prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
# Copyright <NAME> and <NAME> 2020 # Author: <NAME> """ Script for performing inference on new candidates. Criterion for new candidates is that the E isomer pi-pi* value be between 450-600nm. The separation between the E isomer n-pi* and Z isomer n-pi* is not less than 15nm. The separation between E isomer pi-pi* and Z isomer pi-pi* is greater than 40nm. """ import gpflow from gpflow.ci_utils import ci_niter from gpflow.mean_functions import Constant from gpflow.utilities import print_summary import numpy as np import pandas as pd from sklearn.metrics import mean_squared_error from data_utils import TaskDataLoader, featurise_mols from kernels import Tanimoto representation = 'fragprints' task = 'e_iso_pi' path = '../dataset/photoswitches.csv' df = pd.read_csv('../dataset/purchasable_switch.csv') candidate_list = df['SMILES'].to_list() if __name__ == '__main__': X_test = featurise_mols(candidate_list, representation) data_loader_e_iso_pi = TaskDataLoader('e_iso_pi', path) data_loader_z_iso_pi = TaskDataLoader('z_iso_pi', path) data_loader_e_iso_n = TaskDataLoader('e_iso_n', path) data_loader_z_iso_n = TaskDataLoader('z_iso_n', path) smiles_list_e_iso_pi, y_e_iso_pi = data_loader_e_iso_pi.load_property_data() smiles_list_z_iso_pi, y_z_iso_pi = data_loader_z_iso_pi.load_property_data() smiles_list_e_iso_n, y_e_iso_n = data_loader_e_iso_n.load_property_data() smiles_list_z_iso_n, y_z_iso_n = data_loader_z_iso_n.load_property_data() y_e_iso_pi = y_e_iso_pi.reshape(-1, 1) y_z_iso_pi = y_z_iso_pi.reshape(-1, 1) y_e_iso_n = y_e_iso_n.reshape(-1, 1) y_z_iso_n = y_z_iso_n.reshape(-1, 1) X_e_iso_pi = featurise_mols(smiles_list_e_iso_pi, representation) X_z_iso_pi = featurise_mols(smiles_list_z_iso_pi, representation) X_e_iso_n = featurise_mols(smiles_list_e_iso_n, representation) X_z_iso_n = featurise_mols(smiles_list_z_iso_n, representation) output_dim = 4 # Number of outputs rank = 1 # Rank of W feature_dim = len(X_e_iso_pi[0, :]) tanimoto_active_dims = [i for i in range(feature_dim)] # active dims for Tanimoto base kernel. if task == 'e_iso_pi': X_train = X_e_iso_pi y_train = y_e_iso_pi elif task == 'z_iso_pi': X_train = X_z_iso_pi y_train = y_z_iso_pi elif task == 'e_iso_n': X_train = X_e_iso_n y_train = y_e_iso_n else: X_train = X_z_iso_n y_train = y_z_iso_n if task == 'e_iso_pi': # Augment the input with zeroes, ones, twos, threes to indicate the required output dimension X_augmented = np.vstack((np.append(X_train, np.zeros((len(X_train), 1)), axis=1), np.append(X_z_iso_pi, np.ones((len(X_z_iso_pi), 1)), axis=1), np.append(X_e_iso_n, np.ones((len(X_e_iso_n), 1)) * 2, axis=1), np.append(X_z_iso_n, np.ones((len(X_z_iso_n), 1)) * 3, axis=1))) X_test = np.append(X_test, np.zeros((len(X_test), 1)), axis=1) X_train = np.append(X_train, np.zeros((len(X_train), 1)), axis=1) # Augment the Y data with zeroes, ones, twos and threes that specify a likelihood from the list of likelihoods Y_augmented = np.vstack((np.hstack((y_train, np.zeros_like(y_train))), np.hstack((y_z_iso_pi, np.ones_like(y_z_iso_pi))), np.hstack((y_e_iso_n, np.ones_like(y_e_iso_n) * 2)), np.hstack((y_z_iso_n, np.ones_like(y_z_iso_n) * 3)))) elif task == 'z_iso_pi': # Augment the input with zeroes, ones, twos, threes to indicate the required output dimension X_augmented = np.vstack((np.append(X_e_iso_pi, np.zeros((len(X_e_iso_pi), 1)), axis=1), np.append(X_train, np.ones((len(X_train), 1)), axis=1), np.append(X_e_iso_n, np.ones((len(X_e_iso_n), 1)) * 2, axis=1), np.append(X_z_iso_n, np.ones((len(X_z_iso_n), 1)) * 3, axis=1))) X_test = np.append(X_test, np.ones((len(X_test), 1)), axis=1) X_train = np.append(X_train, np.ones((len(X_train), 1)), axis=1) # Augment the Y data with zeroes, ones, twos and threes that specify a likelihood from the list of likelihoods Y_augmented = np.vstack((np.hstack((y_e_iso_pi, np.zeros_like(y_e_iso_pi))), np.hstack((y_train, np.ones_like(y_train))), np.hstack((y_e_iso_n, np.ones_like(y_e_iso_n) * 2)), np.hstack((y_z_iso_n, np.ones_like(y_z_iso_n) * 3)))) elif task == 'e_iso_n': # Augment the input with zeroes, ones, twos, threes to indicate the required output dimension X_augmented = np.vstack((np.append(X_e_iso_pi, np.zeros((len(X_e_iso_pi), 1)), axis=1), np.append(X_z_iso_pi, np.ones((len(X_z_iso_pi), 1)), axis=1), np.append(X_train, np.ones((len(X_train), 1)) * 2, axis=1), np.append(X_z_iso_n, np.ones((len(X_z_iso_n), 1)) * 3, axis=1))) X_test = np.append(X_test, np.ones((len(X_test), 1)) * 2, axis=1) X_train = np.append(X_train, np.ones((len(X_train), 1)) * 2, axis=1) # Augment the Y data with zeroes, ones, twos and threes that specify a likelihood from the list of likelihoods Y_augmented = np.vstack((np.hstack((y_e_iso_pi, np.zeros_like(y_e_iso_pi))), np.hstack((y_z_iso_pi, np.ones_like(y_z_iso_pi))), np.hstack((y_train,
np.ones_like(y_train)
numpy.ones_like
# Copyright 2013-2016 The Salish Sea MEOPAR contributors # and The University of British Columbia # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Locates and concatenates datafiles needed for MOHID based on user input time range """ import os from datetime import datetime, timedelta from dateutil.parser import parse import numpy as np import errno import time import shlex import subprocess # NEMO input files directory nemoinput = '/results2/SalishSea/nowcast-green.201806/' # HRDPS input files directory hdinput = '/results/forcing/atmospheric/GEM2.5/operational/' # WW3 input files directory wwinput = '/opp/wwatch3/nowcast/' # Output filepath outpath = '/results2/MIDOSS/forcing/SalishSeaCast/' ## Integer -> String ## consumes time in seconds and outputs a string that gives the time in HH:MM:SS format def conv_time(time): """Give time in HH:MM:SS format. :arg time: time elapsed in seconds :type integer: :py:class:'int' :returns: time elapsed in HH:MM:SS format :rtype: :py:class:`str' """ hours = int(time/3600) mins = int((time - (hours*3600))/60) secs = int((time - (3600 * hours) - (mins *60))) return '{}:{}:{}'.format(hours, mins, secs) def generate_paths_NEMO(timestart, timeend, path, outpath): """Concatenate NEMO U, V, W and T files for MOHID. :arg timestart: date from when to start concatenating :type string: :py:class:'str' :arg timeend: date at which to stop concatenating :type string: :py:class:'str' :arg path: path of input files :type string: :py:class:'str' :arg outpath: path for output files :type string: :py:class:'str' :returns: None :rtype: :py:class:`NoneType' """ # generate list of dates from daterange given daterange = [parse(t) for t in [timestart, timeend]] U_files = [] V_files = [] W_files = [] T_files = [] # string: output folder name with date ranges used. end date will be lower by a day than timeend because datasets only go until midnight folder = str(datetime(parse(timestart).year, parse(timestart).month, parse(timestart).day).strftime('%d%b%y').lower()) + '-' + str(datetime(parse(timeend).year, parse(timeend).month, parse(timeend).day-1).strftime('%d%b%y').lower()) # append all filename strings within daterange to lists for day in range(np.diff(daterange)[0].days): datestamp = daterange[0] + timedelta(days=day) datestr1 = datestamp.strftime('%d%b%y').lower() datestr2 = datestamp.strftime('%Y%m%d') U_files.append(f'{path}{datestr1}/SalishSea_1h_{datestr2}_{datestr2}_grid_U.nc') V_files.append(f'{path}{datestr1}/SalishSea_1h_{datestr2}_{datestr2}_grid_V.nc') W_files.append(f'{path}{datestr1}/SalishSea_1h_{datestr2}_{datestr2}_grid_W.nc') T_files.append(f'{path}{datestr1}/SalishSea_1h_{datestr2}_{datestr2}_grid_T.nc') shell_U = 'ncrcat ' # concatenate all U parameter filename strings to create shell command for file in U_files: shell_U = shell_U + file + ' ' # concatenate output filename and directory to end of shell command shell_U = shell_U + f'{outpath}nowcast-green/{folder}/' + 'U.nc' # concatenate all V parameter filename strings to create shell command shell_V = 'ncrcat ' for file in V_files: shell_V = shell_V + file + ' ' # concatenate output filename and directory to end of shell command shell_V = shell_V + f'{outpath}nowcast-green/{folder}/' + 'V.nc' # concatenate all W parameter filename strings to create shell command shell_W = 'ncrcat ' for file in W_files: shell_W = shell_W + file + ' ' # concatenate output filename and directory to end of shell command shell_W = shell_W + f'{outpath}nowcast-green/{folder}/' + 'W.nc' # concatenate all T parameter filename strings to create shell command shell_T = 'ncrcat ' for file in T_files: shell_T = shell_T + file + ' ' # concatenate output filename and directory to end of shell command shell_T = shell_T + f'{outpath}nowcast-green/{folder}/' + 'T.nc' # create output directory dirname = f'{outpath}nowcast-green/{folder}/' if not os.path.exists(os.path.dirname(dirname)): try: os.makedirs(os.path.dirname(dirname)) except OSError as exc: if exc.errno != errno.EEXIST: raise # run shell scripts to concatenate netcdf files processes = [] for cmd in (shell_U, shell_V, shell_W, shell_T): p = subprocess.Popen(shlex.split(cmd)) # make a list of the processes we have just launched processes.append(p) while processes: for p in processes: if p.poll(): # poll() Returns None if the process is still running, otherwise the process returns code # so if the process is done, we will remove it from the list processes.remove(p) # wait for 5 seconds before we check again time.sleep(5) return None def generate_paths_HRDPS(timestart, timeend, path, outpath): """Concatenate HRDPS files for MOHID. :arg timestart: date from when to start concatenating :type string: :py:class:'str' :arg timeend: date at which to stop concatenating :type string: :py:class:'str' :arg path: path of input files :type string: :py:class:'str' :arg outpath: path for output files :type string: :py:class:'str' :returns: None :rtype: :py:class:`NoneType' """ # generate list of dates from daterange given daterange = [parse(t) for t in [timestart, timeend]] wind_files = [] # string: output folder name with date ranges used. end date will be lower by a day than timeend because datasets only go until midnight folder = str(datetime(parse(timestart).year, parse(timestart).month, parse(timestart).day).strftime('%d%b%y').lower()) + '-' + str(datetime(parse(timeend).year, parse(timeend).month, parse(timeend).day-1).strftime('%d%b%y').lower()) # append all filename strings within daterange to list for day in range(
np.diff(daterange)
numpy.diff
"""Functions for importing and analyzing traffic traces""" from __future__ import division import math import collections import time import dateutil import types import numpy as np from scipy.stats import chisquare from icarus.tools import TruncatedZipfDist __all__ = [ 'frequencies', 'one_timers', 'trace_stats', 'zipf_fit', 'parse_url_list', 'parse_wikibench', 'parse_squid', 'parse_youtube_umass', 'parse_common_log_format' ] def frequencies(data): """Extract frequencies from traces. Returns array of sorted frequencies Parameters ---------- data : array-like An array of generic data (i.e. URLs of web pages) Returns ------- frequencies : array of int The frequencies of the data sorted in descending order Notes ----- This function does not return the mapping between data elements and their frequencies, it only returns frequencies. This function can be used to get frequencies to pass to the *zipf_fit* function given a set of data, e.g. content request traces. """ return np.asarray(sorted(collections.Counter(data).values(), reverse=True)) def one_timers(data): """Return fraction of contents requested only once (i.e., one-timers) Parameters ---------- data : array-like An array of generic data (i.e. URLs of web pages) Returns ------- one_timers : float Fraction of content objects requested only once. """ n_items = 0 n_onetimers = 0 counter = collections.Counter(data) for i in counter.itervalues(): n_items += 1 if i == 1: n_onetimers += 1 return n_onetimers / n_items def trace_stats(data): """Print full stats of a trace Parameters ---------- data : array-like An array of generic data (i.e. URLs of web pages) Return ------ stats : dict Metrics of the trace """ if isinstance(data, types.GeneratorType): data = collections.deque(data) freqs = frequencies(data) alpha, p = zipf_fit(freqs) n_reqs = len(data) n_contents = len(freqs) n_onetimers = len(freqs[freqs == 1]) return dict(n_contents=n_contents, n_reqs=n_reqs, n_onetimers=n_onetimers, alpha=alpha, p=p, onetimers_contents_ratio=n_onetimers / n_contents, onetimers_reqs_ratio=n_onetimers / n_reqs, mean_reqs_per_content=n_reqs / n_contents ) def zipf_fit(obs_freqs, need_sorting=False): """Returns the value of the Zipf's distribution alpha parameter that best fits the data provided and the p-value of the fit test. Parameters ---------- obs_freqs : array The array of observed frequencies sorted in descending order need_sorting : bool, optional If True, indicates that obs_freqs is not sorted and this function will sort it. If False, assume that the array is already sorted Returns ------- alpha : float The alpha parameter of the best Zipf fit p : float The p-value of the test Notes ----- This function uses the method described in http://stats.stackexchange.com/questions/6780/how-to-calculate-zipfs-law-coefficient-from-a-set-of-top-frequencies """ try: from scipy.optimize import minimize_scalar except ImportError: raise ImportError("Cannot import scipy.optimize minimize_scalar. " "You either don't have scipy install or you have a " "version too old (required 0.12 onwards)") obs_freqs = np.asarray(obs_freqs) if need_sorting: # Sort in descending order obs_freqs = -np.sort(-obs_freqs) n = len(obs_freqs) def log_likelihood(alpha): return np.sum(obs_freqs * (alpha * np.log(np.arange(1.0, n + 1)) + \ math.log(sum(1.0 /
np.arange(1.0, n + 1)
numpy.arange
import numpy as np import sys class ArffFeatures: def __init__(self, filepath): self.ID_ATTR = 'ID' self.attrs = dict() self.entities = list() self.id_lookup = dict() self._parse_arff_features(filepath) self._create_id_lookup() self._calculate_factors() print('Number of entities in .arff file:', len(self.entities)) def _parse_arff_features(self, filepath): self.attrs = dict() self.entities = list() f = open(filepath, 'r') mode = 'meta_data' for line in f: if mode == 'meta_data': if line.startswith('@attribute'): self._parse_attr_def(line) if line.startswith('@data'): mode = 'data' elif mode == 'data': self._parse_entity(line) def _parse_attr_def(self, line): _, attr_name, attr_type = line.split() self.attrs[len(self.attrs)] = (attr_name, attr_type) def _parse_entity(self, line): entity = dict() values = line.split(',') for i, value in enumerate(values): entity[self.attrs[i][0]] = value self.entities.append(entity) return def _create_id_lookup(self): self.id_lookkup = dict() for entity in self.entities: entity_id = int(entity[self.ID_ATTR]) self.id_lookup[entity_id] = entity return def _calculate_factors(self): self.factors = dict() for attr_id in self.attrs: if (self.attrs[attr_id][0] != self.ID_ATTR) and (self.attrs[attr_id][1] in ('numeric', 'numerical')): values = [float(entity[self.attrs[attr_id][0]]) for entity in self.entities] mu = np.mean(values) sig =
np.std(values)
numpy.std
import numpy as np import tensorflow as tf from tasks import Task class CopyTask(Task): epsilon = 1e-2 def __init__(self, vector_size, min_seq, train_max_seq, n_copies): self.vector_size = vector_size self.min_seq = min_seq self.train_max_seq = train_max_seq self.n_copies = n_copies self.max_seq_curriculum = self.min_seq + 1 self.max_copies = 5 self.x_shape = [None, None, self.vector_size] self.y_shape = [None, None, self.vector_size] self.mask = [None, None, self.vector_size] # Used for curriculum training self.state = 0 self.consecutive_thresh = 100 def update_training_state(self, cost): if cost <= CopyTask.epsilon: self.state += 1 else: self.state = 0 def check_lesson_learned(self): if self.state < self.consecutive_thresh: return False else: return True def next_lesson(self): self.state = 0 # if self.max_seq_curriculum < self.train_max_seq: # self.max_seq_curriculum += 1 # print("Increased max_seq to", self.max_seq_curriculum) if self.n_copies < 5: self.n_copies += 1 print("Increased n_copies to", self.n_copies) else: print("Done with the training!!!") def update_state(self, cost): self.update_training_state(cost) if self.check_lesson_learned(): self.next_lesson() def cost(self, outputs, correct_output, mask=None): sigmoid_cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(logits=outputs, labels=correct_output) return tf.reduce_mean(sigmoid_cross_entropy) def generate_data(self, batch_size=16, train=True, cost=9999): if train: # Update curriculum training state self.update_state(cost) self.max_seq_curriculum = self.train_max_seq # self.n_copies = self.max_copies data_batch = CopyTask.generate_n_copies(batch_size, self.vector_size, self.min_seq, self.max_seq_curriculum, self.n_copies) else: data_batch = CopyTask.generate_n_copies(batch_size, self.vector_size, self.train_max_seq, self.train_max_seq, self.n_copies) return data_batch def display_output(self, prediction, data_batch, mask): pass def test(self, sess, output, pl, batch_size): pass @staticmethod def generate_n_copies(batch_size, inp_vector_size, min_seq, max_seq, n_copies): copies_list = [ CopyTask.generate_copy_pair(batch_size, inp_vector_size, min_seq, max_seq) for _ in range(n_copies)] output = np.concatenate([i[0] for i in copies_list], axis=2) total_length = np.sum([i[1] for i in copies_list]) mask =
np.ones((batch_size, total_length, inp_vector_size))
numpy.ones
# -*- coding: utf-8 -*- """ Defines unit tests for :mod:`colour.colorimetry.luminance` module. """ from __future__ import division, unicode_literals import numpy as np import unittest from colour.colorimetry import ( luminance_Newhall1943, intermediate_luminance_function_CIE1976, luminance_CIE1976, luminance_ASTMD1535, luminance_Fairchild2010, luminance_Fairchild2011) from colour.colorimetry.luminance import luminance from colour.utilities import domain_range_scale, ignore_numpy_errors __author__ = 'Colour Developers' __copyright__ = 'Copyright (C) 2013-2019 - Colour Developers' __license__ = 'New BSD License - https://opensource.org/licenses/BSD-3-Clause' __maintainer__ = 'Colour Developers' __email__ = '<EMAIL>' __status__ = 'Production' __all__ = [ 'TestLuminanceNewhall1943', 'TestLuminanceASTMD1535', 'TestIntermediateLuminanceFunctionCIE1976', 'TestLuminanceCIE1976', 'TestLuminanceFairchild2010', 'TestLuminanceFairchild2011', 'TestLuminance' ] class TestLuminanceNewhall1943(unittest.TestCase): """ Defines :func:`colour.colorimetry.luminance.luminance_Newhall1943` definition unit tests methods. """ def test_luminance_Newhall1943(self): """ Tests :func:`colour.colorimetry.luminance.luminance_Newhall1943` definition. """ self.assertAlmostEqual( luminance_Newhall1943(4.08244375), 12.550078816731881, places=7) self.assertAlmostEqual( luminance_Newhall1943(5.39132685), 23.481252371310738, places=7) self.assertAlmostEqual( luminance_Newhall1943(2.97619312), 6.4514266875601924, places=7) def test_n_dimensional_luminance_Newhall1943(self): """ Tests :func:`colour.colorimetry.luminance.luminance_Newhall1943` definition n-dimensional arrays support. """ V = 4.08244375 Y = luminance_Newhall1943(V) V = np.tile(V, 6) Y = np.tile(Y, 6) np.testing.assert_almost_equal(luminance_Newhall1943(V), Y, decimal=7) V = np.reshape(V, (2, 3)) Y = np.reshape(Y, (2, 3)) np.testing.assert_almost_equal(luminance_Newhall1943(V), Y, decimal=7) V = np.reshape(V, (2, 3, 1)) Y = np.reshape(Y, (2, 3, 1)) np.testing.assert_almost_equal(luminance_Newhall1943(V), Y, decimal=7) def test_domain_range_scale_luminance_Newhall1943(self): """ Tests :func:`colour.colorimetry.luminance.luminance_Newhall1943` definition domain and range scale support. """ Y = luminance_Newhall1943(4.08244375) d_r = (('reference', 1, 1), (1, 0.1, 0.01), (100, 10, 1)) for scale, factor_a, factor_b in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( luminance_Newhall1943(4.08244375 * factor_a), Y * factor_b, decimal=7) @ignore_numpy_errors def test_nan_luminance_Newhall1943(self): """ Tests :func:`colour.colorimetry.luminance.luminance_Newhall1943` definition nan support. """ luminance_Newhall1943( np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestLuminanceASTMD1535(unittest.TestCase): """ Defines :func:`colour.colorimetry.luminance.luminance_ASTMD1535` definition unit tests methods. """ def test_luminance_ASTMD1535(self): """ Tests :func:`colour.colorimetry.luminance.luminance_ASTMD1535` definition. """ self.assertAlmostEqual( luminance_ASTMD1535(4.08244375), 12.236342675366036, places=7) self.assertAlmostEqual( luminance_ASTMD1535(5.39132685), 22.893999867280378, places=7) self.assertAlmostEqual( luminance_ASTMD1535(2.97619312), 6.2902253509053132, places=7) def test_n_dimensional_luminance_ASTMD1535(self): """ Tests :func:`colour.colorimetry.luminance.luminance_ASTMD1535` definition n-dimensional arrays support. """ V = 4.08244375 Y = luminance_ASTMD1535(V) V = np.tile(V, 6) Y = np.tile(Y, 6) np.testing.assert_almost_equal(luminance_ASTMD1535(V), Y, decimal=7) V = np.reshape(V, (2, 3)) Y = np.reshape(Y, (2, 3)) np.testing.assert_almost_equal(luminance_ASTMD1535(V), Y, decimal=7) V = np.reshape(V, (2, 3, 1)) Y = np.reshape(Y, (2, 3, 1)) np.testing.assert_almost_equal(luminance_ASTMD1535(V), Y, decimal=7) def test_domain_range_scale_luminance_ASTMD1535(self): """ Tests :func:`colour.colorimetry.luminance.luminance_ASTMD1535` definition domain and range scale support. """ Y = luminance_ASTMD1535(4.08244375) d_r = (('reference', 1, 1), (1, 0.1, 0.01), (100, 10, 1)) for scale, factor_a, factor_b in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( luminance_ASTMD1535(4.08244375 * factor_a), Y * factor_b, decimal=7) @ignore_numpy_errors def test_nan_luminance_ASTMD1535(self): """ Tests :func:`colour.colorimetry.luminance.luminance_ASTMD1535` definition nan support. """ luminance_ASTMD1535( np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestIntermediateLuminanceFunctionCIE1976(unittest.TestCase): """ Defines :func:`colour.colorimetry.luminance.\ intermediate_luminance_function_CIE1976` definition unit tests methods. """ def test_intermediate_luminance_function_CIE1976(self): """ Tests :func:`colour.colorimetry.luminance.\ intermediate_luminance_function_CIE1976` definition. """ self.assertAlmostEqual( intermediate_luminance_function_CIE1976(0.495929964178047), 12.197225350000002, places=7) self.assertAlmostEqual( intermediate_luminance_function_CIE1976(0.613072093530391), 23.042767810000004, places=7) self.assertAlmostEqual( intermediate_luminance_function_CIE1976(0.394876333449113), 6.157200790000001, places=7) def test_n_dimensional_intermediate_luminance_function_CIE1976(self): """ Tests :func:`colour.colorimetry.luminance.\ intermediate_luminance_function_CIE1976` definition n-dimensional arrays support. """ f_Y_Y_n = 0.495929964178047 Y = intermediate_luminance_function_CIE1976(f_Y_Y_n) f_Y_Y_n = np.tile(f_Y_Y_n, 6) Y = np.tile(Y, 6) np.testing.assert_almost_equal( intermediate_luminance_function_CIE1976(f_Y_Y_n), Y, decimal=7) f_Y_Y_n = np.reshape(f_Y_Y_n, (2, 3)) Y = np.reshape(Y, (2, 3)) np.testing.assert_almost_equal( intermediate_luminance_function_CIE1976(f_Y_Y_n), Y, decimal=7) f_Y_Y_n = np.reshape(f_Y_Y_n, (2, 3, 1)) Y = np.reshape(Y, (2, 3, 1)) np.testing.assert_almost_equal( intermediate_luminance_function_CIE1976(f_Y_Y_n), Y, decimal=7) def test_domain_range_scale_intermediate_luminance_function_CIE1976(self): """ Tests :func:`colour.colorimetry.luminance.\ intermediate_luminance_function_CIE1976` definition domain and range scale support. """ Y = intermediate_luminance_function_CIE1976(41.527875844653451, 100) for scale in ('reference', 1, 100): with domain_range_scale(scale): np.testing.assert_almost_equal( intermediate_luminance_function_CIE1976( 41.527875844653451, 100), Y, decimal=7) @ignore_numpy_errors def test_nan_intermediate_luminance_function_CIE1976(self): """ Tests :func:`colour.colorimetry.luminance.\ intermediate_luminance_function_CIE1976` definition nan support. """ intermediate_luminance_function_CIE1976( np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestLuminanceCIE1976(unittest.TestCase): """ Defines :func:`colour.colorimetry.luminance.luminance_CIE1976` definition unit tests methods. """ def test_luminance_CIE1976(self): """ Tests :func:`colour.colorimetry.luminance.luminance_CIE1976` definition. """ self.assertAlmostEqual( luminance_CIE1976(41.527875844653451), 12.197225350000002, places=7) self.assertAlmostEqual( luminance_CIE1976(55.116362849525402), 23.042767810000004, places=7) self.assertAlmostEqual( luminance_CIE1976(29.805654680097106), 6.157200790000001, places=7) self.assertAlmostEqual( luminance_CIE1976(56.480581732417676, 50), 12.197225349999998, places=7) self.assertAlmostEqual( luminance_CIE1976(47.317620274162735, 75), 12.197225350000002, places=7) self.assertAlmostEqual( luminance_CIE1976(42.519930728120940, 95), 12.197225350000005, places=7) def test_n_dimensional_luminance_CIE1976(self): """ Tests :func:`colour.colorimetry.luminance.luminance_CIE1976` definition n-dimensional arrays support. """ L_star = 41.527875844653451 Y = luminance_CIE1976(L_star) L_star = np.tile(L_star, 6) Y = np.tile(Y, 6) np.testing.assert_almost_equal(luminance_CIE1976(L_star), Y, decimal=7) L_star = np.reshape(L_star, (2, 3)) Y = np.reshape(Y, (2, 3)) np.testing.assert_almost_equal(luminance_CIE1976(L_star), Y, decimal=7) L_star = np.reshape(L_star, (2, 3, 1)) Y = np.reshape(Y, (2, 3, 1)) np.testing.assert_almost_equal(luminance_CIE1976(L_star), Y, decimal=7) def test_domain_range_scale_luminance_CIE1976(self): """ Tests :func:`colour.colorimetry.luminance.luminance_CIE1976` definition domain and range scale support. """ Y = luminance_CIE1976(41.527875844653451, 100) d_r = (('reference', 1), (1, 0.01), (100, 1)) for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( luminance_CIE1976(41.527875844653451 * factor, 100), Y * factor, decimal=7) @ignore_numpy_errors def test_nan_luminance_CIE1976(self): """ Tests :func:`colour.colorimetry.luminance.luminance_CIE1976` definition nan support. """ luminance_CIE1976(np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestLuminanceFairchild2010(unittest.TestCase): """ Defines :func:`colour.colorimetry.luminance.luminance_Fairchild2010` definition unit tests methods. """ def test_luminance_Fairchild2010(self): """ Tests :func:`colour.colorimetry.luminance.luminance_Fairchild2010` definition. """ self.assertAlmostEqual( luminance_Fairchild2010(31.996390226262736), 0.12197225350000002, places=7) self.assertAlmostEqual( luminance_Fairchild2010(60.203153682783302), 0.23042767809999998, places=7) self.assertAlmostEqual( luminance_Fairchild2010(11.836517240976489), 0.06157200790000001, places=7) self.assertAlmostEqual( luminance_Fairchild2010(24.424283249379986, 2.75), 0.12197225350000002, places=7) self.assertAlmostEqual( luminance_Fairchild2010(100.019986327374240), 1008.00000024, places=7) self.assertAlmostEqual( luminance_Fairchild2010(100.019999997090270), 100799.92312466, places=7) def test_n_dimensional_luminance_Fairchild2010(self): """ Tests :func:`colour.colorimetry.luminance.luminance_Fairchild2010` definition n-dimensional arrays support. """ L_hdr = 31.996390226262736 Y = luminance_Fairchild2010(L_hdr) L_hdr = np.tile(L_hdr, 6) Y = np.tile(Y, 6) np.testing.assert_almost_equal( luminance_Fairchild2010(L_hdr), Y, decimal=7) L_hdr = np.reshape(L_hdr, (2, 3)) Y = np.reshape(Y, (2, 3)) np.testing.assert_almost_equal( luminance_Fairchild2010(L_hdr), Y, decimal=7) L_hdr = np.reshape(L_hdr, (2, 3, 1)) Y = np.reshape(Y, (2, 3, 1)) np.testing.assert_almost_equal( luminance_Fairchild2010(L_hdr), Y, decimal=7) def test_domain_range_scale_luminance_Fairchild2010(self): """ Tests :func:`colour.colorimetry.luminance.luminance_Fairchild2010` definition domain and range scale support. """ Y = luminance_Fairchild2010(31.996390226262736) d_r = (('reference', 1, 1), (1, 0.01, 1), (100, 1, 100)) for scale, factor_a, factor_b in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( luminance_Fairchild2010(31.996390226262736 * factor_a), Y * factor_b, decimal=7) @ignore_numpy_errors def test_nan_luminance_Fairchild2010(self): """ Tests :func:`colour.colorimetry.luminance.luminance_Fairchild2010` definition nan support. """ luminance_Fairchild2010( np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestLuminanceFairchild2011(unittest.TestCase): """ Defines :func:`colour.colorimetry.luminance.luminance_Fairchild2011` definition unit tests methods. """ def test_luminance_Fairchild2011(self): """ Tests :func:`colour.colorimetry.luminance.luminance_Fairchild2011` definition. """ self.assertAlmostEqual( luminance_Fairchild2011(51.852958445912506), 0.12197225350000007, places=7) self.assertAlmostEqual( luminance_Fairchild2011(65.275207956353853), 0.23042767809999998, places=7) self.assertAlmostEqual( luminance_Fairchild2011(39.818935510715917), 0.061572007900000038, places=7) self.assertAlmostEqual( luminance_Fairchild2011(0.13268968410139345, 2.75), 0.12197225350000002, places=7) self.assertAlmostEqual( luminance_Fairchild2011(234.72925681957565), 1008.00000000, places=7) self.assertAlmostEqual( luminance_Fairchild2011(245.57059778237573), 100800.00000000, places=7) def test_n_dimensional_luminance_Fairchild2011(self): """ Tests :func:`colour.colorimetry.luminance.luminance_Fairchild2011` definition n-dimensional arrays support. """ L_hdr = 51.852958445912506 Y = luminance_Fairchild2011(L_hdr) L_hdr = np.tile(L_hdr, 6) Y = np.tile(Y, 6) np.testing.assert_almost_equal( luminance_Fairchild2011(L_hdr), Y, decimal=7) L_hdr = np.reshape(L_hdr, (2, 3)) Y = np.reshape(Y, (2, 3)) np.testing.assert_almost_equal( luminance_Fairchild2011(L_hdr), Y, decimal=7) L_hdr = np.reshape(L_hdr, (2, 3, 1)) Y = np.reshape(Y, (2, 3, 1)) np.testing.assert_almost_equal( luminance_Fairchild2011(L_hdr), Y, decimal=7) def test_domain_range_scale_luminance_Fairchild2011(self): """ Tests :func:`colour.colorimetry.luminance.luminance_Fairchild2011` definition domain and range scale support. """ Y = luminance_Fairchild2011(26.459509817572265) d_r = (('reference', 1, 1), (1, 0.01, 1), (100, 1, 100)) for scale, factor_a, factor_b in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( luminance_Fairchild2011(26.459509817572265 * factor_a), Y * factor_b, decimal=7) @ignore_numpy_errors def test_nan_luminance_Fairchild2011(self): """ Tests :func:`colour.colorimetry.luminance.luminance_Fairchild2011` definition nan support. """ luminance_Fairchild2011(
np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])
numpy.array
from collections import namedtuple import numpy as np from matplotlib import pyplot as plt plt.switch_backend('agg') import matplotlib.cm as cm import time from read_starcd import write_tecplot def f_maxwell(vx, vy, vz, T, n, ux, uy, uz, Rg): """Compute maxwell distribution function on cartesian velocity mesh vx, vy, vz - 3d numpy arrays with x, y, z components of velocity mesh in each node T - float, temperature in K n - float, numerical density ux, uy, uz - floats, x,y,z components of equilibrium velocity Rg - gas constant for specific gas """ return n * ((1. / (2. * np.pi * Rg * T)) ** (3. / 2.)) * (np.exp(-((vx - ux)**2 + (vy - uy)**2 + (vz - uz)**2) / (2. * Rg * T))) class GasParams: Na = 6.02214129e+23 # Avogadro constant kB = 1.381e-23 # Boltzmann constant, J / K Ru = 8.3144598 # Universal gas constant def __init__(self, Mol = 40e-3, Pr = 2. / 3., g = 5. / 3., d = 3418e-13): self.Mol = Mol self.Rg = self.Ru / self.Mol # J / (kg * K) self.m = self.Mol / self.Na # kg self.Pr = Pr self.C = 144.4 self.T_0 = 273.11 self.mu_0 = 2.125e-05 self.mu_suth = lambda T: self.mu_0 * ((self.T_0 + self.C) / (T + self.C)) * ((T / self.T_0) ** (3. / 2.)) self.mu = lambda T: self.mu_suth(200.) * (T/200.)**0.734 self.g = g # specific heat ratio self.d = d # diameter of molecule class Problem: def __init__(self, bc_type_list = None, bc_data = None, f_init = None): # list of boundary conditions' types # acording to order in starcd '.bnd' file # list of strings self.bc_type_list = bc_type_list # data for b.c.: wall temperature, inlet n, u, T and so on. # list of lists self.bc_data = bc_data # Function to set initial condition self.f_init = f_init def set_bc(gas_params, bc_type, bc_data, f, vx, vy, vz, vn): """Set boundary condition """ if (bc_type == 'sym-x'): # symmetry in x return f[::-1, :, :] elif (bc_type == 'sym-y'): # symmetry in y return f[:, ::-1, :] elif (bc_type == 'sym-z'): # symmetry in z return f[:, :, ::-1] elif (bc_type == 'sym'): # zero derivative return f[:, :, :] elif (bc_type == 'in'): # inlet # unpack bc_data n = bc_data[0] ux = bc_data[1] uy = bc_data[2] uz = bc_data[3] T = bc_data[4] return f_maxwell(vx, vy, vz, T, n, ux, uy, uz, gas_params.Rg) elif (bc_type == 'out'): # outlet # unpack bc_data n = bc_data[0] ux = bc_data[1] uy = bc_data[2] uz = bc_data[3] T = bc_data[4] return f_maxwell(vx, vy, vz, T, n, ux, uy, uz, gas_params.Rg) elif (bc_type == 'wall'): # wall # unpack bc_data T_w = bc_data[0] hv = vx[1, 0, 0] - vx[0, 0, 0] fmax = f_maxwell(vx, vy, vz, T_w, 1., 0., 0., 0., gas_params.Rg) Ni = (hv**3) * np.sum(f * np.where(vn > 0, vn, 0.)) Nr = (hv**3) * np.sum(fmax * np.where(vn < 0, vn, 0.)) # TODO: replace np.sqrt(2 * np.pi / (gas_params.Rg * T_w)) # with discrete quarature, as in the dissertation n_wall = - Ni/ Nr # n_wall = 2e+23 # temprorary return n_wall * fmax def comp_macro_param_and_j(f, vx, vy, vz, gas_params): Rg = gas_params.Rg hv = vx[1, 0, 0] - vx[0, 0, 0] n = (hv ** 3) * np.sum(f) ux = (1. / n) * (hv ** 3) * np.sum(vx * f) uy = (1. / n) * (hv ** 3) * np.sum(vy * f) uz = (1. / n) * (hv ** 3) * np.sum(vz * f) v2 = vx*vx + vy*vy + vz*vz u2 = ux*ux + uy*uy + uz*uz T = (1. / (3. * n * Rg)) * ((hv ** 3) * np.sum(v2 * f) - n * u2) Vx = vx - ux Vy = vy - uy Vz = vz - uz rho = gas_params.m * n p = rho * Rg * T cx = Vx / ((2. * Rg * T) ** (1. / 2.)) cy = Vy / ((2. * Rg * T) ** (1. / 2.)) cz = Vz / ((2. * Rg * T) ** (1. / 2.)) c2 = cx*cx + cy*cy + cz*cz Sx = (1. / n) * (hv ** 3) * np.sum(cx * c2 * f) Sy = (1. / n) * (hv ** 3) * np.sum(cy * c2 * f) Sz = (1. / n) * (hv ** 3) *
np.sum(cz * c2 * f)
numpy.sum
import numpy as np import random import tensorflow as tf from lwau import LWAU from tensorflow.python.platform import flags import os from task_generator import TaskGenerator FLAGS = flags.FLAGS flags.DEFINE_integer('metatrain_iterations', 60000, 'number of metatraining iterations.') # Training options flags.DEFINE_integer('num_classes', 5, 'number of classes used in classification') flags.DEFINE_integer('meta_batch_size', 4, 'number of tasks sampled per meta-training iteration') flags.DEFINE_float('meta_lr', 0.001, 'the meta learning rate') flags.DEFINE_float('update_lr', 0.01, 'the inner-update learning rate') flags.DEFINE_integer('update_batch_size', 1, 'K for K-shot learning.') flags.DEFINE_integer('num_updates', 5, 'number of inner update steps during training.') flags.DEFINE_integer('num_train_tasks', 20, 'number of meta training tasks.') flags.DEFINE_float('l2_alpha', 0.001, 'param of the l2_norm') flags.DEFINE_float('l1_alpha', 0.001, 'param of the l1_norm') flags.DEFINE_float('dropout_rate', 0, 'dropout_rate of the FC layer') flags.DEFINE_integer('base_num_filters', 16, 'number of filters for conv nets.') flags.DEFINE_integer('test_num_updates', 10, 'number of inner update steps during testing') ## Logging, saving, and testing options flags.DEFINE_bool('log', True, 'if false, do not log summaries, for debugging code.') flags.DEFINE_string('logdir', 'logs/miniimagenet1shot/', 'directory for summaries and checkpoints.') flags.DEFINE_bool('resume', False, 'resume training if there is a model available') flags.DEFINE_bool('train', True, 'True to train, False to test.') flags.DEFINE_integer('test_iter', -1, 'iteration to load model (-1 for latest model)') flags.DEFINE_bool('test_set', False, 'Set to true to test on the the test set, False for the validation set.') flags.DEFINE_bool('data_aug', False, 'whether use the data augmentation.') flags.DEFINE_string('backbone', 'Conv4', 'Conv4 or ResNet12 backone.') if FLAGS.train: NUM_TEST_POINTS = int(600/FLAGS.meta_batch_size) else: NUM_TEST_POINTS = 600 LEN_MODELS = 50 PRINT_INTERVAL = 50 TEST_PRINT_INTERVAL = PRINT_INTERVAL*6 def train(model, saver, sess, exp_string, task_generator, resume_itr=0): print('Done initializing, starting training.') print(exp_string) prelosses, postlosses = [], [] models = {} for itr in range(resume_itr, FLAGS.metatrain_iterations): if FLAGS.backbone == 'Conv4': feed_dict = {model.meta_lr: FLAGS.meta_lr} else: lr = FLAGS.meta_lr * 0.5 ** int(itr / 15000) feed_dict = {model.meta_lr: lr} inputa, labela, inputb, labelb = task_generator.get_data_n_tasks(FLAGS.meta_batch_size, train=True) feed_dict[model.inputa] = inputa feed_dict[model.labela] = labela feed_dict[model.inputb] = inputb feed_dict[model.labelb] = labelb input_tensors = [model.metatrain_op] input_tensors.extend([model.total_loss1, model.total_losses2[FLAGS.num_updates-1]]) input_tensors.extend([model.total_accuracy1, model.total_accuracies2[FLAGS.num_updates-1]]) result = sess.run(input_tensors, feed_dict) prelosses.append(result[-2]) postlosses.append(result[-1]) if (itr!=0) and itr % PRINT_INTERVAL == 0: print_str = 'Iteration ' + str(itr) print_str += ': ' + str(np.mean(prelosses)) + ', ' + str(np.mean(postlosses)) print(print_str) prelosses, postlosses = [], [] # sinusoid is infinite data, so no need to test on meta-validation set. if (itr!=0) and itr % TEST_PRINT_INTERVAL == 0: metaval_accuracies = [] for _ in range(NUM_TEST_POINTS): feed_dict = {} inputa, labela, inputb, labelb = task_generator.get_data_n_tasks(FLAGS.meta_batch_size, train=False) feed_dict[model.inputa] = inputa feed_dict[model.labela] = labela feed_dict[model.inputb] = inputb feed_dict[model.labelb] = labelb input_tensors = [[model.metaval_total_accuracy1] + model.metaval_total_accuracies2] result = sess.run(input_tensors, feed_dict) metaval_accuracies.append(result[0]) metaval_accuracies = np.array(metaval_accuracies) means = np.mean(metaval_accuracies, 0) stds = np.std(metaval_accuracies, 0) ci95 = 1.96 * stds / np.sqrt(NUM_TEST_POINTS) print('----------------------------------------', itr) print('Mean validation accuracy:', means) print('Mean validation loss:', stds) print('Mean validation stddev', ci95) print('----------------------------------------', ) val_postaccs = max(means) model_name = FLAGS.logdir + '/' + exp_string + '/model' + str(itr) if len(models) >= LEN_MODELS: min_acc, min_model = min(zip(models.values(), models.keys())) if val_postaccs > min_acc: del models[min_model] models[model_name] = val_postaccs saver.save(sess, model_name) # os.remove(min_model+'.meta') os.remove(min_model + '.data-00000-of-00001') os.remove(min_model + '.index') os.remove(model_name + '.meta') else: pass max_acc, max_model = max(zip(models.values(), models.keys())) print(max_model, ':', max_acc) else: models[model_name] = val_postaccs saver.save(sess, model_name) os.remove(model_name + '.meta') saver.save(sess, FLAGS.logdir + '/' + exp_string + '/model' + str(itr)) def test(model, sess, task_generator): np.random.seed(1) random.seed(1) metaval_accuracies = [] max_acc = 0 print(NUM_TEST_POINTS) for _ in range(NUM_TEST_POINTS): feed_dict = {model.meta_lr : 0.0} inputa, labela, inputb, labelb = task_generator.get_data_n_tasks(FLAGS.meta_batch_size, train=False) feed_dict[model.inputa] = inputa feed_dict[model.labela] = labela feed_dict[model.inputb] = inputb feed_dict[model.labelb] = labelb result = sess.run([model.metaval_total_accuracy1] + model.metaval_total_accuracies2, feed_dict) metaval_accuracies.append(result) metaval_accuracies =
np.array(metaval_accuracies)
numpy.array
import pandas as pd import numpy as np import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt from matplotlib import cm, colors from astropy.modeling import models, fitting # Reading in all data files at once import glob path_normal ='/projects/p30137/ageller/testing/EBLSST/add_m5/output_files' allFiles_normal = glob.glob(path_normal + "/*.csv") path_fast = '/projects/p30137/ageller/testing/EBLSST/add_m5/fast/old/output_files' allFiles_fast = glob.glob(path_fast + "/*.csv") path_obsDist = '/projects/p30137/ageller/testing/EBLSST/add_m5/fast/old/obsDist/output_files' allFiles_obsDist = glob.glob(path_obsDist + "/*.csv") N_totalnormal_array = [] N_totalobservablenormal_array = [] N_totalrecoverablenormal_array = [] N_totalnormal_array_03 = [] N_totalobservablenormal_array_03 = [] N_totalrecoverablenormal_array_03 = [] N_totalnormal_array_1 = [] N_totalobservablenormal_array_1 = [] N_totalrecoverablenormal_array_1 = [] N_totalnormal_array_10 = [] N_totalobservablenormal_array_10 = [] N_totalrecoverablenormal_array_10 = [] N_totalnormal_array_30 = [] N_totalobservablenormal_array_30 = [] N_totalrecoverablenormal_array_30 = [] N_totalnormal_array_100 = [] N_totalobservablenormal_array_100 = [] N_totalrecoverablenormal_array_100 = [] N_totalnormal_array_1000 = [] N_totalobservablenormal_array_1000 = [] N_totalrecoverablenormal_array_1000 = [] N_totalnormal22_array = [] N_totalobservablenormal22_array = [] N_totalrecoverablenormal22_array = [] N_totalnormal22_array_03 = [] N_totalobservablenormal22_array_03 = [] N_totalrecoverablenormal22_array_03 = [] N_totalnormal22_array_1 = [] N_totalobservablenormal22_array_1 = [] N_totalrecoverablenormal22_array_1 = [] N_totalnormal22_array_10 = [] N_totalobservablenormal22_array_10 = [] N_totalrecoverablenormal22_array_10 = [] N_totalnormal22_array_30 = [] N_totalobservablenormal22_array_30 = [] N_totalrecoverablenormal22_array_30 = [] N_totalnormal22_array_100 = [] N_totalobservablenormal22_array_100 = [] N_totalrecoverablenormal22_array_100 = [] N_totalnormal22_array_1000 = [] N_totalobservablenormal22_array_1000 = [] N_totalrecoverablenormal22_array_1000 = [] N_totalnormal195_array = [] N_totalobservablenormal195_array = [] N_totalrecoverablenormal195_array = [] N_totalnormal195_array_03 = [] N_totalobservablenormal195_array_03 = [] N_totalrecoverablenormal195_array_03 = [] N_totalnormal195_array_1 = [] N_totalobservablenormal195_array_1 = [] N_totalrecoverablenormal195_array_1 = [] N_totalnormal195_array_10 = [] N_totalobservablenormal195_array_10 = [] N_totalrecoverablenormal195_array_10 = [] N_totalnormal195_array_30 = [] N_totalobservablenormal195_array_30 = [] N_totalrecoverablenormal195_array_30 = [] N_totalnormal195_array_100 = [] N_totalobservablenormal195_array_100 = [] N_totalrecoverablenormal195_array_100 = [] N_totalnormal195_array_1000 = [] N_totalobservablenormal195_array_1000 = [] N_totalrecoverablenormal195_array_1000 = [] N_totalfast_array = [] N_totalobservablefast_array = [] N_totalrecoverablefast_array = [] N_totalfast_array_03 = [] N_totalobservablefast_array_03 = [] N_totalrecoverablefast_array_03 = [] N_totalfast_array_1 = [] N_totalobservablefast_array_1 = [] N_totalrecoverablefast_array_1 = [] N_totalfast_array_10 = [] N_totalobservablefast_array_10 = [] N_totalrecoverablefast_array_10 = [] N_totalfast_array_30 = [] N_totalobservablefast_array_30 = [] N_totalrecoverablefast_array_30 = [] N_totalfast_array_100 = [] N_totalobservablefast_array_100 = [] N_totalrecoverablefast_array_100 = [] N_totalfast_array_1000 = [] N_totalobservablefast_array_1000 = [] N_totalrecoverablefast_array_1000 = [] N_totalfast22_array = [] N_totalobservablefast22_array = [] N_totalrecoverablefast22_array = [] N_totalfast22_array_03 = [] N_totalobservablefast22_array_03 = [] N_totalrecoverablefast22_array_03 = [] N_totalfast22_array_1 = [] N_totalobservablefast22_array_1 = [] N_totalrecoverablefast22_array_1 = [] N_totalfast22_array_10 = [] N_totalobservablefast22_array_10 = [] N_totalrecoverablefast22_array_10 = [] N_totalfast22_array_30 = [] N_totalobservablefast22_array_30 = [] N_totalrecoverablefast22_array_30 = [] N_totalfast22_array_100 = [] N_totalobservablefast22_array_100 = [] N_totalrecoverablefast22_array_100 = [] N_totalfast22_array_1000 = [] N_totalobservablefast22_array_1000 = [] N_totalrecoverablefast22_array_1000 = [] N_totalfast195_array = [] N_totalobservablefast195_array = [] N_totalrecoverablefast195_array = [] N_totalfast195_array_03 = [] N_totalobservablefast195_array_03 = [] N_totalrecoverablefast195_array_03 = [] N_totalfast195_array_1 = [] N_totalobservablefast195_array_1 = [] N_totalrecoverablefast195_array_1 = [] N_totalfast195_array_10 = [] N_totalobservablefast195_array_10 = [] N_totalrecoverablefast195_array_10 = [] N_totalfast195_array_30 = [] N_totalobservablefast195_array_30 = [] N_totalrecoverablefast195_array_30 = [] N_totalfast195_array_100 = [] N_totalobservablefast195_array_100 = [] N_totalrecoverablefast195_array_100 = [] N_totalfast195_array_1000 = [] N_totalobservablefast195_array_1000 = [] N_totalrecoverablefast195_array_1000 = [] N_totalobsDist_array = [] N_totalobservableobsDist_array = [] N_totalrecoverableobsDist_array = [] N_totalobsDist_array_03 = [] N_totalobservableobsDist_array_03 = [] N_totalrecoverableobsDist_array_03 = [] N_totalobsDist_array_1 = [] N_totalobservableobsDist_array_1 = [] N_totalrecoverableobsDist_array_1 = [] N_totalobsDist_array_10 = [] N_totalobservableobsDist_array_10 = [] N_totalrecoverableobsDist_array_10 = [] N_totalobsDist_array_30 = [] N_totalobservableobsDist_array_30 = [] N_totalrecoverableobsDist_array_30 = [] N_totalobsDist_array_100 = [] N_totalobservableobsDist_array_100 = [] N_totalrecoverableobsDist_array_100 = [] N_totalobsDist_array_1000 = [] N_totalobservableobsDist_array_1000 = [] N_totalrecoverableobsDist_array_1000 = [] N_totalobsDist22_array = [] N_totalobservableobsDist22_array = [] N_totalrecoverableobsDist22_array = [] N_totalobsDist22_array_03 = [] N_totalobservableobsDist22_array_03 = [] N_totalrecoverableobsDist22_array_03 = [] N_totalobsDist22_array_1 = [] N_totalobservableobsDist22_array_1 = [] N_totalrecoverableobsDist22_array_1 = [] N_totalobsDist22_array_10 = [] N_totalobservableobsDist22_array_10 = [] N_totalrecoverableobsDist22_array_10 = [] N_totalobsDist22_array_30 = [] N_totalobservableobsDist22_array_30 = [] N_totalrecoverableobsDist22_array_30 = [] N_totalobsDist22_array_100 = [] N_totalobservableobsDist22_array_100 = [] N_totalrecoverableobsDist22_array_100 = [] N_totalobsDist22_array_1000 = [] N_totalobservableobsDist22_array_1000 = [] N_totalrecoverableobsDist22_array_1000 = [] N_totalobsDist195_array = [] N_totalobservableobsDist195_array = [] N_totalrecoverableobsDist195_array = [] N_totalobsDist195_array_03 = [] N_totalobservableobsDist195_array_03 = [] N_totalrecoverableobsDist195_array_03 = [] N_totalobsDist195_array_1 = [] N_totalobservableobsDist195_array_1 = [] N_totalrecoverableobsDist195_array_1 = [] N_totalobsDist195_array_10 = [] N_totalobservableobsDist195_array_10 = [] N_totalrecoverableobsDist195_array_10 = [] N_totalobsDist195_array_30 = [] N_totalobservableobsDist195_array_30 = [] N_totalrecoverableobsDist195_array_30 = [] N_totalobsDist195_array_100 = [] N_totalobservableobsDist195_array_100 = [] N_totalrecoverableobsDist195_array_100 = [] N_totalobsDist195_array_1000 = [] N_totalobservableobsDist195_array_1000 = [] N_totalrecoverableobsDist195_array_1000 = [] def fitRagfb(): x = [0.05, 0.1, 1, 8, 15] #estimates of midpoints in bins, and using this: https:/sites.uni.edu/morgans/astro/course/Notes/section2/spectralmasses.html y = [0.20, 0.35, 0.50, 0.70, 0.75] init = models.PowerLaw1D(amplitude=0.5, x_0=1, alpha=-1.) fitter = fitting.LevMarLSQFitter() fit = fitter(init, x, y) return fit fbFit= fitRagfb() mbins = np.arange(0,10, 0.1, dtype='float') cutP = 0.10 #condition on recoverability/tolerance for filenormal_ in sorted(allFiles_normal): filename = filenormal_[60:] fileid = filename.strip('output_file.csv') print ("I'm starting " + fileid) datnormal = pd.read_csv(filenormal_, sep = ',', header=2) PeriodIn = datnormal['p'] # input period -- 'p' in data file ########################################################## datnormal1 = pd.read_csv(filenormal_, sep = ',', header=0, nrows=1) N_tri = datnormal1["NstarsTRILEGAL"][0] #print("N_tri = ", N_tri) Nall = len(PeriodIn) m1hAll0, m1b =
np.histogram(datnormal["m1"], bins=mbins)
numpy.histogram
import pickle import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from .utils import I, Z from .utils import rx class Layerwise: def __init__(self, G): self.graph = G self.num_qubits = len(G.nodes) self.edge_list = list(G.edges) self.hamiltonian = self.get_maxcut_hmt() self.maxcut = np.max(self.hamiltonian) self.best_ansatz = self.plusxn() self.best_params = None self.exp_arr = None self.npts = None self.gmesh = None self.bmesh = None self.max_exps = None self.depth = 0 def tensor_prod(self, u3, qubits): if 0 in qubits: ans = u3 else: ans = I for idx in range(1, self.num_qubits): if idx in qubits: ans =
np.kron(ans, u3)
numpy.kron
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import copy import typing as tp import numpy as np import gym import nevergrad as ng from nevergrad.parametrization import parameter from ..base import ExperimentFunction # pylint: disable=unused-import,import-outside-toplevel GUARANTEED_GYM_ENV_NAMES = [ "Copy-v0", "RepeatCopy-v0", "ReversedAddition-v0", "ReversedAddition3-v0", "DuplicatedInput-v0", "Reverse-v0", "CartPole-v0", "CartPole-v1", "MountainCar-v0", "Acrobot-v1", "Blackjack-v0", "FrozenLake-v0", "FrozenLake8x8-v0", "CliffWalking-v0", "NChain-v0", "Roulette-v0", "Taxi-v3", "CubeCrash-v0", "CubeCrashSparse-v0", "CubeCrashScreenBecomesBlack-v0", "MemorizeDigits-v0", ] # We do not use "conformant" which is not consistent with the rest. CONTROLLERS = [ "linear", # Simple linear controller. "neural", # Simple neural controller. "deep_neural", # Deeper neural controller. "semideep_neural", # Deep, but not very deep. "structured_neural", # Structured optimization of a neural net. "memory_neural", # Uses a memory (i.e. recurrent net). "deep_memory_neural", "stackingmemory_neural", # Uses a memory and stacks a heuristic and the memory as inputs. "deep_stackingmemory_neural", "semideep_stackingmemory_neural", "extrapolatestackingmemory_neural", # Same as stackingmemory_neural + suffix-based extrapolation. "deep_extrapolatestackingmemory_neural", "semideep_extrapolatestackingmemory_neural", "semideep_memory_neural", "multi_neural", # One neural net per time step. "noisy_neural", # Do not start at 0 but at a random point. "scrambled_neural", # Why not perturbating the order of variables ? "noisy_scrambled_neural", "stochastic_conformant", # Conformant planning, but still not deterministic. ] NO_LENGTH = ["ANM", "Blackjack", "CliffWalking", "Cube", "Memorize", "ompiler", "llvm"] # Environment used for CompilerGym: this class proposes a small ActionSpace. class SmallActionSpaceLlvmEnv(gym.ActionWrapper): """A wrapper for the LLVM compiler environment that exposes a tiny subset of the full discrete action space (the subset was hand pruned to contain a mix of "good" and "bad" actions). """ action_space_subset = [ "-adce", "-break-crit-edges", "-constmerge", "-correlated-propagation", "-deadargelim", "-dse", "-early-cse-memssa", "-functionattrs", "-functionattrs", "-globaldce", "-globalopt", "-gvn", "-indvars", "-inline", "-instcombine", "-ipsccp", "-jump-threading", "-lcssa", "-licm", "-loop-deletion", "-loop-idiom", "-loop-reduce", "-loop-rotate", "-loop-simplify", "-loop-unroll", "-loop-unswitch", "-lower-expect", "-loweratomic", "-lowerinvoke", "-lowerswitch", "-mem2reg", "-memcpyopt", "-partial-inliner", "-prune-eh", "-reassociate", "-sccp", "-simplifycfg", "-sink", "-sroa", "-strip", "-strip-nondebug", "-tailcallelim", ] def __init__(self, env) -> None: """Creating a counterpart of a compiler gym environement with a reduced action space.""" super().__init__(env=env) # Array for translating from this tiny action space to the action space of # the wrapped environment. self.true_action_indices = [self.action_space[f] for f in self.action_space_subset] def action(self, action: tp.Union[int, tp.List[int]]): if isinstance(action, int): return self.true_action_indices[action] else: return [self.true_action_indices[a] for a in action] class AutophaseNormalizedFeatures(gym.ObservationWrapper): """A wrapper for LLVM environments that use the Autophase observation space to normalize and clip features to the range [0, 1]. """ # The index of the "TotalInsts" feature of autophase. TotalInsts_index = 51 def __init__(self, env: tp.Any): """Creating a counterpart of a compiler gym environement with an extended observation space.""" super().__init__(env=env) assert env.observation_space_spec.id == "Autophase", "Requires autophase features" # Adjust the bounds to reflect the normalized values. self.observation_space = gym.spaces.Box( low=np.full(self.observation_space.shape[0], 0, dtype=np.float32), # type: ignore high=np.full(self.observation_space.shape[0], 1, dtype=np.float32), # type: ignore dtype=np.float32, ) def observation(self, observation): if observation[self.TotalInsts_index] <= 0: return np.zeros(observation.shape) return np.clip(observation / observation[self.TotalInsts_index], 0, 1) class ConcatActionsHistogram(gym.ObservationWrapper): """A wrapper that concatenates a histogram of previous actions to each observation. The actions histogram is concatenated to the end of the existing 1-D box observation, expanding the space. The actions histogram has bounds [0,inf]. If you specify a fixed episode length `norm_to_episode_len`, each histogram update will be scaled by 1/norm_to_episode_len, so that `sum(observation) == 1` after episode_len steps. """ def __init__(self, env: tp.Any, norm_to_episode_len: int = 0) -> None: """Creating a counterpart of a compiler gym environement with an extended observation space.""" super().__init__(env=env) assert isinstance( self.observation_space, gym.spaces.Box # type: ignore ), "Can only contatenate actions histogram to box shape" assert isinstance( self.action_space, gym.spaces.Discrete ), "Can only construct histograms from discrete spaces" assert len(self.observation_space.shape) == 1, "Requires 1-D observation space" # type: ignore self.increment = 1 / norm_to_episode_len if norm_to_episode_len else 1 # Reshape the observation space. self.observation_space = gym.spaces.Box( low=np.concatenate( ( self.observation_space.low, # type: ignore np.full(self.action_space.n, 0, dtype=np.float32), ) ), high=np.concatenate( ( self.observation_space.high, # type: ignore np.full( self.action_space.n, 1 if norm_to_episode_len else float("inf"), dtype=np.float32, ), ) ), dtype=np.float32, ) self.histogram = np.zeros((self.action_space.n,)) def reset(self, *args, **kwargs): self.histogram = np.zeros((self.action_space.n,)) return super().reset(*args, **kwargs) def step(self, action: tp.Union[int, tp.List[int]]): if not isinstance(action, tp.Iterable): action = [action] for a in action: self.histogram[a] += self.increment return super().step(action) def observation(self, observation): return np.concatenate((observation, self.histogram)) # Class for direct optimization of CompilerGym problems. # We have two variants: a limited (small action space) and a full version. class CompilerGym(ExperimentFunction): def __init__(self, compiler_gym_pb_index: int, limited_compiler_gym: tp.Optional[bool] = None): """Creating a compiler gym environement. Parameters: compiler_gym_pb_index: integer which pb we are working on. limited_compiler_gym: bool whether we use a limited action space. """ try: import compiler_gym # noqa except ImportError as e: raise ng.errors.UnsupportedExperiment( "Please install compiler_gym for CompilerGym experiments" ) from e # CompilerGym sends http requests that CircleCI does not like. if os.environ.get("CIRCLECI", False): raise ng.errors.UnsupportedExperiment("No HTTP request in CircleCI") env = gym.make("llvm-ic-v0", observation_space="Autophase", reward_space="IrInstructionCountOz") action_space_size = ( len(SmallActionSpaceLlvmEnv.action_space_subset) if limited_compiler_gym else env.action_space.n ) self.num_episode_steps = 45 if limited_compiler_gym else 50 parametrization = ( ng.p.Array(shape=(self.num_episode_steps,)) .set_bounds(0, action_space_size - 1) .set_integer_casting() ).set_name("direct" + str(compiler_gym_pb_index)) self.uris = list(env.datasets["benchmark://cbench-v1"].benchmark_uris()) self.compilergym_index = compiler_gym_pb_index env.reset(benchmark=self.uris[self.compilergym_index]) self.limited_compiler_gym = limited_compiler_gym super().__init__(self.eval_actions_as_list, parametrization=parametrization) def make_env(self) -> gym.Env: """Convenience function to create the environment that we'll use.""" # User the time-limited wrapper to fix the length of episodes. if self.limited_compiler_gym: import compiler_gym env = gym.wrappers.TimeLimit( env=SmallActionSpaceLlvmEnv(env=gym.make("llvm-v0", reward_space="IrInstructionCountOz")), max_episode_steps=self.num_episode_steps, ) env.unwrapped.benchmark = "cBench-v1/qsort" env.action_space.n = len(SmallActionSpaceLlvmEnv.action_space_subset) else: env = gym.make("llvm-ic-v0", reward_space="IrInstructionCountOz") assert env.action_space.n > len(SmallActionSpaceLlvmEnv.action_space_subset) return env # @lru_cache(maxsize=1024) # function is deterministic so we can cache results def eval_actions(self, actions: tp.Tuple[int, ...]) -> float: """Create an environment, run the sequence of actions in order, and return the negative cumulative reward. Intermediate observations/rewards are discarded. This is the function that we want to minimize. """ with self.make_env() as env: env.reset(benchmark=self.uris[self.compilergym_index]) _, _, _, _ = env.step(actions) return -env.episode_reward def eval_actions_as_list(self, actions: tp.List[int]): """Wrapper around eval_actions() that records the return value for later analysis.""" reward = self.eval_actions(tuple(actions[i] for i in range(len(actions)))) return reward class GymMulti(ExperimentFunction): """Class for converting a gym environment, a controller style, and others into a black-box optimization benchmark.""" @staticmethod def get_env_names() -> tp.List[str]: import gym_anm # noqa gym_env_names = [] for e in gym.envs.registry.all(): try: assert "Kelly" not in str(e.id) # We should have another check than that. assert "llvm" not in str(e.id) # We should have another check than that. env = gym.make(e.id) env.reset() env.step(env.action_space.sample()) a1 = np.asarray(env.action_space.sample()) a2 = np.asarray(env.action_space.sample()) a3 = np.asarray(env.action_space.sample()) a1 = a1 + a2 + a3 if hasattr(a1, "size"): try: assert a1.size < 15000 except Exception: # pylint: disable=broad-except assert a1.size() < 15000 # type: ignore gym_env_names.append(e.id) except Exception as exception: # pylint: disable=broad-except print(f"{e.id} not included in full list becaue of {exception}.") return gym_env_names controllers = CONTROLLERS ng_gym = [ "Copy-v0", "RepeatCopy-v0", "Reverse-v0", "CartPole-v0", "CartPole-v1", "Acrobot-v1", "FrozenLake-v0", "FrozenLake8x8-v0", "NChain-v0", "Roulette-v0", ] def wrap_env(self, input_env): if self.limited_compiler_gym: env = gym.wrappers.TimeLimit( env=SmallActionSpaceLlvmEnv(input_env), max_episode_steps=self.num_episode_steps, ) env.unwrapped.benchmark = input_env.benchmark env.action_space.n = len(SmallActionSpaceLlvmEnv.action_space_subset) else: env = gym.wrappers.TimeLimit( env=input_env, max_episode_steps=self.num_episode_steps, ) return env def observation_wrap(self, env): env2 = AutophaseNormalizedFeatures(env) env3 = ConcatActionsHistogram(env2) return env3 def __init__( self, name: str = "gym_anm:ANM6Easy-v0", control: str = "conformant", neural_factor: tp.Optional[int] = 1, randomized: bool = True, compiler_gym_pb_index: tp.Optional[int] = None, limited_compiler_gym: tp.Optional[bool] = None, optimization_scale: int = 0, greedy_bias: bool = False, ) -> None: # limited_compiler_gym: bool or None. # whether we work with the limited version self.limited_compiler_gym = limited_compiler_gym self.optimization_scale = optimization_scale self.num_training_codes = 100 if limited_compiler_gym else 5000 self.uses_compiler_gym = "compiler" in name self.stochastic_problem = "stoc" in name self.greedy_bias = greedy_bias if "conformant" in control or control == "linear": assert neural_factor is None if os.name == "nt": raise ng.errors.UnsupportedExperiment("Windows is not supported") if self.uses_compiler_gym: # Long special case for Compiler Gym. # CompilerGym sends http requests that CircleCI does not like. if os.environ.get("CIRCLECI", False): raise ng.errors.UnsupportedExperiment("No HTTP request in CircleCI") assert limited_compiler_gym is not None self.num_episode_steps = 45 if limited_compiler_gym else 50 import compiler_gym env = gym.make("llvm-v0", observation_space="Autophase", reward_space="IrInstructionCountOz") env = self.observation_wrap(self.wrap_env(env)) self.uris = list(env.datasets["benchmark://cbench-v1"].benchmark_uris()) # For training, in the "stochastic" case, we use Csmith. from itertools import islice self.csmith = list( islice(env.datasets["generator://csmith-v0"].benchmark_uris(), self.num_training_codes) ) if self.stochastic_problem: assert ( compiler_gym_pb_index is None ), "compiler_gym_pb_index should not be defined in the stochastic case." self.compilergym_index = None # In training, we randomly draw in csmith (but we are allowed to use 100x more budget :-) ). o = env.reset(benchmark=np.random.choice(self.csmith)) else: assert compiler_gym_pb_index is not None self.compilergym_index = compiler_gym_pb_index o = env.reset(benchmark=self.uris[self.compilergym_index]) # env.require_dataset("cBench-v1") # env.unwrapped.benchmark = "benchmark://cBench-v1/qsort" else: # Here we are not in CompilerGym anymore. assert limited_compiler_gym is None assert ( compiler_gym_pb_index is None ), "compiler_gym_pb_index should not be defined if not CompilerGym." env = gym.make(name if "LANM" not in name else "gym_anm:ANM6Easy-v0") o = env.reset() self.env = env # Build various attributes. self.name = ( (name if not self.uses_compiler_gym else name + str(env)) + "__" + control + "__" + str(neural_factor) ) if randomized: self.name += "_unseeded" self.randomized = randomized try: self.num_time_steps = env._max_episode_steps # I know! This is a private variable. except AttributeError: # Not all environements have a max number of episodes! assert any(x in name for x in NO_LENGTH), name if ( self.uses_compiler_gym and not self.limited_compiler_gym ): # The unlimited Gym uses 50 time steps. self.num_time_steps = 50 elif self.uses_compiler_gym and self.limited_compiler_gym: # Other Compiler Gym: 45 time steps. self.num_time_steps = 45 elif "LANM" not in name: # Most cases: let's say 100 time steps. self.num_time_steps = 100 else: # LANM is a special case with 3000 time steps. self.num_time_steps = 3000 self.gamma = 0.995 if "LANM" in name else 1.0 self.neural_factor = neural_factor # Infer the action space. if isinstance(env.action_space, gym.spaces.Discrete): output_dim = env.action_space.n output_shape = (output_dim,) discrete = True assert output_dim is not None, env.action_space.n else: # Continuous action space output_shape = env.action_space.shape if output_shape is None: output_shape = tuple(np.asarray(env.action_space.sample()).shape) # When the shape is not available we might do: # output_shape = tuple(np.asarray(env.action_space.sample()).shape) discrete = False output_dim = np.prod(output_shape) self.discrete = discrete # Infer the observation space. assert ( env.observation_space is not None or self.uses_compiler_gym or "llvm" in name ), "An observation space should be defined." if self.uses_compiler_gym: input_dim = 98 if self.limited_compiler_gym else 179 self.discrete_input = False elif env.observation_space is not None and env.observation_space.dtype == int: # Direct inference for corner cases: # if "int" in str(type(o)): input_dim = env.observation_space.n assert input_dim is not None, env.observation_space.n self.discrete_input = True else: input_dim = np.prod(env.observation_space.shape) if env.observation_space is not None else 0 if input_dim is None: input_dim = np.prod(np.asarray(o).shape) self.discrete_input = False # Infer the action type. a = env.action_space.sample() self.action_type = type(a) self.subaction_type = None if hasattr(a, "__iter__"): self.subaction_type = type(a[0]) # Prepare the policy shape. if neural_factor is None: assert ( control == "linear" or "conformant" in control ), f"{control} has neural_factor {neural_factor}" neural_factor = 1 self.output_shape = output_shape self.num_stacking = 1 self.memory_len = neural_factor * input_dim if "memory" in control else 0 self.extended_input_len = (input_dim + output_dim) * self.num_stacking if "stacking" in control else 0 input_dim = input_dim + self.memory_len + self.extended_input_len self.extended_input = np.zeros(self.extended_input_len) output_dim = output_dim + self.memory_len self.input_dim = input_dim self.output_dim = output_dim self.num_neurons = 1 + ((neural_factor * (input_dim - self.extended_input_len)) // 7) self.num_neurons = neural_factor * (input_dim - self.extended_input_len) self.num_internal_layers = 1 if "semi" in control else 3 internal = self.num_internal_layers * (self.num_neurons ** 2) if "deep" in control else 0 unstructured_neural_size = ( output_dim * self.num_neurons + self.num_neurons * (input_dim + 1) + internal, ) neural_size = unstructured_neural_size if self.greedy_bias: neural_size = (unstructured_neural_size[0] + 1,) assert "multi" not in control assert "structured" not in control assert control in CONTROLLERS or control == "conformant", f"{control} not known as a form of control" self.control = control if "neural" in control: self.first_size = self.num_neurons * (self.input_dim + 1) self.second_size = self.num_neurons * self.output_dim self.first_layer_shape = (self.input_dim + 1, self.num_neurons) self.second_layer_shape = (self.num_neurons, self.output_dim) shape_dict = { "conformant": (self.num_time_steps,) + output_shape, "stochastic_conformant": (self.num_time_steps,) + output_shape, "linear": (input_dim + 1, output_dim), "memory_neural": neural_size, "neural": neural_size, "deep_neural": neural_size, "semideep_neural": neural_size, "deep_memory_neural": neural_size, "semideep_memory_neural": neural_size, "deep_stackingmemory_neural": neural_size, "stackingmemory_neural": neural_size, "semideep_stackingmemory_neural": neural_size, "deep_extrapolatestackingmemory_neural": neural_size, "extrapolatestackingmemory_neural": neural_size, "semideep_extrapolatestackingmemory_neural": neural_size, "structured_neural": neural_size, "multi_neural": (min(self.num_time_steps, 50),) + unstructured_neural_size, "noisy_neural": neural_size, "noisy_scrambled_neural": neural_size, "scrambled_neural": neural_size, } shape = shape_dict[control] assert all( c in shape_dict for c in self.controllers ), f"{self.controllers} subset of {shape_dict.keys()}" shape = tuple(map(int, shape)) self.policy_shape = shape if "structured" not in control else None # Create the parametrization. parametrization = parameter.Array(shape=shape).set_name("ng_default") if "structured" in control and "neural" in control and "multi" not in control: parametrization = parameter.Instrumentation( # type: ignore parameter.Array(shape=tuple(map(int, self.first_layer_shape))), parameter.Array(shape=tuple(map(int, self.second_layer_shape))), ).set_name("ng_struct") elif "conformant" in control: try: if env.action_space.low is not None and env.action_space.high is not None: low = np.repeat(np.expand_dims(env.action_space.low, 0), self.num_time_steps, axis=0) high = np.repeat(np.expand_dims(env.action_space.high, 0), self.num_time_steps, axis=0) init = 0.5 * (low + high) parametrization = parameter.Array(init=init) parametrization.set_bounds(low, high) except AttributeError: # Not all env.action_space have a low and a high. pass if self.subaction_type == int: parametrization.set_integer_casting() parametrization.set_name("conformant") # Now initializing. super().__init__(self.gym_multi_function, parametrization=parametrization) self.greedy_coefficient = 0.0 self.parametrization.function.deterministic = not self.uses_compiler_gym self.archive: tp.List[tp.Any] = [] self.mean_loss = 0.0 self.num_losses = 0 def evaluation_function(self, *recommendations) -> float: """Averages multiple evaluations if necessary.""" x = recommendations[0].value if not self.randomized: assert not self.uses_compiler_gym return self.gym_multi_function(x, limited_fidelity=False) if not self.uses_compiler_gym: # Pb_index >= 0 refers to the test set. return ( np.sum( [ self.gym_multi_function(x, limited_fidelity=False) for compiler_gym_pb_index in range(23) ] ) / 23.0 # This is not compiler_gym but we keep this 23 constant. ) assert self.uses_compiler_gym rewards = [ np.log( max( 1e-5, -self.gym_multi_function( x, limited_fidelity=False, compiler_gym_pb_index=compiler_gym_pb_index ), ) ) for compiler_gym_pb_index in range(23) ] return -np.exp(sum(rewards) / len(rewards)) def forked_env(self): assert "compiler" in self.name env = self.env forked = env.unwrapped.fork() forked = self.wrap_env(forked) # pylint: disable=W0201 assert hasattr( env, "_elapsed_steps" ), f"{[hasattr(e, '_elapsed_steps') for e in [env, env.unwrapped, env.unwrapped.unwrapped, env.unwrapped.unwrapped.unwrapped]]}" if env._elapsed_steps is not None: forked._elapsed_steps = env._elapsed_steps forked = self.observation_wrap(forked) if hasattr(env, "histogram"): forked.histogram = env.histogram.copy() return forked def discretize(self, a): """Transforms a logit into an int obtained through softmax.""" if self.greedy_bias: a = np.asarray(a, dtype=np.float32) for i, action in enumerate(range(len(a))): if "compiler" in self.name: tmp_env = self.forked_env() else: tmp_env = copy.deepcopy(self.env) _, r, _, _ = tmp_env.step(action) a[i] += self.greedy_coefficient * r probabilities = np.exp(a - max(a)) probabilities = probabilities / sum(probabilities) assert sum(probabilities) <= 1.0 + 1e-7, f"{probabilities} with greediness {self.greedy_coefficient}." return int(list(np.random.multinomial(1, probabilities)).index(1)) def neural(self, x: np.ndarray, o: np.ndarray): """Applies a neural net parametrized by x to an observation o. Returns an action or logits of actions.""" if self.greedy_bias: assert "multi" not in self.control assert "structured" not in self.control self.greedy_coefficient = x[-1:] # We have decided that we can not have two runs in parallel. x = x[:-1] o = o.ravel() if "structured" not in self.name and self.optimization_scale != 0: x = np.asarray((2 ** self.optimization_scale) * x, dtype=np.float32) if self.control == "linear": # The linear case is simplle. output = np.matmul(o, x[1:, :]) output += x[0] return output.reshape(self.output_shape), np.zeros(0) if "structured" not in self.control: # If not structured then we split into two matrices. first_matrix = x[: self.first_size].reshape(self.first_layer_shape) / np.sqrt(len(o)) second_matrix = x[self.first_size : (self.first_size + self.second_size)].reshape( self.second_layer_shape ) / np.sqrt(self.num_neurons) else: # In the structured case we should have two entries with the right shapes. assert len(x) == 2 first_matrix =
np.asarray(x[0][0])
numpy.asarray
# -*- coding: utf-8 -*- """ Created on Wed Jul 20 15:12:49 2016 @author: uzivatel """ import numpy as np from copy import deepcopy from .general import Energy from .density import DensityGrid class MO: ''' Class containing information about molecular orbitals. name : string Name of molecular orbital class coeff : numpy array or real (dimension N_mo x N_AO_orient) Usually N_mo=N_AO_orient. Matrix with expansion coefficients of molecular orbital into AO basis. nmo : integer Number of molecular orbitals energy : Energy class Molecular orbital energies (``energy.value`` - vector with all energies) - Fock single electron energies (energies are energy units managed). occ : numpy.array of real (dimension Nmo_orbitals) Occupation number of individual molecular orbitals. Number between 2.0 correspond to fully occupied molecular orbital and 0.0 wich correspond to unoccupied MO. Summ of occupation numbers is equal to total number of electrons symm : list of string (dimension Nmo_orbitals) Symmetry of molecular orbitals densmat_grnd : numpy array of float (dimension Nao_orient x Nao_orient) Total ground state electron matrix in atomic orbitals, defined as:\n ``M_mat[mu,nu]=Sum_{n}{occ_n*C_n,mu*C_n,nu}``.\n Where `C_n,mu` are expansion coefficients of molecular orbital `n` into atomic orbital `mu` (contribution of atomic orbital `mu` in molecular orbital `n`). init : logical information if molecular orbitals are initialized (if some information is allready loaded) Functions ----------- add_all : Add molecular orbital including expansion coefficients into atomic orbitals, energy of the molecular orbital, occupation number and symmetry rotate : Rotate the molecular orbitals and ground state electron density matrix by specified angles in radians in positive direction. rotate_1 : Inverse totation to rotate copy : Create 1 to 1 copy of the molecular orbitals with all classes and types. get_MO_norm : Calculate norm of secified molecular orbital normalize : Normalize molecular orbitals (if loaded from Gaussian calculation there are some round errors and therefore orbitals have slightly different norm ~0.998 in this order) get_mo_grid : Evaluate selected molecular orbital on the grid get_grnd_densmat : Calculate ground state electron density matrix get_MO_type : Calculates if molecular orbital is sigma or pi type ''' def __init__(self): self.coeff=np.array([],dtype='f8') self.nmo=0 self.energy=Energy(None) self.occ=[] self.symm=[] self.name='Default' self.init=False self.densmat_grnd=None def _add_coeffs(self,coeff): if not self.init: if np.ndim(coeff)==1: self.coeff=
np.array([coeff],dtype='f8')
numpy.array
import numpy as np import torch from styletransfer.cut.models import create_model from styletransfer.cut.options.test_options import TestOptions def prepare(name="dual_simple", mode="FastCUT" , path = "styletransfer/cut/checkpoints"): opt = TestOptions().parse() # get test options # hard-code some parameters for testmodel opt.name = name # "road_FastCUT" # NAME "road_CUT" # opt.checkpoints_dir = path opt.CUT_mode = mode # "FastCUT" # CUT opt.phase = "test" opt.num_threads = 0 # test code only supports num_threads = 1 opt.batch_size = 1 # test code only supports batch_size = 1 opt.serial_batches = True # disable data shuffling; comment this line if results on randomly chosen images are needed. opt.no_flip = True # no flip; comment this line if results on flipped images are needed. opt.display_id = -1 # no visdom display; the test code saves the results to a HTML file. opt.dataset_mode = "conditional" opt.netG = "conditional_resnet_9" opt.netD = "conditional" opt.model = "conditional_cut" opt.lambda_hist = 0 opt.lambda_edge = 0 opt.edge_warmup=0 model = create_model(opt) # create a model given opt.model and other options model.setup(opt) # regular setup: load and print networks; create schedulers model.parallelize() return model def generate(model, img, a, b): img = np.transpose(img, axes=[2, 0, 1]) img = img[np.newaxis, :] img = 2 * ((img / 255) - 1) data = { "A": torch.Tensor(img), "B": torch.Tensor(img), "B_class": torch.Tensor([[a, b]]), "A_paths": "None", "B_paths": "None" } model.set_input(data) # unpack data from data loader model.test() # run inference visuals = model.get_current_visuals() # get image result# s img = visuals['fake_B'].cpu().numpy() from matplotlib import pyplot as plt img =
np.transpose(img, axes=[0, 2, 3, 1])
numpy.transpose
