.minimum(AB,BC),CD),DA) maximum2 = np.maximum(np.maximum(np.maximum(AB,BC),CD),DA) minimum = np.minimum(minimum0,np.minimum(minimum1,minimum2)) maximum = np.maximum(maximum0,np.maximum(maximum1,maximum2)) aspect_ratio = 1.0*maximum/minimum elif self.element_type == "line": raise ValueError("Line elments do no have aspect ratio") elif algorithm == 'face_based': raise NotImplementedError("Face/area based aspect ratio is not implemented yet") return aspect_ratio def FaceNormals(self): """Computes outward unit normals on faces. This is a generic method for all element types apart from lines. If the mesh is in 2D plane then the unit outward normals will point in Z direction. If the mesh is quad or tri type but in 3D plane, this will still compute the correct unit outward normals. outwardness can only be guaranteed for volume meshes. This method is different from the method self.Normals() as the latter can compute normals for 1D/2D elements in-plane """ self.__do_memebers_exist__() points = np.copy(self.points) if points.shape[1] < 3: dum = np.zeros((points.shape[0],3)) dum[:,:points.shape[1]] = points points = dum if self.element_type == "tet" or self.element_type == "hex": faces = self.faces elif self.element_type == "tri" or self.element_type == "quad": faces = self.elements else: raise ValueError("Cannot compute face normals on {}".format(self.element_type)) face_coords = self.points[faces[:,:3],:] p1p0 = face_coords[:,1,:] - face_coords[:,0,:] p2p0 = face_coords[:,2,:] - face_coords[:,0,:] normals = np.cross(p1p0,p2p0) norm_normals = np.linalg.norm(normals,axis=1) normals[:,0] /= norm_normals normals[:,1] /= norm_normals normals[:,2] /= norm_normals # CHECK IF THE NORMAL IS OUTWARD - FOR LINES DIRECTIONALITY DOES NOT MATTER if self.element_type == "tet" or self.element_type == "hex": self.GetElementsWithBoundaryFaces() meds = self.Medians() face_element_meds = meds[self.boundary_face_to_element[:,0],:] p1pm = face_coords[:,1,:] - face_element_meds # IF THE DOT PROUCT OF NORMALS AND EDGE-MED NODE VECTOR IS NEGATIVE THEN FLIP _check = np.einsum("ij,ij->i",normals,p1pm) normals[np.less(_check,0.)] = -normals[np.less(_check,0.)] return normals def Normals(self, show_plot=False): """Computes unit outward normals to the boundary for all element types. Unity and outwardness are guaranteed """ self.__do_memebers_exist__() ndim = self.InferSpatialDimension() if self.element_type == "tet" or self.element_type == "hex": normals = self.FaceNormals() elif self.element_type == "tri" or self.element_type == "quad" or self.element_type == "line": if self.points.shape[1] == 3: normals = self.FaceNormals() else: if self.element_type == "tri" or self.element_type == "quad": edges = self.edges elif self.element_type == "line": edges = self.elements edge_coords = self.points[edges[:,:2],:] p1p0 = edge_coords[:,1,:] - edge_coords[:,0,:] normals = np.zeros_like(p1p0) normals[:,0] = -p1p0[:,1] normals[:,1] = p1p0[:,0] norm_normals = np.linalg.norm(normals,axis=1) normals[:,0] /= norm_normals normals[:,1] /= norm_normals # CHECK IF THE NORMAL IS OUTWARD - FOR LINES DIRECTIONALITY DOES NOT MATTER if self.element_type == "tri" or self.element_type == "quad": self.GetElementsWithBoundaryEdges() meds = self.Medians() edge_element_meds = meds[self.boundary_edge_to_element[:,0],:] p1pm = edge_coords[:,1,:] - edge_element_meds # IF THE DOT PROUCT OF NORMALS AND EDGE-MED NODE VECTOR IS NEGATIVE THEN FLIP _check = np.einsum("ij,ij->i",normals,p1pm) normals[np.less(_check,0.)] = -normals[np.less(_check,0.)] if show_plot: if ndim == 2: mid_edge_coords = 0.5*(edge_coords[:,1,:] + edge_coords[:,0,:]) import matplotlib.pyplot as plt figure = plt.figure() self.SimplePlot(figure=figure, show_plot=False) q = plt.quiver(mid_edge_coords[:,0], mid_edge_coords[:,1], normals[:,0], normals[:,1], color='Teal', headlength=5, width=0.004) plt.axis('equal') plt.axis('off') plt.tight_layout() plt.show() elif ndim == 3: mid_face_coords = np.sum(self.points[self.faces,:3],axis=1)/self.faces.shape[1] import os os.environ['ETS_TOOLKIT'] = 'qt4' from mayavi import mlab figure = mlab.figure(bgcolor=(1,1,1),fgcolor=(1,1,1),size=(1000,800)) self.SimplePlot(figure=figure, show_plot=False) mlab.quiver3d(mid_face_coords[:,0], mid_face_coords[:,1], mid_face_coords[:,2], normals[:,0], normals[:,1], normals[:,2], color=(0.,128./255,128./255),line_width=2) mlab.show() return normals def Angles(self, degrees=True): """Compute angles of 2D meshes. Strictly 2D meshes and linear elements. If the mesh is curved the angles would be inaccurate input: degrees [bool] if True returns angles in degrees otherwise in radians returns: angles [2D array] of angles per element. Angles are computed per element so every element will have as many angles as it's nodes """ self.__do_essential_memebers_exist__() if self.InferElementalDimension() != 2: raise ValueError("Angles can be computed only for 2D elements") if self.InferSpatialDimension() != 2: raise ValueError("Angles can be computed only in 2-dimensional plane") nodeperelem = self.InferNumberOfNodesPerLinearElement() angles = np.zeros((self.nelem, nodeperelem)) norm = lambda x: np.linalg.norm(x,axis=1) edge_coords = self.points[self.elements[:,:],:] if self.element_type == "tri": AB = edge_coords[:,1,:] - edge_coords[:,0,:] AC = edge_coords[:,2,:] - edge_coords[:,0,:] BC = edge_coords[:,2,:] - edge_coords[:,1,:] angles[:,0] = np.einsum("ij,ij->i",AB,AC) / (norm(AB)*norm(AC)) angles[:,1] = np.einsum("ij,ij->i",AC,BC) / (norm(AC)*norm(BC)) angles[:,2] = np.einsum("ij,ij->i",BC,-AB)/ (norm(BC)*norm(AB)) angles = np.arccos(angles) elif self.element_type == "quad": AB = edge_coords[:,1,:] - edge_coords[:,0,:] BC = edge_coords[:,2,:] - edge_coords[:,1,:] CD = edge_coords[:,3,:] - edge_coords[:,2,:] DA = edge_coords[:,0,:] - edge_coords[:,3,:] angles[:,0] = np.einsum("ij,ij->i",AB,BC) / (norm(AB)*norm(BC)) angles[:,1] = np.einsum("ij,ij->i",BC,CD) / (norm(BC)*norm(CD)) angles[:,2] = np.einsum("ij,ij->i",CD,DA) / (norm(CD)*norm(DA)) angles[:,3] = np.einsum("ij,ij->i",DA,-AB)/ (norm(DA)*norm(AB)) angles = np.arccos(angles) if degrees: angles *= 180/np.pi return angles def BoundingBoxes(self, show_plot=False, figure=None): """Computes a bounding box for every element. This method complements the Bounds method/property in that it computes the bounds for every individual element returns: bboxes [3D array] of nelem x ndim x ndim of bounding boxes for every element """ self.__do_essential_memebers_exist__() ndim = self.InferSpatialDimension() all_elem_coords = self.points[self.elements] mins = all_elem_coords.min(axis=1) maxs = all_elem_coords.max(axis=1) bboxes = np.zeros((2*self.nelem,self.points.shape[1])) bboxes[::2] = mins bboxes[1::2] = maxs bboxes = bboxes.reshape(self.nelem,2,self.points.shape[1]) if show_plot: if ndim == 3: point_generator = lambda bbox: np.array([ [ bbox[0,0], bbox[0,1], bbox[0,2] ], [ bbox[1,0], bbox[0,1], bbox[0,2] ], [ bbox[1,0], bbox[1,1], bbox[0,2] ], [ bbox[0,0], bbox[1,1], bbox[0,2] ], [ bbox[0,0], bbox[0,1], bbox[1,2] ], [ bbox[1,0], bbox[0,1], bbox[1,2] ], [ bbox[1,0], bbox[1,1], bbox[1,2] ], [ bbox[0,0], bbox[1,1], bbox[1,2] ] ]) elif ndim == 2: point_generator = lambda bbox: np.array([ [ bbox[0,0], bbox[0,1] ], [ bbox[1,0], bbox[0,1] ], [ bbox[1,0], bbox[1,1] ], [ bbox[0,0], bbox[1,1] ] ]) nsize = 4 if ndim ==2 else 8 ranger = np.arange(nsize) bmesh = Mesh() bmesh.element_type = "quad" if ndim ==2 else "hex" bmesh.elements = np.arange(self.nelem*nsize).reshape(self.nelem,nsize) bmesh.points = np.zeros((self.nelem*nsize,ndim)) bmesh.nelem = self.nelem bmesh.nnode = bmesh.points.shape[0] for i in range(0,self.nelem): bmesh.points[i*nsize:(i+1)*nsize,:] = point_generator(bboxes[i]) if ndim == 2: import matplotlib.pyplot as plt if figure is None: figure = plt.figure() self.SimplePlot(figure=figure, show_plot=False) bmesh.SimplePlot(figure=figure, show_plot=False, edge_color='r') plt.show() else: import os os.environ['ETS_TOOLKIT'] = 'qt4' from mayavi import mlab if figure is None: figure = mlab.figure(bgcolor=(1,1,1),fgcolor=(1,1,1),size=(1000,800)) self.SimplePlot(figure=figure, show_plot=False) bmesh.SimplePlot(figure=figure, show_plot=False, plot_faces=False, edge_color='r') mlab.show() return bboxes def Medians(self, geometric=True): """Computes median of the elements tri, tet, quad, hex based on the interpolation function input: geometric [Bool] geometrically computes median without relying on FEM bases retruns: median: [ndarray] of median of elements bases_at_median: [1D array] of (p=1) bases at median """ self.__do_essential_memebers_exist__() median = None if geometric == True: median = np.sum(self.points[self.elements,:],axis=1)/self.elements.shape[1] return median else: try: from Florence.FunctionSpace import Tri, Tet from Florence.QuadratureRules import FeketePointsTri, FeketePointsTet except ImportError: raise ImportError("This functionality requires florence's support") if self.element_type == "tri": eps = FeketePointsTri(2) middle_point_isoparametric = eps[6,:] if not np.isclose(sum(middle_point_isoparametric),-0.6666666): raise ValueError("Median of triangle does not match [-0.3333,-0.3333]. " "Did you change your nodal spacing or interpolation functions?") hpBases = Tri.hpNodal.hpBases bases_for_middle_point = hpBases(0,middle_point_isoparametric[0], middle_point_isoparametric[1])[0] median = np.einsum('ijk,j',self.points[self.elements[:,:3],:],bases_for_middle_point) elif self.element_type == "tet": middle_point_isoparametric = FeketePointsTet(3)[21] if not np.isclose(sum(middle_point_isoparametric),-1.5): raise ValueError("Median of tetrahedral does not match [-0.5,-0.5,-0.5]. " "Did you change your nodal spacing or interpolation functions?") # C = self.InferPolynomialDegree() - 1 hpBases = Tet.hpNodal.hpBases bases_for_middle_point = hpBases(0,middle_point_isoparametric[0], middle_point_isoparametric[1],middle_point_isoparametric[2])[0] median = np.einsum('ijk,j',self.points[self.elements[:,:4],:],bases_for_middle_point) else: raise NotImplementedError('Median for {} elements not implemented yet'.format(self.element_type)) return median, bases_for_middle_point def FindElementContainingPoint(self, point, algorithm="fem", find_parametric_coordinate=True, scaling_factor=5., tolerance=1.0e-7, maxiter=20, use_simple_bases=False, return_on_geometric_finds=False, initial_guess=None, initial_guesses=None, restart=False): """Find which element does a point lie in using specificed algorithm. The FEM isoparametric coordinate of the point is returned as well. If the isoparametric coordinate of the point is not required, issue find_parametric_coordinate=False input: point: [tuple] XYZ of enquiry point algorithm: [str] either 'fem' or 'geometric'. The 'fem' algorithm uses k-d tree search to get the right bounding box around as few elements as possible. The size of the box can be specified by the user through the keyword scaling_factor. The geometric algorithm is a lot more stable and converges much quicker. The geomtric algorithm first identifies the right element using volume check, then tries all possible combination of initial guesses to get the FEM isoparametric point. Trying all possible combination with FEM can be potentially more costly since bounding box size can be large. return_on_geometric_finds: [bool] if geometric algorithm is chosen and this option is on, then it returns the indices of elements as soon as the volume check and no further checks are done. This is useful for situations when searching for points that are meant to be in the interior of the elements rather than at the boundaries or nodes otherwise the number of elements returned by geometric algorithm is going to be more than one return: element_index [int/1D array of ints] element(s) containing the point. If the point is shared between many elements a 1D array is returned iso_parametric_point [1D array] the parametric coordinate of the point within the element. return only if find_parametric_coordinate=True """ if restart: if initial_guesses is None: if self.element_type == "pent": initial_guesses = np.array([ [0.,0.], [1.,0.], [1.,0.5], [0.5,1.], [0.,1.], ]) else: raise ValueError("restart option for this element type is only supported if initial_guesses are available") for i in range(initial_guesses.shape[0]): ret_val = self.FindElementContainingPoint(point, algorithm=algorithm, find_parametric_coordinate=find_parametric_coordinate, scaling_factor=scaling_factor, tolerance=tolerance, maxiter=maxiter, use_simple_bases=use_simple_bases, return_on_geometric_finds=return_on_geometric_finds, initial_guess=initial_guesses[i,:], restart=False) if ret_val[1] is not None: break return ret_val self.__do_essential_memebers_exist__() C = self.InferPolynomialDegree() - 1 if C > 0: warn("Note that finding a point within higher order curved mesh is not supported yet") if C > 0 and algorithm == "geometric": warn("High order meshes are not supported using geometric algorithim. I am going to operate on linear mesh") if use_simple_bases: raise ValueError("Simple bases for high order elements are not available") return ndim = self.InferSpatialDimension() assert len(point) == ndim from Florence.FunctionSpace import PointInversionIsoparametricFEM candidate_element, candidate_piso = None, None if self.element_type == "tet" and algorithm == "fem": algorithm = "geometric" if algorithm == "fem": scaling_factor = float(scaling_factor) max_h = self.EdgeLengths().max() # max_h=1. # FOR CURVED ELEMENTS # max_h = self.LargestSegment().max() # GET A BOUNDING BOX AROUND THE POINT, n TIMES LARGER THAN MAXIMUM h, WHERE n is the SCALING FACTOR if ndim==3: bounding_box = (point[0]-scaling_factor*max_h, point[1]-scaling_factor*max_h, point[2]-scaling_factor*max_h, point[0]+scaling_factor*max_h, point[1]+scaling_factor*max_h, point[2]+scaling_factor*max_h) elif ndim==2: bounding_box = (point[0]-scaling_factor*max_h, point[1]-scaling_factor*max_h, point[0]+scaling_factor*max_h, point[1]+scaling_factor*max_h) # SELECT ELEMENTS ONLY WITHIN THE BOUNDING BOX mesh = deepcopy(self) idx_kept_element = self.RemoveElements(bounding_box)[1] if ndim==3: for i in range(self.nelem): coord = self.points[self.elements[i,:],:] p_iso, converged = PointInversionIsoparametricFEM(self.element_type, C, coord, point, tolerance=tolerance, maxiter=maxiter, verbose=True, use_simple_bases=use_simple_bases, initial_guess=initial_guess) if converged: # if p_iso[0] >= -1. and p_iso[0] <=1. and \ # p_iso[1] >= -1. and p_iso[1] <=1. and \ # p_iso[2] >= -1. and p_iso[2] <=1. : if (p_iso[0] > -1. or np.isclose(p_iso[0],-1.,rtol=tolerance)) and \ (p_iso[0] < 1. or np.isclose(p_iso[0], 1.,rtol=tolerance)) and \ (p_iso[1] > -1. or np.isclose(p_iso[1],-1.,rtol=tolerance)) and \ (p_iso[1] < 1. or np.isclose(p_iso[1],-1.,rtol=tolerance)) and \ (p_iso[2] > -1. or np.isclose(p_iso[2],-1.,rtol=tolerance)) and \ (p_iso[2] < 1. or np.isclose(p_iso[2], 1.,rtol=tolerance)) : candidate_element, candidate_piso = i, p_iso break elif ndim==2: for i in range(self.nelem): coord = self.points[self.elements[i,:],:] p_iso, converged = PointInversionIsoparametricFEM(self.element_type, C, coord, point, tolerance=tolerance, maxiter=maxiter, verbose=True, use_simple_bases=use_simple_bases, initial_guess=initial_guess) # if p_iso[0] >= -1. and p_iso[0] <=1. and \ # p_iso[1] >= -1. and p_iso[1] <=1.: # candidate_element, candidate_piso = i, p_iso # break if (p_iso[0] > -1. or np.isclose(p_iso[0],-1.,rtol=tolerance)) and \ (p_iso[0] < 1. or np.isclose(p_iso[0], 1.,rtol=tolerance)) and \ (p_iso[1] > -1. or np.isclose(p_iso[1],-1.,rtol=tolerance)) and \ (p_iso[1] < 1. or np.isclose(p_iso[1],-1.,rtol=tolerance)) : candidate_element, candidate_piso = i, p_iso break self.__update__(mesh) # print(candidate_element) if candidate_element is not None: candidate_element = idx_kept_element[candidate_element] if find_parametric_coordinate: return candidate_element, candidate_piso else: return candidate_element else: if self.element_type == "tet": from Florence.QuadratureRules.FeketePointsTet import FeketePointsTet initial_guesses = FeketePointsTet(C) def GetVolTet(a0,b0,c0,d0): det_array = np.dstack((a0-d0,b0-d0,c0-d0)) # FIND VOLUME OF ALL THE ELEMENTS volume = 1./6.*np.abs(np.linalg.det(det_array)) return volume a = self.points[self.elements[:,0],:] b = self.points[self.elements[:,1],:] c = self.points[self.elements[:,2],:] d = self.points[self.elements[:,3],:] o = np.tile(point,self.nelem).reshape(self.nelem,a.shape[1]) # TOTAL VOLUME vol = self.Volumes() # PARTS' VOLUMES vol0 = GetVolTet(a,b,c,o) vol1 = GetVolTet(a,b,o,d) vol2 = GetVolTet(a,o,c,d) vol3 = GetVolTet(o,b,c,d) criterion_check = vol0+vol1+vol2+vol3-vol elems = np.isclose(criterion_check,0.,rtol=tolerance) elems_idx = np.where(elems==True)[0] elif self.element_type == "quad": from Florence.QuadratureRules.GaussLobattoPoints import GaussLobattoPointsQuad initial_guesses = GaussLobattoPointsQuad(C) def GetAreaQuad(a0,b0,c0,d0): # AREA OF QUAD ABCD = AREA OF ABC + AREA OF ACD a00 = np.ones((a0.shape[0],3),dtype=np.float64); a00[:,:2] = a0 b00 = np.ones((b0.shape[0],3),dtype=np.float64); b00[:,:2] = b0 c00 = np.ones((c0.shape[0],3),dtype=np.float64); c00[:,:2] = c0 d00 = np.ones((d0.shape[0],3),dtype=np.float64); d00[:,:2] = d0 # FIND AREAS ABC area0 = np.abs(np.linalg.det(np.dstack((a00,b00,c00)))) # FIND AREAS ACD area1 = np.abs(np.linalg.det(np.dstack((a00,c00,d00)))) # FIND AREAS OF ALL THE ELEMENTS area = 0.5*(area0+area1) return area a = self.points[self.elements[:,0],:] b = self.points[self.elements[:,1],:] c = self.points[self.elements[:,2],:] d = self.points[self.elements[:,3],:] o = np.tile(point,self.nelem).reshape(self.nelem,a.shape[1]) # TOTAL VOLUME vol = self.Areas() # PARTS' VOLUMES - DONT CHANGE THE ORDERING OF SPECIALLY vol1 vol0 = GetAreaQuad(o,c,b,a) vol1 = GetAreaQuad(o,a,d,c) criterion_check = vol0+vol1-vol elems = np.isclose(criterion_check,0.,rtol=tolerance) elems_idx = np.where(elems==True)[0] else: raise NotImplementedError("Geometric algorithm for {} elements not implemented yet".format(self.element_type)) if return_on_geometric_finds: return elems_idx for i in range(len(elems_idx)): coord = self.points[self.elements[elems_idx[i],:],:] # TRY ALL POSSIBLE INITIAL GUESSES - THIS IS CHEAP AS THE SEARCH SPACE CONTAINS ONLY A # FEW ELEMENTS for guess in initial_guesses: p_iso, converged = PointInversionIsoparametricFEM(self.element_type, C, coord, point, tolerance=tolerance, maxiter=maxiter, verbose=True, use_simple_bases=use_simple_bases, initial_guess=guess) if converged: break if converged: candidate_element, candidate_piso = elems_idx[i], p_iso break if find_parametric_coordinate: return candidate_element, candidate_piso else: return candidate_element def AverageJacobian(self): """Computes average Jacobian of elements for all element types over a mesh This is a generic method that for 1D=lengths, for 2D=areas and for 3D=volumes. It works for planar and curved elements """ self.__do_essential_memebers_exist__() try: from Florence import DisplacementFormulation except ImportError: raise ValueError("This functionality requires Florence's support") if self.element_type != "line": # FOR LINE ELEMENTS THIS APPROACH DOES NOT WORK AS JACOBIAN IS NOT WELL DEFINED formulation = DisplacementFormulation(self) sizes = np.zeros(self.nelem) for elem in range(self.nelem): LagrangeElemCoords = self.points[self.elements[elem,:],:] sizes[elem] = formulation.GetAverageJacobian(formulation.function_spaces[0], LagrangeElemCoords, LagrangeElemCoords, False, elem=elem) return sizes.mean() else: raise ValueError("Not implemented for 1D elements") def LargestSegment(self, smallest_element=True, nsamples=30, plot_segment=False, plot_element=False, figure=None, save=False, filename=None): """Finds the largest segment that can fit in an element. For curvilinear elements this measure can be used as (h) for h-refinement studies input: smallest_element [bool] if the largest segment size is to be computed in the smallest element (i.e. element with the smallest area in 2D or smallest volume in 3D). Default is True. If False, then the largest segment in the largest element will be computed. nsample: [int] number of sample points along the curved edges of the elements. The maximum distance between all combinations of these points is the largest segment plot_segment: [bool] plots segment on tope of [curved/straight] mesh plot_element: [bool] plots the straight/curved element to which the segment belongs figure: [an instance of matplotlib/mayavi.mlab figure for 2D/3D] save: [bool] wether to save the figure or not filename: [str] file name for the figure to be save returns: largest_segment_length [float] maximum segment length that could be fit within either the """ self.__do_memebers_exist__() if self.element_type == "hex" or self.element_type == "tet": quantity = self.Volumes() elif self.element_type == "quad" or self.element_type == "tri": quantity = self.Areas() if smallest_element: omesh = self.GetLocalisedMesh(quantity.argmin()) else: omesh = self.GetLocalisedMesh(quantity.argmax()) try: from Florence.PostProcessing import PostProcess except: raise ImportError('This function requires florence PostProcessing module') return if save: if filename is None: raise ValueError("No file name provided. I am going to write one the current directory") filename = PWD(__file__) + "/output.png" if self.element_type == "tri": tmesh = PostProcess.TessellateTris(omesh,np.zeros_like(omesh.points), plot_edges=True, interpolation_degree=nsamples) elif self.element_type == "quad": tmesh = PostProcess.TessellateQuads(omesh,np.zeros_like(omesh.points), plot_edges=True, interpolation_degree=nsamples) elif self.element_type == "tet": tmesh = PostProcess.TessellateTets(omesh,np.zeros_like(omesh.points), plot_edges=True, interpolation_degree=nsamples) elif self.element_type == "hex": tmesh = PostProcess.TessellateHexes(omesh,np.zeros_like(omesh.points), plot_edges=True, interpolation_degree=nsamples) ndim = omesh.InferSpatialDimension() nnode = tmesh.points.shape[0] largest_segment_lengths = [] nodes = np.array((1,ndim)) for i in range(nnode): tiled_points = np.tile(tmesh.points[i,:][:,None],nnode).T segment_lengths = np.linalg.norm(tmesh.points - tiled_points, axis=1) largest_segment_lengths.append(segment_lengths.max()) nodes = np.vstack((nodes, np.array([i,segment_lengths.argmax()])[None,:])) largest_segment_lengths = np.array(largest_segment_lengths) nodes = nodes[1:,:] largest_segment_length = largest_segment_lengths.max() corresponding_nodes = nodes[largest_segment_lengths.argmax(),:] if plot_segment: segment_coords = tmesh.points[corresponding_nodes,:] if ndim==2: import matplotlib.pyplot as plt if figure == None: figure = plt.figure() if plot_element: if omesh.element_type == "tri": PostProcess.CurvilinearPlotTri(omesh, np.zeros_like(omesh.points),plot_points=True, figure=figure, interpolation_degree=nsamples, show_plot=False) elif omesh.element_type == "quad": PostProcess.CurvilinearPlotQuad(omesh, np.zeros_like(omesh.points),plot_points=True, figure=figure, interpolation_degree=nsamples, show_plot=False) tmesh.SimplePlot(figure=figure,show_plot=False) if save: plt.savefig(filename,bbox_inches="tight",dpi=300) plt.show() elif ndim==3: import os os.environ['ETS_TOOLKIT'] = 'qt4' from mayavi import mlab if figure is None: figure = mlab.figure(bgcolor=(1,1,1),fgcolor=(1,1,1),size=(1000,800)) if plot_element: if omesh.element_type == "tet": PostProcess.CurvilinearPlotTet(omesh, np.zeros_like(omesh.points),plot_points=True, point_radius=0.13, figure=figure, interpolation_degree=nsamples, show_plot=False) elif omesh.element_type == "hex": PostProcess.CurvilinearPlotHex(omesh, np.zeros_like(omesh.points),plot_points=True, figure=figure, interpolation_degree=nsamples, show_plot=False) tmesh.GetEdges() edge_coords = tmesh.points[np.unique(tmesh.all_edges),:] mlab.triangular_mesh(tmesh.points[:,0],tmesh.points[:,1],tmesh.points[:,2], tmesh.elements, representation='wireframe', color=(0,0,0)) # # mlab.points3d(edge_coords[:,0],edge_coords[:,1],edge_coords[:,2],color=(1., 99/255., 71./255), scale_factor=0.03) # # mlab.plot3d(segment_coords[:,0],segment_coords[:,1],segment_coords[:,2], color=(227./255, 66./255, 52./255)) mlab.points3d(edge_coords[:,0],edge_coords[:,1],edge_coords[:,2],color=(1., 99/255., 71./255), scale_factor=0.17) mlab.plot3d(segment_coords[:,0],segment_coords[:,1],segment_coords[:,2], color=(227./255, 66./255, 52./255), line_width=10., representation="wireframe") if save: mlab.savefig(filename,dpi=300) mlab.show() return largest_segment_length def CheckNodeNumbering(self,change_order_to='retain', verbose=True): """Checks for node numbering order of the imported mesh. Mesh can be tri or tet input: change_order_to: [str] {'clockwise','anti-clockwise','retain'} changes the order to clockwise, anti-clockwise or retains the numbering order - default is 'retain' output: original_order: [str] {'clockwise','anti-clockwise','retain'} returns the original numbering order""" self.__do_essential_memebers_exist__() # CHECK IF IT IS LINEAR MESH nodeperelem = self.InferNumberOfNodesPerLinearElement() assert self.elements.shape[1] == nodeperelem quantity = np.array([]) if self.element_type == "tri": quantity = self.Areas(with_sign=True) elif self.element_type == "quad": quantity = self.Areas(with_sign=True) elif self.element_type == "tet": quantity = self.Volumes(with_sign=True) elif self.element_type == "hex": quantity = self.Volumes(with_sign=True) original_order = '' # CHECK NUMBERING if (quantity > 0).all(): original_order = 'anti-clockwise' if change_order_to == 'clockwise': self.elements = np.fliplr(self.elements) elif (quantity < 0).all(): original_order = 'clockwise' if change_order_to == 'anti-clockwise': self.elements = np.fliplr(self.elements) else: original_order = 'mixed' if change_order_to == 'clockwise': self.elements[quantity>0,:] = np.fliplr(self.elements[quantity>0,:]) elif change_order_to == 'anti-clockwise': self.elements[quantity<0,:] = np.fliplr(self.elements[quantity<0,:]) if original_order == 'anti-clockwise': print(u'\u2713'.encode('utf8')+b' : ','Imported mesh has',original_order,'node ordering') else: print(u'\u2717'.encode('utf8')+b' : ','Imported mesh has',original_order,'node ordering') return original_order def GetElementsEdgeNumberingTri(self): """Finds edges of elements and their flags saying which edge they are [0,1,2]. At most a triangle can have all its three edges on the boundary. output: edge_elements: [1D array] array containing elements which have edges on the boundary Note that this method sets the self.edge_to_element to edge_elements, so the return value is not strictly necessary """ if isinstance(self.edge_to_element,np.ndarray): if self.edge_to_element.shape[0] > 1: return self.edge_to_element # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY if self.all_edges is None: self.GetEdgesTri() all_edges = np.concatenate((self.elements[:,:2],self.elements[:,[1,2]], self.elements[:,[2,0]]),axis=0).astype(np.int64) all_edges, idx = unique2d(all_edges,consider_sort=True,order=False, return_index=True) edge_elements = np.zeros((all_edges.shape[0],2),dtype=np.int64) edge_elements[:,0] = idx % self.elements.shape[0] edge_elements[:,1] = idx // self.elements.shape[0] self.edge_to_element = edge_elements return self.edge_to_element def GetElementsWithBoundaryEdgesTri(self): """Finds elements which have edges on the boundary. At most an element can have all its three edges on the boundary. output: edge_elements: [2D array] array containing elements which have edge on the boundary [cloumn 0] and a flag stating which edges they are [column 1] """ if isinstance(self.boundary_edge_to_element,np.ndarray): if self.boundary_edge_to_element.shape[1] > 1 and self.boundary_edge_to_element.shape[0] > 1: return self.boundary_edge_to_element # DO NOT COMPUTE EDGES AND RAISE BECAUSE OF CYCLIC DEPENDENCIES assert self.elements is not None assert self.edges is not None edge_elements = np.zeros((self.edges.shape[0],2),dtype=np.int64) # FIND WHICH FACE NODES ARE IN WHICH ELEMENT for i in range(self.edges.shape[0]): x = [] for j in range(2): x.append(np.where(self.elements[:,:3]==self.edges[i,j])[0]) # FIND WHICH ELEMENTS CONTAIN ALL FACE NODES - FOR INTERIOR ELEMENTS # THEIR CAN BE MORE THAN ONE ELEMENT CONTAINING ALL FACE NODES z = x[0] for k in range(1,len(x)): z = np.intersect1d(x[k],z) # CHOOSE ONLY ONE OF THESE ELEMENTS edge_elements[i,0] = z[0] # WHICH COLUMNS IN THAT ELEMENT ARE THE FACE NODES LOCATED cols = np.array([np.where(self.elements[z[0],:]==self.edges[i,0])[0], np.where(self.elements[z[0],:]==self.edges[i,1])[0] ]) cols = np.sort(cols.flatten()) if cols[0] == 0 and cols[1] == 1: edge_elements[i,1] = 0 elif cols[0] == 1 and cols[1] == 2: edge_elements[i,1] = 1 elif cols[0] == 0 and cols[1] == 2: edge_elements[i,1] = 2 self.boundary_edge_to_element = edge_elements return edge_elements def GetElementsWithBoundaryFacesTet(self): """Finds elements which have faces on the boundary. At most a tetrahedral element can have all its four faces on the boundary. output: boundary_face_to_element: [2D array] array containing elements which have face on the boundary [column 0] and a flag stating which faces they are [column 1] """ if self.boundary_face_to_element is not None: return self.boundary_face_to_element # DO NOT COMPUTE FACES AND RAISE BECAUSE OF CYCLIC DEPENDENCIES assert self.elements is not None assert self.faces is not None # THIS METHOD ALWAYS RETURNS THE FACE TO ELEMENT ARRAY, AND DOES NOT CHECK # IF THIS HAS BEEN COMPUTED BEFORE, THE REASON BEING THAT THE FACES CAN COME # EXTERNALLY WHOSE ARRANGEMENT WOULD NOT CORRESPOND TO THE ONE USED INTERNALLY # HENCE THIS MAPPING BECOMES NECESSARY all_faces = np.concatenate((self.elements[:,:3],self.elements[:,[0,1,3]], self.elements[:,[0,2,3]],self.elements[:,[1,2,3]]),axis=0).astype(self.faces.dtype) all_faces_in_faces = in2d(all_faces,self.faces[:,:3],consider_sort=True) all_faces_in_faces = np.where(all_faces_in_faces==True)[0] boundary_face_to_element = np.zeros((all_faces_in_faces.shape[0],2),dtype=np.int64) boundary_face_to_element[:,0] = all_faces_in_faces % self.elements.shape[0] boundary_face_to_element[:,1] = all_faces_in_faces // self.elements.shape[0] # SO FAR WE HAVE COMPUTED THE ELEMENTS THAT CONTAIN FACES, HOWEVER # NOTE THAT WE STILL HAVE NOT COMPUTED A MAPPING BETWEEN ELEMENTS AND # FACES. WE ONLY KNOW WHICH ELEMENTS CONTAIN FACES FROM in2d. # WE NEED TO FIND THIS MAPPING NOW C = self.InferPolynomialDegree() - 1 node_arranger = NodeArrangementTet(C)[0] # WE NEED TO DO THIS DUMMY RECONSTRUCTION OF FACES BASED ON ELEMENTS faces = self.elements[boundary_face_to_element[:,0][:,None], node_arranger[boundary_face_to_element[:,1],:]].astype(self.faces.dtype) # CHECK FOR THIS CONDITION AS ARRANGEMENT IS NO LONGER MAINTAINED assert np.sum(faces[:,:3].astype(np.int64) - self.faces[:,:3].astype(np.int64)) == 0 # NOW GET THE ROW MAPPING BETWEEN OLD FACES AND NEW FACES from Florence.Tensor import shuffle_along_axis row_mapper = shuffle_along_axis(faces[:,:3],self.faces[:,:3],consider_sort=True) # UPDATE THE MAP boundary_face_to_element[:,:] = boundary_face_to_element[row_mapper,:] self.boundary_face_to_element = boundary_face_to_element return self.boundary_face_to_element def GetElementsFaceNumberingTet(self): """Finds which faces belong to which elements and which faces of the elements they are e.g. 0, 1, 2 or 3. output: face_elements: [2D array] nfaces x 2 array containing elements which have face on the boundary with their flags Note that this method also sets the self.face_to_element to face_elements, so the return value is not strictly necessary """ if isinstance(self.face_to_element,np.ndarray): if self.face_to_element.shape[0] > 1: return self.face_to_element assert self.elements is not None # GET ALL FACES FROM ELEMENT CONNECTIVITY if self.all_faces is None: self.GetFacesTet() all_faces = np.concatenate((self.elements[:,:3],self.elements[:,[0,1,3]], self.elements[:,[0,2,3]],self.elements[:,[1,2,3]]),axis=0).astype(np.int64) _,idx = unique2d(all_faces,consider_sort=True,order=False, return_index=True) face_elements =
np.zeros((self.all_faces.shape[0],2),dtype=np.int64)
numpy.zeros
import os import pandas as pd # os.environ["CUDA_VISIBLE_DEVICES"] = "5" import sys from datetime import datetime import torch from torch import save import numpy as np import argparse sys.path.append(os.path.dirname(os.path.realpath(__file__)) + '/models') sys.path.append(os.path.dirname(os.path.realpath(__file__)) + '/utils') import multidcp import datareader import metric import wandb import pdb import pickle from tqdm import tqdm import warnings warnings.filterwarnings("ignore") from multidcp_ae_utils import * import random # check cuda device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") print("Use GPU: %s" % torch.cuda.is_available()) def model_training(args, model, data, ae_data, metrics_summary): optimizer = torch.optim.Adam(model.parameters(), lr=0.0002) best_dev_pearson = float("-inf") for epoch in range(args.max_epoch): print("Iteration %d:" % (epoch)) print_lr(optimizer) model.train() data_save = False epoch_loss = 0 for i, (feature, label, _) in enumerate(ae_data.train_dataloader()): optimizer.zero_grad() #### the auto encoder step doesn't need other input rather than feature predict, cell_hidden_ = model(input_cell_gex=feature, job_id = 'ae', epoch = epoch) loss_t = model.loss(label, predict) loss_t.backward() optimizer.step() epoch_loss += loss_t.item() print('AE Train loss:') print(epoch_loss/(i+1)) if USE_WANDB: wandb.log({'AE Train loss': epoch_loss/(i+1)}, step = epoch) model.eval() epoch_loss = 0 lb_np = np.empty([0, 978]) predict_np = np.empty([0, 978]) with torch.no_grad(): for i, (feature, label, _) in enumerate(ae_data.val_dataloader()): predict, _ = model(input_cell_gex=feature, job_id = 'ae', epoch = epoch) loss = model.loss(label, predict) epoch_loss += loss.item() lb_np = np.concatenate((lb_np, label.cpu().numpy()), axis=0) predict_np = np.concatenate((predict_np, predict.cpu().numpy()), axis=0) validation_epoch_end(epoch_loss = epoch_loss, lb_np = lb_np, predict_np = predict_np, steps_per_epoch = i+1, epoch = epoch, metrics_summary = metrics_summary, job = 'ae', USE_WANDB = USE_WANDB) model.train() epoch_loss = 0 for i, (ft, lb, _) in enumerate(data.train_dataloader()): drug = ft['drug'] mask = ft['mask'] cell_feature = ft['cell_id'] pert_idose = ft['pert_idose'] optimizer.zero_grad() predict, cell_hidden_ = model(input_cell_gex=cell_feature, input_drug = drug, input_gene = data.gene, mask = mask, input_pert_idose = pert_idose, job_id = 'perturbed', epoch = epoch) loss_t = model.loss(lb, predict) loss_t.backward() optimizer.step() if i == 1: print('__________________________pertubed input__________________________') print(cell_feature) print('__________________________pertubed hidden__________________________') print(cell_hidden_) print('__________________________pertubed predicts__________________________') print(cell_hidden_) epoch_loss += loss_t.item() print('Perturbed gene expression profile Train loss:') print(epoch_loss/(i+1)) if USE_WANDB: wandb.log({'Perturbed gene expression profile Train loss': epoch_loss/(i+1)}, step = epoch) model.eval() epoch_loss = 0 lb_np = np.empty([0, 978]) predict_np = np.empty([0, 978]) with torch.no_grad(): for i, (ft, lb, _) in enumerate(data.val_dataloader()): drug = ft['drug'] mask = ft['mask'] cell_feature = ft['cell_id'] pert_idose = ft['pert_idose'] predict, _ = model(input_cell_gex=cell_feature, input_drug = drug, input_gene = data.gene, mask = mask, input_pert_idose = pert_idose, job_id = 'perturbed', epoch = epoch) loss = model.loss(lb, predict) epoch_loss += loss.item() lb_np = np.concatenate((lb_np, lb.cpu().numpy()), axis=0) predict_np = np.concatenate((predict_np, predict.cpu().numpy()), axis=0) validation_epoch_end(epoch_loss = epoch_loss, lb_np = lb_np, predict_np = predict_np, steps_per_epoch = i+1, epoch = epoch, metrics_summary = metrics_summary, job = 'perturbed', USE_WANDB = USE_WANDB) if best_dev_pearson < metrics_summary['pearson_list_perturbed_dev'][-1] or epoch == 1: # data_save = True best_dev_pearson = metrics_summary['pearson_list_perturbed_dev'][-1] torch.save(model.state_dict(), 'best_multidcp_ae_model_1.pt') # if not data_save or (epoch < 400 and epoch != 1): # continue epoch_loss = 0 lb_np = np.empty([0, 978]) predict_np =
np.empty([0, 978])
numpy.empty
### All utility functions to build the patch deletion tree import os import sys import matplotlib.pyplot as plt import matplotlib.ticker as plticker import cv2 import numpy as np from copy import deepcopy import pygraphviz as pgv import torch from utils import * def get_patch_boolean(mask): boolean = [] z0, z1, h, w = mask.shape z0, z1, rows, cols = np.where(mask == 0) for i in range(len(rows)): patchname = rows[i]*h + cols[i] boolean.append(patchname) return boolean def get_edge_mask_red(mask, canny_param, intensity, kernel_size): upsampled_mask_newPatch_edge = deepcopy(mask) upsampled_mask_newPatch_edge =
np.uint8(upsampled_mask_newPatch_edge * 255)
numpy.uint8
""" Shape implementations """ import numpy as np from numpy import random import color import constants as c from shapely import affinity from shapely.geometry import Point, box, Polygon def rand_size(): return random.randint(c.SIZE_MIN, c.SIZE_MAX) def rand_size_2(): """Slightly bigger.""" return random.randint(c.SIZE_MIN + 2, c.SIZE_MAX + 2) def rand_pos(): return random.randint(c.X_MIN, c.X_MAX) class Shape: def __init__(self, x=None, y=None, relation=None, relation_dir=None, color_=None, max_rotation=90): if color_ is None: raise NotImplementedError("Must specify color") self.color = color_ if x is not None or y is not None: assert x is not None and y is not None assert relation is None and relation_dir is None self.x = x self.y = y elif relation is None and relation_dir is None: self.x = rand_pos() self.y = rand_pos() else: # Generate on 3/4 of image according to relation dir if relation == 0: # x matters - y is totally random self.y = rand_pos() if relation_dir == 0: # Place right 3/4 of screen, so second shape # can be placed LEFT self.x = random.randint(c.X_MIN_34, c.X_MAX) else: # Place left 3/4 self.x = random.randint(c.X_MIN, c.X_MAX_34) else: # y matters - x is totally random self.x = rand_pos() if relation_dir == 0: # Place top 3/4 of screen, so second shape can be placed # BELOW # NOTE: Remember coords for y travel in opp dir self.y = random.randint(c.X_MIN, c.X_MAX_34) else: self.y = random.randint(c.X_MIN_34, c.X_MAX) self.rotation = random.randint(max_rotation) self.init_shape() def draw(self, image): image.draw.polygon(self.coords, color.PENS[self.color]) def intersects(self, oth): return self.shape.intersects(oth.shape) def left(self, oth): return self.x < oth.x def right(self, oth): return self.x > oth.x def above(self, oth): return self.y < oth.y def below(self, oth): return self.y > oth.y @property def name(self): return type(self).__name__.lower() def __str__(self): return f"<{self.color} {self.name} at ({self.x}, {self.y})>" def __repr__(self): return self.__str__() def json(self): return { 'shape': self.name, 'color': self.color, 'pos': { 'x': self.x, 'y': self.y }, 'rotation': self.rotation } class Ellipse(Shape): def init_shape(self, min_skew=1.5): self.dx = rand_size() # Dy must be at least 1.6x dx, to remove ambiguity with circle bigger = int(self.dx * min_skew) if bigger >= c.SIZE_MAX: smaller = int(self.dx / min_skew) assert smaller >= c.SIZE_MIN, ("{} {}".format(smaller, self.dx)) self.dy = random.randint(c.SIZE_MIN, smaller+1) else: self.dy = random.randint(bigger, c.SIZE_MAX) if
random.random()
numpy.random.random
import numpy as nu import scipy _SCIPY_VERSION= [int(v.split('rc')[0]) for v in scipy.__version__.split('.')] if _SCIPY_VERSION[0] < 1 and _SCIPY_VERSION[1] < 10: from scipy.maxentropy import logsumexp elif _SCIPY_VERSION[0] < 1 and _SCIPY_VERSION[1] < 19: from scipy.misc import logsumexp else: from scipy.special import logsumexp from isodist.Isochrone import Isochrone from isodist.PadovaIsochrone import PadovaIsochrone _LOGTOLN= 1./nu.log10(nu.exp(1.)) def eval_distpdf(ds,mdict=None,mivardict=None,logg=None,logg_ivar=None, teff=None,teff_ivar=None,logage=None,logage_ivar=None, Z=None,Z_ivar=None,feh=None,feh_ivar=None, afe=None,afe_ivar=None, padova=None,padova_type=None, normalize=False, ageprior=None): """ NAME: eval_distpdf PURPOSE: evaluate the distance PDF for an object INPUT: ds- list or ndarray of distance (or a single distance), in kpc mdict= dictionary of apparent magnitudes (e.g., {'J':12.,'Ks':13.}) mivardict= dictionary of magnitude inverse variances (matched to mdict) logg= observed logg logg_ivar= inverse variance of logg measurement teff= observed T_eff [K] logg_ivar= inverse variance of T_eff measurement logage= observed log_10 age [Gyr] logage_ivar= inverse variance of log_10 age measurement Z= observed metallicity Z_ivar= inverse variance of Z measurement feh= observed metallicity (alternative to Z) feh_ivar= inverse variance of FeH measurement afe= observed [\alpha/Fe] afe_ivar= [\alpha/Fe] inverse variance padova= if True, use Padova isochrones, if set to a PadovaIsochrone objects, use this padova_type= type of PadovaIsochrone to use (e.g., 2mass-spitzer-wise) normalize= if True, normalize output PDF (default: False) ageprior= - None: flat in log age - flat: flat in age OUTPUT: log of probability HISTORY: 2011-04-28 - Written - Bovy (NYU) """ #load isochrones if not padova is None and isinstance(padova,PadovaIsochrone): iso= padova elif not padova is None and isinstance(padova,bool) and padova: iso= PadovaIsochrone(type=padova_type) #Parse metallicity info if not feh is None: raise NotImplementedError("'feh' not yet implemented") #set up output if isinstance(ds,(list,nu.ndarray)): scalarOut= False if isinstance(ds,list): _ds= nu.array(ds) else: _ds= ds elif isinstance(ds,float): scalarOut= True _ds= [ds] #Pre-calculate all absolute magnitudes absmagdict= {} for key in mdict.keys(): absmagdict[key]= -_distmodulus(_ds)+mdict[key] #loop through isochrones ZS= iso.Zs() logages= iso.logages() allout= nu.zeros((len(_ds),len(ZS),len(logages))) for zz in range(len(ZS)): for aa in range(len(logages)): thisiso= iso(logages[aa],Z=ZS[zz]) dmpm= nu.roll(thisiso['M_ini'],-1)-thisiso['M_ini'] loglike= nu.zeros((len(_ds),len(thisiso['M_ini'])-1)) loglike-= nu.log(thisiso['M_ini'][-1]) for ii in range(1,len(thisiso['M_ini'])-1): if dmpm[ii] > 0.: loglike[:,ii]+= nu.log(dmpm[ii]) else: loglike[:,ii]= nu.finfo(nu.dtype(nu.float64)).min continue #no use in continuing here if not teff is None: loglike[:,ii]-= (teff-10**thisiso['logTe'][ii])**2.*teff_ivar if not logg is None: loglike[:,ii]-= (logg-thisiso['logg'][ii])**2.*logg_ivar for key in mdict.keys(): #print absmagdict[key][2], thisiso[key][ii] loglike[:,ii]-= (absmagdict[key]-thisiso[key][ii])**2.\ *mivardict[key] #marginalize over mass for jj in range(len(_ds)): allout[jj,zz,aa]= logsumexp(loglike[jj,:]) #add age constraint and prior if not logage is None: allout[:,zz,aa]+= -(logage-logages[aa])**2.*logage_ivar if not ageprior is None: if isinstance(ageprior,str) and ageprior.lower() == 'flat': allout[:,zz,aa]+= logages[aa]*_LOGTOLN #add Z constraint and prior if not Z is None: allout[:,zz,:]+= -(Z-ZS[zz])**2.*Z_ivar #prepare final output out= nu.zeros(len(_ds)) for jj in range(len(_ds)): out[jj]= logsumexp(allout[jj,:,:]) if normalize and not scalarOut: out-= logsumexp(out)+nu.log(ds[1]-ds[0]) #return if scalarOut: return out[0] else: return out def _distmodulus(d): return 5.*
nu.log10(d/.01)
numpy.log10
import datetime import numpy as np import pandas as pd from scipy import stats from collections import Counter from tqdm import tqdm tqdm.pandas(desc="progress") #================================================================================ #Don't change the code below!!! 以下代码请勿轻易改动。 #================================================================================ def printlog(info): nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') print('\n================================================================================ %s'%nowtime) print(info+'\n') # 相关性ks检验 def relativity_ks(labels,features): assert len(labels) == len(features) labels = np.array(labels) features = np.array(features) # 非数值特征将字符转换成对应序号 if features.dtype is np.dtype('O'): features_notnan = set(features[~pd.isna(features)]) features_notnan = [str(x) for x in features_notnan] dic = dict(zip(range(0,len(features_notnan)),sorted(list(features_notnan)))) features = np.array([dic.get(x,x) for x in features]) else: features = features if set(labels) == {0,1}: #二分类问题 data_1 = features[labels > 0.5] data_0 = features[labels < 0.5] elif "int" in str(labels.dtype): #多分类问题 most_label = Counter(labels).most_common(1)[0][0] data_0 = features[labels == most_label] data_1 = features[labels != most_label] else: #回归问题 mid = np.median(labels) data_1 = features[labels > mid] data_0 = features[labels <= mid ] result = stats.ks_2samp(data_1,data_0) return result[0] # 同分布性ks检验 def stability_ks(data1,data2): data1 =
np.array(data1)
numpy.array
#!/usr/bin/env python3 import os import sys import re import pandas as pd, geopandas as gpd import numpy as np import argparse import matplotlib.pyplot as plt import seaborn as sns from functools import reduce from multiprocessing import Pool from os.path import isfile, join import shutil import warnings from pathlib import Path import time warnings.simplefilter(action='ignore', category=FutureWarning) import rasterio from rasterio import features as riofeatures from rasterio import plot as rioplot from shapely.geometry import Polygon """ Plot Rating Curves and Compare to USGS Gages Parameters ---------- fim_dir : str Directory containing FIM output folders. output_dir : str Directory containing rating curve plots and tables. usgs_gages_filename : str File name of USGS rating curves. nwm_flow_dir : str Directory containing NWM recurrence flows files. number_of_jobs : str Number of jobs. stat_groups : str string of columns to group eval metrics. """ def check_file_age(file): ''' Checks if file exists, determines the file age, and recommends updating if older than 1 month. Returns ------- None. ''' file = Path(file) if file.is_file(): modification_time = file.stat().st_mtime current_time = time.time() file_age_days = (current_time - modification_time)/86400 if file_age_days > 30: check = f'{file.name} is {int(file_age_days)} days old, consider updating.\nUpdate with rating_curve_get_usgs_curves.py' else: check = f'{file.name} is {int(file_age_days)} days old.' return check # recurr_intervals = ['recurr_1_5_cms.csv','recurr_5_0_cms.csv','recurr_10_0_cms.csv'] def generate_rating_curve_metrics(args): elev_table_filename = args[0] branches_folder = args[1] usgs_gages_filename = args[2] usgs_recurr_stats_filename = args[3] nwm_recurr_data_filename = args[4] rc_comparison_plot_filename = args[5] nwm_flow_dir = args[6] catfim_flows_filename = args[7] huc = args[8] alt_plot = args[9] elev_table = pd.read_csv(elev_table_filename,dtype={'location_id': object, 'feature_id':object,'HydroID':object, 'levpa_id':object}) elev_table.dropna(subset=['location_id'], inplace=True) usgs_gages = pd.read_csv(usgs_gages_filename,dtype={'location_id': object, 'feature_id':object}) # Aggregate FIM4 hydroTables hydrotable = pd.DataFrame() for branch in elev_table.levpa_id.unique(): branch_elev_table = elev_table.loc[elev_table.levpa_id == branch].copy() branch_hydrotable = pd.read_csv(join(branches_folder, str(branch), f'hydroTable_{branch}.csv'),dtype={'HydroID':object,'feature_id':object}) # Only pull SRC for hydroids that are in this branch branch_hydrotable = branch_hydrotable.loc[branch_hydrotable.HydroID.isin(branch_elev_table.HydroID)] branch_hydrotable.drop(columns=['order_'], inplace=True) # Join SRC with elevation data branch_elev_table.rename(columns={'feature_id':'fim_feature_id'}, inplace=True) branch_hydrotable = branch_hydrotable.merge(branch_elev_table, on="HydroID") # Append to full rating curve dataframe if hydrotable.empty: hydrotable = branch_hydrotable else: hydrotable = hydrotable.append(branch_hydrotable) # Join rating curves with elevation data #elev_table.rename(columns={'feature_id':'fim_feature_id'}, inplace=True) #hydrotable = hydrotable.merge(elev_table, on="HydroID") relevant_gages = list(hydrotable.location_id.unique()) usgs_gages = usgs_gages[usgs_gages['location_id'].isin(relevant_gages)] usgs_gages = usgs_gages.reset_index(drop=True) if len(usgs_gages) > 0: # Adjust rating curve to elevation hydrotable['elevation_ft'] = (hydrotable.stage + hydrotable.dem_adj_elevation) * 3.28084 # convert from m to ft # hydrotable['raw_elevation_ft'] = (hydrotable.stage + hydrotable.dem_elevation) * 3.28084 # convert from m to ft hydrotable['discharge_cfs'] = hydrotable.discharge_cms * 35.3147 usgs_gages = usgs_gages.rename(columns={"flow": "discharge_cfs", "elevation_navd88": "elevation_ft"}) hydrotable['source'] = "FIM" usgs_gages['source'] = "USGS" limited_hydrotable = hydrotable.filter(items=['location_id','elevation_ft','discharge_cfs','source', 'HydroID', 'levpa_id', 'dem_adj_elevation']) select_usgs_gages = usgs_gages.filter(items=['location_id', 'elevation_ft', 'discharge_cfs','source']) if 'default_discharge_cms' in hydrotable.columns: # check if both "FIM" and "FIM_default" SRCs are available hydrotable['default_discharge_cfs'] = hydrotable.default_discharge_cms * 35.3147 limited_hydrotable_default = hydrotable.filter(items=['location_id','elevation_ft', 'default_discharge_cfs']) limited_hydrotable_default['discharge_cfs'] = limited_hydrotable_default.default_discharge_cfs limited_hydrotable_default['source'] = "FIM_default" rating_curves = limited_hydrotable.append(select_usgs_gages) rating_curves = rating_curves.append(limited_hydrotable_default) else: rating_curves = limited_hydrotable.append(select_usgs_gages) # Add stream order stream_orders = hydrotable.filter(items=['location_id','order_']).drop_duplicates() rating_curves = rating_curves.merge(stream_orders, on='location_id') rating_curves['order_'] = rating_curves['order_'].astype('int') # NWM recurr intervals recurr_intervals = ("2","5","10","25","50","100") recurr_dfs = [] for interval in recurr_intervals: recurr_file = join(nwm_flow_dir, 'nwm21_17C_recurr_{}_0_cms.csv'.format(interval)) df = pd.read_csv(recurr_file, dtype={'feature_id': str}) # Update column names df = df.rename(columns={"discharge": interval}) recurr_dfs.append(df) # Merge NWM recurr intervals into a single layer nwm_recurr_intervals_all = reduce(lambda x,y: pd.merge(x,y, on='feature_id', how='outer'), recurr_dfs) nwm_recurr_intervals_all = pd.melt(nwm_recurr_intervals_all, id_vars=['feature_id'], value_vars=recurr_intervals, var_name='recurr_interval', value_name='discharge_cms') # Append catfim data (already set up in format similar to nwm_recurr_intervals_all) cat_fim = pd.read_csv(catfim_flows_filename, dtype={'feature_id':str}) nwm_recurr_intervals_all = nwm_recurr_intervals_all.append(cat_fim) # Convert discharge to cfs and filter nwm_recurr_intervals_all['discharge_cfs'] = nwm_recurr_intervals_all.discharge_cms * 35.3147 nwm_recurr_intervals_all = nwm_recurr_intervals_all.filter(items=['discharge_cfs', 'recurr_interval','feature_id']).drop_duplicates() # Identify unique gages usgs_crosswalk = hydrotable.filter(items=['location_id', 'feature_id']).drop_duplicates() usgs_crosswalk.dropna(subset=['location_id'], inplace=True) nwm_recurr_data_table = pd.DataFrame() usgs_recurr_data = pd.DataFrame() # Interpolate USGS/FIM elevation at each gage for index, gage in usgs_crosswalk.iterrows(): # Interpolate USGS elevation at NWM recurrence intervals usgs_rc = rating_curves.loc[(rating_curves.location_id==gage.location_id) & (rating_curves.source=="USGS")] if len(usgs_rc) <1: print(f"missing USGS rating curve data for usgs station {gage.location_id} in huc {huc}") continue str_order =
np.unique(usgs_rc.order_)
numpy.unique
# -*- coding: utf-8 -*- # Copyright 2019 the HERA Project # Licensed under the MIT License import pytest import numpy as np from copy import deepcopy import warnings import os import sys import shutil from hera_sim.antpos import linear_array, hex_array from hera_sim.vis import sim_red_data from hera_sim.sigchain import gen_gains from .. import redcal as om from .. import io, abscal from ..utils import split_pol, conj_pol, split_bl from ..apply_cal import calibrate_in_place from ..data import DATA_PATH from ..datacontainer import DataContainer np.random.seed(0) class TestMethods(object): def test_check_polLists_minV(self): polLists = [['xy']] assert not om._check_polLists_minV(polLists) polLists = [['xx', 'xy']] assert not om._check_polLists_minV(polLists) polLists = [['xx', 'xy', 'yx']] assert not om._check_polLists_minV(polLists) polLists = [['xy', 'yx'], ['xx'], ['yy'], ['xx'], ['yx', 'xy'], ['yy']] assert om._check_polLists_minV(polLists) def test_parse_pol_mode(self): reds = [[(0, 1, 'xx')]] assert om.parse_pol_mode(reds) == '1pol' reds = [[(0, 1, 'xx')], [(0, 1, 'yy')]] assert om.parse_pol_mode(reds) == '2pol' reds = [[(0, 1, 'xx')], [(0, 1, 'xy')], [(0, 1, 'yx')], [(0, 1, 'yy')]] assert om.parse_pol_mode(reds) == '4pol' reds = [[(0, 1, 'xx')], [(0, 1, 'xy'), (0, 1, 'yx')], [(0, 1, 'yy')]] assert om.parse_pol_mode(reds) == '4pol_minV' reds = [[(0, 1, 'xx')], [(0, 1, 'xy'), (0, 1, 'yx')], [(0, 1, 'LR')]] assert om.parse_pol_mode(reds) == 'unrecognized_pol_mode' reds = [[(0, 1, 'xx')], [(0, 1, 'xy')]] assert om.parse_pol_mode(reds) == 'unrecognized_pol_mode' reds = [[(0, 1, 'xy')]] assert om.parse_pol_mode(reds) == 'unrecognized_pol_mode' reds = [[(0, 1, 'xx')], [(0, 1, 'xy'), (0, 1, 'yy')], [(0, 1, 'yx')]] assert om.parse_pol_mode(reds) == 'unrecognized_pol_mode' def test_get_pos_red(self): pos = hex_array(3, sep=14.6, split_core=False, outriggers=0) assert len(om.get_pos_reds(pos)) == 30 pos = hex_array(7, sep=14.6, split_core=False, outriggers=0) assert len(om.get_pos_reds(pos)) == 234 for ant, r in pos.items(): pos[ant] += [0, 0, 1 * r[0] - .5 * r[1]] assert len(om.get_pos_reds(pos)) == 234 pos = hex_array(7, sep=1, split_core=False, outriggers=0) assert len(om.get_pos_reds(pos)) < 234 assert len(om.get_pos_reds(pos, bl_error_tol=.1)) == 234 pos = hex_array(7, sep=14.6, split_core=False, outriggers=0) blerror = 1.0 - 1e-12 error = blerror / 4 for key, val in pos.items(): th = np.random.choice([0, np.pi / 2, np.pi]) phi = np.random.choice([0, np.pi / 2, np.pi, 3 * np.pi / 2]) pos[key] = val + error * np.array([np.sin(th) * np.cos(phi), np.sin(th) * np.sin(phi), np.cos(th)]) assert len(om.get_pos_reds(pos, bl_error_tol=1.0)) == 234 assert len(om.get_pos_reds(pos, bl_error_tol=.99)) > 234 pos = {0: np.array([0, 0, 0]), 1: np.array([20, 0, 0]), 2: np.array([10, 0, 0])} assert om.get_pos_reds(pos) == [[(0, 2), (2, 1)], [(0, 1)]] # test branch cut pos = {0: np.array([-.03, 1., 0.]), 1: np.array([1., 1., 0.]), 2: np.array([0.03, 0.0, 0.]), 3: np.array([1., 0., 0.])} assert len(om.get_pos_reds(pos, bl_error_tol=.1)) == 4 def test_filter_reds(self): antpos = linear_array(7) reds = om.get_reds(antpos, pols=['xx'], pol_mode='1pol') # exclude ants red = om.filter_reds(reds, ex_ants=[0, 4]) assert red == [[(1, 2, 'xx'), (2, 3, 'xx'), (5, 6, 'xx')], [(1, 3, 'xx'), (3, 5, 'xx')], [(2, 5, 'xx'), (3, 6, 'xx')], [(1, 5, 'xx'), (2, 6, 'xx')], [(1, 6, 'xx')]] # include ants red = om.filter_reds(reds, ants=[0, 1, 4, 5, 6]) assert red == [[(0, 1, 'xx'), (4, 5, 'xx'), (5, 6, 'xx')], [(4, 6, 'xx')], [(1, 4, 'xx')], [(0, 4, 'xx'), (1, 5, 'xx')], [(0, 5, 'xx'), (1, 6, 'xx')], [(0, 6, 'xx')]] # exclued bls red = om.filter_reds(reds, ex_bls=[(0, 2), (1, 2), (0, 6)]) assert red == [[(0, 1, 'xx'), (2, 3, 'xx'), (3, 4, 'xx'), (4, 5, 'xx'), (5, 6, 'xx')], [(1, 3, 'xx'), (2, 4, 'xx'), (3, 5, 'xx'), (4, 6, 'xx')], [(0, 3, 'xx'), (1, 4, 'xx'), (2, 5, 'xx'), (3, 6, 'xx')], [(0, 4, 'xx'), (1, 5, 'xx'), (2, 6, 'xx')], [(0, 5, 'xx'), (1, 6, 'xx')]] # include bls red = om.filter_reds(reds, bls=[(0, 1), (1, 2)]) assert red == [[(0, 1, 'xx'), (1, 2, 'xx')]] # include ubls red = om.filter_reds(reds, ubls=[(0, 2), (1, 4)]) assert red == [[(0, 2, 'xx'), (1, 3, 'xx'), (2, 4, 'xx'), (3, 5, 'xx'), (4, 6, 'xx')], [(0, 3, 'xx'), (1, 4, 'xx'), (2, 5, 'xx'), (3, 6, 'xx')]] # exclude ubls red = om.filter_reds(reds, ex_ubls=[(0, 2), (1, 4), (4, 5), (0, 5), (2, 3), (0, 6)]) assert red == [[(0, 4, 'xx'), (1, 5, 'xx'), (2, 6, 'xx')]] # exclude crosspols # reds = omni.filter_reds(self.info.get_reds(), ex_crosspols=() def test_filter_reds_2pol(self): antpos = linear_array(4) reds = om.get_reds(antpos, pols=['xx', 'yy'], pol_mode='1pol') # include pols red = om.filter_reds(reds, pols=['xx']) assert red == [[(0, 1, 'xx'), (1, 2, 'xx'), (2, 3, 'xx')], [(0, 2, 'xx'), (1, 3, 'xx')], [(0, 3, 'xx')]] # exclude pols red = om.filter_reds(reds, ex_pols=['yy']) assert red == [[(0, 1, 'xx'), (1, 2, 'xx'), (2, 3, 'xx')], [(0, 2, 'xx'), (1, 3, 'xx')], [(0, 3, 'xx')]] # exclude ants red = om.filter_reds(reds, ex_ants=[0]) assert red == [[(1, 2, 'xx'), (2, 3, 'xx')], [(1, 3, 'xx')], [(1, 2, 'yy'), (2, 3, 'yy')], [(1, 3, 'yy')]] # include ants red = om.filter_reds(reds, ants=[1, 2, 3]) red = om.filter_reds(reds, ex_ants=[0]) # exclued bls red = om.filter_reds(reds, ex_bls=[(1, 2), (0, 3)]) assert red == [[(0, 1, 'xx'), (2, 3, 'xx')], [(0, 2, 'xx'), (1, 3, 'xx')], [(0, 1, 'yy'), (2, 3, 'yy')], [(0, 2, 'yy'), (1, 3, 'yy')]] # include bls red = om.filter_reds(reds, bls=[(0, 1), (1, 2)]) assert red == [[(0, 1, 'xx'), (1, 2, 'xx')], [(0, 1, 'yy'), (1, 2, 'yy')]] # include ubls red = om.filter_reds(reds, ubls=[(0, 2)]) assert red == [[(0, 2, 'xx'), (1, 3, 'xx')], [(0, 2, 'yy'), (1, 3, 'yy')]] # exclude ubls red = om.filter_reds(reds, ex_ubls=[(2, 3), (0, 3)]) assert red == [[(0, 2, 'xx'), (1, 3, 'xx')], [(0, 2, 'yy'), (1, 3, 'yy')]] # test baseline length min and max cutoffs antpos = hex_array(4, sep=14.6, split_core=False, outriggers=0) reds = om.get_reds(antpos, pols=['xx'], pol_mode='1pol') assert om.filter_reds(reds, antpos=antpos, min_bl_cut=85) == reds[-3:] assert om.filter_reds(reds, antpos=antpos, max_bl_cut=15) == reds[:3] def test_filter_reds_max_dim(self): # build hex array with 4 on a side and 7 total rows antpos = hex_array(4, split_core=False, outriggers=0) antpos[37] = np.array([np.pi, np.pi, 0]) # add one off-grid antenna reds = om.get_reds(antpos) # remove third, fourth, fifth, and sixth rows reds = om.filter_reds(reds, ex_ants=list(range(9, 33))) # Max 1 dimension means largest 1D array new_reds = om.filter_reds(reds, max_dims=1) ant_inds = set([ant[0] for red in new_reds for bl in red for ant in split_bl(bl)]) assert ant_inds == set(range(4, 9)) # Max 2 dimensions means only rows 1 and 2 new_reds = om.filter_reds(reds, max_dims=2) ant_inds = set([ant[0] for red in new_reds for bl in red for ant in split_bl(bl)]) assert ant_inds == set(range(0, 9)) # Max 3 dimensions means all 3 good rows, but keeps out the off-grid antenna new_reds = om.filter_reds(reds, max_dims=3) ant_inds = set([ant[0] for red in new_reds for bl in red for ant in split_bl(bl)]) assert ant_inds == (set(range(0, 9)) | set(range(33, 37))) def test_add_pol_reds(self): reds = [[(1, 2)]] polReds = om.add_pol_reds(reds, pols=['xx'], pol_mode='1pol') assert polReds == [[(1, 2, 'xx')]] polReds = om.add_pol_reds(reds, pols=['xx', 'yy'], pol_mode='2pol') assert polReds == [[(1, 2, 'xx')], [(1, 2, 'yy')]] polReds = om.add_pol_reds(reds, pols=['xx', 'xy', 'yx', 'yy'], pol_mode='4pol') assert polReds == [[(1, 2, 'xx')], [(1, 2, 'xy')], [(1, 2, 'yx')], [(1, 2, 'yy')]] polReds = om.add_pol_reds(reds, pols=['xx', 'xy', 'yx', 'yy'], pol_mode='4pol_minV') assert polReds == [[(1, 2, 'xx')], [(1, 2, 'xy'), (1, 2, 'yx')], [(1, 2, 'yy')]] def test_reds_to_antpos(self): # Test 1D true_antpos = linear_array(10) reds = om.get_reds(true_antpos, pols=['xx', 'yy'], pol_mode='2pol', bl_error_tol=1e-10) inferred_antpos = om.reds_to_antpos(reds,) for pos in inferred_antpos.values(): assert len(pos) == 1 new_reds = om.get_reds(inferred_antpos, pols=['xx', 'yy'], pol_mode='2pol', bl_error_tol=1e-10) for nred in new_reds: for red in reds: if nred[0] in red: found_match = True assert len(set(nred).difference(set(red))) == 0 assert found_match found_match = False # Test 2D true_antpos = hex_array(5, split_core=False, outriggers=0) reds = om.get_reds(true_antpos, pols=['xx'], pol_mode='1pol', bl_error_tol=1e-10) inferred_antpos = om.reds_to_antpos(reds) for pos in inferred_antpos.values(): assert len(pos) == 2 new_reds = om.get_reds(inferred_antpos, pols=['xx'], pol_mode='1pol', bl_error_tol=1e-10) for nred in new_reds: for red in reds: if nred[0] in red: found_match = True assert len(set(nred).difference(set(red))) == 0 assert found_match found_match = False # Test 2D with split true_antpos = hex_array(5, split_core=True, outriggers=0) reds = om.get_pos_reds(true_antpos, bl_error_tol=1e-10) inferred_antpos = om.reds_to_antpos(reds) for pos in inferred_antpos.values(): assert len(pos) == 2 new_reds = om.get_pos_reds(inferred_antpos, bl_error_tol=1e-10) for nred in new_reds: for red in reds: if nred[0] in red: found_match = True assert len(set(nred).difference(set(red))) == 0 assert found_match found_match = False # Test 2D with additional degeneracy true_antpos = {0: [0, 0], 1: [1, 0], 2: [0, 1], 3: [1, 1], 4: [100, 100], 5: [101, 100], 6: [100, 101], 7: [101, 101]} reds = om.get_pos_reds(true_antpos, bl_error_tol=1e-10) inferred_antpos = om.reds_to_antpos(reds) for pos in inferred_antpos.values(): assert len(pos) == 3 new_reds = om.get_pos_reds(inferred_antpos, bl_error_tol=1e-10) for nred in new_reds: for red in reds: if nred[0] in red: found_match = True assert len(set(nred).difference(set(red))) == 0 assert found_match found_match = False def test_find_polarity_flipped_ants(self): # test normal operation antpos = hex_array(3, split_core=False, outriggers=0) reds = om.get_reds(antpos, pols=['ee'], pol_mode='1pol') rc = om.RedundantCalibrator(reds) freqs = np.linspace(.1, .2, 100) ants = [(ant, 'Jee') for ant in antpos] gains = gen_gains(freqs, ants) for ant in [3, 10, 11]: gains[ant, 'Jee'] *= -1 _, true_vis, data = sim_red_data(reds, gains=gains, shape=(2, len(freqs))) meta, g_fc = rc.firstcal(data, freqs) for ant in antpos: if ant in [3, 10, 11]: assert np.all(meta['polarity_flips'][ant, 'Jee']) else: assert not np.any(meta['polarity_flips'][ant, 'Jee']) # test operation where no good answer is possible, so we expect it to fail data[(0, 1, 'ee')] *= -1 meta, g_fc = rc.firstcal(data, freqs) for ant in meta['polarity_flips']: assert np.all([m is None for m in meta['polarity_flips'][ant]]) # test errors with pytest.raises(ValueError): om._build_polarity_baseline_groups(data, reds, edge_cut=100) with pytest.raises(ValueError): om._build_polarity_baseline_groups(data, reds, max_rel_angle=np.pi) class TestRedundantCalibrator(object): def test_init(self): # test a very small array pos = hex_array(3, split_core=False, outriggers=0) pos = {ant: pos[ant] for ant in range(4)} reds = om.get_reds(pos) rc = om.RedundantCalibrator(reds) with pytest.raises(ValueError): rc = om.RedundantCalibrator(reds, check_redundancy=True) # test disconnected redundant array pos = hex_array(5, split_core=False, outriggers=0) pos = {ant: pos[ant] for ant in pos if ant in [0, 1, 5, 6, 54, 55, 59, 60]} reds = om.get_reds(pos) try: rc = om.RedundantCalibrator(reds, check_redundancy=True) except ValueError: assert False, 'This array is actually redundant, so check_redundancy should not raise a ValueError.' def test_build_eq(self): antpos = linear_array(3) reds = om.get_reds(antpos, pols=['xx'], pol_mode='1pol') gains, true_vis, data = sim_red_data(reds) info = om.RedundantCalibrator(reds) eqs = info.build_eqs(data) assert len(eqs) == 3 assert eqs['g_0_Jxx * g_1_Jxx_ * u_0_xx'] == (0, 1, 'xx') assert eqs['g_1_Jxx * g_2_Jxx_ * u_0_xx'] == (1, 2, 'xx') assert eqs['g_0_Jxx * g_2_Jxx_ * u_1_xx'] == (0, 2, 'xx') reds = om.get_reds(antpos, pols=['xx', 'yy', 'xy', 'yx'], pol_mode='4pol') gains, true_vis, data = sim_red_data(reds) info = om.RedundantCalibrator(reds) eqs = info.build_eqs(data) assert len(eqs) == 3 * 4 assert eqs['g_0_Jxx * g_1_Jyy_ * u_4_xy'] == (0, 1, 'xy') assert eqs['g_1_Jxx * g_2_Jyy_ * u_4_xy'] == (1, 2, 'xy') assert eqs['g_0_Jxx * g_2_Jyy_ * u_5_xy'] == (0, 2, 'xy') assert eqs['g_0_Jyy * g_1_Jxx_ * u_6_yx'] == (0, 1, 'yx') assert eqs['g_1_Jyy * g_2_Jxx_ * u_6_yx'] == (1, 2, 'yx') assert eqs['g_0_Jyy * g_2_Jxx_ * u_7_yx'] == (0, 2, 'yx') reds = om.get_reds(antpos, pols=['xx', 'yy', 'xy', 'yx'], pol_mode='4pol_minV') gains, true_vis, data = sim_red_data(reds) info = om.RedundantCalibrator(reds) eqs = info.build_eqs(data) assert len(eqs) == 3 * 4 assert eqs['g_0_Jxx * g_1_Jyy_ * u_4_xy'] == (0, 1, 'xy') assert eqs['g_1_Jxx * g_2_Jyy_ * u_4_xy'] == (1, 2, 'xy') assert eqs['g_0_Jxx * g_2_Jyy_ * u_5_xy'] == (0, 2, 'xy') assert eqs['g_0_Jyy * g_1_Jxx_ * u_4_xy'] == (0, 1, 'yx') assert eqs['g_1_Jyy * g_2_Jxx_ * u_4_xy'] == (1, 2, 'yx') assert eqs['g_0_Jyy * g_2_Jxx_ * u_5_xy'] == (0, 2, 'yx') with pytest.raises(KeyError): info.build_eqs({}) def test_solver(self): antpos = linear_array(3) reds = om.get_reds(antpos, pols=['xx'], pol_mode='1pol') info = om.RedundantCalibrator(reds) gains, true_vis, d = sim_red_data(reds) w = {} w = dict([(k, 1.) for k in d.keys()]) def solver(data, wgts, **kwargs): np.testing.assert_equal(data['g_0_Jxx * g_1_Jxx_ * u_0_xx'], d[0, 1, 'xx']) np.testing.assert_equal(data['g_1_Jxx * g_2_Jxx_ * u_0_xx'], d[1, 2, 'xx']) np.testing.assert_equal(data['g_0_Jxx * g_2_Jxx_ * u_1_xx'], d[0, 2, 'xx']) if len(wgts) == 0: return np.testing.assert_equal(wgts['g_0_Jxx * g_1_Jxx_ * u_0_xx'], w[0, 1, 'xx']) np.testing.assert_equal(wgts['g_1_Jxx * g_2_Jxx_ * u_0_xx'], w[1, 2, 'xx']) np.testing.assert_equal(wgts['g_0_Jxx * g_2_Jxx_ * u_1_xx'], w[0, 2, 'xx']) return info._solver(solver, d) info._solver(solver, d, w) def test_firstcal_iteration(self): NANTS = 18 NFREQ = 64 antpos = linear_array(NANTS) reds = om.get_reds(antpos, pols=['xx'], pol_mode='1pol') info = om.RedundantCalibrator(reds) fqs = np.linspace(.1, .2, NFREQ) g, true_vis, d = sim_red_data(reds, shape=(1, NFREQ), gain_scatter=0) delays = {k: np.random.randn() * 30 for k in g.keys()} # in ns fc_gains = {k: np.exp(2j * np.pi * v * fqs) for k, v in delays.items()} delays = {k: np.array([[v]]) for k, v in delays.items()} fc_gains = {i: v.reshape(1, NFREQ) for i, v in fc_gains.items()} gains = {k: v * fc_gains[k] for k, v in g.items()} gains = {k: v.astype(np.complex64) for k, v in gains.items()} calibrate_in_place(d, gains, old_gains=g, gain_convention='multiply') d = {k: v.astype(np.complex64) for k, v in d.items()} dly_sol, off_sol = info._firstcal_iteration(d, df=fqs[1] - fqs[0], f0=fqs[0], medfilt=False) sol_degen = info.remove_degen_gains(dly_sol, degen_gains=delays, mode='phase') for i in range(NANTS): assert dly_sol[(i, 'Jxx')].dtype == np.float64 assert dly_sol[(i, 'Jxx')].shape == (1, 1) assert np.allclose(np.round(sol_degen[(i, 'Jxx')] - delays[(i, 'Jxx')], 0), 0) def test_firstcal(self): np.random.seed(21) antpos = hex_array(2, split_core=False, outriggers=0) reds = om.get_reds(antpos, pols=['xx'], pol_mode='1pol') rc = om.RedundantCalibrator(reds) freqs = np.linspace(1e8, 2e8, 1024) # test firstcal where the degeneracies of the phases and delays have already been removed so no abscal is necessary gains, true_vis, d = sim_red_data(reds, gain_scatter=0, shape=(2, len(freqs))) fc_delays = {ant: [[100e-9 * np.random.randn()]] for ant in gains.keys()} # in s fc_delays = rc.remove_degen_gains(fc_delays) fc_offsets = {ant: [[.49 * np.pi * (np.random.rand() > .90)]] for ant in gains.keys()} # the .49 removes the possibly of phase wraps that need abscal fc_offsets = rc.remove_degen_gains(fc_offsets) fc_gains = {ant: np.reshape(np.exp(-2.0j * np.pi * freqs * delay - 1.0j * fc_offsets[ant]), (1, len(freqs))) for ant, delay in fc_delays.items()} for ant1, ant2, pol in d.keys(): d[(ant1, ant2, pol)] *= fc_gains[(ant1, split_pol(pol)[0])] * np.conj(fc_gains[(ant2, split_pol(pol)[1])]) for ant in gains.keys(): gains[ant] *= fc_gains[ant] meta, g_fc = rc.firstcal(d, freqs, conv_crit=0) np.testing.assert_array_almost_equal(np.linalg.norm([g_fc[ant] - gains[ant] for ant in g_fc]), 0, decimal=3) # test firstcal with only phases (no delays) gains, true_vis, d = sim_red_data(reds, gain_scatter=0, shape=(2, len(freqs))) fc_delays = {ant: [[0 * np.random.randn()]] for ant in gains.keys()} # in s fc_offsets = {ant: [[.49 * np.pi * (np.random.rand() > .90)]] for ant in gains.keys()} # the .49 removes the possibly of phase wraps that need abscal fc_offsets = rc.remove_degen_gains(fc_offsets) fc_gains = {ant: np.reshape(np.exp(-2.0j * np.pi * freqs * delay - 1.0j * fc_offsets[ant]), (1, len(freqs))) for ant, delay in fc_delays.items()} for ant1, ant2, pol in d.keys(): d[(ant1, ant2, pol)] *= fc_gains[(ant1, split_pol(pol)[0])] * np.conj(fc_gains[(ant2, split_pol(pol)[1])]) for ant in gains.keys(): gains[ant] *= fc_gains[ant] meta, g_fc = rc.firstcal(d, freqs, conv_crit=0) np.testing.assert_array_almost_equal(np.linalg.norm([g_fc[ant] - gains[ant] for ant in g_fc]), 0, decimal=10) # much higher precision def test_logcal(self): NANTS = 18 antpos = linear_array(NANTS) reds = om.get_reds(antpos, pols=['xx'], pol_mode='1pol') info = om.RedundantCalibrator(reds) gains, true_vis, d = sim_red_data(reds, gain_scatter=.05) w = dict([(k, 1.) for k in d.keys()]) meta, sol = info.logcal(d) for i in range(NANTS): assert sol[(i, 'Jxx')].shape == (10, 10) for bls in reds: ubl = sol[bls[0]] assert ubl.shape == (10, 10) for bl in bls: d_bl = d[bl] mdl = sol[(bl[0], 'Jxx')] * sol[(bl[1], 'Jxx')].conj() * ubl np.testing.assert_almost_equal(np.abs(d_bl), np.abs(mdl), decimal=10) np.testing.assert_almost_equal(np.angle(d_bl * mdl.conj()), 0, decimal=10) for k in d.keys(): d[k] = np.zeros_like(d[k]) with warnings.catch_warnings(): warnings.simplefilter("ignore") meta, sol = info.logcal(d) om.make_sol_finite(sol) for red in reds: np.testing.assert_array_equal(sol[red[0]], 0.0) for ant in gains.keys(): np.testing.assert_array_equal(sol[ant], 1.0) def test_omnical(self): NANTS = 18 antpos = linear_array(NANTS) reds = om.get_reds(antpos, pols=['xx'], pol_mode='1pol') info = om.RedundantCalibrator(reds) gains, true_vis, d = sim_red_data(reds, gain_scatter=.0099999) w = dict([(k, 1.) for k in d.keys()]) sol0 = dict([(k,
np.ones_like(v)
numpy.ones_like
import pickle import numpy as np import random from sklearn.linear_model import LinearRegression def alg(): random_normal = np.random.normal(0, 0.35, size=2000) test = np.array( [random_normal[i] for i in range(len(random_normal)) if -1.0 < random_normal[i] and random_normal[i] < 1.0]) grade = [] for i in range(len(test)): if np.quantile(test, 0.1) < test[i] < np.quantile(test, 0.4): grade.append(random.randint(50, 65)) if np.quantile(test, 0.4) < test[i] < np.quantile(test, 0.87): grade.append(random.randint(65, 85)) if test[i] > np.quantile(test, 0.87): grade.append(random.randint(85, 100)) if test[i] < np.quantile(test, 0.1): grade.append(random.randint(0, 50)) grade = np.array(grade) random_data = [] for _ in range(2000): random_data.append([float(random.choice(grade)), float(random.choice(grade)), float(random.choice(grade))]) grade1 = [] for x in random_data: grade1.append(float((x[0] * x[1] * x[2]) ** (1 / 3))) x_train = np.array(random_data) y_train =
np.array(grade1)
numpy.array
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.parameter import Parameter from torch import Tensor import numpy as np from collections import OrderedDict # https://discuss.pytorch.org/t/torch-round-gradient/28628/6 class Round_fn(torch.autograd.function.InplaceFunction): @staticmethod def forward(ctx, input): ctx.input = input return torch.round(input) @staticmethod def backward(ctx, grad_output): grad_input = grad_output.clone() return grad_input def softmax_init(bits): degree = 4 theta = (bits ** degree)/(bits ** degree).sum return theta """ @inproceedings{ esser2020learned, title={LEARNED STEP SIZE QUANTIZATION}, author={<NAME> and <NAME> and <NAME> and <NAME> and <NAME>}, booktitle={International Conference on Learning Representations}, year={2020}, url={https://openreview.net/forum?id=rkgO66VKDS} } """ def grad_scale(x, scale): yOut = x yGrad = x * scale return (yOut-yGrad).detach() + yGrad class Q_ReLU(nn.Module): def __init__(self, act_func=True, inplace=False): super(Q_ReLU, self).__init__() self.bits = Parameter(Tensor([32])) self.act_func = act_func self.inplace = inplace self.a = Parameter(Tensor(1)) self.c = Parameter(Tensor(1)) def initialize(self, bits, offset, diff): self.bits = Parameter(Tensor(bits), requires_grad=True) self.a = Parameter(Tensor(len(self.bits))) self.c = Parameter(Tensor(len(self.bits))) self.a.data.fill_(np.log(np.exp(offset + diff)-1)) self.c.data.fill_(np.log(np.exp(offset + diff)-1)) def initialize_qonly(self, offset, diff): self.a.data.fill_(np.log(np.exp(offset + diff)-1)) self.c.data.fill_(np.log(np.exp(offset + diff)-1)) def forward(self, x): if self.act_func: x = F.relu(x, self.inplace) if len(self.bits)==1 and self.bits[0]==32: return x else: a = F.softplus(self.a) c = F.softplus(self.c) nlvs = torch.pow(2, self.bits) # soft forward #nlvs = torch.round(bits ** 2) # hard forward x = F.hardtanh(x / a, 0, 1) x_bar = Round_fn.apply(x.mul(nlvs-1)).div_(nlvs-1) * c #x_bar = RoundQuant.apply(x, nlvs) * c return x_bar class Q_ReLU6(Q_ReLU): def __init__(self, act_func=True, inplace=False): super(Q_ReLU6, self).__init__(act_func, inplace) def initialize(self, bits, offset, diff): self.bits = Parameter(Tensor(bits), requires_grad=True) self.n_lvs = 2 ** self.bits self.a = Parameter(Tensor(len(self.bits))) self.c = Parameter(Tensor(len(self.bits))) if offset + diff > 6: self.a.data.fill_(np.log(np.exp(6)-1)) self.c.data.fill_(np.log(np.exp(6)-1)) else: self.a.data.fill_(np.log(np.exp(offset + diff)-1)) self.c.data.fill_(np.log(np.exp(offset + diff)-1)) #print("Q_ReLU6") #print("self.bits", self.bits) #print("self.a", self.a) #print("self.c", self.c) def initialize_qonly(self, offset, diff): if offset + diff > 6: self.a.data.fill_(np.log(np.exp(6)-1)) self.c.data.fill_(np.log(np.exp(6)-1)) else: self.a.data.fill_(np.log(np.exp(offset + diff)-1)) self.c.data.fill_(np.log(np.exp(offset + diff)-1)) class Q_Sym(nn.Module): def __init__(self): super(Q_Sym, self).__init__() self.bits = Parameter(Tensor([32])) self.a = Parameter(Tensor(1)) self.c = Parameter(Tensor(1)) def initialize(self, bits, offset, diff): self.bits = Parameter(Tensor(bits), requires_grad=True) self.a = Parameter(Tensor(len(self.bits))) self.c = Parameter(Tensor(len(self.bits))) self.a.data.fill_(np.log(np.exp(offset + diff)-1)) self.c.data.fill_(np.log(np.exp(offset + diff)-1)) def initialize_qonly(self, offset, diff): self.a.data.fill_(np.log(np.exp(offset + diff)-1)) self.c.data.fill_(np.log(np.exp(offset + diff)-1)) def forward(self, x): if len(self.bits)==1 and self.bits[0]==32: return x else: a = F.softplus(self.a) c = F.softplus(self.c) nlvs = torch.pow(2, self.bits) x = F.hardtanh(x / a, -1, 1) x_bar = Round_fn.apply(x.mul(nlvs/2-1)).div_(nlvs/2-1) * c #x_bar = RoundQuant.apply(x, torch.round(nlvs / 2)) * c return x_bar ################## didn't modify Q_HSwish ################# class Q_HSwish(nn.Module): def __init__(self, act_func=True): super(Q_HSwish, self).__init__() self.n_lvs = [1] self.bits = [32] self.act_func = act_func self.a = Parameter(Tensor(1)) self.b = 3/8 self.c = Parameter(Tensor(1)) self.d = -3/8 def initialize(self, n_lvs, offset, diff): self.n_lvs = n_lvs self.a.data.fill_(np.log(np.exp(offset + diff)-1)) self.c.data.fill_(np.log(np.exp(offset + diff)-1)) def forward(self, x): if self.act_func: x = x * (F.hardtanh(x + 3, 0, 6) / 6) if len(self.bits)==1 and self.bits[0]==32: return x else: a = F.softplus(self.a) c = F.softplus(self.c) x = x + self.b x = F.hardtanh(x / a, 0, 1) x = Round_fn.apply(x.mul(self.n_lvs-1)).div_(self.n_lvs) * c #x = RoundQuant.apply(x, self.n_lvs) * c x = x + self.d return x ########################################################## class Q_Conv2d(nn.Conv2d): def __init__(self, *args, **kargs): super(Q_Conv2d, self).__init__(*args, **kargs) self.bits = Parameter(Tensor([32])) self.a = Parameter(Tensor(1)) self.c = Parameter(Tensor(1)) self.weight_old = None self.computation = 0 def initialize(self, bits): self.bits = Parameter(Tensor(bits), requires_grad=True) self.a = Parameter(Tensor(len(self.bits))) self.c = Parameter(Tensor(len(self.bits))) max_val = self.weight.data.abs().max().item() self.a.data.fill_(np.log(np.exp(max_val * 0.9)-1)) self.c.data.fill_(np.log(
np.exp(max_val * 0.9)
numpy.exp
import numpy as np from scipy.sparse import csr_matrix import myLOBPCG_new ########################################################################### # # Parameters and file path # ########################################################################### TJfile='../../TJdata/triples_30000.dat' prefix='../../output/' # directory contains rowA.binary, colA.binary, valA.binary; and will save outputs numTJ=30000 # number of triple junctions lamb=1000 # hyperparameter for the strength of the regularization sym='Cubic' # Cubic or Hex, it changes the gbdat file header fn= prefix+'Cub.gbdat' # the name of output gbdat file ########################################################################### # # Define util functions # ########################################################################### def read_dat(datFile, numTJ): """ Input: triples.dat, wrote from the fortran program Torq_gen size=[numTJ*8,] In each group, the data is [TJ directon, EA1, GB1, EA2, GB2, EA3, GB3] Output: TJs, direction of the triple junctions size = [numTJ, 3] EAs, the EA angles of the 3 grains at a TJ size = [numTJ, 3, 3] norms, normal direction of the 3 GB at a TJ size = [numTJ, 3, 3] """ with open(datFile) as f: tmp = [line.split() for line in f if line.strip()] TJs = np.zeros((numTJ, 3)) EAs = np.zeros((numTJ, 3, 3)) norms = np.zeros((numTJ, 3, 3)) for i in range(numTJ): TJs[i,:] = np.array(tmp[i*8 + 1]).astype(float) EAs[i,0, :] = np.array(tmp[i*8 + 2]).astype(float) norms[i,0, :] = np.array(tmp[i*8 + 3]).astype(float) EAs[i, 1, :] = np.array(tmp[i*8 + 4]).astype(float) norms[i, 1, :] = np.array(tmp[i*8 + 5]).astype(float) EAs[i, 2, :] = np.array(tmp[i*8 + 6]).astype(float) norms[i, 2, :] = np.array(tmp[i*8 + 7]).astype(float) return (TJs, EAs, norms) def EulerZXZ2Mat(e): """ Active Euler Angle (radian) in ZXZ convention to active rotation matrix, which means newV=M*oldV """ x=e[0] y=e[1] z=e[2] s1=np.sin(x) s2=np.sin(y) s3=np.sin(z) c1=np.cos(x) c2=np.cos(y) c3=np.cos(z) m=np.array([[c1*c3-c2*s1*s3,-c1*s3-c3*c2*s1,s1*s2], [s1*c3+c2*c1*s3,c1*c2*c3-s1*s3,-c1*s2], [s3*s2,s2*c3,c2]]) return m def EAtoG(EA): """ Input: a set of Euler Angle size=[3,] Output: the corresponding orientation matrix g size = [3, 3] """ g = np.zeros((3,3)) EA = np.radians(EA) g=EulerZXZ2Mat(EA).T return g ########################################################################### # # Construct and solve the minimization problem to get GB energy # ########################################################################### (TJs, EAs, norms) = read_dat(TJfile, numTJ) Norm=
np.empty((numTJ*3,3))
numpy.empty
import os import numpy as np import cv2 import torch import torch.nn.functional as tnf def compute_bpp(prob: torch.Tensor, num_pixels: int, batch_reduction='mean'): """ bits per pixel Args: prob (torch.Tensor): probabilities num_pixels (int): number of pixels """ assert isinstance(prob, torch.Tensor) and prob.dim() == 4 p_min = prob.detach().min() if p_min < 0: print(f'Error: prob: {prob.shape}, min={p_min} is less than 0.') elif p_min == 0: print(f'Warning: prob: {prob.shape}, min={p_min} equals to 0.') elif torch.isnan(p_min): num = torch.isnan(prob).sum() print(f'Error: prob: {prob.shape}, {num} of it is nan.') nB = prob.shape[0] bpp = - torch.log2(prob).sum() / num_pixels if batch_reduction == 'mean': bpp = bpp / nB elif batch_reduction == 'sum': pass else: raise ValueError() return bpp def _gaussian(window_size, sigma): gauss = torch.Tensor( [np.exp(-(x - window_size//2)**2 / float(2*sigma**2)) for x in range(window_size)] ) return gauss/gauss.sum() def _create_window(window_size, sigma, channel): _1D_window = _gaussian(window_size, sigma).unsqueeze(1) _2D_window = _1D_window.mm( _1D_window.t()).float().unsqueeze(0).unsqueeze(0) window = _2D_window.expand(channel, 1, window_size, window_size).contiguous() return window class MS_SSIM(torch.nn.Module): ''' Adapted from https://github.com/lizhengwei1992/MS_SSIM_pytorch ''' def __init__(self, max_val=1.0, reduction='mean'): super().__init__() self.channel = 3 self.max_val = max_val self.weight = torch.Tensor([0.0448, 0.2856, 0.3001, 0.2363, 0.1333]) assert reduction in {'mean'}, 'Invalid reduction' self.reduction = reduction def _ssim(self, img1: torch.Tensor, img2: torch.Tensor): _, c, w, h = img1.size() window_size = min(w, h, 11) sigma = 1.5 * window_size / 11 window = _create_window(window_size, sigma, self.channel) window = window.to(device=img1.device, dtype=img1.dtype) mu1 = tnf.conv2d(img1, window, padding=window_size // 2, groups=self.channel) mu2 = tnf.conv2d(img2, window, padding=window_size // 2, groups=self.channel) mu1_sq = mu1.pow(2) mu2_sq = mu2.pow(2) mu1_mu2 = mu1*mu2 sigma1_sq = tnf.conv2d( img1*img1, window, padding=window_size//2, groups=self.channel) - mu1_sq sigma2_sq = tnf.conv2d( img2*img2, window, padding=window_size//2, groups=self.channel) - mu2_sq sigma12 = tnf.conv2d(img1*img2, window, padding=window_size // 2, groups=self.channel) - mu1_mu2 C1 = (0.01*self.max_val)**2 C2 = (0.03*self.max_val)**2 V1 = 2.0 * sigma12 + C2 V2 = sigma1_sq + sigma2_sq + C2 ssim_map = ((2*mu1_mu2 + C1)*V1)/((mu1_sq + mu2_sq + C1)*V2) mcs_map = V1 / V2 if self.reduction == 'mean': ssim_map = ssim_map.mean() mcs_map = mcs_map.mean() return ssim_map, mcs_map def forward(self, img1, img2): assert img1.shape == img2.shape and img1.device == img2.device self.weight = self.weight.to(device=img1.device) levels = 5 if min(img1.shape[2:4]) < 2**levels: return torch.zeros(1) msssim = [] mcs = [] for i in range(levels): ssim_map, mcs_map = self._ssim(img1, img2) msssim.append(ssim_map) mcs.append(mcs_map) filtered_im1 = tnf.avg_pool2d(img1, kernel_size=2, stride=2) filtered_im2 = tnf.avg_pool2d(img2, kernel_size=2, stride=2) img1 = filtered_im1 img2 = filtered_im2 msssim = torch.stack(msssim) mcs = torch.stack(mcs) value = torch.prod(mcs[0:levels-1] ** self.weight[0:levels-1]) \ * (msssim[levels-1] ** self.weight[levels-1]) value: torch.Tensor return value @torch.no_grad() def get_important_channels(model, topk=16): from mycv.paths import IMPROC_DIR device = next(model.parameters()).device img_dir = IMPROC_DIR / 'kodak' img_names = os.listdir(img_dir) # img_names = img_names[:1] entropy_sum = None value_max = None for imname in img_names: impath = img_dir / imname im = cv2.imread(str(impath)) im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) input_ = torch.from_numpy(im).permute(2,0,1).float() / 255.0 input_ = input_.unsqueeze(0) input_ = input_.to(device=device) ih, iw = input_.shape[2:4] # encode outputs = model(input_) likelihoods = outputs['likelihoods'] p_main = likelihoods['y'] z = model.g_a(input_) zhat = torch.round(z) # rec = rec.clamp_(min=0, max=1) # rec = (rec.squeeze(0).cpu().permute(1,2,0) * 255).to(dtype=torch.uint8).numpy() # plt.imshow(rec); plt.show() # entropys assert p_main.shape[2:4] == (ih//16, iw//16) Hs = -torch.log2(p_main) Hs = Hs.sum(dim=3).sum(dim=2).squeeze(0).cpu() # plt.figure(); plt.bar(np.arange(len(Hs)), Hs) # plt.figure(); plt.bar(np.arange(len(Es)), Es); plt.show() # max values within channels assert zhat.shape[2:4] == (ih//16, iw//16) zmax = torch.amax(zhat, dim=(2,3)).squeeze(0).cpu() entropy_sum = entropy_sum + Hs if entropy_sum is not None else Hs value_max = torch.maximum(value_max, zmax) if value_max is not None else zmax entropy_mean = entropy_sum / len(img_names) # plt.bar(np.arange(len(entropy_mean)), entropy_mean); plt.show() entropys, indexs = torch.sort(entropy_mean, descending=True) indexs = indexs[:topk] debug = 1 # plt.bar(np.arange(len(entropys)), entropys) # plt.xlabel('Rank') # plt.ylabel('Entropy') # plt.show() # exit() return indexs, value_max, zhat.shape[1] @torch.no_grad() def plot_response(model: torch.nn.Module, topk, save_path): assert not model.training device = next(model.parameters()).device if hasattr(model, 'decoder'): decode_func = model.decoder elif hasattr(model, 'g_s'): decode_func = model.g_s else: raise NotImplementedError() channel_indices, value_max, nC = get_important_channels(model, topk) images = [] for k, chi in enumerate(channel_indices): # print(f'running channel {chi}') x = torch.zeros(1, nC, 3, 3, device=device) a = value_max[chi] * 1.2 x[0, chi, 1, 1] = a rec1 = decode_func(x) # x[0, chi, 1, 1] = -a # rec2 = decode_func(x) # rec = torch.cat([rec1, rec2], dim=2) rec = rec1 rec = rec.clamp_(min=0, max=1) rec = (rec.squeeze(0).cpu().permute(1,2,0) * 255).to(dtype=torch.uint8).numpy() # assert rec.shape == (48,48,3) h,w = rec.shape[0:2] # rec[h//2,:,:] = 255 # resize images rec = cv2.resize(rec, (w*2,h*2), interpolation=cv2.INTER_NEAREST) rec = rec.copy() # label the image cv2.putText(rec, f'{k+1}', (4,20), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255,255,255), 2) # cv2.putText(rec, f'Rank {k}, channel {chi}', (0,16), # cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255), 1) # plt.imshow(rec); plt.show() images.append(rec) if len(images) == 8: h,w = images[0].shape[0:2] assert h == w border = (
np.ones((h//16, w, 3))
numpy.ones
from time import time import numpy as np from pandas import DataFrame, Series from scipy.stats import truncnorm from .constants import RAD2DEG, YEAR2DAY, FLUX_SCALE import matplotlib.pyplot as plt import logging spot_contrast = 0.75 n_bins = 5 # number of area bins delta_lnA = 0.5 # bin width in log-area max_area = 100 # original area of largest bipoles (deg^2) tau1 = 5 # first and last times (in days) for emergence of "correlated" regions tau2 = 15 # why these numbers ?? prob = 0.001 # total probability for "correlation" # based on what ?? nlon = 36 # number of longitude bins nlat = 16 # number of latitude bins dcon = 2 * np.sinh(delta_lnA / 2) # constant from integration over area bin fact = np.exp( delta_lnA *
np.arange(n_bins)
numpy.arange
"""The class which defines camera """ # function comment template """name description Args: Returns: """ # class comment template """The class of descriptor Attributes: """ import cv2 import numpy as np from tqdm import tqdm import yaml import logging from ModelLoader import Loader from ModelEvaluator import Evaluator from ModelCalibrator import Calibrator from ModelUtil.util import * from ModelSet.settings import * class Camera(object): """Basic class Camera Base class. Can be initialized by config file or settings. Default as settings. Attributes: name: name of the camera task: the usage of camera Config: a dictionary can be used to set parameters IntP: intrinsic matrix for camera [3x3] fx: 1x1 fy: 1x1 cx: 1x1 cy: 1x1 ExtP: extrinsic matrix for cemera [R t] R: Nx3x3 t: Nx3x1 N is the Nth R, t in the Nth calibration chess board DisP: distortion parameters [k1 k2 p1 p2 k3] Image: Images taken by this camera [NxHxW] N - number of images HxW - size Loader: class-Loader for loading images & parameters Calibrator: class-Calibrator flag_calib: has been calibrated or not [bool] Evaluator: class-Evaluator Functions: Calibrate camera Undistort image show the img """ def __init__(self,name): """name descriptor Args: Returns: """ self.name = name self.task = TASK self.IntP = np.zeros((3,3)) self.fx = 0.0 self.fy = 0.0 self.cx = 0.0 self.cy = 0.0 self.IntError = 0.0 self.ExtP = np.zeros((3,4)) self.R = np.zeros((3,3)) self.t = np.zeros((3,1)) self.DisP = np.zeros((1,5)) self.Image = None self.Image_num = 0 self.Loader = Loader() self.img_path = '' self.Calibrator = Calibrator(self.name) self.chess_board_size =
np.array(CHESSBOARDSIZE)
numpy.array
import numpy as np import pickle from videotime.layout import Layout class TimeDetector: '''Detects superimposed timestamps in videos. The detector performs a trivial template match to determine the digit class for each digit position in a given Layout. Since overlay digits are usually rendered pixel exact, the detector considers only a single image location per digit. Extracting the time of a single still image usually takes around 80usecs, or equivalently 12500 images can be processed per second. The detector is quite robust against Gaussian noise but cannot handle images shifts very well. However, this usually does not pose a problem as overlays are rendered exactly. ''' def __init__(self, layout, weights): '''Create detector from time layout and weights.''' self.layout = layout self.weights = weights def detect(self, img, **kwargs): '''Detect and parse time overlay. Params ------ img : HxW, HxWxC Image to be processed Kwargs ------ verbose: bool, optional Wheter or not to sho detection result. Returns ------- time : datetime object Detected time probability: scalar Probability of detection [0..1] ''' verbose = kwargs.pop('verbose', False) img = np.asarray(img) if img.ndim == 3: img = img[..., 0] # Extract letters from HH:MM:SS.TT rois = np.array([img[ys, xs] for xs, ys in zip(self.layout.slicesx, self.layout.slicesy)]) # Scale/shift to [-1, 1] srois = (rois / 255. - 0.5)*2 # Inner product of digit positions and weights to yield scores scores = np.tensordot(srois, self.weights, axes=([1,2], [1,2])) # Probabilities for each roi according to the alphabet (softmax) def softmax(x): # e ^ (x - max(x)) / sum(e^(x - max(x)) xn = x - x.max(axis=1, keepdims=True) ex = np.exp(xn) return ex / ex.sum(axis=1, keepdims=True) # Use max probs for each digit position as detection result probs = softmax(scores) dtime =
np.argmax(probs, axis=1)
numpy.argmax
''' MIT License Copyright (c) 2022 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' from datasets import LeonardoDataset, build_predicates, denormalize_rgb from functools import partial from matplotlib import pyplot as plt from networks import EmbeddingNet, ReadoutNet from tensorboardX import SummaryWriter from train_utils import train_one_epoch, eval_one_epoch, train_ddp import argparse import json import numpy as np import os import torch import torch.distributed as dist import torch.multiprocessing as mp unary_pred = [ 'on_surface(%s, left)', 'on_surface(%s, right)', 'on_surface(%s, far)', 'on_surface(%s, center)', 'has_obj(robot, %s)', 'top_is_clear(%s)', 'in_approach_region(robot, %s)' ] binary_pred = ['stacked(%s, %s)', 'aligned_with(%s, %s)'] def step(use_gripper, data, model, head): img, obj_patches, gripper, target = data emb, attn = model(img, obj_patches) if use_gripper: emb = torch.cat( [emb, gripper[:, None, None].expand(-1, emb.shape[1], -1)], dim=-1 ) logits = head(emb) loss = torch.nn.functional.binary_cross_entropy_with_logits(logits, target) return logits, loss def calc_acc(data, logits, pred_types): img, obj_patches, gripper, target = data pred = (logits.detach() > 0).int() acc = (pred == target.int()).sum(dim=0) / logits.shape[0] * 100 return acc def log( writer, global_step, split, epoch, idx, total, batch_time, data_time, avg_loss, avg_acc, pred_types=None ): print( f'Epoch {(epoch+1):02d} {split.capitalize()} {idx:04d}/{total:04d} ' f'Batch time {batch_time:.3f} Data time {data_time:.3f} ' f'Loss {avg_loss.item():.4f} Accuracy {avg_acc.mean().item():.2f}' ) acc = [a.mean() for a in avg_acc.split(list(pred_types.values()))] writer.add_scalar(f'{split}/loss', avg_loss, global_step) writer.add_scalar(f'{split}/accuracy', avg_acc.mean().item(), global_step) for a, name in zip(acc, pred_types.keys()): writer.add_scalar(f'{split}/accuracy_{name}', a.item(), global_step) def plot(predicates, n_plot, data, logits): img, obj_patches, gripper, target = data patch_size = obj_patches.shape[-1] img_with_obj = [] for i, o in zip(img[:n_plot], obj_patches[:n_plot]): obj_panel =
np.full((patch_size+4, i.shape[2], 3), 255, dtype=np.uint8)
numpy.full
import numpy as np import sys import time from sklearn.model_selection import RepeatedKFold from sklearn.model_selection import GroupKFold from sklearn.base import BaseEstimator from scipy.linalg import cholesky, solve_triangular from sklearn.metrics.pairwise import euclidean_distances from sklearn.decomposition import PCA from ml_dft.kernel_functions import RBFKernel, MaternKernel import os import warnings def get_alpha_add(n_basis, n_grid, delta, v): alpha_add = np.pi * ((np.arange(n_basis / 2) / (n_grid * delta))**2 + v**2) / v alpha_add = np.repeat(alpha_add, 2) return alpha_add class MultivariateGaussianProcessCV(BaseEstimator): def __init__(self, krr_param_grid=None, cv_type=None, cv_nfolds=5, cv_groups=None, cv_shuffles=1, n_components=None, single_combo=True, verbose=0, copy_X=True, v=None, n_basis=None, n_grid=None, delta=None, id=1, cleanup=True, kernel=None, squared_dist=False, kernel_params=None, delta_learning=False, mae=False, replace_fit=True): self.krr_param_grid = krr_param_grid self.verbose = verbose self.cv_nfolds = cv_nfolds self.cv_type = cv_type self.cv_groups = cv_groups self.cv_shuffles = cv_shuffles self.n_components = n_components self.single_combo = single_combo self.copy_X = copy_X self.n_grid = n_grid self.delta = delta self.n_basis = n_basis self.id = id self.cleanup = cleanup self.kernel = kernel self.squared_dist = squared_dist self.device = None self.replace_fit = replace_fit self.delta_learning = delta_learning self.mae = mae if self.kernel is None: self.kernel = RBFKernel() elif self.kernel == 'rbf': self.kernel = RBFKernel(**kernel_params) elif self.kernel == 'matern': self.kernel = MaternKernel(**kernel_params) if 'v' in self.krr_param_grid is not None and not single_combo: raise ValueError('Can only add to alpha if single_combo=True') def score(self, y_true, y_pred): return np.mean((y_true - y_pred) ** 2) def fit(self, X, y, labels=None, dist=None, importance_weights=None, cv_indices=None, dist_savename=None): t = time.time() if y.ndim < 2: y = y.reshape(-1, 1) if self.n_components is not None: if self.verbose > 0: elapsed = time.time() - t print('PCA [%dmin %dsec]' % (int(elapsed / 60), int(elapsed % 60))) sys.stdout.flush() self.pca = PCA(n_components=self.n_components, svd_solver='arpack') y_ = self.pca.fit_transform(y) if self.verbose > 0: print('Lost %.1f%% information ' % (self.pca.noise_variance_) + '[%dmin %dsec]' % (int(elapsed / 60), int(elapsed % 60))) elapsed = time.time() - t else: y_ = y if labels is not None: raise RuntimeError('Not implemented.') if cv_indices is None: cv_indices = np.arange(X.shape[0]) if self.cv_type is None: kfold = RepeatedKFold(n_splits=self.cv_nfolds, n_repeats=self.cv_shuffles) cv_folds = kfold.split(X[cv_indices]) n_cv_folds = kfold.get_n_splits() elif self.cv_type == 'iter': cv_folds = self.cv_groups n_cv_folds = len(self.cv_groups) elif self.cv_type == 'group': groups = self.cv_groups if self.cv_nfolds is None: self.cv_nfolds = len(np.unique(groups)) kfold = GroupKFold(n_splits=self.cv_nfolds) cv_folds = kfold.split(X[cv_indices], y[cv_indices], groups) n_cv_folds = kfold.get_n_splits() else: raise Exception('Cross-validation type not supported') add_train_inds = np.setdiff1d(np.arange(X.shape[0]), cv_indices) cv_folds = list(cv_folds) cv_folds = [(
np.concatenate((train_fold, add_train_inds))
numpy.concatenate
# Copyright (c) 2020, <NAME>, Honda Research Institute Europe GmbH, and # Technical University of Darmstadt. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of <NAME>, Honda Research Institute Europe GmbH, # or Technical University of Darmstadt, nor the names of its contributors may # be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL <NAME>, HONDA RESEARCH INSTITUTE EUROPE GMBH, # OR TECHNICAL UNIVERSITY OF DARMSTADT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER # IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import os.path as osp from functools import partial from typing import Callable, Sequence import numpy as np import rcsenv from init_args_serializer import Serializable from pyrado.environments.rcspysim.base import RcsSim from pyrado.tasks.base import Task from pyrado.tasks.desired_state import DesStateTask from pyrado.tasks.final_reward import FinalRewMode, FinalRewTask from pyrado.tasks.masked import MaskedTask from pyrado.tasks.parallel import ParallelTasks from pyrado.tasks.predefined import create_task_space_discrepancy_task from pyrado.tasks.reward_functions import AbsErrRewFcn, ExpQuadrErrRewFcn, RewFcn from pyrado.tasks.utils import proximity_succeeded from pyrado.utils.data_types import EnvSpec rcsenv.addResourcePath(rcsenv.RCSPYSIM_CONFIG_PATH) rcsenv.addResourcePath(osp.join(rcsenv.RCSPYSIM_CONFIG_PATH, "PlanarInsert")) def create_insert_task(env_spec: EnvSpec, state_des: np.ndarray, rew_fcn: RewFcn, success_fcn: Callable): # Define the indices for selection. This needs to match the observations' names in RcsPySim. idcs = ["Effector_X", "Effector_Z", "Effector_B", "Effector_Xd", "Effector_Zd", "Effector_Bd"] # Get the masked environment specification spec = EnvSpec( env_spec.obs_space, env_spec.act_space, env_spec.state_space.subspace(env_spec.state_space.create_mask(idcs)) ) # Create a wrapped desired state task with the goal behind the wall fdst = FinalRewTask( DesStateTask(spec, state_des, rew_fcn, success_fcn), mode=FinalRewMode(state_dependent=True, time_dependent=True), ) # Mask selected states return MaskedTask(env_spec, fdst, idcs) class PlanarInsertSim(RcsSim, Serializable): """ Planar 5- or 6-link robot environment where the task is to push the wedge-shaped end-effector through a small gap """ def __init__(self, task_args: dict, collision_config: dict = None, max_dist_force: float = None, **kwargs): """ Constructor .. note:: This constructor should only be called via the subclasses. :param task_args: arguments for the task construction :param max_dist_force: maximum disturbance force, pass `None` for no disturbance :param kwargs: keyword arguments forwarded to `RcsSim` collisionConfig: specification of the Rcs CollisionModel """ Serializable._init(self, locals()) # Forward to RcsSim's constructor RcsSim.__init__( self, envType="PlanarInsert", task_args=task_args, physicsConfigFile="pPlanarInsert.xml", collisionConfig=collision_config, **kwargs, ) if kwargs.get("collisionConfig", None) is None: collision_config = { "pairs": [ {"body1": "Effector", "body2": "Link3"}, {"body1": "Effector", "body2": "Link2"}, {"body1": "UpperWall", "body2": "Link4"}, {"body1": "LowerWall", "body2": "Link4"}, {"body1": "LowerWall", "body2": "Link3"}, {"body1": "LowerWall", "body2": "Link2"}, ], "threshold": 0.05, } else: collision_config = kwargs.get("collisionConfig") # Setup disturbance self._max_dist_force = max_dist_force def _create_task(self, task_args: dict) -> Task: # Define the task including the reward function state_des = task_args.get("state_des", None) if state_des is None: # Get the goal position in world coordinates p = self.get_body_position("Goal", "", "") state_des = np.array([p[0], p[2], 0, 0, 0, 0]) # X, Z, B, Xd, Zd, Bd # Create the individual subtasks task_reach_goal = create_insert_task( self.spec, state_des, rew_fcn=ExpQuadrErrRewFcn( Q=np.diag([2e1, 2e1, 1e-1, 1e-2, 1e-2, 1e-2]), R=2e-2 * np.eye(self.act_space.flat_dim) ), success_fcn=partial(proximity_succeeded, thold_dist=0.07, dims=[0, 1, 2]), # position and angle ) task_ts_discrepancy = create_task_space_discrepancy_task( self.spec, AbsErrRewFcn(q=0.1 * np.ones(2), r=np.zeros(self.act_space.shape)) ) return ParallelTasks([task_reach_goal, task_ts_discrepancy]) @classmethod def get_nominal_domain_param(cls): return dict( link1_mass=2.0, link2_mass=2.0, link3_mass=2.0, link4_mass=2.0, upperwall_pos_offset_x=0.0, upperwall_friction_coefficient=0.5, effector_friction_coefficient=0.7, ) def _disturbance_generator(self) -> (np.ndarray, None): if self._max_dist_force is None: return None # Sample angle and force uniformly angle = np.random.uniform(-np.pi, np.pi) force = np.random.uniform(0, self._max_dist_force) return np.array([force *
np.sin(angle)
numpy.sin
import warnings import numpy as np import pytest import shapely from shapely.testing import assert_geometries_equal from .common import all_types from .common import empty as empty_geometry_collection from .common import ( empty_line_string, empty_line_string_z, empty_point, empty_point_z, empty_polygon, geometry_collection, geometry_collection_z, line_string, line_string_nan, line_string_z, linear_ring, multi_line_string, multi_line_string_z, multi_point, multi_point_z, multi_polygon, multi_polygon_z, point, point_z, polygon, polygon_with_hole, polygon_with_hole_z, polygon_z, shapely20_todo, ) def test_get_num_points(): actual = shapely.get_num_points(all_types + (None,)).tolist() assert actual == [0, 3, 5, 0, 0, 0, 0, 0, 0, 0] def test_get_num_interior_rings(): actual = shapely.get_num_interior_rings(all_types + (polygon_with_hole, None)) assert actual.tolist() == [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] def test_get_num_geometries(): actual = shapely.get_num_geometries(all_types + (None,)).tolist() assert actual == [1, 1, 1, 1, 2, 1, 2, 2, 0, 0] @pytest.mark.parametrize( "geom", [ point, polygon, multi_point, multi_line_string, multi_polygon, geometry_collection, ], ) def test_get_point_non_linestring(geom): actual = shapely.get_point(geom, [0, 2, -1]) assert shapely.is_missing(actual).all() @pytest.mark.parametrize("geom", [line_string, linear_ring]) def test_get_point(geom): n = shapely.get_num_points(geom) actual = shapely.get_point(geom, [0, -n, n, -(n + 1)]) assert_geometries_equal(actual[0], actual[1]) assert shapely.is_missing(actual[2:4]).all() @pytest.mark.parametrize( "geom", [ point, line_string, linear_ring, multi_point, multi_line_string, multi_polygon, geometry_collection, ], ) def test_get_exterior_ring_non_polygon(geom): actual = shapely.get_exterior_ring(geom) assert shapely.is_missing(actual).all() def test_get_exterior_ring(): actual = shapely.get_exterior_ring([polygon, polygon_with_hole]) assert (shapely.get_type_id(actual) == 2).all() @pytest.mark.parametrize( "geom", [ point, line_string, linear_ring, multi_point, multi_line_string, multi_polygon, geometry_collection, ], ) def test_get_interior_ring_non_polygon(geom): actual = shapely.get_interior_ring(geom, [0, 2, -1]) assert shapely.is_missing(actual).all() def test_get_interior_ring(): actual = shapely.get_interior_ring(polygon_with_hole, [0, -1, 1, -2]) assert_geometries_equal(actual[0], actual[1]) assert shapely.is_missing(actual[2:4]).all() @pytest.mark.parametrize("geom", [point, line_string, linear_ring, polygon]) def test_get_geometry_simple(geom): actual = shapely.get_geometry(geom, [0, -1, 1, -2]) assert_geometries_equal(actual[0], actual[1]) assert shapely.is_missing(actual[2:4]).all() @pytest.mark.parametrize( "geom", [multi_point, multi_line_string, multi_polygon, geometry_collection] ) def test_get_geometry_collection(geom): n = shapely.get_num_geometries(geom) actual = shapely.get_geometry(geom, [0, -n, n, -(n + 1)]) assert_geometries_equal(actual[0], actual[1]) assert shapely.is_missing(actual[2:4]).all() def test_get_type_id(): actual = shapely.get_type_id(all_types).tolist() assert actual == [0, 1, 2, 3, 4, 5, 6, 7, 7] def test_get_dimensions(): actual = shapely.get_dimensions(all_types).tolist() assert actual == [0, 1, 1, 2, 0, 1, 2, 1, -1] def test_get_coordinate_dimension(): actual = shapely.get_coordinate_dimension([point, point_z, None]).tolist() assert actual == [2, 3, -1] def test_get_num_coordinates(): actual = shapely.get_num_coordinates(all_types + (None,)).tolist() assert actual == [1, 3, 5, 5, 2, 2, 10, 3, 0, 0] def test_get_srid(): """All geometry types have no SRID by default; None returns -1""" actual = shapely.get_srid(all_types + (None,)).tolist() assert actual == [0, 0, 0, 0, 0, 0, 0, 0, 0, -1] def test_get_set_srid(): actual = shapely.set_srid(point, 4326) assert shapely.get_srid(point) == 0 assert shapely.get_srid(actual) == 4326 @pytest.mark.parametrize( "func", [ shapely.get_x, shapely.get_y, pytest.param( shapely.get_z, marks=pytest.mark.skipif( shapely.geos_version < (3, 7, 0), reason="GEOS < 3.7" ), ), ], ) @pytest.mark.parametrize("geom", all_types[1:]) def test_get_xyz_no_point(func, geom): assert np.isnan(func(geom)) def test_get_x(): assert shapely.get_x([point, point_z]).tolist() == [2.0, 2.0] def test_get_y(): assert shapely.get_y([point, point_z]).tolist() == [3.0, 3.0] @pytest.mark.skipif(shapely.geos_version < (3, 7, 0), reason="GEOS < 3.7") def test_get_z(): assert shapely.get_z([point_z]).tolist() == [4.0] @pytest.mark.skipif(shapely.geos_version < (3, 7, 0), reason="GEOS < 3.7") def test_get_z_2d(): assert np.isnan(shapely.get_z(point)) @pytest.mark.parametrize("geom", all_types) def test_new_from_wkt(geom): actual = shapely.Geometry(str(geom)) assert_geometries_equal(actual, geom) # TODO(shapely-2.0) Python 3.10 build triggers warnings as errors, and this still # raise the deprecation warning (which should be removed) @shapely20_todo def test_adapt_ptr_raises(): point = shapely.Geometry("POINT (2 2)") with pytest.raises(AttributeError): point._ptr += 1 @pytest.mark.parametrize( "geom", all_types + (shapely.points(np.nan, np.nan), empty_point) ) def test_hash_same_equal(geom): assert hash(geom) == hash(shapely.apply(geom, lambda x: x)) @pytest.mark.parametrize("geom", all_types[:-1]) def test_hash_same_not_equal(geom): assert hash(geom) != hash(shapely.apply(geom, lambda x: x + 1)) @pytest.mark.parametrize("geom", all_types) def test_eq(geom): assert geom == shapely.apply(geom, lambda x: x) @pytest.mark.parametrize("geom", all_types[:-1]) def test_neq(geom): assert geom != shapely.apply(geom, lambda x: x + 1) @pytest.mark.parametrize("geom", all_types) def test_set_unique(geom): a = {geom, shapely.apply(geom, lambda x: x)} assert len(a) == 1 def test_eq_nan(): assert line_string_nan != line_string_nan def test_neq_nan(): assert not (line_string_nan == line_string_nan) def test_set_nan(): # As NaN != NaN, you can have multiple "NaN" points in a set # set([float("nan"), float("nan")]) also returns a set with 2 elements a = set(shapely.linestrings([[[np.nan, np.nan], [np.nan, np.nan]]] * 10)) assert len(a) == 10 # different objects: NaN != NaN def test_set_nan_same_objects(): # You can't put identical objects in a set. # x = float("nan"); set([x, x]) also retuns a set with 1 element a = set([line_string_nan] * 10) assert len(a) == 1 @pytest.mark.parametrize( "geom", [ point, multi_point, line_string, multi_line_string, polygon, multi_polygon, geometry_collection, empty_point, empty_line_string, empty_polygon, empty_geometry_collection, np.array([None]), np.empty_like(np.array([None])), ], ) def test_get_parts(geom): expected_num_parts = shapely.get_num_geometries(geom) if expected_num_parts == 0: expected_parts = [] else: expected_parts = shapely.get_geometry(geom, range(0, expected_num_parts)) parts = shapely.get_parts(geom) assert len(parts) == expected_num_parts assert_geometries_equal(parts, expected_parts) def test_get_parts_array(): # note: this also verifies that None is handled correctly # in the mix; internally it returns -1 for count of geometries geom = np.array([None, empty_line_string, multi_point, point, multi_polygon]) expected_parts = [] for g in geom: for i in range(0, shapely.get_num_geometries(g)): expected_parts.append(shapely.get_geometry(g, i)) parts = shapely.get_parts(geom) assert len(parts) == len(expected_parts) assert_geometries_equal(parts, expected_parts) def test_get_parts_geometry_collection_multi(): """On the first pass, the individual Multi* geometry objects are returned from the collection. On the second pass, the individual singular geometry objects within those are returned. """ geom = shapely.geometrycollections([multi_point, multi_line_string, multi_polygon]) expected_num_parts = shapely.get_num_geometries(geom) expected_parts = shapely.get_geometry(geom, range(0, expected_num_parts)) parts = shapely.get_parts(geom) assert len(parts) == expected_num_parts assert_geometries_equal(parts, expected_parts) expected_subparts = [] for g in np.asarray(expected_parts): for i in range(0, shapely.get_num_geometries(g)): expected_subparts.append(shapely.get_geometry(g, i)) subparts = shapely.get_parts(parts) assert len(subparts) == len(expected_subparts) assert_geometries_equal(subparts, expected_subparts) def test_get_parts_return_index(): geom =
np.array([multi_point, point, multi_polygon])
numpy.array
# This software is open source software available under the BSD-3 license. # # Copyright (c) 2020 Triad National Security, LLC. All rights reserved. # Copyright (c) 2020 Lawrence Livermore National Security, LLC. All rights # reserved. # Copyright (c) 2020 UT-Battelle, LLC. All rights reserved. # # Additional copyright and license information can be found in the LICENSE file # distributed with this code, or at # https://raw.githubusercontent.com/MPAS-Dev/MPAS-Analysis/master/LICENSE from __future__ import absolute_import, division, print_function, \ unicode_literals import numpy import xarray as xr import os from collections import OrderedDict from pyremap import PointCollectionDescriptor from mpas_analysis.shared.climatology import RemapMpasClimatologySubtask from mpas_analysis.shared.io.utility import build_config_full_path, \ make_directories from mpas_analysis.shared.io import write_netcdf from mpas_analysis.ocean.utility import compute_zmid from mpas_analysis.shared.interpolation import interp_1d class ComputeTransectsSubtask(RemapMpasClimatologySubtask): # {{{ """ A subtask for remapping climatologies to transect points Attributes ---------- obsDatasets : TransectsObservations A dictionary of observational datasets verticalComparisonGridName : {'obs', 'mpas'} or any str The vertical grid name on which to compare MPAS data with observations. 'obs' indicates the locations of the original observations; 'mpas' is the vertical locations of MPAS points, remapped to the observation latitude/longitude. If any other, string, verticalComparisonGrid should be a 1D numpy array and this name should be a useful (and unique) description of that grid. verticalComparisonGrid : 1D numpy array The vertical grid on which to compare MPAS data with observations if ``verticalComparisonGridName`` is not 'obs' or 'mpas'. The values should be elevations (in m, typically negative). transectNumber : ``xarray.DataArray`` For each point in the point collection after remapping, the index of the transect it belongs to (so that remapped results can be separated back into individual transects for plotting) transectCollectionName : str A name that describes the collection of transects (e.g. the name of the collection of observations) used to name the destination "mesh" for regridding collectionDescriptor : ``PointCollectionDescriptor`` The mesh descriptor for the collection of all points in all transects, used for remapping zMid : ``xarray.DataArray`` Vertical coordinate at the center of layers, used to interpolate to reference depths """ # Authors # ------- # <NAME> def __init__(self, mpasClimatologyTask, parentTask, climatologyName, transectCollectionName, variableList, seasons, obsDatasets, verticalComparisonGridName='obs', verticalComparisonGrid=None, subtaskName='remapTransects'): # {{{ ''' Construct the analysis task and adds it as a subtask of the ``parentTask``. Parameters ---------- mpasClimatologyTask : ``MpasClimatologyTask`` The task that produced a climatology to be remapped and plotted as a transect parentTask : ``AnalysisTask`` The parent task, used to get the ``taskName``, ``config`` and ``componentName`` climatologyName : str A name that describes the climatology (e.g. a short version of the important field(s) in the climatology) used to name the subdirectories for each stage of the climatology transectCollectionName : str A name that describes the collection of transects (e.g. the name of the collection of observations) used to name the destination "mesh" for regridding variableList : list of str A list of variable names in ``timeSeriesStatsMonthly`` to be included in the climatologies seasons : list of str A list of seasons (keys in ``shared.constants.monthDictionary``) to be computed or ['none'] (not ``None``) if only monthly climatologies are needed. obsDatasets : TransectsObservations A dictionary of observational datasets verticalComparisonGridName : {'obs', 'mpas'} or any str, optional The vertical grid name on which to compare MPAS data with observations. 'obs' indicates the locations of the original observations; 'mpas' is the vertical locations of MPAS points, remapped to the observation latitude/longitude. If any other, string, verticalComparisonGrid should be a 1D numpy array and this name should be a useful (and unique) description of that grid. verticalComparisonGrid : 1D numpy array, optional The vertical grid on which to compare MPAS data with observations if ``verticalComparisonGridName`` is not 'obs' or 'mpas'. The values should be elevations (in m, typically negative). subtaskName : str, optional The name of the subtask ''' # Authors # ------- # <NAME> # call the constructor from the base class # (RemapMpasClimatologySubtask) super(ComputeTransectsSubtask, self).__init__( mpasClimatologyTask, parentTask, climatologyName=climatologyName, variableList=variableList, seasons=seasons, subtaskName=subtaskName) self.obsDatasets = obsDatasets self.transectCollectionName = transectCollectionName self.verticalComparisonGridName = verticalComparisonGridName self.verticalComparisonGrid = verticalComparisonGrid # }}} def setup_and_check(self): # {{{ ''' Creates a PointCollectionDescriptor describing all the points in the transects to remap to. Keeps track of which transects index each point belongs to. Raises ------ IOError : If a restart file is not available from which to read mesh information or if no history files are available from which to compute the climatology in the desired time range. ''' # Authors # ------- # <NAME> transectNumber = [] lats = [] lons = [] x = [] obsDatasets = self.obsDatasets.get_observations() datasets = list(obsDatasets.values()) for transectIndex, ds in enumerate(datasets): localLats = list(ds.lat.values) localLons = list(ds.lon.values) localX = list(ds.x.values) localIndices = [transectIndex for lat in localLats] lats.extend(localLats) lons.extend(localLons) x.extend(localX) transectNumber.extend(localIndices) self.transectNumber = xr.DataArray.from_dict( {'dims': ('nPoints'), 'data': transectNumber}) self.x = xr.DataArray.from_dict( {'dims': ('nPoints'), 'data': x}) self.collectionDescriptor = PointCollectionDescriptor( lats, lons, collectionName=self.transectCollectionName, units='degrees', outDimension='nPoints') self.add_comparison_grid_descriptor(self.transectCollectionName, self.collectionDescriptor) # then, call setup_and_check from the base class # (RemapMpasClimatologySubtask) super(ComputeTransectsSubtask, self).setup_and_check() for transectName in obsDatasets: obsDatasets[transectName].close() def run_task(self): # {{{ ''' Compute climatologies of melt rates from E3SM/MPAS output This function has been overridden to compute ``zMid`` based on data from a restart file for later use in vertically interpolating to reference depths. ''' # Authors # ------- # <NAME> # first, compute zMid and cell mask from the restart file with xr.open_dataset(self.restartFileName) as ds: ds = ds[['maxLevelCell', 'bottomDepth', 'layerThickness']] ds = ds.isel(Time=0) self.maxLevelCell = ds.maxLevelCell - 1 zMid = compute_zmid(ds.bottomDepth, ds.maxLevelCell, ds.layerThickness) self.zMid = \ xr.DataArray.from_dict({'dims': ('nCells', 'nVertLevels'), 'data': zMid}) ds.close() # then, call run from the base class (RemapMpasClimatologySubtask), # which will perform the horizontal remapping super(ComputeTransectsSubtask, self).run_task() obsDatasets = self.obsDatasets.get_observations() self.logger.info('Interpolating each transect vertically...') # finally, vertically interpolate and write out each transect for season in self.seasons: remappedFileName = self.get_remapped_file_name( season, comparisonGridName=self.transectCollectionName) with xr.open_dataset(remappedFileName) as ds: transectNames = list(obsDatasets.keys()) for transectIndex, transectName in enumerate(transectNames): self.logger.info(' {}'.format(transectName)) dsObs = obsDatasets[transectName] outFileName = self.get_remapped_file_name( season, comparisonGridName=transectName) outObsFileName = self.obsDatasets.get_out_file_name( transectName, self.verticalComparisonGridName) self._vertical_interp(ds, transectIndex, dsObs, outFileName, outObsFileName) ds.close() for transectName in obsDatasets: obsDatasets[transectName].close() # }}} def customize_masked_climatology(self, climatology, season): # {{{ ''' Add zMid to the climatologys Parameters ---------- climatology : ``xarray.Dataset`` object the climatology data set season : str The name of the season to be masked Returns ------- climatology : ``xarray.Dataset`` object the modified climatology data set ''' # Authors # ------- # <NAME> zIndex = xr.DataArray.from_dict( {'dims': ('nVertLevels',), 'data': numpy.arange(climatology.sizes['nVertLevels'])}) cellMask = zIndex < self.maxLevelCell for variableName in self.variableList: climatology[variableName] = \ climatology[variableName].where(cellMask) climatology['zMid'] = self.zMid climatology = climatology.transpose('nVertLevels', 'nCells') return climatology # }}} def customize_remapped_climatology(self, climatology, comparisonGridNames, season): # {{{ ''' Add the transect index to the data set Parameters ---------- climatology : ``xarray.Dataset``` The MPAS climatology data set that has been remapped comparisonGridNames : {'latlon', 'antarctic'} The name of the comparison grid to use for remapping. season : str The name of the season to be masked Returns ------- climatology : ``xarray.Dataset``` The same data set with any custom fields added or modifications made ''' # Authors # ------- # <NAME> climatology['transectNumber'] = self.transectNumber climatology['x'] = self.x if 'nCells' in climatology.dims: climatology = climatology.rename({'nCells': 'nPoints'}) dims = ['nPoints', 'nVertLevels'] if 'nv' in climatology.dims: dims.append('nv') climatology = climatology.transpose(*dims) return climatology # }}} def _vertical_interp(self, ds, transectIndex, dsObs, outFileName, outObsFileName): ''' Vertically interpolate a transect and write it to a unique file Parameters ---------- ds : ``xarray.Dataset`` The data set containing all transects before vertical interpolation transectIndex : int The index of the transect to extract dsObs : ``xarray.Dataset`` The obs dataset used if verticalComparisonGridName is 'obs' outFileName : str The name of the file to which the resulting data set should be written outObsFileName : str The name of the file to which the resulting obs data set should be written if it is interpolated ''' # Authors # ------- # <NAME> if os.path.exists(outFileName): return ds = ds.where(ds.transectNumber == transectIndex, drop=True) if self.verticalComparisonGridName == 'mpas': z = ds.zMid z = z.rename({'nVertLevels': 'nzOut'}) elif self.verticalComparisonGridName == 'obs': z = dsObs.z z = z.rename({'nz': 'nzOut'}) else: # a defined vertical grid z = (('nzOut', ), self.verticalComparisonGrid) if self.verticalComparisonGridName == 'mpas': ds = ds.rename({'zMid': 'z', 'nVertLevels': 'nz'}) else: ds['z'] = z # remap each variable ds = interp_1d(ds, inInterpDim='nVertLevels', inInterpCoord='zMid', outInterpDim='nzOut', outInterpCoord='z') ds = ds.rename({'nzOut': 'nz'}) if self.verticalComparisonGridName != 'obs' and 'nz' in dsObs.dims: dsObs['zOut'] = z # remap each variable dsObs = interp_1d(dsObs, inInterpDim='nz', inInterpCoord='z', outInterpDim='nzOut', outInterpCoord='zOut') dsObs = dsObs.rename({'nzOut': 'nz'}) write_netcdf(dsObs, outObsFileName) ds = ds.drop_vars(['validMask', 'transectNumber']) write_netcdf(ds, outFileName) # }}} # }}} class TransectsObservations(object): # {{{ """ A class for loading and manipulating transect observations Attributes ---------- config : ``MpasAnalysisConfigParser`` Configuration options obsFileNames : OrderedDict The names of transects and the file names of the corresponding observations for a transect horizontalResolution : str 'obs' for the obs as they are or a size in km if subdivision is desired. transectCollectionName : str A name that describes the collection of transects (e.g. the name of the collection of observations) used to name the destination "mesh" for regridding obsDatasets : OrderedDict A dictionary of observational datasets """ # Authors # ------- # <NAME> def __init__(self, config, obsFileNames, horizontalResolution, transectCollectionName): # {{{ ''' Construct the object, setting the observations dictionary to None. Parameters ---------- config : ``MpasAnalysisConfigParser`` Configuration options obsFileNames : OrderedDict The names of transects and the file names of the corresponding observations for a transect horizontalResolution : str 'obs' for the obs as they are or a size in km if subdivision is desired. transectCollectionName : str A name that describes the collection of transects (e.g. the name of the collection of observations) used to name the destination "mesh" for regridding ''' # Authors # ------- # <NAME> self.obsDatasets = None self.config = config self.obsFileNames = obsFileNames if horizontalResolution != 'obs': horizontalResolution = float(horizontalResolution) self.horizontalResolution = horizontalResolution self.transectCollectionName = transectCollectionName def get_observations(self): # {{{ ''' Read in and set up the observations. Returns ------- obsDatasets : OrderedDict The observational dataset ''' # Authors # ------- # <NAME> obsDatasets = OrderedDict() for name in self.obsFileNames: outFileName = self.get_out_file_name(name) if os.path.exists(outFileName): dsObs = xr.open_dataset(outFileName) dsObs.load() else: dsObs = self.build_observational_dataset( self.obsFileNames[name], name) dsObs.load() # make sure lat and lon are coordinates for coord in ['lon', 'lat']: dsObs.coords[coord] = dsObs[coord] if self.horizontalResolution == 'obs': dsObs = self._add_distance(dsObs) else: dsObs = self._subdivide_observations(dsObs) write_netcdf(dsObs, outFileName) obsDatasets[name] = dsObs return obsDatasets # }}} def build_observational_dataset(self, fileName, transectName): # {{{ ''' read in the data sets for observations, and possibly rename some variables and dimensions Parameters ---------- fileName : str observation file name transectName : str transect name Returns ------- dsObs : ``xarray.Dataset`` The observational dataset ''' # Authors # ------- # <NAME>-Davis dsObs = xr.open_dataset(fileName) # observations are expected to have horizontal dimension nPoints and # vertical dimension nz, as well as horizontal coordinates lat and lon # and vertical coordinate z. Override this function if these need to # be renamed from the observations file. return dsObs # }}} def get_out_file_name(self, transectName, verticalComparisonGridName='obs'): # {{{ ''' Given config options, the name of a field and a string identifying the months in a seasonal climatology, returns the full path for MPAS climatology files before and after remapping. Parameters ---------- transectName : str The name of the transect verticalComparisonGridName : {'obs', 'mpas'} or any str, optional The vertical grid name on which to compare MPAS data with observations. 'obs' indicates the locations of the original observations; 'mpas' is the vertical locations of MPAS points, remapped to the observation latitude/longitude. If any other, string, verticalComparisonGrid should be a 1D numpy array and this name should be a useful (and unique) description of that grid. Returns ------- fileName : str The path to the climatology file for the specified season. ''' # Authors # ------- # <NAME> config = self.config remappedDirectory = build_config_full_path( config=config, section='output', relativePathOption='remappedClimSubdirectory', relativePathSection='oceanObservations') make_directories(remappedDirectory) if verticalComparisonGridName == 'obs': fileName = '{}/{}_{}.nc'.format( remappedDirectory, self.transectCollectionName, transectName) else: fileName = '{}/{}_{}_{}.nc'.format( remappedDirectory, self.transectCollectionName, transectName, verticalComparisonGridName) return fileName # }}} def _add_distance(self, dsObs): # {{{ ''' Subdivide each segment of the transect so the horizontal resolution approximately matches the requested resolution ''' lat = dsObs.lat.values lon = dsObs.lon.values # compute the great circle distance between these points dxIn = self._haversine(lon[0:-1], lat[0:-1], lon[1:], lat[1:]) xIn = numpy.zeros(lat.shape) xIn[1:] = numpy.cumsum(dxIn) dsObs['x'] = (('nPoints',), xIn) return dsObs # }}} def _subdivide_observations(self, dsObs): # {{{ ''' Subdivide each segment of the transect so the horizontal resolution approximately matches the requested resolution ''' lat = dsObs.lat.values lon = dsObs.lon.values # compute the great circle distance between these points dxIn = self._haversine(lon[0:-1], lat[0:-1], lon[1:], lat[1:]) nSegments = numpy.maximum( (dxIn / self.horizontalResolution + 0.5).astype(int), 1) xIn = numpy.zeros(lat.shape) xIn[1:] = numpy.cumsum(dxIn) outIndex = [] for index in range(len(xIn) - 1): n = nSegments[index] outIndex.extend(index + numpy.arange(0, n) / n) outIndex.append(len(xIn) - 1) xOut = numpy.interp(outIndex, numpy.arange(len(xIn)), xIn) dsObs['xIn'] = (('nPoints',), xIn) dsObs['xOut'] = (('nPointsOut',), xOut) # interpolate fields without and with vertical dimension dsObs = interp_1d(dsObs, inInterpDim='nPoints', inInterpCoord='xIn', outInterpDim='nPointsOut', outInterpCoord='xOut') dsObs = dsObs.drop_vars(['xIn']) dsObs = dsObs.rename({'nPointsOut': 'nPoints', 'xOut': 'x'}) return dsObs # }}} def _haversine(self, lon1, lat1, lon2, lat2): # {{{ """ Calculate the great circle distance in km between two points on the earth (specified in decimal degrees). Based on https://stackoverflow.com/a/4913653 """ # convert decimal degrees to radians lon1 = numpy.deg2rad(lon1) lat1 = numpy.deg2rad(lat1) lon2 = numpy.deg2rad(lon2) lat2 = numpy.deg2rad(lat2) # haversine formula dlon = lon2 - lon1 dlat = lat2 - lat1 a =
numpy.sin(dlat / 2.)