import os import ast import glob import numpy as np import pandas as pd from tqdm import tqdm from itertools import chain from astropy.io import ascii import multiprocessing as mp from astropy.stats import mad_std from astropy.timeseries import LombScargle as lomb from pysyd import __file__ from pysyd.plots import set_plot_params from pysyd.models import * ##################################################################### # HIGHER-LEVEL FUNCTIONALITY OF THE SOFTWARE # def get_info(args): """ Loads todo.txt, sets up file paths, loads in any available star information, saves the relevant parameters for each of the two main routines and sets the plotting parameters. Parameters ---------- args : argparse.Namespace command-line arguments parallel : bool if pysyd will be running in parallel mode CLI : bool, optional if CLI is not being used (i.e. `False`), the modules draw default values from a different location Returns ------- args : argparse.Namespace the updated command-line arguments """ # Get parameters for all modules args = get_parameters(args) # Get invidual/specific star info from csv file (if it exists) args = get_csv_info(args) if args.cli: # Check the input variables check_input_args(args) args = get_command_line(args) set_plot_params() return args def get_parameters(args): """ Basic function to call the individual functions that load and save parameters for different modules. Parameters ---------- args : argparse.Namespace command-line arguments Returns ------- args : argparse.Namespace the updated command-line arguments """ # Initialize main 'params' dictionary args = get_main_params(args) args = get_groups(args) # Initialize parameters for the find excess routine args = get_excess_params(args) # Initialize parameters for the fit background routine args = get_background_params(args) # Initialize parameters relevant for estimating global parameters args = get_global_params(args) return args def get_main_params(args, cli=False, stars=None, excess=True, background=True, globe=True, verbose=False, command='run', parallel=False, show=False, testing=False, save=True, kep_corr=False, of_actual=None, of_new=None, overwrite=True): """ Get the parameters for the find excess routine. Parameters ---------- args : argparse.Namespace the command line arguments stars : List[str], optional list of targets to process. If `None`, will read in from `info/todo.txt` (default). verbose : bool, optional turn on verbose output. Default is `False`. show : bool, optional show output figures. Default is `False`. save : bool, optional save all data products. Default is `True`. kep_corr : bool, optional use the module that corrects for known kepler artefacts. Default is `False`. of_actual : int, optional oversampling factor of input PS. Default value is `None`. of_new : int, optional oversampling factor of newly-computed PS. Default value is `None`. Returns ------- args : argparse.Namespace the updated command line arguments args.params : Dict[str,object] the parameters of higher-level functionality """ vars = ['stars', 'inpdir', 'outdir', 'cli', 'command', 'info', 'show', 'save', 'testing', 'overwrite', 'excess', 'background', 'global', 'verbose'] if args.cli: vals = [args.stars, args.inpdir, args.outdir, args.cli, args.command, args.info, args.show, args.save, args.testing, args.overwrite, args.excess, args.background, args.globe, args.verbose] else: args.todo = os.path.join(os.path.abspath(os.getcwd()), 'info', 'todo.txt') info = os.path.join(os.path.abspath(os.getcwd()), 'info', 'star_info.csv') inpdir = os.path.join(os.path.abspath(os.getcwd()), 'data') args.command, args.parallel, args.of_actual, args.of_new, args.kep_corr, args.verbose = command, parallel, of_actual, of_new, kep_corr, verbose vals = [stars, inpdir, os.path.join(os.path.abspath(os.getcwd()), 'results'), cli, command, info, show, save, testing, overwrite, excess, background, globe, verbose] args.params = dict(zip(vars,vals)) # Open star list if args.params['stars'] is None or args.params['stars'] == []: with open(args.todo, "r") as f: args.params['stars'] = [line.strip().split()[0] for line in f.readlines()] # Set file paths and make directories if they don't yet exist for star in args.params['stars']: args.params[star] = {} args.params[star]['path'] = os.path.join(args.params['outdir'], star) if args.params['save'] and not os.path.exists(args.params[star]['path']): os.makedirs(args.params[star]['path']) args.params[star]['ech_mask'] = None return args ##################################################################### # Sets up star "groups" -> mostly for parallel processing # def get_groups(args): """ Sets up star groups to run in parallel based on the number of threads. Parameters ---------- args : argparse.Namespace command line arguments parallel : bool run pySYD in parallel Returns ------- args : argparse.Namespace the updated command line arguments args.params['groups'] : ndarray star groups to process (groups == number of threads) Returns ---------- None """ if args.parallel: todo = np.array(args.params['stars']) if args.n_threads == 0: args.n_threads = mp.cpu_count() if len(todo) < args.n_threads: args.n_threads = len(todo) # divide stars into groups set by number of cpus/nthreads available digitized = np.digitize(np.arange(len(todo))%args.n_threads,np.arange(args.n_threads)) args.params['groups'] = np.array([todo[digitized == i] for i in range(1, args.n_threads+1)], dtype=object) else: args.params['groups'] = np.array(args.params['stars']) return args ##################################################################### # Parameters relevant to (optionally) estimate numax # def get_excess_params(args, n_trials=3, step=0.25, binning=0.005, smooth_width=20.0, mode='mean', lower_ex=1.0, upper_ex=8000., ask=False,): """ Get the parameters for the find excess routine. Parameters ---------- args : argparse.Namespace the command line arguments ask : bool, optional If `True`, it will ask which trial to use as the estimate for numax. n_trials : int, optional the number of trials. Default value is `3`. step : float, optional TODO: Write description. Default value is `0.25`. binning : float, optional logarithmic binning width. Default value is `0.005`. mode : {'mean', 'median', 'gaussian'} mode to use when binning Returns ------- args : argparse.Namespace the updated command line arguments args.findex : Dict[str,object] the parameters of the find excess routine """ vars = ['step', 'binning', 'mode', 'smooth_width', 'ask', 'n_trials', 'lower_ex', 'upper_ex', 'results'] if args.cli: vals = [args.step, args.binning, args.mode, args.smooth_width, args.ask, args.n_trials, args.lower_ex, args.upper_ex, {}] else: vals = [step, binning, mode, smooth_width, ask, n_trials, lower_ex, upper_ex, {}] args.excess = dict(zip(vars,vals)) return args ##################################################################### # Parameters relevant to background-fitting # def get_background_params(args, ind_width=20.0, box_filter=1.0, n_rms=20, metric='bic', include=False, mc_iter=1, samples=False, n_laws=None, fix_wn=False, basis='tau_sigma', lower_bg=1.0, upper_bg=8000.,): """ Get the parameters for the background-fitting routine. Parameters ---------- args : argparse.Namespace the command line arguments box_filter : float the size of the 1D box smoothing filter (in muHz). Default value is `1.0`. ind_width : float the independent average smoothing width (in muHz). Default value is `20.0`. n_rms : int number of data points to estimate red noise contributions. Default value is `20`. metric : str which metric to use (i.e. bic or aic) for model selection. Default is `'bic'`. include : bool include metric values in verbose output. Default is `False`. basis : str which basis to use for background fitting, e.g. {a,b} parametrization. Default is `tau_sigma`. n_laws : int force number of Harvey-like components in background fit. Default value is `None`. fix_wn : bool fix the white noise level in the background fit. Default is `False`. mc_iter : int number of samples used to estimate uncertainty. Default value is `1`. samples : bool if true, will save the monte carlo samples to a csv. Default value is `False`. Returns ------- args : argparse.Namespace the updated command line arguments args.fitbg : Dict[str,object] the parameters relevant for the fit background routine """ vars = ['ind_width', 'box_filter', 'n_rms', 'n_laws', 'fix_wn', 'basis', 'metric', 'include', 'functions', 'mc_iter', 'samples', 'lower_bg', 'upper_bg', 'results'] if args.cli: vals = [args.ind_width, args.box_filter, args.n_rms, args.n_laws, args.fix_wn, args.basis, args.metric, args.include, get_dict(type='functions'), args.mc_iter, args.samples, args.lower_bg, args.upper_bg, {}] else: vals = [ind_width, box_filter, n_rms, n_laws, fix_wn, basis, metric, include, get_dict(type='functions'), mc_iter, samples, lower_bg, upper_bg, {}] args.background = dict(zip(vars,vals)) return args ##################################################################### # Features related to determining numax and dnu # def get_global_params(args, sm_par=None, lower_ps=None, upper_ps=None, width=1.0, method='D', smooth_ps=2.5, threshold=1.0, n_peaks=5, cmap='binary', clip_value=3.0, smooth_ech=None, interp_ech=False, lower_ech=None, upper_ech=None, nox=50, noy=0, notching=False): """ Get the parameters relevant for finding global asteroseismic parameters numax and dnu. Parameters ---------- args : argparse.Namespace the command line arguments sm_par : float Gaussian filter width for determining smoothed numax (values are typically between 1-4) method : str method to determine dnu, choices are ~['M','A','D'] (default is `'D'`). lower_ps : float lower bound of power excess (in muHz). Default value is `None`. upper_ps : float upper bound of power excess (in muHz). Default value is `None`. width : float fractional width to use for power excess centerd on numax. Default value is `1.0`. smooth_ps : float box filter [in muHz] for PS smoothing before calculating ACF. Default value is `1.5`. threshold : float fractional width of FWHM to use in ACF for later iterations. Default value is `1.0`. n_peaks : int the number of peaks to select. Default value is `5`. lower_ech : float lower bound of folded PS (in muHz) to 'whiten' mixed modes. Default value is `None`. upper_ech : float upper bound of folded PS (in muHz) to 'whiten' mixed modes. Default value is `None`. clip_value : float the minimum frequency of the echelle plot. Default value is `0.0`. smooth_ech : float option to smooth the output of the echelle plot interp_ech : bool turns on the bilinear smoothing in echelle plot nox : int x-axis resolution on the echelle diagram. Default value is `50`. (NOT CURRENTLY IMPLEMENTED YET) noy : int how many radial orders to plot on the echelle diagram. Default value is `5`. (NOT CURRENTLY IMPLEMENTED YET) Returns ------- args : argparse.Namespace the updated command line arguments args.globe : Dict[str,object] the parameters relevant for determining the global parameters routine """ vars = ['sm_par', 'width', 'smooth_ps', 'threshold', 'n_peaks', 'method', 'cmap', 'clip_value', 'smooth_ech', 'interp_ech', 'nox', 'noy', 'notching', 'results'] if args.cli: vals = [args.sm_par, args.width, args.smooth_ps, args.threshold, args.n_peaks, args.method, args.cmap, args.clip_value, args.smooth_ech, args.interp_ech, args.nox, args.noy, args.notching, {}] else: vals = [sm_par, width, smooth_ps, threshold, n_peaks, method, clip_value, cmap, smooth_ech, interp_ech, nox, noy, notching, {}] args.globe = dict(zip(vars,vals)) return args ##################################################################### # Can store different settings for individual stars # def get_csv_info(args, force=False, guess=None): """ Reads in any star information provided via args.info and is 'info/star_info.csv' by default. ** Please note that this is NOT required for pySYD to run successfully ** Parameters ---------- args : argparse.Namespace the command line arguments force : float if not false (i.e. non-zero) will force dnu to be the equal to this value. guess : float estimate or guess for dnu Returns ------- args : argparse.Namespace the updated command line arguments """ constants = Constants() columns = get_dict(type='columns')['required'] # Open file if it exists if os.path.exists(args.info): df = pd.read_csv(args.info) stars = [str(each) for each in df.stars.values.tolist()] for i, star in enumerate(args.params['stars']): args.params[star]['excess'] = args.params['excess'] args.params[star]['force'] = force args.params[star]['guess'] = guess if star in stars: idx = stars.index(star) # Update information from columns for column in columns: if not np.isnan(float(df.loc[idx,column])): args.params[star][column] = float(df.loc[idx, column]) else: args.params[star][column] = None # Add estimate of numax if the column exists if args.params[star]['numax'] is not None: args.params[star]['excess'] = False args.params[star]['dnu'] = 0.22*(args.params[star]['numax']**0.797) elif args.params[star]['dnu'] is not None: args.params[star]['force'] = True args.params[star]['guess'] = args.params[star]['dnu'] # Otherwise estimate using other stellar parameters else: if args.params[star]['radius'] is not None and args.params[star]['logg'] is not None: args.params[star]['mass'] = ((((args.params[star]['radius']*constants.r_sun)**(2.0))*10**(args.params[star]['logg'])/constants.G)/constants.m_sun) args.params[star]['numax'] = constants.numax_sun*args.params[star]['mass']*(args.params[star]['radius']**(-2.0))*((args.params[star]['teff']/constants.teff_sun)**(-0.5)) args.params[star]['dnu'] = constants.dnu_sun*(args.params[star]['mass']**(0.5))*(args.params[star]['radius']**(-1.5)) # if target isn't in csv, still save basic parameters called througout the code else: for column in columns: args.params[star][column] = None # same if the file does not exist else: for star in args.stars: args.params[star]['excess'] = args.params['excess'] args.params[star]['force'] = False for column in columns: args.params[star][column] = None return args ##################################################################### # If running from command line, checks input types and array lengths # def check_input_args(args, max_laws=3): """ Make sure that any command-line inputs are the proper lengths, types, etc. Parameters ---------- args : argparse.Namespace the command line arguments max_laws : int maximum number of resolvable Harvey components Yields ------ ??? """ checks={'lower_ps':args.lower_ps,'upper_ps':args.upper_ps,'lower_ech':args.lower_ech, 'upper_ech':args.upper_ech,'dnu':args.dnu,'numax':args.numax} for check in checks: if checks[check] is not None: assert len(args.stars) == len(checks[check]), "The number of values provided for %s does not equal the number of stars"%check if args.of_actual is not None: assert isinstance(args.of_actual,int), "The oversampling factor for the input PS must be an integer" if args.of_new is not None: assert isinstance(args.of_new,int), "The new oversampling factor must be an integer" if args.n_laws is not None: assert args.n_laws <= max_laws, "We likely cannot resolve %d Harvey-like components for point sources. Please select a smaller number."%args.n_laws def get_command_line(args, numax=None, dnu=None, lower_ps=None, upper_ps=None, lower_ech=None, upper_ech=None): """ If certain CLI options are provided, it saves it to the appropriate star. This is called after the csv is checked and therefore, this will override any duplicated information provided there (if applicable). Parameters ---------- args : argparse.Namespace the command line arguments args.lower_ps : float, optional the lower frequency bound for numax (in muHz). Default is `None`. args.upper_ps : float, optional the upper frequency bound for numax (in muHz). Default is `None`. args.numax : List[float], optional the estimated numax (in muHz). Default is `None`. args.dnu : List[float], optional the estimated frequency spacing or dnu (in muHz). Default is `None`. args.lower_ech : List[float], optional the lower frequency for whitening the folded PS (in muHz). Default is `None`. args.upper_ech : List[float], optional the upper frequency for whitening the folded PS (in muHz). Default is `None`. Returns ------- args : argparse.Namespace the updated command line arguments """ override = { 'lower_ps': args.lower_ps, 'upper_ps': args.upper_ps, 'numax': args.numax, 'dnu': args.dnu, 'lower_ech': args.lower_ech, 'upper_ech': args.upper_ech, } for i, star in enumerate(args.params['stars']): for each in override: if override[each] is not None: # if numax is provided via CLI, findex is skipped if each == 'numax': args.params[star]['excess'] = False args.params[star]['numax'] = override[each][i] args.params[star]['dnu'] = 0.22*(args.params[star]['numax']**0.797) # if dnu is provided via CLI, this value is used instead of the derived dnu elif each == 'dnu': args.params[star]['force'] = True args.params[star]['guess'] = override[each][i] else: args.params[star][each] = override[each][i] if args.params[star]['lower_ech'] is not None and args.params[star]['upper_ech'] is not None: args.params[star]['ech_mask'] = [args.params[star]['lower_ech'],args.params[star]['upper_ech']] else: args.params[star]['ech_mask'] = None return args ##################################################################### # Data and information related to a processed star # def load_data(star, args): """ Loads both the light curve and power spectrum data in for a given star, which will return `False` if unsuccessful and therefore, not run the rest of the pipeline. Parameters ---------- star : target.Target the pySYD pipeline object args : argparse.Namespace command line arguments Returns ------- star : target.Target the pySYD pipeline object star.lc : bool will return `True` if the light curve data was loaded in properly otherwise `False` star.ps : bool will return `True` if the power spectrum file was successfully loaded otherwise `False` """ if not star.params['cli']: star.pickles=[] # Now done at beginning to make sure it only does this once per star if glob.glob(os.path.join(args.inpdir,'%s*'%str(star.name))) != []: if star.verbose: print('\n\n------------------------------------------------------') print('Target: %s'%str(star.name)) print('------------------------------------------------------') # Load light curve args, star, note = load_time_series(args, star) if star.verbose: print(note) # Load power spectrum args, star, note = load_power_spectrum(args, star) if star.verbose: print(note) return star def load_file(path): """ Load a light curve or a power spectrum from a basic 2xN txt file and stores the data into the `x` (independent variable) and `y` (dependent variable) arrays, where N is the length of the series. Parameters ---------- path : str the file path of the data file Returns ------- x : numpy.array the independent variable i.e. the time or frequency array y : numpy.array the dependent variable, in this case either the flux or power array """ f = open(path, "r") lines = f.readlines() f.close() # Set values x = np.array([float(line.strip().split()[0]) for line in lines]) y = np.array([float(line.strip().split()[1]) for line in lines]) return x, y def load_time_series(args, star, note=''): """ If available, star.lc is set to `True`, the time series data is loaded in, and then it calculates the cadence and nyquist freqency. If time series data is not provided, either the cadence or nyquist frequency must be provided via CLI Parameters ---------- star : target.Target the pySYD pipeline object args : argparse.Namespace command line arguments args.cadence : int cadence of time series data (if known but data is not available) args.nyquist : float nyquist frequency of the provided power spectrum note : str optional suppressed verbose output Returns ------- star : target.Target the pySYD pipeline object star.lc : bool will return `True` if the light curve data was loaded in properly otherwise `False` star.time : numpy.array time array in days star.flux : numpy.array relative or normalized flux array """ star.lc = False star.nyquist = None # Try loading the light curve if os.path.exists(os.path.join(args.inpdir, '%s_LC.txt'%star.name)): star.lc = True star.time, star.flux = load_file(os.path.join(args.inpdir, '%s_LC.txt'%star.name)) star.time -= min(star.time) star.cadence = int(round(np.nanmedian(np.diff(star.time)*24.0*60.0*60.0),0)) star.nyquist = 10**6./(2.0*star.cadence) star.baseline = (max(star.time)-min(star.time))*24.*60.*60. star.tau_upper = star.baseline/2. note += '# LIGHT CURVE: %d lines of data read\n# Time series cadence: %d seconds'%(len(star.time),star.cadence) return args, star, note def load_power_spectrum(args, star, note='', long=10**6): """ Loads in the power spectrum data in for a given star, which will return `False` if unsuccessful and therefore, not run the rest of the pipeline. Parameters ---------- star : target.Target the pySYD pipeline object args : argparse.Namespace command line arguments args.kep_corr : bool if true, will run the module to mitigate the Kepler artefacts in the power spectrum. Default is `False`. args.of_actual : int the oversampling factor, if the power spectrum is already oversampled. Default is `1`, assuming a critically sampled PS. args.of_new : float the oversampling factor to use for the first iterations. Default is `5`. note : str optional suppressed verbose output long : int will display a warning if length of PS is longer than 10**6 lines Returns ------- star : target.Target the pySYD pipeline object star.ps : bool will return `True` if the power spectrum file was successfully loaded otherwise `False` star.frequency : numpy.array frequency array in muHz star.power : numpy.array power spectral density array """ star.ps = False # Try loading the power spectrum if not os.path.exists(os.path.join(args.inpdir, '%s_PS.txt'%star.name)): note += '# ERROR: %s/%s_PS.txt not found\n'%(args.inpdir, star.name) else: star.ps = True star.frequency, star.power = load_file(os.path.join(args.inpdir, '%s_PS.txt'%star.name)) note += '# POWER SPECTRUM: %d lines of data read\n'%len(star.frequency) if len(star.frequency) >= long: note += '# WARNING: PS is large and will slow down the software' star.resolution = star.frequency[1]-star.frequency[0] if args.kep_corr: note += '# **using Kepler artefact correction**\n' star = remove_artefact(star) if star.params[star.name]['ech_mask'] is not None: note += '# **whitening the PS to remove mixed modes**\n' star = whiten_mixed(star) args, star, note = check_input_data(args, star, note) return args, star, note ##################################################################### # Relevant for Kepler (artefact) correction function # -> this will save the seed for reproducibiity purposes # def set_seed(star, lower=1, upper=10**7, size=1): """ For Kepler targets that require a correction via CLI (--kc), a random seed is generated from U~[1,10^7] and stored in stars_info.csv for reproducible results in later runs. Parameters ---------- star : target.Target the pySYD pipeline object lower : int lower limit for random seed value. Default value is `1`. upper : int upper limit for random seed value. Default value is `10**7`. size : int number of seed values returned. Default value is `1`. Returns ------- star : target.Target the pySYD pipeline object """ seed = list(np.random.randint(lower,high=upper,size=size)) df = pd.read_csv(star.params['info']) stars = [str(each) for each in df.stars.values.tolist()] idx = stars.index(star.name) df.loc[idx,'seed'] = int(seed[0]) star.params[star.name]['seed'] = seed[0] df.to_csv(star.params['info'],index=False) return star ##################################################################### # Routine to correct for 1/LC Kepler harmonics, as well as # known high frequency artefacts and the low frequency artefacts # (primarily in Q0-Q3 data) # def remove_artefact(star, lcp=1.0/(29.4244*60*1e-6), lf_lower=[240.0,500.0], lf_upper =[380.0,530.0], hf_lower = [4530.0,5011.0,5097.0,5575.0,7020.0,7440.0,7864.0], hf_upper = [4534.0,5020.0,5099.0,5585.0,7030.0,7450.0,7867.0],): """ Removes SC artefacts in Kepler power spectra by replacing them with noise (using linear interpolation) following a chi-squared distribution. Known artefacts are: 1) 1./LC harmonics 2) high frequency artefacts (>5000 muHz) 3) low frequency artefacts 250-400 muHz (mostly present in Q0 and Q3 data) Parameters ---------- star : target.Target the pySYD pipeline object lcp : float long cadence period in Msec lf_lower : List[float] lower limit of low frequency artefact lf_upper : List[float] upper limit of low frequency artefact hf_lower : List[float] lower limit of high frequency artefact hf_upper : List[float] upper limit of high frequency artefact Returns ------- star : target.Target the pySYD pipeline object """ if star.params[star.name]['seed'] is None: star = set_seed(star) # LC period in Msec -> 1/LC ~muHz artefact = (1.0+np.arange(14))*lcp # Estimate white noise white = np.mean(star.power[(star.frequency >= max(star.frequency)-100.0)&(star.frequency <= max(star.frequency)-50.0)]) np.random.seed(int(star.params[star.name]['seed'])) # Routine 1: remove 1/LC artefacts by subtracting +/- 5 muHz given each artefact for i in range(len(artefact)): if artefact[i] < np.max(star.frequency): mask = np.ma.getmask(np.ma.masked_inside(star.frequency, artefact[i]-5.0*star.resolution, artefact[i]+5.0*star.resolution)) if np.sum(mask) != 0: star.power[mask] = white*np.random.chisquare(2,np.sum(mask))/2.0 np.random.seed(int(star.params[star.name]['seed'])) # Routine 2: fix high frequency artefacts for lower, upper in zip(hf_lower, hf_upper): if lower < np.max(star.frequency): mask = np.ma.getmask(np.ma.masked_inside(star.frequency, lower, upper)) if np.sum(mask) != 0: star.power[mask] = white*np.random.chisquare(2,np.sum(mask))/2.0 np.random.seed(int(star.params[star.name]['seed'])) # Routine 3: remove wider, low frequency artefacts for lower, upper in zip(lf_lower, lf_upper): low = np.ma.getmask(np.ma.masked_outside(star.frequency, lower-20., lower)) upp = np.ma.getmask(np.ma.masked_outside(star.frequency, upper, upper+20.)) # Coeffs for linear fit m, b = np.polyfit(star.frequency[~(low*upp)], star.power[~(low*upp)], 1) mask = np.ma.getmask(np.ma.masked_inside(star.frequency, lower, upper)) # Fill artefact frequencies with noise star.power[mask] = ((star.frequency[mask]*m)+b)*(np.random.chisquare(2, np.sum(mask))/2.0) return star ##################################################################### # For subgiants with mixed modes, this will "whiten" these modes # by adding noise (by drawing from a chi-squared distribution with 2 # dof) to properly estimate dnu. # def whiten_mixed(star): """ Generates random white noise in place of ell=1 for subgiants with mixed modes to better constrain the characteristic frequency spacing. Parameters ---------- star : target.Target pySYD pipeline target star.frequency : np.ndarray the frequency of the power spectrum star.power : np.ndarray the power spectrum """ if star.params[star.name]['seed'] is None: star = set_seed(star) # Estimate white noise if not star.globe['notching']: white = np.mean(star.power[(star.frequency >= max(star.frequency)-100.0)&(star.frequency <= max(star.frequency)-50.0)]) else: white = min(star.power[(star.frequency >= max(star.frequency)-100.0)&(star.frequency <= max(star.frequency)-50.0)]) # Take the provided dnu and "fold" the power spectrum folded_freq = np.copy(star.frequency)%star.params[star.name]['guess'] mask = np.ma.getmask(np.ma.masked_inside(folded_freq, star.params[star.name]['ech_mask'][0], star.params[star.name]['ech_mask'][1])) np.random.seed(int(star.params[star.name]['seed'])) # Makes sure the mask is not empty if np.sum(mask) != 0: if star.globe['notching']: star.power[mask] = white else: star.power[mask] = white*np.random.chisquare(2,np.sum(mask))/2.0 # Typically if dnu is provided, it will assume you want to "force" that value # so we need to adjust this back star.params[star.name]['force'] = False star.params[star.name]['guess'] = None return star def check_input_data(args, star, note): """ Checks the type(s) of input data and creates any additional, optional arrays as well as critically-sampled power spectra (when applicable). Parameters ---------- args : argparse.Namespace command line arguments star : target.Target pySYD target object note : str, optional optional verbose output Returns ------- args : argparse.Namespace updated command line arguments star : target.Target updated pySYD target object note : str, optional updated optional verbose output """ if star.lc: args.of_actual = int(round((1./((max(star.time)-min(star.time))*0.0864))/(star.frequency[1]-star.frequency[0]))) star.freq_cs = np.array(star.frequency[args.of_actual-1::args.of_actual]) star.pow_cs = np.array(star.power[args.of_actual-1::args.of_actual]) if args.of_new is not None: note += '# Computing new PS using oversampling of %d\n'%args.of_new freq_os, pow_os = lomb(star.time, star.flux).autopower(method='fast', samples_per_peak=args.of_new, maximum_frequency=star.nyquist) star.freq_os = freq_os*(10.**6/(24.*60.*60.)) star.pow_os = 4.*pow_os*np.var(star.flux*1e6)/(np.sum(pow_os)*(star.freq_os[1]-star.freq_os[0])) else: star.freq_os, star.pow_os = np.copy(star.frequency), np.copy(star.power) else: if args.of_actual is not None: star.freq_cs = np.array(star.frequency[args.of_actual-1::args.of_actual]) star.pow_cs = np.array(star.power[args.of_actual-1::args.of_actual]) star.freq_os, star.pow_os = np.copy(star.frequency), np.copy(star.power) else: star.freq_cs, star.pow_cs = np.copy(star.frequency), np.copy(star.power) star.freq_os, star.pow_os = np.copy(star.frequency), np.copy(star.power) note += '# WARNING: using input PS with no additional information\n' if args.mc_iter > 1: note += '# **uncertainties may not be reliable unless using a critically-sampled PS**' star.baseline = 1./((star.freq_cs[1]-star.freq_cs[0])*10**-6.) star.tau_upper = star.baseline/2. if args.of_actual is not None and args.of_actual != 1: note += '# PS is oversampled by a factor of %d\n'%args.of_actual else: note += '# PS is critically-sampled\n' note += '# PS resolution: %.6f muHz'%(star.freq_cs[1]-star.freq_cs[0]) return args, star, note ##################################################################### # Sets data up for first optional module # def get_estimates(star, max_trials=6): """ Parameters used with the first module, which is automated method to identify power excess due to solar-like oscillations. Parameters ---------- star : target.Target pySYD target object Returns ------- star : target.Target updated pySYD target object """ # If running the first module, mask out any unwanted frequency regions star.frequency, star.power = np.copy(star.freq_os), np.copy(star.pow_os) star.resolution = star.frequency[1]-star.frequency[0] # mask out any unwanted frequencies if star.params[star.name]['lower_ex'] is not None: lower = star.params[star.name]['lower_ex'] else: if star.excess['lower_ex'] is not None: lower = star.excess['lower_ex'] else: lower = min(star.frequency) if star.params[star.name]['upper_ex'] is not None: upper = star.params[star.name]['upper_ex'] else: if star.excess['upper_ex'] is not None: upper = star.excess['upper_ex'] else: upper = max(star.frequency) if star.nyquist is not None and star.nyquist < upper: upper = star.nyquist star.freq = star.frequency[(star.frequency >= lower)&(star.frequency <= upper)] star.pow = star.power[(star.frequency >= lower)&(star.frequency <= upper)] if star.excess['n_trials'] > max_trials: star.excess['n_trials'] = max_trials if (star.params[star.name]['numax'] is not None and star.params[star.name]['numax'] <= 500.) or (star.nyquist is not None and star.nyquist <= 300.): star.boxes = np.logspace(np.log10(0.5), np.log10(25.), star.excess['n_trials']) else: star.boxes = np.logspace(np.log10(50.), np.log10(500.), star.excess['n_trials']) return star ##################################################################### # Checks if there's an estimate for numax (but no longer requires it) # Still needs to be tested: no estimate of numax but global fit # def check_numax(star): """ Checks if there is a starting value for numax as pySYD needs this information to begin the second module (whether be it from the first module, CLI or saved to info/star_info.csv). Returns ------- result : bool will return `True` if there is prior value for numax otherwise `False`. """ # THIS MUST BE FIXED TOO # Check if numax was provided as input if star.params[star.name]['numax'] is None: # If not, checks if findex was run if not star.params['overwrite']: dir = os.path.join(star.params[star.name]['path'],'estimates*') else: dir = os.path.join(star.params[star.name]['path'],'estimates.csv') if glob.glob(dir) != []: if not star.params['overwrite']: list_of_files = glob.glob(os.path.join(star.params[star.name]['path'],'estimates*')) file = max(list_of_files, key=os.path.getctime) else: file = os.path.join(star.params[star.name]['path'],'estimates.csv') df = pd.read_csv(file) for col in ['numax', 'dnu', 'snr']: star.params[star.name][col] = df.loc[0, col] # No estimate for numax provided and/or determined else: return False return True ##################################################################### # Sets data up for the derivation of asteroseismic parameters # def get_initial(star, lower_bg=1.0): """ Gets initial guesses for granulation components (i.e. timescales and amplitudes) using solar scaling relations. This resets the power spectrum and has its own independent filter (i.e. [lower,upper] mask) to use for this subroutine. Parameters ---------- star : target.Target pySYD target object star.oversample : bool if `True`, it will use an oversampled power spectrum for the first iteration or 'step' minimum_freq : float minimum frequency to use for the power spectrum if `None` is provided (via info/star_info.csv). Default = `10.0` muHz. Please note: this is typically sufficient for most stars but may affect evolved stars! maximum_freq : float maximum frequency to use for the power spectrum if `None` is provided (via info/star_info.csv). Default = `5000.0` muHz. Returns ------- star : target.Target updated pySYD target object """ star.frequency, star.power = np.copy(star.freq_os), np.copy(star.pow_os) star.resolution = star.frequency[1]-star.frequency[0] if star.params[star.name]['lower_bg'] is not None: lower = star.params[star.name]['lower_bg'] else: lower = lower_bg if star.params[star.name]['upper_bg'] is not None: upper = star.params[star.name]['upper_bg'] else: upper = max(star.frequency) if star.nyquist is not None and star.nyquist < upper: upper = star.nyquist star.params[star.name]['bg_mask']=[lower,upper] # Mask power spectrum for fitbg module mask = np.ma.getmask(np.ma.masked_inside(star.frequency, star.params[star.name]['bg_mask'][0], star.params[star.name]['bg_mask'][1])) star.frequency, star.power = np.copy(star.frequency[mask]), np.copy(star.power[mask]) star.random_pow = np.copy(star.power) # Get other relevant initial conditions star.i = 0 if star.params['background']: star.background['results'][star.name] = {} if star.params['global']: star.globe['results'][star.name] = {} star.globe['results'][star.name] = {'numax_smooth':[],'A_smooth':[],'numax_gauss':[],'A_gauss':[],'FWHM':[],'dnu':[]} if star.params['testing']: star.test='----------------------------------------------------\n\nTESTING INFORMATION:\n' # Use scaling relations from sun to get starting points star = solar_scaling(star) return star ##################################################################### # We use scaling relations to estimate initial guesses for # several parameters # def solar_scaling(star, scaling='tau_sun_single', max_laws=3, times=1.5, scale=1.0): """ Uses scaling relations from the Sun to: 1) estimate the width of the region of oscillations using numax 2) guess starting values for granulation timescales Parameters ---------- max_laws : int the maximum number of resolvable Harvey-like components """ constants = Constants() # Checks if there's an estimate for numax # Use "excess" for different meaning now - i.e. is there a power excess # as in, if it's (True by default, it will search for it but if it's False, it's saying there isn't any) if check_numax(star): star.exp_numax = star.params[star.name]['numax'] # Use scaling relations to estimate width of oscillation region to mask out of the background fit width = constants.width_sun*(star.exp_numax/constants.numax_sun) maxpower = [star.exp_numax-(width*star.globe['width']), star.exp_numax+(width*star.globe['width'])] if star.params[star.name]['lower_ps'] is not None: maxpower[0] = star.params[star.name]['lower_ps'] if star.params[star.name]['upper_ps'] is not None: maxpower[1] = star.params[star.name]['upper_ps'] star.params[star.name]['ps_mask'] = [maxpower[0],maxpower[1]] # Use scaling relation for granulation timescales from the sun to get starting points scale = constants.numax_sun/star.exp_numax # If not, uses entire power spectrum else: maxpower = [np.median(star.frequency), np.median(star.frequency)] if star.params[star.name]['lower_ps'] is not None: maxpower[0] = star.params[star.name]['lower_ps'] if star.params[star.name]['upper_ps'] is not None: maxpower[1] = star.params[star.name]['upper_ps'] star.params[star.name]['ps_mask'] = [maxpower[0],maxpower[1]] # Estimate granulation time scales if scaling == 'tau_sun_single': taus = np.array(constants.tau_sun_single)*scale else: taus = np.array(constants.tau_sun)*scale taus = taus[taus <= star.baseline] b = taus*10**-6. mnu = (1.0/taus)*10**5. star.b = b[mnu >= min(star.frequency)] star.mnu = mnu[mnu >= min(star.frequency)] if len(star.mnu)==0: star.b = b[mnu >= 10.] star.mnu = mnu[mnu >= 10.] elif len(star.mnu) > max_laws: star.b = b[mnu >= min(star.frequency)][-max_laws:] star.mnu = mnu[mnu >= min(star.frequency)][-max_laws:] else: pass # Save copies for plotting after the analysis star.nlaws = len(star.mnu) star.nlaws_orig = len(star.mnu) star.mnu_orig = np.copy(star.mnu) star.b_orig = np.copy(star.b) return star ##################################################################### # Save information # def save_file(star, formats=[">15.8f", ">18.10e"]): """ Saves the corrected power spectrum, which is computed by subtracting the best-fit stellar background model from the power spectrum. Parameters ---------- star : target.Target the pySYD pipeline target formats : List[str] 2x1 list of formats to save arrays as star.params[star.name]['path'] : str path to save the background-corrected power spectrum star.frequency : ndarray frequency array star.bg_corr_sub : ndarray background-subtracted power spectrum """ f_name = os.path.join(star.params[star.name]['path'],'bgcorr_ps.txt') if not star.params['overwrite']: f_name = get_next(star,'bgcorr_ps.txt') with open(f_name, "w") as f: for x, y in zip(star.frequency, star.bg_corr): values = [x, y] text = '{:{}}'*len(values) + '\n' fmt = sum(zip(values, formats), ()) f.write(text.format(*fmt)) f.close() if star.verbose: print(' **background-corrected PS saved**') def save_estimates(star): """ Save the results of the find excess routine into the save folder of the current star. Parameters ---------- star : target.Target pipeline target with the results of the `find_excess` routine """ best = star.excess['results'][star.name]['best'] variables = ['star', 'numax', 'dnu', 'snr'] results = [star.name, star.excess['results'][star.name][best]['numax'], star.excess['results'][star.name][best]['dnu'], star.excess['results'][star.name][best]['snr']] save_path = os.path.join(star.params[star.name]['path'],'estimates.csv') if not star.params['overwrite']: save_path = get_next(star,'estimates.csv') ascii.write(
np.array(results)
numpy.array
import os import cv2 import random import numpy as np import scipy.io as io import torch from torch.utils.data import Dataset class CityscapesDataset(Dataset): def __init__(self, root_data_path, im_path, period, num_im=3, crop_size=None, resize_size=None, aug=True): self.dataset_dir = root_data_path self.im_path = im_path self.period = period self.resize_size = resize_size self.crop_size = crop_size self.num_im = num_im self.aug = aug self.mean = np.array([123.675, 116.28, 103.53]) self.mean = np.expand_dims(np.expand_dims(self.mean, axis=1), axis=1) self.std = np.array([58.395, 57.12, 57.375]) self.std = np.expand_dims(np.expand_dims(self.std, axis=1), axis=1) self.get_list() def get_list(self): self.im_names = [] self.gt_names = [] file_path = os.path.join('/code/ST_Memory/data/Cityscapes/list', self.period + '.txt') with open(file_path, 'r') as f: lines = f.readlines() for line in lines: im_name, gt_name = line.split() im_id = int(im_name.split('_')[2]) interval = 1 name_list = [] for i in range(self.num_im): name = im_name.replace( '{:06d}_leftImg8bit.png'.format(im_id), '{:06d}_leftImg8bit.png'.format(im_id + (i - self.num_im // 2) * interval), ) name_list.append(name) self.im_names.append(name_list) self.gt_names.append(gt_name) def __len__(self): return len(self.gt_names) def __getitem__(self, idx): im_list = [] for i in range(self.num_im): im = cv2.imread(os.path.join(self.im_path, 'leftImg8bit_sequence', self.period, self.im_names[idx][i])) im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) im_list.append(im) gt = cv2.imread(os.path.join(self.dataset_dir, 'gtFine', self.period, self.gt_names[idx]), 0) if self.resize_size is not None: im_list, gt = self.resize(im_list, gt) if self.crop_size is not None: im_list, gt = self.crop(im_list, gt) if self.period == 'train' and self.aug: im_list, gt = self.randomflip(im_list, gt) h, w = gt.shape im_list, gt = self.totentor(im_list, gt) return im_list, gt def resize(self, im_list, gt): resize_h, resize_w = self.resize_size for i in range(self.num_im): im_list[i] = cv2.resize(im_list[i], (resize_w, resize_h), interpolation=cv2.INTER_LINEAR) gt = cv2.resize(gt, (resize_w, resize_h), interpolation=cv2.INTER_NEAREST) return im_list, gt def crop(self, im_list, gt): h, w = gt.shape crop_h, crop_w = self.crop_size start_h = np.random.randint(h - crop_h) start_w = np.random.randint(w - crop_w) for i in range(self.num_im): im_list[i] = im_list[i][start_h:start_h+crop_h, start_w:start_w+crop_w, :] gt = gt[start_h:start_h+crop_h, start_w:start_w+crop_w] return im_list, gt def randomflip(self, im_list, gt): RANDOMFLIP = 0.5 if np.random.rand() < RANDOMFLIP: for i in range(self.num_im): im_list[i] = np.flip(im_list[i], axis=1) gt = np.flip(gt, axis=1) return im_list, gt def totentor(self, im_list, gt): for i in range(self.num_im): im = im_list[i].transpose([2, 0, 1]) im = (im - self.mean) / self.std im = torch.from_numpy(im.copy()).float() im_list[i] = im gt = torch.from_numpy(gt.copy()).long() return im_list, gt class CityscapesDataset_Image(Dataset): def __init__(self, root_data_path, im_path, period, resize_size=None, aug=True): self.dataset_dir = root_data_path self.im_path = im_path self.period = period self.resize_size = resize_size self.aug = aug self.mean = np.array([123.675, 116.28, 103.53]) self.mean = np.expand_dims(np.expand_dims(self.mean, axis=1), axis=1) self.std = np.array([58.395, 57.12, 57.375]) self.std = np.expand_dims(np.expand_dims(self.std, axis=1), axis=1) self.get_list() def get_list(self): self.im_names = [] self.gt_names = [] file_path = os.path.join('/code/ST_Memory/data/Cityscapes/list', self.period + '.txt') with open(file_path, 'r') as f: lines = f.readlines() for line in lines: im_name, gt_name = line.split() self.im_names.append(im_name) self.gt_names.append(gt_name) def __len__(self): return len(self.gt_names) def __getitem__(self, idx): im = cv2.imread(os.path.join(self.im_path, 'leftImg8bit_sequence', self.period, self.im_names[idx])) im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) gt = cv2.imread(os.path.join(self.dataset_dir, 'gtFine', self.period, self.gt_names[idx]), 0) if self.period == 'train' and self.aug: if self.resize_size is not None: im, gt = self.resize(im, gt) im, gt = self.randomflip(im, gt) im, gt = self.totentor(im, gt) return im, gt def resize(self, im, gt): resize_h, resize_w = self.resize_size im = cv2.resize(im, (resize_w, resize_h), interpolation=cv2.INTER_LINEAR) gt = cv2.resize(gt, (resize_w, resize_h), interpolation=cv2.INTER_NEAREST) return im, gt def randomflip(self, im, gt): RANDOMFLIP = 0.5 if np.random.rand() < RANDOMFLIP: im = np.flip(im, axis=1) gt = np.flip(gt, axis=1) return im, gt def totentor(self, im, gt): im = im.transpose([2, 0, 1]) im = (im - self.mean) / self.std im = torch.from_numpy(im.copy()).float() gt = torch.from_numpy(gt.copy()).long() return im, gt class CityscapesDataset_Image_Aug(Dataset): def __init__(self, root_data_path, im_path, period, crop_size=None, aug=True): self.dataset_dir = root_data_path self.im_path = im_path self.period = period self.crop_size = crop_size self.aug = aug self.mean = np.array([123.675, 116.28, 103.53]) self.mean = np.expand_dims(np.expand_dims(self.mean, axis=1), axis=1) self.std = np.array([58.395, 57.12, 57.375]) self.std = np.expand_dims(np.expand_dims(self.std, axis=1), axis=1) self.get_list() def get_list(self): self.im_names = [] self.gt_names = [] file_path = os.path.join('/code/ST_Memory/data/Cityscapes/list', self.period + '.txt') with open(file_path, 'r') as f: lines = f.readlines() for line in lines: im_name, gt_name = line.split() self.im_names.append(im_name) self.gt_names.append(gt_name) def __len__(self): return len(self.gt_names) def __getitem__(self, idx): im = cv2.imread(os.path.join(self.im_path, 'leftImg8bit_sequence', self.period, self.im_names[idx])) im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) gt = cv2.imread(os.path.join(self.dataset_dir, 'gtFine', self.period, self.gt_names[idx]), 0) if self.period == 'train' and self.aug: if self.crop_size is not None: im, gt = self.randomcrop(im, gt) im, gt = self.randomflip(im, gt) im, gt = self.totentor(im, gt) return im, gt def randomcrop(self, im, gt): h, w = gt.shape crop_h, crop_w = self.crop_size h_start = random.randint(0, h - crop_h) w_start = random.randint(0, w - crop_w) im = im[h_start:h_start + crop_h, w_start:w_start + crop_w, :] gt = gt[h_start:h_start + crop_h, w_start:w_start + crop_w] return im, gt def randomflip(self, im, gt): RANDOMFLIP = 0.5 if
np.random.rand()
numpy.random.rand
# %% """ This module contains copies of the classes SOMToolBox_Parse and SomViz provided by the lecturers. """ import pandas as pd import numpy as np import gzip from scipy.spatial import distance_matrix, distance from ipywidgets import Layout, HBox, Box, widgets, interact import plotly.graph_objects as go class SOMToolBox_Parse: def __init__(self, filename): self.filename = filename def read_weight_file(self, ): df = pd.DataFrame() if self.filename[-3:len(self.filename)] == '.gz': with gzip.open(self.filename, 'rb') as file: df, vec_dim, xdim, ydim = self._read_vector_file_to_df(df, file) else: with open(self.filename, 'rb') as file: df, vec_dim, xdim, ydim = self._read_vector_file_to_df(df, file) file.close() return df.astype('float64'), vec_dim, xdim, ydim def _read_vector_file_to_df(self, df, file): xdim, ydim, vec_dim, position = 0, 0, 0, 0 for byte in file: line = byte.decode('UTF-8') if line.startswith('$'): xdim, ydim, vec_dim = self._parse_vector_file_metadata(line, xdim, ydim, vec_dim) if xdim > 0 and ydim > 0 and len(df.columns) == 0: df = pd.DataFrame(index=range(0, ydim * xdim), columns=range(0, vec_dim)) else: if len(df.columns) == 0 or vec_dim == 0: raise ValueError('Weight file has no correct Dimensional information.') position = self._parse_weight_file_data(line, position, vec_dim, df) return df, vec_dim, xdim, ydim def _parse_weight_file_data(self, line, position, vec_dim, df): splitted = line.split(' ') try: df.values[position] = list(np.array(splitted[0:vec_dim]).astype(float)) position += 1 except: raise ValueError('The input-vector file does not match its unit-dimension.') return position def _parse_vector_file_metadata(self, line, xdim, ydim, vec_dim): splitted = line.split(' ') if splitted[0] == '$XDIM': xdim = int(splitted[1]) elif splitted[0] == '$YDIM': ydim = int(splitted[1]) elif splitted[0] == '$VEC_DIM': vec_dim = int(splitted[1]) return xdim, ydim, vec_dim # %% class SomViz: def __init__(self, weights, m, n): self.weights = weights self.m = m self.n = n def umatrix(self, som_map=None, color="Viridis", interp="best", title=""): um = np.zeros((self.m * self.n, 1)) neuron_locs = list() for i in range(self.m): for j in range(self.n): neuron_locs.append(np.array([i, j])) neuron_distmat = distance_matrix(neuron_locs, neuron_locs) for i in range(self.m * self.n): neighbor_idxs = neuron_distmat[i] <= 1 neighbor_weights = self.weights[neighbor_idxs] um[i] = distance_matrix(np.expand_dims(self.weights[i], 0), neighbor_weights).mean() if som_map == None: return self.plot(um.reshape(self.m, self.n), color=color, interp=interp, title=title) else: som_map.data[0].z = um.reshape(self.m, self.n) def hithist(self, som_map=None, idata=[], color='RdBu', interp="best", title=""): hist = [0] * self.n * self.m for v in idata: position = np.argmin(np.sqrt(np.sum(np.power(self.weights - v, 2), axis=1))) hist[position] += 1 if som_map == None: return self.plot(np.array(hist).reshape(self.m, self.n), color=color, interp=interp, title=title) else: som_map.data[0].z = np.array(hist).reshape(self.m, self.n) def component_plane(self, som_map=None, component=0, color="Viridis", interp="best", title=""): if som_map == None: return self.plot(self.weights[:, component].reshape(-1, self.n), color=color, interp=interp, title=title) else: som_map.data[0].z = self.weights[:, component].reshape(-1, self.n) def sdh(self, som_map=None, idata=[], sdh_type=1, factor=1, draw=True, color="Cividis", interp="best", title=""): import heapq sdh_m = [0] * self.m * self.n cs = 0 for i in range(0, factor): cs += factor - i for vector in idata: dist = np.sqrt(np.sum(np.power(self.weights - vector, 2), axis=1)) c = heapq.nsmallest(factor, range(len(dist)), key=dist.__getitem__) if (sdh_type == 1): for j in range(0, factor): sdh_m[c[j]] += (factor - j) / cs # normalized if (sdh_type == 2): for j in range(0, factor): sdh_m[c[j]] += 1.0 / dist[c[j]] # based on distance if (sdh_type == 3): dmin = min(dist) for j in range(0, factor): sdh_m[c[j]] += 1.0 - (dist[c[j]] - dmin) / (max(dist) - dmin) if som_map == None: return self.plot(np.array(sdh_m).reshape(-1, self.n), color=color, interp=interp, title=title) else: som_map.data[0].z = np.array(sdh_m).reshape(-1, self.n) def project_data(self, som_m=None, idata=[], title=""): data_y = [] data_x = [] for v in idata: position = np.argmin(np.sqrt(np.sum(np.power(self.weights - v, 2), axis=1))) x, y = position % self.n, position // self.n data_x.extend([x]) data_y.extend([y]) if som_m != None: som_m.add_trace( go.Scatter(x=data_x, y=data_y, mode="markers", marker_color='rgba(255, 255, 255, 0.8)', )) def time_series(self, som_m=None, idata=[], wsize=50, title=""): # not tested data_y = [] data_x = [i for i in range(0, len(idata))] data_x2 = [] data_y2 = [] qmin = np.Inf qmax = 0 step = 1 ps = [] for v in idata: matrix = np.sqrt(np.sum(np.power(self.weights - v, 2), axis=1)) position = np.argmin(matrix) qerror = matrix[position] if qmin > qerror: qmin = qerror if qmax < qerror: qmax = qerror ps.append((position, qerror)) markerc = [] for v in ps: data_y.extend([v[0]]) rez = v[1] / qmax markerc.append('rgba(0, 0, 0, ' + str(rez) + ')') x, y = v[0] % self.n, v[0] // self.n if x == 0: y = np.random.uniform(low=y, high=y + .1) elif x == self.m - 1: y = np.random.uniform(low=y - .1, high=y) elif y == 0: x = np.random.uniform(low=x, high=x + .1) elif y == self.n - 1: x =
np.random.uniform(low=x - .1, high=x)
numpy.random.uniform
# May 2018 xyz import numpy as np import numba def Rx( x ): # ref to my master notes 2015 # anticlockwise, x: radian Rx = np.zeros((3,3)) Rx[0,0] = 1 Rx[1,1] = np.cos(x) Rx[1,2] = np.sin(x) Rx[2,1] = -np.sin(x) Rx[2,2] = np.cos(x) return Rx def Ry( y ): # anticlockwise, y: radian Ry = np.zeros((3,3)) Ry[0,0] = np.cos(y) Ry[0,2] = -np.sin(y) Ry[1,1] = 1 Ry[2,0] = np.sin(y) Ry[2,2] = np.cos(y) return Ry @numba.jit(nopython=True) def Rz( z ): # anticlockwise, z: radian Rz = np.zeros((3,3)) Rz[0,0] = np.cos(z) Rz[0,1] = np.sin(z) Rz[1,0] = -np.sin(z) Rz[1,1] = np.cos(z) Rz[2,2] = 1 return Rz def R1D( angle, axis ): if axis == 'x': return Rx(angle) elif axis == 'y': return Ry(angle) elif axis == 'z': return Rz(angle) else: raise NotImplementedError def EulerRotate( angles, order ='zxy' ): R = np.eye(3) for i in range(3): R_i = R1D(angles[i], order[i]) R = np.matmul( R_i, R ) return R def point_rotation_randomly( points, rxyz_max=np.pi*np.array([0.1,0.1,0.1]) ): # Input: # points: (B, N, 3) # rx/y/z: in radians # Output: # points: (B, N, 3) batch_size = points.shape[0] for b in range(batch_size): rxyz = [ np.random.uniform(-r_max, r_max) for r_max in rxyz_max ] R = EulerRotate( rxyz, 'xyz' ) points[b,:,:] = np.matmul( points[b,:,:], np.transpose(R) ) return points def angle_with_x(direc, scope_id=0): if direc.ndim == 2: x = np.array([[1.0,0]]) if direc.ndim == 3: x = np.array([[1.0,0,0]]) x = np.tile(x, [direc.shape[0],1]) return angle_of_2lines(direc, x, scope_id) def angle_of_2lines(line0, line1, scope_id=0): ''' line0: [n,2/3] line1: [n,2/3] zero as ref scope_id=0: [0,pi] 1: (-pi/2, pi/2] angle: [n] ''' assert line0.ndim == line1.ndim == 2 assert (line0.shape[0] == line1.shape[0]) or line0.shape[0]==1 or line1.shape[0]==1 assert line0.shape[1] == line1.shape[1] # 2 or 3 norm0 = np.linalg.norm(line0, axis=1, keepdims=True) norm1 = np.linalg.norm(line1, axis=1, keepdims=True) #assert norm0.min() > 1e-4 and norm1.min() > 1e-4 # return nan line0 = line0 / norm0 line1 = line1 / norm1 angle = np.arccos( np.sum(line0 * line1, axis=1) ) if scope_id == 0: pass elif scope_id == 1: # (-pi/2, pi/2]: offset=0.5, period=pi angle = limit_period(angle, 0.5, np.pi) else: raise NotImplementedError return angle def limit_period(val, offset, period): ''' [0, pi]: offset=0, period=pi [-pi/2, pi/2]: offset=0.5, period=pi [-pi, 0]: offset=1, period=pi [0, pi/2]: offset=0, period=pi/2 [-pi/4, pi/4]: offset=0.5, period=pi/2 [-pi/2, 0]: offset=1, period=pi/2 ''' return val -
np.floor(val / period + offset)
numpy.floor
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import os import matplotlib.pyplot as plt import numpy as np import torch import torchvision.datasets.folder from PIL import Image, ImageFile from torch.utils.data import TensorDataset from torchvision import transforms from torchvision.datasets import MNIST, ImageFolder, CIFAR10 from torchvision.transforms.functional import rotate from wilds.datasets.camelyon17_dataset import Camelyon17Dataset from wilds.datasets.fmow_dataset import FMoWDataset ImageFile.LOAD_TRUNCATED_IMAGES = True DATASETS = [ # Debug "Debug28", "Debug224", # Small images "VerticalLine", "VHLine", "FullColoredMNIST", "ColoredMNIST", "RotatedMNIST", # Big images "VLCS", "PACS", "OfficeHome", "TerraIncognita", "DomainNet", "SVIRO", # WILDS datasets "WILDSCamelyon", "WILDSFMoW", ] def get_dataset_class(dataset_name): """Return the dataset class with the given name.""" if dataset_name not in globals(): raise NotImplementedError("Dataset not found: {}".format(dataset_name)) return globals()[dataset_name] def num_environments(dataset_name): return len(get_dataset_class(dataset_name).ENVIRONMENTS) class MultipleDomainDataset: N_STEPS = 5001 # Default, subclasses may override CHECKPOINT_FREQ = 100 # Default, subclasses may override N_WORKERS = 4 # Default, subclasses may override ENVIRONMENTS = None # Subclasses should override INPUT_SHAPE = None # Subclasses should override def __getitem__(self, index): return self.datasets[index] def __len__(self): return len(self.datasets) class Debug(MultipleDomainDataset): def __init__(self, root, test_envs, hparams): super().__init__() self.input_shape = self.INPUT_SHAPE self.num_classes = 2 self.datasets = [] for _ in [0, 1, 2]: self.datasets.append( TensorDataset( torch.randn(16, *self.INPUT_SHAPE), torch.randint(0, self.num_classes, (16,)) ) ) class Debug28(Debug): INPUT_SHAPE = (3, 28, 28) ENVIRONMENTS = ['0', '1', '2'] class Debug224(Debug): INPUT_SHAPE = (3, 224, 224) ENVIRONMENTS = ['0', '1', '2'] class MultipleEnvironmentCIFAR10(MultipleDomainDataset): def __init__(self, root, environments, dataset_transform, input_shape, num_classes): super().__init__() if root is None: raise ValueError('Data directory not specified!') original_dataset_tr = CIFAR10(root, train=True, download=True) original_dataset_te = CIFAR10(root, train=False, download=True) original_images = np.concatenate((original_dataset_tr.data, original_dataset_te.data)) original_labels = np.concatenate((original_dataset_tr.targets, original_dataset_te.targets)) shuffle = torch.randperm(len(original_images)) original_images = original_images[shuffle] original_labels = original_labels[shuffle] self.datasets = [] for i in range(len(environments)): self.datasets.append(dataset_transform(original_images, original_labels, environments[i])) self.input_shape = input_shape self.num_classes = num_classes class MultipleEnvironmentMNIST(MultipleDomainDataset): def __init__(self, root, environments, dataset_transform, input_shape, num_classes): super().__init__() if root is None: raise ValueError('Data directory not specified!') self.colors = torch.FloatTensor( [[0, 100, 0], [188, 143, 143], [255, 0, 0], [255, 215, 0], [0, 255, 0], [65, 105, 225], [0, 225, 225], [0, 0, 255], [255, 20, 147], [160, 160, 160]]) self.random_colors = torch.randint(255, (10, 3)).float() original_dataset_tr = MNIST(root, train=True, download=True) original_dataset_te = MNIST(root, train=False, download=True) original_images = torch.cat((original_dataset_tr.data, original_dataset_te.data)) original_labels = torch.cat((original_dataset_tr.targets, original_dataset_te.targets)) shuffle = torch.randperm(len(original_images)) original_images = original_images[shuffle] original_labels = original_labels[shuffle] self.datasets = [] self.environments = environments for i in range(len(environments)): images = original_images[i::len(environments)] labels = original_labels[i::len(environments)] self.datasets.append(dataset_transform(images, labels, environments[i])) self.input_shape = input_shape self.num_classes = num_classes def __getitem__(self, index): return self.datasets[index] def __len__(self): return len(self.datasets) class VHLine(MultipleEnvironmentCIFAR10): ENVIRONMENT_NAMES = [0, 1] N_WORKERS = 0 N_STEPS = 10001 def __init__(self, root, test_envs, hparams): self.domain_label = [0, 1] # print("MY COMBINE:", MY_COMBINE) self.input_shape = (3, 32, 32) self.num_classes = 10 super(VHLine, self).__init__(root, self.domain_label, self.color_dataset, (3, 32, 32,), 10) def color_dataset(self, images, labels, environment): # Add a line to the last channel and vary its brightness during testing. images = self.add_vhline(images, labels, b_scale=1, env=environment) for i in range(5): rand_indx = np.random.randint(0, images.shape[0]) self._plot(images[rand_indx]) x = torch.Tensor(images).permute(0, 3, 1, 2) y = torch.Tensor(labels).view(-1).long() return TensorDataset(x, y) def add_vhline(self, images, labels, b_scale, env): images = np.divide(images, 255.0) if env == 1: return images def configurations(images, cond_indx, cls): # To create the ten-valued spurious feature, we consider a vertical line passing through the middle of each channel, # and also additionally the horizontal line through the first channel. if cls == 0: images[cond_indx, :, 16:17, 0] = np.add(images[cond_indx, :, 16:17, 0], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale)) images[cond_indx, :, 16:17, 1] = np.add(images[cond_indx, :, 16:17, 1], 0.5 + 0.5 * np.random.uniform(-b_scale, b_scale)) images[cond_indx, :, 16:17, 2] = np.add(images[cond_indx, :, 16:17, 2], 0.5 + 0.5 *
np.random.uniform(-b_scale, b_scale)
numpy.random.uniform
"""Use the pyDOE2 library to generate latin hypercube samples.""" import numpy as np import warnings try: from pyDOE2 import lhs as lhs_pydoe HAS_PYDOE2 = True except ImportError: HAS_PYDOE2 = False try: from scipy.stats.qmc import LatinHypercube as lhs_scipy HAS_SCIPY_QMC = True except ImportError: HAS_SCIPY_QMC = False def _format_inputs(xmins, xmaxs, n_dim, num_evaluations): try: len(xmins) xmins_is_float = False except TypeError: xmins_is_float = True try: len(xmaxs) xmaxs_is_float = False except TypeError: xmaxs_is_float = True msg_nd1 = ( "Input n_dim=1 so input xmins and xmaxs should be " "either a scalar or ndarray of shape (n_dim, num_evaluations)" ) msg_nd2 = "Each entry of xmins must be a float or ndarray of shape num_evaluations" msg_nd2b = "Input n_dim={0} so input xmins and xmaxs should have length {1}" _zz = np.zeros(num_evaluations) if n_dim == 1: if xmins_is_float: xmins = np.atleast_2d([xmins + _zz]) else: assert np.shape(xmins) == (n_dim, num_evaluations), msg_nd1 xmins = np.atleast_2d(xmins) if xmaxs_is_float: xmaxs = np.atleast_2d([xmaxs + _zz]) else: assert
np.shape(xmaxs)
numpy.shape
""" test_standard.py - This module provides unit tests on the qoc.standard module. """ ### qoc.standard.constants ### def test_constants(): import numpy as np from qoc.standard.constants import (get_creation_operator, get_annihilation_operator) big = 100 # Use the fact that (create)(annihilate) is the number operator # to test the creation and annihilation operator methods. for i in range(1, big): analytic_number_operator = np.diag(np.arange(i)) generated_number_operator = np.matmul(get_creation_operator(i), get_annihilation_operator(i)) assert np.allclose(generated_number_operator, analytic_number_operator) ### qoc.standard.costs ### # TODO: implement me def test_controlarea(): pass # TODO: implement me def test_controlnorm(): pass # TODO: implement me def test_controlvariation(): pass def test_forbiddensities(): import numpy as np from qoc.standard import conjugate_transpose from qoc.standard.costs.forbiddensities import ForbidDensities system_eval_count = 11 state0 = np.array([[1], [0]]) density0 = np.matmul(state0, conjugate_transpose(state0)) forbid0_0 = np.array([[1], [0]]) density0_0 = np.matmul(forbid0_0, conjugate_transpose(forbid0_0)) forbid0_1 = np.divide(np.array([[1], [1]]), np.sqrt(2)) density0_1 = np.matmul(forbid0_1, conjugate_transpose(forbid0_1)) state1 = np.array([[0], [1]]) density1 = np.matmul(state1, conjugate_transpose(state1)) forbid1_0 = np.divide(np.array([[1], [1]]), np.sqrt(2)) density1_0 = np.matmul(forbid1_0, conjugate_transpose(forbid1_0)) forbid1_1 = np.divide(np.array([[1j], [1j]]), np.sqrt(2)) density1_1 = np.matmul(forbid1_1, conjugate_transpose(forbid1_1)) densities = np.stack((density0, density1,)) forbidden_densities0 = np.stack((density0_0, density0_1,)) forbidden_densities1 = np.stack((density1_0, density1_1,)) forbidden_densities = np.stack((forbidden_densities0, forbidden_densities1,)) fd = ForbidDensities(forbidden_densities, system_eval_count) cost = fd.cost(None, densities, None) expected_cost = 7 / 640 assert(np.allclose(cost, expected_cost,)) def test_forbidstates(): import numpy as np from qoc.standard.costs.forbidstates import ForbidStates system_eval_count = 11 state0 = np.array([[1], [0]]) forbid0_0 = np.array([[1], [0]]) forbid0_1 = np.divide(np.array([[1], [1]]), np.sqrt(2)) state1 = np.array([[0], [1]]) forbid1_0 = np.divide(np.array([[1], [1]]), np.sqrt(2)) forbid1_1 = np.divide(np.array([[1j], [1j]]), np.sqrt(2)) states = np.stack((state0, state1,)) forbidden_states0 = np.stack((forbid0_0, forbid0_1,)) forbidden_states1 = np.stack((forbid1_0, forbid1_1,)) forbidden_states = np.stack((forbidden_states0, forbidden_states1,)) fs = ForbidStates(forbidden_states, system_eval_count) cost = fs.cost(None, states, None) expected_cost = np.divide(5, 80) assert(np.allclose(cost, expected_cost,)) def test_targetdensityinfidelity(): import numpy as np from qoc.standard import conjugate_transpose from qoc.standard.costs.targetdensityinfidelity import TargetDensityInfidelity state0 = np.array([[0], [1]]) density0 = np.matmul(state0, conjugate_transpose(state0)) target_state0 = np.array([[1], [0]]) target_density0 = np.matmul(target_state0, conjugate_transpose(target_state0)) densities = np.stack((density0,), axis=0) targets = np.stack((target_density0,), axis=0) ti = TargetDensityInfidelity(targets) cost = ti.cost(None, densities, None) assert(np.allclose(cost, 1)) ti = TargetDensityInfidelity(densities) cost = ti.cost(None, densities, None) assert(np.allclose(cost, 0.5)) state0 = np.array([[1], [0]]) state1 = (np.array([[1j], [1]]) / np.sqrt(2)) density0 = np.matmul(state0, conjugate_transpose(state0)) density1 = np.matmul(state1, conjugate_transpose(state1)) target_state0 = np.array([[1j], [0]]) target_state1 = np.array([[1], [0]]) target_density0 = np.matmul(target_state0, conjugate_transpose(target_state0)) target_density1 = np.matmul(target_state1, conjugate_transpose(target_state1)) densities = np.stack((density0, density1,), axis=0) targets = np.stack((target_density0, target_density1,), axis=0) ti = TargetDensityInfidelity(targets) cost = ti.cost(None, densities, None) expected_cost = 0.625 assert(np.allclose(cost, expected_cost)) def test_targetdensityinfidelitytime(): import numpy as np from qoc.standard import conjugate_transpose from qoc.standard.costs.targetdensityinfidelitytime import TargetDensityInfidelityTime system_eval_count = 11 state0 = np.array([[0], [1]]) density0 = np.matmul(state0, conjugate_transpose(state0)) target_state0 = np.array([[1], [0]]) target_density0 = np.matmul(target_state0, conjugate_transpose(target_state0)) densities = np.stack((density0,), axis=0) targets = np.stack((target_density0,), axis=0) ti = TargetDensityInfidelityTime(system_eval_count, targets) cost = ti.cost(None, densities, None) assert(np.allclose(cost, 0.1)) ti = TargetDensityInfidelityTime(system_eval_count, densities) cost = ti.cost(None, densities, None) assert(np.allclose(cost, 0.05)) state0 = np.array([[1], [0]]) state1 = (np.array([[1j], [1]]) / np.sqrt(2)) density0 = np.matmul(state0, conjugate_transpose(state0)) density1 = np.matmul(state1, conjugate_transpose(state1)) target_state0 = np.array([[1j], [0]]) target_state1 = np.array([[1], [0]]) target_density0 = np.matmul(target_state0, conjugate_transpose(target_state0)) target_density1 = np.matmul(target_state1, conjugate_transpose(target_state1)) densities = np.stack((density0, density1,), axis=0) targets = np.stack((target_density0, target_density1,), axis=0) ti = TargetDensityInfidelityTime(system_eval_count, targets) cost = ti.cost(None, densities, None) expected_cost = 0.0625 assert(np.allclose(cost, expected_cost)) def test_targetstateinfidelity(): import numpy as np from qoc.standard.costs.targetstateinfidelity import TargetStateInfidelity state0 = np.array([[0], [1]]) target0 = np.array([[1], [0]]) states = np.stack((state0,), axis=0) targets = np.stack((target0,), axis=0) ti = TargetStateInfidelity(targets) cost = ti.cost(None, states, None) assert(np.allclose(cost, 1)) ti = TargetStateInfidelity(states) cost = ti.cost(None, states, None) assert(np.allclose(cost, 0)) state0 = np.array([[1], [0]]) state1 = (np.array([[1j], [1]]) / np.sqrt(2)) target0 =
np.array([[1j], [0]])
numpy.array
""" Ranking ======= Metrics to use for ranking models. """ import numpy as np import numpy.ma as ma from typing import Tuple from pytypes import typechecked @typechecked def check_arrays(y_true: np.ndarray, y_prob: np.ndarray) -> None : # Make sure that inputs this conforms to our expectations assert isinstance(y_true, np.ndarray), AssertionError( 'Expect y_true to be a {expected}. Got {actual}' .format(expected=np.ndarray, actual=type(y_true)) ) assert isinstance(y_prob, np.ndarray), AssertionError( 'Expect y_prob to be a {expected}. Got {actual}' .format(expected=np.ndarray, actual=type(y_prob)) ) assert y_true.shape == y_prob.shape, AssertionError( 'Shapes must match. Got y_true={true_shape}, y_prob={prob_shape}' .format(true_shape=y_true.shape, prob_shape=y_prob.shape) ) assert len(y_true.shape) == 2, AssertionError( 'Shapes should be of rank 2. Got {rank}' .format(rank=len(y_true.shape)) ) uniques = np.unique(y_true) assert len(uniques) <= 2, AssertionError( 'Expected labels: [0, 1]. Got: {uniques}' .format(uniques=uniques) ) @typechecked def check_k(n_items: int, k: int) -> None: # Make sure that inputs conform to our expectations assert isinstance(k, int), AssertionError( 'Expect k to be a {expected}. Got {actual}' .format(expected=int, actual=type(k)) ) assert 0 <= k <= n_items, AssertionError( 'Expect 0 <= k <= {n_items}. Got {k}' .format(n_items=n_items, k=k) ) @typechecked def recall_at_k(y_true: np.ndarray, y_prob: np.ndarray, k: int) -> float: """ Calculates recall at k for binary classification ranking problems. Recall at k measures the proportion of total relevant items that are found in the top k (in ranked order by y_prob). If k=5, there are 6 total relevant documents, and 3 of the top 5 items are relevant, the recall at k will be 0.5. Samples where y_true is 0 for all labels are filtered out because there will be 0 true positives and false negatives. Args: y_true (~np.ndarray): Flags (0, 1) which indicate whether a column is relevant or not. size=(n_samples, n_items) y_prob (~np.ndarray): The predicted probability that the given flag is relevant. size=(n_samples, n_items) k (int): Number of items to evaluate for relevancy, in descending sorted order by y_prob Returns: recall (float): The recall at k Example: >>> y_true = np.array([ [0, 0, 1], [0, 1, 0], [1, 0, 0], ]) >>> y_prob = np.array([ [0.4, 0.6, 0.3], [0.1, 0.2, 0.9], [0.9, 0.6, 0.3], ]) >>> recall_at_k(y_true, y_prob, 2) 0.6666666666666666 In the example above, each of the samples has 1 total relevant document. For the first sample, there are 0 relevant documents in the top k for k=2, because 0.3 is the 3rd value for y_prob in descending order. For the second sample, there is 1 relevant document in the top k, because 0.2 is the 2nd value for y_prob in descending order. For the third sample, there is 1 relevant document in the top k, because 0.9 is the 1st value for y_prob in descending order. Averaging the values for all of these samples (0, 1, 1) gives a value for recall at k of 2/3. """ check_arrays(y_true, y_prob) check_k(y_true.shape[1], k) # Filter out rows of all zeros mask = y_true.sum(axis=1).astype(bool) y_prob = y_prob[mask] y_true = y_true[mask] # Extract shape components n_samples, n_items = y_true.shape # List of locations indexing y_prob_index_order = np.argsort(-y_prob) rows = np.reshape(np.arange(n_samples), (-1, 1)) ranking = y_true[rows, y_prob_index_order] # Calculate number true positives for numerator and number of relevant documents for denominator num_tp = np.sum(ranking[:, :k], axis=1) num_relevant = np.sum(ranking, axis=1) # Calculate recall at k recall = np.mean(num_tp / num_relevant) return recall @typechecked def precision_at_k(y_true: np.ndarray, y_prob: np.ndarray, k: int) -> float: """ Calculates precision at k for binary classification ranking problems. Precision at k measures the proportion of items in the top k (in ranked order by y_prob) that are relevant (as defined by y_true). If k=5, and 3 of the top 5 items are relevant, the precision at k will be 0.6. Args: y_true (~np.ndarray): Flags (0, 1) which indicate whether a column is relevant or not. size=(n_samples, n_items) y_prob (~np.ndarray): The predicted probability that the given flag is relevant. size=(n_samples, n_items) k (int): Number of items to evaluate for relevancy, in descending sorted order by y_prob Returns: precision_k (float): The precision at k Example: >>> y_true = np.array([ [0, 0, 1], [0, 1, 0], [1, 0, 0], ]) >>> y_prob = np.array([ [0.4, 0.6, 0.3], [0.1, 0.2, 0.9], [0.9, 0.6, 0.3], ]) >>> precision_at_k(y_true, y_prob, 2) 0.3333333333333333 For the first sample, there are 0 relevant documents in the top k for k=2, because 0.3 is the 3rd value for y_prob in descending order. For the second sample, there is 1 relevant document in the top k, because 0.2 is the 2nd value for y_prob in descending order. For the third sample, there is 1 relevant document in the top k, because 0.9 is the 1st value for y_prob in descending order. Because k=2, the values for precision of k for each sample are 0, 1/2, and 1/2 respectively. Averaging these gives a value for precision at k of 1/3. """ check_arrays(y_true, y_prob) check_k(y_true.shape[1], k) # Extract shape components n_samples, n_items = y_true.shape # List of locations indexing y_prob_index_order = np.argsort(-y_prob) rows = np.reshape(np.arange(n_samples), (-1, 1)) ranking = y_true[rows, y_prob_index_order] # Calculate number of true positives for numerator num_tp = np.sum(ranking[:, :k], axis=1) # Calculate precision at k precision = np.mean(num_tp / k) return precision @typechecked def mean_reciprocal_rank(y_true: np.ndarray, y_prob: np.ndarray) -> ma: """ Gets a positional score about how well you did at rank 1, rank 2, etc. The resulting vector is of size (n_items,) but element 0 corresponds to rank 1 not label 0. Args: y_true (~np.ndarray): Flags (0, 1) which indicate whether a column is relevant or not. size=(n_samples, n_items) y_prob (~np.ndarray): The predicted probability that the given flag is relevant. size=(n_samples, n_items) Returns: mrr (~np.ma.array): The positional ranking score. This will be masked for ranks where there were no relevant values. size=(n_items,) """ check_arrays(y_true, y_prob) # Extract shape components n_samples, n_items = y_true.shape # Determine the ranking order rank_true = np.flip(np.argsort(y_true, axis=1), axis=1) rank_prob = np.flip(np.argsort(y_prob, axis=1), axis=1) # Compute reciprocal ranks reciprocal = 1.0 / (np.argsort(rank_prob, axis=1) + 1) # Now order the reciprocal ranks by the true order rows = np.reshape(np.arange(n_samples), (-1, 1)) cols = rank_true ordered = reciprocal[rows, cols] # Create a masked array of true labels only ma = np.ma.array(ordered, mask=np.isclose(y_true[rows, cols], 0)) return ma.mean(axis=0) @typechecked def label_mean_reciprocal_rank(y_true: np.ndarray, y_prob: np.ndarray) -> ma: """ Determines the average rank each label was placed across samples. Only labels that are relevant in the true data set are considered in the calculation. Args: y_true (~np.ndarray): Flags (0, 1) which indicate whether a column is relevant or not. size=(n_samples, n_items)that y_prob (~np.ndarray): The predicted probability the given flag is relevant. size=(n_samples, n_items) Returns: mrr (~np.ma.array): The positional ranking score. This will be masked for ranks where there were no relevant values. size=(n_items,) """ check_arrays(y_true, y_prob) rank_prob = np.flip(np.argsort(y_prob, axis=1), axis=1) reciprocal = 1 / (np.argsort(rank_prob, axis=1) + 1) ma = np.ma.array(reciprocal, mask=~y_true.astype(bool)) return ma.mean(axis=0) @typechecked def ndcg(y_true: np.ndarray, y_prob: np.ndarray, k=0) -> np.float64: """ A score for measuring the quality of a set of ranked results. The resulting score is between 0 and 1.0 - results that are relevant and appear earlier in the result set are given a heavier weight, so the higher the score, the more relevant your results are The optional k param is recommended for data sets where the first few labels are almost always ranked first, and hence skew the overall score. To compute this "NDCG after k" metric, we remove the top k (by predicted probability) labels and compute NDCG as usual for the remaining labels. Args: y_true (~np.ndarray): Flags (0, 1) which indicate whether a column is relevant or not. size=(n_samples, n_items)that y_prob (~np.ndarray): The predicted probability the given flag is relevant. size=(n_samples, n_items) k (int): Optional, the top k classes to exclude Returns: ndcg (~np.float64): The normalized dcg score across all queries, excluding the top k """ # Get the sorted prob indices in descending order rank_prob = np.flip(np.argsort(y_prob, axis=1), axis=1) # Get the sorted true indices in descending order rank_true = np.flip(np.argsort(y_true, axis=1), axis=1) prob_samples, prob_items = y_prob.shape true_samples, true_items = y_true.shape # Compute DCG # Order y_true and y_prob by y_prob order indices prob_vals = y_prob[np.arange(prob_samples).reshape(prob_samples, 1), rank_prob] true_vals = y_true[np.arange(true_samples).reshape(true_samples, 1), rank_prob] # Remove the first k columns prob_vals = prob_vals[:, k:] true_vals = true_vals[:, k:] rank_prob_k = np.flip(np.argsort(prob_vals, axis=1), axis=1) n_samples, n_items = true_vals.shape values = np.arange(n_samples).reshape(n_samples, 1) # Construct the dcg numerator, which are the relevant items for each rank dcg_numerator = true_vals[values, rank_prob_k] # Construct the denominator, which is the log2 of the current rank + 1 position = np.arange(1, n_items + 1) denominator = np.log2(np.tile(position, (n_samples, 1)) + 1.0) dcg = np.sum(dcg_numerator / denominator, axis=1) # Compute IDCG rank_true_idcg = np.flip(np.argsort(true_vals, axis=1), axis=1) idcg_true_samples, idcg_true_items = rank_true_idcg.shape # Order y_true indices idcg_true_vals = true_vals[np.arange(idcg_true_samples).reshape(idcg_true_samples, 1), rank_true_idcg] rank_true_k = np.flip(np.argsort(idcg_true_vals, axis=1), axis=1) idcg_numerator = idcg_true_vals[values, rank_true_k] idcg = np.sum(idcg_numerator / denominator, axis=1) with np.warnings.catch_warnings(): np.warnings.filterwarnings('ignore') sample_ndcg = np.divide(dcg, idcg) # ndcg may be NaN if idcg is 0; this happens when there are no relevant documents # in this case, showing anything in any order should be considered correct where_are_nans = np.isnan(sample_ndcg) where_are_infs = np.isinf(sample_ndcg) sample_ndcg[where_are_nans] = 1.0 sample_ndcg[where_are_infs] = 0.0 return np.mean(sample_ndcg, dtype=np.float64) @typechecked def generate_y_pred_at_k(y_prob: np.ndarray, k: int) -> np.ndarray: """ Generates a matrix of binary predictions from a matrix of probabilities by evaluating the top k items (in ranked order by y_prob) as true. In the case where multiple probabilities for a sample are identical, the behavior is undefined in terms of how the probabilities are ranked by argsort. Args: y_prob (~np.ndarray): The predicted probability that the given flag is relevant. size=(n_samples, n_items) k (int): Number of items to evaluate as true, in descending sorted order by y_prob Returns: y_pred (~np.ndarray): A binary prediction that the given flag is relevant. size=(n_samples, n_items) Example: >>> y_prob = np.array([ [0.4, 0.6, 0.3], [0.1, 0.2, 0.9], [0.9, 0.6, 0.3], ]) >>> generate_y_pred_at_k(y_prob, 2) array([ [1, 1, 0], [0, 1, 1], [1, 1, 0] ]) For the first sample, the top 2 values for y_prob are 0.6 and 0.4, so y_pred at those positions is 1. For the second sample, the top 2 values for y_prob are 0.9 and 0.2, so y_pred at these positions is 1. For the third sample, the top 2 values for y_prob are 0.9 and 0.6, so y_pred at these positions in 1. """ n_items = y_prob.shape[1] index_array = np.argsort(y_prob, axis=1) col_idx = np.arange(y_prob.shape[0]).reshape(-1, 1) y_pred = np.zeros(np.shape(y_prob)) y_pred[col_idx, index_array[:, n_items-k:n_items]] = 1 return y_pred @typechecked def confusion_matrix_at_k(y_true: np.ndarray, y_prob: np.ndarray, k: int) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: """ Generates binary predictions from probabilities by evaluating the top k items (in ranked order by y_prob) as true. Uses these binary predictions along with true flags to calculate the confusion matrix per label for binary classification problems. Args: y_true (~np.ndarray): Flags (0, 1) which indicate whether a column is relevant or not. size=(n_samples, n_items) y_prob (~np.ndarray): The predicted probability that the given flag is relevant. size=(n_samples, n_items) k (int): Number of items to evaluate as true, in descending sorted order by y_prob Returns: tn, fp, fn, tp (tuple of ~np.ndarrays): A tuple of ndarrays containing the number of true negatives (tn), false positives (fp), false negatives (fn), and true positives (tp) for each item. The length of each ndarray is equal to n_items Example: >>> y_true = np.array([ [0, 0, 1], [0, 1, 0], [1, 0, 0], ]) >>> y_prob = np.array([ [0.4, 0.6, 0.3], [0.1, 0.2, 0.9], [0.9, 0.6, 0.3], ]) >>> y_pred = np.array([ [1, 1, 0], [0, 1, 1], [1, 1, 0] ]) >>> label_names = ['moved', 'hadAJob', 'farmIncome'] >>> confusion_matrix_at_k(y_true, y_prob, 2) ( np.array([1, 0, 1]), np.array([1, 2, 1]), np.array([0, 0, 1]), np.array([1, 1, 0]) ) In the example above, y_pred is not passed into the function, but is generated by calling generate_y_pred_at_k with y_prob and k. For the first item (moved), the first sample is a false positive, the second is a true negative, and the third is a true positive. For the second item (hadAJob), the first and third samples are false positives, and the second is a true positive. For the third item (farmIncome), the first item is a false negative, the second is a false positive, and the third is a true positive. """ check_arrays(y_true, y_prob) check_k(y_true.shape[1], k) y_pred = generate_y_pred_at_k(y_prob, k) tp = np.count_nonzero(y_pred * y_true, axis=0) tn =
np.count_nonzero((y_pred - 1) * (y_true - 1), axis=0)
numpy.count_nonzero
from collections import OrderedDict import numpy as np from robosuite_extra.env_base.sawyer import SawyerEnv from robosuite.models.arenas import TableArena from robosuite.models.objects import BoxObject, CylinderObject from robosuite_extra.models.generated_objects import FullyFrictionalBoxObject from robosuite_extra.models.tasks import UniformSelectiveSampler from robosuite.utils.mjcf_utils import array_to_string from robosuite_extra.push_env.push_task import PushTask from robosuite_extra.utils import transform_utils as T from robosuite_extra.controllers import SawyerEEFVelocityController import copy from collections import deque class SawyerPush(SawyerEnv): """ This class corresponds to a Pushing task for the sawyer robot arm. This task consists of pushing a rectangular puck from some initial position to a final goal. The goal and initial positions are chosen randomly within some starting bounds """ def __init__( self, gripper_type="PushingGripper", parameters_to_randomise=None, randomise_initial_conditions=True, table_full_size=(0.8, 1.6, 0.719), table_friction=(1e-4, 5e-3, 1e-4), use_camera_obs=False, use_object_obs=True, reward_shaping=True, placement_initializer=None, gripper_visualization=True, use_indicator_object=False, has_renderer=False, has_offscreen_renderer=True, render_collision_mesh=False, render_visual_mesh=True, control_freq=10, horizon=80, ignore_done=False, camera_name="frontview", camera_height=256, camera_width=256, camera_depth=False, pid=True, ): """ Args: gripper_type (str): type of gripper, used to instantiate gripper models from gripper factory. parameters_to_randomise [string,] : List of keys for parameters to randomise, None means all the available parameters are randomised randomise_initial_conditions [bool,]: Whether or not to randomise the starting configuration of the task. table_full_size (3-tuple): x, y, and z dimensions of the table. table_friction (3-tuple): the three mujoco friction parameters for the table. use_camera_obs (bool): if True, every observation includes a rendered image. use_object_obs (bool): if True, include object (cube) information in the observation. reward_shaping (bool): if True, use dense rewards. placement_initializer (ObjectPositionSampler instance): if provided, will be used to place objects on every reset, else a UniformRandomSampler is used by default. gripper_visualization (bool): True if using gripper visualization. Useful for teleoperation. use_indicator_object (bool): if True, sets up an indicator object that is useful for debugging. has_renderer (bool): If true, render the simulation state in a viewer instead of headless mode. has_offscreen_renderer (bool): True if using off-screen rendering. render_collision_mesh (bool): True if rendering collision meshes in camera. False otherwise. render_visual_mesh (bool): True if rendering visual meshes in camera. False otherwise. control_freq (float): how many control signals to receive in every second. This sets the amount of simulation time that passes between every action input. horizon (int): Every episode lasts for exactly @horizon timesteps. ignore_done (bool): True if never terminating the environment (ignore @horizon). camera_name (str): name of camera to be rendered. Must be set if @use_camera_obs is True. camera_height (int): height of camera frame. camera_width (int): width of camera frame. camera_depth (bool): True if rendering RGB-D, and RGB otherwise. pid (bool) : True if using a velocity PID controller for controlling the arm, false if using a mujoco-implemented proportional controller. """ self.initialised = False # settings for table self.table_full_size = table_full_size self.table_friction = table_friction # whether to use ground-truth object states self.use_object_obs = use_object_obs # reward configuration self.reward_shaping = reward_shaping if (self.reward_shaping): self.reward_range = [-np.inf, horizon * (0.1)] else: self.reward_range = [0, 1] # Domain Randomisation Parameters self.parameters_to_randomise = parameters_to_randomise self.randomise_initial_conditions = randomise_initial_conditions self.dynamics_parameters = OrderedDict() self.default_dynamics_parameters = OrderedDict() self.parameter_sampling_ranges = OrderedDict() self.factors_for_param_randomisation = OrderedDict() # object placement initializer if placement_initializer: self.placement_initializer = placement_initializer else: self.placement_initializer = UniformSelectiveSampler( x_range=None, y_range=None, ensure_object_boundary_in_range=True, z_rotation=None, np_random=None ) # Param for storing a specific goal and object starting positions self.specific_goal_position = None self.specific_gripper_position = None self.gripper_pos_neutral = [0.44969246, 0.16029991, 1.00875409] super().__init__( gripper_type=gripper_type, gripper_visualization=gripper_visualization, use_indicator_object=use_indicator_object, has_renderer=has_renderer, has_offscreen_renderer=has_offscreen_renderer, render_collision_mesh=render_collision_mesh, render_visual_mesh=render_visual_mesh, control_freq=control_freq, horizon=horizon, ignore_done=ignore_done, use_camera_obs=use_camera_obs, camera_name=camera_name, camera_height=camera_height, camera_width=camera_width, camera_depth=camera_depth, pid=pid, ) self._set_default_dynamics_parameters(pid) self._set_default_parameter_sampling_ranges() self._set_dynamics_parameters(self.default_dynamics_parameters) self._set_factors_for_param_randomisation(self.default_dynamics_parameters) # Check that the parameters to randomise are within the allowed parameters if (self.parameters_to_randomise is not None): self._check_allowed_parameters(self.parameters_to_randomise) # IK solver for placing the arm at desired locations during reset self.IK_solver = SawyerEEFVelocityController() self.placement_initializer.set_random_number_generator(self.np_random) self.init_control_timestep = self.control_timestep self.init_qpos = self.mujoco_robot.init_qpos # Storing parameters for temporary switching self.cached_parameters_to_randomise = None self.cached_dynamics_parameters = None self.initialised = True self.reset() def _set_dynamics_parameters(self, parameters): self.dynamics_parameters = copy.deepcopy(parameters) def _default_damping_params(self): # return np.array([0.01566, 1.171, 0.4906, 0.1573, 1.293, 0.08688, 0.1942]) # -real world calibration # return np.array([0.8824,2.3357,1.1729, 0.0 , 0.5894, 0.0 ,0.0082]) #- command calibration return np.array([8.19520686e-01, 1.25425414e+00, 1.04222253e+00, 0.00000000e+00, 1.43146116e+00, 1.26807887e-01, 1.53680244e-01, ]) # - command calibration 2 def _default_armature_params(self): return np.array([0.00000000e+00, 0.00000000e+00, 2.70022664e-02, 5.35581203e-02, 3.31204140e-01, 2.59623415e-01, 2.81964631e-01, ]) def _default_joint_friction_params(self): return np.array([4.14390483e-03, 9.30938506e-02, 2.68656509e-02, 0.00000000e+00, 0.00000000e+00, 4.24867204e-04, 8.62040317e-04]) def _set_default_dynamics_parameters(self, use_pid): """ Setting the the default environment parameters. """ self.default_dynamics_parameters['joint_forces'] = np.zeros((7,)) self.default_dynamics_parameters['acceleration_forces'] = np.zeros((7,)) self.default_dynamics_parameters['eef_forces'] = np.zeros((6,)) self.default_dynamics_parameters['obj_forces'] = np.zeros((6,)) self.default_dynamics_parameters['eef_timedelay'] = np.asarray(0) self.default_dynamics_parameters['obj_timedelay'] = np.asarray(0) self.default_dynamics_parameters['timestep_parameter'] = np.asarray(0.0) self.default_dynamics_parameters['pid_iteration_time'] = np.asarray(0.) self.default_dynamics_parameters['mujoco_timestep'] = np.asarray(0.002) self.default_dynamics_parameters['action_additive_noise'] = np.asarray(0.0) self.default_dynamics_parameters['action_multiplicative_noise'] = np.asarray(0.0) self.default_dynamics_parameters['action_systematic_noise'] = np.asarray(0.0) self.default_dynamics_parameters['eef_obs_position_noise'] = np.asarray(0.0) self.default_dynamics_parameters['eef_obs_velocity_noise'] = np.asarray(0.0) self.default_dynamics_parameters['obj_obs_position_noise'] = np.asarray(0.0) self.default_dynamics_parameters['obj_obs_velocity_noise'] = np.asarray(0.0) self.default_dynamics_parameters['obj_angle_noise'] = np.asarray(0.0) self.default_dynamics_parameters['obj_density'] = np.asarray(400) self.default_dynamics_parameters['obj_size'] = np.array([0.0555 / 2, 0.0555 / 2, 0.03 / 2]) self.default_dynamics_parameters['obj_sliding_friction'] = np.asarray(0.4) self.default_dynamics_parameters['obj_torsional_friction'] = np.asarray(0.01) link_masses = np.zeros((7,)) for link_name, idx, body_node, mass_node, joint_node in self._robot_link_nodes_generator(): if (mass_node is not None): dynamics_parameter_value = float(mass_node.get("mass")) link_masses[idx] = dynamics_parameter_value self.default_dynamics_parameters['link_masses'] = link_masses self.default_dynamics_parameters['joint_dampings'] = self._default_damping_params() self.default_dynamics_parameters['armatures'] = self._default_armature_params() self.default_dynamics_parameters['joint_frictions'] = self._default_joint_friction_params() if (use_pid): gains = self.mujoco_robot.velocity_pid_gains kps = np.array([gains['right_j{}'.format(actuator)]['p'] for actuator in range(7)]) kis = np.array([gains['right_j{}'.format(actuator)]['i'] for actuator in range(7)]) kds = np.array([gains['right_j{}'.format(actuator)]['d'] for actuator in range(7)]) # self.default_dynamics_parameters['kps'] = kps self.default_dynamics_parameters['kis'] = kis self.default_dynamics_parameters['kds'] = kds else: kvs = np.zeros((7,)) for target_joint, jnt_idx, node in self._velocity_actuator_nodes_generator(): gains_value = float(node.get("kv")) kvs[jnt_idx] = gains_value self.default_dynamics_parameters['kvs'] = kvs def _set_default_parameter_sampling_ranges(self): """ Returns the parameter ranges to draw samples from in the domain randomisation. """ parameter_ranges = { 'joint_forces': np.array([[0.,0.,0.,0.,0.,0.,0.], [1.5,1.5,1.5,1.5,1.5,1.5,1.5]]),# 'acceleration_forces': np.array([[0.,0.,0.,0.,0.,0.,0.], [0.05,0.05,0.05,0.05,0.05,0.05,0.05]]),# 'eef_forces': np.array([[0.,0.,0.,0.,0.,0.], [0.06 ,0.06,0.06,0.01,0.01,0.01,]]), # 'obj_forces': np.array([[0., 0., 0., 0., 0., 0., ], [0.0011, 0.0011, 0.0011, 0.0005, 0.0005, 0.0005, ]]), 'eef_timedelay': np.array([0, 1]), 'obj_timedelay': np.array([0,2]), 'timestep_parameter': np.array([0.0, 0.01]), 'pid_iteration_time': np.array([0., 0.04]), 'mujoco_timestep': np.array([0.001,0.002]), 'action_additive_noise': np.array([0.01, 0.1]), 'action_multiplicative_noise': np.array([0.005,0.02]), 'action_systematic_noise': np.array([-0.05, 0.05]), 'eef_obs_position_noise': np.array([0.0005, 0.001]), 'eef_obs_velocity_noise': np.array([0.0005, 0.001]), 'obj_obs_position_noise': np.array([0.0005, 0.001]), 'obj_obs_velocity_noise': np.array([0.0005, 0.0015]), 'obj_angle_noise': np.array([0.005, 0.05]), 'obj_density': np.array([100, 800]), 'obj_size': np.array([0.995, 1.005]), 'obj_sliding_friction': np.array([0.01, 0.8]), 'obj_torsional_friction': np.array([0.001, 0.3]), 'link_masses': np.array([0.98, 1.02]), 'joint_dampings':
np.array([0.5, 2.])