numpy.sin
#!/usr/bin/python """ This module reads and writes the parameters of a Multi Gaussian Expansion model (Monnet et al. 1992, Emsellem et al. 1994). It can read and write MGE input ascii files and computes a number of basic parameters for the corresponding models. uptdated regularly and may still contains some obvious bugs. A stable version will be available hopefully before the end of 2012. For questions, please contact <NAME> at <EMAIL> """ """ Importing the most import modules This MGE module requires NUMPY and SCIPY """ import os try: import numpy as np except ImportError: raise Exception("numpy is required for pygme") try: from scipy import special except ImportError: raise Exception("scipy is required for pygme") from numpy import asarray from numpy import cos, sin, copy, sqrt, exp from .rwcfor import floatMGE from .mge_miscfunctions import print_msg __version__ = '1.1.6 (22 Dec 2014)' ## Version 1.1.6 : EE - Fixed found2D ## Version 1.1.5 : EE - Fixed mcut input parameter ## Version 1.1.4 : EE - Fixed a typo on indices ## Version 1.1.3 : EE - Added BetaEps, M/L etc also in the 2D Gauss just in case ## Version 1.1.2 : EE - Changed imin,imax into ilist ## Version 1.1.1 : EE - Removed the condition for comp_Nparticles when reading an mge ## Version 1.1.0 : EE - Some serious cleanup in the naming of the variables ## Version 1.0.2 : EE - few minor changes including adding saveMGE ## Version 1.0.1 : EE - replaces ones to zeros in initialisation of GaussGroupNumber ############################################################################ # Class to define dynamical MGE parameters useful for calculation purposes # ############################################################################ class dynParamMGE(): """ Class to add some parameters which are useful for dynamical routines """ def __init__(self, MGEmodel): """ Initialisation of the additional dynamical parameters """ if (MGEmodel._findGauss3D > 0): self.Sig3Darc2_soft = MGEmodel.Sig3Darc**2 + MGEmodel.Softarc**2 # Sigma softened in arcsec self.dSig3Darc2_soft = 2. * self.Sig3Darc2_soft # Deriving some more numbers self.Bij = np.zeros((MGEmodel.nGauss, MGEmodel.nGauss), floatMGE) self.Bij_soft = np.zeros((MGEmodel.nGauss, MGEmodel.nGauss), floatMGE) self.e2q2dSig3Darc2 = np.zeros(MGEmodel.nGauss, floatMGE) self.e2q2Sig3Darc2 = np.zeros(MGEmodel.nGauss, floatMGE) self.sqpi2s = sqrt(np.pi / 2.) / MGEmodel.qSig3Darc self.qq2s2 = 4. * MGEmodel.QxZ2 * MGEmodel.Sig3Darc2 self.q2Sig3Darc2 = MGEmodel.QxZ2 * MGEmodel.Sig3Darc2 for i in range(MGEmodel.nGauss) : if self.q2Sig3Darc2[i] != 0. : self.e2q2dSig3Darc2[i] = MGEmodel.e2[i] / (2. * self.q2Sig3Darc2[i]) self.e2q2Sig3Darc2[i] = MGEmodel.e2[i] / self.q2Sig3Darc2[i] else : print("WARNING: %d component has q2*Sig2=0" %(i+1)) for j in range(MGEmodel.nGauss) : self.Bij[i,j] = MGEmodel.e2[j] - self.q2Sig3Darc2[i] / MGEmodel.Sig3Darc2[j] self.Bij_soft[i,j] = MGEmodel.e2[j] - self.q2Sig3Darc2[i] / self.Sig3Darc2_soft[j] self.kRZ2 = MGEmodel.kRZ**2 self.mkRZ2q2 = 1. - self.kRZ2 * MGEmodel.QxZ2 self.mkRZ2 = 1. - self.kRZ2 self.Dij = np.zeros((MGEmodel.nGauss,MGEmodel.nGauss), floatMGE) self.Dij_soft = np.zeros((MGEmodel.nGauss,MGEmodel.nGauss), floatMGE) for i in range(MGEmodel.nGauss) : for j in range(MGEmodel.nGauss) : self.Dij[i,j] = self.mkRZ2[i] * self.Bij[i,j] + MGEmodel.e2[j] * self.kRZ2[i] self.Dij_soft[i,j] = self.mkRZ2[i] * self.Bij_soft[i,j] + MGEmodel.e2[j] * self.kRZ2[i] ## =========================================================================================== ############################################################################ # Class to define photometric MGE parameters useful for calculation purposes # ############################################################################ class photParamMGE(): """ Class to add some parameters which are useful for photometric routines """ def __init__(self, MGEmodel): """ Initialisation of the additional photometric parameters These are hidden in this class """ if (MGEmodel._findGauss3D > 0): self.dSig3Darc = sqrt(2.) * MGEmodel.Sig3Darc self.dSig3Darc2 = 2. * MGEmodel.Sig3Darc2 self.qParc = MGEmodel.QxZ * MGEmodel.Parc self.dqSig3Darc = sqrt(2.) * MGEmodel.qSig3Darc ## =========================================================================================== class paramMGE(object) : def __init__(self, infilename=None, saveMGE=None, indir=None, **kwargs) : """ Initialisation of the MGE model - reading the input file infilename : input MGE ascii file defining the MGE model indir: directory where to find the mge file saveMGE: directory in which some MGE model will be saved automatically during the realisation of the Nbody sample If saveMGE is None (default), it will be defined as ~/MGE This will be created by default (if not existing) Additional Input (not required): nTotalPart: total number of particles nPartStar : number of Stellar particles nPartHalo: number of Dark Matter particles nPartGas : number of Gas particles FirstRealisedPart : number for the first realised Particle This is useful if we wish to realise the model in chunks nMaxPart : Max number of particles to be realised for this run mcut : cut in pc, Default is 50 000 (50 kpc) Used for the Ellipsoid truncation Rcut : cut in pc, Default is 50 000 (50 kpc) Zcut : cut in pc, Default is 50 000 (50 kpc) Used for the Cylindre truncation FacBetaEps : Coefficient for : Beta = Coef * Epsilon Default if Coef = 0.6 Can also be a vector (one for each Gaussian) MaxFacBetaEps: maximum value allowed for FacBetaEps. Default is 0.8. """ ## Now checking if saveMGE has been defined and act accordingly if saveMGE is None : ## This is the default dir (~/MGE) if none is given saveMGE = os.path.expanduser("~/MGE") if not os.path.isdir(saveMGE) : ## Creating the default saveMGE directory os.system("mkdir ~/MGE") ## Test now if this exists if not os.path.isdir(saveMGE) : print("ERROR: directory for Archival does not exist = %s"%(saveMGE)) return ## Finally save the value of saveMGE in the structure self.saveMGE = saveMGE ## Setting up some fixed variable ##################################### ## G is in (km/s)2. Msun-1 . pc . ## OLD VALUE WAS: self.Gorig = 0.0043225821 self.Gorig = floatMGE(0.0043225524) # value from <NAME> self.nPart = np.int(kwargs.get("nTotalPart", 0)) # TOTAL Number of n bodies self.nPartStar = np.int(kwargs.get("nPartStar", 0)) # TOTAL Number of n bodies self.nPartHalo = np.int(kwargs.get("nPartHalo", 0)) # TOTAL Number of n bodies self.nPartGas = np.int(kwargs.get("nPartGas", 0)) # TOTAL Number of n bodies self.Add_BHParticle = True # Add a BH if Mbh > 0 when realising particles self.FirstRealisedPart = np.int(kwargs.get("FirstRealisedPart", 0)) # First Realised Particle self.nMaxPart = np.int(kwargs.get("nMaxPart", 0)) # Max number of particles to be realised self.Euler = np.array([0., 90., 0.]) # Inclination - Default is 90 degrees = edge-on self.TruncationMethod = "Ellipsoid" # Default method to truncate Gaussians (other = Cylindre) self.mcut = kwargs.get("Mcut", 50000.) # Default truncation in pc - Default is 50kpc self.Rcut = kwargs.get("Rcut", 50000.) # Default truncation in pc - Default is 50kpc self.Zcut = kwargs.get("Zcut", 50000.) # Default truncation in pc - Default is 50kpc self.Mbh = 0. # Black hole mass self.axi = 1 self.Nquad = 100 # Number of Points for the Quadrature, default is 100 self._findGauss3D = 0 self._findGauss2D = 0 self.FacBetaEps = kwargs.get("FacBetaEps", 0.6) # Coefficient for the BETAEPS option: Beta = Coef * Epsilon self.MaxFacBetaEps = kwargs.get("MaxFacBetaEps", 0.8) # Max value the BETAEPS Factor self.DummyFacBetaEps = 0.6 ## Test if infilename is None. If this is the case reset MGE with 0 Gaussians self.nGauss = self.nGroup = self.nDynComp = 0 self._reset(All=True) if infilename is not None : self.read_mge(infilename, indir=indir) def _reset(self, **kwargs) : """ Reset values of the MGE model Possible options: nGauss nGroup NDynComp Dist Softening infilename pwd All : will set all to None, or 0 (and Dist to 10 Mpc) """ AllReset = kwargs.get("All", False) if AllReset : for key in ["infilename", "pwd"] : kwargs[key] = "" for key in ["nGauss", "nGroup", "nDynComp"] : kwargs[key] = 0 self._reset_Dist() self._reset_Softening() kwargs["Dist"] = self.Dist kwargs["Softening"] = self.Softening for key in kwargs : if key == "nGauss" : nGauss = kwargs.get("nGauss", None) self._reset_nGauss(nGauss) # Set nGauss elif key == "nGroup" : nGroup = kwargs.get("nGroup", None) self._reset_nGroup(nGroup) # Set nGroup elif key == "Dist" : Dist = kwargs.get("Dist", None) self._reset_Dist(Dist) # Distance in Mpc - Default is 10 Mpc elif key == "Softening" : Softening = kwargs.get("Softening", None) self._reset_Softening(Softening) # Set Softening elif key == "nDynComp" : self.nDynComp = kwargs.get("nDynComp", None) elif key == "infilename" : self.infilename = kwargs.get("infilename", None) elif key == "pwd" : self.pwd = kwargs.get("pwd", None) def _reset_nGroup(self, nGroup=None) : ## nGroup Reset if nGroup is not None : self.nGroup = nGroup # Number of Groups self.nPartGroup = np.zeros((self.nGroup,), np.int) # Number of particles per Group self.nRealisedPartGroup = np.zeros((self.nGroup,), np.int) # Number of REALISED particles per Group ## ============================================================= def _reset_nGauss(self, nGauss=0, verbose=0) : ## nGauss reset if nGauss is not None : if np.size(nGauss) == 3 : self.nStarGauss = int(nGauss[0]) self.nGasGauss = int(nGauss[1]) self.nHaloGauss = int(nGauss[2]) self.nGauss = self.nStarGauss + self.nGasGauss + self.nHaloGauss elif np.size(nGauss) == 1 : self.nGauss = nGauss # Number of Gaussians self.nStarGauss = nGauss self.nGasGauss = self.nHaloGauss = 0 else : print_msg("With nGauss which should contain 1 or 3 integers", 2) return self._findGauss3D = 0 self._findGauss2D = 0 self.Imax2D = np.zeros((self.nGauss,), floatMGE) # In Lsun pc-2 self.Sig2Darc = np.zeros((self.nGauss,), floatMGE) # in arcsecond self.Q2D = np.zeros((self.nGauss,), floatMGE) self.PAp = np.zeros((self.nGauss,), floatMGE) self.Imax3D = np.zeros((self.nGauss,), floatMGE) # In Lsun pc-2 arcsec-1 self.Sig3Darc = np.zeros((self.nGauss,), floatMGE) # in arcsecond self.QxZ = np.zeros((self.nGauss,), floatMGE) self.QyZ = np.zeros((self.nGauss,), floatMGE) self.ML = np.ones((self.nGauss,), floatMGE) self.kRTheta = np.ones((self.nGauss,), floatMGE) # sigma_R / sigma_Theta self.kRZ = np.ones((self.nGauss,), floatMGE) # sigma_R / sigma_Z self.betaeps = np.zeros((self.nGauss,), np.int) # betaeps option (1 or 0) self.epicycle = np.zeros((self.nGauss,), np.int) # epicycle option (1 or 0) self.truncFlux = np.zeros((self.nGauss,), floatMGE) self.MGEFlux = np.zeros((self.nGauss,), floatMGE) self.truncMass = np.zeros((self.nGauss,), floatMGE) self.MGEMass = np.zeros((self.nGauss,), floatMGE) self.MGEFluxp = np.zeros((self.nGauss,), floatMGE) self.GaussGroupNumber = np.ones((self.nGauss,), np.int) # Group Number for that Gaussian self.GaussDynCompNumber = np.ones((self.nGauss,), np.int) # Dynamical Group Number for that Gaussian self.TtruncMass = 0. # Total mass in Nbody self.TtruncFlux = 0. # Total flux in Nbody self.TMGEMass = 0. # Total mass of MGE model self.TMGEFlux = 0. # Total flux of MGE model self.axi = 1 ## Change the Distance of the model ########################### def _reset_Dist(self, Dist=None, verbose=True) : if Dist is None : if hasattr(self, "Dist"): Dist = self.Dist else: Dist = 10.0 ## Setting the default in case the Distance is negative print("WARNING: dummy Dist value for reset") if Dist <= 0. : if verbose: print("WARNING: you provided a negative Dist value") print("WARNING: it will be set to the default (10 Mpc)") Dist = 10.0 ## Setting the default in case the Distance is negative self.Dist = floatMGE(Dist) self.pc_per_arcsec = floatMGE(np.pi * self.Dist / 0.648) self.mcutarc = self.mcut / self.pc_per_arcsec #Default truncation - in arcseconds at 10 Mpc self.Rcutarc = self.Rcut / self.pc_per_arcsec #Default truncation - in arcseconds at 10 Mpc self.Zcutarc = self.Zcut / self.pc_per_arcsec #Default truncation - in arcseconds at 10 Mpc ## G is in (km/s)2. Msun-1 . pc . ## We multiply it by pc / arcsec ## so it becomes: ## (km/s)2. Msun-1 . pc2 . arcsec-1 ## OLD VALUE WAS: self.Gorig = 0.0043225821 self.G = self.Gorig * self.pc_per_arcsec self.PIG = floatMGE(4. * np.pi * self.G) ## Adding the standard parameters self._add_PhotometricParam() ## ============================================================= ## Change the softening of the model ########################### def _reset_Softening(self, Softening=0.0, verbose=0) : """ Change the softening value of the model (in pc) """ if Softening is not None : self.Softening = Softening # softening in pc self.Softarc = self.Softening / self.pc_per_arcsec # Softening in arcsec self.SoftarcMbh = self.Softarc self.SoftarcMbh2 = self.SoftarcMbh**2 ## Add dynamics parameters: this is needed since the softening just changed self._dParam = dynParamMGE(self) ## ============================================================ ## List the Gaussians in the different Groups ################# def _listGroups(self) : # Reinitialise the list of Gaussians in the Groups self.listGaussGroup = [] for i in range(self.nGroup) : self.listGaussGroup.append(np.where(self.GaussGroupNumber == (i+1))[0]) ## ============================================================ ## List the Gaussians in the different Dynamics Groups ################# def _listDynComps(self) : # Reinitialise the list of Gaussians in the Groups self.listGaussDynComp = [] for i in range(self.nDynComp) : self.listGaussDynComp.append(np.where(self.GaussDynCompNumber == (i+1))[0]) ## ============================================================ ## Decode the SGAUSS and associated lines in mge File ############# def _read_GAUSS2D(self, linesplit, findGauss2D) : self.Imax2D[findGauss2D] = floatMGE(linesplit[1]) # I in Lum.pc-2 self.Sig2Darc[findGauss2D] = floatMGE(linesplit[2]) # Sigma in arcsec self.Q2D[findGauss2D] = floatMGE(linesplit[3]) self.PAp[findGauss2D] = floatMGE(linesplit[4]) lelines = len(linesplit) if lelines >= 6 : self.ML[findGauss2D] = floatMGE(linesplit[5]) if lelines >= 7 : if linesplit[6][:3] == "EPI" : self.kRTheta[findGauss2D] = -1.0 self.epicycle[findGauss2D] = 1 else : self.kRTheta[findGauss2D] = floatMGE(linesplit[6]) self.epicycle[findGauss2D] = 0 if linesplit[7][:4] == "BETA" : self.betaeps[findGauss2D] = 1 else : self.kRZ[findGauss2D] = floatMGE(linesplit[7]) self.betaeps[findGauss2D] = 0 if lelines >= 9 : self.GaussGroupNumber[findGauss2D] = int(linesplit[8]) if lelines >= 10 : self.GaussDynCompNumber[findGauss2D] = int(linesplit[9]) return ## Decode the SGAUSS and associated lines in mge File ############# def _read_GAUSS3D(self, linesplit, findGauss3D) : self.Imax3D[findGauss3D] = floatMGE(linesplit[1]) # I in Lum.pc-2.arcsec-1 self.Sig3Darc[findGauss3D] = floatMGE(linesplit[2]) # Sigma in arcsec self.QxZ[findGauss3D] = floatMGE(linesplit[3]) self.QyZ[findGauss3D] = floatMGE(linesplit[4]) self.ML[findGauss3D] = floatMGE(linesplit[5]) lelines = len(linesplit) if lelines >= 8 : if linesplit[6][:3] == "EPI" : self.kRTheta[findGauss3D] = -1.0 self.epicycle[findGauss3D] = 1 else : self.kRTheta[findGauss3D] = floatMGE(linesplit[6]) self.epicycle[findGauss3D] = 0 if linesplit[7][:4] == "BETA" : self.kRZ[findGauss3D] = 1. / sqrt(1. - (self.FacBetaEps[findGauss3D] * (1. - self.QxZ[findGauss3D]))) self.betaeps[findGauss3D] = 1 else : self.kRZ[findGauss3D] = floatMGE(linesplit[7]) self.betaeps[findGauss3D] = 0 if lelines >= 9 : self.GaussGroupNumber[findGauss3D] = int(linesplit[8]) if lelines >= 10 : self.GaussDynCompNumber[findGauss3D] = int(linesplit[9]) if (self.QxZ[findGauss3D] != self.QyZ[findGauss3D]) : self.axi = 0 print('Detected triaxial component %d: self.axi set to 0'%(findGauss3D)) return ## ============================================================ def _init_BetaEps(self, verbose=True) : """ We initialise here the BetaEps vector using the input value If a scalar, it is transformed into a vector of constant values. It will only be used for components that have the betaeps option =1. """ if np.size(self.FacBetaEps) == 1 : self.FacBetaEps = np.array([self.FacBetaEps] * self.nGauss) elif np.size(self.FacBetaEps) != self.nGauss : print("WARNING: FacBetaEps has a dimension which is not consistent with the number of Gaussians") print("WARNING: Should be a scalar or a 1D array of size nGauss") print("WARNING: We will therefore use the fixed default value = 0.6 instead.") self.FacBetaEps = np.array([0.6] * self.nGauss) self.FacBetaEps = np.asarray(self.FacBetaEps) ## Checking that no value goes beyond MaxFacBetaEps if np.any(self.FacBetaEps > self.MaxFacBetaEps) : print("WARNING: FacBetaEps cannot be set to values higher than %5.3f"%(self.MaxFacBetaEps)) print("WARNING: Input FacBetaEps = ", self.FacBetaEps) print("WARNING: We will change these values to 0.6.") self.FacBetaEps = np.where(self.FacBetaEps > self.MaxFacBetaEps, self.MaxFacBetaEps, self.FacBetaEps) if verbose: print("The BetaEps vector (beta = FacBetaEps * Epsilon) is fixed to ") print(" ", self.FacBetaEps) if self.betaeps.any() : self.kRZ[self.betaeps == 1] = np.zeros(np.sum(self.betaeps, dtype=np.int), floatMGE) + 1. / sqrt(1. - (self.FacBetaEps[self.betaeps == 1] * (1. - self.QxZ[self.betaeps == 1]))) ################################################################## ### Reading an ascii MGE file and filling the MGE class object ### ################################################################## def read_mge(self, infilename=None, indir=None) : if (infilename is not None) : # testing if the name was set if indir is not None : infilename = indir + infilename if not os.path.isfile(infilename) : # testing the existence of the file print('OPENING ERROR: File %s not found' %infilename) return ################################ # Opening the ascii input file # ################################ self.pwd = os.getcwd() self.fullMGEname = os.path.abspath(infilename) self.MGEname = os.path.basename(self.fullMGEname) self.pathMGEname = os.path.dirname(self.fullMGEname) mge_file = open(self.fullMGEname) lines = mge_file.readlines() nlines = len(lines) ######################################## ## First get the Number of gaussians ## ## And the global set of parameters ## ######################################## keynGauss = keynStarGauss = keynGasGauss = keynHaloGauss = keynGroup = 0 findGauss2D = findGauss3D = findStarGauss2D = findStarGauss3D = findGasGauss2D = findGasGauss3D = findHaloGauss2D = findHaloGauss3D = findGroup = 0 for i in range(nlines) : if lines[i][0] == "#" or lines[i] == "\n" : continue sl = lines[i].split() keyword = sl[0] if (keyword[:6] == "NGAUSS") : if len(sl) == 2 : nStarGauss = int(sl[1]) nGasGauss = nHaloGauss = 0 elif len(sl) == 4 : nStarGauss = int(sl[1]) nGasGauss = int(sl[2]) nHaloGauss = int(sl[3]) self.nStarGauss = nStarGauss self.nGasGauss = nGasGauss self.nHaloGauss = nHaloGauss keynStarGauss = 1 keynGasGauss = 1 keynHaloGauss = 1 if nStarGauss < 0 or nGasGauss < 0 or nHaloGauss < 0: print('ERROR: Keyword NGAUSS has some negative values: %d %d %d' %(nStarGauss, nGasGauss, nHaloGauss)) continue nGauss = nStarGauss + nGasGauss + nHaloGauss if nGauss <= 0 : print('ERROR: Keyword NGAUSS is less than or equal to 0: %d' %nGauss) continue self._reset(nGauss=(nStarGauss, nGasGauss, nHaloGauss)) keynGauss = 1 elif (keyword[:4] == "DIST") : Dist = floatMGE(sl[1]) self._reset_Dist(Dist) elif (keyword[:6] == "NGROUP") : nGroup = int(sl[1]) if nGroup < 0 : print('ERROR: Keyword NGROUP is less than 0: %d' %nGroup) continue self._reset(nGroup=nGroup) keynGroup = 1 elif (keyword[:9] == "NDYNCOMP") : nDynComp = int(sl[1]) if nDynComp < 0 : print('ERROR: Keyword NDYNCOMP is less than 0: %d' %nDynComp) continue self._reset(nDynComp=nDynComp) if (keynGauss == 0) : print('Could not find NGAUSS keyword in the MGE input File %s' %self.MGEname) return listStarGauss2D = [] listStarGauss3D = [] listGasGauss2D = [] listGasGauss3D = [] listHaloGauss2D = [] listHaloGauss3D = [] ## We initialise the BetaEps Values using the input one self._init_BetaEps() ##================================================================================## ## Then really decoding the lines and getting all the details from the ascii file ## ##================================================================================## for i in range(nlines) : if (lines[i][0] == "#") or (lines[i] == "\n") : continue sl = lines[i].split() keyword = sl[0] if (keyword[:6] == "NGAUSS") or (keyword[:4] == "DIST") or (keyword[:9] == "NGASGAUSS") or (keyword[:10] == "NHALOGAUSS") or (keyword[:11] == "NGROUP") or (keyword[:11] == "NDYNCOMP"): continue ## projected gaussians elif (keyword[:11] == "STARGAUSS2D") : if findGauss2D == self.nGauss or keynStarGauss == 0 : print('Line ignored (STARS: NGAUSS = %d): %s' %(self.nGauss,lines[i])) continue if findStarGauss2D == self.nStarGauss : print('Line ignored (STAR: NSTARGAUSS = %d): %s' %(self.nStarGauss,lines[i])) continue self._read_GAUSS2D(sl, findGauss2D) listStarGauss2D.append(findGauss2D) findGauss2D += 1 findStarGauss2D += 1 elif (keyword[:10] == "GASGAUSS2D") : if findGauss2D == self.nGauss or keynGasGauss == 0: print('Line ignored (GAS: NGAUSS = %d): %s' %(self.nGauss,lines[i])) continue if findGasGauss2D == self.nGasGauss : print('Line ignored (GAS: NGASGAUSS = %d): %s' %(self.nGasGauss,lines[i])) continue self._read_GAUSS2D(sl, findGauss2D) listGasGauss2D.append(findGauss2D) findGauss2D += 1 findGasGauss2D += 1 elif (keyword[:11] == "HALOGAUSS2D") : if findGauss2D == self.nGauss or keynHaloGauss == 0: print('Line ignored (HALO: NGAUSS = %d): %s' %(self.nGauss,lines[i])) continue if findHaloGauss2D == self.nHaloGauss : print('Line ignored (HALO: NHALOGAUSS = %d): %s' %(self.nHaloGauss,lines[i])) continue self._read_GAUSS2D(sl, findGauss2D) listHaloGauss2D.append(findGauss2D) findGauss2D += 1 findHaloGauss2D += 1 ## spatial gaussians elif (keyword[:11] == "STARGAUSS3D") : if findGauss3D == self.nGauss : print('Line ignored (NGAUSS = %d): %s' %(self.nGauss,lines[i])) continue if findStarGauss3D == self.nStarGauss : print('Line ignored (STAR: NSTARGAUSS = %d): %s' %(self.nStarGauss,lines[i])) continue self._read_GAUSS3D(sl, findGauss3D) listStarGauss3D.append(findGauss3D) findGauss3D += 1 findStarGauss3D += 1 elif (keyword[:10] == "GASGAUSS3D") : if findGauss3D == self.nGauss or keynGasGauss == 0: print('Line ignored (GAS: NGAUSS = %d): %s' %(self.nGauss,lines[i])) continue if findGasGauss3D == self.nGasGauss : print('Line ignored (GAS: NGASGAUSS = %d): %s' %(self.nGasGauss,lines[i])) continue self._read_GAUSS3D(sl, findGauss3D) listGasGauss3D.append(findGauss3D) findGauss3D += 1 findGasGauss3D += 1 elif (keyword[:11] == "HALOGAUSS3D") : if findGauss3D == self.nGauss or keynHaloGauss == 0: print('Line ignored (HALO: NGAUSS = %d): %s' %(self.nGauss,lines[i])) continue if findHaloGauss3D == self.nHaloGauss : print('Line ignored (HALO: NHALOGAUSS = %d): %s' %(self.nHaloGauss,lines[i])) continue self._read_GAUSS3D(sl, findGauss3D) listHaloGauss3D.append(findGauss3D) findGauss3D += 1 findHaloGauss3D += 1 ## Center and other parameters elif (keyword[:6] == "CENTER") : self.Center = np.zeros((2,), floatMGE) self.Center[0] = floatMGE(sl[1]) self.Center[1] = floatMGE(sl[2]) elif (keyword[:5] == "EULER") : self.Euler = np.zeros((3,), floatMGE) self.Euler[0] = floatMGE(sl[1]) self.Euler[1] = floatMGE(sl[2]) self.Euler[2] = floatMGE(sl[3]) elif (keyword[:3] == "MBH") : self.Mbh = floatMGE(sl[1]) elif (keyword[:10] == "NPARTGROUP") : GroupNumber = int(keyword[10:]) if GroupNumber > self.nGroup or GroupNumber < 0 or findGroup == self.nGroup or keynGroup == 0 or (len(sl) > 3) or (int(sl[1]) < 0) : print('Line ignored (NPARTGROUP%2d: NGROUP = %d) = Wrong Entry %s' %(GroupNumber, self.nGroup, lines[i])) continue if len(sl) == 3 : if (int(sl[2]) < 0) or (int(sl[2]) > int(sl[1])) : print('Line ignored (NPARTGROUP: NGROUP = %d) = second entry should be greater than 0 and less than the first entry: %s' %(self.nGroup,lines[i])) continue self.nRealisedPartGroup[GroupNumber - 1] = int(sl[2]) # Number of particles in Group to be realised self.nPartGroup[GroupNumber - 1] = int(sl[1]) # Number of particles in Group findGroup += 1 else : print('Could not decode the following keyword: %s' %keyword) mge_file.close break ################################ # CLOSING the ascii input file # ################################ mge_file.close ##============ Ascii file is not closed ====================## ## Reorganising the read parameters and data ## ## And setting this up into the structure ## self._findGauss2D = findGauss2D self._findGauss3D = findGauss3D self.nGauss = max(findGauss3D, findGauss2D) self.nGasGauss = max(findGasGauss3D, findGasGauss2D) self.nHaloGauss = max(findHaloGauss3D, findHaloGauss2D) self.nStarGauss = max(findStarGauss3D, findStarGauss2D) ## Reorganizing things to have the gas then halo components at the end ## ORDER OF GAUSSIANS IS THEREFORE: STARS, GAS, HALO tempImax2D = copy(self.Imax2D) tempSig2Darc = copy(self.Sig2Darc) tempQ2D = copy(self.Q2D) tempPAp = copy(self.PAp) tempImax3D = copy(self.Imax3D) tempSig3Darc = copy(self.Sig3Darc) tempQxZ = copy(self.QxZ) tempQyZ = copy(self.QyZ) tempML = copy(self.ML) tempkRTheta = copy(self.kRTheta) tempkRZ = copy(self.kRZ) tempbetaeps = copy(self.betaeps) tempepicycle = copy(self.epicycle) tempGaussGroup = copy(self.GaussGroupNumber) tempGaussDynComp = copy(self.GaussDynCompNumber) ## Projected components k = 0 j = findGauss2D - self.nHaloGauss - self.nGasGauss l = findGauss2D - self.nHaloGauss for i in range(findGauss2D) : if i not in listGasGauss2D : if i not in listHaloGauss2D : ind = k k += 1 else : ind = l l += 1 else : ind = j j += 1 self.Imax2D[ind] = tempImax2D[i] # I in Lum.pc-2 self.Sig2Darc[ind] = tempSig2Darc[i] self.Q2D[ind] = tempQ2D[i] self.PAp[ind] = tempPAp[i] ## Spatial components k = 0 j = findGauss3D - self.nHaloGauss - self.nGasGauss l = findGauss3D - self.nHaloGauss self.listGasGauss = listGasGauss3D self.listHaloGauss = listHaloGauss3D self.listStarGauss = listStarGauss3D for i in range(findGauss3D) : if i not in listGasGauss3D : if i not in listHaloGauss3D : ind = k k += 1 else : ind = l l += 1 else : ind = j j += 1 self.Imax3D[ind] = tempImax3D[i] self.Sig3Darc[ind] = tempSig3Darc[i] self.QxZ[ind] = tempQxZ[i] self.QyZ[ind] = tempQyZ[i] self.ML[ind] = tempML[i] self.kRTheta[ind] = tempkRTheta[i] self.kRZ[ind] = tempkRZ[i] self.betaeps[ind] = tempbetaeps[i] self.epicycle[ind] = tempepicycle[i] self.GaussGroupNumber[ind] = tempGaussGroup[i] self.GaussDynCompNumber[ind] = tempGaussDynComp[i] ######################################### # Testing if all axis ratios are axisymmetric or not self.axi = 1 for i in range(findGauss3D) : if (self.QxZ[i] != self.QyZ[i]) : self.axi = 0 print('Detected triaxial component: self.axi set to 0') ## Add all sorts of parameters which are useful for further derivation self._comp_Nparticles() ## Set default inclination to 90 degrees if 'Euler' in self.__dict__ : inclination = self.Euler[1] else : self.Euler = np.zeros((3,), floatMGE) self.Euler[1] = 90.0 if self._findGauss3D == 0 & self._findGauss2D > 0 : self.deproject(inclin=self.Euler[1], verbose=False) if self._findGauss3D > 0 : if self._findGauss2D == 0 : self.project(inclin=self.Euler[1], verbose=False) else : print_msg("Both 3D and 2D Gaussians were found: ", 1) print_msg("We thus used the 2D Gaussians as a prior for the deprojection at %5.2f degrees"%(self.Euler[1]), 1) self.deproject(inclin=self.Euler[1], verbose=True) print("Found %d Spatial and %d projected Gaussians" %(self._findGauss3D, self._findGauss2D)) print("With an Inclination of %5.2f (degrees)"%(self.Euler[1])) if self.nStarGauss != 0 : print("This includes %d STAR Gaussians" %(np.maximum(findStarGauss3D, findStarGauss2D))) if self.nGasGauss != 0 : print("This includes %d GAS Gaussians" %(np.maximum(findGasGauss3D, findGasGauss2D))) if self.nHaloGauss != 0 : print("This also includes %d HALO Gaussians" %(np.maximum(findHaloGauss3D,findHaloGauss2D))) print("Found %d Particle Groups" %(findGroup)) print("Found %d Dynamical Components (each may include a set of Gaussians)" %(nDynComp)) print("Distance set up to %6.2f Mpc"%(self.Dist)) # no name was specified # else : print('You should specify an output file name') #====================== END OF READING / INIT THE MGE INPUT FILE =======================# ### INTEGRATED LUMINOSITY - ALL ------------------------------------------------- ### Deriving the integrated Lum (Rcut, Zcut) for 1 gaussian, R and Z are in arcsec def rhointL_1G(self, Rcut, Zcut, ind) : """ Integrated LUMINOSITY truncated within a cylindre defined by Rcut, Zcut (in arcsec) for 1 Gaussian only: ind is the indice of that gaussian """ if self._findGauss3D == 0 : print_msg("No Spatial Gaussians yet", 2) return 0. return self.MGEFlux[ind] * (1. - exp(- Rcut*Rcut/self._pParam.dSig3Darc2[ind])) * float(special.erf(Zcut/self._pParam.dqSig3Darc[ind])) ### Deriving the integrated Mass (Rcut, Zcut) for 1 gaussian, R and are in arcsec def rhointM_1G(self, Rcut, Zcut, ind) : """ Integrated Mass truncated within a cylindre defined by Rcut, Zcut (in arcsec) for 1 Gaussian only: ind is the indice of that gaussian """ if self._findGauss3D == 0 : print_msg("No Spatial Gaussians yet", 2) return 0. return self.MGEMass[ind] * (1. - exp(- Rcut * Rcut / self._pParam.dSig3Darc2[ind])) \ * float(special.erf(Zcut / self._pParam.dqSig3Darc[ind])) ### INTEGRATED MASS - SPHERE ALL -------------------------------------------------------- ### Deriving the integrated Mass (mcut) for 1 gaussian, m in arcsec def rhoSphereintM_1G(self, mcut, ind) : """ Integrated Mass truncated within a spheroid of m=mcut (in arcsec) for 1 Gaussian only: ind is the indice of that gaussian """ if self._findGauss3D == 0 : print_msg("No Spatial Gaussians yet", 2) return 0. return self.MGEMass[ind] * (float(special.erf(mcut / self._pParam.dSig3Darc[ind])) - mcut * np.sqrt(2. / np.pi) \ * exp(- mcut*mcut/self._pParam.dSig3Darc2[ind])/ self.Sig3Darc[ind]) ### Deriving the integrated Lum (mcut) for 1 gaussian, m in arcsec ################### A REVOIR def rhoSphereintL_1G(self, mcut, ind) : """ Integrated LUMINOSITY truncated within a spheroid of m=mcut (in arcsec) for 1 Gaussian only: ind is the indice of that gaussian """ if self._findGauss3D == 0 : print_msg("No Spatial Gaussians yet", 2) return 0. return self.MGEFlux[ind] * (float(special.erf(mcut / self._pParam.dSig3Darc[ind])) - mcut * np.sqrt(2. / np.pi) \ * exp(- mcut*mcut/self._pParam.dSig3Darc2[ind])/ self.Sig3Darc[ind]) ##################################### ## Adding more Gaussian parameters ## ##################################### def _add_PhotometricParam(self) : """ Add many more parameters using the basic I, Sig, q, PA parameters of the model These parameters are important for many (photometry/dynamics-related) routines """ ## Only if axisymmetric if self.axi : ################################################################## ## Compute some useful parameters for the projected Gaussians ################################################################## if (self._findGauss2D > 0) : # some useful numbers from the projected gaussians if they exist self.Sig2D = self.Sig2Darc * self.pc_per_arcsec # Sigma in pc self.Q2D2 = self.Q2D * self.Q2D self.Sig2Darc2 = self.Sig2Darc * self.Sig2Darc # Projected Sigma in arcsecond self.dSig2Darc2 = 2. * self.Sig2Darc2 self.Pp = self.Imax2D * self.ML # Mass maximum in Mass/pc-2 self.MGEFluxp = self.Imax2D*(self.Sig2D**2) * self.Q2D2 * np.pi ################################################################## ## Compute some useful parameters for the Spatial Gaussians ################################################################## if (self._findGauss3D > 0): # some more useful numbers self.Imax3Dpc3 = self.Imax3D / self.pc_per_arcsec # I in Lum.pc-3 self.Sig3D = self.Sig3Darc * self.pc_per_arcsec # Sigma in pc self.Parc = self.Imax3D * self.ML # Mass maximum in Mass/pc-2/arcsec-1 self.QxZ2 = self.QxZ ** 2 self.e2 = 1. - self.QxZ2 self.Sig3Darc2 = self.Sig3Darc**2 # Sigma in arcsecond ! self.qSig3Darc = self.QxZ * self.Sig3Darc ## Add photometric parameters self._pParam = photParamMGE(self) ## Add dynamics parameters self._dParam = dynParamMGE(self) ## Fluxes and Masses self.MGEFlux = self.Imax3Dpc3 * self.QxZ * (sqrt(2.*np.pi) * self.Sig3D)**3 self.MGEMass = self.MGEFlux * self.ML ## Total Mass and Flux for Stars and Gas and Halo (not truncated) self.MGEStarMass = np.sum(self.MGEMass[:self.nStarGauss],axis=0) self.MGEStarFlux = np.sum(self.MGEFlux[:self.nStarGauss],axis=0) self.MGEGasMass = np.sum(self.MGEMass[self.nStarGauss:self.nStarGauss+self.nGasGauss],axis=0) self.MGEGasFlux = np.sum(self.MGEFlux[self.nStarGauss:self.nStarGauss+self.nGasGauss],axis=0) self.MGEHaloMass = np.sum(self.MGEMass[self.nStarGauss+self.nGasGauss:self.nStarGauss+self.nGasGauss+self.nHaloGauss],axis=0) self.MGEHaloFlux = np.sum(self.MGEFlux[self.nStarGauss+self.nGasGauss:self.nStarGauss+self.nGasGauss+self.nHaloGauss],axis=0) ## Total Mass and Flux for all self.TMGEFlux = np.sum(self.MGEFlux,axis=0) self.TMGEMass = np.sum(self.MGEMass,axis=0) self.facMbh = self.Mbh / (4. * np.pi * self.pc_per_arcsec * self.pc_per_arcsec) # in M*pc-2*arcsec2 ## TRUNCATED Mass and Flux for each Gaussian self.truncMass = np.zeros(self.nGauss, floatMGE) self.truncFlux = np.zeros(self.nGauss, floatMGE) if self.TruncationMethod == "Cylindre" : for i in range(self.nGauss) : self.truncFlux[i] = self.rhointL_1G(self.Rcutarc, self.Zcutarc, i) self.truncMass[i] = self.rhointM_1G(self.Rcutarc, self.Zcutarc, i) elif self.TruncationMethod == "Ellipsoid" : for i in range(self.nGauss) : self.truncFlux[i] = self.rhoSphereintL_1G(self.mcutarc, i) self.truncMass[i] = self.rhoSphereintM_1G(self.mcutarc, i) ## Total TRUNCATED Flux and Mass self.TtruncFlux = np.sum(self.truncFlux,axis=0) self.TtruncMass = np.sum(self.truncMass,axis=0) # Listing the Gaussians in the Groups self._listGroups() self._listDynComps() ## Total Mass and Flux for Groups TRUNCATED! self.truncGroupMass = np.zeros(self.nGroup, floatMGE) self.truncGroupFlux = np.zeros(self.nGroup, floatMGE) for i in range(self.nGroup) : self.truncGroupMass[i] = np.sum(self.truncMass[self.listGaussGroup[i]], axis=0) self.truncGroupFlux[i] = np.sum(self.truncFlux[self.listGaussGroup[i]], axis=0) ## Total TRUNCATED Flux and Mass for STARS, GAS, HALO ## STARS self.truncStarFlux = np.sum(self.truncFlux[0: self.nStarGauss]) self.truncStarMass = np.sum(self.truncMass[0: self.nStarGauss]) ## GAS self.truncGasFlux = np.sum(self.truncFlux[self.nStarGauss:self.nStarGauss + self.nGasGauss]) self.truncGasMass = np.sum(self.truncMass[self.nStarGauss:self.nStarGauss + self.nGasGauss]) ## HALO self.truncHaloFlux = np.sum(self.truncFlux[self.nStarGauss + self.nGasGauss:self.nStarGauss + self.nGasGauss + self.nHaloGauss]) self.truncHaloMass = np.sum(self.truncMass[self.nStarGauss + self.nGasGauss:self.nStarGauss + self.nGasGauss + self.nHaloGauss]) else : print_msg("Triaxial model, cannot compute additional photometric parameters", 1) ## =========================================================================================================== ################################################### ### Set the list of Indices for Gaussians ## ################################################### def _set_ilist(self, ilist=None) : if ilist is None : return list(range(self.nGauss)) else : return ilist ################################################### ### Compute the fraction for each component ## ## for a list of indices ## ################################################### def _fraclistNbody(self, nbody, ilist) : """ Compute the fraction of particles for each component corresponding to the truncated (Gaussian) Mass """ ### Set the list of indices ilist = self._set_ilist(ilist) nind = len(ilist) fracNpGauss = np.zeros(nind, np.int32) totaln = np.zeros(nind+1, np.int32) TMass = np.sum(self.truncMass[ilist], axis=0) for i in range(nind) : fracNpGauss[i] = np.int(self.truncMass[ilist[i]] * nbody / TMass) totaln[i+1] = totaln[i] + fracNpGauss[i] fracNpGauss[nind-1] = nbody - totaln[nind-1] totaln[nind] = nbody return fracNpGauss, totaln ## ================================================== ############################################################################################################### ## To compute the number of particles and particle masses for each Gaussian/Groups ############################ ############################################################################################################### def _comp_Nparticles(self) : """ Add the respective numbers of particles for each Gaussian, Group Depending on the Mass of each component pmassGroup, pmassGauss: mass of the particles for each Gaussian, Group nPartGauss : number of particles for each Gaussian """ self._add_PhotometricParam() if (self.axi == 1) & (self._findGauss3D > 0): # For this we use the list of Gaussians in the Groups # First step is to have the Mass of Each Group to get the particle mass mask = (self.nPartGroup !=0) self.pmassGroup = np.zeros_like(self.truncGroupMass) self.pmassGroup[mask] = self.truncGroupMass[mask] / self.nPartGroup[mask] # Mass of the particles in Groups self.pmassGauss = self.pmassGroup[self.GaussGroupNumber - 1] # Mass of the particles in Gaussians self.nPartGauss = np.zeros(self.nGauss, dtype=int) self.nRealisedPartGauss = np.zeros(self.nGauss, dtype=int) for i in range(self.nGroup) : fracNpGauss, totaln = self._fraclistNbody(self.nPartGroup[i], self.listGaussGroup[i]) fracRealNpGauss, totaln = self._fraclistNbody(self.nRealisedPartGroup[i], self.listGaussGroup[i]) self.nPartGauss[self.listGaussGroup[i]] = fracNpGauss # TOTAL Number of particles in that Gaussian self.nRealisedPartGauss[self.listGaussGroup[i]] = fracRealNpGauss # TOTAL Number of particles to be Realised in that Gaussian ## Cumulative sum for the total number of particles in the Model self.nPartCum = np.concatenate((np.array([0]),asarray(np.cumsum(self.nPartGauss),dtype=int))) ## Now we calculate the number of particles to be realised in each Gaussian taking into account the MaxPart ## ## Temporary sum for the following calculation self.nRealisedPartCum = np.concatenate((np.array([0]),asarray(np.cumsum(self.nRealisedPartGauss),dtype=int))) ## If we limit the number of particles, we use nMaxPart and FirstRealisedPart as guidelines if self.nMaxPart > 0 : firstPart = self.FirstRealisedPart ## This is the first particle to be realised lastPart = firstPart + np.minimum(self.nMaxPart, np.sum(self.nRealisedPartGroup, axis=0) - firstPart) ## last particle to be realised imin = 0 # Counter for i in range(self.nGauss) : n1 = np.maximum(imin, firstPart) n2 = np.minimum(imin + self.nRealisedPartGauss[i], lastPart) imin += self.nRealisedPartGauss[i] self.nRealisedPartGauss[i] = np.maximum(0,n2 - n1) ## Derive the cumulative sum now self.nRealisedPartCum = np.concatenate((np.array([0]),asarray(np.cumsum(self.nRealisedPartGauss),dtype=int))) ## Allocation for particles positions ############################ if self.Add_BHParticle & (self.Mbh > 0) : self.nRealisedPartBH = 1 else : self.nRealisedPartBH = 0 self.nPartStar = np.sum(self.nPartGauss[:self.nStarGauss], dtype=np.int) self.nPartGas = np.sum(self.nPartGauss[self.nStarGauss:self.nStarGauss+self.nGasGauss], dtype=np.int) self.nPartHalo = np.sum(self.nPartGauss[self.nStarGauss+self.nGasGauss:], dtype=np.int) self.nPart = self.nPartStar + self.nPartGas + self.nPartHalo if self.Mbh > 0 : self.nPart += 1 self.nRealisedPartStar = np.sum(self.nRealisedPartGauss[:self.nStarGauss], dtype=np.int) self.nRealisedPartGas = np.sum(self.nRealisedPartGauss[self.nStarGauss:self.nStarGauss+self.nGasGauss], dtype=np.int) self.nRealisedPartHalo = np.sum(self.nRealisedPartGauss[self.nStarGauss+self.nGasGauss:], dtype=np.int) self.nRealisedPart = self.nRealisedPartStar + self.nRealisedPartGas + self.nRealisedPartHalo + self.nRealisedPartBH ## ============================================================= ################################################################ ### Deprojection of the MGE model for an axiymmetric galaxy ### ################################################################ def deproject(self, inclin=None, printformat="E", particles=True, verbose=True) : """ Deproject the Gaussians and provide the spatial parameters inclin: inclination in degrees printformat: "E" or "F" depending if you want Engineering or Float notation default is "E" """ if self.axi != 1 : print("ERROR: cannot deproject this model: not axisymmetric !\n") return if inclin is None : inclin = self.Euler[1] self.Euler = np.array([0., inclin, 0.]) if inclin == 0. : print("Not yet supported\n") return for i in range(self.nGauss) : if self.Q2D[i] != 1 : print("ERROR: cannot deproject this model as component %d does not have Q2D = 1!\n" %(i+1)) elif inclin == 90. : if verbose : print("Edge-on deprojection\n") self.Sig3Darc = self.Sig2Darc self.QxZ = self.Q2D * 1.0 self.QyZ = self.Q2D * 1.0 self.Imax3D = self.Imax2D / (sqrt(2. * np.pi) * self.Sig2Darc) self._findGauss3D = self.QxZ.shape[0] else : inclin_rad = inclin * np.pi / 180. cosi2 = cos(inclin_rad) * cos(inclin_rad) sini2 = sin(inclin_rad) * sin(inclin_rad) for i in range(self.nGauss) : if cosi2 > (self.Q2D[i] * self.Q2D[i]) : maxangle = np.arccos(self.Q2D[i]) print("ERROR: cannot deproject the component %d. Max angle is %f" %(i+1, maxangle*180./np.pi)) continue self.QxZ[i] = sqrt((self.Q2D[i] * self.Q2D[i] - cosi2) / sini2) self.QyZ[i] = self.QxZ[i] * 1.0 self.Sig3Darc[i] = self.Sig2Darc[i] * 1.0 self.Imax3D[i] = self.Imax2D[i] * self.Q2D[i] / (sqrt(2. * np.pi) * self.QxZ[i] * self.Sig2Darc[i]) self._findGauss3D = self.QxZ.shape[0] if verbose : print("Deprojected Model with inclination of %5.2f" %(inclin)) print(" # Imax Sigma Qx Qy") print(" Lsun/pc^2/arcsec arcsec") if printformat == "F" : ff = "%13.5f" else : ff = "%13.8e" for i in range(self.nGauss) : print(("3D-G %2d {0} %10.5f %9.5f %9.5f" %(i+1, self.Sig3Darc[i], self.QxZ[i], self.QyZ[i])).format(ff%(self.Imax3D[i]))) if particles : if 'kRZ' not in self.__dict__ : self.kRZ = np.ones(self.nGauss, floatMGE) self._init_BetaEps(verbose=False) self._comp_Nparticles() return ## =========================================================================================== ################################################################ ### Projection of the MGE model for an axiymmetric galaxy ### ################################################################ def project(self, inclin=90, printformat="E", particles=True, verbose=True) : """ Project the Gaussians and provide the 2D parameters inclin: inclination in degrees printformat: "E" or "F" depending if you want Engineering or Float notation default is "E" """ if self.axi != 1 : print("ERROR: cannot project this model: not axisymmetric !\n") return self.Euler = np.array([0., inclin, 0.]) if inclin == 0. : if verbose : print("Face-on Projection\n") self.Sig2Darc = self.Sig3Darc self.Q2D = np.ones(self.nGauss, floatMGE) self.Imax2D = self.Imax3D * sqrt(2. * np.pi) * self.QxZ * self.Sig3Darc elif inclin == 90. : if verbose : print("Edge-on Projection\n") self.Sig2Darc = self.Sig3Darc * 1.0 self.Q2D = self.QxZ * 1.0 self.Imax2D = self.Imax3D * (sqrt(2. * np.pi) * self.Sig3Darc) else : inclin_rad = inclin * np.pi / 180. cosi2 = cos(inclin_rad) * cos(inclin_rad) sini2 = sin(inclin_rad) * sin(inclin_rad) for i in range(self.nGauss) : self.Q2D[i] = sqrt(self.QxZ[i] * self.QxZ[i] * sini2 + cosi2) self.Sig2Darc[i] = self.Sig3Darc[i] * 1.0 self.Imax2D[i] = self.Imax3D[i] * sqrt(2. * np.pi) * self.QxZ[i] * self.Sig3Darc[i] / self.Q2D[i] self._findGauss2D = self.Q2D.shape[0] if verbose : print("Projected Model with inclination of %5.2f" %(inclin)) print(" # Imax Sigma Q2D") print(" Lsun/pc^2 arcsec") if printformat == "F" : ff = "%13.5f" else : ff = "%13.8e" for i in range(self.nGauss) : print(("2D-G %2d {0} %9.5f %9.5f"%(i+1, self.Sig2Darc[i], self.Q2D[i])).format(ff%(self.Imax2D[i]))) if particles : self._comp_Nparticles() return #=================================================================== ################################################################## ### Write an ascii MGE file using an existing MGE class object ### ################################################################## def write_mge(self, outdir=None, outfilename=None, overwrite=False) : if (outfilename is None) : # testing if the name was set print('You should specify an output file name') return if outdir is not None : outfilename = outdir + outfilename ## Testing if the file exists if os.path.isfile(outfilename) : if not overwrite : # testing if the existing file should be overwritten print('WRITING ERROR: File %s already exists, use overwrite=True if you wish' %outfilename) return mgeout = open(outfilename, "w+") ## Starting to write the output file linecomment = "#######################################################\n" def set_txtcomment(text, name, value, valform="%f") : textout = "## %s \n"%(text) return textout + name + " " + valform%(value)+"\n" mgeout.write(linecomment + "## %s MGE model \n"%(outfilename) + linecomment) ## Basic Parameters mgeout.write(set_txtcomment("Distance [Mpc]", "DIST", self.Dist, "%5.2f")) mgeout.write(set_txtcomment("Black Hole Mass [Msun]", "MBH", self.Mbh, "%8.4e")) mgeout.write(set_txtcomment("Euler Angles [Degrees]", "EULER", tuple(self.Euler), "%8.5f %8.5f %8.5f")) mgeout.write(set_txtcomment("Center [Arcsec]", "CENTER", tuple(self.Center), "%8.5f %8.5f")) ## Number of Gaussians NGauss = (self.nStarGauss, self.nGasGauss, self.nHaloGauss) mgeout.write(set_txtcomment("Number of Gaussians (Stars, Gas, Dark Matter)", "NGAUSS", NGauss, "%d %d %d")) Gaussians3D = np.zeros((self.nGauss, 9), float) Gaussians2D = np.zeros((self.nGauss, 4), float) if self._findGauss3D > 0: ## Projecting to get the 2D values self.project(inclin=self.Euler[1], particles=False) elif self._findGauss2D > 0: ## Deprojecting to get the 3D values self.deproject(inclin=self.Euler[1], particles=False) else : print_msg("No Gaussians found in this model", 3) ## Deprojecting to get the 3D values Gaussians2D[:,0] = self.Imax2D Gaussians2D[:,1] = self.Sig2Darc Gaussians2D[:,2] = self.Q2D Gaussians2D[:,3] = self.PAp Gaussians3D[:,0] = self.Imax3D Gaussians3D[:,1] = self.Sig3Darc Gaussians3D[:,2] = self.QxZ Gaussians3D[:,3] = self.QyZ Gaussians3D[:,4] = self.ML Gaussians3D[:,5] = self.kRTheta Gaussians3D[:,6] = self.kRZ Gaussians3D[:,7] = np.asarray(self.GaussGroupNumber, float) Gaussians3D[:,8] = np.asarray(self.GaussDynCompNumber, float) self.axi = 1 ################### ## 2D Gaussians ################### ## STARS First k = 0 mgeout.write("## No Imax Sigma Q PA\n") mgeout.write("## Stellar 2D Gaussians\n") for i in range(NGauss[0]) : mgeout.write("STARGAUSS2D%02d "%(i+1) + "%8.5e %8.5f %8.5f %8.5f \n"%tuple(Gaussians2D[k])) k += 1 ## then Gas mgeout.write("## Gas 2D Gaussians\n") for i in range(NGauss[1]) : mgeout.write("GASGAUSS2D%02d "%(i+1) + "%8.5e %8.5f %8.5f %8.5f \n"%tuple(Gaussians2D[k])) k += 1 ## Then Dark Matter mgeout.write("## Dark Matter 2D Gaussians\n") for i in range(NGauss[2]) : mgeout.write("HALOGAUSS2D%02d "%(i+1) + "%8.5e %8.5f %8.5f %8.5f \n"%tuple(Gaussians2D[k])) k += 1 ################### ## 3D Gaussians ################### ## STARS First k = 0 mgeout.write("## ID Imax Sigma QxZ QyZ M/L kRT kRZ Group DynComp\n") mgeout.write("## Stellar 3D Gaussians\n") for i in range(NGauss[0]) : if self.betaeps[k]: mgeout.write("STARGAUSS3D%02d "%(i+1) + "%8.5e %8.5f %8.5f %8.5f %8.5f %8.5f"%tuple(Gaussians3D[k][:6]) \ + " BETAEPS " + "%d %d \n"%tuple(Gaussians3D[k][7:])) else: mgeout.write("STARGAUSS3D%02d "%(i+1) + "%8.5e %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %d %d \n"%tuple(Gaussians3D[k])) k += 1 ## then Gas mgeout.write("## Gas 3D Gaussians\n") for i in range(NGauss[1]) : if self.betaeps[k]: mgeout.write("GASGAUSS3D%02d "%(i+1) + "%8.5e %8.5f %8.5f %8.5f %8.5f %8.5f"%tuple(Gaussians3D[k][:6]) \ + " BETAEPS " + "%d %d \n"%tuple(Gaussians3D[k][7:])) else: mgeout.write("GASGAUSS3D%02d "%(i+1) + "%8.5e %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %d %d \n"%tuple(Gaussians3D[k])) k += 1 ## Then Dark Matter mgeout.write("## Dark Matter 3D Gaussians\n") for i in range(NGauss[2]) : if self.betaeps[k]: mgeout.write("HALOGAUSS3D%02d "%(i+1) + "%8.5e %8.5f %8.5f %8.5f %8.5f %8.5f"%tuple(Gaussians3D[k][:6]) \ + " BETAEPS " + "%d %d \n"%tuple(Gaussians3D[k][7:])) else: mgeout.write("HALOGAUSS3D%02d "%(i+1) + "%8.5e %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %d %d \n"%tuple(Gaussians3D[k])) k += 1 ## Number of Groups et al. mgeout.write(set_txtcomment("Number of Groups", "NGROUP", self.nGroup, "%d")) mgeout.write(set_txtcomment("Number of Dynamical Components", "NDYNCOMP", self.nDynComp, "%d")) mgeout.write("## PARTICLES for each DynComp: Total number and Number to be realised\n") for i in range(self.nGroup) : NPartGroup = (self.nPartGroup[i], self.nRealisedPartGroup[i]) mgeout.write("NPARTGROUP%02d %d %d\n"%(i+1, self.nPartGroup[i], self.nRealisedPartGroup[i])) mgeout.close() #=================================================================================================================================== def create_mge(outfilename=None, overwrite=False, outdir=None, **kwargs) : """Create an MGE ascii file corresponding to the input parameters """ ## Setting a temporary MGE object saveMGE = kwargs.get('saveMGE', None) if saveMGE is None : tempMGE = paramMGE() else : tempMGE = paramMGE(saveMGE=saveMGE) ## Test if the structure was properly initialised if not hasattr(tempMGE, "mcut") : ## If not just return and stop as the message was already clear ## From the initialisation return ## Get the numbers from kwargs ## First the Gaussians NGauss = np.asarray(kwargs.get('NGauss', np.array([1,0,0])), int) if NGauss.size == 1 : NGauss = np.asarray(np.array([NGauss, 0, 0]), int) TNGauss = NGauss.sum() ## Inclination if "Inclination" in kwargs : if "Euler" in kwargs : print_msg("Both Euler and Inclination are defined here: will use Euler as a default", 1) else : kwargs["Euler"] = np.array([0., float(kwargs.get("Inclination")), 0.]) tempMGE.Euler = np.asarray(kwargs.get("Euler")) if tempMGE.Euler.size != 3 : print_msg("Problem with Euler angles, will set the default = 0, 90, 0 = edge-on", 1) tempMGE.Euler = np.array([0., 90., 0.]) tempMGE._reset(nGauss=NGauss) temp2D = np.array([0., 1., 1., 0.]) temp3D = np.array([0., 1., 1., 1., 1., 1., 1., 1, 1]) temp3D_short = np.array([1., 1., 1., 1, 1]) # Testing for betaeps if 'betaeps' in kwargs: betaeps = kwargs.pop('betaeps',
np.ones(tempMGE.nGauss, dtype=int)
numpy.ones
import six import cv2 import inspect import itertools import numpy as np from functools import wraps # from sklearn.decomposition import PCA # from scipy.ndimage.interpolation import rotate as imrotate from nutszebra_sampling import Sampling as sampling from nutszebra_preprocess_picture import PreprocessPicture as preprocess from nutszebra_basic_dictionary import NutszebraDictionary as dict_n def execute_based_on_probability(func): """Decorator to execute a function based on probability Edited date: 160707 Test: | 2. str or numpy.ndarray: The decorator treat it as the input x of func, thus set the first argument as self.x and pass it to func directly with **kwargs. You can give info as the second argumnet and in that case, the second argument becomes self.info. If you don't give info, new info is generated and setted as self.info. | 3. Nothing or None: The first argument is treated as 1.0. Args: __no_record (bool): If True, this decorator does not do anything x_or_probability Optional([str, numpy.ndarray, int, float, None]): read Note info [nutszebra_basic_dictionary.NutszebraDictionary]: read Note Returns: nutszebra_data_augmentation_picture.DataAugmentationPicture: return self """ @wraps(func) def wrapper(self, x_or_probability=None, *args, **kwargs): # if x_or_probability is not given, x_or_probability becomes 1.0 if x_or_probability is None: x_or_probability = 1.0 if '__no_record' in kwargs and kwargs['__no_record'] is True: # pop __no_record kwargs.pop('__no_record') # no record return func(self, x_or_probability, **kwargs) # they are recorded elif isinstance(x_or_probability, float) or isinstance(x_or_probability, int): # probability case probability = float(x_or_probability) # 0<=np.random.rand()<=1 if probability == 1.0 or probability >= np.random.rand(): if self.x is None: if self.info is None: self.info = dict_n({'pc': 0}) self.info[self.info['pc']] = {} self.info[(self.info['pc'], 'execute')] = False else: # func needs only **kwargs to change behavior self.x, self.info[self.info['pc']] = func(self, self.x, **kwargs) # func has been executed self.info[(self.info['pc'], 'execute')] = True else: # nothing happened self.info[(self.info['pc'], 'execute')] = False else: # x case # check info is given or not if not len(args) == 0 and isinstance(args[0], dict_n): info = args[0] else: info = None # set x and info self(x_or_probability, info=info) self.x, self.info[self.info['pc']] = func(self, self.x, **kwargs) # func has been executed self.info[(self.info['pc'], 'execute')] = True # record function name self.info[(self.info['pc'], 'whoami')] = func.__name__ # record default arguments # None, None => self, x_or_probability tmp = extract_defaults(func) for key, val in tmp.items(): self.info[(self.info['pc'], key)] = val # record **kwargs for key in kwargs.keys(): self.info[(self.info['pc'], key)] = kwargs[key] # increment program counter self.info['pc'] += 1 return self return wrapper def extract_defaults(func): tmp = inspect.getargspec(func) if tmp.defaults is None: return {} return dict(zip(tmp.args[-len(tmp.defaults):], tmp.defaults)) class DataAugmentationPicture(object): """Some useful functions for data-augmentation about pictures are defined Attributes: self.x Optional([numpy.ndarray, str]): input x self.info (nutszebra_basic_dictionary.NutszebraDictionary): the info tells about what happened while executing data-augmentation eigenvalue (numpy.ndarray): eigenvalue for self.rgb_shift eigenvector (numpy.ndarray): eigenvector for self.rgb_shift papers (list): the title of papers parameters (dict): the parameters in papers are stored """ def __init__(self, **kwargs): self.x = None self.info = None self.eigenvalue = None self.eigenvector = None self.papers = ['scalable bayesian optimization using deep neural networks', 'do deep convolutional nets really need to be deep (or even convolutional)?', ] self.parameters = {} self.parameters[self.papers[0]] = {'pixel-dropout': {'probability': 0.2}, 'shift-hue': {'low': -31.992, 'high': 31.992}, 'shift-saturation': {'low': -0.10546, 'high': 0.10546}, 'shift-value': {'low': -0.24140, 'high': 0.24140}, 'stretch-saturation': {'low': 1. / (1. + 0.31640), 'high': 1. + 0.31640}, 'stretch-value': {'low': 1. / (1. + 0.13671), 'high': 1. + 0.13671}, 'stretch-BGR': {'low': 1. / (1. + 0.24140), 'high': 1. + 0.24140}, } self.parameters[self.papers[1]] = {'shift-hue': {'low': -0.06, 'high': 0.06}, 'shift-saturation': {'low': -0.26, 'high': 0.26}, 'shift-value': {'low': -0.20, 'high': 0.20}, 'stretch-saturation': {'low': 1. / (1. + 0.21), 'high': 1. + 0.21}, 'stretch-value': {'low': 1. / (1. + 0.13), 'high': 1. + 0.13}, } def __call__(self, x=None, info=None): """Set x and info Edited date: 160707 Test: 160708 Example: :: da = nutszebra_data_augmentation_picture.DataAugmentationPicture() da('lenna.jpg') >>> print(da.x) 'lenna.jpg' >>> print(da.info) {'pc': 0} da() >>> print(da.x) None >>> print(da.info) None da('lenna.jpg', {'test':0}) >>> print(da.x) 'lenna.jpg' >>> print(da.x) {'test':0} Args: x Optional([None, str, numpy.ndarray, int, float]): If None, self.x and self.info are setted as None, otherwise set this argument as self.x info Optional([None, nutszebra_basic_dictionary.NutszebraDictionary, dict]): If None, generate new info, otherwise set this argument as self.info Returns: nutszebra_data_augmentation_picture.DataAugmentationPicture: return self """ if x is None: # reset self.x = None self.info = None else: # set if info is None: info = self.generate_info() self.x = x self.info = dict_n(info) return self def end(self, info_flag=False): """Return self.x and self.info Edited date: 160707 Test: 160708 Example: :: da = nutszebra_data_augmentation_picture.DataAugmentationPicture() da('lenna.jpg') >>> print(da.end()) 'lenna.jpg' >>> print(da.end(True)) ('lenna.jpg', {'pc': 0}) Args: info_flag (bool): If False, only self.x is returned, otherwise return (self.x, self.info). Returns: numpy.ndarray: info_flag=False tuple: info=True, (numpy.ndarray, nutszebra_basic_dictionary.NutszebraDictionary) """ if info_flag is True: return (self.x, self.info) else: return self.x @staticmethod def generate_info(): """Generate info dictionary Edited date: 160702 Test: 160702 Example: :: info = self.nz.generate_info() >>> print(info) {'pc': 1} Returns: info (nutszebra_basic_dictionary.NutszebraDictionary): information about what happend while self.execute is written onto this """ return dict_n({'pc': 0}) def register_eigen(self, data): """calculate and register eigenvalue & eigenvector, those eigen ones are used for rgb_shift Edited date: 160422 Test: 160501 Example: :: self.register_eigen(data) Args: data (numpy.ndarray): data's ndim has to be 2 Returns: True if successful, False otherwise """ if not data.ndim == 2: return False cov = np.dot(data, data.T) / len(data) V, D, _ =
np.linalg.svd(cov)
numpy.linalg.svd
"""For calculating sub-observer and sub-stellar locations. Defines the method :func:`sub_observerstellar`. Thanks to <NAME> for preliminary work on this script. """ import numpy as np pi = np.pi def sub_observerstellar(times,worb,wrot,inc,obl,sol,longzero=0): """Calculates an exoplanet's sub-observer and -stellar locations over time. Calculates time-dependent, trigonometric values of an exoplanet's sub- observer and sub-stellar locations when on a circular orbit. Planet coordinates are colatitude (theta) and longitude (phi). Orbital phase is zero when planet is opposite star from observer (superior conjunction) and increases CCW when system is viewed above star's North pole. See Appendix A of `Schwartz et al. (2016) <https://arxiv.org/abs/1511.05152>`_. Args: times (1d array, int, or float): Discrete time values in any unit, with total number *n_time*. At t=0 planet is at superior conjunction. worb (int or float): Orbital angular frequency in radians per unit time. Positive values are prograde orbits (CCW), negative are retrograde (CW). wrot (int or float): Rotational angular frequency in radians per unit time. For prograde orbits, positive values are prograde rotation, negative are retrograde (vice versa for retrograde orbits). inc (int or float): Inclination of orbital plane to the observer, in radians. Zero is face-on, pi/2 is edge-on. obl (int or float): Obliquity relative to the ``worb`` vector, in radians. This is the tilt of the planet's spin axis. Zero is North pole up, pi/2 is maximal tilt, pi is North pole down. sol (int or float): The orbital phase of Northern Summer solstice, in radians. If the ``wrot`` vector is projected into the orbital plane, then this phase is where that projection points at the star. longzero (int or float): Longitude of the sub-observer point when t=0, in radians. Default is zero. Returns: trigvals (ndarray): Array of trigonometric values with shape (8, *n_time*). First dimension is organized as: - sin theta_obs - cos theta_obs - sin phi_obs - cos phi_obs - sin theta_st - cos theta_st - sin phi_st - cos phi_st """ if isinstance(times,np.ndarray) and (times.size == times.shape[0]): timeA = times N_time = timeA.size # Number of time steps from input array elif isinstance(times,(int,float)): timeA = np.array([times]) N_time = 1 else: print('sub_observerstellar aborted: input times should be ndarray (1D), int, or float.') return phaseA = worb*timeA # Orbital phases phiGen = wrot*timeA - longzero # General expression for PhiObs (without overall negative sign) cThObs = (np.cos(inc)*np.cos(obl)) + (np.sin(inc)*np.sin(obl)*np.cos(sol)) cThObsfull = np.repeat(cThObs,N_time) sThObs = (1.0 - (cThObs**2.0))**0.5 sThObsfull = np.repeat(sThObs,N_time) cThSt = np.sin(obl)*np.cos(phaseA - sol) sThSt = (1.0 - (cThSt**2.0))**0.5 sol_md = (sol % (2.0*pi)) inc_rd = round(inc,4) # Rounded inclination, for better comparison p_obl_rd = round((pi - obl),4) # Rounded 180 degrees - obliquity, for better comparison cond_face = (((inc == 0) or (inc == pi)) and ((obl == 0) or (obl == pi))) # Pole-observer 1: face-on inclination cond_north = ((sol_md == 0) and ((inc == obl) or (inc_rd == -p_obl_rd))) # Ditto 2: North pole view cond_south = ((sol == pi) and ((inc_rd == p_obl_rd) or (inc == -obl))) # Ditto 3: South pole view if cond_face or cond_north or cond_south: if (obl == (pi/2.0)): aII =
np.sin(phaseA)
numpy.sin
import bisect import bounded_kde as bk import bz2 import gzip import log_kde as lk import numpy as np import matplotlib.pyplot as pp import os.path import scipy.interpolate as si import scipy.stats as ss import scipy.stats.mstats as sm def load_header_data(file, header_commented=False): """Load data from the file, using header for column names. :param file: A file object or filename. :param header_commented: If ``True``, discard the first character of header as comment marker.""" def do_read(file): header=file.readline() if header_commented: header=header[1:].split() else: header=header.split() return np.loadtxt(file, dtype=[(h, np.float) for h in header]) if isinstance(file, str): f,ext = os.path.splitext(file) if ext == '.gz': with gzip.open(file, 'r') as inp: return do_read(inp) elif ext == '.bz2': with bz2.BZ2File(file, 'r') as inp: return do_read(inp) else: with open(file, 'r') as inp: return do_read(inp) else: return do_read(inp) def plot_emcee_chains(chain, truths=None, mean=True, fburnin=0): """Produces a chain plot of the mean values of each variable at each step. The chain should have the shape ``(nwalkers, nsteps, nvars)``, and the resulting grid of plots will be as close to square as possible, showing the mean walker position at each step. :param chain: An array of shape ``(nwalkers, nsteps, nvars)`` giving the history of the chain. :param truths: Either ``None`` or an iterable giving the truth values for each of the parameters, which will be plotted as a horizontal line. :param mean: If ``True`` (default) plot only the mean of the walker ensemble. Otherwise, plot the evolution of each walker in the chain. :param fburnin: The fraction of points to discard at the beginning of the chain. """ nk = chain.shape[2] n = int(np.ceil(np.sqrt(nk))) istart = int(round(fburnin*chain.shape[1])) for k in range(nk): pp.subplot(n,n,k+1) if mean: pp.plot(np.mean(chain[:,istart:,k], axis=0)) else: pp.plot(chain[:,istart:,k].T) if truths is not None: pp.axhline(truths[k], color='k') def plot_emcee_chains_one_fig(chain, fburnin=None): """Plots a single-figure representation of the chain evolution of the given chain. The figure shows the evolution of the mean of each coordinate of the ensemble, normalised to zero-mean, unit-standard deviation. :param chain: The sampler chain, of shape ``(nwalkers, niter, nparams)`` :param fburnin: If not ``None``, refers to the fraction of samples to discard at the beginning of the chain. """ nk = chain.shape[2] if fburnin is None: istart = 0 else: istart = int(round(fburnin*chain.shape[1])) for k in range(nk): mus = np.mean(chain[:,istart:,k], axis=0) mu = np.mean(mus) sigma = np.std(mus) pp.plot((mus - mu)/sigma) def decorrelated_2d_histogram_pdf(pts, xmin=None, xmax=None, ymin=None, ymax=None): """Returns ``(XS, YS, ZS)``, with ``ZS`` of shape ``(Nx,Ny)`` and ``XS`` and ``YS`` of shape ``(Nx+1,Ny+1)`` giving the height and box corners, respectively, of the histogram estimate of the PDF from which ``pts`` are drawn. The bin widths and orientations are chosen optimally for the convergence of the histogram to the true PDF under a squared-error metric; the automatic binning is tuned to work particularly well for multivariate Gaussians. Note: the first index of ZS varies with the X coordinate, while the second varies with the y coordinate. This is consistent with :func:`pp.pcolor`, but inconsistent with :func:`pp.imshow` and :func:`pp.contour`. :param pts: The sample points, of shape ``(Npts,2)``. :param xmin: Minimum value in x. If ``None``, use minimum data value. :param xmax: Maximum value in x. If ``None``, use minimum data value. :param ymin: Minimum value in y. If ``None``, use minimum data value. :param ymax: Maximum value in y. If ``None``, use minimum data value.""" if xmin is None: xmin = np.min(pts[:,0]) if xmax is None: xmax = np.max(pts[:,0]) if ymin is None: ymin = np.min(pts[:,1]) if ymax is None: ymax = np.max(pts[:,1]) cov=np.cov(pts, rowvar=0) mu=np.mean(pts, axis=0) # cov = L*L^T d, L = np.linalg.eig(cov) rescaled_pts = np.dot(pts-mu, L) rescaled_pts = rescaled_pts / np.reshape(np.sqrt(d), (1, 2)) h = (42.5/pts.shape[0])**0.25 Nx=int((np.max(rescaled_pts[:,0])-np.min(rescaled_pts[:,0]))/h + 0.5) Ny=int((np.max(rescaled_pts[:,1])-np.min(rescaled_pts[:,1]))/h + 0.5) H,xs,ys = np.histogram2d(rescaled_pts[:,0], rescaled_pts[:,1], bins=(Nx,Ny)) # Backwards to account for the ordering in histogram2d. YS_RESCALED,XS_RESCALED=np.meshgrid(ys, xs) HPTS_RESCALED=np.column_stack((XS_RESCALED.flatten(), YS_RESCALED.flatten())) HPTS=np.dot(HPTS_RESCALED*np.reshape(np.sqrt(d), (1,2)), L.T) + mu XS=np.reshape(HPTS[:,0], (Nx+1,Ny+1)) YS=np.reshape(HPTS[:,1], (Nx+1,Ny+1)) return XS,YS,H def interpolated_quantile(sorted_pts, quantile): """Returns a linearly interpolated quantile value. :param sorted_pts: A sorted array of points. :param quantile: The quantile desired.""" N=sorted_pts.shape[0] idx=N*quantile lidx=int(np.floor(idx)) hidx=int(np.ceil(idx)) return (idx-lidx)*sorted_pts[lidx] + (hidx-idx)*sorted_pts[hidx] def plot_interval(pts, levels, *args, **kwargs): """Plot probability intervals corresponding to ``levels`` in 1D. Additional args are passed to :func:`pp.axvline`. The chosen levels are symmetric, in that they have equal probability mass outside the interval on each side. :param pts: Shape ``(Npts,)`` array of samples. :param levels: Sequence of levels to plot.""" for level in levels: low,high = sm.mquantiles(pts, [0.5*(1.0-level), 0.5+0.5*level]) pp.axvline(low, *args, **kwargs) pp.axvline(high, *args, **kwargs) def plot_greedy_kde_interval_2d(pts, levels, xmin=None, xmax=None, ymin=None, ymax=None, Nx=100, Ny=100, cmap=None, colors=None, *args, **kwargs): """Plots the given probability interval contours, using a greedy selection algorithm. Additional arguments passed to :func:`pp.contour`. The algorithm uses a two-step process (see `this document <https://dcc.ligo.org/LIGO-P1400054/public>`_) so that the resulting credible areas will be unbiased. :param pts: Array of shape ``(Npts, 2)`` that contains the points in question. :param levels: Sequence of levels (between 0 and 1) of probability intervals to plot. :param xmin: Minimum value in x. If ``None``, use minimum data value. :param xmax: Maximum value in x. If ``None``, use minimum data value. :param ymin: Minimum value in y. If ``None``, use minimum data value. :param ymax: Maximum value in y. If ``None``, use minimum data value. :param Nx: Number of subdivisions in x for contour plot. (Default 100.) :param Ny: Number of subdivisions in y for contour plot. (Default 100.) :param cmap: See :func:`pp.contour`. :param colors: See :func:`pp.contour`. """ Npts=pts.shape[0] kde_pts = pts[:Npts/2,:] den_pts = pts[Npts/2:,:] Nkde = kde_pts.shape[0] Nden = den_pts.shape[0] kde=ss.gaussian_kde(kde_pts.T) den=kde(den_pts.T) densort=np.sort(den)[::-1] if xmin is None: xmin = np.min(pts[:,0]) if xmax is None: xmax = np.max(pts[:,0]) if ymin is None: ymin = np.min(pts[:,1]) if ymax is None: ymax = np.max(pts[:,1]) xs = np.linspace(xmin, xmax, Nx) ys = np.linspace(ymin, ymax, Ny) XS,YS=np.meshgrid(xs,ys) ZS=np.reshape(kde(np.row_stack((XS.flatten(), YS.flatten()))), (Nx, Ny)) zvalues=[] for level in levels: ilevel = int(Nden*level + 0.5) if ilevel >= Nden: ilevel = Nden-1 zvalues.append(densort[ilevel]) pp.contour(XS, YS, ZS, zvalues, colors=colors, cmap=cmap, *args, **kwargs) def greedy_kde_areas_2d(pts, levels, Nx=100, Ny=100, truth=None): """Returns an estimate of the area within the given credible levels for the posterior represented by ``pts``. The algorithm uses a two-step process (see `this document <https://dcc.ligo.org/LIGO-P1400054/public>`_) so that the resulting credible areas will be unbiased. :param pts: An ``(Npts, 2)`` array giving samples from the posterior. The algorithm assumes that each point is an independent draw from the posterior. :param levels: The credible levels for which the areas are desired. :param Nx: The number of subdivisions along the first parameter to be used for the credible area integral. :param Ny: The number of subdivisions along the second parameter to be used for the credible area integral. :param truth: If given, then the area contained within the posterior contours that are more probable than the posterior evaluated at ``truth`` will be returned. Also, the credible level that corresponds to truth is returned. The area quantity is sometimes called the 'searched area', since it is the area a greedy search algorithm will cover before finding the true values. :return: If ``truth`` is None, ``areas``, an array of the same shape as ``levels`` giving the credible areas; if ``truth`` is not ``None`` then ``(areas, searched_area, p_value)``. """ pts = np.random.permutation(pts) mu = np.mean(pts, axis=0) cov = np.cov(pts, rowvar=0) L = np.linalg.cholesky(cov) detL = L[0,0]*L[1,1] pts = np.linalg.solve(L, (pts - mu).T).T if truth is not None: truth = np.linalg.solve(L, truth-mu) Npts = pts.shape[0] kde_pts = pts[:Npts/2, :] den_pts = pts[Npts/2:, :] kde = ss.gaussian_kde(kde_pts.T) den = kde(den_pts.T) densort = np.sort(den)[::-1] xs = np.linspace(np.min(pts[:,0]), np.max(pts[:,0]), Nx) ys = np.linspace(
np.min(pts[:,1])
numpy.min
import time import numpy as np from os import makedirs from os.path import exists, join, basename class ReadEEG: def __init__(self, filename, newSampleRate=0, channels2exclude=[]): self.filename = filename if filename[-3:] == 'bdf': self.readBDF() elif filename[-3:] == 'eeg': self.readBrainVision() # Exclude Channels if necessary if channels2exclude != []: self.excludeChannels(channels2exclude) # Reslice Data if necessary if newSampleRate != 0: self.resliceData(newSampleRate) def readBDF(self): self.eegFile = self.filename.replace('.bdf', '.lineviewer') with open(self.filename, 'rb') as f: offset = 168 f.seek(offset) startDate = f.read(8).strip() startTime = f.read(8).strip() offset += 68 f.seek(offset) dataRecorded = int(f.read(8)) durationRecorded = int(f.read(8)) nbChannels = int(f.read(4)) labelsChannel = np.array( [f.read(16).strip() for i in range(nbChannels)]) offset += 20 + 216 * nbChannels f.seek(offset) sampleRate = [int(f.read(8)) for i in range(nbChannels)] sampleRate = sampleRate[0] offset += (40) * nbChannels if not exists(self.eegFile): with open(self.filename, 'rb') as f: f.seek(offset) rawdata = np.fromfile(f, dtype='uint8').reshape(-1, 3) zeroarray = np.zeros((rawdata.shape[0], 1), dtype='uint8') # 8-bit shift for negative integers zeroarray[rawdata[:, 2] >= 128] += 255 rawdata = np.array( np.hstack((rawdata, zeroarray)), dtype='uint8') rawdata = ( rawdata.flatten().view('i4') / 32.).astype('float32') rawdata = rawdata.reshape( dataRecorded, nbChannels, sampleRate) rawdata = np.rollaxis( rawdata, 1).reshape(nbChannels, -1) eegFile = np.memmap(self.eegFile, mode='w+', dtype='float32', shape=rawdata.shape) eegFile[:] = rawdata[:] rawdata = np.memmap(self.eegFile, mode='r', dtype='float32', shape=(nbChannels, sampleRate * dataRecorded)) # Create Marker value and timestamp status = rawdata[np.where(labelsChannel == 'Status')][0] status = status - np.median(status) timepoint = (np.diff(status) != 0).nonzero()[0] + 1 markerTime = timepoint[np.where(status[timepoint] != 0)] markerValue = np.uint8(status[markerTime] * 32) # Prepare output self.rawdata = rawdata[:-1, :] self.startDate = '20%s/%s/%s' % ( startDate[6:8], startDate[3:5], startDate[:2]) self.startTime = startTime self.dataRecorded = dataRecorded self.durationRecorded = durationRecorded self.labelsChannel = labelsChannel[:-1] self.sampleRate = sampleRate self.markerTime = markerTime self.markerValue = np.copy(markerValue).astype('|S16') self.fileType = 'BDF' def readBrainVision(self): self.eegFile = self.filename hdrFile = self.eegFile.replace('.eeg', '.vhdr') markerFile = self.eegFile.replace('.eeg', '.vmrk') # Aggregate Header Information with open(hdrFile) as f: tmpHeader = f.readlines() tmpHeader = [t.strip() for t in tmpHeader] self.labelsChannel = [] readChannelNames = False for line in tmpHeader: if readChannelNames: if len(line) == 0 or line[0] == ';': continue elif line[0:2] == 'Ch': channelName = line.split(',')[0] idEqual = channelName.index('=') channelName = channelName[idEqual + 1:] self.labelsChannel.append(channelName) else: readChannelNames = False elif 'SamplingInterval=' in line: sampleInterval = int(line.split('=')[1]) self.sampleRate = int(1e6 / float(sampleInterval)) elif 'BinaryFormat=' in line: binaryFormat = line.split('=')[1] elif 'recording started at' in line: self.startTime = line.split('started at')[-1][1:9] elif '[Channel Infos]' in line: readChannelNames = True self.labelsChannel = np.asarray(self.labelsChannel) # Aggregate Marker Information with open(markerFile) as f: tmpMarker = f.readlines() tmpMarker = [t.strip() for t in tmpMarker] tmpMarker = [m.split(',') for m in tmpMarker if m[:2] == 'Mk'] self.markerValue = [] self.markerTime = [] for e in tmpMarker: if 'New Segment' in e[0]: recDate = e[5][:8] self.startDate = '%s/%s/%s' % ( recDate[6:], recDate[4:6], recDate[:4]) else: self.markerValue.append(e[1]) self.markerTime.append(int(e[2])) self.markerValue = np.array(self.markerValue).astype('|S16') self.markerTime = np.array(self.markerTime) # Aggregate Data Information numberFormat = {'INT_16': np.int16, 'IEEE_FLOAT_32': np.float32} dataType = numberFormat[binaryFormat] rawdata = np.memmap(self.eegFile, dataType, 'r') nbChannels = self.labelsChannel.shape[0] timepoints = rawdata.shape[0] / nbChannels self.dataRecorded = float(timepoints) / self.sampleRate self.durationRecorded = 1 self.rawdata = np.rollaxis(rawdata.reshape(timepoints, nbChannels), 1) self.fileType = 'BrainVision' def resliceData(self, newSampleRate): if newSampleRate != self.sampleRate: divisor = float(self.sampleRate) / newSampleRate # Rewrite markerTime self.markerTime = (self.markerTime / divisor).astype('int') # Reslice rawdata with slicer slicer = np.arange(0, self.rawdata.shape[1], int(divisor)) self.rawdata = self.rawdata[:, slicer] # Rewrite sampleRate self.sampleRate = newSampleRate def excludeChannels(self, channels2exclude): keepID = [i for i, e in enumerate(self.labelsChannel) if e not in channels2exclude] self.labelsChannel = self.labelsChannel[keepID] self.rawdata = self.rawdata[keepID] class ReadXYZ: def __init__(self, filename): # Read XYZ File with open(filename) as f: content = f.readlines() self.coord = [] self.labels = [] for i, e in enumerate(content): if i != 0: coord = e.split() self.coord.append([float(coord[0]), float(coord[1]), float(coord[2])]) self.labels.append(coord[3]) self.coord = np.array(self.coord) self.labels = np.array(self.labels) # Get ID of 10% most frontal channels xValue = self.coord[:, 0] self.frontalID = np.where(xValue >= np.percentile(xValue, 90))[0] class SaveTVA: def __init__(self, data, precut, postcut): dataSize = [ len([m for m in e.markerTime if m > precut and m < e.rawdata.shape[1] - postcut]) for e in data.Datasets] tvaMarker = [ 1 if 'ok_' in m else 0 for m in data.Results.matrixSelected] # Go through the files and save TVA for each counter = 0 for i, n in enumerate(data.Filenames): filename = join(data.DirPath, n + '.lineviewer.tva') with open(filename, 'w') as f: f.writelines('TV01\n') for j in range(dataSize[i]): f.writelines('%d\t0\t%s\n' % ( tvaMarker[counter], data.Results.markers[counter])) counter += 1 class SaveERP: def __init__(self, resultsName, resultsPath, results, markers2hide, preFrame): # Create output folder if it doesn't exist if not exists(resultsPath): makedirs(resultsPath) # Go through all the markers for i, m in enumerate(results.uniqueMarkers): # Do nothing if marker was hidden if m in markers2hide: continue # Write GFP data into ERP file nTimepoint = results.avgGFP[0].shape[0] filename = '%s.ERP_%s.GFP.eph' % (resultsName, m) with open(join(resultsPath, filename), 'w') as f: f.writelines('{:>15}\t{:>15}\t{:>25}\n'.format( 1, nTimepoint, results.sampleRate)) for tValue in results.avgGFP[i]: f.writelines('{:>15}\n'.format(round(tValue, 7))) # Write GFP marker file filename += '.mrk' with open(join(resultsPath, filename), 'w') as f: f.writelines( 'TL02\n{:>12}\t{:>12}\t"Origin"\n'.format(preFrame, preFrame)) # Write electrode data into ERP file nSignal, nTimepoint = results.avgEpochs[0].shape filename = '%s.ERP_%s.eph' % (resultsName, m) with open(join(resultsPath, filename), 'w') as f: f.writelines('{:>15}\t{:>15}\t{:>25}\n'.format( nSignal, nTimepoint, results.sampleRate)) for tValues in results.avgEpochs[i].T: formatString = '{:>15}\t' * nSignal formatString = formatString[:-1] + '\n' f.writelines( formatString.format(*np.round(tValues, 7).tolist())) # Write ERP marker file filename += '.mrk' with open(join(resultsPath, filename), 'w') as f: f.writelines( 'TL02\n{:>12}\t{:>12}\t"Origin"\n'.format(preFrame, preFrame)) class SaveEpochs: def __init__(self, resultsPath, results, preFrame): # Create output folder if it doesn't exist if not exists(resultsPath): makedirs(resultsPath) # Go through all epochs for i, epoch in enumerate(results.epochs): # Only save epochs that were OK if not results.okID[i]: continue # Write electrode data into ERP file nSignal, nTimepoint = epoch.shape marker = results.markers[i] filename = 'Epoch_%.4d_%s.eph' % (i + 1, marker) with open(join(resultsPath, filename), 'w') as f: f.writelines('{:>15}\t{:>15}\t{:>25}\n'.format( nSignal, nTimepoint, results.sampleRate)) for tValues in epoch.T: formatString = '{:>15}\t' * nSignal formatString = formatString[:-1] + '\n' f.writelines( formatString.format(*np.round(tValues, 7).tolist())) # Write Epoch marker file filename += '.mrk' with open(join(resultsPath, filename), 'w') as f: f.writelines( 'TL02\n{:>12}\t{:>12}\t"Origin"\n'.format(preFrame, preFrame)) class SaveFigures: def __init__(self, resultsName, resultsPath, figures): figures.Overview.figure.savefig( join(resultsPath, 'plot_Overview.png'), bbox_inches='tight') figures.GFPSummary.figure.savefig( join(resultsPath, 'plot_GFP_Summary.png'), bbox_inches='tight') figures.GFPDetail.figure.savefig( join(resultsPath, 'plot_GFP_Detail.png'), bbox_inches='tight') markers = figures.ERPSummary.ComboMarkers.GetItems()[1:] for m in markers: figures.ERPSummary.update(str(m)) figures.ERPSummary.figure.savefig( join(resultsPath, 'plot_ERP_Marker_%s.png' % str(m)), bbox_inches='tight') class SaveVerbose: def __init__(self, resultsName, resultsPath, data): # abbreviation to shorten variable name res = data.Results # Write Verbose File with open(join(resultsPath, '%s.vrb' % resultsName), 'w') as f: f.writelines('Verbose File\n============\n\n') f.writelines('LINEViewer (Version %s)\n' % data.VERSION) f.writelines('%s\n\n\n' % time.strftime('%Y/%m/%d %H:%M:%S')) # Information about the preprocessing f.writelines( 'Processing Information:\n-----------------------\n\n') f.writelines('DC removed\t\t\t:\t%s\n' % res.removeDC) f.writelines('Reference to\t\t:\t%s\n' % res.newReference) highcut = res.highcut if res.highcut != 0 else 'None' lowcut = res.lowcut if res.lowcut != 0 else 'None' f.writelines('High-pass filter\t:\t%s\n' % highcut) f.writelines('Low-pass filter\t\t:\t%s\n' % lowcut) notch = res.notchValue if res.doNotch else 'None' f.writelines('Notch\t\t\t\t:\t%s\n' % notch) f.writelines('\n') f.writelines('Epoch duration pre\t:\t%sms / %s sampling points\n' % (res.preEpoch, res.preFrame)) f.writelines( 'Epoch duration post\t:\t%sms / %s sampling points\n' % (res.postEpoch, res.postFrame)) f.writelines('Baseline correction\t:\t%s\n' % res.baselineCorr) f.writelines('Blink correction\t:\t%s\n' % res.blinkCorr) f.writelines('Thresh. correction\t:\t%s\n' % res.thresholdCorr) f.writelines('Threshold [mikroV]\t:\t%s\n' % res.threshold) f.writelines('Channels ignored\t:\t%s\n' % data.Specs.channels2ignore) f.writelines('\n') if hasattr(res, 'collapsedTransform'): collapsedInfo = [ '%s -> %s' % (res.collapsedTransform[e], e) for e in res.collapsedTransform] collapsedInfo = ', '.join(collapsedInfo) else: collapsedInfo = 'None' f.writelines('Markers collapsed\t:\t%s\n' % collapsedInfo) f.writelines('Markers hidden\t\t:\t%s\n' % data.markers2hide) f.writelines('\n') f.writelines('Interpolated ch.\t:\t%s\n' % data.Specs.channels2interpolate) xyzFile = data.Specs.xyzFile if data.Specs.xyzFile != '' \ else 'None' f.writelines('XYZ-file path\t\t:\t%s\n' % xyzFile) f.writelines('\n\n') # Information about the ERP output f.writelines('ERP Information:\n----------------\n\n') epochsTotal = res.epochs.shape[0] epochsOK = res.okID.sum() percentOK = np.round(float(epochsOK) / epochsTotal, 2) * 100 f.writelines('Channels #\t\t\t:\t%s\n' % res.epochs.shape[1]) f.writelines('Markers #\t\t\t:\t%s\n' % len(res.uniqueMarkers)) f.writelines('Marker value\t\t:\t%s\n' % ', '.join(res.uniqueMarkers.astype('str'))) f.writelines('Epochs total #\t\t:\t%s\n' % epochsTotal) f.writelines( 'Epochs in ERP\t:\t{0} / {1}%\n'.format(epochsOK, percentOK)) f.writelines('\n') selected = len(np.where(res.matrixSelected == 'selected')[0]) ok_normal = len(np.where(res.matrixSelected == 'ok_normal')[0]) threshold = len(np.where(res.matrixSelected == 'threshold')[0]) ok_thresh = len(
np.where(res.matrixSelected == 'ok_thresh')
numpy.where
# File name: NN # Copyright 2017 <NAME> # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the # License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 import numpy as np from NNActivations import activation_functions class NN: '''Creates the NN instance which is a python neural network. Args: L(list): List of nodes in each of the layers including the input and output lauer. activations(list): List of activations in the different layers {‘relu’, ‘sigmoid’, ‘leaky-relu’}. Attributes L(list): List of nodes in each of the layers including the input and output lauer. layers(int): Number of layers. activations(list): List of activations in the different layers {‘relu’, ‘sigmoid’, ‘leaky-relu’}. parameters(dict): Dictionary with ndarray of weights and biases. gradient_parameters(dict): Dictionary with ndarray of gradients of weights and biases. ''' def __init__(self, L, activations, unit_test=False): self.L = L self.layers = len(self.L) self.activations = activations self.parameters = {} self.gradient_parameters = {} self._update_count = 1 def initialize_parameters(self, method='xavier', epsilon=0.01, beta1=0.0, beta2=0.0, seed=1): ''' Initializes dictionary of parameters of weights and biases Args: method(str): Method of weights initialization, 'xavier','he' or nothing. epsilon(float): If xavier is false this will be used as the mean of the weights. beta1(float): Momentum beta1, if 0 then there is no momentum. beta2(float): RMSprop beta2, 0 if 0 then there is no rmsprop. seed(int): Ramdom number generator seed. ''' np.random.seed(seed) for l in range(1, self.layers): if method == 'xavier': factor = np.sqrt(1 / self.L[l - 1]) elif method == 'he': factor = np.sqrt(2 / self.L[l - 1]) else: factor = epsilon self.parameters['W' + str(l)] = np.random.randn(self.L[l], self.L[l - 1]) * factor self.parameters['b' + str(l)] = np.zeros((self.L[l], 1)) if beta1 != 0: self.gradient_parameters['dVW' + str(l)] = np.zeros((self.L[l], self.L[l - 1])) self.gradient_parameters['dVb' + str(l)] = np.zeros((self.L[l], 1)) if beta2 != 0: self.gradient_parameters['dSW' + str(l)] = np.zeros((self.L[l], self.L[l - 1])) self.gradient_parameters['dSb' + str(l)] = np.zeros((self.L[l], 1)) def forward_propogation(self, X, keep_prob=1.0, gradient_check=False): ''' Return the final activation and cache after forward proppogation. Args: X (ndarry): Samples as columns, features in rows. keep_prob(float): If less than 1.0, dropout regularization will be implemented. gradient_check(boolean): Switches off dropout to allow checking gradient with a numerical check. Returns: tuple: A (ndarray), Final activation for each sample as array of floats, cache (dict), dictionary of the Z, A and derivs for each layer. ''' np.random.seed(1) cache = {} if gradient_check: keep_prob = 1.0 if type(keep_prob) != list: keep_prob = np.ones(len(self.activations)) * keep_prob XT = X[:].T cache['A0'] = XT for l in range(1, self.layers): W = self.parameters['W' + str(l)] b = self.parameters['b' + str(l)] G = activation_functions[self.activations[l - 1]] Z = np.matmul(W, cache['A' + str(l - 1)]) + b A, deriv = G(Z) keep = np.random.rand(A.shape[0], A.shape[1]) keep = keep <= keep_prob[l - 1] keep = keep * 1. / keep_prob[l - 1] A = np.multiply(A, keep) deriv = np.multiply(deriv, keep) # cache['Z' + str(l)] = Z # cache['D'+str(l)] = keep cache['A' + str(l)] = A cache['deriv' + str(l)] = deriv return A, cache def L2_cost(self): ''' Returns the L2 norm of all the weights. Returns: float: L2 norm of weights. ''' L2 = 0. for parameter_name, parameter in self.parameters.items(): if 'W' in parameter_name: L2 += np.sum(np.square(parameter)) return L2 def compute_cost(self, AL, Y, lambd): ''' Computes the cost cross entropy cost of the precictions. Args: AL(ndarray): Final activations (logits). Y(ndarry): Labels. lambd(float): if not None or 0, you will get L2 regularization with L2 penalty. Returns: float: cost. ''' YT = Y[:].T m = AL.shape[1] cost = -np.multiply(YT, np.log(AL)) - np.multiply(1 - YT,
np.log(1 - AL)
numpy.log
try: from ulab import numpy as np except ImportError: import numpy as np print(len(np.array([1, 2, 3, 4, 5], dtype=np.uint8))) print(len(np.array([[1, 2, 3],[4, 5, 6]]))) print(~np.array([0, -1, -100], dtype=np.uint8)) print(~np.array([0, -1, -100], dtype=np.uint16)) print(~np.array([0, -1, -100], dtype=np.int8)) print(~np.array([0, -1, -100], dtype=np.int16)) print(abs(np.array([0, -1, -100], dtype=np.uint8))) print(abs(np.array([0, -1, -100], dtype=np.uint16))) print(abs(np.array([0, -1, -100], dtype=np.int8))) print(abs(np.array([0, -1, -100], dtype=np.int16))) print(abs(np.array([0, -1, -100], dtype=np.float))) print(-(np.array([0, -1, -100], dtype=np.uint8))) print(-(np.array([0, -1, -100], dtype=np.uint16))) print(-(np.array([0, -1, -100], dtype=np.int8))) print(-(np.array([0, -1, -100], dtype=np.int16))) print(-(np.array([0, -1, -100], dtype=np.float))) print(+(np.array([0, -1, -100], dtype=np.uint8))) print(+(np.array([0, -1, -100], dtype=np.uint16))) print(+(np.array([0, -1, -100], dtype=np.int8))) print(+(np.array([0, -1, -100], dtype=np.int16))) print(+(np.array([0, -1, -100], dtype=np.float))) print(np.array([1,2,3], dtype=np.float) > np.array([4,5,6], dtype=np.float)) print(np.array([1,2,3], dtype=np.float) > np.array([4,5,6], dtype=np.uint16)) print(np.array([1,2,3], dtype=np.float) > np.array([4,5,6], dtype=np.int16)) print(np.array([1,2,3], dtype=np.float) < np.array([4,5,6], dtype=np.float)) print(np.array([1,2,3], dtype=np.float) < np.array([4,5,6], dtype=np.uint16)) print(np.array([1,2,3], dtype=np.float) < np.array([4,5,6], dtype=np.int16)) print(np.array([1,2,3], dtype=np.float) >= np.array([4,5,6], dtype=np.float)) print(np.array([1,2,3], dtype=np.float) >= np.array([4,5,6], dtype=np.uint16)) print(np.array([1,2,3], dtype=np.float) >= np.array([4,5,6], dtype=np.int16)) print(np.array([1,2,3], dtype=np.float) <= np.array([4,5,6], dtype=np.float)) print(np.array([1,2,3], dtype=np.float) <= np.array([4,5,6], dtype=np.uint16)) print(np.array([1,2,3], dtype=np.float) <= np.array([4,5,6], dtype=np.int16)) print(np.array([1,2,3], dtype=np.float) > 4) print(np.array([1,2,3], dtype=np.float) > 4.0) print(np.array([1,2,3], dtype=np.float) < 4) print(np.array([1,2,3], dtype=np.float) < 4.0) print(np.array([1,2,3], dtype=np.float) == np.array([4,5,6], dtype=np.float)) print(np.array([1,2,3], dtype=np.float) == np.array([4,5,6], dtype=np.uint16)) print(np.array([1,2,3], dtype=np.float) == np.array([4,5,6], dtype=np.int16)) print(np.array([1,2,3], dtype=np.float) != np.array([4,5,6], dtype=np.float)) print(np.array([1,2,3], dtype=np.float) != np.array([4,5,6], dtype=np.uint16)) print(np.array([1,2,3], dtype=np.float) != np.array([4,5,6], dtype=np.int16)) print(np.array([1,2,3], dtype=np.float) == 4) print(np.array([1,2,3], dtype=np.float) == 4.0) print(np.array([1,2,3], dtype=np.float) != 4) print(np.array([1,2,3], dtype=np.float) != 4.0) print(np.array([1,2,3], dtype=np.float) - np.array([4,5,6], dtype=np.float)) print(np.array([1,2,3], dtype=np.float) - np.array([4,5,6], dtype=np.uint16)) print(np.array([1,2,3], dtype=np.float) - np.array([4,5,6], dtype=np.int16)) print(
np.array([1,2,3], dtype=np.float)
numpy.array
#!/usr/bin/env python3 """ Identify change points throughout the entire TU of each individual sample. The premise of this approach is to identify significant change points in the cumulative read sum (CRS) distribution as a function of position. It identifies the following change point types: DistalTSS, TandemTSS, DistalPolyA, TandemAPA, Junction, Exon, and Intron. """ import os import sys import argparse import math from collections import defaultdict, OrderedDict, deque from datetime import datetime import numpy as np # v1.10.4 import peakutils # v1.0.3 import pysam # v0.9.0 import pybedtools as pb from scipy import stats # v0.15.1 from loguru import logger try: from functions import sort_bedfile, run_command except ImportError: from src.functions import sort_bedfile, run_command # median filter from bisect import bisect_left, insort from itertools import islice # plotting import matplotlib matplotlib.use('pdf') # force matplotlib to not use any Xwindows backend for plotting import matplotlib.pyplot as pyplot from matplotlib.backends.backend_pdf import PdfPages def bedgraph_per_gene_ss(genes, bg_plus, bg_minus, bgfile): """ bedtools intersect genes with each of bg_plus and bg_minus. Run separately so that gene coverage is consecutive by strand. """ # === split annotation === plus_bed = bgfile + '.genes.plus' minus_bed = bgfile + '.genes.minus' p = open(plus_bed, 'w') m = open(minus_bed, 'w') with open(genes, 'r') as f: for line in f: if not line.startswith('track'): strand = line.rstrip().split('\t')[5] if strand == '+': p.write(line) elif strand == '-': m.write(line) else: logger.error('do not recognize strand: ' + strand) logger.error(line) sys.exit(1) p.close() m.close() # === bedtools intersect: concatenate + & - strands === sort_bedfile(bg_plus, bg_plus) pb.BedTool(plus_bed).intersect(bg_plus, wo=True, sorted=True).saveas(bgfile + '.plus') # os.remove(bg_plus) sort_bedfile(bg_minus, bg_minus) pb.BedTool(minus_bed).intersect(bg_minus, wo=True, sorted=True).saveas(bgfile + '.minus') # os.remove(bg_minus + ".sorted") t = open(bgfile, 'w') t.write(open(bgfile + '.plus').read()) t.write(open(bgfile + '.minus').read()) t.close() for file in [bgfile + '.plus', bgfile + '.minus', plus_bed, minus_bed]: os.remove(file) def bedgraph_per_gene_nss(genes, bg, bgfile): """Bedtools intersect, non-strand-specific""" sort_bedfile(bg, bg) pb.BedTool(genes).intersect(bg, wo=True, sorted=True).saveas(bgfile) # os.remove(bg + ".sorted") def get_exon_cov(exon_list, cov_list): """Calculate average reads/bp in each exon and report the maximum exon coverage.""" total_sum = 0 total_len = 0 max_cov = 0 for e, exon in enumerate(exon_list): this_start, this_end = map(int, exon.split(':')) this_cov = cov_list[this_start:this_end] total_sum += sum(this_cov) total_len += this_end - this_start this_exon_cov = float(sum(this_cov)) / float(this_end - this_start) if this_exon_cov > max_cov: max_cov = this_exon_cov cov_avg_all_exons = float(total_sum) / float(total_len) return cov_avg_all_exons, max_cov def crs(cov_array): """Calculate cumulative read sum """ vert_array = np.insert(np.ediff1d(cov_array), [0], 0) vert_sum_array = np.cumsum(np.absolute(vert_array)) if max(vert_sum_array) == 0: vert_sum_norm_array = ['NA'] else: vert_sum_norm_array = vert_sum_array / max(vert_sum_array) return vert_sum_norm_array, vert_array def ks_test(vert_sum_array, make_plots, out_prefix): """KS test: cumulative distance vs. line y=ax""" line_array = np.arange(0, max(vert_sum_array), max(vert_sum_array) / vert_sum_array.size) ks_stat, ksp = stats.ks_2samp(vert_sum_array, line_array) y0 = vert_sum_array[0] xmax = vert_sum_array.size - 1 ymax = max(vert_sum_array) slope = (ymax - y0) / xmax if slope == 0: ksp = 1 if make_plots: x1 =
np.linspace(0, xmax, vert_sum_array.size)
numpy.linspace
import numpy as np from scipy import linalg sx = 1/2 * np.mat([[0, 1],[ 1, 0]], dtype=complex) sy = 1/2 * np.mat([[0, -1j],[1j, 0]], dtype=complex) sz = 1/2 * np.mat([[1, 0],[0, -1]], dtype=complex) def hamiltonian(j): J = 4 H = (j) * J * sz + sx return H T = 2*np.pi N = 20 dt = T/N I = 500 fidelity = np.zeros(I+1) observable = np.mat(np.zeros(shape=(2,2), dtype=complex)) observable[-1, -1] = 1 psi = np.mat(np.zeros(shape=(2, N+1), dtype=complex)) psi[0,0] = 1 pseudo = np.mat(np.zeros(shape=(2, N+1), dtype=complex)) # seq =
np.random.rand(N)
numpy.random.rand
import time import inspect import logging import json import functools from abc import abstractmethod from typing import Dict, Union, List from pathlib import Path from collections import OrderedDict import numpy as np import torch as th from numpy.random import randint from torch.utils.data import Dataset from typeguard import typechecked import data_loader from utils.util import ensure_tensor, expert_tensor_storage from zsvision.zs_utils import memcache # For SLURM usage, buffering makes it difficult to see events as they happen, so we set # the global print statement to enforce flushing print = functools.partial(print, flush=True) class BaseDataset(Dataset): @staticmethod @abstractmethod @typechecked def dataset_paths() -> Dict[str, Union[Path, str]]: """Generates a datastructure containing all the paths required to load features """ raise NotImplementedError @abstractmethod def sanity_checks(self): """Run sanity checks on loaded data """ raise NotImplementedError @abstractmethod def load_features(self): """Load features from disk """ raise NotImplementedError @typechecked def __init__( self, data_dir: Path, fuse_captions: bool, spatial_feats: bool, challenge_mode: bool, eval_only: bool, use_zeros_for_missing: bool, task: str, text_agg: str, text_feat: str, split_name: str, cls_partition: str, root_feat_folder: str, challenge_test_root_feat_folder: str, subsample_training_data_fraction: float, text_dim: int, num_test_captions: int, restrict_train_captions: int, max_tokens: Dict[str, int], text_dropout: float, logger: logging.Logger, raw_input_dims: Dict[str, int], feat_aggregation: Dict[str, Dict], ): self.task = task self.eval_only = eval_only self.logger = logger self.challenge_mode = challenge_mode self.text_feat = text_feat self.data_dir = data_dir self.text_dim = text_dim self.spatial_feats = spatial_feats self.text_dropout = text_dropout self.restrict_train_captions = restrict_train_captions self.subsample_training_data_fraction = subsample_training_data_fraction self.max_tokens = max_tokens self.cls_partition = cls_partition self.fuse_captions = fuse_captions self.num_test_captions = num_test_captions self.feat_aggregation = feat_aggregation self.root_feat = data_dir / root_feat_folder self.challenge_test_root_feat_folder = data_dir / challenge_test_root_feat_folder self.experts = set(raw_input_dims.keys()) # This attributes can be overloaded by different datasets, so it must be set # before the `load_features() method call` self.restrict_test_captions = None self.text_features = None self.label_features = None self.video_labels = None self.raw_captions = None self.features = None # Use a single caption per video when forming training minibatches (different # captions from the same video may still be used across different minibatches) self.captions_per_video = 1 # TODO(Samuel) - is a global fixed ordering still necessary? self.ordered_experts = list(raw_input_dims.keys()) # Training and test lists are set by dataset-specific subclasses self.partition_lists = {} self.configure_train_test_splits(split_name=split_name) # All retrieval-based tasks use a single dataloader (and handle the retrieval # data separately), whereas for classification we use one dataloader for # training and one for validation. self.logger.info("The current task is {}".format(self.task)) self.sample_list = self.partition_lists["train"] if self.subsample_training_data_fraction < 1: num_train = len(self.sample_list) num_keep = int(self.subsample_training_data_fraction * num_train) sampled_train = np.random.choice(self.sample_list, num_keep, replace=False) self.logger.info(f"Sampling training samples [{num_train} -> {num_keep}]") self.sample_list = sampled_train.tolist() self.num_samples = len(self.sample_list) num_val = len(self.partition_lists["val"]) if self.task == "classification": self.sample_list = self.partition_lists[self.cls_partition] self.num_samples = len(self.sample_list) self.logger.info("The current cls_partition is {}".format(self.cls_partition)) # The number of classes and class type (i.e. single or multi-label) must be # overriden in the subclass self.num_classes = None self.class_type = None self.raw_input_dims = raw_input_dims # we store default paths to enable visualisations (this can be overloaded by # dataset-specific classes) self.video_path_retrieval = [f"videos/{x}.mp4" for x in self.partition_lists["val"]] # NOTE: We use nans rather than zeros to indicate missing faces, unless we wish # to test single modality strength, which requires passing zeroed features for # missing videos if use_zeros_for_missing: self.MISSING_VAL = 0 else: self.MISSING_VAL = np.nan # load the dataset-specific features into memory self.load_features() if text_agg == "avg": self.logger.info("averaging the text features...") for key, val in self.text_features.items(): self.text_features[key] = [
np.mean(x, 0, keepdims=1)
numpy.mean
import os import json import torch from torchvision import transforms import numpy as np from PIL import Image from pycocotools.coco import COCO import random import torchvision.transforms.functional as tf ROTATE=False def imresize(im, size, interp='bilinear'): if interp == 'nearest': resample = Image.NEAREST elif interp == 'bilinear': resample = Image.BILINEAR elif interp == 'bicubic': resample = Image.BICUBIC else: raise Exception('resample method undefined!') return im.resize(size, resample) class BaseDataset(torch.utils.data.Dataset): def __init__(self, odgt, opt, **kwargs): # parse options self.imgSizes = opt.imgSizes self.imgMaxSize = opt.imgMaxSize # max down sampling rate of network to avoid rounding during conv or pooling self.padding_constant = opt.padding_constant # parse the input list self.parse_input_list(odgt, **kwargs) # mean and std self.normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) def parse_input_list(self, odgt, max_sample=-1, start_idx=-1, end_idx=-1): if isinstance(odgt, list): self.list_sample = odgt elif isinstance(odgt, str): self.list_sample = [json.loads(x.rstrip()) for x in open(odgt, 'r')] if max_sample > 0: self.list_sample = self.list_sample[0:max_sample] if start_idx >= 0 and end_idx >= 0: # divide file list self.list_sample = self.list_sample[start_idx:end_idx] self.num_sample = len(self.list_sample) assert self.num_sample > 0 print('# samples: {}'.format(self.num_sample)) def img_transform(self, img): # 0-255 to 0-1 img = np.float32(np.array(img)) / 255. img = img.transpose((2, 0, 1)) img = self.normalize(torch.from_numpy(img.copy())) return img def segm_transform(self, segm): # to tensor, -1 to 149 segm = np.array(segm) #segm[segm>1]=1 #print(np.unique(segm)) segm = torch.from_numpy(segm).long() - 1 return segm # Round x to the nearest multiple of p and x' >= x def round2nearest_multiple(self, x, p): return ((x - 1) // p + 1) * p class TrainDataset(BaseDataset): def __init__(self, root_dataset, odgt, opt, batch_per_gpu=1, **kwargs): super(TrainDataset, self).__init__(odgt, opt, **kwargs) self.root_dataset = root_dataset # down sampling rate of segm labe self.segm_downsampling_rate = opt.segm_downsampling_rate self.batch_per_gpu = batch_per_gpu # classify images into two classes: 1. h > w and 2. h <= w self.batch_record_list = [[], []] # override dataset length when trainig with batch_per_gpu > 1 self.cur_idx = 0 self.if_shuffled = False def _get_sub_batch(self): while True: # get a sample record this_sample = self.list_sample[self.cur_idx] if this_sample['height'] > this_sample['width']: self.batch_record_list[0].append(this_sample) # h > w, go to 1st class else: self.batch_record_list[1].append(this_sample) # h <= w, go to 2nd class # update current sample pointer self.cur_idx += 1 if self.cur_idx >= self.num_sample: self.cur_idx = 0 np.random.shuffle(self.list_sample) if len(self.batch_record_list[0]) == self.batch_per_gpu: batch_records = self.batch_record_list[0] self.batch_record_list[0] = [] break elif len(self.batch_record_list[1]) == self.batch_per_gpu: batch_records = self.batch_record_list[1] self.batch_record_list[1] = [] break return batch_records def __getitem__(self, index): # NOTE: random shuffle for the first time. shuffle in __init__ is useless if not self.if_shuffled: np.random.seed(index) np.random.shuffle(self.list_sample) self.if_shuffled = True # get sub-batch candidates batch_records = self._get_sub_batch() # resize all images' short edges to the chosen size if isinstance(self.imgSizes, list) or isinstance(self.imgSizes, tuple): this_short_size = np.random.choice(self.imgSizes) else: this_short_size = self.imgSizes # calculate the BATCH's height and width # since we concat more than one samples, the batch's h and w shall be larger than EACH sample batch_widths = np.zeros(self.batch_per_gpu, np.int32) batch_heights = np.zeros(self.batch_per_gpu, np.int32) for i in range(self.batch_per_gpu): img_height, img_width = batch_records[i]['height'], batch_records[i]['width'] this_scale = min( this_short_size / min(img_height, img_width), \ self.imgMaxSize / max(img_height, img_width)) batch_widths[i] = img_width * this_scale batch_heights[i] = img_height * this_scale # Here we must pad both input image and segmentation map to size h' and w' so that p | h' and p | w' batch_width = np.max(batch_widths) batch_height = np.max(batch_heights) batch_width = int(self.round2nearest_multiple(batch_width, self.padding_constant)) batch_height = int(self.round2nearest_multiple(batch_height, self.padding_constant)) assert self.padding_constant >= self.segm_downsampling_rate, \ 'padding constant must be equal or large than segm downsamping rate' batch_images = torch.zeros( self.batch_per_gpu, 3, batch_height, batch_width) batch_segms = torch.zeros( self.batch_per_gpu, batch_height // self.segm_downsampling_rate, batch_width // self.segm_downsampling_rate).long() for i in range(self.batch_per_gpu): this_record = batch_records[i] # load image and label image_path = os.path.join(self.root_dataset, this_record['fpath_img']) segm_path = os.path.join(self.root_dataset, this_record['fpath_segm']) img = Image.open(image_path).convert('RGB') segm = Image.open(segm_path) assert(segm.mode == "L") assert(img.size[0] == segm.size[0]) assert(img.size[1] == segm.size[1]) # random_flip if np.random.choice([0, 1]): img = img.transpose(Image.FLIP_LEFT_RIGHT) segm = segm.transpose(Image.FLIP_LEFT_RIGHT) # note that each sample within a mini batch has different scale param img = imresize(img, (batch_widths[i], batch_heights[i]), interp='bilinear') segm = imresize(segm, (batch_widths[i], batch_heights[i]), interp='nearest') # further downsample seg label, need to avoid seg label misalignment segm_rounded_width = self.round2nearest_multiple(segm.size[0], self.segm_downsampling_rate) segm_rounded_height = self.round2nearest_multiple(segm.size[1], self.segm_downsampling_rate) segm_rounded = Image.new('L', (segm_rounded_width, segm_rounded_height), 0) segm_rounded.paste(segm, (0, 0)) segm = imresize( segm_rounded, (segm_rounded.size[0] // self.segm_downsampling_rate, \ segm_rounded.size[1] // self.segm_downsampling_rate), \ interp='nearest') # image transform, to torch float tensor 3xHxW img = self.img_transform(img) # segm transform, to torch long tensor HxW segm = self.segm_transform(segm) # put into batch arrays batch_images[i][:, :img.shape[1], :img.shape[2]] = img batch_segms[i][:segm.shape[0], :segm.shape[1]] = segm output = dict() output['img_data'] = batch_images output['seg_label'] = batch_segms return output def __len__(self): return int(1e10) # It's a fake length due to the trick that every loader maintains its own list #return self.num_sampleclass class ValDataset(BaseDataset): def __init__(self, root_dataset, odgt, opt, **kwargs): super(ValDataset, self).__init__(odgt, opt, **kwargs) self.root_dataset = root_dataset def __getitem__(self, index): this_record = self.list_sample[index] # load image and label image_path = os.path.join(self.root_dataset, this_record['fpath_img']) segm_path = os.path.join(self.root_dataset, this_record['fpath_segm']) img = Image.open(image_path).convert('RGB') segm = Image.open(segm_path) assert(segm.mode == "L") assert(img.size[0] == segm.size[0]) assert(img.size[1] == segm.size[1]) ori_width, ori_height = img.size img_resized_list = [] for this_short_size in self.imgSizes: # calculate target height and width scale = min(this_short_size / float(min(ori_height, ori_width)), self.imgMaxSize / float(max(ori_height, ori_width))) target_height, target_width = int(ori_height * scale), int(ori_width * scale) # to avoid rounding in network target_width = self.round2nearest_multiple(target_width, self.padding_constant) target_height = self.round2nearest_multiple(target_height, self.padding_constant) # resize images img_resized = imresize(img, (target_width, target_height), interp='bilinear') # image transform, to torch float tensor 3xHxW img_resized = self.img_transform(img_resized) img_resized = torch.unsqueeze(img_resized, 0) img_resized_list.append(img_resized) # segm transform, to torch long tensor HxW segm = self.segm_transform(segm) batch_segms = torch.unsqueeze(segm, 0) output = dict() output['img_ori'] = np.array(img) output['img_data'] = [x.contiguous() for x in img_resized_list] output['seg_label'] = batch_segms.contiguous() output['info'] = this_record['fpath_img'] return output def __len__(self): return self.num_sample class TestDataset(BaseDataset): def __init__(self, odgt, opt, **kwargs): super(TestDataset, self).__init__(odgt, opt, **kwargs) def __getitem__(self, index): this_record = self.list_sample[index] # load image image_path = this_record['fpath_img'] img = Image.open(image_path).convert('RGB') ori_width, ori_height = img.size img_resized_list = [] for this_short_size in self.imgSizes: # calculate target height and width scale = min(this_short_size / float(min(ori_height, ori_width)), self.imgMaxSize / float(max(ori_height, ori_width))) target_height, target_width = int(ori_height * scale), int(ori_width * scale) # to avoid rounding in network target_width = self.round2nearest_multiple(target_width, self.padding_constant) target_height = self.round2nearest_multiple(target_height, self.padding_constant) # resize images img_resized = imresize(img, (target_width, target_height), interp='bilinear') # image transform, to torch float tensor 3xHxW img_resized = self.img_transform(img_resized) img_resized = torch.unsqueeze(img_resized, 0) img_resized_list.append(img_resized) output = dict() output['img_ori'] =
np.array(img)
numpy.array
#!/usr/bin/env python """ Evaluation of conformal predictors. """ # Authors: <NAME> # TODO: cross_val_score/run_experiment should possibly allow multiple to be evaluated on identical folding from __future__ import division from cqr.nonconformist_base import RegressorMixin, ClassifierMixin import sys import numpy as np import pandas as pd from sklearn.model_selection import StratifiedShuffleSplit from sklearn.model_selection import KFold from sklearn.model_selection import train_test_split from sklearn.base import clone, BaseEstimator class BaseIcpCvHelper(BaseEstimator): """Base class for cross validation helpers. """ def __init__(self, icp, calibration_portion): super(BaseIcpCvHelper, self).__init__() self.icp = icp self.calibration_portion = calibration_portion def predict(self, x, significance=None): return self.icp.predict(x, significance) class ClassIcpCvHelper(BaseIcpCvHelper, ClassifierMixin): """Helper class for running the ``cross_val_score`` evaluation method on IcpClassifiers. See also -------- IcpRegCrossValHelper Examples -------- >>> from sklearn.datasets import load_iris >>> from sklearn.ensemble import RandomForestClassifier >>> from cqr.nonconformist import IcpClassifier >>> from cqr.nonconformist import ClassifierNc, MarginErrFunc >>> from cqr.nonconformist import ClassIcpCvHelper >>> from cqr.nonconformist import class_mean_errors >>> from cqr.nonconformist import cross_val_score >>> data = load_iris() >>> nc = ProbEstClassifierNc(RandomForestClassifier(), MarginErrFunc()) >>> icp = IcpClassifier(nc) >>> icp_cv = ClassIcpCvHelper(icp) >>> cross_val_score(icp_cv, ... data.data, ... data.target, ... iterations=2, ... folds=2, ... scoring_funcs=[class_mean_errors], ... significance_levels=[0.1]) ... # doctest: +SKIP class_mean_errors fold iter significance 0 0.013333 0 0 0.1 1 0.080000 1 0 0.1 2 0.053333 0 1 0.1 3 0.080000 1 1 0.1 """ def __init__(self, icp, calibration_portion=0.25): super(ClassIcpCvHelper, self).__init__(icp, calibration_portion) def fit(self, x, y): split = StratifiedShuffleSplit(y, n_iter=1, test_size=self.calibration_portion) for train, cal in split: self.icp.fit(x[train, :], y[train]) self.icp.calibrate(x[cal, :], y[cal]) class RegIcpCvHelper(BaseIcpCvHelper, RegressorMixin): """Helper class for running the ``cross_val_score`` evaluation method on IcpRegressors. See also -------- IcpClassCrossValHelper Examples -------- >>> from sklearn.datasets import load_boston >>> from sklearn.ensemble import RandomForestRegressor >>> from cqr.nonconformist import IcpRegressor >>> from cqr.nonconformist import RegressorNc, AbsErrorErrFunc >>> from cqr.nonconformist import RegIcpCvHelper >>> from cqr.nonconformist import reg_mean_errors >>> from cqr.nonconformist import cross_val_score >>> data = load_boston() >>> nc = RegressorNc(RandomForestRegressor(), AbsErrorErrFunc()) >>> icp = IcpRegressor(nc) >>> icp_cv = RegIcpCvHelper(icp) >>> cross_val_score(icp_cv, ... data.data, ... data.target, ... iterations=2, ... folds=2, ... scoring_funcs=[reg_mean_errors], ... significance_levels=[0.1]) ... # doctest: +SKIP fold iter reg_mean_errors significance 0 0 0 0.185771 0.1 1 1 0 0.138340 0.1 2 0 1 0.071146 0.1 3 1 1 0.043478 0.1 """ def __init__(self, icp, calibration_portion=0.25): super(RegIcpCvHelper, self).__init__(icp, calibration_portion) def fit(self, x, y): split = train_test_split(x, y, test_size=self.calibration_portion) x_tr, x_cal, y_tr, y_cal = split[0], split[1], split[2], split[3] self.icp.fit(x_tr, y_tr) self.icp.calibrate(x_cal, y_cal) # ----------------------------------------------------------------------------- # # ----------------------------------------------------------------------------- def cross_val_score(model,x, y, iterations=10, folds=10, fit_params=None, scoring_funcs=None, significance_levels=None, verbose=False): """Evaluates a conformal predictor using cross-validation. Parameters ---------- model : object Conformal predictor to evaluate. x : numpy array of shape [n_samples, n_features] Inputs of data to use for evaluation. y : numpy array of shape [n_samples] Outputs of data to use for evaluation. iterations : int Number of iterations to use for evaluation. The data set is randomly shuffled before each iteration. folds : int Number of folds to use for evaluation. fit_params : dictionary Parameters to supply to the conformal prediction object on training. scoring_funcs : iterable List of evaluation functions to apply to the conformal predictor in each fold. Each evaluation function should have a signature ``scorer(prediction, y, significance)``. significance_levels : iterable List of significance levels at which to evaluate the conformal predictor. verbose : boolean Indicates whether to output progress information during evaluation. Returns ------- scores : pandas DataFrame Tabulated results for each iteration, fold and evaluation function. """ fit_params = fit_params if fit_params else {} significance_levels = (significance_levels if significance_levels is not None else np.arange(0.01, 1.0, 0.01)) df = pd.DataFrame() columns = ['iter', 'fold', 'significance', ] + [f.__name__ for f in scoring_funcs] for i in range(iterations): idx = np.random.permutation(y.size) x, y = x[idx, :], y[idx] cv = KFold(y.size, folds) for j, (train, test) in enumerate(cv): if verbose: sys.stdout.write('\riter {}/{} fold {}/{}'.format( i + 1, iterations, j + 1, folds )) m = clone(model) m.fit(x[train, :], y[train], **fit_params) prediction = m.predict(x[test, :], significance=None) for k, s in enumerate(significance_levels): scores = [scoring_func(prediction, y[test], s) for scoring_func in scoring_funcs] df_score = pd.DataFrame([[i, j, s] + scores], columns=columns) df = df.append(df_score, ignore_index=True) return df def run_experiment(models, csv_files, iterations=10, folds=10, fit_params=None, scoring_funcs=None, significance_levels=None, normalize=False, verbose=False, header=0): """Performs a cross-validation evaluation of one or several conformal predictors on a collection of data sets in csv format. Parameters ---------- models : object or iterable Conformal predictor(s) to evaluate. csv_files : iterable List of file names (with absolute paths) containing csv-data, used to evaluate the conformal predictor. iterations : int Number of iterations to use for evaluation. The data set is randomly shuffled before each iteration. folds : int Number of folds to use for evaluation. fit_params : dictionary Parameters to supply to the conformal prediction object on training. scoring_funcs : iterable List of evaluation functions to apply to the conformal predictor in each fold. Each evaluation function should have a signature ``scorer(prediction, y, significance)``. significance_levels : iterable List of significance levels at which to evaluate the conformal predictor. verbose : boolean Indicates whether to output progress information during evaluation. Returns ------- scores : pandas DataFrame Tabulated results for each data set, iteration, fold and evaluation function. """ df = pd.DataFrame() if not hasattr(models, '__iter__'): models = [models] for model in models: is_regression = model.get_problem_type() == 'regression' n_data_sets = len(csv_files) for i, csv_file in enumerate(csv_files): if verbose: print('\n{} ({} / {})'.format(csv_file, i + 1, n_data_sets)) data = pd.read_csv(csv_file, header=header) x, y = data.values[:, :-1], data.values[:, -1] x = np.array(x, dtype=np.float64) if normalize: if is_regression: y = y - y.min() / (y.max() - y.min()) else: for j, y_ in enumerate(np.unique(y)): y[y == y_] = j scores = cross_val_score(model, x, y, iterations, folds, fit_params, scoring_funcs, significance_levels, verbose) ds_df = pd.DataFrame(scores) ds_df['model'] = model.__class__.__name__ try: ds_df['data_set'] = csv_file.split('/')[-1] except: ds_df['data_set'] = csv_file df = df.append(ds_df) return df # ----------------------------------------------------------------------------- # Validity measures # ----------------------------------------------------------------------------- def reg_n_correct(prediction, y, significance=None): """Calculates the number of correct predictions made by a conformal regression model. """ if significance is not None: idx = int(significance * 100 - 1) prediction = prediction[:, :, idx] low = y >= prediction[:, 0] high = y <= prediction[:, 1] correct = low * high return y[correct].size def reg_mean_errors(prediction, y, significance): """Calculates the average error rate of a conformal regression model. """ return 1 - reg_n_correct(prediction, y, significance) / y.size def class_n_correct(prediction, y, significance): """Calculates the number of correct predictions made by a conformal classification model. """ labels, y = np.unique(y, return_inverse=True) prediction = prediction > significance correct = np.zeros((y.size,), dtype=bool) for i, y_ in enumerate(y): correct[i] = prediction[i, int(y_)] return np.sum(correct) def class_mean_errors(prediction, y, significance=None): """Calculates the average error rate of a conformal classification model. """ return 1 - (class_n_correct(prediction, y, significance) / y.size) def class_one_err(prediction, y, significance=None): """Calculates the error rate of conformal classifier predictions containing only a single output label. """ labels, y = np.unique(y, return_inverse=True) prediction = prediction > significance idx = np.arange(0, y.size, 1) idx = filter(lambda x:
np.sum(prediction[x, :])
numpy.sum