numpy.array
#from classifier.sentiment.naiveBayes import BoWStruct, getVector import numpy as np from collections import OrderedDict import nltk from nltk.corpus import sentiwordnet as swn from nltk.corpus import wordnet as wn #nltk.download() class SentimentFeatures: """ Deprecated """ # FeatureVector Length FVLength = 6 #def __init__(self): def buildStruct(self, dataset): self.struct = BoWStruct(dataset) return self.struct def genVec(self, sentence): return getVector(sentence, self.struct) def genPresenceVec(self, sentence): v = np.zeros(len(self.struct)) keysList = list(self.struct.keys()) for word in sentence.split(): if word in self.struct: v[keysList.index(word)] = 1 return v POSDict = { 'JJ':'a', 'JJR':'a', 'JJS':'a', 'NN':'n', 'NNS':'n', 'NNP':'n', 'NNPS':'n', 'RB':'av', 'RBR':'av', 'RBS':'av' } def genAdjVec(self, sentence): v = np.zeros(len(self.adjStruct)) s_tokens = nltk.word_tokenize(sentence) pos_tagged = nltk.pos_tag(s_tokens) adjCount = 0 adjTotalScore = np.zeros(3) advCount = 0 advTotalScore = np.zeros(3) for (word, pos) in pos_tagged: if pos in self.POSDict: if self.POSDict[pos] == 'a': if word in self.adjStruct: v[self.adjKeyList.index(word)] = v[self.adjKeyList.index(word)] + 1. np.add(adjTotalScore, self.wordScore(word, 'a'), adjTotalScore) adjCount += 1 elif self.POSDict[pos] == 'av': np.add(advTotalScore, self.wordScore(word, 'a'), advTotalScore) advCount += 1 adjDiv = np.zeros(3) advDiv = np.zeros(3) if(adjCount != 0): np.true_divide(adjTotalScore, adjCount, adjDiv) if (advCount != 0): np.true_divide(advTotalScore, advCount, advDiv) nums =
np.append(adjDiv, advDiv)
numpy.append
r"""Tests for parallel implementation of triangulations.""" import nose.tools as nt import numpy as np import os import time from cgal4py import _use_multiprocessing from cgal4py import parallel, delaunay from cgal4py.domain_decomp import GenericTree from cgal4py.tests.test_cgal4py import make_points, make_test, MyTestCase if _use_multiprocessing: import multiprocessing as mp from mpi4py import MPI import ctypes np.random.seed(10) @nt.nottest def lines_load_test(npts, ndim, periodic=False): lines = [ "from cgal4py.tests.test_cgal4py import make_points", "pts, le, re = make_points({}, {})".format(npts, ndim), "load_dict = dict(pts=pts, left_edge=le, right_edge=re,", " periodic={})".format(periodic)] return lines class TestGetMPIType(MyTestCase): def setup_param(self): self._func = parallel._get_mpi_type self.param_equal = [(MPI.INT, ['i'], {}), (MPI.LONG, ['l'], {}), (MPI.FLOAT, ['f'], {}), (MPI.DOUBLE, ['d'], {})] self.param_raises = [(ValueError, ['m'], {})] class TestWriteMPIScript(MyTestCase): def setup_param(self): self._func = parallel.write_mpi_script fname = 'test_mpi_script.py' read_lines = lines_load_test(10, 2) self.param_runs = [ ((fname, read_lines, 'triangulate'), {}), ((fname, read_lines, 'triangulate'), dict(use_double=True)), ((fname, read_lines, 'triangulate'), dict(use_buffer=True)), ((fname, read_lines, 'triangulate'), dict(profile=True))] self._fname = fname self._read_lines = read_lines def check_runs(self, args, kwargs): self.func(*args, **kwargs) assert(os.path.isfile(args[0])) os.remove(args[0]) def test_overwrite(self): self.func(self._fname, self._read_lines, 'volumes') t0 = os.path.getmtime(self._fname) time.sleep(1) self.func(self._fname, self._read_lines, 'volumes', overwrite=False) t1 = os.path.getmtime(self._fname) nt.eq_(t0, t1) time.sleep(1) self.func(self._fname, self._read_lines, 'volumes', overwrite=True) t2 = os.path.getmtime(self._fname) nt.assert_not_equal(t1, t2) os.remove(self._fname) class TestParallelLeaf(MyTestCase): def setup_param(self): self._func = parallel.ParallelLeaf self.param_runs = [ ((0, 2), {}), ((0, 3), {}), # ((0, 4), {}), ((0, 2), {'periodic':True}), ((0, 3), {'periodic':True}), # ((0, 4), {'periodic':True}), ] def check_runs(self, args, kwargs): pts, tree = make_test(*args, **kwargs) left_edges = np.vstack([leaf.left_edge for leaf in tree.leaves]) right_edges = np.vstack([leaf.right_edge for leaf in tree.leaves]) for leaf in tree.leaves: pleaf = self._func(leaf, left_edges, right_edges) def check_tessellate(self, args, kwargs): pts, tree = make_test(*args, **kwargs) left_edges = np.vstack([leaf.left_edge for leaf in tree.leaves]) right_edges = np.vstack([leaf.right_edge for leaf in tree.leaves]) leaf = tree.leaves[0] pleaf = self._func(leaf, left_edges, right_edges) pleaf.pts = pts[tree.idx[pleaf.idx], :] pleaf.tessellate() pleaf.tessellate(pts) pleaf.tessellate(pts, tree.idx) def check_exchange(self, args, kwargs): pts, tree = make_test(*args, **kwargs) left_edges = np.vstack([leaf.left_edge for leaf in tree.leaves]) right_edges = np.vstack([leaf.right_edge for leaf in tree.leaves]) leaf0 = tree.leaves[0] leaf1 = tree.leaves[1] pleaf0 = self._func(leaf0, left_edges, right_edges) pleaf1 = self._func(leaf1, left_edges, right_edges) pleaf0.tessellate(pts, tree.idx) pleaf1.tessellate(pts, tree.idx) out0 = pleaf0.outgoing_points() out1 = pleaf1.outgoing_points() pleaf1.incoming_points(0, out0[0][1], out0[1], out0[2], out0[3], pts[out0[0][1], :]) pleaf1.incoming_points(1, out1[0][1], out1[1], out1[2], out1[3], pts[out1[0][1], :]) pleaf0.incoming_points(0, out0[0][0], out0[1], out0[2], out0[3], pts[out0[0][0], :]) pleaf0.incoming_points(1, out1[0][0], out1[1], out1[2], out1[3], pts[out1[0][0], :]) if kwargs.get('periodic', True): idx = pleaf1.idx pos = pts[idx, :] pleaf1.periodic_left[0] = True pleaf1.periodic_right[0] = True pleaf1.left_neighbors.append(0) pos[0,0] = tree.left_edge[0] pos[1,0] = tree.right_edge[0] pleaf1.incoming_points(1, idx, pleaf1.neighbors, pleaf1.left_edges, pleaf1.right_edges, pos) pleaf1.incoming_points(0, idx, pleaf0.neighbors, pleaf0.left_edges, pleaf0.right_edges, pos) def test_tessellate_generator(self): for args, kwargs in self.param_runs: yield self.check_tessellate, args, kwargs def test_exchange_generator(self): for args, kwargs in self.param_runs: yield self.check_exchange, args, kwargs def test_serialize(self): pts, tree = make_test(0, 2) left_edges = np.vstack([leaf.left_edge for leaf in tree.leaves]) right_edges = np.vstack([leaf.right_edge for leaf in tree.leaves]) leaf = tree.leaves[0] pleaf = self._func(leaf, left_edges, right_edges) pleaf.tessellate(pts, tree.idx) pleaf.serialize(store=True) class TestDelaunayProcessMPI(MyTestCase): def setup_param(self): self._func = parallel.DelaunayProcessMPI taskname1 = 'triangulate' taskname2 = 'volumes' ndim = 2 periodic = False pts, tree = make_test(0, ndim, periodic=periodic) le = tree.left_edge re = tree.right_edge self._pts = pts self._tree = tree # self._dummy3 = self._func(taskname2, pts, tree) # self._dummy4 = self._func(taskname2, pts, tree, use_buffer=True) # self._leaves = self._dummy1._leaves # TODO: use_buffer curregntly segfaults when run with coverage self.param_runs = [ # Using C++ communications # ((taskname1, pts), {}), # ((taskname1, pts, left_edge=le, right_edge=re), {}), # ((taskname1, pts), {'use_double':True}), # ((taskname1, pts), {'limit_mem':True}), # ((taskname2, pts), {}), # ((taskname2, pts), {'limit_mem':True}), # Using Python communications ((taskname1, pts), {'use_python':True}), ((taskname1, pts, tree), {'use_python':True}), ((taskname1, pts, GenericTree.from_tree(tree)), {'use_python':True}), ((taskname1, pts, tree), {'use_python':True, 'use_double':True}), # ((taskname1, pts, tree), {'use_python':True}, # 'use_buffer':True}), ((taskname1, pts, tree), {'use_python':True, 'limit_mem':True}), ((taskname2, pts, tree), {'use_python':True}), # ((taskname2, pts, tree), {'use_python':True}, # 'use_buffer':True}), ((taskname2, pts, tree), {'use_python':True, 'limit_mem':True}), ] self.param_raises = [ (ValueError, ('null', pts, tree), {}) ] def check_runs(self, args, kwargs): x = self.func(*args, **kwargs) x.run() fname = x.output_filename() if os.path.isfile(fname): os.remove(fname) def test_gather_leaf_arrays(self): taskname1 = 'triangulate' pts = self._pts tree = self._tree dummy1 = self.func(taskname1, pts, tree, use_python=True) dummy2 = self.func(taskname1, pts, tree, use_python=True, use_buffer=True) leaves = tree.leaves arr = {leaf.id: np.arange(5*(leaf.id+1)) for leaf in leaves} dummy1.gather_leaf_arrays(arr) dummy2.gather_leaf_arrays(arr) if _use_multiprocessing: class TestDelaunayProcessMulti(MyTestCase): def setup_param(self): self._func = parallel.DelaunayProcessMulti self.param_runs = [ (('triangulate',), {}), (('triangulate',), {'limit_mem':True}), (('volumes',), {}), (('triangulate',), {'limit_mem':True}), ] def check_runs(self, args, kwargs): (taskname,) = args ndim = 2 periodic = False pts, tree = make_test(0, ndim, periodic=periodic) idxArray = mp.RawArray(ctypes.c_ulonglong, tree.idx.size) ptsArray = mp.RawArray('d', pts.size) memoryview(idxArray)[:] = tree.idx memoryview(ptsArray)[:] = pts left_edges = np.vstack([leaf.left_edge for leaf in tree.leaves]) right_edges = np.vstack([leaf.right_edge for leaf in tree.leaves]) leaves = tree.leaves nproc = 2 # len(leaves) count = [mp.Value('i',0),mp.Value('i',0),mp.Value('i',0)] lock = mp.Condition() queues = [mp.Queue() for _ in xrange(nproc+1)] in_pipes = [None for _ in xrange(nproc)] out_pipes = [None for _ in xrange(nproc)] for i in range(nproc): out_pipes[i],in_pipes[i] = mp.Pipe(True) # Split leaves task2leaves = [[] for _ in xrange(nproc)] for leaf in leaves: task = leaf.id % nproc task2leaves[task].append(leaf) # Dummy process processes = [] for i in xrange(nproc): processes.append(self._func( taskname, i, task2leaves[i], ptsArray, idxArray, left_edges, right_edges, queues, lock, count, in_pipes[i], **kwargs)) # Perform setup on higher processes for i in xrange(1, nproc): P = processes[i] P.tessellate_leaves() P.outgoing_points() for i in xrange(1, nproc): count[0].value += 1 # Perform entire run on lowest process P = processes[0] P.run(test_in_serial=True) # Do tear down on higher processes for i in xrange(1, nproc): P = processes[i] P.incoming_points() P.enqueue_result() for l in range(len(task2leaves[i])): x = P.receive_result(out_pipes[i]) # Clean up files for i in xrange(nproc): P = processes[i] for leaf in P._leaves: if kwargs.get('limit_mem', False): leaf.remove_tess() ffinal = leaf.tess_output_filename if os.path.isfile(ffinal): os.remove(ffinal) class TestParallelDelaunay(MyTestCase): def setup_param(self): self._func = parallel.ParallelDelaunay ndim_list = [2, 3] # , 4] param_test = [] self._fprof = 'test_ParallelDelaunay.cProfile' for ndim in ndim_list: param_test += [ ((0, ndim, 2), {}), ((100, ndim, 2), {'nleaves': 2}), ((100, ndim, 4), {'nleaves': 4}), ((100, ndim, 4), {'nleaves': 8}), # ((1000, ndim, 2), {'nleaves': 2}), # ((4*4*2, ndim, 4), {'leafsize': 8}), # ((1e5, ndim, 8), {'nleaves': 8}), # ((1e7, ndim, 10), {'nleaves': 10}), ] self.param_returns = [] for args, kwargs in param_test: pts, tree = make_test(args[0], args[1], **kwargs) ans = delaunay.Delaunay(pts) read_lines = lines_load_test(args[0], args[1]) for limit_mem in [False, True]: if _use_multiprocessing: self.param_returns += [ (ans, (pts, tree, args[2]), {'use_mpi': False, 'limit_mem': limit_mem}) ] for profile in [False, self._fprof]: self.param_returns += [ (ans, (pts, tree, args[2]), {'use_mpi': True, 'limit_mem': limit_mem, 'profile': profile, 'use_python':True, 'use_buffer': False}), (ans, (pts, tree, args[2]), {'use_mpi': True, 'limit_mem': limit_mem, 'profile': profile, 'use_python':True, 'use_buffer': True}), # (ans, (pts, tree, args[2]), # {'use_mpi': True, 'limit_mem': limit_mem, # 'profile': profile, 'use_python':False}) ] def check_returns(self, result, args, kwargs): T_seri = result T_para = self.func(*args, **kwargs) ndim = args[0].shape[1] c_seri, n_seri, inf_seri = T_seri.serialize(sort=True) c_para, n_para, inf_para = T_para.serialize(sort=True) try: assert(np.all(c_seri == c_para)) assert(
np.all(n_seri == n_para)
numpy.all
# Copyright (c) 2003-2019 by <NAME> # # TreeCorr is free software: redistribution and use in source and binary forms, # with or without modification, are permitted provided that the following # conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions, and the disclaimer given in the accompanying LICENSE # file. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions, and the disclaimer given in the documentation # and/or other materials provided with the distribution. from __future__ import print_function import numpy as np import os import coord import time import fitsio import treecorr from test_helper import assert_raises, do_pickle, timer, get_from_wiki, CaptureLog, clear_save from test_helper import profile def generate_shear_field(npos, nhalo, rng=None): # We do something completely different here than we did for 2pt patch tests. # A straight Gaussian field with a given power spectrum has no significant 3pt power, # so it's not a great choice for simulating a field for 3pt tests. # Instead we place N SIS "halos" randomly in the grid. # Then we translate that to a shear field via FFT. if rng is None: rng = np.random.RandomState() # Generate x,y values for the real-space field x = rng.uniform(0,1000, size=npos) y = rng.uniform(0,1000, size=npos) nh = rng.poisson(nhalo) # Fill the kappa values with SIS halo profiles. xc = rng.uniform(0,1000, size=nh) yc = rng.uniform(0,1000, size=nh) scale = rng.uniform(20,50, size=nh) mass = rng.uniform(0.01, 0.05, size=nh) # Avoid making huge nhalo * nsource arrays. Loop in blocks of 64 halos nblock = (nh-1) // 64 + 1 kappa = np.zeros_like(x) gamma = np.zeros_like(x, dtype=complex) for iblock in range(nblock): i = iblock*64 j = (iblock+1)*64 dx = x[:,np.newaxis]-xc[np.newaxis,i:j] dy = y[:,np.newaxis]-yc[np.newaxis,i:j] dx[dx==0] = 1 # Avoid division by zero. dy[dy==0] = 1 dx /= scale[i:j] dy /= scale[i:j] rsq = dx**2 + dy**2 r = rsq**0.5 k = mass[i:j] / r # "Mass" here is really just a dimensionless normalization propto mass. kappa += np.sum(k, axis=1) # gamma_t = kappa for SIS. g = -k * (dx + 1j*dy)**2 / rsq gamma += np.sum(g, axis=1) return x, y, np.real(gamma), np.imag(gamma), kappa @timer def test_kkk_jk(): # Test jackknife and other covariance estimates for kkk correlations. # Note: This test takes a while! # The main version I think is a pretty decent test of the code correctness. # It shows that bootstrap in particular easily gets to within 50% of the right variance. # Sometimes within 20%, but because of the randomness there, it varies a bit. # Jackknife isn't much worse. Just a little below 50%. But still pretty good. # Sample and Marked are not great for this test. I think they will work ok when the # triangles of interest are mostly within single patches, but that's not the case we # have here, and it would take a lot more points to get to that regime. So the # accuracy tests for those two are pretty loose. if __name__ == '__main__': # This setup takes about 740 sec to run. nhalo = 3000 nsource = 5000 npatch = 32 tol_factor = 1 elif False: # This setup takes about 180 sec to run. nhalo = 2000 nsource = 2000 npatch = 16 tol_factor = 2 elif False: # This setup takes about 51 sec to run. nhalo = 1000 nsource = 1000 npatch = 16 tol_factor = 3 else: # This setup takes about 20 sec to run. # So we use this one for regular unit test runs. # It's pretty terrible in terms of testing the accuracy, but it works for code coverage. # But whenever actually working on this part of the code, definitely need to switch # to one of the above setups. Preferably run the name==main version to get a good # test of the code correctness. nhalo = 500 nsource = 500 npatch = 16 tol_factor = 4 file_name = 'data/test_kkk_jk_{}.npz'.format(nsource) print(file_name) if not os.path.isfile(file_name): nruns = 1000 all_kkks = [] rng1 = np.random.RandomState() for run in range(nruns): x, y, _, _, k = generate_shear_field(nsource, nhalo, rng1) print(run,': ',np.mean(k),np.std(k)) cat = treecorr.Catalog(x=x, y=y, k=k) kkk = treecorr.KKKCorrelation(nbins=3, min_sep=30., max_sep=100., min_u=0.9, max_u=1.0, nubins=1, min_v=0.0, max_v=0.1, nvbins=1) kkk.process(cat) print(kkk.ntri.ravel().tolist()) print(kkk.zeta.ravel().tolist()) all_kkks.append(kkk) mean_kkk = np.mean([kkk.zeta.ravel() for kkk in all_kkks], axis=0) var_kkk = np.var([kkk.zeta.ravel() for kkk in all_kkks], axis=0) np.savez(file_name, all_kkk=np.array([kkk.zeta.ravel() for kkk in all_kkks]), mean_kkk=mean_kkk, var_kkk=var_kkk) data = np.load(file_name) mean_kkk = data['mean_kkk'] var_kkk = data['var_kkk'] print('mean = ',mean_kkk) print('var = ',var_kkk) rng = np.random.RandomState(12345) x, y, _, _, k = generate_shear_field(nsource, nhalo, rng) cat = treecorr.Catalog(x=x, y=y, k=k) kkk = treecorr.KKKCorrelation(nbins=3, min_sep=30., max_sep=100., min_u=0.9, max_u=1.0, nubins=1, min_v=0.0, max_v=0.1, nvbins=1, rng=rng) kkk.process(cat) print(kkk.ntri.ravel()) print(kkk.zeta.ravel()) print(kkk.varzeta.ravel()) kkkp = kkk.copy() catp = treecorr.Catalog(x=x, y=y, k=k, npatch=npatch) # Do the same thing with patches. kkkp.process(catp) print('with patches:') print(kkkp.ntri.ravel()) print(kkkp.zeta.ravel()) print(kkkp.varzeta.ravel()) np.testing.assert_allclose(kkkp.ntri, kkk.ntri, rtol=0.05 * tol_factor) np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor) np.testing.assert_allclose(kkkp.varzeta, kkk.varzeta, rtol=0.05 * tol_factor, atol=3.e-6) print('jackknife:') cov = kkkp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.diagonal(cov), var_kkk, rtol=0.6 * tol_factor) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.5*tol_factor) print('sample:') cov = kkkp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.diagonal(cov), var_kkk, rtol=0.7 * tol_factor) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.7*tol_factor) print('marked:') cov = kkkp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.diagonal(cov), var_kkk, rtol=0.7 * tol_factor) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.7*tol_factor) print('bootstrap:') cov = kkkp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.diagonal(cov), var_kkk, rtol=0.5 * tol_factor) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.3*tol_factor) # Now as a cross correlation with all 3 using the same patch catalog. print('with 3 patched catalogs:') kkkp.process(catp, catp, catp) print(kkkp.zeta.ravel()) np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor) print('jackknife:') cov = kkkp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.5*tol_factor) print('sample:') cov = kkkp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('marked:') cov = kkkp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('bootstrap:') cov = kkkp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.3*tol_factor) # Repeat this test with different combinations of patch with non-patch catalogs: # All the methods work best when the patches are used for all 3 catalogs. But there # are probably cases where this kind of cross correlation with only some catalogs having # patches could be desired. So this mostly just checks that the code runs properly. # Patch on 1 only: print('with patches on 1 only:') kkkp.process(catp, cat) print(kkkp.zeta.ravel()) np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor) print('jackknife:') cov = kkkp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('sample:') cov = kkkp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('marked:') cov = kkkp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('bootstrap:') cov = kkkp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) # Patch on 2 only: print('with patches on 2 only:') kkkp.process(cat, catp, cat) print(kkkp.zeta.ravel()) np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor) print('jackknife:') cov = kkkp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.diagonal(cov), var_kkk, rtol=0.9 * tol_factor) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('sample:') cov = kkkp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('marked:') cov = kkkp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('bootstrap:') cov = kkkp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) # Patch on 3 only: print('with patches on 3 only:') kkkp.process(cat, cat, catp) print(kkkp.zeta.ravel()) np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor) print('jackknife:') cov = kkkp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('sample:') cov = kkkp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('marked:') cov = kkkp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('bootstrap:') cov = kkkp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) # Patch on 1,2 print('with patches on 1,2:') kkkp.process(catp, catp, cat) print(kkkp.zeta.ravel()) np.testing.assert_allclose(kkkp.zeta, kkk.zeta, rtol=0.1 * tol_factor, atol=1e-3 * tol_factor) print('jackknife:') cov = kkkp.estimate_cov('jackknife') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.3*tol_factor) print('sample:') cov = kkkp.estimate_cov('sample') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('marked:') cov = kkkp.estimate_cov('marked_bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_kkk)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_kkk), atol=0.8*tol_factor) print('bootstrap:') cov = kkkp.estimate_cov('bootstrap') print(np.diagonal(cov)) print('max log(ratio) = ',np.max(np.abs(np.log(
np.diagonal(cov)
numpy.diagonal
try: from keras import backend as K import numpy as np except ImportError as err: exit(err) def dice_coef(y_true, y_pred, smooth=1): """ From: https://github.com/keras-team/keras/issues/3611 and https://github.com/keras-team/keras/issues/3611#issuecomment-243108708 """ intersection = K.sum(y_true * y_pred, axis=[1, 2, 3]) union = K.sum(y_true, axis=[1, 2, 3]) + K.sum(y_pred, axis=[1, 2, 3]) return K.mean((2. * intersection + smooth)/(union + smooth), axis=0) def dice_coef_loss(y_true, y_pred): """ From: https://github.com/keras-team/keras/issues/3611 and https://github.com/keras-team/keras/issues/3611#issuecomment-243108708 """ return 1 - dice_coef(y_true, y_pred) def soft_dice_loss(y_true, y_pred, epsilon=1e-6): """ From: https://gist.github.com/jeremyjordan/9ea3032a32909f71dd2ab35fe3bacc08 Soft dice loss calculation for arbitrary batch size, number of classes, and number of spatial dimensions. Assumes the `channels_last` format. # Arguments y_true: b x X x Y( x Z...) x c One hot encoding of ground truth y_pred: b x X x Y( x Z...) x c Network output, must sum to 1 over c channel (such as after softmax) epsilon: Used for numerical stability to avoid divide by zero errors # References V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation https://arxiv.org/abs/1606.04797 More details on Dice loss formulation https://mediatum.ub.tum.de/doc/1395260/1395260.pdf (page 72) Adapted from https://github.com/Lasagne/Recipes/issues/99#issuecomment-347775022 """ # Skip the batch and class axis for calculating Dice score axes = tuple(range(1, len(y_pred.shape)-1)) numerator = 2. * np.sum(y_pred * y_true, axes) denominator = np.sum(
np.square(y_pred)
numpy.square
#!/usr/bin/env python # coding: utf-8 from typing import Union from dataclasses import dataclass import itertools import copy import numpy as np import geopandas as gpd import pandas as pd import shapely.affinity as affine import shapely.geometry as geom import shapely.wkt as wkt from weave_units import WeaveUnit from tile_units import Tileable from tile_units import TileShape @dataclass class TileGrid: tile:gpd.GeoSeries = None to_tile:gpd.GeoSeries = None grid_type:TileShape = None extent:gpd.GeoSeries = None centre:tuple[float] = None points:gpd.GeoSeries = None def __init__(self, tile:gpd.GeoSeries, to_tile:gpd.GeoSeries, grid_type:TileShape = TileShape.RECTANGLE, to_hex:bool = True) -> None: self.grid_type = grid_type self.tile = tile if self.grid_type == TileShape.TRIANGLE: self.tile, self.grid_type = self._modify_triangle_tile(to_hex) self.to_tile = gpd.GeoSeries([to_tile.unary_union]) self.extent, self.centre = self._get_extent() self.points = self._get_points() def _get_extent(self) -> gpd.GeoSeries: mrr = self.to_tile.geometry[0].minimum_rotated_rectangle mrr_centre = geom.Point(mrr.centroid.coords[0]) mrr_corner = geom.Point(mrr.exterior.coords[0]) radius = mrr_centre.distance(mrr_corner) return gpd.GeoSeries([mrr_centre.buffer(radius)]), mrr_centre def _get_points(self) -> gpd.GeoSeries: if self.grid_type in (TileShape.RECTANGLE, ): pts = self._get_rect_centres() elif self.grid_type in (TileShape.HEXAGON, TileShape.TRIHEX): pts = self._get_hex_centres() elif self.grid_type in (TileShape.TRIDIAMOND, ): pts = self._get_diamond_centres() tr = affine.translate # for efficiency here tiles = [tr(self.tile.geometry[0], p[0], p[1]) for p in list(pts)] tiles = [t for t in tiles if self.extent[0].intersects(t)] return gpd.GeoSeries([t.centroid for t in tiles]) def _get_width_height_left_bottom(self, gs:gpd.GeoSeries ) -> tuple[float]: """Returns width, height, left and bottom limits of a GeoSeries Args: gs (geopandas.GeoSeries): GeoSeries for which limits are required. Returns: tuple: four float values of width, height, left and bottom of gs. """ extent = gs.total_bounds return extent[2] - extent[0], extent[3] - extent[1], extent[0], extent[1] def _get_grid(self, ll: tuple[float], nums: tuple[int], tdim: tuple[float]) -> np.ndarray: """Returns rectilinear grid of x,y coordinate pairs. Args: ll (tuple[float]): lower left corner coordinates of the grid as (x, y). nums (tuple[int]): grid extent as (number of columns, number of rows). tdim (tuple[float]): grid resolution as (column width, column height) Returns: np.ndarray: a matrix of nums[0] * nums[1] rows and 2 columns, each row containing an x, y coordinate pair. """ return np.array(np.meshgrid(np.arange(nums[0]) * tdim[0] + ll[0], np.arange(nums[1]) * tdim[1] + ll[1]) ).reshape(2, nums[0] * nums[1]).transpose() def _get_rect_centres(self) -> np.ndarray: """Returns a rectangular grid of translation vectors that will 'fill' to_tile_gs polygon with the tile_gs polygon (which should be rectangular). Returns: np.ndarray: A 2 column array each row being an x, y translation vector. """ tt_w, tt_h, tt_x0, tt_y0 = \ self._get_width_height_left_bottom(self.extent) tile_w, tile_h, tile_x0, tile_y0 = \ self._get_width_height_left_bottom(self.tile) # number of tiles in each direction nx = int(np.ceil(tt_w / tile_w)) ny = int(np.ceil(tt_h / tile_h)) # origin is inset from the lower lwft corner based x0 = (tt_w - (nx * tile_w)) / 2 + tt_x0 y0 = (tt_h - (ny * tile_h)) / 2 + tt_y0 return self._get_grid((x0, y0), (nx + 1, ny + 1), (tile_w, tile_h)) def _get_hex_centres(self) -> np.ndarray: """Returns a hexagonal grid of translation vectors that will 'fill' to_tile_gs with the tile_gs polygon (which should be hexagonal). Returns: np.ndarray: A 2 column array each row being an x, y translation vector. """ tt_w, tt_h, tt_x0, tt_y0 = \ self._get_width_height_left_bottom(self.extent) tile_w, tile_h, tile_x0, tile_y0 = \ self._get_width_height_left_bottom(self.tile) nx = int(np.ceil(tt_w / (tile_w * 3 / 2))) ny = int(np.ceil(tt_h / tile_h)) # the effective width of two columns of hexagonal tiles is 3w/2 x0 = (tt_w - (nx * tile_w * 3 / 2)) / 2 + tt_x0 y0 = (tt_h - (ny * tile_h)) / 2 + tt_y0 # get two offset rectangular grids and combine them g1 = self._get_grid((x0, y0 + tile_h / 4), (nx + 1, ny + 1), (tile_w * 3 / 2, tile_h)) g2 = self._get_grid((x0 + tile_w * 3 / 4, y0 - tile_h / 4), (nx, ny), (tile_w * 3 / 2, tile_h)) return np.append(g1, g2).reshape((g1.shape[0] + g2.shape[0], 2)) # Actually returns rhombus centres # # /\ # / \ # \ / # \/ # def _get_diamond_centres(self) -> np.ndarray: tt_w, tt_h, tt_x0, tt_y0 = \ self._get_width_height_left_bottom(self.extent) tile_w, tile_h, tile_x0, tile_y0 = \ self._get_width_height_left_bottom(self.tile) nx = int(np.ceil(tt_w / tile_w)) ny = int(
np.ceil(tt_h / tile_h)
numpy.ceil
#!/usr/bin/env python # coding=utf-8 # Copyright (c) 2015-2021 UT-BATTELLE, LLC # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """The Perturbation Growth Test: This tests the null hypothesis that the reference (n) and modified (m) model ensembles represent the same atmospheric state after each physics parameterization is applied within a single time-step using the two-sample (n and m) T-test for equal averages at a 95% confidence level. Ensembles are generated by repeating the simulation for many initial conditions, with each initial condition subject to multiple perturbations. """ from __future__ import absolute_import, division, print_function, unicode_literals import six import os import math import argparse # import logging from pprint import pprint from collections import OrderedDict import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.patches as mpatches from scipy import stats from netCDF4 import Dataset import livvkit from livvkit.util import elements as el from livvkit.util import functions as fn from evv4esm.utils import bib2html # logger = logging.getLogger(__name__) def parse_args(args=None): parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-c', '--config', type=fn.read_json, default='test/pge_pc0101123.json', help='A JSON config file containing a `pg` dictionary defining ' + 'the options.') args = parser.parse_args(args) name = args.config.keys()[0] config = args.config[name] return name, config def _instance2sub(instance_number, total_perturbations): """ Converts an instance number (ii) to initial condition index (ci) and perturbation index (pi) subscripts instances use 1-based indexes and vary according to this function: ii = ci * len(PERTURBATIONS) + pi + 1 where both pi and ci use 0-based indexes. """ perturbation_index = (instance_number - 1) % total_perturbations initial_condition = (instance_number - 1 - perturbation_index) // total_perturbations return initial_condition, perturbation_index def _sub2instance(initial_condition, perturbation_index, total_perturbations): """ Converts initial condition index (ci) and perturbation index (pi) subscripts to an instance number (ii) instances use 1-based indexes and vary according to this function: ii = ci * len(PERTURBATIONS) + pi + 1 where both pi and ci use 0-based indexes. """ instance = initial_condition * total_perturbations + perturbation_index + 1 return instance def rmse_writer(file_name, rmse, perturbation_names, perturbation_variables, init_file_template, model_name): """ Opens and writes a netcdf file for PGE curves This function is here purely to avoid duplicate codes so that it is easy to maintain code longterm """ with Dataset(file_name, 'w') as nc: ninit, nprt_m1, nvars = rmse.shape nc.createDimension('ninit', ninit) nc.createDimension('nprt', nprt_m1 + 1) nc.createDimension('nprt_m1', nprt_m1) nc.createDimension('nvars', nvars) nc_init_cond = nc.createVariable('init_cond_files', str, 'ninit') nc_perturbation = nc.createVariable('perturbation_names', str, 'nprt') nc_variables = nc.createVariable('perturbation_variables', str, 'nvars') nc_rmse = nc.createVariable('rmse', 'f8', ('ninit', 'nprt_m1', 'nvars')) # NOTE: Assignment to netcdf4 variable length string array can be done # via numpy arrays, or in a for loop using integer indices. # NOTE: Numpy arrays can't be created from a generator for some dumb reason, # so protect with list nc_perturbation[:] = np.array(list(perturbation_names)) nc_variables[:] = np.array(list(perturbation_variables)) nc_rmse[:] = rmse[:] for icond in range(0, ninit): # NOTE: Zero vs One based indexing nc_init_cond[icond] = init_file_template.format(model_name, 'i', icond+1) def variables_rmse(ifile_test, ifile_cntl, var_list, var_pefix=''): """ Compute RMSE difference between perturbation and control for a set of variables Args: ifile_test: Path to a NetCDF dataset for a perturbed simulation ifile_cntl: Path to a NetCDF dataset for the control simulation var_list (list): List of all variables to analyze var_pefix: Optional prefix (e.g., t_, qv_) to apply to the variable returns: rmse (pandas.DataFrame): A dataframe containing the RMSE and maximum difference details between the perturbed and control simulation """ with Dataset(ifile_test) as ftest, Dataset(ifile_cntl) as fcntl: lat = ftest.variables['lat'] lon = ftest.variables['lon'] rmse = pd.DataFrame(columns=('RMSE', 'max diff', 'i', 'j', 'control', 'test', 'lat', 'lon'), index=var_list) # reshape for RMSE dims = len(ftest.variables[var_pefix + var_list[0]].dimensions) if dims == 3: # see if it is SE grid nx, ny = ftest.variables[var_pefix + var_list[0]][0, ...].shape nz = 1 else: nx, ny, nz = ftest.variables[var_pefix + var_list[0]][0, ...].shape for ivar, vvar in enumerate(var_list): var = var_pefix + vvar if var in ftest.variables: vtest = ftest.variables[var.strip()][0, ...] # first dimension is time (=0) vcntl = fcntl.variables[var.strip()][0, ...] # first dimension is time (=0) vrmse = math.sqrt(((vtest - vcntl)**2).mean()) /
np.mean(vcntl)
numpy.mean
# -*- coding: utf-8 -*- """ Copyright (c) 2018 <NAME> GmbH All rights reserved. This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. @author: <NAME> """ import numpy as np from prssm.utils.utils import retrieve_config def init_inducing_inputs(config_inducing_inputs, P, D, **kwargs): """ Initialize GP inducing inputs :param method: string, any of 'kmeans', 'random', 'randomXpermutedU' :param P: number of inducing inputs :param D: dimensionality of inducing input :return: inducing inputs (P, D) """ method = retrieve_config(config_inducing_inputs, 'method', "init_inducing_inputs: Keyword 'method' required. \ Can be 'kmeans', 'random', 'randomXpermutedU'") # Cluster GP input data, cluster centers become inducing input if method == 'kmeans': assert 'X' in kwargs, 'Keyword argument X required: GP training input' X = kwargs['X'] from sklearn.cluster import KMeans m = KMeans(n_clusters=P, n_init=50, max_iter=500) m.fit(X.copy()) Z = m.cluster_centers_.copy() # Randomly draw inducing inputs i.i.d. from N(0,1) if method == 'random': noise = retrieve_config(config_inducing_inputs, 'noise', "init_inducing_inputs: Keyword 'noise' required.") Z = np.sqrt(noise) * np.random.randn(P, D) if method == 'uniform': low = retrieve_config(config_inducing_inputs, 'low', "init_inducing_inputs: Keyword 'low' required.") high = retrieve_config(config_inducing_inputs, 'high', "init_inducing_inputs: Keyword 'high' required.") Z = np.random.uniform(low=low, high=high, size=(P, D)) # Random inducing inputs on state and random selection of input sequence if method == 'randomXpermutedU': assert 'X' in kwargs, 'Keyword argument X required: GP training input' assert 'dim_u' in kwargs, 'Keyword argument U required: input dim' X = kwargs['X'] dim_u = kwargs['dim_u'] U_ind =
np.random.permutation(X[:, :dim_u])
numpy.random.permutation
import warnings from typing import Union import numpy as np import pandas as pd import xarray as xr from regime_switching.generate.base import CanRandomInstance, SeriesGenerator from regime_switching.utils.rng import AnyRandomState class ChainGenerator(SeriesGenerator): """Base object for chain generators.""" # __init__ defined # generate() is an abstractmethod @property def states(self) -> xr.DataArray: return self.params["states"] class IndependentChainGenerator(ChainGenerator, CanRandomInstance): """Independent sampling chain. Attributes ---------- params : xr.Dataset 'prob' and 'states' random_state : np.random.Generator Random generator. """ def __init__( self, params: xr.Dataset = None, random_state: AnyRandomState = None, prob=None, states=None, ): super().__init__( params=params, random_state=random_state, prob=prob, states=states ) @property def prob(self) -> xr.DataArray: """States probability vector.""" return self.params["prob"].copy() @classmethod def check_params(cls, params: xr.Dataset) -> xr.Dataset: """Checks assumptions on 'prob' and corrects, if needed.""" p = params["prob"] if (p < 0).any().item(): raise ValueError(f"Probability cannot be negative: {p}") if not np.allclose(p.sum(), 1): warnings.warn("Probabilities don't sum to one, rescaling.") params["prob"] = p = p / p.sum() return params @classmethod def create_params(cls, prob=None, states=None) -> xr.Dataset: """Creates dataset of parameters from keyword arguments.""" if prob is None: if states is None: raise ValueError( "At least one of `params`, `prob`" " or `states` must be given." ) if isinstance(states, int): states = range(states) states = np.array(states) # Assume `states` is array-like from now on prob_per = 1.0 / len(states) prob = xr.DataArray( prob_per, coords={"states": states}, dims=["states"] ) elif isinstance(prob, xr.DataArray): if "states" not in prob.coords: raise ValueError( f"Expected 'states' coord, found: {prob.coords}" ) # Ignore `states` as we already have the "states" coord. else: # prob is array-like prob = np.array(prob) if states is None: states = range(len(prob)) elif isinstance(states, int): states = range(states) states =
np.array(states)
numpy.array
import os import pdb import numpy as np # pass in copy of objs? def corrupt_graph(objs, triples, num_attrs, attrs, vocab, random_seed=None): # either s,p,o, s_attrib, o_attrib max_corruptable_elements = 5 # max num of objs, preds, attrs in vocab max_objs = len(vocab['object_idx_to_name']) max_preds = len(vocab['pred_idx_to_name']) max_attrs = len(vocab['attribute_idx_to_name']) # objs is all objects in batch: s/o index into this list num_triples = len(triples) s, p, o = np.split(triples, 3, axis=1) num_triples = len(triples) # object ids that index into model vocab subj_objs = objs[s] obj_objs = objs[o] for n in range(0, num_triples): # debug subj =
np.array(vocab['object_idx_to_name'])
numpy.array
from mmab import * import argparse import numpy as np import scipy.stats import scipy.special import plotly.graph_objs as go def make_rgb_transparent(rgb, bg_rgb, alpha): '''Returns an RGB vector of values with given transparency level and background. This function is used for generating colors that are transparent with the background. It has a similar functionality compared to alpha option in other libraries. The only difference is that it returns the rgb values of the transparent color. Args: rgb: The list rgb values for the original color(s). bg_rgb: The list of rgb values for the background(s). alpha: A number between 0 and 1 indicating the transparency level. Returns: rgb values for the transparent (mixed) colors. ''' return [alpha * c1 + (1 - alpha) * c2 for (c1, c2) in zip(rgb, bg_rgb)] def run_montecarlo(nsim, T_vals, k_vals, bern, sigma, beta_a, beta_b, save_results): '''Implements monte carlo simulations for comparing regret of algorithms. This function generates monte carlo instances that are used for comparing the regret of the algorithms discussed in the paper and returns regret and number of pulls of arms. The function has the capability of simulating for several values of time horizon and number of arms. Please see the note on the shape of returns. Args: nsim: Number of simulations, i.e., monte carlo instances. T_vals: The list of values for time horizon. k_vals: The list of values for number of arms. bern: A boolean indicating whether to use Bernoulli or gaussian rewards. sigma: The standard deviation of noise (only used for gaussian rewards). beta_a: Success parameter of the beta prior. beta_b: Failure parameter of the beta prior. save_results: A boolean indicating whether to save the regret and number of pulls of various algorithms as .npy files. Returns: all_regret: A list of final (total) regret of algorithms. Each entry of the list is a numpy array of size nsim * number of different settings (specified by the length of T_vals and k_vals). pulls: Number of pulls across all arms reported only for the last configuration given in T_vals and k_vals. ''' configs = len(T_vals) all_regret_greedy = np.zeros((nsim, configs)) all_regret_ss_ucb = np.zeros((nsim, configs)) all_regret_ucbf = np.zeros((nsim, configs)) all_regret_ucb = np.zeros((nsim, configs)) all_regret_ss_greedy = np.zeros((nsim, configs)) all_regret_ts = np.zeros((nsim, configs)) all_regret_ss_ts = np.zeros((nsim, configs)) for j in range(configs): k = k_vals[j] T = T_vals[j] ## Regret Vectors regret_greedy = np.zeros(nsim) regret_ss_ucb = np.zeros(nsim) regret_ucbf = np.zeros(nsim) regret_ucb = np.zeros(nsim) regret_ss_greedy = np.zeros(nsim) regret_ts = np.zeros(nsim) regret_ss_ts = np.zeros(nsim) ## Pulls Vectors pulls_greedy = np.zeros((nsim, k)) pulls_ucbf = np.zeros((nsim, k)) pulls_ucb = np.zeros((nsim, k)) pulls_ss_ucb = np.zeros((nsim, k)) pulls_ss_greedy = np.zeros((nsim, k)) pulls_ts = np.zeros((nsim, k)) pulls_ss_ts = np.zeros((nsim, k)) if bern == 0: greedy_sub_num_a = T**((beta_b+1)/3.0) ucb_sub_a = T**(beta_b/2.0) TS_sub_a = T**(beta_b/2.0) else: greedy_sub_num_a = T**(beta_b/2.0) ucb_sub_a = T**(beta_b/2.0) TS_sub_a = T**(beta_b/2.0) for itr in range(nsim): print('T=%d, k=%d, iteration = %d' % (T, k, itr)) means = np.random.beta(beta_a, beta_b, k) ## Sorted version of means. vv = np.argsort(-means) A = MMAB(T=T, k=k, means=means, sigma=sigma, binary=bern) # Create an instance ## Greedy gr = A.greedy() gr_r = gr[0] regret_greedy[itr] = np.sum(gr_r) ## SS-Greedy gr_sub = A.greedy(sub_arm=greedy_sub_num_a) gr_sub_r = gr_sub[0] regret_ss_greedy[itr] = np.sum(gr_sub_r) ## UCB ucb = A.ucb() ucb_r = ucb[0] regret_ucb[itr] = np.sum(ucb_r) ## SS-UCB ucbs = A.ssucb(sub_arm=ucb_sub_a) ucbs_r = ucbs[0] regret_ss_ucb[itr] = np.sum(ucbs_r) ## UCBF ucbf = A.ucb_F(beta=beta_b) ucbf_r = ucbf[0] regret_ucbf[itr] = np.sum(ucbf_r) ## TS ts = A.ts(beta_a=beta_a, beta_b=beta_b) ts_r = ts[0] regret_ts[itr] = np.sum(ts_r) ## SS-TS ts_s = A.ts(beta_a=beta_a, beta_b=beta_b, sub_arm=TS_sub_a) ts_s_r = ts_s[0] regret_ss_ts[itr] = np.sum(ts_s_r) if j == configs-1: gr_np = gr[2] pulls_greedy[itr, :] = gr_np[vv] ## gr_sub_np = gr_sub[2] pulls_ss_greedy[itr, :] = gr_sub_np[vv] ## ucb_np = ucb[2] pulls_ucb[itr, :] = ucb_np[vv] ## ucbs_np = ucbs[2] pulls_ss_ucb[itr, :] = ucbs_np[vv] ## ucbf_np = ucbf[2] pulls_ucbf[itr, :] = ucbf_np[vv] ## ts_np = ts[2] pulls_ts[itr, :] = ts_np[vv] ## ts_s_np = ts_s[2] pulls_ss_ts[itr, :] = ts_s_np[vv] regret = np.array([regret_greedy, regret_ss_greedy, regret_ucb, regret_ss_ucb, regret_ucbf, regret_ts, regret_ss_ts]) pulls = np.array([pulls_greedy, pulls_ss_greedy, pulls_ucb, pulls_ss_ucb, pulls_ucbf, pulls_ts, pulls_ss_ts]) if save_results == 1: if bern == 0: h = 'Norm_regret_T_{:d}_k_{:d}_a_{:.1f}_b_{:,.1f}_nsim_{:d}'.format( T_vals[j], k_vals[j], beta_a, beta_b, nsim) h = h.replace('.', '_') np.save(h + '.npy', regret) h = 'Norm_pulls_T_{:d}_k_{:d}_a_{:.1f}_b_{:,.1f}_nsim_{:d}'.format( T_vals[j], k_vals[j], beta_a, beta_b, nsim) h = h.replace('.', '_') np.save(h + '.npy', pulls) else: h = 'Bern_regret_T_{:d}_k_{:d}_a_{:.1f}_b_{:,.1f}_nsim_{:d}'.format( T_vals[j], k_vals[j], beta_a, beta_b, nsim) h = h.replace('.', '_') np.save(h + '.npy', regret) h = 'Bern_pulls_T_{:d}_k_{:d}_a_{:.1f}_b_{:,.1f}_nsim_{:d}'.format( T_vals[j], k_vals[j], beta_a, beta_b, nsim) h = h.replace('.', '_') np.save(h + '.npy', pulls) all_regret_greedy[:, j] = regret_greedy all_regret_ss_greedy[:, j] = regret_ss_greedy all_regret_ucb[:, j] = regret_ucb all_regret_ss_ucb[:, j] = regret_ss_ucb all_regret_ucbf[:, j] = regret_ucbf all_regret_ts[:, j] = regret_ts all_regret_ss_ts[:, j] = regret_ss_ts all_regret = np.array([all_regret_greedy, all_regret_ss_greedy, all_regret_ucb, all_regret_ss_ucb, all_regret_ucbf, all_regret_ts, all_regret_ss_ts]) if save_results == 1: if bern == 0: h = 'Norm_all_regret_T_{:d}_k_{:d}_a_{:.1f}_b_{:,.1f}_nsim_{:d}'.format( T_vals[j], k_vals[j], beta_a, beta_b, nsim) h = h.replace('.', '_') np.save(h + '.npy', list([all_regret, T_vals, k_vals, beta_a, beta_b, nsim])) else: h = 'Norm_all_regret_T_{:d}_k_{:d}_a_{:.1f}_b_{:,.1f}_nsim_{:d}'.format( T_vals[j], k_vals[j], beta_a, beta_b, nsim) h = h.replace('.', '_') np.save(h + '.npy', list([all_regret, T_vals, k_vals, beta_a, beta_b, nsim])) return all_regret, pulls def plot_results(T_vals, k_vals, regret, pulls, bern, beta_a, beta_b, save_plots): '''Generates regret and profile of pulls plot. This function generates the boxplots of regret and also the pulls vs the quantile of the (mean of) arms. The use of this function requires the plotly package. Args: T_vals: The list of values for time horizon. k_vals: The list of values for number of arms. regret: The list of final regret values for different configs defined in T_vals and k_vals. pulls: The list of pulls for different algorithms for the last config defined in T_vals and k_vals. bern: A boolean indicating whether to use Bernoulli or gaussian rewards. beta_a: Success parameter of the beta prior. beta_b: Failure parameter of the beta prior. save_plots: A boolean indicating whether to save the plots as png files or not. ''' num_divs = 10 z = max(np.floor(k_vals[-1] / num_divs), 1) + 1 vals = np.arange(0, k_vals[-1], int(z)) num_pts = regret[0].shape[1] niter = regret[0].shape[0] NUM_COLORS = 7 MARKERS = ['circle', 'square', 'diamond', 'cross', 'x', 'triangle', 'pentagon', 'hexagram', 'star'] legends = ['Greedy', 'SS-Greedy', 'UCB', 'SS-UCB', 'UCB-F', 'TS', 'SS-TS'] pts_inc = num_pts color_vals = np.array([[0, 0, 0], [31, 119, 180], [255, 127, 14], [44, 160, 44], [214, 39, 40], [148, 103, 189], [227,119,194], [188,189,34], [23, 190, 207]]) color_alph = np.zeros((color_vals.shape[0], 3)) for i in range(color_vals.shape[0]): color_alph[i,:] = make_rgb_transparent(color_vals[i,:], [255, 255, 255], 0.3) colors=['rgb(0,0,0)', 'rgb(31, 119, 180)', 'rgb(255, 127, 14)', 'rgb(44, 160, 44)', 'rgb(214, 39, 40)', 'rgb(148, 103, 189)', 'rgb(227, 119, 194)', 'rgb(188, 189, 34)', 'rgb(23, 190, 207)'] x_leg = [] for j in range(pts_inc): f = niter * ['T={:d}, k={:d}'.format( T_vals[j-pts_inc+num_pts], k_vals[j+num_pts-pts_inc])] x_leg += f fig = go.Figure() for i in range(NUM_COLORS): fig.add_trace(go.Box( y=regret[i][:,num_pts-pts_inc:].transpose().flatten(), x=x_leg, name=legends[i], fillcolor = 'rgb({:f},{:f},{:f})'.format( color_alph[i, 0], color_alph[i, 1], color_alph[i, 2]), marker=dict( color=colors[i], size=10, opacity=1, symbol = i ), showlegend = False, boxmean = True, boxpoints = 'outliers', )) fig.add_trace(go.Scatter( y=[0.9*np.max(regret)], x=[0.6], name=legends[i], mode='markers', marker_symbol=i, marker_size=16, marker_color=colors[i] )) fig.update_layout( autosize = False, yaxis=dict( showgrid=True, zeroline=True, gridcolor='rgb(127, 127, 127)', gridwidth=1, zerolinecolor='rgb(0, 0, 0)', zerolinewidth=3, title = dict( text = 'Regret', font = dict( family = 'sans-serif', size = 35, color = 'black' ), ), ), boxmode='group', width=1200, height=1200, font=dict( family='sans-serif', size=35, color='black', ), legend=dict( x=0.8, y=1, traceorder='normal', font=dict( family='sans-serif', size=35, color='black' ), bgcolor='white', bordercolor='Black', borderwidth=6, ), xaxis=dict( ticktext = [x_leg[1], x_leg[niter+1]], tickvals = [0, 1], tickmode = 'array', tickfont_size = 30, scaleanchor = 'y', ticklen = 2, ), margin=dict(l=120, r=50, t=20, b=20), paper_bgcolor='rgb(255,255,255)', plot_bgcolor='rgb(255,255,255)', boxgap = 0.4, boxgroupgap = 0.1, ) fig.show() if save_plots == 1: if bern == 0: h = 'Norm_regret_a_{:.1f}_b_{:,.1f}'.format( beta_a, beta_b) h = h.replace('.', '_') h = h + '.png' fig.write_image(h, scale = 1) else: h = 'Bern_regret_a_{:.1f}_b_{:,.1f}'.format( beta_a, beta_b) h = h.replace('.', '_') h = h + '.png' fig.write_image(h, scale = 1) tickz = [] for j in range(num_divs): if j == 0: h = 'Top {:.0%} Arms'.format((j+1)/num_divs) else: h = '{:.0%}-{:.0%}'.format(j/num_divs, (j+1)/num_divs) tickz.append(h) h = int(np.floor(k_vals[-1]/num_divs)) pulls_avg = np.zeros((num_divs, NUM_COLORS)) pulls_std = np.zeros((num_divs, NUM_COLORS)) for i in range(NUM_COLORS): for j in range(num_divs): z = np.arange(j*h,(j+1)*h) pulls_avg[j, i] = np.mean(pulls[i][:,z]) pulls_std[j, i] = np.std(np.mean(pulls[i][:,z], axis = 1))/np.sqrt(niter) fig1 = go.Figure() for i in range(NUM_COLORS): fig1.add_trace(go.Scatter( y = np.log(pulls_avg[:, i]), x = np.arange(1,num_divs+1), name = legends[i], marker_symbol = i, marker_size = 16, marker_color = colors[i], mode = 'lines + markers', error_y = dict( type='data', array=
np.log(pulls_avg[:,i]+2*pulls_std[:,i])
numpy.log
from __future__ import absolute_import from __future__ import division from __future__ import print_function import FairMot._init_paths import os import os.path as osp import cv2 import logging import argparse import motmetrics as mm import numpy as np import torch from FairMot.lib.tracker.multitracker import JDETracker from FairMot.lib.tracking_utils import visualization as vis from utils.log import Log logger = Log(__name__,__name__).getlog() from FairMot.lib.tracking_utils.timer import Timer from FairMot.lib.tracking_utils.evaluation import Evaluator import FairMot.lib.datasets.dataset.jde as datasets from FairMot.lib.tracking_utils.utils import mkdir_if_missing from FairMot.lib.opts import opts from utils.sort_by_point import sort_by_point def write_results(filename, results, data_type): if data_type == 'mot': save_format = '{frame},{id},{x1},{y1},{w},{h},1,-1,-1,-1\n' elif data_type == 'kitti': save_format = '{frame} {id} pedestrian 0 0 -10 {x1} {y1} {x2} {y2} -10 -10 -10 -1000 -1000 -1000 -10\n' else: raise ValueError(data_type) with open(filename, 'w') as f: for frame_id, tlwhs, track_ids,ReID_feat in results: if data_type == 'kitti': frame_id -= 1 for tlwh, track_id in zip(tlwhs, track_ids): if track_id < 0: continue x1, y1, w, h = tlwh x2, y2 = x1 + w, y1 + h line = save_format.format(frame=frame_id, id=track_id, x1=x1, y1=y1, x2=x2, y2=y2, w=w, h=h) f.write(line) logger.info('save results to {}'.format(filename)) def eval_seq(opt, dataloader, data_type, result_filename, save_dir=None, show_image=True, Input_tracker= None,frame_rate=30): if save_dir: mkdir_if_missing(save_dir) if Input_tracker == None: tracker = JDETracker(opt, frame_rate=frame_rate) # What is JDE Tracker? else: tracker = Input_tracker timer = Timer() results = [] frame_id = 0 for path, img, img0 in dataloader: timer.tic() blob = torch.from_numpy(img).cuda().unsqueeze(0) online_targets = tracker.update(blob, img0) online_tlwhs = [] online_ids = [] for t in online_targets: tlwh = t.tlwh tid = t.track_id vertical = tlwh[2] / tlwh[3] > 1.6 if tlwh[2] * tlwh[3] > opt.min_box_area and not vertical: online_tlwhs.append(tlwh) online_ids.append(tid) timer.toc() # save results results.append((frame_id + 1, online_tlwhs, online_ids)) if show_image or save_dir is not None: online_im = vis.plot_tracking(img0, online_tlwhs, online_ids, frame_id=frame_id, fps=1. / timer.average_time) if show_image: cv2.imshow('online_im', online_im) if save_dir is not None: cv2.imwrite(os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), online_im) frame_id += 1 logger.info('Processing frame {} ({:.2f} fps)'.format(frame_id, 1. / max(1e-5, timer.average_time))) # save results write_results(result_filename, results, data_type) return frame_id, timer.average_time, timer.calls def Short_track_eval(opt, dataloader, data_type, result_filename,target_frame, reference_point, save_dir=None, show_image=True, Input_tracker= None,frame_rate=30): if save_dir: mkdir_if_missing(save_dir) if Input_tracker == None: tracker = JDETracker(opt, frame_rate=frame_rate) # What is JDE Tracker? else: tracker = Input_tracker timer = Timer() results = [] frame_id = 0 img0_array = [] for path, img, img0 in dataloader: timer.tic() blob = torch.from_numpy(img).cuda().unsqueeze(0) online_targets = tracker.update(blob, img0) online_tlwhs = [] online_ids = [] online_ReID_features = [] for t in online_targets: tlwh = t.tlwh tid = t.track_id ReID_feature = t.curr_feat vertical = tlwh[2] / tlwh[3] > 1.6 # w / h > 1.6 if tlwh[2] * tlwh[3] > opt.min_box_area and not vertical: online_tlwhs.append(tlwh) online_ids.append(tid) online_ReID_features.append(ReID_feature) timer.toc() # save results results.append((frame_id + 1, online_tlwhs, online_ids, online_ReID_features)) img0_array.append(img0) # if show_image or save_dir is not None: # online_im = vis.plot_tracking(img0, online_tlwhs, online_ids, frame_id=frame_id, # fps=1. / timer.average_time) # if show_image: # cv2.imshow('online_im', online_im) # if save_dir is not None: # cv2.imwrite(os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), online_im) frame_id += 1 for bias in [0, 2, -2]: # 总能检测到的? input_result = results[target_frame + bias] if len(input_result[1]) == 0 : # 有可能目标帧没有检测到,一个目标都没有。 target_id = None continue new_reference_point, target_id = sort_by_point(results[target_frame + bias], reference_point) if target_id != None: break # 如果前中后三帧都没有检测到,那就说明这个动作区分不开了。 放弃了。 if target_id == None: # 目标不存在 return None # 把每个sub_box提取出来。 for r_index, result in enumerate(results): img0 = img0_array[r_index] I_h,I_w,_ = img0.shape bboxes = result[1] ids = result[2] for id_index ,id in enumerate(ids): if id != target_id: continue box = bboxes[id_index] x1, y1, w, h = box intbox = tuple(map(int, (max(0,x1), max(0,y1), min(x1 + w,I_w), min(y1 + h,I_h)))) # print(intbox) sub_img = img0[intbox[1]:intbox[3],intbox[0]:intbox[2]] cv2.imwrite(os.path.join(save_dir,'{}_{}.jpg'.format(r_index,id)),sub_img) logger.info('Processing frame {} ({:.2f} fps)'.format(frame_id, 1. / max(1e-5, timer.average_time))) # save results write_results(result_filename, results, data_type) return frame_id, timer.average_time, timer.calls def Short_track(tracker, dataloader, opt ): ''' 对输入的短片段进行追踪。 ''' from utils.timer import show_memory_info timer = Timer() results = [] for frame_id, [path, img, img0] in enumerate(dataloader): timer.tic() blob = torch.from_numpy(img).cuda().unsqueeze(0) online_targets = tracker.update(blob, img0) online_tlwhs = [] online_ids = [] online_ReID_features = [] for t in online_targets: tlwh = t.tlwh tid = t.track_id ReID_feature = t.curr_feat vertical = tlwh[2] / tlwh[3] > 1.6 # w / h > 1.6 if tlwh[2] * tlwh[3] > opt.min_box_area and not vertical: online_tlwhs.append(tlwh) online_ids.append(tid) online_ReID_features.append(ReID_feature) timer.toc() # save results # 相对帧数, bboxes , 对应id, ReId, 原图 results.append((frame_id, online_tlwhs, online_ids, online_ReID_features,img0)) # show_memory_info('action _ {}, {}'.format(action_index, 'Short_track results.append')) logger.debug('Processing frame {} ({:.2f} fps)'.format(frame_id, 1. / max(1e-5, timer.average_time))) return results def detect(opt, tracker, dataloader, dir_id, save_dir=None, show_image=True ): if save_dir: mkdir_if_missing(save_dir) timer = Timer() results = [] frame_id = 0 save_dir_subimgs = os.path.join(save_dir,'subimg') os.makedirs(save_dir_subimgs,exist_ok=True) fourcc = cv2.VideoWriter_fourcc(*'XVID') out = cv2.VideoWriter(os.path.join(save_dir,'out_put.avi'), fourcc, 20.0, (1920, 1080), True) for path, img, img0 in dataloader: if frame_id % 20 == 0: logger.info('Processing frame {} ({:.2f} fps)'.format(frame_id, 1. / max(1e-5, timer.average_time))) # run tracking timer.tic() blob = torch.from_numpy(img).cuda().unsqueeze(0) [dets,id_feature] = tracker.update_for_detection(blob, img0, save_dir, frame_id) timer.toc() # save results results.append((frame_id + 1, dets, id_feature)) if show_image or save_dir is not None: online_im = vis.plot_detections(img0, dets, save_dir , dir_id, frame_id) if show_image: cv2.imshow('online_im', online_im) if save_dir is not None: cv2.imwrite(os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), online_im) frame_id += 1 # save results # write_results(result_filename, results, data_type) return frame_id, timer.average_time, timer.calls def main(opt, data_root='/data/MOT16/train', det_root=None, seqs=('MOT16-05',), exp_name='demo', save_images=False, save_videos=False, show_image=True): logger.setLevel(logging.INFO) result_root = os.path.join(data_root, '..', 'results', exp_name) mkdir_if_missing(result_root) data_type = 'mot' # run tracking accs = [] n_frame = 0 timer_avgs, timer_calls = [], [] for seq in seqs: output_dir = os.path.join(data_root, '..', 'outputs', exp_name, seq) if save_images or save_videos else None logger.info('start seq: {}'.format(seq)) dataloader = datasets.LoadImages(osp.join(data_root, seq, 'img1'), opt.img_size) result_filename = os.path.join(result_root, '{}.txt'.format(seq)) meta_info = open(os.path.join(data_root, seq, 'seqinfo.ini')).read() frame_rate = int(meta_info[meta_info.find('frameRate') + 10:meta_info.find('\nseqLength')]) nf, ta, tc = eval_seq(opt, dataloader, data_type, result_filename, save_dir=output_dir, show_image=show_image, frame_rate=frame_rate) n_frame += nf timer_avgs.append(ta) timer_calls.append(tc) # eval logger.info('Evaluate seq: {}'.format(seq)) evaluator = Evaluator(data_root, seq, data_type) accs.append(evaluator.eval_file(result_filename)) if save_videos: output_video_path = osp.join(output_dir, '{}.mp4'.format(seq)) cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg -c:v copy {}'.format(output_dir, output_video_path) os.system(cmd_str) timer_avgs = np.asarray(timer_avgs) timer_calls = np.asarray(timer_calls) all_time = np.dot(timer_avgs, timer_calls) avg_time = all_time /
np.sum(timer_calls)
numpy.sum
from pyrfuniverse.envs import RFUniverseBaseEnv from pyrfuniverse.envs import RFUniverseGymGoalWrapper import numpy as np from gym import spaces from gym.utils import seeding import copy class Robotiq85NailCardEnv(RFUniverseGymGoalWrapper): def __init__( self, rotation_factor=5, vertical_movement_factor=0.01, gripper_movement_factor=100, nail_movement_factor=0.01, goal_baseline=0.05, executable_file=None, ): super().__init__( executable_file=executable_file, camera_channel_id=None, rigidbody_channel_id="44fe03fb-0021-11ec-b7f2-18c04d443e7d", articulation_channel_id="44fe03fc-0021-11ec-b7f2-18c04d443e7d", game_object_channel_id="44fe03fa-0021-11ec-b7f2-18c04d443e7d", ) self.rotation_factor = rotation_factor self.vertical_movement_factor = vertical_movement_factor self.gripper_movement_factor = gripper_movement_factor self.nail_movement_factor = nail_movement_factor self.bit_wise_factor = np.array([ self.rotation_factor, self.vertical_movement_factor, self.gripper_movement_factor, self.nail_movement_factor ]) self.goal_baseline = goal_baseline self.t = 0 self.goal = self._sample_goal() self.action_space = spaces.Box( low=-1, high=1, shape=(4,), dtype=np.float32 ) obs = self._get_obs() self.observation_space = spaces.Dict({ 'observation': spaces.Box(-np.inf, np.inf, shape=obs['observation'].shape, dtype=np.float32), 'desired_goal': spaces.Box(-np.inf, np.inf, shape=obs['desired_goal'].shape, dtype=np.float32), 'achieved_goal': spaces.Box(-np.inf, np.inf, shape=obs['achieved_goal'].shape, dtype=np.float32) }) def step(self, a: np.ndarray): action = a.copy() action_ctrl = action * self.bit_wise_factor curr_state = self._get_gripper_extra_param() target_state = curr_state + action_ctrl self._set_target_state(target_state) self.t += 1 obs = self._get_obs() done = False info = { 'is_success': self._check_success(obs) } reward = self.compute_reward(obs['achieved_goal'], obs['desired_goal'], info) return obs, reward, done, info def reset(self): super().reset() self.env.reset() self._reset_object() self.t = 0 self.goal = self._sample_goal() return self._get_obs() def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def render(self, mode='human'): self._step() def compute_reward(self, achieved_goal, desired_goal, info): higher_distance = achieved_goal - desired_goal return float(-1 * (higher_distance[0] < 0)) def _get_obs(self): gripper_position = np.array(self.articulation_channel.data[0]['positions'][16]) gripper_velocity = np.array(self.articulation_channel.data[0]['velocities'][16]) gripper_extra_param = self._get_gripper_extra_param() object_pos = np.array(self.rigidbody_channel.data[0]['position']) object_rotation = np.array(self.rigidbody_channel.data[0]['rotation']) object_velocity = np.array(self.rigidbody_channel.data[0]['velocity']) object_angular_vel =
np.array(self.rigidbody_channel.data[0]['angular_vel'])
numpy.array
import base64 import datetime import io import os import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np from xlrd.xldate import xldate_as_datetime from yattag import Doc plt.rcParams.update({"figure.autolayout": True}) import matplotlib.gridspec as gridspec import pandas as pd import scipy.stats import tensorflow as tf from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler import logging """ TF_CPP_MIN_LOG_LEVEL: Defaults to 0, so all logs are shown. Set TF_CPP_MIN_LOG_LEVEL to 1 to filter out INFO logs, 2 to additionally filter out WARNING, 3 to additionally filter out ERROR. """ os.environ["TF_CPP_MIN_LOG_LEVEL"] = "1" from tensorflow import keras class NNetwork(object): def __init__(self, network_count=200, epochs=1000): logging.getLogger().setLevel(logging.INFO) self.xl_dateformat = r"%Y-%m-%dT%H:%M" self.model = None self.pretrained_networks = [] self.software_version = "2.0.1" self.input_filename = None self.today = str(datetime.date.today()) self.avg_time_elapsed = 0 self.predictors_scaler = MinMaxScaler(feature_range=(-1, 1)) self.targets_scaler = MinMaxScaler(feature_range=(-1, 1)) self.history = None self.file = None self.skipped_rows = [] self.ruleset = [] self.layer1_neurons = 12 self.network_count = network_count self.epochs = epochs self.predictors = None self.targets = None self.predictions = None self.avg_case_results_am = None self.avg_case_results_pm = None self.worst_case_results_am = None self.worst_case_results_pm = None self.WB_bandwidth = None self.post_process_check = False # Is post-processed better than raw. If False, uses raw results, if true, uses post-processed results self.optimizer = keras.optimizers.Nadam(lr=0.01, beta_1=0.9, beta_2=0.999) self.model = keras.models.Sequential() self.model.add( keras.layers.Dense(self.layer1_neurons, input_dim=5, activation="tanh") ) self.model.add(keras.layers.Dense(1, activation="linear")) self.model.compile(loss="mse", optimizer=self.optimizer, metrics=["mse"]) def import_data_from_csv(self, filename): """ Imports data to the network by a comma-separated values (CSV) file. Load data to a network that are stored in .csv file format. The data loaded from this method can be used both for training reasons as well as to make predictions. :param filename: String containing the filename of the .csv file containing the input data (e.g "input_data.csv") """ df = pd.read_csv(filename) self.file = df.copy() global FRC_IN global FRC_OUT global WATTEMP global COND # Locate the fields used as inputs/predictors and outputs in the loaded file # and split them if "se1_frc" in self.file.columns: FRC_IN = "se1_frc" WATTEMP = "se1_wattemp" COND = "se1_cond" FRC_OUT = "se4_frc" elif "ts_frc1" in self.file.columns: FRC_IN = "ts_frc1" WATTEMP = "ts_wattemp" COND = "ts_cond" FRC_OUT = "hh_frc1" elif "ts_frc" in self.file.columns: FRC_IN = "ts_frc" WATTEMP = "ts_wattemp" COND = "ts_cond" FRC_OUT = "hh_frc" # Standardize the DataFrame by specifying rules # To add a new rule, call the method execute_rule with the parameters (description, affected_column, query) self.execute_rule("Invalid tapstand FRC", FRC_IN, self.file[FRC_IN].isnull()) self.execute_rule("Invalid household FRC", FRC_OUT, self.file[FRC_OUT].isnull()) self.execute_rule( "Invalid tapstand date/time", "ts_datetime", self.valid_dates(self.file["ts_datetime"]), ) self.execute_rule( "Invalid household date/time", "hh_datetime", self.valid_dates(self.file["hh_datetime"]), ) self.skipped_rows = df.loc[df.index.difference(self.file.index)] self.file.reset_index(drop=True, inplace=True) # fix dropped indices in pandas # Locate the rows of the missing data drop_threshold = 0.90 * len(self.file.loc[:, [FRC_IN]]) nan_rows_watt = self.file.loc[self.file[WATTEMP].isnull()] if len(nan_rows_watt) < drop_threshold: self.execute_rule( "Missing Water Temperature Measurement", WATTEMP, self.file[WATTEMP].isnull(), ) nan_rows_cond = self.file.loc[self.file[COND].isnull()] if len(nan_rows_cond) < drop_threshold: self.execute_rule("Missing EC Measurement", COND, self.file[COND].isnull()) self.skipped_rows = df.loc[df.index.difference(self.file.index)] self.file.reset_index(drop=True, inplace=True) start_date = self.file["ts_datetime"] end_date = self.file["hh_datetime"] durations = [] all_dates = [] collection_time = [] for i in range(len(start_date)): try: # excel type start = float(start_date[i]) end = float(end_date[i]) start = xldate_as_datetime(start, datemode=0) if start.hour > 12: collection_time = np.append(collection_time, 1) else: collection_time = np.append(collection_time, 0) end = xldate_as_datetime(end, datemode=0) except ValueError: # kobo type start = start_date[i][:16].replace("/", "-") end = end_date[i][:16].replace("/", "-") start = datetime.datetime.strptime(start, self.xl_dateformat) if start.hour > 12: collection_time = np.append(collection_time, 1) else: collection_time = np.append(collection_time, 0) end = datetime.datetime.strptime(end, self.xl_dateformat) durations.append((end - start).total_seconds()) all_dates.append(datetime.datetime.strftime(start, self.xl_dateformat)) self.durations = durations self.time_of_collection = collection_time self.avg_time_elapsed = np.mean(durations) # Extract the column of dates for all data and put them in YYYY-MM-DD format self.file["formatted_date"] = all_dates predictors = { FRC_IN: self.file[FRC_IN], "elapsed time": (np.array(self.durations) / 3600), "time of collection (0=AM, 1=PM)": self.time_of_collection, } self.targets = self.file.loc[:, FRC_OUT] self.var_names = [ "Tapstand FRC (mg/L)", "Elapsed Time", "time of collection (0=AM, 1=PM)", ] self.predictors = pd.DataFrame(predictors) if len(nan_rows_watt) < drop_threshold: self.predictors[WATTEMP] = self.file[WATTEMP] self.var_names.append("Water Temperature(" + r"$\degree$" + "C)") self.median_wattemp = np.median(self.file[WATTEMP].dropna().to_numpy()) self.upper95_wattemp = np.percentile( self.file[WATTEMP].dropna().to_numpy(), 95 ) if len(nan_rows_cond) < drop_threshold: self.predictors[COND] = self.file[COND] self.var_names.append("EC (" + r"$\mu$" + "s/cm)") self.median_cond = np.median(self.file[COND].dropna().to_numpy()) self.upper95_cond = np.percentile(self.file[COND].dropna().to_numpy(), 95) self.targets = self.targets.values.reshape(-1, 1) self.datainputs = self.predictors self.dataoutputs = self.targets self.input_filename = filename def set_up_model(self): self.optimizer = keras.optimizers.Nadam(lr=0.01, beta_1=0.9, beta_2=0.999) self.model = keras.models.Sequential() self.model.add( keras.layers.Dense( self.layer1_neurons, input_dim=len(self.datainputs.columns), activation="tanh", ) ) self.model.add(keras.layers.Dense(1, activation="linear")) self.model.compile(loss="mse", optimizer=self.optimizer) def train_SWOT_network(self, directory): """Train the set of 200 neural networks on SWOT data Trains an ensemble of 200 neural networks on se1_frc, water temperature, water conductivity.""" if not os.path.exists(directory): os.makedirs(directory) self.predictors_scaler = self.predictors_scaler.fit(self.predictors) self.targets_scaler = self.targets_scaler.fit(self.targets) x = self.predictors t = self.targets self.calibration_predictions = [] self.trained_models = {} for i in range(self.network_count): logging.info('Training Network ' + str(i)) model_out = self.train_network(x, t, directory) self.trained_models.update({'model_' + str(i): model_out}) def train_network(self, x, t, directory): """ Trains a single Neural Network on imported data. This method trains Neural Network on data that have previously been imported to the network using the import_data_from_csv() method. The network used is a Multilayer Perceptron (MLP). Input and Output data are normalized using MinMax Normalization. The input dataset is split in training and validation datasets, where 80% of the inputs are the training dataset and 20% is the validation dataset. The training history is stored in a variable called self.history (see keras documentation: keras.model.history object) Performance metrics are calculated and stored for evaluating the network performance. """ tf.keras.backend.clear_session() early_stopping_monitor = keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=10, restore_best_weights=True) x_norm = self.predictors_scaler.transform(x) t_norm = self.targets_scaler.transform(t) trained_model = keras.models.clone_model(self.model) x_norm_train, x_norm_val, t_norm_train, t_norm_val = train_test_split(x_norm, t_norm, train_size=0.333, shuffle=True) new_weights = [np.random.uniform(-0.05, 0.05, w.shape) for w in trained_model.get_weights()] trained_model.set_weights(new_weights) trained_model.compile(loss='mse', optimizer=self.optimizer) trained_model.fit(x_norm_train, t_norm_train, epochs=self.epochs, validation_data=(x_norm_val, t_norm_val), callbacks=[early_stopping_monitor], verbose=0, batch_size=len(t_norm_train)) self.calibration_predictions.append(self.targets_scaler.inverse_transform(trained_model.predict(x_norm))) return trained_model def calibration_performance_evaluation(self, filename): Y_true = np.array(self.targets) Y_pred = np.array(self.calibration_predictions) FRC_X = self.datainputs[FRC_IN].to_numpy() capture_all = ( np.less_equal(Y_true, np.max(Y_pred, axis=0)) * np.greater_equal(Y_true, np.min(Y_pred, axis=0)) * 1 ) capture_90 = ( np.less_equal(Y_true, np.percentile(Y_pred, 95, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 5, axis=0)) * 1 ) capture_80 = ( np.less_equal(Y_true, np.percentile(Y_pred, 90, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 10, axis=0)) * 1 ) capture_70 = ( np.less_equal(Y_true, np.percentile(Y_pred, 85, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 15, axis=0)) * 1 ) capture_60 = ( np.less_equal(Y_true, np.percentile(Y_pred, 80, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 20, axis=0)) * 1 ) capture_50 = ( np.less_equal(Y_true, np.percentile(Y_pred, 75, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 25, axis=0)) * 1 ) capture_40 = ( np.less_equal(Y_true, np.percentile(Y_pred, 70, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 30, axis=0)) * 1 ) capture_30 = ( np.less_equal(Y_true, np.percentile(Y_pred, 65, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 35, axis=0)) * 1 ) capture_20 = ( np.less_equal(Y_true, np.percentile(Y_pred, 60, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 40, axis=0)) * 1 ) capture_10 = ( np.less_equal(Y_true, np.percentile(Y_pred, 55, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 45, axis=0)) * 1 ) capture_all_20 = capture_all * np.less(Y_true, 0.2) capture_90_20 = capture_90 * np.less(Y_true, 0.2) capture_80_20 = capture_80 * np.less(Y_true, 0.2) capture_70_20 = capture_70 * np.less(Y_true, 0.2) capture_60_20 = capture_60 * np.less(Y_true, 0.2) capture_50_20 = capture_50 * np.less(Y_true, 0.2) capture_40_20 = capture_40 * np.less(Y_true, 0.2) capture_30_20 = capture_30 * np.less(Y_true, 0.2) capture_20_20 = capture_20 * np.less(Y_true, 0.2) capture_10_20 = capture_10 * np.less(Y_true, 0.2) length_20 = np.sum(np.less(Y_true, 0.2)) test_len = len(Y_true) capture_all_sum = np.sum(capture_all) capture_90_sum = np.sum(capture_90) capture_80_sum = np.sum(capture_80) capture_70_sum = np.sum(capture_70) capture_60_sum = np.sum(capture_60) capture_50_sum = np.sum(capture_50) capture_40_sum = np.sum(capture_40) capture_30_sum = np.sum(capture_30) capture_20_sum = np.sum(capture_20) capture_10_sum = np.sum(capture_10) capture_all_20_sum = np.sum(capture_all_20) capture_90_20_sum = np.sum(capture_90_20) capture_80_20_sum = np.sum(capture_80_20) capture_70_20_sum = np.sum(capture_70_20) capture_60_20_sum = np.sum(capture_60_20) capture_50_20_sum = np.sum(capture_50_20) capture_40_20_sum = np.sum(capture_40_20) capture_30_20_sum = np.sum(capture_30_20) capture_20_20_sum = np.sum(capture_20_20) capture_10_20_sum = np.sum(capture_10_20) capture = [ capture_10_sum / test_len, capture_20_sum / test_len, capture_30_sum / test_len, capture_40_sum / test_len, capture_50_sum / test_len, capture_60_sum / test_len, capture_70_sum / test_len, capture_80_sum / test_len, capture_90_sum / test_len, capture_all_sum / test_len, ] capture_20 = [ capture_10_20_sum / length_20, capture_20_20_sum / length_20, capture_30_20_sum / length_20, capture_40_20_sum / length_20, capture_50_20_sum / length_20, capture_60_20_sum / length_20, capture_70_20_sum / length_20, capture_80_20_sum / length_20, capture_90_20_sum / length_20, capture_all_20_sum / length_20, ] self.percent_capture_cal = capture_all_sum / test_len self.percent_capture_02_cal = capture_all_20_sum / length_20 self.CI_reliability_cal = ( (0.1 - capture_10_sum / test_len) ** 2 + (0.2 - capture_20_sum / test_len) ** 2 + (0.3 - capture_30_sum / test_len) ** 2 + (0.4 - capture_40_sum / test_len) ** 2 + (0.5 - capture_50_sum / test_len) ** 2 + (0.6 - capture_60_sum / test_len) ** 2 + (0.7 - capture_70_sum / test_len) ** 2 + (0.8 - capture_80_sum / test_len) ** 2 + (0.9 - capture_90_sum / test_len) ** 2 + (1 - capture_all_sum / test_len) ** 2 ) self.CI_reliability_02_cal = ( (0.1 - capture_10_20_sum / length_20) ** 2 + (0.2 - capture_20_20_sum / length_20) ** 2 + (0.3 - capture_30_20_sum / length_20) ** 2 + (0.4 - capture_40_20_sum / length_20) ** 2 + (0.5 - capture_50_20_sum / length_20) ** 2 + (0.6 - capture_60_20_sum / length_20) ** 2 + (0.7 - capture_70_20_sum / length_20) ** 2 + (0.8 - capture_80_20_sum / length_20) ** 2 + (0.9 - capture_90_20_sum / length_20) ** 2 + (1 - capture_all_20_sum / length_20) ** 2 ) # Rank Histogram rank = [] for a in range(0, len(Y_true)): n_lower = np.sum(np.greater(Y_true[a], Y_pred[:, a])) n_equal = np.sum(np.equal(Y_true[a], Y_pred[:, a])) deviate_rank = np.random.random_integers(0, n_equal) rank = np.append(rank, n_lower + deviate_rank) rank_hist = np.histogram(rank, bins=self.network_count + 1) delta = np.sum((rank_hist[0] - (test_len / ((self.network_count + 1)))) ** 2) delta_0 = self.network_count * test_len / (self.network_count + 1) self.delta_score_cal = delta / delta_0 c = self.network_count alpha = np.zeros((test_len, (c + 1))) beta = np.zeros((test_len, (c + 1))) low_outlier = 0 high_outlier = 0 for a in range(0, test_len): observation = Y_true[a] forecast = np.sort(Y_pred[:, a]) for b in range(1, c): if observation > forecast[b]: alpha[a, b] = forecast[b] - forecast[b - 1] beta[a, b] = 0 elif forecast[b] > observation > forecast[b - 1]: alpha[a, b] = observation - forecast[b - 1] beta[a, b] = forecast[b] - observation else: alpha[a, b] = 0 beta[a, b] = forecast[b] - forecast[b - 1] # overwrite boundaries in case of outliers if observation < forecast[0]: beta[a, 0] = forecast[0] - observation low_outlier += 1 if observation > forecast[c - 1]: alpha[a, c] = observation - forecast[c - 1] high_outlier += 1 alpha_bar = np.mean(alpha, axis=0) beta_bar = np.mean(beta, axis=0) g_bar = alpha_bar + beta_bar o_bar = beta_bar / (alpha_bar + beta_bar) if low_outlier > 0: o_bar[0] = low_outlier / test_len g_bar[0] = beta_bar[0] / o_bar[0] else: o_bar[0] = 0 g_bar[0] = 0 if high_outlier > 0: o_bar[c] = high_outlier / test_len g_bar[c] = alpha_bar[c] / o_bar[c] else: o_bar[c] = 0 g_bar[c] = 0 p_i = np.arange(0 / c, (c + 1) / c, 1 / c) self.CRPS_cal = np.sum( g_bar * ((1 - o_bar) * (p_i**2) + o_bar * ((1 - p_i) ** 2)) ) CI_x = [0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00] fig = plt.figure(figsize=(15, 10), dpi=100) gridspec.GridSpec(2, 3) plt.subplot2grid((2, 3), (0, 0), colspan=2, rowspan=2) plt.axhline(0.2, c="k", ls="--", label="Point-of-consumption FRC = 0.2 mg/L") plt.scatter( FRC_X, Y_true, edgecolors="k", facecolors="None", s=20, label="Observed" ) plt.scatter( FRC_X, np.median(Y_pred, axis=0), facecolors="r", edgecolors="None", s=10, label="Forecast Median", ) plt.vlines( FRC_X, np.min(Y_pred, axis=0), np.max(Y_pred, axis=0), color="r", label="Forecast Range", ) plt.xlabel("Point-of-Distribution FRC (mg/L)") plt.ylabel("Point-of-Consumption FRC (mg/L)") plt.xlim([0, np.max(FRC_X)]) plt.legend( bbox_to_anchor=(0.001, 0.999), shadow=False, labelspacing=0.1, fontsize="small", handletextpad=0.1, loc="upper left", ) ax1 = fig.axes[0] ax1.set_title("(a)", y=0.88, x=0.05) plt.subplot2grid((2, 3), (0, 2), colspan=1, rowspan=1) plt.plot(CI_x, CI_x, c="k") plt.scatter(CI_x, capture, label="All observations") plt.scatter(CI_x, capture_20, label="Point-of-Consumption FRC below 0.2 mg/L") plt.xlabel("Ensemble Confidence Interval") plt.ylabel("Percent Capture") plt.ylim([0, 1]) plt.xlim([0, 1]) plt.legend( bbox_to_anchor=(0.001, 0.999), shadow=False, labelspacing=0.1, fontsize="small", handletextpad=0.1, loc="upper left", ) ax2 = fig.axes[1] ax2.set_title("(b)", y=0.88, x=0.05) plt.subplot2grid((2, 3), (1, 2), colspan=1, rowspan=1) plt.hist(rank, bins=(self.network_count + 1), density=True) plt.xlabel("Rank") plt.ylabel("Probability") ax3 = fig.axes[2] ax3.set_title("(c)", y=0.88, x=0.05) plt.savefig( os.path.splitext(filename)[0] + "_Calibration_Diagnostic_Figs.png", format="png", bbox_inches="tight", ) plt.close() myStringIOBytes = io.BytesIO() plt.savefig(myStringIOBytes, format="png", bbox_inches="tight") myStringIOBytes.seek(0) my_base_64_pngData = base64.b64encode(myStringIOBytes.read()) return my_base_64_pngData def get_bw(self): Y_true = np.array(self.targets) Y_pred = np.array(self.calibration_predictions)[:, :, 0] s2 = [] xt_yt = [] for a in range(0, len(Y_true)): observation = Y_true[a] forecast = np.sort(Y_pred[:, a]) s2 = np.append(s2, np.var(forecast)) xt_yt = np.append(xt_yt, (np.mean(forecast) - observation) ** 2) WB_bw = np.mean(xt_yt) - (1 + 1 / self.network_count) * np.mean(s2) return WB_bw def post_process_performance_eval(self, bandwidth): Y_true = np.squeeze(np.array(self.targets)) Y_pred = np.array(self.calibration_predictions)[:, :, 0] test_len = len(Y_true) min_CI = [] max_CI = [] CI_90_Lower = [] CI_90_Upper = [] CI_80_Lower = [] CI_80_Upper = [] CI_70_Lower = [] CI_70_Upper = [] CI_60_Lower = [] CI_60_Upper = [] CI_50_Lower = [] CI_50_Upper = [] CI_40_Lower = [] CI_40_Upper = [] CI_30_Lower = [] CI_30_Upper = [] CI_20_Lower = [] CI_20_Upper = [] CI_10_Lower = [] CI_10_Upper = [] CI_median = [] CRPS = [] Kernel_Risk = [] evaluation_range = np.arange(-10, 10.001, 0.001) # compute CRPS as well as the confidence intervals of each ensemble forecast for a in range(0, test_len): scipy_kde = scipy.stats.gaussian_kde(Y_pred[:, a], bw_method=bandwidth) scipy_pdf = scipy_kde.evaluate(evaluation_range) * 0.001 scipy_cdf = np.cumsum(scipy_pdf) min_CI = np.append( min_CI, evaluation_range[np.max(np.where(scipy_cdf == 0)[0])] ) max_CI = np.append(max_CI, evaluation_range[np.argmax(scipy_cdf)]) CI_90_Lower = np.append( CI_90_Lower, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.05)))] ) CI_90_Upper = np.append( CI_90_Upper, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.95)))] ) CI_80_Lower = np.append( CI_80_Lower, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.1)))] ) CI_80_Upper = np.append( CI_80_Upper, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.9)))] ) CI_70_Lower = np.append( CI_70_Lower, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.15)))] ) CI_70_Upper = np.append( CI_70_Upper, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.85)))] ) CI_60_Lower = np.append( CI_60_Lower, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.2)))] ) CI_60_Upper = np.append( CI_60_Upper, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.8)))] ) CI_50_Lower = np.append( CI_50_Lower, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.25)))] ) CI_50_Upper = np.append( CI_50_Upper, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.75)))] ) CI_40_Lower = np.append( CI_40_Lower, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.3)))] ) CI_40_Upper = np.append( CI_40_Upper, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.7)))] ) CI_30_Lower = np.append( CI_30_Lower, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.35)))] ) CI_30_Upper = np.append( CI_30_Upper, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.65)))] ) CI_20_Lower = np.append( CI_20_Lower, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.4)))] ) CI_20_Upper = np.append( CI_20_Upper, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.6)))] ) CI_10_Lower = np.append( CI_10_Lower, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.45)))] ) CI_10_Upper = np.append( CI_10_Upper, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.55)))] ) CI_median = np.append( CI_median, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.50)))] ) Kernel_Risk = np.append(Kernel_Risk, scipy_kde.integrate_box_1d(-10, 0.2)) Heaviside = (evaluation_range >= Y_true[a]).astype(int) CRPS_dif = (scipy_cdf - Heaviside) ** 2 CRPS = np.append(CRPS, np.sum(CRPS_dif * 0.001)) mean_CRPS = np.mean(CRPS) capture_all = ( np.less_equal(Y_true, max_CI) * np.greater_equal(Y_true, min_CI) * 1 ) capture_90 = ( np.less_equal(Y_true, CI_90_Upper) * np.greater_equal(Y_true, CI_90_Lower) * 1 ) capture_80 = ( np.less_equal(Y_true, CI_80_Upper) * np.greater_equal(Y_true, CI_80_Lower) * 1 ) capture_70 = ( np.less_equal(Y_true, CI_70_Upper) * np.greater_equal(Y_true, CI_70_Lower) * 1 ) capture_60 = ( np.less_equal(Y_true, CI_60_Upper) * np.greater_equal(Y_true, CI_60_Lower) * 1 ) capture_50 = ( np.less_equal(Y_true, CI_50_Upper) * np.greater_equal(Y_true, CI_50_Lower) * 1 ) capture_40 = ( np.less_equal(Y_true, CI_40_Upper) * np.greater_equal(Y_true, CI_40_Lower) * 1 ) capture_30 = ( np.less_equal(Y_true, CI_30_Upper) * np.greater_equal(Y_true, CI_30_Lower) * 1 ) capture_20 = ( np.less_equal(Y_true, CI_20_Upper) * np.greater_equal(Y_true, CI_20_Lower) * 1 ) capture_10 = ( np.less_equal(Y_true, CI_10_Upper) * np.greater_equal(Y_true, CI_10_Lower) * 1 ) length_20 = np.sum(np.less(Y_true, 0.2)) capture_all_20 = capture_all * np.less(Y_true, 0.2) capture_90_20 = capture_90 * np.less(Y_true, 0.2) capture_80_20 = capture_80 * np.less(Y_true, 0.2) capture_70_20 = capture_70 * np.less(Y_true, 0.2) capture_60_20 = capture_60 * np.less(Y_true, 0.2) capture_50_20 = capture_50 * np.less(Y_true, 0.2) capture_40_20 = capture_40 * np.less(Y_true, 0.2) capture_30_20 = capture_30 * np.less(Y_true, 0.2) capture_20_20 = capture_20 * np.less(Y_true, 0.2) capture_10_20 = capture_10 * np.less(Y_true, 0.2) capture_all_sum = np.sum(capture_all) capture_90_sum = np.sum(capture_90) capture_80_sum = np.sum(capture_80) capture_70_sum = np.sum(capture_70) capture_60_sum = np.sum(capture_60) capture_50_sum = np.sum(capture_50) capture_40_sum = np.sum(capture_40) capture_30_sum = np.sum(capture_30) capture_20_sum = np.sum(capture_20) capture_10_sum = np.sum(capture_10) capture_all_20_sum = np.sum(capture_all_20) capture_90_20_sum = np.sum(capture_90_20) capture_80_20_sum = np.sum(capture_80_20) capture_70_20_sum = np.sum(capture_70_20) capture_60_20_sum = np.sum(capture_60_20) capture_50_20_sum = np.sum(capture_50_20) capture_40_20_sum = np.sum(capture_40_20) capture_30_20_sum = np.sum(capture_30_20) capture_20_20_sum = np.sum(capture_20_20) capture_10_20_sum = np.sum(capture_10_20) capture_sum_squares = ( (0.1 - capture_10_sum / test_len) ** 2 + (0.2 - capture_20_sum / test_len) ** 2 + (0.3 - capture_30_sum / test_len) ** 2 + (0.4 - capture_40_sum / test_len) ** 2 + (0.5 - capture_50_sum / test_len) ** 2 + (0.6 - capture_60_sum / test_len) ** 2 + (0.7 - capture_70_sum / test_len) ** 2 + (0.8 - capture_80_sum / test_len) ** 2 + (0.9 - capture_90_sum / test_len) ** 2 + (1 - capture_all_sum / test_len) ** 2 ) capture_20_sum_squares = ( (0.1 - capture_10_20_sum / length_20) ** 2 + (0.2 - capture_20_20_sum / length_20) ** 2 + (0.3 - capture_30_20_sum / length_20) ** 2 + (0.4 - capture_40_20_sum / length_20) ** 2 + (0.5 - capture_50_20_sum / length_20) ** 2 + (0.6 - capture_60_20_sum / length_20) ** 2 + (0.7 - capture_70_20_sum / length_20) ** 2 + (0.8 - capture_80_20_sum / length_20) ** 2 + (0.9 - capture_90_20_sum / length_20) ** 2 + (1 - capture_all_20_sum / length_20) ** 2 ) return ( mean_CRPS, capture_sum_squares, capture_20_sum_squares, capture_all_sum / test_len, capture_all_20_sum / length_20, ) def post_process_cal(self): self.WB_bandwidth = self.get_bw() ( self.CRPS_post_cal, self.CI_reliability_post_cal, self.CI_reliability_02_post_cal, self.percent_capture_post_cal, self.percent_capture_02_post_cal, ) = self.post_process_performance_eval(self.WB_bandwidth) CRPS_Skill = (self.CRPS_post_cal - self.CRPS_cal) / (0 - self.CRPS_cal) CI_Skill = (self.CI_reliability_post_cal - self.CI_reliability_cal) / ( 0 - self.CI_reliability_cal ) CI_20_Skill = (self.CI_reliability_02_post_cal - self.CI_reliability_02_cal) / ( 0 - self.CI_reliability_02_cal ) PC_Skill = (self.percent_capture_post_cal - self.percent_capture_cal) / ( 1 - self.percent_capture_cal ) PC_20_Skill = ( self.percent_capture_02_post_cal - self.percent_capture_02_cal ) / (1 - self.percent_capture_02_cal) Net_Score = CRPS_Skill + CI_Skill + CI_20_Skill + PC_Skill + PC_20_Skill if Net_Score > 0: self.post_process_check = True else: self.post_process_check = False def full_performance_evaluation(self, directory): x_norm = self.predictors_scaler.transform(self.predictors) t_norm = self.targets_scaler.transform(self.targets) base_model = self.model base_model.save(directory + "\\base_network.h5") x_cal_norm, x_test_norm, t_cal_norm, t_test_norm = train_test_split( x_norm, t_norm, test_size=0.25, shuffle=False, random_state=10 ) self.verifying_observations = self.targets_scaler.inverse_transform(t_test_norm) self.test_x_data = self.predictors_scaler.inverse_transform(x_test_norm) early_stopping_monitor = keras.callbacks.EarlyStopping( monitor="val_loss", min_delta=0, patience=10, restore_best_weights=True ) self.verifying_predictions = [] for i in range(0, self.network_count): tf.keras.backend.clear_session() self.model = keras.models.load_model(directory + "\\base_network.h5") x_norm_train, x_norm_val, t_norm_train, t_norm_val = train_test_split( x_cal_norm, t_cal_norm, train_size=1 / 3, shuffle=True, random_state=i**2, ) new_weights = [ np.random.uniform(-0.05, 0.05, w.shape) for w in self.model.get_weights() ] self.model.set_weights(new_weights) self.model.fit( x_norm_train, t_norm_train, epochs=self.epochs, validation_data=(x_norm_val, t_norm_val), callbacks=[early_stopping_monitor], verbose=0, batch_size=len(t_norm_train), ) self.verifying_predictions.append(self.targets_scaler.inverse_transform(self.model.predict(x_test_norm))) Y_true = np.array(self.verifying_observations) Y_pred = np.array(self.verifying_predictions) FRC_X = self.test_x_data[:, 0] capture_all = ( np.less_equal(Y_true, np.max(Y_pred, axis=0)) * np.greater_equal(Y_true, np.min(Y_pred, axis=0)) * 1 ) capture_90 = ( np.less_equal(Y_true, np.percentile(Y_pred, 95, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 5, axis=0)) * 1 ) capture_80 = ( np.less_equal(Y_true, np.percentile(Y_pred, 90, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 10, axis=0)) * 1 ) capture_70 = ( np.less_equal(Y_true, np.percentile(Y_pred, 85, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 15, axis=0)) * 1 ) capture_60 = ( np.less_equal(Y_true, np.percentile(Y_pred, 80, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 20, axis=0)) * 1 ) capture_50 = ( np.less_equal(Y_true, np.percentile(Y_pred, 75, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 25, axis=0)) * 1 ) capture_40 = ( np.less_equal(Y_true, np.percentile(Y_pred, 70, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 30, axis=0)) * 1 ) capture_30 = ( np.less_equal(Y_true, np.percentile(Y_pred, 65, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 35, axis=0)) * 1 ) capture_20 = ( np.less_equal(Y_true, np.percentile(Y_pred, 60, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 40, axis=0)) * 1 ) capture_10 = ( np.less_equal(Y_true, np.percentile(Y_pred, 55, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 45, axis=0)) * 1 ) capture_all_20 = capture_all * np.less(Y_true, 0.2) capture_90_20 = capture_90 * np.less(Y_true, 0.2) capture_80_20 = capture_80 * np.less(Y_true, 0.2) capture_70_20 = capture_70 * np.less(Y_true, 0.2) capture_60_20 = capture_60 * np.less(Y_true, 0.2) capture_50_20 = capture_50 * np.less(Y_true, 0.2) capture_40_20 = capture_40 * np.less(Y_true, 0.2) capture_30_20 = capture_30 * np.less(Y_true, 0.2) capture_20_20 = capture_20 * np.less(Y_true, 0.2) capture_10_20 = capture_10 * np.less(Y_true, 0.2) length_20 = np.sum(np.less(Y_true, 0.2)) test_len = len(Y_true) capture_all_sum = np.sum(capture_all) capture_90_sum = np.sum(capture_90) capture_80_sum = np.sum(capture_80) capture_70_sum = np.sum(capture_70) capture_60_sum = np.sum(capture_60) capture_50_sum = np.sum(capture_50) capture_40_sum = np.sum(capture_40) capture_30_sum = np.sum(capture_30) capture_20_sum = np.sum(capture_20) capture_10_sum = np.sum(capture_10) capture_all_20_sum = np.sum(capture_all_20) capture_90_20_sum = np.sum(capture_90_20) capture_80_20_sum = np.sum(capture_80_20) capture_70_20_sum = np.sum(capture_70_20) capture_60_20_sum = np.sum(capture_60_20) capture_50_20_sum = np.sum(capture_50_20) capture_40_20_sum = np.sum(capture_40_20) capture_30_20_sum = np.sum(capture_30_20) capture_20_20_sum = np.sum(capture_20_20) capture_10_20_sum = np.sum(capture_10_20) capture = [ capture_10_sum / test_len, capture_20_sum / test_len, capture_30_sum / test_len, capture_40_sum / test_len, capture_50_sum / test_len, capture_60_sum / test_len, capture_70_sum / test_len, capture_80_sum / test_len, capture_90_sum / test_len, capture_all_sum / test_len, ] capture_20 = [ capture_10_20_sum / length_20, capture_20_20_sum / length_20, capture_30_20_sum / length_20, capture_40_20_sum / length_20, capture_50_20_sum / length_20, capture_60_20_sum / length_20, capture_70_20_sum / length_20, capture_80_20_sum / length_20, capture_90_20_sum / length_20, capture_all_20_sum / length_20, ] self.percent_capture_cal = capture_all_sum / test_len self.percent_capture_02_cal = capture_all_20_sum / length_20 self.CI_reliability_cal = ( (0.1 - capture_10_sum / test_len) ** 2 + (0.2 - capture_20_sum / test_len) ** 2 + (0.3 - capture_30_sum / test_len) ** 2 + (0.4 - capture_40_sum / test_len) ** 2 + (0.5 - capture_50_sum / test_len) ** 2 + (0.6 - capture_60_sum / test_len) ** 2 + (0.7 - capture_70_sum / test_len) ** 2 + (0.8 - capture_80_sum / test_len) ** 2 + (0.9 - capture_90_sum / test_len) ** 2 + (1 - capture_all_sum / test_len) ** 2 ) self.CI_reliability_02_cal = ( (0.1 - capture_10_20_sum / length_20) ** 2 + (0.2 - capture_20_20_sum / length_20) ** 2 + (0.3 - capture_30_20_sum / length_20) ** 2 + (0.4 - capture_40_20_sum / length_20) ** 2 + (0.5 - capture_50_20_sum / length_20) ** 2 + (0.6 - capture_60_20_sum / length_20) ** 2 + (0.7 - capture_70_20_sum / length_20) ** 2 + (0.8 - capture_80_20_sum / length_20) ** 2 + (0.9 - capture_90_20_sum / length_20) ** 2 + (1 - capture_all_20_sum / length_20) ** 2 ) # Rank Histogram rank = [] for a in range(0, len(Y_true)): n_lower = np.sum(np.greater(Y_true[a], Y_pred[:, a])) n_equal = np.sum(np.equal(Y_true[a], Y_pred[:, a])) deviate_rank = np.random.random_integers(0, n_equal) rank = np.append(rank, n_lower + deviate_rank) rank_hist = np.histogram(rank, bins=self.network_count + 1) delta = np.sum((rank_hist[0] - (test_len / ((self.network_count + 1)))) ** 2) delta_0 = self.network_count * test_len / (self.network_count + 1) self.delta_score_cal = delta / delta_0 CI_x = [0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00] fig = plt.figure(figsize=(15, 10), dpi=100) gridspec.GridSpec(2, 3) plt.subplot2grid((2, 3), (0, 0), colspan=2, rowspan=2) plt.axhline(0.2, c="k", ls="--", label="Point-of-consumption FRC = 0.2 mg/L") plt.scatter( FRC_X, Y_true, edgecolors="k", facecolors="None", s=20, label="Observed" ) plt.scatter( FRC_X,
np.median(Y_pred, axis=0)
numpy.median
import numpy as np import pydart2 as pydart import math from fltk import * from PyCommon.modules.GUI import hpSimpleViewer as hsv from PyCommon.modules.Renderer import ysRenderer as yr from Examples.speed_skating.make_skate_keyframe import make_keyframe render_vector = [] render_vector_origin = [] push_force = [] push_force_origin = [] blade_force = [] blade_force_origin = [] rd_footCenter = [] ik_on = True # ik_on = False class MyWorld(pydart.World): def __init__(self, ): super(MyWorld, self).__init__(1.0 / 1200.0, '../data/skel/cart_pole_blade_3dof_with_ground.skel') # pydart.World.__init__(self, 1.0 / 1000.0, '../data/skel/cart_pole_blade_3dof_with_ground.skel') # pydart.World.__init__(self, 1.0 / 1000.0, '../data/skel/cart_pole_blade.skel') # pydart.World.__init__(self, 1.0 / 2000.0, '../data/skel/cart_pole.skel') self.force = None self.force_r = None self.force_l = None self.force_hip_r = None self.duration = 0 self.skeletons[0].body('ground').set_friction_coeff(0.02) self.ground_height = self.skeletons[0].body(0).to_world((0., 0.025, 0.))[1] skel = self.skeletons[2] root_state = make_keyframe(skel) state = root_state self.state_list = [] for i in range(10): self.state_list.append(state) state = state.get_next() state_num = len(self.state_list) self.state_num = state_num # print("state_num: ", state_num) self.curr_state = self.state_list[0] self.elapsedTime = 0.0 self.curr_state_index = 0 # print("backup angle: ", backup_q) # print("cur angle: ", self.curr_state.angles) if ik_on: revise_pose(self.skeletons[3], self.state_list[0]) print('IK ON') self.skeletons[3].set_positions(self.curr_state.angles) self.rd_contact_forces = [] self.rd_contact_positions = [] # print("dof: ", skel.ndofs) # nonholonomic constraint initial setting _th = 5. * math.pi / 180. self.nh0 = pydart.constraints.NonHolonomicContactConstraint(skel.body('h_blade_right'), np.array((0.0216+0.104, -0.0216-0.027, 0.))) self.nh1 = pydart.constraints.NonHolonomicContactConstraint(skel.body('h_blade_right'), np.array((0.0216-0.104, -0.0216-0.027, 0.))) self.nh2 = pydart.constraints.NonHolonomicContactConstraint(skel.body('h_blade_left'), np.array((0.0216+0.104, -0.0216-0.027, 0.))) self.nh3 = pydart.constraints.NonHolonomicContactConstraint(skel.body('h_blade_left'), np.array((0.0216-0.104, -0.0216-0.027, 0.))) self.nh1.set_violation_angle_ignore_threshold(_th) self.nh1.set_length_for_violation_ignore(0.208) self.nh3.set_violation_angle_ignore_threshold(_th) self.nh3.set_length_for_violation_ignore(0.208) self.nh0.add_to_world() self.nh1.add_to_world() self.nh2.add_to_world() self.nh3.add_to_world() self.step_count = 0 def step(self): # print("self.curr_state: ", self.curr_state.name) # if self.curr_state.name == "state1": # self.force = np.array([50.0, 0.0, 0.0]) # # elif self.curr_state.name == "state2": # # self.force = np.array([0.0, 0.0, -10.0]) # else: # self.force = None if self.force is not None: self.skeletons[2].body('h_pelvis').add_ext_force(self.force) self.skeletons[3].set_positions(self.curr_state.angles) if self.curr_state.dt < self.time() - self.elapsedTime: # print("change the state!!!", self.curr_state_index) self.curr_state_index = self.curr_state_index + 1 self.curr_state_index = self.curr_state_index % self.state_num self.elapsedTime = self.time() self.curr_state = self.state_list[self.curr_state_index] # print("state_", self.curr_state_index) # print(self.curr_state.angles) # ground_height = -0.98 + 0.0251 # ground_height = 0. ground_height = self.skeletons[0].body("ground").to_world()[1] #0.0251 # print("ground h: ", ground_height) # ground_height = -0.98 + 0.05 # ground_height = -0.98 # if ik_on: # ik_res = copy.deepcopy(self.curr_state.angles) # if self.curr_state.name != "state02": # # print("ik solve!!-------------------") # self.ik.update_target(ground_height) # ik_res[6:] = self.ik.solve() # # self.curr_state.angles = ik_res # self.skeletons[3].set_positions(ik_res) # HP QP solve lf_tangent_vec = np.array([1.0, 0.0, .0]) rf_tangent_vec =
np.array([1.0, 0.0, .0])
numpy.array
import scipy.ndimage as scnd import scipy.optimize as sio import numpy as np import numba import warnings import stemtool as st @numba.jit def fit_nbed_disks(corr_image, disk_size, positions, diff_spots): warnings.filterwarnings("ignore") positions = np.asarray(positions, dtype=np.float64) diff_spots = np.asarray(diff_spots, dtype=np.float64) fitted_disk_list = np.zeros_like(positions) disk_locations = np.zeros_like(positions) for ii in range(int(np.shape(positions)[0])): posx = positions[ii, 0] posy = positions[ii, 1] par = st.util.fit_gaussian2D_mask(corr_image, posx, posy, disk_size) fitted_disk_list[ii, 0] = par[0] fitted_disk_list[ii, 1] = par[1] disk_locations = np.copy(fitted_disk_list) disk_locations[:, 1] = 0 - disk_locations[:, 1] center = disk_locations[ np.logical_and((diff_spots[:, 0] == 0), (diff_spots[:, 1] == 0)), : ] cx = center[0, 0] cy = center[0, 1] disk_locations[:, 0:2] = disk_locations[:, 0:2] - np.asarray( (cx, cy), dtype=np.float64 ) lcbed, _, _, _ = np.linalg.lstsq(diff_spots, disk_locations, rcond=None) cy = (-1) * cy return fitted_disk_list, np.asarray((cx, cy), dtype=np.float64), lcbed def sobel_filter(image, med_filter=50): ls_image, _ = st.util.sobel(st.util.image_logarizer(image)) ls_image[ls_image > (med_filter * np.median(ls_image))] = med_filter * np.median( ls_image ) ls_image[ls_image < (np.median(ls_image) / med_filter)] = ( np.median(ls_image) / med_filter ) return ls_image @numba.jit def strain_and_disk(data4D, disk_size, pixel_list_xy, disk_list, ROI=1, med_factor=50): warnings.filterwarnings("ignore") if np.size(ROI) < 2: ROI = np.ones((data4D.shape[2], data4D.shape[3]), dtype=bool) # Calculate needed values scan_size = np.asarray(data4D.shape)[2:4] sy, sx = np.mgrid[0 : scan_size[0], 0 : scan_size[1]] scan_positions = (np.asarray((np.ravel(sy), np.ravel(sx)))).astype(int) cbed_size = np.asarray(data4D.shape)[0:2] yy, xx = np.mgrid[0 : cbed_size[0], 0 : cbed_size[1]] center_disk = ( st.util.make_circle(cbed_size, cbed_size[1] / 2, cbed_size[0] / 2, disk_size) ).astype(np.float64) i_matrix = (np.eye(2)).astype(np.float64) sobel_center_disk, _ = st.util.sobel(center_disk) # Initialize matrices e_xx = np.zeros(scan_size, dtype=np.float64) e_xy = np.zeros(scan_size, dtype=np.float64) e_th = np.zeros(scan_size, dtype=np.float64) e_yy = np.zeros(scan_size, dtype=np.float64) disk_x = np.zeros(scan_size, dtype=np.float64) disk_y = np.zeros(scan_size, dtype=np.float64) COM_x = np.zeros(scan_size, dtype=np.float64) COM_y = np.zeros(scan_size, dtype=np.float64) # Calculate for mean CBED if no reference mean_cbed = np.mean(data4D, axis=(-1, -2), dtype=np.float64) mean_ls_cbed, _ = st.util.sobel(st.util.image_logarizer(mean_cbed)) mean_ls_cbed[ mean_ls_cbed > med_factor *
np.median(mean_ls_cbed)
numpy.median
# Copyright 2020 Google LLC # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ General Utilities """ from operator import itemgetter from typing import Any, Generator, KeysView, List, Set, Tuple, TYPE_CHECKING import numpy from fqe.bitstring import lexicographic_bitstring_generator from fqe.bitstring import check_conserved_bits, count_bits if TYPE_CHECKING: #Avoid circular imports and only import for type-checking from fqe import wavefunction def alpha_beta_electrons(nele: int, m_s: int) -> Tuple[int, int]: """Given the total number of electrons and the z-spin quantum number, return the number of alpha and beta electrons in the system. Args: nele (int) - number of electrons m_s (int) - spin angular momentum on the z-axis Return: number of alpha electrons (int), number of beta electrons (int) """ if nele < 0: raise ValueError('Cannot have negative electrons') if nele < abs(m_s): raise ValueError('Spin quantum number exceeds physical limits') nalpha = int(nele + m_s) // 2 nbeta = nele - nalpha return nalpha, nbeta def reverse_bubble_list(arr: List[Any]) -> int: """Bubble Sort algorithm to arrange a list so that the lowest value is stored in 0 and the highest value is stored in len(arr)-1. It is included here in order to access the swap count. Args: arr (list) - object to be sorted Returns: arr (list) - sorted swap_count (int) - number of permutations to achieve the sort """ larr = len(arr) swap_count = 0 for i in range(larr): swapped = False for j in range(0, larr - i - 1): if arr[j][0] < arr[j + 1][0]: arr[j], arr[j + 1] = arr[j + 1], arr[j] swapped = True swap_count += 1 if not swapped: break return swap_count def bubblesort(arr: List[Any]) -> int: """Bubble Sort algorithm to arrange a list so that the lowest value is stored in 0 and the highest value is stored in len(arr)-1. It is included here in order to access the swap count. Args: arr (list) - object to be sorted Returns: arr (list) - sorted swap_count (int) - number of permutations to achieve the sort """ larr = len(arr) swap_count = 0 for i in range(larr): swapped = False for j in range(0, larr - i - 1): if arr[j] > arr[j + 1]: arr[j], arr[j + 1] = arr[j + 1], arr[j] swapped = True swap_count += 1 if not swapped: break return swap_count def configuration_key_union(*argv: KeysView[Tuple[int, int]] ) -> List[Tuple[int, int]]: """Given a list of configuration keys, build a list which is the union of all configuration keys in the list Args: *args (list[(int, int)]) - any number of configuration key lists to be joined Returns: list[(int, int)] - a list of unique configuration keys found among all the passed arguments """ keyunion: Set[Tuple[int, int]] = set() for configs in argv: keyunion.update(configs) return list(keyunion) def configuration_key_intersection(*argv: List[Tuple[int, int]] ) -> List[Tuple[int, int]]: """Return the intersection of the passed configuration key lists. Args: *args (list[(int, int)]) - any number of configuration key lists to be joined Returns: list [(int, int)] - a list of configuration keys found in every configuration passed. """ keyinter = argv[0] ref = [] for config in argv[1:]: for key in config: if key in keyinter: ref.append(key) keyinter = ref return keyinter def init_bitstring_groundstate(occ_num: int) -> int: """Occupy the n lowest orbitals of a state in the bitstring representation Args: occ_num (integer) - number of orbitals to occupy Returns: (integer) - bitstring representation of the ground state """ return (1 << occ_num) - 1 def init_qubit_vacuum(nqubits: int) -> numpy.ndarray: """Build the ground state wavefunction for an nqubit system. Args: nqubits (integer) - The number of qubits in the qpu Returns: numpy.array(dtype=numpy.complex64) """ ground_state = numpy.zeros(2**nqubits, dtype=numpy.complex128) ground_state[0] = 1.0 + 0.0j return ground_state def ltlt_index_generator(dim: int ) -> Generator[Tuple[int, int, int, int], None, None]: """Generate index sets into a lower triangle, lower triangle matrix Args: dim (int) - the dimension of the array Returns: (int, int, int, int) - unique pointers into the compressed matrix """ lim = dim for i in range(lim): for j in range(i + 1): for k in range(i + 1): if k == i: _ull = j + 1 else: _ull = k + 1 for lst in range(_ull): yield i, j, k, lst def invert_bitstring_with_mask(string: int, masklen: int) -> int: """Invert a bitstring with a mask. Args: string (bitstring) - the bitstring to invert masklen (int) - the value to mask the inverted bitstring to Returns: (bitstring) - a bitstring inverted up to the masking length """ mask = (1 << masklen) - 1 return ~string & mask def paritysort_int(arr: List[int]) -> Tuple[int, List[int]]: """Move all even numbers to the left and all odd numbers to the right Args: arr list[int] - a list of integers to be sorted Returns: arr [list] - mutated in place swap_count (int) - number of exchanges needed to complete the sorting """ larr = len(arr) parr = [[i % 2, i] for i in arr] swap_count = 0 for i in range(larr): swapped = False for j in range(0, larr - i - 1): if parr[j][0] > parr[j + 1][0]: parr[j], parr[j + 1] = parr[j + 1], parr[j] swapped = True swap_count += 1 if not swapped: break for indx, val in enumerate(parr): arr[indx] = val[1] return swap_count, arr def paritysort_list(arr): """Move all even numbers to the left and all odd numbers to the right Args: arr list[int] - a list of integers to be sorted Returns: arr [list] - mutated in place swap_count (int) - number of exchanges needed to complete the sorting """ larr = len(arr) parr = [[i[0] % 2, i] for i in arr] swap_count = 0 for i in range(larr): swapped = False for j in range(0, larr - i - 1): if parr[j][0] > parr[j + 1][0]: parr[j], parr[j + 1] = parr[j + 1], parr[j] swapped = True swap_count += 1 if not swapped: break for indx, val in enumerate(parr): arr[indx] = list(val[1]) return swap_count, arr def qubit_particle_number_sector(nqubits: int, pnum: int) -> List[numpy.ndarray]: """Generate the basis vectors into the qubit basis representing all states which have a definite particle number. Args: nqubits (int) - the number of qubits in the qpu pnum (int) - the number of particles to build vectors into Returns: list[numpy.array(dtype=numpy.complex64)] """ occ = numpy.array([0, 1], dtype=numpy.int) uno =
numpy.array([1, 0], dtype=numpy.int)
numpy.array
"""Mapping functions that get values on a prescribed Cartesian coordinates grids from GTS output data files which are in flux coordinates. """ import Map_Mod_C as mmc import numpy as np from sdp.geometry import grid import scipy.io.netcdf as nc from scipy.interpolate import NearestNDInterpolator from time import clock class GTS_loader_Error(Exception): """Exception class for handling GTS loading errors """ def __init__(self,value): self.value = value def __str__(self): return repr(self.value) class GTS_Loader: """GTS Loading class For each GTS run case, setup all the loading parameters, read out necessary data, and output to suited format. """ def __init__(self, grid, t0,dt,nt, fluc_file_path,eq_fname,prof_fname,gts_file_path, n_cross_section = 1, phi_fname_head = 'PHI.', den_fname_head = 'DEN.', n_boundary = 1001, amplification = 1): """Initialize Loading Parameters: grid: sdp.geometry.Grid.Cartesian2D or Cartesian3D object, contains the output grid information. t0: int; Starting time of the sampling series, in simulation record step counts. dt: int; The interval between two sample points, in unit of simulation record step counts. nt: int; The total number of time_steps. n_cross_section: int; total cross-sections used for enlarging the ensemble n_boundary: int; The total number of grid points resolving the plasma last closed flux surface. Normally not important. fluc_file_path: string; directory where to store the output fluctuation files eq_fname: string; filename of the equalibrium file, either absolute or relative path. phi_fname_head: string; The header letters of the phi record file before the toroidal plane number, usually "PHI." den_fname_head: string; The header letters of the density record file before the toroidal plane number, usually "DEN." gts_file_path: string; the directory where the PHI data files are stored. """ self.grid = grid if(isinstance(grid, grid.Cartesian2D)): self.dimension = 2 self.xmin,self.xmax,self.nx = grid.Rmin,grid.Rmax,grid.NR self.ymin,self.ymax,self.ny = grid.Zmin,grid.Zmax,grid.NZ self.zmin,self.zmax,self.nz = 0,0,1 elif(isinstance(grid, grid.Cartesian3D)): self.dimension = 3 self.xmin,self.xmax,self.nx = grid.Xmin,grid.Xmax,grid.NX self.ymin,self.ymax,self.ny = grid.Ymin,grid.Ymax,grid.NY self.zmin,self.zmax,self.nz = grid.Zmin,grid.Zmax,grid.NZ else: raise GTS_loader_Error('grid not valid. Right now GTS loader only support Cartesian2D or Cartesian3D grid.') self.t0,self.dt,self.nt = t0,dt,nt self.time_steps = self.t0 + np.arange(self.nt) *self.dt self.n_cross_section = n_cross_section self.fluc_file_path = fluc_file_path self.eq_fname = eq_fname self.prof_fname = prof_fname self.phi_fname_head = phi_fname_head self.den_fname_head = den_fname_head self.gts_file_path = gts_file_path self.n_boundary = n_boundary self.amplification = 1 mmc.set_para_(Xmin=self.xmin,Xmax=self.xmax,NX=self.nx, Ymin=self.ymin,Ymax=self.ymax,NY=self.ny, Zmin=self.zmin,Zmax=self.zmax,NZ=self.nz, NBOUNDARY=self.n_boundary, TStart=self.t0,TStep=self.dt,NT=self.nt, Fluc_Amplification=self.amplification, FlucFilePath=self.fluc_file_path, EqFileName=self.eq_fname, NTFileName=self.prof_fname, PHIFileNameStart=self.phi_fname_head, DENFileNameStart = self.den_fname_head, GTSDataDir=self.gts_file_path) mmc.show_para_() self.get_fluctuations_from_GTS() if (self.dimension == 3): self.dne_on_grid = self.ne0_on_grid[np.newaxis,np.newaxis,:,:,:] * (self.dne_ad_on_grid + self.nane_on_grid) self.B_2d = self.Btol_2d elif (self.dimension == 2): self.ne_on_grid = self.ne0_on_grid * (1 + self.dne_ad_on_grid + self.nane_on_grid) self.B_on_grid = self.Bt_on_grid def show_para(self): mmc.show_para_() def get_fluctuations_from_GTS(self): """load fluctuations on grid using C_function Create variables: equilibrium quantities: ne0_on_grid: double ndarray (1,ny,nx), equilibrium electron density. Te0_on_grid: double ndarray (1,ny,nx), equilibrium electron temperature. Bt_on_grid,Bp_on_grid,BR_on_grid,BZ_on_grid: double ndarray (1,ny,nx), equilibrium toroidal and poloidal magnetic field, and R,Z component of Bpol. fluctuations: dne_ad_on_grid: double ndarray (nt,nz,ny,nx), adiabatic electron density, calculated from fluctuating potential phi: dne_ad_on_grid/ne0_on_grid = e*phi/Te0_on_grid nane_on_grid : double ndarray (nt,nz,ny,nx), non-adiabatic electron density normalized to local equilibrium density, read from file. nate_on_grid : double ndarray (nt,nz,ny,nx), non-adiabatic electron temperature normalized to equilibrium temperature at a reference radius, read from file. """ t0 = clock() if(self.dimension == 3): x1d = self.grid.X1D y1d = self.grid.Y1D self.x2d = np.zeros((1,self.ny,self.nx))+ x1d[np.newaxis,np.newaxis,:] self.y2d = np.zeros((1,self.ny,self.nx))+ y1d[np.newaxis,:,np.newaxis] z2d = np.zeros((1,self.ny,self.nx)) x3d = self.grid.X3D y3d = self.grid.Y3D z3d = self.grid.Z3D self.dne_ad_on_grid = np.zeros((self.n_cross_section,self.nt,self.nz,self.ny,self.nx)) self.nane_on_grid = np.zeros((self.n_cross_section,self.nt,self.nz,self.ny,self.nx)) self.nate_on_grid = np.zeros_like(self.nane_on_grid) #Note that new equilibrium loading convention needs only 2D equilibrium data. self.ne0_2d = np.zeros((1,self.ny,self.nx)) self.Te0_2d = np.zeros((1,self.ny,self.nx)) self.Btol_2d = np.zeros((1,self.ny,self.nx)) self.Bp_2d = np.zeros((1,self.ny,self.nx)) self.BR_2d = np.zeros((1,self.ny,self.nx)) self.BZ_2d = np.zeros((1,self.ny,self.nx)) mismatched_eq = np.zeros_like(self.x2d,dtype = 'int32') fluc_2d = np.zeros((self.nt,1,self.ny,self.nx)) mmc.set_para_(Xmin=self.xmin,Xmax=self.xmax,NX=self.nx, Ymin=self.ymin,Ymax=self.ymax,NY=self.ny, Zmin=0,Zmax=0,NZ=1, NBOUNDARY=self.n_boundary, TStart=1,TStep=1,NT=1, Fluc_Amplification=self.amplification, FlucFilePath=self.fluc_file_path, EqFileName=self.eq_fname, NTFileName=self.prof_fname, PHIFileNameStart=self.phi_fname_head, DENFileNameStart = self.den_fname_head, GTSDataDir=self.gts_file_path) #one seperate 2D run to get all the equilibrium quantities mmc.get_GTS_profiles_(self.x2d,self.y2d,z2d,self.ne0_2d,self.Te0_2d,self.Btol_2d,self.Bp_2d, self.BR_2d, self.BZ_2d, fluc_2d,fluc_2d,fluc_2d,mismatched_eq,0) self._fill_mismatched_eq(mismatched_eq) #calculate B_toroidal based on B_total and B_poloidal self.BPhi_2d = np.sqrt(self.Btol_2d**2 - self.Bp_2d**2) mmc.set_para_(Xmin=self.xmin,Xmax=self.xmax,NX=self.nx, Ymin=self.ymin,Ymax=self.ymax,NY=self.ny, Zmin=self.zmin,Zmax=self.zmax,NZ=self.nz, NBOUNDARY=self.n_boundary, TStart=self.t0,TStep=self.dt,NT=self.nt, Fluc_Amplification=self.amplification, FlucFilePath=self.fluc_file_path, EqFileName=self.eq_fname, NTFileName=self.prof_fname, PHIFileNameStart=self.phi_fname_head, DENFileNameStart = self.den_fname_head, GTSDataDir=self.gts_file_path) #temporary arrays to hold 3D equilibrium quantities. self.ne0_on_grid = np.zeros_like(x3d) self.Te0_on_grid = np.zeros_like(x3d) self.Btol_on_grid = np.zeros_like(x3d) self.Bp_on_grid = np.zeros_like(x3d) self.BR_on_grid = np.zeros_like(x3d) self.BZ_on_grid = np.zeros_like(x3d) self.mismatch = np.zeros_like(x3d,dtype = 'int32') self.total_cross_section = mmc.get_GTS_profiles_(x3d,y3d,z3d,self.ne0_on_grid,self.Te0_on_grid,self.Btol_on_grid,self.Bp_on_grid,self.BR_on_grid,self.BZ_on_grid, self.dne_ad_on_grid[0,...],self.nane_on_grid[0,...],self.nate_on_grid[0,...],self.mismatch, 0) dcross = int(np.floor(self.total_cross_section / self.n_cross_section)) self.center_cross_sections = np.arange(self.n_cross_section) * dcross for i in range(1,len(self.center_cross_sections)): mmc.get_GTS_profiles_(x3d,y3d,z3d,self.ne0_on_grid,self.Te0_on_grid,self.Btol_on_grid,self.Bp_on_grid,self.BR_on_grid,self.BZ_on_grid, self.dne_ad_on_grid[i,...],self.nane_on_grid[i,...],self.nate_on_grid[i,...],self.mismatch,self.center_cross_sections[i]) self._fill_mismatched(self.mismatch) elif(self.dimension == 2): x1d = self.grid.R1D y1d = self.grid.Z1D x2d = np.zeros((1,self.ny,self.nx))+ x1d[np.newaxis,np.newaxis,:] y2d = np.zeros((1,self.ny,self.nx))+ y1d[np.newaxis,:,np.newaxis] z2d = np.zeros((1,self.ny,self.nx)) self.dne_ad_on_grid = np.zeros((self.n_cross_section,self.nt,1,self.ny,self.nx)) self.nane_on_grid = np.zeros((self.n_cross_section,self.nt,1,self.ny,self.nx)) self.nate_on_grid = np.zeros_like(self.nane_on_grid) #Note that new equilibrium loading convention needs only 2D equilibrium data. self.ne0_on_grid = np.zeros((1,self.ny,self.nx)) self.Te0_on_grid = np.zeros((1,self.ny,self.nx)) self.Bt_on_grid = np.zeros((1,self.ny,self.nx)) self.Bp_on_grid = np.zeros((1,self.ny,self.nx)) self.BR_on_grid = np.zeros((1,self.ny,self.nx)) self.BZ_on_grid = np.zeros((1,self.ny,self.nx)) self.mismatch = np.zeros_like(self.ne0_on_grid,dtype = 'int32') self.total_cross_section = mmc.get_GTS_profiles_(x2d,y2d,z2d,self.ne0_on_grid,self.Te0_on_grid,self.Bt_on_grid,self.Bp_on_grid,self.BR_on_grid,self.BZ_on_grid, self.dne_ad_on_grid[0,...],self.nane_on_grid[0,...],self.nate_on_grid[0,...],self.mismatch, 0) dcross = int(np.floor(self.total_cross_section / self.n_cross_section)) self.center_cross_sections = np.arange(self.n_cross_section) * dcross for i in range(1,len(self.center_cross_sections)): mmc.get_GTS_profiles_(x2d,y2d,z2d,self.ne0_on_grid,self.Te0_on_grid,self.Bt_on_grid,self.Bp_on_grid,self.BR_on_grid,self.BZ_on_grid, self.dne_ad_on_grid[i,...],self.nane_on_grid[i,...],self.nate_on_grid[i,...],self.mismatch,self.center_cross_sections[i]) t1 = clock() self._fill_mismatched(self.mismatch) t2 = clock() print('Time used for interpolating mismatched points: {0}\nTotal time used:{1}'.format(t2-t1,t2-t0)) def _fill_mismatched(self,mismatch): """interpolate upon correctly matched values, to get values on mismatched points """ print('Start correcting mismatched points.') correct_idx = (mismatch == 0) mismatch_idx = (mismatch == 1) if self.dimension == 3: x_correct = self.grid.X3D[correct_idx] y_correct = self.grid.Y3D[correct_idx] z_correct = self.grid.Z3D[correct_idx] xwant = self.grid.X3D[mismatch_idx] ywant = self.grid.Y3D[mismatch_idx] zwant = self.grid.Z3D[mismatch_idx] points = np.array([z_correct,y_correct,x_correct]).T points_want = np.array([zwant,ywant,xwant]).T self.ne0_on_grid[mismatch_idx] = NearestNDInterpolator(points,self.ne0_on_grid[correct_idx])(points_want) self.Te0_on_grid[mismatch_idx] = NearestNDInterpolator(points,self.Te0_on_grid[correct_idx])(points_want) self.Btol_on_grid[mismatch_idx] = NearestNDInterpolator(points,self.Btol_on_grid[correct_idx])(points_want) self.Bp_on_grid[mismatch_idx] = NearestNDInterpolator(points,self.Bp_on_grid[correct_idx])(points_want) self.BR_on_grid[mismatch_idx] = NearestNDInterpolator(points,self.BR_on_grid[correct_idx])(points_want) self.BZ_on_grid[mismatch_idx] = NearestNDInterpolator(points,self.BZ_on_grid[correct_idx])(points_want) for i in range(self.n_cross_section): for j in range(self.nt): self.dne_ad_on_grid[i,j][mismatch_idx] = NearestNDInterpolator(points,self.dne_ad_on_grid[i,j][correct_idx])(points_want) self.nane_on_grid[i,j][mismatch_idx] = NearestNDInterpolator(points,self.nane_on_grid[i,j][correct_idx])(points_want) self.nate_on_grid[i,j][mismatch_idx] = NearestNDInterpolator(points,self.nate_on_grid[i,j][correct_idx])(points_want) print('Cross-section {0} finished.'.format(i)) else: r_correct = self.grid.R2D[correct_idx[0,:,:]] z_correct = self.grid.Z2D[correct_idx[0,:,:]] rwant = self.grid.R2D[mismatch_idx[0,:,:]] zwant = self.grid.Z2D[mismatch_idx[0,:,:]] points = np.array([z_correct,r_correct]).T points_want =
np.array([zwant,rwant])
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Jul 29 18:33:36 2021 @author: peter """ from pathlib import Path import datetime import numpy as np import pandas as pd import matplotlib.pyplot as plt from vsd_cancer.functions import stats_functions as statsf import f.plotting_functions as pf import matplotlib.cm import matplotlib.gridspec as gridspec import matplotlib as mpl import scipy.ndimage as ndimage def make_figures(initial_df, save_dir, figure_dir, filetype=".png", redo_stats=False): figsave = Path(figure_dir, "ttx_figure") if not figsave.is_dir(): figsave.mkdir() plot_TTX_pre_post(save_dir, figsave, filetype, redo_stats) plot_TTX_washout(save_dir, figsave, filetype, redo_stats) plot_pre_post_ttx_traces(initial_df, save_dir, figsave, filetype) def plot_pre_post_ttx_traces(initial_df, save_dir, figsave, filetype): def get_most_active_traces(num_traces, df, trial_save, trial_string): tcs = np.load(Path(trial_save, f"{trial_string}_all_tcs.npy")) event_dict = np.load( Path(trial_save, f"{trial_string}_event_properties.npy"), allow_pickle=True ).item() idx = 0 events = event_dict["events"][idx] keep = [x for x in np.arange(tcs.shape[0])] # sort by event amounts sort_order = np.array( [ np.sum(np.abs(events["event_props"][x][:, -1])) if x in events.keys() else 0 for x in range(tcs.shape[0]) ] ) tcs = tcs[keep, :] sort_order = np.argsort(sort_order[keep])[::-1] tcs = tcs[sort_order, :] so = np.array(keep)[sort_order] tcs = ndimage.gaussian_filter(tcs[:num_traces, ...], (0, 3)) so = so[:num_traces] return tcs, so df = pd.read_csv(initial_df) ncells = 10 T = 0.2 trial_strings = [ "cancer_20201216_slip1_area2_long_acq_long_acq_blue_0.0296_green_0.0765_heated_to_37_1", "cancer_20201216_slip1_area3_long_acq_long_acq_blue_0.0296_green_0.0765_heated_to_37_with_TTX_1", ] tcs = [] for t in trial_strings: print(df[df.trial_string == t].stage) tcs.append( get_most_active_traces(ncells, df, Path(save_dir, "ratio_stacks", t), t)[0] ) fig, ax = plt.subplots(ncols=2) ax[0].plot(np.arange(tcs[0].shape[1]) * T, tcs[0].T + np.arange(ncells) / 20, "k") ax[1].sharey(ax[0]) ax[1].plot(np.arange(tcs[1].shape[1]) * T, tcs[1].T + np.arange(ncells) / 20, "k") pf.plot_scalebar(ax[0], 0, 0.95, 100, 0.02) ax[0].axis("off") ax[1].axis("off") fig.savefig( Path(figsave, "example_traces", f"example_traces{filetype}"), bbox_inches="tight", dpi=300, transparent=True, ) def plot_TTX_pre_post(save_dir, figsave, filetype, redo_stats): df = pd.read_csv(Path(save_dir, "all_events_df.csv")) df["exp_stage"] = df.expt + "_" + df.stage use = [ x for x in np.unique(df["exp_stage"]) if "TTX" in x and "washout_washout" not in x ] ttx = [1, 10] log = [True, False] only_neg = [True, False] histtype = ["bar", "step"] ttx = [1, 10] log = [True] only_neg = [False] histtype = ["bar"] for t in ttx: for l in log: for n in only_neg: for h in histtype: fig = plot_events_TTX( df, use, TTX_level=t, log=l, only_neg=n, histtype=h ) fig.savefig( Path( figsave, "pre_post", str(t), f"TTX_{t}um_histograms_{h}_log_{l}_onlyneg_{n}{filetype}", ), bbox_inches="tight", dpi=300, transparent=True, ) df2 = pd.read_csv(Path(save_dir, "TTX_active_df_by_cell.csv")) T = 0.2 df2["exp_stage"] = df2.expt + "_" + df2.stage df2["day_slip"] = df2.day.astype(str) + "_" + df2.slip.astype(str) df2["neg_event_rate"] = (df2["n_neg_events"]) / (df2["obs_length"] * T) df2["neg_integ_rate"] = ( -1 * (df2["neg_integrated_events"]) / (df2["obs_length"] * T) ) use2 = [x for x in np.unique(df2["exp_stage"]) if "washout" not in x] plot_TTX_summary( df2, use2, figsave, filetype, redo_stats=redo_stats, key="neg_event_rate", function=np.mean, function_name="np.mean", scale=3, density=True, ) plot_TTX_summary( df2, use2, figsave, filetype, redo_stats=False, key="neg_event_rate", function=np.mean, function_name="np.mean", scale=3, density=False, ) # plot_TTX_summary(df2,use2,figsave,filetype,redo_stats = redo_stats,key = 'neg_integ_rate', function = np.mean,function_name = 'np.mean',scale = 3, density = True) # plot_TTX_summary(df2,use2,figsave,filetype,redo_stats = False,key = 'neg_integ_rate', function = np.mean,function_name = 'np.mean',scale = 3, density = False) def plot_TTX_washout(save_dir, figsave, filetype, redo_stats): df = pd.read_csv(Path(save_dir, "all_events_df.csv")) df["exp_stage"] = df.expt + "_" + df.stage use = [x for x in np.unique(df["exp_stage"]) if "TTX" in x and "washout" in x] log = [True, False] only_neg = [True, False] histtype = ["bar", "step"] log = [True] only_neg = [False] histtype = ["bar"] for l in log: for n in only_neg: for h in histtype: fig = plot_events_TTX_washout(df, use, log=l, only_neg=n, histtype=h) fig.savefig( Path( figsave, "washout", f"TTX_washout_histograms_{h}_log_{l}_onlyneg_{n}{filetype}", ), bbox_inches="tight", dpi=300, transparent=True, ) # now plot the mean and bootstrapped cis df2 = pd.read_csv(Path(save_dir, "TTX_active_df_by_cell.csv")) T = 0.2 df2["exp_stage"] = df2.expt + "_" + df2.stage df2["neg_event_rate"] = (df2["n_neg_events"]) / (df2["obs_length"] * T) df2["day_slip"] = df2.day.astype(str) + "_" + df2.slip.astype(str) df2["neg_integ_rate"] = ( -1 * (df2["neg_integrated_events"]) / (df2["obs_length"] * T) ) use2 = [x for x in np.unique(df2["exp_stage"]) if "washout" in x] plot_washout_summary( df2, use2, figsave, filetype, redo_stats=redo_stats, key="neg_event_rate", function=np.mean, function_name="np.mean", scale=3, density=True, ) plot_washout_summary( df2, use2, figsave, filetype, redo_stats=False, key="neg_event_rate", function=np.mean, function_name="np.mean", scale=3, density=False, ) # plot_washout_summary(df2,use2,figsave,filetype,redo_stats = redo_stats,key = 'neg_integ_rate', function = np.mean,function_name = 'np.mean',scale = 3, density = True) # plot_washout_summary(df2,use2,figsave,filetype,redo_stats = False,key = 'neg_integ_rate', function = np.mean,function_name = 'np.mean',scale = 3, density = False) def plot_washout_summary( df, use, figsave, filetype, redo_stats=True, num_resamplings=10**6, key="neg_event_rate", function=np.mean, function_name="np.mean", scale=3, density=True, ): dfn = df.copy() use_bool = np.array([np.any(x in use) for x in dfn.exp_stage]) dfn = dfn[use_bool] pre = dfn[dfn.stage == "pre"][key].to_numpy() post = dfn[dfn.stage == "post"][key].to_numpy() wash = dfn[dfn.stage == "washout"][key].to_numpy() ppre = dfn[dfn.stage == "pre"][[key, "day_slip"]] ppost = dfn[dfn.stage == "post"][[key, "day_slip"]] wwash = dfn[dfn.stage == "washout"][[key, "day_slip"]] bins = np.histogram(np.concatenate((pre, post, wash)) * 10**3, bins=10)[1] fig, axarr = plt.subplots(nrows=3) c = 0.05 axarr[0].hist( pre * 10**scale, bins=bins, log=True, density=density, label="pre TTX", color=(c, c, c), ) axarr[1].hist( post * 10**scale, bins=bins, log=True, density=density, label="post 10 uM TTX", color=(c, c, c), ) axarr[2].hist( wash * 10**scale, bins=bins, log=True, density=density, label="washout", color=(c, c, c), ) axarr[0].sharey(axarr[1]) axarr[2].sharey(axarr[1]) for idx, a in enumerate(axarr): if not density: a.set_ylim([0.6, 10**4.5]) a.set_yticks(10 ** np.arange(0, 4, 3)) a.legend(frameon=False, loc=(0.4, 0.4), fontsize=16) pf.set_all_fontsize(a, 16) if idx != 2: a.set_xticklabels([]) if not density: axarr[1].set_ylabel("Number of cells") else: axarr[1].set_ylabel("Proportion of cells") if key == "neg_event_rate": axarr[-1].set_xlabel("Negative event rate " + "(1000 cells$^{-1}$ s$^{-1}$)") elif key == "neg_integ_rate": axarr[-1].set_xlabel( f"Integrated event rate per {10**scale} cells " + "(%$\cdot$s / s)" ) else: raise ValueError("wrong key") fig.savefig( Path( figsave, "summary", f"TTX_washout_compare_density_{density}_{key}{filetype}" ), bbox_inches="tight", dpi=300, transparent=True, ) if redo_stats: p_pre_post, _, f1 = statsf.bootstrap_test( pre, post, function=function, plot=True, num_resamplings=num_resamplings, names=["Pre TTX", "Post TTX"], ) p_pre_wash, _, f2 = statsf.bootstrap_test_2sided( wash, pre, function=function, plot=True, num_resamplings=num_resamplings, names=["Pre TTX", "washout"], ) p_wash_post, _, f3 = statsf.bootstrap_test( wash, post, function=function, plot=True, num_resamplings=num_resamplings, names=["Washout", "Post TTX"], ) f1.savefig( Path( figsave, "summary", "bootstrap", f"bootstrap_pre_post_{key}{filetype}" ), bbox_inches="tight", dpi=300, transparent=True, ) f2.savefig( Path( figsave, "summary", "bootstrap", f"bootstrap_wash_pre_{key}{filetype}" ), bbox_inches="tight", dpi=300, transparent=True, ) f3.savefig( Path( figsave, "summary", "bootstrap", f"bootstrap_wash_post_{key}{filetype}" ), bbox_inches="tight", dpi=300, transparent=True, ) with open( Path(figsave, "summary", f"statistical_test_results_washout_{key}.txt"), "w" ) as f: f.write(f"{datetime.datetime.now()}\n") f.write( f"Testing significance of second less than first for function {function_name}\n" ) f.write(f"N cells pre: {len(pre)}\n") f.write(f"N cells post: {len(post)}\n") f.write(f"N cells wash: {len(wash)}\n") f.write(f'N slips pre: {len(np.unique(ppre["day_slip"]))}\n') f.write(f'N slips post: {len(np.unique(ppost["day_slip"]))}\n') f.write(f'N slips wash: {len(np.unique(wwash["day_slip"]))}\n') f.write(f"Pre mean rate: {np.mean(pre)}\n") f.write(f"Post mean rate: {np.mean(post)}\n") f.write(f"Wash mean rate: {np.mean(wash)}\n") f.write(f"Num resamples: {num_resamplings}\n") f.write(f"p pre-post {p_pre_post}\n") f.write(f"p pre-wash (2 sided) {p_pre_wash}\n") f.write(f"p wash-post {p_wash_post}\n") def plot_TTX_summary( df, use, figsave, filetype, redo_stats=True, num_resamplings=10**6, key="neg_event_rate", function=np.mean, function_name="np.mean", scale=3, density=True, ): dfn = df.copy() use_bool = np.array([np.any(x in use) for x in dfn.exp_stage]) dfn = dfn[use_bool] pre_10 = dfn[dfn.exp_stage == "TTX_10um_pre"][key].to_numpy() post_10 = dfn[dfn.exp_stage == "TTX_10um_post"][key].to_numpy() pre_1 = dfn[dfn.exp_stage == "TTX_1um_pre"][key].to_numpy() post_1 = dfn[dfn.exp_stage == "TTX_1um_post"][key].to_numpy() ppre_10 = dfn[dfn.exp_stage == "TTX_10um_pre"][[key, "day_slip"]] ppost_10 = dfn[dfn.exp_stage == "TTX_10um_post"][[key, "day_slip"]] ppre_1 = dfn[dfn.exp_stage == "TTX_1um_pre"][[key, "day_slip"]] ppost_1 = dfn[dfn.exp_stage == "TTX_1um_post"][[key, "day_slip"]] bins_10 = np.histogram(np.concatenate((pre_10, post_10)) * 10**3, bins=10)[1] bins_1 = np.histogram(np.concatenate((pre_1, post_1)) * 10**3, bins=10)[1] fig_10, axarr_10 = plt.subplots(nrows=2) c = 0.05 axarr_10[0].hist( pre_10 * 10**scale, bins=bins_10, log=True, density=density, label="pre TTX", color=(c, c, c), ) axarr_10[1].hist( post_10 * 10**scale, bins=bins_10, log=True, density=density, label="post 10 uM TTX", color=(c, c, c), ) axarr_10[0].sharey(axarr_10[1]) for idx, a in enumerate(axarr_10): if not density: a.set_ylim([0.6, 10**4.5]) a.set_yticks(10 ** np.arange(0, 4, 3)) a.legend(frameon=False, loc=(0.4, 0.4), fontsize=16) pf.set_all_fontsize(a, 16) if idx != 1: a.set_xticklabels([]) if not density: axarr_10[1].set_ylabel("Number of cells") else: axarr_10[1].set_ylabel("Proportion of cells") if key == "neg_event_rate": axarr_10[-1].set_xlabel("Negative event rate " + "(1000 cells$^{-1}$ s$^{-1}$)") elif key == "neg_integ_rate": axarr_10[-1].set_xlabel( f"Integrated event rate per {10**scale} cells " + "(%$\cdot$s / s)" ) else: raise ValueError("wrong key") fig_10.savefig( Path(figsave, "summary", f"TTX_10um_compare_density_{density}_{key}{filetype}"), bbox_inches="tight", dpi=300, transparent=True, ) if redo_stats: p_pre_post_10, _, f1 = statsf.bootstrap_test( pre_10, post_10, function=function, plot=True, num_resamplings=num_resamplings, names=["Pre TTX", "Post 10 uM TTX"], ) f1.savefig( Path(figsave, "summary", "bootstrap", f"bootstrap_pre_10_{key}{filetype}"), bbox_inches="tight", dpi=300, transparent=True, ) with open( Path(figsave, "summary", f"statistical_test_results_10uM_{key}.txt"), "w" ) as f: f.write(f"{datetime.datetime.now()}\n") f.write( f"Testing significance of second less than first for function {function_name}\n" ) f.write(f"N cells pre: {len(pre_10)}\n") f.write(f"N cells post: {len(post_10)}\n") f.write(f'N slips pre: {len(np.unique(ppre_10["day_slip"]))}\n') f.write(f'N slips post: {len(np.unique(ppost_10["day_slip"]))}\n') f.write(f"Pre mean rate: {np.mean(pre_10)}\n") f.write(f"Post mean rate: {np.mean(post_10)}\n") print("Hello") f.write(f"Num resamples: {num_resamplings}\n") f.write(f"p pre-post {p_pre_post_10}\n") fig_1, axarr_1 = plt.subplots(nrows=2) c = 0.05 axarr_1[0].hist( pre_1 * 10**scale, bins=bins_1, log=True, density=density, label="pre TTX", color=(c, c, c), ) axarr_1[1].hist( post_1 * 10**scale, bins=bins_1, log=True, density=density, label="post 1 uM TTX", color=(c, c, c), ) axarr_1[0].sharey(axarr_1[1]) for idx, a in enumerate(axarr_1): if not density: a.set_ylim([0.6, 10**4.5]) a.set_yticks(10 ** np.arange(0, 4, 3)) a.legend(frameon=False, loc=(0.4, 0.4), fontsize=16) pf.set_all_fontsize(a, 16) if idx != 1: a.set_xticklabels([]) if not density: axarr_1[1].set_ylabel("Number of cells") else: axarr_1[1].set_ylabel("Proportion of cells") if key == "neg_event_rate": axarr_1[-1].set_xlabel("Negative event rate " + "(1000 cells$^{-1}$ s$^{-1}$)") elif key == "neg_integ_rate": axarr_1[-1].set_xlabel( f"Integrated event rate per {10**scale} cells " + "(%$\cdot$s / s)" ) else: raise ValueError("wrong key") fig_1.savefig( Path(figsave, "summary", f"TTX_1um_compare_density_{density}_{key}{filetype}"), bbox_inches="tight", dpi=300, transparent=True, ) if redo_stats: p_pre_post_1, _, f1 = statsf.bootstrap_test( pre_1, post_1, function=function, plot=True, num_resamplings=num_resamplings, names=["Pre TTX", "Post 1 uM TTX"], ) f1.savefig( Path(figsave, "summary", "bootstrap", f"bootstrap_pre_1_{key}{filetype}"), bbox_inches="tight", dpi=300, transparent=True, ) with open( Path(figsave, "summary", f"statistical_test_results_1uM_{key}.txt"), "w" ) as f: f.write(f"{datetime.datetime.now()}\n") f.write( f"Testing significance of second less than first for function {function_name}\n" ) f.write(f"N cells pre: {len(pre_1)}\n") f.write(f"N cells post: {len(post_1)}\n") f.write(f'N slips pre: {len(np.unique(ppre_1["day_slip"]))}\n') f.write(f'N slips post: {len(np.unique(ppost_1["day_slip"]))}\n') f.write(f"Pre mean rate: {np.mean(pre_1)}\n") f.write(f"Post mean rate: {np.mean(post_1)}\n") f.write(f"Num resamples: {num_resamplings}\n") f.write(f"p pre-post {p_pre_post_1}\n") def plot_events_TTX( df, use, TTX_level=1, log=True, upper_lim=6.6, lower_lim=0, T=0.2, nbins=20, only_neg=True, histtype="bar", ): dfn = df.copy() use = [x for x in use if f"{TTX_level}um" in x] use_bool = np.array([np.any(x in use) for x in dfn.exp_stage]) dfn = dfn[use_bool] too_big = np.abs(dfn.event_amplitude) > upper_lim / 100 too_small = np.abs(dfn.event_amplitude) < lower_lim / 100 dfn = dfn[np.logical_not(np.logical_or(too_big, too_small))] if only_neg: dfn = dfn[dfn["event_amplitude"] < 0] length_bins = np.histogram(dfn["event_length"] * T, bins=nbins)[1] if only_neg: amp_bins = np.histogram(np.abs(dfn["event_amplitude"]) * 100, bins=nbins)[1] else: amp_bins = np.histogram(dfn["event_amplitude"] * 100, bins=nbins)[1] neg = dfn[dfn.stage == "pre"] pos = dfn[dfn.stage == "post"] gs = gridspec.GridSpec(2, 2) gs.update(wspace=0.3, hspace=0.3) fig, axarr = plt.subplots(figsize=(8, 6)) ax0 = plt.subplot(gs[0]) if only_neg: ax0.hist( np.abs(neg["event_amplitude"]) * 100, bins=amp_bins, log=log, label="Pre", histtype=histtype, ) ax0.hist( np.abs(pos["event_amplitude"]) * 100, bins=amp_bins, log=log, label=f"TTX {TTX_level}" + " $\mathrm{\mu}$M", histtype=histtype, ) else: ax0.hist( neg["event_amplitude"] * 100, bins=amp_bins, log=log, label="Pre", histtype=histtype, ) ax0.hist( pos["event_amplitude"] * 100, bins=amp_bins, log=log, label=f"TTX {TTX_level}" + " $\mathrm{\mu}$M", histtype=histtype, ) ax0.set_xlabel("Absolute event amplitude (% $\Delta$R/R$_0$)") ax0.set_ylabel("Observed Frequency") ax0.legend(frameon=False) ax1 = plt.subplot(gs[1]) ax1.hist( np.abs(neg["event_length"]) * T, bins=length_bins, log=log, label="Pre", histtype=histtype, ) ax1.hist( np.abs(pos["event_length"]) * T, bins=length_bins, log=log, label=f"TTX {TTX_level}" + " $\mathrm{\mu}$M", histtype=histtype, ) ax1.set_xlabel("Event duration (s)") ax1.set_ylabel("Observed Frequency") ax1.legend(frameon=False) if log: norm = mpl.colors.LogNorm() else: norm = None ax2 = plt.subplot(gs[2]) if only_neg: h = ax2.hist2d( np.abs(neg["event_amplitude"]) * 100, neg["event_length"] * T, bins=(amp_bins, length_bins), norm=norm, ) else: h = ax2.hist2d( neg["event_amplitude"] * 100, neg["event_length"] * T, bins=(amp_bins, length_bins), norm=norm, ) plt.colorbar(h[3]) ax2.set_xlabel("Pre-TTX event amplitude (% $\Delta$R/R$_0$)") ax2.set_ylabel("Event duration (s)") ax3 = plt.subplot(gs[3]) if only_neg: h2 = ax3.hist2d( np.abs(pos["event_amplitude"]) * 100, pos["event_length"] * T, bins=(amp_bins, length_bins), norm=norm, ) else: h2 = ax3.hist2d( pos["event_amplitude"] * 100, pos["event_length"] * T, bins=(amp_bins, length_bins), norm=norm, ) plt.colorbar(h2[3]) ax3.set_xlabel("Post-TTX event amplitude (% $\Delta$R/R$_0$)") ax3.set_ylabel("Event duration (s)") # get number of events before/after TTX thresh = -2 iid = np.argwhere(h[1] > thresh)[0][0] n_events_pre = np.sum(h[0][:iid, :]) n_events_post = np.sum(h2[0][:iid, :]) with open( Path( "/home/peter/Dropbox/Papers/cancer/v2/ttx_figure", "num_bigneg_events.txt" ), "w", ) as f: f.write(f"{datetime.datetime.now()}\n") f.write(f"Number events in bins up to edge at {h[1][iid]:.3f} %\n") f.write(f"pre: {n_events_pre} \n") f.write(f"post: {n_events_post} \n") return fig def plot_events_TTX_washout( df, use, log=True, upper_lim=6.6, lower_lim=0, T=0.2, nbins=20, only_neg=True, histtype="bar", ): dfn = df.copy() use_bool = np.array([np.any(x in use) for x in dfn.exp_stage]) dfn = dfn[use_bool] too_big = np.abs(dfn.event_amplitude) > upper_lim / 100 too_small = np.abs(dfn.event_amplitude) < lower_lim / 100 dfn = dfn[np.logical_not(np.logical_or(too_big, too_small))] if only_neg: dfn = dfn[dfn["event_amplitude"] < 0] amp_bins = np.histogram(np.abs(dfn["event_amplitude"]) * 100, bins=nbins)[1] else: amp_bins = np.histogram(dfn["event_amplitude"] * 100, bins=nbins)[1] length_bins = np.histogram(dfn["event_length"] * T, bins=nbins)[1] neg = dfn[dfn.stage == "pre"] pos = dfn[dfn.stage == "post"] wash = dfn[dfn.stage == "washout"] gs = gridspec.GridSpec(2, 3) gs.update(wspace=0.3, hspace=0.3) fig, axarr = plt.subplots(figsize=(8, 6)) ax0 = plt.subplot(gs[0]) if only_neg: ax0.hist( np.abs(neg["event_amplitude"]) * 100, bins=amp_bins, log=log, label="Pre", histtype=histtype, ) ax0.hist( np.abs(pos["event_amplitude"]) * 100, bins=amp_bins, log=log, label="TTX 10 $\mathrm{\mu}$M", histtype=histtype, ) ax0.hist(
np.abs(wash["event_amplitude"])
numpy.abs
import sys sys.path.append('/home/ross/CytoPy') from CytoPy.data.mongo_setup import global_init from CytoPy.flow.gating import utilities from CytoPy.tests import make_example_date from sklearn.neighbors import KernelDensity from scipy.signal import find_peaks from itertools import combinations import numpy as np import pandas as pd import unittest global_init('test') class TestCheckPeak(unittest.TestCase): def test(self): probs = np.array([0, 0, 0, 0.05, 0, 0, 2, 0, 0, 3, 0, 0, 0.05]) peaks = np.where(
np.array(probs)
numpy.array
#import numpy as np from numpy import sqrt, zeros, pi, arctan, asarray, arange, delete, sum, multiply, sin, cos def FT(k, exafs, rmin, rmax, dr): con = sqrt(2 / pi) nn = len(k) rx = zeros(int((rmax - rmin) / dr), float) exafs_re = zeros(nn, float) # exafs_im = zeros(nn, float) # transform_re = zeros(nn, float) # transform_im = zeros(nn, float) # fourier_re = zeros(int((rmax - rmin) / dr), float) # fourier_im = zeros(int((rmax - rmin) / dr), float) # sn = zeros(nn, float) # cs = zeros(nn, float) exafs_re =
asarray(exafs, float)
numpy.asarray
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import math import numpy as np import scipy.misc import itertools from math import pow import seaborn as sns import matplotlib.pyplot as plt from utils import generate_vel_list_3d IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm'] class Data_Generator(object): """ Generate one dimensional simulated data. Randomly sample \mu from uniform distribution. Velocity is fixed. Place vector is generated from a Gaussian distribution. """ def __init__(self, num_interval=1000, min=0, max=1, shape="square", to_use_3D_map=False): """ Sigma is the variance in the Gaussian distribution. """ self.num_interval = num_interval self.min, self.max = min, max self.interval_length = (self.max - self.min) / (self.num_interval - 1) self.shape = shape def generate(self, num_data, max_vel=3, min_vel=0, num_step=1, dtype=2, test=False, visualize=False, motion_type='continuous'): if dtype == 1: place_pair = self.generate_two_dim_multi_type1(num_data) elif dtype == 2: place_pair = self.generate_two_dim_multi_type2(num_data, max_vel, min_vel, num_step, test=test, visualize=visualize, motion_type=motion_type) else: raise NotImplementedError return place_pair def generate_3d(self, num_data, max_vel=3, min_vel=0, num_step=1, dtype=2, test=False, visualize=False, motion_type='continuous'): if dtype == 1: place_pair = self.generate_three_dim_multi_type1(num_data) elif dtype == 2: place_pair = self.generate_three_dim_multi_type2(num_data, max_vel, min_vel, num_step, test=test, visualize=visualize, motion_type=motion_type) else: raise NotImplementedError return place_pair def generate_two_dim_multi_type1(self, num_data): if self.shape == "square": mu_before = np.random.random(size=[num_data, 2]) * (self.num_interval - 1) mu_after = np.random.random(size=[num_data, 2]) * (self.num_interval - 1) elif self.shape == "circle": mu_seq = np.random.random(size=[num_data * 3, 2]) select_idx = np.where(np.sqrt((mu_seq[:, 0] - 0.5) ** 2 + (mu_seq[:, 1] - 0.5) ** 2) < 0.5)[0] mu_seq = mu_seq[select_idx[:num_data * 2]] mu_before = mu_seq[:num_data] * (self.num_interval - 1) mu_after = mu_seq[num_data:] * (self.num_interval - 1) elif self.shape == "triangle": mu_seq = np.random.random(size=[int(num_data * 4.2), 2]) x, y = mu_seq[:, 0], mu_seq[:, 1] select_idx = np.where((x + 2 * y > 1) * (-x + 2 * y < 1))[0] mu_seq = mu_seq[select_idx[:num_data * 2]] mu_before = mu_seq[:num_data] * (self.num_interval - 1) mu_after = mu_seq[num_data:] * (self.num_interval - 1) else: raise NotImplementedError vel = np.sqrt(np.sum((mu_after - mu_before) ** 2, axis=1)) * self.interval_length place_pair = {'before': mu_before, 'after': mu_after, 'vel': vel} assert len(mu_before) == num_data return place_pair def generate_three_dim_multi_type1(self, num_data): if self.shape == "square": mu_before = np.random.random(size=[num_data, 3]) * (self.num_interval - 1) mu_after = np.random.random(size=[num_data, 3]) * (self.num_interval - 1) else: raise NotImplementedError vel = np.sqrt(np.sum((mu_after - mu_before) ** 2, axis=1)) * self.interval_length place_pair = {'before': mu_before, 'after': mu_after, 'vel': vel} assert len(mu_before) == num_data return place_pair def generate_two_dim_multi_type2(self, num_data, max_vel, min_vel, num_step, motion_type, test=False, visualize=False): """sample discretized motions and corresponding place pairs""" vel_idx = None if not test and motion_type == 'discrete': velocity = generate_vel_list(max_vel) num_vel = len(velocity) if pow(num_vel, num_step) < num_data: vel_list = np.asarray(list(itertools.product(np.arange(num_vel), repeat=num_step))) num_vel_list = len(vel_list) div, rem = num_data // num_vel_list, num_data % num_vel_list vel_idx = np.vstack((np.tile(vel_list, [div, 1]), vel_list[np.random.choice(num_vel_list, size=rem)])) np.random.shuffle(vel_idx) else: vel_idx = np.random.choice(num_vel, size=[num_data, num_step]) vel_grid = np.take(velocity, vel_idx, axis=0) vel = vel_grid * self.interval_length vel_grid_cumsum = np.cumsum(vel_grid, axis=1) mu_max = np.fmin(self.num_interval, np.min(self.num_interval - vel_grid_cumsum, axis=1)) mu_min = np.fmax(0, np.max(-vel_grid_cumsum, axis=1)) mu_start = np.expand_dims(np.random.random(size=(num_data, 2)) * (mu_max - 1 - mu_min) + mu_min, axis=1) # mu_start = np.random.sample(size=[num_data, 2]) # mu_start = np.expand_dims(np.round(mu_start * (mu_max - mu_min) + mu_min - 0.5), axis=1) mu_seq = np.concatenate((mu_start, mu_start + vel_grid_cumsum), axis=1) elif not test: if self.shape == "square": num_data_sample = num_data elif self.shape == "circle": num_data_sample = int(num_data * 1.5) elif self.shape == "triangle": num_data_sample = int(num_data * 4) else: raise NotImplementedError theta = np.random.random(size=(num_data_sample, num_step)) * 2 * np.pi - np.pi length = np.sqrt(np.random.random(size=(num_data_sample, num_step))) * (max_vel - min_vel) + min_vel x = length * np.cos(theta) y = length * np.sin(theta) vel_seq = np.concatenate((np.expand_dims(x, axis=-1), np.expand_dims(y, axis=-1)), axis=-1) vel_seq_cumsum = np.cumsum(vel_seq, axis=1) mu_max = np.fmin(self.num_interval - 1, np.min(self.num_interval - 1 - vel_seq_cumsum, axis=1)) mu_min = np.fmax(0, np.max(-vel_seq_cumsum, axis=1)) start = np.random.random(size=(num_data_sample, 2)) * (mu_max - mu_min) + mu_min start = np.expand_dims(start, axis=1) mu_seq = np.concatenate((start, start + vel_seq), axis=1) vel = vel_seq * self.interval_length if self.shape == "circle": mu_seq_len = mu_seq * self.interval_length select_idx = np.sqrt((mu_seq_len[:, :, 0] - 0.5) ** 2 + (mu_seq_len[:, :, 1] - 0.5) ** 2) > 0.5 select_idx = np.where(np.sum(select_idx, axis=1) == 0)[0] mu_seq = mu_seq[select_idx[:num_data]] vel = vel[select_idx[:num_data]] elif self.shape == "triangle": mu_seq_len = mu_seq * self.interval_length x, y = mu_seq_len[:, :, 0], mu_seq_len[:, :, 1] select_idx = (x + 2 * y > 1) * (-x + 2 * y < 1) select_idx = np.where(np.sum(select_idx, axis=1) == num_step + 1)[0] mu_seq = mu_seq[select_idx[:num_data]] vel = vel[select_idx[:num_data]] else: velocity = generate_vel_list(max_vel, min_vel) num_vel = len(velocity) if visualize: mu_start = np.reshape([20, 20], newshape=(1, 1, 2)) vel_pool = np.where((velocity[:, 0] >= -1) & (velocity[:, 1] >= -1)) vel_idx = np.random.choice(vel_pool[0], size=[num_data * 10, num_step]) vel_grid_cumsum = np.cumsum(np.take(velocity, vel_idx, axis=0), axis=1) mu_seq = np.concatenate((np.tile(mu_start, [num_data * 10, 1, 1]), vel_grid_cumsum + mu_start), axis=1) mu_seq_new, vel_idx_new = [], [] for i in range(len(mu_seq)): mu_seq_sub = mu_seq[i] if len(np.unique(mu_seq_sub, axis=0)) == len(mu_seq_sub): mu_seq_new.append(mu_seq[i]) vel_idx_new.append(vel_idx[i]) mu_seq, vel_idx = np.stack(mu_seq_new, axis=0), np.stack(vel_idx_new, axis=0) mu_seq_rs = np.reshape(mu_seq, [-1, (num_step + 1) * 2]) select_idx = np.where(np.sum(mu_seq_rs >= self.num_interval, axis=1) == 0)[0][:num_data] vel_idx = vel_idx[select_idx] mu_seq = mu_seq[select_idx] vel = np.take(velocity, vel_idx, axis=0) * self.interval_length else: vel_idx = np.random.choice(num_vel, size=[num_data * 20, num_step]) vel_grid_cumsum = np.cumsum(np.take(velocity, vel_idx, axis=0), axis=1) mu_max = np.fmin(self.num_interval, np.min(self.num_interval - vel_grid_cumsum, axis=1)) mu_min = np.fmax(0, np.max(-vel_grid_cumsum, axis=1)) select_idx = np.where(np.sum(mu_max <= mu_min, axis=1) == 0)[0][:num_data] vel_idx, vel_grid_cumsum = vel_idx[select_idx], vel_grid_cumsum[select_idx] vel_grid = np.take(velocity, vel_idx, axis=0) mu_max, mu_min = mu_max[select_idx], mu_min[select_idx] mu_start = np.random.sample(size=[num_data, 2]) mu_start = np.expand_dims(np.round(mu_start * (mu_max - mu_min) + mu_min - 0.5), axis=1) mu_seq = np.concatenate((mu_start, mu_start + vel_grid_cumsum), axis=1) vel = vel_grid * self.interval_length # sns.distplot(vel, rug=True, hist=False) # plt.show() assert len(mu_seq) == num_data place_seq = {'seq': mu_seq, 'vel': vel, 'vel_idx': vel_idx} return place_seq def generate_three_dim_multi_type2(self, num_data, max_vel, min_vel, num_step, motion_type, test=False, visualize=False): """sample discretized motions and corresponding place pairs""" vel_idx = None if not test and motion_type == 'discrete': velocity = generate_vel_list_3d(max_vel) num_vel = len(velocity) if pow(num_vel, num_step) < num_data: vel_list = np.asarray(list(itertools.product(np.arange(num_vel), repeat=num_step))) num_vel_list = len(vel_list) div, rem = num_data // num_vel_list, num_data % num_vel_list vel_idx = np.vstack((np.tile(vel_list, [div, 1]), vel_list[np.random.choice(num_vel_list, size=rem)])) np.random.shuffle(vel_idx) else: vel_idx = np.random.choice(num_vel, size=[num_data, num_step]) vel_grid = np.take(velocity, vel_idx, axis=0) vel = vel_grid * self.interval_length vel_grid_cumsum = np.cumsum(vel_grid, axis=1) mu_max = np.fmin(self.num_interval, np.min(self.num_interval - vel_grid_cumsum, axis=1)) mu_min = np.fmax(0, np.max(-vel_grid_cumsum, axis=1)) mu_start = np.expand_dims(np.random.random(size=(num_data, 2)) * (mu_max - 1 - mu_min) + mu_min, axis=1) # mu_start = np.random.sample(size=[num_data, 2]) # mu_start = np.expand_dims(np.round(mu_start * (mu_max - mu_min) + mu_min - 0.5), axis=1) mu_seq = np.concatenate((mu_start, mu_start + vel_grid_cumsum), axis=1) elif not test: if self.shape == "square": num_data_sample = num_data else: raise NotImplementedError #theta = np.random.random(size=(num_data_sample, num_step)) * 2 * np.pi - np.pi #length = np.sqrt(np.random.random(size=(num_data_sample, num_step))) * (max_vel - min_vel) + min_vel #x = length * np.cos(theta) #y = length * np.sin(theta) #vel_seq = np.concatenate((np.expand_dims(x, axis=-1), np.expand_dims(y, axis=-1)), axis=-1) x1 = np.random.standard_normal(size=(num_data_sample, num_step)) y1 = np.random.standard_normal(size=(num_data_sample, num_step)) z1 = np.random.standard_normal(size=(num_data_sample, num_step)) v = np.sqrt(x1**2 + y1 ** 2 + z1 ** 2) length = np.cbrt(np.random.random(size=(num_data_sample, num_step))) * (max_vel - min_vel) + min_vel x = length * x1 / v y = length * y1 / v z = length * z1 / v vel_seq = np.concatenate((np.expand_dims(x, axis=-1), np.expand_dims(y, axis=-1), np.expand_dims(z, axis=-1)), axis=-1) # from matplotlib import pyplot # from mpl_toolkits.mplot3d import Axes3D # fig = pyplot.figure() # ax = Axes3D(fig) # ax.scatter(x[:30000], y[0:30000], z[0:30000]) # pyplot.show() vel_seq_cumsum = np.cumsum(vel_seq, axis=1) mu_max = np.fmin(self.num_interval - 1, np.min(self.num_interval - 1 - vel_seq_cumsum, axis=1)) mu_min = np.fmax(0, np.max(-vel_seq_cumsum, axis=1)) start = np.random.random(size=(num_data_sample, 3)) * (mu_max - mu_min) + mu_min start = np.expand_dims(start, axis=1) mu_seq = np.concatenate((start, start + vel_seq), axis=1) vel = vel_seq * self.interval_length if self.shape == "circle": mu_seq_len = mu_seq * self.interval_length select_idx = np.sqrt((mu_seq_len[:, :, 0] - 0.5) ** 2 + (mu_seq_len[:, :, 1] - 0.5) ** 2) > 0.5 select_idx = np.where(np.sum(select_idx, axis=1) == 0)[0] mu_seq = mu_seq[select_idx[:num_data]] vel = vel[select_idx[:num_data]] elif self.shape == "triangle": mu_seq_len = mu_seq * self.interval_length x, y = mu_seq_len[:, :, 0], mu_seq_len[:, :, 1] select_idx = (x + 2 * y > 1) * (-x + 2 * y < 1) select_idx = np.where(np.sum(select_idx, axis=1) == num_step + 1)[0] mu_seq = mu_seq[select_idx[:num_data]] vel = vel[select_idx[:num_data]] else: velocity = generate_vel_list_3d(max_vel, min_vel) num_vel = len(velocity) if visualize: mu_start = np.reshape([20, 20, 20], newshape=(1, 1, 1, 3)) vel_pool = np.where((velocity[:, 0] >= -1) & (velocity[:, 1] >= -1) & (velocity[:, 2] >= -1)) vel_idx = np.random.choice(vel_pool[0], size=[num_data * 10, num_step]) vel_grid_cumsum = np.cumsum(np.take(velocity, vel_idx, axis=0), axis=1) mu_seq = np.concatenate((np.tile(mu_start, [num_data * 10, 1, 1, 1]), vel_grid_cumsum + mu_start), axis=1) mu_seq_new, vel_idx_new = [], [] for i in range(len(mu_seq)): mu_seq_sub = mu_seq[i] if len(np.unique(mu_seq_sub, axis=0)) == len(mu_seq_sub): mu_seq_new.append(mu_seq[i]) vel_idx_new.append(vel_idx[i]) mu_seq, vel_idx = np.stack(mu_seq_new, axis=0),
np.stack(vel_idx_new, axis=0)
numpy.stack
from collections import namedtuple import numpy as np import torch from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import GridSearchCV from sklearn.svm import SVC Accuracy = namedtuple('Accuracy', ['unweighted', 'weighted', 'worst', 'accuracy_classes']) def compute_accuracy_tuple(y, labels): labels = labels.ravel() n_labels = len(np.unique(labels)) classes_probabilities = [] accuracy_classes = [] for cl in range(n_labels): idx = labels == cl classes_probabilities += [np.mean(idx)] accuracy_classes += [np.mean((labels[idx] == y[idx])) if classes_probabilities[-1] else 0] # This is also referred to as the "recall": p = n_true_positive / (n_false_negative + n_true_positive) # ( We could also compute the "precision": p = n_true_positive / (n_false_positive + n_true_positive) ) accuracy_named_tuple = Accuracy( unweighted=
np.dot(accuracy_classes, classes_probabilities)
numpy.dot
import os import sys import numpy as np import time import matplotlib.pyplot as plt import pandas as pd from utils import * def sliding_dot_product(q, t): n = t.size m = q.size # Append t with n zeros ta = np.append(t, np.zeros(n)) # Reverse Q qr = np.flip(q, 0) # Append qra qra = np.append(qr, np.zeros(2 * n - m)) # Compute FFTs qraf = np.fft.fft(qra) taf = np.fft.fft(ta) # Compute the inverse FFT to the element-wise multiplication of qraf and taf qt = np.fft.ifft(np.multiply(qraf, taf)) return qt[m:n] def sliding_dot_product_stomp(q, t): n = t.size m = q.size # Append t with n zeros ta = np.append(t, np.zeros(n)) # Reverse Q qr = np.flip(q, 0) # Append qra qra = np.append(qr, np.zeros(2 * n - m)) # Compute FFTs qraf = np.fft.fft(qra) taf = np.fft.fft(ta) # Compute the inverse FFT to the element-wise multiplication of qraf and taf qt = np.fft.ifft(np.multiply(qraf, taf)) return qt[m - 1:n] def calculate_distance_profile(q, t, qt, a, sum_q, sum_q2, mean_t, sigma_t): n = t.size m = q.size b = np.zeros(n - m) dist = np.zeros(n - m) for i in range(0, n - m): b[i] = -2 * (qt[i].real - sum_q * mean_t[i]) / sigma_t[i] dist[i] = a[i] + b[i] + sum_q2 return np.sqrt(np.abs(dist)) # The code below takes O(m) for each subsequence # you should replace it for MASS def compute_mean_std_for_query(Q): # Compute Q stats -- O(n) sumQ = np.sum(Q) sumQ2 = np.sum(np.power(Q, 2)) return sumQ, sumQ2 def pre_compute_mean_std_for_TS(ta, m): na = len(ta) sum_t = np.zeros(na - m) sum_t2 = np.zeros(na - m) # Compute the stats for t cumulative_sum_t = np.cumsum(ta) cumulative_sum_t2 = np.cumsum(np.power(ta, 2)) for i in range(na - m): sum_t[i] = cumulative_sum_t[i + m] - cumulative_sum_t[i] sum_t2[i] = cumulative_sum_t2[i + m] - cumulative_sum_t2[i] mean_t = np.divide(sum_t, m) mean_t2 = np.divide(sum_t2, m) mean_t_p2 = np.power(mean_t, 2) sigma_t2 = np.subtract(mean_t2, mean_t_p2) sigma_t = np.sqrt(sigma_t2) return sum_t, sum_t2, mean_t, mean_t2, mean_t_p2, sigma_t, sigma_t2 def pre_compute_mean_std_for_TS_stomp(ta, m): na = len(ta) # Compute the stats for t cumulative_sum_t = np.cumsum(ta) cumulative_sum_t2 = np.cumsum(np.power(ta, 2)) sum_t = (cumulative_sum_t[m - 1:na] - np.concatenate(([0], cumulative_sum_t[0:na - m]))) sum_t2 = (cumulative_sum_t2[m - 1:na] - np.concatenate(([0], cumulative_sum_t2[0:na - m]))) mean_t = np.divide(sum_t, m) mean_t2 = np.divide(sum_t2, m) mean_t_p2 = np.power(mean_t, 2) sigma_t2 = np.subtract(mean_t2, mean_t_p2) sigma_t = np.sqrt(sigma_t2) return sum_t, sum_t2, mean_t, mean_t2, mean_t_p2, sigma_t, sigma_t2 # MUEEN’S ALGORITHM FOR SIMILARITY SEARCH (MASS) def mass(Q, T, a, meanT, sigmaT): # Z-Normalisation if np.std(Q) != 0: Q = (Q - np.mean(Q)) / np.std(Q) QT = sliding_dot_product(Q, T) sumQ, sumQ2 = compute_mean_std_for_query(Q) return calculate_distance_profile(Q, T, QT, a, sumQ, sumQ2, meanT, sigmaT) def element_wise_min(Pab, Iab, D, idx, ignore_trivial, m): for i in range(0, len(D)): if not ignore_trivial or ( np.abs(idx - i) > m / 2.0): # if it's a self-join, ignore trivial matches in [-m/2,m/2] if D[i] < Pab[i]: Pab[i] = D[i] Iab[i] = idx return Pab, Iab def stamp(Ta, Tb, m): """ Compute the Matrix Profile between time-series Ta and Tb. If Ta==Tb, the operation is a self-join and trivial matches are ignored. :param Ta: time-series, np.array :param Tb: time-series, np.array :param m: subsequence length :return: Matrix Profile, Nearest-Neighbor indexes """ nb = len(Tb) na = len(Ta) Pab = np.ones(na - m) * np.inf Iab = np.zeros(na - m) idxes = np.arange(nb - m + 1) sumT, sumT2, meanT, meanT_2, meanTP2, sigmaT, sigmaT2 = pre_compute_mean_std_for_TS(Ta, m) a = np.zeros(na - m) for i in range(0, na - m): a[i] = (sumT2[i] - 2 * sumT[i] * meanT[i] + m * meanTP2[i]) / sigmaT2[i] ignore_trivial = np.atleast_1d(Ta == Tb).all() for idx in idxes: D = mass(Tb[idx: idx + m], Ta, a, meanT, sigmaT) if (ignore_trivial): # ignore trivial minimum and maximum minIdx = int(np.maximum(idx - m / 2.0, 0)) maxIdx = int(np.minimum(idx + m / 2.0, len(D))) D[minIdx:maxIdx:1] = np.inf Iab[Pab > D] = i Pab = np.minimum(Pab, D) return Pab, Iab def stomp(T, m): """ Compute the Matrix Profile with self join for T :param T: time-series, np.array :param Tb: time-series, np.array :param m: subsequence length :return: Matrix Profile, Nearest-Neighbor indexes """ epsilon = 1e-10 n = len(T) seq_l = n - m _, _, meanT, _, _, sigmaT, _ = pre_compute_mean_std_for_TS_stomp(T, m) Pab = np.full(seq_l + 1, np.inf) Iab = np.zeros(n - m + 1) ignore_trivial = True for idx in range(0, seq_l): # There's somthing with normalization Q_std = sigmaT[idx] if sigmaT[idx] > epsilon else epsilon if idx == 0: QT = sliding_dot_product_stomp(T[0:m], T).real QT_first = np.copy(QT) else: QT[1:] = QT[0:-1] - (T[0:seq_l] * T[idx - 1]) + (T[m:n] * T[idx + m - 1]) QT[0] = QT_first[idx] # Calculate distance profile D = (2 * (m - (QT - m * meanT * meanT[idx]) / (Q_std * sigmaT))) D[D < epsilon] = 0 if (ignore_trivial): # ignore trivial minimum and maximum minIdx = int(np.maximum(idx - m / 2.0, 0)) maxIdx = int(np.minimum(idx + m / 2.0, len(D))) D[minIdx:maxIdx:1] = np.inf Iab[Pab > D] = idx np.minimum(Pab, D, Pab) np.sqrt(Pab, Pab) return Pab, Iab # Quick Test # def test_stomp(Ta, m): # start_time = time.time() # # Pab, Iab = stomp(Ta, m) # print("--- %s seconds ---" % (time.time() - start_time)) # plot_motif(Ta, Pab, Iab, m) # return Pab, Iab # Quick Test # def test_stamp(Ta, Tb, m): # start_time = time.time() # # Pab, Iab = stamp(Ta, Tb, m) # print("--- %s seconds ---" % (time.time() - start_time)) # # plot_discord(Ta, Pab, Iab, m, ) # return Pab, Iab def plot_motif(Ta, values, indexes, m): from matplotlib import gridspec plt.figure(figsize=(8, 4)) plt.subplot(211) plt.plot(Ta, linestyle='--', alpha=0.5) plt.xlim((0, len(Ta))) print(np.argmax(values)) plt.plot(range(np.argmin(values), np.argmin(values) + m), Ta[np.argmin(values):np.argmin(values) + m], c='g', label='Top Motif') plt.plot(range(np.argmax(values), np.argmax(values) + m), Ta[np.argmax(values):
np.argmax(values)
numpy.argmax