#!/usr/bin/env python """Basic implementation of CHOMP trajectory optimization algorithm. Optimize over q1...qn, with q0 and qn+1 the fixed end points. """ import numpy as np import matplotlib.pyplot as plt from scipy import sparse import IPython from mm2d import models class CircleField: def __init__(self, c, r): self.c = c self.r = r def signed_dist(self, x): return np.linalg.norm(x - self.c) - self.r def signed_dist_grad(self, x): return (x - self.c) / np.linalg.norm(x - self.c) def cost(self, x, eps): d = self.signed_dist(x) if d <= 0: return -d + 0.5 * eps elif d <= eps: return (d - eps) ** 2 / (2 * eps) return 0 def cost_grad(self, x, eps): d = self.signed_dist(x) dg = self.signed_dist_grad(x) if d <= 0: return -dg elif d <= eps: return -(d - eps) * dg / eps return np.zeros(dg.shape) class FloorField: def __init__(self, y): self.y = y def signed_dist(self, p): return p[1] - self.y def signed_dist_grad(self, p): return np.sign([0, p[1]]) def cost(self, p, eps): d = self.signed_dist(p) if d <= 0: return d ** 2 return 0 def cost_grad(self, x, eps): d = self.signed_dist(x) dg = self.signed_dist_grad(x) if d <= 0: return 2 * d * dg return np.zeros(dg.shape) class ObstacleField: def __init__(self, obstacles): self.obstacles = obstacles def cost(self, p, eps): cost = np.sum([obs.cost(p, eps) for obs in self.obstacles]) return cost def cost_grad(self, p, eps): grad = np.sum([obs.cost_grad(p, eps) for obs in self.obstacles], axis=0) return grad def fd1(N, n, q0, qf): """First-order finite differencing matrix.""" # construct the finite differencing matrix d1 = np.ones(N + 1) d2 = -np.ones(N) # K0 is N+1 x N K0 = sparse.diags((d1, d2), [0, -1]).toarray()[:, :-1] # kron to make it work for n-dimensional inputs K = np.kron(K0, np.eye(n)) e = np.zeros((N + 1) * n) e[:n] = -q0 e[-n:] = qf return K, e def fd2(N, n, q0, qf): """Second-order finite differencing matrix.""" # construct the finite differencing matrix d1 = -2 * np.ones(N) d2 = np.ones(N - 1) # K0 is N x N K0 = sparse.diags((d2, d1, d2), [1, 0, -1]).toarray() # kron to make it work for n-dimensional inputs K = np.kron(K0,
np.eye(n)
numpy.eye
import numba import numpy as np import strax import straxen from .pulse_processing import HITFINDER_OPTIONS, HITFINDER_OPTIONS_he, HE_PREAMBLE from strax.processing.general import _touching_windows export, __all__ = strax.exporter() @export @strax.takes_config( strax.Option('peaklet_gap_threshold', default=350, help="No hits for this many ns triggers a new peak"), strax.Option('peak_left_extension', default=30, help="Include this many ns left of hits in peaks"), strax.Option('peak_right_extension', default=200, help="Include this many ns right of hits in peaks"), strax.Option('peak_min_pmts', default=4, help="Minimum number of contributing PMTs needed to define a peak"), strax.Option('peak_split_gof_threshold', # See https://xe1t-wiki.lngs.infn.it/doku.php?id= # xenon:xenonnt:analysis:strax_clustering_classification # #natural_breaks_splitting # for more information default=( None, # Reserved ((0.5, 1), (4, 0.4)), ((2, 1), (4.5, 0.4))), help='Natural breaks goodness of fit/split threshold to split ' 'a peak. Specify as tuples of (log10(area), threshold).'), strax.Option('peak_split_filter_wing_width', default=70, help='Wing width of moving average filter for ' 'low-split natural breaks'), strax.Option('peak_split_min_area', default=40., help='Minimum area to evaluate natural breaks criterion. ' 'Smaller peaks are not split.'), strax.Option('peak_split_iterations', default=20, help='Maximum number of recursive peak splits to do.'), strax.Option('diagnose_sorting', track=False, default=False, help="Enable runtime checks for sorting and disjointness"), strax.Option('gain_model', help='PMT gain model. Specify as (model_type, model_config)'), strax.Option('tight_coincidence_window_left', default=50, help="Time range left of peak center to call " "a hit a tight coincidence (ns)"), strax.Option('tight_coincidence_window_right', default=50, help="Time range right of peak center to call " "a hit a tight coincidence (ns)"), strax.Option('n_tpc_pmts', type=int, help='Number of TPC PMTs'), strax.Option('saturation_correction_on', default=True, help='On off switch for saturation correction'), strax.Option('saturation_reference_length', default=100, help="Maximum number of reference sample used " "to correct saturated samples"), strax.Option('saturation_min_reference_length', default=20, help="Minimum number of reference sample used " "to correct saturated samples"), *HITFINDER_OPTIONS, ) class Peaklets(strax.Plugin): """ Split records into: -peaklets -lone_hits Peaklets are very aggressively split peaks such that we are able to find S1-S2s even if they are close to each other. (S2) Peaks that are split into too many peaklets will be merged later on. To get Peaklets from records apply/do: 1. Hit finding 2. Peak finding 3. Peak splitting using the natural breaks algorithm 4. Compute the digital sum waveform Lone hits are all hits which are outside of any peak. The area of lone_hits includes the left and right hit extension, except the extension overlaps with any peaks or other hits. """ depends_on = ('records',) provides = ('peaklets', 'lone_hits') data_kind = dict(peaklets='peaklets', lone_hits='lone_hits') parallel = 'process' compressor = 'zstd' __version__ = '0.3.7' def infer_dtype(self): return dict(peaklets=strax.peak_dtype( n_channels=self.config['n_tpc_pmts']), lone_hits=strax.hit_dtype) def setup(self): self.to_pe = straxen.get_to_pe(self.run_id, self.config['gain_model'], self.config['n_tpc_pmts']) def compute(self, records, start, end): r = records hits = strax.find_hits( r, min_amplitude=straxen.hit_min_amplitude( self.config['hit_min_amplitude'])) # Remove hits in zero-gain channels # they should not affect the clustering! hits = hits[self.to_pe[hits['channel']] != 0] hits = strax.sort_by_time(hits) # Use peaklet gap threshold for initial clustering # based on gaps between hits peaklets = strax.find_peaks( hits, self.to_pe, gap_threshold=self.config['peaklet_gap_threshold'], left_extension=self.config['peak_left_extension'], right_extension=self.config['peak_right_extension'], min_channels=self.config['peak_min_pmts'], result_dtype=self.dtype_for('peaklets')) # Make sure peaklets don't extend out of the chunk boundary # This should be very rare in normal data due to the ADC pretrigger # window. self.clip_peaklet_times(peaklets, start, end) # Get hits outside peaklets, and store them separately. # fully_contained is OK provided gap_threshold > extension, # which is asserted inside strax.find_peaks. lone_hits = hits[strax.fully_contained_in(hits, peaklets) == -1] strax.integrate_lone_hits( lone_hits, records, peaklets, save_outside_hits=(self.config['peak_left_extension'], self.config['peak_right_extension']), n_channels=len(self.to_pe)) # Compute basic peak properties -- needed before natural breaks strax.sum_waveform(peaklets, r, self.to_pe) strax.compute_widths(peaklets) # Split peaks using low-split natural breaks; # see https://github.com/XENONnT/straxen/pull/45 # and https://github.com/AxFoundation/strax/pull/225 peaklets = strax.split_peaks( peaklets, r, self.to_pe, algorithm='natural_breaks', threshold=self.natural_breaks_threshold, split_low=True, filter_wing_width=self.config['peak_split_filter_wing_width'], min_area=self.config['peak_split_min_area'], do_iterations=self.config['peak_split_iterations']) # Saturation correction using non-saturated channels # similar method used in pax # see https://github.com/XENON1T/pax/pull/712 if self.config['saturation_correction_on']: peak_saturation_correction( r, peaklets, self.to_pe, reference_length=self.config['saturation_reference_length'], min_reference_length=self.config['saturation_min_reference_length']) # Compute tight coincidence level. # Making this a separate plugin would # (a) doing hitfinding yet again (or storing hits) # (b) increase strax memory usage / max_messages, # possibly due to its currently primitive scheduling. hit_max_times = np.sort( hits['time'] + hits['dt'] * hit_max_sample(records, hits)) peaklet_max_times = ( peaklets['time'] + np.argmax(peaklets['data'], axis=1) * peaklets['dt']) peaklets['tight_coincidence'] = get_tight_coin( hit_max_times, peaklet_max_times, self.config['tight_coincidence_window_left'], self.config['tight_coincidence_window_right']) if self.config['diagnose_sorting'] and len(r): assert np.diff(r['time']).min(initial=1) >= 0, "Records not sorted" assert np.diff(hits['time']).min(initial=1) >= 0, "Hits not sorted" assert np.all(peaklets['time'][1:] >= strax.endtime(peaklets)[:-1]), "Peaks not disjoint" # Update nhits of peaklets: counts = strax.touching_windows(hits, peaklets) counts = np.diff(counts, axis=1).flatten() counts += 1 peaklets['n_hits'] = counts return dict(peaklets=peaklets, lone_hits=lone_hits) def natural_breaks_threshold(self, peaks): # TODO avoid duplication with PeakBasics somehow? rise_time = -peaks['area_decile_from_midpoint'][:, 1] # This is ~1 for an clean S2, ~0 for a clean S1, # and transitions gradually in between. f_s2 = 8 * np.log10(rise_time.clip(1, 1e5) / 100) f_s2 = 1 / (1 + np.exp(-f_s2)) log_area = np.log10(peaks['area'].clip(1, 1e7)) thresholds = self.config['peak_split_gof_threshold'] return ( f_s2 * np.interp( log_area, *
np.transpose(thresholds[2])
numpy.transpose
# model.distributions.py # copyright 2021 <NAME> import numpy as np import pymc3 as pm from scipy import stats, special import theano.tensor as tt from pymc3.distributions.dist_math import bound, logpow, alltrue_elemwise from pymc3.distributions.continuous import assert_negative_support, PositiveContinuous from pymc3.distributions.distribution import draw_values, generate_samples from pymc3.theanof import floatX RANDOM_SEED = 42 rng = np.random.default_rng(seed=RANDOM_SEED) # NOTE hack to clip values away from {0, 1} for invcdfs # Whilst value = {0, 1} is theoretically allowed, is seems to cause a # numeric compuational issue somewhere in tt.erfcinv which throws infs. # This screws up the downstream, so clip slightly away from {0, 1} CLIP_U_AWAY_FROM_ZERO_ONE_FOR_INVCDFS = 1e-15 #1e-18 too small def boundzero_numpy(vals, *conditions): """ Bound natural unit distribution params, return 0 for out-of-bounds Copy from pymc.bound pymc3.distributions.dist_math.py """ return np.where(alltrue_elemwise(conditions), vals, 0.) def boundzero_theano(vals, *conditions): """ Bound natural unit distribution params, return 0 for out-of-bounds Copy from pymc.bound pymc3.distributions.dist_math.py """ return tt.switch(alltrue_elemwise(conditions), vals, 0.) def boundlog_numpy(vals, *conditions): """ Bound log unit distribution params, return -inf for out-of-bounds Copy from pymc.bound pymc3.distributions.dist_math.py """ return np.where(alltrue_elemwise(conditions), vals, -np.inf) def logpow_numpy(x, m): """ Copy from pymc3 Safe calc log(x**m) since m*log(x) will fail when m, x = 0. """ return np.where(x == 0, np.where(m == 0, 0.0, -np.inf), m * np.log(x)) class Gamma(pm.Gamma): """Inherit the pymc class, add cdf and invcdf """ def __init__(self): raise NotImplementedError( """Consider that InvCDF is hard to calculate: even scipy uses C functions Recommend use different dist in practice""") class GammaNumpy(): """Gamma PDF, CDF, InvCDF and logPDF, logCDF, logInvCDF Manual implementations used in pymc3 custom distributions Helpful to compare these to scipy to confirm my correct implementation Ref: https://en.wikipedia.org/wiki/Gamma_distribution Params: x > 0, u in [0, 1], a (shape) > 0, b (rate) > 0 """ def __init__(self): self.name = 'Gamma' self.notation = {'notation': r'x \sim Gamma(\alpha, \beta)'} self.dist_natural = { 'pdf': r'f(x \mid \alpha, \beta) = \frac{1}{\Gamma(\alpha)} \beta^{\alpha} x^{\alpha-1} e^{- \beta x}', 'cdf': r'F(x \mid \alpha, \beta) = \frac{1}{\Gamma(\alpha)} \gamma(\alpha, \beta x)', 'invcdf': r'F^{-1}(u \mid \alpha, \beta) = '} self.dist_log = { 'logpdf': r'\log f(x \mid \alpha, \beta) = -\log \Gamma(\alpha) + \log \beta^{\alpha} + \log x^{\alpha-1} - \beta x', 'logcdf': r'\log F(x \mid \alpha, \beta) = -\log \Gamma(\alpha) + \log \gamma(\alpha, \beta x)', 'loginvcdf': r'\log F^{-1}(u \mid \alpha, \beta) = '} self.conditions = { 'parameters': r'\alpha > 0 \, \text{(shape)}, \; \beta > 0 \, \text{(rate)}', 'support': r'x \in (0, \infty), \; u \sim \text{Uniform([0, 1])}'} self.summary_stats = { 'mean': r'\frac{\alpha}{\beta}', 'mode': r'\frac{\alpha - 1}{\beta}, \; \text{for} \alpha \geq 1', 'variance': r'\frac{\alpha}{\beta^{2}}' } def pdf(self, x, a, b): """Gamma PDF compare to https://github.com/scipy/scipy/blob/ab1c0907fe9255582397db04592d6066745018d3/scipy/stats/_continuous_distns.py#L2595 """ fn = (1 / special.gamma(a)) *
np.power(b, a)
numpy.power
""" What is ALGOPY: --------------- The purpose of ALGOPY is the efficient evaluation of higher order derivatives in the forward and reverse mode of Algorithmic Differentiation (AD). Particular focus are matrix valued functions as they often appear in statistically motivated functions. E.g. the covariance matrix of a least squares problem requires the computation:: C = inv(dot(J.T,J)) where J(x) is a partial derivative of a function F. The central idea of ALGOPY is the computation on Taylor polynomials with scalar coefficientsand with matrix coefficients. These algorithms are primarily used for Algorithmic Differentiation (AD)in the forward and reverse mode. The focus are univariate Taylor polynomials over matrices (UTPM),implemented in the class `algopy.utpm.UTPM`. To allow the use of the reverse mode of AD a simple code tracer has been implemented in `algopy.tracer`. The idea is to record the computation procedure in a datastructure s.t. the control flow sequence can walked in reverse order. ALGOPY is a research prototype where, to the best of authors' knowledge, some algorithms are implemented that cannot be found elsewhere. Most of ALGOPY is implemented in pure Python. However, some submodules are implemented in pure C. For these submodules Python bindings using ctypes are provided. The algorithms are quite well-tested and have been successfully used. However, since the user-base is currently quite small, it is possible that bugs may still be persistent. Also, not all submodules of ALGOPY are feature complete. The most important parts `algopy.tracer` and `algopy.upt.UTPM` are however fairly complete. Getting Started: ---------------- Consider the following function: """ def f(A,x): for n in range(3): y = dot(x.T,dot(A,x)) A = A - dot(x,x.T) * y return trace(A) """ and it is the goal to compute its gradient w.r.t. A and x. As one will surely notice, this is not as simple as it seems. But it's no problem for ALGOPY. At first, we will find the gradient in the forward mode of AD. Let A be an (N,N) array, and x an (N,1) array. Therefore, the gradient of f will be a vector of length `N**2 + N`. In the forward mode one computes each of those `N**2 + N` by a separate run. This is very similar to the finite differences approach where each argument is separately perturbed. As an example, let's compute df/dA_{11}, i.e. the derivative w.r.t. the (1,1) entry of A, (counting from 1). """ import numpy from algopy import UTPM from algopy.globalfuncs import dot, trace D,P,N = 2,1,2 A = UTPM(numpy.zeros((D,P,N,N))) x = UTPM(numpy.zeros((D,P,N,N))) A.data[0,:] = numpy.random.rand(N,N) x.data[0,:] =
numpy.random.rand(N,1)
numpy.random.rand
####################################################################################################################################################### #######################################################################Imports######################################################################### ####################################################################################################################################################### #from itertools import product # forms cartesian products from tqdm import tqdm_notebook as tqdm #import pickle import numpy as np from numpy import linspace import pandas as pd import scipy as sp from functools import reduce from more_itertools import random_product import operator import math from joblib import Parallel, delayed from collections.abc import Iterable #from scipy.integrate import quad import matplotlib.pyplot as plt #from sklearn.model_selection import cross_val_score, train_test_split, StratifiedKFold, KFold from sklearn.metrics import accuracy_score, log_loss, roc_auc_score, f1_score, mean_absolute_error, r2_score from similaritymeasures import frechet_dist, area_between_two_curves, dtw import time import tensorflow as tf from tensorflow.keras import Sequential from tensorflow.keras.layers import Dense, Dropout from tensorflow.keras.utils import plot_model from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau from IPython.display import display, Math, Latex, clear_output import os import shutil import pickle import traceback #udf import from utilities.LambdaNet import * from utilities.metrics import * #from utilities.utility_functions import * from scipy.optimize import minimize from scipy import optimize import sympy as sym from sympy import Symbol, sympify, lambdify, abc, SympifyError # Function Generation 0 1 import from sympy.sets.sets import Union from sympy import Number import math from numba import jit, njit import itertools from interruptingcow import timeout import time from sklearn.linear_model import Lasso from sklearn.preprocessing import PolynomialFeatures ####################################################################################################################################################### #############################################################Setting relevant parameters from current config########################################### ####################################################################################################################################################### def initialize_utility_functions_config_from_curent_notebook(config): try: globals().update(config['data']) except KeyError: print(KeyError) try: globals().update(config['lambda_net']) except KeyError: print(KeyError) try: globals().update(config['i_net']) except KeyError: print(KeyError) try: globals().update(config['evaluation']) except KeyError: print(KeyError) try: globals().update(config['computation']) except KeyError: print(KeyError) random.seed(RANDOM_SEED) np.random.seed(RANDOM_SEED) if int(tf.__version__[0]) >= 2: tf.random.set_seed(RANDOM_SEED) else: tf.set_random_seed(RANDOM_SEED) global list_of_monomial_identifiers from utilities.utility_functions import flatten, rec_gen, gen_monomial_identifier_list list_of_monomial_identifiers_extended = [] if laurent: variable_sets = [list(flatten([[_d for _d in range(d+1)], [-_d for _d in range(1, neg_d+1)]])) for _ in range(n)] list_of_monomial_identifiers_extended = rec_gen(variable_sets) if len(list_of_monomial_identifiers_extended) < 500: print(list_of_monomial_identifiers_extended) list_of_monomial_identifiers = [] for monomial_identifier in tqdm(list_of_monomial_identifiers_extended): if np.sum(monomial_identifier) <= d: if monomial_vars == None or len(list(filter(lambda x: x != 0, monomial_identifier))) <= monomial_vars: list_of_monomial_identifiers.append(monomial_identifier) else: variable_list = ['x'+ str(i) for i in range(n)] list_of_monomial_identifiers = gen_monomial_identifier_list(variable_list, d, n) ####################################################################################################################################################### #############################################################General Utility Functions################################################################# ####################################################################################################################################################### def round_expr(expr, num_digits): return expr.xreplace({n : round(n, num_digits) for n in expr.atoms(Number)}) def nCr(n,r): f = math.factorial return f(n) // f(r) // f(n-r) def rec_gen(x): if len(x) == 1: return [[item] for item in x[0]] appended = [] for s_el in x[0]: for next_s in rec_gen(x[1:]): appended.append([s_el] + next_s) return appended def gen_monomial_identifier_list(variable_list, degree, number_of_variables): def get_polynomial(vars, power): if "c" in vars: raise Exception("\"c\" cannot be a variable") vars.append("c") # add dummy variable # compute all combinations of variables terms = [] for x in itertools.combinations_with_replacement(vars, power): terms.append(x) # get rid of "c" terms terms = list(map(list, terms)) for i in range(len(terms)): while "c" in terms[i]: terms[i].remove("c") return terms terms = get_polynomial(variable_list, degree) monomial_identifier_list = [] for term in terms: monomial = [0 for i in range(number_of_variables)] for value in term: index = int(value[1:]) monomial[index] = monomial[index] + 1 monomial_identifier_list.append(monomial) return monomial_identifier_list def pairwise(iterable): "s -> (s0, s1), (s2, s3), (s4, s5), ..." a = iter(iterable) return zip(a, a) def chunks(lst, chunksize): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), chunksize): yield lst[i:i + chunksize] def prod(iterable): return reduce(operator.mul, iterable, 1) def return_float_tensor_representation(some_representation, dtype=tf.float32): if tf.is_tensor(some_representation): some_representation = tf.dtypes.cast(some_representation, dtype) else: some_representation = tf.convert_to_tensor(some_representation) some_representation = tf.dtypes.cast(some_representation, dtype) if not tf.is_tensor(some_representation): raise SystemExit('Given variable is no instance of ' + str(dtype) + ':' + str(some_representation)) return some_representation def return_numpy_representation(some_representation): if isinstance(some_representation, pd.DataFrame): some_representation = some_representation.values some_representation = np.float32(some_representation) if isinstance(some_representation, list): some_representation = np.array(some_representation, dtype=np.float32) if isinstance(some_representation, np.ndarray): #print(some_representation) #print(type(some_representation)) #print(some_representation.dtype) #print(some_representation[0]) #print(some_representation[0].dtype) some_representation = np.float32(some_representation) else: raise SystemExit('Given variable is no instance of ' + str(np.ndarray) + ':' + str(some_representation)) return some_representation def mergeDict(dict1, dict2): #Merge dictionaries and keep values of common keys in list newDict = {**dict1, **dict2} for key, value in newDict.items(): if key in dict1 and key in dict2: if isinstance(dict1[key], list) and isinstance(value, list): newDict[key] = dict1[key] newDict[key].extend(value) elif isinstance(dict1[key], list) and not isinstance(value, list): newDict[key] = dict1[key] newDict[key].extend([value]) elif not isinstance(dict1[key], list) and isinstance(value, list): newDict[key] = [dict1[key]] newDict[key].extend(value) else: newDict[key] = [dict1[key], value] return newDict def return_callbacks_from_string(callback_string_list): callbacks = [] if len(callback_string_list) > 0 else None #if 'plot_losses_callback' in callback_string_list: #callbacks.append(PlotLossesCallback()) if 'reduce_lr_loss' in callback_string_list: reduce_lr_loss = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=min(50, epochs//10), verbose=0, min_delta=0, mode='min') #epsilon callbacks.append(reduce_lr_loss) if 'early_stopping' in callback_string_list: try: patience = early_stopping_patience if early_stopping_patience is not None else min(50, epochs//10) except: patience = min(50, epochs//10) earlyStopping = EarlyStopping(monitor='val_loss', patience=patience, min_delta=0, verbose=0, mode='min', restore_best_weights=True) callbacks.append(earlyStopping) #if not multi_epoch_analysis and samples_list == None: #callbacks.append(TQDMNotebookCallback()) return callbacks def arreq_in_list(myarr, list_arrays): return next((True for elem in list_arrays if np.array_equal(elem, myarr)), False) def flatten(l): for el in l: if isinstance(el, Iterable) and not isinstance(el, (str, bytes)): yield from flatten(el) else: yield el def shape_flat_network_parameters(flat_network_parameters, target_network_parameters): #from utilities.utility_functions import flatten_list #def recursive_len(item): # if type(item) == list: # return sum(recursive_len(subitem) for subitem in item) # else: # return 1 shaped_network_parameters =[] start = 0 for parameters in target_network_parameters: target_shape = parameters.shape size = np.prod(target_shape)#recursive_len(el)#len(list(flatten_list(el))) shaped_parameters = np.reshape(flat_network_parameters[start:start+size], target_shape) shaped_network_parameters.append(shaped_parameters) start += size return shaped_network_parameters def shaped_network_parameters_to_array(shaped_network_parameters): network_parameter_list = [] for layer_weights, biases in pairwise(shaped_network_parameters): #clf.get_weights() for neuron in layer_weights: for weight in neuron: network_parameter_list.append(weight) for bias in biases: network_parameter_list.append(bias) return np.array(network_parameter_list) #################################################################################################################################################################################### Normalization #################################################################################### ################################################################################################################################################################################################################ def get_order_sum(arrays): arrays = np.array(arrays) values = [np.sum(arrays[0])] order = [0] for i in range(1, len(arrays)): value = np.sum(arrays[i]) pos = 0 while pos<len(values) and value>=values[pos]: if value == values[pos]: print("!!!!!!!!!!!!!!!!KOLLISION!!!!!!!!!!!!!!!!!!") print(value) print(arrays[i]) print(arrays[order[pos]]) pos += 1 values.insert(pos, value) order.insert(pos, i) return order ## source for sort_array: https://www.geeksforgeeks.org/permute-the-elements-of-an-array-following-given-order/ def sort_array(arr, order): length = len(order) #ordered_arr = np.zeros(length) ordered_arr = [None] * length for i in range(length): ordered_arr[i] = arr[order[i]] arr=ordered_arr return arr def normal_neural_net(model_arr): for i in range(len(lambda_network_layers)): index = 2*(i) dense_arr = np.transpose(model_arr[index]) order = get_order_sum(dense_arr) for j in range(len(model_arr[index])): model_arr[index][j] = sort_array(model_arr[index][j], order) model_arr[index+1] = np.array(sort_array(model_arr[index+1], order)) model_arr[index+2] = np.array(sort_array(model_arr[index+2], order)) return model_arr def print_polynomial_from_coefficients(coefficient_array, force_complete_poly_representation=False, round_digits=None): return display(get_sympy_string_from_coefficients(coefficient_array, force_complete_poly_representation=force_complete_poly_representation, round_digits=round_digits)) def get_polynomial_string_from_coefficients(coefficients, force_complete_poly_representation=False, round_digits=None): global list_of_monomial_identifiers global interpretation_net_output_monomials string = '' try: #catch if this is lambda-net training interpretation_net_output_monomials == None except NameError: interpretation_net_output_monomials = None if interpretation_net_output_monomials == None or force_complete_poly_representation: for identifier, coefficient in zip(list_of_monomial_identifiers, coefficients): if round_digits != None: string += str(np.round(coefficient, round_digits)) else: string += str(coefficient) for index, variable_identifier in enumerate(identifier): if int(variable_identifier) == 1: #string += '*' string += 'abcdefghijklmnopqrstuvwxyz'[index] elif int(variable_identifier) > 1: #string += '*' string += 'abcdefghijklmnopqrstuvwxyz'[index] + '^' + str(variable_identifier) string += ' + ' else: # Convert output array to monomial identifier index and corresponding coefficient assert coefficient_array.shape[0] == interpretation_net_output_shape or coefficient_array.shape[0] == interpretation_net_output_shape + 1 + len(list_of_monomial_identifiers) if coefficient_array.shape[0] == interpretation_net_output_shape: coefficients = coefficient_array[:interpretation_net_output_monomials] index_array = coefficient_array[interpretation_net_output_monomials:] assert index_array.shape[0] == interpretation_net_output_monomials*sparsity or index_array.shape[0] == interpretation_net_output_monomials*(d+1)*n index_list = np.split(index_array, interpretation_net_output_monomials) assert len(index_list) == coefficients.shape[0] == interpretation_net_output_monomials indices = np.argmax(index_list, axis=1) else: coefficients = coefficient_array[:interpretation_net_output_monomials+1] index_array = coefficient_array[interpretation_net_output_monomials+1:] assert index_array.shape[0] == (interpretation_net_output_monomials+1)*sparsity index_list = np.split(index_array, interpretation_net_output_monomials+1) assert len(index_list) == coefficients.shape[0] == interpretation_net_output_monomials+1 indices = np.argmax(index_list, axis=1) for monomial_index, monomial_coefficient in zip(indices, coefficients): if round_digits != None: string += str(np.round(monomial_coefficient, round_digits)) else: string += str(monomial_coefficient) #REPLACE NAN for i, monomial_exponent in enumerate(list_of_monomial_identifiers[monomial_index]): if int(monomial_exponent) == 1: #string += '*' string += 'abcdefghijklmnopqrstuvwxyz'[i] elif int(monomial_exponent) > 1: #string += '*' string += 'abcdefghijklmnopqrstuvwxyz'[i] + '^' + str(monomial_exponent) string += ' + ' return string[:-3] def get_sympy_string_from_coefficients(coefficient_array, force_complete_poly_representation=False, round_digits=None): global list_of_monomial_identifiers global interpretation_net_output_monomials variable_alphabet = "abcdefghijklmnopqrstuvwxyz" variable_list = [] for i in range(n): variable_list.append(sym.symbols(variable_alphabet[i])) try: #catch if this is lambda-net training interpretation_net_output_monomials == None except NameError: interpretation_net_output_monomials = None if interpretation_net_output_monomials == None or force_complete_poly_representation: f = 0 for monomial_identifier, monomial_coefficient in zip(list_of_monomial_identifiers, coefficient_array): if round_digits != None: subfunction = np.round(monomial_coefficient, round_digits) else: subfunction = monomial_coefficient for i, monomial_exponent in enumerate(monomial_identifier): subfunction *= variable_list[i]**monomial_exponent f += subfunction else: f = 0 # Convert output array to monomial identifier index and corresponding coefficient assert coefficient_array.shape[0] == interpretation_net_output_shape or coefficient_array.shape[0] == interpretation_net_output_shape + 1 + len(list_of_monomial_identifiers) if coefficient_array.shape[0] == interpretation_net_output_shape: coefficients = coefficient_array[:interpretation_net_output_monomials] index_array = coefficient_array[interpretation_net_output_monomials:] assert index_array.shape[0] == interpretation_net_output_monomials*sparsity or index_array.shape[0] == interpretation_net_output_monomials*(d+1)*n index_list = np.split(index_array, interpretation_net_output_monomials) assert len(index_list) == coefficients.shape[0] == interpretation_net_output_monomials indices = np.argmax(index_list, axis=1) else: coefficients = coefficient_array[:interpretation_net_output_monomials+1] index_array = coefficient_array[interpretation_net_output_monomials+1:] assert index_array.shape[0] == (interpretation_net_output_monomials+1)*sparsity index_list = np.split(index_array, interpretation_net_output_monomials+1) assert len(index_list) == coefficients.shape[0] == interpretation_net_output_monomials+1 indices = np.argmax(index_list, axis=1) for monomial_index, monomial_coefficient in zip(indices, coefficients): if round_digits != None: subfunction = np.round(monomial_coefficient, round_digits) else: subfunction = monomial_coefficient #REPLACE NAN for i, monomial_exponent in enumerate(list_of_monomial_identifiers[monomial_index]): subfunction *= variable_list[i]**monomial_exponent f += subfunction return f def plot_polynomial_from_coefficients(coefficient_array, force_complete_poly_representation=False): sympy_function_string = get_sympy_string_from_coefficients(coefficient_array, force_complete_poly_representation=False) variable_alphabet = "abcdefghijklmnopqrstuvwxyz" variable_list = [] for i in range(n): variable_list.append(sym.symbols(variable_alphabet[i])) lam_x = lambdify(variable_list, sympy_function_string, modules=['numpy']) x_vals = linspace(x_min, x_max, 100) y_vals = lam_x(x_vals) plt.plot(x_vals, y_vals) plt.show() def get_critical_points_from_polynomial(coefficient_array, force_complete_poly_representation=False): coefficient_array = return_numpy_representation(coefficient_array) #assert coefficient_array.shape[0] == interpretation_net_output_shape f = get_sympy_string_from_coefficients(coefficient_array, force_complete_poly_representation=force_complete_poly_representation) gradient = sym.derive_by_array(f, tuple(f.free_symbols)) stationary_points = sym.solve(gradient, tuple(f.free_symbols)) return f, gradient, stationary_points ####################################################################################################################################################### ########################################################################JUSTUS CODE#################################################################### ####################################################################################################################################################### # simplified the function for this usecase def get_sympy_string_from_coefficients_fg(coefficient_array, variable_list): global list_of_monomial_identifiers f=0 for i in range(sparsity): monomial = coefficient_array[i] for j in range(n): monomial = monomial*variable_list[j]**int(list_of_monomial_identifiers[i][j]) f += monomial return f # Method to shift a function(func) by a given distance(distance) for a given variable(variable) def shift(func, distance, variable): a = variable f = func # substitude a by a-distance (shifting) f = f.subs(a, (a-distance)) # expand function returns polynomial funtion as sum of monomials f = sym.expand(f) return f # Method to bulge a function(func) by a given factor(factor) for a given variable(variable) def bulge(func, factor, variable): a = variable f = func #substitude a by a*factor (bulging) f = f.subs(a, (factor*a)) #expand function returns polynomial funtion as sum of monomials f = sym.expand(f) return f def adjust_function(f, borders, variables): variables = list(f.free_symbols) width = [1 - border - random.uniform(border_min, border_max) for border in borders] # space between borders (only left border is saved) # check if the degree is 1 (there are no stationary points for functions of degree 1. Therefore they can't be adjusted with this function) higher_degree = False for variable in variables: if sym.degree(f, variable) > 1: higher_degree = True break; if not higher_degree: return f # special method for functions with 1 variable (inflection points are also used) There also are some extras for functions with more than 1 variable that functions with only 1 variable do not need if n==1: g = sym.diff(f, variables[0]) #find extremums () ext = sym.solveset(g, domain=sym.Reals) #find inflection points inflec = sym.calculus.util.stationary_points(g, variables[0], domain=sym.Reals) #critical points (joint extremums and inflection points) critical_points = Union(ext, inflec) # Test, if there are any critical points (Only case where a polynomial function has no critical point is a straight, which causes no problem) if not critical_points.is_empty: # find infimum and supremum of set: left_critical_point = critical_points.inf right_critical_point = critical_points.sup # calculate distance between points: distance = right_critical_point - left_critical_point # only one critical point if distance == 0: # shift function so that the critical point is between border and 1-border bulge_factor = random.uniform(bulge_min, bulge_max) shift_distance = -(stationary_points[0][variables[0]]) + bulge_factor * (borders[0] + random.uniform(0, width[0])) f = shift(f, shift_distance, variables[0]) f = bulge(f, bulge_factor, variables[0]) #f = shift(f, -left_critical_point+random.uniform(borders[0], 1-borders[0]), variables[0]) # check if function needs to be bulged elif distance <= width[0]: # shift function so that the critical points are between border and 1-border f = shift(f, -left_critical_point+borders[0]+random.uniform(0, width[0]-distance), variables[0]) else: bulge_factor = distance/width[0] shift_distance = -left_critical_point + bulge_factor * borders[0] f = shift(f, shift_distance, variables[0]) # bulge the function f = bulge(f, distance/width[0], variables[0]) return f # determine the number of variables that are used in the search for stationary points (probabilties in configs) number_of_used_variables = random.choices([n, random.randint(min_variables_used, max_variables_used)], [global_stationary_prob, 1-global_stationary_prob])[0] used_variables = [] # helper function to get stationary points f_copy = f # select 'number_of_used_variables' many variables while len(used_variables) < number_of_used_variables and len(used_variables)<len(variables): variable = variables[random.randint(0, len(variables)-1)] if not variable in used_variables: used_variables.append(variable) # substitute all variables that are not used with constants that are in the intervall for variable in variables: if not variable in used_variables: f_copy = f_copy.subs(variable, random.uniform(x_min, x_max)) # adjustment of the used_variables, because some variables might not be in the function used_variables = list(f_copy.free_symbols) number_of_used_variables = len(used_variables) # special search for the use of only one variable (also uses inflection points) if number_of_used_variables == 1: g = sym.diff(f_copy, used_variables[0], domain=sym.Reals) #find extremums () ext = sym.solveset(g, used_variables[0], domain=sym.Reals) #find inflection points inflec = sym.calculus.util.stationary_points(g, used_variables[0]) #critical points (joint extremums and inflection points) (called stationary_points to use the same code) critical_points = Union(ext, inflec) stationary_points = [] # filter out stationary points that are not real if not type(critical_points) is sym.sets.fancysets.Reals: for point in critical_points: stationary_points.append({used_variables[0]: point}) # get stationary points for the use of more than one variable else: f_copy = sym.expand(f_copy) gradient = sym.derive_by_array(f_copy, tuple(f_copy.free_symbols)) stationary_points = sym.solve(gradient, tuple(f_copy.free_symbols), dict=True) if len(stationary_points) == 0: return f; length_helper = len(stationary_points) - 1 used_variables = list(stationary_points[0].keys()) number_of_used_variables = len(used_variables) # filter out stationary points that are not real for i in range(len(stationary_points)): for j in range(number_of_used_variables): if not stationary_points[length_helper-i][used_variables[j]].is_real: stationary_points.pop(length_helper-i) break; # no stationary points => nothing can be adjusted => just return functions if len(stationary_points) == 0: return f; # 1 stationary point => shift it inside the intervall for all used variables and bulge it randomly if len(stationary_points) == 1: for i in range(number_of_used_variables): bulge_factor = random.uniform(bulge_min, bulge_max) shift_distance = -(stationary_points[0][used_variables[i]]) + bulge_factor * (borders[i] + random.uniform(0, width[i])) f = shift(f, shift_distance, used_variables[i]) f = bulge(f, bulge_factor, used_variables[i]) # minimum of two stationary points => shift them to the border limits else: for i in range(len(used_variables)): critical_values = [stationary_points[j][used_variables[i]] for j in range(len(stationary_points))] minimum = min(critical_values) distance = max(critical_values) - minimum bulge_factor = distance/width[i] shift_distance = -minimum + bulge_factor * borders[i] f = shift(f, shift_distance, used_variables[i]) f = bulge(f, bulge_factor, used_variables[i]) return f def prep_post_polynomial (borders, values): variable_alphabet = "abcdefghijklmnopqrstuvwxyz" variable_list = [sym.symbols(variable_alphabet[i]) for i in range(n)] list_of_monomial_dict_names = [] global list_of_monomial_identifiers # get dictionary keys to retrieve function for mono_string in list_of_monomial_identifiers: helper = 1 for i in range(n): if mono_string[i] != "0": if(helper!=1): helper = helper*variable_list[i]**int(mono_string[i]) else: helper = variable_list[i]**int(mono_string[i]) list_of_monomial_dict_names.append(helper) # get sympy string for adjustments function = get_sympy_string_from_coefficients_fg(values, variable_list) # adjustment function_adjusted = adjust_function(function, borders, variable_list) # get list representation from sympy representation coeff_dict = function_adjusted.as_coefficients_dict() coeff_list = [coeff_dict[monomial] for monomial in list_of_monomial_dict_names] # possible divisor for the case that coefficient values are to high divider = abs(max(coeff_list, key=abs) / random.uniform(a_max/4, a_max)) if divider > 1: coeff_list = [x / divider for x in coeff_list] #adjust the y-axis intercept so that function are spread better if coeff_list[0] != 0: multiplier0 = random.uniform(1, a_max / abs(coeff_list[0])) coeff_list[0] = coeff_list[0] * multiplier0 # NaN can happen if one coefficent has values of infinity after bulging or shifting for i in range(sparsity): if math.isnan(coeff_list[i]): values = [random.uniform(a_min, a_max) for _ in range(sparsity)] return prep_post_polynomial(borders, values) return coeff_list def get_polynomial_basic (sparsities ,change = 0): # change adjusts the lower degree probability. Other values than 0 are better for function generations with low degree because if you use 0 there will be a lot of functions of degree 0. Example value: # change = -((lower_degree_prob / (d-1)) - (0.01 * d)) values = np.zeros(sparsity) degree_helper = 1 for i in range(d): if(random.random() < (lower_degree_prob + i*change)): degree_helper += 1 else: break #return random nonadjusted function if random.random()<a_random_prob: for i in range(max_monomials_random-1): values[random.randint(0, sparsities[-degree_helper]-1)] = random.uniform(a_min, a_max) values[0] = random.uniform(a_min, a_max) return values # degree_helper >= d => maximum degree = 1 => no stationary points => no adjustment possible if degree_helper >= d: for i in range(max_monomials-1): values[random.randint(0, sparsities[-degree_helper]-1)] = random.uniform(a_min, a_max) values[0] = random.uniform(a_min, a_max) return values # get random borders (minimum space between x_min (x_max) to the critical_points borders = [random.uniform(border_min, border_max) for i in range(n)] try: with timeout(5, exception=RuntimeError): coeff_list = prep_post_polynomial(borders, values) except: return get_polynomial_basic(sparsities, change = change) return coeff_list ####################################################################################################################################################### ###########################Manual calculations for comparison of polynomials based on function values (no TF!)######################################### ####################################################################################################################################################### #@njit#(nopython=True) #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!DEPRECATED!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! def calcualate_function_value(coefficient_list, lambda_input_entry, force_complete_poly_representation=False, list_of_monomial_identifiers=None, interpretation_net_output_monomials=None): #print('coefficient_list', coefficient_list) #print('lambda_input_entry', lambda_input_entry) result = 0 #try: #catch if this is lambda-net training # config['interpretation_net_output_monomials'] == None #except NameError: # config['interpretation_net_output_monomials'] = None if interpretation_net_output_monomials == None or force_complete_poly_representation: #print('coefficient_list', coefficient_list) #print(force_complete_poly_representation) #print(interpretation_net_output_monomials) #assert coefficient_list.shape[0] == sparsity, 'Shape of Coefficient List: ' + str(coefficient_list.shape) + str(interpretation_net_output_monomials) + str(coefficient_list) for coefficient_value, coefficient_multipliers in zip(coefficient_list, list_of_monomial_identifiers): #print('coefficient_value', coefficient_value) #print('coefficient_multipliers', coefficient_multipliers) value_without_coefficient = [lambda_input_value**coefficient_multiplier for coefficient_multiplier, lambda_input_value in zip(coefficient_multipliers, lambda_input_entry)] #print('value_without_coefficient', value_without_coefficient) #try: result += coefficient_value * reduce(lambda x, y: x*y, value_without_coefficient) #except TypeError: # print('ERROR') # print(lambda_input_entry) # print(coefficient_list) # # print(coefficient_value) # print(value_without_coefficient) else: # Convert output array to monomial identifier index and corresponding coefficient #ASSERT #assert coefficient_list.shape[0] == interpretation_net_output_shape or coefficient_list.shape[0] == interpretation_net_output_shape + 1 + len(list_of_monomial_identifiers) if coefficient_list.shape[0] == interpretation_net_output_shape: coefficients = coefficient_list[:interpretation_net_output_monomials] index_array = coefficient_list[interpretation_net_output_monomials:] #ASSERT #assert index_array.shape[0] == interpretation_net_output_monomials*sparsity index_list = np.split(index_array, interpretation_net_output_monomials) #ASSERT #assert len(index_list) == coefficients.shape[0] == interpretation_net_output_monomials indices = np.argmax(index_list, axis=1) else: coefficients = coefficient_list[:interpretation_net_output_monomials+1] index_array = coefficient_list[interpretation_net_output_monomials+1:] #ASSERT #assert index_array.shape[0] == (interpretation_net_output_monomials+1)*sparsity index_list = np.split(index_array, interpretation_net_output_monomials+1) #ASSERT #assert len(index_list) == coefficients.shape[0] == interpretation_net_output_monomials+1 indices = np.argmax(index_list, axis=1) # Calculate monomial values without coefficient value_without_coefficient_list = [] for coefficient_multipliers in list_of_monomial_identifiers: value_without_coefficient = [lambda_input_value**coefficient_multiplier for coefficient_multiplier, lambda_input_value in zip(coefficient_multipliers, lambda_input_entry)] value_without_coefficient_list.append(reduce(lambda x, y: x*y, value_without_coefficient)) value_without_coefficient_by_indices = np.array(value_without_coefficient_list)[[indices]] # Select relevant monomial values without coefficient and calculate final polynomial for coefficient, monomial_index in zip(coefficients, indices): #TODOOOOO result += coefficient * value_without_coefficient_list[monomial_index] #print('result', result) return result #@jit#@jit(nopython=True) def calculate_function_values_from_polynomial(polynomial, lambda_input_data, force_complete_poly_representation=False, list_of_monomial_identifiers=None, interpretation_net_output_monomials=None): #function_value_list = [] #for lambda_input_entry in lambda_input_data: #function_value = calcualate_function_value(polynomial, lambda_input_entry, force_complete_poly_representation=force_complete_poly_representation, list_of_monomial_identifiers=list_of_monomial_identifiers, interpretation_net_output_monomials=interpretation_net_output_monomials) #function_value_list.append(function_value) config = { 'n': n, #'inet_loss': inet_loss, 'sparsity': sparsity, #'lambda_network_layers': lambda_network_layers, #'interpretation_net_output_shape': interpretation_net_output_shape, 'RANDOM_SEED': RANDOM_SEED, #'nas': nas, #'number_of_lambda_weights': number_of_lambda_weights, #'interpretation_net_output_monomials': interpretation_net_output_monomials, #'list_of_monomial_identifiers': list_of_monomial_identifiers, 'x_min': x_min, 'x_max': x_max, } try: config['interpretation_net_output_monomials'] = interpretation_net_output_monomials except: config['interpretation_net_output_monomials'] = None #print(list_of_monomial_identifiers) #print(polynomial) #print(lambda_input_data) function_value_list = calculate_poly_fv_tf_wrapper_new(return_float_tensor_representation(list_of_monomial_identifiers), return_float_tensor_representation(polynomial), return_float_tensor_representation(lambda_input_data), force_complete_poly_representation=force_complete_poly_representation, config=config) return np.nan_to_num(np.array(function_value_list)) def parallel_fv_calculation_from_polynomial(polynomial_list, lambda_input_list, force_complete_poly_representation=False, n_jobs_parallel_fv=10, backend='threading'): print(force_complete_poly_representation) polynomial_list = return_numpy_representation(polynomial_list) lambda_input_list = return_numpy_representation(lambda_input_list) #print(polynomial_list.shape) #print(type(polynomial_list)) #print(polynomial_list.dtype) #print(polynomial_list) #print(polynomial_list[0].shape) #print(type(polynomial_list[0])) #print(polynomial_list[0].dtype) #print(polynomial_list[0]) assert polynomial_list.shape[0] == lambda_input_list.shape[0] if force_complete_poly_representation: assert polynomial_list.shape[1] == sparsity else: assert polynomial_list.shape[1] == interpretation_net_output_shape or polynomial_list.shape[1] == interpretation_net_output_shape + 1 + len(list_of_monomial_identifiers) , 'Poly Shape ' + str(polynomial_list.shape[1]) +' Output Monomials ' + str(interpretation_net_output_shape) + str(polynomial_list[:2]) assert lambda_input_list.shape[2] == n config = {'list_of_monomial_identifiers': list_of_monomial_identifiers, 'interpretation_net_output_monomials': interpretation_net_output_monomials} parallel = Parallel(n_jobs=n_jobs_parallel_fv, verbose=1, backend=backend) #polynomial_true_fv = parallel(delayed(calculate_function_values_from_polynomial)(polynomial, lambda_inputs, force_complete_poly_representation=force_complete_poly_representation, list_of_monomial_identifiers=list_of_monomial_identifiers, interpretation_net_output_monomials=interpretation_net_output_monomials) for polynomial, lambda_inputs in zip(polynomial_list, lambda_input_list)) config = { 'n': n, #'inet_loss': inet_loss, 'sparsity': sparsity, #'lambda_network_layers': lambda_network_layers, #'interpretation_net_output_shape': interpretation_net_output_shape, 'RANDOM_SEED': RANDOM_SEED, #'nas': nas, #'number_of_lambda_weights': number_of_lambda_weights, #'interpretation_net_output_monomials': interpretation_net_output_monomials, #'list_of_monomial_identifiers': list_of_monomial_identifiers, 'x_min': x_min, 'x_max': x_max, 'sparse_poly_representation_version': sparse_poly_representation_version, } try: config['interpretation_net_output_monomials'] = interpretation_net_output_monomials except: config['interpretation_net_output_monomials'] = None if use_gpu: polynomial_true_fv = parallel(delayed(calculate_poly_fv_tf_wrapper_new_no_tfFunction)(return_float_tensor_representation(list_of_monomial_identifiers), return_float_tensor_representation(polynomial), return_float_tensor_representation(lambda_inputs), force_complete_poly_representation=force_complete_poly_representation, config=config) for polynomial, lambda_inputs in zip(polynomial_list, lambda_input_list)) else: polynomial_true_fv = parallel(delayed(calculate_poly_fv_tf_wrapper_new)(return_float_tensor_representation(list_of_monomial_identifiers), return_float_tensor_representation(polynomial), return_float_tensor_representation(lambda_inputs), force_complete_poly_representation=force_complete_poly_representation, config=config) for polynomial, lambda_inputs in zip(polynomial_list, lambda_input_list)) del parallel return np.array(polynomial_true_fv) def calculate_function_values_from_sympy(function, data_points, variable_names=None): if function is None: return np.array([np.nan for i in range(data_points.shape[0])]) try: if variable_names == None: function_vars = function.atoms(Symbol) else: function_vars = [sym.symbols(variable_name) for variable_name in variable_names] #print('function_vars', function_vars) lambda_function = lambdify([function_vars], function, modules=["scipy", "numpy"]) #print('lambda_function', lambda_function) #print('data_points[0]', data_points[0]) if len(function_vars) >= 1: function_values = [lambda_function(data_point) for data_point in data_points] else: function_values = [lambda_function() for i in range(data_points.shape[0])] except (NameError, KeyError) as e: #print(e) function_values = [] for data_point in data_points: function_value = function.evalf(subs={var: data_point[index] for index, var in enumerate(list(function_vars))}) try: function_value = float(function_value) except TypeError as te: #print(te) #print(function_value) function_value = np.inf function_values.append(function_value) function_values = np.nan_to_num(function_values).ravel() return function_values def parallel_fv_calculation_from_sympy(function_list, lambda_input_list, n_jobs_parallel_fv=10, backend='threading', variable_names=None): backend='sequential' lambda_input_list = return_numpy_representation(lambda_input_list) assert len(function_list) == lambda_input_list.shape[0], str(len(function_list)) + '\t' + str(lambda_input_list.shape[0]) parallel = Parallel(n_jobs=n_jobs_parallel_fv, verbose=1, backend=backend) polynomial_true_fv = parallel(delayed(calculate_function_values_from_sympy)(function, lambda_inputs, variable_names=variable_names) for function, lambda_inputs in zip(function_list, lambda_input_list)) del parallel return np.array(polynomial_true_fv) def sleep_minutes(minutes): time.sleep(int(60*minutes)) def sleep_hours(hours): time.sleep(int(60*60*hours)) def generate_paths(config=None, path_type='interpretation_net'): if config is not None: paths_dict = {} training_string = '_sameX' if config['data']['same_training_all_lambda_nets'] else '_diffX' laurent_str = '_laurent' if config['data']['laurent'] else '' monomial_vars_str = '_monvars_' + str(config['data']['monomial_vars']) if config['data']['monomial_vars'] != None else '' neg_d_str = '_negd_' + str(config['data']['neg_d']) + '_prob_' + str(config['data']['neg_d_prob']) if config['data']['neg_d'] != None else '' dataset_description_string = ('_var_' + str(config['data']['n']) + '_d_' + str(config['data']['d']) + laurent_str + monomial_vars_str + neg_d_str + '_spars_' + str(config['data']['sample_sparsity']) + '_amin_' + str(config['data']['a_min']) + '_amax_' + str(config['data']['a_max']) + #'_xmin_' + str(x_min) + #'_xmax_' + str(x_max) + '_xdist_' + str(config['data']['x_distrib']) + '_noise_' + str(config['data']['noise_distrib']) + '_' + str(config['data']['noise']) + '_' + config['data']['function_generation_type'] ) if config['data']['shift_polynomial']: adjusted_dataset_string = ('bmin' + str(config['data']['border_min']) + 'bmax' + str(config['data']['border_max']) + 'lowd' + str(config['data']['lower_degree_prob']) + 'arand' + str(config['data']['a_random_prob'])) else: adjusted_dataset_string = '' if path_type == 'data_creation' or path_type == 'lambda_net': #Data Generation path_identifier_polynomial_data = ('poly_' + str(config['data']['polynomial_data_size']) + '_train_' + str(config['lambda_net']['lambda_dataset_size']) + dataset_description_string + adjusted_dataset_string + training_string) paths_dict['path_identifier_polynomial_data'] = path_identifier_polynomial_data if path_type == 'lambda_net' or path_type == 'interpretation_net': #Lambda-Net if config['data']['fixed_seed_lambda_training'] and config['data']['fixed_initialization_lambda_training']: seed_init_string = '_' + str(config['data']['number_different_lambda_trainings']) + '-FixSeedInit' elif config['data']['fixed_seed_lambda_training'] and not config['data']['fixed_initialization_lambda_training']: seed_init_string = '_' + str(config['data']['number_different_lambda_trainings']) + '-FixSeed' elif not config['data']['fixed_seed_lambda_training'] and config['data']['fixed_initialization_lambda_training']: seed_init_string = '_' + str(config['data']['number_different_lambda_trainings']) + '-FixInit' elif not config['data']['fixed_seed_lambda_training'] and not config['data']['fixed_initialization_lambda_training']: seed_init_string = '_NoFixSeedInit' early_stopping_string = '_ES' + str(config['lambda_net']['early_stopping_min_delta_lambda']) + '_' if config['lambda_net']['early_stopping_lambda'] else '' lambda_layer_str = ''.join([str(neurons) + '-' for neurons in config['lambda_net']['lambda_network_layers']]) lambda_net_identifier = '_' + lambda_layer_str + str(config['lambda_net']['epochs_lambda']) + 'e' + early_stopping_string + str(config['lambda_net']['batch_lambda']) + 'b' + '_' + config['lambda_net']['optimizer_lambda'] + '_' + config['lambda_net']['loss_lambda'] path_identifier_lambda_net_data = ('lnets_' + str(config['data']['lambda_nets_total']) + lambda_net_identifier + '_train_' + str(lambda_dataset_size) + training_string + seed_init_string + '_' + str(config['computation']['RANDOM_SEED']) + '/' + dataset_description_string[1:] + adjusted_dataset_string) paths_dict['path_identifier_lambda_net_data'] = path_identifier_lambda_net_data if path_type == 'interpretation_net': #Interpretation-Net interpretation_network_layers_string = 'dense' + ''.join([str(neurons) + '-' for neurons in config['i_net']['dense_layers']]) if config['i_net']['convolution_layers'] != None: interpretation_network_layers_string += 'conv' + str(config['i_net']['convolution_layers']) if config['i_net']['lstm_layers'] != None: interpretation_network_layers_string += 'lstm' + str(config['i_net']['lstm_layers']) interpretation_net_identifier = '_' + interpretation_network_layers_string + 'output_' + str(config['i_net']['interpretation_net_output_shape']) + '_drop' + str(config['i_net']['dropout']) + 'e' + str(config['i_net']['epochs']) + 'b' + str(config['i_net']['batch_size']) + '_' + config['i_net']['optimizer'] path_identifier_interpretation_net_data = ('inet' + interpretation_net_identifier + '/lnets_' + str(config['i_net']['interpretation_dataset_size']) + lambda_net_identifier + '_train_' + str(config['lambda_net']['lambda_dataset_size']) + training_string + seed_init_string + '_' + str(config['computation']['RANDOM_SEED']) + '/' + dataset_description_string[1:] + adjusted_dataset_string) paths_dict['path_identifier_interpretation_net_data'] = path_identifier_interpretation_net_data else: paths_dict = {} training_string = '_sameX' if same_training_all_lambda_nets else '_diffX' laurent_str = '_laurent' if laurent else '' monomial_vars_str = '_monvars_' + str(monomial_vars) if monomial_vars != None else '' neg_d_str = '_negd_' + str(neg_d) + '_prob_' + str(neg_d_prob) if neg_d != None else '' dataset_description_string = ('_var_' + str(n) + '_d_' + str(d) + laurent_str + monomial_vars_str + neg_d_str + '_spars_' + str(sample_sparsity) + '_amin_' + str(a_min) + '_amax_' + str(a_max) + #'_xmin_' + str(x_min) + #'_xmax_' + str(x_max) + '_xdist_' + str(x_distrib) + '_noise_' + str(noise_distrib) + '_' + str(noise) + '_' + function_generation_type ) if shift_polynomial: adjusted_dataset_string = ('bmin' + str(border_min) + 'bmax' + str(border_max) + 'lowd' + str(lower_degree_prob) + 'arand' + str(a_random_prob)) else: adjusted_dataset_string = '' if path_type == 'data_creation' or path_type == 'lambda_net': #Data Generation path_identifier_polynomial_data = ('poly_' + str(polynomial_data_size) + '_train_' + str(lambda_dataset_size) + dataset_description_string + adjusted_dataset_string + training_string) paths_dict['path_identifier_polynomial_data'] = path_identifier_polynomial_data if path_type == 'lambda_net' or path_type == 'interpretation_net': #Lambda-Net if fixed_seed_lambda_training and fixed_initialization_lambda_training: seed_init_string = '_' + str(number_different_lambda_trainings) + '-FixSeedInit' elif fixed_seed_lambda_training and not fixed_initialization_lambda_training: seed_init_string = '_' + str(number_different_lambda_trainings) + '-FixSeed' elif not fixed_seed_lambda_training and fixed_initialization_lambda_training: seed_init_string = '_' + str(number_different_lambda_trainings) + '-FixInit' elif not fixed_seed_lambda_training and not fixed_initialization_lambda_training: seed_init_string = '_NoFixSeedInit' early_stopping_string = '_ES' + str(early_stopping_min_delta_lambda) + '_' if early_stopping_lambda else '' lambda_layer_str = ''.join([str(neurons) + '-' for neurons in lambda_network_layers]) lambda_net_identifier = '_' + lambda_layer_str + str(epochs_lambda) + 'e' + early_stopping_string + str(batch_lambda) + 'b' + '_' + optimizer_lambda + '_' + loss_lambda path_identifier_lambda_net_data = ('lnets_' + str(lambda_nets_total) + lambda_net_identifier + '_train_' + str(lambda_dataset_size) + training_string + seed_init_string + '_' + str(RANDOM_SEED) + '/' + dataset_description_string[1:] + adjusted_dataset_string) paths_dict['path_identifier_lambda_net_data'] = path_identifier_lambda_net_data if path_type == 'interpretation_net': #Interpretation-Net interpretation_network_layers_string = 'dense' + ''.join([str(neurons) + '-' for neurons in dense_layers]) if convolution_layers != None: interpretation_network_layers_string += 'conv' + str(convolution_layers) if lstm_layers != None: interpretation_network_layers_string += 'lstm' + str(lstm_layers) interpretation_net_identifier = '_' + interpretation_network_layers_string + 'output_' + str(interpretation_net_output_shape) + '_drop' + str(dropout) + 'e' + str(epochs) + 'b' + str(batch_size) + '_' + optimizer path_identifier_interpretation_net_data = ('inet' + interpretation_net_identifier + '/lnets_' + str(interpretation_dataset_size) + lambda_net_identifier + '_train_' + str(lambda_dataset_size) + training_string + seed_init_string + '_' + str(RANDOM_SEED) + '/' + dataset_description_string[1:] + adjusted_dataset_string) paths_dict['path_identifier_interpretation_net_data'] = path_identifier_interpretation_net_data return paths_dict def create_folders_inet(): paths_dict = generate_paths(path_type = 'interpretation_net') try: # Create target Directory os.makedirs('./data/plotting/' + paths_dict['path_identifier_interpretation_net_data'] + '/') os.makedirs('./data/results/' + paths_dict['path_identifier_interpretation_net_data'] + '/') except FileExistsError: pass def generate_directory_structure(): directory_names = ['plotting', 'saved_polynomial_lists', 'results', 'saved_models', 'weights'] if not os.path.exists('./data'): os.makedirs('./data') text_file = open('./data/.gitignore', 'w') text_file.write('*') text_file.close() for directory_name in directory_names: path = './data/' + directory_name if not os.path.exists(path): os.makedirs(path) def generate_lambda_net_directory(): paths_dict = generate_paths(path_type = 'lambda_net') #clear files try: # Create target Directory os.makedirs('./data/weights/weights_' + paths_dict['path_identifier_lambda_net_data']) except FileExistsError: folder = './data/weights/weights_' + paths_dict['path_identifier_lambda_net_data'] for filename in os.listdir(folder): file_path = os.path.join(folder, filename) try: if os.path.isfile(file_path) or os.path.islink(file_path): os.unlink(file_path) elif os.path.isdir(file_path): shutil.rmtree(file_path) except Exception as e: print('Failed to delete %s. Reason: %s' % (file_path, e)) try: # Create target Directory os.makedirs('./data/results/weights_' + paths_dict['path_identifier_lambda_net_data']) except FileExistsError: pass ###################################################################################################################################################################################################################### ######################################################################################## RANDOM FUNCTION GENERATION FROM ############################################################################################ ################################# code adjusted, originally from: https://github.com/tirthajyoti/Machine-Learning-with-Python/tree/master/Random%20Function%20Generator ############################################## ###################################################################################################################################################################################################################### def symbolize(s): """ Converts a a string (equation) to a SymPy symbol object """ s1=s.replace(',','.') s2=s1.replace('^','**') s3=sympify(s2) return(s3) def eval_multinomial(s,vals=None,symbolic_eval=False): """ Evaluates polynomial at vals. vals can be simple list, dictionary, or tuple of values. vals can also contain symbols instead of real values provided those symbols have been declared before using SymPy """ sym_s=symbolize(s) sym_set=sym_s.atoms(Symbol) sym_lst=[] for s in sym_set: sym_lst.append(str(s)) sym_lst.sort() if symbolic_eval==False and len(sym_set)!=len(vals): print("Length of the input values did not match number of variables and symbolic evaluation is not selected") return None else: if type(vals)==list: sub=list(zip(sym_lst,vals)) elif type(vals)==dict: l=list(vals.keys()) l.sort() lst=[] for i in l: lst.append(vals[i]) sub=list(zip(sym_lst,lst)) elif type(vals)==tuple: sub=list(zip(sym_lst,list(vals))) result=sym_s.subs(sub) return result def flip(y,p): lst=[] for i in range(len(y)): f=np.random.choice([1,0],p=[p,1-p]) lst.append(f) lst=np.array(lst) return np.array(np.logical_xor(y,lst),dtype=int) @tf.function def calculate_poly_fv_tf_wrapper_new_no_tfFunction(list_of_monomial_identifiers, polynomial, evaluation_entry_list, force_complete_poly_representation=False, config=None): if config != None: globals().update(config) def calculate_poly_fv_tf(evaluation_entry): def calculate_monomial_with_coefficient_degree_by_var_wrapper(evaluation_entry): def calculate_monomial_with_coefficient_degree_by_var(input_list): degree_by_var_per_monomial = input_list[0] coefficient = input_list[1] #degree_by_var_per_monomial = gewählter degree für jede variable in monomial monomial_value_without_coefficient = tf.math.reduce_prod(tf.vectorized_map(lambda x: x[0]**tf.dtypes.cast(x[1], tf.float32), (evaluation_entry, degree_by_var_per_monomial))) return coefficient*monomial_value_without_coefficient return calculate_monomial_with_coefficient_degree_by_var if interpretation_net_output_monomials == None or force_complete_poly_representation: monomials_without_coefficient = tf.vectorized_map(calculate_monomial_without_coefficient_tf_wrapper(evaluation_entry), (list_of_monomial_identifiers)) monomial_values = tf.vectorized_map(lambda x: x[0]*x[1], (monomials_without_coefficient, polynomial)) else: if sparse_poly_representation_version == 1: monomials_without_coefficient = tf.vectorized_map(calculate_monomial_without_coefficient_tf_wrapper(evaluation_entry), (list_of_monomial_identifiers)) coefficients = polynomial[:interpretation_net_output_monomials] index_array = polynomial[interpretation_net_output_monomials:] assert index_array.shape[0] == interpretation_net_output_monomials*sparsity, 'Shape of Coefficient Indices : ' + str(index_array.shape) index_list = tf.split(index_array, interpretation_net_output_monomials) assert len(index_list) == coefficients.shape[0] == interpretation_net_output_monomials, 'Shape of Coefficient Indices Split: ' + str(len(index_list)) indices = tf.argmax(index_list, axis=1) monomial_values = tf.vectorized_map(lambda x: tf.gather(monomials_without_coefficient, x[0])*x[1], (indices, coefficients)) elif sparse_poly_representation_version == 2: coefficients = polynomial[:interpretation_net_output_monomials] index_array = polynomial[interpretation_net_output_monomials:] #tf.print('index_array.shape', index_array) assert index_array.shape[0] == interpretation_net_output_monomials*n*(d+1), 'Shape of Coefficient Indices : ' + str(index_array.shape) if False: index_list_by_monomial = tf.split(index_array, n) assert len(index_list_by_monomial) == coefficients.shape[0] == interpretation_net_output_monomials, 'Shape of Coefficient Indices Split: ' + str(len(index_list)) index_list_by_monomial_by_var = tf.split(index_list_by_monomial, d+1, axis=1) degree_by_var_per_monomial_list = tf.argmax(index_list_by_monomial_by_var, axis=2) else: index_list_by_monomial = tf.transpose(tf.split(index_array, interpretation_net_output_monomials)) index_list_by_monomial_by_var = tf.split(index_list_by_monomial, n, axis=0) index_list_by_monomial_by_var_new = [] for tensor in index_list_by_monomial_by_var: index_list_by_monomial_by_var_new.append(tf.transpose(tensor)) index_list_by_monomial_by_var = index_list_by_monomial_by_var_new #tf.print('index_list_by_monomial_by_var', index_list_by_monomial_by_var) degree_by_var_per_monomial_list = tf.transpose(tf.argmax(index_list_by_monomial_by_var, axis=2)) #tf.print('degree_by_var_per_monomial_list', degree_by_var_per_monomial_list) #tf.print('evaluation_entry', evaluation_entry) #tf.print('coefficients', coefficients) monomial_values = tf.vectorized_map(calculate_monomial_with_coefficient_degree_by_var_wrapper(evaluation_entry), (degree_by_var_per_monomial_list, coefficients)) #tf.print('monomial_values', monomial_values) polynomial_fv = tf.reduce_sum(monomial_values) #tf.print(polynomial_fv) return polynomial_fv return tf.vectorized_map(calculate_poly_fv_tf, (evaluation_entry_list)) @tf.function(jit_compile=True) def calculate_poly_fv_tf_wrapper_new(list_of_monomial_identifiers, polynomial, evaluation_entry_list, force_complete_poly_representation=False, config=None): if config != None: globals().update(config) def calculate_poly_fv_tf(evaluation_entry): def calculate_monomial_with_coefficient_degree_by_var_wrapper(evaluation_entry): def calculate_monomial_with_coefficient_degree_by_var(input_list): degree_by_var_per_monomial = input_list[0] coefficient = input_list[1] #degree_by_var_per_monomial = gewählter degree für jede variable in monomial monomial_value_without_coefficient = tf.math.reduce_prod(tf.vectorized_map(lambda x: x[0]**tf.dtypes.cast(x[1], tf.float32), (evaluation_entry, degree_by_var_per_monomial))) return coefficient*monomial_value_without_coefficient return calculate_monomial_with_coefficient_degree_by_var if interpretation_net_output_monomials == None or force_complete_poly_representation: monomials_without_coefficient = tf.vectorized_map(calculate_monomial_without_coefficient_tf_wrapper(evaluation_entry), (list_of_monomial_identifiers)) monomial_values = tf.vectorized_map(lambda x: x[0]*x[1], (monomials_without_coefficient, polynomial)) else: if sparse_poly_representation_version == 1: monomials_without_coefficient = tf.vectorized_map(calculate_monomial_without_coefficient_tf_wrapper(evaluation_entry), (list_of_monomial_identifiers)) coefficients = polynomial[:interpretation_net_output_monomials] index_array = polynomial[interpretation_net_output_monomials:] assert index_array.shape[0] == interpretation_net_output_monomials*sparsity, 'Shape of Coefficient Indices : ' + str(index_array.shape) index_list = tf.split(index_array, interpretation_net_output_monomials) assert len(index_list) == coefficients.shape[0] == interpretation_net_output_monomials, 'Shape of Coefficient Indices Split: ' + str(len(index_list)) indices = tf.argmax(index_list, axis=1) monomial_values = tf.vectorized_map(lambda x: tf.gather(monomials_without_coefficient, x[0])*x[1], (indices, coefficients)) elif sparse_poly_representation_version == 2: coefficients = polynomial[:interpretation_net_output_monomials] index_array = polynomial[interpretation_net_output_monomials:] #tf.print('index_array.shape', index_array) assert index_array.shape[0] == interpretation_net_output_monomials*n*(d+1), 'Shape of Coefficient Indices : ' + str(index_array.shape) if False: index_list_by_monomial = tf.split(index_array, n) assert len(index_list_by_monomial) == coefficients.shape[0] == interpretation_net_output_monomials, 'Shape of Coefficient Indices Split: ' + str(len(index_list)) index_list_by_monomial_by_var = tf.split(index_list_by_monomial, d+1, axis=1) degree_by_var_per_monomial_list = tf.argmax(index_list_by_monomial_by_var, axis=2) else: index_list_by_monomial = tf.transpose(tf.split(index_array, interpretation_net_output_monomials)) index_list_by_monomial_by_var = tf.split(index_list_by_monomial, n, axis=0) index_list_by_monomial_by_var_new = [] for tensor in index_list_by_monomial_by_var: index_list_by_monomial_by_var_new.append(tf.transpose(tensor)) index_list_by_monomial_by_var = index_list_by_monomial_by_var_new #tf.print('index_list_by_monomial_by_var', index_list_by_monomial_by_var) degree_by_var_per_monomial_list = tf.transpose(tf.argmax(index_list_by_monomial_by_var, axis=2)) #tf.print('degree_by_var_per_monomial_list', degree_by_var_per_monomial_list) #tf.print('evaluation_entry', evaluation_entry) #tf.print('coefficients', coefficients) monomial_values = tf.vectorized_map(calculate_monomial_with_coefficient_degree_by_var_wrapper(evaluation_entry), (degree_by_var_per_monomial_list, coefficients)) #tf.print('monomial_values', monomial_values) polynomial_fv = tf.reduce_sum(monomial_values) #tf.print(polynomial_fv) return polynomial_fv return tf.vectorized_map(calculate_poly_fv_tf, (evaluation_entry_list)) #calculate intermediate term (without coefficient multiplication) def calculate_monomial_without_coefficient_tf_wrapper(evaluation_entry): def calculate_monomial_without_coefficient_tf(coefficient_multiplier_term): return tf.math.reduce_prod(tf.vectorized_map(lambda x: x[0]**x[1], (evaluation_entry, coefficient_multiplier_term))) return calculate_monomial_without_coefficient_tf def gen_regression_symbolic(polynomial_array=None, n_samples=100, noise=0.0, noise_dist='normal', seed=42, sympy_calculation=True): from sklearn.datasets import make_friedman1, make_friedman2, make_friedman3 from sklearn.preprocessing import MinMaxScaler np.random.seed(seed) random.seed(seed) if function_generation_type == 'polynomial': if polynomial_array is not None: sympy_string = get_sympy_string_from_coefficients(polynomial_array) sympy_function=sympify(sympy_string) if polynomial_array is None: sympy_function='' for i in range(1,n_features+1): c='x'+str(i) c+=np.random.choice(['+','-'],p=[0.5,0.5]) sympy_function+=c sympy_function=sympy_function[:-1] n_features=len(sympy_function.atoms(Symbol)) eval_results=[] eval_dataset = generate_random_data_points(low=x_min, high=x_max, size=n_samples, variables=max(1, n), distrib=x_distrib) config = {'list_of_monomial_identifiers': list_of_monomial_identifiers, 'interpretation_net_output_monomials': interpretation_net_output_monomials} if sympy_calculation: for i in range(n_samples): eval_results.append(eval_multinomial(sympy_string, vals=list(eval_dataset[i]))) elif not sympy_calculation and polynomial_array is not None: config = { 'n': n, #'inet_loss': inet_loss, 'sparsity': sparsity, #'lambda_network_layers': lambda_network_layers, #'interpretation_net_output_shape': interpretation_net_output_shape, 'RANDOM_SEED': RANDOM_SEED, #'nas': nas, #'number_of_lambda_weights': number_of_lambda_weights, 'interpretation_net_output_monomials': interpretation_net_output_monomials, #'list_of_monomial_identifiers': list_of_monomial_identifiers, 'x_min': x_min, 'x_max': x_max, } try: config['interpretation_net_output_monomials'] = interpretation_net_output_monomials except: config['interpretation_net_output_monomials'] = None eval_results = calculate_poly_fv_tf_wrapper_new(return_float_tensor_representation(list_of_monomial_identifiers), return_float_tensor_representation(polynomial_array), return_float_tensor_representation(eval_dataset), force_complete_poly_representation=True, config=config) eval_results=np.array(eval_results) eval_results=eval_results.reshape(n_samples,1) if noise_dist=='normal': noise_sample=noise*np.random.normal(loc=0, scale=np.max(eval_results)-
np.min(eval_results)
numpy.min
# -*- coding: utf-8 -*- import json import math import os import platform import random import re import sys import time from collections import OrderedDict from io import StringIO import requests import numpy as np from scipy import optimize __author__ = "<NAME> and <NAME>" __version__ = "2022.06.14" __license__ = "MIT" def removeHTMLTags(s): """Remove HTML tags, notably for use as page title""" return re.sub('<[^<]+?>', '', s) def finishWebPage(outbuffer): """ Write the footer and finish the page """ print('<div id="footer" class="content">') print('Code version: ' + __version__ + ' (running on Python ' + platform.python_version() + ')<br/>') print('<script type="text/javascript">var endTime = %g;' % time.perf_counter()) print('document.write("Execution time: " + (endTime-startTime).toFixed(3) + " seconds<br/>");') print('if(typeof isOrtho !== \'undefined\') document.write("Specific (faster) code for orthorhombic case was used.");') print('</script></div>') print('</div>') print('</body></html>') return outbuffer.getvalue() def writeHeader(outbuffer, title="Elastic Tensor Analysis"): """ Write the header of the HTML page """ print(""" <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html> <head> <title>%s</title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <link rel="stylesheet" type="text/css" href="/default.css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/npm/[email protected]/distrib/jsxgraph.css" /> <script src="https://cdn.jsdelivr.net/npm/[email protected]/distrib/jsxgraphcore.js"></script> <script src="http://cdn.plot.ly/plotly-latest.min.js"></script> <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/1.12.4/jquery.min.js"></script> </head> """ % (title)) # printTitle writes the introduction of Elate def printTitle(outbuffer, title="Elastic Tensor Analysis"): writeHeader(outbuffer, title) print(""" <body> <div class="content"> <h1><a href="/elate">ELATE: Elastic tensor analysis</a></h1> <p>Welcome to ELATE, the online tool for analysis of elastic tensors, developed by <b><NAME></b> and <b><a href="http://coudert.name"><NAME></a></b> at <a href="http://www.chimie-paristech.fr/molsim/">CNRS / Chimie ParisTech</a>. <br/> If you use the software in published results (paper, conference, etc.), please cite the <a href="http://dx.doi.org/10.1088/0953-8984/28/27/275201">corresponding paper</a> (<em><NAME></em>, 2016, 28, 275201) and give the website URL.</p> <p>ELATE is <a href="https://github.com/fxcoudert/elate">open source software</a>. Any queries or comments are welcome at <script type="text/javascript"> //<![CDATA[ var c_="";for(var o5=0;o5<411;o5++)c_+=String.fromCharCode(("s%oz65j5>oJ.~~vs!Kt00}.~|}{\\"$s~%}!s0Kv#\\"wv<s!~tjjK{j5wo#zH}<j5s!z~qo6s~=u=i:00ikk>97a6!#|w<u!t{}vQ!o}Qsr?6F8G9:B8D9>@?7>a9!#|w<u!t{}vQ!o}QsrB67Dj59}qr$!s8#vq{wsw~;!oAA\\"wA#qsj5v!<~sozsq=6=A:u00970i0<ikk>a9!#|w<u!t{}vQ!o}QsrA69DDD>:E\\'7@<7s!z~qo6sjj==8:uN070j59j5jj.0|}}{\\"$}s#$0Kv#\\"wv<s!Ktj5jjj5jjL0\\'t14>O>>DBqI$}sr#!14>>>>BDqIwvw{sO~;!o\\"ws#vq14>>B>ID!t=JLo<j5s!z~qo6sO=u=0:705<!s~zoqs6=6<76<7=u:02@2?07<\\"$p\\"#!6?77".charCodeAt(o5)-(14)+0x3f)%(2*6+83)+64-32);document.write(eval(c_)) //]]> </script> </p> """) # 3D plot functions ################################################################################################ def write3DPlotData(dataX, dataY, dataZ, dataR, n, opacity=1.0): showcont = "true" if (opacity != 1.0): showcont = "false" if (n == 1): js = OrderedDict([ ("x", dataX), ("y", dataY), ("z", dataZ), ("text", dataR), ("showscale", "false"), ("colorscale", "[[\'0\',\'rgb(22,136,51)\'],[\'0.125\',\'rgb(61,153,85)\'],[\'0.25\',\'rgb(121,178,136)\'],[\'0.375\',\'rgb(181,204,187)\'],[\'0.5\',\'rgb(195,230,200)\'],[\'0.625\',\'rgb(181,204,187)\'],[\'0.75\',\'rgb(121,178,136)\'],[\'0.875\',\'rgb(61,153,85)\'],[\'1\',\'rgb(22,136,51)\']]"), ("zsmooth", "'fast'"), ("type", "'surface'"), ("hoverinfo", "'text'"), ("opacity", opacity), ("contours", "{x :{ show:"+showcont+", color: 'rgb(192,192,192)'},y :{ show:"+showcont+", color: 'rgb(192,192,192)'},z :{ show:"+showcont+", color: 'rgb(192,192,192)'}}") ]) if (n == 2): js = OrderedDict([ ("x", dataX), ("y", dataY), ("z", dataZ), ("text", dataR), ("showscale", "false"), ("colorscale", "[[\'0\',\'rgb(180,4,38)\'],[\'0.125\',\'rgb(222,96,77)\'],[\'0.25\',\'rgb(244,154,123)\'],[\'0.375\',\'rgb(245,196,173)\'],[\'0.5\',\'rgb(246,216,201)\'],[\'0.625\',\'rgb(245,196,173)\'],[\'0.75\',\'rgb(244,154,123)\'],[\'0.875\',\'rgb(222,96,77)\'],[\'1\',\'rgb(180,4,38)\']]"), ("zsmooth", "'fast'"), ("type", "'surface'"), ("hoverinfo", "'text'"), ("opacity", opacity), ("contours", "{x :{ show:"+showcont+", color: 'rgb(192,192,192)'},y :{ show:"+showcont+", color: 'rgb(192,192,192)'},z :{ show:"+showcont+", color: 'rgb(192,192,192)'}}") ]) if (n == 3): js = OrderedDict([ ("x", dataX), ("y", dataY), ("z", dataZ), ("text", dataR), ("showscale", "false"), ("colorscale", "[[\'0\',\'rgb(59,76,192)\'],[\'0.125\',\'rgb(98,130,234)\'],[\'0.25\',\'rgb(141,176,254)\'],[\'0.375\',\'rgb(184,208,249)\'],[\'0.5\',\'rgb(207,223,250)\'],[\'0.625\',\'rgb(184,208,249)\'],[\'0.75\',\'rgb(141,176,254)\'],[\'0.875\',\'rgb(98,130,234)\'],[\'1\',\'rgb(59,76,192)\']]"), ("zsmooth", "'fast'"), ("type", "'surface'"), ("hoverinfo", "'text'"), ("opacity", opacity), ("contours", "{x :{ show:"+showcont+", color: 'rgb(192,192,192)'},y :{ show:"+showcont+", color: 'rgb(192,192,192)'},z :{ show:"+showcont+", color: 'rgb(192,192,192)'}}") ]) print(json.dumps(js, indent=3).replace('\"', '') + ";") def make3DPlot(func, legend='', width=600, height=600, npoints=200): str1 = legend.split("\'")[0] str2 = legend.split("\'")[1] u = np.linspace(0, np.pi, npoints) v = np.linspace(0, 2*np.pi, 2*npoints) r = np.zeros(len(u)*len(v)) dataX = [[0.0 for i in range(len(v))] for j in range(len(u))] dataY = [[0.0 for i in range(len(v))] for j in range(len(u))] dataZ = [[0.0 for i in range(len(v))] for j in range(len(u))] dataR = [["0.0" for i in range(len(v))] for j in range(len(u))] count = 0 for cu in range(len(u)): for cv in range(len(v)): r_tmp = func(u[cu], v[cv]) z = r_tmp * np.cos(u[cu]) x = r_tmp * np.sin(u[cu]) * np.cos(v[cv]) y = r_tmp * np.sin(u[cu]) * np.sin(v[cv]) dataX[cu][cv] = x dataY[cu][cv] = y dataZ[cu][cv] = z dataR[cu][cv] = "'E = "+str(float(int(10*r_tmp))/10.0)+" GPa, "+"\u03B8 = "+str(float(int(10*u[cu]*180/np.pi))/10.0)+"\u00B0, "+"\u03c6 = "+str(float(int(10*v[cv]*180/np.pi))/10.0)+"\u00B0'" count = count+1 i = random.randint(0, 100000) print('<div class="plot3D">') print('<div id="box%d" style="width: %dpx; height: %dpx; display:block;"></div>' % (i, width, height)) print('</div>') print('<script type="text/javascript">') print("var trace =") write3DPlotData(dataX, dataY, dataZ, dataR, 1) print("var data = [trace]") print("var layout =") layout = {"title": "\'"+str1+"\\"+"\'"+str2+"\'", "width": "650", "height": "700", "autosize": "false", "autorange": "true", "margin": "{l: 65, r: 50, b: 65, t: 90}"} print(json.dumps(layout, indent=3).replace('\\\\', '\\').replace('\"', '') + ";") print("Plotly.newPlot('box%d',data,layout);" % (i)) print('</script>') def make3DPlotPosNeg(func, legend='', width=600, height=600, npoints=200): u = np.linspace(0, np.pi, npoints) v = np.linspace(0, 2*np.pi, 2*npoints) dataX1 = [[0.0 for i in range(len(v))] for j in range(len(u))] dataY1 = [[0.0 for i in range(len(v))] for j in range(len(u))] dataZ1 = [[0.0 for i in range(len(v))] for j in range(len(u))] dataR1 = [["0.0" for i in range(len(v))] for j in range(len(u))] count = 0 for cu in range(len(u)): for cv in range(len(v)): r_tmp = max(0, func(u[cu], v[cv])) z = r_tmp * np.cos(u[cu]) x = r_tmp * np.sin(u[cu]) * np.cos(v[cv]) y = r_tmp * np.sin(u[cu]) * np.sin(v[cv]) dataX1[cu][cv] = x dataY1[cu][cv] = y dataZ1[cu][cv] = z dataR1[cu][cv] = "'"+"\u03B2 = "+str(float(int(10*r_tmp))/10.0)+" TPa'"+"+'-1'.sup()+"+"', \u03B8 = "+str(float(int(10*u[cu]*180/np.pi))/10.0)+"\u00B0, "+"\u03c6 = "+str(float(int(10*v[cv]*180/np.pi))/10.0)+"\u00B0'" count = count+1 dataX2 = [[0.0 for i in range(len(v))] for j in range(len(u))] dataY2 = [[0.0 for i in range(len(v))] for j in range(len(u))] dataZ2 = [[0.0 for i in range(len(v))] for j in range(len(u))] dataR2 = [["0.0" for i in range(len(v))] for j in range(len(u))] count = 0 for cu in range(len(u)): for cv in range(len(v)): r_tmp = max(0, -func(u[cu], v[cv])) z = r_tmp *
np.cos(u[cu])
numpy.cos
#!/usr/bin/env python3 import numpy as np from matplotlib import pyplot as plt from scipy.optimize import minimize from scipy.signal import hann from scipy import fft from LoLIM.utilities import v_air, RTD, natural_sort import LoLIM.utilities as util from LoLIM.antenna_response import getGalaxyCalibrationData, calibrated_AARTFAAC_model from LoLIM.signal_processing import locate_data_loss, data_cut_inspan from LoLIM.pol_beamforming.intensity_plotting import image_plotter from LoLIM.pol_beamforming import cython_beamforming_tools_centerT as cyt ###### tools for picking antennas ##### class antenna_picker_parent: def choose(self, TBB_file, X_antNames, X_XYZs, X_antStartTimes, X_cal, Y_antNames, Y_XYZs, Y_antStartTimes, Y_cal): """ return two lists. First list is indeces of X_antNames to use, second list is indeces of Y_antNames to use""" print("NOT IMPLEMENTED") quit() class outermost_antPicker( antenna_picker_parent ): """pick N outermost antennas. Insures equal number X and Y""" def __init__(self, N): self.N = N if N == 0: print('no') quit() def choose(self, TBB_file, X_antNames, X_XYZs, X_antStartTimes, X_cal, Y_antNames, Y_XYZs, Y_antStartTimes, Y_cal): X_out = [] if len(X_antNames) > 0: sorter = np.argsort( [int(n) for n in X_antNames] ) i = min( len(X_antNames), self.N ) X_out = sorter[-i:] Y_out = [] if len(Y_antNames) > 0: sorter = np.argsort( [int(n) for n in Y_antNames] ) i = min( len(Y_antNames), self.N ) Y_out = sorter[-i:] N_X = len(X_out) N_Y = len(Y_out) if N_X != N_Y: N = min(N_X, N_Y) X_out = X_out[N] Y_out = Y_out[N] return X_out, Y_out ### TODO: increase wing-size with han-width class beamformer_3D: def __init__(self, center_XYZ, voxelDelta_XYZ, numVoxels_XYZ, minTraceLength_samples, imaging_half_hann_length_samples, TBB_file_dict, RFI_data_filters_dict, frequency_width_factor, antenna_picker=None, store_antenna_data=False): ## basic input options setting center_XYZ = np.array( center_XYZ, dtype=np.double ) voxelDelta_XYZ = np.array( voxelDelta_XYZ, dtype=np.double ) numVoxels_XYZ = np.array( numVoxels_XYZ, dtype=np.int ) # if minTraceLength_samples < 100: # print("WARNING: should probably not beamform less than 100 points at a time") self.center_XYZ = center_XYZ self.voxelDelta_XYZ = voxelDelta_XYZ self.numVoxels_XYZ = numVoxels_XYZ self.minTraceLength_samples = minTraceLength_samples self.half_minTrace = int(round( self.minTraceLength_samples/2 )) self.imaging_half_hann_length_samples = imaging_half_hann_length_samples self.TBB_file_dict = TBB_file_dict self.RFI_data_filters_dict = RFI_data_filters_dict self.frequency_width_factor = frequency_width_factor self.store_antenna_data = store_antenna_data ## set location arrays self.X_array = np.arange(numVoxels_XYZ[0], dtype=np.double) self.X_array -= int(numVoxels_XYZ[0]/2) centerX_voxel = np.where(self.X_array==0)[0][0] self.X_array *= voxelDelta_XYZ[0] self.X_array += center_XYZ[0] self.Y_array = np.arange(numVoxels_XYZ[1], dtype=np.double) self.Y_array -= int(numVoxels_XYZ[1]/2) centerY_voxel = np.where(self.Y_array==0)[0][0] self.Y_array *= voxelDelta_XYZ[1] self.Y_array += center_XYZ[1] self.Z_array = np.arange(numVoxels_XYZ[2], dtype=np.double) self.Z_array -= int(numVoxels_XYZ[2]/2) centerZ_voxel = np.where(self.Z_array==0)[0][0] self.Z_array *= voxelDelta_XYZ[2] self.Z_array += center_XYZ[2] self.center_voxel = np.array([centerX_voxel, centerY_voxel, centerZ_voxel], dtype=np.int) if antenna_picker is None: antenna_picker = outermost_antPicker(3) elif isinstance(antenna_picker, int): antenna_picker = outermost_antPicker( antenna_picker ) ### organize antennas and stations ### self.station_names = natural_sort( [ sname for sname in TBB_file_dict.keys()] ) self.station_TBBfiles = [ TBB_file_dict[sname] for sname in self.station_names ] self.station_filters = [ RFI_data_filters_dict[ sname ] for sname in self.station_names] self.num_stations = len( self.station_names ) # collect antenna names self.stationi_to_antRange = [] self.stationi_to_anti = [0] self.anti_to_stati = [] self.all_antnames = [] self.all_antXYZs = [] self.all_antStartTimes = [] self.antenna_polarization = [] ## 0 for X-dipole, 1 for Y-dipole self.amplitude_calibrations = [] for stat_i, stat_TBB in enumerate(self.station_TBBfiles): ant_names = stat_TBB.get_antenna_names() ant_times = stat_TBB.get_time_from_second() ant_locs = stat_TBB.get_LOFAR_centered_positions() freq_filter_info = self.station_filters[stat_i].RFI_data early_N = len(self.all_antnames) cal_antenna_names = freq_filter_info["antenna_names"] cleaned_power = freq_filter_info["cleaned_power"] timestamp = freq_filter_info["timestamp"] # analyzed_blocksize = freq_filter_info["blocksize"] even_cal_factors, odd_cal_factors = getGalaxyCalibrationData(cleaned_power, timestamp, antenna_type="outer" ) new_X_antNames = [] new_X_XYZs = [] new_X_antStartTimes = [] new_X_cal = [] new_Y_antNames = [] new_Y_XYZs = [] new_Y_antStartTimes = [] new_Y_cal = [] for cal_ant_i in range(0, int(len(cal_antenna_names)/2)): even_ant_name = cal_antenna_names[ cal_ant_i*2 ] odd_ant_name = cal_antenna_names[ cal_ant_i*2 + 1 ] if np.isfinite( even_cal_factors[cal_ant_i] ) and (even_ant_name in ant_names): even_ant_i = ant_names.index( even_ant_name ) new_Y_antNames.append( even_ant_name ) new_Y_XYZs.append( ant_locs[even_ant_i] ) new_Y_antStartTimes.append( ant_times[even_ant_i] ) new_Y_cal.append( even_cal_factors[cal_ant_i] ) if np.isfinite( odd_cal_factors[cal_ant_i] ) and (odd_ant_name in ant_names): odd_ant_i = ant_names.index( odd_ant_name ) new_X_antNames.append( odd_ant_name ) new_X_XYZs.append( ant_locs[odd_ant_i] ) new_X_antStartTimes.append( ant_times[odd_ant_i] ) new_X_cal.append( odd_cal_factors[cal_ant_i] ) X_indeces, Y_indeces = antenna_picker.choose( TBB_file=stat_TBB, X_antNames=new_X_antNames, X_XYZs=new_X_XYZs, X_antStartTimes=new_X_antStartTimes, X_cal=new_X_cal, Y_antNames=new_Y_antNames, Y_XYZs=new_Y_XYZs, Y_antStartTimes=new_Y_antStartTimes, Y_cal=new_Y_cal) self.anti_to_stati += [stat_i]*( len(X_indeces) + len(Y_indeces) ) self.antenna_polarization += [0]*len(X_indeces) self.antenna_polarization += [1]*len(Y_indeces) for i in X_indeces: self.all_antnames.append( new_X_antNames[i] ) self.all_antXYZs.append( new_X_XYZs[i] ) self.all_antStartTimes.append( new_X_antStartTimes[i] ) self.amplitude_calibrations.append( new_X_cal[i] ) for i in Y_indeces: self.all_antnames.append( new_Y_antNames[i] ) self.all_antXYZs.append( new_Y_XYZs[i] ) self.all_antStartTimes.append( new_Y_antStartTimes[i] ) self.amplitude_calibrations.append( new_Y_cal[i] ) self.stationi_to_antRange.append( slice(early_N, len(self.all_antnames) ) ) self.stationi_to_anti.append( len(self.all_antnames) ) self.all_antXYZs = np.array(self.all_antXYZs , dtype=np.double) ## turn off calibration delays self.all_antStartTimes = np.array(self.all_antStartTimes , dtype=np.double) # self.all_antStartTimes = np.zeros( len(self.all_antStartTimes), dtype=np.double ) self.antenna_polarization = np.array(self.antenna_polarization , dtype=np.intc) self.anti_to_stati = np.array(self.anti_to_stati, dtype=np.int) ## turn off amplitude calibrations self.amplitude_calibrations = np.array(self.amplitude_calibrations , dtype=np.double) # self.amplitude_calibrations = np.ones(len(self.amplitude_calibrations) , dtype=np.double) self.stationi_to_anti = np.array(self.stationi_to_anti, dtype=np.int) self.num_antennas = len(self.all_antnames) print(self.num_antennas, 'antennas') #### initial engine setup self.geometric_delays = np.empty( self.num_antennas, dtype=np.double ) ## time delay from center voxel to antenna (positive) self.min_DTs = np.empty( self.num_antennas, dtype=np.double ) ## minimum difference of geo delay over all voxels from center (negative!) self.max_DTs = np.empty( self.num_antennas, dtype=np.double ) ## maximum difference of geo delay over all voxels from center (positive!) self.index_shifts = np.empty(self.num_antennas, dtype=np.int) ## index shifts such that if a pulse from center arrives at this index difference on all antennas self.cal_shifts = np.empty( self.num_antennas, dtype=np.double ) self.reference_XYZ = np.array([0.0 ,0.0, 0.0], dtype=np.double) self.engine = cyt.beamform_engine3D( X_array=self.X_array, Y_array=self.Y_array, Z_array=self.Z_array, center_XYZ=center_XYZ, reference_XYZ=self.reference_XYZ, antenna_locs=self.all_antXYZs, ant_startTimes=self.all_antStartTimes, antenna_polarizations=self.antenna_polarization, anti_to_stat_i=self.anti_to_stati, stati_to_anti=self.stationi_to_anti, geometric_delays_memory=self.geometric_delays, min_DTs_memory=self.min_DTs, max_DTs_memory=self.max_DTs, index_shifts_memory=self.index_shifts, cal_shifts_memory=self.cal_shifts) earliest_ant_i = np.where( self.index_shifts==0 )[0][0] self.center_delay = self.all_antStartTimes[earliest_ant_i] - self.geometric_delays[earliest_ant_i] # defined so that arrival_index = (emisstion_T-self.center_delay)/5.0e-9 + self.index_shifts print('setup frequencies') #### calculate trace lengths self.earlyHalf_lengths = np.empty( self.num_antennas, dtype=np.int ) self.lateHalf_lengths = np.empty( self.num_antennas, dtype=np.int ) for ant_i in range(self.num_antennas): self.earlyHalf_lengths[ ant_i ] = int(abs( self.min_DTs[ant_i]/(5.0e-9) )) + 1 self.lateHalf_lengths[ ant_i ] = int(abs( self.max_DTs[ant_i]/(5.0e-9) )) + 1 self.max_earlyHalf_length = np.max( self.earlyHalf_lengths ) self.max_lateHalf_length = np.max( self.lateHalf_lengths ) self.total_trace_length = fft.next_fast_len( self.max_earlyHalf_length + self.max_lateHalf_length + minTraceLength_samples + 2*imaging_half_hann_length_samples ) self.starting_edge_length = self.max_earlyHalf_length + imaging_half_hann_length_samples print('total trace length', self.total_trace_length) self.trace_loadBuffer_length = self.total_trace_length # this is buffer before arrival sample. this is a little long, probably only need half this! self.frequencies = np.fft.fftfreq(self.total_trace_length, d=5.0e-9) print('Jones Matrices') #### jones matrices ## first used JM pointing upwards to get frequency range antenna_model = calibrated_AARTFAAC_model() # upwards_JM = antenna_model.Jones_Matrices(self.frequencies, zenith=0.0, azimuth=0.0) upwards_JM = antenna_model.Jones_ONLY(self.frequencies, zenith=0.0, azimuth=0.0) half_F = int( len(self.frequencies)/2 ) lowest_Fi = np.where( self.frequencies[:half_F]>30e6 )[0][0] highest_Fi = np.where( self.frequencies[:half_F]<80e6 )[0][-1] self.F30MHZ_i = lowest_Fi self.F80MHZ_i = highest_Fi # posFreq_amps = np.abs( upwards_JM[lowest_Fi:highest_Fi, 0,0] ) posFreq_amps = np.array( [ np.linalg.norm(upwards_JM[fi,:,:],ord=2) for fi in range(lowest_Fi,highest_Fi) ] ) max_freq_index = np.argmax( posFreq_amps ) + lowest_Fi self.max_freq_index = max_freq_index ref_amp = np.max(posFreq_amps)*frequency_width_factor if posFreq_amps[0] <= ref_amp: self.start_freq_index = np.where( np.logical_and( posFreq_amps[:-1]<=ref_amp, posFreq_amps[1:]>ref_amp) )[0][0] else: self.start_freq_index = 0 if posFreq_amps[-1] <= ref_amp: self.end_freq_index = np.where( np.logical_and( posFreq_amps[:-1]>=ref_amp, posFreq_amps[1:]<ref_amp) )[0][0] else: self.end_freq_index = len( posFreq_amps ) self.antenna_norms_in_range = np.array( posFreq_amps[self.start_freq_index:self.end_freq_index ] ) self.start_freq_index += lowest_Fi self.end_freq_index += lowest_Fi self.beamformed_freqs = self.frequencies[ self.start_freq_index:self.end_freq_index ] self.num_freqs = self.end_freq_index-self.start_freq_index print('frequency range:', self.frequencies[self.start_freq_index], self.frequencies[self.end_freq_index]) print(' response amps (start, peak, end)', posFreq_amps[self.start_freq_index-lowest_Fi], np.max(posFreq_amps), posFreq_amps[self.end_freq_index-lowest_Fi-1 ]) print(' number frequency points:', self.num_freqs ) ## ALL jones matrices! self.cut_jones_matrices = np.empty( (self.num_stations, self.num_freqs,2,2), dtype=np.cdouble ) self.JM_condition_numbers = np.empty(self.num_stations, dtype=np.double) ## both at peak frequency self.JM_magnitudes = np.empty(self.num_stations, dtype=np.double) self.station_R = np.empty(self.num_stations, dtype=np.double) ## distance to center pixel for stat_i in range(self.num_stations): ant_XYZs = self.all_antXYZs[ self.stationi_to_antRange[ stat_i ] ] stat_XYZ = np.average( ant_XYZs, axis=0 ) ## from station to source! delta_XYZ = center_XYZ - stat_XYZ center_R = np.linalg.norm( delta_XYZ ) center_zenith = np.arccos(delta_XYZ[2]/center_R)*RTD center_azimuth = np.arctan2( delta_XYZ[1], delta_XYZ[0] )*RTD # self.cut_jones_matrices[stat_i, :,:,:] = antenna_model.Jones_Matrices(self.beamformed_freqs, zenith=center_zenith, azimuth=center_azimuth) self.cut_jones_matrices[stat_i, :,:,:] = antenna_model.Jones_ONLY(self.beamformed_freqs, zenith=center_zenith, azimuth=center_azimuth) self.JM_condition_numbers[stat_i] = np.linalg.cond( self.cut_jones_matrices[stat_i, max_freq_index-self.start_freq_index, :,:] ) self.JM_magnitudes[stat_i] = np.linalg.norm( self.cut_jones_matrices[stat_i, max_freq_index-self.start_freq_index, :,:], ord=2 ) self.station_R[stat_i] = center_R #### windowing matrices! self.engine.set_antenna_functions( self.total_trace_length, self.start_freq_index, self.end_freq_index, self.frequencies, self.cut_jones_matrices) self.engine.turn_on_all_antennas() self.set_weights_by_station() ### some memory self.blocksize = self.station_filters[0].blocksize self.hann_sample_length = int( self.station_filters[0].half_window_percent * self.blocksize ) ## loading self.loading_temp = np.empty(self.blocksize, dtype=np.double) self.loaded_data = np.empty( (self.num_antennas, self.blocksize-2*self.hann_sample_length), dtype=np.cdouble ) self.loaded_samples = np.empty( self.num_antennas, dtype=np.int ) self.data_loss_spans = [ [] ]*self.num_antennas self.loaded_indexRange = [np.inf, -np.inf] ## windowing self.temp_window = np.empty( self.total_trace_length, dtype=np.cdouble ) self.antenna_windowed = np.empty( self.num_antennas, dtype=np.int ) ## false if data loss, true otherwise self.imaging_hann = hann(2*imaging_half_hann_length_samples) ## this will include the data that was loaded into the imager if self.store_antenna_data : self.antenna_data = np.zeros( (self.num_antennas,self.total_trace_length), dtype=np.cdouble ) self.correction_matrix = None self.temp_inversion_matrix = np.empty((3, 3), dtype=np.cdouble) self.inverted_matrix = np.empty((3, 3), dtype=np.cdouble) self.invertrix = cyt.SVD_psuedoinversion(3, 3) self.ifft_full_tmp = self.get_empty_partial_inverse_FFT() ### weights and condition numbers def set_weights_by_station(self, station_weights=None): if station_weights is None: station_weights = np.ones( self.num_stations, dtype=np.double ) station_weights /= np.sum(station_weights) station_weights *= self.num_stations self.used_station_weights = station_weights for stat_i in range( self.num_stations ): for ant_i in range(self.stationi_to_anti[stat_i], self.stationi_to_anti[stat_i+1]): self.engine.set_antennaWeight(ant_i, station_weights[stat_i] ) def calc_CN(self, station_weights=None): if station_weights is not None: self.set_weights_by_station( station_weights ) self.TMP_oPol_matrix = self.engine.get_correctionMatrix( self.TMP_oPol_matrix ) ACN = np.linalg.cond( self.TMP_oPol_matrix ) A_mag = np.linalg.norm(self.TMP_oPol_matrix , ord=2) part_B = 0 part_C = 0 for stat_i in range( self.num_stations ): B = self.JM_condition_numbers[stat_i]*self.used_station_weights[stat_i]/( self.JM_magnitudes[stat_i]*self.station_R[stat_i] ) part_B += B*B C = self.JM_magnitudes[stat_i]/self.station_R[stat_i] part_C += C*C return ACN*np.sqrt(part_B/self.num_stations)*np.sqrt(part_C)/A_mag def calc_set_weights(self): F = self.calc_CN self.TMP_oPol_matrix = None ## temporary memory needed for the function station_weights_guess = np.ones( self.num_stations, dtype=np.double ) bound = [[0,np.inf] for i in range(self.num_stations)] ret = minimize( F, station_weights_guess, method='powell', bounds=bound, options={'maxiter': 1000, 'xtol':1e-30, 'ftol':1e-30}) self.set_weights_by_station( ret.x ) self.correction_matrix = self.engine.get_correctionMatrix() return ret ### for loading and manipulating data ### def load_raw_data(self, sky_T): print('loading') self.loaded_skyT = sky_T first_index = int(round( (sky_T - self.center_delay)/5.0e-9 )) - (self.hann_sample_length + self.trace_loadBuffer_length) self.loaded_indexRange = [ first_index+self.hann_sample_length, first_index+self.blocksize-self.hann_sample_length ] for ant_i in range(self.num_antennas): ant_name = self.all_antnames[ ant_i ] stat_i = self.anti_to_stati[ ant_i ] TBB_file = self.station_TBBfiles[ stat_i ] freq_filter = self.station_filters[ stat_i ] start_sample = self.index_shifts[ant_i] + first_index self.loading_temp[:] = TBB_file.get_data(start_sample, self.blocksize, antenna_ID=ant_name ) dataLoss, number = locate_data_loss( self.loading_temp[ self.hann_sample_length:-self.hann_sample_length ], 5 ) self.data_loss_spans[ ant_i ] = dataLoss self.loaded_data[ant_i, :] = freq_filter.filter( self.loading_temp )[ self.hann_sample_length:-self.hann_sample_length ] self.loaded_data[ant_i, :] *= self.amplitude_calibrations[ant_i] self.loaded_samples[ant_i] = start_sample+self.hann_sample_length def window_data(self, sky_T, average_station=None): if average_station is not None: ave_stat_i = self.station_names.index( average_station ) amp_ave = 0 num_amp_ave = 0 sample_center = int(round( (sky_T - self.center_delay)/5.0e-9 )) earliest_sample = sample_center - self.max_earlyHalf_length - self.half_minTrace latest_sample = sample_center + self.max_lateHalf_length + self.half_minTrace if earliest_sample<self.loaded_indexRange[0] or latest_sample>self.loaded_indexRange[1]: self.load_raw_data( sky_T ) # print('windowing') n = self.imaging_half_hann_length_samples for ant_i in range(self.num_antennas): ant_center_sample = sample_center + self.index_shifts[ant_i] - self.loaded_samples[ant_i] ant_first_sample = ant_center_sample - self.earlyHalf_lengths[ant_i] - self.half_minTrace ant_final_sample = ant_center_sample + self.lateHalf_lengths[ant_i] + self.half_minTrace width = ant_final_sample - ant_first_sample has_data_loss = data_cut_inspan( self.data_loss_spans[ ant_i ], ant_first_sample, ant_final_sample ) if has_data_loss: # self.windowed_data[ant_i] = 0.0 self.engine.set_antennaData_zero( ant_i ) self.antenna_windowed[ ant_i ] = 0 continue self.antenna_windowed[ant_i] = 1 delay_samples = self.max_earlyHalf_length - self.earlyHalf_lengths[ant_i] self.temp_window[:] = 0.0 self.temp_window[delay_samples:delay_samples+width] = self.loaded_data[ant_i, ant_first_sample:ant_final_sample] self.temp_window[delay_samples: delay_samples+n] *= self.imaging_hann[:n] self.temp_window[delay_samples+width-n: delay_samples+width] *= self.imaging_hann[n:] if (average_station is not None) and self.anti_to_stati[ant_i] == ave_stat_i: amp_ave += np.max( np.abs( self.temp_window ) )/self.amplitude_calibrations[ant_i] ## DE-calibrate num_amp_ave += 1 if self.store_antenna_data : self.antenna_data[ant_i, :] = self.temp_window self.engine.set_antennaData(ant_i, self.temp_window )#.view(np.double) ) if (average_station is not None): self.ave_stat_i = ave_stat_i self.station_ave_amp = amp_ave/num_amp_ave else: self.ave_stat_i = None def plot_data(self, sky_T, source_XYZT=None): self.plotted_sky_T = sky_T sample_center = int(round( (sky_T - self.center_delay)/5.0e-9 )) earliest_sample = sample_center - self.max_earlyHalf_length - self.half_minTrace latest_sample = sample_center + self.max_lateHalf_length + self.half_minTrace # if earliest_sample<self.loaded_indexRange[0] or latest_sample>self.loaded_indexRange[1]: # self.load_raw_data( sky_T ) # n = self.imaging_half_hann_length_samples for stat_i in range( self.num_stations ): signal_dt = [] # cal_sum = 0 # n_ants = 0 max_amp = 0 for ant_i in range(self.stationi_to_anti[stat_i], self.stationi_to_anti[stat_i+1]): ant_center_sample = sample_center + self.index_shifts[ant_i] - self.loaded_samples[ant_i] ant_first_sample = ant_center_sample - self.earlyHalf_lengths[ant_i] - self.half_minTrace data = self.antenna_data[ant_i, :] abs_window = np.abs( data ) max_ant_amp = np.max( abs_window ) if max_ant_amp > max_amp: max_amp = max_ant_amp # cal_sum += self.amplitude_calibrations[ant_i] # n_ants += 1 if source_XYZT is not None: ant_XYZ = self.all_antXYZs[ant_i] reception_time = np.linalg.norm(ant_XYZ - source_XYZT[:3])/v_air first_sample_time = self.all_antStartTimes[ant_i] + (self.loaded_samples[ant_i] + ant_first_sample)*(5.0e-9) if not np.isfinite(source_XYZT[3]): signal_t = np.argmax( abs_window )*(5.0e-9) source_XYZT[3] = first_sample_time+signal_t - reception_time reception_time += source_XYZT[3] signal_dt.append( reception_time-first_sample_time ) else: signal_dt.append( None ) # print(stat_i, max_amp*n_ants/cal_sum) for ant_i, sdt in zip(range(self.stationi_to_anti[stat_i], self.stationi_to_anti[stat_i+1]), signal_dt): p = self.antenna_polarization[ant_i] data = np.array( self.antenna_data[ant_i, :] ) data *= 1.0/max_amp offset = stat_i*3 + p*0.75 plt.plot( np.abs(data) + offset ) plt.plot( np.real(data) + offset ) if source_XYZT is not None: sdt_samples = sdt/(5.0e-9) plt.plot( [sdt_samples,sdt_samples], [offset,offset+1] ) plt.annotate( self.station_names[stat_i], (0, stat_i*3) ) def plt_sourceLines(self, source_XYZT, color): sample_center = int(round( (self.plotted_sky_T - self.center_delay)/5.0e-9 )) # earliest_sample = sample_center - self.max_earlyHalf_length - self.half_minTrace # latest_sample = sample_center + self.max_lateHalf_length + self.half_minTrace # n = self.imaging_half_hann_length_samples for stat_i in range( self.num_stations ): for ant_i in range(self.stationi_to_anti[stat_i], self.stationi_to_anti[stat_i+1]): ant_center_sample = sample_center + self.index_shifts[ant_i] - self.loaded_samples[ant_i] ant_first_sample = ant_center_sample - self.earlyHalf_lengths[ant_i] - self.half_minTrace # ant_final_sample = ant_center_sample + self.lateHalf_lengths[ant_i] + self.half_minTrace # width = ant_final_sample - ant_first_sample # has_data_loss = data_cut_inspan( self.data_loss_spans[ ant_i ], ant_first_sample, ant_final_sample ) # if has_data_loss: # continue abs_window = np.abs( self.antenna_data[ant_i, :] ) ant_XYZ = self.all_antXYZs[ant_i] reception_time = np.linalg.norm(ant_XYZ - source_XYZT[:3])/v_air first_sample_time = self.all_antStartTimes[ant_i] + (self.loaded_samples[ant_i] + ant_first_sample)*(5.0e-9) if not np.isfinite(source_XYZT[3]): signal_t = np.argmax( abs_window )*(5.0e-9) source_XYZT[3] = first_sample_time+signal_t - reception_time reception_time += source_XYZT[3] sdt = reception_time-first_sample_time sdt_samples = sdt/(5.0e-9) offset = stat_i*3 + self.antenna_polarization[ant_i] *0.75 plt.plot( [sdt_samples,sdt_samples], [offset,offset+1], c=color ) def load_PSF(self, X_val, Y_val, Z_val, average_station=None): """ make a point source at center voxel with XYZ polarization. average_station calculates the average peak amplitude for that station""" stat_X_dipole = np.empty( len(self.beamformed_freqs), dtype=np.cdouble ) stat_Y_dipole = np.empty( len(self.beamformed_freqs), dtype=np.cdouble ) TMP = np.zeros( len(self.frequencies), dtype=np.cdouble ) shifter_TMP = np.zeros( len(self.beamformed_freqs), dtype=np.cdouble ) if average_station is not None: ave_stat_i = self.station_names.index( average_station ) amp_ave = 0 num_amp_ave = 0 for stat_i in range( self.num_stations ): ant_range = self.stationi_to_antRange[stat_i] # print('station', stat_i, 'Fi:', self.max_freq_index-self.start_freq_index) ### get jones matrices J_00 = self.cut_jones_matrices[stat_i, :, 0,0] J_01 = self.cut_jones_matrices[stat_i, :, 0,1] J_10 = self.cut_jones_matrices[stat_i, :, 1,0] J_11 = self.cut_jones_matrices[stat_i, :, 1,1] ### get angles ## from station to source!! stat_X = self.center_XYZ[0] - np.average( self.all_antXYZs[ant_range, 0] ) stat_Y = self.center_XYZ[1] - np.average( self.all_antXYZs[ant_range, 1] ) stat_Z = self.center_XYZ[2] - np.average( self.all_antXYZs[ant_range, 2] ) stat_R = np.sqrt( stat_X*stat_X + stat_Y*stat_Y + stat_Z*stat_Z ) stat_zenith = np.arccos( stat_Z/stat_R ) stat_azimuth = np.arctan2( stat_Y, stat_X) sin_stat_azimuth = np.sin( stat_azimuth ) cos_stat_azimuth = np.cos( stat_azimuth ) sin_stat_zenith = np.sin( stat_zenith ) cos_stat_zenith = np.cos( stat_zenith ) stat_X_dipole[:] = 0.0 stat_Y_dipole[:] = 0.0 ## X dipole ## X-orriented field ## zenithal T = cos_stat_azimuth*cos_stat_zenith*J_00 ## azimuthal T += -sin_stat_azimuth*J_01 stat_X_dipole += T*X_val ## Y-orriented field ## zenithal T = cos_stat_zenith*sin_stat_azimuth*J_00 ## azimuthal T += cos_stat_azimuth*J_01 stat_X_dipole += T*Y_val ## Z-orriented field ## zenithal T = -sin_stat_zenith*J_00 ## no azimuthal!! stat_X_dipole += T*Z_val ## Y dipole ## X-orriented field ## zenithal T = cos_stat_azimuth*cos_stat_zenith*J_10 ## azimuthal T += -sin_stat_azimuth*J_11 stat_Y_dipole += T*X_val ## Y-orriented field ## zenithal T = cos_stat_zenith*sin_stat_azimuth*J_10 ## azimuthal T += cos_stat_azimuth*J_11 stat_Y_dipole += T*Y_val ## Z-orriented field ## zenithal T = -sin_stat_zenith*J_10 ## no azimuthal!! stat_Y_dipole += T*Z_val # datums = [] # pol = [] # signal_dt = [] # max_amp = 0.0 if (average_station is not None) and ave_stat_i==stat_i: do_amp_average = True else: do_amp_average = False for ant_i in range(self.stationi_to_anti[stat_i], self.stationi_to_anti[stat_i+1] ): sub_sample_shift = self.geometric_delays[ant_i] + self.cal_shifts[ant_i] shifter_TMP[:] = self.beamformed_freqs shifter_TMP *= -2j*np.pi*sub_sample_shift np.exp( shifter_TMP, out=shifter_TMP ) R = np.linalg.norm( self.all_antXYZs[ant_i] - self.center_XYZ ) if self.antenna_polarization[ant_i] == 0: ## X-dipole shifter_TMP *= stat_X_dipole else: ## Y-dipole shifter_TMP *= stat_Y_dipole shifter_TMP *= 1.0/R TMP[self.start_freq_index:self.end_freq_index] = shifter_TMP ifft = np.fft.ifft( TMP ) if self.store_antenna_data: self.antenna_data[ant_i, :] = ifft if do_amp_average: amp_ave += np.max(np.abs(ifft)) num_amp_ave += 1 self.engine.set_antennaData(ant_i, ifft) ## note this modifies in place!! if self.store_antenna_data: self.antenna_data_magnitude = np.sqrt( cyt.total_2dnorm_squared( self.antenna_data ) ) if average_station is not None: self.ave_stat_i = ave_stat_i self.station_ave_amp = amp_ave/num_amp_ave else: self.ave_stat_i = None def inject_noise(self, ratio, station_to_plot=None): noise_sigma = 2*self.antenna_data_magnitude*ratio/np.sqrt( self.antenna_data.shape[0]*self.antenna_data.shape[1] ) total_norm_sq = 0.0 ave_amp = 0 num_ave_amp = 0 plot_Y = 0 FTMP = np.zeros( len(self.frequencies) , dtype=np.cdouble) for ant_i in range(self.num_antennas): rand = np.random.normal(size=2*( self.F80MHZ_i - self.F30MHZ_i ), scale=noise_sigma).view(np.cdouble) FTMP[self.F30MHZ_i:self.F80MHZ_i] = rand rand = np.fft.ifft( FTMP ) total_norm_sq += cyt.total_1dnorm_squared( rand ) if (self.ave_stat_i is not None) and self.anti_to_stati[ant_i]==self.ave_stat_i: ave_amp += np.average( np.abs( rand ) ) num_ave_amp += 1 rand += self.antenna_data[ant_i] if (station_to_plot is not None) and self.anti_to_stati[ant_i]==station_to_plot: A = np.array( rand ) ABS = np.abs(A) ABS_max = np.max(ABS) plt.plot(ABS+plot_Y) plt.plot(A.real + plot_Y) plot_Y += ABS_max self.engine.set_antennaData(ant_i, rand) if (station_to_plot is not None) : if self.ave_stat_i is not None: plt.axhline(ave_amp/num_ave_amp, c='r') plt.axhline(self.amp_ave, c='b') plt.show() total_norm = np.sqrt( total_norm_sq ) if (self.ave_stat_i is None): return total_norm/self.antenna_data_magnitude else: return total_norm/self.antenna_data_magnitude, self.amp_ave/(ave_amp/num_ave_amp) def get_empty_image(self): return np.empty( (self.numVoxels_XYZ[0], self.numVoxels_XYZ[1], self.numVoxels_XYZ[2], self.num_freqs, 3) , dtype=np.cdouble) def get_image(self, out_image=None, print_progress=False, weighting=None): if weighting is not None: if weighting is True: weighting = self.antenna_norms_in_range A = self.engine.full_image( out_image, print_progress, frequency_weights=weighting ) return A def get_empty_chuncked_image(self, num_chunks): if num_chunks == 0: ## see behavior below num_chunks = 1 return np.empty( (self.numVoxels_XYZ[0], self.numVoxels_XYZ[1], self.numVoxels_XYZ[2], num_chunks) , dtype=np.cdouble) def get_chunked_intesity_image(self, num_chunks, out_image=None, print_progress=False, weighting=None): """ set num_chunks to 0 to sum over whole length. """ if weighting is not None: if weighting is True: weighting = self.antenna_norms_in_range if num_chunks == 0: starting_i = 0 chunck_size = self.total_trace_length num_chunks = 1 else: starting_i = self.starting_edge_length chunck_size = int(self.minTraceLength_samples/num_chunks) RET = self.engine.ChunkedIntensity_Image( starting_i, chunck_size, num_chunks, image = out_image, print_progress = print_progress, frequency_weights = weighting) return RET def get_timeDiff_at_loc(self, XYZloc): """given a source at XYZ, return time diff, that should be added to sky_T, to get the time at that location""" return ( np.linalg.norm( self.reference_XYZ - XYZloc ) - np.linalg.norm( self.reference_XYZ - self.center_XYZ) )/v_air def get_correctionMatrix(self, out=None, loc_to_use=None ): return self.engine.get_correctionMatrix(out, loc_to_use) def get_empty_partial_inverse_FFT(self): return np.empty(self.total_trace_length, dtype=np.cdouble) def partial_inverse_FFT(self, in_data, out_data=None): return self.engine.partial_inverse_FFT( in_data, out_data) def get_empty_full_inverse_FFT(self, mode='wingless'): """ mode can be 'full' or 'wingless'. wingless has time traces minTraceLength_samples long. full is total_trace_length long. hannless simply cuts-off the tukey windows.""" if mode == 'full': T = self.total_trace_length elif mode == 'wingless': T = self.minTraceLength_samples elif mode == 'hannless': T = self.total_trace_length-2*self.imaging_half_hann_length_samples return np.empty( ( self.numVoxels_XYZ[0], self.numVoxels_XYZ[1], self.numVoxels_XYZ[2], T, 3), dtype = np.cdouble) def full_inverse_FFT(self, in_image, out_data=None, mode='wingless'): """ mode can be 'full', or 'wingless'. wingless has time traces minTraceLength_samples long, else full is total_trace_length long""" if out_data is None: out_data = self.get_empty_full_inverse_FFT(mode) #out_data[:] = 0.0 # TMP = np.empty(self.total_trace_length, dtype=np.cdouble) if mode == 'wingless': # dN = self.total_trace_length - self.minTraceLength_samples # hdN = int(dN/2) hdN = self.starting_edge_length L = self.minTraceLength_samples for xi in range(self.numVoxels_XYZ[0]): for yi in range(self.numVoxels_XYZ[1]): for zi in range(self.numVoxels_XYZ[2]): for pi in range(3): self.engine.partial_inverse_FFT(in_image[xi,yi,zi,:,pi], self.ifft_full_tmp) if mode == 'full': out_data[xi,yi,zi,:,pi] = self.ifft_full_tmp else: out_data[xi, yi, zi, :, pi] = self.ifft_full_tmp[ hdN : hdN+L ] return out_data def get_empty_SpotImage(self): return np.empty((self.num_freqs, 3), dtype=np.cdouble) def get_SpotImage(self, loc, out_image=None, weighting=None, do_matrix=None): if weighting is not None: if weighting is True: weighting = self.antenna_norms_in_range if do_matrix is not None: if do_matrix is True: self.temp_inversion_matrix = self.get_correctionMatrix(out=self.temp_inversion_matrix, loc_to_use=loc) self.invertrix.set_matrix(self.temp_inversion_matrix) self.invertrix.get_psuedoinverse(self.inverted_matrix, override_cond=0) do_matrix = self.inverted_matrix A = self.engine.Image_at_Spot(loc[0], loc[1], loc[2], out_image, frequency_weights=weighting, freq_mode=1, matrix=do_matrix) return A def get_empty_polarized_inverse_FFT(self, mode='full'): if mode == 'full': return np.empty((self.total_trace_length, 3), dtype=np.cdouble) elif mode == 'wingless': return np.empty((self.minTraceLength_samples, 3), dtype=np.cdouble) def polarized_inverse_FFT(self, in_data, out_data=None, mode='full'): if out_data is None: out_data = self.get_empty_polarized_inverse_FFT(mode) for pi in range(3): TMP = self.engine.partial_inverse_FFT(in_data[:, pi], self.ifft_full_tmp, freq_mode=1) if mode == 'full': out_data[:, pi] = TMP elif mode == 'wingless': out_data[:, pi] = TMP[ self.starting_edge_length: self.starting_edge_length + self.minTraceLength_samples] return out_data def get_secondaryLength_beamformer(self, trace_length): if trace_length > self.minTraceLength_samples: print('ERROR: secondary length must be smaller than initial length') quit() return self.secondary_length_beamformer( trace_length, self ) class secondary_length_beamformer: def __init__(self, trace_length, parent): self.minTraceLength_samples = trace_length self.parent = parent self.half_minTrace = int(round(self.minTraceLength_samples / 2)) self.total_trace_length = fft.next_fast_len( parent.max_earlyHalf_length + parent.max_lateHalf_length + trace_length + + 2*parent.imaging_half_hann_length_samples ) self.starting_edge_length = self.parent.max_earlyHalf_length + parent.imaging_half_hann_length_samples # self.trace_loadBuffer_length = self.total_trace_length # this is buffer before arrival sample. this is a little long, probably only need half this! self.frequencies = np.fft.fftfreq(self.total_trace_length, d=5.0e-9) antenna_model = calibrated_AARTFAAC_model() upwards_JM = antenna_model.Jones_ONLY(self.frequencies, zenith=0.0, azimuth=0.0) half_F = int(len(self.frequencies) / 2) lowest_Fi = np.where(self.frequencies[:half_F] > 30e6)[0][0] highest_Fi = np.where(self.frequencies[:half_F] < 80e6)[0][-1] self.F30MHZ_i = lowest_Fi self.F80MHZ_i = highest_Fi posFreq_amps = np.array( [np.linalg.norm(upwards_JM[fi, :, :], ord=2) for fi in range(lowest_Fi, highest_Fi)]) self.max_freq_index = np.argmax(posFreq_amps) + lowest_Fi ref_amp = np.max(posFreq_amps) * parent.frequency_width_factor if posFreq_amps[0] <= ref_amp: self.start_freq_index = \ np.where(np.logical_and(posFreq_amps[:-1] <= ref_amp, posFreq_amps[1:] > ref_amp))[0][0] else: self.start_freq_index = 0 if posFreq_amps[-1] <= ref_amp: self.end_freq_index = \ np.where(np.logical_and(posFreq_amps[:-1] >= ref_amp, posFreq_amps[1:] < ref_amp))[0][0] else: self.end_freq_index = len(posFreq_amps) self.antenna_norms_in_range = np.array(posFreq_amps[self.start_freq_index:self.end_freq_index]) self.start_freq_index += lowest_Fi self.end_freq_index += lowest_Fi self.beamformed_freqs = self.frequencies[self.start_freq_index:self.end_freq_index] self.num_freqs = self.end_freq_index - self.start_freq_index ## ALL jones matrices! self.cut_jones_matrices = np.empty((self.parent.num_stations, self.num_freqs, 2, 2), dtype=np.cdouble) self.JM_condition_numbers = np.empty(self.parent.num_stations, dtype=np.double) ## both at peak frequency self.JM_magnitudes = np.empty(self.parent.num_stations, dtype=np.double) # self.station_R = np.empty(self.num_stations, dtype=np.double) ## distance to center pixel for stat_i in range(self.parent.num_stations): ant_XYZs = parent.all_antXYZs[parent.stationi_to_antRange[stat_i]] stat_XYZ = np.average(ant_XYZs, axis=0) ## from station to source! delta_XYZ = parent.center_XYZ - stat_XYZ center_R = np.linalg.norm(delta_XYZ) center_zenith = np.arccos(delta_XYZ[2] / center_R) * RTD center_azimuth = np.arctan2(delta_XYZ[1], delta_XYZ[0]) * RTD # self.cut_jones_matrices[stat_i, :,:,:] = antenna_model.Jones_Matrices(self.beamformed_freqs, zenith=center_zenith, azimuth=center_azimuth) self.cut_jones_matrices[stat_i, :, :, :] = antenna_model.Jones_ONLY(self.beamformed_freqs, zenith=center_zenith, azimuth=center_azimuth) self.JM_condition_numbers[stat_i] = np.linalg.cond( self.cut_jones_matrices[stat_i, self.max_freq_index - self.start_freq_index, :, :]) self.JM_magnitudes[stat_i] = np.linalg.norm( self.cut_jones_matrices[stat_i, self.max_freq_index - self.start_freq_index, :, :], ord=2) # self.station_R[stat_i] = center_R #### windowing matrices! self.parent.engine.set_antenna_functions(self.total_trace_length, self.start_freq_index, self.end_freq_index, self.frequencies, self.cut_jones_matrices, freq_mode=2) ### memory self.temp_window = np.empty(self.total_trace_length, dtype=np.cdouble) self.temp_inversion_matrix = np.empty((3, 3), dtype=np.cdouble) self.inverted_matrix = np.empty((3, 3), dtype=np.cdouble) self.invertrix = parent.invertrix#cyt.SVD_psuedoinversion(3, 3) self.ifft_full_tmp = self.get_empty_partial_inverse_FFT() def window_data(self, sky_T, average_station=None): # if average_station is not None: # ave_stat_i = self.parent.station_names.index(average_station) amp_ave = 0 num_amp_ave = 0 sample_center = int(round((sky_T - self.parent.center_delay) / 5.0e-9)) earliest_sample = sample_center - self.parent.max_earlyHalf_length - self.half_minTrace latest_sample = sample_center + self.parent.max_lateHalf_length + self.half_minTrace if earliest_sample < self.parent.loaded_indexRange[0] or latest_sample > self.parent.loaded_indexRange[1]: self.parent.load_raw_data(sky_T) # print('windowing') n = self.parent.imaging_half_hann_length_samples for ant_i in range(self.parent.num_antennas): ant_center_sample = sample_center + self.parent.index_shifts[ant_i] - self.parent.loaded_samples[ant_i] ant_first_sample = ant_center_sample - self.parent.earlyHalf_lengths[ant_i] - self.half_minTrace ant_final_sample = ant_center_sample + self.parent.lateHalf_lengths[ant_i] + self.half_minTrace width = ant_final_sample - ant_first_sample has_data_loss = data_cut_inspan(self.parent.data_loss_spans[ant_i], ant_first_sample, ant_final_sample) if has_data_loss: # self.windowed_data[ant_i] = 0.0 self.parent.engine.set_antennaData_zero(ant_i) # self.antenna_windowed[ant_i] = 0 continue # self.antenna_windowed[ant_i] = 1 delay_samples = self.parent.max_earlyHalf_length - self.parent.earlyHalf_lengths[ant_i] self.temp_window[:] = 0.0 self.temp_window[delay_samples:delay_samples + width] = self.parent.loaded_data[ant_i, ant_first_sample:ant_final_sample] self.temp_window[delay_samples: delay_samples + n] *= self.parent.imaging_hann[:n] self.temp_window[delay_samples + width - n: delay_samples + width] *= self.parent.imaging_hann[n:] # if (average_station is not None) and self.anti_to_stati[ant_i] == ave_stat_i: # amp_ave += np.max(np.abs(self.temp_window)) / self.amplitude_calibrations[ant_i] ## DE-calibrate # num_amp_ave += 1 # if self.store_antenna_data: # self.antenna_data[ant_i, :] = self.temp_window self.parent.engine.set_antennaData(ant_i, self.temp_window, freq_mode=2) # .view(np.double) ) # if (average_station is not None): # self.ave_stat_i = ave_stat_i # self.station_ave_amp = amp_ave / num_amp_ave # else: # self.ave_stat_i = None def get_empty_SpotImage(self): return np.empty(( self.num_freqs, 3), dtype=np.cdouble) def get_SpotImage(self, loc, out_image=None, weighting=None, do_matrix=None): if weighting is not None: if weighting is True: weighting = self.antenna_norms_in_range if do_matrix is not None: if do_matrix is True: self.temp_inversion_matrix = self.parent.get_correctionMatrix(out=self.temp_inversion_matrix, loc_to_use=loc ) self.invertrix.set_matrix(self.temp_inversion_matrix ) self.invertrix.get_psuedoinverse(self.inverted_matrix, override_cond=0) do_matrix = self.inverted_matrix A = self.parent.engine.Image_at_Spot(loc[0], loc[1], loc[2], out_image, frequency_weights=weighting, freq_mode=2, matrix=do_matrix) return A def get_empty_partial_inverse_FFT(self): return np.empty(self.total_trace_length, dtype=np.cdouble) def partial_inverse_FFT(self, in_data, out_data=None): return self.parent.engine.partial_inverse_FFT(in_data, out_data, freq_mode=2) def get_empty_polarized_inverse_FFT(self, mode='full'): if mode == 'full': return np.empty( (self.total_trace_length,3), dtype=np.cdouble) elif mode == 'wingless': return np.empty( (self.minTraceLength_samples,3), dtype=np.cdouble) def polarized_inverse_FFT(self, in_data, out_data=None, mode='full'): if out_data is None: out_data = self.get_empty_polarized_inverse_FFT( mode ) for pi in range(3): TMP = self.parent.engine.partial_inverse_FFT(in_data[:,pi], self.ifft_full_tmp, freq_mode=2) if mode == 'full': out_data[:,pi] = TMP elif mode == 'wingless': out_data[:, pi] = TMP[ self.starting_edge_length : self.starting_edge_length + self.minTraceLength_samples ] return out_data #### now we need code to interpret the beamformer ## first, 3D stokes def simple_coherency( vec ): return np.outer( vec, np.conj( vec ) ) class stokes_3D: def __init__(self, coherency_matrix): self.coherency_matrix = np.array( coherency_matrix ) self.Rreal_eigvals, self.Rreal_eigvecs = np.linalg.eig( np.real(self.coherency_matrix) ) sorter = np.argsort(self.Rreal_eigvals)[::-1] self.Rreal_eigvals = self.Rreal_eigvals[sorter] self.Rreal_eigvecs = self.Rreal_eigvecs[:, sorter] self.R_total_eigvals = None self.Rreal_eigvecs_inverse = np.linalg.inv( self.Rreal_eigvecs ) # A = np.dot(self.Rreal_eigvecs_inverse, np.dot(np.real(coherency_matrix), self.Rreal_eigvecs) ) # print(A) # print(self.Rreal_eigvals) self.transformed_coherency_matrix = np.dot(self.Rreal_eigvecs_inverse, np.dot( self.coherency_matrix, self.Rreal_eigvecs) ) # print("TCM") # print(self.transformed_coherency_matrix) # print() SM = np.zeros((3,3), dtype=np.double) SM[0,0] = np.real( self.transformed_coherency_matrix[0,0] + self.transformed_coherency_matrix[1,1] + self.transformed_coherency_matrix[2,2] ) # SM[0,1] = np.real( self.transformed_coherency_matrix[0,1] + self.transformed_coherency_matrix[1,0] ) # SM[0,2] = np.real( self.transformed_coherency_matrix[0,2] + self.transformed_coherency_matrix[2,0] ) SM[1,0] = np.real( 1j*(self.transformed_coherency_matrix[0,1] - self.transformed_coherency_matrix[1,0]) ) SM[1,1] = np.real( self.transformed_coherency_matrix[0,0] - self.transformed_coherency_matrix[1,1] ) # SM[1,2] = np.real( self.transformed_coherency_matrix[0,2] + self.transformed_coherency_matrix[2,0] ) SM[2,0] = np.real( 1j*(self.transformed_coherency_matrix[0,2] - self.transformed_coherency_matrix[2,0]) ) SM[2,1] = np.real( 1j*(self.transformed_coherency_matrix[1,2] - self.transformed_coherency_matrix[2,1]) ) SM[2,2] = np.real( (self.transformed_coherency_matrix[0,0] + self.transformed_coherency_matrix[1,1] - 2*self.transformed_coherency_matrix[2,2])/np.sqrt(3) ) # print('SM') # print(SM) self.stokes_matrix = SM self.intensity = SM[0,0] self.linear_polarization = SM[1,1] self.degree_of_directionality = SM[2,2] = SM[2,2]*np.sqrt(3)/self.intensity self.angular_momentum = np.array( [ SM[2,1]*0.5, -SM[2,0]*0.5, SM[1,0]*0.5 ] ) def get_axis(self, i=0): """return axis of the 3D elipse. axis 0 (default) is direction of linear polarization""" return self.Rreal_eigvecs[:,i] def get_intensity(self): """return total intensity""" return self.intensity def get_linear_intensity(self): """return linear polarization intensity (in direction of axis 0)""" return self.linear_polarization def get_circular_intensity(self): """return intensity of ciruclar polarization""" return np.linalg.norm(self.angular_momentum)*2 def get_angular_momentum_normal(self): """return angular momentum vector""" R = np.dot( self.Rreal_eigvecs, self.angular_momentum) R *= 1.0/self.intensity return R def get_degrees_polarized(self): """return fraction linear polarized, circular polarized, and fraction directional. Closely related to degree of polarmetric purity""" A = np.array([ self.linear_polarization/self.intensity, self.get_circular_intensity()/self.intensity, self.degree_of_directionality ]) return A def get_degree_of_directionality(self): return self.degree_of_directionality def get_degree_of_polarimetric_purity(self): S = self.stokes_matrix[1,0]*self.stokes_matrix[1,0] S += self.stokes_matrix[1,1]*self.stokes_matrix[1,1] S += self.stokes_matrix[2,0]*self.stokes_matrix[2,0] S += self.stokes_matrix[2,1]*self.stokes_matrix[2,1] S += self.stokes_matrix[2,2]*self.stokes_matrix[2,2] return np.sqrt(3*S)/(2*self.intensity) def get_degree_of_polarization(self): if self.R_total_eigvals is None: self.R_total_eigvals = np.linalg.eigvals( self.coherency_matrix ) sorter = np.argsort(self.R_total_eigvals)[::-1] self.R_total_eigvals = self.R_total_eigvals[sorter] return np.real( (self.R_total_eigvals[0] - self.R_total_eigvals[1])/self.intensity ) def get_indeces_of_polarametric_purity(self): """return array of three values. First is ration of power of completely polarized wave over total power, i.e., amount of polarized power (could be degree of polarization) No idea what the second one is. Probably something about directionality. Last index is the degree of polarimetric purity, and is a combination of first two. It includes polarized energy, and how much the polarization plane wobbles""" P1 = self.get_degree_of_polarization() P2 = np.real( (self.R_total_eigvals[0] + self.R_total_eigvals[1] - 2*self.R_total_eigvals[2])/self.intensity ) return np.array( [P1,P2, self.get_degree_of_polarimetric_purity()] ) ### 3D parabolic fitter class parabola_3D: def __init__(self, half_N, X_array, Y_array, Z_array): self.X_array = X_array self.Y_array = Y_array self.Z_array = Z_array self.dx = X_array[1] - X_array[0] self.dy = Y_array[1] - Y_array[0] self.dz = Z_array[1] - Z_array[0] self.half_N = half_N self.N_1D = 2*half_N + 1 self.num_points = self.N_1D*self.N_1D*self.N_1D self.matrix =
np.empty( (self.num_points,10),dtype=np.double )
numpy.empty
import pytest import os import sys import tempfile import numpy as np from numpy.testing import assert_allclose from numpy.testing import assert_raises from keras import backend as K from keras.models import Model, Sequential from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed from keras.layers import Input from keras import optimizers from keras import losses from keras import metrics from keras.utils.test_utils import keras_test if sys.version_info[0] == 3: import pickle else: import cPickle as pickle skipif_no_tf_gpu = pytest.mark.skipif( (K.backend() != 'tensorflow') or (not K.tensorflow_backend._get_available_gpus()), reason='Requires TensorFlow backend and a GPU') @keras_test def test_sequential_model_pickling(): model = Sequential() model.add(Dense(2, input_shape=(3,))) model.add(RepeatVector(3)) model.add(TimeDistributed(Dense(3))) model.compile(loss=losses.MSE, optimizer=optimizers.RMSprop(lr=0.0001), metrics=[metrics.categorical_accuracy], sample_weight_mode='temporal') x = np.random.random((1, 3)) y = np.random.random((1, 3, 3)) model.train_on_batch(x, y) out = model.predict(x) state = pickle.dumps(model) new_model = pickle.loads(state) out2 = new_model.predict(x) assert_allclose(out, out2, atol=1e-05) # test that new updates are the same with both models x = np.random.random((1, 3)) y = np.random.random((1, 3, 3)) model.train_on_batch(x, y) new_model.train_on_batch(x, y) out = model.predict(x) out2 = new_model.predict(x) assert_allclose(out, out2, atol=1e-05) @keras_test def test_sequential_model_pickling_2(): # test with custom optimizer, loss custom_opt = optimizers.rmsprop custom_loss = losses.mse model = Sequential() model.add(Dense(2, input_shape=(3,))) model.add(Dense(3)) model.compile(loss=custom_loss, optimizer=custom_opt(), metrics=['acc']) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) out = model.predict(x) state = pickle.dumps(model) model = pickle.loads(state) out2 = model.predict(x) assert_allclose(out, out2, atol=1e-05) @keras_test def test_functional_model_pickling(): inputs = Input(shape=(3,)) x = Dense(2)(inputs) outputs = Dense(3)(x) model = Model(inputs, outputs) model.compile(loss=losses.MSE, optimizer=optimizers.Adam(), metrics=[metrics.categorical_accuracy]) x = np.random.random((1, 3)) y = np.random.random((1, 3)) model.train_on_batch(x, y) out = model.predict(x) state = pickle.dumps(model) model = pickle.loads(state) out2 = model.predict(x) assert_allclose(out, out2, atol=1e-05) @keras_test def test_pickling_multiple_metrics_outputs(): inputs = Input(shape=(5,)) x = Dense(5)(inputs) output1 = Dense(1, name='output1')(x) output2 = Dense(1, name='output2')(x) model = Model(inputs=inputs, outputs=[output1, output2]) metrics = {'output1': ['mse', 'binary_accuracy'], 'output2': ['mse', 'binary_accuracy'] } loss = {'output1': 'mse', 'output2': 'mse'} model.compile(loss=loss, optimizer='sgd', metrics=metrics) # assure that model is working x =
np.array([[1, 1, 1, 1, 1]])
numpy.array
name = "attitudes" ''' Attitude Control Module Ok, so the principle behind this module is the base class "att", which represents an attitude description, by default of type "DCM". Can also be created from Euler Angles, PRV, Quaternions, CRPs, and MRPs. Can also be transformed into these others by a method as well. For simplicity's sake, I'm going to treat these classes as kind of a "dual number" where the DCM representation is stored, but for all other types, the representation of that type is also stored. This should allow for direct quaternion addition and so forth. This should also allow me to simplify the addition/subtraction functions into a single function, that read the types of the inputs and acts accordingly. There will probably also be an angular acceleration vector class, but I'll get there when I get there. Author: <NAME> ''' #standard imports import numpy as np from numpy import linalg as LA # ------------------------------------------------------------------------------------------------ # CONSTANTS # ------------------------------------------------------------------------------------------------ # Nothing here yet # ----------------------------------------------------------------------------------------------- # BASE CLASS "ATT" # ----------------------------------------------------------------------------------------------- class att(): ''' Attitude Description Class Defines an attitude, by default from a DCM description. Also contains a whole bunch of class methods for defining by other means (CRP, quaternions, etc). Arguments: DCM: (ndarray [2x2]) General 3x3 DCM of the attitude description ''' def __init__(self, DCM, type='DCM', angle_vec=np.array([]),units='rad', euler_type=None,phi=None,path=None): ''' Standard Definition from a DCM ''' if np.max(np.abs((DCM.T @ DCM) - np.eye(3))) > 1e-3: raise ValueError('DCM doesn\'t appear to be orthonormal') self.DCM = DCM self.type = type self.units = units if euler_type: self.order = euler_type if angle_vec != np.array([]): self.vec = angle_vec if phi: self.phi = phi if path: self.path = path def __repr__(self): if self.type == 'DCM': return 'DCM Attitude description is \n {}'.format(self.DCM) elif self.type == 'PRV': statement = ''' \n {} Attitude description is: \n e = {} \n Phi = {} {} \n \n DCM description is: \n {} \n ''' return statement.format(self.type,list(self.vec),self.phi,self.units,self.DCM) elif self.type == 'Euler Angle': statement = '\n {} {} Attitude description is: \n {} {} \n \n DCM description is: \n {} \n' return statement.format(self.order,self.type,list(self.vec),self.units,self.DCM) else: statement = '\n {} Attitude description is: \n {} \n \n DCM description is: \n {} \n' return statement.format(self.type,np.array(self.vec).flatten(),self.DCM) @classmethod def _from_eul_ang(cls,type,ang1,ang2,ang3,units='deg'): ''' Definition from Euler Angles Takes a type, 3 angles, and units to determine a DCM, then records both sets Arguments: type: (int) int of order of rotation axes ang1: (float) angle of rotation about first axis ang2: (float) angle of rotation about second axis ang3: (float) angle of rotation about third axis units: (string) either 'rad' or 'deg' ''' if units=='deg': ang1, ang2, ang3 = np.radians(ang1),np.radians(ang2),np.radians(ang3) if type not in (123,132,213,231,312,321,131,121,212,232,313,323): raise ValueError('Euler angle type definition is incorrect') angle_vec = np.array([ang1,ang2,ang3]) type = str(type) DCM = eul_to_DCM(int(type[0]),ang1,int(type[1]),ang2,int(type[2]),ang3,'rad') if units=='deg': angle_vec = np.degrees(angle_vec) return cls(DCM,'Euler Angle',angle_vec=angle_vec,units=units,euler_type=type) @classmethod def _from_PRV(cls,vec,phi=None,units='rad'): ''' Definition from Principle Rotation Vector Takes either a vector with norm != 1 or a normalized vector and a phi rotation magnitude Internally, the normalized vector and the phi rotation are used Arguments: vec: (list) principle rotation vector phi: (float) optional, rotation magnitude units: (string) either 'rad' or 'deg' to specify units for phi ''' if not phi: phi = LA.norm(vec) vec = vec/LA.norm(vec) if units=='deg': phi = np.radians(phi) e1,e2,e3 = vec sigma = 1 - np.cos(phi) cphi = np.cos(phi) sphi = np.sin(phi) C = np.array([[e1*e1*sigma+cphi,e1*e2*sigma+e3*sphi,e1*e3*sigma - e2*sphi], [e2*e1*sigma - e3*sphi,e2**2*sigma+cphi,e2*e3*sigma+e1*sphi], [e3*e1*sigma+e2*sphi,e3*e2*sigma-e1*sphi,e3**2*sigma+cphi]]) if units=='deg': phi = np.degrees(phi) return cls(C,'PRV', units=units, angle_vec=np.array(vec), phi=phi) @classmethod def _from_quat(cls,vec): '''Definition from Quaternions Takes in a quaternion and spits out an attitude object (DCM). Checks first for a valid quaternion Arguments: vec: (list) of quaternion values ''' if np.abs(LA.norm(vec)-1) > 1e-13: raise ValueError('Quaternions must have norm of 1') b0,b1,b2,b3 = vec C = np.array([[b0**2+b1**2-b2**2-b3**2, 2*(b1*b2+b0*b3), 2*(b1*b3-b0*b2)], [2*(b1*b2-b0*b3), b0**2-b1**2+b2**2-b3**2, 2*(b2*b3+b0*b1)], [2*(b1*b3+b0*b2), 2*(b2*b3-b0*b1), b0**2-b1**2-b2**2+b3**2]]) return cls(C,'Quaternion', angle_vec=vec) @classmethod def _from_CRP(cls,vec): '''Definition from Classical Rodriguez Parameters Uses the vector definition of the DCM to convert CRPs into a valid attitude object (element option also available in comments) Arguments: vec: (list) of CRP values ''' q = np.atleast_2d(vec).reshape(3,1) C = (1/(1+q.T@q))*((1-q.T@q)*np.eye(3) + 2 * q @ q.T - 2 * tilde(q)) # q1,q2,q3 = q.reshape(np.size(vec)) # C = np.array([[1+q1**2-q2**2-q3**2, 2*(q1*q2+q3), 2*(q1*q3-q2)], # [2*(q1*q2-q3), 1-q1**2+q2**2-q3**2, 2*(q2*q3+q1)], # [2*(q1*q3+q2), 2*(q2*q3-q1), 1-q1**2-q2**2+q3**2]]) # C = (1/(1 + q.T @ q)) * C return cls(C,'CRP',angle_vec=np.array(vec)) @classmethod def _from_MRP(cls,vec): '''Definition from Modified Rodriguez Parameters Uses the vector definition of the DCM to convert MRPs into a valid attitude object. Returns the path whether it's long (norm > 1) or short (norm < 1) with norm==1 taken to be short Arguments: vec: (list) of MRP values ''' s = np.atleast_2d(vec).T C = np.eye(3) + (8*tilde(s)@tilde(s) - 4*(1-s.T@s)*tilde(s))/(1+s.T@s)**2 if LA.norm(vec) > 1: path = 'long' else: path = 'short' return cls(C,'MRP',angle_vec=np.array(vec),path=path) def _to_eul_ang(self,type,units='deg'): '''Conversion to Euler Angles. There's no easy way to do this, so it's always just done from the DCM. Which is fine, it's still quick. Arguments: type: (int) currently must be 321 or 313 since those are common. Will expand units: (str) optional, units to output the angles ''' C = self.DCM if type == 321: ang1 = np.arctan2(C[0,1],C[0,0]) ang2 = -np.arcsin(C[0,2]) ang3 = np.arctan2(C[1,2],C[2,2]) elif type == 313: ang1 = np.arctan2(C[2,0],-C[2,1]) ang2 = np.arccos(C[2,2]) ang3 = np.arctan2(C[0,2],C[1,2]) if units == 'deg': ang1,ang2,ang3 = np.degrees([ang1,ang2,ang3]) return self._from_eul_ang(type,ang1,ang2,ang3,units=units) def _to_PRV(self, units='rad'): '''Conversion to Principle Rotation Vector. Always done from the DCM. Doesn't need to take any arguments Outputs the short version of the PRV (using arccos function) and the positive output for e_hat ''' C = self.DCM phi = np.arccos(0.5*(C[0,0]+C[1,1]+C[2,2]-1)) e = (1/(2*np.sin(phi)))*np.array([C[1,2]-C[2,1],C[2,0]-C[0,2],C[0,1]-C[1,0]]) if units=='deg': phi = np.degrees(phi) return self._from_PRV(e,phi=phi,units=units) def _to_quat(self, path='short'): '''If the object is a classical or modified Rodriguez parameter object, directly converts to quaternions via known relations. Otherwise, uses sheppard's method to determine the quaternions from the DCM. Arguments: path: (str) optional, tells the function whether you'd like the short way or the long way ''' if self.type == 'CRP': q = self.vec b0 = 1/np.sqrt(1+LA.norm(q)**2) b1 = q[0]*b0 b2 = q[1]*b0 b3 = q[2]*b0 elif self.type == 'MRP': s = self.vec b0 = (1-LA.norm(s)**2)/(1+LA.norm(s)**2) b1 = 2*s[0]/(1+LA.norm(s)**2) b2 = 2*s[1]/(1+LA.norm(s)**2) b3 = 2*s[2]/(1+LA.norm(s)**2) else: #the annoying way... C = self.DCM [[C11,C12,C13], [C21,C22,C23], [C31,C32,C33]] = C trC = C[0,0]+C[1,1]+C[2,2] b02 = 0.25*(1+trC) b12 = 0.25*(1+2*C[0,0]-trC) b22 = 0.25*(1+2*C[1,1]-trC) b32 = 0.25*(1+2*C[2,2]-trC) b0b1 = (C23 - C32)/4 b0b2 = (C31 - C13)/4 b0b3 = (C12 - C21)/4 b1b2 = (C12 + C21)/4 b3b1 = (C31 + C13)/4 b2b3 = (C23 + C32)/4 squares = [b02,b12,b22,b32] if b02 == np.max(squares): b0 = np.sqrt(b02) b1 = b0b1/b0 b2 = b0b2/b0 b3 = b0b3/b0 elif b12 == np.max(squares): b1 = np.sqrt(b12) b0 = b0b1/b1 b2 = b1b2/b1 b3 = b3b1/b1 elif b22 == np.max(squares): b2 = np.sqrt(b22) b0 = b0b2/b2 b1 = b1b2/b2 b3 = b2b3/b2 else: b3 = np.sqrt(b32) b0 = b0b3/b3 b1 = b3b1/b3 b2 = b2b3/b3 quats = np.array([b0,b1,b2,b3]) if b0 > 0 and path == 'long': quats = -quats elif b0 < 0 and path == 'short': quats = -quats return self._from_quat(quats) def _to_CRP(self): '''Conversion to Classical Rodriguex Parameters. If the initial attitude is in quaternions, then it converts directly, because that's very easy. Otherwise, it converts from the DCM, which is actually still pretty easy. No arguments because the shadow set doesn't really exist. ''' if self.type == 'Quaternion': b0,b1,b2,b3 = self.vec q = np.array([b1/b0,b2/b0,b3/b0]) else: C = self.DCM [[C11,C12,C13], [C21,C22,C23], [C31,C32,C33]] = C zeta = np.sqrt(C11+C22+C33+1) q = (1/zeta**2)*np.array([C23-C32,C31-C13,C12-C21]) return self._from_CRP(q) def _to_MRP(self,path='short'): '''Conversion to Modified Rodriguez Parameters Similar to CRPs, if the input attitude is a quaternion, it'll just do the output directly, otherwise, it'll compute the CRP from the DCM. This function does have an input for the short rotation or the long rotation, though. ''' if self.type == 'Quaternion': b0,b1,b2,b3 = self.vec s = np.array([b1/(1+b0),b2/(1+b0),b3/(1+b0)]) else: C = self.DCM [[C11,C12,C13], [C21,C22,C23], [C31,C32,C33]] = C zeta = np.sqrt(C11+C22+C33+1) s = (1/(zeta*(zeta+2)))*np.array([C23-C32,C31-C13,C12-C21]) if LA.norm(s) > 1 and path=='short': s = -s/LA.norm(s) elif LA.norm(s) < 1 and path=='long': s = -s/LA.norm(s) return self._from_MRP(s) # ------------------------------------------------------------------------------------------------ # INTERNAL FUNCTIONS (designed to be used by module, not user) # ------------------------------------------------------------------------------------------------ def rot(angle,axis,radordeg): ''' Defines a single axis rotation''' mat = np.array([]) if radordeg == 'rad': angle = angle elif radordeg == 'deg': angle = np.radians(angle) else: print('Error') if axis==1: mat = np.array( [[ 1, 0, 0 ], [ 0, np.cos(angle), np.sin(angle) ], [ 0, -np.sin(angle), np.cos(angle) ]]) elif axis==2: mat = np.array( [[ np.cos(angle), 0, -np.sin(angle) ], [ 0, 1, 0 ], [ np.sin(angle), 0, np.cos(angle) ]]) elif axis==3: mat = np.array([[ np.cos(angle), np.sin(angle), 0 ], [ -
np.sin(angle)
numpy.sin
# -*- coding: utf-8 -*- # This file as well as the whole tsfresh package are licenced under the MIT licence (see the LICENCE.txt) # <NAME> (<EMAIL>), Blue Yonder Gmbh, 2016 """ This module contains the feature calculators that take time series as input and calculate the values of the feature. There are two types of features: 1. feature calculators which calculate a single number (simple) 2. feature calculators which calculate a bunch of features for a list of parameters at once, to use e.g. cached results (combiner). They return a list of (key, value) pairs for each input parameter. They are specified using the "fctype" parameter of each feature calculator, which is added using the set_property function. Only functions in this python module, which have a parameter called "fctype" are seen by tsfresh as a feature calculator. Others will not be calculated. """ from __future__ import absolute_import, division import itertools import warnings from builtins import range import numpy as np import pandas as pd from numpy.linalg import LinAlgError from scipy.signal import cwt, find_peaks_cwt, ricker, welch from scipy.stats import linregress from statsmodels.tools.sm_exceptions import MissingDataError from statsmodels.tsa.ar_model import AR from statsmodels.tsa.stattools import acf, adfuller, pacf # todo: make sure '_' works in parameter names in all cases, add a warning if not def _roll(a, shift): """ Roll 1D array elements. Improves the performance of numpy.roll() by reducing the overhead introduced from the flexibility of the numpy.roll() method such as the support for rolling over multiple dimensions. Elements that roll beyond the last position are re-introduced at the beginning. Similarly, elements that roll back beyond the first position are re-introduced at the end (with negative shift). Examples -------- >>> x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> _roll(x, shift=2) >>> array([8, 9, 0, 1, 2, 3, 4, 5, 6, 7]) >>> x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> _roll(x, shift=-2) >>> array([2, 3, 4, 5, 6, 7, 8, 9, 0, 1]) >>> x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> _roll(x, shift=12) >>> array([8, 9, 0, 1, 2, 3, 4, 5, 6, 7]) Benchmark --------- >>> x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> %timeit _roll(x, shift=2) >>> 1.89 µs ± 341 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each) >>> x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> %timeit np.roll(x, shift=2) >>> 11.4 µs ± 776 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each) :param a: the input array :type a: array_like :param shift: the number of places by which elements are shifted :type shift: int :return: shifted array with the same shape as a :return type: ndarray """ if not isinstance(a, np.ndarray): a = np.asarray(a) idx = shift % len(a) return np.concatenate([a[-idx:], a[:-idx]]) def _get_length_sequences_where(x): """ This method calculates the length of all sub-sequences where the array x is either True or 1. Examples -------- >>> x = [0,1,0,0,1,1,1,0,0,1,0,1,1] >>> _get_length_sequences_where(x) >>> [1, 3, 1, 2] >>> x = [0,True,0,0,True,True,True,0,0,True,0,True,True] >>> _get_length_sequences_where(x) >>> [1, 3, 1, 2] >>> x = [0,True,0,0,1,True,1,0,0,True,0,1,True] >>> _get_length_sequences_where(x) >>> [1, 3, 1, 2] :param x: An iterable containing only 1, True, 0 and False values :return: A list with the length of all sub-sequences where the array is either True or False. If no ones or Trues contained, the list [0] is returned. """ if len(x) == 0: return [0] else: res = [len(list(group)) for value, group in itertools.groupby(x) if value == 1] return res if len(res) > 0 else [0] def _estimate_friedrich_coefficients(x, m, r): """ Coefficients of polynomial :math:`h(x)`, which has been fitted to the deterministic dynamics of Langevin model .. math:: \dot{x}(t) = h(x(t)) + \mathcal{N}(0,R) As described by Friedrich et al. (2000): Physics Letters A 271, p. 217-222 *Extracting model equations from experimental data* For short time-series this method is highly dependent on the parameters. :param x: the time series to calculate the feature of :type x: numpy.ndarray :param m: order of polynom to fit for estimating fixed points of dynamics :type m: int :param r: number of quantils to use for averaging :type r: float :return: coefficients of polynomial of deterministic dynamics :return type: ndarray """ assert m > 0, "Order of polynomial need to be positive integer, found {}".format(m) df = pd.DataFrame({'signal': x[:-1], 'delta': np.diff(x)}) try: df['quantiles'] = pd.qcut(df.signal, r) except ValueError: return [np.NaN] * (m + 1) quantiles = df.groupby('quantiles') result = pd.DataFrame({'x_mean': quantiles.signal.mean(), 'y_mean': quantiles.delta.mean()}) result.dropna(inplace=True) try: return np.polyfit(result.x_mean, result.y_mean, deg=m) except (np.linalg.LinAlgError, ValueError): return [np.NaN] * (m + 1) def _aggregate_on_chunks(x, f_agg, chunk_len): """ Takes the time series x and constructs a lower sampled version of it by applying the aggregation function f_agg on consecutive chunks of length chunk_len :param x: the time series to calculate the aggregation of :type x: numpy.ndarray :param f_agg: The name of the aggregation function that should be an attribute of the pandas.Series :type f_agg: str :param chunk_len: The size of the chunks where to aggregate the time series :type chunk_len: int :return: A list of the aggregation function over the chunks :return type: list """ return [getattr(x[i * chunk_len: (i + 1) * chunk_len], f_agg)() for i in range(int(np.ceil(len(x) / chunk_len)))] def set_property(key, value): """ This method returns a decorator that sets the property key of the function to value """ def decorate_func(func): setattr(func, key, value) if func.__doc__ and key == "fctype": func.__doc__ = func.__doc__ + "\n\n *This function is of type: " + value + "*\n" return func return decorate_func @set_property("fctype", "simple") def variance_larger_than_standard_deviation(x): """ Boolean variable denoting if the variance of x is greater than its standard deviation. Is equal to variance of x being larger than 1 :param x: the time series to calculate the feature of :type x: numpy.ndarray :return: the value of this feature :return type: bool """ y = np.var(x) return y > np.sqrt(y) @set_property("fctype", "simple") def ratio_beyond_r_sigma(x, r): """ Ratio of values that are more than r*std(x) (so r sigma) away from the mean of x. :param x: the time series to calculate the feature of :type x: iterable :return: the value of this feature :return type: float """ if not isinstance(x, (np.ndarray, pd.Series)): x = np.asarray(x) return np.sum(np.abs(x - np.mean(x)) > r * np.std(x))/x.size @set_property("fctype", "simple") def large_standard_deviation(x, r): """ Boolean variable denoting if the standard dev of x is higher than 'r' times the range = difference between max and min of x. Hence it checks if .. math:: std(x) > r * (max(X)-min(X)) According to a rule of the thumb, the standard deviation should be a forth of the range of the values. :param x: the time series to calculate the feature of :type x: numpy.ndarray :param r: the percentage of the range to compare with :type r: float :return: the value of this feature :return type: bool """ if not isinstance(x, (np.ndarray, pd.Series)): x = np.asarray(x) return np.std(x) > (r * (np.max(x) - np.min(x))) @set_property("fctype", "combiner") def symmetry_looking(x, param): """ Boolean variable denoting if the distribution of x *looks symmetric*. This is the case if .. math:: | mean(X)-median(X)| < r * (max(X)-min(X)) :param x: the time series to calculate the feature of :type x: numpy.ndarray :param r: the percentage of the range to compare with :type r: float :return: the value of this feature :return type: bool """ if not isinstance(x, (np.ndarray, pd.Series)): x = np.asarray(x) mean_median_difference = np.abs(np.mean(x) - np.median(x)) max_min_difference = np.max(x) - np.min(x) return [("r_{}".format(r["r"]), mean_median_difference < (r["r"] * max_min_difference)) for r in param] @set_property("fctype", "simple") def has_duplicate_max(x): """ Checks if the maximum value of x is observed more than once :param x: the time series to calculate the feature of :type x: numpy.ndarray :return: the value of this feature :return type: bool """ if not isinstance(x, (np.ndarray, pd.Series)): x = np.asarray(x) return np.sum(x == np.max(x)) >= 2 @set_property("fctype", "simple") def has_duplicate_min(x): """ Checks if the minimal value of x is observed more than once :param x: the time series to calculate the feature of :type x: numpy.ndarray :return: the value of this feature :return type: bool """ if not isinstance(x, (np.ndarray, pd.Series)): x = np.asarray(x) return np.sum(x == np.min(x)) >= 2 @set_property("fctype", "simple") def has_duplicate(x): """ Checks if any value in x occurs more than once :param x: the time series to calculate the feature of :type x: numpy.ndarray :return: the value of this feature :return type: bool """ if not isinstance(x, (np.ndarray, pd.Series)): x = np.asarray(x) return x.size != np.unique(x).size @set_property("fctype", "simple") @set_property("minimal", True) def sum_values(x): """ Calculates the sum over the time series values :param x: the time series to calculate the feature of :type x: numpy.ndarray :return: the value of this feature :return type: float """ if len(x) == 0: return 0 return np.sum(x) @set_property("fctype", "combiner") def agg_autocorrelation(x, param): r""" Calculates the value of an aggregation function :math:`f_{agg}` (e.g. the variance or the mean) over the autocorrelation :math:`R(l)` for different lags. The autocorrelation :math:`R(l)` for lag :math:`l` is defined as .. math:: R(l) = \frac{1}{(n-l)\sigma^{2}} \sum_{t=1}^{n-l}(X_{t}-\mu )(X_{t+l}-\mu) where :math:`X_i` are the values of the time series, :math:`n` its length. Finally, :math:`\sigma^2` and :math:`\mu` are estimators for its variance and mean (See `Estimation of the Autocorrelation function <http://en.wikipedia.org/wiki/Autocorrelation#Estimation>`_). The :math:`R(l)` for different lags :math:`l` form a vector. This feature calculator applies the aggregation function :math:`f_{agg}` to this vector and returns .. math:: f_{agg} \left( R(1), \ldots, R(m)\right) \quad \text{for} \quad m = max(n, maxlag). Here :math:`maxlag` is the second parameter passed to this function. :param x: the time series to calculate the feature of :type x: numpy.ndarray :param param: contains dictionaries {"f_agg": x, "maxlag", n} with x str, the name of a numpy function (e.g. "mean", "var", "std", "median"), its the name of the aggregator function that is applied to the autocorrelations. Further, n is an int and the maximal number of lags to consider. :type param: list :return: the value of this feature :return type: float """ # if the time series is longer than the following threshold, we use fft to calculate the acf THRESHOLD_TO_USE_FFT = 1250 var = np.var(x) n = len(x) max_maxlag = max([config["maxlag"] for config in param]) if np.abs(var) < 10**-10 or n == 1: a = [0] * len(x) else: a = acf(x, unbiased=True, fft=n > THRESHOLD_TO_USE_FFT, nlags=max_maxlag)[1:] return [("f_agg_\"{}\"__maxlag_{}".format(config["f_agg"], config["maxlag"]), getattr(np, config["f_agg"])(a[:int(config["maxlag"])])) for config in param] @set_property("fctype", "combiner") def partial_autocorrelation(x, param): """ Calculates the value of the partial autocorrelation function at the given lag. The lag `k` partial autocorrelation of a time series :math:`\\lbrace x_t, t = 1 \\ldots T \\rbrace` equals the partial correlation of :math:`x_t` and :math:`x_{t-k}`, adjusted for the intermediate variables :math:`\\lbrace x_{t-1}, \\ldots, x_{t-k+1} \\rbrace` ([1]). Following [2], it can be defined as .. math:: \\alpha_k = \\frac{ Cov(x_t, x_{t-k} | x_{t-1}, \\ldots, x_{t-k+1})} {\\sqrt{ Var(x_t | x_{t-1}, \\ldots, x_{t-k+1}) Var(x_{t-k} | x_{t-1}, \\ldots, x_{t-k+1} )}} with (a) :math:`x_t = f(x_{t-1}, \\ldots, x_{t-k+1})` and (b) :math:`x_{t-k} = f(x_{t-1}, \\ldots, x_{t-k+1})` being AR(k-1) models that can be fitted by OLS. Be aware that in (a), the regression is done on past values to predict :math:`x_t` whereas in (b), future values are used to calculate the past value :math:`x_{t-k}`. It is said in [1] that "for an AR(p), the partial autocorrelations [ :math:`\\alpha_k` ] will be nonzero for `k<=p` and zero for `k>p`." With this property, it is used to determine the lag of an AR-Process. .. rubric:: References | [1] <NAME>., <NAME>., <NAME>., & <NAME>. (2015). | Time series analysis: forecasting and control. <NAME> & Sons. | [2] https://onlinecourses.science.psu.edu/stat510/node/62 :param x: the time series to calculate the feature of :type x: numpy.ndarray :param param: contains dictionaries {"lag": val} with int val indicating the lag to be returned :type param: list :return: the value of this feature :return type: float """ # Check the difference between demanded lags by param and possible lags to calculate (depends on len(x)) max_demanded_lag = max([lag["lag"] for lag in param]) n = len(x) # Check if list is too short to make calculations if n <= 1: pacf_coeffs = [np.nan] * (max_demanded_lag + 1) else: if (n <= max_demanded_lag): max_lag = n - 1 else: max_lag = max_demanded_lag pacf_coeffs = list(pacf(x, method="ld", nlags=max_lag)) pacf_coeffs = pacf_coeffs + [np.nan] * max(0, (max_demanded_lag - max_lag)) return [("lag_{}".format(lag["lag"]), pacf_coeffs[lag["lag"]]) for lag in param] @set_property("fctype", "combiner") def augmented_dickey_fuller(x, param): """ The Augmented Dickey-Fuller test is a hypothesis test which checks whether a unit root is present in a time series sample. This feature calculator returns the value of the respective test statistic. See the statsmodels implementation for references and more details. :param x: the time series to calculate the feature of :type x: numpy.ndarray :param param: contains dictionaries {"attr": x} with x str, either "teststat", "pvalue" or "usedlag" :type param: list :return: the value of this feature :return type: float """ res = None try: res = adfuller(x) except LinAlgError: res = np.NaN, np.NaN, np.NaN except ValueError: # occurs if sample size is too small res = np.NaN, np.NaN, np.NaN except MissingDataError: # is thrown for e.g. inf or nan in the data res = np.NaN, np.NaN, np.NaN return [('attr_"{}"'.format(config["attr"]), res[0] if config["attr"] == "teststat" else res[1] if config["attr"] == "pvalue" else res[2] if config["attr"] == "usedlag" else np.NaN) for config in param] @set_property("fctype", "simple") def abs_energy(x): """ Returns the absolute energy of the time series which is the sum over the squared values .. math:: E = \\sum_{i=1,\ldots, n} x_i^2 :param x: the time series to calculate the feature of :type x: numpy.ndarray :return: the value of this feature :return type: float """ if not isinstance(x, (np.ndarray, pd.Series)): x = np.asarray(x) return np.dot(x, x) @set_property("fctype", "simple") def cid_ce(x, normalize): """ This function calculator is an estimate for a time series complexity [1] (A more complex time series has more peaks, valleys etc.). It calculates the value of .. math:: \\sqrt{ \\sum_{i=0}^{n-2lag} ( x_{i} - x_{i+1})^2 } .. rubric:: References | [1] Batista, <NAME>, et al (2014). | CID: an efficient complexity-invariant distance for time series. | Data Mining and Knowledge Discovery 28.3 (2014): 634-669. :param x: the time series to calculate the feature of :type x: numpy.ndarray :param normalize: should the time series be z-transformed? :type normalize: bool :return: the value of this feature :return type: float """ if not isinstance(x, (np.ndarray, pd.Series)): x = np.asarray(x) if normalize: s = np.std(x) if s!=0: x = (x - np.mean(x))/s else: return 0.0 x = np.diff(x) return np.sqrt(np.dot(x, x)) @set_property("fctype", "simple") def mean_abs_change(x): """ Returns the mean over the absolute differences between subsequent time series values which is .. math:: \\frac{1}{n} \\sum_{i=1,\ldots, n-1} | x_{i+1} - x_{i}| :param x: the time series to calculate the feature of :type x: numpy.ndarray :return: the value of this feature :return type: float """ return np.mean(np.abs(np.diff(x))) @set_property("fctype", "simple") def mean_change(x): """ Returns the mean over the differences between subsequent time series values which is .. math:: \\frac{1}{n} \\sum_{i=1,\ldots, n-1} x_{i+1} - x_{i} :param x: the time series to calculate the feature of :type x: numpy.ndarray :return: the value of this feature :return type: float """ return np.mean(np.diff(x)) @set_property("fctype", "simple") def mean_second_derivative_central(x): """ Returns the mean value of a central approximation of the second derivative .. math:: \\frac{1}{n} \\sum_{i=1,\ldots, n-1} \\frac{1}{2} (x_{i+2} - 2 \\cdot x_{i+1} + x_i) :param x: the time series to calculate the feature of :type x: numpy.ndarray :return: the value of this feature :return type: float """ diff = (_roll(x, 1) - 2 * np.array(x) + _roll(x, -1)) / 2.0 return np.mean(diff[1:-1]) @set_property("fctype", "simple") @set_property("minimal", True) def median(x): """ Returns the median of x :param x: the time series to calculate the feature of :type x: numpy.ndarray :return: the value of this feature :return type: float """ return np.median(x) @set_property("fctype", "simple") @set_property("minimal", True) def mean(x): """ Returns the mean of x :param x: the time series to calculate the feature of :type x: numpy.ndarray :return: the value of this feature :return type: float """ return np.mean(x) @set_property("fctype", "simple") @set_property("minimal", True) def length(x): """ Returns the length of x :param x: the time series to calculate the feature of :type x: numpy.ndarray :return: the value of this feature :return type: int """ return len(x) @set_property("fctype", "simple") @set_property("minimal", True) def standard_deviation(x): """ Returns the standard deviation of x :param x: the time series to calculate the feature of :type x: numpy.ndarray :return: the value of this feature :return type: float """ return np.std(x) @set_property("fctype", "simple") @set_property("minimal", True) def variance(x): """ Returns the variance of x :param x: the time series to calculate the feature of :type x: numpy.ndarray :return: the value of this feature :return type: float """ return np.var(x) @set_property("fctype", "simple") def skewness(x): """ Returns the sample skewness of x (calculated with the adjusted Fisher-Pearson standardized moment coefficient G1). :param x: the time series to calculate the feature of :type x: numpy.ndarray :return: the value of this feature :return type: float """ if not isinstance(x, pd.Series): x = pd.Series(x) return pd.Series.skew(x) @set_property("fctype", "simple") def kurtosis(x): """ Returns the kurtosis of x (calculated with the adjusted Fisher-Pearson standardized moment coefficient G2). :param x: the time series to calculate the feature of :type x: numpy.ndarray :return: the value of this feature :return type: float """ if not isinstance(x, pd.Series): x = pd.Series(x) return pd.Series.kurtosis(x) @set_property("fctype", "simple") def absolute_sum_of_changes(x): """ Returns the sum over the absolute value of consecutive changes in the series x .. math:: \\sum_{i=1, \ldots, n-1} \\mid x_{i+1}- x_i \\mid :param x: the time series to calculate the feature of :type x: numpy.ndarray :return: the value of this feature :return type: float """ return np.sum(np.abs(
np.diff(x)
numpy.diff
# # Copyright 2018 Analytics Zoo Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import os import os.path as osp from PIL import Image import logging try: import xml.etree.cElementTree as ET except ImportError: import xml.etree.ElementTree as ET class VOCDatasets: """Pascal VOC dataset load Parameters ---------------- root: str, example:'./data/VOCdevkit'. splits_names: tuple, ((year, trainval)). classes: list[str], If you using custom-voc dataset, \ you need to config the name of custom objects. difficult: bool, False ignore voc xml difficult value. """ def __init__(self, root="VOCdevkit", splits_names=[(2007, "trainval")], classes=None, difficult=False) -> None: self.CLASSES = ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] if classes: self.CLASSES = classes self.cat2label = {cat: i for i, cat in enumerate(self.CLASSES)} self._root = osp.abspath(osp.expanduser(root)) self._diff = difficult self._imgid_items = self._load_items(splits_names) self._anno_path = osp.join('{}', 'Annotations', '{}.xml') self._image_path = osp.join('{}', 'JPEGImages', '{}.jpg') self._im_shapes = {} self._im_anno = [self._load_label(idx) for idx in range(len(self))] self._im_cache = {} def _load_items(self, splits_names): img_ids = [] for year, txtname in splits_names: vocfolder = osp.join(self._root, "VOC{}".format(year)) txtpath = osp.join(vocfolder, 'ImageSets', 'Main', txtname + '.txt') try: with open(txtpath, 'r', encoding='utf-8') as f: img_ids += [(vocfolder, line.strip()) for line in f.readlines()] except: continue return img_ids def __len__(self): return len(self._imgid_items) def __iter__(self): img_path = [self._image_path.format(*img_id) for img_id in self._imgid_items] return zip(img_path, self._im_anno) def __getitem__(self, idx): img_id = self._imgid_items[idx] img_path = self._image_path.format(*img_id) if img_path in self._im_cache: img = self._im_cache else: img = self._read_image(img_path) return img, self._im_anno[idx] def _load_label(self, idx): img_id = self._imgid_items[idx] anno_path = self._anno_path.format(*img_id) root = ET.parse(anno_path).getroot() width = 0 height = 0 size = root.find('size') if size is not None: width = int(size.find('width').text) height = int(size.find('height').text) else: img_path = self._image_path.format(*img_id) img = self._read_image(img_path) width, height = img.size self._im_cache[img_path] = img if idx not in self._im_shapes: # store the shapes for later usage self._im_shapes[idx] = (width, height) # load label [[x1, y1, x2, y2, cls, difficult]] label = [] for obj in root.iter('object'): try: difficult = int(obj.find('difficult').text) except ValueError: difficult = 0 cls_name = obj.find('name').text.strip().lower() if cls_name not in self.CLASSES: logging.warning(f"{cls_name} isn't included in {self.CLASSES}") continue cls_id = self.cat2label[cls_name] xml_box = obj.find('bndbox') xmin = float(int(xml_box.find('xmin').text) / width) ymin = float(int(xml_box.find('ymin').text) / height) xmax = float(int(xml_box.find('xmax').text) / width) ymax = float(int(xml_box.find('ymax').text) / height) label.append([xmin, ymin, xmax, ymax, cls_id, difficult]) label = np.array(label).astype(np.float32) if not self._diff: label = label[..., :5] try: self._check_label(label, width, height) except AssertionError as e: logging.warning("Invalid label at %s, %s", anno_path, e) return label def _check_label(self, label, width, height): """Check if label is correct.""" xmin = label[:, 0] ymin = label[:, 1] xmax = label[:, 2] ymax = label[:, 3] assert ((0 <= xmin) & (xmin < width)).any(), \ "xmin must in [0, {}), given {}".format(width, xmin) assert ((0 <= ymin) & (ymin < height)).any(), \ "ymin must in [0, {}), given {}".format(height, ymin) assert ((xmin < xmax) & (xmax <= width)).any(), \ "xmax must in ({}, {}], given {}".format(xmin, width, xmax) assert ((ymin < ymax) & (ymax <= height)).any(), \ "ymax must in ({}, {}], given {}".format(ymin, height, ymax) def _read_image(self, image_path): try: img = Image.open(image_path) img =
np.array(img)
numpy.array
# Copyright (c) 2019-2021 - for information on the respective copyright owner # see the NOTICE file and/or the repository # https://github.com/boschresearch/pylife # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __author__ = "<NAME>" __maintainer__ = __author__ import pytest import numpy as np import pandas as pd from pylife.materiallaws import WoehlerCurve wc_data = pd.Series({ 'k_1': 7., 'TN': 1.75, 'ND': 1e6, 'SD': 300.0 }) def test_woehler_accessor(): wc = wc_data.drop('TN') for key in wc.index: wc_miss = wc.drop(key) with pytest.raises(AttributeError): wc_miss.woehler def test_woehler_transform_probability(): wc_50 = pd.Series({ 'k_1': 2, 'k_2': np.inf, 'TS': 2., 'TN': 9., 'ND': 3e6, 'SD': 300 * np.sqrt(2.), 'failure_probability': 0.5 }).sort_index() transformed_90 = wc_50.woehler.transform_to_failure_probability(0.9).to_pandas() pd.testing.assert_series_equal(transformed_90[['SD', 'ND', 'failure_probability']], pd.Series({'SD': 600.0, 'ND': 4.5e6, 'failure_probability': 0.9})) transformed_back = transformed_90.woehler.transform_to_failure_probability(0.5).to_pandas() pd.testing.assert_series_equal(transformed_back, wc_50) transformed_10 = wc_50.woehler.transform_to_failure_probability(0.1).to_pandas() pd.testing.assert_series_equal(transformed_10[['SD', 'ND', 'failure_probability']], pd.Series({'SD': 300.0, 'ND': 2e6, 'failure_probability': 0.1})) transformed_back = transformed_10.woehler.transform_to_failure_probability(0.5).to_pandas() pd.testing.assert_series_equal(transformed_back, wc_50) def test_woehler_transform_probability_multiple(): wc_50 = pd.Series({ 'k_1': 2, 'k_2': np.inf, 'TS': 2., 'TN': 9., 'ND': 3e6, 'SD': 300 * np.sqrt(2.), 'failure_probability': 0.5 }).sort_index() transformed = wc_50.woehler.transform_to_failure_probability([.1, .9]).to_pandas() expected = pd.DataFrame({ 'k_1': [2., 2.], 'k_2': [np.inf, np.inf], 'TS': [2., 2.], 'TN': [9., 9.], 'ND': [2e6, 4.5e6], 'SD': [300., 600.], 'failure_probability': [0.1, 0.9] }) pd.testing.assert_frame_equal(transformed, expected, check_like=True) transformed_back = transformed.woehler.transform_to_failure_probability([0.5, 0.5]).to_pandas() expected = pd.DataFrame({ 'k_1': [2., 2.], 'k_2': [np.inf, np.inf], 'TS': [2., 2.], 'TN': [9., 9.], 'ND': [3e6, 3e6], 'SD': [300. * np.sqrt(2.), 300. *
np.sqrt(2.)
numpy.sqrt
# Implementation of: https://www.geeksforgeeks.org/ml-k-means-algorithm/ import numpy as np import sys def distance(p1, p2): return np.sum((p1 - p2) ** 2) def initialize(data, k): ''' initialized the centroids for K-means++ inputs: data - numpy array of data points having shape (200, 2) k - number of clusters ''' ## initialize the centroids list and add ## a randomly selected data point to the list centroids = [] centroids.append(data[np.random.randint( data.shape[0]), :]) ## compute remaining k - 1 centroids for c_id in range(k - 1): ## initialize a list to store distances of data ## points from nearest centroid dist = [] for i in range(data.shape[0]): point = data[i, :] d = sys.maxsize ## compute distance of 'point' from each of the previously ## selected centroid and store the minimum distance for j in range(len(centroids)): temp_dist = distance(point, centroids[j]) d = min(d, temp_dist) dist.append(d) ## select data point with maximum distance as our next centroid dist =
np.array(dist)
numpy.array
#!/usr/bin/python """calculate_skystats.py -- Mask stars aggressively, together with input mask, determine sky background stats in remaining pixels. Stats are Average Median Standard deviation of x by x pixels's average values (y boxes are placed randomly) Note that for using aplpy to plot location of randomly placed sky areas, the vmin and vmax for fits image is hard coded in right now. So if you get black png files, that's why. For randomly placed boxes, take in vmin, vmax command line options; but not for annuli! Should also write in a remove created files option. Need to update to be an importable module. Required input fitsimage - image for which background stats are desired. Usage: calculate_skystats.py [-h] [-v] [-b STRING] [-a STRING] [--annulusallover STRING] [-n INT] [-m FILE] [-s SEXLOC] [--vmin FLOAT] [--vmax FLOAT] <fitsimage> Options: -h, --help Print this screen. -v, --verbose Print extra information [default: False] -b STRING, --box STRING Input box parameters: size of box (pixels), number of random boxes to be placed. E.g. 8,1000. -a STRING, --annulus STRING Select annulus with params 'xc1,yc1,a1,b1,ang1,xc2,yc2,a2,b2,ang2', angle in degrees, counter clockwise rotation; place random annuli around galaxy. --annulusallover STRING Select annulus with params 'xc1,yc1,a1,b1,ang1,xc2,yc2,a2,b2,ang2', angle in degrees, counter clockwise rotation; place annulus around galaxy, but let it move around a little more than above option. -n INT, --niterations INT Input number of random annuli to be placed. (not used for boxes). [default: 100] -m FILE, --mask FILE Required. Input mask to be combined with grown sextractor mask. Important to input a mask that masks out the galaxy and its extended low surface brightness features! -s SEXLOC, --sex SEXLOC SExtractor location [default: /opt/local/bin/sex] --vmin FLOAT For plotting up box/ annuli locations [default: 4.25] --vmax FLOAT For plotting up box/ annuli locations [default: 4.32] Example: python calculate_skystats.py -v fitsimage.fits """ import docopt import numpy as np import astropy.io.fits as fits from scipy import ndimage import subprocess import os, sys, copy import matplotlib.pyplot as plt import aplpy sextractor_params = """NUMBER FLUX_AUTO FLUXERR_AUTO FLUX_APER FLUXERR_APER X_IMAGE Y_IMAGE X_WORLD Y_WORLD FLUX_RADIUS FLAGS CLASS_STAR BACKGROUND ELLIPTICITY FWHM_IMAGE """ sextractor_config = """ ANALYSIS_THRESH 3 BACK_FILTERSIZE 3 BACKPHOTO_TYPE LOCAL BACK_SIZE 32 CATALOG_NAME test.cat CATALOG_TYPE ASCII_HEAD CHECKIMAGE_TYPE SEGMENTATION CHECKIMAGE_NAME {check_name} CLEAN Y CLEAN_PARAM 1. DEBLEND_MINCONT 0.001 DEBLEND_NTHRESH 32 DETECT_MINAREA 5 DETECT_THRESH 3 DETECT_TYPE CCD FILTER Y FILTER_NAME {filter_name} FLAG_IMAGE flag.fits GAIN 1.0 MAG_GAMMA 4. MAG_ZEROPOINT 0.0 MASK_TYPE CORRECT MEMORY_BUFSIZE 1024 MEMORY_OBJSTACK 3000 MEMORY_PIXSTACK 300000 PARAMETERS_NAME {parameters_name} PHOT_APERTURES 5 PHOT_AUTOPARAMS 2.5, 3.5 PIXEL_SCALE 2.85 SATUR_LEVEL 50000. SEEING_FWHM 2.5 STARNNW_NAME {starnnw_name} VERBOSE_TYPE {verbose_type} """ default_conv = """CONV NORM # 3x3 ``all-ground'' convolution mask with FWHM = 2 pixels. 1 2 1 2 4 2 1 2 1 """ default_nnw = """NNW # Neural Network Weights for the SExtractor star/galaxy classifier (V1.3) # inputs: 9 for profile parameters + 1 for seeing. # outputs: ``Stellarity index'' (0.0 to 1.0) # Seeing FWHM range: from 0.025 to 5.5'' (images must have 1.5 < FWHM < 5 pixels) # Optimized for Moffat profiles with 2<= beta <= 4. 3 10 10 1 -1.56604e+00 -2.48265e+00 -1.44564e+00 -1.24675e+00 -9.44913e-01 -5.22453e-01 4.61342e-02 8.31957e-01 2.15505e+00 2.64769e-01 3.03477e+00 2.69561e+00 3.16188e+00 3.34497e+00 3.51885e+00 3.65570e+00 3.74856e+00 3.84541e+00 4.22811e+00 3.27734e+00 -3.22480e-01 -2.12804e+00 6.50750e-01 -1.11242e+00 -1.40683e+00 -1.55944e+00 -1.84558e+00 -1.18946e-01 5.52395e-01 -4.36564e-01 -5.30052e+00 4.62594e-01 -3.29127e+00 1.10950e+00 -6.01857e-01 1.29492e-01 1.42290e+00 2.90741e+00 2.44058e+00 -9.19118e-01 8.42851e-01 -4.69824e+00 -2.57424e+00 8.96469e-01 8.34775e-01 2.18845e+00 2.46526e+00 8.60878e-02 -6.88080e-01 -1.33623e-02 9.30403e-02 1.64942e+00 -1.01231e+00 4.81041e+00 1.53747e+00 -1.12216e+00 -3.16008e+00 -1.67404e+00 -1.75767e+00 -1.29310e+00 5.59549e-01 8.08468e-01 -1.01592e-02 -7.54052e+00 1.01933e+01 -2.09484e+01 -1.07426e+00 9.87912e-01 6.05210e-01 -6.04535e-02 -5.87826e-01 -7.94117e-01 -4.89190e-01 -8.12710e-02 -2.07067e+01 -5.31793e+00 7.94240e+00 -4.64165e+00 -4.37436e+00 -1.55417e+00 7.54368e-01 1.09608e+00 1.45967e+00 1.62946e+00 -1.01301e+00 1.13514e-01 2.20336e-01 1.70056e+00 -5.20105e-01 -4.28330e-01 1.57258e-03 -3.36502e-01 -8.18568e-02 -7.16163e+00 8.23195e+00 -1.71561e-02 -1.13749e+01 3.75075e+00 7.25399e+00 -1.75325e+00 -2.68814e+00 -3.71128e+00 -4.62933e+00 -2.13747e+00 -1.89186e-01 1.29122e+00 -7.49380e-01 6.71712e-01 -8.41923e-01 4.64997e+00 5.65808e-01 -3.08277e-01 -1.01687e+00 1.73127e-01 -8.92130e-01 1.89044e+00 -2.75543e-01 -7.72828e-01 5.36745e-01 -3.65598e+00 7.56997e+00 -3.76373e+00 -1.74542e+00 -1.37540e-01 -5.55400e-01 -1.59195e-01 1.27910e-01 1.91906e+00 1.42119e+00 -4.35502e+00 -1.70059e+00 -3.65695e+00 1.22367e+00 -5.74367e-01 -3.29571e+00 2.46316e+00 5.22353e+00 2.42038e+00 1.22919e+00 -9.22250e-01 -2.32028e+00 0.00000e+00 1.00000e+00 """ def run_SExtractor(image_name): 'Create temporary directory' if not os.path.exists('tmpSkystats'): os.makedirs('tmpSkystats') else: print('./tmpSkystats directory existed already') 'Names of required config files' sextractor_config_name = './tmpSkystats/scamp.sex' params_name = './tmpSkystats/scamp.param' conv_name = './tmpSkystats/default.conv' nnw_name = './tmpSkystats/default.nnw' catalog_name = image_name.split('.fits')[0]+'_bkg.cat' check_name = image_name.split('.fits')[0]+'_bkg_segmap.fits' if verbose: verbose_type = 'NORMAL' else: verbose_type = 'QUIET' 'Stick content in config files' configs = zip([sextractor_config_name,params_name,conv_name,nnw_name],[sextractor_config,sextractor_params,default_conv,default_nnw]) for fname,fcontent in configs: fout = open(fname,'w') if 'scamp.sex' in fname: fout.write(fcontent.format(filter_name=conv_name, parameters_name=params_name,starnnw_name=nnw_name, verbose_type=verbose_type,check_name=check_name)) else: fout.write(fcontent) fout.close() if verbose: print('SExtracting...') 'SExtractor command' command = sexloc + ' -c {config} -CATALOG_NAME {catalog} {image}'.format(config=sextractor_config_name,catalog=catalog_name,image=image_name) if verbose: print('Running this command:') print(command+'\n') 'Run SExtractor' subprocess.call(command,shell=True) 'Clear unnecessary files' for fname in [sextractor_config_name,params_name,conv_name,nnw_name]: clearit(fname) 'Remove temp directory if its not empty' try: os.rmdir('tmpSkystats') except OSError as ex: if ex.errno == errno.ENOTEMPTY: print("directory not empty") return check_name def clearit(fname): if os.path.isfile(fname): os.remove(fname) return None def writeFITS(im,saveAs,header=None): if header != None: hdu = fits.PrimaryHDU(data=im,header=header) else: hdu = fits.PrimaryHDU(data=im) hdulist = fits.HDUList([hdu]) hdulist.writeto(saveAs,overwrite=True) hdulist.close() return None def calculate_sky_box(fitsimage,image,total_mask,boxsize_pix,nboxes,vmin=4.25,vmax=4.32): '''Place nboxes boxsize_pix sized boxes randomly in image with total_mask, calculate average in each box and standard deviation of averages''' sky_counts = [] pix_counts = [] n_counter = 0 n_notfinite = 0 # Read in image size and set boxes # to be placed not too near edge h = fits.getheader(fitsimage) xmin = 1.5*boxsize_pix ymin = 1.5*boxsize_pix xmax = float(h['NAXIS1'])-1.5*boxsize_pix ymax = float(h['NAXIS2'])-1.5*boxsize_pix # Start figure to plot up box locations fig = plt.figure(figsize=(48, 36)) f1 = aplpy.FITSFigure(fitsimage,figure=fig) #f1.set_tick_labels_font(size='xx-small') f1.ticks.hide() f1.tick_labels.hide_x() f1.tick_labels.hide_y() f1.axis_labels.hide() f1.show_grayscale(invert=True, stretch='linear', vmin=vmin, vmax=vmax) xlen = int(h['NAXIS2']) ylen = int(h['NAXIS1']) xtomesh = np.arange(0, ylen, 1) ytomesh = np.arange(0, xlen, 1) X, Y = np.meshgrid(xtomesh, ytomesh) while n_counter <= nboxes: # Choose a random spot row = np.random.randint(low=ymin,high=ymax) col = np.random.randint(low=xmin,high=xmax) # Make a box image_box = image[row-int(boxsize_pix/2):row+int(boxsize_pix/2)+1,col-int(boxsize_pix/2):col+int(boxsize_pix/2)+1] mask_box = total_mask[row-int(boxsize_pix/2):row+int(boxsize_pix/2)+1,col-int(boxsize_pix/2):col+int(boxsize_pix/2)+1] # Plot up location of box for display using show_contour display_mask = np.zeros((xlen,ylen)) display_mask[row-int(boxsize_pix/2):row+int(boxsize_pix/2)+1,col-int(boxsize_pix/2):col+int(boxsize_pix/2)+1] = 1.0 CS = plt.contour(X, Y, display_mask,linewidths=1.0,alpha=0.1,colors='red') # Measure average counts in this masked box counts = np.ma.mean(np.ma.masked_array(image_box,mask=mask_box)) # Measure number of pixels not masked in this masked box no_pixels_notmasked = np.sum(mask_box) # Add average to sky_counts if finite # Also increment box count # Else increment n_notfinite if np.isfinite(counts): sky_counts.append(counts) pix_counts.append(no_pixels_notmasked) n_counter += 1 else: n_notfinite += 1 # Save figure to of annuli locations outname = './skyregionlocs.png' f1.save(outname) print(' ') print('***OUTPUT: Box location plot saved here: ',outname) return sky_counts, pix_counts, n_notfinite, h def read_annulusparams(annulusparams): '''Read out annulus parameters of form xc1,yc1,a1,b1,ang1,xc2,yc2,a2,b2,ang2''' params = annulusparams.split(',') xc1,yc1,a1,b1,ang1,xc2,yc2,a2,b2,ang2 = params return float(xc1),float(yc1),float(a1),float(b1),float(ang1),float(xc2),float(yc2),float(a2),float(b2),float(ang2) def make_annulus_mask(xlen,ylen,xc1,yc1,a1,b1,ang1,xc2,yc2,a2,b2,ang2): '''Read in annulus parameters and create grabber of annulus (1 inside and 0 outside)''' ang1_rad = (ang1/360.)*2*np.pi ang2_rad = (ang2/360.)*2*np.pi # Ellipse 1 mask1 = np.zeros((xlen,ylen)) xv,yv = np.meshgrid(np.linspace(0,xlen-1,xlen),np.linspace(0,ylen-1,ylen)) A = ( (xv-xc1)*np.cos(ang1_rad) + (yv-yc1)*np.sin(ang1_rad) )**2 / a1**2 B = ( (xv-xc1)*np.sin(ang1_rad) - (yv-yc1)*np.cos(ang1_rad) )**2 / b1**2 xi,yi = np.where( A+B < 1.0 ) mask1[xi,yi] = 1 # Ellipse 2 mask2 = np.zeros((xlen,ylen)) A = ( (xv-xc2)*np.cos(ang2_rad) + (yv-yc2)*np.sin(ang2_rad) )**2 / a2**2 B = ( (xv-xc2)*np.sin(ang2_rad) - (yv-yc2)*np.cos(ang2_rad) )**2 / b2**2 xi,yi = np.where( A+B < 1.0 ) mask2[xi,yi] = 1 # Combine Ellipse 1 and 2 --> annulus mask3 = np.ones((xlen,ylen)).astype(int) tmp = mask1+mask2 xi,yi = np.where(tmp == 1.0) mask3[xi,yi] = 0 return mask3.astype(bool) def calculate_sky_annuli(fitsimage,image,total_mask,annulusparams,n_iterations): '''Save sky count averages in n_iteration annuli, also plot up where random n_iterations of annuli were placed on fits image.''' # Calculate sky in input annulus xc1,yc1,a1,b1,ang1,xc2,yc2,a2,b2,ang2 = read_annulusparams(annulusparams) h = fits.getheader(fitsimage) xlen = int(h['NAXIS2']) ylen = int(h['NAXIS1']) mask = make_annulus_mask(xlen,ylen,xc1,yc1,a1,b1,ang1,xc2,yc2,a2,b2,ang2) initial_annuli_mask_data = mask.copy() image_annuli = copy.copy(image) image_annuli[mask] = float('nan') image_annuli[total_mask] = float('nan') initial_annuli_name = 'annuli_input.fits' writeFITS(image_annuli,initial_annuli_name) print(' ') print('***OUTPUT: Sky calculation annulus saved here: ',initial_annuli_name) print(' ') print('Average in input sky annulus is: ',np.nanmean(image_annuli)) print('Median in input sky annulus is: ',np.nanmedian(image_annuli)) print('Std in input sky annulus is: ',np.nanstd(image_annuli)) print('Number of finite non masked pixels in input sky annulus: ',np.sum(np.isfinite(image_annuli))) # Plonk some random annuli, calculate average of averages and std of averages # Vary xc,yc within width of annuli randomly (move xc2,yc2 by same amount) # AND vary a1 randomly while keeping a1-a2 constant, varations up to width of annuli annuli_thickness = abs(a1-a2)/2. # Start figure to plot up annuli locations fig = plt.figure(figsize=(48, 36)) f1 = aplpy.FITSFigure(fitsimage,figure=fig) #f1.set_tick_labels_font(size='xx-small') f1.ticks.hide() f1.tick_labels.hide_x() f1.tick_labels.hide_y() f1.axis_labels.hide() f1.show_grayscale(invert=True, stretch='linear', vmin=4.25, vmax=4.32) # for g-band ngc 2841: vmin=2.38, vmax=2.42 sky_counts = [] pix_counts = [] n_counter = 0 n_notfinite = 0 xtomesh = np.arange(0, ylen, 1) ytomesh = np.arange(0, xlen, 1) X, Y = np.meshgrid(xtomesh, ytomesh) while n_counter < n_iterations: # Choose X random values for xc,yc and a1 xc_shift = np.random.randint(low=-annuli_thickness,high=annuli_thickness) yc_shift = np.random.randint(low=-annuli_thickness,high=annuli_thickness) a1_shift = np.random.randint(low=-annuli_thickness,high=annuli_thickness) new_xc1 = xc1+xc_shift new_xc2 = xc2+xc_shift new_yc1 = yc1+yc_shift new_yc2 = yc2+yc_shift new_a1 = a1+a1_shift new_a2 = a2+a1_shift new_b1 = (b1/a1)*(new_a1) new_b2 = (b2/a2)*(new_a2) # Make mask for new annuli mask = make_annulus_mask(xlen,ylen, new_xc1,new_yc1,new_a1,new_b1,ang1, new_xc2,new_yc2,new_a2,new_b2,ang2) image_annuli = copy.copy(image) image_annuli[mask] = float('nan') image_annuli[total_mask] = float('nan') # Plot up location annulus for display using show_contour CS = plt.contour(X, Y, mask,linewidths=1.0,alpha=0.1,colors='red') # Calculate average and number of pixels in average to array #counts = 3.*np.nanmedian(image_annuli) - 2.*np.nanmean(image_annuli) counts = np.nanmean(image_annuli) # Add average to sky_counts if finite # Also increment n_counter # Else increment n_notfinite if np.isfinite(counts): sky_counts.append(counts) pix_counts.append(np.sum(np.isfinite(image_annuli))) n_counter += 1 else: n_notfinite += 1 # Increment counter n_counter += 1 # Plot initial sky ellipse # Copy wcs to total_mask_name, and show initial ellipse contour CS = plt.contour(X, Y, initial_annuli_mask_data,linewidths=6.0,colors='green') # Save figure to of annuli locations outname = './skyregionlocs.png' f1.save(outname) print(' ') print('***OUTPUT: Annuli location plot saved here: ',outname) if verbose: print('Number of annuli placed randomly is: ',n_counter) return sky_counts, pix_counts, n_notfinite, h def copy_wcs(fits_withwcs,fits_withoutwcs): h = fits.getheader(fits_withwcs) f = fits.open(fits_withoutwcs) newf = fits.PrimaryHDU() newf.header = f[0].header newf.data = f[0].data newf.header['CTYPE1'] = h['CTYPE1'] newf.header['CRPIX1'] = h['CRPIX1'] newf.header['CRVAL1'] = h['CRVAL1'] newf.header['CTYPE2'] = h['CTYPE2'] newf.header['CRPIX2'] = h['CRPIX2'] newf.header['CRVAL2'] = h['CRVAL2'] newf.header['CD1_1'] = h['CD1_1'] newf.header['CD1_2'] = h['CD1_2'] newf.header['CD2_1'] = h['CD2_1'] newf.header['CD2_2'] = h['CD2_2'] #newf.header['RADECSYS'] = h['RADECSYS'] newf.header['EQUINOX'] = h['EQUINOX'] saveloc = fits_withoutwcs.split('.')[0]+'_wcs.fits' newf.writeto(saveloc, overwrite=True) return saveloc def calculate_sky_annuli_alloverim(fitsimage,image,total_mask,annulusparams,n_iterations): '''Save sky count averages in n_iteration annuli, also plot up where random n_iterations of annuli were placed on fits image.''' # Calculate sky in input annulus xc1,yc1,a1,b1,ang1,xc2,yc2,a2,b2,ang2 = read_annulusparams(annulusparams) h = fits.getheader(fitsimage) xlen = int(h['NAXIS2']) ylen = int(h['NAXIS1']) mask = make_annulus_mask(xlen,ylen,xc1,yc1,a1,b1,ang1,xc2,yc2,a2,b2,ang2) initial_annuli_mask_data = mask.copy() image_annuli = copy.copy(image) image_annuli[mask] = float('nan') image_annuli[total_mask] = float('nan') initial_annuli_name = 'annuli_input.fits' writeFITS(image_annuli,initial_annuli_name) print(' ') print('***OUTPUT: Sky calculation annulus saved here: ',initial_annuli_name) print(' ') print('Average in input sky annulus is: ',np.nanmean(image_annuli)) print('Median in input sky annulus is: ',np.nanmedian(image_annuli)) print('Std in input sky annulus is: ',np.nanstd(image_annuli)) print('Number of finite non masked pixels in input sky annulus: ',np.sum(np.isfinite(image_annuli))) # Plonk some random annuli, calculate average of averages and std of averages # Vary xc,yc within width of annuli randomly (move xc2,yc2 by same amount) # AND vary a1 randomly while keeping a1-a2 constant, varations up to width of annuli annuli_thickness = abs(a1-a2)/2. # Start figure to plot up annuli locations fig = plt.figure(figsize=(48, 36)) f1 = aplpy.FITSFigure(fitsimage,figure=fig) #f1.set_tick_labels_font(size='xx-small') f1.ticks.hide() f1.tick_labels.hide_x() f1.tick_labels.hide_y() f1.axis_labels.hide() f1.show_grayscale(invert=True, stretch='linear', vmin=4.25, vmax=4.32) # g-band ngc 2841 vmin=2.38, vmax=2.42 sky_counts = [] pix_counts = [] n_counter = 0 n_notfinite = 0 xtomesh = np.arange(0, ylen, 1) ytomesh =
np.arange(0, xlen, 1)
numpy.arange
from load import ROOT as R import numpy as np import gna.constructors as C from gna.bundle import TransformationBundle from gna.configurator import NestedDict class integral_2d1d_v05(TransformationBundle): """2d integral based on Integrator21GL v05 Changes since integral_2d1d_v04: - Added custom configuration of bin size and order Configuration options: - instances - dictionary of (name, label) pairs for instances { 'name1': 'label1', ... } alternativetly, a a dictionary with extra options may be passed instead of label: { 'name1': {'label': 'label1', 'noindex': True}, ... } Extra options: * 'noindex' - disable indices - xedgescfg - a list of 3-tuples: [ (left1, step1, order1), (left2, step2, order2), ... (last, None, None), ] an interval [left1, left2) will be filled with points with step1 (similar to arange), each interval will have order=order1 - yorder - number of points in bin on axis Y, integer. - variables - variable names (array of 2 strings). Predefined names: - variables[0] - array with points to integrate over variable[0] - variables[1] - array with points to integrate over variable[1] - variables[0]+'_edges' - array with bin edges for variable[0] - variables[0]+'_centers' - array with bin centers for variable[0] - variables[0]+'_hist' - histogram with bin edges for variable[0] - variables[i]+'_mesh' - 2d mesh for variable[i] (as in numpy.meshgrid) (may be configured via 'names' option of a bundle) """ def __init__(self, *args, **kwargs): TransformationBundle.__init__( self, *args, **kwargs ) self.check_cfg() self.init() @staticmethod def _provides(cfg): var0, var1 = cfg.variables variables = (var0, var1, var0+'_centers', var0+'_edges', var0+'_hist', var0+'_mesh', var1+'_mesh') names = tuple(cfg['instances'].keys()) return (), names+variables def check_cfg(self): if not 'name' in self.cfg: pkey = self.cfg.parent_key() if not pkey: raise self.exception('"name" option is not provided') self.cfg.name = pkey # try: # self.edges = np.ascontiguousarray(self.cfg.edges, dtype='d') # except: # raise self.exception('Invalid binning definition: {!r}'.format(self.cfg.edges)) # try: # self.xorders = np.ascontiguousarray(self.cfg.xorders, dtype='P') # except: # raise self.exception('Invalid xorders definition: {!r}'.format(self.cfg.xorders)) if len(self.cfg.variables)!=2: raise self.exception('Two vairables should be provided') def init(self): edges_list = [] orders_list = [] edgescfg = self.cfg.xedgescfg for (start, step, orders), (stop, _, _) in zip(edgescfg[:-1], edgescfg[1:]): cedges =
np.arange(start, stop, step, dtype='d')
numpy.arange
''' A data generator for 2D object detection. Copyright (C) 2018 <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' from __future__ import division import numpy as np import inspect from collections import defaultdict import warnings import sklearn.utils from copy import deepcopy from PIL import Image import cv2 import csv import os import sys from tqdm import tqdm, trange try: import h5py except ImportError: warnings.warn("'h5py' module is missing. The fast HDF5 dataset option will be unavailable.") try: import json except ImportError: warnings.warn("'json' module is missing. The JSON-parser will be unavailable.") try: from bs4 import BeautifulSoup except ImportError: warnings.warn("'BeautifulSoup' module is missing. The XML-parser will be unavailable.") try: import pickle except ImportError: warnings.warn("'pickle' module is missing. You won't be able to save parsed file lists and annotations as pickled files.") from ssd_encoder_decoder.ssd_input_encoder import SSDInputEncoder from data_generator.object_detection_2d_image_boxes_validation_utils import BoxFilter class DegenerateBatchError(Exception): ''' An exception class to be raised if a generated batch ends up being degenerate, e.g. if a generated batch is empty. ''' pass class DatasetError(Exception): ''' An exception class to be raised if a anything is wrong with the dataset, in particular if you try to generate batches when no dataset was loaded. ''' pass class DataGenerator: ''' A generator to generate batches of samples and corresponding labels indefinitely. Can shuffle the dataset consistently after each complete pass. Currently provides three methods to parse annotation data: A general-purpose CSV parser, an XML parser for the Pascal VOC datasets, and a JSON parser for the MS COCO datasets. If the annotations of your dataset are in a format that is not supported by these parsers, you could just add another parser method and still use this generator. Can perform image transformations for data conversion and data augmentation, for details please refer to the documentation of the `generate()` method. ''' def __init__(self, load_images_into_memory=False, hdf5_dataset_path=None, filenames=None, filenames_type='text', images_dir=None, labels=None, image_ids=None, eval_neutral=None, labels_output_format=('class_id', 'xmin', 'ymin', 'xmax', 'ymax'), verbose=True): ''' Initializes the data generator. You can either load a dataset directly here in the constructor, e.g. an HDF5 dataset, or you can use one of the parser methods to read in a dataset. Arguments: load_images_into_memory (bool, optional): If `True`, the entire dataset will be loaded into memory. This enables noticeably faster data generation than loading batches of images into memory ad hoc. Be sure that you have enough memory before you activate this option. hdf5_dataset_path (str, optional): The full file path of an HDF5 file that contains a dataset in the format that the `create_hdf5_dataset()` method produces. If you load such an HDF5 dataset, you don't need to use any of the parser methods anymore, the HDF5 dataset already contains all relevant data. filenames (string or list, optional): `None` or either a Python list/tuple or a string representing a filepath. If a list/tuple is passed, it must contain the file names (full paths) of the images to be used. Note that the list/tuple must contain the paths to the images, not the images themselves. If a filepath string is passed, it must point either to (1) a pickled file containing a list/tuple as described above. In this case the `filenames_type` argument must be set to `pickle`. Or (2) a text file. Each line of the text file contains the file name (basename of the file only, not the full directory path) to one image and nothing else. In this case the `filenames_type` argument must be set to `text` and you must pass the path to the directory that contains the images in `images_dir`. filenames_type (string, optional): In case a string is passed for `filenames`, this indicates what type of file `filenames` is. It can be either 'pickle' for a pickled file or 'text' for a plain text file. images_dir (string, optional): In case a text file is passed for `filenames`, the full paths to the images will be composed from `images_dir` and the names in the text file, i.e. this should be the directory that contains the images to which the text file refers. If `filenames_type` is not 'text', then this argument is irrelevant. labels (string or list, optional): `None` or either a Python list/tuple or a string representing the path to a pickled file containing a list/tuple. The list/tuple must contain Numpy arrays that represent the labels of the dataset. image_ids (string or list, optional): `None` or either a Python list/tuple or a string representing the path to a pickled file containing a list/tuple. The list/tuple must contain the image IDs of the images in the dataset. eval_neutral (string or list, optional): `None` or either a Python list/tuple or a string representing the path to a pickled file containing a list/tuple. The list/tuple must contain for each image a list that indicates for each ground truth object in the image whether that object is supposed to be treated as neutral during an evaluation. labels_output_format (list, optional): A list of five strings representing the desired order of the five items class ID, xmin, ymin, xmax, ymax in the generated ground truth data (if any). The expected strings are 'xmin', 'ymin', 'xmax', 'ymax', 'class_id'. verbose (bool, optional): If `True`, prints out the progress for some constructor operations that may take a bit longer. ''' self.labels_output_format = labels_output_format self.labels_format={'class_id': labels_output_format.index('class_id'), 'xmin': labels_output_format.index('xmin'), 'ymin': labels_output_format.index('ymin'), 'xmax': labels_output_format.index('xmax'), 'ymax': labels_output_format.index('ymax')} # This dictionary is for internal use. self.dataset_size = 0 # As long as we haven't loaded anything yet, the dataset size is zero. self.load_images_into_memory = load_images_into_memory self.images = None # The only way that this list will not stay `None` is if `load_images_into_memory == True`. # `self.filenames` is a list containing all file names of the image samples (full paths). # Note that it does not contain the actual image files themselves. This list is one of the outputs of the parser methods. # In case you are loading an HDF5 dataset, this list will be `None`. if not filenames is None: if isinstance(filenames, (list, tuple)): self.filenames = filenames elif isinstance(filenames, str): with open(filenames, 'rb') as f: if filenames_type == 'pickle': self.filenames = pickle.load(f) elif filenames_type == 'text': self.filenames = [os.path.join(images_dir, line.strip()) for line in f] else: raise ValueError("`filenames_type` can be either 'text' or 'pickle'.") else: raise ValueError("`filenames` must be either a Python list/tuple or a string representing a filepath (to a pickled or text file). The value you passed is neither of the two.") self.dataset_size = len(self.filenames) self.dataset_indices = np.arange(self.dataset_size, dtype=np.int32) if load_images_into_memory: self.images = [] if verbose: it = tqdm(self.filenames, desc='Loading images into memory', file=sys.stdout) else: it = self.filenames for filename in it: with Image.open(filename) as image: self.images.append(np.array(image, dtype=np.uint8)) else: self.filenames = None # In case ground truth is available, `self.labels` is a list containing for each image a list (or NumPy array) # of ground truth bounding boxes for that image. if not labels is None: if isinstance(labels, str): with open(labels, 'rb') as f: self.labels = pickle.load(f) elif isinstance(labels, (list, tuple)): self.labels = labels else: raise ValueError("`labels` must be either a Python list/tuple or a string representing the path to a pickled file containing a list/tuple. The value you passed is neither of the two.") else: self.labels = None if not image_ids is None: if isinstance(image_ids, str): with open(image_ids, 'rb') as f: self.image_ids = pickle.load(f) elif isinstance(image_ids, (list, tuple)): self.image_ids = image_ids else: raise ValueError("`image_ids` must be either a Python list/tuple or a string representing the path to a pickled file containing a list/tuple. The value you passed is neither of the two.") else: self.image_ids = None if not eval_neutral is None: if isinstance(eval_neutral, str): with open(eval_neutral, 'rb') as f: self.eval_neutral = pickle.load(f) elif isinstance(eval_neutral, (list, tuple)): self.eval_neutral = eval_neutral else: raise ValueError("`image_ids` must be either a Python list/tuple or a string representing the path to a pickled file containing a list/tuple. The value you passed is neither of the two.") else: self.eval_neutral = None if not hdf5_dataset_path is None: self.hdf5_dataset_path = hdf5_dataset_path self.load_hdf5_dataset(verbose=verbose) else: self.hdf5_dataset = None def load_hdf5_dataset(self, verbose=True): ''' Loads an HDF5 dataset that is in the format that the `create_hdf5_dataset()` method produces. Arguments: verbose (bool, optional): If `True`, prints out the progress while loading the dataset. Returns: None. ''' self.hdf5_dataset = h5py.File(self.hdf5_dataset_path, 'r') self.dataset_size = len(self.hdf5_dataset['images']) self.dataset_indices = np.arange(self.dataset_size, dtype=np.int32) # Instead of shuffling the HDF5 dataset or images in memory, we will shuffle this index list. if self.load_images_into_memory: self.images = [] if verbose: tr = trange(self.dataset_size, desc='Loading images into memory', file=sys.stdout) else: tr = range(self.dataset_size) for i in tr: self.images.append(self.hdf5_dataset['images'][i].reshape(self.hdf5_dataset['image_shapes'][i])) if self.hdf5_dataset.attrs['has_labels']: self.labels = [] labels = self.hdf5_dataset['labels'] label_shapes = self.hdf5_dataset['label_shapes'] if verbose: tr = trange(self.dataset_size, desc='Loading labels', file=sys.stdout) else: tr = range(self.dataset_size) for i in tr: self.labels.append(labels[i].reshape(label_shapes[i])) if self.hdf5_dataset.attrs['has_image_ids']: self.image_ids = [] image_ids = self.hdf5_dataset['image_ids'] if verbose: tr = trange(self.dataset_size, desc='Loading image IDs', file=sys.stdout) else: tr = range(self.dataset_size) for i in tr: self.image_ids.append(image_ids[i]) if self.hdf5_dataset.attrs['has_eval_neutral']: self.eval_neutral = [] eval_neutral = self.hdf5_dataset['eval_neutral'] if verbose: tr = trange(self.dataset_size, desc='Loading evaluation-neutrality annotations', file=sys.stdout) else: tr = range(self.dataset_size) for i in tr: self.eval_neutral.append(eval_neutral[i]) def parse_csv(self, images_dir, labels_filename, input_format, include_classes='all', random_sample=False, ret=False, verbose=True): ''' Arguments: images_dir (str): The path to the directory that contains the images. labels_filename (str): The filepath to a CSV file that contains one ground truth bounding box per line and each line contains the following six items: image file name, class ID, xmin, xmax, ymin, ymax. The six items do not have to be in a specific order, but they must be the first six columns of each line. The order of these items in the CSV file must be specified in `input_format`. The class ID is an integer greater than zero. Class ID 0 is reserved for the background class. `xmin` and `xmax` are the left-most and right-most absolute horizontal coordinates of the box, `ymin` and `ymax` are the top-most and bottom-most absolute vertical coordinates of the box. The image name is expected to be just the name of the image file without the directory path at which the image is located. input_format (list): A list of six strings representing the order of the six items image file name, class ID, xmin, xmax, ymin, ymax in the input CSV file. The expected strings are 'image_name', 'xmin', 'xmax', 'ymin', 'ymax', 'class_id'. include_classes (list, optional): Either 'all' or a list of integers containing the class IDs that are to be included in the dataset. If 'all', all ground truth boxes will be included in the dataset. random_sample (float, optional): Either `False` or a float in `[0,1]`. If this is `False`, the full dataset will be used by the generator. If this is a float in `[0,1]`, a randomly sampled fraction of the dataset will be used, where `random_sample` is the fraction of the dataset to be used. For example, if `random_sample = 0.2`, 20 precent of the dataset will be randomly selected, the rest will be ommitted. The fraction refers to the number of images, not to the number of boxes, i.e. each image that will be added to the dataset will always be added with all of its boxes. ret (bool, optional): Whether or not to return the outputs of the parser. verbose (bool, optional): If `True`, prints out the progress for operations that may take a bit longer. Returns: None by default, optionally lists for whichever are available of images, image filenames, labels, and image IDs. ''' # Set class members. self.images_dir = images_dir self.labels_filename = labels_filename self.input_format = input_format self.include_classes = include_classes # Before we begin, make sure that we have a labels_filename and an input_format if self.labels_filename is None or self.input_format is None: raise ValueError("`labels_filename` and/or `input_format` have not been set yet. You need to pass them as arguments.") # Erase data that might have been parsed before self.filenames = [] self.image_ids = [] self.labels = [] # First, just read in the CSV file lines and sort them. data = [] with open(self.labels_filename, newline='') as csvfile: csvread = csv.reader(csvfile, delimiter=',') next(csvread) # Skip the header row. for row in csvread: # For every line (i.e for every bounding box) in the CSV file... if self.include_classes == 'all' or int(row[self.input_format.index('class_id')].strip()) in self.include_classes: # If the class_id is among the classes that are to be included in the dataset... box = [] # Store the box class and coordinates here box.append(row[self.input_format.index('image_name')].strip()) # Select the image name column in the input format and append its content to `box` for element in self.labels_output_format: # For each element in the output format (where the elements are the class ID and the four box coordinates)... box.append(int(row[self.input_format.index(element)].strip())) # ...select the respective column in the input format and append it to `box`. data.append(box) data = sorted(data) # The data needs to be sorted, otherwise the next step won't give the correct result # Now that we've made sure that the data is sorted by file names, # we can compile the actual samples and labels lists current_file = data[0][0] # The current image for which we're collecting the ground truth boxes current_image_id = data[0][0].split('.')[0] # The image ID will be the portion of the image name before the first dot. current_labels = [] # The list where we collect all ground truth boxes for a given image add_to_dataset = False for i, box in enumerate(data): if box[0] == current_file: # If this box (i.e. this line of the CSV file) belongs to the current image file current_labels.append(box[1:]) if i == len(data)-1: # If this is the last line of the CSV file if random_sample: # In case we're not using the full dataset, but a random sample of it. p = np.random.uniform(0,1) if p >= (1-random_sample): self.labels.append(np.stack(current_labels, axis=0)) self.filenames.append(os.path.join(self.images_dir, current_file)) self.image_ids.append(current_image_id) else: self.labels.append(np.stack(current_labels, axis=0)) self.filenames.append(os.path.join(self.images_dir, current_file)) self.image_ids.append(current_image_id) else: # If this box belongs to a new image file if random_sample: # In case we're not using the full dataset, but a random sample of it. p = np.random.uniform(0,1) if p >= (1-random_sample): self.labels.append(np.stack(current_labels, axis=0)) self.filenames.append(os.path.join(self.images_dir, current_file)) self.image_ids.append(current_image_id) else: self.labels.append(np.stack(current_labels, axis=0)) self.filenames.append(os.path.join(self.images_dir, current_file)) self.image_ids.append(current_image_id) current_labels = [] # Reset the labels list because this is a new file. current_file = box[0] current_image_id = box[0].split('.')[0] current_labels.append(box[1:]) if i == len(data)-1: # If this is the last line of the CSV file if random_sample: # In case we're not using the full dataset, but a random sample of it. p = np.random.uniform(0,1) if p >= (1-random_sample): self.labels.append(np.stack(current_labels, axis=0)) self.filenames.append(os.path.join(self.images_dir, current_file)) self.image_ids.append(current_image_id) else: self.labels.append(np.stack(current_labels, axis=0)) self.filenames.append(os.path.join(self.images_dir, current_file)) self.image_ids.append(current_image_id) self.dataset_size = len(self.filenames) self.dataset_indices = np.arange(self.dataset_size, dtype=np.int32) if self.load_images_into_memory: self.images = [] if verbose: it = tqdm(self.filenames, desc='Loading images into memory', file=sys.stdout) else: it = self.filenames for filename in it: with Image.open(filename) as image: self.images.append(np.array(image, dtype=np.uint8)) if ret: # In case we want to return these return self.images, self.filenames, self.labels, self.image_ids def parse_xml(self, images_dirs, image_set_filenames, annotations_dirs=[], classes=['background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'], include_classes = 'all', exclude_truncated=False, exclude_difficult=False, ret=False, verbose=True): ''' This is an XML parser for the Pascal VOC datasets. It might be applicable to other datasets with minor changes to the code, but in its current form it expects the data format and XML tags of the Pascal VOC datasets. Arguments: images_dirs (list): A list of strings, where each string is the path of a directory that contains images that are to be part of the dataset. This allows you to aggregate multiple datasets into one (e.g. one directory that contains the images for Pascal VOC 2007, another that contains the images for Pascal VOC 2012, etc.). image_set_filenames (list): A list of strings, where each string is the path of the text file with the image set to be loaded. Must be one file per image directory given. These text files define what images in the respective image directories are to be part of the dataset and simply contains one image ID per line and nothing else. annotations_dirs (list, optional): A list of strings, where each string is the path of a directory that contains the annotations (XML files) that belong to the images in the respective image directories given. The directories must contain one XML file per image and the name of an XML file must be the image ID of the image it belongs to. The content of the XML files must be in the Pascal VOC format. classes (list, optional): A list containing the names of the object classes as found in the `name` XML tags. Must include the class `background` as the first list item. The order of this list defines the class IDs. include_classes (list, optional): Either 'all' or a list of integers containing the class IDs that are to be included in the dataset. If 'all', all ground truth boxes will be included in the dataset. exclude_truncated (bool, optional): If `True`, excludes boxes that are labeled as 'truncated'. exclude_difficult (bool, optional): If `True`, excludes boxes that are labeled as 'difficult'. ret (bool, optional): Whether or not to return the outputs of the parser. verbose (bool, optional): If `True`, prints out the progress for operations that may take a bit longer. Returns: None by default, optionally lists for whichever are available of images, image filenames, labels, image IDs, and a list indicating which boxes are annotated with the label "difficult". ''' # Set class members. self.images_dirs = images_dirs self.annotations_dirs = annotations_dirs self.image_set_filenames = image_set_filenames self.classes = classes self.include_classes = include_classes # Erase data that might have been parsed before. self.filenames = [] self.image_ids = [] self.labels = [] self.eval_neutral = [] if not annotations_dirs: self.labels = None self.eval_neutral = None annotations_dirs = [None] * len(images_dirs) for images_dir, image_set_filename, annotations_dir in zip(images_dirs, image_set_filenames, annotations_dirs): # Read the image set file that so that we know all the IDs of all the images to be included in the dataset. with open(image_set_filename) as f: image_ids = [line.strip() for line in f] # Note: These are strings, not integers. self.image_ids += image_ids if verbose: it = tqdm(image_ids, desc="Processing image set '{}'".format(os.path.basename(image_set_filename)), file=sys.stdout) else: it = image_ids # Loop over all images in this dataset. for image_id in it: filename = '{}'.format(image_id) + '.jpg' self.filenames.append(os.path.join(images_dir, filename)) if not annotations_dir is None: # Parse the XML file for this image. with open(os.path.join(annotations_dir, image_id + '.xml')) as f: soup = BeautifulSoup(f, 'html.parser') folder = soup.folder.text # In case we want to return the folder in addition to the image file name. Relevant for determining which dataset an image belongs to. #filename = soup.filename.text boxes = [] # We'll store all boxes for this image here. eval_neutr = [] # We'll store whether a box is annotated as "difficult" here. objects = soup.find_all('object') # Get a list of all objects in this image. # Parse the data for each object. for obj in objects: class_name = obj.find('name', recursive=False).text class_id = self.classes.index(class_name) # Check whether this class is supposed to be included in the dataset. if (not self.include_classes == 'all') and (not class_id in self.include_classes): continue pose = obj.find('pose', recursive=False).text truncated = int(obj.find('truncated', recursive=False).text) if exclude_truncated and (truncated == 1): continue difficult = int(obj.find('difficult', recursive=False).text) if exclude_difficult and (difficult == 1): continue # Get the bounding box coordinates. bndbox = obj.find('bndbox', recursive=False) xmin = int(bndbox.xmin.text) ymin = int(bndbox.ymin.text) xmax = int(bndbox.xmax.text) ymax = int(bndbox.ymax.text) item_dict = {'folder': folder, 'image_name': filename, 'image_id': image_id, 'class_name': class_name, 'class_id': class_id, 'pose': pose, 'truncated': truncated, 'difficult': difficult, 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax} box = [] for item in self.labels_output_format: box.append(item_dict[item]) boxes.append(box) if difficult: eval_neutr.append(True) else: eval_neutr.append(False) self.labels.append(boxes) self.eval_neutral.append(eval_neutr) self.dataset_size = len(self.filenames) self.dataset_indices = np.arange(self.dataset_size, dtype=np.int32) if self.load_images_into_memory: self.images = [] if verbose: it = tqdm(self.filenames, desc='Loading images into memory', file=sys.stdout) else: it = self.filenames for filename in it: with Image.open(filename) as image: self.images.append(np.array(image, dtype=np.uint8)) if ret: return self.images, self.filenames, self.labels, self.image_ids, self.eval_neutral def parse_json(self, images_dirs, annotations_filenames, ground_truth_available=False, include_classes='all', ret=False, verbose=True): ''' This is an JSON parser for the MS COCO datasets. It might be applicable to other datasets with minor changes to the code, but in its current form it expects the JSON format of the MS COCO datasets. Arguments: images_dirs (list, optional): A list of strings, where each string is the path of a directory that contains images that are to be part of the dataset. This allows you to aggregate multiple datasets into one (e.g. one directory that contains the images for MS COCO Train 2014, another one for MS COCO Val 2014, another one for MS COCO Train 2017 etc.). annotations_filenames (list): A list of strings, where each string is the path of the JSON file that contains the annotations for the images in the respective image directories given, i.e. one JSON file per image directory that contains the annotations for all images in that directory. The content of the JSON files must be in MS COCO object detection format. Note that these annotations files do not necessarily need to contain ground truth information. MS COCO also provides annotations files without ground truth information for the test datasets, called `image_info_[...].json`. ground_truth_available (bool, optional): Set `True` if the annotations files contain ground truth information. include_classes (list, optional): Either 'all' or a list of integers containing the class IDs that are to be included in the dataset. If 'all', all ground truth boxes will be included in the dataset. ret (bool, optional): Whether or not to return the outputs of the parser. verbose (bool, optional): If `True`, prints out the progress for operations that may take a bit longer. Returns: None by default, optionally lists for whichever are available of images, image filenames, labels and image IDs. ''' self.images_dirs = images_dirs self.annotations_filenames = annotations_filenames self.include_classes = include_classes # Erase data that might have been parsed before. self.filenames = [] self.image_ids = [] self.labels = [] if not ground_truth_available: self.labels = None # Build the dictionaries that map between class names and class IDs. with open(annotations_filenames[0], 'r') as f: annotations = json.load(f) # Unfortunately the 80 MS COCO class IDs are not all consecutive. They go # from 1 to 90 and some numbers are skipped. Since the IDs that we feed # into a neural network must be consecutive, we'll save both the original # (non-consecutive) IDs as well as transformed maps. # We'll save both the map between the original self.cats_to_names = {} # The map between class names (values) and their original IDs (keys) self.classes_to_names = [] # A list of the class names with their indices representing the transformed IDs self.classes_to_names.append('background') # Need to add the background class first so that the indexing is right. self.cats_to_classes = {} # A dictionary that maps between the original (keys) and the transformed IDs (values) self.classes_to_cats = {} # A dictionary that maps between the transformed (keys) and the original IDs (values) for i, cat in enumerate(annotations['categories']): self.cats_to_names[cat['id']] = cat['name'] self.classes_to_names.append(cat['name']) self.cats_to_classes[cat['id']] = i + 1 self.classes_to_cats[i + 1] = cat['id'] # Iterate over all datasets. for images_dir, annotations_filename in zip(self.images_dirs, self.annotations_filenames): # Load the JSON file. with open(annotations_filename, 'r') as f: annotations = json.load(f) if ground_truth_available: # Create the annotations map, a dictionary whose keys are the image IDs # and whose values are the annotations for the respective image ID. image_ids_to_annotations = defaultdict(list) for annotation in annotations['annotations']: image_ids_to_annotations[annotation['image_id']].append(annotation) if verbose: it = tqdm(annotations['images'], desc="Processing '{}'".format(os.path.basename(annotations_filename)), file=sys.stdout) else: it = annotations['images'] # Loop over all images in this dataset. for img in it: self.filenames.append(os.path.join(images_dir, img['file_name'])) self.image_ids.append(img['id']) if ground_truth_available: # Get all annotations for this image. annotations = image_ids_to_annotations[img['id']] boxes = [] for annotation in annotations: cat_id = annotation['category_id'] # Check if this class is supposed to be included in the dataset. if (not self.include_classes == 'all') and (not cat_id in self.include_classes): continue # Transform the original class ID to fit in the sequence of consecutive IDs. class_id = self.cats_to_classes[cat_id] xmin = annotation['bbox'][0] ymin = annotation['bbox'][1] width = annotation['bbox'][2] height = annotation['bbox'][3] # Compute `xmax` and `ymax`. xmax = xmin + width ymax = ymin + height item_dict = {'image_name': img['file_name'], 'image_id': img['id'], 'class_id': class_id, 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax} box = [] for item in self.labels_output_format: box.append(item_dict[item]) boxes.append(box) self.labels.append(boxes) self.dataset_size = len(self.filenames) self.dataset_indices = np.arange(self.dataset_size, dtype=np.int32) if self.load_images_into_memory: self.images = [] if verbose: it = tqdm(self.filenames, desc='Loading images into memory', file=sys.stdout) else: it = self.filenames for filename in it: with Image.open(filename) as image: self.images.append(np.array(image, dtype=np.uint8)) if ret: return self.images, self.filenames, self.labels, self.image_ids def create_hdf5_dataset(self, file_path='dataset.h5', resize=False, variable_image_size=True, verbose=True): ''' Converts the currently loaded dataset into a HDF5 file. This HDF5 file contains all images as uncompressed arrays in a contiguous block of memory, which allows for them to be loaded faster. Such an uncompressed dataset, however, may take up considerably more space on your hard drive than the sum of the source images in a compressed format such as JPG or PNG. It is recommended that you always convert the dataset into an HDF5 dataset if you have enugh hard drive space since loading from an HDF5 dataset accelerates the data generation noticeably. Note that you must load a dataset (e.g. via one of the parser methods) before creating an HDF5 dataset from it. The created HDF5 dataset will remain open upon its creation so that it can be used right away. Arguments: file_path (str, optional): The full file path under which to store the HDF5 dataset. You can load this output file via the `DataGenerator` constructor in the future. resize (tuple, optional): `False` or a 2-tuple `(height, width)` that represents the target size for the images. All images in the dataset will be resized to this target size before they will be written to the HDF5 file. If `False`, no resizing will be performed. variable_image_size (bool, optional): The only purpose of this argument is that its value will be stored in the HDF5 dataset in order to be able to quickly find out whether the images in the dataset all have the same size or not. verbose (bool, optional): Whether or not prit out the progress of the dataset creation. Returns: None. ''' self.hdf5_dataset_path = file_path dataset_size = len(self.filenames) # Create the HDF5 file. hdf5_dataset = h5py.File(file_path, 'w') # Create a few attributes that tell us what this dataset contains. # The dataset will obviously always contain images, but maybe it will # also contain labels, image IDs, etc. hdf5_dataset.attrs.create(name='has_labels', data=False, shape=None, dtype=np.bool_) hdf5_dataset.attrs.create(name='has_image_ids', data=False, shape=None, dtype=np.bool_) hdf5_dataset.attrs.create(name='has_eval_neutral', data=False, shape=None, dtype=np.bool_) # It's useful to be able to quickly check whether the images in a dataset all # have the same size or not, so add a boolean attribute for that. if variable_image_size and not resize: hdf5_dataset.attrs.create(name='variable_image_size', data=True, shape=None, dtype=np.bool_) else: hdf5_dataset.attrs.create(name='variable_image_size', data=False, shape=None, dtype=np.bool_) # Create the dataset in which the images will be stored as flattened arrays. # This allows us, among other things, to store images of variable size. hdf5_images = hdf5_dataset.create_dataset(name='images', shape=(dataset_size,), maxshape=(None), dtype=h5py.special_dtype(vlen=np.uint8)) # Create the dataset that will hold the image heights, widths and channels that # we need in order to reconstruct the images from the flattened arrays later. hdf5_image_shapes = hdf5_dataset.create_dataset(name='image_shapes', shape=(dataset_size, 3), maxshape=(None, 3), dtype=np.int32) if not (self.labels is None): # Create the dataset in which the labels will be stored as flattened arrays. hdf5_labels = hdf5_dataset.create_dataset(name='labels', shape=(dataset_size,), maxshape=(None), dtype=h5py.special_dtype(vlen=np.int32)) # Create the dataset that will hold the dimensions of the labels arrays for # each image so that we can restore the labels from the flattened arrays later. hdf5_label_shapes = hdf5_dataset.create_dataset(name='label_shapes', shape=(dataset_size, 2), maxshape=(None, 2), dtype=np.int32) hdf5_dataset.attrs.modify(name='has_labels', value=True) if not (self.image_ids is None): hdf5_image_ids = hdf5_dataset.create_dataset(name='image_ids', shape=(dataset_size,), maxshape=(None), dtype=h5py.special_dtype(vlen=str)) hdf5_dataset.attrs.modify(name='has_image_ids', value=True) if not (self.eval_neutral is None): # Create the dataset in which the labels will be stored as flattened arrays. hdf5_eval_neutral = hdf5_dataset.create_dataset(name='eval_neutral', shape=(dataset_size,), maxshape=(None), dtype=h5py.special_dtype(vlen=np.bool_)) hdf5_dataset.attrs.modify(name='has_eval_neutral', value=True) if verbose: tr = trange(dataset_size, desc='Creating HDF5 dataset', file=sys.stdout) else: tr = range(dataset_size) # Iterate over all images in the dataset. for i in tr: # Store the image. with Image.open(self.filenames[i]) as image: image = np.asarray(image, dtype=np.uint8) # Make sure all images end up having three channels. if image.ndim == 2: image = np.stack([image] * 3, axis=-1) elif image.ndim == 3: if image.shape[2] == 1: image = np.concatenate([image] * 3, axis=-1) elif image.shape[2] == 4: image = image[:,:,:3] if resize: image = cv2.resize(image, dsize=(resize[1], resize[0])) # Flatten the image array and write it to the images dataset. hdf5_images[i] = image.reshape(-1) # Write the image's shape to the image shapes dataset. hdf5_image_shapes[i] = image.shape # Store the ground truth if we have any. if not (self.labels is None): labels = np.asarray(self.labels[i]) # Flatten the labels array and write it to the labels dataset. hdf5_labels[i] = labels.reshape(-1) # Write the labels' shape to the label shapes dataset. hdf5_label_shapes[i] = labels.shape # Store the image ID if we have one. if not (self.image_ids is None): hdf5_image_ids[i] = self.image_ids[i] # Store the evaluation-neutrality annotations if we have any. if not (self.eval_neutral is None): hdf5_eval_neutral[i] = self.eval_neutral[i] hdf5_dataset.close() self.hdf5_dataset = h5py.File(file_path, 'r') self.hdf5_dataset_path = file_path self.dataset_size = len(self.hdf5_dataset['images']) self.dataset_indices = np.arange(self.dataset_size, dtype=np.int32) # Instead of shuffling the HDF5 dataset, we will shuffle this index list. def generate(self, batch_size=32, shuffle=True, transformations=[], label_encoder=None, returns={'processed_images', 'encoded_labels'}, keep_images_without_gt=False, degenerate_box_handling='remove'): ''' Generates batches of samples and (optionally) corresponding labels indefinitely. Can shuffle the samples consistently after each complete pass. Optionally takes a list of arbitrary image transformations to apply to the samples ad hoc. Arguments: batch_size (int, optional): The size of the batches to be generated. shuffle (bool, optional): Whether or not to shuffle the dataset before each pass. This option should always be `True` during training, but it can be useful to turn shuffling off for debugging or if you're using the generator for prediction. transformations (list, optional): A list of transformations that will be applied to the images and labels in the given order. Each transformation is a callable that takes as input an image (as a Numpy array) and optionally labels (also as a Numpy array) and returns an image and optionally labels in the same format. label_encoder (callable, optional): Only relevant if labels are given. A callable that takes as input the labels of a batch (as a list of Numpy arrays) and returns some structure that represents those labels. The general use case for this is to convert labels from their input format to a format that a given object detection model needs as its training targets. returns (set, optional): A set of strings that determines what outputs the generator yields. The generator's output is always a tuple that contains the outputs specified in this set and only those. If an output is not available, it will be `None`. The output tuple can contain the following outputs according to the specified keyword strings: * 'processed_images': An array containing the processed images. Will always be in the outputs, so it doesn't matter whether or not you include this keyword in the set. * 'encoded_labels': The encoded labels tensor. Will always be in the outputs if a label encoder is given, so it doesn't matter whether or not you include this keyword in the set if you pass a label encoder. * 'matched_anchors': Only available if `labels_encoder` is an `SSDInputEncoder` object. The same as 'encoded_labels', but containing anchor box coordinates for all matched anchor boxes instead of ground truth coordinates. This can be useful to visualize what anchor boxes are being matched to each ground truth box. Only available in training mode. * 'processed_labels': The processed, but not yet encoded labels. This is a list that contains for each batch image a Numpy array with all ground truth boxes for that image. Only available if ground truth is available. * 'filenames': A list containing the file names (full paths) of the images in the batch. * 'image_ids': A list containing the integer IDs of the images in the batch. Only available if there are image IDs available. * 'evaluation-neutral': A nested list of lists of booleans. Each list contains `True` or `False` for every ground truth bounding box of the respective image depending on whether that bounding box is supposed to be evaluation-neutral (`True`) or not (`False`). May return `None` if there exists no such concept for a given dataset. An example for evaluation-neutrality are the ground truth boxes annotated as "difficult" in the Pascal VOC datasets, which are usually treated to be neutral in a model evaluation. * 'inverse_transform': A nested list that contains a list of "inverter" functions for each item in the batch. These inverter functions take (predicted) labels for an image as input and apply the inverse of the transformations that were applied to the original image to them. This makes it possible to let the model make predictions on a transformed image and then convert these predictions back to the original image. This is mostly relevant for evaluation: If you want to evaluate your model on a dataset with varying image sizes, then you are forced to transform the images somehow (e.g. by resizing or cropping) to make them all the same size. Your model will then predict boxes for those transformed images, but for the evaluation you will need predictions with respect to the original images, not with respect to the transformed images. This means you will have to transform the predicted box coordinates back to the original image sizes. Note that for each image, the inverter functions for that image need to be applied in the order in which they are given in the respective list for that image. * 'original_images': A list containing the original images in the batch before any processing. * 'original_labels': A list containing the original ground truth boxes for the images in this batch before any processing. Only available if ground truth is available. The order of the outputs in the tuple is the order of the list above. If `returns` contains a keyword for an output that is unavailable, that output omitted in the yielded tuples and a warning will be raised. keep_images_without_gt (bool, optional): If `False`, images for which there aren't any ground truth boxes before any transformations have been applied will be removed from the batch. If `True`, such images will be kept in the batch. degenerate_box_handling (str, optional): How to handle degenerate boxes, which are boxes that have `xmax <= xmin` and/or `ymax <= ymin`. Degenerate boxes can sometimes be in the dataset, or non-degenerate boxes can become degenerate after they were processed by transformations. Note that the generator checks for degenerate boxes after all transformations have been applied (if any), but before the labels were passed to the `label_encoder` (if one was given). Can be one of 'warn' or 'remove'. If 'warn', the generator will merely print a warning to let you know that there are degenerate boxes in a batch. If 'remove', the generator will remove degenerate boxes from the batch silently. Yields: The next batch as a tuple of items as defined by the `returns` argument. ''' if self.dataset_size == 0: raise DatasetError("Cannot generate batches because you did not load a dataset.") ############################################################################################# # Warn if any of the set returns aren't possible. ############################################################################################# if self.labels is None: if any([ret in returns for ret in ['original_labels', 'processed_labels', 'encoded_labels', 'matched_anchors', 'evaluation-neutral']]): warnings.warn("Since no labels were given, none of 'original_labels', 'processed_labels', 'evaluation-neutral', 'encoded_labels', and 'matched_anchors' " + "are possible returns, but you set `returns = {}`. The impossible returns will be `None`.".format(returns)) elif label_encoder is None: if any([ret in returns for ret in ['encoded_labels', 'matched_anchors']]): warnings.warn("Since no label encoder was given, 'encoded_labels' and 'matched_anchors' aren't possible returns, " + "but you set `returns = {}`. The impossible returns will be `None`.".format(returns)) elif not isinstance(label_encoder, SSDInputEncoder): if 'matched_anchors' in returns: warnings.warn("`label_encoder` is not an `SSDInputEncoder` object, therefore 'matched_anchors' is not a possible return, " + "but you set `returns = {}`. The impossible returns will be `None`.".format(returns)) ############################################################################################# # Do a few preparatory things like maybe shuffling the dataset initially. ############################################################################################# if shuffle: objects_to_shuffle = [self.dataset_indices] if not (self.filenames is None): objects_to_shuffle.append(self.filenames) if not (self.labels is None): objects_to_shuffle.append(self.labels) if not (self.image_ids is None): objects_to_shuffle.append(self.image_ids) if not (self.eval_neutral is None): objects_to_shuffle.append(self.eval_neutral) shuffled_objects = sklearn.utils.shuffle(*objects_to_shuffle) for i in range(len(objects_to_shuffle)): objects_to_shuffle[i][:] = shuffled_objects[i] if degenerate_box_handling == 'remove': box_filter = BoxFilter(check_overlap=False, check_min_area=False, check_degenerate=True, labels_format=self.labels_format) # Override the labels formats of all the transformations to make sure they are set correctly. if not (self.labels is None): for transform in transformations: transform.labels_format = self.labels_format ############################################################################################# # Generate mini batches. ############################################################################################# current = 0 while True: batch_X, batch_y = [], [] if current >= self.dataset_size: current = 0 ######################################################################################### # Maybe shuffle the dataset if a full pass over the dataset has finished. ######################################################################################### if shuffle: objects_to_shuffle = [self.dataset_indices] if not (self.filenames is None): objects_to_shuffle.append(self.filenames) if not (self.labels is None): objects_to_shuffle.append(self.labels) if not (self.image_ids is None): objects_to_shuffle.append(self.image_ids) if not (self.eval_neutral is None): objects_to_shuffle.append(self.eval_neutral) shuffled_objects = sklearn.utils.shuffle(*objects_to_shuffle) for i in range(len(objects_to_shuffle)): objects_to_shuffle[i][:] = shuffled_objects[i] ######################################################################################### # Get the images, (maybe) image IDs, (maybe) labels, etc. for this batch. ######################################################################################### # We prioritize our options in the following order: # 1) If we have the images already loaded in memory, get them from there. # 2) Else, if we have an HDF5 dataset, get the images from there. # 3) Else, if we have neither of the above, we'll have to load the individual image # files from disk. batch_indices = self.dataset_indices[current:current+batch_size] if not (self.images is None): for i in batch_indices: batch_X.append(self.images[i]) if not (self.filenames is None): batch_filenames = self.filenames[current:current+batch_size] else: batch_filenames = None elif not (self.hdf5_dataset is None): for i in batch_indices: batch_X.append(self.hdf5_dataset['images'][i].reshape(self.hdf5_dataset['image_shapes'][i])) if not (self.filenames is None): batch_filenames = self.filenames[current:current+batch_size] else: batch_filenames = None else: batch_filenames = self.filenames[current:current+batch_size] for filename in batch_filenames: with Image.open(filename) as image: batch_X.append(np.array(image, dtype=np.uint8)) # Get the labels for this batch (if there are any). if not (self.labels is None): batch_y = deepcopy(self.labels[current:current+batch_size]) else: batch_y = None if not (self.eval_neutral is None): batch_eval_neutral = self.eval_neutral[current:current+batch_size] else: batch_eval_neutral = None # Get the image IDs for this batch (if there are any). if not (self.image_ids is None): batch_image_ids = self.image_ids[current:current+batch_size] else: batch_image_ids = None if 'original_images' in returns: batch_original_images = deepcopy(batch_X) # The original, unaltered images if 'original_labels' in returns: batch_original_labels = deepcopy(batch_y) # The original, unaltered labels current += batch_size ######################################################################################### # Maybe perform image transformations. ######################################################################################### batch_items_to_remove = [] # In case we need to remove any images from the batch, store their indices in this list. batch_inverse_transforms = [] for i in range(len(batch_X)): if not (self.labels is None): # Convert the labels for this image to an array (in case they aren't already). batch_y[i] = np.array(batch_y[i]) # If this image has no ground truth boxes, maybe we don't want to keep it in the batch. if (batch_y[i].size == 0) and not keep_images_without_gt: batch_items_to_remove.append(i) batch_inverse_transforms.append([]) continue # Apply any image transformations we may have received. if transformations: inverse_transforms = [] for transform in transformations: if not (self.labels is None): if ('inverse_transform' in returns) and ('return_inverter' in inspect.signature(transform).parameters): batch_X[i], batch_y[i], inverse_transform = transform(batch_X[i], batch_y[i], return_inverter=True) inverse_transforms.append(inverse_transform) else: batch_X[i], batch_y[i] = transform(batch_X[i], batch_y[i]) if batch_X[i] is None: # In case the transform failed to produce an output image, which is possible for some random transforms. batch_items_to_remove.append(i) batch_inverse_transforms.append([]) continue else: if ('inverse_transform' in returns) and ('return_inverter' in inspect.signature(transform).parameters): batch_X[i], inverse_transform = transform(batch_X[i], return_inverter=True) inverse_transforms.append(inverse_transform) else: batch_X[i] = transform(batch_X[i]) batch_inverse_transforms.append(inverse_transforms[::-1]) ######################################################################################### # Check for degenerate boxes in this batch item. ######################################################################################### if not (self.labels is None): xmin = self.labels_format['xmin'] ymin = self.labels_format['ymin'] xmax = self.labels_format['xmax'] ymax = self.labels_format['ymax'] if