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """tests for rollout function.""" from absl.testing import absltest from absl.testing import parameterized import mujoco import numpy as np import concurrent.futures import threading from mujoco import rollout #--------------------------- models used for testing --------------------------- TEST_XML = r""" <mujoco> <worldbody> <light pos="0 0 2"/> <geom type="plane" size="5 5 .1"/> <body pos="0 0 .1"> <joint name="yaw" axis="0 0 1"/> <joint name="pitch" axis="0 1 0"/> <geom type="capsule" size=".02" fromto="0 0 0 1 0 0"/> <geom type="box" pos="1 0 0" size=".1 .1 .1"/> <site name="site" pos="1 0 0"/> </body> </worldbody> <actuator> <general joint="pitch" gainprm="100"/> <general joint="yaw" dyntype="filter" dynprm="1" gainprm="100"/> </actuator> <sensor> <accelerometer site="site"/> </sensor> </mujoco> """ TEST_XML_NO_SENSORS = r""" <mujoco> <worldbody> <light pos="0 0 2"/> <geom type="plane" size="5 5 .1"/> <body pos="0 0 .1"> <joint name="yaw" axis="0 0 1"/> <joint name="pitch" axis="0 1 0"/> <geom type="capsule" size=".02" fromto="0 0 0 1 0 0"/> <geom type="box" pos="1 0 0" size=".1 .1 .1"/> <site name="site" pos="1 0 0"/> </body> </worldbody> <actuator> <general joint="pitch" gainprm="100"/> <general joint="yaw" dyntype="filter" dynprm="1" gainprm="100"/> </actuator> </mujoco> """ TEST_XML_NO_ACTUATORS = r""" <mujoco> <worldbody> <light pos="0 0 2"/> <geom type="plane" size="5 5 .1"/> <body pos="0 0 .1"> <joint name="yaw" axis="0 0 1"/> <joint name="pitch" axis="0 1 0"/> <geom type="capsule" size=".02" fromto="0 0 0 1 0 0"/> <geom type="box" pos="1 0 0" size=".1 .1 .1"/> <site name="site" pos="1 0 0"/> </body> </worldbody> <sensor> <accelerometer site="site"/> </sensor> </mujoco> """ TEST_XML_MOCAP = r""" <mujoco> <worldbody> <body name="1" mocap="true"> </body> <body name="2" mocap="true"> </body> </worldbody> <sensor> <framepos objtype="xbody" objname="1"/> <framequat objtype="xbody" objname="2"/> </sensor> </mujoco> """ TEST_XML_EMPTY = r""" <mujoco> </mujoco> """ ALL_MODELS = {'TEST_XML': TEST_XML, 'TEST_XML_NO_SENSORS': TEST_XML_NO_SENSORS, 'TEST_XML_NO_ACTUATORS': TEST_XML_NO_ACTUATORS, 'TEST_XML_EMPTY': TEST_XML_EMPTY} #------------------------------- tests ----------------------------------------- class MuJoCoRolloutTest(parameterized.TestCase): def setUp(self): super().setUp() np.random.seed(42) #----------------------------- test basic operation @parameterized.parameters(ALL_MODELS.keys()) def test_single_step(self, model_name): model = mujoco.MjModel.from_xml_string(ALL_MODELS[model_name]) data = mujoco.MjData(model) initial_state = np.random.randn(model.nq + model.nv + model.na) ctrl = np.random.randn(model.nu) state, sensordata = rollout.rollout(model, data, initial_state, ctrl) mujoco.mj_resetData(model, data) py_state, py_sensordata = step(model, data, initial_state, ctrl=ctrl) np.testing.assert_array_equal(state, py_state) np.testing.assert_array_equal(sensordata, py_sensordata) @parameterized.parameters(ALL_MODELS.keys()) def test_single_rollout(self, model_name): nstep = 3 # number of timesteps model = mujoco.MjModel.from_xml_string(ALL_MODELS[model_name]) data = mujoco.MjData(model) initial_state = np.random.randn(model.nq + model.nv + model.na) ctrl = np.random.randn(nstep, model.nu) state, sensordata = rollout.rollout(model, data, initial_state, ctrl) py_state, py_sensordata = single_rollout(model, data, initial_state, ctrl=ctrl) np.testing.assert_array_equal(state, np.asarray(py_state)) np.testing.assert_array_equal(sensordata, np.asarray(py_sensordata)) @parameterized.parameters(ALL_MODELS.keys()) def test_multi_step(self, model_name): model = mujoco.MjModel.from_xml_string(ALL_MODELS[model_name]) data = mujoco.MjData(model) nstate = 5 # number of initial states initial_state =
np.random.randn(nstate, model.nq + model.nv + model.na)
numpy.random.randn
from __future__ import absolute_import from __future__ import division from __future__ import print_function import networkx as networkx import numpy as numpy import scipy as scipy import scipy.integrate class SEIRSModel(): """ A class to simulate the Deterministic SEIRS Model =================================================== Params: beta Rate of transmission (exposure) sigma Rate of infection (upon exposure) gamma Rate of recovery (upon infection) xi Rate of re-susceptibility (upon recovery) mu_I Rate of infection-related death mu_0 Rate of baseline death nu Rate of baseline birth beta_D Rate of transmission (exposure) for individuals with detected infections sigma_D Rate of infection (upon exposure) for individuals with detected infections gamma_D Rate of recovery (upon infection) for individuals with detected infections mu_D Rate of infection-related death for individuals with detected infections theta_E Rate of baseline testing for exposed individuals theta_I Rate of baseline testing for infectious individuals psi_E Probability of positive test results for exposed individuals psi_I Probability of positive test results for exposed individuals q Probability of quarantined individuals interacting with others initE Init number of exposed individuals initI Init number of infectious individuals initD_E Init number of detected infectious individuals initD_I Init number of detected infectious individuals initR Init number of recovered individuals initF Init number of infection-related fatalities (all remaining nodes initialized susceptible) """ def __init__(self, initN, beta, sigma, gamma, xi=0, mu_I=0, mu_0=0, nu=0, p=0, beta_D=None, sigma_D=None, gamma_D=None, mu_D=None, theta_E=0, theta_I=0, psi_E=0, psi_I=0, q=0, initE=0, initI=10, initD_E=0, initD_I=0, initR=0, initF=0): #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Model Parameters: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.beta = beta self.sigma = sigma self.gamma = gamma self.xi = xi self.mu_I = mu_I self.mu_0 = mu_0 self.nu = nu self.p = p # Testing-related parameters: self.beta_D = beta_D if beta_D is not None else self.beta self.sigma_D = sigma_D if sigma_D is not None else self.sigma self.gamma_D = gamma_D if gamma_D is not None else self.gamma self.mu_D = mu_D if mu_D is not None else self.mu_I self.theta_E = theta_E if theta_E is not None else self.theta_E self.theta_I = theta_I if theta_I is not None else self.theta_I self.psi_E = psi_E if psi_E is not None else self.psi_E self.psi_I = psi_I if psi_I is not None else self.psi_I self.q = q if q is not None else self.q #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize Timekeeping: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.t = 0 self.tmax = 0 # will be set when run() is called self.tseries = numpy.array([0]) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize Counts of inidividuals with each state: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.N = numpy.array([int(initN)]) self.numE = numpy.array([int(initE)]) self.numI = numpy.array([int(initI)]) self.numD_E = numpy.array([int(initD_E)]) self.numD_I = numpy.array([int(initD_I)]) self.numR = numpy.array([int(initR)]) self.numF = numpy.array([int(initF)]) self.numS = numpy.array([self.N[-1] - self.numE[-1] - self.numI[-1] - self.numD_E[-1] - self.numD_I[-1] - self.numR[-1] - self.numF[-1]]) assert(self.numS[0] >= 0), "The specified initial population size N must be greater than or equal to the initial compartment counts." #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ @staticmethod def system_dfes(t, variables, beta, sigma, gamma, xi, mu_I, mu_0, nu, beta_D, sigma_D, gamma_D, mu_D, theta_E, theta_I, psi_E, psi_I, q): S, E, I, D_E, D_I, R, F = variables # varibles is a list with compartment counts as elements N = S + E + I + D_E + D_I + R dS = - (beta*S*I)/N - q*(beta_D*S*D_I)/N + xi*R + nu*N - mu_0*S dE = (beta*S*I)/N + q*(beta_D*S*D_I)/N - sigma*E - theta_E*psi_E*E - mu_0*E dI = sigma*E - gamma*I - mu_I*I - theta_I*psi_I*I - mu_0*I dDE = theta_E*psi_E*E - sigma_D*D_E - mu_0*D_E dDI = theta_I*psi_I*I + sigma_D*D_E - gamma_D*D_I - mu_D*D_I - mu_0*D_I dR = gamma*I + gamma_D*D_I - xi*R - mu_0*R dF = mu_I*I + mu_D*D_I return [dS, dE, dI, dDE, dDI, dR, dF] #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def run_epoch(self, runtime, dt=0.1): #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Create a list of times at which the ODE solver should output system values. # Append this list of times as the model's timeseries t_eval = numpy.arange(start=self.t, stop=self.t+runtime, step=dt) # Define the range of time values for the integration: t_span = (self.t, self.t+runtime) # Define the initial conditions as the system's current state: # (which will be the t=0 condition if this is the first run of this model, # else where the last sim left off) init_cond = [self.numS[-1], self.numE[-1], self.numI[-1], self.numD_E[-1], self.numD_I[-1], self.numR[-1], self.numF[-1]] #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Solve the system of differential eqns: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ solution = scipy.integrate.solve_ivp(lambda t, X: SEIRSModel.system_dfes(t, X, self.beta, self.sigma, self.gamma, self.xi, self.mu_I, self.mu_0, self.nu, self.beta_D, self.sigma_D, self.gamma_D, self.mu_D, self.theta_E, self.theta_I, self.psi_E, self.psi_I, self.q ), t_span=[self.t, self.tmax], y0=init_cond, t_eval=t_eval ) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Store the solution output as the model's time series and data series: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.tseries = numpy.append(self.tseries, solution['t']) self.numS = numpy.append(self.numS, solution['y'][0]) self.numE = numpy.append(self.numE, solution['y'][1]) self.numI = numpy.append(self.numI, solution['y'][2]) self.numD_E = numpy.append(self.numD_E, solution['y'][3]) self.numD_I = numpy.append(self.numD_I, solution['y'][4]) self.numR = numpy.append(self.numR, solution['y'][5]) self.numF = numpy.append(self.numF, solution['y'][6]) self.t = self.tseries[-1] #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def run(self, T, dt=0.1, checkpoints=None, verbose=False): if(T>0): self.tmax += T else: return False #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Pre-process checkpoint values: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(checkpoints): numCheckpoints = len(checkpoints['t']) paramNames = ['beta', 'sigma', 'gamma', 'xi', 'mu_I', 'mu_0', 'nu', 'beta_D', 'sigma_D', 'gamma_D', 'mu_D', 'theta_E', 'theta_I', 'psi_E', 'psi_I', 'q'] for param in paramNames: # For params that don't have given checkpoint values (or bad value given), # set their checkpoint values to the value they have now for all checkpoints. if(param not in list(checkpoints.keys()) or not isinstance(checkpoints[param], (list, numpy.ndarray)) or len(checkpoints[param])!=numCheckpoints): checkpoints[param] = [getattr(self, param)]*numCheckpoints #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Run the simulation loop: #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if(not checkpoints): self.run_epoch(runtime=self.tmax, dt=dt) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ print("t = %.2f" % self.t) if(verbose): print("\t S = " + str(self.numS[-1])) print("\t E = " + str(self.numE[-1])) print("\t I = " + str(self.numI[-1])) print("\t D_E = " + str(self.numD_E[-1])) print("\t D_I = " + str(self.numD_I[-1])) print("\t R = " + str(self.numR[-1])) print("\t F = " + str(self.numF[-1])) else: # checkpoints provided for checkpointIdx, checkpointTime in enumerate(checkpoints['t']): # Run the sim until the next checkpoint time: self.run_epoch(runtime=checkpointTime-self.t, dt=dt) # Having reached the checkpoint, update applicable parameters: print("[Checkpoint: Updating parameters]") for param in paramNames: setattr(self, param, checkpoints[param][checkpointIdx]) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ print("t = %.2f" % self.t) if(verbose): print("\t S = " + str(self.numS[-1])) print("\t E = " + str(self.numE[-1])) print("\t I = " + str(self.numI[-1])) print("\t D_E = " + str(self.numD_E[-1])) print("\t D_I = " + str(self.numD_I[-1])) print("\t R = " + str(self.numR[-1])) print("\t F = " + str(self.numF[-1])) if(self.t < self.tmax): self.run_epoch(runtime=self.tmax-self.t, dt=dt) return True #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def total_num_infections(self, t_idx=None): if(t_idx is None): return (self.numE[:] + self.numI[:] + self.numD_E[:] + self.numD_I[:]) else: return (self.numE[t_idx] + self.numI[t_idx] + self.numD_E[t_idx] + self.numD_I[t_idx]) #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def plot(self, ax=None, plot_S='line', plot_E='line', plot_I='line',plot_R='line', plot_F='line', plot_D_E='line', plot_D_I='line', combine_D=True, color_S='tab:green', color_E='orange', color_I='crimson', color_R='tab:blue', color_F='black', color_D_E='mediumorchid', color_D_I='mediumorchid', color_reference='#E0E0E0', dashed_reference_results=None, dashed_reference_label='reference', shaded_reference_results=None, shaded_reference_label='reference', vlines=[], vline_colors=[], vline_styles=[], vline_labels=[], ylim=None, xlim=None, legend=True, title=None, side_title=None, plot_percentages=True): import matplotlib.pyplot as pyplot #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Create an Axes object if None provided: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(not ax): fig, ax = pyplot.subplots() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Prepare data series to be plotted: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Fseries = self.numF/self.N if plot_percentages else self.numF Eseries = self.numE/self.N if plot_percentages else self.numE Dseries = (self.numD_E+self.numD_I)/self.N if plot_percentages else (self.numD_E+self.numD_I) D_Eseries = self.numD_E/self.N if plot_percentages else self.numD_E D_Iseries = self.numD_I/self.N if plot_percentages else self.numD_I Iseries = self.numI/self.N if plot_percentages else self.numI Rseries = self.numR/self.N if plot_percentages else self.numR Sseries = self.numS/self.N if plot_percentages else self.numS #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the reference data: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(dashed_reference_results): dashedReference_tseries = dashed_reference_results.tseries[::int(self.N/100)] dashedReference_IDEstack = (dashed_reference_results.numI + dashed_reference_results.numD_I + dashed_reference_results.numD_E + dashed_reference_results.numE)[::int(self.N/100)] / (self.N if plot_percentages else 1) ax.plot(dashedReference_tseries, dashedReference_IDEstack, color='#E0E0E0', linestyle='--', label='$I+D+E$ ('+dashed_reference_label+')', zorder=0) if(shaded_reference_results): shadedReference_tseries = shaded_reference_results.tseries shadedReference_IDEstack = (shaded_reference_results.numI + shaded_reference_results.numD_I + shaded_reference_results.numD_E + shaded_reference_results.numE) / (self.N if plot_percentages else 1) ax.fill_between(shaded_reference_results.tseries, shadedReference_IDEstack, 0, color='#EFEFEF', label='$I+D+E$ ('+shaded_reference_label+')', zorder=0) ax.plot(shaded_reference_results.tseries, shadedReference_IDEstack, color='#E0E0E0', zorder=1) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the stacked variables: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ topstack = numpy.zeros_like(self.tseries) if(any(Fseries) and plot_F=='stacked'): ax.fill_between(numpy.ma.masked_where(Fseries<=0, self.tseries), numpy.ma.masked_where(Fseries<=0, topstack+Fseries), topstack, color=color_F, alpha=0.5, label='$F$', zorder=2) ax.plot( numpy.ma.masked_where(Fseries<=0, self.tseries), numpy.ma.masked_where(Fseries<=0, topstack+Fseries), color=color_F, zorder=3) topstack = topstack+Fseries if(any(Eseries) and plot_E=='stacked'): ax.fill_between(numpy.ma.masked_where(Eseries<=0, self.tseries), numpy.ma.masked_where(Eseries<=0, topstack+Eseries), topstack, color=color_E, alpha=0.5, label='$E$', zorder=2) ax.plot( numpy.ma.masked_where(Eseries<=0, self.tseries), numpy.ma.masked_where(Eseries<=0, topstack+Eseries), color=color_E, zorder=3) topstack = topstack+Eseries if(combine_D and plot_D_E=='stacked' and plot_D_I=='stacked'): ax.fill_between(numpy.ma.masked_where(Dseries<=0, self.tseries), numpy.ma.masked_where(Dseries<=0, topstack+Dseries), topstack, color=color_D_E, alpha=0.5, label='$D_{all}$', zorder=2) ax.plot( numpy.ma.masked_where(Dseries<=0, self.tseries), numpy.ma.masked_where(Dseries<=0, topstack+Dseries), color=color_D_E, zorder=3) topstack = topstack+Dseries else: if(any(D_Eseries) and plot_D_E=='stacked'): ax.fill_between(numpy.ma.masked_where(D_Eseries<=0, self.tseries), numpy.ma.masked_where(D_Eseries<=0, topstack+D_Eseries), topstack, color=color_D_E, alpha=0.5, label='$D_E$', zorder=2) ax.plot( numpy.ma.masked_where(D_Eseries<=0, self.tseries), numpy.ma.masked_where(D_Eseries<=0, topstack+D_Eseries), color=color_D_E, zorder=3) topstack = topstack+D_Eseries if(any(D_Iseries) and plot_D_I=='stacked'): ax.fill_between(numpy.ma.masked_where(D_Iseries<=0, self.tseries), numpy.ma.masked_where(D_Iseries<=0, topstack+D_Iseries), topstack, color=color_D_I, alpha=0.5, label='$D_I$', zorder=2) ax.plot( numpy.ma.masked_where(D_Iseries<=0, self.tseries), numpy.ma.masked_where(D_Iseries<=0, topstack+D_Iseries), color=color_D_I, zorder=3) topstack = topstack+D_Iseries if(any(Iseries) and plot_I=='stacked'): ax.fill_between(numpy.ma.masked_where(Iseries<=0, self.tseries), numpy.ma.masked_where(Iseries<=0, topstack+Iseries), topstack, color=color_I, alpha=0.5, label='$I$', zorder=2) ax.plot( numpy.ma.masked_where(Iseries<=0, self.tseries), numpy.ma.masked_where(Iseries<=0, topstack+Iseries), color=color_I, zorder=3) topstack = topstack+Iseries if(any(Rseries) and plot_R=='stacked'): ax.fill_between(numpy.ma.masked_where(Rseries<=0, self.tseries), numpy.ma.masked_where(Rseries<=0, topstack+Rseries), topstack, color=color_R, alpha=0.5, label='$R$', zorder=2) ax.plot( numpy.ma.masked_where(Rseries<=0, self.tseries), numpy.ma.masked_where(Rseries<=0, topstack+Rseries), color=color_R, zorder=3) topstack = topstack+Rseries if(any(Sseries) and plot_S=='stacked'): ax.fill_between(numpy.ma.masked_where(Sseries<=0, self.tseries), numpy.ma.masked_where(Sseries<=0, topstack+Sseries), topstack, color=color_S, alpha=0.5, label='$S$', zorder=2) ax.plot( numpy.ma.masked_where(Sseries<=0, self.tseries), numpy.ma.masked_where(Sseries<=0, topstack+Sseries), color=color_S, zorder=3) topstack = topstack+Sseries #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the shaded variables: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(any(Fseries) and plot_F=='shaded'): ax.fill_between(numpy.ma.masked_where(Fseries<=0, self.tseries), numpy.ma.masked_where(Fseries<=0, Fseries), 0, color=color_F, alpha=0.5, label='$F$', zorder=4) ax.plot( numpy.ma.masked_where(Fseries<=0, self.tseries), numpy.ma.masked_where(Fseries<=0, Fseries), color=color_F, zorder=5) if(any(Eseries) and plot_E=='shaded'): ax.fill_between(numpy.ma.masked_where(Eseries<=0, self.tseries), numpy.ma.masked_where(Eseries<=0, Eseries), 0, color=color_E, alpha=0.5, label='$E$', zorder=4) ax.plot( numpy.ma.masked_where(Eseries<=0, self.tseries), numpy.ma.masked_where(Eseries<=0, Eseries), color=color_E, zorder=5) if(combine_D and (any(Dseries) and plot_D_E=='shaded' and plot_D_E=='shaded')): ax.fill_between(numpy.ma.masked_where(Dseries<=0, self.tseries), numpy.ma.masked_where(Dseries<=0, Dseries), 0, color=color_D_E, alpha=0.5, label='$D_{all}$', zorder=4) ax.plot( numpy.ma.masked_where(Dseries<=0, self.tseries), numpy.ma.masked_where(Dseries<=0, Dseries), color=color_D_E, zorder=5) else: if(any(D_Eseries) and plot_D_E=='shaded'): ax.fill_between(numpy.ma.masked_where(D_Eseries<=0, self.tseries), numpy.ma.masked_where(D_Eseries<=0, D_Eseries), 0, color=color_D_E, alpha=0.5, label='$D_E$', zorder=4) ax.plot( numpy.ma.masked_where(D_Eseries<=0, self.tseries), numpy.ma.masked_where(D_Eseries<=0, D_Eseries), color=color_D_E, zorder=5) if(any(D_Iseries) and plot_D_I=='shaded'): ax.fill_between(numpy.ma.masked_where(D_Iseries<=0, self.tseries), numpy.ma.masked_where(D_Iseries<=0, D_Iseries), 0, color=color_D_I, alpha=0.5, label='$D_I$', zorder=4) ax.plot( numpy.ma.masked_where(D_Iseries<=0, self.tseries), numpy.ma.masked_where(D_Iseries<=0, D_Iseries), color=color_D_I, zorder=5) if(any(Iseries) and plot_I=='shaded'): ax.fill_between(numpy.ma.masked_where(Iseries<=0, self.tseries), numpy.ma.masked_where(Iseries<=0, Iseries), 0, color=color_I, alpha=0.5, label='$I$', zorder=4) ax.plot( numpy.ma.masked_where(Iseries<=0, self.tseries), numpy.ma.masked_where(Iseries<=0, Iseries), color=color_I, zorder=5) if(any(Sseries) and plot_S=='shaded'): ax.fill_between(numpy.ma.masked_where(Sseries<=0, self.tseries), numpy.ma.masked_where(Sseries<=0, Sseries), 0, color=color_S, alpha=0.5, label='$S$', zorder=4) ax.plot( numpy.ma.masked_where(Sseries<=0, self.tseries), numpy.ma.masked_where(Sseries<=0, Sseries), color=color_S, zorder=5) if(any(Rseries) and plot_R=='shaded'): ax.fill_between(numpy.ma.masked_where(Rseries<=0, self.tseries), numpy.ma.masked_where(Rseries<=0, Rseries), 0, color=color_R, alpha=0.5, label='$R$', zorder=4) ax.plot( numpy.ma.masked_where(Rseries<=0, self.tseries), numpy.ma.masked_where(Rseries<=0, Rseries), color=color_R, zorder=5) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the line variables: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(any(Fseries) and plot_F=='line'): ax.plot(numpy.ma.masked_where(Fseries<=0, self.tseries), numpy.ma.masked_where(Fseries<=0, Fseries), color=color_F, label='$F$', zorder=6) if(any(Eseries) and plot_E=='line'): ax.plot(numpy.ma.masked_where(Eseries<=0, self.tseries), numpy.ma.masked_where(Eseries<=0, Eseries), color=color_E, label='$E$', zorder=6) if(combine_D and (any(Dseries) and plot_D_E=='line' and plot_D_E=='line')): ax.plot(numpy.ma.masked_where(Dseries<=0, self.tseries), numpy.ma.masked_where(Dseries<=0, Dseries), color=color_D_E, label='$D_{all}$', zorder=6) else: if(any(D_Eseries) and plot_D_E=='line'): ax.plot(numpy.ma.masked_where(D_Eseries<=0, self.tseries), numpy.ma.masked_where(D_Eseries<=0, D_Eseries), color=color_D_E, label='$D_E$', zorder=6) if(any(D_Iseries) and plot_D_I=='line'): ax.plot(numpy.ma.masked_where(D_Iseries<=0, self.tseries), numpy.ma.masked_where(D_Iseries<=0, D_Iseries), color=color_D_I, label='$D_I$', zorder=6) if(any(Iseries) and plot_I=='line'): ax.plot(numpy.ma.masked_where(Iseries<=0, self.tseries), numpy.ma.masked_where(Iseries<=0, Iseries), color=color_I, label='$I$', zorder=6) if(any(Sseries) and plot_S=='line'): ax.plot(numpy.ma.masked_where(Sseries<=0, self.tseries), numpy.ma.masked_where(Sseries<=0, Sseries), color=color_S, label='$S$', zorder=6) if(any(Rseries) and plot_R=='line'): ax.plot(numpy.ma.masked_where(Rseries<=0, self.tseries), numpy.ma.masked_where(Rseries<=0, Rseries), color=color_R, label='$R$', zorder=6) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the vertical line annotations: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(len(vlines)>0 and len(vline_colors)==0): vline_colors = ['gray']*len(vlines) if(len(vlines)>0 and len(vline_labels)==0): vline_labels = [None]*len(vlines) if(len(vlines)>0 and len(vline_styles)==0): vline_styles = [':']*len(vlines) for vline_x, vline_color, vline_style, vline_label in zip(vlines, vline_colors, vline_styles, vline_labels): if(vline_x is not None): ax.axvline(x=vline_x, color=vline_color, linestyle=vline_style, alpha=1, label=vline_label) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the plot labels: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ax.set_xlabel('days') ax.set_ylabel('percent of population' if plot_percentages else 'number of individuals') ax.set_xlim(0, (max(self.tseries) if not xlim else xlim)) ax.set_ylim(0, ylim) if(plot_percentages): ax.set_yticklabels(['{:,.0%}'.format(y) for y in ax.get_yticks()]) if(legend): legend_handles, legend_labels = ax.get_legend_handles_labels() ax.legend(legend_handles[::-1], legend_labels[::-1], loc='upper right', facecolor='white', edgecolor='none', framealpha=0.9, prop={'size': 8}) if(title): ax.set_title(title, size=12) if(side_title): ax.annotate(side_title, (0, 0.5), xytext=(-45, 0), ha='right', va='center', size=12, rotation=90, xycoords='axes fraction', textcoords='offset points') return ax #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def figure_basic(self, plot_S='line', plot_E='line', plot_I='line',plot_R='line', plot_F='line', plot_D_E='line', plot_D_I='line', combine_D=True, color_S='tab:green', color_E='orange', color_I='crimson', color_R='tab:blue', color_F='black', color_D_E='mediumorchid', color_D_I='mediumorchid', color_reference='#E0E0E0', dashed_reference_results=None, dashed_reference_label='reference', shaded_reference_results=None, shaded_reference_label='reference', vlines=[], vline_colors=[], vline_styles=[], vline_labels=[], ylim=None, xlim=None, legend=True, title=None, side_title=None, plot_percentages=True, figsize=(12,8), use_seaborn=True, show=True): import matplotlib.pyplot as pyplot fig, ax = pyplot.subplots(figsize=figsize) if(use_seaborn): import seaborn seaborn.set_style('ticks') seaborn.despine() self.plot(ax=ax, plot_S=plot_S, plot_E=plot_E, plot_I=plot_I,plot_R=plot_R, plot_F=plot_F, plot_D_E=plot_D_E, plot_D_I=plot_D_I, combine_D=combine_D, color_S=color_S, color_E=color_E, color_I=color_I, color_R=color_R, color_F=color_F, color_D_E=color_D_E, color_D_I=color_D_I, color_reference=color_reference, dashed_reference_results=dashed_reference_results, dashed_reference_label=dashed_reference_label, shaded_reference_results=shaded_reference_results, shaded_reference_label=shaded_reference_label, vlines=vlines, vline_colors=vline_colors, vline_styles=vline_styles, vline_labels=vline_labels, ylim=ylim, xlim=xlim, legend=legend, title=title, side_title=side_title, plot_percentages=plot_percentages) if(show): pyplot.show() return fig, ax #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def figure_infections(self, plot_S=False, plot_E='stacked', plot_I='stacked',plot_R=False, plot_F=False, plot_D_E='stacked', plot_D_I='stacked', combine_D=True, color_S='tab:green', color_E='orange', color_I='crimson', color_R='tab:blue', color_F='black', color_D_E='mediumorchid', color_D_I='mediumorchid', color_reference='#E0E0E0', dashed_reference_results=None, dashed_reference_label='reference', shaded_reference_results=None, shaded_reference_label='reference', vlines=[], vline_colors=[], vline_styles=[], vline_labels=[], ylim=None, xlim=None, legend=True, title=None, side_title=None, plot_percentages=True, figsize=(12,8), use_seaborn=True, show=True): import matplotlib.pyplot as pyplot fig, ax = pyplot.subplots(figsize=figsize) if(use_seaborn): import seaborn seaborn.set_style('ticks') seaborn.despine() self.plot(ax=ax, plot_S=plot_S, plot_E=plot_E, plot_I=plot_I,plot_R=plot_R, plot_F=plot_F, plot_D_E=plot_D_E, plot_D_I=plot_D_I, combine_D=combine_D, color_S=color_S, color_E=color_E, color_I=color_I, color_R=color_R, color_F=color_F, color_D_E=color_D_E, color_D_I=color_D_I, color_reference=color_reference, dashed_reference_results=dashed_reference_results, dashed_reference_label=dashed_reference_label, shaded_reference_results=shaded_reference_results, shaded_reference_label=shaded_reference_label, vlines=vlines, vline_colors=vline_colors, vline_styles=vline_styles, vline_labels=vline_labels, ylim=ylim, xlim=xlim, legend=legend, title=title, side_title=side_title, plot_percentages=plot_percentages) if(show): pyplot.show() return fig, ax #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% class SEIRSNetworkModel(): """ A class to simulate the SEIRS Stochastic Network Model =================================================== Params: G Network adjacency matrix (numpy array) or Networkx graph object. beta Rate of transmission (exposure) (global) beta_local Rate(s) of transmission (exposure) for adjacent individuals (optional) sigma Rate of infection (upon exposure) gamma Rate of recovery (upon infection) xi Rate of re-susceptibility (upon recovery) mu_I Rate of infection-related death mu_0 Rate of baseline death nu Rate of baseline birth p Probability of interaction outside adjacent nodes Q Quarantine adjacency matrix (numpy array) or Networkx graph object. beta_D Rate of transmission (exposure) for individuals with detected infections (global) beta_local Rate(s) of transmission (exposure) for adjacent individuals with detected infections (optional) sigma_D Rate of infection (upon exposure) for individuals with detected infections gamma_D Rate of recovery (upon infection) for individuals with detected infections mu_D Rate of infection-related death for individuals with detected infections theta_E Rate of baseline testing for exposed individuals theta_I Rate of baseline testing for infectious individuals phi_E Rate of contact tracing testing for exposed individuals phi_I Rate of contact tracing testing for infectious individuals psi_E Probability of positive test results for exposed individuals psi_I Probability of positive test results for exposed individuals q Probability of quarantined individuals interaction outside adjacent nodes initE Init number of exposed individuals initI Init number of infectious individuals initD_E Init number of detected infectious individuals initD_I Init number of detected infectious individuals initR Init number of recovered individuals initF Init number of infection-related fatalities (all remaining nodes initialized susceptible) """ def __init__(self, G, beta, sigma, gamma, xi=0, mu_I=0, mu_0=0, nu=0, beta_local=None, p=0, Q=None, beta_D=None, sigma_D=None, gamma_D=None, mu_D=None, beta_D_local=None, theta_E=0, theta_I=0, phi_E=0, phi_I=0, psi_E=1, psi_I=1, q=0, initE=0, initI=10, initD_E=0, initD_I=0, initR=0, initF=0, node_groups=None, store_Xseries=False): #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Setup Adjacency matrix: self.update_G(G) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Setup Quarantine Adjacency matrix: if(Q is None): Q = G # If no Q graph is provided, use G in its place self.update_Q(Q) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Model Parameters: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.parameters = { 'beta':beta, 'sigma':sigma, 'gamma':gamma, 'xi':xi, 'mu_I':mu_I, 'mu_0':mu_0, 'nu':nu, 'beta_D':beta_D, 'sigma_D':sigma_D, 'gamma_D':gamma_D, 'mu_D':mu_D, 'beta_local':beta_local, 'beta_D_local':beta_D_local, 'p':p,'q':q, 'theta_E':theta_E, 'theta_I':theta_I, 'phi_E':phi_E, 'phi_I':phi_I, 'psi_E':phi_E, 'psi_I':psi_I } self.update_parameters() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Each node can undergo up to 4 transitions (sans vitality/re-susceptibility returns to S state), # so there are ~numNodes*4 events/timesteps expected; initialize numNodes*5 timestep slots to start # (will be expanded during run if needed) self.tseries = numpy.zeros(5*self.numNodes) self.numE = numpy.zeros(5*self.numNodes) self.numI = numpy.zeros(5*self.numNodes) self.numD_E = numpy.zeros(5*self.numNodes) self.numD_I = numpy.zeros(5*self.numNodes) self.numR = numpy.zeros(5*self.numNodes) self.numF = numpy.zeros(5*self.numNodes) self.numS = numpy.zeros(5*self.numNodes) self.N = numpy.zeros(5*self.numNodes) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize Timekeeping: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.t = 0 self.tmax = 0 # will be set when run() is called self.tidx = 0 self.tseries[0] = 0 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize Counts of inidividuals with each state: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.numE[0] = int(initE) self.numI[0] = int(initI) self.numD_E[0] = int(initD_E) self.numD_I[0] = int(initD_I) self.numR[0] = int(initR) self.numF[0] = int(initF) self.numS[0] = self.numNodes - self.numE[0] - self.numI[0] - self.numD_E[0] - self.numD_I[0] - self.numR[0] - self.numF[0] self.N[0] = self.numS[0] + self.numE[0] + self.numI[0] + self.numD_E[0] + self.numD_I[0] + self.numR[0] #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Node states: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.S = 1 self.E = 2 self.I = 3 self.D_E = 4 self.D_I = 5 self.R = 6 self.F = 7 self.X = numpy.array([self.S]*int(self.numS[0]) + [self.E]*int(self.numE[0]) + [self.I]*int(self.numI[0]) + [self.D_E]*int(self.numD_E[0]) + [self.D_I]*int(self.numD_I[0]) + [self.R]*int(self.numR[0]) + [self.F]*int(self.numF[0])).reshape((self.numNodes,1)) numpy.random.shuffle(self.X) self.store_Xseries = store_Xseries if(store_Xseries): self.Xseries = numpy.zeros(shape=(5*self.numNodes, self.numNodes), dtype='uint8') self.Xseries[0,:] = self.X.T self.transitions = { 'StoE': {'currentState':self.S, 'newState':self.E}, 'EtoI': {'currentState':self.E, 'newState':self.I}, 'ItoR': {'currentState':self.I, 'newState':self.R}, 'ItoF': {'currentState':self.I, 'newState':self.F}, 'RtoS': {'currentState':self.R, 'newState':self.S}, 'EtoDE': {'currentState':self.E, 'newState':self.D_E}, 'ItoDI': {'currentState':self.I, 'newState':self.D_I}, 'DEtoDI': {'currentState':self.D_E, 'newState':self.D_I}, 'DItoR': {'currentState':self.D_I, 'newState':self.R}, 'DItoF': {'currentState':self.D_I, 'newState':self.F}, '_toS': {'currentState':True, 'newState':self.S}, } #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize node subgroup data series: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.nodeGroupData = None if(node_groups): self.nodeGroupData = {} for groupName, nodeList in node_groups.items(): self.nodeGroupData[groupName] = {'nodes': numpy.array(nodeList), 'mask': numpy.isin(range(self.numNodes), nodeList).reshape((self.numNodes,1))} self.nodeGroupData[groupName]['numS'] = numpy.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numE'] = numpy.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numI'] = numpy.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numD_E'] = numpy.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numD_I'] = numpy.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numR'] = numpy.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numF'] = numpy.zeros(5*self.numNodes) self.nodeGroupData[groupName]['N'] = numpy.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numS'][0] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.S) self.nodeGroupData[groupName]['numE'][0] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.E) self.nodeGroupData[groupName]['numI'][0] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.I) self.nodeGroupData[groupName]['numD_E'][0] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.D_E) self.nodeGroupData[groupName]['numD_I'][0] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.D_I) self.nodeGroupData[groupName]['numR'][0] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.R) self.nodeGroupData[groupName]['numF'][0] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.F) self.nodeGroupData[groupName]['N'][0] = self.nodeGroupData[groupName]['numS'][0] + self.nodeGroupData[groupName]['numE'][0] + self.nodeGroupData[groupName]['numI'][0] + self.nodeGroupData[groupName]['numD_E'][0] + self.nodeGroupData[groupName]['numD_I'][0] + self.nodeGroupData[groupName]['numR'][0] #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def update_parameters(self): import time updatestart = time.time() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Model parameters: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.beta = numpy.array(self.parameters['beta']).reshape((self.numNodes, 1)) if isinstance(self.parameters['beta'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['beta'], shape=(self.numNodes,1)) self.sigma = numpy.array(self.parameters['sigma']).reshape((self.numNodes, 1)) if isinstance(self.parameters['sigma'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['sigma'], shape=(self.numNodes,1)) self.gamma = numpy.array(self.parameters['gamma']).reshape((self.numNodes, 1)) if isinstance(self.parameters['gamma'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['gamma'], shape=(self.numNodes,1)) self.xi = numpy.array(self.parameters['xi']).reshape((self.numNodes, 1)) if isinstance(self.parameters['xi'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['xi'], shape=(self.numNodes,1)) self.mu_I = numpy.array(self.parameters['mu_I']).reshape((self.numNodes, 1)) if isinstance(self.parameters['mu_I'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['mu_I'], shape=(self.numNodes,1)) self.mu_0 = numpy.array(self.parameters['mu_0']).reshape((self.numNodes, 1)) if isinstance(self.parameters['mu_0'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['mu_0'], shape=(self.numNodes,1)) self.nu = numpy.array(self.parameters['nu']).reshape((self.numNodes, 1)) if isinstance(self.parameters['nu'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['nu'], shape=(self.numNodes,1)) self.p = numpy.array(self.parameters['p']).reshape((self.numNodes, 1)) if isinstance(self.parameters['p'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['p'], shape=(self.numNodes,1)) # Testing-related parameters: self.beta_D = (numpy.array(self.parameters['beta_D']).reshape((self.numNodes, 1)) if isinstance(self.parameters['beta_D'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['beta_D'], shape=(self.numNodes,1))) if self.parameters['beta_D'] is not None else self.beta self.sigma_D = (numpy.array(self.parameters['sigma_D']).reshape((self.numNodes, 1)) if isinstance(self.parameters['sigma_D'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['sigma_D'], shape=(self.numNodes,1))) if self.parameters['sigma_D'] is not None else self.sigma self.gamma_D = (numpy.array(self.parameters['gamma_D']).reshape((self.numNodes, 1)) if isinstance(self.parameters['gamma_D'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['gamma_D'], shape=(self.numNodes,1))) if self.parameters['gamma_D'] is not None else self.gamma self.mu_D = (numpy.array(self.parameters['mu_D']).reshape((self.numNodes, 1)) if isinstance(self.parameters['mu_D'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['mu_D'], shape=(self.numNodes,1))) if self.parameters['mu_D'] is not None else self.mu_I self.theta_E = numpy.array(self.parameters['theta_E']).reshape((self.numNodes, 1)) if isinstance(self.parameters['theta_E'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['theta_E'], shape=(self.numNodes,1)) self.theta_I = numpy.array(self.parameters['theta_I']).reshape((self.numNodes, 1)) if isinstance(self.parameters['theta_I'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['theta_I'], shape=(self.numNodes,1)) self.phi_E = numpy.array(self.parameters['phi_E']).reshape((self.numNodes, 1)) if isinstance(self.parameters['phi_E'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['phi_E'], shape=(self.numNodes,1)) self.phi_I = numpy.array(self.parameters['phi_I']).reshape((self.numNodes, 1)) if isinstance(self.parameters['phi_I'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['phi_I'], shape=(self.numNodes,1)) self.psi_E = numpy.array(self.parameters['psi_E']).reshape((self.numNodes, 1)) if isinstance(self.parameters['psi_E'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['psi_E'], shape=(self.numNodes,1)) self.psi_I = numpy.array(self.parameters['psi_I']).reshape((self.numNodes, 1)) if isinstance(self.parameters['psi_I'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['psi_I'], shape=(self.numNodes,1)) self.q = numpy.array(self.parameters['q']).reshape((self.numNodes, 1)) if isinstance(self.parameters['q'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['q'], shape=(self.numNodes,1)) #Local transmission parameters: if(self.parameters['beta_local'] is not None): if(isinstance(self.parameters['beta_local'], (list, numpy.ndarray))): if(isinstance(self.parameters['beta_local'], list)): self.beta_local = numpy.array(self.parameters['beta_local']) else: # is numpy.ndarray self.beta_local = self.parameters['beta_local'] if(self.beta_local.ndim == 1): self.beta_local.reshape((self.numNodes, 1)) elif(self.beta_local.ndim == 2): self.beta_local.reshape((self.numNodes, self.numNodes)) else: self.beta_local = numpy.full_like(self.beta, fill_value=self.parameters['beta_local']) else: self.beta_local = self.beta #---------------------------------------- if(self.parameters['beta_D_local'] is not None): if(isinstance(self.parameters['beta_D_local'], (list, numpy.ndarray))): if(isinstance(self.parameters['beta_D_local'], list)): self.beta_D_local = numpy.array(self.parameters['beta_D_local']) else: # is numpy.ndarray self.beta_D_local = self.parameters['beta_D_local'] if(self.beta_D_local.ndim == 1): self.beta_D_local.reshape((self.numNodes, 1)) elif(self.beta_D_local.ndim == 2): self.beta_D_local.reshape((self.numNodes, self.numNodes)) else: self.beta_D_local = numpy.full_like(self.beta_D, fill_value=self.parameters['beta_D_local']) else: self.beta_D_local = self.beta_D # Pre-multiply beta values by the adjacency matrix ("transmission weight connections") if(self.beta_local.ndim == 1): self.A_beta = scipy.sparse.csr_matrix.multiply(self.A, numpy.tile(self.beta_local, (1,self.numNodes))).tocsr() elif(self.beta_local.ndim == 2): self.A_beta = scipy.sparse.csr_matrix.multiply(self.A, self.beta_local).tocsr() # Pre-multiply beta_D values by the quarantine adjacency matrix ("transmission weight connections") if(self.beta_D_local.ndim == 1): self.A_Q_beta_D = scipy.sparse.csr_matrix.multiply(self.A_Q, numpy.tile(self.beta_D_local, (1,self.numNodes))).tocsr() elif(self.beta_D_local.ndim == 2): self.A_Q_beta_D = scipy.sparse.csr_matrix.multiply(self.A_Q, self.beta_D_local).tocsr() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Update scenario flags: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.update_scenario_flags() #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def node_degrees(self, Amat): return Amat.sum(axis=0).reshape(self.numNodes,1) # sums of adj matrix cols #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def update_G(self, new_G): self.G = new_G # Adjacency matrix: if type(new_G)==numpy.ndarray: self.A = scipy.sparse.csr_matrix(new_G) elif type(new_G)==networkx.classes.graph.Graph: self.A = networkx.adj_matrix(new_G) # adj_matrix gives scipy.sparse csr_matrix else: raise BaseException("Input an adjacency matrix or networkx object only.") self.numNodes = int(self.A.shape[1]) self.degree = numpy.asarray(self.node_degrees(self.A)).astype(float) return #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def update_Q(self, new_Q): self.Q = new_Q # Quarantine Adjacency matrix: if type(new_Q)==numpy.ndarray: self.A_Q = scipy.sparse.csr_matrix(new_Q) elif type(new_Q)==networkx.classes.graph.Graph: self.A_Q = networkx.adj_matrix(new_Q) # adj_matrix gives scipy.sparse csr_matrix else: raise BaseException("Input an adjacency matrix or networkx object only.") self.numNodes_Q = int(self.A_Q.shape[1]) self.degree_Q = numpy.asarray(self.node_degrees(self.A_Q)).astype(float) assert(self.numNodes == self.numNodes_Q), "The normal and quarantine adjacency graphs must be of the same size." return #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def update_scenario_flags(self): self.testing_scenario = ( (numpy.any(self.psi_I) and (numpy.any(self.theta_I) or numpy.any(self.phi_I))) or (numpy.any(self.psi_E) and (numpy.any(self.theta_E) or numpy.any(self.phi_E))) ) self.tracing_scenario = ( (numpy.any(self.psi_E) and numpy.any(self.phi_E)) or (numpy.any(self.psi_I) and numpy.any(self.phi_I)) ) self.vitality_scenario = (numpy.any(self.mu_0) and numpy.any(self.nu)) self.resusceptibility_scenario = (numpy.any(self.xi)) #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def total_num_infections(self, t_idx=None): if(t_idx is None): return (self.numE[:] + self.numI[:] + self.numD_E[:] + self.numD_I[:]) else: return (self.numE[t_idx] + self.numI[t_idx] + self.numD_E[t_idx] + self.numD_I[t_idx]) #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def calc_propensities(self): #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Pre-calculate matrix multiplication terms that may be used in multiple propensity calculations, # and check to see if their computation is necessary before doing the multiplication transmissionTerms_I = numpy.zeros(shape=(self.numNodes,1)) if(numpy.any(self.numI[self.tidx]) and numpy.any(self.beta!=0)): transmissionTerms_I = numpy.asarray( scipy.sparse.csr_matrix.dot(self.A_beta, self.X==self.I) ) transmissionTerms_DI = numpy.zeros(shape=(self.numNodes,1)) if(self.testing_scenario and numpy.any(self.numD_I[self.tidx]) and numpy.any(self.beta_D)): transmissionTerms_DI = numpy.asarray( scipy.sparse.csr_matrix.dot(self.A_Q_beta_D, self.X==self.D_I) ) numContacts_D = numpy.zeros(shape=(self.numNodes,1)) if(self.tracing_scenario and (numpy.any(self.numD_E[self.tidx]) or numpy.any(self.numD_I[self.tidx]))): numContacts_D = numpy.asarray( scipy.sparse.csr_matrix.dot( self.A, ((self.X==self.D_E)|(self.X==self.D_I)) ) ) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ propensities_StoE = ( self.p*((self.beta*self.numI[self.tidx] + self.q*self.beta_D*self.numD_I[self.tidx])/self.N[self.tidx]) + (1-self.p)*numpy.divide((transmissionTerms_I + transmissionTerms_DI), self.degree, out=numpy.zeros_like(self.degree), where=self.degree!=0) )*(self.X==self.S) propensities_EtoI = self.sigma*(self.X==self.E) propensities_ItoR = self.gamma*(self.X==self.I) propensities_ItoF = self.mu_I*(self.X==self.I) # propensities_EtoDE = ( self.theta_E + numpy.divide((self.phi_E*numContacts_D), self.degree, out=numpy.zeros_like(self.degree), where=self.degree!=0) )*self.psi_E*(self.X==self.E) propensities_EtoDE = (self.theta_E + self.phi_E*numContacts_D)*self.psi_E*(self.X==self.E) # propensities_ItoDI = ( self.theta_I + numpy.divide((self.phi_I*numContacts_D), self.degree, out=numpy.zeros_like(self.degree), where=self.degree!=0) )*self.psi_I*(self.X==self.I) propensities_ItoDI = (self.theta_I + self.phi_I*numContacts_D)*self.psi_I*(self.X==self.I) propensities_DEtoDI = self.sigma_D*(self.X==self.D_E) propensities_DItoR = self.gamma_D*(self.X==self.D_I) propensities_DItoF = self.mu_D*(self.X==self.D_I) propensities_RtoS = self.xi*(self.X==self.R) propensities__toS = self.nu*(self.X!=self.F) propensities = numpy.hstack([propensities_StoE, propensities_EtoI, propensities_ItoR, propensities_ItoF, propensities_EtoDE, propensities_ItoDI, propensities_DEtoDI, propensities_DItoR, propensities_DItoF, propensities_RtoS, propensities__toS]) columns = ['StoE', 'EtoI', 'ItoR', 'ItoF', 'EtoDE', 'ItoDI', 'DEtoDI', 'DItoR', 'DItoF', 'RtoS', '_toS'] return propensities, columns #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def increase_data_series_length(self): self.tseries= numpy.pad(self.tseries, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.numS = numpy.pad(self.numS, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.numE = numpy.pad(self.numE, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.numI = numpy.pad(self.numI, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.numD_E = numpy.pad(self.numD_E, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.numD_I = numpy.pad(self.numD_I, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.numR = numpy.pad(self.numR, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.numF = numpy.pad(self.numF, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.N = numpy.pad(self.N, [(0, 5*self.numNodes)], mode='constant', constant_values=0) if(self.store_Xseries): self.Xseries = numpy.pad(self.Xseries, [(0, 5*self.numNodes), (0,0)], mode=constant, constant_values=0) if(self.nodeGroupData): for groupName in self.nodeGroupData: self.nodeGroupData[groupName]['numS'] = numpy.pad(self.nodeGroupData[groupName]['numS'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.nodeGroupData[groupName]['numE'] = numpy.pad(self.nodeGroupData[groupName]['numE'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.nodeGroupData[groupName]['numI'] = numpy.pad(self.nodeGroupData[groupName]['numI'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.nodeGroupData[groupName]['numD_E'] = numpy.pad(self.nodeGroupData[groupName]['numD_E'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.nodeGroupData[groupName]['numD_I'] = numpy.pad(self.nodeGroupData[groupName]['numD_I'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.nodeGroupData[groupName]['numR'] = numpy.pad(self.nodeGroupData[groupName]['numR'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.nodeGroupData[groupName]['numF'] = numpy.pad(self.nodeGroupData[groupName]['numF'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.nodeGroupData[groupName]['N'] = numpy.pad(self.nodeGroupData[groupName]['N'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) return None #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def finalize_data_series(self): self.tseries= numpy.array(self.tseries, dtype=float)[:self.tidx+1] self.numS = numpy.array(self.numS, dtype=float)[:self.tidx+1] self.numE = numpy.array(self.numE, dtype=float)[:self.tidx+1] self.numI = numpy.array(self.numI, dtype=float)[:self.tidx+1] self.numD_E = numpy.array(self.numD_E, dtype=float)[:self.tidx+1] self.numD_I = numpy.array(self.numD_I, dtype=float)[:self.tidx+1] self.numR = numpy.array(self.numR, dtype=float)[:self.tidx+1] self.numF = numpy.array(self.numF, dtype=float)[:self.tidx+1] self.N = numpy.array(self.N, dtype=float)[:self.tidx+1] if(self.store_Xseries): self.Xseries = self.Xseries[:self.tidx+1, :] if(self.nodeGroupData): for groupName in self.nodeGroupData: self.nodeGroupData[groupName]['numS'] = numpy.array(self.nodeGroupData[groupName]['numS'], dtype=float)[:self.tidx+1] self.nodeGroupData[groupName]['numE'] = numpy.array(self.nodeGroupData[groupName]['numE'], dtype=float)[:self.tidx+1] self.nodeGroupData[groupName]['numI'] = numpy.array(self.nodeGroupData[groupName]['numI'], dtype=float)[:self.tidx+1] self.nodeGroupData[groupName]['numD_E'] = numpy.array(self.nodeGroupData[groupName]['numD_E'], dtype=float)[:self.tidx+1] self.nodeGroupData[groupName]['numD_I'] = numpy.array(self.nodeGroupData[groupName]['numD_I'], dtype=float)[:self.tidx+1] self.nodeGroupData[groupName]['numR'] = numpy.array(self.nodeGroupData[groupName]['numR'], dtype=float)[:self.tidx+1] self.nodeGroupData[groupName]['numF'] = numpy.array(self.nodeGroupData[groupName]['numF'], dtype=float)[:self.tidx+1] self.nodeGroupData[groupName]['N'] = numpy.array(self.nodeGroupData[groupName]['N'], dtype=float)[:self.tidx+1] return None #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def run_iteration(self): if(self.tidx >= len(self.tseries)-1): # Room has run out in the timeseries storage arrays; double the size of these arrays: self.increase_data_series_length() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 1. Generate 2 random numbers uniformly distributed in (0,1) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ r1 = numpy.random.rand() r2 = numpy.random.rand() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 2. Calculate propensities #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ propensities, transitionTypes = self.calc_propensities() # Terminate when probability of all events is 0: if(propensities.sum() <= 0.0): self.finalize_data_series() return False #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 3. Calculate alpha #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ propensities_flat = propensities.ravel(order='F') cumsum = propensities_flat.cumsum() alpha = propensities_flat.sum() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 4. Compute the time until the next event takes place #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ tau = (1/alpha)*numpy.log(float(1/r1)) self.t += tau #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 5. Compute which event takes place #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ transitionIdx = numpy.searchsorted(cumsum,r2*alpha) transitionNode = transitionIdx % self.numNodes transitionType = transitionTypes[ int(transitionIdx/self.numNodes) ] #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 6. Update node states and data series #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ assert(self.X[transitionNode] == self.transitions[transitionType]['currentState'] and self.X[transitionNode]!=self.F), "Assertion error: Node "+str(transitionNode)+" has unexpected current state "+str(self.X[transitionNode])+" given the intended transition of "+str(transitionType)+"." self.X[transitionNode] = self.transitions[transitionType]['newState'] self.tidx += 1 self.tseries[self.tidx] = self.t self.numS[self.tidx] = numpy.clip(numpy.count_nonzero(self.X==self.S), a_min=0, a_max=self.numNodes) self.numE[self.tidx] = numpy.clip(numpy.count_nonzero(self.X==self.E), a_min=0, a_max=self.numNodes) self.numI[self.tidx] = numpy.clip(numpy.count_nonzero(self.X==self.I), a_min=0, a_max=self.numNodes) self.numD_E[self.tidx] = numpy.clip(numpy.count_nonzero(self.X==self.D_E), a_min=0, a_max=self.numNodes) self.numD_I[self.tidx] = numpy.clip(numpy.count_nonzero(self.X==self.D_I), a_min=0, a_max=self.numNodes) self.numR[self.tidx] = numpy.clip(numpy.count_nonzero(self.X==self.R), a_min=0, a_max=self.numNodes) self.numF[self.tidx] = numpy.clip(numpy.count_nonzero(self.X==self.F), a_min=0, a_max=self.numNodes) self.N[self.tidx] = numpy.clip((self.numS[self.tidx] + self.numE[self.tidx] + self.numI[self.tidx] + self.numD_E[self.tidx] + self.numD_I[self.tidx] + self.numR[self.tidx]), a_min=0, a_max=self.numNodes) if(self.store_Xseries): self.Xseries[self.tidx,:] = self.X.T if(self.nodeGroupData): for groupName in self.nodeGroupData: self.nodeGroupData[groupName]['numS'][self.tidx] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.S) self.nodeGroupData[groupName]['numE'][self.tidx] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.E) self.nodeGroupData[groupName]['numI'][self.tidx] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.I) self.nodeGroupData[groupName]['numD_E'][self.tidx] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.D_E) self.nodeGroupData[groupName]['numD_I'][self.tidx] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.D_I) self.nodeGroupData[groupName]['numR'][self.tidx] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.R) self.nodeGroupData[groupName]['numF'][self.tidx] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.F) self.nodeGroupData[groupName]['N'][self.tidx] = numpy.clip((self.nodeGroupData[groupName]['numS'][0] + self.nodeGroupData[groupName]['numE'][0] + self.nodeGroupData[groupName]['numI'][0] + self.nodeGroupData[groupName]['numD_E'][0] + self.nodeGroupData[groupName]['numD_I'][0] + self.nodeGroupData[groupName]['numR'][0]), a_min=0, a_max=self.numNodes) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Terminate if tmax reached or num infectious and num exposed is 0: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(self.t >= self.tmax or (self.numI[self.tidx]<1 and self.numE[self.tidx]<1 and self.numD_E[self.tidx]<1 and self.numD_I[self.tidx]<1)): self.finalize_data_series() return False #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ return True #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def run(self, T, checkpoints=None, print_interval=10, verbose='t'): if(T>0): self.tmax += T else: return False #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Pre-process checkpoint values: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(checkpoints): numCheckpoints = len(checkpoints['t']) for chkpt_param, chkpt_values in checkpoints.items(): assert(isinstance(chkpt_values, (list, numpy.ndarray)) and len(chkpt_values)==numCheckpoints), "Expecting a list of values with length equal to number of checkpoint times ("+str(numCheckpoints)+") for each checkpoint parameter." checkpointIdx = numpy.searchsorted(checkpoints['t'], self.t) # Finds 1st index in list greater than given val if(checkpointIdx >= numCheckpoints): # We are out of checkpoints, stop checking them: checkpoints = None else: checkpointTime = checkpoints['t'][checkpointIdx] #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Run the simulation loop: #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% print_reset = True running = True while running: running = self.run_iteration() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Handle checkpoints if applicable: if(checkpoints): if(self.t >= checkpointTime): if(verbose is not False): print("[Checkpoint: Updating parameters]") # A checkpoint has been reached, update param values: if('G' in list(checkpoints.keys())): self.update_G(checkpoints['G'][checkpointIdx]) if('Q' in list(checkpoints.keys())): self.update_Q(checkpoints['Q'][checkpointIdx]) for param in list(self.parameters.keys()): if(param in list(checkpoints.keys())): self.parameters.update({param: checkpoints[param][checkpointIdx]}) # Update parameter data structures and scenario flags: self.update_parameters() # Update the next checkpoint time: checkpointIdx = numpy.searchsorted(checkpoints['t'], self.t) # Finds 1st index in list greater than given val if(checkpointIdx >= numCheckpoints): # We are out of checkpoints, stop checking them: checkpoints = None else: checkpointTime = checkpoints['t'][checkpointIdx] #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(print_interval): if(print_reset and (int(self.t) % print_interval == 0)): if(verbose=="t"): print("t = %.2f" % self.t) if(verbose==True): print("t = %.2f" % self.t) print("\t S = " + str(self.numS[self.tidx])) print("\t E = " + str(self.numE[self.tidx])) print("\t I = " + str(self.numI[self.tidx])) print("\t D_E = " + str(self.numD_E[self.tidx])) print("\t D_I = " + str(self.numD_I[self.tidx])) print("\t R = " + str(self.numR[self.tidx])) print("\t F = " + str(self.numF[self.tidx])) print_reset = False elif(not print_reset and (int(self.t) % 10 != 0)): print_reset = True return True #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def plot(self, ax=None, plot_S='line', plot_E='line', plot_I='line',plot_R='line', plot_F='line', plot_D_E='line', plot_D_I='line', combine_D=True, color_S='tab:green', color_E='orange', color_I='crimson', color_R='tab:blue', color_F='black', color_D_E='mediumorchid', color_D_I='mediumorchid', color_reference='#E0E0E0', dashed_reference_results=None, dashed_reference_label='reference', shaded_reference_results=None, shaded_reference_label='reference', vlines=[], vline_colors=[], vline_styles=[], vline_labels=[], ylim=None, xlim=None, legend=True, title=None, side_title=None, plot_percentages=True): import matplotlib.pyplot as pyplot #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Create an Axes object if None provided: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(not ax): fig, ax = pyplot.subplots() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Prepare data series to be plotted: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Fseries = self.numF/self.numNodes if plot_percentages else self.numF Eseries = self.numE/self.numNodes if plot_percentages else self.numE Dseries = (self.numD_E+self.numD_I)/self.numNodes if plot_percentages else (self.numD_E+self.numD_I) D_Eseries = self.numD_E/self.numNodes if plot_percentages else self.numD_E D_Iseries = self.numD_I/self.numNodes if plot_percentages else self.numD_I Iseries = self.numI/self.numNodes if plot_percentages else self.numI Rseries = self.numR/self.numNodes if plot_percentages else self.numR Sseries = self.numS/self.numNodes if plot_percentages else self.numS #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the reference data: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(dashed_reference_results): dashedReference_tseries = dashed_reference_results.tseries[::int(self.numNodes/100)] dashedReference_IDEstack = (dashed_reference_results.numI + dashed_reference_results.numD_I + dashed_reference_results.numD_E + dashed_reference_results.numE)[::int(self.numNodes/100)] / (self.numNodes if plot_percentages else 1) ax.plot(dashedReference_tseries, dashedReference_IDEstack, color='#E0E0E0', linestyle='--', label='$I+D+E$ ('+dashed_reference_label+')', zorder=0) if(shaded_reference_results): shadedReference_tseries = shaded_reference_results.tseries shadedReference_IDEstack = (shaded_reference_results.numI + shaded_reference_results.numD_I + shaded_reference_results.numD_E + shaded_reference_results.numE) / (self.numNodes if plot_percentages else 1) ax.fill_between(shaded_reference_results.tseries, shadedReference_IDEstack, 0, color='#EFEFEF', label='$I+D+E$ ('+shaded_reference_label+')', zorder=0) ax.plot(shaded_reference_results.tseries, shadedReference_IDEstack, color='#E0E0E0', zorder=1) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the stacked variables: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ topstack = numpy.zeros_like(self.tseries) if(any(Fseries) and plot_F=='stacked'): ax.fill_between(numpy.ma.masked_where(Fseries<=0, self.tseries), numpy.ma.masked_where(Fseries<=0, topstack+Fseries), topstack, color=color_F, alpha=0.5, label='$F$', zorder=2) ax.plot( numpy.ma.masked_where(Fseries<=0, self.tseries), numpy.ma.masked_where(Fseries<=0, topstack+Fseries), color=color_F, zorder=3) topstack = topstack+Fseries if(any(Eseries) and plot_E=='stacked'): ax.fill_between(numpy.ma.masked_where(Eseries<=0, self.tseries), numpy.ma.masked_where(Eseries<=0, topstack+Eseries), topstack, color=color_E, alpha=0.5, label='$E$', zorder=2) ax.plot( numpy.ma.masked_where(Eseries<=0, self.tseries), numpy.ma.masked_where(Eseries<=0, topstack+Eseries), color=color_E, zorder=3) topstack = topstack+Eseries if(combine_D and plot_D_E=='stacked' and plot_D_I=='stacked'): ax.fill_between(numpy.ma.masked_where(Dseries<=0, self.tseries), numpy.ma.masked_where(Dseries<=0, topstack+Dseries), topstack, color=color_D_E, alpha=0.5, label='$D_{all}$', zorder=2) ax.plot( numpy.ma.masked_where(Dseries<=0, self.tseries), numpy.ma.masked_where(Dseries<=0, topstack+Dseries), color=color_D_E, zorder=3) topstack = topstack+Dseries else: if(any(D_Eseries) and plot_D_E=='stacked'): ax.fill_between(numpy.ma.masked_where(D_Eseries<=0, self.tseries), numpy.ma.masked_where(D_Eseries<=0, topstack+D_Eseries), topstack, color=color_D_E, alpha=0.5, label='$D_E$', zorder=2) ax.plot( numpy.ma.masked_where(D_Eseries<=0, self.tseries), numpy.ma.masked_where(D_Eseries<=0, topstack+D_Eseries), color=color_D_E, zorder=3) topstack = topstack+D_Eseries if(any(D_Iseries) and plot_D_I=='stacked'): ax.fill_between(numpy.ma.masked_where(D_Iseries<=0, self.tseries), numpy.ma.masked_where(D_Iseries<=0, topstack+D_Iseries), topstack, color=color_D_I, alpha=0.5, label='$D_I$', zorder=2) ax.plot( numpy.ma.masked_where(D_Iseries<=0, self.tseries), numpy.ma.masked_where(D_Iseries<=0, topstack+D_Iseries), color=color_D_I, zorder=3) topstack = topstack+D_Iseries if(any(Iseries) and plot_I=='stacked'): ax.fill_between(numpy.ma.masked_where(Iseries<=0, self.tseries), numpy.ma.masked_where(Iseries<=0, topstack+Iseries), topstack, color=color_I, alpha=0.5, label='$I$', zorder=2) ax.plot( numpy.ma.masked_where(Iseries<=0, self.tseries), numpy.ma.masked_where(Iseries<=0, topstack+Iseries), color=color_I, zorder=3) topstack = topstack+Iseries if(any(Rseries) and plot_R=='stacked'): ax.fill_between(numpy.ma.masked_where(Rseries<=0, self.tseries), numpy.ma.masked_where(Rseries<=0, topstack+Rseries), topstack, color=color_R, alpha=0.5, label='$R$', zorder=2) ax.plot( numpy.ma.masked_where(Rseries<=0, self.tseries), numpy.ma.masked_where(Rseries<=0, topstack+Rseries), color=color_R, zorder=3) topstack = topstack+Rseries if(any(Sseries) and plot_S=='stacked'): ax.fill_between(numpy.ma.masked_where(Sseries<=0, self.tseries), numpy.ma.masked_where(Sseries<=0, topstack+Sseries), topstack, color=color_S, alpha=0.5, label='$S$', zorder=2) ax.plot( numpy.ma.masked_where(Sseries<=0, self.tseries), numpy.ma.masked_where(Sseries<=0, topstack+Sseries), color=color_S, zorder=3) topstack = topstack+Sseries #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the shaded variables: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(any(Fseries) and plot_F=='shaded'): ax.fill_between(numpy.ma.masked_where(Fseries<=0, self.tseries), numpy.ma.masked_where(Fseries<=0, Fseries), 0, color=color_F, alpha=0.5, label='$F$', zorder=4) ax.plot( numpy.ma.masked_where(Fseries<=0, self.tseries), numpy.ma.masked_where(Fseries<=0, Fseries), color=color_F, zorder=5) if(any(Eseries) and plot_E=='shaded'): ax.fill_between(numpy.ma.masked_where(Eseries<=0, self.tseries), numpy.ma.masked_where(Eseries<=0, Eseries), 0, color=color_E, alpha=0.5, label='$E$', zorder=4) ax.plot( numpy.ma.masked_where(Eseries<=0, self.tseries), numpy.ma.masked_where(Eseries<=0, Eseries), color=color_E, zorder=5) if(combine_D and (any(Dseries) and plot_D_E=='shaded' and plot_D_I=='shaded')): ax.fill_between(numpy.ma.masked_where(Dseries<=0, self.tseries), numpy.ma.masked_where(Dseries<=0, Dseries), 0, color=color_D_E, alpha=0.5, label='$D_{all}$', zorder=4) ax.plot( numpy.ma.masked_where(Dseries<=0, self.tseries), numpy.ma.masked_where(Dseries<=0, Dseries), color=color_D_E, zorder=5) else: if(any(D_Eseries) and plot_D_E=='shaded'): ax.fill_between(numpy.ma.masked_where(D_Eseries<=0, self.tseries), numpy.ma.masked_where(D_Eseries<=0, D_Eseries), 0, color=color_D_E, alpha=0.5, label='$D_E$', zorder=4) ax.plot( numpy.ma.masked_where(D_Eseries<=0, self.tseries), numpy.ma.masked_where(D_Eseries<=0, D_Eseries), color=color_D_E, zorder=5) if(any(D_Iseries) and plot_D_I=='shaded'): ax.fill_between(numpy.ma.masked_where(D_Iseries<=0, self.tseries), numpy.ma.masked_where(D_Iseries<=0, D_Iseries), 0, color=color_D_I, alpha=0.5, label='$D_I$', zorder=4) ax.plot( numpy.ma.masked_where(D_Iseries<=0, self.tseries), numpy.ma.masked_where(D_Iseries<=0, D_Iseries), color=color_D_I, zorder=5) if(any(Iseries) and plot_I=='shaded'): ax.fill_between(numpy.ma.masked_where(Iseries<=0, self.tseries), numpy.ma.masked_where(Iseries<=0, Iseries), 0, color=color_I, alpha=0.5, label='$I$', zorder=4) ax.plot( numpy.ma.masked_where(Iseries<=0, self.tseries), numpy.ma.masked_where(Iseries<=0, Iseries), color=color_I, zorder=5) if(any(Sseries) and plot_S=='shaded'): ax.fill_between(numpy.ma.masked_where(Sseries<=0, self.tseries), numpy.ma.masked_where(Sseries<=0, Sseries), 0, color=color_S, alpha=0.5, label='$S$', zorder=4) ax.plot( numpy.ma.masked_where(Sseries<=0, self.tseries), numpy.ma.masked_where(Sseries<=0, Sseries), color=color_S, zorder=5) if(any(Rseries) and plot_R=='shaded'): ax.fill_between(numpy.ma.masked_where(Rseries<=0, self.tseries), numpy.ma.masked_where(Rseries<=0, Rseries), 0, color=color_R, alpha=0.5, label='$R$', zorder=4) ax.plot( numpy.ma.masked_where(Rseries<=0, self.tseries), numpy.ma.masked_where(Rseries<=0, Rseries), color=color_R, zorder=5) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the line variables: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(any(Fseries) and plot_F=='line'): ax.plot(numpy.ma.masked_where(Fseries<=0, self.tseries), numpy.ma.masked_where(Fseries<=0, Fseries), color=color_F, label='$F$', zorder=6) if(any(Eseries) and plot_E=='line'): ax.plot(numpy.ma.masked_where(Eseries<=0, self.tseries), numpy.ma.masked_where(Eseries<=0, Eseries), color=color_E, label='$E$', zorder=6) if(combine_D and (any(Dseries) and plot_D_E=='line' and plot_D_I=='line')): ax.plot(numpy.ma.masked_where(Dseries<=0, self.tseries), numpy.ma.masked_where(Dseries<=0, Dseries), color=color_D_E, label='$D_{all}$', zorder=6) else: if(any(D_Eseries) and plot_D_E=='line'): ax.plot(numpy.ma.masked_where(D_Eseries<=0, self.tseries), numpy.ma.masked_where(D_Eseries<=0, D_Eseries), color=color_D_E, label='$D_E$', zorder=6) if(any(D_Iseries) and plot_D_I=='line'): ax.plot(numpy.ma.masked_where(D_Iseries<=0, self.tseries), numpy.ma.masked_where(D_Iseries<=0, D_Iseries), color=color_D_I, label='$D_I$', zorder=6) if(any(Iseries) and plot_I=='line'): ax.plot(numpy.ma.masked_where(Iseries<=0, self.tseries), numpy.ma.masked_where(Iseries<=0, Iseries), color=color_I, label='$I$', zorder=6) if(any(Sseries) and plot_S=='line'): ax.plot(numpy.ma.masked_where(Sseries<=0, self.tseries), numpy.ma.masked_where(Sseries<=0, Sseries), color=color_S, label='$S$', zorder=6) if(any(Rseries) and plot_R=='line'): ax.plot(numpy.ma.masked_where(Rseries<=0, self.tseries), numpy.ma.masked_where(Rseries<=0, Rseries), color=color_R, label='$R$', zorder=6) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the vertical line annotations: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(len(vlines)>0 and len(vline_colors)==0): vline_colors = ['gray']*len(vlines) if(len(vlines)>0 and len(vline_labels)==0): vline_labels = [None]*len(vlines) if(len(vlines)>0 and len(vline_styles)==0): vline_styles = [':']*len(vlines) for vline_x, vline_color, vline_style, vline_label in zip(vlines, vline_colors, vline_styles, vline_labels): if(vline_x is not None): ax.axvline(x=vline_x, color=vline_color, linestyle=vline_style, alpha=1, label=vline_label) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the plot labels: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ax.set_xlabel('days') ax.set_ylabel('percent of population' if plot_percentages else 'number of individuals') ax.set_xlim(0, (max(self.tseries) if not xlim else xlim)) ax.set_ylim(0, ylim) if(plot_percentages): ax.set_yticklabels(['{:,.0%}'.format(y) for y in ax.get_yticks()]) if(legend): legend_handles, legend_labels = ax.get_legend_handles_labels() ax.legend(legend_handles[::-1], legend_labels[::-1], loc='upper right', facecolor='white', edgecolor='none', framealpha=0.9, prop={'size': 8}) if(title): ax.set_title(title, size=12) if(side_title): ax.annotate(side_title, (0, 0.5), xytext=(-45, 0), ha='right', va='center', size=12, rotation=90, xycoords='axes fraction', textcoords='offset points') return ax #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def figure_basic(self, plot_S='line', plot_E='line', plot_I='line',plot_R='line', plot_F='line', plot_D_E='line', plot_D_I='line', combine_D=True, color_S='tab:green', color_E='orange', color_I='crimson', color_R='tab:blue', color_F='black', color_D_E='mediumorchid', color_D_I='mediumorchid', color_reference='#E0E0E0', dashed_reference_results=None, dashed_reference_label='reference', shaded_reference_results=None, shaded_reference_label='reference', vlines=[], vline_colors=[], vline_styles=[], vline_labels=[], ylim=None, xlim=None, legend=True, title=None, side_title=None, plot_percentages=True, figsize=(12,8), use_seaborn=True, show=True): import matplotlib.pyplot as pyplot fig, ax = pyplot.subplots(figsize=figsize) if(use_seaborn): import seaborn seaborn.set_style('ticks') seaborn.despine() self.plot(ax=ax, plot_S=plot_S, plot_E=plot_E, plot_I=plot_I,plot_R=plot_R, plot_F=plot_F, plot_D_E=plot_D_E, plot_D_I=plot_D_I, combine_D=combine_D, color_S=color_S, color_E=color_E, color_I=color_I, color_R=color_R, color_F=color_F, color_D_E=color_D_E, color_D_I=color_D_I, color_reference=color_reference, dashed_reference_results=dashed_reference_results, dashed_reference_label=dashed_reference_label, shaded_reference_results=shaded_reference_results, shaded_reference_label=shaded_reference_label, vlines=vlines, vline_colors=vline_colors, vline_styles=vline_styles, vline_labels=vline_labels, ylim=ylim, xlim=xlim, legend=legend, title=title, side_title=side_title, plot_percentages=plot_percentages) if(show): pyplot.show() return fig, ax #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def figure_infections(self, plot_S=False, plot_E='stacked', plot_I='stacked',plot_R=False, plot_F=False, plot_D_E='stacked', plot_D_I='stacked', combine_D=True, color_S='tab:green', color_E='orange', color_I='crimson', color_R='tab:blue', color_F='black', color_D_E='mediumorchid', color_D_I='mediumorchid', color_reference='#E0E0E0', dashed_reference_results=None, dashed_reference_label='reference', shaded_reference_results=None, shaded_reference_label='reference', vlines=[], vline_colors=[], vline_styles=[], vline_labels=[], ylim=None, xlim=None, legend=True, title=None, side_title=None, plot_percentages=True, figsize=(12,8), use_seaborn=True, show=True): import matplotlib.pyplot as pyplot fig, ax = pyplot.subplots(figsize=figsize) if(use_seaborn): import seaborn seaborn.set_style('ticks') seaborn.despine() self.plot(ax=ax, plot_S=plot_S, plot_E=plot_E, plot_I=plot_I,plot_R=plot_R, plot_F=plot_F, plot_D_E=plot_D_E, plot_D_I=plot_D_I, combine_D=combine_D, color_S=color_S, color_E=color_E, color_I=color_I, color_R=color_R, color_F=color_F, color_D_E=color_D_E, color_D_I=color_D_I, color_reference=color_reference, dashed_reference_results=dashed_reference_results, dashed_reference_label=dashed_reference_label, shaded_reference_results=shaded_reference_results, shaded_reference_label=shaded_reference_label, vlines=vlines, vline_colors=vline_colors, vline_styles=vline_styles, vline_labels=vline_labels, ylim=ylim, xlim=xlim, legend=legend, title=title, side_title=side_title, plot_percentages=plot_percentages) if(show): pyplot.show() return fig, ax #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% class SymptomaticSEIRSNetworkModel(): """ A class to simulate the SEIRS Stochastic Network Model with Symptom Presentation Compartments =================================================== Params: G Network adjacency matrix (numpy array) or Networkx graph object. beta Rate of transmission (global interactions) beta_local Rate(s) of transmission between adjacent individuals (optional) beta_A Rate of transmission (global interactions) beta_A_local Rate(s) of transmission between adjacent individuals (optional) sigma Rate of progression to infectious state (inverse of latent period) lamda Rate of progression to infectious (a)symptomatic state (inverse of prodromal period) eta Rate of progression to hospitalized state (inverse of onset-to-admission period) gamma Rate of recovery for non-hospitalized symptomatic individuals (inverse of symptomatic infectious period) gamma_A Rate of recovery for asymptomatic individuals (inverse of asymptomatic infectious period) gamma_H Rate of recovery for hospitalized symptomatic individuals (inverse of hospitalized infectious period) mu_H Rate of death for hospitalized individuals (inverse of admission-to-death period) xi Rate of re-susceptibility (upon recovery) mu_0 Rate of baseline death nu Rate of baseline birth a Probability of an infected individual remaining asymptomatic h Probability of a symptomatic individual being hospitalized f Probability of death for hospitalized individuals (case fatality rate) p Probability of individuals interacting with global population Q Quarantine adjacency matrix (numpy array) or Networkx graph object. beta_D Rate of transmission for individuals with detected infections (global interactions) beta_D_local Rate(s) of transmission (exposure) for adjacent individuals with detected infections (optional) sigma_D Rate of progression to infectious state for individuals with detected infections lamda_D Rate of progression to infectious (a)symptomatic state for individuals with detected infections eta_D Rate of progression to hospitalized state for individuals with detected infections gamma_D_S Rate of recovery for non-hospitalized symptomatic individuals for individuals with detected infections gamma_D_A Rate of recovery for asymptomatic individuals for individuals with detected infections theta_E Rate of random testing for exposed individuals theta_pre Rate of random testing for infectious pre-symptomatic individuals theta_S Rate of random testing for infectious symptomatic individuals theta_A Rate of random testing for infectious asymptomatic individuals phi_E Rate of testing when a close contact has tested positive for exposed individuals phi_pre Rate of testing when a close contact has tested positive for infectious pre-symptomatic individuals phi_S Rate of testing when a close contact has tested positive for infectious symptomatic individuals phi_A Rate of testing when a close contact has tested positive for infectious asymptomatic individuals d_E Probability of positive test for exposed individuals d_pre Probability of positive test for infectious pre-symptomatic individuals d_S Probability of positive test for infectious symptomatic individuals d_A Probability of positive test for infectious asymptomatic individuals q Probability of individuals with detected infection interacting with global population initE Initial number of exposed individuals initI_pre Initial number of infectious pre-symptomatic individuals initI_S Initial number of infectious symptomatic individuals initI_A Initial number of infectious asymptomatic individuals initH Initial number of hospitalized individuals initR Initial number of recovered individuals initF Initial number of infection-related fatalities initD_E Initial number of detected exposed individuals initD_pre Initial number of detected infectious pre-symptomatic individuals initD_S Initial number of detected infectious symptomatic individuals initD_A Initial number of detected infectious asymptomatic individuals (all remaining nodes initialized susceptible) """ def __init__(self, G, beta, sigma, lamda, gamma, eta=0, gamma_A=None, gamma_H=None, mu_H=0, xi=0, mu_0=0, nu=0, a=0, h=0, f=0, p=0, beta_local=None, beta_A=None, beta_A_local=None, Q=None, lamda_D=None, beta_D=None, beta_D_local=None, sigma_D=None, eta_D=None, gamma_D_S=None, gamma_D_A=None, theta_E=0, theta_pre=0, theta_S=0, theta_A=0, phi_E=0, phi_pre=0, phi_S=0, phi_A=0, d_E=1, d_pre=1, d_S=1, d_A=1, q=0, initE=0, initI_pre=0, initI_S=0, initI_A=0, initH=0, initR=0, initF=0, initD_E=0, initD_pre=0, initD_S=0, initD_A=0, node_groups=None, store_Xseries=False): #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Setup Adjacency matrix: self.update_G(G) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Setup Quarantine Adjacency matrix: if(Q is None): Q = G # If no Q graph is provided, use G in its place self.update_Q(Q) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Model Parameters: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.parameters = { 'beta':beta, 'sigma':sigma, 'lamda':lamda, 'gamma':gamma, 'eta':eta, 'gamma_A':gamma_A, 'gamma_H':gamma_H, 'mu_H':mu_H, 'xi':xi, 'mu_0':mu_0, 'nu':nu, 'a':a, 'h':h, 'f':f, 'p':p, 'beta_local':beta_local, 'beta_A':beta_A, 'beta_A_local':beta_A_local, 'lamda_D':lamda_D, 'beta_D':beta_D, 'beta_D_local':beta_D_local, 'sigma_D':sigma_D, 'eta_D':eta_D, 'gamma_D_S':gamma_D_S, 'gamma_D_A':gamma_D_A, 'theta_E':theta_E, 'theta_pre':theta_pre, 'theta_S':theta_S, 'theta_A':theta_A, 'phi_E':phi_E, 'phi_pre':phi_pre, 'phi_S':phi_S, 'phi_A':phi_A, 'd_E':d_E, 'd_pre':d_pre, 'd_S':d_S, 'd_A':d_A, 'q':q, 'initE':initE, 'initI_pre':initI_pre, 'initI_S':initI_S, 'initI_A':initI_A, 'initH':initH, 'initR':initR, 'initF':initF, 'initD_E':initD_E, 'initD_pre':initD_pre, 'initD_S':initD_S, 'initD_A':initD_A } self.update_parameters() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Each node can undergo 4-6 transitions (sans vitality/re-susceptibility returns to S state), # so there are ~numNodes*6 events/timesteps expected; initialize numNodes*6 timestep slots to start # (will be expanded during run if needed for some reason) self.tseries = numpy.zeros(5*self.numNodes) self.numS = numpy.zeros(5*self.numNodes) self.numE = numpy.zeros(5*self.numNodes) self.numI_pre = numpy.zeros(5*self.numNodes) self.numI_S = numpy.zeros(5*self.numNodes) self.numI_A = numpy.zeros(5*self.numNodes) self.numH = numpy.zeros(5*self.numNodes) self.numR = numpy.zeros(5*self.numNodes) self.numF = numpy.zeros(5*self.numNodes) self.numD_E = numpy.zeros(5*self.numNodes) self.numD_pre = numpy.zeros(5*self.numNodes) self.numD_S = numpy.zeros(5*self.numNodes) self.numD_A = numpy.zeros(5*self.numNodes) self.N = numpy.zeros(5*self.numNodes) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize Timekeeping: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.t = 0 self.tmax = 0 # will be set when run() is called self.tidx = 0 self.tseries[0] = 0 #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize Counts of inidividuals with each state: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.numE[0] = int(initE) self.numI_pre[0] = int(initI_pre) self.numI_S[0] = int(initI_S) self.numI_A[0] = int(initI_A) self.numH[0] = int(initH) self.numR[0] = int(initR) self.numF[0] = int(initF) self.numD_E[0] = int(initD_E) self.numD_pre[0] = int(initD_pre) self.numD_S[0] = int(initD_S) self.numD_A[0] = int(initD_A) self.numS[0] = (self.numNodes - self.numE[0] - self.numI_pre[0] - self.numI_S[0] - self.numI_A[0] - self.numH[0] - self.numR[0] - self.numD_E[0] - self.numD_pre[0] - self.numD_S[0] - self.numD_A[0] - self.numF[0]) self.N[0] = self.numNodes - self.numF[0] #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Node states: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.S = 1 self.E = 2 self.I_pre = 3 self.I_S = 4 self.I_A = 5 self.H = 6 self.R = 7 self.F = 8 self.D_E = 9 self.D_pre = 10 self.D_S = 11 self.D_A = 12 self.X = numpy.array( [self.S]*int(self.numS[0]) + [self.E]*int(self.numE[0]) + [self.I_pre]*int(self.numI_pre[0]) + [self.I_S]*int(self.numI_S[0]) + [self.I_A]*int(self.numI_A[0]) + [self.H]*int(self.numH[0]) + [self.R]*int(self.numR[0]) + [self.F]*int(self.numF[0]) + [self.D_E]*int(self.numD_E[0]) + [self.D_pre]*int(self.numD_pre[0]) + [self.D_S]*int(self.numD_S[0]) + [self.D_A]*int(self.numD_A[0]) ).reshape((self.numNodes,1)) numpy.random.shuffle(self.X) self.store_Xseries = store_Xseries if(store_Xseries): self.Xseries = numpy.zeros(shape=(5*self.numNodes, self.numNodes), dtype='uint8') self.Xseries[0,:] = self.X.T self.transitions = { 'StoE': {'currentState':self.S, 'newState':self.E}, 'EtoIPRE': {'currentState':self.E, 'newState':self.I_pre}, 'EtoDE': {'currentState':self.E, 'newState':self.D_E}, 'IPREtoIS': {'currentState':self.I_pre, 'newState':self.I_S}, 'IPREtoIA': {'currentState':self.I_pre, 'newState':self.I_A}, 'IPREtoDPRE': {'currentState':self.I_pre, 'newState':self.D_pre}, 'IStoH': {'currentState':self.I_S, 'newState':self.H}, 'IStoR': {'currentState':self.I_S, 'newState':self.R}, 'IStoDS': {'currentState':self.I_S, 'newState':self.D_S}, 'IAtoR': {'currentState':self.I_A, 'newState':self.R}, 'IAtoDA': {'currentState':self.I_A, 'newState':self.D_A}, 'HtoR': {'currentState':self.H, 'newState':self.R}, 'HtoF': {'currentState':self.H, 'newState':self.F}, 'RtoS': {'currentState':self.R, 'newState':self.S}, 'DEtoDPRE': {'currentState':self.D_E, 'newState':self.D_pre}, 'DPREtoDS': {'currentState':self.D_pre, 'newState':self.D_S}, 'DPREtoDA': {'currentState':self.D_pre, 'newState':self.D_A}, 'DStoH': {'currentState':self.D_S, 'newState':self.H}, 'DStoR': {'currentState':self.D_S, 'newState':self.R}, 'DAtoR': {'currentState':self.D_A, 'newState':self.R}, '_toS': {'currentState':True, 'newState':self.S}, } #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize node subgroup data series: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.nodeGroupData = None if(node_groups): self.nodeGroupData = {} for groupName, nodeList in node_groups.items(): self.nodeGroupData[groupName] = {'nodes': numpy.array(nodeList), 'mask': numpy.isin(range(self.numNodes), nodeList).reshape((self.numNodes,1))} self.nodeGroupData[groupName]['numS'] = numpy.