np.any(batch_y[i][:,xmax] - batch_y[i][:,xmin] <= 0)
numpy.any
# Python modules # 3rd party modules import numpy as np from lmfit import Parameters # Our modules import vespa.analysis.chain_fit_identity as chain_fit_identity import vespa.common.util.math_ as util_math import vespa.common.util.generic_spectral as util_spectral import vespa.analysis.functors.funct_fit_voigt as funct_fit_voigt from vespa.common.constants import DEGREES_TO_RADIANS as DTOR from vespa.analysis.constants import FitLineshapeModel, VoigtDefaultFixedT2, FitMacromoleculeMethod from vespa.analysis.constants import FitOptimizeMethod as optmeth from vespa.analysis.chain_base import Chain LMFIT_METHODS = [optmeth.LMFIT_DEFAULT, optmeth.LMFIT_JACOBIAN] class ChainFitVoigt(Chain): """ Building block object used to create a processing chain for MRS data. Performs LCM (linear combination model) fit to the data. Fit model is made up of spectrally simulated basis spectra for all metabolites. """ def __init__(self, dataset, block): """ Chain objects organize Algo (algorithm) calls by setting up access to input data and parameters, and creating standard output values for View. Base class sets convenience references to: self._block and self._dataset self.data is always initialized as [] """ super().__init__(dataset, block) self.fit_function = self.lorgauss_internal self.reset_results_arrays() # book-keeping attributes self.lmfit_fvar_names = [] @property def nmet(self): """ Number of metabolites to be fitted - varies depending on model """ if self._block is not None: if self._block.set.prior_list is not None: return len(self._block.set.prior_list) return 0 def reset_results_arrays(self): """ Results array reset is in its own method because it may need to be called at other times that just in the object initialization. """ nmet = self.nmet nmmol = self._block.nmmol nparam = self._block.nparam spectral_dim0 = self._dataset.spectral_dims[0] if len(self.data) != spectral_dim0: self.data = np.zeros(spectral_dim0, complex) self.yini = np.zeros((nmet+nmmol, spectral_dim0), complex) self.yfit = np.zeros((nmet+nmmol, spectral_dim0), complex) self.base = np.zeros(spectral_dim0, complex) self.initial_values = np.zeros(nparam, float) self.fit_results = np.zeros(nparam, float) self.fit_baseline = np.zeros(spectral_dim0, complex) self.weight_array = np.zeros(spectral_dim0, complex) self.limits = np.zeros((2,nparam), float) self.fitted_lw = 0.0 def run_global_init(self): """" Moved all of the global (one time) initialization code to this method so we could package it in run() in an 'if' statement. This is in line with making the 'fit all voxels' functionality as streamlined as possible. """ block = self._block set = self._block.set prior = self._block.set.prior self.spectral_dims = self._dataset.spectral_dims self.nmmol = self._block.nmmol self.nparam = self._block.nparam self.init_b0 = 0.0 self.init_lw_hz = 3.0 self.init_ta = 0.8 self.init_tb = 0.03 self.init_ampl = None self.init_area = None self.limits = np.zeros((2,self.nparam+self.nmmol), float) self.weight_array = np.zeros(self._dataset.spectral_dims[0], complex) self.fit_baseline = 0.0 # needed for LORGAUSS call self.fit_function = self.lorgauss_internal self.fix_t2_center = VoigtDefaultFixedT2.CENTER self.minmaxlw = [0,0] # set up basis set for selected metabolites, collect all ppm locations basis_mets = [] ppms = [] for name in set.prior_list: basis_mets.append(prior.basis_set[name].fid.copy()) ppms += prior.basis_set[name].all_ppms self.basis_mets = np.array(basis_mets) self.peakpts = self._dataset.ppm2pts(np.array(ppms)) # for weight array calc # set up basis set for macromolecules if needed #self.macromol_model = set.macromol_model self.basis_mmol = None if set.macromol_model == FitMacromoleculeMethod.SINGLE_BASIS_DATASET: if set.macromol_single_basis_dataset: tmp = set.macromol_single_basis_dataset.blocks['raw'] self.basis_mmol = tmp.data.copy() # check results arrays for proper dimensionality block.check_parameter_dimensions(self) def run(self, voxels, entry='initial_only', statusbar=None, do_init=True): """ Run is typically called every time a processing setting is changed in the parent (block) object. Run processes a single voxel at a time. This object maintains previous run() results values until next run(). This allows the View to update without having to re-run the pipeline. The 'entry' keyword adds flexibility to Block-Chain-View relationship. """ block = self._block set = self._block.set prior = self._block.set.prior dataset = self._dataset #---------------------------------------------------------------------- # Return with zero values if no metabolites are selected if self.nmet < 1: self.yini = self.yini * 0 voxel = voxels[0] self.data = dataset.get_source_data('fit') self.data = self.data[voxel[2],voxel[1],voxel[0],:] plot_results = { 'fitted_lw' : 3.0, 'minmaxlw' : [1,5], 'init_b0' : 0.0, 'init_ph0' : -dataset.get_phase_0(voxel) * np.pi/180.0, 'init_ph1' : -dataset.get_phase_1(voxel), 'data' : self.data.copy(), 'weight_array' : self.data.copy() * 0, 'fit_baseline' : self.data.copy() * 0, 'yfit' : self.data.copy() * 0, 'yini' : self.data.copy() * 0, 'init_baseline': self.data.copy() * 0, 'mmol_area' : 1.0 } return plot_results #---------------------------------------------------------------------- # Do the one time global bits of code, if needed if do_init: self.run_global_init() #---------------------------------------------------------------------- # Now process the current voxel data_source = dataset.get_source_data('fit') voxel = voxels[0] # because we got rid of for-loop x,y,z = voxel # for convenience self.iteration = 0 # global index used in functors as a trigger self.voxel = voxel self.statusbar = statusbar # local copy of input data self.data = data_source[z,y,x,:].copy() # spectral chain needs update for this line to be valid self.chain = dataset.get_source_chain('fit') self.kodata = self.chain.kodata.copy() # various default values self.mmol_area = 1.0 # copy 'global' parameters, that DO change with voxel, from dataset # # NB. phase0/1 are inputs for 'manual' method, the init_ph0/1 are # outputs from initval calcs. If 'manual' is selected, then the # output value should be equal but negative to original. We use # the init_ph0/1 to update the GUI (and mrs_dataset values) so # the chain needs both input and output (I think). self.phase0 = dataset.get_phase_0(voxel) self.phase1 = dataset.get_phase_1(voxel) self.init_ph0 = -dataset.get_phase_0(voxel) * np.pi / 180.0 # match units in util_initial_values self.init_ph1 = -dataset.get_phase_1(voxel) # copy block parameters, that DO change with voxel, from block self.frequency_shift = dataset.get_frequency_shift(voxel) self.fit_baseline = block.fit_baseline[:,x,y,z].copy() self.init_baseline = self.fit_baseline.copy() * 0 # setup chain results arrays self.initial_values = voigt_checkout(self.nmet, block.initial_values[:,x,y,z], dataset) self.fit_results = voigt_checkout(self.nmet, block.fit_results[ :,x,y,z], dataset) self.fit_stats = block.fit_stats[ :,x,y,z].copy() self.cramer_rao = block.cramer_rao[:,x,y,z].copy() self.confidence = block.confidence[:,x,y,z].copy() # select the chain processing functor based on the entry point if entry == 'initial_only': funct_fit_voigt.do_processing_initial(self) elif entry == 'full_fit' or entry == 'all': funct_fit_voigt.do_processing_full_fit(self) elif entry == 'plot_refresh': funct_fit_voigt.do_processing_plot_refresh(self) elif entry == 'output_refresh': funct_fit_voigt.do_processing_output_refresh(self) elif entry == 'voxel_change': if np.sum(self.initial_values[0:self.nmet])==0.0: flag_auto_initvals = True else: flag_auto_initvals = False funct_fit_voigt.do_processing_voxel_change(self, flag_auto_initvals=flag_auto_initvals) else: print('oooops! - chain_fit_voigt "entry" point error ') if statusbar: statusbar.SetStatusText(' Fitting Done', 0) # one last lw calc to refresh HTLM window on opening VIFF file self.fitted_lw, _ = util_spectral.voigt_width(self.fit_results[self.nmet*2], self.fit_results[self.nmet*2+1], dataset) block.initial_values[:,x,y,z] = voigt_checkin(self.nmet, self.initial_values, dataset) block.fit_results[ :,x,y,z] = voigt_checkin(self.nmet, self.fit_results, dataset) block.fit_stats[ :,x,y,z] = self.fit_stats.copy() block.fit_baseline[ :,x,y,z] = self.fit_baseline.copy() block.cramer_rao[ :,x,y,z] = self.cramer_rao.copy() block.confidence[ :,x,y,z] = self.confidence.copy() # Initial value algorithms change b0, ph0/ph1. To be well behaved we ask # the dataset object to save these to the 'spectral' block for us. # # NB. In CLI mode, call this chain with 'initial_only' first, then update # the 'spectral' block and only then call this chain with 'full_fit' dataset.set_frequency_shift(dataset.get_frequency_shift(voxel) + self.init_b0, voxel) dataset.set_phase_0(-self.init_ph0 * 180.0 / np.pi, voxel) dataset.set_phase_1(-self.init_ph1, voxel) # Return values specific to calling Tab used to update its self.view (plot_panel_spectrum object). plot_results = { 'fitted_lw' : self.fitted_lw, 'minmaxlw' : self.minmaxlw, 'init_b0' : self.init_b0, 'init_ph0' : self.init_ph0 * 180.0 / np.pi, 'init_ph1' : self.init_ph1, 'data' : self.data.copy(), 'weight_array' : self.weight_array.copy(), 'fit_baseline' : self.fit_baseline.copy(), 'yfit' : self.yfit.copy(), 'yini' : self.yini.copy(), 'init_baseline' : self.init_baseline.copy(), 'mmol_area' : self.mmol_area } return plot_results def create_param_labels(self): """ Create list of unique parameter labels """ plabel = [] unique_abbr = [item.replace('-', '_') for item in self._dataset.prior_list_unique] for item in unique_abbr: plabel.append('area_' + item) for item in unique_abbr: plabel.append('freq_' + item) plabel.append('ta') plabel.append('tb') plabel.append('ph0') plabel.append('ph1') if self._block.set.macromol_model == FitMacromoleculeMethod.SINGLE_BASIS_DATASET: plabel.append('mmol_area') plabel.append('mmol_freq') return plabel def lorgauss_internal_lmfit_dfunc(self, params, *args, **kwargs): """ This is in the format that LMFIT expects to call in the Minimizer class for the 'least_squares' algorithm. This returns the weighted partial derivative functions all_pders * ww as a single numpy (n,m) float array, where where n = # of variable parameters (versus dependent params) and m = # of spectral points. In this case, the real and imaginary vectors have been concatenated into a single array, so m = 2 * npts_spectral_zerofilled. Note. The vespa model (for one example) might have 48 parameters, but only 42 are variable parameters while the other 6 are dependent expressions (e.g. freq_naag = freq_naa + 0.04). The LMFIT algorithm only passes in the 42 'free' params, and I need to expand that into the actual 48 for the self.lorgauss_internal() call to work properly. On return, I need to remove the pder entris for the dependent parameters (and return just a 42 x npts array). params - these are just the free variable values, we need to expand this into a full list/dict of free and evaluated expression variables for the call to self.lorgauss_internal(). This can be a list of current variable values, OR it can be an ordered dict of LMFIT Paramters. """ ww = np.concatenate([self.weight_array, self.weight_array]) # expand list of free variable values into full list of free and evaluated expression values all_params = self.all_params.copy() # copy of full param set for name, val in zip(self.lmfit_fvar_names, params): all_params[name].value = val # update free params to current pass values all_params.update_constraints() # evaluate expression params values yfit, all_pders = self.lorgauss_internal(all_params, pderflg=True) # Re-sort all_pders array if inequality expressions present in Parameters list # # - pder returns in 'Vespa' order (area(s), freq(s), ta, tb, ph0, ph1, mmol_area, mmol_freq) # - if inequality control vars have been added to end of Paramters list (typical in Vespa # model) then we have to re-sort # - usually things like 'freq_naag' have to be relocated to position where 'delta_freq_naa' # was located in the 'params' variable that was input to this method pders = [] indxs = [] all_names = list(all_params.keys()) for key in self.lmfit_fvar_names: if 'delta_' in key: indx = all_names.index(key.replace('delta_', '')) pders.append(-1 * all_pders[indx, :]) # -1 is empirical vs LMFIT, bjs 3/2021 else: indx = all_names.index(key) pders.append(all_pders[indx, :]) indxs.append(indx) pders = np.array(pders) # expand complex to 1D and apply weighting scheme dfunc = [] for pder in pders: dfunc.append(np.concatenate([pder.real, pder.imag]) * ww * (-1)) # -1 is empirically vs LMFIT, bjs 3/2021 dfunc = np.array(dfunc) return dfunc.T # empirical vs LMFIT requirement def lorgauss_internal_lmfit(self, a, report_stats=False): """ This is in the format that LMFIT expects to call in the Minimizer class. This returns the weighted difference (data - yfit) * ww as a single numpy float array, where the real and imaginary vectors have been concatenated into a single array. a - fully expanded list of parameters, free and evaluated expressions """ data = self.data_scale.copy() ww = self.weight_array yfit, _ = self.lorgauss_internal(a, pderflg=False) yfit = np.concatenate([yfit.real, yfit.imag]) data = np.concatenate([data.real, data.imag]) ww = np.concatenate([ww, ww]) if report_stats: nfree = np.size(yfit)-len(list(a.keys())) wchisqr = np.sum(ww*(data-yfit)**2)/nfree # got from CCFIT method chisqr = np.sum( (data-yfit)**2)/nfree return wchisqr, chisqr else: y = (data - yfit) * ww return y def lorgauss_internal(self, a, pderflg=True, nobase=False, indiv=False, finalwflg=False): """ ========= Arguments ========= **a:** [list][float] parameters for model function **dataset:** [object][dataset (or subset)] object containing fitting parameters **pderflg:** [keyword][bool][default=False] xxxx **nobase:** [keyword][bool][default=False] flag, do not include baseline contribs from (*dood).basarr **indiv:** [keyword][bool][default=False] flag, return individual metabolites, not summed total of all **finalwflg:** [keyword][float][default=False] xxxx =========== Description =========== Returns the parameterized metabolite model function. A contains : [[am],[fr],Ta,Tb,ph0,ph1] - LorGauss complex Peak ampls and freqs are taken from the DB info in info, so the values in [am] and [fr] are relative multipliers and additives respectively. That is why there is only one value for each compound in each array If the relfreq flag is ON, then [fr] is a single value that is added to each peak freq equivalently. Ie. the whole spectrum can shift, but relative ppm separations between all metabolites are maintained exactly. If the flag is OFF, then metabs may shift independently from one another, however, within groups of peaks belonging to the same metabolite, relative ppm separtaions are maintained. am - peak amplitude fr - peak frequency offsets in PPM Ta - T2 decay constant in sec Tb - T2 star decay const in sec ph0/1 - zero/first order phase in degrees coef - are the spline coefs for the lineshape, knot locations are in info ====== Syntax ====== :: f = self.lorgauss_internal(a, pderflg = False, nobase = False, indiv = False, finalwflg = False) """ ds = self._dataset set = self._block.set # parse input parameters if isinstance(a, Parameters): v = a.valuesdict() a = np.array([item[1] for item in list(v.items())]) # Setup constants and flags nmet = self.nmet npts = ds.raw_dims[0] nptszf = int(round(npts * ds.zero_fill_multiplier)) td = 1.0/ds.sw piv = ds.ppm2pts(ds.phase_1_pivot, acq=True) arr1 = np.zeros(int(npts),float) + 1.0 f = np.zeros((int(nmet),int(nptszf)),complex) mf = np.zeros((int(nptszf),),complex) t = (np.arange(nmet * npts) % npts) * td t.shape = nmet, npts # get prior max peak ppm vals for metabs which are flagged ON peaks = np.array(set.prior_peak_ppm) # setup Lineshape if set.lineshape_model != FitLineshapeModel.GAUSS: # voigt and lorentzian models expo = t/a[nmet*2] + (t/a[nmet*2+1])**2 lshape = util_math.safe_exp(-expo) else: # Gaussian lineshape - allows user to set a fixed T2 value for each # metabolite stored in a 'T2 lineshape array'. But, this model still # has a Tb parameter, though tightly constrained. We set it to 0.250 # +/- 0.001 sec, a reasonable T2 value, to make the search space # happy. The fitting function is adjusted for each metab by the delta # from 0.250. ma = (self.fix_t2_center - a[nmet*2]) + set.prior_fix_t2 # delta for Ta param that is set at 0.25 sec ma = t/np.outer(ma, arr1) mb = (t / a[nmet*2+1])**2 expo = ma+mb lshape = util_math.safe_exp(-expo) if finalwflg: finalw = lshape[:,0] finalw = util_spectral.full_width_half_max(np.fft.fft(util_spectral.chop(finalw))/len(finalw)) * ds.spectral_hpp return finalw # if FID, then for correct area, first point must be divided by 2 fre = a[nmet:nmet*2] - ds.ppm2hz(peaks)*2.0*np.pi # shift in Radians from basis center freq fre = np.exp( 1j * (np.outer(fre, arr1)) * t ) # outer is matrix multiplication amp = np.outer(a[0:nmet], arr1) ph0 = np.outer(np.exp(1j * (np.zeros(nmet) + a[nmet*2+2])), arr1) tmp = self.basis_mets.copy() * amp * fre * ph0 * lshape f[:,0:npts] = tmp f[:,0] = f[:,0] / 2.0 # Calc Phase1 phase1 = np.exp(1j * (a[nmet*2+3]*DTOR*(np.arange(nptszf,dtype=float)-piv)/nptszf)) # Calc Mmol - we will calc mmol pders later if needed if (set.macromol_model == FitMacromoleculeMethod.SINGLE_BASIS_DATASET): if self.basis_mmol is not None: mdat = self.basis_mmol.copy() * ((((np.arange(npts) + 1) % 2) * 2) - 1) # chop the basis fn mamp = a[self.nparam - 2] mfre = np.exp(1j * a[self.nparam - 1] * np.arange(npts) * td) # freq roll shift mph0 = np.exp(1j * a[nmet*2 + 2]) # global ph0 mdat *= mamp * mfre * mph0 mf[0:npts] = mdat mf[0] = mf[0] / 2.0 mind = mf.copy() # save copy of indiv mmol basis functions # Calculate Partial Derivatives pder = None if pderflg: pder = np.zeros((int(len(a)),int(nptszf)), complex) pall = np.sum(f,axis=0) # all lines added pind = f tt = np.zeros(int(nptszf),float) tt[0:npts] = np.arange(npts,dtype=float) * td for i in range(nmet): # Calc the Ampl and Freq pders pder[i,:] = (np.fft.fft(pind[i,:] / a[i] )/nptszf) * phase1 pder[i+nmet,:] = (np.fft.fft(tt * 1j * pind[i,:])/nptszf) * phase1 pder[nmet*2+0,:] = (np.fft.fft( tt * pall/(a[nmet*2+0]**2))/nptszf) * phase1 pder[nmet*2+1,:] = (np.fft.fft(2.0*(tt**2) * pall/(a[nmet*2+1]**3))/nptszf) * phase1 if set.optimize_method in LMFIT_METHODS: # flags below are set in funct_fit_voigt.py only if both metabs in plabel plabel = self.create_param_labels() if set.optimize_constrain_ppm_naa_naag: pder[plabel.index('freq_naa')] += pder[plabel.index('freq_naag')] if set.optimize_constrain_ppm_cr_pcr: pder[plabel.index('freq_cr')] += pder[plabel.index('freq_pcr')] if set.optimize_constrain_ppm_gpc_pcho: pder[plabel.index('freq_gpc')] += pder[plabel.index('freq_pcho')] if set.optimize_constrain_ppm_cr2_pcr2: pder[plabel.index('freq_cr2')] += pder[plabel.index('freq_pcr2')] if set.optimize_constrain_ppm_glu_gln: pder[plabel.index('freq_glu')] += pder[plabel.index('freq_gln')] if set.optimize_constrain_ppm_tau_glc: pder[plabel.index('freq_tau')] += pder[plabel.index('freq_glc')] if set.lineshape_model == FitLineshapeModel.GAUSS: pder[nmet*2+0,:] *= -1e-6 # empirical from LMFIT tests pder[nmet*2+2,:] = (np.fft.fft(1j*pall)/nptszf) * phase1 if self.basis_mmol is not None: pder[nmet*2+2, :] += (np.fft.fft(1j*mf)/nptszf) * phase1 pder[nmet*2+3,:] = (np.fft.fft(pall)/nptszf) * (1j*DTOR*(np.arange(nptszf,dtype=float)-piv)/nptszf) * phase1 if self.basis_mmol is not None: pder[nmet*2+3,:] += (np.fft.fft(mf)/nptszf) * (1j*DTOR*(np.arange(nptszf,dtype=float)-piv)/nptszf) * phase1 # Do the FFT if indiv: # return individual lines if nmet != 1: for i in range(nmet): f[i,:] = (np.fft.fft(f[i,:])/nptszf) * phase1 else: f = (np.fft.fft(f[0,:])/nptszf) * phase1 else: # return summed spectrum if (nmet) != 1: f =
np.sum(f,axis=0)
numpy.sum
# -*- coding: utf-8 -*- # test_imagecodecs.py # Copyright (c) 2018-2019, <NAME> # Copyright (c) 2018-2019, The Regents of the University of California # Produced at the Laboratory for Fluorescence Dynamics # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holders nor the names of any # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Unittests for the imagecodecs package. :Author: `<NAME> <https://www.lfd.uci.edu/~gohlke/>`_ :Organization: Laboratory for Fluorescence Dynamics. University of California, Irvine :License: 3-clause BSD :Version: 2019.12.3 """ from __future__ import division, print_function import sys import os import io import re import glob import tempfile import os.path as osp import pytest import numpy from numpy.testing import assert_array_equal, assert_allclose try: import tifffile except ImportError: tifffile = None try: import czifile except ImportError: czifile = None if ( 'imagecodecs_lite' in os.getcwd() or osp.exists(osp.join(osp.dirname(__file__), '..', 'imagecodecs_lite')) ): try: import imagecodecs_lite as imagecodecs from imagecodecs_lite import _imagecodecs_lite # noqa from imagecodecs_lite import imagecodecs as imagecodecs_py except ImportError: pytest.exit('the imagecodec-lite package is not installed') lzma = zlib = bz2 = zstd = lz4 = lzf = blosc = bitshuffle = None _jpeg12 = _jpegls = _zfp = None else: try: import imagecodecs import imagecodecs.imagecodecs as imagecodecs_py from imagecodecs.imagecodecs import (lzma, zlib, bz2, zstd, lz4, lzf, blosc, bitshuffle) from imagecodecs import _imagecodecs # noqa except ImportError: pytest.exit('the imagecodec package is not installed') try: from imagecodecs import _jpeg12 except ImportError: _jpeg12 = None try: from imagecodecs import _jpegls except ImportError: _jpegls = None try: from imagecodecs import _zfp except ImportError: _zfp = None IS_PY2 = sys.version_info[0] == 2 IS_32BIT = sys.maxsize < 2**32 TEST_DIR = osp.dirname(__file__) class TempFileName(): """Temporary file name context manager.""" def __init__(self, name=None, suffix='', remove=True): self.remove = bool(remove) if not name: self.name = tempfile.NamedTemporaryFile(prefix='test_', suffix=suffix).name else: self.name = osp.join(tempfile.gettempdir(), 'test_%s%s' % (name, suffix)) def __enter__(self): return self.name def __exit__(self, exc_type, exc_value, traceback): if self.remove: try: os.remove(self.name) except Exception: pass def test_version(): """Assert imagecodecs versions match docstrings.""" ver = ':Version: ' + imagecodecs.__version__ assert ver in __doc__ assert ver in imagecodecs.__doc__ assert imagecodecs.version().startswith('imagecodecs') assert ver in imagecodecs_py.__doc__ if zlib: assert imagecodecs.version(dict)['zlib'].startswith('1.') @pytest.mark.skipif(not hasattr(imagecodecs, 'imread'), reason='imread function missing') @pytest.mark.filterwarnings('ignore:Possible precision loss') def test_imread_imwrite(): """Test imread and imwrite functions.""" imread = imagecodecs.imread imwrite = imagecodecs.imwrite data = image_data('rgba', 'uint8') # codec from file extension with TempFileName(suffix='.npy') as filename: imwrite(filename, data, level=99) im, codec = imread(filename, return_codec=True) assert codec == imagecodecs.numpy_decode assert_array_equal(data, im) with TempFileName() as filename: # codec from name imwrite(filename, data, codec='numpy') im = imread(filename, codec='npy') assert_array_equal(data, im) # codec from function imwrite(filename, data, codec=imagecodecs.numpy_encode) im = imread(filename, codec=imagecodecs.numpy_decode) assert_array_equal(data, im) # codec from name list im = imread(filename, codec=['npz']) assert_array_equal(data, im) # autodetect im = imread(filename) assert_array_equal(data, im) # fail with pytest.raises(ValueError): imwrite(filename, data) with pytest.raises(ValueError): im = imread(filename, codec='unknown') def test_none(): """Test NOP codec.""" encode = imagecodecs.none_encode decode = imagecodecs.none_decode data = b'None' assert encode(data) is data assert decode(data) is data def test_bitorder(): """Test BitOrder codec with bytes.""" decode = imagecodecs.bitorder_decode data = b'\x01\x00\x9a\x02' reverse = b'\x80\x00Y@' # return new string assert decode(data) == reverse assert data == b'\x01\x00\x9a\x02' # provide output out = bytearray(len(data)) decode(data, out=out) assert out == reverse assert data == b'\x01\x00\x9a\x02' # inplace decode(data, out=data) assert data == reverse # bytes range assert BYTES == decode(readfile('bytes.bitorder.bin')) def test_bitorder_ndarray(): """Test BitOrder codec with ndarray.""" decode = imagecodecs.bitorder_decode data = numpy.array([1, 666], dtype='uint16') reverse = numpy.array([128, 16473], dtype='uint16') # return new array assert_array_equal(decode(data), reverse) # inplace decode(data, out=data) assert_array_equal(data, numpy.array([128, 16473], dtype='uint16')) # array view data = numpy.array([[1, 666, 1431655765, 62], [2, 667, 2863311530, 32], [3, 668, 1431655765, 30]], dtype='uint32') reverse = numpy.array([[1, 666, 1431655765, 62], [2, 16601, 1431655765, 32], [3, 16441, 2863311530, 30]], dtype='uint32') assert_array_equal(decode(data[1:, 1:3]), reverse[1:, 1:3]) # array view inplace decode(data[1:, 1:3], out=data[1:, 1:3]) assert_array_equal(data, reverse) def test_packints_decode(): """Test PackInts decoder.""" decode = imagecodecs.packints_decode decoded = decode(b'', 'B', 1) assert len(decoded) == 0 decoded = decode(b'a', 'B', 1) assert tuple(decoded) == (0, 1, 1, 0, 0, 0, 0, 1) decoded = decode(b'ab', 'B', 2) assert tuple(decoded) == (1, 2, 0, 1, 1, 2, 0, 2) decoded = decode(b'abcd', 'B', 3) assert tuple(decoded) == (3, 0, 2, 6, 1, 1, 4, 3, 3, 1) decoded = decode(numpy.frombuffer(b'abcd', dtype='uint8'), 'B', 3) assert tuple(decoded) == (3, 0, 2, 6, 1, 1, 4, 3, 3, 1) PACKBITS_DATA = [ (b'', b''), (b'X', b'\x00X'), (b'123', b'\x02123'), (b'112112', b'\xff1\x002\xff1\x002'), (b'1122', b'\xff1\xff2'), (b'1' * 126, b'\x831'), (b'1' * 127, b'\x821'), (b'1' * 128, b'\x811'), (b'1' * 127 + b'foo', b'\x821\x00f\xffo'), (b'12345678' * 16, # literal 128 b'\x7f1234567812345678123456781234567812345678123456781234567812345678' b'1234567812345678123456781234567812345678123456781234567812345678'), (b'12345678' * 17, b'~1234567812345678123456781234567812345678123456781234567812345678' b'123456781234567812345678123456781234567812345678123456781234567\x08' b'812345678'), (b'1' * 128 + b'12345678' * 17, b'\x821\xff1~2345678123456781234567812345678123456781234567812345678' b'1234567812345678123456781234567812345678123456781234567812345678' b'12345678\x0712345678'), (b'\xaa\xaa\xaa\x80\x00\x2a\xaa\xaa\xaa\xaa\x80\x00' b'\x2a\x22\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa', b'\xfe\xaa\x02\x80\x00\x2a\xfd\xaa\x03\x80\x00\x2a\x22\xf7\xaa')] @pytest.mark.parametrize('data', range(len(PACKBITS_DATA))) @pytest.mark.parametrize('codec', ['encode', 'decode']) def test_packbits(codec, data): """Test PackBits codec.""" encode = imagecodecs.packbits_encode decode = imagecodecs.packbits_decode uncompressed, compressed = PACKBITS_DATA[data] if codec == 'decode': assert decode(compressed) == uncompressed elif codec == 'encode': try: assert encode(uncompressed) == compressed except AssertionError: # roundtrip assert decode(encode(uncompressed)) == uncompressed def test_packbits_nop(): """Test PackBits decoding empty data.""" decode = imagecodecs.packbits_decode assert decode(b'\x80') == b'' assert decode(b'\x80\x80') == b'' @pytest.mark.parametrize('output', [None, 'array']) @pytest.mark.parametrize('codec', ['encode', 'decode']) def test_packbits_array(codec, output): """Test PackBits codec with arrays.""" encode = imagecodecs.packbits_encode decode = imagecodecs.packbits_decode uncompressed, compressed = PACKBITS_DATA[-1] shape = (2, 7, len(uncompressed)) data = numpy.empty(shape, dtype='uint8') data[..., :] = numpy.frombuffer(uncompressed, dtype='uint8') compressed = compressed * (shape[0] * shape[1]) if codec == 'encode': if output == 'array': out = numpy.empty(data.size, data.dtype) assert_array_equal(encode(data, out=out), numpy.frombuffer(compressed, dtype='uint8')) else: assert encode(data) == compressed else: if output == 'array': out = numpy.empty(data.size, data.dtype) assert_array_equal(decode(compressed, out=out), data.flat) else: assert decode(compressed) == data.tobytes() @pytest.mark.parametrize('output', ['new', 'out', 'inplace']) @pytest.mark.parametrize('codec', ['encode', 'decode']) @pytest.mark.parametrize( 'kind', ['u1', 'u2', 'u4', 'u8', 'i1', 'i2', 'i4', 'i8', 'f4', 'f8', 'B', pytest.param('b', marks=pytest.mark.skipif( sys.version_info[0] == 2, reason='Python 2'))]) @pytest.mark.parametrize('func', ['delta', 'xor']) def test_delta(output, kind, codec, func): """Test Delta codec.""" if func == 'delta': encode = imagecodecs.delta_encode decode = imagecodecs.delta_decode encode_py = imagecodecs_py.delta_encode # decode_py = imagecodecs_py.imagecodecs.delta_decode elif func == 'xor': encode = imagecodecs.xor_encode decode = imagecodecs.xor_decode encode_py = imagecodecs_py.xor_encode # decode_py = imagecodecs_py.imagecodecs.xor_decode bytetype = bytearray if kind == 'b': bytetype = bytes kind = 'B' axis = -2 # do not change dtype = numpy.dtype(kind) if kind[0] in 'iuB': low = numpy.iinfo(dtype).min high = numpy.iinfo(dtype).max data = numpy.random.randint(low, high, size=33 * 31 * 3, dtype=dtype).reshape(33, 31, 3) else: low, high = -1e5, 1e5 data = numpy.random.randint(low, high, size=33 * 31 * 3, dtype='i4').reshape(33, 31, 3) data = data.astype(dtype) data[16, 14] = [0, 0, 0] data[16, 15] = [low, high, low] data[16, 16] = [high, low, high] data[16, 17] = [low, high, low] data[16, 18] = [high, low, high] data[16, 19] = [0, 0, 0] if kind == 'B': # data = data.reshape(-1) data = data.tobytes() diff = encode_py(data, axis=0) if output == 'new': if codec == 'encode': encoded = encode(data, out=bytetype) assert encoded == diff elif codec == 'decode': decoded = decode(diff, out=bytetype) assert decoded == data elif output == 'out': if codec == 'encode': encoded = bytetype(len(data)) encode(data, out=encoded) assert encoded == diff elif codec == 'decode': decoded = bytetype(len(data)) decode(diff, out=decoded) assert decoded == data elif output == 'inplace': if codec == 'encode': encoded = bytetype(data) encode(encoded, out=encoded) assert encoded == diff elif codec == 'decode': decoded = bytetype(diff) decode(decoded, out=decoded) assert decoded == data else: # if func == 'xor' and kind in ('f4', 'f8'): # with pytest.raises(ValueError): # encode(data, axis=axis) # pytest.skip("XOR codec not implemented for float data") diff = encode_py(data, axis=-2) if output == 'new': if codec == 'encode': encoded = encode(data, axis=axis) assert_array_equal(encoded, diff) elif codec == 'decode': decoded = decode(diff, axis=axis) assert_array_equal(decoded, data) elif output == 'out': if codec == 'encode': encoded = numpy.zeros_like(data) encode(data, axis=axis, out=encoded) assert_array_equal(encoded, diff) elif codec == 'decode': decoded = numpy.zeros_like(data) decode(diff, axis=axis, out=decoded) assert_array_equal(decoded, data) elif output == 'inplace': if codec == 'encode': encoded = data.copy() encode(encoded, axis=axis, out=encoded) assert_array_equal(encoded, diff) elif codec == 'decode': decoded = diff.copy() decode(decoded, axis=axis, out=decoded) assert_array_equal(decoded, data) @pytest.mark.parametrize('output', ['new', 'out']) @pytest.mark.parametrize('codec', ['encode', 'decode']) @pytest.mark.parametrize('endian', ['le', 'be']) @pytest.mark.parametrize('planar', ['rgb', 'rrggbb']) def test_floatpred(planar, endian, output, codec): """Test FloatPred codec.""" encode = imagecodecs.floatpred_encode decode = imagecodecs.floatpred_decode data = numpy.fromfile( datafiles('rgb.bin'), dtype='<f4').reshape(33, 31, 3) if planar == 'rgb': axis = -2 if endian == 'le': encoded = numpy.fromfile( datafiles('rgb.floatpred_le.bin'), dtype='<f4') encoded = encoded.reshape(33, 31, 3) if output == 'new': if codec == 'decode': assert_array_equal(decode(encoded, axis=axis), data) elif codec == 'encode': assert_array_equal(encode(data, axis=axis), encoded) elif output == 'out': out = numpy.empty_like(data) if codec == 'decode': decode(encoded, axis=axis, out=out) assert_array_equal(out, data) elif codec == 'encode': out = numpy.empty_like(data) encode(data, axis=axis, out=out) assert_array_equal(out, encoded) elif endian == 'be': data = data.astype('>f4') encoded = numpy.fromfile( datafiles('rgb.floatpred_be.bin'), dtype='>f4') encoded = encoded.reshape(33, 31, 3) if output == 'new': if codec == 'decode': assert_array_equal(decode(encoded, axis=axis), data) elif codec == 'encode': assert_array_equal(encode(data, axis=axis), encoded) elif output == 'out': out = numpy.empty_like(data) if codec == 'decode': decode(encoded, axis=axis, out=out) assert_array_equal(out, data) elif codec == 'encode': out = numpy.empty_like(data) encode(data, axis=axis, out=out) assert_array_equal(out, encoded) elif planar == 'rrggbb': axis = -1 data = numpy.ascontiguousarray(numpy.moveaxis(data, 2, 0)) if endian == 'le': encoded = numpy.fromfile( datafiles('rrggbb.floatpred_le.bin'), dtype='<f4') encoded = encoded.reshape(3, 33, 31) if output == 'new': if codec == 'decode': assert_array_equal(decode(encoded, axis=axis), data) elif codec == 'encode': assert_array_equal(encode(data, axis=axis), encoded) elif output == 'out': out = numpy.empty_like(data) if codec == 'decode': decode(encoded, axis=axis, out=out) assert_array_equal(out, data) elif codec == 'encode': out = numpy.empty_like(data) encode(data, axis=axis, out=out) assert_array_equal(out, encoded) elif endian == 'be': data = data.astype('>f4') encoded = numpy.fromfile( datafiles('rrggbb.floatpred_be.bin'), dtype='>f4') encoded = encoded.reshape(3, 33, 31) if output == 'new': if codec == 'decode': assert_array_equal(decode(encoded, axis=axis), data) elif codec == 'encode': assert_array_equal(encode(data, axis=axis), encoded) elif output == 'out': out = numpy.empty_like(data) if codec == 'decode': decode(encoded, axis=axis, out=out) assert_array_equal(out, data) elif codec == 'encode': out = numpy.empty_like(data) encode(data, axis=axis, out=out) assert_array_equal(out, encoded) def test_lzw_msb(): """Test LZW decoder with MSB.""" # TODO: add test_lzw_lsb decode = imagecodecs.lzw_decode for data, decoded in [ (b'\x80\x1c\xcc\'\x91\x01\xa0\xc2m6\x99NB\x03\xc9\xbe\x0b' b'\x07\x84\xc2\xcd\xa68|"\x14 3\xc3\xa0\xd1c\x94\x02\x02\x80', b'say hammer yo hammer mc hammer go hammer'), (b'\x80\x18M\xc6A\x01\xd0\xd0e\x10\x1c\x8c\xa73\xa0\x80\xc7\x02' b'\x10\x19\xcd\xe2\x08\x14\x10\xe0l0\x9e`\x10\x10\x80', b'and the rest can go and play'), (b'\x80\x18\xcc&\xe19\xd0@t7\x9dLf\x889\xa0\xd2s', b"can't touch this"), (b'\x80@@', b'')]: assert decode(data) == decoded @pytest.mark.parametrize('output', ['new', 'size', 'ndarray', 'bytearray']) def test_lzw_decode(output): """Test LZW decoder of input with horizontal differencing.""" decode = imagecodecs.lzw_decode delta_decode = imagecodecs.delta_decode data = readfile('bytes.lzw_horizontal.bin') decoded_size = len(BYTES) if output == 'new': decoded = decode(data) decoded = numpy.frombuffer(decoded, 'uint8').reshape(16, 16) delta_decode(decoded, out=decoded, axis=-1) assert_array_equal(BYTESIMG, decoded) elif output == 'size': decoded = decode(data, out=decoded_size) decoded = numpy.frombuffer(decoded, 'uint8').reshape(16, 16) delta_decode(decoded, out=decoded, axis=-1) assert_array_equal(BYTESIMG, decoded) # with pytest.raises(RuntimeError): decode(data, buffersize=32, out=decoded_size) elif output == 'ndarray': decoded = numpy.empty_like(BYTESIMG) decode(data, out=decoded.reshape(-1)) delta_decode(decoded, out=decoded, axis=-1) assert_array_equal(BYTESIMG, decoded) elif output == 'bytearray': decoded = bytearray(decoded_size) decode(data, out=decoded) decoded = numpy.frombuffer(decoded, 'uint8').reshape(16, 16) delta_decode(decoded, out=decoded, axis=-1) assert_array_equal(BYTESIMG, decoded) def test_lzw_decode_image_noeoi(): """Test LZW decoder of input without EOI 512x512u2.""" decode = imagecodecs.lzw_decode fname = datafiles('image_noeoi.lzw.bin') with open(fname, 'rb') as fh: encoded = fh.read() fname = datafiles('image_noeoi.bin') with open(fname, 'rb') as fh: decoded_known = fh.read() # new output decoded = decode(encoded) assert decoded == decoded_known # provide output decoded = bytearray(len(decoded)) decode(encoded, out=decoded) assert decoded == decoded_known # truncated output decoded = bytearray(100) decode(encoded, out=decoded) assert len(decoded) == 100 @pytest.mark.skipif(not hasattr(imagecodecs, 'blosc_decode'), reason='compression codecs missing') @pytest.mark.parametrize('output', ['new', 'out', 'size', 'excess', 'trunc']) @pytest.mark.parametrize('length', [0, 2, 31 * 33 * 3]) @pytest.mark.parametrize('codec', ['encode', 'decode']) @pytest.mark.parametrize('module', [ 'zlib', 'bz2', pytest.param('blosc', marks=pytest.mark.skipif(blosc is None, reason='import blosc')), pytest.param('lzma', marks=pytest.mark.skipif(lzma is None, reason='import lzma')), pytest.param('zstd', marks=pytest.mark.skipif(zstd is None, reason='import zstd')), pytest.param('lzf', marks=pytest.mark.skipif(lzf is None, reason='import lzf')), pytest.param('lz4', marks=pytest.mark.skipif(lz4 is None, reason='import lz4')), pytest.param('lz4h', marks=pytest.mark.skipif(lz4 is None, reason='import lz4')), pytest.param('bitshuffle', marks=pytest.mark.skipif(bitshuffle is None, reason='import bitshuffle')) ]) def test_compressors(module, codec, output, length): """Test various non-image codecs.""" if length: data = numpy.random.randint(255, size=length, dtype='uint8').tobytes() else: data = b'' if module == 'blosc': encode = imagecodecs.blosc_encode decode = imagecodecs.blosc_decode level = 9 encoded = blosc.compress(data, clevel=level) elif module == 'zlib': encode = imagecodecs.zlib_encode decode = imagecodecs.zlib_decode level = 5 encoded = zlib.compress(data, level) elif module == 'lzma': encode = imagecodecs.lzma_encode decode = imagecodecs.lzma_decode level = 6 encoded = lzma.compress(data) elif module == 'zstd': encode = imagecodecs.zstd_encode decode = imagecodecs.zstd_decode level = 5 if length == 0: # bug in zstd.compress? encoded = encode(data, level) else: encoded = zstd.compress(data, level) elif module == 'lzf': encode = imagecodecs.lzf_encode decode = imagecodecs.lzf_decode level = 1 encoded = lzf.compress(data, ((len(data) * 33) >> 5) + 1) if encoded is None: pytest.skip("lzf can't compress empty input") elif module == 'lz4': encode = imagecodecs.lz4_encode decode = imagecodecs.lz4_decode level = 1 encoded = lz4.block.compress(data, store_size=False) elif module == 'lz4h': def encode(*args, **kwargs): return imagecodecs.lz4_encode(*args, header=True, **kwargs) def decode(*args, **kwargs): return imagecodecs.lz4_decode(*args, header=True, **kwargs) level = 1 encoded = lz4.block.compress(data, store_size=True) elif module == 'bz2': encode = imagecodecs.bz2_encode decode = imagecodecs.bz2_decode level = 9 encoded = bz2.compress(data, compresslevel=level) elif module == 'bitshuffle': encode = imagecodecs.bitshuffle_encode decode = imagecodecs.bitshuffle_decode level = 0 encoded = bitshuffle.bitshuffle( numpy.frombuffer(data, 'uint8')).tobytes() else: raise ValueError(module) if codec == 'encode': size = len(encoded) if output == 'new': assert encoded == encode(data, level) elif output == 'size': ret = encode(data, level, out=size) assert encoded == ret elif output == 'out': if module == 'zstd': out = bytearray(max(size, 64)) # elif module == 'blosc': # out = bytearray(max(size, 17)) # bug in blosc ? elif module == 'lzf': out = bytearray(size + 1) # bug in liblzf ? else: out = bytearray(size) ret = encode(data, level, out=out) assert encoded == out[:size] assert encoded == ret elif output == 'excess': out = bytearray(size + 1021) ret = encode(data, level, out=out) if module == 'blosc': # pytest.skip("blosc output depends on output size") assert data == decode(ret) else: assert ret == out[:size] assert encoded == ret elif output == 'trunc': size = max(0, size - 1) out = bytearray(size) if size == 0 and module == 'bitshuffle': encode(data, level, out=out) == b'' else: with pytest.raises(RuntimeError): encode(data, level, out=out) else: raise ValueError(output) elif codec == 'decode': size = len(data) if output == 'new': assert data == decode(encoded) elif output == 'size': ret = decode(encoded, out=size) assert data == ret elif output == 'out': out = bytearray(size) ret = decode(encoded, out=out) assert data == out assert data == ret elif output == 'excess': out = bytearray(size + 1021) ret = decode(encoded, out=out) assert data == out[:size] assert data == ret elif output == 'trunc': size = max(0, size - 1) out = bytearray(size) if length > 0 and module in ('zlib', 'zstd', 'lzf', 'lz4', 'lz4h', 'blosc', 'bitshuffle'): with pytest.raises(RuntimeError): decode(encoded, out=out) else: decode(encoded, out=out) assert data[:size] == out else: raise ValueError(output) else: raise ValueError(codec) @pytest.mark.skipif(not hasattr(imagecodecs, 'bitshuffle_decode'), reason='bitshuffle codec missing') @pytest.mark.parametrize('dtype', ['bytes', 'ndarray']) @pytest.mark.parametrize('itemsize', [1, 2, 4, 8]) @pytest.mark.parametrize('blocksize', [0, 8, 64]) def test_bitshuffle_roundtrip(dtype, itemsize, blocksize): """Test Bitshuffle codec.""" encode = imagecodecs.bitshuffle_encode decode = imagecodecs.bitshuffle_decode if dtype == 'bytes': data = numpy.random.randint(255, size=1024, dtype='uint8').tobytes() else: data = numpy.random.randint(255, size=1024, dtype='u%i' % itemsize) data.shape = 2, 4, 128 encoded = encode(data, itemsize=itemsize, blocksize=blocksize) decoded = decode(encoded, itemsize=itemsize, blocksize=blocksize) if dtype == 'bytes': assert data == decoded else: assert_array_equal(data, decoded) @pytest.mark.skipif(not hasattr(imagecodecs, 'blosc_decode'), reason='blosc codec missing') @pytest.mark.parametrize('numthreads', [1, 6]) @pytest.mark.parametrize('level', [None, 1]) @pytest.mark.parametrize('shuffle', ['noshuffle', 'shuffle', 'bitshuffle']) @pytest.mark.parametrize('compressor', ['blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd']) def test_blosc_roundtrip(compressor, shuffle, level, numthreads): """Test Blosc codec.""" encode = imagecodecs.blosc_encode decode = imagecodecs.blosc_decode data = numpy.random.randint(255, size=2021, dtype='uint8').tobytes() encoded = encode(data, level=level, compressor=compressor, shuffle=shuffle, numthreads=numthreads) decoded = decode(encoded, numthreads=numthreads) assert data == decoded AEC_TEST_DIR = osp.join(TEST_DIR, 'libaec/121B2TestData') AEC_TEST_OPTIONS = list( osp.split(f)[-1][5:-3] for f in glob.glob(osp.join( AEC_TEST_DIR, 'AllOptions', '*.rz'))) AEC_TEST_EXTENDED = list( osp.split(f)[-1][:-3] for f in glob.glob(osp.join( AEC_TEST_DIR, 'ExtendedParameters', '*.rz'))) @pytest.mark.skipif(not hasattr(imagecodecs, 'aec_decode'), reason='aec codec missing') @pytest.mark.parametrize('dtype', ['bytes', 'numpy']) @pytest.mark.parametrize('name', AEC_TEST_EXTENDED) def test_aec_extended(name, dtype): """Test AEC codec with libaec ExtendedParameters.""" encode = imagecodecs.aec_encode decode = imagecodecs.aec_decode size = 512 * 512 * 4 bitspersample = 32 flags = imagecodecs.AEC_DATA_PREPROCESS | imagecodecs.AEC_PAD_RSI matches = re.search(r'j(\d+)\.r(\d+)', name).groups() blocksize = int(matches[0]) rsi = int(matches[1]) filename = osp.join(AEC_TEST_DIR, 'ExtendedParameters', '%s.rz' % name) with open(filename, 'rb') as fh: rz = fh.read() filename = osp.join(AEC_TEST_DIR, 'ExtendedParameters', '%s.dat' % name.split('.')[0]) if dtype == 'bytes': with open(filename, 'rb') as fh: dat = fh.read() out = size else: dat = numpy.fromfile(filename, 'uint32').reshape(512, 512) out = numpy.empty_like(dat) # decode decoded = decode(rz, bitspersample=bitspersample, flags=flags, blocksize=blocksize, rsi=rsi, out=out) if dtype == 'bytes': assert decoded == dat else: pass # roundtrip if dtype == 'bytes': encoded = encode(dat, bitspersample=bitspersample, flags=flags, blocksize=blocksize, rsi=rsi) # fails with AEC_DATA_ERROR if libaec wasn't built with libaec.diff decoded = decode(encoded, bitspersample=bitspersample, flags=flags, blocksize=blocksize, rsi=rsi, out=size) assert decoded == dat else: encoded = encode(dat, flags=flags, blocksize=blocksize, rsi=rsi) # fails with AEC_DATA_ERROR if libaec wasn't built with libaec.diff decoded = decode(encoded, flags=flags, blocksize=blocksize, rsi=rsi, out=out) assert_array_equal(decoded, out) @pytest.mark.skipif(not hasattr(imagecodecs, 'aec_decode'), reason='aec codec missing') @pytest.mark.parametrize('name', AEC_TEST_OPTIONS) def test_aec_options(name): """Test AEC codec with libaec 121B2TestData.""" encode = imagecodecs.aec_encode decode = imagecodecs.aec_decode rsi = 128 blocksize = 16 flags = imagecodecs.AEC_DATA_PREPROCESS if 'restricted' in name: flags |= imagecodecs.AEC_RESTRICTED matches = re.search(r'p(\d+)n(\d+)', name).groups() size = int(matches[0]) bitspersample = int(matches[1]) if bitspersample > 8: size *= 2 if bitspersample > 16: size *= 2 filename = osp.join(AEC_TEST_DIR, 'AllOptions', 'test_%s.rz' % name) with open(filename, 'rb') as fh: rz = fh.read() filename = filename.replace('.rz', '.dat' ).replace('-basic', '' ).replace('-restricted', '') with open(filename, 'rb') as fh: dat = fh.read() out = size # decode decoded = decode(rz, bitspersample=bitspersample, flags=flags, blocksize=blocksize, rsi=rsi, out=out) assert decoded == dat # roundtrip encoded = encode(dat, bitspersample=bitspersample, flags=flags, blocksize=blocksize, rsi=rsi) decoded = decode(encoded, bitspersample=bitspersample, flags=flags, blocksize=blocksize, rsi=rsi, out=out) assert decoded == dat @pytest.mark.skipif(not hasattr(imagecodecs, 'jpeg_encode'), reason='jpeg codecs missing') @pytest.mark.filterwarnings('ignore:Possible precision loss') @pytest.mark.parametrize('optimize', [False, True]) @pytest.mark.parametrize('smoothing', [0, 25]) @pytest.mark.parametrize('subsampling', ['444', '422', '420', '411', '440']) @pytest.mark.parametrize('itype', ['rgb', 'rgba', 'gray']) @pytest.mark.parametrize('codec', ['jpeg8', 'jpeg12']) def test_jpeg_encode(codec, itype, subsampling, smoothing, optimize): """Test various JPEG encode options.""" # general and default options are tested in test_image_roundtrips if codec == 'jpeg8': dtype = 'uint8' decode = imagecodecs.jpeg8_decode encode = imagecodecs.jpeg8_encode atol = 24 elif codec == 'jpeg12': if _jpeg12 is None: pytest.skip('_jpeg12 module missing') if not optimize: pytest.skip('jpeg12 fails without optimize') dtype = 'uint16' decode = imagecodecs.jpeg12_decode encode = imagecodecs.jpeg12_encode atol = 24 * 16 else: raise ValueError(codec) dtype = numpy.dtype(dtype) data = image_data(itype, dtype) data = data[:32, :16].copy() # make divisable by subsamples encoded = encode(data, level=95, subsampling=subsampling, smoothing=smoothing, optimize=optimize) decoded = decode(encoded) if itype == 'gray': decoded = decoded.reshape(data.shape) assert_allclose(data, decoded, atol=atol) @pytest.mark.skipif(not hasattr(imagecodecs, 'jpeg8_decode'), reason='jpeg8 codec missing') @pytest.mark.parametrize('output', ['new', 'out']) def test_jpeg8_decode(output): """Test JPEG 8-bit decoder with separate tables.""" decode = imagecodecs.jpeg8_decode data = readfile('bytes.jpeg8.bin') tables = readfile('bytes.jpeg8_tables.bin') if output == 'new': decoded = decode(data, tables) elif output == 'out': decoded = numpy.empty_like(BYTESIMG) decode(data, tables, out=decoded) elif output == 'bytearray': decoded = bytearray(BYTESIMG.size * BYTESIMG.itemsize) decoded = decode(data, out=decoded) assert_array_equal(BYTESIMG, decoded) @pytest.mark.skipif(_jpeg12 is None, reason='_jpeg12 module missing') @pytest.mark.parametrize('output', ['new', 'out', 'bytearray']) def test_jpeg12_decode(output): """Test JPEG 12-bit decoder with separate tables.""" decode = imagecodecs.jpeg12_decode data = readfile('words.jpeg12.bin') tables = readfile('words.jpeg12_tables.bin') if output == 'new': decoded = decode(data, tables) elif output == 'out': decoded = numpy.empty_like(WORDSIMG) decode(data, tables, out=decoded) elif output == 'bytearray': decoded = bytearray(WORDSIMG.size * WORDSIMG.itemsize) decoded = decode(data, out=decoded) assert numpy.max(numpy.abs(WORDSIMG.astype('int32') - decoded.astype('int32'))) < 2 @pytest.mark.skipif(not hasattr(imagecodecs, 'jpegsof3_decode'), reason='jpegsof3 codec missing') @pytest.mark.parametrize('output', ['new', 'out', 'bytearray']) @pytest.mark.parametrize('fname', ['gray8.sof3.jpg', 'gray16.sof3.jpg']) def test_jpegsof3(fname, output): """Test JPEG SOF3 decoder with 8 and 16-bit images.""" decode = imagecodecs.jpegsof3_decode shape = 535, 800 if fname == 'gray8.sof3.jpg': dtype = 'uint8' value = 75 elif fname == 'gray16.sof3.jpg': dtype = 'uint16' value = 19275 data = readfile(fname) if output == 'new': decoded = decode(data) elif output == 'out': decoded = numpy.empty(shape, dtype) decode(data, out=decoded) elif output == 'bytearray': decoded = bytearray(535 * 800 * numpy.dtype(dtype).itemsize) decoded = decode(data, out=decoded) assert decoded.shape == shape assert decoded.dtype == dtype assert decoded[500, 600] == value @pytest.mark.skipif(not hasattr(imagecodecs, 'jxr_decode'), reason='jxr codec missing') @pytest.mark.parametrize('output', ['new', 'out', 'bytearray']) def test_jxr_decode(output): """Test JXR decoder with RGBA32 image.""" decode = imagecodecs.jxr_decode image = readfile('rgba32.jxr.bin') image = numpy.frombuffer(image, dtype='uint8').reshape(100, 100, -1) data = readfile('rgba32.jxr') if output == 'new': decoded = decode(data) elif output == 'out': decoded = numpy.empty_like(image) decode(data, out=decoded) elif output == 'bytearray': decoded = bytearray(image.size * image.itemsize) decoded = decode(data, out=decoded) assert_array_equal(image, decoded) @pytest.mark.skipif(not hasattr(imagecodecs, 'j2k_decode'), reason='j2k codec missing') @pytest.mark.parametrize('output', ['new', 'out', 'bytearray']) def test_j2k_int8_4bit(output): """Test J2K decoder with int8, 4-bit image.""" decode = imagecodecs.j2k_decode data = readfile('int8_4bit.j2k') dtype = 'int8' shape = 256, 256 if output == 'new': decoded = decode(data, verbose=2) elif output == 'out': decoded = numpy.empty(shape, dtype) decode(data, out=decoded) elif output == 'bytearray': decoded = bytearray(shape[0] * shape[1]) decoded = decode(data, out=decoded) assert decoded.dtype == dtype assert decoded.shape == shape assert decoded[0, 0] == -6 assert decoded[-1, -1] == 2 @pytest.mark.skipif(not hasattr(imagecodecs, 'j2k_decode'), reason='j2k codec missing') def test_j2k_ycbc(): """Test J2K decoder with subsampling.""" decode = imagecodecs.j2k_decode data = readfile('ycbc.j2k') decoded = decode(data, verbose=2) assert decoded.dtype == 'uint8' assert decoded.shape == (256, 256, 3) assert tuple(decoded[0, 0]) == (243, 243, 240) assert tuple(decoded[-1, -1]) == (0, 0, 0) @pytest.mark.skipif(_jpegls is None, reason='_jpegls module missing') @pytest.mark.parametrize('output', ['new', 'out', 'bytearray']) def test_jpegls_decode(output): """Test JPEGLS decoder with RGBA32 image.""" decode = imagecodecs.jpegls_decode data = readfile('rgba.u1.jls') dtype = 'uint8' shape = 32, 31, 4 if output == 'new': decoded = decode(data) elif output == 'out': decoded = numpy.empty(shape, dtype) decode(data, out=decoded) elif output == 'bytearray': decoded = bytearray(shape[0] * shape[1] * shape[2]) decoded = decode(data, out=decoded) assert decoded.dtype == dtype assert decoded.shape == shape assert decoded[25, 25, 1] == 97 assert decoded[-1, -1, -1] == 63 @pytest.mark.skipif(not hasattr(imagecodecs, 'webp_decode'), reason='webp codec missing') @pytest.mark.parametrize('output', ['new', 'out', 'bytearray']) def test_webp_decode(output): """Test WebpP decoder with RGBA32 image.""" decode = imagecodecs.webp_decode data = readfile('rgba.u1.webp') dtype = 'uint8' shape = 32, 31, 4 if output == 'new': decoded = decode(data) elif output == 'out': decoded = numpy.empty(shape, dtype) decode(data, out=decoded) elif output == 'bytearray': decoded = bytearray(shape[0] * shape[1] * shape[2]) decoded = decode(data, out=decoded) assert decoded.dtype == dtype assert decoded.shape == shape assert decoded[25, 25, 1] == 94 # lossy assert decoded[-1, -1, -1] == 63 @pytest.mark.skipif(_zfp is None, reason='_zfp module missing') @pytest.mark.filterwarnings('ignore:Possible precision loss') @pytest.mark.parametrize('execution', [None, 'omp']) @pytest.mark.parametrize('mode', [(None, None), ('p', None)]) # ('r', 24) @pytest.mark.parametrize('deout', ['new', 'out', 'bytearray']) # 'view', @pytest.mark.parametrize('enout', ['new', 'out', 'bytearray']) @pytest.mark.parametrize('itype', ['rgba', 'view', 'gray', 'line']) @pytest.mark.parametrize('dtype', ['float32', 'float64', 'int32', 'int64']) def test_zfp(dtype, itype, enout, deout, mode, execution): """Test ZFP codecs.""" if execution == 'omp' and os.environ.get('SKIP_OMP', False): pytest.skip('omp test skip because of enviroment variable') decode = imagecodecs.zfp_decode encode = imagecodecs.zfp_encode mode, level = mode dtype = numpy.dtype(dtype) itemsize = dtype.itemsize data = image_data(itype, dtype) shape = data.shape kwargs = dict(mode=mode, level=level, execution=execution) encoded = encode(data, **kwargs) if enout == 'new': pass elif enout == 'out': encoded = numpy.empty(len(encoded), 'uint8') encode(data, out=encoded, **kwargs) elif enout == 'bytearray': encoded = bytearray(len(encoded)) encode(data, out=encoded, **kwargs) if deout == 'new': decoded = decode(encoded) elif deout == 'out': decoded = numpy.empty(shape, dtype) decode(encoded, out=decoded) elif deout == 'view': temp = numpy.empty((shape[0] + 5, shape[1] + 5, shape[2]), dtype) decoded = temp[2:2 + shape[0], 3:3 + shape[1], :] decode(encoded, out=decoded) elif deout == 'bytearray': decoded = bytearray(shape[0] * shape[1] * shape[2] * itemsize) decoded = decode(encoded, out=decoded) decoded = numpy.asarray(decoded, dtype=dtype).reshape(shape) if dtype.char == 'f': atol = 1e-6 else: atol = 20 assert_allclose(data, decoded, atol=atol, rtol=0) @pytest.mark.skipif(not hasattr(imagecodecs, 'jxr_decode'), reason='jxr codec missing') @pytest.mark.filterwarnings('ignore:Possible precision loss') @pytest.mark.parametrize('level', [None, 90, 0.4]) @pytest.mark.parametrize('deout', ['new', 'out', 'bytearray']) # 'view', @pytest.mark.parametrize('enout', ['new', 'out', 'bytearray']) @pytest.mark.parametrize('itype', [ 'gray uint8', 'gray uint16', 'gray float16', 'gray float32', 'rgb uint8', 'rgb uint16', 'rgb float16', 'rgb float32', 'rgba uint8', 'rgba uint16', 'rgba float16', 'rgba float32', 'channels uint8', 'channelsa uint8', 'channels uint16', 'channelsa uint16', 'cmyk uint8', 'cmyka uint8']) def test_jxr(itype, enout, deout, level): """Test JpegXR codecs.""" decode = imagecodecs.jxr_decode encode = imagecodecs.jxr_encode itype, dtype = itype.split() dtype = numpy.dtype(dtype) itemsize = dtype.itemsize data = image_data(itype, dtype) shape = data.shape kwargs = dict(level=level) if itype.startswith('cmyk'): kwargs['photometric'] = 'cmyk' if itype.endswith('a'): kwargs['hasalpha'] = True print(data.shape, data.dtype, data.strides) encoded = encode(data, **kwargs) if enout == 'new': pass elif enout == 'out': encoded = numpy.empty(len(encoded), 'uint8') encode(data, out=encoded, **kwargs) elif enout == 'bytearray': encoded = bytearray(len(encoded)) encode(data, out=encoded, **kwargs) if deout == 'new': decoded = decode(encoded) elif deout == 'out': decoded = numpy.empty(shape, dtype) decode(encoded, out=numpy.squeeze(decoded)) elif deout == 'view': temp = numpy.empty((shape[0] + 5, shape[1] + 5, shape[2]), dtype) decoded = temp[2:2 + shape[0], 3:3 + shape[1], :] decode(encoded, out=numpy.squeeze(decoded)) elif deout == 'bytearray': decoded = bytearray(shape[0] * shape[1] * shape[2] * itemsize) decoded = decode(encoded, out=decoded) decoded = numpy.asarray(decoded, dtype=dtype).reshape(shape) if itype == 'gray': decoded = decoded.reshape(shape) if level is None: atol = 0.00001 if dtype.kind == 'f' else 1 if level == 90: atol = 0.005 if dtype.kind == 'f' else 8 if dtype == 'uint8' else 12 else: atol = 0.1 if dtype.kind == 'f' else 64 if dtype == 'uint8' else 700 assert_allclose(data, decoded, atol=atol, rtol=0) @pytest.mark.skipif(not hasattr(imagecodecs, 'jpeg_decode'), reason='image codecs missing') @pytest.mark.filterwarnings('ignore:Possible precision loss') @pytest.mark.parametrize('level', [None, 5, -1]) @pytest.mark.parametrize('deout', ['new', 'out', 'view', 'bytearray']) @pytest.mark.parametrize('enout', ['new', 'out', 'bytearray']) @pytest.mark.parametrize('itype', ['rgb', 'rgba', 'view', 'gray', 'graya']) @pytest.mark.parametrize('dtype', ['uint8', 'uint16']) @pytest.mark.parametrize('codec', ['webp', 'png', 'jpeg8', 'jpeg12', 'jpegls', 'j2k']) def test_image_roundtrips(codec, dtype, itype, enout, deout, level): """Test various image codecs.""" if codec == 'jpeg8': if itype in ('view', 'graya') or deout == 'view' or dtype == 'uint16': pytest.skip("jpeg8 doesn't support these cases") decode = imagecodecs.jpeg8_decode encode = imagecodecs.jpeg8_encode atol = 24 if level: level += 95 elif codec == 'jpeg12': if _jpeg12 is None: pytest.skip('_jpeg12 module missing') if itype in ('view', 'graya') or deout == 'view' or dtype == 'uint8': pytest.skip("jpeg12 doesn't support these cases") decode = imagecodecs.jpeg12_decode encode = imagecodecs.jpeg12_encode atol = 24 * 16 if level: level += 95 elif codec == 'jpegls': if _jpegls is None: pytest.skip('_jpegls module missing') if itype in ('view', 'graya') or deout == 'view': pytest.skip("jpegls doesn't support these cases") decode = imagecodecs.jpegls_decode encode = imagecodecs.jpegls_encode elif codec == 'webp': decode = imagecodecs.webp_decode encode = imagecodecs.webp_encode if dtype != 'uint8' or itype.startswith('gray'): pytest.skip("webp doesn't support these cases") elif codec == 'png': decode = imagecodecs.png_decode encode = imagecodecs.png_encode elif codec == 'j2k': if itype == 'view' or deout == 'view': pytest.skip("j2k doesn't support these cases") decode = imagecodecs.j2k_decode encode = imagecodecs.j2k_encode if level: level += 95 else: raise ValueError(codec) dtype = numpy.dtype(dtype) itemsize = dtype.itemsize data = image_data(itype, dtype) shape = data.shape if enout == 'new': encoded = encode(data, level=level) elif enout == 'out': encoded = numpy.empty(2 * shape[0] * shape[1] * shape[2] * itemsize, 'uint8') encode(data, level=level, out=encoded) elif enout == 'bytearray': encoded = bytearray(2 * shape[0] * shape[1] * shape[2] * itemsize) encode(data, level=level, out=encoded) if deout == 'new': decoded = decode(encoded) elif deout == 'out': decoded = numpy.empty(shape, dtype) decode(encoded, out=numpy.squeeze(decoded)) elif deout == 'view': temp = numpy.empty((shape[0] + 5, shape[1] + 5, shape[2]), dtype) decoded = temp[2:2 + shape[0], 3:3 + shape[1], :] decode(encoded, out=numpy.squeeze(decoded)) elif deout == 'bytearray': decoded = bytearray(shape[0] * shape[1] * shape[2] * itemsize) decoded = decode(encoded, out=decoded) decoded = numpy.asarray(decoded, dtype=dtype).reshape(shape) if itype == 'gray': decoded = decoded.reshape(shape) if codec == 'webp' and (level != -1 or itype == 'rgba'): # RGBA roundtip doesn't work for A=0 assert_allclose(data, decoded, atol=255) elif codec in ('jpeg8', 'jpeg12'):
assert_allclose(data, decoded, atol=atol)
numpy.testing.assert_allclose
from abc import ABC import numpy as np import cv2 class ReferenceCard(): def __init__( self, width: float = 57, height: float = 87, box_x_border: float = 2, box_x_width: float = 9.5, box_y_border: float = 3, box_y_height: float = 23, zoom: int = 4 ): self.width = int(width * zoom) self.height = int(height * zoom) self.box_x_border = int(box_x_border * zoom) self.box_x_width = int(box_x_width * zoom) self.box_y_border = int(box_y_border * zoom) self.box_y_height = int(box_y_height * zoom) def box_tl(self): return np.array( [ [self.box_x_border, self.box_y_border], [self.box_x_width, self.box_y_border], [self.box_x_width, self.box_y_height], [self.box_x_border, self.box_y_height] ], dtype=np.float32) def box_br(self): return np.array( [ [self.width - self.box_x_border, self.height - self.box_y_border], [self.width - self.box_x_width, self.height - self.box_y_border], [self.width - self.box_x_width, self.height - self.box_y_height], [self.width - self.box_x_border, self.height - self.box_y_height] ], dtype=np.float32) def boxes(self): return np.array([self.ref_box_hl(), self.ref_box_lr()]) def hull(self, img: np.array, box: list = None): """ Find in the zone 'box' of image 'img' and return, the convex hull delimiting the value and suit symbols 'box' (shape (4,2)) is an array of 4 points delimiting a rectangular zone, takes one of the 2 possible values : refboxHL or refboxLR """ if box is None: box = self.ref_box_tl() kernel =
np.ones((3, 3), np.uint8)
numpy.ones
import matplotlib matplotlib.use("Agg") import os import argparse import tensorflow as tf import numpy as np from tfbldr.datasets import fetch_fruitspeech from tfbldr.datasets.audio import soundsc from tfbldr.datasets.audio import overlap from tfbldr.plot import specgram from tfbldr.plot import specplot from collections import namedtuple, defaultdict import sys from scipy.io import wavfile from tfbldr.plot import get_viridis viridis_cm = get_viridis() import matplotlib.pyplot as plt parser = argparse.ArgumentParser() parser.add_argument('direct_model', nargs=1, default=None) parser.add_argument('--seed', dest='seed', type=int, default=1999) args = parser.parse_args() direct_model = args.direct_model[0] random_state = np.random.RandomState(args.seed) config = tf.ConfigProto( device_count={'GPU': 0} ) fruit = fetch_fruitspeech() minmin = np.inf maxmax = -np.inf for s in fruit["data"]: si = s - s.mean() minmin = min(minmin, si.min()) maxmax = max(maxmax, si.max()) train_data = [] valid_data = [] type_counts = defaultdict(lambda: 0) final_audio = [] for n, s in enumerate(fruit["data"]): type_counts[fruit["target"][n]] += 1 s = s - s.mean() n_s = (s - minmin) / float(maxmax - minmin) n_s = 2 * n_s - 1 #n_s = mu_law_transform(n_s, 256) if type_counts[fruit["target"][n]] == 15: valid_data.append(n_s) else: train_data.append(n_s) def _cuts(list_of_audio, cut, step): # make many overlapping cuts # 8k, this means offset is ~4ms @ step of 32 real_final = [] real_idx = [] for n, s in enumerate(list_of_audio): # cut off the end s = s[:len(s) - len(s) % step] starts = np.arange(0, len(s) - cut + step, step) for st in starts: real_final.append(s[st:st + cut][None, :, None]) real_idx.append(n) return real_final, real_idx cut = 256 step = 1 train_audio, train_audio_idx = _cuts(train_data, cut, step) valid_audio, valid_audio_idx = _cuts(valid_data, cut, step) embedding_dim = 512 vqvae_batch_size = 50 rnn_batch_size = 50 n_hid = 512 n_clusters = 64 # reserve 0 for "start code" n_inputs = embedding_dim + 1 hardcoded_z_len = 16 reps = 10 sample_random_state = np.random.RandomState(1165) with tf.Session(config=config) as sess: saver = tf.train.import_meta_graph(direct_model + '.meta') saver.restore(sess, direct_model) fields = ["vqvae_inputs", "bn_flag", "x_tilde", "z_e_x", "z_q_x", "z_i_x", "z_emb", "vqvae_rec_loss", "rnn_inputs", "rnn_inputs_tm1", "init_hidden", "init_cell", "init_q_hidden", "init_q_cell", "hiddens", "cells", "q_hiddens", "q_cells", "q_nvq_hiddens", "i_hiddens", "pred", "pred_sm", "rnn_rec_loss"] vs = namedtuple('Params', fields)( *[tf.get_collection(name)[0] for name in fields] ) init_h = np.zeros((rnn_batch_size, n_hid)).astype("float32") init_c = np.zeros((rnn_batch_size, n_hid)).astype("float32") init_q_h = np.zeros((rnn_batch_size, n_hid)).astype("float32") init_q_c = np.zeros((rnn_batch_size, n_hid)).astype("float32") rnn_inputs = np.zeros((1, rnn_batch_size, 1)) all_out = [] all_h = [] all_c = [] all_q_h = [] all_q_c = [] all_i_h = [] for i in range(reps * hardcoded_z_len): print("Sampling step {} of {}".format(i + 1, reps * hardcoded_z_len)) feed = {vs.rnn_inputs_tm1: rnn_inputs, vs.init_hidden: init_h, vs.init_cell: init_c, vs.init_q_hidden: init_q_h, vs.init_q_cell: init_q_c} outs = [vs.pred_sm, vs.hiddens, vs.cells, vs.q_hiddens, vs.q_cells, vs.i_hiddens] r = sess.run(outs, feed_dict=feed) pred_sm = r[0] pred_samp_i = np.argmax(pred_sm - np.log(-np.log(sample_random_state.uniform(low=1E-5, high=1-1E-5, size=pred_sm.shape))), axis=-1) pred_i = pred_samp_i.astype("float32") #pred_i = pred_sm.argmax(axis=-1).astype("float32") rnn_inputs = pred_i[..., None] hiddens = r[1] cells = r[2] q_hiddens = r[3] q_cells = r[4] i_hiddens = r[-1] all_out.append(rnn_inputs) all_h.append(hiddens) all_c.append(cells) all_q_h.append(q_hiddens) all_q_c.append(q_cells) all_i_h.append(i_hiddens[..., None]) init_h = hiddens[-1] init_c = cells[-1] init_q_h = q_hiddens[-1] init_q_c = q_cells[-1] s_out = np.concatenate(all_out, axis=0) i_h = np.concatenate(all_i_h, axis=0) from IPython import embed; embed(); raise ValueError() res = [] i_res = [] for n_round in range(rounds): this_res = [x] this_i_res = [-1 * init_q_h[:, 0][None].astype("float32")] # can reset these, trained only up to inner_seq_len by seems ok if trained on overlap frames #init_h = np.zeros((batch_size, n_hid)).astype("float32") #init_c = np.zeros((batch_size, n_hid)).astype("float32") #init_q_h = np.zeros((batch_size, n_hid)).astype("float32") #init_q_c = np.zeros((batch_size, n_hid)).astype("float32") for i in range(inner_seq_len - 1): feed = {vs.inputs_tm1: x, vs.init_hidden: init_h, vs.init_cell: init_c, vs.init_q_hidden: init_q_h, vs.init_q_cell: init_q_c} outs = [vs.pred_sm, vs.hiddens, vs.cells, vs.q_hiddens, vs.q_cells, vs.i_hiddens] r = sess.run(outs, feed_dict=feed) p = r[0] # sample? #x = np.array([sample_random_state.choice(list(range(p.shape[-1])), p=p[0, i]) for i in range(batch_size)]).astype("float32")[None, :, None] x = p.argmax(axis=-1)[:, :, None].astype("float32") hids = r[1] cs = r[2] q_hids = r[3] q_cs = r[4] i_hids = r[5] init_h = hids[0] init_c = cs[0] init_q_h = q_hids[0] init_q_c = q_cs[0] this_res.append(x) this_i_res.append(i_hids) res.append(this_res) i_res.append(this_i_res) x = x + 1. + inner_seq_len * batch_size final_quantized_indices = np.array(res) final_hidden_indices = np.array(i_res) # n_rounds, 10, 1, 10, 1 -> n_rounds, 10, 10 in the right order quantized = final_quantized_indices[:, :, 0, :, 0].astype("int32").transpose(0, 2, 1) indices = final_hidden_indices[:, :, 0].transpose(0, 2, 1) quantized = quantized.reshape(-1, quantized.shape[-1]) indices = indices.reshape(-1, indices.shape[-1]) r_lu = {v: k for k, v in lu.items()} # need to look these back up into something... q_shp = quantized.shape codes = [r_lu[q] for q in quantized.ravel().astype("int32")] codes =
np.array(codes)
numpy.array
from typing import Dict, List, Union import numpy as np from grl.algos.p2sro.payoff_table import PayoffTable from grl.utils.strategy_spec import StrategySpec class PolicySpecDistribution(object): def __init__(self, payoff_table: PayoffTable, player: int, policy_selection_probs_indexed_by_policy_num: List[float]): self._probs_to_policy_specs = { selection_prob: payoff_table.get_spec_for_player_and_pure_strat_index( player=player, pure_strat_index=policy_num) for policy_num, selection_prob in enumerate(policy_selection_probs_indexed_by_policy_num) } self.player = player def sample_policy_spec(self) -> StrategySpec: return np.random.choice(a=list(self._probs_to_policy_specs.values()), p=list(self._probs_to_policy_specs.keys())) def probabilities_for_each_strategy(self) -> np.ndarray: return np.asarray(list(self._probs_to_policy_specs.keys()), dtype=np.float64) def get_latest_metanash_strategies(payoff_table: PayoffTable, as_player: int, as_policy_num: int, fictitious_play_iters: int, mix_with_uniform_dist_coeff: float = 0.0, print_matrix: bool = True) -> Union[None, Dict[int, PolicySpecDistribution]]: # Currently this function only handles 2-player games if as_policy_num is None: as_policy_num = payoff_table.shape()[as_player] - 1 if not 0 <= as_player < payoff_table.n_players(): raise ValueError(f"as_player {as_player} should be in the range [0, {payoff_table.n_players()}).") if (payoff_table.shape() == (0,) and as_policy_num != 0) or \ (payoff_table.shape() != (0,) and payoff_table.shape()[as_player] < as_policy_num): raise ValueError(f"In the payoff table, policy_num {as_policy_num} is out of range for player {as_player}. " f"Payoff table shape is {payoff_table.shape()}.") if payoff_table.n_players() != 2: raise NotImplemented("Solving normal form Nash equilibrium strats for >2 player games not implemented.") if as_policy_num == 0: return None other_players = list(range(0, payoff_table.n_players())) other_players.remove(as_player) opponent_strategy_distributions = {} for other_player in other_players: player_payoff_matrix = payoff_table.get_payoff_matrix_for_player(player=other_player) assert len(player_payoff_matrix.shape) == 2 # assume a 2D payoff matrix # only consider policies below 'as_policy_num' in the p2sro hierarchy player_payoff_matrix = player_payoff_matrix[:as_policy_num, :as_policy_num] player_payoff_matrix_current_player_is_rows = player_payoff_matrix.transpose((other_player, as_player)) if print_matrix: print(f"payoff matrix as {other_player} (row) against {as_player} (columns):") print(player_payoff_matrix_current_player_is_rows) row_averages, col_averages, exps = fictitious_play(iters=fictitious_play_iters, payoffs=player_payoff_matrix_current_player_is_rows) selection_probs =
np.copy(row_averages[-1])
numpy.copy
import enum import numpy as np import numpy.typing as npt import pyoorb import requests as req from astropy.time import Time from os import getenv from typing import ( Iterable, Optional, Tuple, List ) from .spherical_geom import propagate_linearly pyoorb_initialized = False DEGREE = 1.0 ARCMIN = DEGREE / 60 ARCSEC = ARCMIN / 60 def _ensure_pyoorb_initialized(*args, **kwargs): """Make sure that pyoorb is initialized.""" global pyoorb_initialized if not pyoorb_initialized: pyoorb.pyoorb.oorb_init(*args, **kwargs) pyoorb_initialized = True class OrbitElementType(enum.Enum): CARTESIAN = 1 COMETARY = 2 KEPLERIAN = 3 class EpochTimescale(enum.Enum): UTC = 1 UT1 = 2 TT = 3 TAI = 4 class PropagationIntegrator(enum.Enum): N_BODY = 1 TWO_BODY = 2 class Orbit: def __init__(self, orbit_id: int, state_vector: npt.NDArray[np.float64]): """ Create a new Orbit. state_vector is a pretty opaque blob. It should be the structure that pyoorb expects - a 12-element vector of doubles. """ self.orbit_id = orbit_id self._state_vector = state_vector self._orbit_type = OrbitElementType(int(state_vector[0][7])) self._epoch_timescale = EpochTimescale(int(state_vector[0][9])) self._epoch = state_vector[0][8] @classmethod def cometary( cls, orbit_id: int, perihelion_au: float, eccentricity: float, inclination_deg: float, ascending_node_longitude_deg: float, periapsis_argument_deg: float, perihelion_epoch_mjd: float, osculating_element_epoch_mjd: float, epoch_timescale: EpochTimescale, abs_magnitude: float, photometric_slope_parameter: float, ): # Orbits class takes in degrees, but state vectors are given in radians state_vector = np.array( [ [ orbit_id, perihelion_au, eccentricity, np.deg2rad(inclination_deg), np.deg2rad(ascending_node_longitude_deg), np.deg2rad(periapsis_argument_deg), perihelion_epoch_mjd, OrbitElementType.COMETARY.value, osculating_element_epoch_mjd, epoch_timescale.value, abs_magnitude, photometric_slope_parameter, ] ], dtype=np.double, order="F", ) return cls(orbit_id, state_vector) @classmethod def keplerian( cls, orbit_id: int, semimajor_axis_au: float, eccentricity: float, inclination_deg: float, ascending_node_longitude_deg: float, periapsis_argument_deg: float, mean_anomaly_deg: float, osculating_element_epoch_mjd: float, epoch_timescale: EpochTimescale, abs_magnitude: float, photometric_slope_parameter: float, ): # Orbits class takes in degrees, but state vectors are given in radians state_vector = np.array( [ [ orbit_id, semimajor_axis_au, eccentricity, np.deg2rad(inclination_deg), np.deg2rad(ascending_node_longitude_deg), np.deg2rad(periapsis_argument_deg), np.deg2rad(mean_anomaly_deg), OrbitElementType.KEPLERIAN.value, osculating_element_epoch_mjd, epoch_timescale.value, abs_magnitude, photometric_slope_parameter, ] ], dtype=np.double, order="F", ) return cls(orbit_id, state_vector) @classmethod def cartesian( cls, orbit_id: int, x: float, y: float, z: float, vx: float, vy: float, vz: float, osculating_element_epoch_mjd: float, epoch_timescale: EpochTimescale, abs_magnitude: float, photometric_slope_parameter: float, ): state_vector = np.array( [ [ orbit_id, x, y, z, vx, vy, vz, OrbitElementType.CARTESIAN.value, osculating_element_epoch_mjd, epoch_timescale.value, abs_magnitude, photometric_slope_parameter, ] ], dtype=np.double, order="F", ) return cls(orbit_id, state_vector) def propagate( self, epochs: Iterable[float], method: PropagationIntegrator = PropagationIntegrator.N_BODY ) -> List["Orbit"]: _ensure_pyoorb_initialized(error_verbosity = 1) if method == PropagationIntegrator.N_BODY: dynmodel = "N" elif method == PropagationIntegrator.TWO_BODY: dynmodel = "2" else: raise ValueError("unexpected propagation method %r" % method) orbits = [] for epoch in epochs: epoch_array = np.array( [epoch, self._epoch_timescale.value], dtype=np.double, order="F" ) result, err = pyoorb.pyoorb.oorb_propagation( in_orbits=self._state_vector, in_epoch=epoch_array, in_dynmodel=dynmodel, ) assert err == 0 # Pyoorb wants radians as inputs for orbits but outputs propagated orbits as degrees # See here: https://github.com/oorb/oorb/blob/master/python/pyoorb.f90#L347 # Note that time of perihelion passage also is converted to a degree. if (self._orbit_type == OrbitElementType.KEPLERIAN) or (self._orbit_type == OrbitElementType.COMETARY): result[:, [3,4,5,6]] = np.radians(result[:, [3,4,5,6]]) orbits.append(Orbit(int(result[0][0]), result)) return orbits def compute_ephemeris( self, obscode: str, epochs: Iterable[float], method: PropagationIntegrator = PropagationIntegrator.N_BODY, ) -> List["Ephemeris"]: """ Compute ephemeris for the orbit, propagated to an epoch, and observed from a location represented by obscode. obscode should be a Minor Planet Center observatory code. """ _ensure_pyoorb_initialized(error_verbosity=1) epochs_array = np.array( [[epoch, self._epoch_timescale.value] for epoch in epochs], dtype=np.double, order="F", ) # print(len(epochs)) # print(epochs_array.shape) if method == PropagationIntegrator.N_BODY: dynmodel = "N" elif method == PropagationIntegrator.TWO_BODY: dynmodel = "2" else: raise ValueError("unexpected propagation method %r" % method) eph, err = pyoorb.pyoorb.oorb_ephemeris_basic( in_orbits=self._state_vector, in_obscode=obscode, in_date_ephems=epochs_array, in_dynmodel=dynmodel, ) # print(epochs_array.shape) # print(eph.shape) assert err == 0 return [Ephemeris(eph[0, i, :]) for i in range(epochs_array.shape[0])] def precover_remote( self, tolerance: float = 30 * ARCSEC, max_matches: Optional[int] = None, start_mjd: Optional[float] = None, end_mjd: Optional[float] = None, window_size: Optional[float] = None, ): """ Find observations which match orbit in the database. Observations are searched in descending order by mjd. Expects three environment variables: PRECOVERY_API_SINGLEORBIT_URL PRECOVERY_API_SINGLEORBIT_USERNAME PRECOVERY_API_SINGLEORBIT_PASSWORD max_matches: End once this many matches have been found. If None, find all matches. start_mjd: Only consider observations from after this epoch (inclusive). If None, find all. end_mjd: Only consider observations from before this epoch (inclusive). If None, find all. window_size: UNIMPLEMENTED """ # basically: """ find all windows between start and end of given size for each window: propagate to window center for each unique epoch,obscode in window: propagate to epoch find frames which match healpix of propagation for each matching frame find matching observations for each matching observation yield match """ # Check for environment set vars precovery_singleorbit_url = getenv("PRECOVERY_API_SINGLEORBIT_URL") api_username = getenv("PRECOVERY_API_SINGLEORBIT_USERNAME") # Note Password suffix results in encryption and storage in systems keys for conda env # (https://anaconda-project.readthedocs.io/en/latest/user-guide/tasks/work-with-variables.html#adding-an-encrypted-variable) api_password = getenv("PRECOVERY_API_SINGLEORBIT_PASSWORD") if not (precovery_singleorbit_url and api_username and api_password): raise ValueError( """one of required environment variables unset, expecting PRECOVERY_API_SINGLEORBIT_URL, PRECOVERY_API_SINGLEORBIT_USERNAME, PRECOVERY_API_SINGLEORBIT_PASSWORD""" ) if self._orbit_type == OrbitElementType.KEPLERIAN: orbit_type = "kep" state_vector = { "a": self._state_vector[0][1], "e": self._state_vector[0][2], "i": self._state_vector[0][3], "an": self._state_vector[0][4], "ap": self._state_vector[0][5], "ma": self._state_vector[0][6], } elif self._orbit_type == OrbitElementType.COMETARY: orbit_type = "com" state_vector = { "q": self._state_vector[0][1], "e": self._state_vector[0][2], "i": self._state_vector[0][3], "an": self._state_vector[0][4], "ap": self._state_vector[0][5], "tp": self._state_vector[0][6], } elif self._orbit_type == OrbitElementType.CARTESIAN: orbit_type = "car" state_vector = { "x": self._state_vector[0][1], "y": self._state_vector[0][2], "z": self._state_vector[0][3], "vx": self._state_vector[0][4], "vy": self._state_vector[0][5], "vz": self._state_vector[0][6], } else: raise ValueError("orbit type improperly defined %r" % self._orbit_type) # Compile request dictionary if self._epoch_timescale == EpochTimescale.UTC: scale = "utc" elif self._epoch_timescale == EpochTimescale.UT1: scale = "ut1" elif self._epoch_timescale == EpochTimescale.TT: scale = "tt" elif self._epoch_timescale == EpochTimescale.TAI: scale = "tai" mjd_tdb = Time(self._epoch, scale=scale, format="mjd").tdb.mjd post_json = { "tolerance": tolerance, "orbit_type": orbit_type, "mjd_tdb": mjd_tdb, } post_json = post_json | state_vector if max_matches: post_json["max_matches"] = max_matches if start_mjd: post_json["start_mjd"] = start_mjd if end_mjd: post_json["end_mjd"] = end_mjd if window_size: post_json["window_size"] = window_size precovery_req = req.post( precovery_singleorbit_url, json=post_json, auth=(api_username, api_password) ) return precovery_req.json() class Ephemeris: def __init__(self, raw_data: npt.NDArray[np.float64]): self._raw_data = raw_data self.mjd = raw_data[0] self.ra = raw_data[1] self.dec = raw_data[2] # oorb returns vracos(dec), so lets remove the cos(dec) term self.ra_velocity = raw_data[3] / np.cos(np.radians(self.dec)) # deg per day self.dec_velocity = raw_data[4] # deg per day def __str__(self): return f"<Ephemeris ra={self.ra:.4f} dec={self.dec:.4f} mjd={self.mjd:.6f}>" def approximately_propagate( self, obscode: str, orbit: Orbit, timedeltas: Iterable[float] ) -> Tuple[float, float]: """ Roughly propagate the ephemeris to several new epochs, each 'timedelta' days away along. If timedelta is small and self.ra_velocity and self.dec_velocity are small (indicating relatively slow motion across the sky), this uses a linear motion approximation. Otherwise, it uses a 2-body integration of the orbit. Accuracy will decrease as timedelta increases. """ timedeltas = np.array(timedeltas) do_linear_timedelta = timedeltas[np.where(timedeltas <= 1.0)] approx_ras = np.zeros(timedeltas.shape[0]) approx_decs = np.zeros(timedeltas.shape[0]) # TODO: set timedeltas <= 1 if self.ra_velocity < 1 and self.dec_velocity < 1: linear = np.where(np.abs(timedeltas) <= -1.0) approx_ras_rad, approx_decs_rad = propagate_linearly( np.deg2rad(self.ra), np.deg2rad(self.ra_velocity), np.deg2rad(self.dec), np.deg2rad(self.dec_velocity), timedeltas[linear], ) approx_ras[linear] = np.rad2deg(approx_ras_rad) approx_decs[linear] = np.rad2deg(approx_decs_rad) two_body = np.where(
np.abs(timedeltas)
numpy.abs
import numpy as np; import os, ssl; from scipy import interpolate import astropy; from astropy.coordinates import EarthLocation, Angle, SkyCoord, ICRS, ITRS, AltAz; from astropy import units; from astropy.time import Time; from .headers import HM, HMQ, HMP, HMW, HC, rep_nan; from . import log; # Default value for the IERS server # astropy.utils.iers.conf.iers_auto_url = 'ftp://ftp.iers.org/products/eop/rapid/standard/finals2000A.data'; # astropy.utils.iers.conf.iers_auto_url = 'http://maia.usno.navy.mil/ser7/finals2000A.all'; # ensure astropy.coordinates can query the online database of locations: if (not os.environ.get('PYTHONHTTPSVERIFY', '') and getattr(ssl, '_create_unverified_context', None)): ssl._create_default_https_context = ssl._create_unverified_context def coef_flat(gain): gains = np.array([1, 10, 20, 50, 60]); coefs = np.array([-1.8883000e-06, -1.4006500e-06, -1.3885600e-06, -1.3524500e-06, -1.3416900e-06]); return interpolate.interp1d(gains, coefs)([gain])[0]; # Definition of setups global target_names; target_names = ['OBJECT'] global detwin; detwin = ['CROPROWS','CROPCOLS']; global detmode; detmode = ['NREADS','NLOOPS','NBIN','GAIN','FRMPRST']; global insmode; insmode = ['FILTER1','FILTER2','CONF_NA','MIRCX_SPECTRO_XY','MIRCX_SPECTRO_FOC']; global fringewin; fringewin = [HMW+'FRINGE STARTX', HMW+'FRINGE NX', HMW+'FRINGE STARTY', HMW+'FRINGE NY']; global visparam; visparam = [HMP+'NCOHER']; global beamorder; beamorder = ['BEAMORD0','BEAMORD1','BEAMORD2','BEAMORD3','BEAMORD4','BEAMORD5']; global pop; pop = [HC+"S1_POP", HC+"S2_POP", HC+"E1_POP", HC+"E2_POP", HC+"W1_POP", HC+"W2_POP"]; # Directory for static calibration global static; static = os.path.dirname (os.path.abspath(__file__))+'/static/'; def nspec (hdr): ''' Return the expected number of spectral channel depending on the insturmental setup ''' n = int((hdr['FR_ROW2'] - hdr['FR_ROW1'])/2)*2 - 1; log.info ('nrow = %i'%n); return n; def fringe_widthx (hdr): ''' Return the expected size of the fringe in spatial direction depending on setup ''' return 200; def photo_widthx (hdr): ''' Return the expected size of the xchan in spatial direction depending on setup ''' return 5; def lbd0 (hdr): ''' Return a guess of lbd0,deltaLbd depending on instrument setup where lbd0 is the central wavelength of spectrum and dlbd is a the bandpass of one channel. lbdref is the reference wavelength corresponding to the sampling returned by beam_freq. ''' # For MYSTIC, we try to use the # user specified parameter if hdr['BEAMCOMB'] == 'MYSTIC' : lbdref = 1.93e-6; dlbd = - hdr['BANDWID'] * 1e-6 / (hdr['FR_ROW2'] - hdr['FR_ROW1']); lbd0 = hdr['WAVELEN'] * 1e-6; # MIRC configurations elif hdr['CONF_NA'] == 'H_PRISM': lbdref,lbd0,dlbd = 1.60736e-06, 1.60736e-06, 21.e-9; elif (hdr['CONF_NA'] == 'H_GRISM200'): lbdref,lbd0,dlbd = 1.60736e-06, 1.60736e-06, -8.2e-9; elif (hdr['CONF_NA'] == 'H_GRISM150'): lbdref,lbd0,dlbd = 1.60736e-06, 1.60736e-06, -8.2e-9; elif (hdr['CONF_NA'] == 'H_GRISM'): lbdref,lbd0,dlbd = 1.60736e-06, 1.60736e-06, -8.2e-9; elif (hdr['CONF_NA'] == 'H_GRISM200 S1=0,S2=1,E1=2,E2=3,W1=4,W2=5'): lbdref,lbd0,dlbd = 1.60736e-06, 1.60736e-06, -8.2e-9; # temporary configurations. Not sure # the sign is correct elif hdr['CONF_NA'] == 'H_PRISM20' : lbdref,lbd0 = 1.60736e-06, 1.60736e-06; dlbd = lbd0 / 27.4; elif hdr['CONF_NA'] == 'H_PRISM40' : lbdref,lbd0 = 1.60736e-06, 1.60736e-06; dlbd = lbd0 / 49.2; # MIRCX configurations, J-band on top # of image except for the GRISM_190. elif hdr['CONF_NA'] == 'H_PRISM22' : lbdref,lbd0 = 1.60736e-06, 1.60736e-06; dlbd = -lbd0 / 22.; elif hdr['CONF_NA'] == 'H_PRISM50' : lbdref,lbd0 = 1.60736e-06, 1.60736e-06; dlbd = -lbd0 / 50.; elif hdr['CONF_NA'] == 'H_PRISM102' : lbdref,lbd0 = 1.60736e-06, 1.60736e-06; dlbd = -lbd0 / 102.; elif hdr['CONF_NA'] == 'H_GRISM190' : lbdref,lbd0 = 1.60736e-06, 1.60736e-06; dlbd = lbd0 / 190.0; # Unknown configuration else: log.error ('Unknown CONF_NA'); raise ValueError('CONF_NA unsuported (yet?)'); # Verbose log.info ('Configuration '+hdr['CONF_NA']+'lbd = %fum dlbd = %fum'%(lbd0*1e6,dlbd*1e6)); return lbdref,lbd0,dlbd; def xchan_ratio(hdr): ''' Return a crude estimate ''' if ('P_ION' in hdr) == True : return 0.3; else: return 0.1; def fiber_pos(hdr): ''' Return the fiber position in the v-groove in unit of micro-lenses ''' # Fiber position in new MIRC-X if ('P_ION' in hdr) == True : pos = np.array([4,6,13,18,24,28]); # Fiber position in old MIRC else : pos = np.array([9,3,1,21,14,18]); return pos def beam_freq (hdr): ''' Return the fiber position in the v-groove in fringe/pixel at lbdref. The scale factor is given by the geometry of the combiner ''' # Scaling in pix/fringe at highest spatial frequency # and for wavelength defined as lbd0 # MYSTIC sampling and fiber position if hdr['BEAMCOMB'] == 'MYSTIC' : scale = 2.75; tmp =
np.array([4,6,13,18,24,28])
numpy.array
# -*- coding: utf-8 -*- import os os.environ["MKL_NUM_THREADS"] = "1" os.environ["NUMEXPR_NUM_THREADS"] = "1" os.environ["OMP_NUM_THREADS"] = "1" from os import path, mkdir import numpy as np np.random.seed(1) import random random.seed(1) import timeit import cv2 from tqdm import tqdm from skimage import measure from multiprocessing import Pool import lightgbm as lgb from sklearn.model_selection import KFold from sklearn.neighbors import KDTree from skimage.morphology import watershed from skimage.morphology import square, dilation import pandas as pd import math cv2.setNumThreads(0) cv2.ocl.setUseOpenCL(False) masks_folder = '/wdata/labels' train_pred_folder = '/wdata/merged_oof' lgbm_models_folder = '/wdata/lgbm_models' DATA_THREADS = 32 #16cores * 2 threads LGBM_THREADS = 16 num_split_iters = 5 folds_count = 5 df = pd.read_csv('train_folds.csv') pixels_threshold = 115 sep_count = 3 sep_thresholds = [0.65, 0.75, 0.85] def get_inputs(filename, pred_folder, add_features=[], return_labels=False, truth_folder=None): inputs = [] pred = cv2.imread(path.join(pred_folder, filename), cv2.IMREAD_UNCHANGED) pred_msk = pred / 255. pred_msk = pred_msk[..., 0] * (1 - pred_msk[..., 1]) * (1 - 0.1 * pred_msk[..., 2]) pred_msk = 1 * (pred_msk > 0.55) pred_msk = pred_msk.astype(np.uint8) y_pred = measure.label(pred_msk, neighbors=8, background=0) props = measure.regionprops(y_pred) for i in range(len(props)): if props[i].area < 10: y_pred[y_pred == i+1] = 0 y_pred = measure.label(y_pred, neighbors=8, background=0) nucl_msk = (255 - pred[..., 0]) nucl_msk = nucl_msk.astype('uint8') y_pred = watershed(nucl_msk, y_pred, mask=((pred[..., 0] > pixels_threshold)), watershed_line=True) if y_pred.max() > 0: mean_pred = pred[..., 0][y_pred > 0].mean() else: mean_pred = 0 ext_pred = pred props = measure.regionprops(y_pred) for i in range(len(props)): if props[i].area < 10: y_pred[y_pred == i+1] = 0 pred_labels = measure.label(y_pred, neighbors=8, background=0).astype('uint16') pred_props = measure.regionprops(pred_labels) init_count = len(pred_props) coords = [pr.centroid for pr in pred_props] if len(coords) > 0: t = KDTree(coords) neighbors100 = t.query_radius(coords, r=50) neighbors200 = t.query_radius(coords, r=100) neighbors300 = t.query_radius(coords, r=150) neighbors400 = t.query_radius(coords, r=200) med_area = np.median(np.asarray([pr.area for pr in pred_props])) lvl2_labels = [np.zeros_like(pred_labels, dtype='uint16') for i in range(sep_count)] separated_regions = [[] for i in range(sep_count)] main_regions = [[] for i in range(sep_count)] for i in range(len(pred_props)): is_on_border = 1 * ((pred_props[i].bbox[0] <= 1) | (pred_props[i].bbox[1] <= 1) | (pred_props[i].bbox[2] >= pred.shape[0] - 1) | (pred_props[i].bbox[3] >= pred.shape[1] - 1)) msk_reg = pred_labels[pred_props[i].bbox[0]:pred_props[i].bbox[2], pred_props[i].bbox[1]:pred_props[i].bbox[3]] == i+1 pred_reg = pred[pred_props[i].bbox[0]:pred_props[i].bbox[2], pred_props[i].bbox[1]:pred_props[i].bbox[3]] ext_pred_reg = ext_pred[pred_props[i].bbox[0]:pred_props[i].bbox[2], pred_props[i].bbox[1]:pred_props[i].bbox[3]] ext_pred_reg = ext_pred_reg * 0.5 + pred_reg * 0.5 ext_pred_reg = ext_pred_reg.astype('uint8') contours = cv2.findContours((msk_reg * 255).astype(dtype=np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) if len(contours[1]) > 0: cnt = contours[1][0] min_area_rect = cv2.minAreaRect(cnt) inp = [] inp.extend(add_features) inp.append(pred_props[i].area) inp.append(0) if len(contours[1]) > 0: inp.append(cv2.isContourConvex(cnt) * 1.0) inp.append(min(min_area_rect[1])) inp.append(max(min_area_rect[1])) if max(min_area_rect[1]) > 0: inp.append(min(min_area_rect[1]) / max(min_area_rect[1])) else: inp.append(0) inp.append(min_area_rect[2]) else: inp.append(0) inp.append(0) inp.append(0) inp.append(0) inp.append(0) inp.append(pred_props[i].convex_area) inp.append(pred_props[i].solidity) inp.append(pred_props[i].eccentricity) inp.append(pred_props[i].extent) inp.append(pred_props[i].perimeter) inp.append(pred_props[i].major_axis_length) inp.append(pred_props[i].minor_axis_length) if (pred_props[i].minor_axis_length > 0): inp.append(pred_props[i].minor_axis_length / pred_props[i].major_axis_length) else: inp.append(0) pred_values = ext_pred_reg[..., 0][msk_reg] inp.append(pred_values.mean()) inp.append(pred_values.std()) inp.append(pred_props[i].euler_number) inp.append(pred_props[i].equivalent_diameter) inp.append(pred_props[i].perimeter ** 2 / (4 * pred_props[i].area * math.pi)) inp.append(mean_pred) inp.append(is_on_border) inp.append(init_count) inp.append(med_area) inp.append(pred_props[i].area / med_area) inp.append(neighbors100[i].shape[0]) median_area = med_area if neighbors100[i].shape[0] > 0: neighbors_areas = np.asarray([pred_props[j].area for j in neighbors100[i]]) median_area = np.median(neighbors_areas) inp.append(median_area) inp.append(pred_props[i].area / median_area) inp.append(neighbors200[i].shape[0]) median_area = med_area if neighbors200[i].shape[0] > 0: neighbors_areas = np.asarray([pred_props[j].area for j in neighbors200[i]]) median_area = np.median(neighbors_areas) inp.append(median_area) inp.append(pred_props[i].area / median_area) inp.append(neighbors300[i].shape[0]) median_area = med_area if neighbors300[i].shape[0] > 0: neighbors_areas = np.asarray([pred_props[j].area for j in neighbors300[i]]) median_area = np.median(neighbors_areas) inp.append(median_area) inp.append(pred_props[i].area / median_area) inp.append(neighbors400[i].shape[0]) median_area = med_area if neighbors400[i].shape[0] > 0: neighbors_areas = np.asarray([pred_props[j].area for j in neighbors400[i]]) median_area = np.median(neighbors_areas) inp.append(median_area) inp.append(pred_props[i].area / median_area) bst_j = 0 pred_reg[~msk_reg] = 0 pred_reg0 = pred_reg / 255. pred_reg0 = pred_reg0[..., 0] * (1 - pred_reg0[..., 1]) max_regs = 1 for j in range(1, sep_count+1): sep_regs = [] if bst_j > 0: separated_regions[j-1].append(sep_regs) continue if j > sep_count-1: pred_reg[~msk_reg] = 0 pred_reg0 = pred_reg / 255. pred_reg0 = pred_reg0[..., 0] * (1 - pred_reg0[..., 1]) * (1 - 0.2 * pred_reg0[..., 2]) pred_reg2 = 255 * (pred_reg0 > sep_thresholds[j-1]) pred_reg2 = pred_reg2.astype(np.uint8) lbls = measure.label(pred_reg2, neighbors=4, background=False) num_regs = lbls.max() if (j > sep_count-1) and (num_regs < 2): kernel = np.ones((3, 3), np.uint8) its = 2 pred_reg2 = cv2.erode(pred_reg2, kernel, iterations = its) lbls = measure.label(pred_reg2, neighbors=4, background=False) num_regs = lbls.max() if num_regs > 1: bst_j = j max_regs = num_regs if num_regs > 1 or (j < sep_count and num_regs > 0): lbls = lbls.astype(np.int32) labels_ws = watershed((255 - ext_pred_reg[..., 0]), lbls, mask=msk_reg) start_num = len(main_regions[j-1]) labels_ws += start_num labels_ws[labels_ws == start_num] = 0 for k in range(num_regs): sep_regs.append(k+start_num) main_regions[j-1].append(i) labels_ws = labels_ws.astype('uint16') lvl2_labels[j-1][pred_props[i].bbox[0]:pred_props[i].bbox[2], pred_props[i].bbox[1]:pred_props[i].bbox[3]] += labels_ws separated_regions[j-1].append(sep_regs) inp.append(bst_j) inp.append(max_regs) inp.append(1) inp.append(0) inputs.append(np.asarray(inp)) inputs = np.asarray(inputs) all_sep_props = [] all_sep_inputs = [] for j in range(sep_count): inputs_lvl2 = [] pred_props2 = measure.regionprops(lvl2_labels[j]) for i in range(len(pred_props2)): is_on_border = 1 * ((pred_props2[i].bbox[0] <= 1) | (pred_props2[i].bbox[1] <= 1) | (pred_props2[i].bbox[2] >= pred.shape[0] - 1) | (pred_props2[i].bbox[3] >= pred.shape[1] - 1)) msk_reg = lvl2_labels[j][pred_props2[i].bbox[0]:pred_props2[i].bbox[2], pred_props2[i].bbox[1]:pred_props2[i].bbox[3]] == i+1 pred_reg = pred[pred_props2[i].bbox[0]:pred_props2[i].bbox[2], pred_props2[i].bbox[1]:pred_props2[i].bbox[3]] ext_pred_reg = ext_pred[pred_props2[i].bbox[0]:pred_props2[i].bbox[2], pred_props2[i].bbox[1]:pred_props2[i].bbox[3]] ext_pred_reg = ext_pred_reg * 0.5 + pred_reg * 0.5 ext_pred_reg = ext_pred_reg.astype('uint8') contours = cv2.findContours((msk_reg * 255).astype(dtype=np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) if len(contours[1]) > 0: cnt = contours[1][0] min_area_rect = cv2.minAreaRect(cnt) inp = [] inp.extend(add_features) inp.append(pred_props2[i].area) main_area = inputs[main_regions[j][i]][0] inp.append(pred_props2[i].area / main_area) if len(contours[1]) > 0: inp.append(cv2.isContourConvex(cnt) * 1.0) inp.append(min(min_area_rect[1])) inp.append(max(min_area_rect[1])) if max(min_area_rect[1]) > 0: inp.append(min(min_area_rect[1]) / max(min_area_rect[1])) else: inp.append(0) inp.append(min_area_rect[2]) else: inp.append(0) inp.append(0) inp.append(0) inp.append(0) inp.append(0) inp.append(pred_props2[i].convex_area) inp.append(pred_props2[i].solidity) inp.append(pred_props2[i].eccentricity) inp.append(pred_props2[i].extent) inp.append(pred_props2[i].perimeter) inp.append(pred_props2[i].major_axis_length) inp.append(pred_props2[i].minor_axis_length) if(pred_props2[i].minor_axis_length > 0): inp.append(pred_props2[i].minor_axis_length / pred_props2[i].major_axis_length) else: inp.append(0) pred_values = ext_pred_reg[..., 0][msk_reg] inp.append(pred_values.mean()) inp.append(pred_values.std()) inp.append(pred_props2[i].euler_number) inp.append(pred_props2[i].equivalent_diameter) inp.append(pred_props2[i].perimeter ** 2 / (4 * pred_props2[i].area * math.pi)) inp.append(mean_pred) inp.append(is_on_border) inp.append(init_count) inp.append(med_area) inp.append(pred_props2[i].area / med_area) inp.append(inputs[main_regions[j][i]][-16]) median_area = inputs[main_regions[j][i]][-15] inp.append(median_area) inp.append(pred_props2[i].area / median_area) inp.append(inputs[main_regions[j][i]][-13]) median_area = inputs[main_regions[j][i]][-12] inp.append(median_area) inp.append(pred_props2[i].area / median_area) inp.append(inputs[main_regions[j][i]][-10]) median_area = inputs[main_regions[j][i]][-9] inp.append(median_area) inp.append(pred_props2[i].area / median_area) inp.append(inputs[main_regions[j][i]][-7]) median_area = inputs[main_regions[j][i]][-6] inp.append(median_area) inp.append(pred_props2[i].area / median_area) bst_j = inputs[main_regions[j][i]][-4] max_regs = inputs[main_regions[j][i]][-3] inp.append(bst_j) inp.append(max_regs) inp.append(len(separated_regions[j][main_regions[j][i]])) inp.append(j+1) inputs_lvl2.append(np.asarray(inp)) all_sep_props.append(pred_props2) inputs_lvl2 = np.asarray(inputs_lvl2) all_sep_inputs.append(inputs_lvl2) if truth_folder is None: return inputs, (pred_labels if return_labels else None), all_sep_inputs, (lvl2_labels if return_labels else None), separated_regions else: outputs = [] truth_labels = cv2.imread(path.join(truth_folder, filename.replace('.png', '.tif')), cv2.IMREAD_UNCHANGED) truth_labels = measure.label(truth_labels, neighbors=8, background=0) truth_props = measure.regionprops(truth_labels) m = np.zeros((len(pred_props), len(truth_props))) for x in range(pred_labels.shape[1]): for y in range(pred_labels.shape[0]): if pred_labels[y, x] > 0 and truth_labels[y, x] > 0: m[pred_labels[y, x]-1, truth_labels[y, x]-1] += 1 truth_used = set([]) for i in range(len(pred_props)): max_iou = 0 for j in range(len(truth_props)): if m[i, j] > 0: iou = m[i, j] / (pred_props[i].area + truth_props[j].area - m[i, j]) if iou > max_iou: max_iou = iou if iou > 0.5: truth_used.add(j) if max_iou <= 0.5: max_iou = 0 outputs.append(max_iou) outputs = np.asarray(outputs) fn = len(truth_props) - len(truth_used) all_sep_outputs = [] for k in range(sep_count): pred_props2 = all_sep_props[k] outputs_lvl2 = [] m2 = np.zeros((len(pred_props2), len(truth_props))) for x in range(lvl2_labels[k].shape[1]): for y in range(lvl2_labels[k].shape[0]): if lvl2_labels[k][y, x] > 0 and truth_labels[y, x] > 0: m2[lvl2_labels[k][y, x]-1, truth_labels[y, x]-1] += 1 truth_used2 = set([]) for i in range(len(pred_props2)): max_iou = 0 for j in range(len(truth_props)): if m2[i, j] > 0: iou = m2[i, j] / (pred_props2[i].area + truth_props[j].area - m2[i, j]) if iou > max_iou: max_iou = iou if iou > 0.5: # tp = 1 truth_used2.add(j) if max_iou <= 0.5: max_iou = 0 outputs_lvl2.append(max_iou) outputs_lvl2 = np.asarray(outputs_lvl2) all_sep_outputs.append(outputs_lvl2) return inputs, (pred_labels if return_labels else None), all_sep_inputs, (lvl2_labels if return_labels else None), separated_regions, outputs, all_sep_outputs, fn if __name__ == '__main__': t0 = timeit.default_timer() all_ids = df[df['fold'] < 8]['id'].values # < 8 tile_ids = df[df['fold'] < 8]['tile_id'].values tiles_uniq = np.unique(tile_ids) if not path.isdir(lgbm_models_folder): mkdir(lgbm_models_folder) all_files = [] inputs = [] outputs = [] inputs2 = [] outputs2 = [] separated_regions = [] fns = [] paramss = [] all_nadir_idxs = [] for _i in tqdm(range(len(all_ids))): f = all_ids[_i] + '.png' if path.isfile(path.join(train_pred_folder, f)): tmp = f.split('_') nadir = int(tmp[1].split('nadir')[1]) nad_idx = 0 if nadir > 40: nad_idx = 2 elif nadir > 25: nad_idx = 1 all_nadir_idxs.append(nad_idx) all_files.append(path.join(train_pred_folder, f)) paramss.append((f, train_pred_folder, [nadir], False, masks_folder)) with Pool(processes=DATA_THREADS) as pool: results = pool.starmap(get_inputs, paramss, chunksize=len(paramss)//DATA_THREADS) for i in range(len(results)): inp, _, inp2, _, sep_regs, otp, otp2, fn = results[i] inputs.append(inp) outputs.append(otp) inputs2.append(inp2) outputs2.append(otp2) separated_regions.append(sep_regs) fns.append(fn) gbm_models = [] for it in range(num_split_iters): kf = KFold(n_splits=folds_count, random_state=it+1, shuffle=True) it2 = -1 for train_idxs0, test_idxs0 in kf.split(tiles_uniq): train_tiles = tiles_uniq[train_idxs0] test_tiles = tiles_uniq[test_idxs0] train_idxs = np.where(np.isin(tile_ids, train_tiles))[0] test_idxs = np.where(np.isin(tile_ids, test_tiles))[0] it2 += 1 random.seed(it*1000+it2)
np.random.seed(it*1000+it2)
numpy.random.seed
from __future__ import print_function import numpy as np import unittest import discretize TOL = 1e-8 class TestSimpleQuadTree(unittest.TestCase): def test_counts(self): nc = 8 h1 = np.random.rand(nc)*nc*0.5 + nc*0.5 h2 = np.random.rand(nc)*nc*0.5 + nc*0.5 h = [hi/np.sum(hi) for hi in [h1, h2]] # normalize M = discretize.TreeMesh(h) points = np.array([[0.1, 0.1, 0.3]]) level = np.array([3]) M.insert_cells(points, level) M.number() self.assertEqual(M.nhFx, 4) self.assertEqual(M.nFx, 12) self.assertTrue(np.allclose(M.vol.sum(), 1.0)) #self.assertTrue(np.allclose(np.r_[M._areaFxFull, M._areaFyFull], M._deflationMatrix('F') * M.area) def test_getitem(self): M = discretize.TreeMesh([4, 4]) M.refine(1) self.assertEqual(M.nC, 4) self.assertEqual(len(M), M.nC) self.assertTrue(np.allclose(M[0].center, [0.25, 0.25])) # actual = [[0, 0], [0.5, 0], [0, 0.5], [0.5, 0.5]] # for i, n in enumerate(M[0].nodes): # self.assertTrue(np.allclose(, actual[i]) def test_getitem3D(self): M = discretize.TreeMesh([4, 4, 4]) M.refine(1) self.assertEqual(M.nC, 8) self.assertEqual(len(M), M.nC) self.assertTrue(np.allclose(M[0].center, [0.25, 0.25, 0.25])) # actual = [[0, 0, 0], [0.5, 0, 0], [0, 0.5, 0], [0.5, 0.5, 0], # [0, 0, 0.5], [0.5, 0, 0.5], [0, 0.5, 0.5], [0.5, 0.5, 0.5]] # for i, n in enumerate(M[0].nodes): # self.assertTrue(np.allclose(M._gridN[n, :], actual[i]) def test_refine(self): M = discretize.TreeMesh([4, 4, 4]) M.refine(1) self.assertEqual(M.nC, 8) def test_h_gridded_2D(self): hx, hy = np.ones(4), np.r_[1., 2., 3., 4.] M = discretize.TreeMesh([hx, hy]) def refinefcn(cell): xyz = cell.center d = (xyz**2).sum()**0.5 if d < 3: return 2 return 1 M.refine(refinefcn) H = M.h_gridded test_hx = np.all(H[:, 0] == np.r_[1., 1., 1., 1., 2., 2., 2.]) test_hy = np.all(H[:, 1] == np.r_[1., 1., 2., 2., 3., 7., 7.]) self.assertTrue(test_hx and test_hy) # def test_h_gridded_updates(self): # mesh = discretize.TreeMesh([8, 8]) # mesh.refine(1) # # H = mesh.h_gridded # self.assertTrue(np.all(H[:, 0] == 0.5*np.ones(4))) # self.assertTrue(np.all(H[:, 1] == 0.5*np.ones(4))) # # # refine the mesh and make sure h_gridded is updated # mesh.refine(2) # H = mesh.h_gridded # self.assertTrue(np.all(H[:, 0] == 0.25*np.ones(16))) # self.assertTrue(np.all(H[:, 1] == 0.25*np.ones(16))) def test_faceDiv(self): hx, hy = np.r_[1., 2, 3, 4], np.r_[5., 6, 7, 8] T = discretize.TreeMesh([hx, hy], levels=2) T.refine(lambda xc: 2) # T.plotGrid(show_it=True) M = discretize.TensorMesh([hx, hy]) self.assertEqual(M.nC, T.nC) self.assertEqual(M.nF, T.nF) self.assertEqual(M.nFx, T.nFx) self.assertEqual(M.nFy, T.nFy) self.assertEqual(M.nE, T.nE) self.assertEqual(M.nEx, T.nEx) self.assertEqual(M.nEy, T.nEy) self.assertTrue(np.allclose(M.area, T.permuteF*T.area)) self.assertTrue(np.allclose(M.edge, T.permuteE*T.edge)) self.assertTrue(np.allclose(M.vol, T.permuteCC*T.vol)) # plt.subplot(211).spy(M.faceDiv) # plt.subplot(212).spy(T.permuteCC*T.faceDiv*T.permuteF.T) # plt.show() self.assertEqual((M.faceDiv - T.permuteCC*T.faceDiv*T.permuteF.T).nnz, 0) def test_serialization(self): hx, hy = np.r_[1., 2, 3, 4], np.r_[5., 6, 7, 8] mesh1 = discretize.TreeMesh([hx, hy], levels=2, x0=np.r_[-1, -1]) mesh1.refine(2) mesh2 = discretize.TreeMesh.deserialize(mesh1.serialize()) self.assertTrue(np.all(mesh1.x0 == mesh2.x0)) self.assertTrue(np.all(mesh1._n == mesh2._n)) self.assertTrue(np.all(mesh1.gridCC == mesh2.gridCC)) mesh1.x0 = np.r_[-2., 2] mesh2 = discretize.TreeMesh.deserialize(mesh1.serialize()) self.assertTrue(np.all(mesh1.x0 == mesh2.x0)) class TestOcTree(unittest.TestCase): def test_counts(self): nc = 8 h1 = np.random.rand(nc)*nc*0.5 + nc*0.5 h2 = np.random.rand(nc)*nc*0.5 + nc*0.5 h3 = np.random.rand(nc)*nc*0.5 + nc*0.5 h = [hi/np.sum(hi) for hi in [h1, h2, h3]] # normalize M = discretize.TreeMesh(h, levels=3) points = np.array([[0.2, 0.1, 0.7], [0.8, 0.4, 0.2]]) levels = np.array([1, 2]) M.insert_cells(points, levels) M.number() # M.plotGrid(show_it=True) self.assertEqual(M.nhFx, 4) self.assertTrue(M.nFx, 19) self.assertTrue(M.nC, 15) self.assertTrue(np.allclose(M.vol.sum(), 1.0)) # self.assertTrue(np.allclose(M._areaFxFull, (M._deflationMatrix('F') * M.area)[:M.ntFx])) # self.assertTrue(np.allclose(M._areaFyFull, (M._deflationMatrix('F') * M.area)[M.ntFx:(M.ntFx+M.ntFy)]) # self.assertTrue(np.allclose(M._areaFzFull, (M._deflationMatrix('F') * M.area)[(M.ntFx+M.ntFy):]) # self.assertTrue(np.allclose(M._edgeExFull, (M._deflationMatrix('E') * M.edge)[:M.ntEx]) # self.assertTrue(np.allclose(M._edgeEyFull, (M._deflationMatrix('E') * M.edge)[M.ntEx:(M.ntEx+M.ntEy)]) # self.assertTrue(np.allclose(M._edgeEzFull, (M._deflationMatrix('E') * M.edge)[(M.ntEx+M.ntEy):])) def test_faceDiv(self): hx, hy, hz = np.r_[1., 2, 3, 4], np.r_[5., 6, 7, 8], np.r_[9., 10, 11, 12] M = discretize.TreeMesh([hx, hy, hz], levels=2) M.refine(lambda xc: 2) # M.plotGrid(show_it=True) Mr = discretize.TensorMesh([hx, hy, hz]) self.assertEqual(M.nC, Mr.nC) self.assertEqual(M.nF, Mr.nF) self.assertEqual(M.nFx, Mr.nFx) self.assertEqual(M.nFy, Mr.nFy) self.assertEqual(M.nE, Mr.nE) self.assertEqual(M.nEx, Mr.nEx) self.assertEqual(M.nEy , Mr.nEy) self.assertTrue(np.allclose(Mr.area, M.permuteF*M.area)) self.assertTrue(np.allclose(Mr.edge, M.permuteE*M.edge)) self.assertTrue(np.allclose(Mr.vol, M.permuteCC*M.vol)) A = Mr.faceDiv - M.permuteCC*M.faceDiv*M.permuteF.T self.assertTrue(np.allclose(A.data, 0)) def test_edgeCurl(self): hx, hy, hz = np.r_[1., 2, 3, 4], np.r_[5., 6, 7, 8], np.r_[9., 10, 11, 12] M = discretize.TreeMesh([hx, hy, hz], levels=2) M.refine(lambda xc:2) Mr = discretize.TensorMesh([hx, hy, hz]) A = Mr.edgeCurl - M.permuteF*M.edgeCurl*M.permuteE.T self.assertTrue(len(A.data)==0 or np.allclose(A.data, 0)) def test_faceInnerProduct(self): hx, hy, hz = np.r_[1., 2, 3, 4], np.r_[5., 6, 7, 8], np.r_[9., 10, 11, 12] # hx, hy, hz = [[(1, 4)], [(1, 4)], [(1, 4)]] M = discretize.TreeMesh([hx, hy, hz], levels=2) M.refine(lambda xc:2) # M.plotGrid(show_it=True) Mr = discretize.TensorMesh([hx, hy, hz]) # print(M.nC, M.nF, M.getFaceInnerProduct().shape, M.permuteF.shape) A_face = Mr.getFaceInnerProduct() - M.permuteF * M.getFaceInnerProduct() * M.permuteF.T A_edge = Mr.getEdgeInnerProduct() - M.permuteE * M.getEdgeInnerProduct() * M.permuteE.T self.assertTrue(len(A_face.data)==0 or np.allclose(A_face.data, 0)) self.assertTrue(len(A_edge.data)==0 or np.allclose(A_edge.data, 0)) def test_VectorIdenties(self): hx, hy, hz = [[(1, 4)], [(1, 4)], [(1, 4)]] M = discretize.TreeMesh([hx, hy, hz], levels=2) Mr = discretize.TensorMesh([hx, hy, hz]) M.refine(2) #Why wasn't this here before? self.assertTrue(np.allclose((M.faceDiv * M.edgeCurl).data, 0)) hx, hy, hz = np.r_[1., 2, 3, 4], np.r_[5., 6, 7, 8], np.r_[9., 10, 11, 12] M = discretize.TreeMesh([hx, hy, hz], levels=2) Mr = discretize.TensorMesh([hx, hy, hz]) M.refine(2) A1 = M.faceDiv * M.edgeCurl A2 = Mr.faceDiv * Mr.edgeCurl self.assertTrue(len(A1.data)==0 or np.allclose(A1.data, 0)) self.assertTrue(len(A2.data)==0 or np.allclose(A2.data, 0)) def test_h_gridded_3D(self): hx, hy, hz = np.ones(4), np.r_[1., 2., 3., 4.], 2*np.ones(4) M = discretize.TreeMesh([hx, hy, hz]) def refinefcn(cell): xyz = cell.center d = (xyz**2).sum()**0.5 if d < 3: return 2 return 1 M.refine(refinefcn) H = M.h_gridded test_hx = np.all(H[:, 0] == np.r_[1., 1., 1., 1., 1., 1., 1., 1., 2., 2., 2., 2., 2., 2., 2.]) test_hy = np.all(H[:, 1] == np.r_[1., 1., 2., 2., 1., 1., 2., 2., 3., 7., 7., 3., 3., 7., 7.]) test_hz = np.all(H[:, 2] == np.r_[2., 2., 2., 2., 2., 2., 2., 2., 4., 4., 4., 4., 4., 4., 4.]) self.assertTrue(test_hx and test_hy and test_hz) class Test2DInterpolation(unittest.TestCase): def setUp(self): def topo(x): return np.sin(x*(2.*np.pi))*0.3 + 0.5 def function(cell): r = cell.center - np.array([0.5]*len(cell.center)) dist1 = np.sqrt(r.dot(r)) - 0.08 dist2 = np.abs(cell.center[-1] - topo(cell.center[0])) dist = min([dist1, dist2]) # if dist < 0.05: # return 5 if dist < 0.05: return 6 if dist < 0.2: return 5 if dist < 0.3: return 4 if dist < 1.0: return 3 else: return 0 M = discretize.TreeMesh([64, 64], levels=6) M.refine(function) self.M = M def test_fx(self): r = np.random.rand(self.M.nFx) P = self.M.getInterpolationMat(self.M.gridFx, 'Fx') self.assertLess(np.abs(P[:, :self.M.nFx]*r - r).max(), TOL) def test_fy(self): r = np.random.rand(self.M.nFy) P = self.M.getInterpolationMat(self.M.gridFy, 'Fy') self.assertLess(
np.abs(P[:, self.M.nFx:]*r - r)
numpy.abs
# flake8: noqa from contextlib import ExitStack import click from omegaconf import OmegaConf from pfb.workers.main import cli import pyscilog pyscilog.init('pfb') log = pyscilog.get_logger('SPIFIT') @cli.command() @click.option('-image', '--image', required=True, help="Path to model or restored image cube.") @click.option('-resid', "--residual", required=False, help="Path to residual image cube.") @click.option('-o', '--output-filename', required=True, help="Path to output directory + prefix.") @click.option('-pp', '--psf-pars', nargs=3, type=float, help="Beam parameters matching FWHM of restoring beam " "specified as emaj emin pa." "By default these are taken from the fits header " "of the residual image.") @click.option('--circ-psf/--no-circ-psf', default=False) @click.option('-th', '--threshold', default=10, type=float, show_default=True, help="Multiple of the rms in the residual to threshold on." "Only components above threshold*rms will be fit.") @click.option('-maxdr', '--maxdr', default=100, type=float, show_default=True, help="Maximum dynamic range used to determine the " "threshold above which components need to be fit. " "Only used if residual is not passed in.") @click.option('-bw', '--band-weights', type=float, help="Per bands weights to use during the fit") @click.option('-pb-min', '--pb-min', type=float, default=0.15, help="Set image to zero where pb falls below this value") @click.option('-products', '--products', default='aeikIcmrb', type=str, help="Outputs to write. Letter correspond to: \n" "a - alpha map \n" "e - alpha error map \n" "i - I0 map \n" "k - I0 error map \n" "I - reconstructed cube form alpha and I0 \n" "c - restoring beam used for convolution \n" "m - convolved model \n" "r - convolved residual \n" "b - average power beam \n" "Default is to write all of them") @click.option('-pf', "--padding-frac", default=0.5, type=float, show_default=True, help="Padding factor for FFT's.") @click.option('-dc', "--dont-convolve", is_flag=True, help="Do not convolve by the clean beam before fitting") @click.option('-rf', '--ref-freq', type=float, help='Reference frequency where the I0 map is sought. ' "Will overwrite in fits headers of output.") @click.option('-otype', '--out-dtype', default='f4', type=str, help="Data type of output. Default is single precision") @click.option('-acr', '--add-convolved-residuals', is_flag=True, help='Flag to add in the convolved residuals before ' 'fitting components') @click.option('-bm', '--beam-model', default=None, help="Fits power beam model. It is assumed that the beam " "match the fits headers of --image. You can use the binterp " "worker to create compatible beam models") @click.option('-ha', '--host-address', help='Address where the distributed client lives. ' 'Will use a local cluster if no address is provided') @click.option('-nw', '--nworkers', type=int, default=1, help='Number of workers for the client.') @click.option('-ntpw', '--nthreads-per-worker', type=int, help='Number of dask threads per worker.') @click.option('-nvt', '--nvthreads', type=int, help="Total number of threads to use for vertical scaling (eg. gridder, fft's etc.)") @click.option('-mem', '--mem-limit', type=int, help="Memory limit in GB. Default uses all available memory") @click.option('-nthreads', '--nthreads', type=int, help="Total available threads. Default uses all available threads") def spifit(**kw): """ Spectral index fitter """ args = OmegaConf.create(kw) pyscilog.log_to_file(args.output_filename + '.log') from glob import glob from omegaconf import ListConfig # image is either a string or a list of strings that we want to glob on if isinstance(args.image, str): image = sorted(glob(args.image)) elif isinstance(args.image, list) or isinstance(args.image, ListConfig): image = [] for i in len(args.image): image.append(sorted(glob(args.image[i]))) # make sure it's not empty try: assert len(image) > 0 args.image = image except: raise ValueError(f"No image at {args.image}") # same goes for the residual except that it may also be None if isinstance(args.residual, str): residual = sorted(glob(args.residual)) elif isinstance(args.residual, list) or isinstance(args.residual, ListConfig): residual = [] for i in len(args.residual): residual.append(sorted(glob(args.residual[i]))) if args.residual is not None: try: assert len(residual) > 0 args.residual = residual except: raise ValueError(f"No residual at {args.residual}") # we also need the same number of residuals as images try: assert len(args.image) == len(args.residual) except: raise ValueError(f"Number of images and residuals need to " "match") else: print("No residual passed in!", file=log) # and finally the beam model if isinstance(args.beam_model, str): beam_model = sorted(glob(args.beam_model)) elif isinstance(args.beam_model, list) or isinstance(args.beam_model, ListConfig): beam_model = [] for i in len(args.beam_model): beam_model.append(sorted(glob(args.beam_model[i]))) if args.beam_model is not None: try: assert len(beam_model) > 0 args.beam_model = beam_model except: raise ValueError(f"No beam model at {args.beam_model}") try: assert len(args.image) == len(args.beam_model) except: raise ValueError(f"Number of images and beam models need to " "match") else: print("Not doing any form of primary beam correction", file=log) # LB - TODO: can we sort them along freq at this point already? OmegaConf.set_struct(args, True) with ExitStack() as stack: from pfb import set_client args = set_client(args, stack, log) # TODO - prettier config printing print('Input Options:', file=log) for key in args.keys(): print(' %25s = %s' % (key, args[key]), file=log) return _spifit(**args) def _spifit(**kw): args = OmegaConf.create(kw) OmegaConf.set_struct(args, True) import dask.array as da import numpy as np from astropy.io import fits from africanus.model.spi.dask import fit_spi_components from pfb.utils.fits import load_fits, save_fits, data_from_header, set_wcs from pfb.utils.misc import convolve2gaussres # get max gausspars gaussparf = None if args.psf_pars is None: if args.residual is None: ppsource = args.image else: ppsource = args.residual for image in ppsource: try: pphdr = fits.getheader(image) except Exception as e: raise e if 'BMAJ0' in pphdr.keys(): emaj = pphdr['BMAJ0'] emin = pphdr['BMIN0'] pa = pphdr['BPA0'] gausspars = [emaj, emin, pa] freq_idx0 = 0 elif 'BMAJ1' in pphdr.keys(): emaj = pphdr['BMAJ1'] emin = pphdr['BMIN1'] pa = pphdr['BPA1'] gausspars = [emaj, emin, pa] freq_idx0 = 1 elif 'BMAJ' in pphdr.keys(): emaj = pphdr['BMAJ'] emin = pphdr['BMIN'] pa = pphdr['BPA'] gausspars = [emaj, emin, pa] freq_idx0 = 0 else: raise ValueError("No beam parameters found in residual." "You will have to provide them manually.") if gaussparf is None: gaussparf = gausspars else: # we need to take the max in both directions gaussparf[0] = np.maximum(gaussparf[0], gausspars[0]) gaussparf[1] = np.maximum(gaussparf[1], gausspars[1]) else: freq_idx0 = 0 # assumption gaussparf = list(args.psf_pars) if args.circ_psf: e = np.maximum(gaussparf[0], gaussparf[1]) gaussparf[0] = e gaussparf[1] = e gaussparf[2] = 0.0 gaussparf = tuple(gaussparf) print("Using emaj = %3.2e, emin = %3.2e, PA = %3.2e \n" % gaussparf, file=log) # get required data products image_dict = {} for i in range(len(args.image)): image_dict[i] = {} # load model image model = load_fits(args.image[i], dtype=args.out_dtype).squeeze() mhdr = fits.getheader(args.image[i]) if model.ndim < 3: model = model[None, :, :] l_coord, ref_l = data_from_header(mhdr, axis=1) l_coord -= ref_l m_coord, ref_m = data_from_header(mhdr, axis=2) m_coord -= ref_m if mhdr["CTYPE4"].lower() == 'freq': freq_axis = 4 stokes_axis = 3 elif mhdr["CTYPE3"].lower() == 'freq': freq_axis = 3 stokes_axis = 4 else: raise ValueError("Freq axis must be 3rd or 4th") freqs, ref_freq = data_from_header(mhdr, axis=freq_axis) image_dict[i]['freqs'] = freqs nband = freqs.size npix_l = l_coord.size npix_m = m_coord.size xx, yy =
np.meshgrid(l_coord, m_coord, indexing='ij')
numpy.meshgrid