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numE'] = numpy.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numI_pre'] = numpy.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numI_S'] = numpy.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numI_A'] = numpy.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numH'] = numpy.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numR'] = numpy.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numF'] = numpy.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numD_E'] = numpy.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numD_pre'] = numpy.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numD_S'] = numpy.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numD_A'] = numpy.zeros(5*self.numNodes) self.nodeGroupData[groupName]['N'] = numpy.zeros(5*self.numNodes) self.nodeGroupData[groupName]['numS'][0] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.S) self.nodeGroupData[groupName]['numE'][0] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.E) self.nodeGroupData[groupName]['numI_pre'][0] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.I_pre) self.nodeGroupData[groupName]['numI_S'][0] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.I_S) self.nodeGroupData[groupName]['numI_A'][0] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.I_A) self.nodeGroupData[groupName]['numH'][0] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.H) self.nodeGroupData[groupName]['numR'][0] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.R) self.nodeGroupData[groupName]['numF'][0] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.F) self.nodeGroupData[groupName]['numD_E'][0] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.D_E) self.nodeGroupData[groupName]['numD_pre'][0] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.D_pre) self.nodeGroupData[groupName]['numD_I_S'][0] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.D_I_S) self.nodeGroupData[groupName]['numD_I_A'][0] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.D_I_A) self.nodeGroupData[groupName]['N'][0] = self.numNodes - self.numF[0] #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def update_parameters(self): #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Model parameters: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.beta = numpy.array(self.parameters['beta']).reshape((self.numNodes, 1)) if isinstance(self.parameters['beta'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['beta'], shape=(self.numNodes,1)) self.beta_A = (numpy.array(self.parameters['beta_A']).reshape((self.numNodes, 1)) if isinstance(self.parameters['beta_A'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['beta_A'], shape=(self.numNodes,1))) if self.parameters['beta_A'] is not None else self.beta self.sigma = numpy.array(self.parameters['sigma']).reshape((self.numNodes, 1)) if isinstance(self.parameters['sigma'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['sigma'], shape=(self.numNodes,1)) self.lamda = numpy.array(self.parameters['lamda']).reshape((self.numNodes, 1)) if isinstance(self.parameters['lamda'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['lamda'], shape=(self.numNodes,1)) self.gamma = numpy.array(self.parameters['gamma']).reshape((self.numNodes, 1)) if isinstance(self.parameters['gamma'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['gamma'], shape=(self.numNodes,1)) self.eta = numpy.array(self.parameters['eta']).reshape((self.numNodes, 1)) if isinstance(self.parameters['eta'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['eta'], shape=(self.numNodes,1)) self.gamma_A = (numpy.array(self.parameters['gamma_A']).reshape((self.numNodes, 1))if isinstance(self.parameters['gamma_A'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['gamma_A'], shape=(self.numNodes,1))) if self.parameters['gamma_A'] is not None else self.gamma self.gamma_H = (numpy.array(self.parameters['gamma_H']).reshape((self.numNodes, 1))if isinstance(self.parameters['gamma_H'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['gamma_H'], shape=(self.numNodes,1))) if self.parameters['gamma_H'] is not None else self.gamma self.mu_H = numpy.array(self.parameters['mu_H']).reshape((self.numNodes, 1)) if isinstance(self.parameters['mu_H'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['mu_H'], shape=(self.numNodes,1)) self.xi = numpy.array(self.parameters['xi']).reshape((self.numNodes, 1)) if isinstance(self.parameters['xi'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['xi'], shape=(self.numNodes,1)) self.mu_0 = numpy.array(self.parameters['mu_0']).reshape((self.numNodes, 1)) if isinstance(self.parameters['mu_0'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['mu_0'], shape=(self.numNodes,1)) self.nu = numpy.array(self.parameters['nu']).reshape((self.numNodes, 1)) if isinstance(self.parameters['nu'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['nu'], shape=(self.numNodes,1)) self.a = numpy.array(self.parameters['a']).reshape((self.numNodes, 1)) if isinstance(self.parameters['a'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['a'], shape=(self.numNodes,1)) self.h = numpy.array(self.parameters['h']).reshape((self.numNodes, 1)) if isinstance(self.parameters['h'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['h'], shape=(self.numNodes,1)) self.f = numpy.array(self.parameters['f']).reshape((self.numNodes, 1)) if isinstance(self.parameters['f'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['f'], shape=(self.numNodes,1)) self.p = numpy.array(self.parameters['p']).reshape((self.numNodes, 1)) if isinstance(self.parameters['p'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['p'], shape=(self.numNodes,1)) # Testing-related parameters: self.beta_D = (numpy.array(self.parameters['beta_D']).reshape((self.numNodes, 1)) if isinstance(self.parameters['beta_D'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['beta_D'], shape=(self.numNodes,1))) if self.parameters['beta_D'] is not None else self.beta self.sigma_D = (numpy.array(self.parameters['sigma_D']).reshape((self.numNodes, 1)) if isinstance(self.parameters['sigma_D'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['sigma_D'], shape=(self.numNodes,1))) if self.parameters['sigma_D'] is not None else self.sigma self.lamda_D = (numpy.array(self.parameters['lamda_D']).reshape((self.numNodes, 1)) if isinstance(self.parameters['lamda_D'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['lamda_D'], shape=(self.numNodes,1))) if self.parameters['lamda_D'] is not None else self.lamda self.gamma_D_S = (numpy.array(self.parameters['gamma_D_S']).reshape((self.numNodes, 1))if isinstance(self.parameters['gamma_D_S'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['gamma_D_S'], shape=(self.numNodes,1))) if self.parameters['gamma_D_S'] is not None else self.gamma self.gamma_D_A = (numpy.array(self.parameters['gamma_D_A']).reshape((self.numNodes, 1))if isinstance(self.parameters['gamma_D_A'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['gamma_D_A'], shape=(self.numNodes,1))) if self.parameters['gamma_D_A'] is not None else self.gamma self.eta_D = (numpy.array(self.parameters['eta_D']).reshape((self.numNodes, 1)) if isinstance(self.parameters['eta_D'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['eta_D'], shape=(self.numNodes,1))) if self.parameters['eta_D'] is not None else self.eta self.theta_E = numpy.array(self.parameters['theta_E']).reshape((self.numNodes, 1)) if isinstance(self.parameters['theta_E'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['theta_E'], shape=(self.numNodes,1)) self.theta_pre = numpy.array(self.parameters['theta_pre']).reshape((self.numNodes, 1)) if isinstance(self.parameters['theta_pre'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['theta_pre'], shape=(self.numNodes,1)) self.theta_S = numpy.array(self.parameters['theta_S']).reshape((self.numNodes, 1)) if isinstance(self.parameters['theta_S'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['theta_S'], shape=(self.numNodes,1)) self.theta_A = numpy.array(self.parameters['theta_A']).reshape((self.numNodes, 1)) if isinstance(self.parameters['theta_A'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['theta_A'], shape=(self.numNodes,1)) self.phi_E = numpy.array(self.parameters['phi_E']).reshape((self.numNodes, 1)) if isinstance(self.parameters['phi_E'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['phi_E'], shape=(self.numNodes,1)) self.phi_pre = numpy.array(self.parameters['phi_pre']).reshape((self.numNodes, 1)) if isinstance(self.parameters['phi_pre'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['phi_pre'], shape=(self.numNodes,1)) self.phi_S = numpy.array(self.parameters['phi_S']).reshape((self.numNodes, 1)) if isinstance(self.parameters['phi_S'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['phi_S'], shape=(self.numNodes,1)) self.phi_A = numpy.array(self.parameters['phi_A']).reshape((self.numNodes, 1)) if isinstance(self.parameters['phi_A'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['phi_A'], shape=(self.numNodes,1)) self.d_E = numpy.array(self.parameters['d_E']).reshape((self.numNodes, 1)) if isinstance(self.parameters['d_E'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['d_E'], shape=(self.numNodes,1)) self.d_pre = numpy.array(self.parameters['d_pre']).reshape((self.numNodes, 1)) if isinstance(self.parameters['d_pre'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['d_pre'], shape=(self.numNodes,1)) self.d_S = numpy.array(self.parameters['d_S']).reshape((self.numNodes, 1)) if isinstance(self.parameters['d_S'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['d_S'], shape=(self.numNodes,1)) self.d_A = numpy.array(self.parameters['d_A']).reshape((self.numNodes, 1)) if isinstance(self.parameters['d_A'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['d_A'], shape=(self.numNodes,1)) self.q = numpy.array(self.parameters['q']).reshape((self.numNodes, 1)) if isinstance(self.parameters['q'], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters['q'], shape=(self.numNodes,1)) #Local transmission parameters: if(self.parameters['beta_local'] is not None): if(isinstance(self.parameters['beta_local'], (list, numpy.ndarray))): if(isinstance(self.parameters['beta_local'], list)): self.beta_local = numpy.array(self.parameters['beta_local']) else: # is numpy.ndarray self.beta_local = self.parameters['beta_local'] if(self.beta_local.ndim == 1): self.beta_local.reshape((self.numNodes, 1)) elif(self.beta_local.ndim == 2): self.beta_local.reshape((self.numNodes, self.numNodes)) else: self.beta_local = numpy.full_like(self.beta, fill_value=self.parameters['beta_local']) else: self.beta_local = self.beta #---------------------------------------- if(self.parameters['beta_A_local'] is not None): if(isinstance(self.parameters['beta_A_local'], (list, numpy.ndarray))): if(isinstance(self.parameters['beta_A_local'], list)): self.beta_A_local = numpy.array(self.parameters['beta_A_local']) else: # is numpy.ndarray self.beta_A_local = self.parameters['beta_A_local'] if(self.beta_A_local.ndim == 1): self.beta_A_local.reshape((self.numNodes, 1)) elif(self.beta_A_local.ndim == 2): self.beta_A_local.reshape((self.numNodes, self.numNodes)) else: self.beta_A_local = numpy.full_like(self.beta_A, fill_value=self.parameters['beta_A_local']) else: self.beta_A_local = self.beta_A #---------------------------------------- if(self.parameters['beta_D_local'] is not None): if(isinstance(self.parameters['beta_D_local'], (list, numpy.ndarray))): if(isinstance(self.parameters['beta_D_local'], list)): self.beta_D_local = numpy.array(self.parameters['beta_D_local']) else: # is numpy.ndarray self.beta_D_local = self.parameters['beta_D_local'] if(self.beta_D_local.ndim == 1): self.beta_D_local.reshape((self.numNodes, 1)) elif(self.beta_D_local.ndim == 2): self.beta_D_local.reshape((self.numNodes, self.numNodes)) else: self.beta_D_local = numpy.full_like(self.beta_D, fill_value=self.parameters['beta_D_local']) else: self.beta_D_local = self.beta_D # Pre-multiply beta values by the adjacency matrix ("transmission weight connections") if(self.beta_local.ndim == 1): self.A_beta = scipy.sparse.csr_matrix.multiply(self.A, numpy.tile(self.beta_local, (1,self.numNodes))).tocsr() elif(self.beta_local.ndim == 2): self.A_beta = scipy.sparse.csr_matrix.multiply(self.A, self.beta_local).tocsr() # Pre-multiply beta_A values by the adjacency matrix ("transmission weight connections") if(self.beta_A_local.ndim == 1): self.A_beta_A = scipy.sparse.csr_matrix.multiply(self.A, numpy.tile(self.beta_A_local, (1,self.numNodes))).tocsr() elif(self.beta_A_local.ndim == 2): self.A_beta_A = scipy.sparse.csr_matrix.multiply(self.A, self.beta_A_local).tocsr() # Pre-multiply beta_D values by the quarantine adjacency matrix ("transmission weight connections") if(self.beta_D_local.ndim == 1): self.A_Q_beta_D = scipy.sparse.csr_matrix.multiply(self.A_Q, numpy.tile(self.beta_D_local, (1,self.numNodes))).tocsr() elif(self.beta_D_local.ndim == 2): self.A_Q_beta_D = scipy.sparse.csr_matrix.multiply(self.A_Q, self.beta_D_local).tocsr() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Update scenario flags: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.update_scenario_flags() #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def node_degrees(self, Amat): return Amat.sum(axis=0).reshape(self.numNodes,1) # sums of adj matrix cols #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def update_G(self, new_G): self.G = new_G # Adjacency matrix: if type(new_G)==numpy.ndarray: self.A = scipy.sparse.csr_matrix(new_G) elif type(new_G)==networkx.classes.graph.Graph: self.A = networkx.adj_matrix(new_G) # adj_matrix gives scipy.sparse csr_matrix else: raise BaseException("Input an adjacency matrix or networkx object only.") self.numNodes = int(self.A.shape[1]) self.degree = numpy.asarray(self.node_degrees(self.A)).astype(float) return #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def update_Q(self, new_Q): self.Q = new_Q # Quarantine Adjacency matrix: if type(new_Q)==numpy.ndarray: self.A_Q = scipy.sparse.csr_matrix(new_Q) elif type(new_Q)==networkx.classes.graph.Graph: self.A_Q = networkx.adj_matrix(new_Q) # adj_matrix gives scipy.sparse csr_matrix else: raise BaseException("Input an adjacency matrix or networkx object only.") self.numNodes_Q = int(self.A_Q.shape[1]) self.degree_Q = numpy.asarray(self.node_degrees(self.A_Q)).astype(float) assert(self.numNodes == self.numNodes_Q), "The normal and quarantine adjacency graphs must be of the same size." return #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def update_scenario_flags(self): self.testing_scenario = ( (numpy.any(self.d_E) and (numpy.any(self.theta_E) or numpy.any(self.phi_E))) or (numpy.any(self.d_pre) and (numpy.any(self.theta_pre) or numpy.any(self.phi_pre))) or (numpy.any(self.d_S) and (numpy.any(self.theta_S) or numpy.any(self.phi_S))) or (numpy.any(self.d_A) and (numpy.any(self.theta_A) or numpy.any(self.phi_A))) ) self.tracing_scenario = ( (numpy.any(self.d_E) and numpy.any(self.phi_E)) or (numpy.any(self.d_pre) and numpy.any(self.phi_pre)) or (numpy.any(self.d_S) and numpy.any(self.phi_S)) or (numpy.any(self.d_A) and numpy.any(self.phi_A)) ) self.vitality_scenario = (numpy.any(self.mu_0) and numpy.any(self.nu)) self.resusceptibility_scenario = (numpy.any(self.xi)) #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def total_num_infections(self, t_idx=None): if(t_idx is None): return (self.numE[:] + self.numI_pre[:] + self.numI_S[:] + self.numI_A[:] + self.numD_E[:] + self.numD_pre[:] + self.numD_S[:] + self.numD_A[:] + self.numH[:]) else: return (self.numE[t_idx] + self.numI_pre[t_idx] + self.numI_S[t_idx] + self.numI_A[t_idx] + self.numD_E[t_idx] + self.numD_pre[t_idx] + self.numD_S[t_idx] + self.numD_A[t_idx] + self.numH[t_idx]) #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def total_num_detected(self, t_idx=None): if(t_idx is None): return (self.numD_E[:] + self.numD_pre[:] + self.numD_S[:] + self.numD_A[:]) else: return (self.numD_E[t_idx] + self.numD_pre[t_idx] + self.numD_S[t_idx] + self.numD_A[t_idx]) #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def calc_propensities(self): #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Pre-calculate matrix multiplication terms that may be used in multiple propensity calculations, # and check to see if their computation is necessary before doing the multiplication transmissionTerms_I = numpy.zeros(shape=(self.numNodes,1)) if( (numpy.any(self.numI_S[self.tidx]) and self.A_beta.count_nonzero()>0) or ((numpy.any(self.numI_pre[self.tidx]) or numpy.any(self.numI_A[self.tidx])) and self.A_beta_A.count_nonzero()>0) ): transmissionTerms_I = numpy.asarray( scipy.sparse.csr_matrix.dot( self.A_beta, self.X==self.I_S ) + scipy.sparse.csr_matrix.dot( self.A_beta_A, ((self.X==self.I_pre)|(self.X==self.I_A)) ) ) transmissionTerms_D = numpy.zeros(shape=(self.numNodes,1)) if(self.testing_scenario and (numpy.any(self.numD_pre[self.tidx]) or numpy.any(self.numD_S[self.tidx]) or numpy.any(self.numD_A[self.tidx]) or numpy.any(self.numH[self.tidx])) and self.A_Q_beta_D.count_nonzero()>0 ): transmissionTerms_D = numpy.asarray( scipy.sparse.csr_matrix.dot( self.A_Q_beta_D, ((self.X==self.D_pre)|(self.X==self.D_S)|(self.X==self.D_A)|(self.X==self.H)) ) ) numContacts_D = numpy.zeros(shape=(self.numNodes,1)) if(self.tracing_scenario and (numpy.any(self.numD_E[self.tidx]) or numpy.any(self.numD_pre[self.tidx]) or numpy.any(self.numD_S[self.tidx]) or numpy.any(self.numD_A[self.tidx]) or numpy.any(self.numH[self.tidx])) ): numContacts_D = numpy.asarray( scipy.sparse.csr_matrix.dot( self.A, ((self.X==self.D_E)|(self.X==self.D_pre)|(self.X==self.D_S)|(self.X==self.D_A)|(self.X==self.H)) ) ) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ propensities_StoE = ( self.p*((self.beta*self.numI_S[self.tidx] + self.beta_A*(self.numI_pre[self.tidx] + self.numI_A[self.tidx]) + self.q*self.beta_D*(self.numD_pre[self.tidx] + self.numD_S[self.tidx] + self.numD_A[self.tidx]))/self.N[self.tidx]) + (1-self.p)*numpy.divide((transmissionTerms_I + transmissionTerms_D), self.degree, out=numpy.zeros_like(self.degree), where=self.degree!=0) )*(self.X==self.S) propensities_EtoIPRE = self.sigma*(self.X==self.E) propensities_IPREtoIS = (1-self.a)*self.lamda*(self.X==self.I_pre) propensities_IPREtoIA = self.a*self.lamda*(self.X==self.I_pre) propensities_IStoR = (1-self.h)*self.gamma*(self.X==self.I_S) propensities_IStoH = self.h*self.eta*(self.X==self.I_S) propensities_IAtoR = self.gamma_A*(self.X==self.I_A) propensities_HtoR = (1-self.f)*self.gamma_H*(self.X==self.H) propensities_HtoF = self.f*self.mu_H*(self.X==self.H) propensities_EtoDE = (self.theta_E + self.phi_E*numContacts_D)*self.d_E*(self.X==self.E) propensities_IPREtoDPRE = (self.theta_pre + self.phi_pre*numContacts_D)*self.d_pre*(self.X==self.I_pre) propensities_IStoDS = (self.theta_S + self.phi_S*numContacts_D)*self.d_S*(self.X==self.I_S) propensities_IAtoDA = (self.theta_A + self.phi_A*numContacts_D)*self.d_A*(self.X==self.I_A) propensities_DEtoDPRE = self.sigma_D*(self.X==self.D_E) propensities_DPREtoDS = (1-self.a)*self.lamda_D*(self.X==self.D_pre) propensities_DPREtoDA = self.a*self.lamda_D*(self.X==self.D_pre) propensities_DStoR = (1-self.h)*self.gamma_D_S*(self.X==self.D_S) propensities_DStoH = self.h*self.eta_D*(self.X==self.D_S) propensities_DAtoR = self.gamma_D_A*(self.X==self.D_A) propensities_RtoS = self.xi*(self.X==self.R) propensities__toS = self.nu*(self.X!=self.F) propensities = numpy.hstack([propensities_StoE, propensities_EtoIPRE, propensities_IPREtoIS, propensities_IPREtoIA, propensities_IStoR, propensities_IStoH, propensities_IAtoR, propensities_HtoR, propensities_HtoF, propensities_EtoDE, propensities_IPREtoDPRE, propensities_IStoDS, propensities_IAtoDA, propensities_DEtoDPRE, propensities_DPREtoDS, propensities_DPREtoDA, propensities_DStoR, propensities_DStoH, propensities_DAtoR, propensities_RtoS, propensities__toS]) columns = ['StoE', 'EtoIPRE', 'IPREtoIS', 'IPREtoIA', 'IStoR', 'IStoH', 'IAtoR', 'HtoR', 'HtoF', 'EtoDE', 'IPREtoDPRE', 'IStoDS', 'IAtoDA', 'DEtoDPRE', 'DPREtoDS', 'DPREtoDA', 'DStoR', 'DStoH', 'DAtoR', 'RtoS', '_toS'] return propensities, columns #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def increase_data_series_length(self): self.tseries = numpy.pad(self.tseries, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.numS = numpy.pad(self.numS, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.numE = numpy.pad(self.numE, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.numI_pre = numpy.pad(self.numI_pre, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.numI_S = numpy.pad(self.numI_S, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.numI_A = numpy.pad(self.numI_A, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.numH = numpy.pad(self.numH, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.numR = numpy.pad(self.numR, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.numF = numpy.pad(self.numF, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.numD_E = numpy.pad(self.numD_E, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.numD_pre = numpy.pad(self.numD_pre, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.numD_S = numpy.pad(self.numD_S, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.numD_A = numpy.pad(self.numD_A, [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.N = numpy.pad(self.N, [(0, 5*self.numNodes)], mode='constant', constant_values=0) if(self.store_Xseries): self.Xseries = numpy.pad(self.Xseries, [(0, 5*self.numNodes), (0,0)], mode=constant, constant_values=0) if(self.nodeGroupData): for groupName in self.nodeGroupData: self.nodeGroupData[groupName]['numS'] = numpy.pad(self.nodeGroupData[groupName]['numS'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.nodeGroupData[groupName]['numE'] = numpy.pad(self.nodeGroupData[groupName]['numE'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.nodeGroupData[groupName]['numI_pre'] = numpy.pad(self.nodeGroupData[groupName]['numI_pre'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.nodeGroupData[groupName]['numI_S'] = numpy.pad(self.nodeGroupData[groupName]['numI_S'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.nodeGroupData[groupName]['numI_A'] = numpy.pad(self.nodeGroupData[groupName]['numI_A'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.nodeGroupData[groupName]['numH'] = numpy.pad(self.nodeGroupData[groupName]['numH'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.nodeGroupData[groupName]['numR'] = numpy.pad(self.nodeGroupData[groupName]['numR'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.nodeGroupData[groupName]['numF'] = numpy.pad(self.nodeGroupData[groupName]['numF'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.nodeGroupData[groupName]['numD_E'] = numpy.pad(self.nodeGroupData[groupName]['numD_E'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.nodeGroupData[groupName]['numD_pre'] = numpy.pad(self.nodeGroupData[groupName]['numD_pre'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.nodeGroupData[groupName]['numD_S'] = numpy.pad(self.nodeGroupData[groupName]['numD_S'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.nodeGroupData[groupName]['numD_A'] = numpy.pad(self.nodeGroupData[groupName]['numD_A'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) self.nodeGroupData[groupName]['N'] = numpy.pad(self.nodeGroupData[groupName]['N'], [(0, 5*self.numNodes)], mode='constant', constant_values=0) return None #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def finalize_data_series(self): self.tseries = numpy.array(self.tseries, dtype=float)[:self.tidx+1] self.numS = numpy.array(self.numS, dtype=float)[:self.tidx+1] self.numE = numpy.array(self.numE, dtype=float)[:self.tidx+1] self.numI_pre = numpy.array(self.numI_pre, dtype=float)[:self.tidx+1] self.numI_S = numpy.array(self.numI_S, dtype=float)[:self.tidx+1] self.numI_A = numpy.array(self.numI_A, dtype=float)[:self.tidx+1] self.numH = numpy.array(self.numH, dtype=float)[:self.tidx+1] self.numR = numpy.array(self.numR, dtype=float)[:self.tidx+1] self.numF = numpy.array(self.numF, dtype=float)[:self.tidx+1] self.numD_E = numpy.array(self.numD_E, dtype=float)[:self.tidx+1] self.numD_pre = numpy.array(self.numD_pre, dtype=float)[:self.tidx+1] self.numD_S = numpy.array(self.numD_S, dtype=float)[:self.tidx+1] self.numD_A = numpy.array(self.numD_A, dtype=float)[:self.tidx+1] self.N = numpy.array(self.N, dtype=float)[:self.tidx+1] if(self.store_Xseries): self.Xseries = self.Xseries[:self.tidx+1, :] if(self.nodeGroupData): for groupName in self.nodeGroupData: self.nodeGroupData[groupName]['numS'] = numpy.array(self.nodeGroupData[groupName]['numS'], dtype=float)[:self.tidx+1] self.nodeGroupData[groupName]['numE'] = numpy.array(self.nodeGroupData[groupName]['numE'], dtype=float)[:self.tidx+1] self.nodeGroupData[groupName]['numI_pre'] = numpy.array(self.nodeGroupData[groupName]['numI_pre'], dtype=float)[:self.tidx+1] self.nodeGroupData[groupName]['numI_S'] = numpy.array(self.nodeGroupData[groupName]['numI_S'], dtype=float)[:self.tidx+1] self.nodeGroupData[groupName]['numI_A'] = numpy.array(self.nodeGroupData[groupName]['numI_A'], dtype=float)[:self.tidx+1] self.nodeGroupData[groupName]['numR'] = numpy.array(self.nodeGroupData[groupName]['numR'], dtype=float)[:self.tidx+1] self.nodeGroupData[groupName]['numF'] = numpy.array(self.nodeGroupData[groupName]['numF'], dtype=float)[:self.tidx+1] self.nodeGroupData[groupName]['numD_E'] = numpy.array(self.nodeGroupData[groupName]['numD_E'], dtype=float)[:self.tidx+1] self.nodeGroupData[groupName]['numD_pre'] = numpy.array(self.nodeGroupData[groupName]['numD_pre'], dtype=float)[:self.tidx+1] self.nodeGroupData[groupName]['numD_S'] = numpy.array(self.nodeGroupData[groupName]['numD_S'], dtype=float)[:self.tidx+1] self.nodeGroupData[groupName]['numD_A'] = numpy.array(self.nodeGroupData[groupName]['numD_A'], dtype=float)[:self.tidx+1] self.nodeGroupData[groupName]['N'] = numpy.array(self.nodeGroupData[groupName]['N'], dtype=float)[:self.tidx+1] return None #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def run_iteration(self): if(self.tidx >= len(self.tseries)-1): # Room has run out in the timeseries storage arrays; double the size of these arrays: self.increase_data_series_length() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 1. Generate 2 random numbers uniformly distributed in (0,1) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ r1 = numpy.random.rand() r2 = numpy.random.rand() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 2. Calculate propensities #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ propensities, transitionTypes = self.calc_propensities() # Terminate when probability of all events is 0: if(propensities.sum() <= 0.0): self.finalize_data_series() return False #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 3. Calculate alpha #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ propensities_flat = propensities.ravel(order='F') cumsum = propensities_flat.cumsum() alpha = propensities_flat.sum() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 4. Compute the time until the next event takes place #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ tau = (1/alpha)*numpy.log(float(1/r1)) self.t += tau #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 5. Compute which event takes place #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ transitionIdx = numpy.searchsorted(cumsum,r2*alpha) transitionNode = transitionIdx % self.numNodes transitionType = transitionTypes[ int(transitionIdx/self.numNodes) ] #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 6. Update node states and data series #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ assert(self.X[transitionNode] == self.transitions[transitionType]['currentState'] and self.X[transitionNode]!=self.F), "Assertion error: Node "+str(transitionNode)+" has unexpected current state "+str(self.X[transitionNode])+" given the intended transition of "+str(transitionType)+"." self.X[transitionNode] = self.transitions[transitionType]['newState'] self.tidx += 1 self.tseries[self.tidx] = self.t self.numS[self.tidx] = numpy.clip(numpy.count_nonzero(self.X==self.S), a_min=0, a_max=self.numNodes) self.numE[self.tidx] = numpy.clip(numpy.count_nonzero(self.X==self.E), a_min=0, a_max=self.numNodes) self.numI_pre[self.tidx] = numpy.clip(numpy.count_nonzero(self.X==self.I_pre), a_min=0, a_max=self.numNodes) self.numI_S[self.tidx] = numpy.clip(numpy.count_nonzero(self.X==self.I_S), a_min=0, a_max=self.numNodes) self.numI_A[self.tidx] = numpy.clip(numpy.count_nonzero(self.X==self.I_A), a_min=0, a_max=self.numNodes) self.numH[self.tidx] = numpy.clip(numpy.count_nonzero(self.X==self.H), a_min=0, a_max=self.numNodes) self.numR[self.tidx] = numpy.clip(numpy.count_nonzero(self.X==self.R), a_min=0, a_max=self.numNodes) self.numF[self.tidx] = numpy.clip(numpy.count_nonzero(self.X==self.F), a_min=0, a_max=self.numNodes) self.numD_E[self.tidx] = numpy.clip(numpy.count_nonzero(self.X==self.D_E), a_min=0, a_max=self.numNodes) self.numD_pre[self.tidx] = numpy.clip(numpy.count_nonzero(self.X==self.D_pre), a_min=0, a_max=self.numNodes) self.numD_S[self.tidx] = numpy.clip(numpy.count_nonzero(self.X==self.D_S), a_min=0, a_max=self.numNodes) self.numD_A[self.tidx] = numpy.clip(numpy.count_nonzero(self.X==self.D_A), a_min=0, a_max=self.numNodes) self.N[self.tidx] = numpy.clip((self.numNodes - self.numF[self.tidx]), a_min=0, a_max=self.numNodes) if(self.store_Xseries): self.Xseries[self.tidx,:] = self.X.T if(self.nodeGroupData): for groupName in self.nodeGroupData: self.nodeGroupData[groupName]['numS'][self.tidx] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.S) self.nodeGroupData[groupName]['numE'][self.tidx] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.E) self.nodeGroupData[groupName]['numI_pre'][self.tidx] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.I_pre) self.nodeGroupData[groupName]['numI_S'][self.tidx] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.I_S) self.nodeGroupData[groupName]['numI_A'][self.tidx] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.I_A) self.nodeGroupData[groupName]['numH'][self.tidx] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.H) self.nodeGroupData[groupName]['numR'][self.tidx] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.R) self.nodeGroupData[groupName]['numF'][self.tidx] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.F) self.nodeGroupData[groupName]['numD_E'][self.tidx] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.D_E) self.nodeGroupData[groupName]['numD_pre'][self.tidx] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.D_pre) self.nodeGroupData[groupName]['numD_S'][self.tidx] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.D_S) self.nodeGroupData[groupName]['numD_A'][self.tidx] = numpy.count_nonzero(self.nodeGroupData[groupName]['mask']*self.X==self.D_A) self.nodeGroupData[groupName]['N'][self.tidx] = numpy.clip((self.nodeGroupData[groupName]['numS'][0] + self.nodeGroupData[groupName]['numE'][0] + self.nodeGroupData[groupName]['numI'][0] + self.nodeGroupData[groupName]['numD_E'][0] + self.nodeGroupData[groupName]['numD_I'][0] + self.nodeGroupData[groupName]['numR'][0]), a_min=0, a_max=self.numNodes) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Terminate if tmax reached or num infections is 0: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(self.t >= self.tmax or self.total_num_infections(self.tidx) < 1): self.finalize_data_series() return False #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ return True #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def run(self, T, checkpoints=None, print_interval=10, verbose='t'): if(T>0): self.tmax += T else: return False #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Pre-process checkpoint values: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(checkpoints): numCheckpoints = len(checkpoints['t']) for chkpt_param, chkpt_values in checkpoints.items(): assert(isinstance(chkpt_values, (list, numpy.ndarray)) and len(chkpt_values)==numCheckpoints), "Expecting a list of values with length equal to number of checkpoint times ("+str(numCheckpoints)+") for each checkpoint parameter." checkpointIdx = numpy.searchsorted(checkpoints['t'], self.t) # Finds 1st index in list greater than given val if(checkpointIdx >= numCheckpoints): # We are out of checkpoints, stop checking them: checkpoints = None else: checkpointTime = checkpoints['t'][checkpointIdx] #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Run the simulation loop: #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% print_reset = True running = True while running: running = self.run_iteration() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Handle checkpoints if applicable: if(checkpoints): if(self.t >= checkpointTime): if(verbose is not False): print("[Checkpoint: Updating parameters]") # A checkpoint has been reached, update param values: if('G' in list(checkpoints.keys())): self.update_G(checkpoints['G'][checkpointIdx]) if('Q' in list(checkpoints.keys())): self.update_Q(checkpoints['Q'][checkpointIdx]) for param in list(self.parameters.keys()): if(param in list(checkpoints.keys())): self.parameters.update({param: checkpoints[param][checkpointIdx]}) # Update parameter data structures and scenario flags: self.update_parameters() # Update the next checkpoint time: checkpointIdx = numpy.searchsorted(checkpoints['t'], self.t) # Finds 1st index in list greater than given val if(checkpointIdx >= numCheckpoints): # We are out of checkpoints, stop checking them: checkpoints = None else: checkpointTime = checkpoints['t'][checkpointIdx] #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(print_interval): if(print_reset and (int(self.t) % print_interval == 0)): if(verbose=="t"): print("t = %.2f" % self.t) if(verbose==True): print("t = %.2f" % self.t) print("\t S = " + str(self.numS[self.tidx])) print("\t E = " + str(self.numE[self.tidx])) print("\t I_pre = " + str(self.numI_pre[self.tidx])) print("\t I_S = " + str(self.numI_S[self.tidx])) print("\t I_A = " + str(self.numI_A[self.tidx])) print("\t H = " + str(self.numH[self.tidx])) print("\t R = " + str(self.numR[self.tidx])) print("\t F = " + str(self.numF[self.tidx])) print("\t D_E = " + str(self.numD_E[self.tidx])) print("\t D_pre = " + str(self.numD_pre[self.tidx])) print("\t D_S = " + str(self.numD_S[self.tidx])) print("\t D_A = " + str(self.numD_A[self.tidx])) print_reset = False elif(not print_reset and (int(self.t) % 10 != 0)): print_reset = True return True #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def plot(self, ax=None, plot_S='line', plot_E='line', plot_I_pre='line', plot_I_S='line', plot_I_A='line', plot_H='line', plot_R='line', plot_F='line', plot_D_E='line', plot_D_pre='line', plot_D_S='line', plot_D_A='line', combine_D=True, color_S='tab:green', color_E='orange', color_I_pre='tomato', color_I_S='crimson', color_I_A='crimson', color_H='violet', color_R='tab:blue', color_F='black', color_D_E='mediumorchid', color_D_pre='mediumorchid', color_D_S='mediumorchid', color_D_A='mediumorchid', color_reference='#E0E0E0', dashed_reference_results=None, dashed_reference_label='reference', shaded_reference_results=None, shaded_reference_label='reference', vlines=[], vline_colors=[], vline_styles=[], vline_labels=[], ylim=None, xlim=None, legend=True, title=None, side_title=None, plot_percentages=True): import matplotlib.pyplot as pyplot #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Create an Axes object if None provided: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(not ax): fig, ax = pyplot.subplots() #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Prepare data series to be plotted: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Fseries = self.numF/self.numNodes if plot_percentages else self.numF Dseries = self.total_num_detected()/self.numNodes if plot_percentages else self.total_num_detected() D_Eseries = self.numD_E/self.numNodes if plot_percentages else self.numD_E D_preseries = self.numD_pre/self.numNodes if plot_percentages else self.numD_pre D_Aseries = self.numD_A/self.numNodes if plot_percentages else self.numD_A D_Sseries = self.numD_S/self.numNodes if plot_percentages else self.numD_S Hseries = self.numH/self.numNodes if plot_percentages else self.numH Eseries = self.numE/self.numNodes if plot_percentages else self.numE I_preseries = self.numI_pre/self.numNodes if plot_percentages else self.numI_pre I_Sseries = self.numI_S/self.numNodes if plot_percentages else self.numI_S I_Aseries = self.numI_A/self.numNodes if plot_percentages else self.numI_A Rseries = self.numR/self.numNodes if plot_percentages else self.numR Sseries = self.numS/self.numNodes if plot_percentages else self.numS #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the reference data: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(dashed_reference_results): dashedReference_tseries = dashed_reference_results.tseries[::int(self.numNodes/100)] dashedReference_infectedStack = dashed_reference_results.total_num_infections()[::int(self.numNodes/100)] / (self.numNodes if plot_percentages else 1) ax.plot(dashedReference_tseries, dashedReference_infectedStack, color='#E0E0E0', linestyle='--', label='Total infections ('+dashed_reference_label+')', zorder=0) if(shaded_reference_results): shadedReference_tseries = shaded_reference_results.tseries shadedReference_infectedStack = shaded_reference_results.total_num_infections() / (self.numNodes if plot_percentages else 1) ax.fill_between(shaded_reference_results.tseries, shadedReference_infectedStack, 0, color='#EFEFEF', label='Total infections ('+shaded_reference_label+')', zorder=0) ax.plot(shaded_reference_results.tseries, shadedReference_infectedStack, color='#E0E0E0', zorder=1) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Draw the stacked variables: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ topstack = numpy.zeros_like(self.tseries) if(any(Fseries) and plot_F=='stacked'): ax.fill_between(numpy.ma.masked_where(Fseries<=0, self.tseries), numpy.ma.masked_where(Fseries<=0, topstack+Fseries), topstack, color=color_F, alpha=0.5, label='$F$', zorder=2) ax.plot( numpy.ma.masked_where(Fseries<=0, self.tseries), numpy.ma.masked_where(Fseries<=0, topstack+Fseries), color=color_F, zorder=3) topstack = topstack+Fseries if(any(Hseries) and plot_H=='stacked'): ax.fill_between(numpy.ma.masked_where(Hseries<=0, self.tseries), numpy.ma.masked_where(Hseries<=0, topstack+Hseries), topstack, color=color_H, alpha=0.5, label='$H$', zorder=2) ax.plot( numpy.ma.masked_where(Hseries<=0, self.tseries), numpy.ma.masked_where(Hseries<=0, topstack+Hseries), color=color_H, zorder=3) topstack = topstack+Hseries if(combine_D and any(Dseries) and plot_D_E=='stacked' and plot_D_pre=='stacked' and plot_D_S=='stacked' and plot_D_A=='stacked'): ax.fill_between(numpy.ma.masked_where(Dseries<=0, self.tseries), numpy.ma.masked_where(Dseries<=0, topstack+Dseries), topstack, color=color_D_S, alpha=0.5, label='$D_{all}$', zorder=2) ax.plot( numpy.ma.masked_where(Dseries<=0, self.tseries), numpy.ma.masked_where(Dseries<=0, topstack+Dseries), color=color_D_S, zorder=3) topstack = topstack+Dseries else: if(any(D_Eseries) and plot_D_E=='stacked'): ax.fill_between(numpy.ma.masked_where(D_Eseries<=0, self.tseries), numpy.ma.masked_where(D_Eseries<=0, topstack+D_Eseries), topstack, color=color_D_E, alpha=0.5, label='$D_E$', zorder=2) ax.plot( numpy.ma.masked_where(D_Eseries<=0, self.tseries), numpy.ma.masked_where(D_Eseries<=0, topstack+D_Eseries), color=color_D_E, zorder=3) topstack = topstack+D_Eseries if(any(D_preseries) and plot_D_pre=='stacked'): ax.fill_between(numpy.ma.masked_where(D_preseries<=0, self.tseries), numpy.ma.masked_where(D_preseries<=0, topstack+D_preseries), topstack, color=color_D_pre, alpha=0.5, label='$D_{pre}$', zorder=2) ax.plot( numpy.ma.masked_where(D_preseries<=0, self.tseries), numpy.ma.masked_where(D_preseries<=0, topstack+D_preseries), color=color_D_pre, zorder=3) topstack = topstack+D_preseries if(any(D_Sseries) and plot_D_S=='stacked'): ax.fill_between(numpy.ma.masked_where(D_Sseries<=0, self.tseries), numpy.ma.masked_where(D_Sseries<=0, topstack+D_Sseries), topstack, color=color_D_S, alpha=0.5, label='$D_S$', zorder=2) ax.plot( numpy.ma.masked_where(D_Sseries<=0, self.tseries), numpy.ma.masked_where(D_Sseries<=0, topstack+D_Sseries), color=color_D_S, zorder=3) topstack = topstack+D_Sseries if(any(D_Aseries) and plot_D_A=='stacked'): ax.fill_between(numpy.ma.masked_where(D_Aseries<=0, self.tseries), numpy.ma.masked_where(D_Aseries<=0, topstack+D_Aseries), topstack, color=color_D_A, alpha=0.5, label='$D_A$', zorder=2) ax.plot( numpy.ma.masked_where(D_Aseries<=0, self.tseries), numpy.ma.masked_where(D_Aseries<=0, topstack+D_Aseries), color=color_D_A, zorder=3) topstack = topstack+D_Aseries if(any(Eseries) and plot_E=='stacked'): ax.fill_between(numpy.ma.masked_where(Eseries<=0, self.tseries), numpy.ma.masked_where(Eseries<=0, topstack+Eseries), topstack, color=color_E, alpha=0.5, label='$E$', zorder=2) ax.plot( numpy.ma.masked_where(Eseries<=0, self.tseries), numpy.ma.masked_where(Eseries<=0, topstack+Eseries), color=color_E, zorder=3) topstack = topstack+Eseries if(any(I_preseries) and plot_I_pre=='stacked'): ax.fill_between(numpy.ma.masked_where(I_preseries<=0, self.tseries), numpy.ma.masked_where(I_preseries<=0, topstack+I_preseries), topstack, color=color_I_pre, alpha=0.5, label='$I_{pre}$', zorder=2) ax.plot( numpy.ma.masked_where(I_preseries<=0, self.tseries), numpy.ma.masked_where(I_preseries<=0, topstack+I_preseries), color=color_I_pre, zorder=3) topstack = topstack+I_preseries if(any(I_Sseries) and plot_I_S=='stacked'): ax.fill_between(numpy.ma.masked_where(I_Sseries<=0, self.tseries), numpy.ma.masked_where(I_Sseries<=0, topstack+I_Sseries), topstack, color=color_I_S, alpha=0.5, label='$I_S$', zorder=2) ax.plot( numpy.ma.masked_where(I_Sseries<=0, self.tseries), numpy.ma.masked_where(I_Sseries<=0, topstack+I_Sseries), color=color_I_S, zorder=3) topstack = topstack+I_Sseries if(any(I_Aseries) and plot_I_A=='stacked'): ax.fill_between(numpy.ma.masked_where(I_Aseries<=0, self.tseries), numpy.ma.masked_where(I_Aseries<=0, topstack+I_Aseries), topstack, color=color_I_A, alpha=0.25, label='$I_A$', zorder=2) ax.plot( numpy.ma.masked_where(I_Aseries<=0, self.tseries), numpy.ma.masked_where(I_Aseries<=0, topstack+I_Aseries), color=color_I_A, zorder=3) topstack = topstack+I_Aseries if(any(Rseries) and plot_R=='stacked'): ax.fill_between(numpy.ma.masked_where(Rseries<=0, self.tseries), numpy.ma.masked_where(Rseries<=0, topstack+Rseries), topstack, color=color_R, alpha=0.5, label='$R$', zorder=2) ax.plot( numpy.ma.masked_where(Rseries<=0, self.tseries), numpy.ma.masked_where(Rseries<=0, topstack+Rseries), color=color_R, zorder=3) topstack = topstack+Rseries if(any(Sseries) and plot_S=='stacked'): ax.fill_between(numpy.ma.masked_where(Sseries<=0, self.tseries), numpy.ma.masked_where(Sseries<=0, topstack+Sseries), topstack, color=color_S, alpha=0.5, label='$S$', zorder=2) ax.plot( numpy.ma.masked_where(Sseries<=0, self.tseries),
numpy.ma.masked_where(Sseries<=0, topstack+Sseries)
numpy.ma.masked_where
import matplotlib.pyplot as plt import numpy as np import sys import os _module_path = os.path.dirname(__file__) sys.path.append("D:/uni/tomography-calibration") from projectionSelector import load_projection import globalParameters as gp from calibrationShots import keys from .simulateSignals import simulate_signal from skimage.draw import ellipse from matplotlib.ticker import (MultipleLocator, FormatStrFormatter, AutoMinorLocator) import matplotlib.style as mplstyle # mplstyle.use('ggplot') mplstyle.use('bmh') plt.rcParams.update({'font.size': 12}) plt.rcParams.update({'figure.dpi': 120}) label_fontsize = 12 orange = (239./255., 123./255., 7./255.) blue = (0./255., 159./255., 227./255.) dark = (68./255., 1./255., 84./255.) majorLocator = MultipleLocator(5) # Step of the major ticks majorFormatter = FormatStrFormatter('%d') # String format for major ticks minorLocator = MultipleLocator(1) # Step of the minor ticks def signal_simulation_histogram(phantoms): """ Show the super fancy histogram for the simulated versus real signals for a given phantom experiment. Parameters ---------- phantoms: list of int or string Integer associated with lamp position or string with format "radius_3-digit-angle", e.g. "3_045" Returns ------- ok: int 1 if function succeeded """ cone_projections = load_projection("complex-view-cone-45.npy")[0]['projections'] cone_projections = cone_projections[:32] line_projections = load_projection("line-approximation-45-etendue.npy")[0]['projections'] line_projections = line_projections[:32] phantom_profile = np.zeros((45, 45)) f_simulated_cone = np.zeros(32) f_simulated_line = np.zeros(32) f_measured = np.zeros(32) for phantom in phantoms: try: phantom_number = keys.index(phantom) except ValueError: phantom_number = phantom phantom_array = np.load(os.path.join(_module_path, "../phantoms-45-circle/Phantom-%d.npy" % phantom_number)) phantom_profile += phantom_array.reshape((gp.n_rows, gp.n_cols)) f_c, f_m = simulate_signal(phantom_number, cone_projections, plot=False) f_l, f_m = simulate_signal(phantom_number, line_projections, plot=False) f_simulated_cone += f_c f_simulated_line += f_l f_measured += f_m fig = plt.figure(figsize=(6, 6)) vessel = fig.add_axes([0.3, 0.33, 0.33, 0.33]) # [Left, Bottom, Width, Height] vessel.set_aspect('equal', anchor='C') out = fig.add_axes([0.72, 0.33, 0.15, 0.33]) top = fig.add_axes([0.3, 0.73, 0.33, 0.15]) vessel.pcolormesh(gp.x_array_plot, gp.y_array_plot, phantom_profile) vessel.add_artist(plt.Circle((0., 0.), 85., color='w', fill=False)) vessel.set_xlabel("R (mm)", fontsize=12) vessel.set_ylabel("z (mm)", fontsize=12) vessel.set_xticks([-50, 0, 50]) vessel.set_yticks([-50, 0, 50]) top.bar(np.arange(1, 17), height=f_measured[:16], width=0.25, align='edge', label='real', color=dark) top.bar(
np.arange(1, 17)
numpy.arange
import collections import numpy as np import tensorflow as tf from universe import vectorized from utils import plot_decision_boundary class NoiseWrapper(vectorized.ObservationWrapper): def __init__(self, env): super(NoiseWrapper, self).__init__(env) def _step(self, action): observation, reward, done, info = self.env.step(action) adversarial_observation = self.observation(observation) info = self._info(observation, adversarial_observation, info) return adversarial_observation, reward, done, info def _info(self, observation_n, adversarial_observation_n, info): for observation, adversarial_observation, log in zip(observation_n, adversarial_observation_n, info['n']): diff = (observation - adversarial_observation).flatten() log['adversary/l2'] = np.linalg.norm(diff, ord=2) / np.sqrt(diff.shape[0]) return info def _observation(self, observation_n): return [self._noisy(observation) for observation in observation_n] def _noisy(self, observation): return observation class RandomNoiseWrapper(NoiseWrapper): def __init__(self, env, intensity=0.1): super(RandomNoiseWrapper, self).__init__(env) self.intensity = intensity def _noisy(self, observation): return observation + self.intensity * np.random.random_sample(observation.shape) class FGSMNoiseWrapper(NoiseWrapper): def __init__(self, env, intensity=0.1, skip=0, reuse=False, vf=False, vf_adversarial=True, boundary=True): super(FGSMNoiseWrapper, self).__init__(env) self.intensity = intensity self.skip = skip self.reuse = reuse self.vf = vf self.vf_adversarial = vf_adversarial self.boundary = boundary self.boundary_frames = 50 self._last_boundary_frame = 0 def _reset(self): self._last_noise = None self._current_step = 0 self._injects = 0 return super(FGSMNoiseWrapper, self)._reset() def setup(self, policy): self.policy = policy self._policy_state = policy.get_initial_features() # Action probabilities given by the policy. y = policy.logits # Get the action with the highest value. y_true = tf.argmax(y, 1) # Use categorical cross-entropy as the loss function, as we want the adversarial # example to be as far away from possible from the true action. We assume that the # policy matches the actual Q function well (e.g. that argmax(y) is really the # optimal action to take). loss = tf.nn.sparse_softmax_cross_entropy_with_logits(y, y_true) gradient = tf.gradients(loss, policy.x) self.noise_op = self.intensity * tf.sign(gradient) def _info(self, observation_n, adversarial_observation_n, info): info = super(FGSMNoiseWrapper, self)._info(observation_n, adversarial_observation_n, info) for observation, adversarial_observation, log in zip(observation_n, adversarial_observation_n, info['n']): log['adversary/injects'] = self._injects return info def _get_value_function(self, observation): sess = tf.get_default_session() fetched = sess.run([self.policy.vf] + self.policy.state_out, { self.policy.x: [observation], self.policy.state_in[0]: self._policy_state[0], self.policy.state_in[1]: self._policy_state[1], }) self._policy_state = fetched[1:] return fetched[0] def _noisy(self, observation): """ Generate adversarial noise using the FGSM method for a given observation. """ # Get value function. if self.vf: if self.vf_adversarial: vf_observation = self._last_noise if self._last_noise is not None else observation else: vf_observation = observation vf = self._get_value_function(vf_observation) if (not self.skip or self._current_step % self.skip == 0) and (not self.vf or vf > 0.5): # Generate noise based on the current frame. sess = tf.get_default_session() noise = sess.run(self.noise_op, { self.policy.x: observation.reshape([1] + list(observation.shape)), self.policy.state_in[0]: self._policy_state[0], self.policy.state_in[1]: self._policy_state[1], }) self._last_noise = noise.reshape(observation.shape) noise = self._last_noise self._injects += 1 # Visualize action decision boundary. if self.boundary and self._last_boundary_frame < self.boundary_frames: self._last_boundary_frame += 1 attack_norm = np.linalg.norm(noise) b_noise = noise / attack_norm b_random = np.random.random_sample(b_noise.shape) print('frame', self._last_boundary_frame, 'attack', attack_norm, 'random', np.linalg.norm(b_random)) b_random /= np.linalg.norm(b_random) def sample_policy(x): samples = [] for sample in xrange(7): fetched = self.policy.act(x, *self.policy._last_state, track_state=False) samples.append(fetched[0].argmax()) return collections.Counter(samples).most_common()[0][0] def map_action(action): """Map action based on semantics.""" # TODO: This should be based on the environment. return { 0: 0, # no operation 1: 0, # no operation 2: 1, # move up 3: 2, # move down 4: 1, # move up 5: 2, # move down }[action] vis_min = -2.0 * attack_norm vis_max = 2.0 * attack_norm vis_steps = 101 b_observations = np.zeros([vis_steps, vis_steps], dtype=np.int8) b_samples = {} # Preload some coordinates to avoid images being placed there. sampled_images = np.array([ [0., 0.], [attack_norm, 0.], ]) limit_dist = vis_max / 10. limit_edge = vis_max / 4. for u_index, u in enumerate(np.linspace(vis_min, vis_max, vis_steps)): for v_index, v in enumerate(np.linspace(vis_min, vis_max, vis_steps)): b_image = observation + u * b_noise + v * b_random b_observations[v_index, u_index] = map_action(sample_policy(b_image)) position =
np.array([u, v])
numpy.array
#!/usr/bin/env python # -*- coding: utf-8 -*- # # ade: # Asynchronous Differential Evolution. # # Copyright (C) 2018-19 by <NAME>, # http://edsuom.com/ade # # See edsuom.com for API documentation as well as information about # Ed's background and other projects, software and otherwise. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the # License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an "AS # IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language # governing permissions and limitations under the License. """ Unit tests for L{ade.report}. """ import pickle import numpy as np from twisted.internet import defer from ade.util import * from ade import history from ade.test import testbase as tb class Test_Analysis(tb.TestCase): def setUp(self): self.names = ['foo', 'bar', 'zebra'] self.X = np.array([ [110.0, 1, 2, 5], #0 [810.0, 2, 3, 4], #1 [270.0, 3, 4, 3], #2 [580.0, 4, 5, 2], #3 [999.0, 5, 6, 1], #4 ]) self.K = [0, 3, 2, 1, 4] self.a = history.Analysis(self.names, self.X, self.K) def test_name2k_k2name(self): for k, name in enumerate(self.names): self.assertEqual(self.a.name2k(name), k+1) self.assertEqual(self.a.k2name(k+1), name) def test_valueVsSSE(self): XY = self.a.value_vs_SSE(['bar']) self.assertEqual(len(XY), 2) self.assertItemsEqual(XY[0], [110., 580., 270., 810., 999.]) self.assertItemsEqual(XY[1], [2, 5, 4, 3, 6]) def test_corr(self): self.assertAlmostEqual(self.a.corr(1, 2), +1) self.assertAlmostEqual(self.a.corr(1, 3), -1) def test_Kf12(self): # 0.0 1.0 K = self.a.Kf12(0.0, 1.0) self.assertItemsEqual(K, [0, 3, 2, 1]) # 0.0 0.6 1.01 K = self.a.Kf12(0.0, 0.6) self.assertItemsEqual(K, [0, 3, 2]) K = self.a.Kf12(0.6, 1.01) self.assertItemsEqual(K, [1, 4]) # 0.0 0.3 1.01 K = self.a.Kf12(0.0, 0.3) self.assertItemsEqual(K, [0, 2]) K = self.a.Kf12(0.3, 1.01) self.assertItemsEqual(K, [3, 1, 4]) def test_Kp12(self): K = self.a.Kp12(0.0, 0.5) self.assertItemsEqual(K, [0, 3, 2]) K = self.a.Kp12(0.2, 0.7) self.assertItemsEqual(K, [3, 2, 1]) K = self.a.Kp12(0.5, 1.01) self.assertItemsEqual(K, [2, 1, 4]) class Test_ClosestPairFinder(tb.TestCase): def setUp(self): self.cpf = history.ClosestPairFinder(10, 4) def test_setRow(self): self.cpf.S = True # Just not None, for testing for k in range(10): Z = [10.0+k] + [k,k+1,k+2] self.cpf.setRow(k, Z) self.assertEqual(self.cpf.S, None) self.assertItemsEqual(self.cpf.X[0,:], [10.0, 0, 1, 2]) def test_clearRow(self): self.cpf.setRow(0, [100.0, 2, 3, 4]) self.cpf.S = True # Just not None, for testing self.cpf.clearRow(0) self.assertEqual(self.cpf.S, None) self.assertEqual(len(self.cpf.K), 0) def test_pairs_sampled(self): self.cpf.K = {3, 1, 4, 5, 9, 2} for N in (2, 3, 4): KP = self.cpf.pairs_sampled(N) self.assertEqual(KP.shape, (N, 2)) for k1, k2 in KP: self.assertGreater(k2, k1) self.assertGreater(k1, 0) self.assertGreater(k2, 0) self.assertLess(k1, 10) self.assertLess(k2, 10) def test_pairs_all(self): self.cpf.K = {3, 1, 4, 5, 9, 2} N = len(self.cpf.K) Np = N*(N-1)/2 KP = self.cpf.pairs_all() self.assertEqual(KP.shape, (Np, 2)) for k1, k2 in KP: self.assertGreater(k2, k1) self.assertGreater(k1, 0) self.assertGreater(k2, 0) self.assertLess(k1, 10) self.assertLess(k2, 10) @defer.inlineCallbacks def test_diffs(self): self.cpf.setRow(0, [ 90.0, 0.11, 0.2, 0.3]) self.cpf.setRow(1, [ 90.0, 0.09, 0.2, 0.3]) self.cpf.setRow(2, [100.0, 0.09, 0.2, 0.3]) self.cpf.setRow(3, [110.0, 0.11, 0.2, 0.3]) self.cpf.setRow(4, [110.0, 0.10, 0.2, 0.3]) self.assertEqual(self.cpf.S, None) K = np.array([[0, 1], [0, 2], [0, 3], [2, 3], [3, 4]]) D = yield self.cpf(K=K) self.assertEqual(self.cpf.S.shape, (4,)) s0 = 1.0/np.var([90., 90., 100., 110., 110.]) self.assertAlmostEqual(self.cpf.S[0], s0) s1 = 1.0/np.var([0.11, 0.09, 0.09, 0.11, 0.10]) self.assertAlmostEqual(self.cpf.S[1], s1) # 0-1 0-2 0-3 2-3 3-4 SSEs = [90.0, 95.0, 100.0, 105.0, 110.0] for k, de in enumerate( [s1*0.02**2, # 0, 1 s0*10.0**2 + s1*0.02**2, # 0, 2 s0*20.0**2, # 0, 3 s0*10.0**2 + s1*0.02**2, # 2, 3 s1*0.01**2 # 3, 4 ]): #print k, D[k], de/np.sqrt(SSEs[k]), self.assertWithinOnePercent(D[k], de/SSEs[k]) @defer.inlineCallbacks def test_diffs_someNeverpops(self): self.cpf.setRow(0, [100.0, 0.1130, 0.10, 0.100], 1) self.cpf.setRow(1, [100.0, 0.1010, 0.11, 0.100], 1) self.cpf.setRow(2, [100.0, 0.0940, 0.10, 0.100], 0) self.cpf.setRow(3, [100.0, 0.0957, 0.10, 0.099], 1) self.cpf.setRow(4, [100.0, 0.1100, 0.11, 0.100], 0) self.cpf.setRow(5, [100.0, 0.1100, 0.11, 0.110], 1) K = np.array([[0, 1], [0, 2], [2, 3]]) D = yield self.cpf(K=K) # Kn = 4, N = 6 Kn_penalty = 1 + np.exp(12*(4.0/6 - 0.4)) penalty = [Kn_penalty if x else 1.0 for x in (1, 1, 0)] for k, p in enumerate(penalty): self.assertWithinTenPercent(D[k], 0.00120/p) @defer.inlineCallbacks def test_call(self): self.cpf.setRow(0, [ 90.0, 0.11, 0.2, 0.30]) self.cpf.setRow(1, [ 90.0, 0.09, 0.2, 0.30]) self.cpf.setRow(2, [100.0, 0.09, 0.2, 0.30]) self.cpf.setRow(3, [110.0, 0.11, 0.2, 0.30]) self.cpf.setRow(4, [110.0, 0.10, 0.2, 0.30]) self.cpf.setRow(5, [140.0, 0.10, 0.2, 0.30]) self.cpf.setRow(6, [140.0, 0.10, 0.2, 0.31]) self.cpf.setRow(7, [140.1, 0.10, 0.2, 0.31]) kr = yield self.cpf() self.assertEqual(kr, 6) self.cpf.clearRow(6) kr = yield self.cpf() self.assertEqual(kr, 1) self.cpf.clearRow(1) kr = yield self.cpf() self.assertEqual(kr, 0) class Test_History(tb.TestCase): def setUp(self): self.names = ['foo', 'bar', 'zebra'] self.h = history.History(self.names, N_max=10) def tearDown(self): return self.h.shutdown() def test_kkr(self): self.h.X = np.array([[ # 0 1 2 3 4 5 6 7 kr # 2 0 3 - 1 4 - 5 k 3, 1, 4, 0, 2, 5, 0, 9]]).transpose() self.h.K = [ # 0 1 2 3 4 5 k 1, 4, 0, 2, 5, 7] # 1 2 3 4 5 9 X[K,0] N = 6 for SSE, k_exp, kr_exp in ( (7.0, 5, 3), (1.0, 0, 3), (99, 6, 3), ): k, kr = self.h.kkr(SSE, N) self.assertEqual(k, k_exp) self.assertEqual(kr, kr_exp) @defer.inlineCallbacks def test_add_worsening(self): for k in range(5): i = tb.MockIndividual(values=[k,k+1,k+2]) i.SSE = 100.0 + k yield self.h.add(i) self.assertEqual(len(self.h), k+1) self.assertItemsEqual(self.h[k], [i.SSE] + i.values) for k, values in enumerate(self.h): self.assertItemsEqual(values, [k,k+1,k+2]) @defer.inlineCallbacks def test_add_ignoreInfSSE(self): for k in range(5): i = tb.MockIndividual(values=[k,k+1,k+2]) i.SSE = 100.0 + k if k < 3 else float('+inf') kr = yield self.h.add(i) if k < 3: self.assertLess(kr, 10) self.assertEqual(len(self.h), k+1) self.assertItemsEqual(self.h[k], [i.SSE] + i.values) else: self.assertIs(kr, None) self.assertEqual(len(self.h), 3) for k, values in enumerate(self.h): self.assertItemsEqual(values, [k,k+1,k+2]) @defer.inlineCallbacks def test_add_improving(self): for k in range(5): i = tb.MockIndividual(values=[k,k+1,k+2]) i.SSE = 100.0 - k yield self.h.add(i) self.assertEqual(len(self.h), k+1) for k, values in enumerate(self.h): self.assertItemsEqual(values, [4-k,4-k+1,4-k+2]) def popitem_predictably(self, x): value = sorted(x.values())[0] for key, this_value in x.items(): if this_value == value: x.pop(key) return key, value @defer.inlineCallbacks def test_add_limitSize_worsening(self): krPopped = set() for k in range(15): i = tb.MockIndividual(values=[k,k+1,k+2]) i.SSE = 1000.0 + k yield self.h.add(i) if len(self.h.kr) == 10: iHash, kr = self.popitem_predictably(self.h.kr) self.h.notInPop(kr) krPopped.add(kr) self.assertEqual(len(self.h), 10) valuesPrev = None for values in self.h: if valuesPrev is not None: for v, vp in zip(values, valuesPrev): self.assertGreater(v, vp) valuesPrev = values @defer.inlineCallbacks def test_add_limitSize_improving(self): krPopped = set() for k in range(15): i = tb.MockIndividual(values=[k,k+1,k+2]) i.SSE = 1000.0 - k yield self.h.add(i) if len(self.h.kr) == 10: iHash, kr = self.popitem_predictably(self.h.kr) yield self.h.notInPop(kr) krPopped.add(kr) self.assertEqual(len(self.h), 10) valuesPrev = None for values in self.h: if valuesPrev is not None: for v, vp in zip(values, valuesPrev): self.assertLess(v, vp) valuesPrev = values @defer.inlineCallbacks def test_add_limitSize_improving_neverInPop(self): for k in range(15): i = tb.MockIndividual(values=[k,k+1,k+2]) i.SSE = 1000.0 - k yield self.h.add(i, neverInPop=True) self.assertEqual(len(self.h), 10) self.assertEqual(len(self.h.Kp), 0) self.assertEqual(len(self.h.Kn), 10) valuesPrev = None for values in self.h: if valuesPrev is not None: for v, vp in zip(values, valuesPrev): self.assertLess(v, vp) valuesPrev = values @defer.inlineCallbacks def test_add_then_purge(self): for k in range(5): i = tb.MockIndividual(values=[k,k+1,k+2]) i.SSE = 100.0 - k yield self.h.add(i) self.assertEqual(len(self.h), k+1) self.assertEqual(len(self.h), 5) self.assertEqual(len(self.h.Kp), 5) self.h.purgePop() self.assertEqual(len(self.h), 0) self.assertEqual(len(self.h.Kp), 0) @defer.inlineCallbacks def test_value_vs_SSE(self): for k in range(10): i = tb.MockIndividual(values=[k,k+1,k+2]) i.SSE = 10.0 + k yield self.h.add(i) XY = yield self.h.value_vs_SSE(['bar']) self.assertEqual(len(XY), 2) self.assertItemsEqual(XY[0], np.linspace(10.0, 19.0, 10)) self.assertItemsEqual(XY[1], np.linspace(1.0, 10.0, 10)) @defer.inlineCallbacks def test_value_vs_SSE_maxRatio(self): for k in range(10): i = tb.MockIndividual(values=[k,k+1,k+2]) i.SSE = 10.0 + k yield self.h.add(i) XY = yield self.h.value_vs_SSE(['bar'], maxRatio=1.5) self.assertEqual(len(XY), 2) self.assertItemsEqual(XY[0], np.linspace(10.0, 15.0, 6)) self.assertItemsEqual(XY[1], np.linspace(1.0, 6.0, 6)) @defer.inlineCallbacks def test_value_vs_SSE_inPop(self): for k in range(10): i = tb.MockIndividual(values=[k,k+1,k+2]) i.SSE = 10.0 + k kr = yield self.h.add(i) self.h.notInPop(kr) XY = yield self.h.value_vs_SSE(['bar'], inPop=True) self.assertEqual(len(XY), 2) self.assertItemsEqual(XY[0], np.linspace(10.0, 18.0, 9)) self.assertItemsEqual(XY[1], np.linspace(1.0, 9.0, 9)) @defer.inlineCallbacks def test_value_vs_SSE_notInPop(self): for k in range(10): i = tb.MockIndividual(values=[k,k+1,k+2]) i.SSE = 10.0 + k kr = yield self.h.add(i) if k > 5: self.h.notInPop(kr) XY = yield self.h.value_vs_SSE(['bar'], notInPop=True) self.assertEqual(len(XY), 2) self.assertItemsEqual(XY[0], np.linspace(16.0, 19.0, 4)) self.assertItemsEqual(XY[1], np.linspace(7.0, 10.0, 4)) @defer.inlineCallbacks def test_pickle(self): def values(k): return [k, np.exp(-0.1*k),
np.exp(-0.5*k)
numpy.exp
import numpy as np from math import factorial def main(): x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) y =
np.array([1, 2, 3, 4])
numpy.array
import os import os.path from collections import defaultdict from functools import partial import numpy as np from yt.frontends.art.definitions import ( hydro_struct, particle_fields, particle_star_fields, star_struct, ) from yt.units.yt_array import YTArray, YTQuantity from yt.utilities.fortran_utils import read_vector, skip from yt.utilities.io_handler import BaseIOHandler from yt.utilities.logger import ytLogger as mylog class IOHandlerART(BaseIOHandler): _dataset_type = "art" tb, ages = None, None cache = None masks = None caching = True def __init__(self, *args, **kwargs): self.cache = {} self.masks = {} super().__init__(*args, **kwargs) self.ws = self.ds.parameters["wspecies"] self.ls = self.ds.parameters["lspecies"] self.file_particle = self.ds._file_particle_data self.file_stars = self.ds._file_particle_stars self.Nrow = self.ds.parameters["Nrow"] def _read_fluid_selection(self, chunks, selector, fields, size): # Chunks in this case will have affiliated domain subset objects # Each domain subset will contain a hydro_offset array, which gives # pointers to level-by-level hydro information tr = defaultdict(list) cp = 0 for chunk in chunks: for subset in chunk.objs: # Now we read the entire thing f = open(subset.domain.ds._file_amr, "rb") # This contains the boundary information, so we skim through # and pick off the right vectors rv = subset.fill(f, fields, selector) for ft, f in fields: d = rv.pop(f) mylog.debug( "Filling %s with %s (%0.3e %0.3e) (%s:%s)", f, d.size, d.min(), d.max(), cp, cp + d.size, ) tr[(ft, f)].append(d) cp += d.size d = {} for field in fields: d[field] = np.concatenate(tr.pop(field)) return d def _get_mask(self, selector, ftype): key = (selector, ftype) if key in self.masks.keys() and self.caching: return self.masks[key] pstr = "particle_position_%s" x, y, z = (self._get_field((ftype, pstr % ax)) for ax in "xyz") mask = selector.select_points(x, y, z, 0.0) if self.caching: self.masks[key] = mask return self.masks[key] else: return mask def _read_particle_coords(self, chunks, ptf): chunks = list(chunks) for _chunk in chunks: for ptype in sorted(ptf): x = self._get_field((ptype, "particle_position_x")) y = self._get_field((ptype, "particle_position_y")) z = self._get_field((ptype, "particle_position_z")) yield ptype, (x, y, z) def _read_particle_fields(self, chunks, ptf, selector): chunks = list(chunks) for _chunk in chunks: for ptype, field_list in sorted(ptf.items()): x = self._get_field((ptype, "particle_position_x")) y = self._get_field((ptype, "particle_position_y")) z = self._get_field((ptype, "particle_position_z")) mask = selector.select_points(x, y, z, 0.0) if mask is None: continue for field in field_list: data = self._get_field((ptype, field)) yield (ptype, field), data[mask] def _get_field(self, field): if field in self.cache.keys() and self.caching: mylog.debug("Cached %s", str(field)) return self.cache[field] mylog.debug("Reading %s", str(field)) tr = {} ftype, fname = field ptmax = self.ws[-1] pbool, idxa, idxb = _determine_field_size(self.ds, ftype, self.ls, ptmax) npa = idxb - idxa sizes = np.diff(np.concatenate(([0], self.ls))) rp = partial( read_particles, self.file_particle, self.Nrow, idxa=idxa, idxb=idxb ) for ax in "xyz": if fname.startswith(f"particle_position_{ax}"): dd = self.ds.domain_dimensions[0] off = 1.0 / dd tr[field] = rp(fields=[ax])[0] / dd - off if fname.startswith(f"particle_velocity_{ax}"): (tr[field],) = rp(fields=["v" + ax]) if fname.startswith("particle_mass"): a = 0 data = np.zeros(npa, dtype="f8") for ptb, size, m in zip(pbool, sizes, self.ws): if ptb: data[a : a + size] = m a += size tr[field] = data elif fname == "particle_index": tr[field] = np.arange(idxa, idxb) elif fname == "particle_type": a = 0 data = np.zeros(npa, dtype="int64") for i, (ptb, size) in enumerate(zip(pbool, sizes)): if ptb: data[a : a + size] = i a += size tr[field] = data if pbool[-1] and fname in particle_star_fields: data = read_star_field(self.file_stars, field=fname) temp = tr.get(field, np.zeros(npa, "f8")) nstars = self.ls[-1] - self.ls[-2] if nstars > 0: temp[-nstars:] = data tr[field] = temp if fname == "particle_creation_time": self.tb, self.ages, data = interpolate_ages( tr[field][-nstars:], self.file_stars, self.tb, self.ages, self.ds.current_time, ) temp = tr.get(field, np.zeros(npa, "f8")) temp[-nstars:] = data tr[field] = temp del data # We check again, after it's been filled if fname.startswith("particle_mass"): # We now divide by NGrid in order to make this match up. Note that # this means that even when requested in *code units*, we are # giving them as modified by the ng value. This only works for # dark_matter -- stars are regular matter. tr[field] /= self.ds.domain_dimensions.prod() if tr == {}: tr = {f: np.array([]) for f in [field]} if self.caching: self.cache[field] = tr[field] return self.cache[field] else: return tr[field] class IOHandlerDarkMatterART(IOHandlerART): _dataset_type = "dm_art" def _count_particles(self, data_file): return { k: self.ds.parameters["lspecies"][i] for i, k in enumerate(self.ds.particle_types_raw) } def _identify_fields(self, domain): field_list = [] self.particle_field_list = [f for f in particle_fields] for ptype in self.ds.particle_types_raw: for pfield in self.particle_field_list: pfn = (ptype, pfield) field_list.append(pfn) return field_list, {} def _get_field(self, field): if field in self.cache.keys() and self.caching: mylog.debug("Cached %s", str(field)) return self.cache[field] mylog.debug("Reading %s", str(field)) tr = {} ftype, fname = field ptmax = self.ws[-1] pbool, idxa, idxb = _determine_field_size(self.ds, ftype, self.ls, ptmax) npa = idxb - idxa sizes = np.diff(np.concatenate(([0], self.ls))) rp = partial( read_particles, self.file_particle, self.Nrow, idxa=idxa, idxb=idxb ) for ax in "xyz": if fname.startswith(f"particle_position_{ax}"): # This is not the same as domain_dimensions dd = self.ds.parameters["ng"] off = 1.0 / dd tr[field] = rp(fields=[ax])[0] / dd - off if fname.startswith(f"particle_velocity_{ax}"): (tr[field],) = rp(["v" + ax]) if fname.startswith("particle_mass"): a = 0 data = np.zeros(npa, dtype="f8") for ptb, size, m in zip(pbool, sizes, self.ws): if ptb: data[a : a + size] = m a += size tr[field] = data elif fname == "particle_index": tr[field] = np.arange(idxa, idxb) elif fname == "particle_type": a = 0 data = np.zeros(npa, dtype="int64") for i, (ptb, size) in enumerate(zip(pbool, sizes)): if ptb: data[a : a + size] = i a += size tr[field] = data # We check again, after it's been filled if fname.startswith("particle_mass"): # We now divide by NGrid in order to make this match up. Note that # this means that even when requested in *code units*, we are # giving them as modified by the ng value. This only works for # dark_matter -- stars are regular matter. tr[field] /= self.ds.domain_dimensions.prod() if tr == {}: tr[field] = np.array([]) if self.caching: self.cache[field] = tr[field] return self.cache[field] else: return tr[field] def _yield_coordinates(self, data_file): for ptype in self.ds.particle_types_raw: x = self._get_field((ptype, "particle_position_x")) y = self._get_field((ptype, "particle_position_y")) z = self._get_field((ptype, "particle_position_z")) yield ptype, np.stack((x, y, z), axis=-1) def _determine_field_size(pf, field, lspecies, ptmax): pbool = np.zeros(len(lspecies), dtype="bool") idxas = np.concatenate( ( [ 0, ], lspecies[:-1], ) ) idxbs = lspecies if "specie" in field: index = int(field.replace("specie", "")) pbool[index] = True else: raise RuntimeError idxa, idxb = idxas[pbool][0], idxbs[pbool][-1] return pbool, idxa, idxb def interpolate_ages( data, file_stars, interp_tb=None, interp_ages=None, current_time=None ): if interp_tb is None: t_stars, a_stars = read_star_field(file_stars, field="t_stars") # timestamp of file should match amr timestamp if current_time: tdiff = YTQuantity(b2t(t_stars), "Gyr") - current_time.in_units("Gyr") if np.abs(tdiff) > 1e-4: mylog.info("Timestamp mismatch in star particle header: %s", tdiff) mylog.info("Interpolating ages") interp_tb, interp_ages = b2t(data) interp_tb = YTArray(interp_tb, "Gyr") interp_ages = YTArray(interp_ages, "Gyr") temp = np.interp(data, interp_tb, interp_ages) return interp_tb, interp_ages, temp def _read_art_level_info( f, level_oct_offsets, level, coarse_grid=128, ncell0=None, root_level=None ): pos = f.tell() f.seek(level_oct_offsets[level]) # Get the info for this level, skip the rest junk, nLevel, iOct = read_vector(f, "i", ">") # fortran indices start at 1 # Skip all the oct index data le = np.zeros((nLevel, 3), dtype="int64") fl = np.ones((nLevel, 6), dtype="int64") iocts = np.zeros(nLevel + 1, dtype="int64") idxa, idxb = 0, 0 chunk = int(1e6) # this is ~111MB for 15 dimensional 64 bit arrays left = nLevel while left > 0: this_chunk = min(chunk, left) idxb = idxa + this_chunk data = np.fromfile(f, dtype=">i", count=this_chunk * 15) data = data.reshape(this_chunk, 15) left -= this_chunk le[idxa:idxb, :] = data[:, 1:4] fl[idxa:idxb, 1] = np.arange(idxa, idxb) # pad byte is last, LL2, then ioct right before it iocts[idxa:idxb] = data[:, -3] idxa = idxa + this_chunk del data # emulate fortran code # do ic1 = 1 , nLevel # read(19) (iOctPs(i,iOct),i=1,3),(iOctNb(i,iOct),i=1,6), # & iOctPr(iOct), iOctLv(iOct), iOctLL1(iOct), # & iOctLL2(iOct) # iOct = iOctLL1(iOct) # ioct always represents the index of the next variable # not the current, so shift forward one index # the last index isn't used iocts[1:] = iocts[:-1] # shift iocts = iocts[:nLevel] # chop off the last, unused, index iocts[0] = iOct # starting value # now correct iocts for fortran indices start @ 1 iocts = iocts - 1 assert np.unique(iocts).shape[0] == nLevel # left edges are expressed as if they were on # level 15, so no matter what level max(le)=2**15 # correct to the yt convention # le = le/2**(root_level-1-level)-1 # try to find the root_level first def cfc(root_level, level, le): d_x = 1.0 / (2.0 ** (root_level - level + 1)) fc = (d_x * le) - 2 ** (level - 1) return fc if root_level is None: root_level = np.floor(np.log2(le.max() * 1.0 / coarse_grid)) root_level = root_level.astype("int64") for _ in range(10): fc = cfc(root_level, level, le) go = np.diff(np.unique(fc)).min() < 1.1 if go: break root_level += 1 else: fc = cfc(root_level, level, le) unitary_center = fc / (coarse_grid * 2.0 ** (level - 1)) assert np.all(unitary_center < 1.0) # again emulate the fortran code # This is all for calculating child oct locations # iC_ = iC + nbshift # iO = ishft ( iC_ , - ndim ) # id = ishft ( 1, MaxLevel - iOctLv(iO) ) # j = iC_ + 1 - ishft( iO , ndim ) # Posx = d_x * (iOctPs(1,iO) + sign ( id , idelta(j,1) )) # Posy = d_x * (iOctPs(2,iO) + sign ( id , idelta(j,2) )) # Posz = d_x * (iOctPs(3,iO) + sign ( id , idelta(j,3) )) # idelta = [[-1, 1, -1, 1, -1, 1, -1, 1], # [-1, -1, 1, 1, -1, -1, 1, 1], # [-1, -1, -1, -1, 1, 1, 1, 1]] # idelta = np.array(idelta) # if ncell0 is None: # ncell0 = coarse_grid**3 # nchild = 8 # ndim = 3 # nshift = nchild -1 # nbshift = nshift - ncell0 # iC = iocts #+ nbshift # iO = iC >> ndim #possibly >> # id = 1 << (root_level - level) # j = iC + 1 - ( iO << 3) # delta = np.abs(id)*idelta[:,j-1] # try without the -1 # le = le/2**(root_level+1-level) # now read the hvars and vars arrays # we are looking for iOctCh # we record if iOctCh is >0, in which it is subdivided # iOctCh = np.zeros((nLevel+1,8),dtype='bool') f.seek(pos) return unitary_center, fl, iocts, nLevel, root_level def get_ranges( skip, count, field, words=6, real_size=4, np_per_page=4096 ** 2, num_pages=1 ): # translate every particle index into a file position ranges ranges = [] arr_size = np_per_page * real_size idxa, idxb = 0, 0 posa, posb = 0, 0 for _page in range(num_pages): idxb += np_per_page for i, fname in enumerate(["x", "y", "z", "vx", "vy", "vz"]): posb += arr_size if i == field or fname == field: if skip < np_per_page and count > 0: left_in_page = np_per_page - skip this_count = min(left_in_page, count) count -= this_count start = posa + skip * real_size end = posa + this_count * real_size ranges.append((start, this_count)) skip = 0 assert end <= posb else: skip -= np_per_page posa += arr_size idxa += np_per_page assert count == 0 return ranges def read_particles(file, Nrow, idxa, idxb, fields): words = 6 # words (reals) per particle: x,y,z,vx,vy,vz real_size = 4 # for file_particle_data; not always true? np_per_page = Nrow ** 2 # defined in ART a_setup.h, # of particles/page num_pages = os.path.getsize(file) // (real_size * words * np_per_page) fh = open(file) skip, count = idxa, idxb - idxa kwargs = dict( words=words, real_size=real_size, np_per_page=np_per_page, num_pages=num_pages ) arrs = [] for field in fields: ranges = get_ranges(skip, count, field, **kwargs) data = None for seek, this_count in ranges: fh.seek(seek) temp = np.fromfile(fh, count=this_count, dtype=">f4") if data is None: data = temp else: data = np.concatenate((data, temp)) arrs.append(data.astype("f8")) fh.close() return arrs def read_star_field(file, field=None): data = {} with open(file, "rb") as fh: for dtype, variables in star_struct: found = ( isinstance(variables, tuple) and field in variables ) or field == variables if found: data[field] = read_vector(fh, dtype[1], dtype[0]) else: skip(fh, endian=">") return data.pop(field) def _read_child_mask_level(f, level_child_offsets, level, nLevel, nhydro_vars): f.seek(level_child_offsets[level]) ioctch = np.zeros(nLevel, dtype="uint8") idc = np.zeros(nLevel, dtype="int32") chunk = int(1e6) left = nLevel width = nhydro_vars + 6 a, b = 0, 0 while left > 0: chunk = min(chunk, left) b += chunk arr = np.fromfile(f, dtype=">i", count=chunk * width) arr = arr.reshape((width, chunk), order="F") assert np.all(arr[0, :] == arr[-1, :]) # pads must be equal idc[a:b] = arr[1, :] - 1 # fix fortran indexing ioctch[a:b] = arr[2, :] == 0 # if it is above zero, then refined available # zero in the mask means there is refinement available a = b left -= chunk assert left == 0 return idc, ioctch nchem = 8 + 2 dtyp = np.dtype(f">i4,>i8,>i8,>{nchem}f4,>2f4,>i4") def _read_child_level( f, level_child_offsets, level_oct_offsets, level_info, level, fields, domain_dimensions, ncell0, nhydro_vars=10, nchild=8, noct_range=None, ): # emulate the fortran code for reading cell data # read ( 19 ) idc, iOctCh(idc), (hvar(i,idc),i=1,nhvar), # & (var(i,idc), i=2,3) # contiguous 8-cell sections are for the same oct; # ie, we don't write out just the 0 cells, then the 1 cells # optionally, we only read noct_range to save memory left_index, fl, octs, nocts, root_level = _read_art_level_info( f, level_oct_offsets, level, coarse_grid=domain_dimensions[0] ) if noct_range is None: nocts = level_info[level] ncells = nocts * 8 f.seek(level_child_offsets[level]) arr = np.fromfile(f, dtype=hydro_struct, count=ncells) assert np.all(arr["pad1"] == arr["pad2"]) # pads must be equal # idc = np.argsort(arr['idc']) #correct fortran indices # translate idc into icell, and then to iOct icell = (arr["idc"] >> 3) << 3 iocts = (icell - ncell0) / nchild # without a F correction, there's a +1 # assert that the children are read in the same order as the octs assert np.all(octs == iocts[::nchild]) else: start, end = noct_range nocts = min(end - start, level_info[level]) end = start + nocts ncells = nocts * 8 skip = np.dtype(hydro_struct).itemsize * start * 8 f.seek(level_child_offsets[level] + skip) arr = np.fromfile(f, dtype=hydro_struct, count=ncells) assert np.all(arr["pad1"] == arr["pad2"]) # pads must be equal source = {} for field in fields: sh = (nocts, 8) source[field] = np.reshape(arr[field], sh, order="C").astype("float64") return source def _read_root_level(f, level_offsets, level_info, nhydro_vars=10): nocts = level_info[0] f.seek(level_offsets[0]) # Ditch the header hvar = read_vector(f, "f", ">") var = read_vector(f, "f", ">") hvar = hvar.reshape((nhydro_vars, nocts * 8), order="F") var = var.reshape((2, nocts * 8), order="F") arr = np.concatenate((hvar, var)) return arr # All of these functions are to convert from hydro time var to # proper time sqrt = np.sqrt sign = np.sign def find_root(f, a, b, tol=1e-6): c = (a + b) / 2.0 last = -np.inf assert sign(f(a)) != sign(f(b)) while np.abs(f(c) - last) > tol: last = f(c) if sign(last) == sign(f(b)): b = c else: a = c c = (a + b) / 2.0 return c def quad(fintegrand, xmin, xmax, n=1e4): spacings = np.logspace(np.log10(xmin),