import sys sys.path.append('./') import matplotlib.pyplot as plt import numpy as np import pandas as pd import multiprocessing as multi import optuna import changefinder import bocpd import dmdl.sdmdl as sdmdl import dmdl.hsdmdl2 as hsdmdl2 import tsmdl.aw2s_mdl as aw2s_mdl import utils.sdmdl_nml as sdmdl_nml import utils.hsdmdl2_nml as hsdmdl2_nml from multiprocessing import Pool from functools import partial from copy import deepcopy from utils.utils import mean_changing, variance_changing, create_dataset, calc_F1_score def _calc_metrics(idx_data, dataset, changepoints, tolerance_delay, threshold, retrospective): # calculate the metrics _retrospective = deepcopy(retrospective) scores = _retrospective.calc_scores(dataset[idx_data]) F1_score, precision, recall = calc_F1_score( scores, changepoints, tolerance_delay, threshold) return F1_score, precision, recall # obtain the optimal threshold def calc_opt_threshold(train, changepoints, tolerance_delay, retrospective): _retrospective = deepcopy(retrospective) scores = _retrospective.calc_scores(train) _, _, _, opt_threshold = calc_F1_score( scores, changepoints, tolerance_delay) return opt_threshold def _objective_CF(trial, train, changepoints, tolerance_delay): # ChangeFinder # hyperparameters r = trial.suggest_uniform('r', 0.01, 0.99) order = trial.suggest_int('order', 1, 20) smooth = trial.suggest_int('smooth', 3, 20) retrospective = changefinder.Retrospective(r=r, order=order, smooth=smooth) scores = retrospective.calc_scores(train) F1_score, _, _, _ = calc_F1_score(scores, changepoints, tolerance_delay) return -F1_score def conduct_CF(n_trials, n_samples, dataset, changepoints, tolerance_delay): # ChangeFinder # hyperparameter tuning objective_CF = partial(_objective_CF, train=dataset[0], changepoints=changepoints, tolerance_delay=tolerance_delay) study = optuna.create_study() study.optimize(objective_CF, n_trials=n_trials, n_jobs=-1) opt_r = study.best_params['r'] opt_order = study.best_params['order'] opt_smooth = study.best_params['smooth'] # optimal threshold retrospective = changefinder.Retrospective( r=opt_r, order=opt_order, smooth=opt_smooth) opt_threshold = calc_opt_threshold(train=dataset[0], changepoints=changepoints, tolerance_delay=tolerance_delay, retrospective=retrospective) # calculate metrics calc_metrics = partial(_calc_metrics, dataset=dataset, changepoints=changepoints, tolerance_delay=tolerance_delay, threshold=opt_threshold, retrospective=retrospective) p = Pool(multi.cpu_count() - 1) args = list(range(1, n_samples)) res = np.array(p.map(calc_metrics, args)) p.close() # result print("F1 score: ", np.mean(res[:, 0]), "±", np.std(res[:, 0])) print("precision: ", np.mean(res[:, 1]), "±", np.std(res[:, 1])) print("recall: ", np.mean(res[:, 2]), "±", np.std(res[:, 2])) row = pd.DataFrame({"method": ["ChangeFinder"], "F1_score_mean": np.mean(res[:, 0]), "F1_score_std":
np.std(res[:, 0])
numpy.std
import pytest from mrmustard import * import numpy as np import tensorflow as tf from thewalrus.random import random_covariance from thewalrus.quantum import real_to_complex_displacements from mrmustard.physics import gaussian as gp, fock as fp from mrmustard.math import Math math = Math() class TestGaussianStates: @pytest.mark.parametrize("hbar", [1 / 2, 1.0, 2.0, 1.6]) @pytest.mark.parametrize("num_modes", np.arange(5, 10)) @pytest.mark.parametrize("pure", [True, False]) @pytest.mark.parametrize("block_diag", [True, False]) def test_fidelity_is_symmetric(self, num_modes, hbar, pure, block_diag): """Test that the fidelity is symmetric""" cov1 = random_covariance(num_modes, hbar=hbar, pure=pure, block_diag=block_diag) means1 = np.sqrt(2 * hbar) * np.random.rand(2 * num_modes) cov2 = random_covariance(num_modes, hbar=hbar, pure=pure, block_diag=block_diag) means2 = np.sqrt(2 * hbar) * np.random.rand(2 * num_modes) f12 = gp.fidelity(means1, cov1, means2, cov2, hbar) f21 = gp.fidelity(means2, cov2, means1, cov1, hbar) assert np.allclose(f12, f21) @pytest.mark.parametrize("hbar", [1 / 2, 1.0, 2.0, 1.6]) @pytest.mark.parametrize("num_modes", np.arange(5, 10)) @pytest.mark.parametrize("pure", [True, False]) @pytest.mark.parametrize("block_diag", [True, False]) def test_fidelity_is_leq_one(self, num_modes, hbar, pure, block_diag): """Test that the fidelity is between 0 and 1""" cov1 = random_covariance(num_modes, hbar=hbar, pure=pure, block_diag=block_diag) means1 = np.sqrt(2 * hbar) * np.random.rand(2 * num_modes) cov2 = random_covariance(num_modes, hbar=hbar, pure=pure, block_diag=block_diag) means2 = np.sqrt(2 * hbar) * np.random.rand(2 * num_modes) f12 = gp.fidelity(means1, cov1, means2, cov2, hbar) assert 0 <= np.real_if_close(f12) < 1.0 @pytest.mark.parametrize("hbar", [1 / 2, 1.0, 2.0, 1.6]) @pytest.mark.parametrize("num_modes", np.arange(5, 10)) @pytest.mark.parametrize("pure", [True, False]) @pytest.mark.parametrize("block_diag", [True, False]) def test_fidelity_with_self(self, num_modes, hbar, pure, block_diag): """Test that the fidelity of two identical quantum states is 1""" cov = random_covariance(num_modes, hbar=hbar, pure=pure, block_diag=block_diag) means = np.random.rand(2 * num_modes) assert np.allclose(gp.fidelity(means, cov, means, cov, hbar=hbar), 1, atol=1e-4) @pytest.mark.parametrize("num_modes", np.arange(5, 10)) @pytest.mark.parametrize("hbar", [0.5, 1.0, 2.0, 1.6]) def test_fidelity_coherent_state(self, num_modes, hbar): """Test the fidelity of two multimode coherent states""" beta1 = np.random.rand(num_modes) + 1j * np.random.rand(num_modes) beta2 = np.random.rand(num_modes) + 1j * np.random.rand(num_modes) means1 = real_to_complex_displacements(np.concatenate([beta1, beta1.conj()]), hbar=hbar) means2 = real_to_complex_displacements(np.concatenate([beta2, beta2.conj()]), hbar=hbar) cov1 = hbar * np.identity(2 * num_modes) / 2 cov2 = hbar * np.identity(2 * num_modes) / 2 fid = gp.fidelity(means1, cov1, means2, cov2, hbar=hbar) expected = np.exp(-np.linalg.norm(beta1 - beta2) ** 2) assert np.allclose(expected, fid) @pytest.mark.parametrize("hbar", [0.5, 1.0, 2.0, 1.6]) @pytest.mark.parametrize("r1", np.random.rand(3)) @pytest.mark.parametrize("r2", np.random.rand(3)) def test_fidelity_squeezed_vacuum(self, r1, r2, hbar): """Tests fidelity between two squeezed states""" cov1 = np.diag([np.exp(2 * r1), np.exp(-2 * r1)]) * hbar / 2 cov2 = np.diag([np.exp(2 * r2), np.exp(-2 * r2)]) * hbar / 2 mu = np.zeros([2]) assert np.allclose(1 / np.cosh(r1 - r2), gp.fidelity(mu, cov1, mu, cov2, hbar=hbar)) @pytest.mark.parametrize("n1", [0.5, 1.0, 2.0, 1.6]) @pytest.mark.parametrize("n2", [0.5, 1.0, 2.0, 1.6]) @pytest.mark.parametrize("hbar", [0.5, 1.0, 2.0, 1.6]) def test_fidelity_thermal(self, n1, n2, hbar): """Test fidelity between two thermal states""" expected = 1 / (1 + n1 + n2 + 2 * n1 * n2 - 2 * np.sqrt(n1 * n2 * (n1 + 1) * (n2 + 1))) cov1 = hbar * (n1 + 0.5) * np.identity(2) cov2 = hbar * (n2 + 0.5) * np.identity(2) mu1 = np.zeros([2]) mu2 = np.zeros([2]) assert np.allclose(expected, gp.fidelity(mu1, cov1, mu2, cov2, hbar=hbar)) @pytest.mark.parametrize("hbar", [0.5, 1.0, 2.0, 1.6]) @pytest.mark.parametrize("r", [-2.0, 0.0, 2.0]) @pytest.mark.parametrize("alpha", np.random.rand(10) + 1j * np.random.rand(10)) def test_fidelity_vac_to_displaced_squeezed(self, r, alpha, hbar): """Calculates the fidelity between a coherent squeezed state and vacuum""" cov1 = np.diag([np.exp(2 * r), np.exp(-2 * r)]) * hbar / 2 means1 = real_to_complex_displacements(np.array([alpha, np.conj(alpha)]), hbar=hbar) means2 = np.zeros([2]) cov2 = np.identity(2) * hbar / 2 expected = ( np.exp(-np.abs(alpha) ** 2) * np.abs(np.exp(
np.tanh(r)
numpy.tanh
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Sep 2 11:47:44 2019 @author: Aayush This file contains the dataloader and the augmentations and preprocessing done Required Preprocessing for all images (test, train and validation set): 1) Gamma correction by a factor of 0.8 2) local Contrast limited adaptive histogram equalization algorithm with clipLimit=1.5, tileGridSize=(8,8) 3) Normalization Train Image Augmentation Procedure Followed 1) Random horizontal flip with 50% probability. 2) Starburst pattern augmentation with 20% probability. 3) Random length lines augmentation around a random center with 20% probability. 4) Gaussian blur with kernel size (7,7) and random sigma with 20% probability. 5) Translation of image and labels in any direction with random factor less than 20. """ import numpy as np import torch from torch.utils.data import Dataset import os from PIL import Image from torchvision import transforms import cv2 import random import os.path as osp from utils import one_hot2dist import copy transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]) #%% class RandomHorizontalFlip(object): def __call__(self, img,label): if random.random() < 0.5: return img.transpose(Image.FLIP_LEFT_RIGHT),\ label.transpose(Image.FLIP_LEFT_RIGHT) return img,label class Starburst_augment(object): ## We have generated the starburst pattern from a train image 000000240768.png ## Please follow the file Starburst_generation_from_train_image_000000240768.pdf attached in the folder ## This procedure is used in order to handle people with multiple reflections for glasses ## a random translation of mask of starburst pattern def __call__(self, img): x=np.random.randint(1, 40) y=np.random.randint(1, 40) mode = np.random.randint(0, 2) starburst=Image.open('starburst_black.png').convert("L") if mode == 0: starburst = np.pad(starburst, pad_width=((0, 0), (x, 0)), mode='constant') starburst = starburst[:, :-x] if mode == 1: starburst = np.pad(starburst, pad_width=((0, 0), (0, x)), mode='constant') starburst = starburst[:, x:] img[92+y:549+y,0:400]=np.array(img)[92+y:549+y,0:400]*((255-np.array(starburst))/255)+np.array(starburst) return Image.fromarray(img) def getRandomLine(xc, yc, theta): x1 = xc - 50*np.random.rand(1)*(1 if np.random.rand(1) < 0.5 else -1) y1 = (x1 - xc)*np.tan(theta) + yc x2 = xc - (150*np.random.rand(1) + 50)*(1 if np.random.rand(1) < 0.5 else -1) y2 = (x2 - xc)*np.tan(theta) + yc return x1, y1, x2, y2 class Gaussian_blur(object): def __call__(self, img): sigma_value=np.random.randint(2, 7) return Image.fromarray(cv2.GaussianBlur(img,(7,7),sigma_value)) class Translation(object): def __call__(self, base,mask): factor_h = 2*np.random.randint(1, 20) factor_v = 2*np.random.randint(1, 20) mode = np.random.randint(0, 4) # print (mode,factor_h,factor_v) if mode == 0: aug_base =
np.pad(base, pad_width=((factor_v, 0), (0, 0)), mode='constant')
numpy.pad
import strax import straxen import numpy as np import unittest from strax.testutils import run_id from hypothesis import strategies, given, settings TEST_DATA_LENGTH = 3 R_TOL_DEFAULT = 1e-5 def _not_close_to_0_or_1(x, rtol=R_TOL_DEFAULT): return not (np.isclose(x, 1, rtol=rtol) or np.isclose(x, 0, rtol=rtol)) class TestComputePeakBasics(unittest.TestCase): """Tests for peak basics plugin""" def setUp(self, context=straxen.contexts.demo): self.st = context() self.n_top = self.st.config.get('n_top_pmts', 2) # Make sure that the check is on. Otherwise we cannot test it. self.st.set_config({'check_peak_sum_area_rtol': R_TOL_DEFAULT}) self.peaks_basics_compute = self.st.get_single_plugin(run_id, 'peak_basics').compute @settings(deadline=None) @given(strategies.integers(min_value=0, max_value=TEST_DATA_LENGTH - 1), ) def test_aft_equals1(self, test_peak_idx): """Fill top array with area 1""" test_data = self.get_test_peaks(self.n_top) test_data[test_peak_idx]['area_per_channel'][:self.n_top] = 1 test_data[test_peak_idx]['area'] = np.sum(test_data[test_peak_idx]['area_per_channel']) peaks = self.peaks_basics_compute(test_data) assert peaks[test_peak_idx]['area_fraction_top'] == 1 @settings(deadline=None) @given(strategies.floats(min_value=0, max_value=2, ).filter(_not_close_to_0_or_1), strategies.integers(min_value=0, max_value=TEST_DATA_LENGTH - 1, ), ) def test_bad_peak(self, off_by_factor, test_peak_idx): """ Lets deliberately make some data that is not self-consistent to run into the error in the test. """ test_data = self.get_test_peaks(self.n_top) test_data[test_peak_idx]['area_per_channel'][:self.n_top] = 1 area =
np.sum(test_data[test_peak_idx]['area_per_channel'])
numpy.sum
import pickle import math import numpy as np split_portion = 4 WORD_COUNT = (1.0360595565014956, 1) SOS = '<SOS>' EOS = '<EOS>' with open('../iwslt/train.tok.bpe.32000.en', 'rt') as file_en: with open('../iwslt/train.tok.bpe.32000.de', 'rt') as file_de: with open('../iwslt/reverse.subword.align', 'rt') as file_fa: with open('../iwslt/reverse.subword.align.right2.4.pickle', 'wb') as file_fas: final_count = {} stats = {} for x, y, z in zip(file_de, file_en, file_fa): z_dict = {} x_list = x.split() y_list = y.split() len_x = len(x_list) len_y = len(y_list) for z_element in z.split(): try: a, b = z_element.rsplit('-', 1) except: print("z_element", z_element) a, b = float(a), int(b) key = math.ceil((b + 0.5) / len_y * split_portion) # round((b + 1) / len_x * split_portion) - 1 if key > split_portion: print("key", key) print("b", b) print("len_y", len_y) # print("b", b) if b == 0: # print("inside") w = SOS # print("w", w) else: w = y_list[b - 1] if w not in z_dict: z_dict[w] = {} if key in z_dict[w]: z_dict[w][key].append(a - b / WORD_COUNT[0]) # round((int(a) + 1) / len_x * split_portion) - 1 else: z_dict[w][key] = [a - b / WORD_COUNT[0]] # last one point to EOS w = y_list[-1] key = split_portion a = len_x b = len_y - 1 if w not in z_dict: z_dict[w] = {} if key in z_dict[w]: z_dict[w][key].append( a - b / WORD_COUNT[0]) # round((int(a) + 1) / len_x * split_portion) - 1 else: z_dict[w][key] = [a - b / WORD_COUNT[0]] for w in z_dict: for k in z_dict[w]: if w not in final_count: final_count[w] = {} if k in final_count[w]: old_mean = final_count[w][k]['mean'] old_var = final_count[w][k]['var'] old_count = final_count[w][k]['count'] current_count = len(z_dict[w][k]) current_mean = np.mean(z_dict[w][k]) current_var = np.var(z_dict[w][k]) new_count = old_count + current_count new_mean = (old_mean * old_count + sum(z_dict[w][k])) / new_count new_var = (old_count * (old_var + (old_mean - new_mean) ** 2) + current_count * (current_var + (current_mean - new_mean) ** 2)) / new_count final_count[w][k]['mean'] = new_mean final_count[w][k]['var'] = new_var final_count[w][k]['count'] = new_count else: final_count[w][k] = {} final_count[w][k]['mean'] =
np.mean(z_dict[w][k])
numpy.mean
import numpy as np import pandas as pd import matplotlib.pyplot as plt import common_fn as cf plt.rcParams["svg.hashsalt"]=0 #Input parms test_lim_arr=np.empty([0,2]) for llim in np.arange(0,1,0.2): for ulim in np.arange(llim+0.1,1,0.2): test_lim_arr=
np.append(test_lim_arr,[[llim,ulim]],axis=0)
numpy.append
################################################################################ # Copyright (C) 2013-2014 <NAME> # # This file is licensed under the MIT License. ################################################################################ """ Unit tests for `dot` module. """ import unittest import numpy as np import scipy from numpy import testing from ..dot import Dot, SumMultiply from ..gaussian import Gaussian, GaussianARD from bayespy.nodes import GaussianGamma from ...vmp import VB from bayespy.utils import misc from bayespy.utils import linalg from bayespy.utils import random from bayespy.utils.misc import TestCase class TestSumMultiply(TestCase): def test_parent_validity(self): """ Test that the parent nodes are validated properly in SumMultiply """ V = GaussianARD(1, 1) X = Gaussian(np.ones(1), np.identity(1)) Y = Gaussian(np.ones(3), np.identity(3)) Z = Gaussian(np.ones(5), np.identity(5)) A = SumMultiply(X, ['i']) self.assertEqual(A.dims, ((), ())) A = SumMultiply('i', X) self.assertEqual(A.dims, ((), ())) A = SumMultiply(X, ['i'], ['i']) self.assertEqual(A.dims, ((1,), (1,1))) A = SumMultiply('i->i', X) self.assertEqual(A.dims, ((1,), (1,1))) A = SumMultiply(X, ['i'], Y, ['j'], ['i','j']) self.assertEqual(A.dims, ((1,3), (1,3,1,3))) A = SumMultiply('i,j->ij', X, Y) self.assertEqual(A.dims, ((1,3), (1,3,1,3))) A = SumMultiply(V, [], X, ['i'], Y, ['i'], []) self.assertEqual(A.dims, ((), ())) A = SumMultiply(',i,i->', V, X, Y) self.assertEqual(A.dims, ((), ())) # Gaussian-gamma parents C = GaussianGamma(np.ones(3), np.identity(3), 1, 1) A = SumMultiply(Y, ['i'], C, ['i'], ['i']) self.assertEqual(A.dims, ((3,), (3,3), (), ())) A = SumMultiply('i,i->i', Y, C) self.assertEqual(A.dims, ((3,), (3,3), (), ())) C = GaussianGamma(np.ones(3), np.identity(3), 1, 1) A = SumMultiply(Y, ['i'], C, ['i'], []) self.assertEqual(A.dims, ((), (), (), ())) A = SumMultiply('i,i->', Y, C) self.assertEqual(A.dims, ((), (), (), ())) # Error: not enough inputs self.assertRaises(ValueError, SumMultiply) self.assertRaises(ValueError, SumMultiply, X) # Error: too many keys self.assertRaises(ValueError, SumMultiply, Y, ['i', 'j']) self.assertRaises(ValueError, SumMultiply, 'ij', Y) # Error: not broadcastable self.assertRaises(ValueError, SumMultiply, Y, ['i'], Z, ['i']) self.assertRaises(ValueError, SumMultiply, 'i,i', Y, Z) # Error: output key not in inputs self.assertRaises(ValueError, SumMultiply, X, ['i'], ['j']) self.assertRaises(ValueError, SumMultiply, 'i->j', X) # Error: non-unique input keys self.assertRaises(ValueError, SumMultiply, X, ['i','i']) self.assertRaises(ValueError, SumMultiply, 'ii', X) # Error: non-unique output keys self.assertRaises(ValueError, SumMultiply, X, ['i'], ['i','i']) self.assertRaises(ValueError, SumMultiply, 'i->ii', X) # String has too many '->' self.assertRaises(ValueError, SumMultiply, 'i->i->i', X) # String has too many input nodes self.assertRaises(ValueError, SumMultiply, 'i,i->i', X) # Same parent several times self.assertRaises(ValueError, SumMultiply, 'i,i->i', X, X) # Same parent several times via deterministic node Xh = SumMultiply('i->i', X) self.assertRaises(ValueError, SumMultiply, 'i,i->i', X, Xh) def test_message_to_child(self): """ Test the message from SumMultiply to its children. """ def compare_moments(u0, u1, *args): Y = SumMultiply(*args) u_Y = Y.get_moments() self.assertAllClose(u_Y[0], u0) self.assertAllClose(u_Y[1], u1) # Test constant parent y = np.random.randn(2,3,4) compare_moments(y, linalg.outer(y, y, ndim=2), 'ij->ij', y) # Do nothing for 2-D array Y = GaussianARD(np.random.randn(5,2,3), np.random.rand(5,2,3), plates=(5,), shape=(2,3)) y = Y.get_moments() compare_moments(y[0], y[1], 'ij->ij', Y) compare_moments(y[0], y[1], Y, [0,1], [0,1]) # Sum over the rows of a matrix Y = GaussianARD(np.random.randn(5,2,3), np.random.rand(5,2,3), plates=(5,), shape=(2,3)) y = Y.get_moments() mu = np.einsum('...ij->...j', y[0]) cov = np.einsum('...ijkl->...jl', y[1]) compare_moments(mu, cov, 'ij->j', Y) compare_moments(mu, cov, Y, [0,1], [1]) # Inner product of three vectors X1 = GaussianARD(np.random.randn(2), np.random.rand(2), plates=(), shape=(2,)) x1 = X1.get_moments() X2 = GaussianARD(np.random.randn(6,1,2), np.random.rand(6,1,2), plates=(6,1), shape=(2,)) x2 = X2.get_moments() X3 = GaussianARD(np.random.randn(7,6,5,2), np.random.rand(7,6,5,2), plates=(7,6,5), shape=(2,)) x3 = X3.get_moments() mu = np.einsum('...i,...i,...i->...', x1[0], x2[0], x3[0]) cov = np.einsum('...ij,...ij,...ij->...', x1[1], x2[1], x3[1]) compare_moments(mu, cov, 'i,i,i', X1, X2, X3) compare_moments(mu, cov, 'i,i,i->', X1, X2, X3) compare_moments(mu, cov, X1, [9], X2, [9], X3, [9]) compare_moments(mu, cov, X1, [9], X2, [9], X3, [9], []) # Outer product of two vectors X1 = GaussianARD(np.random.randn(2), np.random.rand(2), plates=(5,), shape=(2,)) x1 = X1.get_moments() X2 = GaussianARD(np.random.randn(6,1,2), np.random.rand(6,1,2), plates=(6,1), shape=(2,)) x2 = X2.get_moments() mu = np.einsum('...i,...j->...ij', x1[0], x2[0]) cov = np.einsum('...ik,...jl->...ijkl', x1[1], x2[1]) compare_moments(mu, cov, 'i,j->ij', X1, X2) compare_moments(mu, cov, X1, [9], X2, [7], [9,7]) # Matrix product Y1 = GaussianARD(np.random.randn(3,2), np.random.rand(3,2), plates=(), shape=(3,2)) y1 = Y1.get_moments() Y2 = GaussianARD(np.random.randn(5,2,3), np.random.rand(5,2,3), plates=(5,), shape=(2,3)) y2 = Y2.get_moments() mu = np.einsum('...ik,...kj->...ij', y1[0], y2[0]) cov = np.einsum('...ikjl,...kmln->...imjn', y1[1], y2[1]) compare_moments(mu, cov, 'ik,kj->ij', Y1, Y2) compare_moments(mu, cov, Y1, ['i','k'], Y2, ['k','j'], ['i','j']) # Trace of a matrix product Y1 = GaussianARD(np.random.randn(3,2), np.random.rand(3,2), plates=(), shape=(3,2)) y1 = Y1.get_moments() Y2 = GaussianARD(np.random.randn(5,2,3), np.random.rand(5,2,3), plates=(5,), shape=(2,3)) y2 = Y2.get_moments() mu = np.einsum('...ij,...ji->...', y1[0], y2[0]) cov = np.einsum('...ikjl,...kilj->...', y1[1], y2[1]) compare_moments(mu, cov, 'ij,ji', Y1, Y2) compare_moments(mu, cov, 'ij,ji->', Y1, Y2) compare_moments(mu, cov, Y1, ['i','j'], Y2, ['j','i']) compare_moments(mu, cov, Y1, ['i','j'], Y2, ['j','i'], []) # Vector-matrix-vector product X1 = GaussianARD(np.random.randn(3), np.random.rand(3), plates=(), shape=(3,)) x1 = X1.get_moments() X2 = GaussianARD(np.random.randn(6,1,2), np.random.rand(6,1,2), plates=(6,1), shape=(2,)) x2 = X2.get_moments() Y = GaussianARD(np.random.randn(3,2), np.random.rand(3,2), plates=(), shape=(3,2)) y = Y.get_moments() mu = np.einsum('...i,...ij,...j->...', x1[0], y[0], x2[0]) cov = np.einsum('...ia,...ijab,...jb->...', x1[1], y[1], x2[1]) compare_moments(mu, cov, 'i,ij,j', X1, Y, X2) compare_moments(mu, cov, X1, [1], Y, [1,2], X2, [2]) # Complex sum-product of 0-D, 1-D, 2-D and 3-D arrays V = GaussianARD(np.random.randn(7,6,5), np.random.rand(7,6,5), plates=(7,6,5), shape=()) v = V.get_moments() X = GaussianARD(np.random.randn(6,1,2), np.random.rand(6,1,2), plates=(6,1), shape=(2,)) x = X.get_moments() Y = GaussianARD(np.random.randn(3,4), np.random.rand(3,4), plates=(5,), shape=(3,4)) y = Y.get_moments() Z = GaussianARD(np.random.randn(4,2,3), np.random.rand(4,2,3), plates=(6,5), shape=(4,2,3)) z = Z.get_moments() mu = np.einsum('...,...i,...kj,...jik->...k', v[0], x[0], y[0], z[0]) cov = np.einsum('...,...ia,...kjcb,...jikbac->...kc', v[1], x[1], y[1], z[1]) compare_moments(mu, cov, ',i,kj,jik->k', V, X, Y, Z) compare_moments(mu, cov, V, [], X, ['i'], Y, ['k','j'], Z, ['j','i','k'], ['k']) # Test with constant nodes N = 10 D = 5 a = np.random.randn(N, D) B = Gaussian( np.random.randn(D), random.covariance(D), ) X = SumMultiply('i,i->', B, a) np.testing.assert_allclose( X.get_moments()[0], np.einsum('ni,i->n', a, B.get_moments()[0]), ) np.testing.assert_allclose( X.get_moments()[1], np.einsum('ni,nj,ij->n', a, a, B.get_moments()[1]), ) # # Gaussian-gamma parents # # Outer product of vectors X1 = GaussianARD(np.random.randn(2), np.random.rand(2), shape=(2,)) x1 = X1.get_moments() X2 = GaussianGamma( np.random.randn(6,1,2), random.covariance(2), np.random.rand(6,1), np.random.rand(6,1), plates=(6,1) ) x2 = X2.get_moments() Y = SumMultiply('i,j->ij', X1, X2) u = Y._message_to_child() y = np.einsum('...i,...j->...ij', x1[0], x2[0]) yy = np.einsum('...ik,...jl->...ijkl', x1[1], x2[1]) self.assertAllClose(u[0], y) self.assertAllClose(u[1], yy) self.assertAllClose(u[2], x2[2]) self.assertAllClose(u[3], x2[3]) # Test with constant nodes N = 10 M = 8 D = 5 a = np.random.randn(N, 1, D) B = GaussianGamma( np.random.randn(M, D), random.covariance(D, size=(M,)), np.random.rand(M), np.random.rand(M), ndim=1, ) X = SumMultiply('i,i->', B, a) np.testing.assert_allclose( X.get_moments()[0], np.einsum('nmi,mi->nm', a, B.get_moments()[0]), ) np.testing.assert_allclose( X.get_moments()[1], np.einsum('nmi,nmj,mij->nm', a, a, B.get_moments()[1]), ) np.testing.assert_allclose( X.get_moments()[2], B.get_moments()[2], ) np.testing.assert_allclose( X.get_moments()[3], B.get_moments()[3], ) pass def test_message_to_parent(self): """ Test the message from SumMultiply node to its parents. """ data = 2 tau = 3 def check_message(true_m0, true_m1, parent, *args, F=None): if F is None: A = SumMultiply(*args) B = GaussianARD(A, tau) B.observe(data*np.ones(A.plates + A.dims[0])) else: A = F (A_m0, A_m1) = A._message_to_parent(parent) self.assertAllClose(true_m0, A_m0) self.assertAllClose(true_m1, A_m1) pass # Check: different message to each of multiple parents X1 = GaussianARD(np.random.randn(2), np.random.rand(2), ndim=1) x1 = X1.get_moments() X2 = GaussianARD(np.random.randn(2), np.random.rand(2), ndim=1) x2 = X2.get_moments() m0 = tau * data * x2[0] m1 = -0.5 * tau * x2[1] * np.identity(2) check_message(m0, m1, 0, 'i,i->i', X1, X2) check_message(m0, m1, 0, X1, [9], X2, [9], [9]) m0 = tau * data * x1[0] m1 = -0.5 * tau * x1[1] * np.identity(2) check_message(m0, m1, 1, 'i,i->i', X1, X2) check_message(m0, m1, 1, X1, [9], X2, [9], [9]) # Check: key not in output X1 = GaussianARD(np.random.randn(2), np.random.rand(2), ndim=1) x1 = X1.get_moments() m0 = tau * data * np.ones(2) m1 = -0.5 * tau * np.ones((2,2)) check_message(m0, m1, 0, 'i', X1) check_message(m0, m1, 0, 'i->', X1) check_message(m0, m1, 0, X1, [9]) check_message(m0, m1, 0, X1, [9], []) # Check: key not in some input X1 = GaussianARD(np.random.randn(), np.random.rand()) x1 = X1.get_moments() X2 = GaussianARD(np.random.randn(2), np.random.rand(2), ndim=1) x2 = X2.get_moments() m0 = tau * data * np.sum(x2[0], axis=-1) m1 = -0.5 * tau * np.sum(x2[1] * np.identity(2), axis=(-1,-2)) check_message(m0, m1, 0, ',i->i', X1, X2) check_message(m0, m1, 0, X1, [], X2, [9], [9]) m0 = tau * data * x1[0] * np.ones(2) m1 = -0.5 * tau * x1[1] * np.identity(2) check_message(m0, m1, 1, ',i->i', X1, X2) check_message(m0, m1, 1, X1, [], X2, [9], [9]) # Check: keys in different order Y1 = GaussianARD(np.random.randn(3,2), np.random.rand(3,2), ndim=2) y1 = Y1.get_moments() Y2 = GaussianARD(np.random.randn(2,3), np.random.rand(2,3), ndim=2) y2 = Y2.get_moments() m0 = tau * data * y2[0].T m1 = -0.5 * tau * np.einsum('ijlk->jikl', y2[1] * misc.identity(2,3)) check_message(m0, m1, 0, 'ij,ji->ij', Y1, Y2) check_message(m0, m1, 0, Y1, ['i','j'], Y2, ['j','i'], ['i','j']) m0 = tau * data * y1[0].T m1 = -0.5 * tau * np.einsum('ijlk->jikl', y1[1] * misc.identity(3,2)) check_message(m0, m1, 1, 'ij,ji->ij', Y1, Y2) check_message(m0, m1, 1, Y1, ['i','j'], Y2, ['j','i'], ['i','j']) # Check: plates when different dimensionality X1 = GaussianARD(np.random.randn(5), np.random.rand(5), shape=(), plates=(5,)) x1 = X1.get_moments() X2 = GaussianARD(np.random.randn(5,3), np.random.rand(5,3), shape=(3,), plates=(5,)) x2 = X2.get_moments() m0 = tau * data * np.sum(np.ones((5,3)) * x2[0], axis=-1) m1 = -0.5 * tau * np.sum(x2[1] * misc.identity(3), axis=(-1,-2)) check_message(m0, m1, 0, ',i->i', X1, X2) check_message(m0, m1, 0, X1, [], X2, ['i'], ['i']) m0 = tau * data * x1[0][:,np.newaxis] * np.ones((5,3)) m1 = -0.5 * tau * x1[1][:,np.newaxis,np.newaxis] * misc.identity(3) check_message(m0, m1, 1, ',i->i', X1, X2) check_message(m0, m1, 1, X1, [], X2, ['i'], ['i']) # Check: other parent's moments broadcasts over plates when node has the # same plates X1 = GaussianARD(np.random.randn(5,4,3), np.random.rand(5,4,3), shape=(3,), plates=(5,4)) x1 = X1.get_moments() X2 = GaussianARD(np.random.randn(3), np.random.rand(3), shape=(3,), plates=(5,4)) x2 = X2.get_moments() m0 = tau * data * np.ones((5,4,3)) * x2[0] m1 = -0.5 * tau * x2[1] * misc.identity(3) check_message(m0, m1, 0, 'i,i->i', X1, X2) check_message(m0, m1, 0, X1, ['i'], X2, ['i'], ['i']) # Check: other parent's moments broadcasts over plates when node does # not have that plate X1 = GaussianARD(np.random.randn(3), np.random.rand(3), shape=(3,), plates=()) x1 = X1.get_moments() X2 = GaussianARD(np.random.randn(3), np.random.rand(3), shape=(3,), plates=(5,4)) x2 = X2.get_moments() m0 = tau * data * np.sum(np.ones((5,4,3)) * x2[0], axis=(0,1)) m1 = -0.5 * tau * np.sum(np.ones((5,4,1,1)) * misc.identity(3) * x2[1], axis=(0,1)) check_message(m0, m1, 0, 'i,i->i', X1, X2) check_message(m0, m1, 0, X1, ['i'], X2, ['i'], ['i']) # Check: other parent's moments broadcasts over plates when the node # only broadcasts that plate X1 = GaussianARD(np.random.randn(3), np.random.rand(3), shape=(3,), plates=(1,1)) x1 = X1.get_moments() X2 = GaussianARD(np.random.randn(3), np.random.rand(3), shape=(3,), plates=(5,4)) x2 = X2.get_moments() m0 = tau * data * np.sum(np.ones((5,4,3)) * x2[0], axis=(0,1), keepdims=True) m1 = -0.5 * tau * np.sum(np.ones((5,4,1,1)) * misc.identity(3) * x2[1], axis=(0,1), keepdims=True) check_message(m0, m1, 0, 'i,i->i', X1, X2) check_message(m0, m1, 0, X1, ['i'], X2, ['i'], ['i']) # Check: broadcasted dimensions X1 = GaussianARD(np.random.randn(1,1), np.random.rand(1,1), ndim=2) x1 = X1.get_moments() X2 = GaussianARD(np.random.randn(3,2), np.random.rand(3,2), ndim=2) x2 = X2.get_moments() m0 = tau * data * np.sum(np.ones((3,2)) * x2[0], keepdims=True) m1 = -0.5 * tau * np.sum(misc.identity(3,2) * x2[1], keepdims=True) check_message(m0, m1, 0, 'ij,ij->ij', X1, X2) check_message(m0, m1, 0, X1, [0,1], X2, [0,1], [0,1]) m0 = tau * data * np.ones((3,2)) * x1[0] m1 = -0.5 * tau * misc.identity(3,2) * x1[1] check_message(m0, m1, 1, 'ij,ij->ij', X1, X2) check_message(m0, m1, 1, X1, [0,1], X2, [0,1], [0,1]) # Check: non-ARD observations X1 = GaussianARD(np.random.randn(2), np.random.rand(2), ndim=1) x1 = X1.get_moments() Lambda = np.array([[2, 1.5], [1.5, 2]]) F = SumMultiply('i->i', X1) Y = Gaussian(F, Lambda) y = np.random.randn(2) Y.observe(y) m0 = np.dot(Lambda, y) m1 = -0.5 * Lambda check_message(m0, m1, 0, 'i->i', X1, F=F) check_message(m0, m1, 0, X1, ['i'], ['i'], F=F) # Check: mask with same shape X1 = GaussianARD(np.random.randn(3,2), np.random.rand(3,2), shape=(2,), plates=(3,)) x1 = X1.get_moments() mask = np.array([True, False, True]) F = SumMultiply('i->i', X1) Y = GaussianARD(F, tau, ndim=1) Y.observe(data*np.ones((3,2)), mask=mask) m0 = tau * data * mask[:,np.newaxis] * np.ones(2) m1 = -0.5 * tau * mask[:,np.newaxis,np.newaxis] * np.identity(2) check_message(m0, m1, 0, 'i->i', X1, F=F) check_message(m0, m1, 0, X1, ['i'], ['i'], F=F) # Check: mask larger X1 = GaussianARD(np.random.randn(2), np.random.rand(2), shape=(2,), plates=()) x1 = X1.get_moments() X2 = GaussianARD(np.random.randn(3,2), np.random.rand(3,2), shape=(2,), plates=(3,)) x2 = X2.get_moments() mask = np.array([True, False, True]) F = SumMultiply('i,i->i', X1, X2) Y = GaussianARD(F, tau, plates=(3,), ndim=1) Y.observe(data*np.ones((3,2)), mask=mask) m0 = tau * data * np.sum(mask[:,np.newaxis] * x2[0], axis=0) m1 = -0.5 * tau * np.sum(mask[:,np.newaxis,np.newaxis] * x2[1] * np.identity(2), axis=0) check_message(m0, m1, 0, 'i,i->i', X1, X2, F=F) check_message(m0, m1, 0, X1, ['i'], X2, ['i'], ['i'], F=F) # Check: mask for broadcasted plate X1 = GaussianARD(np.random.randn(2), np.random.rand(2), ndim=1, plates=(1,)) x1 = X1.get_moments() X2 = GaussianARD(np.random.randn(2), np.random.rand(2), ndim=1, plates=(3,)) x2 = X2.get_moments() mask = np.array([True, False, True]) F = SumMultiply('i,i->i', X1, X2) Y = GaussianARD(F, tau, plates=(3,), ndim=1) Y.observe(data*np.ones((3,2)), mask=mask) m0 = tau * data * np.sum(mask[:,np.newaxis] * x2[0], axis=0, keepdims=True) m1 = -0.5 * tau * np.sum(mask[:,np.newaxis,np.newaxis] * x2[1] * np.identity(2), axis=0, keepdims=True) check_message(m0, m1, 0, 'i->i', X1, F=F) check_message(m0, m1, 0, X1, ['i'], ['i'], F=F) # Test with constant nodes N = 10 M = 8 D = 5 K = 3 a = np.random.randn(N, D) B = Gaussian( np.random.randn(D), random.covariance(D), ) C = GaussianARD( np.random.randn(M, 1, D, K), np.random.rand(M, 1, D, K), ndim=2 ) F = SumMultiply('i,i,ij->', a, B, C) tau =
np.random.rand(M, N)
numpy.random.rand
import numpy as np import cv2 class Anchor(): """docstring for Anchor""" def __init__(self,feature_w,feature_h): self.width=255 self.height=255 self.w=feature_w self.h=feature_h self.base=64 self.stride=16 self.scale=[1/3,1/2,1,2,3] self.anchors=self.gen_anchors() def gen_single_anchor(self): scale=np.array(self.scale) s=self.base*self.base w=np.sqrt(s/scale) h=w*scale c_x=(self.stride-1)/2 c_y=(self.stride-1)/2 anchor=np.vstack([c_x*np.ones_like(scale),c_y*np.ones_like(scale),w,h]) anchor=anchor.transpose()#[x,y,w,h] anchor=self.center_to_corner(anchor)#[x1,y1,x2,y2] anchor=anchor.astype(np.int32) return anchor def gen_anchors(self): anchor=self.gen_single_anchor() k=anchor.shape[0] shift_x=[x*self.stride for x in range(self.w)] shift_y=[y*self.stride for y in range(self.h)] shift_x,shift_y=np.meshgrid(shift_x,shift_y) shifts=np.vstack([shift_x.ravel(),shift_y.ravel(),shift_x.ravel(),shift_y.ravel()]).transpose() a=shifts.shape[0] anchors=anchor.reshape((1,k,4))+shifts.reshape((a,1,4)) anchors=anchors.reshape((a*k,4))#[x1,y1,x2,y2] #anchors=self.corner_to_center(anchors)#[x,y,w,h] anchors=anchors.astype(np.float32) return anchors def center_to_corner(self,box): box_temp=np.zeros_like(box) box_temp[:,0]=box[:,0]-(box[:,2]-1)/2 box_temp[:,1]=box[:,1]-(box[:,3]-1)/2 box_temp[:,2]=box[:,0]+(box[:,2]-1)/2 box_temp[:,3]=box[:,1]+(box[:,3]-1)/2 #box_temp=box_temp.astype(np.int32) return box_temp def corner_to_center(self,box): box_temp=np.zeros_like(box) box_temp[:,0]=box[:,0]+(box[:,2]-box[:,0])/2 box_temp[:,1]=box[:,1]+(box[:,3]-box[:,1])/2 box_temp[:,2]=(box[:,2]-box[:,0]) box_temp[:,3]=(box[:,3]-box[:,1]) #box_temp=box_temp.astype(np.int32) return box_temp def diff_anchor_gt(self,gt,anchors): #gt [x,y,w,h] #anchors [x,y,w,h] diff_anchors=np.zeros_like(anchors).astype(np.float32) diff_anchors[:,0]=(gt[0]-anchors[:,0])/(anchors[:,2]+0.01) diff_anchors[:,1]=(gt[1]-anchors[:,1])/(anchors[:,3]+0.01) diff_anchors[:,2]=np.log(gt[2]/(anchors[:,2]+0.01)) diff_anchors[:,3]=np.log(gt[3]/(anchors[:,3]+0.01)) return diff_anchors#[dx,dy,dw,dh] def iou(self,box1,box2): """ Intersection over Union (iou) Args: box1 : [N,4] box2 : [K,4] box_type:[x1,y1,x2,y2] Returns: iou:[N,K] """ N=box1.shape[0] K=box2.shape[0] box1=np.array(box1.reshape((N,1,4)))+np.zeros((1,K,4))#box1=[N,K,4] box2=np.array(box2.reshape((1,K,4)))+np.zeros((N,1,4))#box1=[N,K,4] x_max=np.max(np.stack((box1[:,:,0],box2[:,:,0]),axis=-1),axis=2) x_min=np.min(np.stack((box1[:,:,2],box2[:,:,2]),axis=-1),axis=2) y_max=np.max(np.stack((box1[:,:,1],box2[:,:,1]),axis=-1),axis=2) y_min=np.min(np.stack((box1[:,:,3],box2[:,:,3]),axis=-1),axis=2) tb=x_min-x_max lr=y_min-y_max tb[np.where(tb<0)]=0 lr[np.where(lr<0)]=0 over_square=tb*lr all_square=(box1[:,:,2]-box1[:,:,0])*(box1[:,:,3]-box1[:,:,1])+(box2[:,:,2]-box2[:,:,0])*(box2[:,:,3]-box2[:,:,1])-over_square return over_square/all_square def pos_neg_anchor(self,gt): inds_inside = np.where( (self.anchors[:, 0] >= 0) & (self.anchors[:, 1] >= 0) & (self.anchors[:, 2] < self.width) & # width (self.anchors[:, 3] < self.height) # height )[0] all_box=np.zeros((self.anchors.shape[0],4),dtype=np.float32) target_box=np.zeros((self.anchors.shape[0],4),dtype=np.float32) target_inside_weight_box=np.zeros((self.anchors.shape[0],4),dtype=np.float32) target_outside_weight_box=np.ones((self.anchors.shape[0],4),dtype=np.float32) label=-np.ones((self.anchors.shape[0],),dtype=np.float32) anchors_inside=(self.anchors[inds_inside]).astype(np.float32) mask_label_inside=-np.ones((len(inds_inside),),dtype=np.float32) gt_array=np.array(gt).reshape((1,4)) gt_array=self.center_to_corner(gt_array) iou_value=self.iou(anchors_inside,gt_array) pos=np.zeros_like(iou_value) pos[np.where(iou_value>0.3)]=iou_value[np.where(iou_value>0.3)] pos_index=np.argsort(pos[:,0])[::-1] pos_num=min(len(pos_index),16) pos_index=pos_index[:pos_num] mask_label_inside[pos_index]=1 neg=np.zeros_like(iou_value) #neg[np.where(iou_value<0.3)]=iou_value[np.where(iou_value<0.3)] #neg_index=np.argsort(neg[:,0])[::-1] neg_index=np.where(iou_value<0.3)[0] #print(neg_index) neg_index=np.random.choice(neg_index,(64-pos_num)) #print(neg_index) # neg_num=min(len(neg_index),64-pos_num) # neg_index=neg_index[:neg_num] mask_label_inside[neg_index]=0 diff_anchors=self.diff_anchor_gt(gt,self.corner_to_center(anchors_inside)) #print(diff_anchors.shape) target_box[inds_inside]=diff_anchors all_box[inds_inside]=anchors_inside label[inds_inside]=mask_label_inside target_inside_weight_box[np.where(label==1)]=np.array([1.,1.,1.,1.]) target_outside_weight_box=target_outside_weight_box*1.0/len(np.where(label==1)[0]) #print(target_outside_weight_box[np.where(target_outside_weight_box>0)]) return label,target_box,target_inside_weight_box,target_outside_weight_box,all_box def pos_neg_anchor2(self,gt): all_box=self.anchors.copy() all_box[np.where(all_box<0)]=0 all_box[np.where(all_box>self.width-1)]=self.width-1 target_box=np.zeros((self.anchors.shape[0],4),dtype=np.float32) target_inside_weight_box=np.zeros((self.anchors.shape[0],4),dtype=np.float32) target_outside_weight_box=np.ones((self.anchors.shape[0],4),dtype=np.float32) label=-np.ones((self.anchors.shape[0],),dtype=np.float32) gt_array=np.array(gt).reshape((1,4)) gt_array=self.center_to_corner(gt_array) iou_value=self.iou(all_box,gt_array) pos=np.zeros_like(iou_value) pos[np.where(iou_value>0.3)]=iou_value[np.where(iou_value>0.3)] pos_index=np.argsort(pos[:,0])[::-1] pos_num=min(len(pos_index),16) pos_index=pos_index[:pos_num] label[pos_index]=1 neg=
np.zeros_like(iou_value)
numpy.zeros_like
#!/usr/bin/env python # -------------------------------------------------------- # LDDP # Licensed under UC Berkeley's Standard Copyright [see LICENSE for details] # Written by <NAME> # -------------------------------------------------------- import numpy as np from fast_rcnn.bbox_transform import bbox_transform_inv, clip_boxes,bbox_transform from boxTools import * from fast_rcnn.config import cfg class DPP(): def __init__(self,stds=[],means=[],sim_classes=[],epsilon=0.01,loss_weight=0.001): self.stds =stds self.means = means self.sim_classes = sim_classes self.epsilon = epsilon self._loss_weight = loss_weight def select_bg(self,Phi_labels,boxes,labels,bbox_pred,keeps_Y,good_gt_overlap,M,im_shape_w,im_shape_h): """ Find B in p(B|Xb) """ selected_item = range(M) prob_dpp = np.ones((M,)) ignores=[] dict_keeps_Y = {} for i,j in keeps_Y.iteritems(): if j not in dict_keeps_Y: dict_keeps_Y[j]=[] dict_keeps_Y[j].append(i) for k in range(M): if (k in keeps_Y and keeps_Y[k]==Phi_labels[k]) \ or (k in good_gt_overlap and Phi_labels[k]==labels[k] and labels[k]>0): ignores.append(k) else: label_k = labels[k] if label_k in dict_keeps_Y: loc_lbl = bbox_pred[[k],4*label_k:4*(label_k+1)] loc_lbl = loc_lbl * self.stds[label_k,:] + self.means[label_k,:] pbox = bbox_transform_inv(boxes[[k],:], loc_lbl) pbox = clip_boxes(pbox, (im_shape_w,im_shape_h)) pbox = np.reshape(np.tile(pbox,len(dict_keeps_Y[label_k])),(len(dict_keeps_Y[label_k]),4)) Y_selected_ll = bbox_pred[dict_keeps_Y[label_k],4*label_k:4*(label_k+1)] Y_selected_ll = Y_selected_ll*self.stds[label_k,:] + self.means[label_k,:] Y_selected_pbox = bbox_transform_inv(boxes[dict_keeps_Y[label_k],:], Y_selected_ll) Y_selected_pbox = clip_boxes(Y_selected_pbox, (im_shape_w,im_shape_h)) if np.max(IoU_target(pbox,Y_selected_pbox)) > cfg.TRAIN.IGNORANCE: ignores.append(k) selected_item = np.array([x for ii,x in enumerate(selected_item) if ii not in ignores]) prob_dpp = [x for ii,x in enumerate(prob_dpp) if ii not in ignores] return selected_item,prob_dpp def dpp_greedy(self,S, scores_s, score_power, max_per_image, among_ims, num_gt_per_img=1000, close_thr=0.0001): """ Greedy optimization to select boxes S: similarity matrix scores_s : predicted scores over different categories """ prob_thresh = cfg.TEST.PROB_THRESH S = S[among_ims,:][:,among_ims] scores_s = scores_s[among_ims] M = S.shape[0] #keep: selected_boxes keep = [] #left : boxes not selected yet left = np.zeros((M,3)) left[:,0] = np.arange(M) #box number left[:,1] = 1 # 0/1? Is the box left? selected_prob = [] while (len(keep) < max_per_image) and sum(left[:,1])>0: z = np.zeros((M,1)) z[keep] = 1 sum_scores = (score_power*np.log(scores_s).T).dot(z) prob_rest = np.zeros((M,)) left_indices = np.where(left[:,1]==1)[0] done_indices = np.where(left[:,1]==0)[0] if len(keep)>0: S_prev = S[keep,:][:,keep] det_D = np.linalg.det(S_prev) d_1 = np.linalg.inv(S_prev) else: det_D = 1 d_1 = 0 # ==================================================================== # |D a^T| # det(|a b|)= (b - a D^{-1} a^T)det(D) # # Here "D" = S_prev and "a","b" are the similarity values added by each single item # in left_indices. # To avoid using a for loop, we compute the above det for all items in left_indices # all at once through appropriate inner vector multiplications as the next line: # ==================================================================== if len(keep)>0: prob_rest[left_indices] =- np.sum(np.multiply(np.dot(S[left_indices,:][:,keep],d_1),S[left_indices,:][:,keep]),1) prob_rest[left_indices] = np.log((prob_rest[left_indices] + S[left_indices,left_indices]) * det_D)+\ (sum_scores + score_power * np.log(scores_s[(left[left_indices,0]).astype(int)])) prob_rest[done_indices] = np.min(prob_rest)-100 max_ind = np.argmax(prob_rest) ind = left[max_ind,0] close_inds = np.where(prob_rest >= (prob_rest[max_ind] + np.log(close_thr)))[0] far_inds = np.where(prob_rest < (prob_rest[max_ind] + np.log(close_thr)))[0] tops_prob_rest = np.argsort(-prob_rest[close_inds]).astype(int) if len(keep) >= num_gt_per_img: break elif len(keep)> 0: cost = np.max(S[np.array(range(M))[close_inds][tops_prob_rest],:][:,keep],1) good_cost = list(np.where(cost <= prob_thresh)[0]) bad_cost = list(np.where(cost > prob_thresh)[0]) if len(good_cost)>0: ind = np.array(range(M))[close_inds][tops_prob_rest[good_cost[0]]] keep.append(ind) left[ind,1] = 0 #left[far_inds,1]=0 selected_prob.append(prob_rest[max_ind]) else: left[:,1]=0 else: keep.append(max_ind) left[max_ind,1] = 0 selected_prob.append(prob_rest[max_ind]) return keep,selected_prob def dpp_MAP(self,im_dets_pair, scores, boxes,sim_classes,score_thresh,epsilon,max_per_image,close_thr=0.00001): """ DPP MAP inference """ M0 = boxes.shape[0] num_classes = scores.shape[1] scores = scores[:,1:] #ignore background # consider only top 5 class scores per box num_ignored = scores.shape[1]-5 sorted_scores =
np.argsort(-scores,1)
numpy.argsort
# Copyright (c) Materials Virtual Lab. # Distributed under the terms of the BSD License. """ Algorithms for diffusion pathway analysis """ from collections import Counter import numpy as np from scipy.cluster.hierarchy import fcluster, linkage from scipy.spatial.distance import squareform class ProbabilityDensityAnalysis: r""" Compute the time-averaged probability density distribution of selected species on a "uniform" (in terms of fractional coordinates) 3-D grid. Note that \int_{\Omega}d^3rP(r) = 1 If you use this class, please consider citing the following paper: <NAME>.; <NAME>.; <NAME>. and <NAME>. "Role of Na+ Interstitials and Dopants in Enhancing the Na+ Conductivity of the Cubic Na3PS4 Superionic Conductor". Chem. Mater. (2015), 27, pp 8318–8325. """ def __init__(self, structure, trajectories, interval=0.5, species=("Li", "Na")): """ Initialization. Args: structure (Structure): crystal structure trajectories (numpy array): ionic trajectories of the structure from MD simulations. It should be (1) stored as 3-D array [ Ntimesteps, Nions, 3] where 3 refers to a,b,c components; (2) in fractional coordinates. interval(float): the interval between two nearest grid points (in Angstrom) species(list of str): list of species that are of interest """ # initial settings trajectories = np.array(trajectories) # All fractional coordinates are between 0 and 1. trajectories -= np.floor(trajectories) assert np.all(trajectories >= 0) and np.all(trajectories <= 1) indices = [j for j, site in enumerate(structure) if site.specie.symbol in species] lattice = structure.lattice frac_interval = [interval / l for l in lattice.abc] nsteps = len(trajectories) # generate the 3-D grid ra = np.arange(0.0, 1.0, frac_interval[0]) rb = np.arange(0.0, 1.0, frac_interval[1]) rc = np.arange(0.0, 1.0, frac_interval[2]) lens = [len(ra), len(rb), len(rc)] ngrid = lens[0] * lens[1] * lens[2] agrid = ra[:, None] * np.array([1, 0, 0])[None, :] bgrid = rb[:, None] * np.array([0, 1, 0])[None, :] cgrid = rc[:, None] * np.array([0, 0, 1])[None, :] grid = agrid[:, None, None] + bgrid[None, :, None] + cgrid[None, None, :] # Calculate time-averaged probability density function distribution Pr count = Counter() Pr =
np.zeros(ngrid, dtype=np.double)
numpy.zeros
from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from matplotlib import animation import numpy as np import sklearn.cluster as clu # define the standard font sizes small = 7 medium = 10 large = 12 # define the conversion constant from pt to cm pt2cm = 0.0352778 # define the font size default dictionary for figures font_sizes_raw = { 'small': { 'xlabel': small, 'ylabel': small, 'zlabel': small, 'labels': small, 'xticks': small, 'yticks': small, 'zticks': small-2, 'ticks': small, 'minor_xticks': small, 'minor_yticks': small, 'minor_ticks': small, 'title': small, 'legend': small-1, 'legend_title': small, }, 'medium': { 'xlabel': medium, 'ylabel': medium, 'zlabel': medium, 'labels': medium, 'xticks': medium, 'yticks': medium, 'zticks': medium, 'ticks': medium, 'minor_xticks': medium, 'minor_yticks': medium, 'minor_ticks': medium, 'title': medium, 'legend': medium-1, 'legend_title': medium, }, 'large': { 'xlabel': large, 'ylabel': large, 'zlabel': large, 'labels': large, 'xticks': large, 'yticks': large, 'zticks': large, 'ticks': large, 'minor_xticks': large, 'minor_yticks': large, 'minor_ticks': large, 'title': large, 'legend': large-1, 'legend_title': large, }, } def plot_2d(data_in, rows=1, columns=1, labels=None, markers=None, linestyle='-', color=None, xerr=None, yerr=None, fig=None, fontsize=None, dpi=None, **kwargs): """Wrapper for 2D plotting data into subplots""" # create a new figure window if fig is None: if dpi is None: dpi = 300 else: dpi = dpi fig = plt.figure(dpi=dpi) # initialize a plot counter plot_counter = 1 # for all the rows for row in range(rows): # for all the columns for col in range(columns): # if there's no plot in this position, skip it if len(data_in) < plot_counter: continue # add the subplot ax = fig.add_subplot(rows, columns, plot_counter) # for all the lines in the list for count, lines in enumerate(data_in[plot_counter - 1]): if color is not None: c = color[plot_counter - 1] else: c = 'b' # plot x,y ot just y depending on the size of the data if len(lines.shape) == 2: # line2d = ax.plot(lines[:, 0], lines[:, 1]) if xerr is not None: if yerr is not None: line2d = ax.errorbar(lines[:, 0], lines[:, 1], xerr=xerr[plot_counter - 1][count] , yerr=yerr[plot_counter - 1][count]) else: line2d = ax.errorbar(lines[:, 0], lines[:, 1], xerr=xerr[plot_counter - 1][count] , yerr=None) else: if yerr is not None: # line2d = ax.errorbar(range(lines.shape[0]), lines, xerr=None # , yerr=yerr[plot_counter - 1][count]) line2d = ax.plot(lines[:, 0], lines[:, 1], color=c) y_error = yerr[plot_counter - 1][count] ax.fill_between(lines[:, 0], lines[:, 1]-y_error, lines[:, 1]+y_error, alpha=0.5, color=c) else: line2d = ax.errorbar(lines[:, 0], lines[:, 1], xerr=None , yerr=None) else: if xerr is not None: if yerr is not None: line2d = ax.errorbar(range(lines.shape[0]), lines, xerr=xerr[plot_counter - 1][count] , yerr=yerr[plot_counter - 1][count]) else: line2d = ax.errorbar(range(lines.shape[0]), lines, xerr=xerr[plot_counter - 1][count] , yerr=None) else: if yerr is not None: # line2d = ax.errorbar(range(lines.shape[0]), lines, xerr=None # , yerr=yerr[plot_counter - 1][count]) line2d = ax.plot(range(lines.shape[0]), lines, color=c) y_error = yerr[plot_counter - 1][count] ax.fill_between(range(lines.shape[0]), lines-y_error, lines+y_error, alpha=0.5, color=c) else: line2d = ax.errorbar(range(lines.shape[0]), lines, xerr=None , yerr=None) # change the marker if provided, otherwise use dots if markers is not None: line2d[0].set_marker(markers[plot_counter - 1][count]) else: line2d[0].set_marker('.') if linestyle is not '-': line2d[0].set_linestyle(linestyle[plot_counter - 1][count]) # change the font size if provided if fontsize is not None: ax[0].set_fontsize(fontsize[plot_counter - 1][count]) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') # add labels if provided if labels is not None: plt.legend(labels[plot_counter - 1]) # apply kwargs # TODO: implement kwargs # update the plot counter plot_counter += 1 return fig def plot_3d(data_in, fig=None): """Wrapper for 3D plotting data""" # create a new figure window if fig is None: fig = plt.figure() # add the subplot ax = fig.add_subplot(111, projection='3d') # for all the lines in the list for lines in data_in: ax.plot(lines[:, 0], lines[:, 1], lines[:, 2], marker='.') return fig def animation_plotter(motivedata, bonsaidata, cricket_data, xlim, ylim, interval=10): """Plot animations from the motive, bonsai and cricket""" # TODO: generalize function to any number of lines to plot # First set up the figure, the axis, and the plot element we want to animate fig0 = plt.figure() ax0 = plt.axes(xlim=xlim, ylim=ylim) line0, = ax0.plot([], [], lw=2) line1, = ax0.plot([], [], lw=2) line2, = ax0.plot([], [], lw=2) # initialization function: plot the background of each frame def init(): line0.set_data([], []) line1.set_data([], []) line2.set_data([], []) return line0, line1, line2 # animation function. This is called sequentially def animate(i): # x = np.linspace(0, 2, 1000) # y = np.sin(2 * np.pi * (x - 0.01 * i)) line0.set_data(motivedata[:i, 0], motivedata[:i, 1]) line1.set_data(bonsaidata[:i, 0], bonsaidata[:i, 1]) line2.set_data(cricket_data[:i, 0], cricket_data[:i, 1]) return line0, line1, line2 # call the animator. blit=True means only re-draw the parts that have changed. anim = animation.FuncAnimation(fig0, animate, init_func=init, frames=motivedata.shape[0], interval=interval, blit=True) return anim def simple_animation(data_in, interval=10): """Animate the trajectories given""" # First set up the figure, the axis, and the plot element we want to animate fig0 = plt.figure() # ax0 = plt.axes(xlim=xlim, ylim=ylim) xlim = [
np.min(data_in[[0, 2, 4, 6, 8], :])
numpy.min
"""Property transfer models.""" import numpy as np from sklearn.base import BaseEstimator from sklearn.neighbors import NearestNeighbors class PropertiesTransfer(BaseEstimator): """Model to transfer rock properties using Nearest Neighbors algorithm.""" def __init__(self): self._nn = None self._neigh_dist = None self._neigh_ind = None self._new_shape = None def fit(self, original_grid, new_grid, n_neighbors=5, normalize_vector=(1, 1, 1)): """Fit Nearest Neighbors model. Parameters ---------- original_grid : geology.Grid Original grid. new_grid : geology.Grid New grid. n_neighbors : int, optional number of neighbors to use, by default 5. normalize_vector : list, optional vector to normalize distance, by default [1, 1, 1]. """ self._nn = NearestNeighbors(n_neighbors=n_neighbors) self._nn.fit(original_grid.cell_centroids.reshape(-1, 3) / np.asarray(normalize_vector)) self._neigh_dist, self._neigh_ind = self._nn.kneighbors( new_grid.cell_centroids.reshape(-1, 3) / np.asarray(normalize_vector)) self._new_shape = new_grid.dimens return self def dump(self, path): """Dump to a file (*.npz). Parameters ---------- path : str or pathlib.Path Path to file, ``.npz`` extension will be appended to the file name if it is not already there. """ np.savez(path, **{att: getattr(self, att) for att in ('_neigh_dist', '_neigh_ind', '_new_shape')}, ) return self def load(self, path): """Load from file. Parameters ---------- path : str or pathlib.Path File path. """ npzfile =
np.load(path, allow_pickle=True)
numpy.load
# -*- coding: utf-8 -*- import nnabla as nn import numpy as np import rawdata as rdat from tex_util import Texture """ from nnc_proj.($$project_name_of_nnc) import network """ from nnc_proj.model import network nn.clear_parameters() nn.parameter.load_parameters('./nnc_proj/model.nnp') ratios = rdat.ratios mvec = rdat.max_vector def estimate_sscurve(stress_roots, tex_info, num=1): ''' return:(array_like, [rootNum, 50]) strain, stress ''' x = nn.Variable((num, 1, 128, 128)) x2 = nn.Variable((num, 1)) y1, y2 = network(x, x2, test=True) # RD, TD なので2つ [num, xx, '2'] rootsNum = len(stress_roots) strain = np.empty((num, rootsNum, 50, 2)) stress = np.empty((num, rootsNum, 50, 2)) y_norm = np.array([np.linspace(0.5, 1, 50) for j in range(2)]).T for cnt in range(num): tex = Texture(volume=1000, tex_info=tex_info) img = tex.pole_figure() x.d[cnt, 0] = img / 255.0 for i, root in enumerate(stress_roots): x2.d = ratios[root] y1.forward() y2.forward() curve = y1.d[:] max_vec = y2.d[:] * mvec for cnt in range(num): strain[cnt, i] = curve[cnt] * max_vec[cnt, 0, :] stress[cnt, i] = y_norm * max_vec[cnt, 1, :] ave_stress = np.average(stress, axis=0) ave_strain = np.average(strain, axis=0) std =
np.std(stress, axis=0)
numpy.std
"""module to deal with gaussian cube type data NB: for all transformations, the cubes coordinate system is understood to be A = np.array([ [['(x0,y0,z0)', '(x0,y0,z1)'], ['(x0,y1,z0)', '(x0,y1,z1)']], [['(x1,y0,z0)', '(x1,y0,z1)'], ['(x1,y1,z0)', '(x1,y1,z1)']] ]) which leads to; A.shape -> (x length, y length, z length) """ from collections import OrderedDict from itertools import product import warnings import numpy from ejplugins import validate_against_schema with warnings.catch_warnings(record=True): warnings.filterwarnings("ignore", category=ImportWarning) import pymatgen as pym from pymatgen.io.ase import AseAtomsAdaptor import numpy as np import ase from ipyatom.geometry2d_utils import minimum_bounding_box import ipyatom.geometry3d_utils as g3 from scipy.linalg import expm from scipy.ndimage import zoom as ndzoom from scipy.interpolate import interpn from scipy.spatial.qhull import Delaunay from jsonschema import validate from jsonextended import units as eunits from ipyatom.utils import slice_mask, round_to_base, get_default_atom_map from ipyatom.repeat_cell import atoms_to_dict def gcube_to_dict(cube, cell_vectors, centre=(0., 0., 0.), name="", dtype="", vstruct=None, color_bbox="black"): """ convert gaussian cube data to visual dict Parameters ---------- cube: numpy.array cell_vectors: list [[a1,a2,a3],[b1,b2,b3],[c1,c2,c3]] centre: list [x, y, z] name: str name of structure dtype: str label of density type (e.g. charge or spin) vstruct: dict an existing vstruct to append to color_bbox: str or None color of outline bbox Returns ------- """ a, b, c = cell_vectors centre = 0.5 * (np.array(a) + np.array(b) + np.array(c)) output = {'type': 'repeat_density', 'name': name, 'dtype': dtype, 'centre': centre.tolist(), 'dcube': cube.copy(), 'cell_vectors': {"a": a, "b": b, "c": c}, 'color_bbox': color_bbox, 'transforms': []} if vstruct is not None: vstruct["elements"].append(output) return vstruct else: return {'elements': [output], 'transforms': []} # def ejdata_to_dict(data, name="", dtype="charge", lunit="angstrom", vstruct=None, color_bbox="black", # retrieve_atoms=True, atom_map=None, **kwargs): # """ convert ejplugin data to visual dict # # Parameters # ---------- # data: dict # must contain density and cell_vectors keys # name: str # name of structure # dtype: str # density type ("charge" or "spin") # lunit: str # length unit # vstruct: dict # an existing vstruct to append to # color_bbox: str or None # color of outline bbox # retrieve_atoms: bool # if present retrieve atomic positions as repeat_cell element (requires symbols and fcoords) # atom_map: None or dict # a mapping of atom labels to keys; ["radius", "color_fill", "color_outline", "transparency"], # e.g. {"H": {"radius": 1, "color_fill": '#bfbfbf', "color_outline": None, "transparency": 1.}, ...} # kwargs : object # additional per atom parameters (must be lists the same length as number of atoms), e.g. charge=[0,1,-1] # # Returns # ------- # # """ # gkey = "{}_density".format(dtype) # if gkey not in data or "cell_vectors" not in data: # raise ValueError("data does not contain both cell_vectors and {} keys".format(gkey)) # validate(data["cell_vectors"], {"type": "object", "required": ["a", "b", "c"], # "properties": { # "a": {"type": "object", "required": ["units", "magnitude"]}, # "b": {"type": "object", "required": ["units", "magnitude"]}, # "c": {"type": "object", "required": ["units", "magnitude"]} # }}) # cell = eunits.combine_quantities(data["cell_vectors"]) # cell = eunits.apply_unitschema(cell, {"a": lunit, "b": lunit, "c": lunit}, as_quantity=False) # cell_vectors = [cell["a"].tolist(), cell["b"].tolist(), cell["c"].tolist()] # output = gcube_to_dict(data[gkey], cell_vectors, name=name, dtype=dtype, # vstruct=vstruct, color_bbox=color_bbox) # # if "symbols" in data and "fcoords" in data and retrieve_atoms: # atoms = ase.Atoms(symbols=data["symbols"], scaled_positions=data["fcoords"], cell=cell_vectors) # output = atoms_to_dict(atoms, name=name, color_bbox=None, vstruct=output, atom_map=atom_map, **kwargs) # elif "symbols" in data and "ccoords" in data and retrieve_atoms: # atoms = ase.Atoms(symbols=data["symbols"], positions=data["ccoords"], cell=cell_vectors) # output = atoms_to_dict(atoms, name=name, color_bbox=None, vstruct=output, atom_map=atom_map, **kwargs) # # return output def ejdata_to_dict(data, name="", lunit="angstrom", vstruct=None, color_bbox="black", retrieve_atoms=True, atom_map=None, **kwargs): """ convert ejplugin data to visual dict Parameters ---------- data: dict must contain density and cell_vectors keys name: str name of structure dtype: str density type ("charge" or "spin") lunit: str length unit vstruct: dict an existing vstruct to append to color_bbox: str or None color of outline bbox retrieve_atoms: bool if present retrieve atomic positions as repeat_cell element (requires symbols and fcoords) atom_map: None or dict a mapping of atom labels to keys; ["radius", "color_fill", "color_outline", "transparency"], e.g. {"H": {"radius": 1, "color_fill": '#bfbfbf', "color_outline": None, "transparency": 1.}, ...} kwargs : object additional per atom parameters (must be lists the same length as number of atoms), e.g. charge=[0,1,-1] Returns ------- """ validate_against_schema(data, "edensity") data = eunits.combine_quantities(data) data = eunits.apply_unitschema(data, {"a": lunit, "b": lunit, "c": lunit, "ccoords": lunit}, as_quantity=False) cell = data["cell_vectors"] cell_vectors = [cell["a"].tolist(), cell["b"].tolist(), cell["c"].tolist()] vstruct = {'elements': [], 'transforms': []} if vstruct is None else vstruct for density in data["densities"]: vstruct = gcube_to_dict(density["magnitude"], cell_vectors, name=name, dtype=density["type"], vstruct=vstruct, color_bbox=color_bbox) if "atoms" in data and retrieve_atoms: adict = {"cell": cell_vectors} if "symbols" in data["atoms"]: adict["symbols"] = data["atoms"]["symbols"] else: adict["numbers"] = data["atoms"]["atomic_number"] if "ccoords" in data["atoms"]: adict["positions"] = data["atoms"]["ccoords"] else: adict["scaled_positions"] = data["atoms"]["fcoords"] atoms = ase.Atoms(**adict) vstruct = atoms_to_dict(atoms, name=name, color_bbox=None, vstruct=vstruct, atom_map=atom_map, **kwargs) return vstruct _atom_map_schema = { "type": "object", "patternProperties": { "^[a-zA-Z0-9]*$": { "type": "object", "required": ["radius", "color_fill"], "properties": { "radius": {"type": "number"}, } } } } def atoms_to_rdensity(atoms, cube_dims=(50, 50, 50), name="", dtype="nuclei", color_bbox="black", vstruct=None, atom_map=None, rdist_implement=2): """ convert an atom object to a repeat density Parameters ---------- atoms: pymatgen.core.structure.Structure or ase.Atoms cube_dims: tuple of int (adim, bdim, cdim) of final cube name: str name of structure color_bbox: str or None color of outline bbox vstruct: dict an existing vstruct to append to atom_map: None or dict a mapping of atom labels to keys; ["radius", "color_fill"], e.g. {"H": {"radius": 1, "color_fill": '#bfbfbf'}, ...} rdist_implement: int implementation for assigning coordinate to atom site (for optimisation testing) Returns ------- vstruct: dict color_map: dict {(<label>, <color>): <value in dcube>, ...} """ if isinstance(atoms, ase.atoms.Atoms): atoms = AseAtomsAdaptor.get_structure(atoms) if not isinstance(atoms, pym.core.structure.Structure): raise ValueError("struct must be ase.Atoms or pymatgen.Structure") if vstruct is not None: if "elements" not in vstruct: raise ValueError("the existing vstruct does not have an elements key") # get atom data if atom_map is None: atom_map = get_default_atom_map() validate(atom_map, _atom_map_schema) atom_data = atoms.as_dict() a, b, c = [_ for _ in atoms.lattice.matrix] centre = 0.5 * (a + b + c) sites = [] for i, site in enumerate(atom_data["sites"]): label = site["label"] site_data = {"ccoord": site["xyz"], "label": label} site_data.update(atom_map[label]) sites.append(site_data) # create a map of site labels to color and index color_map = {(d[0], d[1]): i + 1 for i, d in enumerate(sorted( set([(site["label"], site["color_fill"]) for site in sites])))} # create fractional coordinates cube ndim, mdim, ldim = cube_dims gcube = np.full((ldim, mdim, ndim), np.nan) indices = np.array(list(product(range(ldim), range(mdim), range(ndim)))) # convert indices to cartesian coordinates coords = np.einsum('...jk,...k->...j', np.array([a, b, c]).T, np.divide(
np.asarray(indices, dtype=np.float64)
numpy.asarray
import pandas as pd import numpy as np import matplotlib.pyplot as plt misclassification_list = list() model_num = 10 iteration_num = 100 dataset_num = 2 rep = 2 test_images = 120 for i in range(model_num): filename = 'mis_classify_' + str(i+1) + '_.csv' data_pd = pd.read_csv(filename, sep=',', header=None) data = data_pd.values data = data[:, 100:200] misclassification_list.append(data) misclassify_dict = dict() for i in range(len(misclassification_list)): unique, counts = np.unique(misclassification_list[i], return_counts=True) dic = dict(zip(unique, counts)) misclassify_dict = {x: misclassify_dict.get(x, 0) + dic.get(x, 0) for x in set(misclassify_dict).union(dic)} total_mis_classify = np.zeros((test_images*model_num, iteration_num)) for i in range(model_num): total_mis_classify[i*test_images:(i+1)*test_images, :] = misclassification_list[i] num_mis_classify_images = np.count_nonzero(total_mis_classify) for i in range(test_images): if i+1 in misclassify_dict: pass else: misclassify_dict[i+1] = 0 mis_list = np.zeros(test_images) print('Misclassified images percentage is calculated by for specific image, the misclassified' ' times divided total classification number') for i in range(test_images): mis_percent = misclassify_dict[i+1]/(model_num*iteration_num)*100 mis_list[i] = mis_percent # print('Misclassified images percentage for image', str(i+1), 'is: %.4f' % mis_percent, '%') # mis classification above 70% for i in range(len(mis_list)): if mis_list[i] >= 70: print('Mis classification percentage (above 70%) for image {} is {}'.format(int(i+1), mis_list[i])) cluster_chemistry_result_dataframe = pd.read_csv('test_cluster_chemistry_result.csv', header=None) cluster_chemistry_result = cluster_chemistry_result_dataframe.values cluster_chemistry_result = cluster_chemistry_result.reshape(1, int(test_images / (dataset_num*2))) cluster_chemistry_result = np.repeat(cluster_chemistry_result, rep) Y = np.copy(cluster_chemistry_result) for i in range(dataset_num-1): Y = np.concatenate((Y, cluster_chemistry_result)) # calculate accuracy of each class y_1 = 0 y_2 = 0 y_3 = 0 y_4 = 0 y_5 = 0 y_6 = 0 for i in range(len(Y)): if Y[i] == 1: y_1 = y_1 + 1 for i in range(len(Y)): if Y[i] == 2: y_2 = y_2 + 1 for i in range(len(Y)): if Y[i] == 3: y_3 = y_3 + 1 for i in range(len(Y)): if Y[i] == 4: y_4 = y_4 + 1 for i in range(len(Y)): if Y[i] == 5: y_5 = y_5 + 1 for i in range(len(Y)): if Y[i] == 6: y_6 = y_6 + 1 y_1 = y_1 * 100 * 10 y_2 = y_2 * 100 * 10 y_3 = y_3 * 100 * 10 y_4 = y_4 * 100 * 10 y_5 = y_5 * 100 * 10 y_6 = y_6 * 100 * 10 y_1_mis = 0 y_2_mis = 0 y_3_mis = 0 y_4_mis = 0 y_5_mis = 0 y_6_mis = 0 for row in range(total_mis_classify.shape[0]): for col in range(total_mis_classify.shape[1]): mis_sample = total_mis_classify[row, col] if mis_sample != 0: mis_sample = mis_sample - 1 mis_sample_class = Y[int(mis_sample)] if mis_sample_class == 1: y_1_mis = y_1_mis + 1 if mis_sample_class == 2: y_2_mis = y_2_mis + 1 if mis_sample_class == 3: y_3_mis = y_3_mis + 1 if mis_sample_class == 4: y_4_mis = y_4_mis + 1 if mis_sample_class == 5: y_5_mis = y_5_mis + 1 if mis_sample_class == 6: y_6_mis = y_6_mis + 1 # accuracy for group 1 y_1_acc = y_1_mis / y_1 y_1_acc = (1 - y_1_acc) * 100 # accuracy for group 2 y_2_acc = y_2_mis / y_2 y_2_acc = (1 - y_2_acc) * 100 # accuracy for group 3 y_3_acc = y_3_mis / y_3 y_3_acc = (1 - y_3_acc) * 100 # accuracy for group 4 y_4_acc = y_4_mis / y_4 y_4_acc = (1 - y_4_acc) * 100 # accuracy for group 5 y_5_acc = y_5_mis / y_5 y_5_acc = (1 - y_5_acc) * 100 # accuracy for group 6 y_6_acc = y_6_mis / y_6 y_6_acc = (1 - y_6_acc) * 100 x = [1, 2, 3, 4, 5, 6] test_accuracy_list = list() test_accuracy_list.append(y_1_acc) test_accuracy_list.append(y_2_acc) test_accuracy_list.append(y_3_acc) test_accuracy_list.append(y_4_acc) test_accuracy_list.append(y_5_acc) test_accuracy_list.append(y_6_acc) # test dataset accuracy of each class fig_accuracy_plot, ax = plt.subplots() # ax.set_title('Accuracy of each class') plt.scatter(x, test_accuracy_list) plt.xlabel('class number', fontsize=15) plt.ylabel('Accuracy of each class (percentage)', fontsize=15) plt.yticks(fontsize=9) plt.xticks([1, 2, 3, 4, 5, 6], ['class 1', 'class 2', 'class 3', 'class 4', 'class 5', 'class 6'], fontsize=9) plt.show() fig_accuracy_plot.savefig('Test accuracy of each class.jpg') plt.close(fig_accuracy_plot) # plot accuracy histogram for i in range(len(Y)): if Y[i] != np.min(Y[i:]): index = i + np.where(Y[i:] == np.min(Y[i:]))[0][0] Y[i], Y[index] = Y[index], Y[i] mis_list[i], mis_list[index] = mis_list[index], mis_list[i] for i in range(6+1): Y_sub = Y[np.where(Y == i)] mis_list_sub = mis_list[np.where(Y == i)] for num in range(len(mis_list_sub)): if mis_list_sub[num] != np.min(mis_list_sub[num:]): index = num + np.where(mis_list_sub[num:] == np.min(mis_list_sub[num:]))[0][0] mis_list_sub[num], mis_list_sub[index] = mis_list_sub[index], mis_list_sub[num] Y_sub[num], Y_sub[index] = Y_sub[index], Y_sub[num] # print(mis_list_sub) mis_list[np.where(Y == i)] = mis_list_sub x = [] for i in range(test_images): x.append(i) x_tick = [] for i in range(test_images): x_tick.append(str(Y[i])) color = [] for i in range(test_images): if Y[i] == 1: color.append('red') if Y[i] == 2: color.append('green') if Y[i] == 3: color.append('cyan') if Y[i] == 4: color.append('yellow') if Y[i] == 5: color.append('purple') if Y[i] == 6: color.append('black') fig, ax = plt.subplots() x = np.arange(120) plt.bar(x, height=mis_list, color=color) x_line = np.linspace(x[0], x[47], 1000) y = np.zeros(1000) y = y + test_accuracy_list[0] ax.plot(x_line, y) x_line = np.linspace(x[48], x[51], 1000) y = np.zeros(1000) y = y + test_accuracy_list[1] ax.plot(x_line, y) x_line = np.linspace(x[52], x[63], 1000) y = np.zeros(1000) y = y + test_accuracy_list[2] ax.plot(x_line, y) x_line = np.linspace(x[64], x[87], 1000) y = np.zeros(1000) y = y + test_accuracy_list[3] ax.plot(x_line, y) x_line =
np.linspace(x[88], x[111], 1000)
numpy.linspace
import os import gym import numpy as np import sys import pybullet from metagym.quadrupedal.robots import robot_config from metagym import quadrupedal from metagym.quadrupedal.robots import action_filter from metagym.quadrupedal.envs.utilities.ETG_model import ETG_layer,ETG_model from copy import copy Param_Dict = {'torso':1.0,'up':0.3,'feet':0.2,'tau':0.1,'done':1,'velx':0,'badfoot':0.1,'footcontact':0.1} Random_Param_Dict = {'random_dynamics':0,'random_force':0} def EnvWrapper(env,param,sensor_mode,normal=0,ETG_T=0.5,enable_action_filter=False, reward_p=1,ETG=1,ETG_path="",ETG_T2=0.5,random_param=None, ETG_H=20,act_mode="traj",vel_d=0.6,vel_mode="max", task_mode="normal",step_y=0.05): env = ETGWrapper(env=env,ETG=ETG,ETG_T=ETG_T,ETG_path=ETG_path, ETG_T2=ETG_T2,ETG_H=ETG_H,act_mode=act_mode, task_mode=task_mode,step_y=step_y) env = ActionFilterWrapper(env=env,enable_action_filter=enable_action_filter) env = RandomWrapper(env=env,random_param=random_param) env = ObservationWrapper(env=env,ETG=ETG,sensor_mode=sensor_mode,normal=normal,ETG_H = ETG_H) env = RewardShaping(env=env,param=param,reward_p=reward_p,vel_d=vel_d,vel_mode=vel_mode) return env class ActionFilterWrapper(gym.Wrapper): def __init__(self,env,enable_action_filter): gym.Wrapper.__init__(self, env) self.robot = self.env.robot self.pybullet_client = self.env.pybullet_client self.observation_space = self.env.observation_space self.action_space = self.env.action_space self.enable_action_filter = enable_action_filter and self.env.ETG.endswith("sac") if self.enable_action_filter: self._action_filter = self._BuildActionFilter() def reset(self,**kwargs): obs_all,info = self.env.reset(**kwargs) self._step_counter = 0 if self.enable_action_filter: self._ResetActionFilter() return obs_all,info def step(self,action,**kwargs): if self.enable_action_filter: action = self._FilterAction(action) obs_all, rew, done, info = self.env.step(action) self._step_counter += 1 return obs_all, rew, done, info def _BuildActionFilter(self): sampling_rate = 1 / self.env.env_time_step num_joints = 12 a_filter = action_filter.ActionFilterButter(sampling_rate=sampling_rate, num_joints=num_joints) return a_filter def _ResetActionFilter(self): self._action_filter.reset() def _FilterAction(self, action): # initialize the filter history, since resetting the filter will fill # the history with zeros and this can cause sudden movements at the start # of each episode if self._step_counter == 0: default_action = np.array([0,0,0]*4) self._action_filter.init_history(default_action) # for j in range(10): # self._action_filter.filter(default_action) filtered_action = self._action_filter.filter(action) # print(filtered_action) return filtered_action class ObservationWrapper(gym.Wrapper): def __init__(self, env,ETG,sensor_mode,normal,ETG_H): gym.Wrapper.__init__(self, env) # print("env_time:",self.env.env_time_step) self.robot = self.env.robot self.pybullet_client = self.env.pybullet_client self.observation_space = self.env.observation_space self.action_space = self.env.action_space self.sensor_mode = sensor_mode self.normal = normal self.ETG_H = ETG_H self.ETG = ETG self.ETG_mean = np.array([2.1505982e-02, 3.6674485e-02, -6.0444288e-02, 2.4625482e-02, 1.5869144e-02, -3.2513142e-02, 2.1506395e-02, 3.1869926e-02, -6.0140789e-02, 2.4625063e-02, 1.1628972e-02, -3.2163858e-02]) self.ETG_std = np.array([4.5967497e-02,2.0340437e-01, 3.7410179e-01, 4.6187632e-02, 1.9441207e-01, 3.9488649e-01, 4.5966785e-02 ,2.0323379e-01, 3.7382501e-01, 4.6188373e-02 ,1.9457331e-01, 3.9302582e-01]) if self.ETG: if "ETG" in self.sensor_mode.keys() and sensor_mode["ETG"] : sensor_shape = self.observation_space.high.shape[0] obs_h = np.array([1]*(sensor_shape+12)) obs_l = np.array([0]*(sensor_shape+12)) self.observation_space = gym.spaces.Box(obs_l,obs_h,dtype=np.float32) if "ETG_obs" in self.sensor_mode.keys() and sensor_mode["ETG_obs"] : sensor_shape = self.observation_space.high.shape[0] obs_h = np.array([1]*(sensor_shape+self.ETG_H)) obs_l = np.array([0]*(sensor_shape+self.ETG_H)) self.observation_space = gym.spaces.Box(obs_l,obs_h,dtype=np.float32) if "force_vec" in self.sensor_mode.keys() and sensor_mode["force_vec"]: sensor_shape = self.observation_space.high.shape[0] obs_h = np.array([1]*(sensor_shape+6)) obs_l = np.array([0]*(sensor_shape+6)) self.observation_space = gym.spaces.Box(obs_l,obs_h,dtype=np.float32) if "dynamic_vec" in self.sensor_mode.keys() and sensor_mode["dynamic_vec"]: sensor_shape = self.observation_space.high.shape[0] obs_h = np.array([1]*(sensor_shape+3)) obs_l = np.array([0]*(sensor_shape+3)) self.observation_space = gym.spaces.Box(obs_l,obs_h,dtype=np.float32) if "yaw" in self.sensor_mode.keys() and sensor_mode["yaw"]: sensor_shape = self.observation_space.high.shape[0] obs_h = np.array([1]*(sensor_shape+2)) obs_l = np.array([0]*(sensor_shape+2)) self.observation_space = gym.spaces.Box(obs_l,obs_h,dtype=np.float32) if "RNN" in self.sensor_mode.keys() and self.sensor_mode["RNN"]["time_steps"]>0: self.time_steps = sensor_mode["RNN"]["time_steps"] self.time_interval = sensor_mode["RNN"]["time_interval"] self.sensor_shape = self.observation_space.high.shape[0] self.obs_history = np.zeros((self.time_steps*self.time_interval,self.sensor_shape)) if sensor_mode["RNN"]["mode"] == "stack": obs_h = np.array([1]*(self.sensor_shape*(self.time_steps+1))) obs_l = np.array([0]*(self.sensor_shape*(self.time_steps+1))) self.observation_space = gym.spaces.Box(obs_l,obs_h,dtype=np.float32) def reset(self,**kwargs): obs,info = self.env.reset(**kwargs) self.dynamic_info = info["dynamics"] if self.ETG: if "ETG" in self.sensor_mode.keys() and self.sensor_mode["ETG"] : ETG_out = info["ETG_act"] if self.normal: ETG_out = (ETG_out-self.ETG_mean)/self.ETG_std obs = np.concatenate((obs,ETG_out),axis = 0) if "ETG_obs" in self.sensor_mode.keys() and self.sensor_mode["ETG_obs"] : ETG_obs = info["ETG_obs"] obs = np.concatenate((obs,ETG_obs),axis = 0) if "force_vec" in self.sensor_mode.keys() and self.sensor_mode["force_vec"]: force_vec = info["force_vec"] obs = np.concatenate((obs,force_vec),axis = 0) if "dynamic_vec" in self.sensor_mode.keys() and self.sensor_mode["dynamic_vec"]: dynamic_vec = self.dynamic_info obs = np.concatenate((obs,dynamic_vec),axis = 0) if "yaw" in self.sensor_mode.keys() and self.sensor_mode["yaw"]: if "d_yaw" in kwargs.keys(): d_yaw = kwargs["d_yaw"] else: d_yaw = 0 yaw_now = info["pose"][-1] yaw_info = np.array([np.cos(d_yaw-yaw_now),np.sin(d_yaw-yaw_now)]) obs = np.concatenate((obs,yaw_info),axis = 0) if "RNN" in self.sensor_mode.keys() and self.sensor_mode["RNN"]["time_steps"]>0: self.obs_history = np.zeros((self.time_steps*self.time_interval,self.sensor_shape)) obs_list = [] for t in range(self.time_steps): obs_list.append(copy(self.obs_history[t*self.time_interval])) obs_list.append(copy(obs)) self.obs_history[-1] = copy(obs) if self.sensor_mode["RNN"]["mode"]=="GRU": obs = np.stack(obs_list,axis=0) elif self.sensor_mode["RNN"]["mode"]=="stack": obs = np.array(obs_list).reshape(-1) return obs,info def step(self,action,**kwargs): obs, rew, done, info = self.env.step(action, **kwargs) if self.ETG: if "ETG" in self.sensor_mode.keys() and self.sensor_mode["ETG"] : ETG_out = info["ETG_act"] if self.normal: ETG_out = (ETG_out-self.ETG_mean)/self.ETG_std obs = np.concatenate((obs,ETG_out),axis = 0) if "ETG_obs" in self.sensor_mode.keys() and self.sensor_mode["ETG_obs"] : ETG_obs = info["ETG_obs"] obs = np.concatenate((obs,ETG_obs),axis = 0) if "force_vec" in self.sensor_mode.keys() and self.sensor_mode["force_vec"]: force_vec = info["force_vec"] obs = np.concatenate((obs,force_vec),axis = 0) if "dynamic_vec" in self.sensor_mode.keys() and self.sensor_mode["dynamic_vec"]: dynamic_vec = self.dynamic_info obs = np.concatenate((obs,dynamic_vec),axis = 0) if "yaw" in self.sensor_mode.keys() and self.sensor_mode["yaw"]: if "d_yaw" in kwargs.keys(): d_yaw = kwargs["d_yaw"] else: d_yaw = 0 yaw_now = info["pose"][-1] yaw_info = np.array([np.cos(d_yaw-yaw_now),np.sin(d_yaw-yaw_now)]) obs = np.concatenate((obs,yaw_info),axis = 0) if "RNN" in self.sensor_mode.keys() and self.sensor_mode["RNN"]["time_steps"]>0: obs_list = [] for t in range(self.time_steps): obs_list.append(copy(self.obs_history[t*self.time_interval])) obs_list.append(copy(obs)) self.obs_history[:-1] = copy(self.obs_history[1:]) self.obs_history[-1] = copy(obs) if self.sensor_mode["RNN"]["mode"]=="GRU": obs = np.stack(obs_list,axis=0) elif self.sensor_mode["RNN"]["mode"]=="stack": obs = np.array(obs_list).reshape(-1) return obs,rew,done,info class ETGWrapper(gym.Wrapper): def __init__(self, env,ETG,ETG_T,ETG_path,ETG_T2,ETG_H=20,act_mode="traj",task_mode="normal",step_y=0.05): gym.Wrapper.__init__(self, env) self.robot = self.env.robot self.pybullet_client = self.env.pybullet_client self.observation_space = self.env.observation_space self.action_space = self.env.action_space self.ETG_T2 = ETG_T2 self.ETG_T = ETG_T self.ETG_H = ETG_H self.act_mode = act_mode self.step_y = step_y self.task_mode = task_mode self.ETG = ETG phase = np.array([-np.pi/2,0]) if self.ETG: self.ETG_agent = ETG_layer(self.ETG_T,self.env.env_time_step,self.ETG_H,0.04,phase,0.2,self.ETG_T2) self.ETG_weight = 1 if len(ETG_path)>1 and os.path.exists(ETG_path): info = np.load(ETG_path) self.ETG_w = info["w"] self.ETG_b = info["b"] else: self.ETG_w = np.zeros((3,ETG_H)) self.ETG_b = np.zeros(3) self.ETG_model = ETG_model(task_mode=self.task_mode,act_mode=act_mode,step_y=self.step_y) self.last_ETG_act = np.zeros(12) self.last_ETG_obs = np.zeros(self.ETG_H) def reset(self,**kwargs): kwargs["info"] = True obs,info = self.env.reset(**kwargs) if self.ETG: if "ETG_w" in kwargs.keys() and kwargs["ETG_w"] is not None: self.ETG_w = kwargs["ETG_w"] if "ETG_b" in kwargs.keys() and kwargs["ETG_b"] is not None: self.ETG_b = kwargs["ETG_b"] self.ETG_agent.reset() state = self.ETG_agent.update2(t=self.env.get_time_since_reset()) act_ref = self.ETG_model.forward(self.ETG_w,self.ETG_b,state) act_ref = self.ETG_model.act_clip(act_ref,self.robot) self.last_ETG_act = act_ref*self.ETG_weight info["ETG_obs"] = state[0] info["ETG_act"] = self.last_ETG_act return obs,info def step(self,action,**kwargs): if self.ETG: action = np.asarray(action).reshape(-1)+self.last_ETG_act state = self.ETG_agent.update2(t=self.env.get_time_since_reset()) act_ref = self.ETG_model.forward(self.ETG_w,self.ETG_b,state) action_before = act_ref act_ref = self.ETG_model.act_clip(act_ref,self.robot) self.last_ETG_act = act_ref*self.ETG_weight obs, rew, done, info = self.env.step(action) info["ETG_obs"] = state[0] info["ETG_act"] = self.last_ETG_act else: obs, rew, done, info = self.env.step(action) return obs,rew,done,info class RewardShaping(gym.Wrapper): def __init__(self, env,param,reward_p=1,vel_d=0.6,vel_mode="max"): gym.Wrapper.__init__(self, env) self.param = param self.reward_p = reward_p self.last_base10 = np.zeros((10,3)) self.robot = self.env.robot self.pybullet_client = self.env.pybullet_client self.observation_space = self.env.observation_space self.action_space = self.env.action_space self.vel_d = vel_d self.steps = 0 self.vel_mode = vel_mode self.yaw_init = 0.0 def reset(self,**kwargs): self.steps = 0 obs,info = self.env.reset(**kwargs) self.yaw_init = info["yaw_init"] obs, rew, done, infos = self.env.step(np.zeros(self.action_space.high.shape[0])) self.last_basepose = info["base"] self.last_footposition = self.get_foot_world(info) base_pose = info["base"] self.last_base10 = np.tile(base_pose,(10,1)) info["foot_position_world"] = copy(self.last_footposition) info["scene"] = "plane" if "d_yaw" in kwargs.keys(): info['d_yaw'] = kwargs["d_yaw"] else: info['d_yaw'] = 0 if self.render: self.line_id = self.draw_direction(info) return obs,info def step(self,action,**kwargs): self.steps+=1 obs, rew, done, info = self.env.step(action, **kwargs) self.env_vec = np.array([0,0,0,0,0,0,0]) posex = info["base"][0] for env_v in info["env_info"]: if posex+0.2 >= env_v[0] and posex+0.2 <= env_v[1]: self.env_vec = env_v[2] break if self.env_vec[0]: info["scene"] = "upslope" elif self.env_vec[1]: info["scene"] = "downslope" elif self.env_vec[2]: info["scene"] = "upstair" elif self.env_vec[3]: info["scene"] = "downstair" else: info["scene"] = "plane" v = (np.array(info["base"])-np.array(self.last_basepose))/0.026 if "d_yaw" in kwargs.keys(): info['d_yaw'] = kwargs["d_yaw"] else: info['d_yaw'] = 0 donef = kwargs["donef"] if "donef" in kwargs.keys() else False info = self.reward_shaping(obs, rew, done, info,action,donef) info["vel"] = v rewards = 0 done = self.terminate(info) if done: info["done"] = -1 else: info["done"] = 0 for key in Param_Dict.keys(): if key in info.keys(): # print(key) rewards+= info[key] info["velx"] = rew self.last_basepose = copy(info["base"]) self.last_base10[1:,:] = self.last_base10[:9,:] self.last_base10[0,:] = np.array(info['base']).reshape(1,3) self.last_footposition = self.get_foot_world(info) info["foot_position_world"] = copy(self.last_footposition) if self.render: self.pybullet_client.removeUserDebugItem(self.line_id) self.line_id = self.draw_direction(info) return (obs, self.reward_p*rewards, done, info) def reward_shaping(self,obs, rew, done, info,action,donef,last_basepose=None,last_footposition=None): torso = self.re_torso(info,last_basepose=last_basepose) info['torso'] = self.param['torso']*torso if last_basepose is None: v = (np.array(info["base"])-np.array(self.last_basepose))/0.026 else: v = (np.array(info["base"])-np.array(last_basepose))/0.026 k = 1-self.c_prec(min(v[0],self.vel_d),self.vel_d,0.5) info['up'] = (self.param['up'])*self.re_up(info)*k info['feet'] = self.param['feet']*self.re_feet(info,last_footposition=last_footposition) info['tau'] = -self.param['tau']*info['energy']*k info['badfoot'] = -self.param['badfoot']*self.robot.GetBadFootContacts() lose_contact_num = np.sum(1.0-np.array(info["real_contact"])) info['footcontact'] = -self.param['footcontact']*max(lose_contact_num-2,0) return info def draw_direction(self,info): pose = info['base'] if self.render: id = self.pybullet_client.addUserDebugLine(lineFromXYZ=[pose[0],pose[1],0.6], lineToXYZ=[pose[0]+np.cos(info['d_yaw']),pose[1]+np.sin(info['d_yaw']),0.6], lineColorRGB=[1,0,1],lineWidth=2) return id def terminate(self,info): rot_mat = info["rot_mat"] pose = info["pose"] footposition = copy(info["footposition"]) footz = footposition[:,-1] base = info["base"] base_std = np.sum(np.std(self.last_base10,axis=0)) return rot_mat[-1]<0.5 or
np.mean(footz)
numpy.mean
import csv import glob from functools import partial from os import listdir, path import numpy as np import open3d as o3d from plyfile import PlyData, PlyElement from tqdm.auto import tqdm, trange from tqdm.contrib.concurrent import process_map, thread_map from scipy.spatial.transform import Rotation as R def progresser(ply_file, auto_position=True, write_safe=False, blocking=True, progress=False): try: plydata = PlyData.read(ply_file) vertex = plydata['vertex'] x = vertex['x'] y = vertex['y'] z = vertex['z'] if 'scalar' in vertex._property_lookup: i = vertex['scalar'] elif 'intensity' in vertex._property_lookup: i = vertex['intensity'] else: i = plydata['vertex'][plydata.elements[0].properties[3].name] return
np.concatenate((x, y, z, i), axis=0)
numpy.concatenate
import numpy as np from numdifftools import Gradient, Hessian, Jacobian import itertools import seaborn as sns # import pandas as pd from cycler import cycler import palettable import logging.config import matplotlib.pyplot as plt from plots.plot_helper_functions import set_size import os import matplotlib as mpl from opt_einsum import contract log = logging.getLogger(__name__) root = os.path.dirname(os.path.abspath(__file__)) class hybrid_rosenbrock: def __init__(self, n2, n1, mu, a, b, id=None): """ Hybrid-Rosenbrock class Args: n2 (int): Height of graph n1 (int): Width of graph mu (float): Mean a (float): Controls the extend of the ridge of the marginals formed b (array): n2 x (n1 -1) array controlling shallowness of ridges. Entries of b follow block structure and correspond to the x_2, ... x_D (excluding first coordinate) id (str): Give the provided settings a name. """ # String identifying a new set of parameters self.id = id # HRD parameters and setup self.n1 = n1 self.n2 = n2 self.mu = mu self.a = a self.b = b self.DoF = self.n2 * (self.n1 - 1) + 1 # Record evaluations self.nLikelihoodEvaluations = 0 self.nGradLikelihoodEvaluations = 0 self.nHessLikelihoodEvaluations = 0 # Precalculate theta independent objects self.jacGraph = self._getJacobianGraph() self.hessRes = self._getHessianResidual() ####################################################################################################################### def _getGraph(self, theta): """ Produces an array representation of graph denoted in Figure 2 - https://doi.org/10.1111/sjos.12532 Args: theta (array): DoF sized array, point to evaluate at. Returns: (array) n2 x n1 sized array """ graph = np.zeros((self.n2, self.n1)) graph[:, 0] = theta[0] graph[:, 1:] = theta[1:].reshape(self.n2, self.n1-1) return graph def _getResidual(self, theta): """ Residual vector of minus log density. See introduction to Chapter 10 Nocedal and Wright Args: theta (array): DoF sized array, point to evaluate at. Returns: (array) DoF sized array """ graph = self._getGraph(theta) residual = np.zeros(self.DoF) residual[0] = np.sqrt(self.a) * (theta[0] - self.mu) residual[1:] = (np.sqrt(self.b) * (graph[:, 1:] - graph[:, :-1] ** 2)).flatten() return np.sqrt(2) * residual def _index(self, j, i): """ Given position in graph, return corresponding component of input vector Args: j (int): row i (int): col Returns: (int) Corresponding coordinate of theta in graph location (j, i) """ if i == 0: return int(0) elif i > 0: return int(j * (self.n1 - 1) + i) def _getJacobianGraph(self): """ Get the derivative of the graph with respect to input. Returns: (array) n2 x n1 x DoF Note: For given a, b, n2, n1, this remains fixed. Calculate once and forget. """ jacGraph = np.zeros((self.n2, self.n1, self.DoF)) for j, i in itertools.product(range(self.n2), range(self.n1)): jacGraph[j, i, self._index(j, i)] = 1 return jacGraph def _getJacobianResidual(self, theta): """ Calculate the Jacobian of the residual vector Args: theta (array): DoF sized array, point to evaluate at. Returns (array): DoF x DoF shaped Jacobian evaluated at theta """ graph = self._getGraph(theta) jacResidual = np.zeros((self.DoF, self.DoF)) jacResidual[0, 0] = np.sqrt(self.a) jacGraphSquared = 2 * contract('db, dbe -> dbe', graph[:, :-1], self.jacGraph[:,:-1]) jacResidual[1:, :] = contract('ab, abe -> abe', np.sqrt(self.b), self.jacGraph[:,1:] - jacGraphSquared).reshape(self.DoF - 1, self.DoF) return np.sqrt(2) * jacResidual def _getHessianResidual(self): """ Calculate the Hessian of the residual vector Args: theta (array): DoF sized array, point to evaluate at. Returns (array): DoF x DoF x DoF shaped Hessian evaluated at theta """ # hessRes_num = Jacobian(Jacobian(self._getResidual))(np.zeros(self.DoF)) # np.allclose(hessRes_num, hessRes) hessRes = np.zeros((self.DoF, self.DoF, self.DoF)) hessRes[1:] = contract('ji, jif, jie -> jief', -np.sqrt(8 * self.b), self.jacGraph[:, :-1], self.jacGraph[:, :-1]).reshape(self.DoF - 1, self.DoF, self.DoF) return hessRes def getMinusLogLikelihood(self, theta): """ Returns minus log of Hybrid Rosenbrock Args: theta (array): DoF sized array, point to evaluate at. Returns: (float) Density evaluation """ r = self._getResidual(theta) self.nLikelihoodEvaluations += 1 return np.dot(r, r) / 2 def getGradientMinusLogLikelihood(self, theta): """ Evaluates gradient of minus log of Hybrid Rosenbrock Args: theta (array): DoF sized array, point to evaluate at. Returns: (array) DoF shaped array """ r = self._getResidual(theta) jr = self._getJacobianResidual(theta) self.nGradLikelihoodEvaluations += 1 return r.T @ jr def getGNHessianMinusLogLikelihood(self, theta): """ Calculate Gauss-Newton approximation of Hybrid Rosenbrock Args: theta (array): DoF sized array, point to evaluate at. Returns: (array) DoF x DoF shaped array of Gauss-Newton approximation at theta. """ jr = self._getJacobianResidual(theta) return contract('af, ae -> ef', jr, jr) def getHessianMinusLogLikelihood(self, theta): """ Calculates Hessian of minus log Hybrid Rosenbrock Args: theta (array): DoF sized array, point to evaluate at. Returns: (array): DoF x DoF shaped array of Hessian of Hybrid Rosenbrock evaluated at theta """ # hessNum = Jacobian(Jacobian(self.getMinusLogLikelihood))(theta) r = self._getResidual(theta) jr = self._getJacobianResidual(theta) self.nHessLikelihoodEvaluations += 1 return contract('af, ae -> ef', jr, jr) + contract('a, aef -> ef', r, self.hessRes) def getJerkMinusLogLikelihood(self, theta): """ Evaluate third order derivatives Args: theta (array): DoF sized array, point to evaluate at. Returns: """ # TODO raise NotImplementedError def getNormalizationConstant(self): """ Evaluate normalization constant of Hybrid Rosenbrock given settings. Returns: """ return np.sqrt(self.a / (np.pi ** self.DoF)) * np.prod(
np.sqrt(self.b)
numpy.sqrt
from mri_modules.utils import * import os import numpy as np import cv2 import shutil from skimage.measure import marching_cubes_lewiner as marching_cubes import stl from stl import mesh import tensorflow as tf from tensorflow.keras.models import load_model import skimage.transform import nibabel as nib import h5py import scipy from mri_modules.load_in_arrays import * import time import random import tensorflow.keras as keras import tensorflow.keras.backend as K import nilearn import SimpleITK as sitk import imregpoc from math import pi import sys from skimage.morphology import convex_hull_image start_time = time.time() def binarize(array, min_): binary = array.copy() binary[array < min_] = 0 binary[array >= min_] = 1 return binary def dilate_up(array, size, stacked = True): if stacked: binary = np.squeeze(array.copy()[0], axis = 3) else: binary = array.copy() binary[binary > 0] = 1 kernel = scipy.ndimage.generate_binary_structure(3, 1) blew_up = scipy.ndimage.binary_dilation(binary.astype('uint8'), kernel, iterations=size) if stacked: return np.stack([np.stack([blew_up], axis = 3)]) else: return blew_up def translate_3d(array, translation): original_array = array.copy() array_translated = array.copy() array_translated[:] = 0 for z,Slice in enumerate(original_array): for y,line in enumerate(Slice): for x,pixel in enumerate(line): try: array_translated[z+translation[0]][y+translation[1]][x+translation[2]] = pixel except: pass return array_translated def touching_island(reference, array, stacked = True): if stacked: array = np.squeeze(array.copy()[0], axis = 3) array[array > 0] = 1 reference = np.squeeze(reference.copy()[0], axis = 3) reference[reference > 0] = 1 else: array[array > 0] = 1 reference[reference > 0] = 1 masked = array.copy() masked[:] = 0 touching_structure_3d =[[[0,0,0], [0,1,0], [0,0,0]], [[0,1,0], [1,1,1], [0,1,0]], [[0,0,0], [0,1,0], [0,0,0]]] markers, num_features = scipy.ndimage.measurements.label(array, touching_structure_3d) reference_idx = np.unique(markers[reference == 1]) for idx in reference_idx: masked[markers == idx] = 1 masked[array == 0] = 0 if stacked: return np.stack([np.stack([masked], axis = 3)]) else: return masked def biggest_island(input_array, stacked = True): if stacked: masked = np.squeeze(input_array.copy()[0], axis = 3) binary = np.squeeze(input_array.copy()[0], axis = 3) binary[:] = 0 binary[np.squeeze(input_array[0], axis = 3) > 0] = 1 else: masked = input_array.copy() binary = input_array.copy() binary[:] = 0 binary[input_array > 0] = 1 touching_structure_3d =[[[0,0,0], [0,1,0], [0,0,0]], [[0,1,0], [1,1,1], [0,1,0]], [[0,0,0], [0,1,0], [0,0,0]]] markers,_ = scipy.ndimage.measurements.label(binary,touching_structure_3d) markers[binary == 0] = 0 counts = np.bincount(markers.ravel()) counts[0] = 0 noise_idx = np.where(counts != np.max(counts)) noise = np.isin(markers, noise_idx) binary[noise] = 0 masked[binary == 0] = 0 if stacked: return np.stack([np.stack([masked], axis = 3)]) else: return masked def combine_zeros(arrays): combined = arrays[0].copy() for array in arrays: combined[array < 0.1] = 0 return combined def adaptive_threshold(array, course, precise, blur_precision = 0, stacked = True): if stacked: thresholded_array = np.squeeze(array.copy()[0], axis = 3) thresholded_array = thresholded_array*255 thresholded_array[thresholded_array > 255] = 255 else: thresholded_array = array.copy() thresholded_array = thresholded_array*255 thresholded_array[thresholded_array > 255] = 255 blurred = scipy.ndimage.gaussian_filter(thresholded_array, blur_precision) adap = [] for image in blurred: thresh = cv2.adaptiveThreshold(image.astype('uint8'), 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, course, 2) thresh2 = cv2.adaptiveThreshold(image.astype('uint8'), 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, precise, 2) thresh3 = thresh.copy() thresh3[:] = 255 thresh3[thresh2 == 0] = 0 thresh3[thresh == 0] = 0 adap.append(thresh3) adap = np.stack(adap) thresholded_array[adap == 0] = 0 if stacked: return np.stack([np.stack([thresholded_array/255], axis = 3)]) else: return thresholded_array/255 def generate_stl(array_3d, stl_file_path, stl_resolution): array = array_3d.copy() verts, faces, norm, val = marching_cubes(array, 0.01, step_size = stl_resolution, allow_degenerate=True) mesh = stl.mesh.Mesh(np.zeros(faces.shape[0], dtype=stl.mesh.Mesh.dtype)) for i, f in enumerate(faces): for j in range(3): mesh.vectors[i][j] = verts[f[j],:] if not stl_file_path.endswith(".stl"): stl_file_path += ".stl" if not os.path.exists(os.path.dirname(stl_file_path)): os.makedirs(os.path.dirname(stl_file_path)) mesh.save(stl_file_path) def find_median_grayscale(array): zero_pixels = float(np.count_nonzero(array==0)) single_dimensional = array.flatten().tolist() single_dimensional.extend(np.full((1, int(zero_pixels)), 1000).flatten().tolist()) return np.median(single_dimensional) def locate_bounds(array, stacked = True): if stacked: left = np.squeeze(array.copy()[0], axis = 3).shape[2] right = 0 low = np.squeeze(array.copy()[0], axis = 3).shape[1] high = 0 shallow = np.squeeze(array.copy()[0], axis = 3).shape[0] deep = 0 array_3d = np.squeeze(array.copy()[0], axis = 3) else: left = array.copy().shape[2] right = 0 low = array.copy().shape[1] high = 0 shallow = array.copy().shape[0] deep = 0 array_3d = array.copy() for z,Slice in enumerate(array_3d): for y,line in enumerate(Slice): for x,pixel in enumerate(line): if pixel > 0: if z > deep: deep = z if z < shallow: shallow = z if y > high: high = y if y < low: low = y if x > right: right = x if x < left: left = x return [left,right,low,high,shallow,deep] def pad(array): padded = [] for image in array: padded.append(image) padded.append(np.zeros((array.shape[1],array.shape[2]))) padded.append(np.zeros((array.shape[1],array.shape[2]))) final = translate_3d(np.stack(padded), [1,1,1]) return final def write_images(array, test_folder_path): if not os.path.exists(test_folder_path): os.makedirs(test_folder_path) for n,image in enumerate(array): file_name = str(str(n) +'.png') cv2.imwrite(os.path.join(test_folder_path, file_name), image*255) def circle_highlighted(reference, binary, color): circled = reference.copy() binary = binary.copy() binary[binary > 0] = 1 for n, image in enumerate(binary): contours, _ = cv2.findContours(image.astype('uint8'),cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) cv2.drawContours(circled[n], contours, -1,color, 1) return circled def preprocess_data(path,rescale_factor = None,translation = None): print(path) image_data, valid = load_dicom_folder(path, updating_labels = False) print(image_data.shape) print(valid) print(np.max(image_data)) print("oofoofoofoofofofofofof") '''if "t2" in path.lower(): image_data = np.rot90(image_data, axes = (2,1)).T''' image_data = image_data/np.max(image_data) blank_unscaled_array = image_data.copy() blank_unscaled_array[:] = 0 z_zoom = image_size/image_data.shape[0] y_zoom = image_size/image_data.shape[1] x_zoom = image_size/image_data.shape[2] print(z_zoom, y_zoom, x_zoom) rescaled_blank = skimage.transform.rescale(blank_unscaled_array, (z_zoom, y_zoom, x_zoom)) image_data = np.stack([np.stack([image_data], axis = 3)]) if rescale_factor is None: bounds_finder = image_data.copy() bounds_finder = adaptive_threshold(bounds_finder, 101, 45, 1) bounds_finder = biggest_island(bounds_finder) bounds = locate_bounds(bounds_finder) [left,right,low,high,shallow,deep] = bounds x_size = abs(left-right) y_size = abs(low-high) z_size = abs(shallow-deep) max_size = np.max([x_size, y_size, z_size]) rescale_factor = (image_size*0.8)/max_size backscale_factor = 1/rescale_factor image_data = skimage.transform.rescale(np.squeeze(image_data.copy()[0], axis = 3), (rescale_factor, rescale_factor, rescale_factor)) if translation is None: bounds_finder = image_data.copy() bounds_finder = adaptive_threshold(bounds_finder, 101, 45, 1, stacked = False) bounds_finder = biggest_island(bounds_finder, stacked = False) bounds = locate_bounds(np.stack([np.stack([bounds_finder], axis = 3)])) else: bounds=translation print("\n\nbounds:",bounds,"\n\n") [left,right,low,high,shallow,deep] = bounds image_data = translate_3d(image_data, [-shallow,-low,-left]) rescaled_array = rescaled_blank.copy() for z,Slice in enumerate(image_data): for y,line in enumerate(Slice): for x,pixel in enumerate(line): try: rescaled_array[z][y][x] = pixel except: pass return rescaled_array, rescale_factor,bounds def ConvNetsemantic(x,y,z): inputs = keras.layers.Input((x,y,z, 3)) p0 = inputs c1, p1 = down_block(p0, 8, 0.1) #128 -> 64 print(p1.shape) c2, p2 = down_block(p1, 16, 0.1) #64 -> 32 c3, p3 = down_block(p2, 32, 0.2) #32 -> 16 c4, p4 = down_block(p3, 64, 0.3) #16->8 c5, p5 = down_block(p4, 128, 0.3) #16->8 c6, p6 = down_block(p5, 256, 0.3) #16->8 c7, p7 = down_block(p6, 512, 0.3) #16->8 bn = bottleneck(p7, 1024, 0.4) print(bn.shape) u1 = up_block(bn, c7, 512, 0.3) #8 -> 16 u2 = up_block(u1, c6, 256, 0.2) #16 -> 32 u3 = up_block(u2, c5, 128, 0.1) #32 -> 64 u4 = up_block(u3, c4, 64, 0.1) #64 -> 128 u5 = up_block(u4, c3, 32, 0.1) #64 -> 128 u6 = up_block(u5, c2, 16, 0.1) #64 -> 128 u7 = up_block(u6, c1, 8, 0.1) #64 -> 128 outputs = tf.keras.layers.Conv3D(4, (1, 1, 1),padding='same', activation="softmax")(u7) #outputs = keras.layers.Conv3D(1, (1, 1, 1), padding="same", activation="relu")(u4) print("out") print(outputs.shape) model = keras.models.Model(inputs, outputs) return model def register(fixed_image, moving_image, orig, transform = None): if transform is None: resamples = [] metrics = [] transforms = [] for i in range (1,10): ImageSamplingPercentage = 1 initial_transform = sitk.CenteredTransformInitializer(fixed_image, moving_image, sitk.ScaleVersor3DTransform(), sitk.CenteredTransformInitializerFilter.MOMENTS) registration_method = sitk.ImageRegistrationMethod() registration_method.SetMetricAsMattesMutualInformation(numberOfHistogramBins=200) registration_method.SetMetricSamplingStrategy(registration_method.RANDOM) registration_method.SetMetricSamplingPercentage(float(ImageSamplingPercentage)/100) registration_method.SetInterpolator(sitk.sitkLinear) registration_method.SetOptimizerAsGradientDescent(learningRate=0.001, numberOfIterations=10**5, convergenceMinimumValue=1e-6, convergenceWindowSize=100) #Once registration_method.SetOptimizerScalesFromPhysicalShift() registration_method.SetInitialTransform(initial_transform) #registration_method.SetShrinkFactorsPerLevel(shrinkFactors = [4,2,1]) #registration_method.SetSmoothingSigmasPerLevel(smoothingSigmas = [2,1,0]) #registration_method.SmoothingSigmasAreSpecifiedInPhysicalUnitsOn() transform = registration_method.Execute(fixed_image, moving_image) #print(transform) print("number:",i) print(registration_method.GetMetricValue()) metrics.append(registration_method.GetMetricValue()) resamples.append(sitk.Resample(orig, fixed_image, transform, sitk.sitkLinear, 0.0, moving_image.GetPixelID())) transforms.append(transform) print(np.min(metrics)) return sitk.GetArrayFromImage(resamples[metrics.index(np.min(metrics))]),transforms[metrics.index(np.min(metrics))] else: return sitk.GetArrayFromImage(sitk.Resample(orig, fixed_image, transform, sitk.sitkLinear, 0.0, moving_image.GetPixelID())),transform def adaptive_threshold(array, course, precise, blur_precision = 0, stacked = True): if stacked: thresholded_array = np.squeeze(array.copy()[0], axis = 3) thresholded_array = thresholded_array*255 thresholded_array[thresholded_array > 255] = 255 else: thresholded_array = array.copy() thresholded_array = thresholded_array*255 thresholded_array[thresholded_array > 255] = 255 blurred = scipy.ndimage.gaussian_filter(thresholded_array, blur_precision) adap = [] for image in blurred: thresh = cv2.adaptiveThreshold(image.astype('uint8'), 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, course, 2) thresh2 = cv2.adaptiveThreshold(image.astype('uint8'), 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, precise, 2) thresh3 = thresh.copy() thresh3[:] = 255 thresh3[thresh2 == 0] = 0 thresh3[thresh == 0] = 0 adap.append(thresh3) adap = np.stack(adap) thresholded_array[adap == 0] = 0 if stacked: return np.stack([np.stack([thresholded_array/255], axis = 3)]) else: return thresholded_array/255 def convex_border(array, thickness): contour_only = array.copy() binary = array.copy() contour_only[:] = 0 binary[:] = 0 binary[array > 0] = 255 cont = [] for n, image in enumerate(binary): contours, _ = cv2.findContours(image.astype('uint8'),cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) for contour in contours: hull = cv2.convexHull(contour) cv2.drawContours(contour_only[n], [hull], -1, 200, thickness) return contour_only def convex_hull(array): contour_only = array.copy() binary = array.copy() hull = [] binary[:] = 0 binary[array > 0.05] = 255 cont = [] for n, image in enumerate(binary): convex = np.array(convex_hull_image(image.astype('uint8')),dtype="float64") hull.append(convex) return np.stack(hull) def fill_holes_binary(array, sense): binary = array.copy() binary_original = array.copy() binary_original[:] = 0 binary_original[array > 0] = 1 binary[:] = 0 binary[array == 0] = 1 touching_structure_2d = [[0,1,0], [1,1,1], [0,1,0]] denoised = [] for n,image in enumerate(binary): markers, num_features = scipy.ndimage.measurements.label(image,touching_structure_2d) omit = markers[0][0] flat = markers.ravel() binc = np.bincount(flat) binc_not = np.bincount(flat[flat == omit]) noise_idx2 = np.where(binc > sense) noise_idx1 = np.where(binc == np.max(binc_not)) mask1 = np.isin(markers, noise_idx1) mask2 = np.isin(markers, noise_idx2) image[mask1] = 0 image[mask2] = 0 denoised.append(image) denoised = np.stack(denoised) binary_original[denoised == 1] = 1 return binary_original def convex_shape(input_array): #binary = adaptive_threshold(input_array, 101, 45, 1, stacked = False) #binary[input_array < 0.1] = 0 binary = np.array(input_array > 0.1,dtype = "float64") binary = biggest_island(binary, stacked = False) binary = convex_hull(binary) binary = biggest_island(binary, stacked = False) return binary def trim(flair,t1,t2): flair_cut = flair.copy() t1_cut = t1.copy() t1_cut[:] = 0 t2_cut = t2.copy() t2_cut[:] = 0 for n,image in enumerate(flair): if np.max(flair) > 0 and np.max(t1) > 0 and np.max(t2) > 0: flair_cut[n] = flair[n] t1_cut[n] = t1[n] t2_cut[n] = t2[n] return flair_cut, t1_cut, t2_cut def normalize(flair,t1,t2): flair = flair/np.max(flair) blank_unscaled_array = flair.copy() blank_unscaled_array[:] = 0 z_zoom = image_size/flair.shape[0] y_zoom = image_size/flair.shape[1] x_zoom = image_size/flair.shape[2] image_data1 = skimage.transform.rescale(flair, (z_zoom, y_zoom, x_zoom)) original_array1 = image_data1.copy() original_array1[:] = 0 image_data = np.stack([np.stack([flair], axis = 3)]) original_unscaled_array = image_data.copy() bounds = locate_bounds(image_data) [left,right,low,high,shallow,deep] = bounds x_size = abs(left-right) y_size = abs(low-high) z_size = abs(shallow-deep) max_size = np.max([x_size, y_size, z_size]) image_data = translate_3d(np.squeeze(image_data.copy()[0], axis = 3), [-shallow,-low,-left]) rescale_factor = (image_size*0.8)/max_size print("rescale factor:", rescale_factor) backscale_factor = 1/rescale_factor image_data = skimage.transform.rescale(image_data, (rescale_factor, rescale_factor, rescale_factor)) original_scaled_down = image_data.copy() for z,Slice in enumerate(image_data): for y,line in enumerate(Slice): for x,pixel in enumerate(line): try: original_array1[z][y][x] = pixel except: pass flair = original_array1.copy() ########################### T1CE #################################### t1 = t1/np.max(t1) image_data = translate_3d(t1, [-shallow,-low,-left]) image_data = skimage.transform.rescale(image_data, (rescale_factor, rescale_factor, rescale_factor)) original_array1[:] = 0 for z,Slice in enumerate(image_data): for y,line in enumerate(Slice): for x,pixel in enumerate(line): try: original_array1[z][y][x] = pixel except: pass t1ce = original_array1.copy() ########################### T2 #################################### t2 = t2/np.max(t2) image_data = translate_3d(t2, [-shallow,-low,-left]) image_data = skimage.transform.rescale(image_data, (rescale_factor, rescale_factor, rescale_factor)) original_array1[:] = 0 for z,Slice in enumerate(image_data): for y,line in enumerate(Slice): for x,pixel in enumerate(line): try: original_array1[z][y][x] = pixel except: pass t2 = original_array1.copy() return flair,t1ce,t2 def ConvNetTumor(x,y,z): inputs = keras.layers.Input((x,y,z, 1)) p0 = inputs c1, p1 = down_block(p0, 16, 0.1) #128 -> 64 print(p1.shape) c2, p2 = down_block(p1, 32, 0.1) #64 -> 32 c3, p3 = down_block(p2, 64, 0.2) #32 -> 16 c4, p4 = down_block(p3, 128, 0.3) #16->8 bn = bottleneck(p4, 256, 0.4) print(bn.shape) u1 = up_block(bn, c4, 128, 0.3) #8 -> 16 u2 = up_block(u1, c3, 64, 0.2) #16 -> 32 u3 = up_block(u2, c2, 32, 0.1) #32 -> 64 u4 = up_block(u3, c1, 16, 0.1) #64 -> 128 outputs = tf.keras.layers.Conv3D(1, (1, 1, 1),padding='same', activation="sigmoid")(u4) #outputs = keras.layers.Conv3D(1, (1, 1, 1), padding="same", activation="relu")(u4) print("out") print(outputs.shape) model = keras.models.Model(inputs, outputs) return model def ConvNetbinary(x,y,z): inputs = keras.layers.Input((x,y,z, 3)) p0 = inputs c1, p1 = down_block(p0, 4, 0.1) #128 -> 64 print(p1.shape) c2, p2 = down_block(p1, 8, 0.1) #64 -> 32 c3, p3 = down_block(p2, 16, 0.2) #32 -> 16 c4, p4 = down_block(p3, 32, 0.3) #16->8 c5, p5 = down_block(p4, 64, 0.3) #16->8 c6, p6 = down_block(p5, 128, 0.3) #16->8 c7, p7 = down_block(p6, 256, 0.3) #16->8 bn = bottleneck(p7, 512, 0.4) print(bn.shape) u1 = up_block(bn, c7, 256, 0.3) #8 -> 16 u2 = up_block(u1, c6, 128, 0.2) #16 -> 32 u3 = up_block(u2, c5, 64, 0.1) #32 -> 64 u4 = up_block(u3, c4, 32, 0.1) #64 -> 128 u5 = up_block(u4, c3, 16, 0.1) #64 -> 128 u6 = up_block(u5, c2, 8, 0.1) #64 -> 128 u7 = up_block(u6, c1, 4, 0.1) #64 -> 128 outputs = tf.keras.layers.Conv3D(1, (1, 1, 1),padding='same', activation="sigmoid")(u7) #outputs = keras.layers.Conv3D(1, (1, 1, 1), padding="same", activation="relu")(u4) print("out") print(outputs.shape) model = keras.models.Model(inputs, outputs) return model def down_block_e(x, filters, dropout, kernel_size=(3, 3, 3), padding="same", strides=1): print(x.shape) c = keras.layers.Conv3D(filters, kernel_size, padding=padding, strides=strides, activation="elu", input_shape = x.shape[1:], kernel_initializer='he_normal')(x) c = keras.layers.Dropout(dropout)(c) c = keras.layers.Conv3D(filters, kernel_size, padding=padding, strides=strides, activation="elu", input_shape = c.shape[1:], kernel_initializer='he_normal')(c) p = keras.layers.MaxPool3D(pool_size = (2, 2, 2))(c) return c, p def up_block_e(x, skip, filters, dropout,kernel_size=(3, 3, 3), padding="same", strides=1): us = keras.layers.UpSampling3D((2, 2, 2))(x) concat = keras.layers.Concatenate()([us, skip]) c = keras.layers.Conv3D(filters, kernel_size, padding=padding, strides=strides, activation="elu", input_shape = concat.shape[1:], kernel_initializer='he_normal')(concat) c = keras.layers.Dropout(dropout)(c) c = keras.layers.Conv3D(filters, kernel_size, padding=padding, strides=strides, activation="elu", input_shape = c.shape[1:], kernel_initializer='he_normal')(c) return c def bottleneck_e(x, filters, dropout, kernel_size=(3, 3, 3), padding="same", strides=1): c = keras.layers.Conv3D(filters, kernel_size, padding=padding, strides=strides, activation="elu", input_shape = x.shape[1:], kernel_initializer='he_normal')(x) c = keras.layers.Dropout(dropout) (c) c = keras.layers.Conv3D(filters, kernel_size, padding=padding, strides=strides, activation="elu", input_shape = c.shape[1:], kernel_initializer='he_normal')(c) return c def ConvNetSemantic64(x,y,z): inputs = keras.layers.Input((x,y,z, 3)) p0 = inputs c1, p1 = down_block_e(p0, 16, 0.1) #128 -> 64 print(p1.shape) c2, p2 = down_block_e(p1, 32, 0.1) #64 -> 32 c3, p3 = down_block_e(p2, 64, 0.2) #32 -> 16 c4, p4 = down_block_e(p3, 128, 0.3) #16->8 c5, p5 = down_block_e(p4, 256, 0.3) #16->8 c6, p6 = down_block_e(p5, 512, 0.3) #16->8 bn = bottleneck_e(p6, 1024, 0.4) print(bn.shape) u1 = up_block_e(bn, c6, 512, 0.3) #8 -> 16 u2 = up_block_e(u1, c5, 256, 0.2) #16 -> 32 u3 = up_block_e(u2, c4, 128, 0.1) #32 -> 64 u4 = up_block_e(u3, c3, 64, 0.1) #64 -> 128 u5 = up_block_e(u4, c2, 32, 0.1) #64 -> 128 u6 = up_block_e(u5, c1, 16, 0.1) #64 -> 128 outputs = tf.keras.layers.Conv3D(4, (1, 1, 1),padding='same', activation="softmax")(u6) #outputs = keras.layers.Conv3D(1, (1, 1, 1), padding="same", activation="relu")(u4) print("out") print(outputs.shape) model = keras.models.Model(inputs, outputs) return model def down_block(x, filters, dropout, kernel_size=(3, 3, 3), padding="same", strides=1): print(x.shape) c = keras.layers.Conv3D(filters, kernel_size, padding=padding, strides=strides, activation="relu", input_shape = x.shape[1:], kernel_initializer='he_normal')(x) c = keras.layers.Dropout(dropout)(c) c = keras.layers.Conv3D(filters, kernel_size, padding=padding, strides=strides, activation="relu", input_shape = c.shape[1:], kernel_initializer='he_normal')(c) p = keras.layers.MaxPool3D(pool_size = (2, 2, 2))(c) return c, p def up_block(x, skip, filters, dropout,kernel_size=(3, 3, 3), padding="same", strides=1): us = keras.layers.UpSampling3D((2, 2, 2))(x) concat = keras.layers.Concatenate()([us, skip]) c = keras.layers.Conv3D(filters, kernel_size, padding=padding, strides=strides, activation="relu", input_shape = concat.shape[1:], kernel_initializer='he_normal')(concat) c = keras.layers.Dropout(dropout)(c) c = keras.layers.Conv3D(filters, kernel_size, padding=padding, strides=strides, activation="relu", input_shape = c.shape[1:], kernel_initializer='he_normal')(c) return c def bottleneck(x, filters, dropout, kernel_size=(3, 3, 3), padding="same", strides=1): c = keras.layers.Conv3D(filters, kernel_size, padding=padding, strides=strides, activation="relu", input_shape = x.shape[1:], kernel_initializer='he_normal')(x) c = keras.layers.Dropout(dropout) (c) c = keras.layers.Conv3D(filters, kernel_size, padding=padding, strides=strides, activation="relu", input_shape = c.shape[1:], kernel_initializer='he_normal')(c) return c def ConvNetRough(x,y,z): inputs = keras.layers.Input((x,y,z, 1)) p0 = inputs c1, p1 = down_block(p0, 32, 0.1) #128 -> 64 print(p1.shape) c2, p2 = down_block(p1, 64, 0.1) #64 -> 32 c3, p3 = down_block(p2, 128, 0.2) #32 -> 16 bn = bottleneck(p3, 256, 0.4) print(bn.shape) u1 = up_block(bn, c3, 128, 0.3) #16 -> 32 u2 = up_block(u1, c2, 64, 0.2) #16 -> 64 u3 = up_block(u2, c1, 32, 0.1) #32 -> 128 outputs = tf.keras.layers.Conv3D(1, (1, 1, 1),padding='same', activation="sigmoid")(u3) print("out") print(outputs.shape) model = keras.models.Model(inputs, outputs) return model output_image_path = "C:/Users/JiangQin/Documents/python/ct to tumor identifier project/image ct visualizations/Machine Learning 2 models test" image_size = 128 brain_seg_model_top = "C:/Users/JiangQin/Documents/c++/build-MRImage3D-Desktop_Qt_5_15_0_MSVC2015_64bit-Debug/models/flair_brain_top.h5" brain_seg_model_top2 = "C:/Users/JiangQin/Documents/c++/build-MRImage3D-Desktop_Qt_5_15_0_MSVC2015_64bit-Debug/models/flair_brain_top.h5" brain_seg_model_front = "C:/Users/JiangQin/Documents/c++/build-MRImage3D-Desktop_Qt_5_15_0_MSVC2015_64bit-Debug/models/flair_brain_front.h5" brain_seg_model_side = "C:/Users/JiangQin/Documents/c++/build-MRImage3D-Desktop_Qt_5_15_0_MSVC2015_64bit-Debug/models/flair_brain_side.h5" brain_seg_model_edges = "C:/Users/JiangQin/Documents/c++/build-MRImage3D-Desktop_Qt_5_15_0_MSVC2015_64bit-Debug/models/flair_brain_edges.h5" tumor_seg_model = "C:/Users/JiangQin/Documents/c++/build-MRImage3D-Desktop_Qt_5_15_0_MSVC2015_64bit-Debug/models/flair_tumor.h5" input_path = "C:/Users/JiangQin/Documents/data/raw ct files/QIN GBM Treatment Response" output_path = "C:/Users/JiangQin/Documents/data/raw ct files/QIN GBM Treatment Response/loaded arrays 2" input_path = "C:/Users/JiangQin/Documents/data/raw ct files/ACRIN-DSC-MR-Brain" path = "C:/Users/JiangQin/Documents/data/raw ct files/ACRIN-DSC-MR-Brain/Clinical data/ACRIN-DSC-MR-Brain TCIA Anonymized" path2 = "C:/Users/JiangQin/Documents/data/raw ct files/ACRIN-DSC-MR-Brain/Clinical data/ACRIN-DSC-MR-Brain-HB TCIA Anonymized" alphabet = ["A","B","C","D"] def load_sets(input_path,clinical_data_path,datasets=[]): bru = 0 oof=0 valid_indexes = [] scans = [] for set_ in os.listdir(input_path): set_path = input_path + "/" + set_ scans = [] scan_dates = [] try: set_num = int(set_[-3:]) for scan in os.listdir(set_path): flair = None t1 = None t2 = None scan_path = set_path + '/' + scan if os.path.isdir(scan_path): for mri in os.listdir(scan_path): if "t2" in mri.lower() and "cor" not in mri.lower() and "sag" not in mri.lower() and "trace" not in mri.lower() and os.path.isdir(scan_path + "/" + mri): if t2!=None: bru+=1 t2 = mri if "t1" in mri.lower() and "cor" not in mri.lower() and "sag" not in mri.lower() and "post" in mri.lower() and os.path.isdir(scan_path + "/" + mri): if t1!=None: bru+=1 t1 = mri if "flair" in mri.lower() and "cor" not in mri.lower() and "sag" not in mri.lower() and "t1" not in mri.lower() and os.path.isdir(scan_path + "/" + mri): if flair!=None: bru+=1 flair = mri if flair is not None and t1 is not None and t2 is not None: date = dicom.read_file(scan_path + "/" + flair+"/"+os.listdir(scan_path + "/" + flair)[0]).ClinicalTrialTimePointID found = False valid = False for i in range(0,14): try: if i >= 10: ia=alphabet[i%10] else: ia=i data = [] blub = open(os.path.join(clinical_data_path,str("M"+str(ia))+".csv")).read() lines = blub.split("\n") del lines[0] del lines[-1] for n,line in enumerate(lines): chars = line.split(",") data.append([]) for char in chars: try: data[n].append(int(char)) except: data[n].append(0) data = np.stack(data) sets = data[:,0] dates = data[:,8] if int(date) == data[:,8][sets.tolist().index(set_num)]: print("uhh") if data[:,43][sets.tolist().index(set_num)] != 0: current_time = i progression = int(data[:,43][sets.tolist().index(set_num)]) zones = np.stack([int(x) for x in list(data[:,31:40][sets.tolist().index(set_num)])])-1 found = True break except Exception as e: pass if found: try: print("found") if current_time-1 >= 10: ia=alphabet[(current_time-1)%10] else: ia=current_time-1 data = [] blub = open(os.path.join(clinical_data_path,str("M"+str(ia))+".csv")).read() lines = blub.split("\n") del lines[0] del lines[-1] for n,line in enumerate(lines): chars = line.split(",") data.append([]) for char in chars: try: data[n].append(int(char)) except: data[n].append(0) data = np.stack(data) sets = data[:,0] older_date = data[:,8][sets.tolist().index(set_num)] for scan in os.listdir(set_path): flair_old = None t1_old = None t2_old = None scan_path_old = set_path + '/' + scan if os.path.isdir(scan_path_old): for mri in os.listdir(scan_path_old): if "t2" in mri.lower() and "cor" not in mri.lower() and "sag" not in mri.lower() and "trace" not in mri.lower() and os.path.isdir(scan_path_old + "/" + mri): if t2_old!=None: bru+=1 t2_old = mri if "t1" in mri.lower() and "cor" not in mri.lower() and "sag" not in mri.lower() and "post" in mri.lower() and os.path.isdir(scan_path_old + "/" + mri): if t1_old!=None: bru+=1 t1_old = mri if "flair" in mri.lower() and "cor" not in mri.lower() and "sag" not in mri.lower() and "t1" not in mri.lower() and os.path.isdir(scan_path_old + "/" + mri): if flair_old!=None: bru+=1 flair_old = mri if flair_old is not None and t1_old is not None and t2_old is not None: date = dicom.read_file(scan_path_old + "/" + flair_old+"/"+os.listdir(scan_path_old + "/" + flair_old)[0]).ClinicalTrialTimePointID old_zones = np.stack([int(x) for x in list(data[:,31:40][sets.tolist().index(set_num)])])-1 if int(older_date) == int(date): if not np.array_equal(zones,old_zones): print(zones,old_zones) oof+=1 datasets.append([[scan_path_old + "/" + flair_old,scan_path_old + "/" + t1_old,scan_path_old + "/" + t2_old], [scan_path + "/" + flair,scan_path + "/" + t1,scan_path + "/" + t2], progression]) break except Exception as e: print(e) pass except Exception as e: print("bub",e) pass print(oof) return datasets sets = load_sets(input_path,path) sets = load_sets(input_path,path2,sets) binary_model_path = "C:/Users/JiangQin/Documents/python/ct to tumor identifier project/code files/Saved models/Tumor seg binary with t1ce t2 flair/Model 16.h5" binary_model_path2 = "C:/Users/JiangQin/Documents/c++/build-MRImage3D-Desktop_Qt_5_15_0_MSVC2015_64bit-Debug/models/flair_tumor.h5" binary_model_path3 = "C:/Users/JiangQin/Documents/c++/build-MRImage3D-Desktop_Qt_5_15_0_MSVC2015_64bit-Debug/models/Model 34.h5" semantic_model_path = "C:/Users/JiangQin/Documents/python/ct to tumor identifier project/code files/Saved models/Tumor seg semantic 64x with t1ce t2 flair/Model 81.h5" brain_seg_t1_path = "C:/Users/JiangQin/Documents/python/ct to tumor identifier project/code files/Saved models/Brain Seg OASIS 36 top view/Model 51 (2).h5" start = 8 responses = np.stack([0,0,0,0]) print(len(sets)) print("hmmm") input() for Set in range(start, len(sets)): print("\n\nSet " + str(Set) + "\n\n") for i in range(0,10): print("\nGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG\n") print(sets[Set]) old_mr_path_flair = sets[Set][0][0] flair,factor,translate = preprocess_data(old_mr_path_flair) flair_binary = np.array(flair >0.1,dtype = "float64") write_images(flair_binary, output_image_path) flair_binary_image_og = sitk.GetImageFromArray(flair_binary) old_mr_path_t1 = sets[Set][0][1] t1,_,_ = preprocess_data(old_mr_path_t1,factor,translate) old_mr_path_t2 = sets[Set][0][2] t2,_,_ = preprocess_data(old_mr_path_t2,factor,translate) write_images(np.stack([flair,t1,t2],axis=-1), output_image_path) write_images(np.stack([flair,t1,t2],axis=-1), output_image_path+"/treatment eval testing/"+str(Set)+"/image_full") ##flair brain seg print("tranformed arrays",np.max(flair),np.max(t1),np.max(t2)) segmentations = [] brain_seg_top = load_model(brain_seg_model_top) brain_mask_top = brain_seg_top.predict(np.stack([np.stack([flair], axis = -1)])) binary_brain_top = binarize(brain_mask_top, 0.5) binary_brain_top_top_ized = np.squeeze(binary_brain_top.copy()[0], axis = -1) segmentations.append(binary_brain_top_top_ized) print("segmented brain") binary_brain_wo_median_combined = combine_zeros(segmentations) median_flair = find_median_grayscale(flair[binary_brain_wo_median_combined > 0]) segmentations = [] brain_seg_top = load_model(brain_seg_model_top) new_array_top = np.stack([np.stack([flair], axis = -1)])/(median_flair/0.2) brain_mask_top = brain_seg_top.predict(new_array_top) binary_brain_top = binarize(brain_mask_top, 0.7) binary_brain_top_top_ized = np.squeeze(binary_brain_top.copy()[0], axis = -1) segmentations.append(binary_brain_top_top_ized) binary_brain_final_combined2 = combine_zeros(segmentations) ##t1 brain seg segmentations = [] model_path = "C:/Users/JiangQin/Documents/python/ct to tumor identifier project/code files/Saved models/Brain Seg OASIS 36 top view/Model 51 (2).h5" brain_seg = ConvNetRough(128,128,128) brain_seg.load_weights(model_path) brain_mask_top = brain_seg.predict(np.stack([np.stack([t1], axis = -1)])) binary_brain_top = binarize(brain_mask_top, 0.5) binary_brain_top_top_ized = np.squeeze(binary_brain_top.copy()[0], axis = -1) segmentations.append(binary_brain_top_top_ized) print("segmented brain") print(np.stack([np.stack([t1], axis = -1)]).shape) binary_brain_wo_median_combined = combine_zeros(segmentations) only_brain_t1 = t1.copy() only_brain_t1[binary_brain_wo_median_combined == 0] = 0 median_t1 = find_median_grayscale(only_brain_t1) segmentations = [] model_path = "C:/Users/JiangQin/Documents/python/ct to tumor identifier project/code files/Saved models/Brain Seg OASIS 36 top view/Model 51 (2).h5" brain_seg = ConvNetRough(128,128,128) brain_seg.load_weights(model_path) brain_mask_top = brain_seg.predict(np.stack([np.stack([t1/(median_t1/0.3)], axis = -1)])) binary_brain_top = binarize(brain_mask_top, 0.5) binary_brain_top_top_ized = np.squeeze(binary_brain_top.copy()[0], axis = -1) segmentations.append(binary_brain_top_top_ized) binary_brain_final_combined1 = combine_zeros(segmentations) #write_images(binary_brain_final_combined1, output_image_path+"/treatment eval testing/"+str(Set)+"/imageblub") #input("HUDADAWUBUDAWUP") ##t2 brain seg segmentations = [] brain_seg_top = load_model(brain_seg_model_top) brain_mask_top = brain_seg_top.predict(np.stack([np.stack([t2], axis = -1)])) binary_brain_top = binarize(brain_mask_top, 0.5) binary_brain_top_top_ized = np.squeeze(binary_brain_top.copy()[0], axis = -1) segmentations.append(binary_brain_top_top_ized) print("segmented brain") binary_brain_wo_median_combined = combine_zeros(segmentations) median = find_median_grayscale(t2[binary_brain_wo_median_combined > 0]) segmentations = [] brain_seg_top = load_model(brain_seg_model_top) new_array_top = np.stack([np.stack([t2], axis = -1)])/(median/0.2) brain_mask_top = brain_seg_top.predict(new_array_top) binary_brain_top = binarize(brain_mask_top, 0.7) binary_brain_top_top_ized = np.squeeze(binary_brain_top.copy()[0], axis = -1) segmentations.append(binary_brain_top_top_ized) binary_brain_final_combined = binary_brain_final_combined2.copy()#combine_zeros(segmentations) binary_brain_final_combined[binary_brain_final_combined1 > 0] = 1 #binary_brain_final_combined[binary_brain_final_combined1 < 1] = 0 write_images(binary_brain_final_combined, output_image_path+"/treatment eval testing/"+str(Set)+"/imageblub") #------------- flair[binary_brain_final_combined==0] = 0 t1[binary_brain_final_combined==0] = 0 t2[binary_brain_final_combined==0] = 0 flair,t1,t2 = normalize(flair,t1,t2) t1 /=(find_median_grayscale(t1)/0.2) t2 /=(find_median_grayscale(t2)/0.2) flair /=(find_median_grayscale(flair)/0.2) write_images(np.stack([flair,t1,t2],axis=-1), output_image_path+"/treatment eval testing/"+str(Set)+"/image_brain") only_brain = np.stack([flair,t1,t2],axis = -1) only_brain = skimage.transform.rescale(only_brain, (0.5,0.5,0.5,1)) write_images(only_brain, output_image_path+"/treatment eval testing/"+str(Set)+"/imagebraib") tumor_seg_binary = load_model(binary_model_path2) tumor_mask = tumor_seg_binary.predict(np.stack([np.stack([flair/(median_flair/0.3)],axis=-1)])) tumor_binary = np.squeeze(tumor_mask[0] > 0.9, axis = -1) tumor_seg_channeled = ConvNetSemantic64(64,64,64) tumor_seg_channeled.load_weights(semantic_model_path) tumor_mask = tumor_seg_channeled.predict(np.stack([only_brain])) print(tumor_mask.shape) print(np.max(tumor_mask)) tumor_colored = np.argmax(tumor_mask[0], axis = -1) print(np.max(tumor_colored)) print(tumor_colored.shape) tumor_colored = skimage.transform.rescale(tumor_colored/3, (2.0,2.0,2.0)) print(np.max(tumor_colored)) tumor_colored = np.round(tumor_colored*3) write_images(tumor_colored/3, output_image_path+"/treatment eval testing/"+str(Set)+"/image_seg") tumor_colored[tumor_binary == 0] = 0 tumor_colored = skimage.transform.rescale(tumor_colored/3, (0.5,0.5,0.5)) print(np.max(tumor_colored)) tumor_colored = np.round(tumor_colored*3) print(tumor_colored.shape) print(
np.unique(tumor_colored)
numpy.unique
from .config import chunk_size, sampling_rate import numpy class CreateHighCutFilter: """Creating a FFT filter audio-effect class/device. Cuts the upper frequencies of a signal. Is overloaded with basic settings. This class introduces latency equal to chunk_size. Parameters ---------- cutoff_frequency : int or float Sets the rolloff frequency for the high cut filter. """ def __init__(self, cutoff_frequency=8000): #self.chunk_size = chunk_size self.fS = sampling_rate # Sampling rate. self.fH = cutoff_frequency # Cutoff frequency. self.filter_length = (chunk_size // 2) - 1 # Filter length, must be odd. self.array_slice_value_start = chunk_size + (self.filter_length // 2) self.array_slice_value_end = chunk_size - (self.filter_length // 2) # Compute sinc filter. self.sinc_filter = numpy.sinc( 2 * self.fH / self.fS * (numpy.arange(self.filter_length) - (self.filter_length - 1) / 2)) # pyplot.plot(self.sinc_filter) # Apply window. self.sinc_filter *= numpy.blackman(self.filter_length) # pyplot.plot(self.sinc_filter) # Normalize to get unity gain. self.sinc_filter /= numpy.sum(self.sinc_filter) self.filtered_signal = numpy.zeros(chunk_size * 3) self.float32_array_input_1 = numpy.zeros(chunk_size) self.float32_array_input_2 = numpy.zeros(chunk_size) self.float32_array_input_3 = numpy.zeros(chunk_size) self.cut_size = numpy.int16((self.filter_length - 1) / 2) self.sinc_filter = numpy.append(self.sinc_filter, numpy.zeros(chunk_size - self.filter_length + 1)) self.sinc_filter = numpy.append(self.sinc_filter, numpy.zeros(((len(self.sinc_filter) * 2) - 3))) self.sinc_filter = numpy.fft.fft(self.sinc_filter) def apply(self, float32_array_input): """Applying the filter to a numpy-array Parameters ---------- float32_array_input : float The array, which the effect should be applied on. Returns ------- float The previously processed array, should be the exact same size as the input array """ self.float32_array_input_3 = self.float32_array_input_2 self.float32_array_input_2 = self.float32_array_input_1 self.float32_array_input_1 = float32_array_input self.filtered_signal = numpy.concatenate( (self.float32_array_input_3, self.float32_array_input_2, self.float32_array_input_1), axis=None) self.filtered_signal = numpy.fft.fft(self.filtered_signal) self.filtered_signal = self.filtered_signal * self.sinc_filter self.filtered_signal = numpy.fft.ifft(self.filtered_signal) self.filtered_signal = self.filtered_signal[self.array_slice_value_start:-self.array_slice_value_end] return self.filtered_signal.real.astype('float32') class CreateLowCutFilter: """Creating a FFT filter audio-effect class/device. Cuts the lower frequencies of a signal. Is overloaded with basic settings. This class introduces latency equal to chunk_size. Parameters ---------- cutoff_frequency : int or float Sets the rolloff frequency for the high cut filter. """ def __init__(self, cutoff_frequency=160): #self.chunk_size = chunk_size self.fS = sampling_rate # Sampling rate. self.fH = cutoff_frequency # Cutoff frequency. self.filter_length = (chunk_size // 2) - 1 # Filter length, must be odd. self.array_slice_value_start = chunk_size + (self.filter_length // 2) self.array_slice_value_end = chunk_size - (self.filter_length // 2) # Compute sinc filter. self.sinc_filter = numpy.sinc( 2 * self.fH / self.fS * (numpy.arange(self.filter_length) - (self.filter_length - 1) / 2)) # Apply window. self.sinc_filter *= numpy.blackman(self.filter_length) # Normalize to get unity gain. self.sinc_filter /= numpy.sum(self.sinc_filter) # print(len(self.sinc_filter)) # Spectral inversion to create Lowcut from Highcut self.sinc_filter = -self.sinc_filter self.sinc_filter[(self.filter_length - 1) // 2] += 1 self.filtered_signal = numpy.zeros(chunk_size * 3) self.float32_array_input_1 = numpy.zeros(chunk_size) self.float32_array_input_2 = numpy.zeros(chunk_size) self.float32_array_input_3 = numpy.zeros(chunk_size) self.cut_size = numpy.int16((self.filter_length - 1) / 2) self.sinc_filter = numpy.append(self.sinc_filter, numpy.zeros(chunk_size - self.filter_length + 1)) self.sinc_filter = numpy.append(self.sinc_filter, numpy.zeros(((len(self.sinc_filter) * 2) - 3))) self.sinc_filter = numpy.fft.fft(self.sinc_filter) def apply(self, float32_array_input): """Applying the filter to a numpy-array Parameters ---------- float32_array_input : float The array, which the effect should be applied on. Returns ------- float The previously processed array, should be the exact same size as the input array """ self.float32_array_input_3 = self.float32_array_input_2 self.float32_array_input_2 = self.float32_array_input_1 self.float32_array_input_1 = float32_array_input self.filtered_signal = numpy.concatenate( (self.float32_array_input_3, self.float32_array_input_2, self.float32_array_input_1), axis=None) self.filtered_signal = numpy.fft.fft(self.filtered_signal) self.filtered_signal = (self.filtered_signal * self.sinc_filter) self.filtered_signal =
numpy.fft.ifft(self.filtered_signal)
numpy.fft.ifft
""" Testing group-level finite difference. """ import unittest import numpy as np from numpy.testing import assert_almost_equal from six import PY3 from openmdao.api import Problem, Group, Component, IndepVarComp, ExecComp from openmdao.test.simple_comps import SimpleComp, SimpleArrayComp from openmdao.test.util import assert_rel_error if PY3: def py3fix(s): return s.replace('<type', '<class') else: def py3fix(s): return s class TestSrcIndices(unittest.TestCase): def test_src_indices(self): size = 10 root = Group() root.add('P1', IndepVarComp('x', np.zeros(size))) root.add('C1', ExecComp('y = x * 2.', y=np.zeros(size//2), x=np.zeros(size//2))) root.add('C2', ExecComp('y = x * 3.', y=np.zeros(size//2), x=np.zeros(size//2))) root.connect('P1.x', "C1.x", src_indices=list(range(size//2))) root.connect('P1.x', "C2.x", src_indices=list(range(size//2, size))) prob = Problem(root) prob.setup(check=False) root.P1.unknowns['x'][0:size//2] += 1.0 root.P1.unknowns['x'][size//2:size] -= 1.0 prob.run() assert_rel_error(self, root.C1.params['x'], np.ones(size//2), 0.0001) assert_rel_error(self, root.C2.params['x'], -np.ones(size//2), 0.0001) def test_array_to_scalar(self): root = Group() root.add('P1', IndepVarComp('x', np.array([2., 3.]))) root.add('C1', SimpleComp()) root.add('C2', ExecComp('y = x * 3.', y=0., x=0.)) root.connect('P1.x', 'C1.x', src_indices=[0,]) root.connect('P1.x', 'C2.x', src_indices=[1,]) prob = Problem(root) prob.setup(check=False) prob.run() self.assertAlmostEqual(root.C1.params['x'], 2.) self.assertAlmostEqual(root.C2.params['x'], 3.) def test_subarray_to_promoted_var(self): root = Group() P = root.add('P', IndepVarComp('x', np.array([1., 2., 3., 4., 5.]))) G = root.add('G', Group()) C = root.add('C', SimpleComp()) A = G.add('A', SimpleArrayComp()) G2 = G.add('G2', Group()) A2 = G2.add('A2', SimpleArrayComp()) root.connect('P.x', 'G.A.x', src_indices=[0,1]) root.connect('P.x', 'C.x', src_indices=[2,]) root.connect('P.x', 'G.G2.A2.x', src_indices=[3, 4]) prob = Problem(root) prob.setup(check=False) prob.run() assert_rel_error(self, root.G.A.params['x'], np.array([1., 2.]), 0.0001) self.assertAlmostEqual(root.C.params['x'], 3.) assert_rel_error(self, root.G.G2.A2.params['x'], np.array([4., 5.]), 0.0001) # now try the same thing with promoted var root = Group() P = root.add('P', IndepVarComp('x', np.array([1., 2., 3., 4., 5.]))) G = root.add('G', Group()) C = root.add('C', SimpleComp()) A = G.add('A', SimpleArrayComp(), promotes=['x', 'y']) G2 = G.add('G2', Group()) A2 = G2.add('A2', SimpleArrayComp(), promotes=['x', 'y']) root.connect('P.x', 'G.x', src_indices=[0,1]) root.connect('P.x', 'C.x', src_indices=[2,]) root.connect('P.x', 'G.G2.x', src_indices=[3, 4]) prob = Problem(root) prob.setup(check=False) prob.run() assert_rel_error(self, root.G.A.params['x'], np.array([1., 2.]), 0.0001) self.assertAlmostEqual(root.C.params['x'], 3.) assert_rel_error(self, root.G.G2.A2.params['x'], np.array([4., 5.]), 0.0001) def test_src_indices_connect_error(self): root = Group() P = root.add('P', IndepVarComp('x', np.array([1., 2., 3., 4., 5.]))) G = root.add('G', Group()) C = root.add('C', SimpleComp()) A = G.add('A', SimpleArrayComp()) root.connect('P.x', 'G.A.x', src_indices=[0]) root.connect('P.x', 'C.x', src_indices=[2,]) prob = Problem(root) with self.assertRaises(Exception) as cm: prob.setup(check=False) expected = py3fix("Size 1 of the indexed sub-part of source 'P.x' " "must be the same as size 2 of target 'G.A.x'.") self.assertTrue(expected in str(cm.exception)) # now try the same thing with promoted var root = Group() P = root.add('P', IndepVarComp('x', np.array([1., 2., 3., 4., 5.]))) G = root.add('G', Group()) C = root.add('C', SimpleComp()) A = G.add('A', SimpleArrayComp(), promotes=['x', 'y']) root.connect('P.x', 'G.x', src_indices=[0,1,2]) root.connect('P.x', 'C.x', src_indices=[2,]) prob = Problem(root) with self.assertRaises(Exception) as cm: prob.setup(check=False) expected = py3fix("Size 3 of the indexed sub-part of source 'P.x' " "must be the same as size 2 of target 'G.A.x' (G.x).") self.assertTrue(expected in str(cm.exception)) def test_inner_connection(self): class Squarer(Component): def __init__(self, size): super(Squarer, self).__init__() self.add_param(name='input:x', val=np.zeros(size), desc='x') self.add_output(name='output:x2', val=np.zeros(size), desc='x squared') def solve_nonlinear(self,params,unknowns,resids): unknowns['output:x2'] = params['input:x']**2 class Cuber(Component): def __init__(self, size): super(Cuber, self).__init__() self.add_param(name='x', val=np.zeros(size), desc='x') self.add_output(name='output:x3', val=np.zeros(size), desc='x squared') def solve_nonlinear(self,params,unknowns,resids): unknowns['output:x3'] = params['x']**3 class InnerGroup(Group): def __init__(self): super(InnerGroup, self).__init__() self.add('square1', Squarer(5)) self.add('square2', Squarer(3), promotes=['input:x']) # the following connection should result in 'cube1.x' using the # same src_indices as 'input:x', which is [2,3,4] from the outer # connection self.add('cube1', Cuber(3)) self.connect('input:x', 'cube1.x') # the following connection should result in 'cube2.x' using # src_indices [0,1] of 'input:x', which corresponds to the # src_indices [2,3] from the outer connection self.add('cube2', Cuber(2)) self.connect('input:x', 'cube2.x', src_indices=[0,1]) # the following connection should result in 'cube3.x' using # src_indices [1,2] of 'square1.input:x', which corresponds to the # src_indices [1,2] from the outer connection self.add('cube3', Cuber(2)) self.connect('square1.input:x', 'cube3.x', src_indices=[1,2]) class OuterGroup(Group): def __init__(self): super(OuterGroup, self).__init__() iv = IndepVarComp('input:x', np.zeros(5)) self.add('indep_vars', iv, promotes=['*']) self.add('inner', InnerGroup()) self.connect('input:x', 'inner.square1.input:x') self.connect('input:x', 'inner.input:x', src_indices=[2,3,4]) prob = Problem(root=OuterGroup()) prob.setup(check=False) prob['input:x'] = np.array([4., 5., 6., 7., 8.]) prob.run() assert_rel_error(self, prob.root.inner.square1.params['input:x'], np.array([4., 5., 6., 7., 8.]), 0.00000001) assert_rel_error(self, prob.root.inner.cube1.params['x'], np.array([6., 7., 8.]), 0.00000001) assert_rel_error(self, prob.root.inner.cube2.params['x'], np.array([6., 7.]), 0.00000001) assert_rel_error(self, prob.root.inner.cube3.params['x'], np.array([5., 6.]), 0.00000001) def test_cannonball_src_indices(self): # this test replicates the structure of a problem in pointer. The bug was that # the state variables in the segments were not getting connected to the proper # src_indices of the parameters from the independent variables component state_var_names = ['x', 'y', 'vx', 'vy'] param_arg_names = ['g'] num_seg = 3 seg_ncn = 3 num_nodes = 3 class Trajectory(Group): def __init__(self): super(Trajectory, self).__init__() class Phase(Group): def __init__(self, num_seg, seg_ncn): super(Phase, self).__init__() ncn_u = 7 state_vars = [('X_c:{0}'.format(state_name), np.zeros(ncn_u)) for state_name in state_var_names] self.add('state_var_comp', IndepVarComp(state_vars), promotes=['*']) param_args = [('P_s:{0}'.format(param_name), 0.) for param_name in param_arg_names] self.add('static_params', IndepVarComp(param_args), promotes=['*']) for i in range(num_seg): self.add('seg{0}'.format(i), Segment(seg_ncn)) offset_states = 0 for i in range(num_seg): idxs_states = range(offset_states, num_nodes+offset_states) offset_states += num_nodes-1 for state_name in state_var_names: self.connect( 'X_c:{0}'.format(state_name), 'seg{0:d}.X_c:{1}'.format(i, state_name), src_indices=idxs_states) for param_name in param_arg_names: self.connect( 'P_s:{0}'.format(param_name), 'seg{0:d}.P_s:{1}'.format(i, param_name)) class Segment(Group): def __init__(self, num_nodes): super(Segment, self).__init__() self.add('eom_c', EOM(num_nodes)) self.add('static_bcast', StaticBCast(num_nodes), promotes=['*']) self.add('state_interp', StateInterp(num_nodes), promotes=['*']) for name in state_var_names: self.connect('X_c:{0}'.format(name), 'eom_c.X:{0}'.format(name)) class EOM(Component): def __init__(self, num_nodes): super(EOM, self).__init__() for name in state_var_names: self.add_param('X:{0}'.format(name), np.zeros(num_nodes)) self.add_output('dXdt:{0}'.format(name), np.zeros(num_nodes)) for name in param_arg_names: self.add_param('P:{0}'.format(name), 0.) def solve_nonlinear(self, params, unknowns, resids): unknowns['dXdt:x'][:] = params['X:vx'] unknowns['dXdt:y'][:] = params['X:vy'] unknowns['dXdt:vx'][:] = 0.0 unknowns['dXdt:vy'][:] = -params['P:g'] class StaticBCast(Component): def __init__(self, num_nodes): super(StaticBCast, self).__init__() for name in param_arg_names: self.add_param('P_s:{0}'.format(name), 0.) def solve_nonlinear(self, params, unknowns, resids): pass class StateInterp(Component): def __init__(self, num_nodes): super(StateInterp, self).__init__() for name in state_var_names: self.add_param('X_c:{0}'.format(name),
np.zeros(num_nodes)
numpy.zeros
""" Test functions for linalg module """ import os import sys import itertools import traceback import textwrap import subprocess import pytest import numpy as np from numpy import array, single, double, csingle, cdouble, dot, identity, matmul from numpy import multiply, atleast_2d, inf, asarray from numpy import linalg from numpy.linalg import matrix_power, norm, matrix_rank, multi_dot, LinAlgError from numpy.linalg.linalg import _multi_dot_matrix_chain_order from numpy.testing import ( assert_, assert_equal, assert_raises, assert_array_equal, assert_almost_equal, assert_allclose, suppress_warnings, assert_raises_regex, HAS_LAPACK64, ) from numpy.testing._private.utils import requires_memory def consistent_subclass(out, in_): # For ndarray subclass input, our output should have the same subclass # (non-ndarray input gets converted to ndarray). return type(out) is (type(in_) if isinstance(in_, np.ndarray) else np.ndarray) old_assert_almost_equal = assert_almost_equal def assert_almost_equal(a, b, single_decimal=6, double_decimal=12, **kw): if asarray(a).dtype.type in (single, csingle): decimal = single_decimal else: decimal = double_decimal old_assert_almost_equal(a, b, decimal=decimal, **kw) def get_real_dtype(dtype): return {single: single, double: double, csingle: single, cdouble: double}[dtype] def get_complex_dtype(dtype): return {single: csingle, double: cdouble, csingle: csingle, cdouble: cdouble}[dtype] def get_rtol(dtype): # Choose a safe rtol if dtype in (single, csingle): return 1e-5 else: return 1e-11 # used to categorize tests all_tags = { 'square', 'nonsquare', 'hermitian', # mutually exclusive 'generalized', 'size-0', 'strided' # optional additions } class LinalgCase: def __init__(self, name, a, b, tags=set()): """ A bundle of arguments to be passed to a test case, with an identifying name, the operands a and b, and a set of tags to filter the tests """ assert_(isinstance(name, str)) self.name = name self.a = a self.b = b self.tags = frozenset(tags) # prevent shared tags def check(self, do): """ Run the function `do` on this test case, expanding arguments """ do(self.a, self.b, tags=self.tags) def __repr__(self): return f'<LinalgCase: {self.name}>' def apply_tag(tag, cases): """ Add the given tag (a string) to each of the cases (a list of LinalgCase objects) """ assert tag in all_tags, "Invalid tag" for case in cases: case.tags = case.tags | {tag} return cases # # Base test cases # np.random.seed(1234) CASES = [] # square test cases CASES += apply_tag('square', [ LinalgCase("single", array([[1., 2.], [3., 4.]], dtype=single), array([2., 1.], dtype=single)), LinalgCase("double", array([[1., 2.], [3., 4.]], dtype=double), array([2., 1.], dtype=double)), LinalgCase("double_2", array([[1., 2.], [3., 4.]], dtype=double), array([[2., 1., 4.], [3., 4., 6.]], dtype=double)), LinalgCase("csingle", array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=csingle), array([2. + 1j, 1. + 2j], dtype=csingle)), LinalgCase("cdouble", array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=cdouble), array([2. + 1j, 1. + 2j], dtype=cdouble)), LinalgCase("cdouble_2", array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=cdouble), array([[2. + 1j, 1. + 2j, 1 + 3j], [1 - 2j, 1 - 3j, 1 - 6j]], dtype=cdouble)), LinalgCase("0x0", np.empty((0, 0), dtype=double), np.empty((0,), dtype=double), tags={'size-0'}), LinalgCase("8x8", np.random.rand(8, 8), np.random.rand(8)), LinalgCase("1x1", np.random.rand(1, 1), np.random.rand(1)), LinalgCase("nonarray", [[1, 2], [3, 4]], [2, 1]), ]) # non-square test-cases CASES += apply_tag('nonsquare', [ LinalgCase("single_nsq_1", array([[1., 2., 3.], [3., 4., 6.]], dtype=single), array([2., 1.], dtype=single)), LinalgCase("single_nsq_2", array([[1., 2.], [3., 4.], [5., 6.]], dtype=single), array([2., 1., 3.], dtype=single)), LinalgCase("double_nsq_1", array([[1., 2., 3.], [3., 4., 6.]], dtype=double), array([2., 1.], dtype=double)), LinalgCase("double_nsq_2", array([[1., 2.], [3., 4.], [5., 6.]], dtype=double), array([2., 1., 3.], dtype=double)), LinalgCase("csingle_nsq_1", array( [[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=csingle), array([2. + 1j, 1. + 2j], dtype=csingle)), LinalgCase("csingle_nsq_2", array( [[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=csingle), array([2. + 1j, 1. + 2j, 3. - 3j], dtype=csingle)), LinalgCase("cdouble_nsq_1", array( [[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=cdouble), array([2. + 1j, 1. + 2j], dtype=cdouble)), LinalgCase("cdouble_nsq_2", array( [[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=cdouble), array([2. + 1j, 1. + 2j, 3. - 3j], dtype=cdouble)), LinalgCase("cdouble_nsq_1_2", array( [[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=cdouble), array([[2. + 1j, 1. + 2j], [1 - 1j, 2 - 2j]], dtype=cdouble)), LinalgCase("cdouble_nsq_2_2", array( [[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=cdouble), array([[2. + 1j, 1. + 2j], [1 - 1j, 2 - 2j], [1 - 1j, 2 - 2j]], dtype=cdouble)), LinalgCase("8x11", np.random.rand(8, 11), np.random.rand(8)), LinalgCase("1x5", np.random.rand(1, 5), np.random.rand(1)), LinalgCase("5x1", np.random.rand(5, 1), np.random.rand(5)), LinalgCase("0x4", np.random.rand(0, 4), np.random.rand(0), tags={'size-0'}), LinalgCase("4x0", np.random.rand(4, 0), np.random.rand(4), tags={'size-0'}), ]) # hermitian test-cases CASES += apply_tag('hermitian', [ LinalgCase("hsingle", array([[1., 2.], [2., 1.]], dtype=single), None), LinalgCase("hdouble", array([[1., 2.], [2., 1.]], dtype=double), None), LinalgCase("hcsingle", array([[1., 2 + 3j], [2 - 3j, 1]], dtype=csingle), None), LinalgCase("hcdouble", array([[1., 2 + 3j], [2 - 3j, 1]], dtype=cdouble), None), LinalgCase("hempty", np.empty((0, 0), dtype=double), None, tags={'size-0'}), LinalgCase("hnonarray", [[1, 2], [2, 1]], None), LinalgCase("matrix_b_only", array([[1., 2.], [2., 1.]]), None), LinalgCase("hmatrix_1x1", np.random.rand(1, 1), None), ]) # # Gufunc test cases # def _make_generalized_cases(): new_cases = [] for case in CASES: if not isinstance(case.a, np.ndarray): continue a = np.array([case.a, 2 * case.a, 3 * case.a]) if case.b is None: b = None else: b = np.array([case.b, 7 * case.b, 6 * case.b]) new_case = LinalgCase(case.name + "_tile3", a, b, tags=case.tags | {'generalized'}) new_cases.append(new_case) a = np.array([case.a] * 2 * 3).reshape((3, 2) + case.a.shape) if case.b is None: b = None else: b = np.array([case.b] * 2 * 3).reshape((3, 2) + case.b.shape) new_case = LinalgCase(case.name + "_tile213", a, b, tags=case.tags | {'generalized'}) new_cases.append(new_case) return new_cases CASES += _make_generalized_cases() # # Generate stride combination variations of the above # def _stride_comb_iter(x): """ Generate cartesian product of strides for all axes """ if not isinstance(x, np.ndarray): yield x, "nop" return stride_set = [(1,)] * x.ndim stride_set[-1] = (1, 3, -4) if x.ndim > 1: stride_set[-2] = (1, 3, -4) if x.ndim > 2: stride_set[-3] = (1, -4) for repeats in itertools.product(*tuple(stride_set)): new_shape = [abs(a * b) for a, b in zip(x.shape, repeats)] slices = tuple([slice(None, None, repeat) for repeat in repeats]) # new array with different strides, but same data xi = np.empty(new_shape, dtype=x.dtype) xi.view(np.uint32).fill(0xdeadbeef) xi = xi[slices] xi[...] = x xi = xi.view(x.__class__) assert_(np.all(xi == x)) yield xi, "stride_" + "_".join(["%+d" % j for j in repeats]) # generate also zero strides if possible if x.ndim >= 1 and x.shape[-1] == 1: s = list(x.strides) s[-1] = 0 xi = np.lib.stride_tricks.as_strided(x, strides=s) yield xi, "stride_xxx_0" if x.ndim >= 2 and x.shape[-2] == 1: s = list(x.strides) s[-2] = 0 xi = np.lib.stride_tricks.as_strided(x, strides=s) yield xi, "stride_xxx_0_x" if x.ndim >= 2 and x.shape[:-2] == (1, 1): s = list(x.strides) s[-1] = 0 s[-2] = 0 xi = np.lib.stride_tricks.as_strided(x, strides=s) yield xi, "stride_xxx_0_0" def _make_strided_cases(): new_cases = [] for case in CASES: for a, a_label in _stride_comb_iter(case.a): for b, b_label in _stride_comb_iter(case.b): new_case = LinalgCase(case.name + "_" + a_label + "_" + b_label, a, b, tags=case.tags | {'strided'}) new_cases.append(new_case) return new_cases CASES += _make_strided_cases() # # Test different routines against the above cases # class LinalgTestCase: TEST_CASES = CASES def check_cases(self, require=set(), exclude=set()): """ Run func on each of the cases with all of the tags in require, and none of the tags in exclude """ for case in self.TEST_CASES: # filter by require and exclude if case.tags & require != require: continue if case.tags & exclude: continue try: case.check(self.do) except Exception as e: msg = f'In test case: {case!r}\n\n' msg += traceback.format_exc() raise AssertionError(msg) from e class LinalgSquareTestCase(LinalgTestCase): def test_sq_cases(self): self.check_cases(require={'square'}, exclude={'generalized', 'size-0'}) def test_empty_sq_cases(self): self.check_cases(require={'square', 'size-0'}, exclude={'generalized'}) class LinalgNonsquareTestCase(LinalgTestCase): def test_nonsq_cases(self): self.check_cases(require={'nonsquare'}, exclude={'generalized', 'size-0'}) def test_empty_nonsq_cases(self): self.check_cases(require={'nonsquare', 'size-0'}, exclude={'generalized'}) class HermitianTestCase(LinalgTestCase): def test_herm_cases(self): self.check_cases(require={'hermitian'}, exclude={'generalized', 'size-0'}) def test_empty_herm_cases(self): self.check_cases(require={'hermitian', 'size-0'}, exclude={'generalized'}) class LinalgGeneralizedSquareTestCase(LinalgTestCase): @pytest.mark.slow def test_generalized_sq_cases(self): self.check_cases(require={'generalized', 'square'}, exclude={'size-0'}) @pytest.mark.slow def test_generalized_empty_sq_cases(self): self.check_cases(require={'generalized', 'square', 'size-0'}) class LinalgGeneralizedNonsquareTestCase(LinalgTestCase): @pytest.mark.slow def test_generalized_nonsq_cases(self): self.check_cases(require={'generalized', 'nonsquare'}, exclude={'size-0'}) @pytest.mark.slow def test_generalized_empty_nonsq_cases(self): self.check_cases(require={'generalized', 'nonsquare', 'size-0'}) class HermitianGeneralizedTestCase(LinalgTestCase): @pytest.mark.slow def test_generalized_herm_cases(self): self.check_cases(require={'generalized', 'hermitian'}, exclude={'size-0'}) @pytest.mark.slow def test_generalized_empty_herm_cases(self): self.check_cases(require={'generalized', 'hermitian', 'size-0'}, exclude={'none'}) def dot_generalized(a, b): a = asarray(a) if a.ndim >= 3: if a.ndim == b.ndim: # matrix x matrix new_shape = a.shape[:-1] + b.shape[-1:] elif a.ndim == b.ndim + 1: # matrix x vector new_shape = a.shape[:-1] else: raise ValueError("Not implemented...") r = np.empty(new_shape, dtype=np.common_type(a, b)) for c in itertools.product(*map(range, a.shape[:-2])): r[c] = dot(a[c], b[c]) return r else: return dot(a, b) def identity_like_generalized(a): a = asarray(a) if a.ndim >= 3: r = np.empty(a.shape, dtype=a.dtype) r[...] = identity(a.shape[-2]) return r else: return identity(a.shape[0]) class SolveCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase): # kept apart from TestSolve for use for testing with matrices. def do(self, a, b, tags): x = linalg.solve(a, b) assert_almost_equal(b, dot_generalized(a, x)) assert_(consistent_subclass(x, b)) class TestSolve(SolveCases): @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble]) def test_types(self, dtype): x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) assert_equal(linalg.solve(x, x).dtype, dtype) def test_0_size(self): class ArraySubclass(np.ndarray): pass # Test system of 0x0 matrices a = np.arange(8).reshape(2, 2, 2) b = np.arange(6).reshape(1, 2, 3).view(ArraySubclass) expected = linalg.solve(a, b)[:, 0:0, :] result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0, :]) assert_array_equal(result, expected) assert_(isinstance(result, ArraySubclass)) # Test errors for non-square and only b's dimension being 0 assert_raises(linalg.LinAlgError, linalg.solve, a[:, 0:0, 0:1], b) assert_raises(ValueError, linalg.solve, a, b[:, 0:0, :]) # Test broadcasting error b = np.arange(6).reshape(1, 3, 2) # broadcasting error assert_raises(ValueError, linalg.solve, a, b) assert_raises(ValueError, linalg.solve, a[0:0], b[0:0]) # Test zero "single equations" with 0x0 matrices. b = np.arange(2).reshape(1, 2).view(ArraySubclass) expected = linalg.solve(a, b)[:, 0:0] result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0]) assert_array_equal(result, expected) assert_(isinstance(result, ArraySubclass)) b = np.arange(3).reshape(1, 3) assert_raises(ValueError, linalg.solve, a, b) assert_raises(ValueError, linalg.solve, a[0:0], b[0:0]) assert_raises(ValueError, linalg.solve, a[:, 0:0, 0:0], b) def test_0_size_k(self): # test zero multiple equation (K=0) case. class ArraySubclass(np.ndarray): pass a = np.arange(4).reshape(1, 2, 2) b = np.arange(6).reshape(3, 2, 1).view(ArraySubclass) expected = linalg.solve(a, b)[:, :, 0:0] result = linalg.solve(a, b[:, :, 0:0]) assert_array_equal(result, expected) assert_(isinstance(result, ArraySubclass)) # test both zero. expected = linalg.solve(a, b)[:, 0:0, 0:0] result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0, 0:0]) assert_array_equal(result, expected) assert_(isinstance(result, ArraySubclass)) class InvCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase): def do(self, a, b, tags): a_inv = linalg.inv(a) assert_almost_equal(dot_generalized(a, a_inv), identity_like_generalized(a)) assert_(consistent_subclass(a_inv, a)) class TestInv(InvCases): @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble]) def test_types(self, dtype): x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) assert_equal(linalg.inv(x).dtype, dtype) def test_0_size(self): # Check that all kinds of 0-sized arrays work class ArraySubclass(np.ndarray): pass a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass) res = linalg.inv(a) assert_(res.dtype.type is np.float64) assert_equal(a.shape, res.shape) assert_(isinstance(res, ArraySubclass)) a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass) res = linalg.inv(a) assert_(res.dtype.type is np.complex64) assert_equal(a.shape, res.shape) assert_(isinstance(res, ArraySubclass)) class EigvalsCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase): def do(self, a, b, tags): ev = linalg.eigvals(a) evalues, evectors = linalg.eig(a) assert_almost_equal(ev, evalues) class TestEigvals(EigvalsCases): @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble]) def test_types(self, dtype): x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) assert_equal(linalg.eigvals(x).dtype, dtype) x = np.array([[1, 0.5], [-1, 1]], dtype=dtype) assert_equal(linalg.eigvals(x).dtype, get_complex_dtype(dtype)) def test_0_size(self): # Check that all kinds of 0-sized arrays work class ArraySubclass(np.ndarray): pass a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass) res = linalg.eigvals(a) assert_(res.dtype.type is np.float64) assert_equal((0, 1), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(res, np.ndarray)) a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass) res = linalg.eigvals(a) assert_(res.dtype.type is np.complex64) assert_equal((0,), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(res, np.ndarray)) class EigCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase): def do(self, a, b, tags): evalues, evectors = linalg.eig(a) assert_allclose(dot_generalized(a, evectors), np.asarray(evectors) * np.asarray(evalues)[..., None, :], rtol=get_rtol(evalues.dtype)) assert_(consistent_subclass(evectors, a)) class TestEig(EigCases): @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble]) def test_types(self, dtype): x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) w, v = np.linalg.eig(x) assert_equal(w.dtype, dtype) assert_equal(v.dtype, dtype) x = np.array([[1, 0.5], [-1, 1]], dtype=dtype) w, v = np.linalg.eig(x) assert_equal(w.dtype, get_complex_dtype(dtype)) assert_equal(v.dtype, get_complex_dtype(dtype)) def test_0_size(self): # Check that all kinds of 0-sized arrays work class ArraySubclass(np.ndarray): pass a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass) res, res_v = linalg.eig(a) assert_(res_v.dtype.type is np.float64) assert_(res.dtype.type is np.float64) assert_equal(a.shape, res_v.shape) assert_equal((0, 1), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(a, np.ndarray)) a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass) res, res_v = linalg.eig(a) assert_(res_v.dtype.type is np.complex64) assert_(res.dtype.type is np.complex64) assert_equal(a.shape, res_v.shape) assert_equal((0,), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(a, np.ndarray)) class SVDBaseTests: hermitian = False @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble]) def test_types(self, dtype): x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) u, s, vh = linalg.svd(x) assert_equal(u.dtype, dtype) assert_equal(s.dtype, get_real_dtype(dtype)) assert_equal(vh.dtype, dtype) s = linalg.svd(x, compute_uv=False, hermitian=self.hermitian) assert_equal(s.dtype, get_real_dtype(dtype)) class SVDCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase): def do(self, a, b, tags): u, s, vt = linalg.svd(a, False) assert_allclose(a, dot_generalized(np.asarray(u) * np.asarray(s)[..., None, :], np.asarray(vt)), rtol=get_rtol(u.dtype)) assert_(consistent_subclass(u, a)) assert_(consistent_subclass(vt, a)) class TestSVD(SVDCases, SVDBaseTests): def test_empty_identity(self): """ Empty input should put an identity matrix in u or vh """ x = np.empty((4, 0)) u, s, vh = linalg.svd(x, compute_uv=True, hermitian=self.hermitian) assert_equal(u.shape, (4, 4)) assert_equal(vh.shape, (0, 0)) assert_equal(u, np.eye(4)) x = np.empty((0, 4)) u, s, vh = linalg.svd(x, compute_uv=True, hermitian=self.hermitian) assert_equal(u.shape, (0, 0)) assert_equal(vh.shape, (4, 4)) assert_equal(vh, np.eye(4)) class SVDHermitianCases(HermitianTestCase, HermitianGeneralizedTestCase): def do(self, a, b, tags): u, s, vt = linalg.svd(a, False, hermitian=True) assert_allclose(a, dot_generalized(np.asarray(u) * np.asarray(s)[..., None, :], np.asarray(vt)), rtol=get_rtol(u.dtype)) def hermitian(mat): axes = list(range(mat.ndim)) axes[-1], axes[-2] = axes[-2], axes[-1] return np.conj(np.transpose(mat, axes=axes)) assert_almost_equal(np.matmul(u, hermitian(u)), np.broadcast_to(np.eye(u.shape[-1]), u.shape)) assert_almost_equal(np.matmul(vt, hermitian(vt)), np.broadcast_to(np.eye(vt.shape[-1]), vt.shape)) assert_equal(np.sort(s)[..., ::-1], s) assert_(consistent_subclass(u, a)) assert_(consistent_subclass(vt, a)) class TestSVDHermitian(SVDHermitianCases, SVDBaseTests): hermitian = True class CondCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase): # cond(x, p) for p in (None, 2, -2) def do(self, a, b, tags): c = asarray(a) # a might be a matrix if 'size-0' in tags: assert_raises(LinAlgError, linalg.cond, c) return # +-2 norms s = linalg.svd(c, compute_uv=False) assert_almost_equal( linalg.cond(a), s[..., 0] / s[..., -1], single_decimal=5, double_decimal=11) assert_almost_equal( linalg.cond(a, 2), s[..., 0] / s[..., -1], single_decimal=5, double_decimal=11) assert_almost_equal( linalg.cond(a, -2), s[..., -1] / s[..., 0], single_decimal=5, double_decimal=11) # Other norms cinv = np.linalg.inv(c) assert_almost_equal( linalg.cond(a, 1), abs(c).sum(-2).max(-1) * abs(cinv).sum(-2).max(-1), single_decimal=5, double_decimal=11) assert_almost_equal( linalg.cond(a, -1), abs(c).sum(-2).min(-1) * abs(cinv).sum(-2).min(-1), single_decimal=5, double_decimal=11) assert_almost_equal( linalg.cond(a, np.inf), abs(c).sum(-1).max(-1) * abs(cinv).sum(-1).max(-1), single_decimal=5, double_decimal=11) assert_almost_equal( linalg.cond(a, -np.inf), abs(c).sum(-1).min(-1) * abs(cinv).sum(-1).min(-1), single_decimal=5, double_decimal=11) assert_almost_equal( linalg.cond(a, 'fro'), np.sqrt((abs(c)**2).sum(-1).sum(-1) * (abs(cinv)**2).sum(-1).sum(-1)), single_decimal=5, double_decimal=11) class TestCond(CondCases): def test_basic_nonsvd(self): # Smoketest the non-svd norms A = array([[1., 0, 1], [0, -2., 0], [0, 0, 3.]]) assert_almost_equal(linalg.cond(A, inf), 4) assert_almost_equal(linalg.cond(A, -inf), 2/3) assert_almost_equal(linalg.cond(A, 1), 4) assert_almost_equal(linalg.cond(A, -1), 0.5) assert_almost_equal(linalg.cond(A, 'fro'), np.sqrt(265 / 12)) def test_singular(self): # Singular matrices have infinite condition number for # positive norms, and negative norms shouldn't raise # exceptions As = [np.zeros((2, 2)), np.ones((2, 2))] p_pos = [None, 1, 2, 'fro'] p_neg = [-1, -2] for A, p in itertools.product(As, p_pos): # Inversion may not hit exact infinity, so just check the # number is large assert_(linalg.cond(A, p) > 1e15) for A, p in itertools.product(As, p_neg): linalg.cond(A, p) def test_nan(self): # nans should be passed through, not converted to infs ps = [None, 1, -1, 2, -2, 'fro'] p_pos = [None, 1, 2, 'fro'] A = np.ones((2, 2)) A[0,1] = np.nan for p in ps: c = linalg.cond(A, p) assert_(isinstance(c, np.float_)) assert_(np.isnan(c)) A = np.ones((3, 2, 2)) A[1,0,1] = np.nan for p in ps: c = linalg.cond(A, p) assert_(np.isnan(c[1])) if p in p_pos: assert_(c[0] > 1e15) assert_(c[2] > 1e15) else: assert_(not np.isnan(c[0])) assert_(not np.isnan(c[2])) def test_stacked_singular(self): # Check behavior when only some of the stacked matrices are # singular np.random.seed(1234) A = np.random.rand(2, 2, 2, 2) A[0,0] = 0 A[1,1] = 0 for p in (None, 1, 2, 'fro', -1, -2): c = linalg.cond(A, p) assert_equal(c[0,0], np.inf) assert_equal(c[1,1], np.inf) assert_(np.isfinite(c[0,1])) assert_(np.isfinite(c[1,0])) class PinvCases(LinalgSquareTestCase, LinalgNonsquareTestCase, LinalgGeneralizedSquareTestCase, LinalgGeneralizedNonsquareTestCase): def do(self, a, b, tags): a_ginv = linalg.pinv(a) # `a @ a_ginv == I` does not hold if a is singular dot = dot_generalized assert_almost_equal(dot(dot(a, a_ginv), a), a, single_decimal=5, double_decimal=11) assert_(consistent_subclass(a_ginv, a)) class TestPinv(PinvCases): pass class PinvHermitianCases(HermitianTestCase, HermitianGeneralizedTestCase): def do(self, a, b, tags): a_ginv = linalg.pinv(a, hermitian=True) # `a @ a_ginv == I` does not hold if a is singular dot = dot_generalized assert_almost_equal(dot(dot(a, a_ginv), a), a, single_decimal=5, double_decimal=11) assert_(consistent_subclass(a_ginv, a)) class TestPinvHermitian(PinvHermitianCases): pass class DetCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase): def do(self, a, b, tags): d = linalg.det(a) (s, ld) = linalg.slogdet(a) if asarray(a).dtype.type in (single, double): ad = asarray(a).astype(double) else: ad = asarray(a).astype(cdouble) ev = linalg.eigvals(ad) assert_almost_equal(d, multiply.reduce(ev, axis=-1)) assert_almost_equal(s * np.exp(ld), multiply.reduce(ev, axis=-1)) s = np.atleast_1d(s) ld = np.atleast_1d(ld) m = (s != 0) assert_almost_equal(np.abs(s[m]), 1) assert_equal(ld[~m], -inf) class TestDet(DetCases): def test_zero(self): assert_equal(linalg.det([[0.0]]), 0.0) assert_equal(type(linalg.det([[0.0]])), double) assert_equal(linalg.det([[0.0j]]), 0.0) assert_equal(type(linalg.det([[0.0j]])), cdouble) assert_equal(linalg.slogdet([[0.0]]), (0.0, -inf)) assert_equal(type(linalg.slogdet([[0.0]])[0]), double) assert_equal(type(linalg.slogdet([[0.0]])[1]), double) assert_equal(linalg.slogdet([[0.0j]]), (0.0j, -inf)) assert_equal(type(linalg.slogdet([[0.0j]])[0]), cdouble) assert_equal(type(linalg.slogdet([[0.0j]])[1]), double) @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble]) def test_types(self, dtype): x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) assert_equal(np.linalg.det(x).dtype, dtype) ph, s = np.linalg.slogdet(x) assert_equal(s.dtype, get_real_dtype(dtype)) assert_equal(ph.dtype, dtype) def test_0_size(self): a = np.zeros((0, 0), dtype=np.complex64) res = linalg.det(a) assert_equal(res, 1.) assert_(res.dtype.type is np.complex64) res = linalg.slogdet(a) assert_equal(res, (1, 0)) assert_(res[0].dtype.type is np.complex64) assert_(res[1].dtype.type is np.float32) a = np.zeros((0, 0), dtype=np.float64) res = linalg.det(a) assert_equal(res, 1.) assert_(res.dtype.type is np.float64) res = linalg.slogdet(a) assert_equal(res, (1, 0)) assert_(res[0].dtype.type is np.float64) assert_(res[1].dtype.type is np.float64) class LstsqCases(LinalgSquareTestCase, LinalgNonsquareTestCase): def do(self, a, b, tags): arr = np.asarray(a) m, n = arr.shape u, s, vt = linalg.svd(a, False) x, residuals, rank, sv = linalg.lstsq(a, b, rcond=-1) if m == 0: assert_((x == 0).all()) if m <= n: assert_almost_equal(b, dot(a, x)) assert_equal(rank, m) else: assert_equal(rank, n) assert_almost_equal(sv, sv.__array_wrap__(s)) if rank == n and m > n: expect_resids = ( np.asarray(abs(np.dot(a, x) - b)) ** 2).sum(axis=0) expect_resids = np.asarray(expect_resids) if np.asarray(b).ndim == 1: expect_resids.shape = (1,) assert_equal(residuals.shape, expect_resids.shape) else: expect_resids = np.array([]).view(type(x)) assert_almost_equal(residuals, expect_resids) assert_(np.issubdtype(residuals.dtype, np.floating)) assert_(consistent_subclass(x, b)) assert_(consistent_subclass(residuals, b)) class TestLstsq(LstsqCases): def test_future_rcond(self): a = np.array([[0., 1., 0., 1., 2., 0.], [0., 2., 0., 0., 1., 0.], [1., 0., 1., 0., 0., 4.], [0., 0., 0., 2., 3., 0.]]).T b = np.array([1, 0, 0, 0, 0, 0]) with suppress_warnings() as sup: w = sup.record(FutureWarning, "`rcond` parameter will change") x, residuals, rank, s = linalg.lstsq(a, b) assert_(rank == 4) x, residuals, rank, s = linalg.lstsq(a, b, rcond=-1)
assert_(rank == 4)
numpy.testing.assert_
import numpy as np from autograd_cls import AutoGrad from compute_utils import compute_lcv_lambda_gradient, compute_epsilon_lambda_gradient, compute_hjj, compute_z, compute_z_gradient, compute_eps_t, compute_hjj_gradient, get_discounted_return, calculate_batch_loss, invert_matrix, calculate_batch_mspbe_msbe_mse_losses from lstd import LSTD, MiniBatchLSTDLambda from adam import ADAM import copy from pprint import pprint import pdb import pudb def minibatch_LSTD(trajectories, Phi, P, V, D, R, Gs, logger, config ): lambda_ = config.default_lambda gamma = config.gamma LSTD_lambda = MiniBatchLSTDLambda(gamma, lambda_, Phi) G = {} running_loss = [] num_episodes = len(trajectories) for ep in range(num_episodes): G[ep] = [] traj = trajectories[ep] ep_rewards = [] ep_states = [] cur_state, reward, next_state, done = traj[0] LSTD_lambda.update(None, 0 , cur_state) cur_state = next_state #LSTD_lambda.reset_boyan(Phi[cur_state, :]) for timestep in range(len(traj)): cur_state, reward, next_state, done = traj[timestep] LSTD_lambda.update(cur_state, reward, next_state) ep_rewards.append(reward) ep_states.append(cur_state) if done: LSTD_lambda.update(next_state, 0, None) theta = LSTD_lambda.theta ep_discountedrewards = get_discounted_return(ep_rewards, gamma) # print('ep_discounted:{0}'.format(ep_discountedrewards)) if len(ep_discountedrewards) > 0: ep_loss = np.mean( [(np.dot(Phi[ep_states[t], :], theta) - ep_discountedrewards[t]) ** 2 for t in range(len(ep_states))]) G[ep] = ep_discountedrewards running_loss.append(ep_loss) # After we calculated the Theta parameter from the training data #loss, rmse = calculate_batch_loss(trajectories, G, theta, Phi) ms_loss, rms_loss = calculate_batch_mspbe_msbe_mse_losses(trajectories, G, theta, Phi, R, D, P, config) return LSTD_lambda, theta, G, rms_loss, ms_loss def minibatch_LSTD_withCV(trajectories, Phi, P, V, D, R, Gs, logger, config, trajectories_test, Gs_test ): lambda_ = config.default_lambda gamma = config.gamma LSTD_lambda = MiniBatchLSTDLambda(gamma, lambda_, Phi) G = {} running_loss = [] num_episodes = len(trajectories) valid_episode_counter = 0 for ep in range(num_episodes): G[ep] = [] traj = trajectories[ep] ep_rewards = [] ep_states = [] cur_state, reward, next_state, done = traj[0] LSTD_lambda.update(None, 0 , cur_state) cur_state = next_state #LSTD_lambda.reset_boyan(Phi[cur_state, :]) for timestep in range(len(traj)): cur_state, reward, next_state, done = traj[timestep] LSTD_lambda.update(cur_state, reward, next_state) ep_rewards.append(reward) ep_states.append(cur_state) if done: LSTD_lambda.update(next_state, 0, None) theta = LSTD_lambda.theta ep_discountedrewards = get_discounted_return(ep_rewards, gamma) #pdb.set_trace() # print('ep_discounted:{0}'.format(ep_discountedrewards)) if len(ep_discountedrewards) > 0: ep_loss = np.mean( [(np.dot(Phi[ep_states[t], :], theta) - ep_discountedrewards[t]) ** 2 for t in range(len(ep_states))]) G[ep] = ep_discountedrewards running_loss.append(ep_loss) # After we calculated the Theta parameter from the training data if valid_episode_counter % config.compute_cv_iterations == 0 and valid_episode_counter > 0: #pudb.set_trace() new_config = copy.deepcopy(config) new_config.default_lambda = 0 current_cv_loss = compute_CV_loss(trajectories, Phi, P, V, D, R, Gs, logger = None, config =new_config) losses, avg_losses = calculate_batch_mspbe_msbe_mse_losses(trajectories_test, Gs_test, theta, Phi, R, D, P, new_config) print('current_cv_loss:{0}'.format(current_cv_loss)) if logger: #pudb.set_trace() logger.log_scalar('Train mean loto cv', current_cv_loss, valid_episode_counter) logger.log_scalar('Test RMSPBE', avg_losses['RMSPBE'], valid_episode_counter) logger.log_scalar('Test RMSBE', avg_losses['RMSBE'], valid_episode_counter) logger.log_scalar('Test RMSBE', avg_losses['RMSE'], valid_episode_counter) logger.writer.flush() valid_episode_counter += 1 #loss, rmse = calculate_batch_loss(trajectories, G, theta, Phi) ms_loss, rms_loss = calculate_batch_mspbe_msbe_mse_losses(trajectories, G, theta, Phi, R, D, P, config) return LSTD_lambda, theta, G, rms_loss, ms_loss def LSTD_algorithm(trajectories, Phi, num_features, gamma=0.4, lambda_=0.2): # LSTD operator: LSTD_lambda = LSTD(num_features) G = {} running_loss = [] num_episodes = len(trajectories) for ep in range(num_episodes): G[ep] = [] traj = trajectories[ep] if len(traj) <= 4: continue ep_rewards = [] ep_states = [] cur_state = traj[0][0] LSTD_lambda.reset_boyan(Phi[cur_state, :]) for timestep in range(len(traj)): cur_state, reward, next_state, done = traj[timestep] LSTD_lambda.update_boyan(Phi[cur_state, :], reward, Phi[next_state, :], gamma, lambda_, timestep) ep_rewards.append(reward) ep_states.append(cur_state) theta = LSTD_lambda.theta ep_discountedrewards = get_discounted_return(ep_rewards, gamma) # print('ep_discounted:{0}'.format(ep_discountedrewards)) if len(ep_discountedrewards) > 0: ep_loss = np.mean( [(np.dot(Phi[ep_states[t], :], theta) - ep_discountedrewards[t]) ** 2 for t in range(len(ep_states))]) # print('Episode {0} loss is {1}'.format(ep, ep_loss)) # print('Episode {0} rewards are {1}'.format(ep, ep_rewards)) G[ep] = ep_discountedrewards running_loss.append(ep_loss) # After we calculated the Theta parameter from the training data loss, rmse = calculate_batch_loss(trajectories, G, theta, Phi) # print('episode loss:{0}'.format(loss)) # print(LSTD_lambda.A, LSTD_lambda.b) ms_loss,rms_loss = calculate_batch_mspbe_msbe_mse_losses(trajectories, G, theta, Phi, R, D, P, config) # print("average running loss in training: ", sum(running_loss) / num_episodes) # print("average loss after training: ", sum(loss) / num_episodes) average_loss = rmse return LSTD_lambda, theta, average_loss, G, rmspbe def Adaptive_LSTD_algorithm(trajectories, Phi, P, V, D, R, Gs, config ): # LSTD operator: Auto_grad = AutoGrad(compute_CV_loss, 4) Auto_grad.gradient_fun() adaptive_LSTD_lambda = LSTD(config.num_features) G = {} loss = [] running_loss = [] num_episodes = len(trajectories) adam_optimizer = ADAM(x_init = config.default_lambda, alpha=config.lr) lambda_ = config.default_lambda for ep in range(num_episodes): G[ep] = [] traj = trajectories[ep] if len(traj) <= 4: continue ep_rewards = [] ep_states = [] Z = np.zeros((config.num_features, config.num_states)) Z_gradient = np.zeros((config.num_features, config.num_states)) H_diag = np.zeros(config.num_states) # n eps = np.zeros(config.num_states) states_count = np.zeros(config.num_states) epsilon_lambda_gradient = np.zeros(config.num_states) H_diag_gradient = np.zeros(config.num_states) episode_loss = 0 cur_state = traj[0][0] adaptive_LSTD_lambda.reset_boyan(Phi[cur_state, :]) for timestep in range(len(traj)): cur_state, reward, next_state, done = traj[timestep] adaptive_LSTD_lambda.update_boyan(Phi[cur_state, :], reward, Phi[next_state, :], config.gamma, lambda_, timestep) ep_rewards.append(reward) ep_states.append(cur_state) theta = adaptive_LSTD_lambda.theta print(theta) A = adaptive_LSTD_lambda.A b = adaptive_LSTD_lambda.b A_inv = np.linalg.pinv(A + np.eye(A.shape[0]) * config.A_inv_epsilon, rcond=.1) for timestep in range(len(traj)-1): cur_state, reward, next_state, done = traj[timestep] # To-do : change the following update to running average states_count[cur_state] += 1 ct = states_count[cur_state] Z[:,cur_state] = (ct-1)/ct *Z[:,cur_state]+ 1/ct * compute_z(lambda_, config.gamma, Phi, ep_states, timestep ) Z_gradient[:, cur_state] = (ct-1)/ct * Z_gradient[:, cur_state] + 1/ct * compute_z_gradient(lambda_, config.gamma, Phi, ep_states, timestep) H_diag[cur_state] = (ct-1)/ct * H_diag[cur_state] + 1/ct * compute_hjj(Phi, lambda_, config.gamma, ep_states, timestep, A_inv) eps[cur_state] = (ct-1)/ct * eps[cur_state] + 1/ct * compute_eps_t(Phi, theta, config.gamma, reward, ep_states, timestep) epsilon_lambda_gradient[cur_state] = (ct-1)/ct * epsilon_lambda_gradient[cur_state] + \ 1/ct * compute_epsilon_lambda_gradient(Phi, lambda_, config.gamma, A, b, A_inv, Z, timestep, ep_states, ep_rewards ) H_diag_gradient[cur_state] = (ct-1)/ct * H_diag_gradient[cur_state] + 1/ct * compute_hjj_gradient(Phi, lambda_, config.gamma, ep_states, timestep, A, b, A_inv ) #grad = compute_cv_gradient(Phi, theta, gamma, lambda_, P, V, D, R) # Replaced the above update with: grad = compute_lcv_lambda_gradient(eps, H_diag, ep_states, epsilon_lambda_gradient, H_diag_gradient, grad_clip_max_norm = config.grad_clip_norm) if config.compute_autograd: auto_grad = Auto_grad.loss_autograd_fun(trajectories, Phi, config.num_features, config.gamma, lambda_, Gs) print('gradient diff:{0}'.format(abs(grad-auto_grad))) # if ep > 1000 : # new_lambda = lambda_ - lr * compute_cv_gradient(Phi, theta, gamma, lambda_, P, V, D) # print(new_lambda) # if new_lambda >= 0 and new_lambda <= 1: # lambda_ = new_lambda # print('current lambda:{0}'.format(lambda_)) # grad = compute_cv_gradient2(Phi, theta, gamma, lambda_, R, A, b, z) if config.use_adam_optimizer: adam_optimizer.update(grad, ep) new_lambda = adam_optimizer.x else: new_lambda = lambda_ - config.lr * grad if new_lambda >= 0 and new_lambda <= 1: lambda_ = new_lambda print('current lambda:{0}'.format(lambda_)) ep_discountedrewards = get_discounted_return(ep_rewards, config.gamma) # print('ep_discounted:{0}'.format(ep_discountedrewards)) if len(ep_discountedrewards) > 0: ep_loss = np.mean( [(np.dot(Phi[ep_states[t], :], theta) - ep_discountedrewards[t]) ** 2 for t in range(len(ep_states))]) # print('Episode {0} loss is {1}'.format(ep, ep_loss)) # print('Episode {0} rewards are {1}'.format(ep, ep_rewards)) G[ep] = ep_discountedrewards running_loss.append(ep_loss) # After we calculated the Theta parameter from the training data loss, rmse = calculate_batch_loss(trajectories, G, theta, Phi) # print('episode loss:{0}'.format(loss)) # print(LSTD_lambda.A, LSTD_lambda.b) #print("Final Lambda: {0}".format(lambda_)) #print("average running loss in training: ", np.mean(running_loss)) #print("average loss after training: ", np.mean(loss)) average_loss = rmse return adaptive_LSTD_lambda, theta, average_loss, G, lambda_ def Adaptive_LSTD_algorithm_batch(trajectories, Phi, P, V, D, R, Gs, logger, config ): # LSTD operator: Auto_grad = AutoGrad(compute_CV_loss, 4) Auto_grad.gradient_fun() #adaptive_LSTD_lambda = LSTD(config.num_features) adaptive_LSTD_lambda = MiniBatchLSTDLambda(config.gamma, config.default_lambda, Phi) G = {} loss = [] running_loss = [] num_episodes = len(trajectories) adam_optimizer = ADAM(x_init = config.default_lambda, alpha=config.lr) lambda_ = config.default_lambda valid_episode_counter = 0 for ep in range(num_episodes): traj = trajectories[ep] G[ep] = [] if len(traj) <= 4: continue cur_state, reward, next_state, done = traj[0] adaptive_LSTD_lambda.update(None, 0 , cur_state) if valid_episode_counter % config.batch_size == 0: ep_rewards = [] ep_states = [] Z = np.zeros((config.num_features, config.num_states)) Z_gradient = np.zeros((config.num_features, config.num_states)) H_diag = np.zeros(config.num_states) # n eps = np.zeros(config.num_states) states_count = np.zeros(config.num_states) epsilon_lambda_gradient = np.zeros(config.num_states) H_diag_gradient = np.zeros(config.num_states) episode_loss = 0 #cur_state = traj[0][0] #adaptive_LSTD_lambda.reset_boyan(Phi[cur_state, :]) for timestep in range(len(traj)): cur_state, reward, next_state, done = traj[timestep] adaptive_LSTD_lambda.update(cur_state, reward, next_state) if done: adaptive_LSTD_lambda.update(next_state, 0, None) #adaptive_LSTD_lambda.update_boyan(Phi[cur_state, :], reward, Phi[next_state, :], config.gamma, lambda_, timestep) ep_rewards.append(reward) ep_states.append(cur_state) if logger: logger.log_scalar('average trajectories reward', np.mean(ep_rewards), valid_episode_counter) logger.writer.flush() theta = adaptive_LSTD_lambda.theta A = adaptive_LSTD_lambda.A b = adaptive_LSTD_lambda.b.reshape((-1,1)) #A_inv = np.linalg.pinv(A + np.eye(A.shape[0]) * config.A_inv_epsilon, rcond=.1) A_inv = invert_matrix(A) for timestep in range(len(traj)-1): cur_state, reward, next_state, done = traj[timestep] states_count[cur_state] += 1 ct = states_count[cur_state] Z[:,cur_state] = (ct-1)/ct *Z[:,cur_state]+ 1/ct * compute_z(lambda_, config.gamma, Phi, ep_states, timestep ) Z_gradient[:, cur_state] = (ct-1)/ct * Z_gradient[:, cur_state] + \ 1/ct * compute_z_gradient(lambda_, config.gamma, Phi, ep_states, timestep) H_diag[cur_state] = (ct-1)/ct * H_diag[cur_state] + \ 1/ct * compute_hjj(Phi, lambda_, config.gamma, ep_states, timestep, A_inv) eps[cur_state] = (ct-1)/ct * eps[cur_state] + \ 1/ct * compute_eps_t(Phi, theta, config.gamma, reward, ep_states, timestep) epsilon_lambda_gradient[cur_state] = (ct-1)/ct * epsilon_lambda_gradient[cur_state] + \ 1/ct * compute_epsilon_lambda_gradient(Phi, lambda_, config.gamma, A, b, A_inv, Z, timestep, ep_states, ep_rewards ) H_diag_gradient[cur_state] = (ct-1)/ct * H_diag_gradient[cur_state] + 1/ct * compute_hjj_gradient(Phi, lambda_, config.gamma, ep_states, timestep, A, b, A_inv ) # update the gradients of the batch: if valid_episode_counter % config.batch_size == 0: grad = compute_lcv_lambda_gradient(eps, H_diag, ep_states, epsilon_lambda_gradient, H_diag_gradient, grad_clip_max_norm = config.grad_clip_norm) if logger: logger.log_scalar('CV loss lambda gradients per batch', grad, valid_episode_counter/config.batch_size) logger.writer.flush() if config.compute_autograd: auto_grad = Auto_grad.loss_autograd_fun(trajectories, Phi, config.num_features, config.gamma, lambda_, Gs) print('gradient diff:{0}'.format(abs(grad-auto_grad))) if config.use_adam_optimizer: adam_optimizer.update(grad, valid_episode_counter+1) new_lambda = adam_optimizer.x else: new_lambda = lambda_ - config.lr * grad if new_lambda >= 0 and new_lambda <= 1: lambda_ = new_lambda print('gradient: {0}'.format(grad)) print('current lambda:{0}'.format(lambda_)) print('current theta:{0}'.format(theta)) ep_discountedrewards = get_discounted_return(ep_rewards, config.gamma) # print('ep_discounted:{0}'.format(ep_discountedrewards)) if len(ep_discountedrewards) > 0: ep_loss = np.mean( [(np.dot(Phi[ep_states[t], :], theta) - ep_discountedrewards[t]) ** 2 for t in range(len(ep_states))]) G[ep] = ep_discountedrewards running_loss.append(ep_loss) valid_episode_counter += 1 # After we calculated the Theta parameter from the training data #loss, rmse = calculate_batch_loss(trajectories, G, theta, Phi) new_config = copy.deepcopy(config) new_config.lambda_ = lambda_ ms_loss, rms_loss = calculate_batch_mspbe_msbe_mse_losses(trajectories, G, theta, Phi, R, D, P, config) print('Theta values: {0}'.format(theta)) print('episode RMSPBE :{0}'.format(rmspbe)) # print('episode loss:{0}'.format(loss)) # print(LSTD_lambda.A, LSTD_lambda.b) #print("Final Lambda: {0}".format(lambda_)) #print("average running loss in training: ", np.mean(running_loss)) #print("average loss after training: ", np.mean(loss)) return adaptive_LSTD_lambda, theta, G, lambda_, ms_loss, rms_loss ''' The same as Adaptive_LSTD_algorithm_batch, except A and b are calculated based on all the episodes. ''' def Adaptive_LSTD_algorithm_batch_type2(trajectories, Phi, P, V, D, R, Gs, logger, config ): # LSTD operator: Auto_grad = AutoGrad(compute_CV_loss, 4) Auto_grad.gradient_fun() adaptive_LSTD_lambda = LSTD(config.num_features) G = {} loss = [] running_loss = [] num_episodes = len(trajectories) adam_optimizer = ADAM(x_init = config.default_lambda, alpha=config.lr) lambda_ = config.default_lambda ##### First go over all the trajectories and calculate estimate A and b: for ep in range(num_episodes): traj = trajectories[ep] if len(traj) <= 4: continue cur_state = traj[0][0] adaptive_LSTD_lambda.reset_boyan(Phi[cur_state, :]) for timestep in range(len(traj)): cur_state, reward, next_state, done = traj[timestep] adaptive_LSTD_lambda.update_boyan(Phi[cur_state, :], reward, Phi[next_state, :], config.gamma, lambda_, timestep ) # theta = adaptive_LSTD_lambda.theta # A = adaptive_LSTD_lambda.A # b = adaptive_LSTD_lambda.b # A_inv = np.linalg.pinv(A + np.eye(A.shape[0]) * config.A_inv_epsilon) #pudb.set_trace() ######## Now use the above A and b to calculate optimal lambda: valid_episode_counter = 0 for ep in range(num_episodes): traj = trajectories[ep] G[ep] = [] # if len(traj) <= 4: # continue if valid_episode_counter % config.batch_size == 0: ep_rewards = [] ep_states = [] Z = np.zeros((config.num_features, config.num_states)) Z_gradient = np.zeros((config.num_features, config.num_states)) H_diag = np.zeros(config.num_states) # n eps = np.zeros(config.num_states) states_count = np.zeros(config.num_states) epsilon_lambda_gradient =
np.zeros(config.num_states)
numpy.zeros
""" =========================================== WEDTM Demo Inter and Intra Topic Structure Learning with Word Embeddings He Zhao, <NAME>, <NAME>, <NAME> Published in International Council for Machinery Lubrication 2018 =========================================== """ # Author: <NAME> <<EMAIL>>; <NAME> <<EMAIL>>; <NAME> <<EMAIL>> # License: BSD-3-Clause import os import copy import time import math import numpy as np from ._basic_model import Basic_Model from .._sampler import Basic_Sampler from .._utils import * from scipy import sparse class WEDTM(Basic_Model): def __init__(self, K: [list], device='gpu'): """ The basic model for WEDTM Inputs: K : [list] number of topics of each layer; device : [str] 'cpu' or 'gpu'; Attributes: @public: global_params : [Params] the global parameters of the probabilistic model local_params : [Params] the local parameters of the probabilistic model @private: _model_setting : [Params] the model settings of the probabilistic model _hyper_params : [Params] the hyper parameters of the probabilistic model """ super(WEDTM, self).__init__() setattr(self, '_model_name', 'WEDTM') self._model_setting.K = K self._model_setting.T = len(K) self._model_setting.device = device assert self._model_setting.device in ['cpu', 'gpu'], 'Device Type Error: the device should be ''cpu'' or ''gpu''' self._sampler = Basic_Sampler(self._model_setting.device) def initial(self, data): ''' Inintial the parameters of WEDTM with the input documents Inputs: data : [np.ndarray] or [scipy.sparse.csc.csc_matrix] V*N matrix, N bag-of-words vectors with a vocabulary length of V Attributes: @public: global_params.Phi : [np.ndarray] V*K matrix, K topics with a vocabulary length of V local_params.Theta : [np.ndarray] N*K matrix, the topic propotions of N documents @private: _model_setting.V : [int] scalar, the length of the vocabulary ''' self._model_setting.V = data.shape[0] self.global_params.Phi = np.zeros((self._model_setting.K[0], self._model_setting.V)).astype(int) def train(self, embeddings: np.ndarray, S: int, iter_all: int, data: np.ndarray, is_train: bool = True): ''' Inputs: embeddings : [np.ndarray] V*D, word embedding of training words S : [int] sub topics iter_all : [np.ndarray] scalar, the iterations of gibbs sampling data : [np.ndarray] V*N_train matrix, N_train bag-of-words vectors with a vocabulary length of V is_train : [bool] True or False, whether to update the global params in the probabilistic model Attributes: @public: local_params.Theta : [np.ndarray] N_train*K matrix, the topic propotions of N_train documents @private: _model_setting.N : [int] scalar, the number of the documents in the corpus _model_setting.Iteration : [int] scalar, the iterations of sampling Outputs: local_params : [Params] the local parameters of the probabilistic model ''' assert type(data) is np.ndarray, 'Data type error: the input data should be a 2-D np.ndarray' self._model_setting.Iteration = [iter_all] * self._model_setting.T self._model_setting.N = data.shape[1] # initial local paramters self.local_params.Theta = np.zeros((self._model_setting.K[0], self._model_setting.N)).astype(int) # WS the trained words' word index # DS the trained words' doc index # ZS the trained words' random theme words_num = np.sum(data) WS = np.zeros(words_num).astype(int) DS = np.zeros(words_num).astype(int) wi, di = np.where(data) cc = data[wi, di] pos = 0 for i in range(len(cc)): WS[pos:pos+cc[i]] = wi[i] DS[pos:pos+cc[i]] = di[i] pos = pos+cc[i] a0 = 0.01 b0 = 0.01 e0 = 1 f0 = 1 beta0 = 0.05 # Add the default word embedding embeddings = np.insert(embeddings, embeddings.shape[1], values=np.ones(self._model_setting.V), axis=1) self.Theta = [[]] * self._model_setting.T c_j = [[]] * (self._model_setting.T + 1) for t in range(self._model_setting.T + 1): c_j[t] = np.ones((1, self._model_setting.N)) self.Phi = [{}] * self._model_setting.T Xt_to_t1 = [[]] * self._model_setting.T WSZS = [[]] * self._model_setting.T paraGlobal = [{}] * self._model_setting.T # Initialise beta for t = 1 beta1, self.beta_para = self._init_beta(self._model_setting.K[0], self._model_setting.V, S, embeddings, beta0) for Tcurrent in range(self._model_setting.T): if Tcurrent == 0: # layer 1, initial params. ZS = np.random.randint(self._model_setting.K[Tcurrent], size=(len(DS))) # theme of each words self.local_params.Theta = np.zeros((self._model_setting.K[Tcurrent], self._model_setting.N)).astype(int) # Theta (K,N) distribution of theme for i in range(len(ZS)): self.local_params.Theta[ZS[i], DS[i]] += 1 if is_train: self.global_params.Phi = np.zeros((self._model_setting.K[Tcurrent], self._model_setting.V)).astype(int) # ZSWS Phi (K,V) distribution of words for i in range(len(ZS)): self.global_params.Phi[ZS[i], WS[i]] += 1 WSZS[Tcurrent] = self.global_params.Phi.T Xt_to_t1[Tcurrent] = self.local_params.Theta n_dot_k = np.sum(self.local_params.Theta, 1) # count number of each theme in doc p_j = self._calculate_pj(c_j, Tcurrent) r_k = 1 / self._model_setting.K[Tcurrent] * np.ones(self._model_setting.K[Tcurrent]) gamma0 = 1 c0 = 1 else: self._model_setting.K[Tcurrent] = self._model_setting.K[Tcurrent - 1] if self._model_setting.K[Tcurrent] <= 4: break self.Phi[Tcurrent] = np.random.rand(self._model_setting.K[Tcurrent - 1], self._model_setting.K[Tcurrent]) self.Phi[Tcurrent] = self.Phi[Tcurrent] / np.maximum(realmin, np.sum(self.Phi[Tcurrent], 0)) self.Theta[Tcurrent] = np.ones((self._model_setting.K[Tcurrent], self._model_setting.N)) / self._model_setting.K[Tcurrent] p_j = self._calculate_pj(c_j, Tcurrent) r_k = 1 / self._model_setting.K[Tcurrent] * np.ones(self._model_setting.K[Tcurrent]) gamma0 = self._model_setting.K[Tcurrent] / self._model_setting.K[1] c0 = 1 for iter in range(1, self._model_setting.Iteration[Tcurrent]): start_time = time.time() for t in range(Tcurrent + 1): if t == 0: dex111 = list(range(len(ZS))) np.random.shuffle(dex111) ZS = ZS[dex111] DS = DS[dex111] WS = WS[dex111] if Tcurrent == 0: shape = np.dot(r_k.reshape(-1, 1), np.ones((1, self._model_setting.N))) else: shape = np.dot(self.Phi[1], self.Theta[1]) beta1_sum = np.sum(beta1, 1) # Modified from GNBP_mex_collapsed_deep.c in the GBN code, # to support a full matrix of beta1 [self.local_params.Theta, temp, n_dot_k, ZS] = self._collapsed_gibbs_topic_assignment_mex( self.local_params.Theta, self.global_params.Phi, n_dot_k, ZS, WS, DS, shape, beta1, beta1_sum) if is_train: self.global_params.Phi = temp WSZS[t] = self.global_params.Phi.T Xt_to_t1[t] = self.local_params.Theta # Sample the variables related to sub-topics beta1 = self.sample_beta(WSZS[t].T, embeddings, beta1) else: [Xt_to_t1[t], WSZS[t]] = self._sampler.multi_aug(Xt_to_t1[t-1], self.Phi[t], self.Theta[t]) if t > 0: self.Phi[t] = self._sample_Phi(WSZS[t], beta0) if np.count_nonzero(np.isnan(self.Phi[t])): Warning('Phi Nan') self.Phi[t][np.isnan(self.Phi[t])] = 0 Xt = self._crt_sum_mex_matrix_v1(sparse.csc_matrix(Xt_to_t1[Tcurrent].T), r_k.reshape(1, -1).T).T r_k, gamma0, c0 = self._sample_rk(Xt, r_k, p_j[Tcurrent+1], gamma0, c0) if iter > 10: if Tcurrent > 0: p_j[1] = self._sampler.beta(np.sum(Xt_to_t1[0], 0)+a0, np.sum(self.Theta[1], 0)+b0) else: p_j[1] = self._sampler.beta(np.sum(Xt_to_t1[0], 0)+a0, np.sum(r_k)+b0) p_j[1] = np.minimum(np.maximum(p_j[1], np.spacing(1)), 1-np.spacing(1)) c_j[1] = (1 - p_j[1]) / p_j[1] for t in range(2, Tcurrent+2): if t == Tcurrent+1: c_j[t] = self._sampler.gamma(np.sum(r_k)*np.ones((1, self._model_setting.N))+e0) / (np.sum(self.Theta[t-1], 0)+f0) else: c_j[t] = self._sampler.gamma(np.sum(self.Theta[t], 0)+e0) / (np.sum(self.Theta[t-1], 0)+f0) p_j_temp = self._calculate_pj(c_j, Tcurrent) p_j[2:] = p_j_temp[2:] for t in range(Tcurrent, -1, -1): if t == Tcurrent: shape = r_k.reshape(-1, 1) else: shape = np.dot(self.Phi[t+1], self.Theta[t+1]) if t > 0: self.Theta[t] = self._sampler.gamma(shape+Xt_to_t1[t]) * (1/(c_j[t+1] - np.log(np.maximum(1 - p_j[t], realmin)))) # (100, 12337/987) (1, 12337) if np.count_nonzero(np.isnan(self.Theta[t])): Warning('Theta Nan') self.Theta[t][np.isnan(self.Theta[t])] = 0 end_time = time.time() stages = 'Training' if is_train else 'Testing' print(f'{stages} Stage: ', f'Layer {Tcurrent:3d}, epoch {iter:3d} takes {end_time - start_time:.2f} seconds, topics {np.count_nonzero(Xt):3d}') for t in range(Tcurrent + 1): if t == 0: self.Phi[t] = self._sample_Phi(WSZS[t], beta1.T, True) else: self.Phi[t] = self._sample_Phi(WSZS[t], beta0, True) paraGlobal[Tcurrent]['Phi'] = self.Phi paraGlobal[Tcurrent]['r_k'] = r_k paraGlobal[Tcurrent]['gamma0'] = gamma0 paraGlobal[Tcurrent]['c0'] = c0 paraGlobal[Tcurrent]['K'] = self._model_setting.K[:Tcurrent] paraGlobal[Tcurrent]['beta0'] = beta0 paraGlobal[Tcurrent]['beta_para'] = self.beta_para paraGlobal[Tcurrent]['p_j'] = p_j # for theta paraGlobal[Tcurrent]['c_j'] = c_j paraGlobal[Tcurrent]['Xt_to_t1'] = Xt_to_t1 paraGlobal[Tcurrent]['cjmedian'] = [] for t in range(Tcurrent + 1): paraGlobal[Tcurrent]['cjmedian'].append(np.median(c_j[t])) return copy.deepcopy(self.local_params) def test(self, embeddings: np.ndarray, S: int, iter_all: list, data: np.ndarray): ''' Inputs: embeddings : [np.ndarray] V*D, word embedding of training words S : [int] number of sub topics iter_all : [np.ndarray] scalar, the iterations of gibbs sampling data : [np.ndarray] V*N_train matrix, N_train bag-of-words vectors with a vocabulary length of V Outputs: local_params : [Params] the local parameters of the probabilistic model ''' local_params = self.train(embeddings, S, iter_all, data, is_train=False) return local_params def save(self, model_path: str = './save_models'): ''' Save the model to the specified directory. Inputs: model_path : [str] the directory path to save the model, default './save_models/WEDTM.npy' ''' # create the directory path if not os.path.isdir(model_path): os.mkdir(model_path) # save the model model = {} for params in ['global_params', 'local_params', '_model_setting', '_hyper_params']: if params in dir(self): model[params] = getattr(self, params) np.save(model_path + '/' + self._model_name + '.npy', model) print('model have been saved by ' + model_path + '/' + self._model_name + '.npy') def load(self, model_path: str): ''' Load the model parameters from the specified directory Inputs: model_path : [str] the directory path to load the model; ''' assert os.path.exists(model_path), 'Path Error: can not find the path to load the model' model = np.load(model_path, allow_pickle=True).item() for params in ['global_params', 'local_params', '_model_setting', '_hyper_params']: if params in model: setattr(self, params, model[params]) def _init_beta(self, K, V, S, embeddings, beta): L = embeddings.shape[1] beta_para = [{}] * S for s in range(S): # variables for sub-topic s beta_para[s]['beta_s'] = beta/S * np.ones((K, V)) beta_para[s]['alpha_k'] = 0.1 * np.ones((K, 1)) beta_para[s]['W'] = 0.1 * np.ones((K, L)) beta_para[s]['pi'] = np.dot(beta_para[s]['W'], embeddings.T) beta_para[s]['sigma'] = np.ones((K, L)) beta_para[s]['c0'] = 1 beta_para[s]['alpha0'] = 1 beta1 = beta * np.ones((K, V)) return beta1, beta_para def _calculate_pj(self, c_j, T): ''' calculate p_j from layer 1 to T+1 same as pfa ''' p_j = [[]] * (T+2) N = len(c_j[1]) p_j[0] = (1-np.exp(-1)) * np.ones((1, N)) p_j[1] = 1/(1 + c_j[1]) for t in range(2, T+2): temp = -np.log(np.maximum(1-p_j[t - 1], realmin)) p_j[t] = temp / (temp + c_j[t]) if np.count_nonzero(np.isnan(p_j[t])): Warning('pj Nan') p_j[t][np.isnan(p_j[t])] = np.spacing(1) return p_j def _collapsed_gibbs_topic_assignment_mex(self, ZSDS, ZSWS, n_dot_k, ZS, WS, DS, shape, eta, eta_sum): ''' same as DirBN ''' Ksize, Nsize = ZSDS.shape WordNum = WS.shape[0] prob_cumsum = np.zeros((Ksize, 1)) for i in range(WordNum): v = WS[i] j = DS[i] k = ZS[i] if ZS[i] > -1: ZSDS[k, j] -= 1 ZSWS[k, v] -= 1 n_dot_k[k] -= 1 cum_sum = 0 for k in range(Ksize): cum_sum += (eta[k, v] + ZSWS[k, v]) / (eta_sum[k] + n_dot_k[k]) * (ZSDS[k, j] + shape[k, j]) prob_cumsum[k] = cum_sum probrnd = np.random.rand() * cum_sum k = self._binary_search(probrnd, prob_cumsum, Ksize) ZS[i] = k ZSDS[k, j] += 1 ZSWS[k, v] += 1 n_dot_k[k] += 1 return ZSDS, ZSWS, n_dot_k, ZS def _binary_search(self, probrnd, prob_cumsum, Ksize): if probrnd <= prob_cumsum[0]: return 0 else: kstart = 1 kend = Ksize - 1 while 1: if kstart >= kend: return kend else: k = kstart + int((kend - kstart) / 2) if (prob_cumsum[k - 1][0] > probrnd) & (prob_cumsum[k][0] > probrnd): kend = k - 1 elif (prob_cumsum[k - 1][0] < probrnd) & (prob_cumsum[k][0] < probrnd): kstart = k + 1 else: return k return k def _sample_beta(self, n_topic_word, F, beta1): a0 = 0.01 b0 = 0.01 e0 = 1 f0 = 1 S = len(self.beta_para) L = F.shape[1] # The word count for each v and k in the first layer [K, V] = n_topic_word.shape n_sum = np.sum(n_topic_word, 1) ## Eq. (3) log_inv_q = -np.log(self._sampler.beta(np.sum(beta1, 1), np.maximum(n_sum, realmin))) log_log_inv_q = np.log(np.maximum(log_inv_q, realmin)) # Active topics in the first layer active_k = (~np.isnan(log_inv_q)) & (~np.isinf(log_inv_q)) & (n_sum > 0) & (log_inv_q != 0) ## Eq. (4) and (6) h = np.zeros((K, V, S)).astype(int) for k in range(K): for v in range(V): for j in range(n_topic_word[k, v]): if j == 0: is_add_table = 1 else: is_add_table = (np.random.rand() < beta1[k, v] / (beta1[k, v] + j + 1)) if is_add_table > 0: p = np.zeros((S, 1)) for s in range(S): p[s] = self.beta_para[s]['beta_s'][k, v] sum_cum = np.cumsum(p) temp = np.argwhere(sum_cum > np.random.rand() * sum_cum[-1]) if len(temp) > 0: ss = temp[0] else: continue h[k, v, ss] = h[k, v, ss] + 1 beta1 = 0 for s in range(S): ## For each sub-topic s alpha_k = self.beta_para[s]['alpha_k'] pi_pg = self.beta_para[s]['pi'] W = self.beta_para[s]['W'] c0 = self.beta_para[s]['c0'] alpha0 = self.beta_para[s]['alpha0'] h_s = h[:, :, s] # Sample alpha_k for each sub-topic s with the hierarchical gamma h_st = np.zeros((K, V)).astype(int) # Eq. (11) h_st[h_s > 0] = 1 for k in range(K): for v in range(V): for j in range(h_s[k, v] - 1): h_st[k, v] = h_st[k, v] + (np.random.rand() < alpha_k[k] / (alpha_k[k] + j + 1)).astype(int) # Eq. (10) h_st_dot = np.sum(h_st, 1) # Active topics in each sub-topic s local_active_k = h_st_dot > 0 & active_k l_a_K = sum(local_active_k) x = pi_pg + log_log_inv_q.reshape(-1, 1) dex = x < 0 temp = np.zeros(x.shape) temp[dex] = np.log1p(np.exp(x[dex])) temp[~dex] = x[~dex]+np.log1p(np.exp(-x[~dex])) temp = np.sum(temp, 1) # Eq. (9) alpha_k = (self._sampler.gamma(alpha0 / l_a_K + h_st_dot) / (c0 + temp)).reshape(-1, 1) h_stt = np.zeros((K, 1)) h_stt[h_st_dot > 0] = 1 for k in range(K): for j in range(h_st_dot[k] - 1): h_stt[k] = h_stt[k] + (np.random.rand() < (alpha0 / l_a_K) / (alpha0 / l_a_K + j + 1)).astype(int) temp2 = temp / (c0 + temp) # L17 in Figure 1 in the appendix alpha0 = self._sampler.gamma(a0 + np.sum(h_stt)) / (b0 - np.sum(np.log(1 - temp2[local_active_k])) / l_a_K) c0 = self._sampler.gamma(e0 + alpha0) / (f0 + np.sum(alpha_k[local_active_k])) ## Sample Polya-Gamma variables # Eq. (15) pi_pg_vec = pi_pg + log_log_inv_q.reshape(-1,1) pi_pg_vec = pi_pg_vec.reshape(K * V, 1) temp = h_s + alpha_k # reshape(h_s + alpha_k, K*V,1) temp = temp.reshape(K * V, 1) omega_vec = self._polya_gam_rnd_gam(temp, pi_pg_vec, 2) omega_mat = omega_vec omega_mat = omega_mat.reshape(K, V) ## Sample sigma sigma_w = self._sampler.gamma(1e-2 + 0.5 * l_a_K) / ( 1e-2 + np.sum(np.power(W[local_active_k, :], 2), 0) * 0.5) sigma_w = np.tile(sigma_w, (K, 1)) ## Sample W # Eq. (14) for k in range(K): if local_active_k[k] > 0: Hgam = F.T * omega_mat[k, :] invSigmaW = np.diag(sigma_w[k, :]) + np.dot(Hgam, F) MuW = np.dot(np.linalg.inv(invSigmaW), ( np.sum(F.T * (0.5 * h_s[k, :].reshape(1, -1) - 0.5 * alpha_k[k, :] - (log_log_inv_q[k]) * omega_mat[k, :]), 1))) R = self._choll(invSigmaW) W[k, :] = MuW + np.dot(np.linalg.inv(R), np.random.rand(L, 1)).flatten() else: W[k, :] = 1e-10 # Update pi, Eq. (8) pi_pg = np.dot(W, F.T) ## Sample beta for each sub-topic s # Eq. (7) beta_s = self._sampler.gamma(alpha_k + h_s) / (np.exp(-pi_pg) + log_inv_q.reshape(-1, 1)) beta_s[local_active_k == 0, :] = 0.05 / S beta_s[(np.sum(np.isnan(beta_s), 1)) != 0, :] = 0.05 / S beta_s[(np.sum(np.isnan(beta_s) | np.isinf(beta_s), 1)) != 0, :] = 0.05 / S beta_s[(np.sum(beta_s, 1).astype(bool)), :] = 0.05 / S ## Update beta1 beta1 = beta1 + beta_s ## Collect results # self.beta_para[s]['beta_s'] = beta_s self.beta_para[s]['pi'] = pi_pg self.beta_para[s]['W'] = W self.beta_para[s]['alpha_k'] = alpha_k self.beta_para[s]['sigma'] = sigma_w self.beta_para[s]['h_s'] = sparse.csc_matrix(h_s) self.beta_para[s]['c0'] = c0 self.beta_para[s]['alpha0'] = alpha0 return beta1 def _polya_gam_rnd_gam(self, a, c, KK, IsBiased=None): ''' Generating Polya-Gamma random varaibles using approximation method ''' IsBiased = False x = 1 / 2 / math.pi ** 2 * np.sum(self._sampler.gamma(np.dot(a, np.ones((1, KK))), 1) / (np.power((np.array([i for i in range(KK)]) + 0.5), 2) + np.power(c, 2) / 4 / math.pi ** 2), 1) if ~IsBiased: temp = abs(c / 2) temp[temp <= 0] = realmin xmeanfull = (np.tanh(temp) / (temp) / 4) xmeantruncate = 1 / 2 / math.pi ** 2 * np.sum( 1 / (np.power((np.array([i for i in range(KK)]) + 0.5), 2) + np.power(c, 2) / 4 / math.pi ** 2), 1) x = x * xmeanfull.flatten() / (xmeantruncate) return x def _choll(self, A): # same as dpfa P = A.copy() q = np.linalg.cholesky(P) q = q.T return q def _crt_sum_mex_matrix_v1(self, X, r): # same as DirBN sample_theta k, n = np.shape(X) if len(r) == 1: r = r[0] lsum = np.zeros(n).astype(int) maxx = 0 Xsparse = sparse.csc_matrix(X) pr = Xsparse.data ir = Xsparse.indices jc = Xsparse.indptr for j in range(n): starting_row_index = jc[j] stopping_row_index = jc[j+1] if starting_row_index == stopping_row_index: continue else: for current_row_index in range(starting_row_index, stopping_row_index): maxx = int(max(maxx, pr[current_row_index])) prob = np.zeros(maxx) for i in range(maxx): prob[i] = r[j] / (r[j] + i) lsum[j] = 0 for current_row_index in range(starting_row_index, stopping_row_index): for i in range(int(pr[current_row_index])): if
np.random.rand()
numpy.random.rand
# Pluto # v0.9.2 # MIT License # Copyright (c) 2021 <NAME> from typing import Literal import numpy as np import matplotlib.pyplot as plt import cv2 import torch import torch.nn as nn import torchvision.transforms.functional as tf import torch.nn.functional as F import time import webbrowser import requests import easyocr reader = easyocr.Reader(['en']) # For reproducibility seed = 3 torch.manual_seed(seed) np.random.seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True # cli capabilities if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description="Runs Pluto on screenshots.") parser.add_argument("-i", "--input", type=str, metavar="", help="Path to input image. If left empty, the clipboard content will be used automatically") parser.add_argument("-o", "--output", type=str, metavar="", help="Path to where the output file should be saved.") parser.add_argument("-c", "--category", type=str, metavar="", help="Category of media. Equal to class name") args = parser.parse_args() arg_i = args.input arg_o = args.output arg_c = args.category # try: # print(arg_i) # print(arg_o) # print(arg_c) # except Exception: pass def read_image(path: str, no_BGR_correction=False, resz=None): # -> np.ndarray """Returns an image from a path as a numpy array, resizes it if necessary Args: path: location of the image. no_BGR_correction: When True, the color space is not converted from BGR to RGB Returns: The read image as np.ndarray. Raises: AttributeError: if path is not valid, this causes image to be None """ if type(path) == np.ndarray: return path image = cv2.imread(path) if resz is not None: image = cv2.resize(image, resz) if image is None: raise AttributeError("Pluto ERROR in read_image() function: Image path is not valid, read object is of type None!") if no_BGR_correction: return image image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) return image def show_image(image: np.ndarray, BGR2RGB=False): """Displays an image using Matplotlib's pyplot.imshow() Args: image: The image to be displayed. BGR2RGB: When True, the color space is converted from BGR to RGB. """ if BGR2RGB: image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) plt.show() def grab_clipboard(): from PIL import ImageGrab img = ImageGrab.grabclipboard().convert("RGB") img = np.array(img) return img def avg_of_row(img: np.ndarray, row: int, ovo=False): # -> int | float """Calculates the average pixel value for one row of an image Args: img: The screenshot as np.ndarray row: which row of the image should be analysed? ovo: output as 'one value only' instead of list? Returns: The average value per row, ether one value only or per color channel value """ all_values_added = 0 if img.shape[2] == 3: all_values_added = [0, 0, 0] length = len(img) for pixl in img[row]: all_values_added += pixl out = all_values_added / length if ovo: out = sum(out) / 3 return out def avg_of_collum(img: np.ndarray, collum: int, ovo=False): # -> int | float """Calculates the average pixel value for one collum of an image Args: img: The screenshot as np.ndarray collum: which collum of the image should be analysed? ovo: output as 'one value only' instead of list? Returns: The average value per collum, ether one value only or per color channel value """ all_values_added = 0 if img.shape[2] == 3: all_values_added = [0, 0, 0] length = len(img[0]) for pixl in img[:, collum]: all_values_added += pixl out = all_values_added / length if ovo: out = sum(out) / 3 return out def trimm_and_blur(inpt: np.ndarray, less: bool, value: int, blurs, trimm, double_down=False, invert=None, remove_color=False, remove_value=np.ndarray([0,0,0])): """Isolates parts of an image with a specific color or color range. Also capable of removing color and bluring the output. Args: inpt: The input image as np.ndarray (must have 3 color channels) less: Bigger / smaller trimming method value: Threshold for color values blurs: blurring kernel size trimm: pixel value for trimmed areas double_down: If True, the non-isolated areas will also receive a different pixel value invert: pixel value for non-isolated areas (as list of values, representing the colors of a pixel) remove_color: When True, all color pixel will be overridden remove_value: new pixel value for color pixel Returns: A np.ndarray with dimensions of the inpt image --------- Examples: --------- trimm_and_blur(img, True, 20, (3, 3), [255, 255, 255]) -> The function goes through each pixel in img. If the value of any color channel of the pixel is bigger than 20, the whole pixel will be overridden with the trimm parameter.\ So, if a pixel has the following values: [14, 21, 3] It will be overriden to : [255, 255, 255] Once that's done for every pixel, a blur will be applied to the entire image. trimm_and_blur(img, True, 20, (3, 3), [255, 255, 255], True, [0, 0, 0]) -> Now a trimm is also applied to the non-isolated parts of an image. If a pixel has the values [14, 21, 3], it will be overridden to [255, 255, 255].\ A pixel with the values [16, 10, 12] will be overridden to [0, 0, 0]. """ for i in range(len(inpt)): for j in range(len(inpt[i])): if remove_color: if np.max(inpt[i][j]) - np.min(inpt[i][j]) > 2: inpt[i][j] = remove_value if less: if inpt[i][j][0] > value or inpt[i][j][1] > value or inpt[i][j][2] > value: inpt[i][j] = np.array(trimm) elif double_down: inpt[i][j] = np.array(invert) else: if inpt[i][j][0] < value or inpt[i][j][1] < value or inpt[i][j][2] < value: inpt[i][j] = np.array(trimm) elif double_down: inpt[i][j] = np.array(invert) blur = cv2.blur(inpt, blurs) return blur def to_grayscale(img: np.ndarray): # -> np.ndarray """Converts a color image to grayscale. Note: If the input image has dimensions of 200x200x3, the output image will have dimensions of 200x200. Args: img: color image with BGR channel order Returns: The input image as grayscale. """ return cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) def iso_grayscale(img: np.ndarray, less_than, value, convert_grayscale=False, blur=(1, 1), inverse=False): # -> np.ndarray """Isolates image areas with a specific value Args: img: input image as np.ndarray less_than: Sets filter technique to less than / bigger than value: Value to filter by convert_to:grayscale: True if the input image is color and needs to be converted to grayscale first blur: optional blur kernal size Returns: modified input image as np.ndarray """ inv = None if convert_grayscale: img = to_grayscale(img) if inverse: inv = img.copy() if less_than: for i in range(len(img)): for j in range(len(img[i])): if img[i][j] < value: img[i][j] = 255 if inverse: inv[i][j] = 0 else: img[i][j] = 0 if inverse: inv[i][j] = 255 else: for i in range(len(img)): for j in range(len(img[i])): if img[i][j] > value: img[i][j] = 255 if inverse: inv[i][j] = 0 else: img[i][j] = 0 if inverse: inv[i][j] = 255 if blur != (1, 1): img = cv2.blur(img, blur) if inverse: return img, inv return img def expand_to_rows(image: np.ndarray, full=False, value=200, bigger_than=True): # -> np.ndarray """If one value in a row (of a mask, for example) is above a specific threshold, the whole row is expanded to a specific value. Args: image: An grayscale image as np.ndarray. Returns: A np.ndarray of the edited image. """ dimensions = image.shape imglen = dimensions[0] white_row = np.array([255 for k in range(dimensions[1])]) black_row = np.array([0 for k in range(dimensions[1])]) if not full: imglen = dimensions[0] / 2 if bigger_than: for i in range(int(imglen)): for j in range(dimensions[1]): if image[i][j] > value: image[i] = white_row else: for i in range(int(imglen)): for j in range(dimensions[1]): if image[i][j] < value: image[i] = black_row for i in range(int(imglen), dimensions[0]): for j in range(dimensions[1]): image[i] = black_row return image def google(query: str): """Googles a query. Opens result in browser window. """ link = "https://www.google.de/search?q=" query.replace(" ", "+") webbrowser.open((link + query)) class PlutoObject: def __init__(self, img: np.ndarray): self.img = img self.use_easyocr = False def load_model(self, path, model, device: Literal["cuda", "cpu"]): """Loads the state dictionary and applies it to the model Args: path: The relative or absolute path to the state dict file model: The corresponding PyTorch model Returns: The inputed PyTorch model with the loaded state. """ model.load_state_dict(torch.load(path)) model.to(device) return model def vis_model_prediction(self, img: np.ndarray, mask: np.ndarray, display=False): # --> np.ndarray """ Shows the predicted mask of a segmentation model as an overlay on the input image. All arrays must be np.uint8 and have a color range of 0 - 255. Args: img: Input image for the model. Shape: IMG_SIZE x IMG_SIZE x 3 mask: The result of the model. Shape: IMG_SIZE x IMG_SIZE display: True if the return image should also be displayed. Returns: The visualized prediction as np.ndarray """ dim = img.shape mask = cv2.resize(mask, (dim[1], dim[0])) black_img = np.zeros([dim[0], dim[1]]).astype(np.uint8) # print(mask.shape, black_img.shape, mask.dtype, black_img.dtype, img.shape, img.dtype) overlay = cv2.merge((mask, black_img, black_img)) out = cv2.addWeighted(img, 0.5, overlay, 1.0, 0) if display: show_image(out) return out def to_tensor(self, arr: np.ndarray, img_size, dtype, device: Literal["cuda", "cpu"], cc=3): # --> torch.Tensor """Converts an np.ndarray (which represents an image) to a PyTorch Tensor Args: arr: The image as a NumPy array. img_size: The final image size (quadratic) dtype: The Type for the Tensor. Recommendet is torch.float32 device: If the Tensor should be moved to the GPU, make this "cuda" Returns: The input array as torch.Tensor """ arr = cv2.resize(arr.copy(), (img_size, img_size)) / 255.0 # load, resize & normalize # show_image(arr) arr = arr.reshape(-1, cc, img_size, img_size) tensor = torch.from_numpy(arr).to(dtype).to(device) # to tensor return tensor def from_tensor(self, tensor, img_size, dtype=np.uint8): return tensor.cpu().numpy().reshape(img_size, img_size).astype(dtype) def ocr(self, image=None, switch_to_tesseract=False): # -> str """Preforms OCR on a given image, using EasyOCR Args: image: np.ndarray of the to be treated image. Returns: String with the raw result of the OCR library. """ if image is None: image = self.img try: # reader = easyocr.Reader(['en']) ocr_raw_result = reader.readtext(image, detail=0) except Exception as e: print("Pluto WARNING - Error while performing OCR: ", e) ocr_raw_result = [""] out = "" for word in ocr_raw_result: out += " " + word return out def expand_to_rows(self, image: np.ndarray, full=False, value=200): # -> np.ndarray """ Args: image: An grayscale image as np.ndarray, which represents a mask. Returns: A np.ndarray of the edited image. """ dimensions = image.shape imglen = dimensions[0] if not full: imglen = dimensions[0] / 2 for i in range(int(imglen)): for j in range(dimensions[1]): if image[i][j] > value: image[i] = [255 for k in range(dimensions[1])] for i in range(int(imglen), dimensions[0]): for j in range(dimensions[1]): image[i][j] = 0 return image def ocr_cleanup(self, text: str): # -> str """Removes unwanted characters or symbols from a text This includes \n, \x0c, and multiple ' ' Args: text: The String for cleanup. Returns: The cleaned text as String. """ out = text.replace("\n", " ") out = out.replace("\x0c", "") out = " ".join(out.split()) splits = out.split(",") clean_splits = [] for phrase in splits: arr = list(phrase) l = len(arr) start = 0 end = l for i in range(0, l): if arr[i] == " ": start += 1 else: break for i in range(l, 0, -1): if arr[i-1] == " ": end -= 1 else: break clean_splits.append(phrase[start:end]) out = "" for phrase in clean_splits: out += phrase out += ", " out = out[:-2] return out def to_json(self, data: dict): import json out = json.dumps(data) return out def load_model(self, model, path: str, device): """Loads the state of an model Args: model: PyTorch model path: path to state dic Returns: the input model with loaded state """ model.load_state_dict(torch.load(path)) return model.to(device) def determine_device(self): # -> Literal["cuda", "cpu"] return "cuda" if torch.cuda.is_available() else "cpu" def run_model(self, model, tnsr): """Runs a model with a sigmoid activation function """ with torch.no_grad(): prediction = torch.sigmoid(model(tnsr)) return prediction * 255 def run_segmentation_model(self, state_path, img=None): # -> np.ndarray """Runs a UNET segmentation model given an image and the state of the model. Args: state_path: path to the models's state_dict img: the model's input image Returns: The model's prediction as np.ndarray """ if img is None: img = self.img device = self.determine_device() model = UNET(in_channels=3, out_channels=1) model = self.load_model(model, state_path, device) input_tensor = self.to_tensor(img, 256, torch.float32, device) prediction = self.run_model(model, input_tensor) output = self.from_tensor(prediction, 256) return output def extr_mask_img(self, mask: np.ndarray, img: np.ndarray, inverted=False): """Performs extend_to_rows() on the mask and returns the masked out parts of the original image. Args: mask: grayscale mask img: Original image inverted: if True, an inverted version of the output will also be returned Returns: A np.ndarray of the masked out part """ mask = cv2.resize(mask, (img.shape[1], img.shape[0])) extr = self.expand_to_rows(mask) # show_image(extr) out = [] invout = [] for i in range(len(extr)): if extr[i][0] > 200: out.append(img[i]) elif inverted: invout.append(img[i]) if inverted: return np.array(out), np.array(invout) return np.array(out) def extr_replace_mask(self, mask: np.ndarray, img: np.ndarray, replace_value: np.ndarray, invert_replace=False): """Performs extend_to_rows() on the mask and returns the masked out parts of the original image. Args: mask: grayscale mask img: Original image inverted: if True, an inverted version of the output will also be returned Returns: A np.ndarray of the masked out part """ mask = cv2.resize(mask, (img.shape[1], img.shape[0])) extr = self.expand_to_rows(mask) if invert_replace: for i in range(len(extr)): if extr[i][0] > 200: for j in range(len(img[i])): img[i][j] = replace_value else: for i in range(len(extr)): if extr[i][0] < 200: for j in range(len(img[i])): img[i][j] = replace_value return img def characters_filter_strict(self, inpt: str, allow_digits=True): # -> str numbers = list(range(128)) # only digits, uppercase, lowercase and spaces letters are valid allowed_ascii_values = numbers[65:91] + numbers[97:123] + [32] if allow_digits: allowed_ascii_values += numbers[48:58] out = "" for i in inpt: if ord(i) in allowed_ascii_values: out += i out = " ".join(out.split()) return out class FoxNews(PlutoObject): def __init__(self, img: np.ndarray): super().__init__(img) def analyse(self, display=False): """Extracts key information from a screenshot of a Fox News Article. Args: display: True if in between steps should be shown Returns: The extracted information as JSON """ og_shape = self.img.shape img = cv2.resize(self.img, (512, 512)) black = np.zeros((512, 512)) for i in range(len(black)): for j in range(len(black[0])): temp = img[i][j] if (temp == [34, 34, 34]).all(): black[i][j] = 255 blured = cv2.blur(black, (20, 20)) for i in range(len(blured)): for j in range(len(blured[0])): if blured[i][j] < 40: blured[i][j] = 0 else: blured[i][j] = 255 msk = self.expand_to_rows(blured) og_size_msk = cv2.resize(msk, (og_shape[1], og_shape[0])) top = [] heading = [] bottom = [] top_part = True bottom_part = False for i in range(len(self.img)): if og_size_msk[i][0] > 1: heading.append(self.img[i]) if top_part: top_part = False bottom_part = True elif top_part: top.append(self.img[i]) else: bottom.append(self.img[i]) heading = np.array(heading) bottom = np.array(bottom) top = np.array(top) if display: show_image(heading) show_image(bottom) show_image(top) ocr_result = self.ocr(heading) headline = self.ocr_cleanup(ocr_result) cat_info_img = [] top_len = len(top) for i in range(top_len, 0, -1): if top[i-1][0][0] > 250: cat_info_img.insert(0, top[i-1]) else: break cat_info_img = np.array(cat_info_img) if display: show_image(cat_info_img) ocr_result = self.ocr(cat_info_img) clean_ocr = self.ocr_cleanup(ocr_result) dotsplit = clean_ocr.split("-")[0][:-1].lstrip(" ") pubsplit = clean_ocr.split("Published")[1].lstrip(" ") subinfo_bottom = [] stoper = False for row in bottom: subinfo_bottom.append(row) for pix in row: if pix[0] > 200 and pix[0] < 240 and pix[2] < 50 and pix[1] < 50: stoper = True break if stoper: break subinfo_bottom = np.array(subinfo_bottom[:-3]) if display: show_image(subinfo_bottom) subinfo = self.ocr_cleanup(self.ocr(subinfo_bottom)) subsplit = subinfo.split() author_list = [] subtitle_list = [] subinfo_switcher = True for w in reversed(subsplit): if w == "By" and subinfo_switcher: subinfo_switcher = False continue if w == "News" or w == "Fox" or w == "|": continue if subinfo_switcher: author_list.insert(0, w) else: subtitle_list.insert(0, w) author = " ".join(author_list) subtitle = " ".join(subtitle_list) return pubsplit, headline, subtitle, author, dotsplit def to_json(self, img=None, path=None): if img is None: img = self.img.copy() import json pubsplit, headline, subtitle, author, dotsplit = self.analyse(img) jasoon = { "source": "News Article", "article": { "created": "[Published] " + pubsplit, "organisation": "Fox News", "headline": headline, "subtitle": subtitle, "author": author, "category": dotsplit } } if path == None: return json.dumps(jasoon) else: out = open(path, "w") json.dump(jasoon, out, indent=6) out.close() class Facebook(PlutoObject): def __init__(self, img: np.ndarray): super().__init__(img) self.header = None self.text = None self.insert = None self.engagement = None def analyse_legacy(self, img=None): """--- Depricated --- """ if img is None: img = self.img slc, indx = self.slices(img.copy()) image, eng = self.img_eng(indx, img.copy()) inpts, imgs = self.part(img[:indx].copy(), slc) header = [] text = [] for indx in range(len(inpts)): sl = imgs[indx] t = np.transpose((255 - to_grayscale(sl)), (1, 0)) t = expand_to_rows(t, True, 10) # show_image(sl) # show_image(t) continue clss = self.classify(inpts[indx]) prt = (imgs[indx]).tolist() if clss == 0: header += prt else: text += prt header = np.array(header, np.uint8) date = header[int(header.shape[0] / 2) :] header = header[: int(header.shape[0] / 2)] text = np.array(text, np.uint8) # show_image(header) # show_image(date) # show_image(text) header = self.ocr_cleanup(self.ocr(header)) date = self.ocr_cleanup(self.ocr(date)) text = self.ocr_cleanup(self.ocr(text)) engagement = self.ocr(eng) return header, date, text, engagement def analyse(self, img=None): """Main method for extraction information from the image """ if img is None: img = self.img splits = self.split(img) self.header, self.text = self.sliceing(splits[0]) self.insert, self.engagement = None, None if len(splits) > 1 and splits[1] is not None: self.insert = splits[1] if len(splits) > 2 and splits[2] is not None: self.engagement = splits[2] date = self.header[int(self.header.shape[0] / 2) :] header = self.header[: int(self.header.shape[0] / 2)] engocr = None headerocr = self.ocr_cleanup(self.ocr(header)) dateocr = self.ocr_cleanup(self.ocr(date)) textocr = self.ocr_cleanup(self.ocr(self.text)) if self.engagement is not None: engocr = self.ocr_cleanup(self.ocr(self.engagement)) engocr = self.engagement_str(engocr) return headerocr, dateocr, textocr, engocr def split(self, img): """Splits the screenshot at an attached image or link """ og_img = img.copy() img = to_grayscale(img) dm = self.dark_mode(img) if dm: img = 255 - img exists1 = False for i in range(len(img)): if not dm: if img[i][0] < 250: exists1 = True break else: if img[i][0] < 215: exists1 = True break top, bottom = None, None if exists1: top = og_img[:i-1] bottom_og = og_img[i:] bottom = img[i:] # else: return img if bottom is None: return og_img, None, None exists2 = False for j in range(len(bottom)-1, i, -1): if not dm: if bottom[j][0] < 250: exists2 = True break else: if bottom[j][0] < 215: exists2 = True break insert, engagement = None, None if exists2: insert = bottom_og[:j] engagement = bottom_og[j:] if insert is not None and self.classify(insert) == 1: ts, ins = top.shape, insert.shape temp = np.zeros((ts[0] + ins[0], ts[1], ts[2]), np.uint8) temp[:ts[0]] = top temp[ts[0]:] = insert top = temp insert = None # show_image(top) # show_image(insert) # show_image(engagement) return top, insert, engagement def sliceing(self, img): """Slices the Text & header """ exptr = None img = to_grayscale(img) dm = self.dark_mode(img) if not dm: exptr = (255 - img.copy()) else: exptr = img.copy() if not dm: exptr = expand_to_rows(exptr, True, 5) else: exptr = expand_to_rows(exptr, True, 40) slices = [] for i in range(1, len(exptr)): if exptr[i][0] > 250 and exptr[i-1][0] < 50 or \ exptr[i][0] < 250 and exptr[i-1][0] > 50: slices.append(i) slc = [] for i in range(1, len(slices), 2): if slices[i] - slices[i-1] < 5: continue slc.append(img[slices[i-1]:slices[i]]) # return slc return img[slices[0]:slices[1]], img[slices[1]:slices[len(slices)-1]] def header(img): slc = slice(img) show_image(slc[0]) show_image(slc[1]) return header = [] text = [] for indx, s in enumerate(slc): print(type(s)) f = first(s) if indx == 0: header.append(s) print(s.shape) else: text.append(s) print(s.shape) return np.array(header), np.array(text) def first(self, img): """Gets the first block from a slice Args: img: Slice as np.ndarray Returns: The first block as np.ndarray """ img = np.transpose(img, (1, 0)) exptr = img.copy() #pl.to_grayscale(img.copy()) exptr = expand_to_rows(exptr, False, 245, False) # show_image(exptr) for i in range(1, len(exptr)): if exptr[i-1][0] > 250 and exptr[i][0] < 100: break for j in range(i+1, len(exptr)): if exptr[j-1][0] < 100 and exptr[j][0] > 250: break # show_image(img[i:j]) return img[i:j] def slices(self, img=None): """Image to slices """ if img is None: img = self.img test = (255 - to_grayscale(img)) for i in range(len(test)): if test[i][0] > 10: break # show_image(test) test = test[:i,:] j = i # show_image(test) test = expand_to_rows(test, True, 10) # show_image(test) slices = [] for i in range(2, len(test)): if test[i][0] > 250 and test[i-1][0] < 10 or \ test[i][0] < 250 and test[i-1][0] > 10: slices.append(i) # slices.append(len(img) - 1) return slices, j def img_eng(self, indx, img=None): img = img[indx:] test = (255 - to_grayscale(img)) for i in range(len(test)-1, 0, -1): if test[i][0] > 10: break image = img[:i] eng = img[i:] return image, eng def engagement_str(self, ocr: str): """Returns shares and views from engagements """ try: comsplit = ocr.split("Comments") sharesplit = comsplit[1].split("Shares") viewsplit = sharesplit[1].split("Views") return str(sharesplit[0].strip()) + " Shares", str(viewsplit[0].strip()) + " Views" except Exception as e: return ocr def part(self, img, slices): """From slice arr to list of images """ if img is None: img = self.img out = [] full = [] for i in range(1, len(slices), 2): if slices[i] - slices[i-1] < 5: continue temp = img[slices[i-1]:slices[i]] og = temp temp = temp[:,:int(temp.shape[1]/3)] # show_image(temp) out.append(temp) full.append(og) return out, full def classify(self, img=None): """Image or still part of text? 0 == image, 1 == text """ if img is None: img = self.img img = to_grayscale(img) net = ConvNet(1, 6, 12, 100, 20, 2) net.load_state_dict(torch.load("models/general_1.pt")) device = self.determine_device() net.to(device) tnsr = self.to_tensor(img, 224, torch.float32, device, 1) net.eval() with torch.no_grad(): net_out = net(tnsr.to(device))[0] predicted_class = torch.argmax(net_out) result = predicted_class.cpu().numpy() return result def header(self, img=None): if img is None: img = self.img path = "FB Models/fb1.pt" result = self.run_segmentation_model(path, img) show_image(result) result = expand_to_rows(result) show_image(result) result = cv2.resize(result, (img.shape[1], img.shape[0])) print(result.shape, img.shape) out = [] for i in range(len(result)): if result[i][0] > 200: out.append(img[i]) show_image(np.array(out)) def to_json(self, img=None, path=None): """Extracts information from a screenshot and saves it as json """ if img is None: img = self.img.copy() import json name, date, body_text, engagement_text = self.analyse(img) jasoon = { "source": "Facebook", "category": "Social Media", "post": { "username": name, "date": date, "content": body_text, "engagement": engagement_text } } if path == None: return json.dumps(jasoon) else: out = open(path, "w") json.dump(jasoon, out, indent=6) out.close() def dark_mode(self, img=None): """Checks if dark mode is enabled Args: img: input screenshot (optional) Returns: Dark Mode enabled? True / False """ if img is None: img = self.img dim = img.shape img = img[:int(dim[0]*0.1),:int(dim[0]*0.015)] avg = np.average(img) return avg < 220 def split_legacy(self, img=None, darkmode=None): # -> np.ndarray """--- DEPRECATED --- Splits a Facebook Screenshot into a top part (that's where the header is), a 'body' part (main text) and a 'bottom' part ('engagement stats'). Args: img: Alternative to the default self.img Returns: The top, body & bottom part, all as np.ndarray """ if img is None: img = self.img og = img.copy() if darkmode is None: darkmode = self.dark_mode(img) # print(darkmode) if darkmode: gry = iso_grayscale(img, False, 50, True) else: gry = iso_grayscale(img, True, 250, True) gry_extr = expand_to_rows(gry, False, 100) top = [] middle = [] c = 0 for i in range(len(gry_extr)): if gry_extr[i][0] > 100 and c < 2: if c == 0: c += 1 top.append(og[i]) elif c == 1: c += 1 elif c == 2: middle.append(og[i]) top = np.array(top) middle = np.array(middle) non_color = [] for i in range(len(middle)): pix = middle[i][5] if pix[0] > 250 or pix[1] > 250 or pix[2] > 250: non_color.append(middle[i]) non_color = np.array(non_color) rgh = to_grayscale(non_color) rgh = rgh[:, int(non_color.shape[1] / 2):] rgh = iso_grayscale(rgh, True, 10, False, (25, 25)) rgh = expand_to_rows(rgh, True, 5) body = [] engagement = [] for i in range(len(rgh)): if rgh[i][0] > 200: body.append(non_color[i]) else: engagement.append(non_color[i]) body = np.array(body) engagement = np.array(engagement) self.top = top self.body = body self.engagement = engagement return top, body, engagement def old_topsplit(self, img=None, darkmode=None): # -> np.ndarray """--- DEPRECATED --- Splits a Facebook Screenshot into a top part (thst's where the header is) and a 'bottom' part. Args: img: Alternative to the default self.img Returns: The top part and the bottom part, both as np.ndarray """ if img is None: img = self.img og = img.copy() if darkmode is None: darkmode = self.dark_mode(img) # print(darkmode) if darkmode: gry = iso_grayscale(img, False, 50, True) else: gry = iso_grayscale(img, True, 250, True) gry_extr = expand_to_rows(gry, False, 100) top = [] middle = [] bottom = [] c = 0 for i in range(len(gry_extr)): if gry_extr[i][0] > 100 and c < 2: if c == 0: c += 1 top.append(og[i]) elif c == 1: c += 1 elif c == 2: break c = 0 for j in range(len(gry_extr)-1, i, -1): if gry_extr[j][0] > 100 and c < 2: if c == 0: c += 1 bottom.insert(0, og[j]) elif c == 1: c += 1 elif c == 2: break for l in range(i, j, 1): middle.append(og[l]) # print(i, j, l) top = np.array(top) middle = np.array(middle) bottom = np.array(bottom) self.top = top self.middle = middle self.bottom = bottom return top, middle, bottom def search(self, query: str): """Searches a query with Facebook's search function. Opens result in browser window. """ link = "https://www.facebook.com/search/top/?q=" query.replace(" ", "+") webbrowser.open((link + query)) def clean_top(self, img=None): """--- DEPRECATED --- 'Cleans' the top excerpt by removing the profile picture """ if img is None: img = self.top og_img = img.copy() img2 = img[:,int(img.shape[1]*0.5):,:] img = img[:,:int(img.shape[1]*0.5),:] dim = img.shape img = cv2.resize(og_img[:,:int(og_img.shape[1]*0.5),:], (200, 200)) prediction = self.run_segmentation_model("Utility Models/imgd_2_net_1.pt", img) # self.vis_model_prediction(img, prediction, True) prediction = np.transpose(prediction, (1, 0)) prediction = cv2.resize(prediction, (dim[0], dim[1])) img = og_img[:,:int(og_img.shape[1]*0.5),:] # show_image(img) # show_image(img2) img = np.transpose(img, (1, 0, 2)) # show_image(prediction) # show_image(img) vis = self.vis_model_prediction(img, prediction) out = self.extr_replace_mask(prediction, img, np.array([255, 255, 255]), True) out = np.transpose(img, (1, 0, 2)) # show_image(out) out = np.concatenate((out, img2), axis=1) # show_image(out) self.top = out return out, vis class Twitter(PlutoObject): def __init__(self, img: np.ndarray): super().__init__(img) self.DEVICE = "cuda" if torch.cuda.is_available() else "cpu" self.header, self.bottom = None, None def split(self, img=None, display=False): img_og = img if img is None: img_og = self.img img_size = 256 img = cv2.resize(img_og.copy(), (img_size, img_size)) img_tensor = self.to_tensor(img, img_size, torch.float32, self.DEVICE) model = UNET(in_channels=3, out_channels=1) model = self.load_model(model, "D:/Codeing/Twitter_Segmentation/pytorch version/own_2_net_2.pt", self.DEVICE) with torch.no_grad(): model_out = torch.sigmoid(model(img_tensor)) * 255 mask = self.from_tensor(model_out, img_size) if display: show_image(mask) img = (img.reshape(img_size, img_size, 3) * 255).astype(np.uint8) mask = cv2.merge((mask, mask, mask)) mask = trimm_and_blur(mask, False, 60, (30, 30), [0, 0, 0])[:,:,0] if display: show_image(mask) self.vis_model_prediction(img, mask, False) mask = expand_to_rows(mask, value=30) img = img_og mask = cv2.resize(mask[:,:10], (10, img.shape[0])) header = [] bottom = [] # split in header / bottom for i in range(len(mask[:,0])):#range(len(mask[:,0])-1, 0, -1): if mask[i][0] > 250: header.append(img[i,:]) else: bottom.append(img[i,:]) self.header = np.array(header) self.bottom = np.array(bottom) if display: show_image(self.header) show_image(self.bottom) return self.header.copy(), self.bottom.copy() def header_color_mode(self, img=None): """Determines whether the header is in dark mode Args: img: if the image should be different to self.header, pass it here Returns: True if the header is in dark mode. """ if img is not None: self.header = img dim = self.header.shape img = self.header[:,int(dim[1]/2):,:] avg = np.average(img) return avg < 150 def header_analyse(self, img=None, display=False): if img is None: img = self.header.copy() img = (img[::-1]).transpose(1, 0, 2) img_og = img.copy() if not self.dark_mode(img): img = trimm_and_blur(img, False, 30, (20, 20), [255, 255, 255], True, [0, 0, 0]) else: img = trimm_and_blur(img, True, 245, (20, 20), [255, 255, 255], True, [0, 0, 0]) if display: show_image(img) img = expand_to_rows(img[:,:,0], True, 5) out = [] c = 0 for i in range(len(img)-1, 0, -1): if img[i][0] > 100: out.append(img_og[i]) if c == 0: c += 1 elif c == 1: break out = np.flip((np.array(out).transpose(1, 0, 2)), (0, 1)) if display: show_image(img) show_image(out) ocr_result = self.ocr_cleanup(self.ocr(out)) usersplit = ocr_result.split("@") return usersplit[0][:-1], usersplit[1] def body_analyse(self, img=None, display=False): # --> str if img is None: img = self.bottom.copy() img_og = img.copy() if not self.dark_mode(img): img = trimm_and_blur(img, False, 30, (20, 20), [255, 255, 255], True, [0, 0, 0]) else: img = trimm_and_blur(img, True, 245, (20, 20), [255, 255, 255], True, [0, 0, 0]) if display: show_image(img) exptr = expand_to_rows(img[:,:,0], True, 20)[:,:10] if display: show_image(exptr) out = [] for i in range(len(exptr)): if exptr[i][0] > 100: out.append(img_og[i]) out = np.array(out) if display: show_image(out) return self.ocr_cleanup(self.ocr(out)) def analyse_light(self, img=None): if img is None: img = self.img self.split() head_info = self.header_analyse() body_info = self.body_analyse() jasoon = { "source": "Twitter", "tweet": { # "created_at": "[Published] " + pubsplit, # "client": "Fox News", "text": body_info, "user": { "name": head_info[0], "handle": head_info[1] } } } return jasoon def analyse(self, img=None): if img is None: img = self.img self.split() head_info = self.header_analyse() body_info = self.body_analyse() return head_info[0], head_info[1], body_info def dark_mode(self, img=None): # -> bool """Checks if the screenshot has dark mode enabled Args: img: if the checked image should be different from the self.img, pass it here Returns: Is the screenshot in dark mode? True / False """ testimg = self.img if img is not None: testimg = img.copy() top_row = avg_of_row(testimg, 0, True) bottom_row = avg_of_row(testimg, -1, True) left_collum = avg_of_collum(testimg, 0, True) right_collum = avg_of_collum(testimg, -1, True) final_value = sum([top_row, bottom_row, left_collum, right_collum]) / 4 return final_value < 125 def analyse_light(self): result = None if self.dark_mode(): result = self.dark() else: result = self.std() header, body = result # show_image(header) # show_image(body) return self.ocr_cleanup(self.ocr(header)), self.ocr_cleanup(self.ocr(body)) def std(self, img=None, display=False): input_img = None if img is not None: input_img = img.copy() else: input_img = self.img.copy() if img is not None: self.img = img.copy() blur = trimm_and_blur(input_img, True, 30, (20, 20), [255, 255, 255]) out = trimm_and_blur(blur, False, 250, (5, 5), [0, 0, 0]) msk_inv = (255 - out[:,:,0]) out_exptr = self.expand_to_rows(msk_inv, True) header_info = [] continue_please = True cnt = 0 for i in range(len(out_exptr)): if continue_please: if out_exptr[i][0] < 250: continue else: if out_exptr[i][0] < 250: break header_info.append(self.img[i]) continue_please = False # print("hey!") cnt = i bottom = [] lastone = False for i in range(cnt+1, len(out_exptr), 1): if out_exptr[i][0] < 250: if lastone: bottom.append(self.img[3]) lastone = False continue bottom.append(self.img[i]) lastone = True header_info = np.array(header_info) bottom = np.array(bottom) if display: show_image(header_info) show_image(bottom) return header_info, bottom def dark(self, img=None, display=False): """Segmentates the input screenshot (dark mode enabled) into header and body. Args: img: if the screenshot should be different from self.img, pass it here. display: True if output should be displayed before return Returns: The two segmentated areas. """ input_img = None if img is not None: input_img = img.copy() else: input_img = self.img.copy() if img is not None: self.img = img.copy() blur = trimm_and_blur(input_img, False, 230, (20, 20),[0, 0, 0]) out = trimm_and_blur(blur, True, 10, (5, 5),[255, 255, 255]) msk = out[:,:,0] out_exptr = self.expand_to_rows(msk, True) header_info = [] continue_please = True cnt = 0 for i in range(len(out_exptr)): if continue_please < 3: if out_exptr[i][0] < 250: if continue_please == 1: continue_please += 1 if continue_please == 2: header_info.append(self.img[i]) continue else: if out_exptr[i][0] < 250: break if continue_please == 0: continue_please += 1 if continue_please == 2: break header_info.append(self.img[i]) cnt = i bottom = [] lastone = False for i in range(cnt+1, len(out_exptr), 1): if out_exptr[i][0] < 250: if lastone: bottom.append(self.img[3]) lastone = False continue bottom.append(self.img[i]) lastone = True header_info =
np.array(header_info)
numpy.array
""" Utility functions for DAG analysis using adjacency matrices""" # Copyright (C) 2016 by # <NAME> <<EMAIL>> # All rights reserved. # BSD license. __author__ = "\n".join(["<NAME> (<EMAIL>)"]) import numpy as np def causet_adj_matrix(S, R): """ Return causal set adjacency matrix A S: separations R: original coordinates""" N = S.shape[0] A = np.zeros((N, N)) for i in range(N): for j in range(N): # check time ordering - A[i,j] is 1 if i is in the future of j if R[i,0] > R[j,0]: if S[i,j] < 0: A[i,j] = 1. return A def transitive_completion(A_): """ Transitively complete adjacency matrix A""" A = A_[:,:] A_0 = A[:,:] N, _ = A.shape A_diff = True i = 0 while A_diff: A_old = A[:,:] A = np.dot(A, A_0) A += A_0 A[A>1.] = 1. if np.array_equal(A_old, A): A_diff = False assert i < N, 'ERROR - Transitive Completion required more than N steps' i += 1 return A def transitive_reduction(A_, LP=None): """ Transitively reduce adjacency matrix A plan is to look at successive powers of A and if an element is 1 in both then it represents an edge which is transitively implied we need to do this |LP| times - - could do it N times to be sure (start here) - could compute |LP| but that might be slower - could allow |LP| as optional input incase it is already calculated """ A = A_[:,:] A_0 = A[:,:] N, _ = A.shape if LP: max_path = LP else: max_path = N i = 0 while i < max_path: A = np.dot(A, A_0) A = A_0 - A A[A<1] = 0 A[A>1] = 1 i += 1 return A def longest_path_matrix(A, dmax=None): """ Calculate all longest paths and return them in a matrix Arguments: A -- adjacency matrix dmax -- maximum path length to be returned Result should be an NxN assymetric matrix of longest paths Notes: JC - I believe this scales like N**3 Finding one longest path can be done in linear time And we need to find N**2 of them so this is reasonable JC - The longest path is conjectured to approximate the geodesic in Lorentzian spacetimes but this is not proven to my knowledge """ N = A.shape[0] if dmax is None: dmax = N LP = np.zeros((N, N)) i = 1 B = A[:,:] while np.sum(B) > 0.: path_exist = np.sign(B) path_length = i * path_exist LP = np.maximum.reduce((LP, path_length)) B = np.dot(B, A) i += 1 if i == dmax: return LP return LP def naive_spacelike_matrix(LP, dmax=None, k=None): """ Calculate all naive spacelike distances and return them in a matrix Arguments: LP -- longest path matrix dmax -- maximum spacelike distance to be returned k -- only determine distances to k 'landmark' points, and leave the rest # this feature needs testing Result should be an NxN symmetric matrix of negative longest paths and positive naive spacelike separations JC - this seems quite slow when calculated for all N - I think it is the limiting factor on embedding large networks in spacetimes """ if dmax == None: dmax = np.max(LP) ds = LP + LP.transpose() ds2 = ds * ds * -1 N = LP.shape[0] for i in range(N): max_j = i if k: max_j = np.min([i, k]) for j in range(max_j): # spacelike distance is symmetric so ds[i,j]==ds[j,i], and ds[i,i]==0 if ds2[i,j] == 0: # then they are spacelike separated and need a new value here i_past = np.flatnonzero(LP[:,i]) j_past = np.flatnonzero(LP[:,j]) w_list =
np.intersect1d(i_past, j_past)
numpy.intersect1d