np.log10(xmax)
numpy.log10
import os import cv2 import numpy as np import argparse from skimage import filters from skimage.filters import prewitt from matplotlib import pyplot as plt def Robert(img): Gx =
np.array([[-1, 0], [0, 1]])
numpy.array
from abc import ABC, abstractmethod import cv2 import numpy as np import pandas as pd from skimage.draw import line as raster_line from .suite import Suite, project_points, compute_pose_error # delete me import matplotlib.pyplot as plt def compute_3d_coordinates(oc, pts, model): if not len(pts): return np.empty((0, 3)) colors = oc[pts[:, 1], pts[:, 0]] if np.any(colors[:, -1] != 255): raise NotImplementedError("The object coordinate masks have issues") return colors[:, :3] * model.size / 255 + model.min def draw_lines(lines, img, color): paths = np.concatenate( [ np.stack( raster_line(line[0, 1], line[0, 0], line[1, 1], line[1, 0]), axis=-1 ) for line in lines ] ) out = img.copy() out[paths[:, 0], paths[:, 1]] = color return out def extract_sift_keypoints(rgb): gray = cv2.cvtColor(rgb[:, :, :3], cv2.COLOR_RGB2GRAY) sift = cv2.xfeatures2d.SIFT_create() detections = sift.detect(gray, None) # store unique keypoints keypoints = np.unique( np.array([kp.pt for kp in detections]).astype(np.uint32), axis=0 ) return keypoints def extract_line_segments(rgb): gray = cv2.cvtColor(rgb[:, :, :3], cv2.COLOR_RGB2GRAY) ld = cv2.line_descriptor.LSDDetector_createLSDDetector() keylines = ld.detect(gray, 1, 1) paths = [] idx = [] for i, keyline in enumerate(keylines): start = np.round(keyline.getStartPoint()).astype(int) end = np.round(keyline.getEndPoint()).astype(int) path = np.stack(raster_line(start[1], start[0], end[1], end[0]), axis=-1) paths.append(path) idx.append(np.full(len(path), i)) paths = np.concatenate(paths) idx = np.concatenate(idx) # ensure max bounds are not overstepped max_bound = np.array(rgb.shape[:2]) - 1 paths = np.minimum(paths, max_bound) return paths, idx def extract_point_correspondences(oid, frame, keypoints, model): # filter keypoints to object mask and object coordinate data pts_2d = keypoints[ np.logical_and( frame["mask"][keypoints[:, 1], keypoints[:, 0]] == oid, frame["oc"][keypoints[:, 1], keypoints[:, 0], -1] == 255, ) ] # objects get the corresponding object coordinates pts_3d = compute_3d_coordinates(frame["oc"], pts_2d, model) return pts_2d, pts_3d def extract_line_correspondences(oid, frame, lines, model): paths, idx = lines # prune line segments to masks. assume masks are convex mask = np.logical_and(frame["mask"] == oid, frame["oc"][:, :, -1] == 255) line_2d = [] for pid in range(idx[-1]): path = paths[idx == pid] if not np.any(mask[path[:, 0], path[:, 1]]): continue line = np.empty((2, 2), dtype=int) # clamp at start and at the end start, end = None, None for i, (r, c) in enumerate(path): if mask[r, c]: line[0] = (c, r) start = i break for i, (r, c) in enumerate(reversed(path)): if mask[r, c]: line[1] = (c, r) end = len(path) - i break # Reject very small segments if end - start < 5: continue line_2d.append(line) line_2d = np.array(line_2d) # array can cope with empty lists # # debug # img = draw_lines(line_2d, frame["rgb"], np.array([255, 255, 255], dtype=np.uint8)) # plt.imshow(img); plt.show() # # objects get the corresponding object coordinates line_3d = compute_3d_coordinates( frame["oc"], line_2d.reshape(-1, 2), model ).reshape(-1, 2, 3) return line_2d, line_3d class RealSuite(Suite, ABC): def __init__(self, methods, timed=True): super().__init__(methods, timed) self.data = None # dataset placeholder # Since each dataset has a different number of sequences, frames # objects per frames and even instance per objects, we need to # store everything in a flat array and store indexes for each # instance self.did = None # datasets self.sid = None # sequences self.fid = None # frames self.oid = None # objects def init_run(self, data): self.data = data self.results = { "angular": [], "translation": [], } if self.timed: self.results["time"] = [] # Initialize accumulators self.did = [] # datasets self.sid = [] # sequences self.fid = [] # frames self.oid = [] # objects @abstractmethod def extract_features(self, rgb): pass @abstractmethod def extract_correspondences(self, oid, frame, features, model): pass def run(self, data): self.init_run(data) # Can we print some progress statistics n_prog, i_prog = 0, 0 for ds in self.data: n_prog += len(ds) print("Progress: 0.00%", end="", flush=True) # Looping over datasets for did, ds in enumerate(self.data): # looping over sequences for sid, seq in enumerate(ds): # looping over frames for frame in seq: # extract features in each frame features = self.extract_features(frame["rgb"]) # Iterate through each object in frame for oid, pose in frame["poses"].items(): # plt.imsave(f'/tmp/images/{seq.name:02d}_{frame["id"]:04d}.m.png', frame["mask"]) # plt.imsave(f'/tmp/images/{seq.name:02d}_{frame["id"]:04d}.o.png', frame["oc"]) mmask = frame["mask"].astype(bool) moc = frame["oc"][:, :, -1] == 255 iou = np.sum(np.logical_and(mmask, moc)) / np.sum( np.logical_or(mmask, moc) ) # there are legit occlusion cases lower than 0.6 iou if iou < 0.5: error_msg = "IoU issues between mask and object coordinates" raise RuntimeError(error_msg) # extract correspondences correspondences = self.extract_correspondences( oid, frame, features, ds.models[str(oid)] ) # Pre allocate placeholders storing results nm = len(self.methods) ang_all = np.full(nm, np.nan) trans_all = np.full(nm, np.nan) time_all = np.full(nm, np.nan) groundtruth = (pose[:, :3], pose[:, -1]) for mid, method in enumerate(self.methods): # get a pose estimate (R, t), time_all[mid] = self.estimate_pose( method, groundtruth, ds.camera.K, **correspondences ) # Sanitize results if np.any(np.isnan(R)) or np.any(np.isnan(t)): continue # store error results in the object ang_all[mid], trans_all[mid] = compute_pose_error( groundtruth, (R, t) ) # let each method compute the pose compute pose self.did.append(did) self.sid.append(sid) self.fid.append(frame["id"]) self.oid.append(oid) self.results["angular"].append(ang_all) self.results["translation"].append(trans_all) if self.timed: self.results["time"].append(time_all) # progress only reported at frame level i_prog += 1 percent = i_prog * 100 / n_prog print(f"\rProgress: {percent:>6.2f}%", end="", flush=True) print("\rProgress: 100.00%", flush=True) # merge everything together self.did = np.array(self.did) self.sid = np.array(self.sid) self.fid = np.array(self.fid) self.oid = np.array(self.oid) self.results["angular"] = np.stack(self.results["angular"]) self.results["translation"] = np.stack(self.results["translation"]) if self.timed: self.results["time"] = np.stack(self.results["time"]) def _aggregate_results(self): # build tables for angular error, translation errors, timings and nan counts angular = [] translation = [] timings = [] nans = [] dids = [] sids = [] # filter out all nans good_mask = np.logical_not( np.logical_or.reduce(
np.isnan(self.results["angular"])
numpy.isnan
# coding: utf-8 import numpy as np # Libraries necessary for visualizing import seaborn as sns import matplotlib import matplotlib.pyplot as plt import matplotlib.cm as cm import warnings from scipy.signal import argrelmax,argrelmin import matplotlib.font_manager as fm import copy from data_reader import DataReader import os from coordinate_transform import * class forceAnalyzer(DataReader): def __init__(self,relative_data_folder,filenames,plate_rotation=20): super().__init__(relative_data_folder,filenames,skiprows=6, column_name=['Fx','Fy','Fz','Mx','My','Mz','Syncro','ExtIn1','ExtIn2']) self.plate_rotation = plate_rotation self.set_analysis_target(0) def set_analysis_target(self, analysis_id=0, scale=2.0): self.extract_syncronized_data(analysis_id=analysis_id) self.get_first_landing_point(analysis_id=analysis_id) self.max_peek=[] self.get_max_peek(analysis_id=analysis_id) self.modify_force_plate_raw(analysis_id=analysis_id, scale=scale) self.get_action_point(analysis_id=analysis_id, threshold=40) def extract_syncronized_data(self,analysis_id=0): df = self.df_list[analysis_id] df_copy = df[df.ExtIn1 == 1].copy() df_copy['time'] = df_copy['time'].values - df_copy['time'].values[0] self.df_list[analysis_id] = df_copy self.df_list[analysis_id] = self.df_list[analysis_id].drop(['Syncro','ExtIn1','ExtIn2'], axis=1) def moving_filter(self,x,window_size,min_periods): return pd.Series(x).rolling(window=window_size, min_periods=min_periods, center=True).mean().values def EMA(self,x, alpha): return pd.Series(x).ewm(alpha=alpha).mean() def get_peek_action_point(self,analysis_id=0): return [self.df_list[analysis_id]['action_x'].values[self.max_peek], self.df_list[analysis_id]['action_y'].values[self.max_peek]] def get_peek_action_point_for_converting(self): xs,ys =self.get_peek_action_point() points = [] for x,y in zip(xs,ys): points.append([x,y,0]) return points def get_peek_action_point_for_trans(self): xs,ys =self.get_peek_action_point() points = [] for x,y in zip(xs,ys): points.append([x,y,0.,1.]) return points def getNearestValue(self,array, num): """ 概要: リストからある値に最も近い値を返却する関数 @param list: データ配列 @param num: 対象値 @return 対象値に最も近い値 """ # リスト要素と対象値の差分を計算し最小値のインデックスを取得 idx = np.abs(array - num).argmin() return array[idx] def get_max_peek(self,threshold=5.,analysis_id=0): force_plate_data=self.df_list[analysis_id] self.max_peek = list(argrelmax(force_plate_data['Fz'].values,order=1000)[0]) tmp = copy.deepcopy(self.max_peek) for i in tmp: if force_plate_data['Fz'].values[i] < threshold: self.max_peek.remove(i) def get_peek_time(self,analysis_id=0): return self.df_list[analysis_id]['time'].values[self.max_peek] def get_first_landing_point(self, analysis_id=0): force_plate_data = self.df_list[analysis_id].copy() x_max_peek = argrelmax(force_plate_data['Fz'].values,order=50) x_min_peek = argrelmin(force_plate_data['Fz'].values,order=100) # print(x_min_peek,x_max_peek) offset_peek_list= [] for value in x_max_peek[0]: if abs(force_plate_data['Fz'].values[value] - force_plate_data['Fz'].values[self.getNearestValue(x_min_peek[0],value)]) > 100: offset_peek_list.append(value) # print(offset_peek_list) self.first_landing_point = offset_peek_list[0] print('first landing point is ',self.first_landing_point) def export_from_first_landing_point(self, analysis_id=0): force_plate_data = self.df_list[analysis_id].copy() self.get_first_landing_point(analysis_id=analysis_id) force_cutted_df = force_plate_data[self.first_landing_point:len(force_plate_data)] # print(force_cutted_df) # force_cutted_df.plot(y='Fz', figsize=(16,4), alpha=0.5) force_cutted_df.to_csv('force_plate_cutted_data_a6.csv') def get_action_point(self,analysis_id=0,scale=1., threshold=20): Mx = self.df_list[analysis_id]['Mx'].values*scale My = self.df_list[analysis_id]['My'].values*scale Fz = self.df_list[analysis_id]['Fz'].values*scale tmp_action_x = [] tmp_action_y = [] for mx,my,f in zip(Mx,My,Fz): if abs(f) > threshold: tmp_action_x.append(my/f) tmp_action_y.append(mx/f) else: tmp_action_x.append(-1) tmp_action_y.append(-1) self.action_x = np.array(tmp_action_x) self.action_y = np.array(tmp_action_y) self.df_list[analysis_id]['action_x'] = self.action_x self.df_list[analysis_id]['action_y'] = self.action_y def modify_force_plate_raw(self, analysis_id=0, scale=1.0): Fx = self.df_list[analysis_id]['Fx'].values*scale Fy = self.df_list[analysis_id]['Fy'].values*scale Fz = self.df_list[analysis_id]['Fz'].values*scale Mx = self.df_list[analysis_id]['Mx'].values*scale My = self.df_list[analysis_id]['My'].values*scale Mz = self.df_list[analysis_id]['Mz'].values*scale self.df_list[analysis_id]['Fx'] = Fx self.df_list[analysis_id]['Fy'] = Fy self.df_list[analysis_id]['Fz'] = Fz self.df_list[analysis_id]['Mx'] = Mx self.df_list[analysis_id]['My'] = My self.df_list[analysis_id]['Mz'] = Mz def add_motion_coordinate_action_point(self, simultaneous_trans_matrix,analysis_id=0): motion_coordinate_action_point_x = [] motion_coordinate_action_point_y = [] motion_coordinate_action_point_z = [] for x, y in zip(self.action_x, self.action_y): if x == -1 or y == -1: motion_coordinate_action_point_x.append(0) motion_coordinate_action_point_y.append(0) motion_coordinate_action_point_z.append(0) else: arr = np.array([x, y, 0., 1.]) motion_pos = np.dot(simultaneous_trans_matrix, arr) motion_coordinate_action_point_x.append(motion_pos[0]) motion_coordinate_action_point_y.append(motion_pos[1]) motion_coordinate_action_point_z.append(motion_pos[2]) self.df_list[analysis_id]['motion_coordinate_action_point_x'] = motion_coordinate_action_point_x self.df_list[analysis_id]['motion_coordinate_action_point_y'] = motion_coordinate_action_point_y self.df_list[analysis_id]['motion_coordinate_action_point_z'] = motion_coordinate_action_point_z def add_corrected_force_data(self,analysis_id=0, scale=1.0): corrected_Fx = [] corrected_Fy = [] corrected_Fz = [] Fx = self.df_list[analysis_id]['Fx'].values*scale Fy = self.df_list[analysis_id]['Fy'].values*scale Fz = self.df_list[analysis_id]['Fz'].values*scale for fx, fy, fz in zip(Fx,Fy,Fz): arr = np.array([fx, fy, fz]) corrected_force = np.dot(get_rotation_x(deg2rad(self.plate_rotation)),arr) corrected_Fx.append(corrected_force[0]) corrected_Fy.append(corrected_force[1]) corrected_Fz.append(corrected_force[2]) self.df_list[analysis_id]['corrected_Fx'] = corrected_Fx self.df_list[analysis_id]['corrected_Fy'] = corrected_Fy self.df_list[analysis_id]['corrected_Fz'] = corrected_Fz def save_data(self, save_dir, filename, analysis_id=0, update=False): if not os.path.isdir(save_dir+'synchro'): print('Creating new save folder ...') print('Save path : ', save_dir+'synchro') os.mkdir(save_dir+'synchro') if not os.path.isfile(save_dir+'synchro\\'+filename) or update == True: df_copy = self.df_list[analysis_id].copy() df_copy = df_copy.set_index('time') df_copy.to_csv(save_dir+'synchro\\'+filename) def plot_peek_action_point(self): xs,ys =self.get_peek_action_point() f = plt.figure() i = 0 for x,y in zip(xs,ys): plt.plot(x, y, "o", color=cm.spectral(i/10.0)) i += 1 f.subplots_adjust(right=0.8) plt.show() plt.close() def plot(self,analysis_id=0): target_area = ['Fx','Fy','Fz','Mx','My','Mz'] force_plate_data = self.df_list[analysis_id].copy() # print(force_plate_data) column_name = force_plate_data.columns.values column_name_tmp = [] column_name_tmp_array = [] for target_name in target_area: column_name_tmp = [name for name in column_name if target_name in name] column_name_tmp_array.extend(column_name_tmp) column_name = column_name_tmp_array # print(column_name) f = plt.figure() plt.title('Force plate csv data when liftting up object', color='black') force_plate_data.plot(x='time',y=column_name[0:3], figsize=(16,4), alpha=0.5,ax=f.gca()) plt.plot(force_plate_data['time'].values[self.max_peek], force_plate_data['Fz'].values[self.max_peek], "ro") if self.first_landing_point is not 0: plt.plot(force_plate_data['time'].values[self.first_landing_point], force_plate_data['Fz'].values[self.first_landing_point], "bo") plt.legend(loc='center left', bbox_to_anchor=(1.0, 0.5)) f.subplots_adjust(right=0.8) plt.show() plt.close() class motionAnalyzer(DataReader): def __init__(self,relative_data_folder,filename,key_label): super().__init__(relative_data_folder,filename,data_freq=100,key_label_name=key_label) self.simple_modify_data() self.peek_time = 0 def simple_modify_data(self): for df in self.df_list: for i in range(len(df)-1): tmp = df.iloc[i+1] for j,x in enumerate(tmp[0:9]): if x == 0: df.iloc[i+1,j] = df.iloc[i,j] def set_peek_time(self,peek_time): self.peek_time = peek_time self.get_nearest_time() def getNearestValue(self,array, num): """ 概要: リストからある値に最も近い値を返却する関数 @param list: データ配列 @param num: 対象値 @return 対象値に最も近い値 """ # リスト要素と対象値の差分を計算し最小値のインデックスを取得 idx = np.abs(array - num).argmin() return array[idx] def getNearestIndex(self,array, num): """ 概要: リストからある値に最も近い値を返却する関数 @param list: データ配列 @param num: 対象値 @return 対象値に最も近い値のインデックス """ # リスト要素と対象値の差分を計算し最小値のインデックスを取得 return np.abs(array - num).argmin() def get_nearest_time(self,analysis_id=0): tmp = copy.deepcopy(self.peek_time) self.peek_time = [] for x in tmp: self.peek_time.append(self.getNearestIndex(self.df_list[analysis_id]['time'].values ,x)) def get_peek_points(self, analysis_id=0): tmp = self.df_list[analysis_id].iloc[self.peek_time].values return tmp[:,:9] def get_euclid_distance(self,vec): return np.linalg.norm(vec) def get_nearest_two_points(self): for points in self.get_peek_points(): each_point = [[points[0:3]],[points[3:6]],[points[6:9]]] points_num = [[0,1],[1,2],[2,0]] distance = [] distance.append(np.array(each_point[0])-np.array(each_point[1])) distance.append(np.array(each_point[1])-np.array(each_point[2])) distance.append(
np.array(each_point[2])
numpy.array
#!/usr/bin/env python # encoding: utf-8 """ train_tenfold.py Created by Shuailong on 2017-02-18. training module for CCG Parsing. """ from __future__ import print_function from __future__ import division import numpy as np import os from time import time from keras.callbacks import ModelCheckpoint from keras.callbacks import EarlyStopping from keras.optimizers import SGD from utils import generate_ten_fold from utils import true_accuracy from dataset import get_data from dataset import get_embedding_matrix from model import LSTMTagging from train import data_generator from train import MODEL_DIR
np.random.seed(1337)
numpy.random.seed
""" CutBlur Copyright 2020-present NAVER corp. MIT license """ import random import numpy as np def crop(HQ, LQ, psize, scale=4): h, w = LQ.shape[:-1] x = random.randrange(0, w-psize+1) y = random.randrange(0, h-psize+1) crop_HQ = HQ[y*scale:y*scale+psize*scale, x*scale:x*scale+psize*scale] crop_LQ = LQ[y:y+psize, x:x+psize] return crop_HQ.copy(), crop_LQ.copy() def flip_and_rotate(HQ, LQ): hflip = random.random() < 0.5 vflip = random.random() < 0.5 rot90 = random.random() < 0.5 if hflip: HQ, LQ = HQ[:, ::-1, :], LQ[:, ::-1, :] if vflip: HQ, LQ = HQ[::-1, :, :], LQ[::-1, :, :] if rot90: HQ, LQ = HQ.transpose(1, 0, 2), LQ.transpose(1, 0, 2) return HQ, LQ def rgb2ycbcr(img, y_only=True): in_img_type = img.dtype img.astype(np.float32) if in_img_type != np.uint8: img *= 255. if y_only: rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0 else: rlt = np.matmul( img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], [24.966, 112.0, -18.214]] ) / 255.0 + [16, 128, 128] if in_img_type == np.uint8: rlt = rlt.round() else: rlt /= 255. return rlt.astype(in_img_type) def calculate_psnr(img1, img2): img1 = img1.astype(np.float64) img2 = img2.astype(np.float64) mse = np.mean((img1 - img2)**2) if mse == 0: return float("inf") return 20 * np.log10(255.0 /
np.sqrt(mse)
numpy.sqrt
#!/usr/bin/env python3 import numpy as np from urllib.request import urlopen from Bio.PDB.PDBParser import PDBParser import argparse import os import sys import shutil import glob import re import warnings import time startTime = time.time() #silence warnings from numpy when doing gap_checks (and all others but it's all dealt with internally [hopefully]) old_settings = np.seterr(all='ignore') warnings.simplefilter(action = "ignore", category = FutureWarning) # Oregon State 2014 # <NAME> # In collaboration with: # <NAME> # <NAME> # <NAME> # Dr. <NAME> #checks if there is a valid file at a specified location def is_valid_file(parser, arg): if not os.path.exists(arg): parser.error("The file %s does not exist!" % arg) else: return (open(arg, 'r')) # return an open file handle # importing arguments from the user parser=argparse.ArgumentParser( description='''Assigns secondary structure without using hydrogen bonds. One method uses virtual dihedrals and bond angles, the other using phi/psi2 motifs to identify secondary structure. ''', epilog="""IMPORTANT NOTES:\nExpect there to be strange ? residues at the end of the output if there are any ligands or other non-water HETATOMS present. This can be safely ignored.""" ) parser.add_argument('-i',dest="input",metavar="FILE",type=lambda x: is_valid_file(parser, x), help='This should be a pdb file. Do not use in combination with the "-c" option.') parser.add_argument('-c',dest="code",type=str, help='This should be a four letter pdb code. Only use this option if you want to download directly from the PDB.') parser.add_argument('-o',dest="output",metavar="FILE", help='Output file, a table using tabs as seperators. If not specified, default is to output to STDOUT as human readable output.') parser.add_argument('--legend',dest='legend', action='store_true', help='Option to print a legend for the Secondary Structure codes.') parser.add_argument('--verbose',dest='verbose', action='store_true', help='Option to print a all the output, including the behind the scenes methods for structure assignment.') parser.set_defaults(legend=False, verbose=False) args=parser.parse_args() if args.legend == True: print ("\nLEGEND:\n_:\tBreak in the chain (as detected by checking bond distance)\n-:\tUnassigned trans-residue\n=:\tUnassigned cis-residue\nP:\tPII-Helix\nt:\tTurn defined by CA to CA Distance (or implied as a consequence of other turns)\nN:\tA typically non-hydrogen bonded turn\nT:\tA typically hydrogen bonded turn T\nE:\tExtended or Beta-strand conformation\nH:\tAlpha Helical Conformation\nG:\t3,10 Helix\nBb:\tBeta-bulge\nU:\tPi-helical bulge\nX:\tThe Stig\n") # Dictionary and function that converts triple letter codes to single letter # Any non-conventional three letter code becomes "?" # Victor made the first version of this function def to_single(single,triple): return (single[triple]) one_letter = {'ALA':'A', 'ARG':'R', 'ASN':'N', 'ASP':'D', 'CYS':'C', 'GLN':'Q', 'GLU':'E', 'GLY':'G', 'HIS':'H', 'ILE':'I', \ 'LEU':'L', 'LYS':'K', 'MET':'M', 'PHE':'F', 'PRO':'P', 'SER':'S', 'THR':'T', 'TRP':'W', 'TYR':'Y', 'VAL':'V', 'BLA':'-'} #function for getting pdb files online def fetch_pdb(id): pdb = "%s.pdb" % str(id.lower()) url = 'http://www.rcsb.org/pdb/files/%s.pdb' % id.lower() tmp = urlopen(url) fh = open(pdb,'wb') fh.write(tmp.read()) fh.close() if args.code == None: try: pdb = args.input print ("\nWorking...\n") except: pass elif args.input == None: try: fetch_pdb(args.code) pdb = open('%s.pdb' %args.code.lower(), 'r') print ("\nWorking...\n") except: print ("\n\n\nPlease enter a valid code or path.\n\n\n") else: print ("\n\n\nPlease only choose option -i or option -c.\n\n\n") def atom_get(i,atom): if atom_list[i][1] == atom: return (atom_list[i][2]) else: return ('no') def chain_get(i,atom): if atom_list[i][1] == atom: return (atom_list[i][3]) else: return ('no') def model_get(i,atom): if atom_list[i][1] == atom: return (atom_list[i][4]) else: return ('no') # function to get indicies, matches the index from resnum list with the index for the atomic coords, which is why the resnum has to be in each def index_getter(resnum): indices = [] i = 0 for atom in atom_list: try: index = atom.index(resnum) if index == 0: indices.append(i) except: pass i += 1 return (indices) # checks for certain atom types and grabs just those coordinates #this is for correctly sorting atom types def atom_getter(index,atom): if atom_list[index][1] == atom: return (atom_xyz[index]) else: return ('no') #### GAP CHECK FUNCTION ###### def gap_check(resnum): indices = index_getter(resnum) prev_indices = [] next_indices = [] for i in indices: prev_indices.append(i-4) next_indices.append(i+4) atom_types = ['C','N'] for i in indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'C': iC = atom_getter(i,atom) elif atom == 'N': iN = atom_getter(i,atom) for i in prev_indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'C': prevC = atom_getter(i,atom) for i in next_indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'N': nextN = atom_getter(i,atom) try: ahead = np.subtract(nextN, iC) behind = np.subtract(iN, prevC) ahead_mag = np.sqrt(ahead.dot(ahead)) behind_mag = np.sqrt(behind.dot(behind)) if ((ahead_mag > 1.5) and (behind_mag > 1.5)): return('isolated') elif(ahead_mag > 1.5): return('ahead') elif(behind_mag > 1.5): return('behind') else: return('no') except: return("Fatal Error in Gap Check") #### GAP CHECK FUNCTION for dison3, discn3, discaca3, and dison4 ###### def long_gap_check(resnum): indices = index_getter(resnum) next_indices = [] plus_two_indices = [] plus_three_indices =[] plus_four_indices =[] for i in indices: plus_two_indices.append(i+8) next_indices.append(i+4) plus_three_indices.append(i+12) plus_four_indices.append(i+16) atom_types = ['C','N'] for i in indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'C': iC = atom_getter(i,atom) for i in plus_two_indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'C': plus_twoC = atom_getter(i,atom) elif atom == 'N': plus_twoN = atom_getter(i,atom) for i in next_indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'C': nextC = atom_getter(i,atom) elif atom == 'N': nextN = atom_getter(i,atom) for i in plus_three_indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'C': plus_threeC = atom_getter(i,atom) elif atom == 'N': plus_threeN = atom_getter(i,atom) for i in plus_four_indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'N': plus_fourN = atom_getter(i,atom) try: ahead = np.subtract(nextN, iC) two_ahead = np.subtract(plus_twoN, nextC) three_ahead = np.subtract(plus_threeN, plus_twoC) four_ahead = np.subtract(plus_fourN, plus_threeC) ahead_mag = np.sqrt(ahead.dot(ahead)) two_ahead_mag = np.sqrt(two_ahead.dot(ahead)) three_ahead_mag = np.sqrt(three_ahead.dot(ahead)) four_ahead_mag = np.sqrt(four_ahead.dot(ahead)) if ((ahead_mag > 1.5) or (two_ahead_mag > 1.5) or (three_ahead_mag > 1.5)): return('threegap') elif ((ahead_mag > 1.5) or (two_ahead_mag > 1.5) or (three_ahead_mag > 1.5) or (four_ahead_mag > 1.5)): return('fourgap') else: return('no') except: return("Fatal Error in Gap Check") # ZETA FUNCTION # returns a single value, zeta for the resnum entered # There are functions within functions here: I'm sorry. I was new to python def zeta_calc(resnum): # The order of atoms in atom_list is N, CA, C, O #this returns the index values of each of the atoms at this residue number indices = index_getter(resnum) prev_indices = [] for i in indices: prev_indices.append(i-4) if ((gap_check(resnum) == 'behind') or (gap_check(resnum) == 'isolated')): return('ERROR') atom_types = ['C','O'] # gets coords for each atom and creates a variable for each, this makes atom assignment pdbfile order independant for i in indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'C': iC = atom_getter(i,atom) elif atom == 'O': iO = atom_getter(i,atom) for i in prev_indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'C': prevC = atom_getter(i,atom) elif atom == 'O': prevO = atom_getter(i,atom) v1 = np.subtract(iC, iO) v2 = np.subtract(prevC, iC) v3 = np.subtract(prevO, prevC) n1 = np.cross(v1,v2) n2 = np.cross(v2,v3) dot1 = np.dot(n1,n2) n1mag = np.sqrt(n1.dot(n1)) n2mag = np.sqrt(n2.dot(n2)) cos_zeta = dot1/(n1mag*n2mag) zeta = np.degrees(np.arccos(cos_zeta)) #testing for direction cross = np.cross(n1,n2) direction = np.dot(cross, v2) if direction < 0: zeta = -1 * zeta return (zeta) # Omega FUNCTION # returns a single value, ome for the resnum entered # There are functions within functions here: I'm sorry. I was new to python def ome_calc(resnum): # The order of atoms in atom_list is N, CA, C, O indices = index_getter(resnum) prev_indices = [] for i in indices: prev_indices.append(i-4) if ((gap_check(resnum) == 'behind') or (gap_check(resnum) == 'isolated')): return('ERROR') atom_types = ['C','N','CA'] # gets coords for each atom and creates a variable for each, this makes atom assignment pdbfile order independant for i in indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'N': iN = atom_getter(i,atom) elif atom == 'CA': iCA = atom_getter(i,atom) for i in prev_indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'C': prevC = atom_getter(i,atom) elif atom == 'CA': prevCA = atom_getter(i,atom) v1 = np.subtract(iN, iCA) v2 = np.subtract(prevC, iN) v3 = np.subtract(prevCA, prevC) n1 = np.cross(v1,v2) n2 = np.cross(v2,v3) dot1 = np.dot(n1,n2) n1mag = np.sqrt(n1.dot(n1)) n2mag = np.sqrt(n2.dot(n2)) cos_ome = dot1/(n1mag*n2mag) ome = np.degrees(np.arccos(cos_ome)) #testing for direction cross = np.cross(n1,n2) direction = np.dot(cross, v2) if direction < 0: ome = -1 * ome return (ome) # PHI FUNCTION # returns a single value, phi for the resnum entered # There are functions within functions here: I'm sorry. I was new to python def phi_calc(resnum): indices = index_getter(resnum) prev_indices = [] for i in indices: prev_indices.append(i-4) if ((gap_check(resnum) == 'behind') or (gap_check(resnum) == 'isolated')): return('ERROR') atom_types = ['C','N','CA'] # gets coords for each atom and creates a variable for each, this makes atom assignment pdbfile order independant for i in indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'C': iC = atom_getter(i,atom) elif atom == 'CA': iCA = atom_getter(i,atom) elif atom == 'N': iN = atom_getter(i,atom) for i in prev_indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'C': prevC = atom_getter(i,atom) v1 = np.subtract(iCA, iC) v2 = np.subtract(iN, iCA) v3 = np.subtract(prevC, iN) n1 = np.cross(v1,v2) n2 = np.cross(v2,v3) dot1 = np.dot(n1,n2) n1mag = np.sqrt(n1.dot(n1)) n2mag = np.sqrt(n2.dot(n2)) cos_phi = dot1/(n1mag*n2mag) phi = np.degrees(np.arccos(cos_phi)) #testing for direction cross = np.cross(n1,n2) direction = np.dot(cross, v2) if direction < 0: phi = -1 * phi return (phi) # PSI FUNCTION # returns a single value, phi for the resnum entered # There are functions within functions here: I'm sorry. I was new to python def psi_calc(resnum): indices = index_getter(resnum) next_indices = [] for i in indices: next_indices.append(i+4) if ((gap_check(resnum) == 'ahead') or (gap_check(resnum) == 'isolated')): return('ERROR') atom_types = ['C','N','CA'] # gets coords for each atom and creates a variable for each, this makes atom assignment pdbfile order independant for i in indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'C': iC = atom_getter(i,atom) elif atom == 'CA': iCA = atom_getter(i,atom) elif atom == 'N': iN = atom_getter(i,atom) for i in next_indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'N': nextN = atom_getter(i,atom) v1 = np.subtract(iC, nextN) v2 = np.subtract(iCA, iC) v3 = np.subtract(iN, iCA) n1 = np.cross(v1,v2) n2 = np.cross(v2,v3) dot1 = np.dot(n1,n2) n1mag = np.sqrt(n1.dot(n1)) n2mag = np.sqrt(n2.dot(n2)) cos_psi = dot1/(n1mag*n2mag) psi = np.degrees(np.arccos(cos_psi)) #testing for direction cross = np.cross(n1,n2) direction = np.dot(cross, v2) if direction < 0: psi = -1 * psi return (psi) def tau_calc(resnum): # The order of atoms in atom_list is N, CA, C, O indices = index_getter(resnum) prev_indices = [] next_indices = [] for i in indices: prev_indices.append(i-4) next_indices.append(i+4) if ((gap_check(resnum) == 'behind') or (gap_check(resnum) == 'isolated') or (gap_check(resnum) == 'ahead')): return('ERROR') # gets coords for each atom and creates a variable for each, this makes atom assignment pdbfile order independant for i in prev_indices: if atom_getter(i,'CA') == 'no': pass else: prev_CA = atom_getter(i,'CA') for i in indices: if atom_getter(i,'CA') == 'no': pass else: iCA = atom_getter(i,'CA') for i in next_indices: if atom_getter(i,'CA') == 'no': pass else: next_CA = atom_getter(i,'CA') v1 = np.subtract(prev_CA, iCA) v2 = np.subtract(next_CA, iCA) d1 = np.dot(v1,v2) v1mag = np.sqrt(v1.dot(v1)) v2mag = np.sqrt(v2.dot(v2)) cos_tau = d1/(v1mag*v2mag) tau = np.degrees(np.arccos(cos_tau)) return (tau) def dison3_calc(resnum): indices = index_getter(resnum) atom_types = ['N','O'] plus_three_indices = [] for i in indices: plus_three_indices.append(i+12) if ((gap_check(resnum) == 'ahead') or (gap_check(resnum) == 'isolated')): return('ERROR') if ((long_gap_check(resnum) == 'threegap')): return('ERROR') # gets coords for each atom and creates a variable for each, this makes atom assignment pdbfile order independant for i in indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'O': iO = atom_getter(i,atom) for i in plus_three_indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'N': plus_three_N = atom_getter(i,atom) dison3 = np.sqrt( np.sum( ( np.array(plus_three_N) - np.array(iO) ) **2 ) ) return (dison3) def dison4_calc(resnum): # The order of atoms in atom_list is N, CA, C, O #this returns the index values of each of the atoms at this residue number indices = index_getter(resnum) plus_four_indices = [] for i in indices: plus_four_indices.append(i+16) if ((gap_check(resnum) == 'ahead') or (gap_check(resnum) == 'isolated')): return('ERROR') if ((long_gap_check(resnum) == 'fourgap') or (long_gap_check(resnum) == 'threegap')): return('ERROR') atom_types = ['N','O'] # gets coords for each atom and creates a variable for each, this makes atom assignment pdbfile order independant for i in indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'O': iO = atom_getter(i,atom) for i in plus_four_indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'N': plus_four_N = atom_getter(i,atom) dison4 = np.sqrt( np.sum( ( np.array(plus_four_N) - np.array(iO) ) **2 ) ) return (dison4) def discn3_calc(resnum): # The order of atoms in atom_list is N, CA, C, O #this returns the index values of each of the atoms at this residue number indices = index_getter(resnum) plus_three_indices = [] for i in indices: plus_three_indices.append(i+12) if ((gap_check(resnum) == 'ahead') or (gap_check(resnum) == 'isolated')): return('ERROR') if ((long_gap_check(resnum) == 'threegap')): return('ERROR') atom_types = ['N','C'] # gets coords for each atom and creates a variable for each, this makes atom assignment pdbfile order independant for i in indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'C': iC = atom_getter(i,atom) for i in plus_three_indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'N': plus_three_N = atom_getter(i,atom) discn3 = np.sqrt( np.sum( ( np.array(plus_three_N) -
np.array(iC)
numpy.array
import os import sys import shutil import subprocess import xarray as xr import numpy as np # Current, parent and file paths CWD = os.getcwd() CF = os.path.realpath(__file__) CFD = os.path.dirname(CF) # Import library specific modules sys.path.append(os.path.join(CFD,"../")) sys.path.append(os.path.join(CFD,"../pyspod")) from pyspod.spod_low_storage import SPOD_low_storage from pyspod.spod_low_ram import SPOD_low_ram from pyspod.spod_streaming import SPOD_streaming # Let's create some 2D syntetic data # and store them into a variable called p variables = ['p'] x1 = np.linspace(0,10,100) x2 = np.linspace(0, 5, 50) xx1, xx2 = np.meshgrid(x1, x2) t =
np.linspace(0, 200, 1000)
numpy.linspace
# Licensed under a 3-clause BSD style license - see LICENSE.rst import numpy as np from numpy import pi import pytest import comadyn.generators as g from comadyn.generators import * from comadyn.util import mhat def test_CosineAngle(): # make the test deterministic # struct.unpack("<L", np.random.bytes(4))[0] np.random.seed(1448982574) N = 1000 u = CosineAngle(0, pi / 2) th = np.array([next(u) for i in range(N)]) th.sort() assert th[0] >= 0 assert th[-1] <= pi / 2 # compare CDF to ideal case f = np.cumsum(np.ones_like(th)) / N d = f - (1 - np.cos(th)**2) assert np.mean(d) < 2 * np.std(d) def test_CosineAngle_limits(): # make the test deterministic # struct.unpack("<L", np.random.bytes(4))[0] np.random.seed(1448982574) N = 1000 u = CosineAngle(pi / 6, pi / 4) th = np.array([next(u) for i in range(N)]) th.sort() assert th[0] >= pi / 6 assert th[-1] <= pi / 4 # compare CDF to ideal case f = np.cumsum(np.ones_like(th)) / N d = f - (1 - np.cos(th)**2) assert np.mean(d) < 2 * np.std(d) def test_Delta(): N = 1000 u = Delta(5) x = np.array([next(u) for i in range(N)]) assert np.all(x == 5) def test_Grid(): N = 1000 u = Grid(0, 5, N) x = np.array([next(u) for i in range(N)]) assert np.all(x == np.linspace(0, 5, N)) with pytest.raises(StopIteration): next(u) def test_Grid_endpoint(): N = 1000 u = Grid(0, 5, N, endpoint=False) x = np.array([next(u) for i in range(N)]) assert np.all(x == np.linspace(0, 5, N, endpoint=False)) with pytest.raises(StopIteration): next(u) def test_Grid_log(): N = 1000 u = Grid(-1, 5, N, log=True) x = np.array([next(u) for i in range(N)]) assert np.all(x == np.logspace(-1, 5, N)) with pytest.raises(StopIteration): next(u) def test_Grid_cycle(): N = 100 u = Grid(0, 5, N, cycle=2) x = np.array([next(u) for i in range(2 * N)]) assert np.all(x == np.tile(np.linspace(0, 5, N), 2)) with pytest.raises(StopIteration): next(u) def test_Grid_repeat(): N = 100 u = Grid(0, 5, N, repeat=2) x = np.array([next(u) for i in range(2 * N)]) assert np.all(x == np.repeat(np.linspace(0, 5, N), 2)) with pytest.raises(StopIteration): next(u) def test_Log(): # make the test deterministic # struct.unpack("<L", np.random.bytes(4))[0] np.random.seed(1448982574) N = 1000 u = Log(-1, 1) x = np.array([next(u) for i in range(N)]) x.sort() assert x[0] >= 0.1 assert x[-1] <= 10 # compare CDF to ideal case f = np.cumsum(np.ones_like(x)) / N d = f - np.log(10) * np.log(x) assert np.mean(d) < 2 * np.std(d) def test_Normal(): from scipy.special import erfc # make the test deterministic # struct.unpack("<L", np.random.bytes(4))[0] np.random.seed(1448982574) N = 1000 u = Normal() x = np.array([next(u) for i in range(N)]) x.sort() # compare CDF to ideal case f = np.cumsum(np.ones_like(x)) / N d = f - (2 - erfc(x)) / 2 assert np.mean(d) < 2 * np.std(d) def test_Normal_limits(): from scipy.special import erfc # make the test deterministic # struct.unpack("<L", np.random.bytes(4))[0] np.random.seed(1448982574) N = 1000 u = Normal(x0=0) x = np.array([next(u) for i in range(N)]) x.sort() # compare CDF to ideal case f = np.cumsum(np.ones_like(x)) / N d = f - (2 - erfc(x)) / 2 assert np.mean(d) < 2 * np.std(d) def test_Sequence(): N = 100 s = np.random.rand(N) u = Sequence(s) x = np.array([next(u) for i in range(N)]) assert np.all(s == x) with pytest.raises(StopIteration): next(u) def test_Sequence_cycle(): N = 100 s = np.random.rand(N) u = Sequence(s, cycle=2) x = np.array([next(u) for i in range(2 * N)]) assert np.all(x == np.tile(s, 2)) with pytest.raises(StopIteration): next(u) def test_Sequence_repeat(): N = 100 s = np.random.rand(N) u = Sequence(s, repeat=2) x = np.array([next(u) for i in range(2 * N)]) assert np.all(x == np.repeat(s, 2)) with pytest.raises(StopIteration): next(u) def test_Uniform(): # make the test deterministic # struct.unpack("<L", np.random.bytes(4))[0] np.random.seed(1448982574) N = 1000 u = Uniform(0, 5) x = np.array([next(u) for i in range(N)]) x.sort() assert x[0] >= 0 assert x[-1] <= 5 # compare CDF to ideal case f = np.cumsum(np.ones_like(x)) / N d = f - x assert
np.mean(d)
numpy.mean
# -*- coding: utf-8 -*- """ Defines unit tests for :mod:`colour.models.rgb.transfer_functions.itur_bt_2100` module. """ from __future__ import division, unicode_literals import numpy as np import unittest from colour.models.rgb.transfer_functions import ( oetf_PQ_BT2100, oetf_inverse_PQ_BT2100, eotf_PQ_BT2100, eotf_inverse_PQ_BT2100, ootf_PQ_BT2100, ootf_inverse_PQ_BT2100, oetf_HLG_BT2100, oetf_inverse_HLG_BT2100) from colour.models.rgb.transfer_functions.itur_bt_2100 import ( eotf_HLG_BT2100_1, eotf_HLG_BT2100_2, eotf_inverse_HLG_BT2100_1, eotf_inverse_HLG_BT2100_2, ootf_HLG_BT2100_1, ootf_HLG_BT2100_2, ootf_inverse_HLG_BT2100_1, ootf_inverse_HLG_BT2100_2) from colour.models.rgb.transfer_functions.itur_bt_2100 import ( gamma_function_HLG_BT2100) from colour.utilities import domain_range_scale, ignore_numpy_errors __author__ = 'Colour Developers' __copyright__ = 'Copyright (C) 2013-2019 - Colour Developers' __license__ = 'New BSD License - https://opensource.org/licenses/BSD-3-Clause' __maintainer__ = 'Colour Developers' __email__ = '<EMAIL>' __status__ = 'Production' __all__ = [ 'TestOetf_PQ_BT2100', 'TestOetf_inverse_PQ_BT2100', 'TestEotf_PQ_BT2100', 'TestEotf_inverse_PQ_BT2100', 'TestOotf_PQ_BT2100', 'TestOotf_inverse_PQ_BT2100', 'TestGamma_function_HLG_BT2100', 'TestOetf_HLG_BT2100', 'TestOetf_inverse_HLG_BT2100', 'TestEotf_HLG_BT2100_1', 'TestEotf_HLG_BT2100_2', 'TestEotf_inverse_HLG_BT2100_1', 'TestEotf_inverse_HLG_BT2100_2', 'TestOotf_HLG_BT2100_1', 'TestOotf_HLG_BT2100_2', 'TestOotf_inverse_HLG_BT2100_1', 'TestOotf_inverse_HLG_BT2100_2' ] class TestOetf_PQ_BT2100(unittest.TestCase): """ Defines :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_PQ_BT2100` definition unit tests methods. """ def test_oetf_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_PQ_BT2100` definition. """ self.assertAlmostEqual( oetf_PQ_BT2100(0.0), 0.000000730955903, places=7) self.assertAlmostEqual( oetf_PQ_BT2100(0.1), 0.724769816665726, places=7) self.assertAlmostEqual( oetf_PQ_BT2100(1.0), 0.999999934308041, places=7) def test_n_dimensional_oetf_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_PQ_BT2100` definition n-dimensional arrays support. """ E = 0.1 E_p = oetf_PQ_BT2100(E) E = np.tile(E, 6) E_p = np.tile(E_p, 6) np.testing.assert_almost_equal(oetf_PQ_BT2100(E), E_p, decimal=7) E = np.reshape(E, (2, 3)) E_p = np.reshape(E_p, (2, 3)) np.testing.assert_almost_equal(oetf_PQ_BT2100(E), E_p, decimal=7) E = np.reshape(E, (2, 3, 1)) E_p = np.reshape(E_p, (2, 3, 1)) np.testing.assert_almost_equal(oetf_PQ_BT2100(E), E_p, decimal=7) def test_domain_range_scale_oetf_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_PQ_BT2100` definition domain and range scale support. """ E = 0.1 E_p = oetf_PQ_BT2100(E) d_r = (('reference', 1), (1, 1), (100, 100)) for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( oetf_PQ_BT2100(E * factor), E_p * factor, decimal=7) @ignore_numpy_errors def test_nan_oetf_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_PQ_BT2100` definition nan support. """ oetf_PQ_BT2100(np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestOetf_inverse_PQ_BT2100(unittest.TestCase): """ Defines :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_inverse_PQ_BT2100` definition unit tests methods. """ def test_oetf_inverse_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_inverse_PQ_BT2100` definition. """ self.assertAlmostEqual( oetf_inverse_PQ_BT2100(0.000000730955903), 0.0, places=7) self.assertAlmostEqual( oetf_inverse_PQ_BT2100(0.724769816665726), 0.1, places=7) self.assertAlmostEqual( oetf_inverse_PQ_BT2100(0.999999934308041), 1.0, places=7) def test_n_dimensional_oetf_inverse_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_inverse_PQ_BT2100` definition n-dimensional arrays support. """ E_p = 0.724769816665726 E = oetf_inverse_PQ_BT2100(E_p) E_p = np.tile(E_p, 6) E = np.tile(E, 6) np.testing.assert_almost_equal( oetf_inverse_PQ_BT2100(E_p), E, decimal=7) E_p = np.reshape(E_p, (2, 3)) E = np.reshape(E, (2, 3)) np.testing.assert_almost_equal( oetf_inverse_PQ_BT2100(E_p), E, decimal=7) E_p = np.reshape(E_p, (2, 3, 1)) E = np.reshape(E, (2, 3, 1)) np.testing.assert_almost_equal( oetf_inverse_PQ_BT2100(E_p), E, decimal=7) def test_domain_range_scale_oetf_inverse_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_inverse_PQ_BT2100` definition domain and range scale support. """ E_p = 0.724769816665726 E = oetf_inverse_PQ_BT2100(E_p) d_r = (('reference', 1), (1, 1), (100, 100)) for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( oetf_inverse_PQ_BT2100(E_p * factor), E * factor, decimal=7) @ignore_numpy_errors def test_nan_oetf_inverse_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_inverse_PQ_BT2100` definition nan support. """ oetf_inverse_PQ_BT2100( np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestEotf_PQ_BT2100(unittest.TestCase): """ Defines :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_PQ_BT2100` definition unit tests methods. """ def test_eotf_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_PQ_BT2100` definition. """ self.assertAlmostEqual(eotf_PQ_BT2100(0.0), 0.0, places=7) self.assertAlmostEqual( eotf_PQ_BT2100(0.724769816665726), 779.98836083408537, places=7) self.assertAlmostEqual(eotf_PQ_BT2100(1.0), 10000.0, places=7) def test_n_dimensional_eotf_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_PQ_BT2100` definition n-dimensional arrays support. """ E_p = 0.724769816665726 F_D = eotf_PQ_BT2100(E_p) E_p = np.tile(E_p, 6) F_D = np.tile(F_D, 6) np.testing.assert_almost_equal(eotf_PQ_BT2100(E_p), F_D, decimal=7) E_p = np.reshape(E_p, (2, 3)) F_D = np.reshape(F_D, (2, 3)) np.testing.assert_almost_equal(eotf_PQ_BT2100(E_p), F_D, decimal=7) E_p = np.reshape(E_p, (2, 3, 1)) F_D = np.reshape(F_D, (2, 3, 1)) np.testing.assert_almost_equal(eotf_PQ_BT2100(E_p), F_D, decimal=7) def test_domain_range_scale_eotf_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_PQ_BT2100` definition domain and range scale support. """ E_p = 0.724769816665726 F_D = eotf_PQ_BT2100(E_p) d_r = (('reference', 1), (1, 1), (100, 100)) for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( eotf_PQ_BT2100(E_p * factor), F_D * factor, decimal=7) @ignore_numpy_errors def test_nan_eotf_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_PQ_BT2100` definition nan support. """ eotf_PQ_BT2100(np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestEotf_inverse_PQ_BT2100(unittest.TestCase): """ Defines :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_inverse_PQ_BT2100` definition unit tests methods. """ def test_eotf_inverse_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_inverse_PQ_BT2100` definition. """ self.assertAlmostEqual( eotf_inverse_PQ_BT2100(0.0), 0.000000730955903, places=7) self.assertAlmostEqual( eotf_inverse_PQ_BT2100(779.98836083408537), 0.724769816665726, places=7) self.assertAlmostEqual(eotf_inverse_PQ_BT2100(10000.0), 1.0, places=7) def test_n_dimensional_eotf_inverse_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_inverse_PQ_BT2100` definition n-dimensional arrays support. """ F_D = 779.98836083408537 E_p = eotf_inverse_PQ_BT2100(F_D) F_D = np.tile(F_D, 6) E_p = np.tile(E_p, 6) np.testing.assert_almost_equal( eotf_inverse_PQ_BT2100(F_D), E_p, decimal=7) F_D = np.reshape(F_D, (2, 3)) E_p = np.reshape(E_p, (2, 3)) np.testing.assert_almost_equal( eotf_inverse_PQ_BT2100(F_D), E_p, decimal=7) F_D = np.reshape(F_D, (2, 3, 1)) E_p = np.reshape(E_p, (2, 3, 1)) np.testing.assert_almost_equal( eotf_inverse_PQ_BT2100(F_D), E_p, decimal=7) def test_domain_range_scale_eotf_inverse_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_inverse_PQ_BT2100` definition domain and range scale support. """ F_D = 779.98836083408537 E_p = eotf_inverse_PQ_BT2100(F_D) d_r = (('reference', 1), (1, 1), (100, 100)) for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( eotf_inverse_PQ_BT2100(F_D * factor), E_p * factor, decimal=7) @ignore_numpy_errors def test_nan_eotf_inverse_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_inverse_PQ_BT2100` definition nan support. """ eotf_inverse_PQ_BT2100( np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestOotf_PQ_BT2100(unittest.TestCase): """ Defines :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ ootf_PQ_BT2100` definition unit tests methods. """ def test_ootf_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ ootf_PQ_BT2100` definition. """ self.assertAlmostEqual(ootf_PQ_BT2100(0.0), 0.0, places=7) self.assertAlmostEqual( ootf_PQ_BT2100(0.1), 779.98836083411584, places=7) self.assertAlmostEqual( ootf_PQ_BT2100(1.0), 9999.993723673924300, places=7) def test_n_dimensional_ootf_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ ootf_PQ_BT2100` definition n-dimensional arrays support. """ E = 0.1 F_D = ootf_PQ_BT2100(E) E = np.tile(E, 6) F_D = np.tile(F_D, 6) np.testing.assert_almost_equal(ootf_PQ_BT2100(E), F_D, decimal=7) E = np.reshape(E, (2, 3)) F_D = np.reshape(F_D, (2, 3)) np.testing.assert_almost_equal(ootf_PQ_BT2100(E), F_D, decimal=7) E = np.reshape(E, (2, 3, 1)) F_D = np.reshape(F_D, (2, 3, 1)) np.testing.assert_almost_equal(ootf_PQ_BT2100(E), F_D, decimal=7) def test_domain_range_scale_ootf_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ ootf_PQ_BT2100` definition domain and range scale support. """ E = 0.1 F_D = ootf_PQ_BT2100(E) d_r = (('reference', 1), (1, 1), (100, 100)) for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( ootf_PQ_BT2100(E * factor), F_D * factor, decimal=7) @ignore_numpy_errors def test_nan_ootf_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ ootf_PQ_BT2100` definition nan support. """ ootf_PQ_BT2100(np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestOotf_inverse_PQ_BT2100(unittest.TestCase): """ Defines :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ ootf_inverse_PQ_BT2100` definition unit tests methods. """ def test_ootf_inverse_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ ootf_inverse_PQ_BT2100` definition. """ self.assertAlmostEqual(ootf_inverse_PQ_BT2100(0.0), 0.0, places=7) self.assertAlmostEqual( ootf_inverse_PQ_BT2100(779.98836083411584), 0.1, places=7) self.assertAlmostEqual( ootf_inverse_PQ_BT2100(9999.993723673924300), 1.0, places=7) def test_n_dimensional_ootf_inverse_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ ootf_inverse_PQ_BT2100` definition n-dimensional arrays support. """ F_D = 779.98836083411584 E = ootf_inverse_PQ_BT2100(F_D) F_D = np.tile(F_D, 6) E = np.tile(E, 6) np.testing.assert_almost_equal( ootf_inverse_PQ_BT2100(F_D), E, decimal=7) F_D = np.reshape(F_D, (2, 3)) E = np.reshape(E, (2, 3)) np.testing.assert_almost_equal( ootf_inverse_PQ_BT2100(F_D), E, decimal=7) F_D = np.reshape(F_D, (2, 3, 1)) E = np.reshape(E, (2, 3, 1)) np.testing.assert_almost_equal( ootf_inverse_PQ_BT2100(F_D), E, decimal=7) def test_domain_range_scale_ootf_inverse_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ ootf_inverse_PQ_BT2100` definition domain and range scale support. """ F_D = 779.98836083411584 E = ootf_inverse_PQ_BT2100(F_D) d_r = (('reference', 1), (1, 1), (100, 100)) for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( ootf_inverse_PQ_BT2100(F_D * factor), E * factor, decimal=7) @ignore_numpy_errors def test_nan_ootf_inverse_PQ_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ ootf_inverse_PQ_BT2100` definition nan support. """ ootf_inverse_PQ_BT2100( np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestGamma_function_HLG_BT2100(unittest.TestCase): """ Defines :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ gamma_function_HLG_BT2100` definition unit tests methods. """ def test_gamma_function_HLG_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ gamma_function_HLG_BT2100` definition. """ self.assertAlmostEqual( gamma_function_HLG_BT2100(1000.0), 1.2, places=7) self.assertAlmostEqual( gamma_function_HLG_BT2100(2000.0), 1.326432598178872, places=7) self.assertAlmostEqual( gamma_function_HLG_BT2100(4000.0), 1.452865196357744, places=7) self.assertAlmostEqual( gamma_function_HLG_BT2100(10000.0), 1.619999999999999, places=7) class TestOetf_HLG_BT2100(unittest.TestCase): """ Defines :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_HLG_BT2100` definition unit tests methods. """ def test_oetf_HLG_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_HLG_BT2100` definition. """ self.assertAlmostEqual(oetf_HLG_BT2100(0.0), 0.0, places=7) self.assertAlmostEqual( oetf_HLG_BT2100(0.18 / 12), 0.212132034355964, places=7) self.assertAlmostEqual( oetf_HLG_BT2100(1.0), 0.999999995536569, places=7) def test_n_dimensional_oetf_HLG_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_HLG_BT2100` definition n-dimensional arrays support. """ E = 0.18 / 12 E_p = oetf_HLG_BT2100(E) E = np.tile(E, 6) E_p = np.tile(E_p, 6) np.testing.assert_almost_equal(oetf_HLG_BT2100(E), E_p, decimal=7) E = np.reshape(E, (2, 3)) E_p = np.reshape(E_p, (2, 3)) np.testing.assert_almost_equal(oetf_HLG_BT2100(E), E_p, decimal=7) E = np.reshape(E, (2, 3, 1)) E_p = np.reshape(E_p, (2, 3, 1)) np.testing.assert_almost_equal(oetf_HLG_BT2100(E), E_p, decimal=7) def test_domain_range_scale_oetf_HLG_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_HLG_BT2100` definition domain and range scale support. """ E = 0.18 / 12 E_p = oetf_HLG_BT2100(E) d_r = (('reference', 1), (1, 1), (100, 100)) for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( oetf_HLG_BT2100(E * factor), E_p * factor, decimal=7) @ignore_numpy_errors def test_nan_oetf_HLG_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_HLG_BT2100` definition nan support. """ oetf_HLG_BT2100(np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestOetf_inverse_HLG_BT2100(unittest.TestCase): """ Defines :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_inverse_HLG_BT2100` definition unit tests methods. """ def test_oetf_inverse_HLG_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_inverse_HLG_BT2100` definition. """ self.assertAlmostEqual(oetf_inverse_HLG_BT2100(0.0), 0.0, places=7) self.assertAlmostEqual( oetf_inverse_HLG_BT2100(0.212132034355964), 0.18 / 12, places=7) self.assertAlmostEqual( oetf_inverse_HLG_BT2100(0.999999995536569), 1.0, places=7) def test_n_dimensional_oetf_inverse_HLG_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_inverse_HLG_BT2100` definition n-dimensional arrays support. """ E_p = 0.212132034355964 E = oetf_inverse_HLG_BT2100(E_p) E_p = np.tile(E_p, 6) E = np.tile(E, 6) np.testing.assert_almost_equal( oetf_inverse_HLG_BT2100(E_p), E, decimal=7) E_p = np.reshape(E_p, (2, 3)) E = np.reshape(E, (2, 3)) np.testing.assert_almost_equal( oetf_inverse_HLG_BT2100(E_p), E, decimal=7) E_p = np.reshape(E_p, (2, 3, 1)) E = np.reshape(E, (2, 3, 1)) np.testing.assert_almost_equal( oetf_inverse_HLG_BT2100(E_p), E, decimal=7) def test_domain_range_scale_oetf_inverse_HLG_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_inverse_HLG_BT2100` definition domain and range scale support. """ E_p = 0.212132034355964 E = oetf_inverse_HLG_BT2100(E_p) d_r = (('reference', 1), (1, 1), (100, 100)) for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( oetf_inverse_HLG_BT2100(E_p * factor), E * factor, decimal=7) @ignore_numpy_errors def test_nan_oetf_inverse_HLG_BT2100(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ oetf_inverse_HLG_BT2100` definition nan support. """ oetf_inverse_HLG_BT2100( np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestEotf_HLG_BT2100_1(unittest.TestCase): """ Defines :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_HLG_BT2100_1` definition unit tests methods. """ def test_eotf_HLG_BT2100_1(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_HLG_BT2100_1` definition. """ self.assertAlmostEqual(eotf_HLG_BT2100_1(0.0), 0.0, places=7) self.assertAlmostEqual( eotf_HLG_BT2100_1(0.212132034355964), 6.476039825649814, places=7) self.assertAlmostEqual( eotf_HLG_BT2100_1(1.0), 1000.000032321769100, places=7) self.assertAlmostEqual( eotf_HLG_BT2100_1(0.212132034355964, 0.001, 10000, 1.4), 27.96039175299561, places=7) def test_n_dimensional_eotf_HLG_BT2100_1(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_HLG_BT2100_1` definition n-dimensional arrays support. """ E_p = 0.212132034355964 F_D = eotf_HLG_BT2100_1(E_p) E_p = np.tile(E_p, 6) F_D = np.tile(F_D, 6) np.testing.assert_almost_equal(eotf_HLG_BT2100_1(E_p), F_D, decimal=7) E_p = np.reshape(E_p, (2, 3)) F_D = np.reshape(F_D, (2, 3)) np.testing.assert_almost_equal(eotf_HLG_BT2100_1(E_p), F_D, decimal=7) E_p = np.reshape(E_p, (2, 3, 1)) F_D = np.reshape(F_D, (2, 3, 1)) np.testing.assert_almost_equal(eotf_HLG_BT2100_1(E_p), F_D, decimal=7) E_p = np.reshape(E_p, (6, 1)) F_D = np.reshape(F_D, (6, 1)) np.testing.assert_almost_equal(eotf_HLG_BT2100_1(E_p), F_D, decimal=7) E_p = np.array([0.25, 0.50, 0.75]) F_D = np.array([12.49759413, 49.99037650, 158.94693786]) np.testing.assert_almost_equal(eotf_HLG_BT2100_1(E_p), F_D, decimal=7) E_p = np.tile(E_p, (6, 1)) F_D = np.tile(F_D, (6, 1)) np.testing.assert_almost_equal(eotf_HLG_BT2100_1(E_p), F_D, decimal=7) E_p = np.reshape(E_p, (2, 3, 3)) F_D = np.reshape(F_D, (2, 3, 3)) np.testing.assert_almost_equal(eotf_HLG_BT2100_1(E_p), F_D, decimal=7) def test_domain_range_scale_eotf_HLG_BT2100_1(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_HLG_BT2100_1` definition domain and range scale support. """ E_p = 0.212132034355964 F_D = eotf_HLG_BT2100_1(E_p) d_r = (('reference', 1), (1, 1), (100, 100)) for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( eotf_HLG_BT2100_1(E_p * factor), F_D * factor, decimal=7) @ignore_numpy_errors def test_nan_eotf_HLG_BT2100_1(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_HLG_BT2100_1` definition nan support. """ eotf_HLG_BT2100_1(np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestEotf_HLG_BT2100_2(unittest.TestCase): """ Defines :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_HLG_BT2100_2` definition unit tests methods. """ def test_eotf_HLG_BT2100_2(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_HLG_BT2100_2` definition. """ self.assertAlmostEqual(eotf_HLG_BT2100_2(0.0), 0.0, places=7) self.assertAlmostEqual( eotf_HLG_BT2100_2(0.212132034355964), 6.476039825649814, places=7) self.assertAlmostEqual( eotf_HLG_BT2100_2(1.0), 1000.000032321769100, places=7) self.assertAlmostEqual( eotf_HLG_BT2100_2(0.212132034355964, 0.001, 10000, 1.4), 29.581261576946076, places=7) def test_n_dimensional_eotf_HLG_BT2100_2(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_HLG_BT2100_2` definition n-dimensional arrays support. """ E_p = 0.212132034355964 F_D = eotf_HLG_BT2100_2(E_p) E_p = np.tile(E_p, 6) F_D = np.tile(F_D, 6) np.testing.assert_almost_equal(eotf_HLG_BT2100_2(E_p), F_D, decimal=7) E_p = np.reshape(E_p, (2, 3)) F_D = np.reshape(F_D, (2, 3)) np.testing.assert_almost_equal(eotf_HLG_BT2100_2(E_p), F_D, decimal=7) E_p = np.reshape(E_p, (2, 3, 1)) F_D = np.reshape(F_D, (2, 3, 1)) np.testing.assert_almost_equal(eotf_HLG_BT2100_2(E_p), F_D, decimal=7) E_p = np.reshape(E_p, (6, 1)) F_D = np.reshape(F_D, (6, 1)) np.testing.assert_almost_equal(eotf_HLG_BT2100_2(E_p), F_D, decimal=7) E_p = np.array([0.25, 0.50, 0.75]) F_D = np.array([12.49759413, 49.99037650, 158.94693786]) np.testing.assert_almost_equal(eotf_HLG_BT2100_2(E_p), F_D, decimal=7) E_p = np.tile(E_p, (6, 1)) F_D = np.tile(F_D, (6, 1)) np.testing.assert_almost_equal(eotf_HLG_BT2100_2(E_p), F_D, decimal=7) E_p = np.reshape(E_p, (2, 3, 3)) F_D = np.reshape(F_D, (2, 3, 3)) np.testing.assert_almost_equal(eotf_HLG_BT2100_2(E_p), F_D, decimal=7) def test_domain_range_scale_eotf_HLG_BT2100_2(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_HLG_BT2100_2` definition domain and range scale support. """ E_p = 0.212132034355964 F_D = eotf_HLG_BT2100_2(E_p) d_r = (('reference', 1), (1, 1), (100, 100)) for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( eotf_HLG_BT2100_2(E_p * factor), F_D * factor, decimal=7) @ignore_numpy_errors def test_nan_eotf_HLG_BT2100_2(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_HLG_BT2100_2` definition nan support. """ eotf_HLG_BT2100_2(np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestEotf_inverse_HLG_BT2100_1(unittest.TestCase): """ Defines :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_inverse_HLG_BT2100_1` definition unit tests methods. """ def test_eotf_inverse_HLG_BT2100_1(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_inverse_HLG_BT2100_1` definition. """ self.assertAlmostEqual(eotf_inverse_HLG_BT2100_1(0.0), 0.0, places=7) self.assertAlmostEqual( eotf_inverse_HLG_BT2100_1(6.476039825649814), 0.212132034355964, places=7) self.assertAlmostEqual( eotf_inverse_HLG_BT2100_1(1000.000032321769100), 1.0, places=7) self.assertAlmostEqual( eotf_inverse_HLG_BT2100_1(27.96039175299561, 0.001, 10000, 1.4), 0.212132034355964, places=7) def test_n_dimensional_eotf_inverse_HLG_BT2100_1(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_inverse_HLG_BT2100_1` definition n-dimensional arrays support. """ F_D = 6.476039825649814 E_p = eotf_inverse_HLG_BT2100_1(F_D) F_D = np.tile(F_D, 6) E_p = np.tile(E_p, 6) np.testing.assert_almost_equal( eotf_inverse_HLG_BT2100_1(F_D), E_p, decimal=7) F_D = np.reshape(F_D, (2, 3)) E_p = np.reshape(E_p, (2, 3)) np.testing.assert_almost_equal( eotf_inverse_HLG_BT2100_1(F_D), E_p, decimal=7) F_D = np.reshape(F_D, (2, 3, 1)) E_p = np.reshape(E_p, (2, 3, 1)) np.testing.assert_almost_equal( eotf_inverse_HLG_BT2100_1(F_D), E_p, decimal=7) F_D = np.reshape(F_D, (6, 1)) E_p = np.reshape(E_p, (6, 1)) np.testing.assert_almost_equal( eotf_inverse_HLG_BT2100_1(F_D), E_p, decimal=7) F_D = np.array([12.49759413, 49.99037650, 158.94693786]) E_p = np.array([0.25, 0.50, 0.75]) np.testing.assert_almost_equal( eotf_inverse_HLG_BT2100_1(F_D), E_p, decimal=7) F_D = np.tile(F_D, (6, 1)) E_p = np.tile(E_p, (6, 1)) np.testing.assert_almost_equal( eotf_inverse_HLG_BT2100_1(F_D), E_p, decimal=7) F_D = np.reshape(F_D, (2, 3, 3)) E_p = np.reshape(E_p, (2, 3, 3)) np.testing.assert_almost_equal( eotf_inverse_HLG_BT2100_1(F_D), E_p, decimal=7) def test_domain_range_scale_eotf_inverse_HLG_BT2100_1(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_inverse_HLG_BT2100_1` definition domain and range scale support. """ F_D = 6.476039825649814 E_p = eotf_inverse_HLG_BT2100_1(F_D) d_r = (('reference', 1), (1, 1), (100, 100)) for scale, factor in d_r: with domain_range_scale(scale): np.testing.assert_almost_equal( eotf_inverse_HLG_BT2100_1(F_D * factor), E_p * factor, decimal=7) @ignore_numpy_errors def test_nan_eotf_inverse_HLG_BT2100_1(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_inverse_HLG_BT2100_1` definition nan support. """ eotf_inverse_HLG_BT2100_1( np.array([-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan])) class TestEotf_inverse_HLG_BT2100_2(unittest.TestCase): """ Defines :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_inverse_HLG_BT2100_2` definition unit tests methods. """ def test_eotf_inverse_HLG_BT2100_2(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_inverse_HLG_BT2100_2` definition. """ self.assertAlmostEqual(eotf_inverse_HLG_BT2100_2(0.0), 0.0, places=7) self.assertAlmostEqual( eotf_inverse_HLG_BT2100_2(6.476039825649814), 0.212132034355964, places=7) self.assertAlmostEqual( eotf_inverse_HLG_BT2100_2(1000.000032321769100), 1.0, places=7) self.assertAlmostEqual( eotf_inverse_HLG_BT2100_2(29.581261576946076, 0.001, 10000, 1.4), 0.212132034355964, places=7) def test_n_dimensional_eotf_inverse_HLG_BT2100_2(self): """ Tests :func:`colour.models.rgb.transfer_functions.itur_bt_2100.\ eotf_inverse_HLG_BT2100_2` definition n-dimensional arrays support. """ F_D = 6.476039825649814 E_p = eotf_inverse_HLG_BT2100_2(F_D) F_D = np.tile(F_D, 6) E_p = np.tile(E_p, 6) np.testing.assert_almost_equal( eotf_inverse_HLG_BT2100_2(F_D), E_p, decimal=7) F_D = np.reshape(F_D, (2, 3)) E_p = np.reshape(E_p, (2, 3)) np.testing.assert_almost_equal( eotf_inverse_HLG_BT2100_2(F_D), E_p, decimal=7) F_D = np.reshape(F_D, (2, 3, 1)) E_p = np.reshape(E_p, (2, 3, 1)) np.testing.assert_almost_equal( eotf_inverse_HLG_BT2100_2(F_D), E_p, decimal=7) F_D =
np.reshape(F_D, (6, 1))
numpy.reshape
import argparse import numpy as np def solve(*args, **kwargs): return None def main(args): print('Solving') print('Input: {0}'.format(args.input)) print('Output: {0}'.format(args.output)) with open(args.input, 'r') as in_file:import argparse import numpy as np import matplotlib.pyplot as plt import utils.parallel as parallel def preprocess(idx, photo1: tuple, all_photos: list): n = len(all_photos) intersections = np.zeros(n, np.int16) diffsizehalf = np.zeros(n, np.int16) u = np.zeros(n, np.int16) tags1 = photo1[3] for i, photo2 in enumerate(all_photos): if idx == i: continue tags2 = photo2[3] num_intersections = len(tags1.intersection(tags2)) if num_intersections == 0: continue h = int(np.abs(len(tags1) - len(tags2))) // 2 intersections[i] = num_intersections diffsizehalf[i] = h if photo2[1]: u[i] = intersections[i] else: u[i] = np.maximum(intersections[i] - diffsizehalf[i], 0) return idx, intersections, diffsizehalf, u def merge(v1, v2): assert v1[1] == v2[1] == True merged_tags = v1[3].union(v2[3]) return [v1[0], v2[0]], False, len(merged_tags), merged_tags #def select_vertical(photos): def solve(photos): tags_set = set() n = len(photos) intersections =
np.zeros((n, n), dtype=np.int16)
numpy.zeros
import logging from glob import glob from pathlib import Path import cv2 import numpy as np from imgaug import augmenters as iaa from imgaug.augmentables import BoundingBox, BoundingBoxesOnImage, Keypoint, KeypointsOnImage from omegaconf.listconfig import ListConfig from PIL import Image from pycocotools.coco import COCO from torch.utils import data from utils.helper import instantiate_augmenters from utils.image import draw_umich_gaussian as draw_gaussian from utils.image import gaussian_radius from utils.box import get_annotation_with_angle, rotate_bbox cv2.setNumThreads(0) log = logging.getLogger(__name__) class Dataset(data.Dataset): def __init__( self, image_folder, annotation_file, input_size=(512, 512), target_domain_glob=None, num_classes=80, num_keypoints=0, rotated_boxes=False, mean=(0.40789654, 0.44719302, 0.47026115), std=(0.28863828, 0.27408164, 0.27809835), augmentation=None, augment_target_domain=False, max_detections=150, down_ratio=4): self.image_folder = Path(image_folder) self.coco = COCO(annotation_file) self.images = self.coco.getImgIds() self.use_rotated_boxes = rotated_boxes self.max_detections = max_detections self.down_ratio = down_ratio self.input_size = input_size self.mean = np.array(mean, dtype=np.float32).reshape(1, 1, 3) self.std = np.array(std, dtype=np.float32).reshape(1, 1, 3) self.augmentation = augmentation self.num_classes = num_classes self.num_keypoints = num_keypoints self.string_id_mapping = {} self.augment_target_domain = augment_target_domain self.cat_mapping = {v: i for i, v in enumerate(range(1, num_classes + 1))} self.classes = {y: self.coco.cats[x] if x in self.coco.cats else '' for x, y in self.cat_mapping.items()} assert len(input_size) == 2 if isinstance(target_domain_glob, str): self.target_domain_files = glob(target_domain_glob) elif isinstance(target_domain_glob, (list, ListConfig)): self.target_domain_files = [] for pattern in target_domain_glob: self.target_domain_files.extend(glob(pattern)) else: self.target_domain_files = [] if self.augmentation: augmentation_methods = instantiate_augmenters(augmentation) self.augmentation = iaa.Sequential(augmentation_methods) self.resize = iaa.Resize((self.input_size[0], self.input_size[1])) self.resize_out = iaa.Resize( (self.input_size[0] // down_ratio, self.input_size[1] // down_ratio)) log.info( f"found {len(self.target_domain_files)} samples for target domain") super().__init__() def __len__(self): return len(self.images) def __getitem__(self, index): img_id = self.images[index] file_name = self.coco.loadImgs(ids=[img_id])[0]['file_name'] img_path = self.image_folder / file_name ann_ids = self.coco.getAnnIds(imgIds=[img_id]) anns = self.coco.loadAnns(ids=ann_ids) num_objs = min(len(anns), self.max_detections) img = np.array(Image.open(img_path).convert("RGB")) if self.use_rotated_boxes: ret = self.__get_rotated_coco(img, anns, num_objs) else: ret = self.__get_default_coco(img, anns, num_objs) if isinstance(img_id, str): mapped_id = self.string_id_mapping.get( img_id, 1 + len(self.string_id_mapping)) self.string_id_mapping[img_id] = mapped_id img_id = mapped_id ret['id'] = img_id if len(self.target_domain_files): target_domain_img = np.array(Image.open( np.random.choice(self.target_domain_files)).convert("RGB")) if self.augmentation is not None and self.augment_target_domain: target_domain_img = self.augmentation(image=target_domain_img) target_domain_img = self.resize(image=target_domain_img) target_domain_img = np.array( target_domain_img, dtype=np.float32) / 255.0 target_domain_img = (target_domain_img - self.mean) / self.std target_domain_img = target_domain_img.transpose(2, 0, 1) ret['target_domain_input'] = target_domain_img return ret def __get_default_coco(self, img, anns, num_objs): boxes = [] if self.num_keypoints > 0: kpts = [] for k in range(num_objs): ann = anns[k] bbox = self._coco_box_to_bbox(ann['bbox']) boxes.append(BoundingBox(*bbox)) if self.num_keypoints > 0: if 'keypoints' not in ann: ann['keypoints'] = np.zeros((3 * self.num_keypoints,)) kpt = [ Keypoint(*x) for x in np.array(ann['keypoints']).reshape(-1, 3) [:, : 2]] kpts.extend(kpt) bbs = BoundingBoxesOnImage(boxes, shape=img.shape) if self.num_keypoints > 0: kpts = KeypointsOnImage(kpts, shape=img.shape) if self.augmentation is not None: if self.num_keypoints > 0: img_aug, bbs_aug, kpts_aug = self.augmentation( image=img, bounding_boxes=bbs, keypoints=kpts) else: img_aug, bbs_aug = self.augmentation( image=img, bounding_boxes=bbs) else: if self.num_keypoints > 0: kpts_aug = kpts.copy() img_aug, bbs_aug = np.copy(img), bbs.copy() if self.num_keypoints > 0: img_aug, bbs_aug, kpts_aug = self.resize( image=img_aug, bounding_boxes=bbs_aug, keypoints=kpts_aug) else: img_aug, bbs_aug = self.resize( image=img_aug, bounding_boxes=bbs_aug) img = (img_aug.astype(np.float32) / 255.) inp = (img - self.mean) / self.std inp = inp.transpose(2, 0, 1) output_h = self.input_size[1] // self.down_ratio output_w = self.input_size[0] // self.down_ratio num_classes = self.num_classes hm = np.zeros((num_classes, output_h, output_w), dtype=np.float32) wh = np.zeros((self.max_detections, 2), dtype=np.float32) reg = np.zeros((self.max_detections, 2), dtype=np.float32) ind = np.zeros((self.max_detections), dtype=np.int64) reg_mask = np.zeros((self.max_detections), dtype=np.uint8) gt_det = np.zeros((self.max_detections, num_classes), dtype=np.float32) gt_areas = np.zeros((self.max_detections), dtype=np.float32) if self.num_keypoints > 0: kp = np.zeros( (self.max_detections, self.num_keypoints * 2), dtype=np.float32) gt_kp = np.zeros( (self.max_detections, self.num_keypoints, 2), dtype=np.float32) kp_reg_mask = np.zeros( (self.max_detections, self.num_keypoints * 2), dtype=np.uint8) bbs_aug, kpts_aug = self.resize_out( bounding_boxes=bbs_aug, keypoints=kpts_aug) else: bbs_aug = self.resize_out(bounding_boxes=bbs_aug) for k in range(num_objs): ann = anns[k] bbox_aug = bbs_aug[k].clip_out_of_image((output_w, output_h)) bbox = np.array([bbox_aug.x1, bbox_aug.y1, bbox_aug.x2, bbox_aug.y2]) cls_id = int(self.cat_mapping[ann['category_id']]) bbox[[0, 2]] = np.clip(bbox[[0, 2]], 0, output_w - 1) bbox[[1, 3]] = np.clip(bbox[[1, 3]], 0, output_h - 1) h, w = bbox[3] - bbox[1], bbox[2] - bbox[0] if h > 0 and w > 0: radius = gaussian_radius((np.ceil(h), np.ceil(w))) radius = max(0, int(radius)) ct = np.array( [(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2], dtype=np.float32) ct_int = ct.astype(np.int32) draw_gaussian(hm[cls_id], ct_int, radius) wh[k] = 1. * w, 1. * h ind[k] = ct_int[1] * output_w + ct_int[0] reg[k] = ct - ct_int reg_mask[k] = 1 gt_det[k] = ([ct[0] - w / 2, ct[1] - h / 2, ct[0] + w / 2, ct[1] + h / 2, 1, cls_id]) if self.num_keypoints > 0: valid = np.array(ann["keypoints"]).reshape(-1, 3)[:, -1] for i, p in enumerate( kpts_aug[k * self.num_keypoints: k * self.num_keypoints + self.num_keypoints]): kp[k][i * 2] = p.x - ct_int[0] kp[k][i * 2 + 1] = p.y - ct_int[1] is_valid = valid[i] == 2 and not p.is_out_of_image( (output_w, output_w)) kp_reg_mask[k, i * 2] = int(is_valid) kp_reg_mask[k, i * 2 + 1] = int(is_valid) gt_kp[k][i] = p.x, p.y if "area" not in ann: gt_areas[k] = w * h else: gt_areas[k] = ann["area"] del bbs del bbs_aug del img_aug gt_det = np.array(gt_det, dtype=np.float32) if len( gt_det) > 0 else np.zeros((1, 6), dtype=np.float32) ret = { 'input': inp, 'hm': hm, 'reg_mask': reg_mask, 'ind': ind, 'wh': wh, 'reg': reg, 'gt_dets': gt_det, 'gt_areas': gt_areas, } if self.num_keypoints > 0: ret['kps'] = kp ret['gt_kps'] = gt_kp ret['kp_reg_mask'] = kp_reg_mask del kpts_aug return ret def __get_rotated_coco(self, img, anns, num_objs): kpts = [] kpts_tmp = [] for k in range(num_objs): ann = anns[k] ann_rotated = get_annotation_with_angle(ann) ann_rotated[4] = ann_rotated[4] rot = rotate_bbox(*ann_rotated) kpts.extend([Keypoint(*x) for x in rot]) if self.num_keypoints > 0: if 'keypoints' not in ann: ann['keypoints'] = np.zeros((3 * self.num_keypoints,)) kpt = [ Keypoint(*x) for x in np.array(ann['keypoints']).reshape(-1, 3) [:, : 2]] kpts_tmp.extend(kpt) idx_boxes = len(kpts) if self.num_keypoints > 0: kpts.extend(kpts_tmp) kpts = KeypointsOnImage(kpts, shape=img.shape) if self.augmentation is not None: img_aug, kpts_aug = self.augmentation(image=img, keypoints=kpts) else: img_aug, kpts_aug =