# -*- coding: utf-8 -*- from __future__ import division, absolute_import, print_function import sys import numpy as np from numpy.testing import ( run_module_suite, assert_, assert_equal, assert_raises, assert_warns ) import textwrap class TestArrayRepr(object): def test_nan_inf(self): x = np.array([np.nan, np.inf]) assert_equal(repr(x), 'array([nan, inf])') def test_subclass(self): class sub(np.ndarray): pass # one dimensional x1d = np.array([1, 2]).view(sub) assert_equal(repr(x1d), 'sub([1, 2])') # two dimensional x2d = np.array([[1, 2], [3, 4]]).view(sub) assert_equal(repr(x2d), 'sub([[1, 2],\n' ' [3, 4]])') # two dimensional with flexible dtype xstruct = np.ones((2,2), dtype=[('a', 'i4')]).view(sub) assert_equal(repr(xstruct), "sub([[(1,), (1,)],\n" " [(1,), (1,)]], dtype=[('a', '<i4')])" ) def test_self_containing(self): arr0d = np.array(None) arr0d[()] = arr0d assert_equal(repr(arr0d), 'array(array(..., dtype=object), dtype=object)') arr1d = np.array([None, None]) arr1d[1] = arr1d assert_equal(repr(arr1d), 'array([None, array(..., dtype=object)], dtype=object)') first = np.array(None) second = np.array(None) first[()] = second second[()] = first assert_equal(repr(first), 'array(array(array(..., dtype=object), dtype=object), dtype=object)') def test_containing_list(self): # printing square brackets directly would be ambiguuous arr1d = np.array([None, None]) arr1d[0] = [1, 2] arr1d[1] = [3] assert_equal(repr(arr1d), 'array([list([1, 2]), list([3])], dtype=object)') def test_void_scalar_recursion(self): # gh-9345 repr(np.void(b'test')) # RecursionError ? class TestComplexArray(object): def test_str(self): rvals = [0, 1, -1, np.inf, -np.inf, np.nan] cvals = [complex(rp, ip) for rp in rvals for ip in rvals] dtypes = [np.complex64, np.cdouble, np.clongdouble] actual = [str(np.array([c], dt)) for c in cvals for dt in dtypes] wanted = [ '[0.+0.j]', '[0.+0.j]', '[0.+0.j]', '[0.+1.j]', '[0.+1.j]', '[0.+1.j]', '[0.-1.j]', '[0.-1.j]', '[0.-1.j]', '[0.+infj]', '[0.+infj]', '[0.+infj]', '[0.-infj]', '[0.-infj]', '[0.-infj]', '[0.+nanj]', '[0.+nanj]', '[0.+nanj]', '[1.+0.j]', '[1.+0.j]', '[1.+0.j]', '[1.+1.j]', '[1.+1.j]', '[1.+1.j]', '[1.-1.j]', '[1.-1.j]', '[1.-1.j]', '[1.+infj]', '[1.+infj]', '[1.+infj]', '[1.-infj]', '[1.-infj]', '[1.-infj]', '[1.+nanj]', '[1.+nanj]', '[1.+nanj]', '[-1.+0.j]', '[-1.+0.j]', '[-1.+0.j]', '[-1.+1.j]', '[-1.+1.j]', '[-1.+1.j]', '[-1.-1.j]', '[-1.-1.j]', '[-1.-1.j]', '[-1.+infj]', '[-1.+infj]', '[-1.+infj]', '[-1.-infj]', '[-1.-infj]', '[-1.-infj]', '[-1.+nanj]', '[-1.+nanj]', '[-1.+nanj]', '[inf+0.j]', '[inf+0.j]', '[inf+0.j]', '[inf+1.j]', '[inf+1.j]', '[inf+1.j]', '[inf-1.j]', '[inf-1.j]', '[inf-1.j]', '[inf+infj]', '[inf+infj]', '[inf+infj]', '[inf-infj]', '[inf-infj]', '[inf-infj]', '[inf+nanj]', '[inf+nanj]', '[inf+nanj]', '[-inf+0.j]', '[-inf+0.j]', '[-inf+0.j]', '[-inf+1.j]', '[-inf+1.j]', '[-inf+1.j]', '[-inf-1.j]', '[-inf-1.j]', '[-inf-1.j]', '[-inf+infj]', '[-inf+infj]', '[-inf+infj]', '[-inf-infj]', '[-inf-infj]', '[-inf-infj]', '[-inf+nanj]', '[-inf+nanj]', '[-inf+nanj]', '[nan+0.j]', '[nan+0.j]', '[nan+0.j]', '[nan+1.j]', '[nan+1.j]', '[nan+1.j]', '[nan-1.j]', '[nan-1.j]', '[nan-1.j]', '[nan+infj]', '[nan+infj]', '[nan+infj]', '[nan-infj]', '[nan-infj]', '[nan-infj]', '[nan+nanj]', '[nan+nanj]', '[nan+nanj]'] for res, val in zip(actual, wanted): assert_equal(res, val) class TestArray2String(object): def test_basic(self): """Basic test of array2string.""" a = np.arange(3) assert_(np.array2string(a) == '[0 1 2]') assert_(np.array2string(a, max_line_width=4, legacy='1.13') == '[0 1\n 2]') assert_(np.array2string(a, max_line_width=4) == '[0\n 1\n 2]') def test_format_function(self): """Test custom format function for each element in array.""" def _format_function(x): if np.abs(x) < 1: return '.' elif np.abs(x) < 2: return 'o' else: return 'O' x = np.arange(3) if sys.version_info[0] >= 3: x_hex = "[0x0 0x1 0x2]" x_oct = "[0o0 0o1 0o2]" else: x_hex = "[0x0L 0x1L 0x2L]" x_oct = "[0L 01L 02L]" assert_(np.array2string(x, formatter={'all':_format_function}) == "[. o O]") assert_(np.array2string(x, formatter={'int_kind':_format_function}) == "[. o O]") assert_(np.array2string(x, formatter={'all':lambda x: "%.4f" % x}) == "[0.0000 1.0000 2.0000]") assert_equal(np.array2string(x, formatter={'int':lambda x: hex(x)}), x_hex) assert_equal(np.array2string(x, formatter={'int':lambda x: oct(x)}), x_oct) x = np.arange(3.) assert_(np.array2string(x, formatter={'float_kind':lambda x: "%.2f" % x}) == "[0.00 1.00 2.00]") assert_(np.array2string(x, formatter={'float':lambda x: "%.2f" % x}) == "[0.00 1.00 2.00]") s = np.array(['abc', 'def']) assert_(np.array2string(s, formatter={'numpystr':lambda s: s*2}) == '[abcabc defdef]') # check for backcompat that using FloatFormat works and emits warning with assert_warns(DeprecationWarning): fmt = np.core.arrayprint.FloatFormat(x, 9, 'maxprec', False) assert_equal(np.array2string(x, formatter={'float_kind': fmt}), '[0. 1. 2.]') def test_structure_format(self): dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))]) x = np.array([('Sarah', (8.0, 7.0)), ('John', (6.0, 7.0))], dtype=dt) assert_equal(np.array2string(x), "[('Sarah', [8., 7.]) ('John', [6., 7.])]") np.set_printoptions(legacy='1.13') try: # for issue #5692 A = np.zeros(shape=10, dtype=[("A", "M8[s]")]) A[5:].fill(np.datetime64('NaT')) assert_equal( np.array2string(A), textwrap.dedent("""\ [('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('NaT',) ('NaT',) ('NaT',) ('NaT',) ('NaT',)]""") ) finally: np.set_printoptions(legacy=False) # same again, but with non-legacy behavior assert_equal( np.array2string(A), textwrap.dedent("""\ [('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ( 'NaT',) ( 'NaT',) ( 'NaT',) ( 'NaT',) ( 'NaT',)]""") ) # and again, with timedeltas A = np.full(10, 123456, dtype=[("A", "m8[s]")]) A[5:].fill(np.datetime64('NaT')) assert_equal( np.array2string(A), textwrap.dedent("""\ [(123456,) (123456,) (123456,) (123456,) (123456,) ( 'NaT',) ( 'NaT',) ( 'NaT',) ( 'NaT',) ( 'NaT',)]""") ) # See #8160 struct_int = np.array([([1, -1],), ([123, 1],)], dtype=[('B', 'i4', 2)]) assert_equal(np.array2string(struct_int), "[([ 1, -1],) ([123, 1],)]") struct_2dint = np.array([([[0, 1], [2, 3]],), ([[12, 0], [0, 0]],)], dtype=[('B', 'i4', (2, 2))]) assert_equal(np.array2string(struct_2dint), "[([[ 0, 1], [ 2, 3]],) ([[12, 0], [ 0, 0]],)]") # See #8172 array_scalar = np.array( (1., 2.1234567890123456789, 3.), dtype=('f8,f8,f8')) assert_equal(np.array2string(array_scalar), "(1., 2.12345679, 3.)") def test_unstructured_void_repr(self): a = np.array([27, 91, 50, 75, 7, 65, 10, 8, 27, 91, 51, 49,109, 82,101,100], dtype='u1').view('V8') assert_equal(repr(a[0]), r"void(b'\x1B\x5B\x32\x4B\x07\x41\x0A\x08')") assert_equal(str(a[0]), r"b'\x1B\x5B\x32\x4B\x07\x41\x0A\x08'") assert_equal(repr(a), r"array([b'\x1B\x5B\x32\x4B\x07\x41\x0A\x08'," "\n" r" b'\x1B\x5B\x33\x31\x6D\x52\x65\x64'], dtype='|V8')") assert_equal(eval(repr(a), vars(np)), a) assert_equal(eval(repr(a[0]), vars(np)), a[0]) def test_edgeitems_kwarg(self): # previously the global print options would be taken over the kwarg arr = np.zeros(3, int) assert_equal( np.array2string(arr, edgeitems=1, threshold=0), "[0 ... 0]" ) def test_summarize_1d(self): A = np.arange(1001) strA = '[ 0 1 2 ... 998 999 1000]' assert_equal(str(A), strA) reprA = 'array([ 0, 1, 2, ..., 998, 999, 1000])' assert_equal(repr(A), reprA) def test_summarize_2d(self): A = np.arange(1002).reshape(2, 501) strA = '[[ 0 1 2 ... 498 499 500]\n' \ ' [ 501 502 503 ... 999 1000 1001]]' assert_equal(str(A), strA) reprA = 'array([[ 0, 1, 2, ..., 498, 499, 500],\n' \ ' [ 501, 502, 503, ..., 999, 1000, 1001]])' assert_equal(repr(A), reprA) def test_linewidth(self): a = np.full(6, 1) def make_str(a, width, **kw): return np.array2string(a, separator="", max_line_width=width, **kw) assert_equal(make_str(a, 8, legacy='1.13'), '[111111]') assert_equal(make_str(a, 7, legacy='1.13'), '[111111]') assert_equal(make_str(a, 5, legacy='1.13'), '[1111\n' ' 11]') assert_equal(make_str(a, 8), '[111111]') assert_equal(make_str(a, 7), '[11111\n' ' 1]') assert_equal(make_str(a, 5), '[111\n' ' 111]') b = a[None,None,:] assert_equal(make_str(b, 12, legacy='1.13'), '[[[111111]]]') assert_equal(make_str(b, 9, legacy='1.13'), '[[[111111]]]') assert_equal(make_str(b, 8, legacy='1.13'), '[[[11111\n' ' 1]]]') assert_equal(make_str(b, 12), '[[[111111]]]') assert_equal(make_str(b, 9), '[[[111\n' ' 111]]]') assert_equal(make_str(b, 8), '[[[11\n' ' 11\n' ' 11]]]') def test_wide_element(self): a = np.array(['xxxxx']) assert_equal( np.array2string(a, max_line_width=5), "['xxxxx']" ) assert_equal( np.array2string(a, max_line_width=5, legacy='1.13'), "[ 'xxxxx']" ) class TestPrintOptions(object): """Test getting and setting global print options.""" def setup(self): self.oldopts = np.get_printoptions() def teardown(self): np.set_printoptions(**self.oldopts) def test_basic(self): x = np.array([1.5, 0, 1.234567890]) assert_equal(repr(x), "array([1.5 , 0. , 1.23456789])") np.set_printoptions(precision=4) assert_equal(repr(x), "array([1.5 , 0. , 1.2346])") def test_precision_zero(self): np.set_printoptions(precision=0) for values, string in ( ([0.], "0."), ([.3], "0."), ([-.3], "-0."), ([.7], "1."), ([1.5], "2."), ([-1.5], "-2."), ([-15.34], "-15."), ([100.], "100."), ([.2, -1, 122.51], " 0., -1., 123."), ([0], "0"), ([-12], "-12"), ([complex(.3, -.7)], "0.-1.j")): x = np.array(values) assert_equal(repr(x), "array([%s])" % string) def test_formatter(self): x = np.arange(3) np.set_printoptions(formatter={'all':lambda x: str(x-1)}) assert_equal(repr(x), "array([-1, 0, 1])") def test_formatter_reset(self): x = np.arange(3) np.set_printoptions(formatter={'all':lambda x: str(x-1)}) assert_equal(repr(x), "array([-1, 0, 1])") np.set_printoptions(formatter={'int':None}) assert_equal(repr(x), "array([0, 1, 2])") np.set_printoptions(formatter={'all':lambda x: str(x-1)}) assert_equal(repr(x), "array([-1, 0, 1])") np.set_printoptions(formatter={'all':None}) assert_equal(repr(x), "array([0, 1, 2])") np.set_printoptions(formatter={'int':lambda x: str(x-1)}) assert_equal(repr(x), "array([-1, 0, 1])") np.set_printoptions(formatter={'int_kind':None}) assert_equal(repr(x), "array([0, 1, 2])") x = np.arange(3.) np.set_printoptions(formatter={'float':lambda x: str(x-1)}) assert_equal(repr(x), "array([-1.0, 0.0, 1.0])") np.set_printoptions(formatter={'float_kind':None}) assert_equal(repr(x), "array([0., 1., 2.])") def test_0d_arrays(self): unicode = type(u'') assert_equal(unicode(np.array(u'café', np.unicode_)), u'café') if sys.version_info[0] >= 3: assert_equal(repr(np.array('café', np.unicode_)), "array('café', dtype='<U4')") else: assert_equal(repr(np.array(u'café', np.unicode_)), "array(u'caf\\xe9', dtype='<U4')") assert_equal(str(np.array('test', np.str_)), 'test') a = np.zeros(1, dtype=[('a', '<i4', (3,))]) assert_equal(str(a[0]), '([0, 0, 0],)') assert_equal(repr(np.datetime64('2005-02-25')[...]), "array('2005-02-25', dtype='datetime64[D]')") assert_equal(repr(np.timedelta64('10', 'Y')[...]), "array(10, dtype='timedelta64[Y]')") # repr of 0d arrays is affected by printoptions x = np.array(1) np.set_printoptions(formatter={'all':lambda x: "test"}) assert_equal(repr(x), "array(test)") # str is unaffected assert_equal(str(x), "1") # check `style` arg raises assert_warns(DeprecationWarning, np.array2string, np.array(1.), style=repr) # but not in legacy mode np.array2string(np.array(1.), style=repr, legacy='1.13') def test_float_spacing(self): x = np.array([1., 2., 3.]) y = np.array([1., 2., -10.]) z = np.array([100., 2., -1.]) w = np.array([-100., 2., 1.]) assert_equal(repr(x), 'array([1., 2., 3.])') assert_equal(repr(y), 'array([ 1., 2., -10.])') assert_equal(repr(np.array(y[0])), 'array(1.)') assert_equal(repr(np.array(y[-1])), 'array(-10.)') assert_equal(repr(z), 'array([100., 2., -1.])') assert_equal(repr(w), 'array([-100., 2., 1.])') assert_equal(repr(np.array([np.nan, np.inf])), 'array([nan, inf])') assert_equal(repr(np.array([np.nan, -np.inf])), 'array([ nan, -inf])') x = np.array([np.inf, 100000, 1.1234]) y = np.array([np.inf, 100000, -1.1234]) z = np.array([np.inf, 1.1234, -1e120]) np.set_printoptions(precision=2) assert_equal(repr(x), 'array([ inf, 1.00e+05, 1.12e+00])') assert_equal(repr(y), 'array([ inf, 1.00e+05, -1.12e+00])') assert_equal(repr(z), 'array([ inf, 1.12e+000, -1.00e+120])') def test_bool_spacing(self): assert_equal(repr(np.array([True, True])), 'array([ True, True])') assert_equal(repr(np.array([True, False])), 'array([ True, False])') assert_equal(repr(np.array([True])), 'array([ True])') assert_equal(repr(np.array(True)), 'array(True)') assert_equal(repr(np.array(False)), 'array(False)') def test_sign_spacing(self): a = np.arange(4.) b = np.array([1.234e9]) assert_equal(repr(a), 'array([0., 1., 2., 3.])') assert_equal(repr(np.array(1.)), 'array(1.)') assert_equal(repr(b), 'array([1.234e+09])') assert_equal(repr(np.array([0.])), 'array([0.])') np.set_printoptions(sign=' ') assert_equal(repr(a), 'array([ 0., 1., 2., 3.])') assert_equal(repr(np.array(1.)), 'array( 1.)') assert_equal(repr(b), 'array([ 1.234e+09])') np.set_printoptions(sign='+') assert_equal(repr(a), 'array([+0., +1., +2., +3.])') assert_equal(repr(np.array(1.)), 'array(+1.)') assert_equal(repr(b), 'array([+1.234e+09])') np.set_printoptions(legacy='1.13') assert_equal(repr(a), 'array([ 0., 1., 2., 3.])') assert_equal(repr(b), 'array([ 1.23400000e+09])') assert_equal(repr(-b), 'array([ -1.23400000e+09])') assert_equal(repr(np.array(1.)), 'array(1.0)') assert_equal(repr(np.array([0.])), 'array([ 0.])') assert_raises(TypeError, np.set_printoptions, wrongarg=True) def test_float_overflow_nowarn(self): # make sure internal computations in FloatingFormat don't # warn about overflow repr(np.array([1e4, 0.1], dtype='f2')) def test_sign_spacing_structured(self): a = np.ones(2, dtype='f,f') assert_equal(repr(a), "array([(1., 1.), (1., 1.)], dtype=[('f0', '<f4'), ('f1', '<f4')])") assert_equal(repr(a[0]), "(1., 1.)") def test_floatmode(self): x = np.array([0.6104, 0.922, 0.457, 0.0906, 0.3733, 0.007244, 0.5933, 0.947, 0.2383, 0.4226], dtype=np.float16) y = np.array([0.2918820979355541, 0.5064172631089138, 0.2848750619642916, 0.4342965294660567, 0.7326538397312751, 0.3459503329096204, 0.0862072768214508, 0.39112753029631175], dtype=np.float64) z = np.arange(6, dtype=np.float16)/10 # also make sure 1e23 is right (is between two fp numbers) w = np.array(['1e{}'.format(i) for i in range(25)], dtype=np.float64) # note: we construct w from the strings `1eXX` instead of doing # `10.**arange(24)` because it turns out the two are not equivalent in # python. On some architectures `1e23 != 10.**23`. wp = np.array([1.234e1, 1e2, 1e123]) # unique mode np.set_printoptions(floatmode='unique') assert_equal(repr(x), "array([0.6104 , 0.922 , 0.457 , 0.0906 , 0.3733 , 0.007244,\n" " 0.5933 , 0.947 , 0.2383 , 0.4226 ], dtype=float16)") assert_equal(repr(y), "array([0.2918820979355541 , 0.5064172631089138 , 0.2848750619642916 ,\n" " 0.4342965294660567 , 0.7326538397312751 , 0.3459503329096204 ,\n" " 0.0862072768214508 , 0.39112753029631175])") assert_equal(repr(z), "array([0. , 0.1, 0.2, 0.3, 0.4, 0.5], dtype=float16)") assert_equal(repr(w), "array([1.e+00, 1.e+01, 1.e+02, 1.e+03, 1.e+04, 1.e+05, 1.e+06, 1.e+07,\n" " 1.e+08, 1.e+09, 1.e+10, 1.e+11, 1.e+12, 1.e+13, 1.e+14, 1.e+15,\n" " 1.e+16, 1.e+17, 1.e+18, 1.e+19, 1.e+20, 1.e+21, 1.e+22, 1.e+23,\n" " 1.e+24])") assert_equal(repr(wp), "array([1.234e+001, 1.000e+002, 1.000e+123])") # maxprec mode, precision=8 np.set_printoptions(floatmode='maxprec', precision=8) assert_equal(repr(x), "array([0.6104 , 0.922 , 0.457 , 0.0906 , 0.3733 , 0.007244,\n" " 0.5933 , 0.947 , 0.2383 , 0.4226 ], dtype=float16)") assert_equal(repr(y), "array([0.2918821 , 0.50641726, 0.28487506, 0.43429653, 0.73265384,\n" " 0.34595033, 0.08620728, 0.39112753])") assert_equal(repr(z), "array([0. , 0.1, 0.2, 0.3, 0.4, 0.5], dtype=float16)") assert_equal(repr(w[::5]), "array([1.e+00, 1.e+05, 1.e+10, 1.e+15, 1.e+20])") assert_equal(repr(wp), "array([1.234e+001, 1.000e+002, 1.000e+123])") # fixed mode, precision=4 np.set_printoptions(floatmode='fixed', precision=4) assert_equal(repr(x), "array([0.6104, 0.9219, 0.4570, 0.0906, 0.3733, 0.0072, 0.5933, 0.9468,\n" " 0.2383, 0.4226], dtype=float16)") assert_equal(repr(y), "array([0.2919, 0.5064, 0.2849, 0.4343, 0.7327, 0.3460, 0.0862, 0.3911])") assert_equal(repr(z), "array([0.0000, 0.1000, 0.2000, 0.3000, 0.3999, 0.5000], dtype=float16)") assert_equal(repr(w[::5]), "array([1.0000e+00, 1.0000e+05, 1.0000e+10, 1.0000e+15, 1.0000e+20])") assert_equal(repr(wp), "array([1.2340e+001, 1.0000e+002, 1.0000e+123])") assert_equal(repr(np.zeros(3)), "array([0.0000, 0.0000, 0.0000])") # for larger precision, representation error becomes more apparent: np.set_printoptions(floatmode='fixed', precision=8) assert_equal(repr(z), "array([0.00000000, 0.09997559, 0.19995117, 0.30004883, 0.39990234,\n" " 0.50000000], dtype=float16)") # maxprec_equal mode, precision=8 np.set_printoptions(floatmode='maxprec_equal', precision=8) assert_equal(repr(x), "array([0.610352, 0.921875, 0.457031, 0.090576, 0.373291, 0.007244,\n" " 0.593262, 0.946777, 0.238281, 0.422607], dtype=float16)") assert_equal(repr(y), "array([0.29188210, 0.50641726, 0.28487506, 0.43429653, 0.73265384,\n" " 0.34595033, 0.08620728, 0.39112753])") assert_equal(repr(z), "array([0.0, 0.1, 0.2, 0.3, 0.4, 0.5], dtype=float16)") assert_equal(repr(w[::5]), "array([1.e+00, 1.e+05, 1.e+10, 1.e+15, 1.e+20])") assert_equal(repr(wp), "array([1.234e+001, 1.000e+002, 1.000e+123])") def test_legacy_mode_scalars(self): # in legacy mode, str of floats get truncated, and complex scalars # use * for non-finite imaginary part np.set_printoptions(legacy='1.13') assert_equal(str(np.float64(1.123456789123456789)), '1.12345678912') assert_equal(str(np.complex128(complex(1, np.nan))), '(1+nan*j)') np.set_printoptions(legacy=False) assert_equal(str(np.float64(1.123456789123456789)), '1.1234567891234568') assert_equal(str(np.complex128(complex(1, np.nan))), '(1+nanj)') def test_legacy_stray_comma(self): np.set_printoptions(legacy='1.13') assert_equal(str(np.arange(10000)), '[ 0 1 2 ..., 9997 9998 9999]') np.set_printoptions(legacy=False) assert_equal(str(np.arange(10000)), '[ 0 1 2 ... 9997 9998 9999]') def test_dtype_linewidth_wrapping(self): np.set_printoptions(linewidth=75) assert_equal(repr(np.arange(10,20., dtype='f4')), "array([10., 11., 12., 13., 14., 15., 16., 17., 18., 19.], dtype=float32)") assert_equal(repr(np.arange(10,23., dtype='f4')), textwrap.dedent("""\ array([10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22.], dtype=float32)""")) styp = '<U4' if sys.version_info[0] >= 3 else '|S4' assert_equal(repr(np.ones(3, dtype=styp)), "array(['1', '1', '1'], dtype='{}')".format(styp)) assert_equal(repr(np.ones(12, dtype=styp)), textwrap.dedent("""\ array(['1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1'], dtype='{}')""".format(styp))) def test_linewidth_repr(self): a = np.full(7, fill_value=2) np.set_printoptions(linewidth=17) assert_equal( repr(a), textwrap.dedent("""\ array([2, 2, 2, 2, 2, 2, 2])""") )
np.set_printoptions(linewidth=17, legacy='1.13')
numpy.set_printoptions
""" psychoacoustics exports classes for handling psychophysical procedures and measures, like trial sequences and staircases.""" import io import pathlib import datetime import json import pickle import zipfile import collections from contextlib import contextmanager from abc import abstractmethod import warnings import matplotlib.cbook # necessary for matplotlib versions <3.5 to suppress a MatplotlibDeprecationWarning try: import curses except ImportError: curses = None import numpy try: import matplotlib.pyplot as plt except ImportError: plt = None import slab results_folder = 'Results' input_method = 'keyboard' #: sets the input for the Key context manager to 'keyboard 'or 'buttonbox' class _Buttonbox: """ Adapter class to allow easy switching between input from the keyboard via curses and from the custom buttonbox adapter (custom arduino device that sends a keystroke followed by a return keystroke when pressing a button on the arduino). """ @staticmethod def getch(): input_key = input() # buttonbox adapter has to return the keycode of intended keys! if input_key: return int(input_key) class _FigChar: """ Adapter class to allow easy switching to input via the current_character attribute of stairs figure. Set slab.psychoacoustics.input_method = 'figure' to use. A figure with the name 'stairs' will be opened if it is not already present. If used together with the plot method of the Staircase class, input is acquired through the stairs plot. Depending on the operating system, you may have to click once into the figure to give it focus. """ warnings.filterwarnings("ignore", category=matplotlib.cbook.MatplotlibDeprecationWarning) @staticmethod def getch(): global key def _on_key(event): global key key = event.key fig = plt.figure('stairs') cid = fig.canvas.mpl_connect('key_press_event', _on_key) key = None # reset while not key: plt.pause(0.01) # wait for 10ms, but keep figure event loop running return ord(key) @contextmanager def key(): """ Wrapper for curses module to simplify getting a single keypress from the terminal (default) or a buttonbox. Set slab.psychoacoustics.input_method = 'buttonbox' to use a custom USB buttonbox. Example:: with slab.Key() as key: response = key.getch() """ if input_method == 'keyboard': if curses is None: raise ImportError( 'You need curses to use the keypress class (pip install curses (or windows-curses))') curses.filter() stdscr = curses.initscr() curses.noecho() curses.cbreak() yield stdscr curses.nocbreak() curses.echo() curses.endwin() elif input_method == 'buttonbox': yield _Buttonbox elif input_method == 'figure': yield _FigChar else: raise ValueError('Unknown input method!') class LoadSaveMixin: """ Mixin to provide loading and saving functions. Supports JSON the pickle format """ def save_pickle(self, file_name, clobber=False): """ Save the object as pickle file. Arguments: file_name (str | pathlib.Path): name of the file to create. clobber (bool): overwrite existing file with the same name, defaults to False. Returns: (bool): True if writing was successful. """ if isinstance(file_name, pathlib.Path): file_name = str(file_name) if pathlib.Path(file_name).exists() and not clobber: raise FileExistsError("Select clobber=True to overwrite.") with open(file_name, 'wb') as fp: pickle.dump(self.__dict__, fp, protocol=pickle.HIGHEST_PROTOCOL) return True def load_pickle(self, file_name): """ Read pickle file and deserialize the object into `self.__dict__`. Attributes: file_name (str | pathlib.Path): name of the file to read. """ if isinstance(file_name, pathlib.Path): file_name = str(file_name) with open(file_name, 'rb') as fp: self.__dict__ = pickle.load(fp) def save_json(self, file_name=None, clobber=False): """ Save the object as JSON file. If the file exists, it is overwritten. Arguments: file_name (str | pathlib.Path): name of the file to create. If None or 'stdout', return a JSON object. clobber (bool): overwrite existing file with the same name, defaults to False. Returns: (bool): True if writing was successful. """ def default(i): return int(i) if isinstance(i, numpy.int64) else i # helper for converting numpy arrays if isinstance(file_name, pathlib.Path): file_name = str(file_name) if (file_name is None) or (file_name == 'stdout'): return json.dumps(self.__dict__, indent=2, default=default) if pathlib.Path(file_name).exists() and not clobber: raise FileExistsError("Select clobber=True to overwrite.") try: with open(file_name, 'w') as f: json.dump(self.__dict__, f, indent=2, default=default) return True except (TypeError, ValueError): # type error caused by json dump, value error by default function print("Your sequence contains data which is not JSON serializable, use the save_pickle method instead.") def load_json(self, file_name): """ Read JSON file and deserialize the object into `self.__dict__`. Attributes: file_name (str | pathlib.Path): name of the file to read. """ if isinstance(file_name, pathlib.Path): file_name = str(file_name) with open(file_name, 'r') as f: self.__dict__ = json.load(f) class TrialPresentationOptionsMixin: """ Mixin to provide alternative forced-choice (AFC) and Same-Different trial presentation methods and response simulation to `Trialsequence` and `Staircase`. """ @abstractmethod def add_response(self, response): pass @abstractmethod def print_trial_info(self): pass def present_afc_trial(self, target, distractors, key_codes=(range(49, 58)), isi=0.25, print_info=True): """ Present the reference and distractor sounds in random order and acquire a response keypress. The subject has to identify at which position the reference was played. The result (True if response was correct or False if response was wrong) is stored in the sequence via the `add_response` method. Arguments: target (instance of slab.Sound): sound that ought to be identified in the trial distractors (instance or list of slab.Sound): distractor sound(s) key_codes (list of int): ascii codes for the response keys (get code for button '1': ord('1') --> 49) pressing the second button in the list is equivalent to the response "the reference was the second sound played in this trial". Defaults to the key codes for buttons '1' to '9' isi (int or float): inter stimulus interval which is the pause between the end of one sound and the start of the next one. print_info (bool): If true, call the `print_trial_info` method afterwards """ if isinstance(distractors, list): stims = [target] + distractors # assuming sound object and list of sounds else: stims = [target, distractors] # assuming two sound objects order = numpy.random.permutation(len(stims)) for idx in order: stim = stims[idx] stim.play() plt.pause(isi) with key() as k: response = k.getch() interval = numpy.where(order == 0)[0][0] interval_key = key_codes[interval] response = response == interval_key self.add_response(response) if print_info: self.print_trial_info() def present_tone_trial(self, stimulus, correct_key_idx=0, key_codes=(range(49, 58)), print_info=True): """ Present the reference and distractor sounds in random order and acquire a response keypress. The result (True if response was correct or False if response was wrong) is stored in the sequence via the `add_response` method. Arguments: stimulus (slab.Sound): sound played in the trial. correct_key_idx (int): index of the key in `key_codes` that represents a correct response. Response is correct if `response == key_codes[correct_key_idx]`. key_codes (list of int): ascii codes for the response keys (get code for button '1': ord('1') --> 49). print_info (bool): If true, call the `print_trial_info` method afterwards. """ stimulus.play() with slab.key() as k: response = k.getch() response = response == key_codes[correct_key_idx] self.add_response(response) if print_info: self.print_trial_info() def simulate_response(self, threshold=None, transition_width=2, intervals=1, hitrates=None): """ Return a simulated response to the current condition index value by calculating the hitrate from a psychometric (logistic) function. This is only sensible if trials is numeric and an interval scale representing a continuous stimulus value. Arguments: threshold(None | int | float): Midpoint of the psychometric function for adaptive testing. When the intensity of the current trial is equal to the `threshold` the hitrate is 50 percent. transition_width (int | float): range of stimulus intensities over which the hitrate increases from 0.25 to 0.75. intervals (int): use 1 (default) to indicate a yes/no trial, 2 or more to indicate an alternative forced choice trial. The number of choices determines the probability for a correct response by chance. hitrates (None | list | numpy.ndarray): list or numpy array of hitrates for the different conditions, to allow custom rates instead of simulation. If given, `threshold` and `transition_width` are not used. If a single value is given, this value is used. """ slope = 0.5 / transition_width if isinstance(self, slab.psychoacoustics.Trialsequence): # check which class the mixin is in current_condition = self.trials[self.this_n] elif isinstance(self, slab.psychoacoustics.Staircase): current_condition = self._next_intensity else: return None if hitrates is None: if threshold is None: raise ValueError("threshold can't be None if hitrates is None!") hitrate = 1 / (1 + numpy.exp(4 * slope * (threshold - current_condition))) # scale/4 = slope at midpoint else: if isinstance(hitrates, (list, numpy.ndarray)): hitrate = hitrates[current_condition] else: hitrate = hitrates hit = numpy.random.rand() < hitrate # True with probability hitrate if hit or intervals == 1: return hit return numpy.random.rand() < 1/intervals # still 1/intervals chance to hit the right interval class Trialsequence(collections.abc.Iterator, LoadSaveMixin, TrialPresentationOptionsMixin): """ Randomized, non-adaptive trial sequences. Arguments: conditions (list | int | str): defines the different stimuli appearing the sequence. If given a list, every element is one condition. The elements can be anything - strings, dictionaries, objects etc. Note that, if the elements are not JSON serializable, the sequence can only be saved as a pickle file. If conditions is an integer i, the list of conditions is given by range(i). A string is treated as the filename of a previously saved trial sequence object, which is then loaded. n_reps (int): number of repetitions for each condition. Number of trials is given by len(conditions)*n_reps). trials (None | list | numpy.ndarray): The sequence of trials in the order in which they are appearing in sequence. Defaults to None, because trials are usually generated by the class based on the other parameters. However, it is possible to pass a list or one-dimensional array. In that case the parameters for generating the sequence are ignored. kind (str): The kind of randomization used to generate the trial sequence. Possible options are: `non_repeating` (randomization without direct repetition of a condition, default if n_conditions > 2), `random_permutation` (complete randomization, default if `n_conditions` <= 2) or `infinite` (sequence that reset when reaching the end to generate an infinite number of trials. randomization method is random_permutation` if n_conditions` <= 2 and `non_repeating` otherwise). deviant_freq (float): frequency with which deviants (encoded as 0) appear in the sequence. The minimum number of trials between two deviants is 3 if deviant frequency is below 10%, 2 if it is below 20% and 1 if it is below 30%. A deviant frequency greater than 30% is not supported label (str): a text label for the sequence. Attributes: .trials: the order in which the conditions are repeated in the sequence. The elements are integers referring to indices in `conditions`, starting from 1. 0 represents a deviant (only present if `deviant_freq` > 0) .n_trials: the total number of trials in the sequence .conditions: list of the different unique elements in the sequence .n_conditions: number of conditions, is equal to len(conditions) or len(conditions)+1 if there are deviants .n_remaining: the number of trials remaining i.e. that have not been called when iterating trough the sequence .this_n: current trials index in the entire sequence, equals the number of trials completed so far .this_trial: a dictionary giving the parameters of the current trial .finished: boolean signaling if all trials have been called .kind: randomization kind of sequence (`random_permutation`, `non_repeating`, `infinite`) .data: list with the same length as the one in the `trials` attribute. On sequence generation, `data` is a list of empty lists. Then , one can use the `add_response` method to append to the list belonging to the current trial """ def __init__(self, conditions=2, n_reps=1, trials=None, kind=None, deviant_freq=None, label=''): self.label = label self.n_reps = int(n_reps) if isinstance(conditions, pathlib.Path): conditions = str(conditions) if isinstance(conditions, str): if not pathlib.Path(conditions).exists(): raise ValueError(f"could not load the file {conditions}") try: self.load_json(conditions) # import entire object from file except (UnicodeDecodeError, json.JSONDecodeError) as _: self.load_pickle(conditions) else: if isinstance(conditions, int): self.conditions = list(range(1, conditions+1)) else: self.conditions = conditions self.n_conditions = len(self.conditions) if trials is None: # generate stimulus sequence if kind is None: kind = 'random_permutation' if self.n_conditions <= 2 else 'non_repeating' if kind == 'random_permutation': self.trials = self._create_random_permutation(self.n_conditions, self.n_reps) elif kind == 'non_repeating': self.trials = self._create_simple_sequence(self.n_conditions, self.n_reps) elif kind == 'infinite': # implementation if infinite sequence is a bit of a hack (number of completed trials needs # to be calculated as: trials.this_rep_n * trials.n_conditions + trials.this_trial_n + 1) # It's also not possible to make an infinite sequence with deviants. if deviant_freq is not None: raise ValueError("Deviants are not implemented for infinite sequences!") if self.n_conditions <= 2: self.trials = self._create_random_permutation(self.n_conditions, 5) self.n_reps = 5 else: self.trials = self._create_simple_sequence(self.n_conditions, 1) self.n_reps = 1 else: raise ValueError(f'Unknown kind parameter: {kind}!') if deviant_freq is not None: # insert deviants deviants = slab.Trialsequence._deviant_indices(n_standard=int(self.n_conditions * n_reps), deviant_freq=deviant_freq) self.trials = numpy.insert(arr=self.trials, obj=deviants, values=0) self.n_conditions += 1 # add one condition for deviants else: # make a sequence from a given list of trials self.conditions = list(set(trials)) for i, condition in enumerate( self.conditions): # encode conditions as integers 1 to n_conditions in trials for t, trial in enumerate(trials): if trial == condition: trials[t] = i + 1 self.trials = trials self.n_conditions = len(self.conditions) if isinstance(self.trials, numpy.ndarray): self.trials = self.trials.tolist() # convert trials to list self.this_n = -1 # trial index in entire sequence self.this_trial = [] # condition of current trial self.finished = False self.data = [] # holds responses if TrialPresentationOptions methods are called self.n_trials = len(self.trials) self.n_remaining = self.n_trials self.kind = kind self.data = [[] for _ in self.trials] def __repr__(self): return self.__dict__.__repr__() def __str__(self): return f'Trialsequence, trials {"inf" if self.kind=="infinite" else self.n_trials}, ' \ f'remaining {"inf" if self.kind=="infinite" else self.n_remaining}, current condition {self.this_trial}' def __next__(self): """ Is called when iterating trough a sequenceAdvances to next trial and returns it. Updates attributes `this_trial` and `this_n`. If the trials have ended this method will raise a StopIteration. Returns: (int): current element of the list in `trials` """ self.this_n += 1 self.n_remaining -= 1 if self.n_remaining < 0: # all trials complete if self.kind == 'infinite': # finite sequence -> reset and start again # new sequence, avoid start with previous condition self.trials = self._create_simple_sequence(len(self.conditions), self.n_reps, dont_start_with=self.trials[-1]) self.this_n = 0 self.n_remaining = self.n_trials - 1 # reset trial countdown to length of new trial # sequence (subtract 1 because we return the 0th trial below) else: # finite sequence -> finish self.this_trial = [] self.finished = True if self.finished: raise StopIteration if self.trials[self.this_n] == 0: self.this_trial = 0 else: self.this_trial = self.conditions[self.trials[self.this_n]-1] # fetch the trial info return self.this_trial def add_response(self, response): """ Append response to the list in the `data` attribute belonging to the current trial (see Trialsequence doc). Attributes: response (any): data to append to the list. Can be anything but save_json method won't be available if the content of `response` is not JSON serializable (if it's an object for example). """ if self.this_n < 0: print("Can't add response because trial hasn't started yet!") else: self.data[self.this_n].append(response) def print_trial_info(self): """ Convenience method for printing current trial information. """ print(f'{self.label} | trial # {self.this_n} of {"inf" if self.kind=="infinite" else self.n_trials} ' f'({"inf" if self.kind=="infinite" else self.n_remaining} remaining): condition {self.this_trial}, ' f'last response: {self.data[self.this_n-1]}') @staticmethod def _create_simple_sequence(n_conditions, n_reps, dont_start_with=None): """ Create a randomized sequence of integers without direct repetitions of any element. Arguments: n_conditions (int): the number of conditions in the list. The array returned contains integers from 1 to the value of `n_conditions`. n_reps (int): number that each element is repeated. Length of the returned array is `n_conditions * n_reps` dont_start_with (int): if not None, dont start the sequence with this integer. Can be useful if several sequences are used and the final trial of the last sequence should not be the same as the first element of the next sequence. Returns: (numpy.ndarray): randomized sequence of length n_conditions * n_reps without direct repetitions of any element. """ permute = list(range(1, n_conditions+1)) if dont_start_with is not None: trials = [dont_start_with] else: trials = [] for _ in range(n_reps): numpy.random.shuffle(permute) if len(trials) > 0: while trials[-1] == permute[0]: numpy.random.shuffle(permute) trials += permute if dont_start_with is not None: # delete first entry ('dont_start_with') trials = trials[1:] return numpy.array(trials) @staticmethod def _deviant_indices(n_standard, deviant_freq=.1): """ Create sequence for an oddball experiment which contains two conditions: standards (1) and deviants (0). Arguments: n_standard (int): number of standard trials, encoded as 1, in the sequence. deviant_freq (float): frequency of deviants, encoded as 0, in the sequence. Also determines the minimum number of standards between two deviants which is 3 if deviant_freq <= .1, 2 if deviant_freq <= .2 and 1 if deviant_freq <= .3. A deviant frequency > .3 is not supported. Returns: (numpy.ndarray): sequence of length n_standard+(n_standard*deviant_freq) with deviants. """ if deviant_freq <= .1: min_dist = 3 elif deviant_freq <= .2: min_dist = 2 elif deviant_freq <= .3: min_dist = 1 else: raise ValueError("Deviant frequency can't be greater than 0.3!") # get the possible combinations of deviants and normal trials: n_deviants = int(n_standard*deviant_freq) indices = range(n_standard) deviant_indices = numpy.random.choice(indices, n_deviants, replace=False) deviant_indices.sort() dist = numpy.diff(deviant_indices) while numpy.min(dist) < min_dist: # reshuffle until minimum distance is satisfied deviant_indices = numpy.random.choice(indices, n_deviants, replace=False) deviant_indices.sort() dist = numpy.diff(deviant_indices) return deviant_indices @staticmethod def _create_random_permutation(n_conditions, n_reps): """ Create a completely random sequence of integers. Arguments: n_conditions (int): the number of conditions in the list. The array returned contains integers from 1 to the value of `n_conditions`. n_reps (int): number that each element is repeated. Length of the returned array is n_conditions * n_reps. Returns: (numpy.ndarray): randomized sequence. """ return numpy.random.permutation(numpy.tile(list(range(1, n_conditions+1)), n_reps)) def get_future_trial(self, n=1): """ Returns the condition of a trial n iterations into the future or past, without advancing the trials. Arguments: n (int): number of iterations into the future or past (negative numbers). Returns: (any): element of the list stored in the `conditions` attribute belonging to the trial n iterations into the past/future. Returns None if attempting to go beyond the first/last trial """ if n > self.n_remaining or self.this_n + n < 0: return None return self.conditions[self.trials[self.this_n + n]-1] def transitions(self): """ Count the number of transitions between conditions. Returns: (numpy.ndarray): table of shape `n_conditions` x `n_conditions` where the rows represent the condition transitioning from and the columns represent the condition transitioning to. For example [0, 2] shows the number of transitions from condition 1 to condition 3. If the `kind` of the sequence is "non_repeating", the diagonal is 0 because no condition transitions into itself. """ transitions = numpy.zeros((self.n_conditions, self.n_conditions)) for i, j in zip(self.trials, self.trials[1:]): transitions[i-1, j-1] += 1 return transitions def condition_probabilities(self): """ Return the frequency with which each condition appears in the sequence. Returns: (list): list of floats floats, where every element represents the frequency of one condition. The fist element is the frequency of the first condition and so on. """ probabilities = [] for i in range(self.n_conditions): num = self.trials.count(i) num /= self.n_trials probabilities.append(num) return probabilities def response_summary(self): """ Generate a summary of the responses for each condition. The function counts how often a specific response was given to a condition for all conditions and each possible response (including None). Returns: (list of lists | None): indices of the outer list represent the conditions in the sequence.Each inner list contains the number of responses per response key, with the response keys sorted in ascending order, the last element always represents None. If the sequence is not finished yet, None is returned. Examples:: import slab import random sequence = slab.Trialsequence(conditions=3, n_reps=10) # a sequence with three conditions # iterate trough the list and generate a random response. The response can be either yes (1), no (0) or # there can be no response at all (None) for trial in sequence: response = random.choice([0, 1, None]) sequence.add_response(response) sequence.response_summary() # Out: [[1, 1, 7], [2, 5, 3], [4, 4, 2]] # The first sublist shows that the subject responded to the first condition once with no (0), # once with yes (1) and did not give a response seven times, the second and third list show # prevalence of the same response keys for conditions two and three. """ if self.finished: # list of used response key codes (add None in case it's not present): response_keys = [item for sublist in self.data for item in sublist] response_keys = list(set(response_keys + [None])) response_keys = sorted(response_keys, key=lambda x: (x is None, x)) # sort, with 'None' at the end responses = [] for condition in self.conditions: idx = [i for i, cond in enumerate(self.trials) if cond == condition] # indices of condition in sequence # count how often each type of key was given to this condition: condition_data = [self.data[i] for i in idx] count = collections.Counter([item for sublist in condition_data for item in sublist]) resp_1cond = [] for r in response_keys: resp_1cond.append(count[r]) responses.append(resp_1cond) return responses else: return None def plot(self, axis=None, show=True): """ Plot the trial sequence as scatter plot. Arguments: axis (matplotlib.pyplot.Axes): plot axis to draw on, if none a new plot is generated show (bool): show the plot immediately, defaults to True """ if plt is None: raise ImportError('Plotting requires matplotlib!') if axis is None: axis = plt.subplot() axis.scatter(range(self.n_trials), self.trials) axis.set(title='Trial sequence', xlabel='Trials', ylabel='Condition index') if show: plt.show() class Staircase(collections.abc.Iterator, LoadSaveMixin, TrialPresentationOptionsMixin): """ Class to handle adaptive testing which means smoothly the selecting next trial, report current values and so on. The sequence will terminate after a certain number of reverals have been exceeded. Arguments: start_val (int | float): initial stimulus value for the staircase n_reversals (int): number of reversals needed to terminate the staircase step_sizes (int | list): Size of steps in the staircase. Given an integer, the step size is constant. Given a list, the step size will progress to the next entry at each reversal. If the list is exceeded before the sequence was finished, it will continue with the last entry of the list as constant step size. step_up_factor: allows different sizes for up and down steps to implement a Kaernbach1991 weighted up-down method. step_sizes sets down steps, which are multiplied by step_up_factor to obtain up step sizes. The default is 1, i.e. same size for up and down steps. n_pretrials (int): number of trial at the initial stimulus value presented as before start of the staircase n_up (int): number of `incorrect` (or 0) responses before the staircase level increases. Is 1, regardless of specified value until the first reversal. Lewitt (1971) gives the up-down values for different threshold points on the psychometric function: 1-1 (0.5), 1-2 (0.707), 1-3 (0.794), 1-4 (0.841), 1-5 (0.891). n_down (int): number of `correct` (or 1) responses before the staircase level decreases (see `n_up`). step_type (str): defines the change of stimulus intensity at each step of the staircase. possible inputs are 'lin' (adds or subtract a certain amount), 'db', and 'log' (prevents the intensity from reaching zero). min_val (int or float): smallest stimulus value permitted, or -Inf for staircase without lower limit max_val (int or float): largest stimulus value permitted, or Inf for staircase without upper limit label (str): text label for the sequence, defaults to an empty string Attributes: .this_trial_n: number of completed trials .intensities: presented stimulus values .current_direction: 'up' or 'down' .data: list of responses .reversal_points: indices of reversal trials .reversal_intensities: stimulus values at the reversals (used to compute threshold) .finished: True/False: have we finished yet? Examples:: stairs = Staircase(start_val=50, n_reversals=10, step_type='lin', step_sizes=[4,2], min_val=10, max_val=60, n_up=1, n_down=1) print(stairs) for trial in stairs: response = stairs.simulate_response(30) stairs.add_response(response) print(f'reversals: {stairs.reversal_intensities}') print(f'mean of final 6 reversals: {stairs.threshold()}') """ def __init__(self, start_val, n_reversals=None, step_sizes=1, step_up_factor=1, n_pretrials=0, n_up=1, n_down=2, step_type='lin', min_val=-numpy.Inf, max_val=numpy.Inf, label=''): self.label = label self.start_val = start_val self.n_up = n_up self.n_down = n_down self.step_type = step_type try: self.step_sizes = list(step_sizes) except TypeError: self.step_sizes = [step_sizes] self._variable_step = True if len(self.step_sizes) > 1 else False self.step_up_factor = step_up_factor self.step_size_current = self.step_sizes[0] if n_reversals is None: if len(self.step_sizes) == 1: self.n_reversals = 8 # if Staircase called without parameters, construct a short 8-reversal test else: self.n_reversals = len(self.step_sizes) + 1 # otherwise dependent on number of step sizes elif len(self.step_sizes) > n_reversals: print( f'Increasing number of minimum required reversals to the number of step sizes, {len(self.step_sizes)}') self.n_reversals = len(self.step_sizes) else: self.n_reversals = n_reversals self.finished = False self.n_pretrials = n_pretrials self.this_trial_n = -n_pretrials self.data = [] self.intensities = [] self.reversal_points = [] self.reversal_intensities = [] self.current_direction = 'down' self.correct_counter = 0 self._next_intensity = self.start_val self.min_val = min_val self.max_val = max_val self.pf_intensities = None # psychometric function, auto set when finished self.pf_percent_correct = None # psychometric function, auto set when finished self.pf_responses_per_intensity = None # psychometric function, auto set when finished def __next__(self): """ Is called when iterating trough a sequenceAdvances to next trial and returns it. Updates attributes this_trial, this_n, and this_index. If the trials have ended this method will raise a StopIteration. Returns: (int | float | StopIteration): the intensity for the next trial which is calculated by the `_next_intensity` method. If the sequence is finished a StopIteration is returned instead. """ if not self.finished: self.this_trial_n += 1 # update pointer for next trial self.intensities.append(self._next_intensity) return self._next_intensity else: self._psychometric_function() # tally responses to create a psychometric function raise StopIteration def __repr__(self): return self.__dict__.__repr__() def __str__(self): return f'Staircase {self.n_up}up-{self.n_down}down, trial {self.this_trial_n},' \ f' {len(self.reversal_intensities)} reversals of {self.n_reversals}' def add_response(self, result, intensity=None): """ Add a True or 1 to indicate a correct/detected trial or False or 0 to indicate an incorrect/missed trial. This is essential to advance the staircase to a new intensity level. Supplying an `intensity` value indicates that you did not use the recommended intensity in your last trial and the staircase will replace its recorded value with the one supplied. """ if self._next_intensity <= self.min_val: # always record False if at min_val result = False else: result = bool(result) self.data.append(result) if intensity is not None: self.intensities.pop() self.intensities.append(intensity) if self.this_trial_n > 0: # we're out of the pretrials if result: # correct response if len(self.data) > 1 and self.data[-2] == result: self.correct_counter += 1 # increment if on a run else: self.correct_counter = 1 # or reset else: # incorrect response if len(self.data) > 1 and self.data[-2] == result: self.correct_counter -= 1 # decrement if on a run else: self.correct_counter = -1 # or reset self.calculate_next_intensity() def calculate_next_intensity(self): """ Based on current intensity, counter of correct responses, and current direction. """ # TODO: description of how the current intensity is calculated if not self.reversal_intensities: # no reversals yet if self.data[-1] is True: # last answer correct reversal = bool(self.current_direction == 'up') # got it right self.current_direction = 'down' else: # got it wrong reversal = bool(self.current_direction == 'down') self.current_direction = 'up' elif self.correct_counter >= self.n_down: # n right, time to go down! reversal = bool(self.current_direction != 'down') self.current_direction = 'down' elif self.correct_counter <= -self.n_up: # n wrong, time to go up! reversal = bool(self.current_direction != 'up') self.current_direction = 'up' else: # same as previous trial reversal = False if reversal: # add reversal info self.reversal_points.append(self.this_trial_n) self.reversal_intensities.append(self.intensities[-1]) if len(self.reversal_intensities) >= self.n_reversals: self.finished = True # we're done # if reversal and self._variable_step: # new step size if necessary # if beyond the list of step sizes, use the last one if len(self.reversal_intensities) >= len(self.step_sizes): self.step_size_current = self.step_sizes[-1] else: _sz = len(self.reversal_intensities) self.step_size_current = self.step_sizes[_sz] if self.current_direction == 'up': self.step_size_current *= self.step_up_factor # apply factor for weighted up/down method if not self.reversal_intensities: if self.data[-1] == 1: self._intensity_dec() else: self._intensity_inc() elif self.correct_counter >= self.n_down: self._intensity_dec() # n right, so going down elif self.correct_counter <= -self.n_up: self._intensity_inc() # n wrong, so going up def _intensity_inc(self): """ increment the current intensity and reset counter. """ if self.step_type == 'db': self._next_intensity *= 10.0**(self.step_size_current/20.0) elif self.step_type == 'log': self._next_intensity *= 10.0**self.step_size_current elif self.step_type == 'lin': self._next_intensity += self.step_size_current if (self.max_val is not None) and (self._next_intensity > self.max_val): self._next_intensity = self.max_val # check we haven't gone out of the legal range self.correct_counter = 0 def _intensity_dec(self): """ decrement the current intensity and reset counter. """ if self.step_type == 'db': self._next_intensity /= 10.0**(self.step_size_current/20.0) if self.step_type == 'log': self._next_intensity /= 10.0**self.step_size_current elif self.step_type == 'lin': self._next_intensity -= self.step_size_current self.correct_counter = 0 if (self.min_val is not None) and (self._next_intensity < self.min_val): self._next_intensity = self.min_val # check we haven't gone out of the legal range def threshold(self, n=0): """ Returns the average of the last n reversals. Arguments: n (int): number of reversals to average over, if 0 use all reversals `n_reversals` - 1. Returns: the arithmetic (if `step_type`==='lin') or geometric mean of the `reversal_intensities`. """ if self.finished: if n == 0 or n > self.n_reversals: n = int(self.n_reversals) - 1 if self.step_type == 'lin': return numpy.mean(self.reversal_intensities[-n:]) return numpy.exp(numpy.mean(numpy.log(self.reversal_intensities[-n:]))) return None # still running the staircase def print_trial_info(self): """ Convenience method for printing current trial information. s """ print( f'{self.label} | trial # {self.this_trial_n}: reversals: {len(self.reversal_points)}/{self.n_reversals},' f' intensity {round(self.intensities[-1],2) if self.intensities else round(self._next_intensity,2)},' f' going {self.current_direction}, response {self.data[-1] if self.data else None}') def save_csv(self, filename): """ Write a csv text file with the stimulus values in the 1st line and the corresponding responses in the 2nd. Arguments: filename (str): the name under which the csv file is saved. Returns: (bool): True if saving was successful, False if there are no trials to save. """ if self.this_trial_n < 1: return False # no trials to save with open(filename, 'w') as f: raw_intensities = str(self.intensities) raw_intensities = raw_intensities.replace('[', '').replace(']', '') f.write(raw_intensities) f.write('\n') responses = str(numpy.multiply(self.data, 1)) # convert to 0 / 1 responses = responses.replace('[', '').replace(']', '') responses = responses.replace(' ', ', ') f.write(responses) return True def plot(self, axis=None, show=True): """ Plot the staircase. If called after each trial, one plot is created and updated. Arguments: axis (matplotlib.pyplot.Axes): plot axis to draw on, if none a new plot is generated show (bool): whether to show the plot right after drawing. """ if plt is None: raise ImportError('Plotting requires matplotlib!') if self.intensities: # plotting only after first response x = numpy.arange(-self.n_pretrials, len(self.intensities)-self.n_pretrials) y = numpy.array(self.intensities) # all previously played intensities responses = numpy.array(self.data) if axis is None: fig = plt.figure('stairs') # figure 'stairs' is created or made current axis = fig.gca() axis.clear() axis.plot(x, y) axis.set_xlim(-self.n_pretrials, max(20, (self.this_trial_n + 15)//10*10)) axis.set_ylim(min(0, min(y)) if self.min_val == -numpy.Inf else self.min_val, max(y) if self.max_val == numpy.Inf else self.max_val) # plot green dots at correct/yes responses axis.scatter(x[responses], y[responses], color='green') # plot red dots at correct/yes responses axis.scatter(x[~responses], y[~responses], color='red') axis.scatter(len(self.intensities)-self.n_pretrials+1, self._next_intensity, color='grey') # current trial axis.set_ylabel('Dependent variable') axis.set_xlabel('Trial') axis.set_title('Staircase') if self.finished: axis.hlines(self.threshold(), min(x), max(x), 'r') plt.draw() if show: plt.pause(0.01) @staticmethod def close_plot(): """ Closes a staircase plot (if not drawn into a specified axis) - used for plotting after each trial. """ plt.close('stairs') def _psychometric_function(self): """ Create a psychometric function by binning data from a staircase procedure. Called automatically when staircase is finished. Sets attributes `pf_intensites` (array of intensity values where each is the center of an intensity bin), `pf_percent_correct` (array of mean percent correct in each bin), `pf_responses_per_intensity` (array of number of responses contributing to each mean). """ intensities = numpy.array(self.intensities) responses = numpy.array(self.data) binned_resp = [] binned_intensities = [] n_points = [] intensities = numpy.round(intensities, decimals=8) unique_intensities =
numpy.unique(intensities)
numpy.unique
import faulthandler import math import os import unittest import numpy faulthandler.enable() # to debug seg faults and timeouts import cfunits from cfunits import Units class UnitsTest(unittest.TestCase): """Tests the `Units` class.""" def test_Units___eq__(self): """Tests the `___eq__` operator on `Units`.""" self.assertEqual(Units(""), Units("")) self.assertEqual(Units("18"), Units("18")) self.assertEqual(Units("1"), Units("1")) self.assertEqual(Units("m"), Units("m")) self.assertEqual(Units("m"), Units("metres")) self.assertEqual(Units("m"), Units("meTRES")) self.assertEqual( Units("days since 2000-1-1"), Units("d since 2000-1-1 0:0") ) self.assertNotEqual( Units("days since 2000-1-1"), Units("h since 1234-1-1 0:0") ) self.assertEqual( Units("days since 2000-1-1"), Units("d since 2000-1-1 0:0", calendar="gregorian"), ) self.assertEqual( Units("days since 2000-1-1"), Units("d since 2000-1-1 0:0", calendar="standard"), ) self.assertEqual(Units(calendar="noleap"), Units(calendar="noleap")) self.assertEqual(Units(calendar="noleap"), Units(calendar="365_day")) self.assertEqual(Units(calendar="nOLEAP"), Units(calendar="365_dAY")) self.assertEqual( Units("days since 2000-1-1", calendar="all_leap"), Units("d since 2000-1-1 0:0", calendar="366_day"), ) self.assertNotEqual( Units("days since 2000-1-1", calendar="all_leap"), Units("h since 2000-1-1 0:0", calendar="366_day"), ) self.assertNotEqual(Units(1), Units(1)) self.assertNotEqual(Units(1), Units(2)) self.assertNotEqual(Units(1), Units()) self.assertNotEqual(Units(1), Units("")) self.assertNotEqual(Units(1), Units(" ")) self.assertNotEqual(Units(1), Units("metre")) def test_Units_equivalent(self): """Tests the `equivalent` method on `Units`.""" self.assertTrue(Units().equivalent(Units())) self.assertTrue(Units(" ").equivalent(Units())) self.assertTrue(Units("").equivalent(Units())) self.assertTrue(Units().equivalent(Units(""))) self.assertTrue(Units().equivalent(Units(" "))) self.assertTrue(Units("").equivalent(Units(""))) self.assertTrue(Units("").equivalent(Units(" "))) self.assertTrue(Units("").equivalent(Units("1"))) self.assertTrue(Units("").equivalent(Units("18"))) self.assertTrue(Units("18").equivalent(Units("1"))) self.assertTrue(Units("18").equivalent(Units("18"))) self.assertTrue(Units("1)").equivalent(Units("1"))) self.assertTrue(Units("m").equivalent(Units("m"))) self.assertTrue(Units("meter").equivalent(Units("km"))) self.assertTrue(Units("metre").equivalent(Units("mile"))) self.assertTrue(Units("s").equivalent(Units("h"))) self.assertTrue(Units("s").equivalent(Units("day"))) self.assertTrue(Units("second").equivalent(Units("month"))) self.assertTrue( Units(calendar="noleap").equivalent(Units(calendar="noleap")) ) self.assertTrue( Units(calendar="noleap").equivalent(Units(calendar="365_day")) ) self.assertTrue( Units(calendar="nOLEAP").equivalent(Units(calendar="365_dAY")) ) self.assertTrue( Units("days since 2000-1-1").equivalent( Units("d since 2000-1-1 0:0") ) ) self.assertTrue( Units("days since 2000-1-1").equivalent( Units("h since 1234-1-1 0:0") ) ) self.assertTrue( Units("days since 2000-1-1").equivalent( Units("d since 2000-1-1 0:0", calendar="gregorian") ) ) self.assertTrue( Units("days since 2000-1-1").equivalent( Units("h since 1234-1-1 0:0", calendar="standard") ) ) self.assertTrue( Units("days since 2000-1-1", calendar="all_leap").equivalent( Units("d since 2000-1-1 0:0", calendar="366_day") ) ) self.assertTrue( Units("days since 2000-1-1", calendar="all_leap").equivalent( Units("h since 1234-1-1 0:0", calendar="366_day") ) ) u = Units("days since 2000-02-02", calendar="standard") v = Units("months since 2000-02-02", calendar="standard") self.assertNotEqual(u, v) u = Units("days since 2000-02-02", calendar="standard") v = Units("months since 2000-02-02", calendar="gregorian") self.assertNotEqual(u, v) self.assertFalse(Units(1).equivalent(Units(1))) self.assertFalse(Units().equivalent(Units(1))) self.assertFalse(Units(2).equivalent(Units(1))) self.assertFalse(Units("").equivalent(Units(1))) self.assertFalse(Units(" ").equivalent(Units(1))) self.assertFalse(Units("1").equivalent(Units(1))) def test_Units_conform(self): """Tests the `conform` class method on `Units`.""" self.assertEqual(Units.conform(0.5, Units("km"), Units("m")), 500) self.assertEqual( Units.conform(360, Units("second"), Units("minute")), 6 ) x = Units.conform([360], Units("second"), Units("minute")) self.assertIsInstance(x, numpy.ndarray) self.assertTrue(numpy.allclose(x, 6)) x = Units.conform((360, 720), Units("second"), Units("minute")) self.assertIsInstance(x, numpy.ndarray) self.assertTrue(numpy.allclose(x, [6, 12])) x = Units.conform([360.0, 720.0], Units("second"), Units("minute")) self.assertIsInstance(x, numpy.ndarray) self.assertTrue(
numpy.allclose(x, [6, 12])
numpy.allclose
""" Hidden Markov Tree model """ from abc import ABCMeta from collections import namedtuple import os import scipy from config import RES_DIR, CHROM_SIZES from data_provider import SeqLoader from hmm.HMMModel import _ContinuousEmission from hmm.bwiter import bw_iter, IteratorCondition __author__ = 'eranroz' import numpy as np class HMTModel(object): """ base model for HMT see Crouse 1997 and Durand 2013 """ __metaclass__ = ABCMeta MIN_STD = 0.1 def __init__(self, state_transition, mean_vars, emission_density=scipy.stats.norm): """ Initializes a new HMT model. @param state_transition: state transition matrix. with rows - source state, cols - target state. 0 state assumed to be the begin state (pi - distrbution for root of the tree) @param mean_vars: matrix with rows=num of states and cols =2, where the first column is mean and second is variance """ self.state_transition = state_transition self.mean_vars = mean_vars self.emission_density = emission_density self.emission = _ContinuousEmission(mean_vars, emission_density) self.min_alpha = None def num_states(self): """ Get number of states in the model """ return self.state_transition.shape[0] def level_emission(self, level): """ Emission for level. override it to assign different emissions for different levels @param level: level where 0 is the root @return: a emission matrix (indexable object) with rows as states and columns as values for emission """ return self.emission def maximize(self, sequence_tree, ud_output): """ Maximization step for in Upward-Downward algorithm (EM) @param sequence_tree symbol sequence @param ud_output results of upward downward (scaling version) """ self._maximize_emission(sequence_tree, ud_output.state_p) self.state_transition[0, 1:] = ud_output.state_p[-1] self.state_transition[1:, 1:] *= ud_output.transition_stat #normalize self.state_transition /= np.sum(self.state_transition, 1)[:, None] if self.min_alpha is not None: n_states = self.state_transition.shape[0]-1 # minus begin/root state diagonal_selector = np.eye(n_states, dtype='bool') self_transitions = self.state_transition[1:, 1:][diagonal_selector] n_self_transitions = np.maximum(self.min_alpha, self_transitions) # reduce the diff from the rest of transitions equally self.state_transition[1:, 1:][~diagonal_selector] -= (n_self_transitions-self_transitions)/(n_states-1) self.state_transition[1:, 1:][diagonal_selector] = n_self_transitions print('State transition') print(self.state_transition) def _maximize_emission(self, sequence_tree, gammas): n_states = self.num_states() - 1 n_levels = len(sequence_tree) means_levels = np.zeros((n_levels, n_states)) vars_levels = np.zeros((n_levels, n_states)) state_norm_levels = np.zeros((n_levels, n_states)) scale_level = 0 for gamma, seq in zip(gammas, sequence_tree): state_norm = np.sum(gamma, 0) mu = np.sum(gamma * seq[:, None], 0) / state_norm sym_min_mu = np.power(seq[:, None] - mu, 2) std = np.sum(gamma * sym_min_mu, 0) / state_norm state_norm_levels[scale_level, :] = state_norm vars_levels[scale_level, :] = np.sqrt(std) means_levels[scale_level, :] = mu scale_level += 1 state_norm_levels = state_norm_levels / np.sum(state_norm_levels, 0) state_means = np.sum(means_levels * state_norm_levels, 0) state_vars = np.maximum(HMTModel.MIN_STD, np.sum(vars_levels * state_norm_levels, 0)) self.mean_vars = np.column_stack([state_means, state_vars]) self.emission = _ContinuousEmission(self.mean_vars) print(self.emission) def viterbi(self, sequence_tree): """ Viterbi algorithm based on Durand 2013 and in log space @param sequence_tree: tree-like array, where sequence[0]=scale 1, sequence[1]=scale 2 etc... @return: most probable state for each node """ # upward n_states = self.state_transition.shape[0] - 1 # the begin is fake transition = np.log(self.state_transition[1:, 1:]) p_u = [] wave_lvl_iterator = iter(sequence_tree) # initialization # leaves leaves = next(wave_lvl_iterator) scale_level = len(sequence_tree) emission = self.level_emission(scale_level) curr_b_u_tree = emission[:, leaves] curr_b_u_tree = np.log(curr_b_u_tree) p_u.append(curr_b_u_tree) back_map = [] for lvl in wave_lvl_iterator: scale_level -= 1 emission = self.level_emission(scale_level) prev_up = np.array([np.max(transition[state, :]+p_u[-1], 1) for state in np.arange(0, n_states)]).T back_map.append(np.array([np.argmax(transition[state, :]+p_u[-1], 1) for state in np.arange(0, n_states)]).T) curr_b_u_tree = (prev_up[::2, :]+prev_up[1::2, :])+emission[:, lvl] p_u.append(curr_b_u_tree) p = np.max(p_u[-1][0]+np.log(self.state_transition[0, 1:])) print('Log likelihood', p) probable_tree = [np.argmax(p_u[-1][0] + np.log(self.state_transition[0, 1:]))] # maximum "downward" for lvl_max in back_map[::-1]: likely_parent = probable_tree[-1] likely_parent = np.array([likely_parent, likely_parent]).T.reshape(lvl_max.shape[0]) probable_tree.append(lvl_max[np.arange(0, lvl_max.shape[0]), likely_parent]) return probable_tree def upward_downward(self, sequence_tree, iterations=3): """ upward-downward algorithm/EM @param sequence_tree: tree-like array, where sequence[0]=scale 1, sequence[1]=scale 2 etc... @param iterations Remarks: * implementation based on scaled version, see Durand & Goncalves * you may use dwt(prepare_sequence(seq)) to get the wavelet coefficients """ res = None for em_iteration in range(1, iterations): res = self.forward_backward(sequence_tree) self.maximize(sequence_tree, res) print(em_iteration, 'P:', res.model_p) print(self.state_transition) print(self.mean_vars) return res.state_p[0] def forward_backward(self, sequence_tree): """ Actual implementation for upward downward - calculates the likelihood for each node in the tree @param sequence_tree: @return: """ n_states = self.state_transition.shape[0] - 1 # the begin is fake transition = self.state_transition[1:, 1:] # == initial distribution of hidden state (Algorithm 3 in Durand) == initial_dist = np.zeros((len(sequence_tree), n_states), order='F') # rows - tree levels, cols - state init_iterator = np.nditer(initial_dist[::-1], op_flags=['writeonly'], flags=['external_loop'], order='C') next(init_iterator)[...] = self.state_transition[0, 1:] for _ in sequence_tree[:0:-1]: next_lvl = np.dot(init_iterator, transition) next(init_iterator)[...] = next_lvl # end of algorithm 3 # conditional upward algorithm (Algorithm 4 in Durand) b_u_tree = [] b_up_tree = [] init_iterator = np.nditer(initial_dist, op_flags=['readonly'], flags=['external_loop'], order='C') wave_lvl_iterator = iter(sequence_tree) # initialization # leaves leaves = next(wave_lvl_iterator) emission = self.level_emission(len(sequence_tree)) #curr_b_u_tree = np.array([emission[:, w] for w in leaves]) * next(init_iterator) curr_b_u_tree = emission[:, leaves] * next(init_iterator) # normalize curr_b_u_tree = curr_b_u_tree / np.sum(curr_b_u_tree, 1)[:, None] b_u_tree.append(curr_b_u_tree) curr_b_u_tree = np.dot(curr_b_u_tree / init_iterator, transition.T) b_up_tree.append(curr_b_u_tree) lop_u = [np.zeros(len(sequence_tree[0]))] # induction m_u = [] scale_level = len(sequence_tree) for lvl, lvl_scale in zip(wave_lvl_iterator, init_iterator): scale_level -= 1 emission = self.level_emission(scale_level) prev_up = b_up_tree[-1] prev_up = np.product(np.array([prev_up[::2], prev_up[1::2]]), 0) lvl_emis = emission[:, lvl] p_of_u = lvl_emis * prev_up * lvl_scale curr_mu = np.sum(p_of_u, 1) m_u.append(curr_mu) prev_lu = np.sum(np.array([lop_u[-1][::2], lop_u[-1][1::2]]), 0) lop_u.append(np.log(curr_mu) + prev_lu) curr_b_u_tree = p_of_u / curr_mu[:, None] b_u_tree.append(curr_b_u_tree) if len(lvl) > 1: # except at root node curr_b_u_tree = np.dot(curr_b_u_tree / lvl_scale, transition.T) # or lvl_scale outside b_up_tree.append(curr_b_u_tree) # end of upward # downward (algorithm 5) #intiation alphas = [np.ones(n_states)] prev_alpha = np.array([np.ones(n_states)]) b_u_tree_iterator = iter(b_u_tree[::-1]) b_up_tree_iterator = iter(b_up_tree[::-1]) init_iterator = np.nditer(initial_dist[::-1], op_flags=['readonly'], flags=['external_loop'], order='C') next(init_iterator) transition_statistic = np.zeros((n_states, n_states)) cur_stat = np.array([[0, 0]]) for bt, scale, b_up in zip(b_u_tree_iterator, init_iterator, b_up_tree_iterator): transition_statistic += np.dot(bt.T, cur_stat) / scale a_p = np.array([prev_alpha, prev_alpha]).T.reshape(n_states, len(prev_alpha) * 2).T b_p = np.array([bt, bt]).T.reshape(n_states, len(bt) * 2).T cur_stat = a_p * b_p / b_up prev_alpha = np.dot(cur_stat, transition) / scale alphas.append(prev_alpha) # M step #collecting statistics (expectations) state_p = [] # likelihood for each level in the tree for aa, bb, ww in zip(alphas, b_u_tree[::-1], sequence_tree[::-1]): gamma = aa * bb state_p.insert(0, gamma) ud_result = namedtuple('UDResult', 'model_p state_p transition_stat') return ud_result(lop_u[-1], state_p, transition_statistic) def dwt(signal, h=np.array([1.0 / 2, -1.0 / 2]), g=np.array([1.0 / 2, 1.0 / 2])): """ Simple discrete wavelet transform. for good reference: http://www.mathworks.com/help/wavelet/ref/dwt.html @param signal: signal to create dwt for. the signal must be log2(signal)%1=0 @param h: high pass filter (for details space) @param g: low pass filter (for approximation space) @return: zip(scaling arrays, wavelet arrays) """ scaling_coefficients = [] wavelets_coefficients = [] approx = signal while len(approx) != 1: details = np.convolve(approx, h)[h.size - 1::2] wavelets_coefficients.append(details) approx = np.convolve(approx, g)[g.size - 1::2] scaling_coefficients.append(approx) return scaling_coefficients, wavelets_coefficients def idwt(approx, wavelets, h=np.array([1.0 / np.sqrt(2), -1.0 / np.sqrt(2)]), g=np.array([1.0 / np.sqrt(2), 1.0 / np.sqrt(2)])): """ Simple inverse discrete wavelet transform. for good reference: http://www.mathworks.com/help/wavelet/ref/dwt.html @param approx: approximation of signal at low resolution @param h: high pass filter (for details space) @param g: low pass filter (for approximation space) @return: recovered signal """ wave_level = iter(wavelets[::-1]) h, g = g[::-1], h[::-1] recovered = approx for wave in wave_level: #upsample recovered = np.column_stack([recovered, np.zeros(recovered.size)]).flatten() wave_up = np.column_stack([wave, np.zeros(wave.size)]).flatten() recovered = np.convolve(recovered, h)[:-(h.size - 1)] recovered = recovered +
np.convolve(wave_up, g)
numpy.convolve
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns data = np.loadtxt("data.dat") temp = np.zeros((34, 34)) df = pd.DataFrame(data, columns=["x", "y", "t"]) for index, row in df.iterrows(): print(row.x, row.y, row.t) temp[int(row.x) - 1, int(row.y) - 1] = row.t # temp[row.x - 1, row.y - 1] = row.t sns.heatmap(temp.T, annot=False) plt.xlabel("X", fontsize=18) plt.ylabel("Y", fontsize=18) plt.title("Temperature profile for the 2D lattice (Q4)", fontsize=20) plt.xticks(np.arange(0.5, 34.5, 5), np.arange(1, 35, 5)) plt.yticks(
np.arange(0.5, 34.5, 5)
numpy.arange
from __future__ import division, print_function, absolute_import import numpy as np from .monomer_aux import Xi, dXi, d2Xi from .monomer_aux import dkHS, d2kHS, d3kHS from .a1sB_monomer import da1B_eval, d2a1B_eval, d3a1B_eval from .aHS_monomer import ahs, dahs_deta, d2ahs_deta from .a2m_monomer import a2m, da2m_deta, d2a2m_deta from .a2m_monomer import da2m_new_deta, d2a2m_new_deta, d3a2m_new_deta from .a3m_monomer import a3m, da3m_deta, d2a3m_deta from .gdHS_chain import gdHS, dgdHS_drho, d2gdHS_drho from .g1sigma_chain import g1sigma, dg1sigma_drho, d2g1sigma_drho from .g2sigma_chain import g2MCA, dg2MCA_drho, d2g2MCA_drho from .g2sigma_chain import gammac, dgammac_deta, d2gammac_deta from .lngmie_chain import lngmie, dlngmie_drho, d2lngmie_drho from .association_aux import Xass_solver, Iab, dIab_drho from .association_aux import d2Iab_drho, dXass_drho, d2Xass_drho from .polarGV import Apol, dApol_drho, d2Apol_drho def ares(self, rho, temp_aux, Xass0=None): beta, beta2, beta3, dia, dia3, x0, x03, x0_a1, x0_a2 = temp_aux[:9] x0_a12, x0_a22, I_lambdas, J_lambdas, beps, beps2, tetha = temp_aux[9:16] x0_vector, cte_g1s, cte_g2s = temp_aux[16:19] eta, deta = self.eta_bh(rho, dia3) nsigma = self.eta_sigma(rho) # Parameters needed for evaluating the helmothlz contributions a1sb_a1, a1sb_a2 = da1B_eval(eta, I_lambdas, J_lambdas, self.lambdas, self.cctes, self.eps) dkhs = dkHS(eta) xi = Xi(x03, nsigma, self.f1, self.f2, self.f3) cte_a2m = self.cte_a2m eps3 = self.eps3 # Monomer contribution ahs_eval = ahs(eta) a1m_eval = self.c*np.matmul(a1sb_a1, x0_a1) suma_a2 = np.matmul(a1sb_a2, x0_a2) a2m_eval = a2m(suma_a2[0], dkhs[0], xi, cte_a2m) a3m_eval = a3m(x03, nsigma, eps3, self.f4, self.f5, self.f6) a_mono = ahs_eval + beta*a1m_eval[0] + beta2*a2m_eval + beta3*a3m_eval a_mono *= self.ms # chain contribution calculation ghs = gdHS(x0_vector, eta) # g1sigma suma_g1 = self.c * np.dot(a1sb_a1[0], x0_a12) g1s = g1sigma(rho, suma_g1, a1m_eval[1], deta, cte_g1s) # g2sigma gc = gammac(x0, nsigma, self.alpha, tetha) da2m_new = da2m_new_deta(suma_a2, dkhs, cte_a2m) suma_g2 = self.c2*np.dot(a1sb_a2[0], x0_a22) g2m = g2MCA(rho, suma_g2, da2m_new, dkhs[0], self.eps, cte_g2s, deta) g2s = (1+gc)*g2m lng = lngmie(ghs, g1s, g2s, beps, beps2) a_chain = - (self.ms - 1. + self.ring*eta)*lng # Total Helmolthz a = a_mono + a_chain if self.assoc_bool: if Xass0 is None: Xass = 0.2 * np.ones(self.nsites) else: Xass = 1. * Xass0 Fab = temp_aux[19] Kab = temp_aux[20] iab = Iab(Kab, eta) Dab = self.sigma3 * Fab * iab Dabij = np.zeros([self.nsites, self.nsites]) Dabij[self.indexabij] = Dab KIJ = rho * (self.DIJ*Dabij) Xass = Xass_solver(self.nsites, KIJ, self.diagasso, Xass0) a += np.dot(self.S, (np.log(Xass) - Xass/2 + 1/2)) else: Xass = None if self.polar_bool: epsa = temp_aux[21] apolar = Apol(rho, eta, epsa, self.anij, self.bnij, self.cnijk, self.mupolad2, self.npol, self.sigma3) a += apolar return a, Xass def dares_drho(self, rho, temp_aux, Xass0=None): beta, beta2, beta3, dia, dia3, x0, x03, x0_a1, x0_a2 = temp_aux[:9] x0_a12, x0_a22, I_lambdas, J_lambdas, beps, beps2, tetha = temp_aux[9:16] x0_vector, cte_g1s, cte_g2s = temp_aux[16:19] eta, deta = self.eta_bh(rho, dia3) nsigma = self.eta_sigma(rho) drho = np.array([1., deta, deta**2]) # Parameters needed for evaluating the helmothlz contributions a1sb_a1, a1sb_a2 = d2a1B_eval(eta, I_lambdas, J_lambdas, self.lambdas, self.cctes, self.eps) dkhs = d2kHS(eta) dxi = dXi(x03, nsigma, self.f1, self.f2, self.f3) cte_a2m = self.cte_a2m eps3 = self.eps3 # monomer evaluation ahs_eval = dahs_deta(eta) a1m_eval = self.c*np.matmul(a1sb_a1, x0_a1) suma_a2 = np.matmul(a1sb_a2, x0_a2) a2m_eval = da2m_deta(suma_a2[:2], dkhs[:2], dxi, cte_a2m) a3m_eval = da3m_deta(x03, nsigma, eps3, self.f4, self.f5, self.f6) a_mono = ahs_eval + beta*a1m_eval[:2] + beta2*a2m_eval + beta3*a3m_eval a_mono *= self.ms * drho[:2] # chain contribution calculation dghs = dgdHS_drho(x0_vector, eta, drho) # g1sigma suma_g1 = self.c * np.dot(a1sb_a1[:2], x0_a12) suma_g1 *= drho[:2] d2a1m_drho = a1m_eval[1:]*drho[1:] dg1s = dg1sigma_drho(rho, suma_g1, d2a1m_drho, cte_g1s) # g2sigma dgc = dgammac_deta(x03, nsigma, self.alpha, tetha) dgc *= drho[:2] da2m_new = d2a2m_new_deta(suma_a2, dkhs, cte_a2m) da2m_new_drho = da2m_new*drho[1:] suma_g2 = self.c2*np.dot(a1sb_a2[:2], x0_a22) suma_g2 *= drho[:2] dkhs_drho = dkhs[:2]*drho[:2] dg2m = dg2MCA_drho(rho, suma_g2, da2m_new_drho, dkhs_drho, self.eps, cte_g2s) dg2s = dg2m * (1. + dgc[0]) dg2s[1] += dgc[1] * dg2m[0] dlng = dlngmie_drho(dghs, dg1s, dg2s, beps, beps2) a_chain = - (self.ms - 1. + self.ring*eta)*dlng # Total helmolthz a = a_mono + a_chain if self.assoc_bool: if Xass0 is None: Xass = 0.2 * np.ones(self.nsites) else: Xass = 1. * Xass0 Fab = temp_aux[19] Kab = temp_aux[20] iab, diab = dIab_drho(Kab, eta, deta) # Fab = np.exp(beta * self.eABij) - 1 Dab = self.sigma3 * Fab * iab dDab = self.sigma3 * Fab * diab Dabij = np.zeros([self.nsites, self.nsites]) dDabij_drho = np.zeros([self.nsites, self.nsites]) Dabij[self.indexabij] = Dab dDabij_drho[self.indexabij] = dDab KIJ = rho * (self.DIJ*Dabij) Xass = Xass_solver(self.nsites, KIJ, self.diagasso, Xass0) CIJ = rho * np.tile(Xass**2, (self.nsites, 1)).T * Dabij * self.DIJ CIJ[self.diagasso] += 1. dXass = dXass_drho(rho, Xass, self.DIJ, Dabij, dDabij_drho, CIJ) a[0] += np.dot(self.S, (np.log(Xass) - Xass/2 + 1/2)) a[1] += np.dot(self.S, (1/Xass - 1/2) * dXass) else: Xass = None if self.polar_bool: epsa = temp_aux[21] dapolar = dApol_drho(rho, eta, deta, epsa, self.anij, self.bnij, self.cnijk, self.mupolad2, self.npol, self.sigma3) a += dapolar return a, Xass def d2ares_drho(self, rho, temp_aux, Xass0=None): beta, beta2, beta3, dia, dia3, x0, x03, x0_a1, x0_a2 = temp_aux[:9] x0_a12, x0_a22, I_lambdas, J_lambdas, beps, beps2, tetha = temp_aux[9:16] x0_vector, cte_g1s, cte_g2s = temp_aux[16:19] eta, deta = self.eta_bh(rho, dia3) nsigma = self.eta_sigma(rho) drho =
np.array([1., deta, deta**2, deta**3])
numpy.array
import pandas as pd import numpy as np import os from scipy.spatial import distance import networkx as nx import math import scipy.sparse as sp from glob import glob import argparse import time parser = argparse.ArgumentParser(description='Main Entrance of MP_MIM_RESEPT') parser.add_argument('--sampleName', type=str, default='151507') parser.add_argument('--MP-k-num', type=int, default=90, help='number of k_num in KNN graph of message passing (default: 90)') parser.add_argument('--MP-l-num', type=int, default=15, help='number of layer_num in message passing (default: 15)') args = parser.parse_args() ####KNN # knn_graph_edgelist def calculateKNNgraphDistanceWeighted(featureMatrix, distanceType, k): edgeListWeighted = [] for i in np.arange(featureMatrix.shape[0]): tmp = featureMatrix[i, :].reshape(1, -1) distMat = distance.cdist(tmp, featureMatrix, distanceType) res = distMat.argsort()[:k + 1] tmpdist = distMat[0, res[0][1:k + 1]] boundary = np.mean(tmpdist) + np.std(tmpdist) for j in np.arange(1, k + 1): if distMat[0, res[0][j]] <= boundary and i != res[0][j] : edgeListWeighted.append((i, res[0][j], 1)) return edgeListWeighted # generate_adj_nx_matirx def generate_adj_nx_weighted_adj(featureMatrix, distanceType, k): edgeList = calculateKNNgraphDistanceWeighted(featureMatrix, distanceType, k) nodes = range(0,featureMatrix.shape[0]) Gtmp = nx.Graph() Gtmp.add_nodes_from(nodes) Gtmp.add_weighted_edges_from(edgeList) adj = nx.adjacency_matrix(Gtmp) adj_knn_by_feature = np.array(adj.todense()) return adj_knn_by_feature # generate_self_loop_adj def preprocess_graph_self_loop(adj): adj = sp.coo_matrix(adj) adj_ = adj + sp.eye(adj.shape[0]) adj_ = adj_.A return adj_ ####MP # attention_ave def gat_forward_att_ave(adj, Wh): attention_ave = adj attention_ave_par = attention_ave.sum(axis=1, keepdims=True) attention_ave_final = attention_ave/attention_ave_par h_prime = np.dot(attention_ave_final, Wh) return h_prime # attention_dis def softmax(X): X_exp = np.exp(X) partition = X_exp.sum(axis=1, keepdims=True) return X_exp/partition def _prepare_euclidean_attentional_mechanism_input(Wh): distMat = distance.cdist(Wh, Wh, 'euclidean') return distMat def gat_forward_euclidean(adj, Wh): e = _prepare_euclidean_attentional_mechanism_input(Wh) zero_vec = -9e15*np.ones_like(e) attention = np.where(adj > 0, e, zero_vec) attention = softmax(attention) h_prime = np.dot(attention, Wh) return h_prime # layer_loop_att_ave def forward_basic_gcn_multi_layer(adj, Wh, layer_num): hidden = Wh for num in range(layer_num): h = gat_forward_att_ave(adj , hidden) hidden = h #print(num) return hidden # layer_loop_att_euc def forward_dis_gcn_multi_layer(adj, Wh, layer_num): hidden = Wh for num in range(layer_num): h = gat_forward_euclidean(adj , hidden) hidden = h #print(num) return hidden ####MI_GC # MI def Moran_I(multi_hop_weight_mat, feature, MI_type='normal'): if MI_type == 'normal': w = multi_hop_weight_mat y = feature n = len(y) z = y - y.mean() z2ss = (z * z).sum() s0 = np.sum(w) zl = np.dot(w , z) inum = (z * zl).sum() MI = n / s0 * inum / z2ss if MI_type == 'row_normalizaiton': WR_temp = multi_hop_weight_mat WR = np.zeros((WR_temp.shape[0],WR_temp.shape[1])) each_row_sum_list=[] for i in range(WR_temp.shape[0]): each_row_sum_list.append(np.sum(WR_temp[i,:])) for i in range(WR_temp.shape[0]): for j in range(WR_temp.shape[1]): if WR_temp[i,j] != 0: WR[i,j] = WR_temp[i,j]/each_row_sum_list[i] w = WR y = feature n = len(y) z = y - y.mean() z2ss = (z * z).sum() s0 = np.sum(w) zl = np.dot(w , z) inum = (z * zl).sum() MI = n / s0 * inum / z2ss return MI # GC def GC_related(multi_hop_weight_mat, feature, GC_type='normal'): if GC_type == 'normal': w = multi_hop_weight_mat y = np.asarray(feature).flatten() n = len(y) s0 = np.sum(w) yd = y - y.mean() yss = sum(yd * yd) den = yss * s0 * 2.0 _focal_ix, _neighbor_ix = w.nonzero() _weights = csr_matrix(w).data num = (_weights * ((y[_focal_ix] - y[_neighbor_ix])**2)).sum() a = (n - 1) * num GC = a / den if GC > 1: GC_related = GC - 1 if GC < 1: GC_related = 1 - GC if GC == 1: GC_related = 0 if GC_type == 'row_normalizaiton': WR_temp = multi_hop_weight_mat WR = np.zeros((WR_temp.shape[0],WR_temp.shape[1])) each_row_sum_list=[] for i in range(WR_temp.shape[0]): each_row_sum_list.append(np.sum(WR_temp[i,:])) for i in range(WR_temp.shape[0]): for j in range(WR_temp.shape[1]): if WR_temp[i,j] != 0: WR[i,j] = WR_temp[i,j]/each_row_sum_list[i] w = WR y = np.asarray(feature).flatten() n = len(y) s0 = np.sum(w) yd = y - y.mean() yss = sum(yd * yd) den = yss * s0 * 2.0 _focal_ix, _neighbor_ix = w.nonzero() _weights = csr_matrix(w).data num = (_weights * ((y[_focal_ix] - y[_neighbor_ix])**2)).sum() a = (n - 1) * num GC = a / den if GC > 1: GC_related = GC - 1 if GC < 1: GC_related = 1 - GC if GC == 1: GC_related = 0 return GC_related # spatial_adj_knn def calculateKNNDistanceWeighted_spatial_autocor(featureMatrix, distanceType, k): edgeListWeighted = [] for i in np.arange(featureMatrix.shape[0]): tmp = featureMatrix[i, :].reshape(1, -1) distMat = distance.cdist(tmp, featureMatrix, distanceType) res = distMat.argsort()[:k + 1] for j in np.arange(1, k + 1): edgeListWeighted.append((i, res[0][j], 1)) return edgeListWeighted # generate_adj_nx_matirx def generate_spatial_adj_nx_weighted_based_on_coordinate(featureMatrix, distanceType, k): edgeList = calculateKNNDistanceWeighted_spatial_autocor(featureMatrix, distanceType, k) nodes = range(0,featureMatrix.shape[0]) Gtmp = nx.Graph() Gtmp.add_nodes_from(nodes) Gtmp.add_weighted_edges_from(edgeList) adj = nx.adjacency_matrix(Gtmp) adj_knn_by_coordinate = np.array(adj.todense()) return adj_knn_by_coordinate # spatial_adj_distance def MI_spatial_adj_matrix(coordinateMatrix, hop_num=1, distanceType='cityblock'): distMat = distance.cdist(coordinateMatrix, coordinateMatrix, distanceType) multi_hop_weight_mat = np.zeros((distMat.shape[0] , distMat.shape[1])) if distanceType == 'euclidean': if hop_num == 1: for i in range(distMat.shape[0]): for j in range(distMat.shape[1]): if distMat[i][j] <= math.sqrt(2) and distMat[i][j] > 0: multi_hop_weight_mat[i][j] = 1 return multi_hop_weight_mat if __name__ == '__main__': ########RESEPT ####time_computing start_time = time.time() print("MP_MIM_RESEPT. Start Time: %s seconds" % (start_time)) ####parameter_set_initial PEalphaList = ['0.1','0.2','0.3', '0.5', '1.0', '1.2', '1.5','2.0'] zdimList = ['3','10', '16','32', '64', '128', '256'] sample = args.sampleName k_num_distance_att = args.MP_k_num layer_num_distance_att = args.MP_l_num ####sample_list sample_list = [ '151507','151508', '151509', '151510', '151669', '151670', '151671', '151672', '151673', '151674', '151675', '151676','18-64','2-5', '2-8', 'T4857'] letter_list = [ 'a','b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l','m', 'n', 'o', 'p'] count_init = sample_list.index(sample) count = 56*count_init letter = letter_list[count_init] embedding_MIrow_max_list = [] embedding_name_list = [] ####current_os meta_folder_path = os.path.abspath('./meta_data_folder/metaData_brain_16_coords') embedding_folder_path = os.path.abspath('./RESEPT_embedding_folder') embedding_in_RESEPT_folder = "RESEPT_MP_embedding_"+sample+"/" if not os.path.exists(embedding_in_RESEPT_folder): os.makedirs(embedding_in_RESEPT_folder) ####MP_parameter_set k_num_distance_att_list = [10,20,30,40,50,60,70,80,90] layer_num_distance_att_list = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] ####loop_part for i in range(len(PEalphaList)): for j in range((len(zdimList))): ####read_embedding count = count + 1 embedding_root_path = '/'+sample+'_embedding_raw/'+letter+'_'+str(count)+'_outputdir-3S-'+sample+'_raw_EM1_resolution0.3_euclidean_dummy_add_PEalpha'+str(PEalphaList[i])+'_k6_NA_zdim'+str(zdimList[j])+'/'+sample+'_raw_6_euclidean_NA_dummy_add_'+str(PEalphaList[i])+'_intersect_160_GridEx19_embedding.csv' embedding_df = pd.read_csv(embedding_folder_path+embedding_root_path,index_col=0) embedding_celllist = embedding_df.index.tolist() graph_embedding_name = sample+'_raw_res0.3_euclidean_NA_dummy_add_PEalpha'+str(PEalphaList[i])+'_k6_NA_zdim'+str(zdimList[j])+'_gat_self_loop_euc_graphK'+str(k_num_distance_att)+'_layer'+str(layer_num_distance_att) embedding_name_list.append(graph_embedding_name) native_embedding_whole = embedding_df[['embedding0','embedding1','embedding2']].values ####embedding_knn_graph knn_graph_k_num = k_num_distance_att l_num = layer_num_distance_att adj = generate_adj_nx_weighted_adj(native_embedding_whole, distanceType='euclidean', k=knn_graph_k_num) adj_self_loop = preprocess_graph_self_loop(adj) graph_embedding_whole = forward_dis_gcn_multi_layer(adj_self_loop, native_embedding_whole, l_num) graph_embedding_add_barcode_df = pd.DataFrame(graph_embedding_whole, index=embedding_celllist, columns=['embedding0','embedding1','embedding2']) graph_embedding_add_barcode_df.to_csv(embedding_in_RESEPT_folder+sample+'_'+str(count)+'_raw_res0.3_euclidean_NA_dummy_add_PEalpha'+str(PEalphaList[i])+'_k6_NA_zdim'+str(zdimList[j])+'_gat_self_loop_euc_graphK'+str(knn_graph_k_num)+'_layer'+str(l_num)+'_graph_embedding.csv') graph_embedding_remove_zero_df = graph_embedding_add_barcode_df.loc[~(graph_embedding_add_barcode_df==0).all(axis=1)] #print(graph_embedding_remove_zero_df) graph_embedding_remove_zero_whole = graph_embedding_remove_zero_df[['embedding0','embedding1','embedding2']].values coordinate_graph_embedding_whole_df = pd.read_csv(meta_folder_path+'/'+sample+'_humanBrain_metaData.csv',index_col=0) coordinate_graph_embedding_remove_zero_df = coordinate_graph_embedding_whole_df.loc[graph_embedding_remove_zero_df.index] coordinate_graph_embedding_remove_zero_np = coordinate_graph_embedding_remove_zero_df[['array_row','array_col']].values ####MI_spatial_adj MI_graph_embedding_spatial_adj = MI_spatial_adj_matrix(coordinate_graph_embedding_remove_zero_np, hop_num=1, distanceType='euclidean') ####MI_max embedding_MIrow_list = [] for dim_num in range(graph_embedding_remove_zero_whole.shape[1]): embedding_current_MIrow = Moran_I(MI_graph_embedding_spatial_adj, graph_embedding_remove_zero_whole[:,dim_num], 'row_normalizaiton') embedding_MIrow_list.append(embedding_current_MIrow) embedding_MIrow_list_np =
np.array(embedding_MIrow_list)
numpy.array
import glob from matplotlib.patches import Circle import os.path from scipy.io import loadmat import matplotlib.pyplot as plt import matplotlib import math import numpy as np from . import preprocessing as LP from scipy.ndimage import rotate matplotlib.interactive(False) def show_minutiae(img, minutiae, ROI=None, fname=None, block=True): # for the latent or the low quality rolled print fig, ax = plt.subplots(1) ax.set_aspect('equal') R = 10 arrow_len = 15 if ROI is not None: h, w = ROI.shape for i in range(h): for j in range(w): if ROI[i, j] == 0: img[i, j] = 255 ax.imshow(img, cmap='gray') minu_num = len(minutiae) for i in range(0, minu_num): xx = minutiae[i][0] yy = minutiae[i][1] circ = Circle((xx, yy), R, color='r', fill=False) ax.add_patch(circ) ori = -minutiae[i][2] dx = math.cos(ori) * arrow_len dy = math.sin(ori) * arrow_len ax.arrow(xx, yy, dx, dy, head_width=0.05, head_length=0.1, fc='r', ec='r') plt.show(block=block) if fname is not None: fig.savefig(fname, dpi=600) plt.close() def show_minutiae_sets(img, minutiae_sets, ROI=None, fname=None, block=True): # for the latent or the low quality rolled print fig, ax = plt.subplots(1) ax.set_aspect('equal') arrow_len = 15 if ROI is not None: h, w = ROI.shape for i in range(h): for j in range(w): if ROI[i, j] == 0: img[i, j] = 255 ax.imshow(img, cmap='gray') color = ['r', 'b'] R = [10, 8, 6] for k in range(len(minutiae_sets)): minutiae = minutiae_sets[k] minu_num = len(minutiae) for i in range(0, minu_num): xx = minutiae[i, 0] yy = minutiae[i, 1] circ = Circle((xx, yy), R[k], color=color[k], fill=False) ax.add_patch(circ) ori = -minutiae[i, 2] dx = math.cos(ori) * arrow_len dy = math.sin(ori) * arrow_len ax.arrow(xx, yy, dx, dy, head_width=0.05, head_length=0.1, fc=color[k], ec=color[k]) plt.show(block=block) if fname is not None: fig.savefig(fname, dpi=600) plt.close() def modify_minutiae_cylinder(input_file, output_file, angle=None, processing=None): cylinder = np.load(input_file) img = cylinder[:, :, 0] if processing == 'STFT': img = LP.STFT(img) cylinder[:, :, 0] = img np.save(output_file, cylinder) def extract_minutiae_cylinder(img_input, minutiae_input, ROI=None, num_ori=12, angle=None, processing=None): # for the latent or the low quality rolled print minutiae = minutiae_input.copy() img = img_input.copy() if processing == 'STFT': img = LP.STFT(img) elif processing == 'contrast': img = LP.local_constrast_enhancement(img) elif processing == 'texture': img = LP.FastCartoonTexture(img) sigma = 5**2 if ROI is not None: h, w = ROI.shape for i in range(h): for j in range(w): if ROI[i, j] == 0: img[i, j] = 255 h, w = ROI.shape col_sum = np.sum(ROI, axis=0) ind = [x for x in range(len(col_sum)) if col_sum[x] > 0] min_x = np.max([np.min(ind) - 32, 0]) max_x = np.min([np.max(ind) + 32, w]) row_sum = np.sum(ROI, axis=1) ind = [x for x in range(len(row_sum)) if row_sum[x] > 0] min_y = np.max([
np.min(ind)
numpy.min
#!/usr/bin/python # Author: <NAME> # Email: <EMAIL> # Paper: <NAME>, <NAME>, <NAME>, "Improved document image segmentation algorithm using multiresolution morphology," Proc. SPIE 7874, Document Recognition and Retrieval XVIII, 78740D (24 January 2011); # "<NAME>, <NAME>, <NAME>, <NAME>, <NAME>, “anyOCR: An Open-Source OCR System for Historical Archives”, The 14th IAPR International Conference on Document Analysis and Recognition (ICDAR 2017), Kyoto, Japan, 2017. # URL - https://www.dfki.de/fileadmin/user_upload/import/9512_ICDAR2017_anyOCR.pdf import copy import json import os from pathlib import Path import sys import math import click from PIL import Image from scipy import ndimage import numpy as np import shapely import ocrolib from tensorflow.keras.models import load_model #from keras_segmentation.models.unet import resnet50_unet from ocrd import Processor from ocrd_modelfactory import page_from_file from ocrd_models.ocrd_page import to_xml, AlternativeImageType from ocrd_utils import ( getLogger, concat_padded, MIMETYPE_PAGE, coordinates_for_segment, points_from_polygon, make_file_id, assert_file_grp_cardinality, ) from ocrd.decorators import ocrd_cli_options, ocrd_cli_wrap_processor from ..constants import OCRD_TOOL TOOL = 'ocrd-anybaseocr-tiseg' class OcrdAnybaseocrTiseg(Processor): def __init__(self, *args, **kwargs): kwargs['ocrd_tool'] = OCRD_TOOL['tools'][TOOL] kwargs['version'] = OCRD_TOOL['version'] super(OcrdAnybaseocrTiseg, self).__init__(*args, **kwargs) if hasattr(self, 'output_file_grp') and hasattr(self, 'parameter'): # processing context self.setup() def setup(self): LOG = getLogger('OcrdAnybaseocrTiseg') self.model = None if self.parameter['use_deeplr']: model_weights = self.resolve_resource(self.parameter['seg_weights']) #model = resnet50_unet(n_classes=self.parameter['classes'], input_height=self.parameter['height'], input_width=self.parameter['width']) #model.load_weights(model_weights) self.model = load_model(model_weights) LOG.info('Loaded segmentation model') def process(self): LOG = getLogger('OcrdAnybaseocrTiseg') assert_file_grp_cardinality(self.input_file_grp, 1) assert_file_grp_cardinality(self.output_file_grp, 1) for input_file in self.input_files: page_id = input_file.pageId or input_file.ID pcgts = page_from_file(self.workspace.download_file(input_file)) self.add_metadata(pcgts) page = pcgts.get_Page() LOG.info("INPUT FILE %s", input_file.pageId or input_file.ID) if self.parameter['use_deeplr']: kwargs = {'feature_filter': 'binarized,deskewed,cropped'} else: # _should_ also be deskewed and cropped, but no need to enforce that here kwargs = {'feature_selector': 'binarized'} page_image, page_coords, page_image_info = self.workspace.image_from_page( page, page_id, **kwargs) self._process_segment(page, page_image, page_coords, page_id, input_file) file_id = make_file_id(input_file, self.output_file_grp) pcgts.set_pcGtsId(file_id) self.workspace.add_file( ID=file_id, file_grp=self.output_file_grp, pageId=input_file.pageId, mimetype=MIMETYPE_PAGE, local_filename=os.path.join(self.output_file_grp, file_id + '.xml'), content=to_xml(pcgts).encode('utf-8'), ) def _process_segment(self, page, page_image, page_coords, page_id, input_file): LOG = getLogger('OcrdAnybaseocrTiseg') if self.model: I = ocrolib.pil2array(page_image.resize((800, 1024), Image.ANTIALIAS)) I = np.array(I)[np.newaxis, :, :, :] LOG.info('I shape %s', I.shape) if len(I.shape)<3: print('Wrong input shape. Image should have 3 channel') # get prediction #out = self.model.predict_segmentation( # inp=I, # out_fname="/tmp/out.png" #) out = self.model.predict(I) out = out.reshape((2048, 1600, 3)).argmax(axis=2) text_part = 255 * np.ones(out.shape, 'B') text_part[np.where(out==1)] = 0 LOG.info('text: %d percent', 100 * (1 - np.count_nonzero(text_part) / np.prod(out.shape))) image_part = 255 * np.ones(out.shape, 'B') image_part[np.where(out==2)] = 0 LOG.info('image: %d percent', 100 * (1 - np.count_nonzero(image_part) / np.prod(out.shape))) image_part = ocrolib.array2pil(image_part) text_part = ocrolib.array2pil(text_part) image_part = image_part.resize(page_image.size, Image.BICUBIC) text_part = text_part.resize(page_image.size, Image.BICUBIC) else: I = ocrolib.pil2array(page_image) if len(I.shape) > 2: I = np.mean(I, 2) I = 1-I/I.max() rows, cols = I.shape # Generate Mask and Seed Images Imask, Iseed = self.pixMorphSequence_mask_seed_fill_holes(I) # Iseedfill: Union of Mask and Seed Images Iseedfill = self.pixSeedfillBinary(Imask, Iseed) # Dilation of Iseedfill mask = np.ones((3, 3)) Iseedfill = ndimage.binary_dilation(Iseedfill, mask) # Expansion of Iseedfill to become equal in size of I Iseedfill = self.expansion(Iseedfill, (rows, cols)) # Write Text and Non-Text images image_part = np.array(255*(1-I*Iseedfill), dtype='B') text_part = np.array(255*(1-I*(1-Iseedfill)), dtype='B') LOG.info('text: %d percent', 100 * (1 - np.count_nonzero(text_part) / np.prod(I.shape))) LOG.info('image: %d percent', 100 * (1 -
np.count_nonzero(image_part)
numpy.count_nonzero
import shutil import util.util as util_ import os import cv2 import open3d as o3d import pickle import numpy as np from scipy.optimize import linear_sum_assignment import trimesh from skimage import measure import scipy from sklearn.neighbors import KDTree from scipy.ndimage.measurements import label import data_augmentation from genre.voxelization import voxel import traceback from genre.util import util_sph from scipy import stats from dm_control.mujoco.engine import Camera from trajopt.mujoco_utils import add_object_to_mujoco, remove_objects_from_mujoco, get_mesh_list, compute_mujoco_int_transform mesh_level=0.5 def chamfer_distance(pcd_1, pcd_2): pcd_tree = KDTree(pcd_2) nearest_distances_1, _=pcd_tree.query(pcd_1) pcd_tree = KDTree(pcd_1) nearest_distances_2, _=pcd_tree.query(pcd_2) return np.sum(nearest_distances_1)/pcd_1.shape[0]+np.sum(nearest_distances_2)/pcd_2.shape[0] #return outher shell of voxel shape def hollow_dense_pointcloud(ptcld): conv=scipy.ndimage.convolve(ptcld, np.ones((3,3,3))) ptcld=np.where(conv<27, ptcld, 0) return ptcld def compute_xyz(depth_img, camera_params): """ Compute ordered point cloud from depth image and camera parameters @param depth_img: a [H x W] numpy array of depth values in meters @param camera_params: a dictionary with parameters of the camera used """ # Compute focal length from camera parameters if 'fx' in camera_params and 'fy' in camera_params: fx = camera_params['fx'] fy = camera_params['fy'] else: # simulated data aspect_ratio = camera_params['img_width'] / camera_params['img_height'] e = 1 / (np.tan(np.radians(camera_params['fov']/2.))) t = camera_params['near'] / e; b = -t r = t * aspect_ratio; l = -r alpha = camera_params['img_width'] / (r-l) # pixels per meter focal_length = camera_params['near'] * alpha # focal length of virtual camera (frustum camera) fx = focal_length; fy = focal_length if 'x_offset' in camera_params and 'y_offset' in camera_params: x_offset = camera_params['x_offset'] y_offset = camera_params['y_offset'] else: # simulated data x_offset = camera_params['img_width']/2 y_offset = camera_params['img_height']/2 indices = util_.build_matrix_of_indices(camera_params['img_height'], camera_params['img_width']) indices[..., 0] = np.flipud(indices[..., 0]) # pixel indices start at top-left corner. for these equations, it starts at bottom-left z_e = depth_img x_e = (indices[..., 1] - x_offset) * z_e / fx y_e = (indices[..., 0] - y_offset) * z_e / fy xyz_img = np.stack([x_e, y_e, z_e], axis=-1) # Shape: [H x W x 3] return xyz_img upsample=1 xmap = np.array([[j for i in range(int(upsample*640))] for j in range(int(upsample*480))]) ymap = np.array([[i for i in range(int(upsample*640))] for j in range(int(upsample*480))]) #make pointcloud from depth image def make_pointcloud_all_points(depth_image): cam_scale = 1.0 cam_cx = 320.0 cam_cy = 240.0 camera_params={'fx':579.411255, 'fy':579.411255, 'img_width':640, 'img_height': 480} depth_masked = depth_image.flatten()[:, np.newaxis].astype(np.float32) xmap_masked = xmap.flatten()[:, np.newaxis].astype(np.float32) ymap_masked = ymap.flatten()[:, np.newaxis].astype(np.float32) pt2 = depth_masked / cam_scale pt0 = (ymap_masked/upsample - cam_cx) * pt2 / (camera_params['fx']) pt1 = (xmap_masked/upsample - cam_cy) * pt2 / (camera_params['fy']) cloud = np.concatenate((pt0, -pt1, -pt2), axis=1) return cloud def color_code_objects(frame, state_id_to_model_pixels, display=False): #generate object color mapping labels=np.unique(frame) exec_dir=os.path.dirname(os.path.realpath(__file__)) color_map_file_name=exec_dir+'/data/object_color_maps/object_color_map_size_'+str(labels.shape[0])+'.p' if os.path.isfile(color_map_file_name): object_color_map=pickle.load(open(color_map_file_name, "rb" )) else: self.object_color_map=glasbey.get_colors(len(state_id_to_model_pixels)) pickle.dump(self.object_color_map, open(color_map_file_name, "wb" )) #create labelled image labelled_frame=np.zeros((frame.shape[0], frame.shape[1], 3)) for label in range(labels.shape[0]): object_pixel_positions_exact=np.argwhere(frame==label) object_pixel_positions_exact_in_bounds=object_pixel_positions_exact.astype(int) if len(object_pixel_positions_exact_in_bounds.shape)==2 and object_pixel_positions_exact_in_bounds.shape[0]>0 and object_pixel_positions_exact_in_bounds.shape[1]==2: object_color=object_color_map[label] labelled_frame[object_pixel_positions_exact_in_bounds[:, 0], object_pixel_positions_exact_in_bounds[:, 1]]=object_color if display: cv2.imshow('object labels', labelled_frame) cv2.waitKey(20) return labelled_frame border_list = [-1, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560, 600, 640, 680] def get_bbox(bbx): if bbx[0] < 0: bbx[0] = 0 if bbx[1] >= 480: bbx[1] = 479 if bbx[2] < 0: bbx[2] = 0 if bbx[3] >= 640: bbx[3] = 639 rmin, rmax, cmin, cmax = bbx[0], bbx[1], bbx[2], bbx[3] r_b = rmax - rmin for tt in range(len(border_list)): if r_b > border_list[tt] and r_b < border_list[tt + 1]: r_b = border_list[tt + 1] break c_b = cmax - cmin for tt in range(len(border_list)): if c_b > border_list[tt] and c_b < border_list[tt + 1]: c_b = border_list[tt + 1] break center = [int((rmin + rmax) / 2), int((cmin + cmax) / 2)] rmin = center[0] - int(r_b / 2) rmax = center[0] + int(r_b / 2) cmin = center[1] - int(c_b / 2) cmax = center[1] + int(c_b / 2) if rmin < 0: delt = -rmin rmin = 0 rmax += delt if cmin < 0: delt = -cmin cmin = 0 cmax += delt if rmax > 480: delt = rmax - 480 rmax = 480 rmin -= delt if cmax > 640: delt = cmax - 640 cmax = 640 cmin -= delt return rmin, rmax, cmin, cmax #transform robot meshes into current position def make_known_meshes(known_meshes, physics, geom_names): transformed_known_meshes=[] for known_mesh_ind in range(len(known_meshes)): transformed_known_mesh=known_meshes[known_mesh_ind].copy() transform=np.eye(4) transform[0:3,0:3]=np.reshape(physics.named.data.geom_xmat[geom_names[known_mesh_ind]],(3,3)) transformed_known_mesh.apply_transform(transform) transform=np.eye(4) transform[0:3,3]=physics.named.data.geom_xpos[geom_names[known_mesh_ind]] transformed_known_mesh.apply_transform(transform) transformed_known_meshes.append(transformed_known_mesh) return transformed_known_meshes #select voxel points in cube around target object, also compute table surface height def select_points_in_cube_voxelize_sphr_proj(self, all_points, i, grid_size=128, estimate_table=False, sub_vox=0, min_z=None, unocc=None): low=np.array([-0.5,-0.5,-0.5]) hi=np.array([0.5,0.5,0.5]) points=all_points[np.argwhere(np.all(np.logical_and(all_points>=low, all_points<=hi), axis=1))][:,0,:] voxels=np.zeros((grid_size,grid_size,grid_size)) inds=np.floor((points + 0.5) * grid_size).astype(int) if sub_vox!=0: inds[:,2]=inds[:,2]-sub_vox/(128/grid_size) az_inds=np.argwhere(inds[:,2]>=0) inds=inds[az_inds[:,0]] inds=np.clip(inds, 0, grid_size-1) if inds.shape[0]==0: if estimate_table: return np.zeros((128,128,128)), np.zeros((160,160)), None, 0 else: return np.zeros((128,128,128)), np.zeros((160,160)), None voxels[inds[:, 0], inds[:, 1], inds[:, 2]] = 1.0 if unocc is not None: voxels=np.clip(voxels-unocc, 0, 1) if estimate_table: more_points=all_points[np.argwhere(np.all(np.logical_and(all_points>=np.array([-3,-3,-1]), all_points<=np.array([2,2,min_z+0.01])), axis=1))][:,0,:] more_inds=
np.floor((more_points + 0.5) * grid_size)
numpy.floor
# Copyright 2020-2022 OpenDR European Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # OS Libraries import os import os.path import datetime # Data Structure Libraries from collections import deque # ROS Libraries import rospy # ROS Messages from std_msgs.msg import Header from sensor_msgs.msg import Image from gmapping.msg import doubleMap, mapModel # Math Libraries import numpy as np import numpy.ma as ma from cv_bridge import CvBridge import matplotlib import matplotlib.pyplot as plt # Project Libraries from fmp_slam_eval.map_colorizer import MapColorizer from fmp_slam_eval.enums import DiscreteStates as DiSt from map_simulator.utils import map_msg_to_numpy, map_msg_extent, mkdir_p # Use non-interactive plotting back-end due to issues with rospy.spin() matplotlib.use('SVG') class FMPPlotter: """ Class for plotting/coloring different statistics from the Full Map Posterior distribution and publishing them as images or saving them in files. """ def __init__(self): """ Constructor """ rospy.init_node('fmp_plot') # Object for pseudo-coloring and plotting the maps self._map_colorizer = MapColorizer() self._sub_topic_map_model = "map_model" self._sub_topic_fmp_alpha = "fmp_alpha" self._sub_topic_fmp_beta = "fmp_beta" self._map_model = None # TODO: this two guys: # do_img_raw = rospy.get_param("~img_raw" , False) # do_img_fmp = rospy.get_param("~img_fmp" , False) do_img_stat = rospy.get_param("~img_stat", False) do_img_mlm = rospy.get_param("~img_mlm", False) do_img_para = rospy.get_param("~img_para", False) self._pub_img = rospy.get_param("~pub_img", False) self._topic_prefix = rospy.get_param("~pub_topic_prefix", "/fmp_img/") self._save_img = rospy.get_param("~save_img", False) self._resolution = rospy.get_param("~resolution", 300) timestamp = datetime.datetime.now().strftime('%y%m%d_%H%M%S') path_prefix = rospy.get_param("~path_prefix", "exp") default_path = os.path.join(os.path.join(os.path.expanduser('~')), 'Desktop') default_path = os.path.join(default_path, 'FMP_img') default_path = os.path.join(default_path, path_prefix + "_" + timestamp) save_dir = rospy.get_param("~save_dir", default_path) save_dir = os.path.expanduser(save_dir) save_dir = os.path.expandvars(save_dir) save_dir = os.path.normpath(save_dir) self._save_dir = save_dir # Image config dictionary sub_img_stat_mean_cfg = {"key": "mean", "dir": os.path.join("stats", "mean"), "file_prefix": "mean", "topic": "stats/mean", "calc_f": self._calc_mean} sub_img_stat_var_cfg = {"key": "var", "dir": os.path.join("stats", "var"), "file_prefix": "var", "topic": "stats/var", "calc_f": self._calc_var} img_stat_cfg = {"do": do_img_stat, "img": [sub_img_stat_mean_cfg, sub_img_stat_var_cfg]} sub_img_mlm_cfg = {"key": "mlm", "dir": "mlm", "file_prefix": "mlm", "topic": "mlm", "calc_f": self._calc_mlm} img_mlm_cfg = {"do": do_img_mlm, "img": [sub_img_mlm_cfg]} sub_img_par_alpha_cfg = {"key": "alpha", "dir": os.path.join("param", "alpha"), "file_prefix": "alpha", "topic": "param/alpha", "calc_f": self._calc_para_alpha} sub_img_par_beta_cfg = {"key": "beta", "dir": os.path.join("param", "beta"), "file_prefix": "beta", "topic": "param/beta", "calc_f": self._calc_para_beta} img_par_cfg = {"do": do_img_para, "img": [sub_img_par_alpha_cfg, sub_img_par_beta_cfg]} self._img_cfg = { "stat": img_stat_cfg, "mlm": img_mlm_cfg, "par": img_par_cfg } fmp_param_sub_required = False # Queues for storing messages self._alpha_beta_dict = {} self._alpha_beta_queue = deque() # Max and Min dictionaries for stabilizing the color scales for continuous values self._max_values = {} self._min_values = {} # Create Publishers self._publishers = {} for img_set_key, img_set_cfg in self._img_cfg.items(): fmp_param_sub_required = fmp_param_sub_required or img_set_cfg['do'] if self._pub_img and img_set_cfg['do']: for img_cfg in img_set_cfg['img']: key = img_cfg['key'] topic = self._topic_prefix + img_cfg['topic'] self._publishers[key] = rospy.Publisher(topic, Image, latch=True, queue_size=1) something_to_do = (self._pub_img or self._save_img) and fmp_param_sub_required # Don't start the node if not needed... if not something_to_do: rospy.logerr("Nothing to do here! Why though?!?") rospy.logdebug("Setting values:") rospy.logdebug("\tpub_img: {}, save_img: {}".format(self._pub_img, self._save_img)) rospy.logdebug("\tdo_img_stat: {}, do_img_mlm: {}, do_img_para: {}".format(do_img_stat, do_img_mlm, do_img_para)) rospy.logdebug("\tsomething_to_do: {}".format(something_to_do)) rospy.signal_shutdown('Nothing to do') return # Create Subscribers # To map model rospy.Subscriber(self._sub_topic_map_model, mapModel, self._map_model_callback) # To alpha and beta parameters (if publishing or saving images, and at least one image is generated) if (self._pub_img or self._save_img) and fmp_param_sub_required: rospy.Subscriber(self._sub_topic_fmp_alpha, doubleMap, self._map2d_alpha_callback, queue_size=1) rospy.Subscriber(self._sub_topic_fmp_beta, doubleMap, self._map2d_beta_callback, queue_size=1) # Create save path if not exists if self._save_img and fmp_param_sub_required: if not os.path.exists(self._save_dir): mkdir_p(self._save_dir) self._busy = False # Thread lock flag for plot_from_queue rospy.Timer(rospy.Duration(1), self._plot_from_queue) rospy.spin() def _plot_from_queue(self, event): """ Function called periodically to check if there are any maps in the queue to be plotted. While there are still alpha and beta maps stored in the queue, it will plot the configured images. :param event: Caller event. Unused except for logging. :return: None """ if self._busy: rospy.loginfo("Another thread is already plotting. Caller: {}".format(event)) else: self._busy = True while self._alpha_beta_queue: seq = self._alpha_beta_queue.popleft() self._plot(seq, self._alpha_beta_dict[seq]) del self._alpha_beta_dict[seq] self._busy = False def _plot(self, seq, dic): """ Generates the desired images and plots for a given sequence of alpha and beta maps. :param seq: (int) Sequence number of the received maps :params dic: (dict) Dictionary containing the alpha and beta maps, as well as their prior values. It should be formatted as: dic = {'alpha': {'prior': (int), 'map': (2D np.ndarray)}, 'beta' : {'prior': (int), 'map': (2D np.ndarray)}} :return: None """ if not self._pub_img and not self._save_img: return extent_a = dic['alpha']['extent'] extent_b = dic['beta']['extent'] if extent_a != extent_b: raise ValueError("Map extent of alpha {} differs from beta {}!".format(extent_a, extent_b)) self._map_colorizer.set_wm_extent(extent_a) alpha = dic['alpha']['map'] + dic['alpha']['prior'] beta = dic['beta']['map'] + dic['beta']['prior'] for img_set_key, img_set_cfg in self._img_cfg.items(): if img_set_cfg['do']: rospy.loginfo('Plotting %s', img_set_key) for img_cfg in img_set_cfg['img']: img_key = img_cfg['key'] img_calc = img_cfg['calc_f'] rospy.loginfo("\tComputing continuous and discrete images for %s.", img_key) # Compute the images to plot using the configured calculation_function ('calc_f') img_cont, img_disc, ds_list, v_min, v_max, occ, log_scale = img_calc(alpha, beta) self._map_colorizer.set_disc_state_list(ds_list) self._map_colorizer.set_cont_bounds(img_cont, v_min=v_min, v_max=v_max, occupancy_map=occ, log_scale=log_scale) rgba_img = self._map_colorizer.colorize(img_cont, img_disc) del img_cont del img_disc if self._save_img: path = os.path.join(self._save_dir, img_cfg['dir']) if not os.path.exists(path): mkdir_p(path) filename = img_cfg['file_prefix'] + '_s' + str(seq) raw_filename = 'raw_' + filename + '.png' filename = filename + '.svg' mlp_path = os.path.join(path, filename) raw_path = os.path.join(path, raw_filename) fig, ax = plt.subplots(figsize=[20, 20]) ax.imshow(rgba_img, extent=extent_a) self._map_colorizer.draw_cb_cont(fig) if ds_list: self._map_colorizer.draw_cb_disc(fig) rospy.loginfo("\t\tSaving image %s to %s.", img_key, mlp_path) plt.savefig(mlp_path, bbox_inches='tight', dpi=self._resolution) plt.close() del fig del ax rospy.loginfo("\t\tSaving image %s to %s.", img_key, raw_path) plt.imsave(raw_path, rgba_img, vmin=0, vmax=1) plt.close() rospy.loginfo("\t\tImages saved.") if self._pub_img: publisher = self._publishers[img_key] rospy.loginfo("\t\tGenerating image message to %s.", img_key) rgba_img = 255 * rgba_img rgba_img = rgba_img.astype(np.uint8) image_msg_head = Header() image_msg_head.seq = seq image_msg_head.stamp = rospy.Time.now() image_msg_head.frame_id = 'map' br = CvBridge() image_msg = br.cv2_to_imgmsg(rgba_img, encoding="rgba8") del rgba_img image_msg.header = image_msg_head publisher.publish(image_msg) del image_msg rospy.loginfo("\t\tImage published.") def _map_model_callback(self, msg): """ Method called when receiving a map model type. It just sets the local field with the message's value. :param msg: (gmapping.mapModel) An integer stating the type of map model used by the SLAM algorithm and some constants for comparisons. :return: None """ mm = msg.map_model mm_str = '' if mm == mapModel.REFLECTION_MODEL: mm_str = 'Reflection Model' elif mm == mapModel.DECAY_MODEL: mm_str = 'Exponential Decay Model' else: rospy.logerr('No idea what kind of model %d is! Going with Reflection Model.', mm) mm = mapModel.REFLECTION_MODEL rospy.loginfo("Received Map Model: (%d, %s)", mm, mm_str) self._map_model = mm def _add_to_dict(self, a_b, msg): """ Adds the received map and prior to the object's buffer dictionary. :param a_b: (string) Indicates which of the parameters has been received: "alpha"|"beta" :param msg: (gmapping.doubleMap) Double Map message containing the prior and map parameters. :return: None """ seq = msg.header.seq map_dict = { a_b: { 'map': map_msg_to_numpy(msg), 'extent': map_msg_extent(msg), 'prior': msg.param } } if a_b == 'alpha': b_a = 'beta' else: b_a = 'alpha' rospy.loginfo('Received msg for {} with seq {}'.format(a_b, seq)) if seq in self._alpha_beta_dict: self._alpha_beta_dict[seq][a_b] = map_dict[a_b] if b_a in self._alpha_beta_dict[seq]: rospy.loginfo('Collected alpha/beta info for seq {}'.format(seq)) self._alpha_beta_queue.append(seq) else: self._alpha_beta_dict[seq] = map_dict def _map2d_alpha_callback(self, msg): """ Method called when receiving a map with the alpha parameters of the full posterior map distribution. It adds the received map to the buffer dictionary until both parameter maps have been received. :param msg: (gmapping.doubleMap) A floating point gmapping map message. :return: None """ self._add_to_dict('alpha', msg) def _map2d_beta_callback(self, msg): """ Method called when receiving a map with the beta parameters of the full posterior map distribution. It adds the received map to the buffer dictionary until both parameter maps have been received. :param msg: (gmapping.doubleMap) A floating point gmapping map message. :return: None """ self._add_to_dict('beta', msg) def _calc_mean(self, alpha, beta): """ Takes the alpha and beta parameter maps and computes the mean depending on the mapping model used. :param alpha: (nd.array) A 2D array containing the alpha parameters of the PDF of the map posterior. :param beta: (nd.array) A 2D array containing the beta parameters of the PDF of the map posterior. :return: (tuple) A tuple consisting of: * means (ma.array), * special-case discrete-valued means (ma.array), * list of special discrete states (list) * minimum continuous value (float) for color map scaling * maximum continuous value (float) for color map scaling * whether the map represents occupancy (bool) * whether the color scale should be logarithmic (bool) """ shape = alpha.shape v_min = 0 occ = True if self._map_model == mapModel.DECAY_MODEL: numerator = alpha denominator = beta undef_mask = (denominator == 0) zero_mask = (numerator == 0) all_mask = np.logical_or(undef_mask, zero_mask) numerator = ma.masked_array(numerator) numerator[all_mask] = ma.masked means = ma.divide(numerator, denominator) means_ds = ma.zeros(shape, dtype=np.int8) means_ds[undef_mask] = DiSt.UNDEFINED.value means_ds[zero_mask] = DiSt.ZERO.value means_ds[~all_mask] = ma.masked ds_list = [DiSt.UNDEFINED, DiSt.ZERO] v_max = None log_scale = True elif self._map_model == mapModel.REFLECTION_MODEL: denominator = alpha + beta undef_mask = (denominator == 0) numerator = ma.masked_array(alpha) numerator[undef_mask] = ma.masked means =
ma.divide(numerator, denominator)
numpy.ma.divide
# functions for all methods import inspect import os import sys from torch import nn import torch from nflows.distributions.normal import StandardNormal from nflows.distributions.normal import ConditionalDiagonalNormal from nflows.distributions.uniform import BoxUniform from nflows.flows.base import Flow from nflows.transforms.autoregressive import MaskedAffineAutoregressiveTransform from nflows.transforms.base import ( CompositeTransform, ) from nflows.transforms.permutations import ReversePermutation from nflows.transforms.standard import PointwiseAffineTransform from nflows.transforms.nonlinearities import Tanh from nflows.transforms.normalization import BatchNorm import numpy as np # load from util (from https://stackoverflow.com/questions/714063/importing-modules-from-parent-folder) currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) sys.path.insert(0, parentdir) from util import InvSigmoid from util import UniformContext # Return min ess of the samples in x, code adapted from https://github.com/gpapamak/snl/blob/master/util/math.py def ess_mcmc(x): N, dim = x.shape x = x - x.mean(0) acors = torch.zeros(x.shape) for i in range(dim): for lag in range(N): acor = torch.dot(x[:N-lag, i], x[lag:, i]) / (N - lag) if acor < 0: break acors[lag, i] = acor act = 1 + 2 + acors[1:].sum(0) / acors[0] ess = N/act return min(ess).item() def load_summary_stats_mean_and_std(): m_s_of_prior = np.loadtxt('data/m_s_of_prior.csv', delimiter=",") s_s_of_prior = np.loadtxt('data/s_s_of_prior.csv', delimiter=",") return torch.from_numpy(m_s_of_prior).to(dtype=torch.float32), \ torch.from_numpy(s_s_of_prior).to(dtype=torch.float32) # For whiten, calc_whitening_transform, and de_whiten: code adapted from: https://github.com/gpapamak/snl/blob/master/util/math.py def whiten(xs, params): """ Whitens a given dataset using the whitening transform provided. """ means, U, istds = params ys = xs.copy() ys -= means ys = np.dot(ys, U) ys *= istds return ys def calc_whitening_transform(xs): """ Calculates the parameters that whiten a dataset. """ N = xs.shape[0] means = np.mean(xs, axis=0) ys = xs - means cov =
np.dot(ys.T, ys)
numpy.dot