np.copy(img)
numpy.copy
"""main threadcount module.""" import json import csv from types import SimpleNamespace from collections import OrderedDict, UserList import numpy as np import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages import lmfit import mpdaf.obj import astropy.units as u from . import lines from . import models from . import mpdaf_ext # noqa: F401 FLAM16 = u.Unit(1e-16 * u.erg / (u.cm ** 2 * u.s * u.AA)) """A header["BUNIT"] value we have.""" FLOAT_FMT = ".8g" """Default formatting for floats in output files.""" DEFAULT_FIT_INFO = "aic_real bic_real chisqr redchi success".split() """Define typical ModelResult information we might want.""" def open_fits_cube( data_filename, data_hdu_index=None, var_filename=None, var_hdu_index=None, **kwargs ): """Load a fits file using :class:`mpdaf.obj.Cube`, and handle variance in separate file. I highly recommend being explicit in the parameters and not relying on the guessing that mpdaf can perform. Parameters ---------- data_filename : str Path to file containing data data_hdu_index : int, optional Index indicating which hdu contains the data (starting with 0), by default None (then the :class:`mpdaf.obj.Cube` constructor will attempt to guess the correct extension) var_filename : str, optional Path to file containing variance, by default None (No variance will be loaded. Unless `data_hdu_index` = None, and then the :class:`mpdaf.obj.Cube` constructor will attempt to automatically load variance from `data_filename`) var_hdu_index : int, optional Index indicating which hdu contains the variance (starting with 0), by default None (then the :class:`mpdaf.obj.Cube` constructor will attempt to guess the correct extension) **kwargs : dict, optional Any keyword arguments to pass to :class:`mpdaf.obj.Cube`, such as `unit` Returns ------- :class:`mpdaf.obj.Cube` A data cube. """ # no variance given: if var_filename is None: cube = mpdaf.obj.Cube(data_filename, ext=data_hdu_index, **kwargs) # data and variance stored in same file: elif data_filename == var_filename: cube = mpdaf.obj.Cube( data_filename, ext=(data_hdu_index, var_hdu_index), **kwargs ) # data and variance stored in different files: else: cube = mpdaf.obj.Cube(data_filename, ext=data_hdu_index, **kwargs) varcube = mpdaf.obj.Cube(var_filename, ext=var_hdu_index, **kwargs) # varcube is loaded as masked array. cube._var = varcube.data.data cube._mask |= varcube.mask # test for FLAM16: if cube.unit == u.dimensionless_unscaled: if cube.data_header.get("BUNIT") == "FLAM16": cube.unit = FLAM16 return cube def de_redshift(wavecoord, z=0, z_initial=0): r"""De-redshift the WaveCoord in-place. Parameters ---------- wavecoord : :class:`mpdaf.obj.WaveCoord` The wavelength coordinate to be de-redshifted z : float, optional The redshift of the object whose wavecoord to de-redshift, by default 0 (i.e. no change) z_initial : float, optional The redshift currently applied to the wavecoord, by default 0 (i.e. none applied) Notes ----- I tried to make z a new attribute in `wavecoord`, but due to details in how slicing works, this was not a simple change. Therefore z must be stored in a variable externally to the wavecoord. """ wavecoord.set_crval(wavecoord.get_crval() * (1 + z_initial) / (1 + z)) wavecoord.set_step(wavecoord.get_step() * (1 + z_initial) / (1 + z)) return z # TODO: Add in a part where the user can input in a redshift and move the # histogram or center line or whatever around. i.e. user input at the end. def tweak_redshift( cube, z_gal, center_wavelength=lines.OIII5007, wavelength_range=(-15, 15), # This is in Angstroms pixel_mask=None, ): """Interactively choose a new redshift. This procedure has several steps. 1. Select which spaxels to use for calculating the redshift via one of these options: * use the input parameter `pixel_mask` * Select pixels with a high integrated flux value in the selected wavelength range. These are likely to be the galaxy. The user will interact with the terminal and view a plot to interactively change the lower threshold for the desired pixels. To accept the value plotted, leave the entry blank and press enter. 2. Fit a :class:`~threadcount.models.Const_1GaussModel` to the selected spaxels. 3. Extract the parameter value for 'g1_center' to get the center wavelength of the fitted gaussian and compute the median center. 4. Calculate the redshift required for the median center to be equal to `center_wavelength` using the formula:: new_z = (median_center / `center_wavelength`) * (1 + `z_gal`) - 1 5. Display a plot showing the spaxels used and a histogram displaying all the center wavelengths (with `center_wavelength` subtracted, so it displays the change from ideal) Parameters ---------- cube : :class:`mpdaf.obj.Cube` A datacube containing the wavelength range set in these parameters z_gal : float The redshift of the object which has already been applied to the `cube` center_wavelength : float, optional The center wavelength of the emission line to fit, by default :const:`threadcount.lines.OIII5007` wavelength_range : array-like [float, float], optional The wavelength range to fit, in Angstroms. These are defined as a change from the `center_wavelength`, by default (-15, 15) Returns ------- float The redshift selected by the user. """ plt.close() print("====================================") print("Tweak reshift procedure has started.") print("====================================\n\n") print("Using line {:.4g} +/- {} A".format(center_wavelength, wavelength_range[1])) # retrieve spectral subcube from cube. subcube = cube.select_lambda( center_wavelength + wavelength_range[0], center_wavelength + wavelength_range[1], ) fluxmap = subcube.sum(axis=0) if pixel_mask is None: # use the sum of the flux and mask at value, changed by user interaction. plot_title = ( "Tweak Redshift:\n" "Spaxels to fit. Set mask level in console.\n" "Val.=sum of spectrum (arb. units)" ) limit = interactive_lower_threshold(fluxmap, title=plot_title) pixel_mask = (fluxmap > limit).mask fluxmap.mask = pixel_mask fig, axs = plt.subplots(ncols=2, gridspec_kw={"top": 0.85}) fig.suptitle( "Tweak z using line {:.4g} +/- {} A".format( center_wavelength, wavelength_range[1] ) ) fluxmap.plot( ax=axs[0], title="Spaxels included in histogram\nVal.=sum of spectrum (arb. units)", colorbar="v", zscale=True, ) valid_pixels = np.where(~fluxmap.mask) # loop over valid pixels, do the fit, and store in results list. results = [] model = models.Const_1GaussModel() params = None print("Fitting selected spaxels with gaussian model...") for y, x in zip(*valid_pixels): this_mr = subcube[:, y, x].lmfit(model, params=params, method="least_squares") if params is None: params = this_mr.params results += [this_mr] fit_centers = vget_param_values(results, "g1_center") # remove invalid values, specifically centers outside the range given: fit_centers = fit_centers[fit_centers < (center_wavelength + wavelength_range[1])] fit_centers = fit_centers[fit_centers > (center_wavelength + wavelength_range[0])] plt.sca(axs[1]) plt.hist(fit_centers - center_wavelength, bins=20) plt.title("Center wavelength histogram") plt.xlabel(r"change from {:.5g} $\AA$ [$\AA$]".format(center_wavelength)) plt.axvline(0, color="black", label=r"{:.5g} $\AA$".format(center_wavelength)) plt.axvline( np.nanmedian(fit_centers) - center_wavelength, color="red", label="median" ) plt.legend() plt.show(block=False) print("Redshift from input settings (for reference) : {}".format(z_gal)) new_z = (np.nanmedian(fit_centers) / center_wavelength) * (1 + z_gal) - 1 print("Redshift calculated from the median of the fit centers: {}".format(new_z)) change_z = input( "Do you want to update the redshift with the calculated value {} ([y]/n)? ".format( new_z ) ) if change_z.lower().startswith("n"): return_z = z_gal message = "The original redshift has been kept: {}".format(return_z) else: return_z = new_z message = "The redshift has been updated to {}".format(return_z) print("Tweak reshift procedure is finished. " + message) return return_z def interactive_lower_threshold(image, title=""): """Create plot and interact with user to determine the lower threshold for valid data. The image is plotted, with a mask applied which initially masks the lower 95% of data. A prompt is given in the console, asking for user input. If the user enters no input and presses <enter>, that indicates the currently shown level has been accepted by the user. Otherwise, the user may input a different number. The plot will be redrawn and the input is requested again. This function is primarily used to determine the cutoff indicating the spaxels containing the most flux, hopefully indicating the galaxy center. We then will use those pixels to fit an emission line, and find the centers. This can be used to tweak the redshift if desired. Parameters ---------- image : :class:`mpdaf.obj.image.Image` An mpdaf image we wish to threshold interactively title : str, optional The title given to the plot displaying the `image`, by default "" Returns ------- limit : float The deterimined threshold for valid data. """ limit = np.quantile(image.data, 0.95) m_img = image > limit m_img.plot(zscale=True, title=title, colorbar="v") fig = plt.gcf() plt.show(block=False) while True: print("Change the threshold for valid pixels.") print( "You may try multiple thresholds. Leave the entry blank and press Enter to confirm your choice." ) print("current limit: {}".format(limit)) new_limit = input( "Set new limit: (or leave blank and press Enter to continue) " ) # if input is convertable to float, redo loop, otherwise exit loop try: limit = float(new_limit) except ValueError or TypeError: plt.close() return limit m_img = image > limit plt.close(fig) m_img.plot(zscale=True, title=title, colorbar="v") fig = plt.gcf() plt.show(block=False) def get_param_values(params, param_name, default_value=np.nan): """Retrieve parameter value by name from lmfit objects. Parameters ---------- params : :class:`lmfit.model.ModelResult` or :class:`lmfit.parameter.Parameters` Input object containing the value you wish to extract param_name : str The :class:`lmfit.parameter.Parameter` name, whose value will be returned. Also may be a :class:`lmfit.model.ModelResult` attribute, such as 'chisqr' default_value : Any, optional The return value if the function cannot find the `param_name`, by default np.nan Returns ------- float, bool, str, or type(`default_value`) * If type(`params`) is :class:`~lmfit.parameter.Parameters`: `params`.get(`param_name`).value * If type('params`) is :class:`~lmfit.model.ModelResult`: * Tries first: `params`.params.get(`param_name`).value * Tries second: `params`.get(`param_name`), which allows for ModelResult attributes. * If all these fail, returns `default_value` See Also -------- get_param_values : Use this version of the function on 1 input object vget_param_values : Use this version of the function on an array of input objects. This is a vectorized version of this function that you can apply to arrays (see: https://numpy.org/doc/stable/reference/generated/numpy.vectorize.html) Examples -------- >>> import threadcount.fit >>> from lmfit.models import GaussianModel >>> model = GaussianModel() >>> params = model.make_params() >>> threadcount.fit.get_param_values(params,'sigma') 1.0 >>> # or use the vectorized version: >>> params2 = model.make_params(sigma=4) >>> a = np.array([params,params2], dtype=object) >>> threadcount.fit.vget_param_values(a,"sigma") array([1., 4.]) """ # Quick test, because I know sometimes `params` will be None. if params is None: return default_value # The order of the following try/except blocks is from most-nested to least-nested # extraction. # 1st: assume `params` is actually a lmfit ModelResult, and that we are # trying to extract the parameter `param_name` value from that modelresult's params. try: return params.params.get(param_name).value except AttributeError: pass # 2nd: assume `params` is a lmfit Parameters object, and that we are # trying to extract the parameter `param_name` value from it. try: return params.get(param_name).value except AttributeError: pass # 3rd: This works for everything else. If `params` is a modelresult and # if `param_name` is a modelresult attribute, this will return it properly # If `params` has no attribute `get` (such as if it is type int), then # default value is returned. try: return params.get(param_name, default_value) except AttributeError: return default_value vget_param_values = np.vectorize(get_param_values) def iter_spaxel(image, index=False): """Create an iterator over the spaxels of successive image pixels in a 2d numpy array. Each call to the iterator returns the value of the array `image` at a spaxel. The first spaxel to be addressed of image is pixel 0,0. Thereafter the X-axis pixel index is incremented by one at each call (modulus the length of the X-axis), and the Y-axis pixel index is incremented by one each time that the X-axis index wraps back to zero. The return value of iter_spaxel() is a python generator that can be used in loops Parameters ---------- image : 2d `numpy.ndarray` The image to be iterated over. index : bool If False, return just a value at each iteration. If True, return both a value and the pixel index of that spaxel in the image (a tuple of image-array indexes along the axes (y,x)). Yields ------ dtype of `image` """ if index: for y, x in np.ndindex(image.shape): yield image[y, x], (y, x) else: for y, x in np.ndindex(image.shape): yield image[y, x] def process_settings(default_settings, user_settings_string=""): """Combine the default settings with any user settings. Process the user settings and override the default if a corresponding user setting exists. Print a warning if a there is a missing user setting. Parameters ---------- default_settings : dict A dictionary containing all required settings for the script to run. user_settings_string : str, optional A string (created by json.dumps(dictionary) containing user settings.), by default "" Returns ------- :class:`types.SimpleNamespace` A simple namespace containing the settings, for easier access to attributes. """ if user_settings_string == "": return SimpleNamespace(**default_settings) # otherwise process them. user_settings = json.loads(user_settings_string) # determine if there are missing settings in the user's and report them. missing = { k: default_settings[k] for k in default_settings.keys() - user_settings.keys() } for k, v in missing.items(): print("Missing setting {}, using default value {}".format(k, v)) final_settings = SimpleNamespace(**user_settings) final_settings.__dict__.update(**missing) return final_settings def process_settings_dict(default_settings, user_settings=None): """Combine the default settings with any user settings. Process the user settings and override the default if a corresponding user setting exists. Print a warning if a there is a missing user setting. Parameters ---------- default_settings : dict A dictionary containing all required settings for the script to run. user_settings : dict, optional A dictionary containing user settings, by default None Returns ------- :class:`types.SimpleNamespace` A simple namespace containing the settings, for easier access to attributes. """ if not user_settings: # takes care of "", None, and {} return SimpleNamespace(**default_settings) # determine if there are missing settings in the user's and report them. missing = { k: default_settings[k] for k in default_settings.keys() - user_settings.keys() } for k, v in missing.items(): print("Missing setting {}, using default value {}".format(k, v)) final_settings = SimpleNamespace(**user_settings) final_settings.__dict__.update(**missing) return final_settings def get_region(rx, ry=None): """Select pixels in ellipse of radius rx, ry from (0,0). Return an array of np.array([row,col]) that are within an ellipse centered at [0,0] with radius x of rx and radius y of ry. Parameters ---------- rx : number or list of numbers [rx, ry] ry : number Returns ------- numpy.ndarray """ # try to process a list if it is given as parameter try: rx, ry = rx[0], rx[1] # expect TypeError if rx is not a list. except TypeError: pass # Defaults to a circle if ry=None if ry is None: ry = rx rx = abs(rx) ry = abs(ry) rx_int = round(rx) ry_int = round(ry) indicies = (np.mgrid[-ry_int : ry_int + 1, -rx_int : rx_int + 1]).T.reshape(-1, 2) # create boolean array of where inside ellipse is: rx2 = rx * rx ry2 = ry * ry # remember python likes row, column convention, so y comes first. inside = ( indicies[:, 0] * indicies[:, 0] / ry2 + indicies[:, 1] * indicies[:, 1] / rx2 <= 1 ) return indicies[inside] def get_reg_image(region): """Create kernel image from list of pixels. The input `region` is typically the output of :func:`get_region`. This kernel image is used for spatial averaging, and it's values are either 1 (if included in `region`) or 0. Parameters ---------- region : list of pixel positions (y, x) The list of pixel positions relative to an arbitrary point, usually (0,0) in the case of output from :func:`get_region`, to set to value 1 in the output image Returns ------- 2d numpy array An array consisting of the smallest area that will encompass the list of pixels in `region`, with the relative shape of `region` preserved. The array is 0 except for `region` pixels are set to 1. """ # calculate the extent of the list of inputs: mins = region.min(axis=0) maxs = region.max(axis=0) shape = maxs - mins + 1 # initialize output output = np.zeros(shape) # shift the pixel list by mins to reference the new origin. inside = [tuple(pix - mins) for pix in region] # set those pixels in the pixel list to 1. output[tuple(zip(*inside))] = 1 return output def spatial_average(cube, kernel_image, **kwargs): """Apply kernel image smoothing on every spatial image in a cube. This function will correctly apply a smoothing image `kernel_image` to the data and variance arrays in `cube`. The normalization is properly propegated to the variance array. Parameters ---------- cube : :class:`mpdaf.obj.cube.Cube` The data you want smoothed kernel_image : 2d numpy array The smoothing image to apply **kwargs : dict key word arguments passed to :func:`.mpdaf_ext.correlate2d_norm` Returns ------- :class:`mpdaf.obj.cube.Cube` Spatially smoothed cube. """ # determine if variance array of output should be initialized: var_init = None if cube.var is not None: var_init = np.empty # initialize empty loop output: output = cube.clone(data_init=np.empty, var_init=var_init) # loop over all images in cube, and set the output to output. for ima, k in mpdaf.obj.iter_ima(cube, index=True): output[k, :, :] = ima.correlate2d_norm(kernel_image) return output def get_SNR_map(cube, signal_idx=None, signal_Angstrom=None, nsigma=5, plot=False): """Create Image of signal to noise ratio in a given bandwidth. This bandwidth may be selected in 3 different ways: 1. Choose the indices of the wavlength array to include (`signal_idx`) 2. Choose the wavelengths to include (`signal_Angstrom`) 3. Have the program fit a gaussian to the data, and choose how many sigmas to include (`nsigma`). (Uses function: :func:`get_SignalBW_idx`) If multiple of `signal_idx`, `signal_Angstrom`, and `nsigma` are given, the order of preference is as follows: `signal_idx` overrides all others, then `signal_Angstrom`, and finally the least preferenced is `nsigma`, which will only be used if either `signal_idx` or `signal_Angstrom` are not specified. Parameters ---------- cube : :class:`mpdaf.obj.Cube` The cube containing data, var, and wave attributes signal_idx : array [int, int], optional The indices of the wavelength array to use, by default None signal_Angstrom : array [float, float], optional The wavelengths in Angstroms to use, by default None nsigma : float, optional Fit a gaussian, and use center wavelength +/- `nsigma` * sigma, by default 5 plot : bool, optional Plot the whole image spectrum and highlight the SNR bandwidth, by default False. A tool for troubleshooting/setup. Returns ------- :class:`mpdaf.obj.Image` An Image where the pixel values indicate the signal to noise in the selected bandwidth. Given a Spectrum for each spaxel, the SNR for the spaxel is calculated by sum(Spectrum.data)/sqrt(sum(Spectrum.var)). Examples -------- Given a Cube with name `this_cube`, then the default bandwidth selection is to fit a gaussian, and use the gaussian center +/- 5*sigma. This is implemented by the following command: >>> import threadcount as tc >>> snr_image = tc.fit.get_SNR_map(this_cube) To use the same method but change the width to, for example, gaussian center +/- 3*sigma, (meaning nsigma=3), then use the following: >>> snr_image = tc.fit.get_SNR_map(this_cube, nsigma=3) If you know the specific wavelengths of the bandwidth you would like to use, (for example, 5000-5020 A) then use the following: >>> snr_image = tc.fit.get_SNR_map(this_cube, signal_Angstrom=[5000,5020]) And finally, if you know the pixel indices (for example, indices 31-60). Note, this is an inclusive range, meaning in this case pixel 60 will be included in the SNR calculation. >>> snr_image = tc.fit.get_SNR_map(this_cube, signal_idx=[31,60]) """ if signal_idx is None: if signal_Angstrom is None: signal_idx = get_SignalBW_idx(cube, nsigma=nsigma, plot=plot) plot = False # This is taken care of inside the function. else: signal_idx = cube.wave.pixel(signal_Angstrom, nearest=True) subcube = cube[signal_idx[0] : signal_idx[1] + 1, :, :] if plot is True: plt.figure() spectrum = cube.sum(axis=(1, 2)) title = "Total image spectrum" try: title = " ".join([cube.label, title]) except AttributeError: pass spectrum.plot(title=title) plt.axvspan( *cube.wave.coord(signal_idx), facecolor=plt.rcParams["axes.prop_cycle"].by_key()["color"][1], alpha=0.25, label="SNR range", zorder=-3, ) plt.legend() subcube_sum = subcube.sum(axis=0) result_image = subcube[0].clone() result_image.data = subcube_sum.data / np.sqrt(subcube_sum.var) return result_image def get_SignalBW_idx(cube, nsigma=5, plot=False): """Determine the wavelength indices containing signal. This function computes an average spectrum using the whole `cube`. Then, fits a gaussian plus constant (:class:`~threadcount.models.Const_1GaussModel`). The gaussian center and sigma, along with `nsigma`, are used to compute and return the indices corresponding to :math:`[center - nsigma*sigma, center + nsigma*sigma]`. The plot option may be used for debugging for a visual of the spectrum and the fit, and the computed range. Parameters ---------- cube : :class:`mpdaf.obj.Cube` The cube containing data, var, and wave attributes nsigma : float, optional The number of sigmas to include on each side of the gaussian center, by default 5 plot : bool, optional Dispaly a plot of the spectrum and fit, with the bandwidth highlighted, by default False Returns ------- array, [int, int] The indices of the wavelength array corresponding to the calculated bandwidth. """ ydata = np.nanmean( np.nanmean(cube.data, axis=2), axis=1 ) # gives 1d spectrum average for all of data. x = cube.wave.coord() gauss_model = models.Const_1GaussModel() params = gauss_model.guess(data=ydata, x=x) mod_result = gauss_model.fit(ydata, params, x=x) center = mod_result.values["g1_center"] sigma = mod_result.values["g1_sigma"] low = center - nsigma * sigma high = center + nsigma * sigma if plot is True: plt.figure() mod_result.plot() plt.axvspan( low, high, facecolor=plt.rcParams["axes.prop_cycle"].by_key()["color"][2], alpha=0.25, label="SNR range", zorder=-3, ) plt.legend() title = "Total image spectrum" try: title = " ".join([cube.label, title]) except AttributeError: pass plt.suptitle(title) xrange = [low, high] # find index of nearest element xrange_idx = cube.wave.pixel(xrange, nearest=True) return xrange_idx def get_index(array, value): """Determine the index of 'array' which is closest to `value`. Parameters ---------- array : float or array/list/iterable of floats The list of numbers to search. Will be processed with np.array(`array`). value : float or array/list/iterable of floats The value(s) to search for in `array` Returns ------- int or list of ints The index (or indices) of array where the value is closest to the search value. Examples -------- >>> get_index([10,11,12,13,14],[13,22]) [3, 4] >>> get_index(4,[3,0]) [0, 0] >>> get_index([4,0],10) 0 """ array = np.array(array) # value may be a list of values. try: value_iter = iter(value) except TypeError: # This catches anything if value is not a list. return (np.abs(array - value)).argmin() return [(np.abs(array - this_value)).argmin() for this_value in value_iter] def get_aic(model, error=np.nan): """Return the aic_real of a successful fit. Parameters ---------- model : :class:`lmfit.model.ModelResult` The modelresult to extract info from. error : float, optional The numeric value to assign any unsuccessful modelresult, by default np.nan Returns ------- float The modelresult's aic_real, or `error` """ try: if model.success is True: return model.aic_real except AttributeError: pass return error vget_aic = np.vectorize(get_aic, doc="Vectorized :func:`get_aic`.") def choose_model_aic_single(model_list, d_aic=-150): r"""Determine best modelresult in a list, chosen by computing :math:`{\Delta}aic`. Note: we now look at `aic_real`, defined in :meth:`threadcount.lmfit_ext.aic_real` This function uses the aic (Akaike Information Criterion) to choose between several models fit to the same data. Our general philosophy: choose simpler models. The default change in aic we consider significant (-150) is quite high compared to a standard -10 you may see in statistics, since we are intending to identify the model components with physical processes in the galaxy. This value was chosen by observing fits to several different spectra and choosing the desired number of gaussian components by eye, then finding a :math:`{\Delta}aic` which came close to accomplishing that. via wikipedia: The :math:`exp((AIC_{min} − AIC_i)/2)` is known as the relative liklihood of model i. The numbers returned begin with 1, not 0 as is usual in python. If no results in `model_list` are valid, then -1 will be returned. The algorithm goes as follows: * Lets say `model_list` = [model1, model2] (note the numbers begin with 1). * If model2.aic_real - model1.aic_real < `d_aic`: * return 2 * else: * return 1. * Lets now say `model_list` = [model1, model2, model3]. * If model2.aic_real - model1.aic_real < `d_aic`: * This means that model2 is better. We will eliminate model1 as an option, then apply bullet point 1, with [model2, model3], returning whichever number is better (so the return value will be 2 or 3). * else: * This means that model2 is not better than model1. We will eliminate model2 as an option, then apply bullet point 1, using [model1, model3], returning either 1 or 3. * TODO: I think if we get a choice of 3 from this way, we should flag it for manual inspection, since it may only be slightly better than model2 and so our philosophy of less complex is better would be violated. Parameters ---------- model_list : list of :class:`lmfit.model.ModelResult` A list of different model results which have been fit to the same data. Right now, the length must be no longer than 3. The order of the models is assumed to be from least complex -> more complex. d_aic : float, optional The change in fit aic (Akaike Information Criterion) indicating a significantly better fit, by default -150. Returns ------- int The index+1 of the model chosen with this algorithm. Returns -1 if all models are invalid. """ # Python starts counting at 0 (0-based indexing.). choices starts counting at 1. # Pay attention that the returned value is the python index +1 # return -1 for invalid: if model_list is None: return -1 # return 1 if only one choice: if len(model_list) == 1: return 0 + 1 # model list is assumed to be in order simple -> complex. # philosophy: prefer simpler models. aic = vget_aic(model_list, error=np.nan) # if all nans, then return -1 (invalid) if np.all(np.isnan(aic)): return -1 # print(np.array(aic)-aic[0]) # now we have different ways of choosing based on if 2 or 3 models: # TODO: generalize to more than 3. Should be easy enough, given the # explanation of the algorithm in the docstring. if len(model_list) == 2: if (aic[1] - aic[0]) < d_aic: return ( 1 + 1 ) # these +1's are for translation to human interaction indexing.... else: return 0 + 1 if len(model_list) == 3: if (aic[1] - aic[0]) < d_aic: # True, this means 2 gaussians better than 1. # Eliminates id 0 as option and do more tests: if (aic[2] - aic[1]) < d_aic: # True, this means 3 gaussians better than 2. choose this. return 2 + 1 else: return 1 + 1 else: # False, this means 2 gaussians not better than 1. # Eliminates id 1 as option and do more tests: if (aic[2] - aic[0]) < d_aic: # True, this means 3 gaussians better than 1. choose this. return 2 + 1 else: return 0 + 1 # safest thing to return is 0 i guess? return 0 + 1 def choose_model_aic(model_list, d_aic=-150): """Broadcast :func:`choose_model_aic_single` over array. Parameters ---------- model_list : array-like, containing :class:`lmfit.model.ModelResult` Array representing spatial dimensions and the last dimension contains the model result for different models fitted to that spaxel. Works also for simply a list of model results for one pixel. d_aic : float, optional The change in fit aic (Akaike Information Criterion) indicating a significantly better fit, by default -150. Returns ------- array of shape model_list.shape[:-1] containing int, or int Spatial array containing the chosen model number, starting with 1. invalid entries are given the value -1. See Also -------- :func:`choose_model_aic_single` : A detailed discussion of this function. """ # assume the first dimensions of model_list are spatial and the last is # the different models. # Handle a single pixel: model_list = np.array(model_list) shape = model_list.shape if len(shape) == 1: single = choose_model_aic_single(model_list, d_aic=d_aic) return single # if we have passed that block, we know we have an array of size shape to loop over. # create output output = np.empty(shape[:-1], dtype=int) for index in np.ndindex(*shape[:-1]): output[index] = choose_model_aic_single(model_list[index], d_aic=d_aic) return output def marginal_fits(fit_list, choices, flux=0.25, dmu=0.5): """Determine which fits should be inspected by hand. We noticed at times that when fitting multiple gaussians, there was often a case of an "embedded" gaussian. This is when a small flux narrow gaussian was fit at the same center wavelength as the highest flux gaussian. This function is intended to identify those cases and ask the user to verify that this is actually the desired fit. This function analyzes the selected model (provided by the combination of `fit_list` and `choices`), and determines if user inspection is needed based on the relative characteristics of the gaussians. This procedure depends on the analyzed components having parameter names ending in "flux" and "center", and was originally programmed to analyze a multi-gaussian model. Note that ("amplitude" is used as a fallback for "flux", because lmfit's gaussian use this name to denote integrated flux). The "main" gaussian is selected as the model component with highest flux, lets call this main gaussian `g0`. For the other components `g#`, we compute `g#_flux/g0_flux` and `g#_center` - `g0_center`. If any component has both the following: * `g#_flux/g0_flux < flux` * `g#_center - g0_center < dmu` then that fit will be flagged for examination. Parameters ---------- fit_list : array-like of :class:`lmfit.model.ModelResult` This assumes a spatial array (n,m) of ModelResults, with an outer dimension varying in the model used for that spaxel. e.g. shape = (3,n,m) for 3 different models. choices : array-like of shape `fit_list[0]` containing int This will be used to select which model for a given spaxel will be analyzed in this function. For example, if there are 3 models, the value for choices must be 1,2,or 3 (or negative to indicate invalid). flux : float, optional The gaussian flux ratio to main gaussian component indicating that this should be inspected by hand, by default 0.25 dmu : float, optional dmu in my head meant delta mu, the change in the x center between a gaussian component and the main gaussian, by default 0.5. Returns ------- numpy array of boolean Array of same shape as choices, where True means the user should inspect this spaxel's fit, and False means this spaxel should be okay with the automatic guessing. """ # returns boolean array of shape choices. # True indicates you need to manually look at them. # Python starts counting at 0 (0-based indexing.). choices starts counting at 1. # subtract 1 from choices to convert between these 2 indexing regimes. chosen_models = np.choose(choices - 1, fit_list, mode="clip") output = np.empty_like(choices, dtype=bool) # get the gaussian component comparison for the chosen models. # 2d index iteration. for index, modelresult in np.ndenumerate(chosen_models): if ( modelresult is None ): # this means pixel was not fit, because it didn't pass snr test. # therefore user does not need to check. output[index] = False continue # if chosen model fit has not succeeded, then user checks. if not modelresult.success: output[index] = True continue # continues to next iteration in the for loop. # if model is a single gaussian, user does not need to check. if get_ngaussians(modelresult) == 1: output[index] = False continue # more than 1 gaussian component: # do tests based on flux and dmu parameters. # array of [g_flux/g0_flux, g_center - g0_center] components = get_gcomponent_comparison(modelresult) # test if the conditions are met for any component. # if component[0] < flux AND component[1] < dmu, then user must decide. # (set to True here.) user_decides = False for component in components: if (component[0] < flux) and (np.abs(component[1]) < dmu): user_decides = True break # stop the inner loop because we know the answer already. output[index] = user_decides return output def get_gcomponent_comparison(fit): """Determine component comparison to this highest flux gaussian. This function finds the highest flux gaussian (we will name it g0), and returns a list for the other components containing for each entry: [g#_flux/g0_flux, g#_center - g0_center]. Parameters ---------- fit : :class:`lmfit.model.ModelResult` The ModelResult to analyze the components for. Returns ------- list of [float,float] A list containing the list [g#_flux/g0_flux, g#_center - g0_center] for each component g# that is not g0. """ prefixes = [comp.prefix for comp in fit.components if "gaussian" in comp._name] if len(prefixes) == 1: # means just one gaussian component return [] # initialize lists for loop values = [] centers = [] for pre in prefixes: # values is the value of the flux parameter, and if the flux parameter # doesn't exist, it falls back on trying to find the value of the # amplitude parameter. values += [ fit.params.get(pre + "flux", fit.params.get(pre + "amplitude")).value ] centers += [fit.params[pre + "center"].value] # ID the index of the maximum flux. maxval_idx = np.argmax(values) # convert to numpy array for easier math. values = np.array(values) centers = np.array(centers) # Column stack allows us to retrieve, e.g. output[0] = [flux/flux0, center-center0] # note that inside here, we remove the maximum-flux gaussian. output = np.column_stack( [
np.delete(values / values[maxval_idx], maxval_idx)
numpy.delete
""" Sparse Layer @author: <NAME> """ import tensorflow as tf import numpy as np class SparseLayer(tf.keras.layers.Layer): def __init__(self, next_layer_dim, activation=None, n_trainable=0): super(SparseLayer, self).__init__() self.final_shape = next_layer_dim self.num_params = n_trainable if activation == 'relu': self.nonlinear = tf.nn.relu elif activation == 'sigmoid': self.nonlinear = tf.math.sigmoid elif activation == 'tanh': self.nonlinear = tf.math.tanh elif activation == 'softmax': self.nonlinear = tf.nn.softmax else: self.nonlinear = None def build(self, input_shape): input_shape = input_shape[1] self.dim = input_shape + self.final_shape total_params = self.final_shape * input_shape self.indexes = np.random.choice(np.array(range(total_params)), size=self.num_params, replace=False) if self.num_params > total_params: raise ValueError('Number of trainable parameters exceeds number of total parameters.') # construct the variable part mask_1 = np.zeros(total_params, dtype=np.float32) mask_1[self.indexes] = 1 self.train_mask = tf.constant(mask_1, dtype=tf.float32) limit = np.sqrt(6 / self.dim) initializer = np.random.uniform(-limit, limit, total_params) self.train_weights = tf.Variable(initializer, trainable=True, dtype=tf.float32) # construct the constant part mask_2 =
np.ones(total_params, dtype=np.float32)
numpy.ones
import numpy as np from meta_mb.utils.filters import MeanStdFilter from meta_mb.utils import Serializable from meta_mb.policies.np_base import NpPolicy from collections import OrderedDict class LinearPolicy(NpPolicy): """ Linear policy class that computes action as <W, ob>. """ def __init__(self, obs_dim, action_dim, name='np_policy', **kwargs): NpPolicy.__init__(self, obs_dim, action_dim, name, **kwargs) self.policy_params = OrderedDict(W=np.zeros((action_dim, obs_dim), dtype=np.float64), b=np.zeros((action_dim,), dtype=np.float64)) self.obs_filters = [MeanStdFilter(shape=(obs_dim,))] def get_actions(self, observations, update_filter=True): observations = np.array(observations) assert observations.ndim == 2 obs = self.obs_filters[0](observations, update=update_filter) actions = np.dot(self.policy_params["W"], obs.T).T + self.policy_params["b"] return actions, {} def get_action(self, observation, update_filter=False): actions, _ = self.get_actions(np.expand_dims(observation, axis=0), update_filter=update_filter) return actions[0], {} def get_actions_batch(self, observations, update_filter=True): """ The observations must be of shape num_deltas x batch_size x obs_dim :param observations: :param update_filter: :return: """ # TODO: make sure the reshaping works assert observations.shape[0] == self._num_deltas and observations.shape[-1] == self.obs_dim if observations.ndim == 3: obs =
np.reshape(observations, (-1, self.obs_dim))
numpy.reshape
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import sys from functools import partial from pathlib import Path from typing import NamedTuple import numpy as np import pandas as pd import pytest import torch from tianshou.data import Batch from qlib.backtest import Order from qlib.config import C from qlib.log import set_log_with_config from qlib.rl.data import pickle_styled from qlib.rl.entries.test import backtest from qlib.rl.order_execution import * from qlib.rl.utils import ConsoleWriter, CsvWriter, EnvWrapperStatus pytestmark = pytest.mark.skipif(sys.version_info < (3, 8), reason="Pickle styled data only supports Python >= 3.8") DATA_ROOT_DIR = Path(__file__).parent.parent / ".data" / "rl" / "intraday_saoe" DATA_DIR = DATA_ROOT_DIR / "us" BACKTEST_DATA_DIR = DATA_DIR / "backtest" FEATURE_DATA_DIR = DATA_DIR / "processed" ORDER_DIR = DATA_DIR / "order" / "valid_bidir" CN_DATA_DIR = DATA_ROOT_DIR / "cn" CN_BACKTEST_DATA_DIR = CN_DATA_DIR / "backtest" CN_FEATURE_DATA_DIR = CN_DATA_DIR / "processed" CN_ORDER_DIR = CN_DATA_DIR / "order" / "test" CN_POLICY_WEIGHTS_DIR = CN_DATA_DIR / "weights" def test_pickle_data_inspect(): data = pickle_styled.load_intraday_backtest_data(BACKTEST_DATA_DIR, "AAL", "2013-12-11", "close", 0) assert len(data) == 390 data = pickle_styled.load_intraday_processed_data( DATA_DIR / "processed", "AAL", "2013-12-11", 5, data.get_time_index() ) assert len(data.today) == len(data.yesterday) == 390 def test_simulator_first_step(): order = Order("AAL", 30.0, 0, pd.Timestamp("2013-12-11 00:00:00"), pd.Timestamp("2013-12-11 23:59:59")) simulator = SingleAssetOrderExecution(order, BACKTEST_DATA_DIR) state = simulator.get_state() assert state.cur_time == pd.Timestamp("2013-12-11 09:30:00") assert state.position == 30.0 simulator.step(15.0) state = simulator.get_state() assert len(state.history_exec) == 30 assert state.history_exec.index[0] == pd.Timestamp("2013-12-11 09:30:00") assert state.history_exec["market_volume"].iloc[0] == 450072.0 assert abs(state.history_exec["market_price"].iloc[0] - 25.370001) < 1e-4 assert (state.history_exec["amount"] == 0.5).all() assert (state.history_exec["deal_amount"] == 0.5).all() assert abs(state.history_exec["trade_price"].iloc[0] - 25.370001) < 1e-4 assert abs(state.history_exec["trade_value"].iloc[0] - 12.68500) < 1e-4 assert state.history_exec["position"].iloc[0] == 29.5 assert state.history_exec["ffr"].iloc[0] == 1 / 60 assert state.history_steps["market_volume"].iloc[0] == 5041147.0 assert state.history_steps["amount"].iloc[0] == 15.0 assert state.history_steps["deal_amount"].iloc[0] == 15.0 assert state.history_steps["ffr"].iloc[0] == 0.5 assert ( state.history_steps["pa"].iloc[0] == (state.history_steps["trade_price"].iloc[0] / simulator.twap_price - 1) * 10000 ) assert state.position == 15.0 assert state.cur_time == pd.Timestamp("2013-12-11 10:00:00") def test_simulator_stop_twap(): order = Order("AAL", 13.0, 0, pd.Timestamp("2013-12-11 00:00:00"), pd.Timestamp("2013-12-11 23:59:59")) simulator = SingleAssetOrderExecution(order, BACKTEST_DATA_DIR) for _ in range(13): simulator.step(1.0) state = simulator.get_state() assert len(state.history_exec) == 390 assert (state.history_exec["deal_amount"] == 13 / 390).all() assert state.history_steps["position"].iloc[0] == 12 and state.history_steps["position"].iloc[-1] == 0 assert (state.metrics["ffr"] - 1) < 1e-3 assert abs(state.metrics["market_price"] - state.backtest_data.get_deal_price().mean()) < 1e-4 assert np.isclose(state.metrics["market_volume"], state.backtest_data.get_volume().sum()) assert state.position == 0.0 assert abs(state.metrics["trade_price"] - state.metrics["market_price"]) < 1e-4 assert abs(state.metrics["pa"]) < 1e-2 assert simulator.done() def test_simulator_stop_early(): order = Order("AAL", 1.0, 1, pd.Timestamp("2013-12-11 00:00:00"), pd.Timestamp("2013-12-11 23:59:59")) with pytest.raises(ValueError): simulator = SingleAssetOrderExecution(order, BACKTEST_DATA_DIR) simulator.step(2.0) simulator = SingleAssetOrderExecution(order, BACKTEST_DATA_DIR) simulator.step(1.0) with pytest.raises(AssertionError): simulator.step(1.0) def test_simulator_start_middle(): order = Order("AAL", 15.0, 1, pd.Timestamp("2013-12-11 10:15:00"), pd.Timestamp("2013-12-11 15:44:59")) simulator = SingleAssetOrderExecution(order, BACKTEST_DATA_DIR) assert len(simulator.ticks_for_order) == 330 assert simulator.cur_time == pd.Timestamp("2013-12-11 10:15:00") simulator.step(2.0) assert simulator.cur_time == pd.Timestamp("2013-12-11 10:30:00") for _ in range(10): simulator.step(1.0) simulator.step(2.0) assert len(simulator.history_exec) == 330 assert simulator.done() assert abs(simulator.history_exec["amount"].iloc[-1] - (1 + 2 / 15)) < 1e-4 assert abs(simulator.metrics["ffr"] - 1) < 1e-4 def test_interpreter(): order = Order("AAL", 15.0, 1, pd.Timestamp("2013-12-11 10:15:00"), pd.Timestamp("2013-12-11 15:44:59")) simulator = SingleAssetOrderExecution(order, BACKTEST_DATA_DIR) assert len(simulator.ticks_for_order) == 330 assert simulator.cur_time == pd.Timestamp("2013-12-11 10:15:00") # emulate a env status class EmulateEnvWrapper(NamedTuple): status: EnvWrapperStatus interpreter = FullHistoryStateInterpreter(FEATURE_DATA_DIR, 13, 390, 5) interpreter_step = CurrentStepStateInterpreter(13) interpreter_action = CategoricalActionInterpreter(20) interpreter_action_twap = TwapRelativeActionInterpreter() wrapper_status_kwargs = dict(initial_state=order, obs_history=[], action_history=[], reward_history=[]) # first step interpreter.env = EmulateEnvWrapper(status=EnvWrapperStatus(cur_step=0, done=False, **wrapper_status_kwargs)) obs = interpreter(simulator.get_state()) assert obs["cur_tick"] == 45 assert obs["cur_step"] == 0 assert obs["position"] == 15.0 assert obs["position_history"][0] == 15.0 assert all(np.sum(obs["data_processed"][i]) != 0 for i in range(45)) assert
np.sum(obs["data_processed"][45:])
numpy.sum
import matplotlib matplotlib.use('Agg') # for plotting without GUI import matplotlib.pyplot as plt import time import os import math import pandas as pd import numpy as np from scipy.stats.stats import pearsonr import tensorflow as tf import collections import scipy.sparse as sp_sparse import tables from sklearn.decomposition import PCA # from sklearn.manifold import TSNE # single core from MulticoreTSNE import MulticoreTSNE as TSNE # MCORE # Sys def usage(): process = psutil.Process(os.getpid()) ram = process.memory_info()[0] / float(2 ** 20) ram = round(ram, 1) return ram # DATA I/O # todo: check gene_id barcode uniqueness def read_csv(fname): '''read_csv into pd.df, assuming index_col=0, and header=True''' print('reading ', fname) tic = time.time() df = pd.read_csv(fname, index_col=0) # print("read matrix: [genes, cells]") print('shape:', df.shape) # print(df.axes) if df.shape[0] > 2 and df.shape[1] > 2: print(df.ix[0:3, 0:2]) toc = time.time() print("reading took {:.1f} seconds".format(toc - tic)) return df def read_tsv(fname): '''read_csv into pd.df, assuming index_col=0, and header=True''' print('reading ', fname) tic = time.time() df = pd.read_csv(fname, index_col=0, delimiter='\t') # print("read matrix: [genes, cells]") print('shape:', df.shape) # print(df.axes) if df.shape[0] > 2 and df.shape[1] > 2: print(df.ix[0:3, 0:2]) toc = time.time() print("reading took {:.1f} seconds".format(toc - tic)) return df def save_csv(arr, fname): '''if fname=x.csv.gz, will be compressed if fname=x.csv, will not be compressed''' tic = time.time() print('saving: ', arr.shape) np.savetxt(fname, arr, delimiter=',', newline='\n') toc = time.time() print("saving" + fname + " took {:.1f} seconds".format(toc - tic)) def save_hd5(df, out_name): tic = time.time() print('saving: ', df.shape) df.to_hdf(out_name, key='null', mode='w', complevel=9, complib='blosc') toc = time.time() print("saving" + out_name + " took {:.1f} seconds".format(toc - tic)) def read_hd5(in_name): ''' :param in_name: :return df: ''' print('reading: ', in_name) df = pd.read_hdf(in_name) print('read', df.shape) # print(df.axes) if df.shape[0] > 2 and df.shape[1] > 2: print(df.ix[0:3, 0:2]) return df GeneBCMatrix = collections.namedtuple( 'GeneBCMatrix', ['gene_ids', 'gene_names', 'barcodes', 'matrix']) def read_sparse_matrix_from_h5(fname, genome, file_ori): ''' for 10x_genomics h5 file: always transpose into cell_row if gene_row is the input https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/advanced/h5_matrices :return: cell_row sparse matrix :param fname: :param genome: :return: ''' tic = time.time() print('reading {} {}'.format(fname, genome)) with tables.open_file(fname, 'r') as f: try: dsets = {} for node in f.walk_nodes('/' + genome, 'Array'): dsets[node.name] = node.read() matrix = sp_sparse.csc_matrix( (dsets['data'], dsets['indices'], dsets['indptr']), shape=dsets['shape']) print('shape is {}'.format(matrix.shape)) if file_ori == 'cell_row': pass elif file_ori == 'gene_row': matrix = matrix.transpose() else: raise Exception('file orientation {} not recognized'.format(file_ori)) obj = GeneBCMatrix(dsets['genes'], dsets['gene_names'], dsets['barcodes'], matrix) nz_count = len(obj.matrix.nonzero()[0]) nz_rate = nz_count / (obj.matrix.shape[0] * obj.matrix.shape[1]) nz_rate = round(nz_rate, 3) print('nz_rate is {}'.format(nz_rate)) print('nz_count is {}\n'.format(nz_count)) toc = time.time() print("reading took {:.1f} seconds".format(toc - tic)) return obj except tables.NoSuchNodeError: raise Exception("Genome %s does not exist in this file." % genome) except KeyError: raise Exception("File is missing one or more required datasets.") def save_sparse_matrix_to_h5(gbm, filename, genome): ''' for 10x_genomics h5 file: https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/advanced/h5_matrices :return: :param filename: :param genome: :return: ''' flt = tables.Filters(complevel=1) print('saving: ', gbm.matrix.shape) with tables.open_file(filename, 'w', filters=flt) as f: try: group = f.create_group(f.root, genome) f.create_carray(group, 'genes', obj=gbm.gene_ids) f.create_carray(group, 'gene_names', obj=gbm.gene_names) f.create_carray(group, 'barcodes', obj=gbm.barcodes) f.create_carray(group, 'data', obj=gbm.matrix.data) f.create_carray(group, 'indices', obj=gbm.matrix.indices) f.create_carray(group, 'indptr', obj=gbm.matrix.indptr) f.create_carray(group, 'shape', obj=gbm.matrix.shape) except: raise Exception("Failed to write H5 file.") def read_data_into_cell_row(fname, orientation='cell_row', genome='mm10'): ''' read hd5 or csv, into cell_row format :param fname: :param orientation: of file :return: cell_row df ''' tic = time.time() print('reading {} into cell_row data frame'.format(fname)) if fname.endswith('hd5'): df_tmp = read_hd5(fname) elif fname.endswith('csv'): df_tmp = read_csv(fname) elif fname.endswith('tsv'): df_tmp = read_tsv(fname) elif fname.endswith('csv.gz'): df_tmp = read_csv(fname) elif fname.endswith('h5'): # not hd5 df_tmp = read_sparse_matrix_from_h5(fname, genome=genome, file_ori=orientation) print('sparse_matrix have been read') else: raise Exception('file name not ending in hd5 nor csv, not recognized') if orientation == 'gene_row': df_tmp = df_tmp.transpose() elif orientation == 'cell_row': pass else: raise Exception('parameter err: for {}, orientation {} not correctly spelled'.format(fname, orientation)) #print("after transpose into cell row (if correct file_orientation provided)") if fname.endswith('h5'): print("shape is {}".format(df_tmp.matrix.shape)) else: print("shape is {}".format(df_tmp.shape)) print('nz_rate is {}'.format(nnzero_rate_df(df_tmp))) print('nz_count is {}\n'.format(nnzero_count_df(df_tmp))) toc = time.time() print("reading took {:.1f} seconds".format(toc - tic)) return df_tmp # PRE-PROCESSING OF DATA FRAMES # def df_filter(df): df_filtered = df.loc[(df.sum(axis=1) != 0), (df.sum(axis=0) != 0)] print("filtered out any rows and columns with sum of zero") return df_filtered def df_normalization(df, scale=1e6): ''' RPM when default :param df: [gene, cell] :param scale: :return: ''' read_counts = df.sum(axis=0) # colsum # df_normalized = df.div(read_counts, axis=1).mul(np.median(read_counts)).mul(1) df_normalized = df.div(read_counts, axis=1).mul(scale) return df_normalized def df_log10_transformation(df, pseudocount=1): ''' log10 :param df: :param pseudocount: :return: ''' df_log10 = np.log10(np.add(df, pseudocount)) return df_log10 def df_rpm_log10(df, pseudocount=1): ''' log10 :param df: [gene, cell] :return: ''' df_tmp = df.copy() df_tmp = df_normalization(df_tmp) df_tmp = df_log10_transformation(df_tmp, pseudocount=pseudocount) return df_tmp def df_exp_rpm_log10(df, pseudocount=1): ''' log10 :param df: [gene, cell] :pseudocount: for exp transformation and log10 transformation :return: ''' df_tmp = df.copy() df_tmp = np.power(10, df_tmp) - pseudocount df_tmp = df_normalization(df_tmp) df_tmp = df_log10_transformation(df_tmp, pseudocount=pseudocount) return df_tmp def df_exp_discretize_log10(df, pseudocount=1): ''' For better comparison with ground-truth in gene-scatterplot visualization Input should be the output of df_log10_transformation (log10(x+1)) If so, all values ≥ 0 1. 10^x-1 2. arount 3. log10(x+1) :param df: :param pseudocount: :return: ''' df_tmp = df.copy() df_tmp = np.around(np.power(10, df_tmp) - pseudocount) df_tmp = np.log10(df_tmp + pseudocount) return df_tmp def df_transformation(df, transformation='as_is'): ''' data_transformation df not copied :param df: [genes, cells] :param format: as_is, log10, rpm_log10, exp_rpm_log10 :return: df_formatted ''' if transformation == 'as_is': pass # do nothing elif transformation == 'log10': df = df_log10_transformation(df) elif transformation == 'rpm_log10': df = df_rpm_log10(df) elif transformation == 'exp_rpm_log10': df == df_exp_rpm_log10(df) else: raise Exception('format {} not recognized'.format(transformation)) print('data formatting: ', transformation) return df def mask_df(df, nz_goal): ''' :param df: any direction :param nz_goal: :return: ''' df_msked = df.copy() nz_now = nnzero_rate_df(df) nz_goal = nz_goal/nz_now zero_goal = 1-nz_goal df_msked = df_msked.where(np.random.uniform(size=df.shape) > zero_goal, 0) return df_msked def multinormial_downsampling(in_df, libsize_out): out_df = in_df.copy() for i in range(len(in_df)): slice_arr = in_df.values[i, :] libsize = slice_arr.sum() p_lst = slice_arr / libsize slice_resample = np.random.multinomial(libsize_out, p_lst) out_df.ix[i, :] = slice_resample return out_df def split_arr(arr, a=0.8, b=0.1, c=0.1, seed_var=1): """input array, output rand split arrays a: train, b: valid, c: test e.g.: [arr_train, arr_valid, arr_test] = split(df.values)""" print(">splitting data") np.random.seed(seed_var) # for splitting consistency train_indices = np.random.choice(arr.shape[0], int(round(arr.shape[0] * a // (a + b + c))), replace=False) remain_indices = np.array(list(set(range(arr.shape[0])) - set(train_indices))) valid_indices = np.random.choice(remain_indices, int(round(len(remain_indices) * b // (b + c))), replace=False) test_indices = np.array(list(set(remain_indices) - set(valid_indices))) np.random.seed() # cancel seed effect print("total samples being split: ", len(train_indices) + len(valid_indices) + len(test_indices)) print('train:', len(train_indices), ' valid:', len(valid_indices), 'test:', len(test_indices)) arr_train = arr[train_indices] arr_valid = arr[valid_indices] arr_test = arr[test_indices] return (arr_train, arr_valid, arr_test) def split_df(df, a=0.8, b=0.1, c=0.1, seed_var=1): """input df, output rand split dfs a: train, b: valid, c: test e.g.: [df_train, df2, df_test] = split(df, a=0.7, b=0.15, c=0.15)""" np.random.seed(seed_var) # for splitting consistency train_indices = np.random.choice(df.shape[0], int(df.shape[0] * a // (a + b + c)), replace=False) remain_indices = np.array(list(set(range(df.shape[0])) - set(train_indices))) valid_indices = np.random.choice(remain_indices, int(len(remain_indices) * b // (b + c)), replace=False) test_indices = np.array(list(set(remain_indices) - set(valid_indices))) np.random.seed() # cancel seed effect print("total samples being split: ", len(train_indices) + len(valid_indices) + len(test_indices)) print('train:', len(train_indices), ' valid:', len(valid_indices), 'test:', len(test_indices)) df_train = df.ix[train_indices, :] df_valid = df.ix[valid_indices, :] df_test = df.ix[test_indices, :] return df_train, df_valid, df_test def random_subset_arr(arr, m_max, n_max): [m, n] = arr.shape m_reduce = min(m, m_max) n_reduce = min(n, n_max) np.random.seed(1201) row_rand_idx = np.random.choice(m, m_reduce, replace=False) col_rand_idx = np.random.choice(n, n_reduce, replace=False) np.random.seed() arr_sub = arr[row_rand_idx][:, col_rand_idx] print('matrix from [{},{}] to a random subset of [{},{}]'. format(m, n, arr_sub.shape[0], arr_sub.shape[1])) return arr_sub def subset_df(df_big, df_subset): return (df_big.ix[df_subset.index, df_subset.columns]) def sparse_matrix_transformation(csr_matrix, transformation='log10'): ''' data_transformation df not copied :param csr_matrix: :param transformation: as_is, log10 :return: ''' if transformation == 'as_is': pass # do nothing elif transformation == 'log10': csr_matrix = csr_matrix.log1p() elif transformation == 'rpm_log10': raise Exception('rpm_log10 not implemented yet') elif transformation == 'exp_rpm_log10': raise Exception('exp_rpm_log10 not implemented yet') else: raise Exception('format {} not recognized'.format(transformation)) print('data tranformation: ', transformation) return csr_matrix def subsample_matrix(gbm, barcode_indices): return GeneBCMatrix(gbm.gene_ids, gbm.gene_names, gbm.barcodes[barcode_indices], gbm.matrix[:, barcode_indices]) def subgene_matrix(gbm, gene_indices): return GeneBCMatrix(gbm.gene_ids[gene_indices], gbm.gene_names[gene_indices], gbm.barcodes, gbm.matrix[gene_indices, :]) def get_expression(gbm, gene_name): gene_indices = np.where(gbm.gene_names == gene_name)[0] if len(gene_indices) == 0: raise Exception("%s was not found in list of gene names." % gene_name) return gbm.matrix[gene_indices[0], :].toarray().squeeze() def split__csr_matrix(csr_matrix, a=0.8, b=0.1, c=0.1, seed_var=1): """ input: csr_matrix(cell_row), output: rand split datasets (train/valid/test) a: train b: valid c: test e.g. [csr_train, csr_valid, csr_test] = split(df.values)""" print(">splitting data..") np.random.seed(seed_var) # for splitting consistency [m, n] = csr_matrix.shape train_indices = np.random.choice(m, int(round(m*a//(a+b+c))), replace=False) remain_indices = np.array(list(set(range(m)) - set(train_indices))) valid_indices = np.random.choice(remain_indices, int(round(len(remain_indices)*b//(b + c))), replace=False) test_indices = np.array(list(set(remain_indices) - set(valid_indices))) np.random.seed() # cancel seed effect print("total samples being split: ", len(train_indices) + len(valid_indices) + len(test_indices)) print('train:', len(train_indices), ' valid:', len(valid_indices), 'test:', len(test_indices)) csr_train = csr_matrix[train_indices, :] csr_valid = csr_matrix[valid_indices, :] csr_test = csr_matrix[test_indices, :] return (csr_train, csr_valid, csr_test, train_indices, valid_indices, test_indices) # STAT CALCULATION # def nnzero_rate_df(df): idx = df != 0 nnzero_rate = round(sum(sum(idx.values)) / df.size, 3) return nnzero_rate def nnzero_count_df(df): idx = df != 0 nnzero_count = sum(sum(idx.values)) return nnzero_count def mean_df(df): Sum = sum(sum(df.values)) Mean = Sum / df.size return (Mean) def square_err(arr1, arr2): ''' arr1 and arr2 of same shape, return squared err between them arr and df both works ''' diff = np.subtract(arr1, arr2) square_err_ = np.sum(np.power(diff, 2)) count = int(arr1.shape[0] * arr1.shape[1]) return square_err_, count def square_err_omega(arr, arr_ground_truth): ''' input: arr and arr_ground_truth of same shape return: squared err omega (excluding zeros in ground truth) arr and df both works only zeros are ignored, negatives should not show up ''' omega = np.sign(arr_ground_truth) diff = np.subtract(arr, arr_ground_truth) square_err_ = np.power(diff, 2) square_err_nz = np.sum(np.multiply(square_err_, omega)) count = int(arr.shape[0] * arr.shape[1]) return square_err_nz, count def mse_omega(arr_h, arr_m): '''arr and df both works''' omega = np.sign(arr_m) # if x>0, 1; elif x == 0, 0; diff = np.subtract(arr_h, arr_m) squared = np.power(diff, 2) non_zero_squared = np.multiply(squared, omega) mse_omega = np.mean(np.mean(non_zero_squared)) return mse_omega def mse(arr_h, arr_m): '''MSE between H and M''' diff = np.subtract(arr_h, arr_m) squared = np.power(diff, 2) mse = np.mean(np.mean(squared)) return mse def nz_std(X, Y): ''' Goal: Evaluate gene-level imputation with STD of non-zero values of that gene Takes two cell_row DFs, X and Y, with same shape Calculate STD for each column(gene) Treating zeros in X as Nones, And corresponding values in Y as Nones, too :param X: Input cell_row matrix :param Y: Imputation cell_row matrix :return: two list of NZ_STDs, used for evaluation of imputation ''' idx_zeros = (X == 0) X_ = X.copy() Y_ = Y.copy() X_[idx_zeros] = None Y_[idx_zeros] = None return (X_.std(), Y_.std()) def nz2_corr(x, y): ''' the nz2_corr between two vectors, excluding any element with zero in either vectors :param x: vector1 :param y: vector2 :return: ''' nas = np.logical_or(x == 0, y == 0) result = pearson_cor(x[~nas], y[~nas]) if not math.isnan(result): result = round(result, 4) return result def gene_mse_nz_from_df(Y, X): ''' get gene_mse from gene_expression_df (cell_row, with cell_id as index) X: input/ground-truth Y: imputation return a [gene, 1] pd.series with index of gene_ids ''' mse_df = pd.DataFrame(columns=['gene_name']) for i in range(X.shape[1]): mse_ = scimpute.mse_omega(Y.iloc[:, i], X.iloc[:, i]) gene_name = X.columns[i] mse_df.loc[X.columns[i], 'gene_name']= mse_ mse_df = mse_df.iloc[:, 0] print(mse_df.head(), '\n', mse_df.shape) return mse_df def combine_gene_imputation_of_two_df(Y1, Y2, metric1, metric2, mode='smaller'): ''' Y1, Y2: two imputation results (cell_row, df) Metric1, Metric2: [num-gene, 1], df, same metircs for Y1 and Y2, e.g. MSE, SD select rows of Y1, Y2 into Y_combined mode: smaller/larger (being selected), e.g. smaller MSE, larger SD Output in index/column order of Y1 ''' if mode == 'smaller': idx_better = metric1 < metric2 elif mode == 'larger': idx_better = metric1 > metric2 else: raise Exception('mode err') # try: # idx_better = idx_better.iloc[:, 0] # df to series, important # except 'IndexingError': # pass print('yg_better boolean series:\n', idx_better.head()) Y_better_lst = [Y1.transpose()[idx_better], Y2.transpose()[~idx_better]] # list of frames Y_better = pd.concat(Y_better_lst) Y_better = Y_better.transpose() # tr back Y_better = Y_better.loc[ Y1.index, Y1.columns] # get Y1 original order, just in case print('Y1:\n', Y1.iloc[:5, :3]) print('Y2:\n', Y2.iloc[:5, :3]) print("metrics1:\n", metric1.iloc[:5]) print("metrics2:\n", metric2.iloc[:5]) print('Y_combined:\n', Y_better.iloc[:5, :3]) return Y_better # PLOTS # def refresh_logfolder(log_dir): '''delete and recreate log_dir''' if tf.gfile.Exists(log_dir): tf.gfile.DeleteRecursively(log_dir) print(log_dir, "deleted") tf.gfile.MakeDirs(log_dir) print(log_dir, 'created\n') def max_min_element_in_arrs(arr_list): '''input a list of np.arrays e.g: max_element_in_arrs([df_valid.values, h_valid])''' max_list = [] for x in arr_list: max_tmp = np.nanmax(x) max_list.append(max_tmp) max_all = np.nanmax(max_list) min_list = [] for x in arr_list: min_tmp = np.nanmin(x) min_list.append(min_tmp) min_all = np.nanmin(min_list) return max_all, min_all def scatterplot(x, y, title='scatterplot', dir='plots', xlab='xlab', ylab='ylab', alpha=1): if not os.path.exists(dir): os.makedirs(dir) fname = "./{}/{}".format(dir, title) fig = plt.figure(figsize=(5, 5)) plt.plot(x, y, 'o', alpha=alpha) plt.title(title) plt.xlabel(xlab) plt.ylabel(ylab) plt.savefig(fname, bbox_inches='tight') plt.close(fig) print('heatmap vis ', title, ' done') def scatterplot2(x, y, title='title', xlabel='x', ylabel='y', range='same', dir='plots'): ''' x is slice, y is a slice have to be slice to help pearsonr(x,y)[0] work range= same/flexible :param x: :param y: :param title: :param xlabel: :param ylabel: :param range: :param dir: :param corr: :return: ''' # create plots directory if not os.path.exists(dir): os.makedirs(dir) fprefix = "./{}/{}".format(dir, title) # corr corr = pearson_cor(x, y) if not math.isnan(corr): corr = str(round(corr, 4)) # nz2_corr nz_corr = nz2_corr(x, y) print('corr: {}; nz_corr: {}'.format(corr, nz_corr)) # density plot from scipy.stats import gaussian_kde # Calculate the point density xy = np.vstack([x, y]) try: z = gaussian_kde(xy)(xy) # sort: dense on top (plotted last) idx = z.argsort() x, y, z = x[idx], y[idx], z[idx] # plt fig = plt.figure(figsize=(5, 5)) fig, ax = plt.subplots() cax = ax.scatter(x, y, c=z, s=50, edgecolor='') plt.colorbar(cax) except np.linalg.linalg.LinAlgError: plt.plot(x, y, 'b.', alpha=0.3) plt.title('{}\ncorr: {}; corr-nz: {}'.format(title, corr, nz_corr)) # nz2 plt.xlabel(xlabel + "\nmean: " + str(round(np.mean(x), 2))) plt.ylabel(ylabel + "\nmean: " + str(round(np.mean(y), 2))) if range is 'same': max, min = max_min_element_in_arrs([x, y]) plt.xlim(min, max) plt.ylim(min, max) elif range is 'flexible': next else: plt.xlim(range[0], range[1]) plt.ylim(range[0], range[1]) plt.savefig(fprefix + '.png', bbox_inches='tight') plt.close('all') def density_plot(x, y, title='density plot', dir='plots', xlab='x', ylab='y'): '''x and y must be arr [m, 1]''' from scipy.stats import gaussian_kde # create plots directory if not os.path.exists(dir): os.makedirs(dir) fname = "./{}/{}".format(dir, title) # Calculate the point density xy = np.vstack([x, y]) z = gaussian_kde(xy)(xy) # sort: dense on top (plotted last) idx = z.argsort() x, y, z = x[idx], y[idx], z[idx] # plt fig = plt.figure(figsize=(5, 5)) fig, ax = plt.subplots() cax = ax.scatter(x, y, c=z, s=50, edgecolor='') plt.title(title) plt.xlabel(xlab) plt.ylabel(ylab) plt.colorbar(cax) plt.savefig(fname + ".png", bbox_inches='tight') plt.close(fig) def gene_pair_plot(df, list, tag, dir='./plots'): ''' scatterplot2 of two genes in a df :param df: [cells, genes] :param list: [2, 3] OR [id_i, id_j] :param tag: output_tag e.g. 'PBMC' :param dir: output_dir :return: ''' for i, j in list: print('gene_pair: ', i, type(i), j, type(j)) try: x = df.ix[:, i] y = df.ix[:, j] except KeyError: print('KeyError: the gene index does not exist') continue scatterplot2(x, y, title='Gene' + str(i) + ' vs Gene' + str(j) + '\n' + tag, xlabel='Gene' + str(i), ylabel='Gene' + str(j), dir=dir) def cluster_scatterplot(df2d, labels, title): ''' PCA or t-SNE 2D visualization `cluster_scatterplot(tsne_projection, cluster_info.Cluster.values.astype(int), title='projection.csv t-SNE')` :param df2d: PCA or t-SNE projection df, cell as row, feature as columns :param labels: :param title: :return: ''' legends = np.unique(labels) print('all labels:', legends) fig = plt.figure(figsize=(8, 6)) ax = plt.subplot(111) for i in legends: _ = df2d.iloc[labels == i] num_cells = str(len(_)) percent_cells = str(round(int(num_cells) / len(df2d) * 100, 1)) + '%' ax.scatter(_.iloc[:, 0], _.iloc[:, 1], alpha=0.5, marker='.', label='c' + str(i) + ':' + num_cells + ', ' + percent_cells ) box = ax.get_position() ax.set_position([box.x0, box.y0, box.width * 0.8, box.height]) ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) plt.title(title) plt.xlabel('legend format: cluster_id:num-cells') plt.savefig(title + '.png', bbox_inches='tight') plt.show() plt.close('all') def pca_tsne(df_cell_row, cluster_info=None, title='data', dir='plots', num_pc=50, num_tsne=2, ncores=8): ''' PCA and tSNE plots for DF_cell_row, save projections.csv :param df_cell_row: data matrix, features as columns, e.g. [cell, gene] :param cluster_info: cluster_id for each cell_id :param title: figure title, e.g. Late :param num_pc: 50 :param num_tsne: 2 :return: tsne_df, plots saved, pc_projection.csv, tsne_projection.csv saved ''' if not os.path.exists(dir): os.makedirs(dir) title = './'+dir+'/'+title df = df_cell_row if cluster_info is None: cluster_info = pd.DataFrame(0, index=df.index, columns=['cluster_id']) tic = time.time() # PCA pca = PCA(n_components=num_pc) pc_x = pca.fit_transform(df) df_pc_df = pd.DataFrame(data=pc_x, index=df.index, columns=range(num_pc)) df_pc_df.index.name = 'cell_id' df_pc_df.columns.name = 'PC' df_pc_df.to_csv(title+'.pca.csv') print('dim before PCA', df.shape) print('dim after PCA', df_pc_df.shape) print('explained variance ratio: {}'.format( sum(pca.explained_variance_ratio_))) colors = cluster_info.reindex(df_pc_df.index) colors = colors.dropna().iloc[:, 0] print('matched cluster_info:', colors.shape) print('unmatched data will be excluded from the plot') # todo: include unmatched df_pc_ = df_pc_df.reindex(colors.index) # only plot labeled data? cluster_scatterplot(df_pc_, colors.values.astype(str), title=title+' (PCA)') # tSNE print('MCORE-TSNE, with ', ncores, ' cores') df_tsne = TSNE(n_components=num_tsne, n_jobs=ncores).fit_transform(df_pc_) print('tsne done') df_tsne_df = pd.DataFrame(data=df_tsne, index=df_pc_.index) print('wait to output tsne') df_tsne_df.to_csv(title+'.tsne.csv') print('wrote tsne to output') cluster_scatterplot(df_tsne_df, colors.values.astype(str), title=title+' (' 't-SNE)') toc = time.time() print('PCA and tSNE took {:.1f} seconds\n'.format(toc-tic)) return df_tsne_df def heatmap_vis(arr, title='visualization of matrix in a square manner', cmap="rainbow", vmin=None, vmax=None, xlab='', ylab='', dir='plots'): '''heatmap visualization of 2D matrix, with plt.imshow(), in a square manner cmap options PiYG for [neg, 0, posi] Greys Reds for [0, max] rainbow for [0,middle,max]''' if not os.path.exists(dir): os.makedirs(dir) fname = './' + dir + '/' + title + '.vis.png' if (vmin is None): vmin = np.min(arr) if (vmax is None): vmax = np.max(arr) fig = plt.figure(figsize=(9, 9)) plt.imshow(arr, cmap=cmap, vmin=vmin, vmax=vmax, aspect='auto') plt.title(title) plt.xlabel(xlab) plt.ylabel(ylab) plt.colorbar() plt.savefig(fname, bbox_inches='tight') plt.close(fig) print('heatmap vis ', title, ' done') def heatmap_vis2(arr, title='visualization of matrix', cmap="rainbow", vmin=None, vmax=None, xlab='', ylab='', dir='plots'): '''heatmap visualization of 2D matrix, with plt.pcolor() cmap options PiYG for [neg, 0, posi] Greys Reds for [0, max] rainbow for [0,middle,max]''' if not os.path.exists(dir): os.makedirs(dir) fname = './' + dir + '/' + title + '.vis.png' if (vmin is None): vmin = np.min(arr) if (vmax is None): vmax = np.max(arr) fig = plt.figure(figsize=(9, 9)) plt.pcolor(arr, cmap=cmap, vmin=vmin, vmax=vmax) plt.title(title) plt.xlabel(xlab) plt.ylabel(ylab) plt.colorbar() plt.savefig(fname, bbox_inches='tight') plt.close(fig) print('heatmap vis ', title, ' done') def curveplot(x, y, title, xlabel, ylabel, dir='plots'): # scimpute.curveplot(epoch_log, corr_log_valid, # title='learning_curve_pearsonr.step2.gene'+str(j)+", valid", # xlabel='epoch', # ylabel='Pearson corr (predction vs ground truth, valid, including cells with zero gene-j)') # create plots directory if not os.path.exists(dir): os.makedirs(dir) fprefix = "./{}/{}".format(dir, title) # plot plt.plot(x, y) plt.title(title) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.savefig(fprefix + '.png', bbox_inches='tight') plt.close() def curveplot2(x, y, z, title, xlabel, ylabel, dir='plots'): '''curveplot2(epoch_log, train_log, valid_log, title="t", xlabel="x", ylabel="y")''' # scimpute.curveplot2(epoch_log, corr_log_train, corr_log_valid, # title='learning_curve_pearsonr.step2.gene'+str(j)+", train_valid", # xlabel='epoch', # ylabel='Pearson corr (predction vs ground truth, valid, including cells with zero gene-j)') # create plots directory if not os.path.exists(dir): os.makedirs(dir) fprefix = "./{}/{}".format(dir, title) # plot plt.plot(x, y, label='train') plt.plot(x, z, label='valid') plt.legend() plt.title(title) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.savefig(fprefix + '.png', bbox_inches='tight') plt.close() def hist_list(list, xlab='xlab', title='histogram', bins=100, dir='plots'): '''output histogram of a list into png''' if not os.path.exists(dir): os.makedirs(dir) fname = str(title) + '.png' fname = "./{}/{}".format(dir, fname) fig, ax = plt.subplots() plt.title(title) plt.xlabel(xlab) plt.ylabel('Density') hist = plt.hist(list, bins=bins, density=True) plt.savefig(fname, bbox_inches='tight') plt.close(fig) print('hist of {} is done'.format(title)) return hist def hist_arr_flat(arr, title='hist', xlab='x', ylab='Frequency', bins=100, dir='plots'): '''create histogram for flattened arr''' if not os.path.exists(dir): os.makedirs(dir) fname = "./{}/{}".format(dir, title) + '.png' fig = plt.figure(figsize=(9, 9)) n, bins, patches = plt.hist(arr.flatten(), bins, normed=1, facecolor='green', alpha=0.75) plt.title(title) plt.xlabel(xlab) plt.ylabel(ylab) plt.savefig(fname, bbox_inches='tight') plt.close(fig) print("histogram ", title, ' done') def hist_df(df, title="hist of df", xlab='xlab', bins=100, dir='plots', range=None): if not os.path.exists(dir): os.makedirs(dir) df_flat = df.values.reshape(df.size, 1) # fig = plt.figure(figsize=(9, 9)) hist = plt.hist(df_flat, bins=bins, density=True, range=range) plt.title(title) plt.xlabel(xlab) plt.ylabel('Density') plt.savefig('./{}/{}.png'.format(dir, title), bbox_inches='tight') plt.close() print('hist of ', title, 'is done') return hist def pearson_cor (x, y): '''This function calculates Pearson correlation between vector x and y. It returns nan if x or y has 2 data points or less, or does not vary Parameters ------------ x: numpy array y: numpy array Return ----------- Pearson correlation or nan ''' if (len(x) > 2) and (x.std() > 0) and (y.std() > 0): corr = pearsonr(x, y)[0] else: corr = np.nan return corr def hist_2matrix_corr(arr1, arr2, mode='column-wise', nz_mode='ignore', title='hist_corr', dir='plots'): '''Calculate correlation between two matrices column-wise or row-wise default: arr[cells, genes], gene-wise corr (column-wise) assume: arr1 from benchmark matrix (e.g. input), arr2 from imputation if corr = NaN, it will be excluded from result mode: column-wise, row-wise nz_mode: ignore (all values in vectors included) strict (zero values excluded from both vector x,y) first (zero values excluded from x in arr1 only, title: 'hist_corr' or custom dir: 'plots' or custom ''' # create plots directory if not os.path.exists(dir): os.makedirs(dir) fprefix = "./{}/{}".format(dir, title) # if arr1.shape is arr2.shape: if mode == 'column-wise': range_size = arr2.shape[1] elif mode == 'row-wise': range_size = arr2.shape[0] else: raise Exception('mode not recognized') hist = [] for i in range(range_size): if mode == 'column-wise': x = arr1[:, i] y = arr2[:, i] elif mode == 'row-wise': x = arr1[i, :] y = arr2[i, :] else: raise Exception('mode not recognized') # Pearson correlation can be calculated # only when there are more than 2 nonzero # values, and when the standard deviation # is positive for both x and y if nz_mode == 'strict': nas = np.logical_or(x==0, y==0) corr = pearson_cor (x[~nas], y[~nas]) elif nz_mode == 'first': nas = (x==0) corr = pearson_cor (x[~nas], y[~nas]) elif nz_mode == 'ignore': corr = pearson_cor(x, y) else: raise Exception('nz_mode not recognized') if not math.isnan(corr): hist.append(corr) print('correlation calculation completed') hist.sort() median_corr = round(np.median(hist), 3) mean_corr = round(np.mean(hist), 3) print(title) print('median corr: {} mean corr: {}'.format(median_corr, mean_corr)) # histogram of correlation fig = plt.figure(figsize=(5, 5)) plt.hist(hist, bins=100, density=True) plt.xlabel('median=' + str(median_corr) + ', mean=' + str(mean_corr)) plt.ylabel('Density') #todo freq to density plt.xlim(-1, 1) plt.title(title) plt.savefig(fprefix + ".png", bbox_inches='tight') #todo remove \n from out-name plt.close(fig) return hist # TF # def variable_summaries(name, var): """Attach a lot of summaries to a Tensor (for TensorBoard visualization).""" with tf.name_scope(name): # mean = tf.reduce_mean(var) # tf.summary.scalar('mean', mean) # with tf.name_scope('stddev'): # stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) # tf.summary.scalar('stddev', stddev) # tf.summary.scalar('max', tf.reduce_max(var)) # tf.summary.scalar('min', tf.reduce_min(var)) tf.summary.histogram('histogram', var) def weight_variable(name_scope, dim_in, dim_out, sd): """ define weights :param name_scope: :param dim_in: :param dim_out: :param sd: :return: """ with tf.name_scope(name_scope): W = tf.Variable(tf.random_normal([dim_in, dim_out], stddev=sd), name=name_scope + '_W') variable_summaries(name_scope + '_W', W) return W def bias_variable(name_scope, dim_out, sd): """ define biases :param name_scope: :param dim_out: :param sd: :return: """ with tf.name_scope(name_scope): b = tf.Variable(tf.random_normal([dim_out], mean=100 * sd, stddev=sd), name=name_scope + '_b') variable_summaries(name_scope + '_b', b) return b def weight_bias_variable(name_scope, dim_in, dim_out, sd): """ define weights and biases :param name_scope: :param dim_in: :param dim_out: :param sd: :return: """ with tf.name_scope(name_scope): W = tf.Variable(tf.random_normal([dim_in, dim_out], stddev=sd, dtype=tf.float32), name=name_scope + '_W') b = tf.Variable(tf.random_normal([dim_out], mean=100 * sd, stddev=sd, dtype=tf.float32), name=name_scope + '_b') variable_summaries(name_scope + '_W', W) variable_summaries(name_scope + '_b', b) return W, b def dense_layer(name, input, W, b, pRetain): """ define a layer and return output :param name: :param input: X_placeholder or a(l-1) :param W: weights :param b: biases :param pRetain: :return: """ x_drop = tf.nn.dropout(input, pRetain) z = tf.add(tf.matmul(x_drop, W), b) a = tf.nn.relu(z) variable_summaries(name + '_a', a) return a def dense_layer_BN(name, input, W, b, pRetain, epsilon=1e-3): """ define a layer and return output :param name: :param input: X_placeholder or a(l-1) :param W: weights :param b: biases :param pRetain: :return: """ x_drop = tf.nn.dropout(input, pRetain) z = tf.add(tf.matmul(x_drop, W), b) # BN batch_mean, batch_var = tf.nn.moments(z, [0]) z_bn = tf.nn.batch_normalization(z, batch_mean, batch_var, beta, scale, epsilon) # NL a = tf.nn.relu(z_bn) variable_summaries(name + '_a', a) return a def learning_curve_mse(epoch, mse_batch, mse_valid, title='learning curve (MSE)', xlabel='epochs', ylabel='MSE', range=None, dir='plots'): """ depreciated """ # create plots directory if not os.path.exists(dir): os.makedirs(dir) # list to np.array, to use index epoch = np.array(epoch) mse_batch = np.array(mse_batch) # mse_train = np.array(mse_train) mse_valid =
np.array(mse_valid)
numpy.array
from typing import List, Dict, Sequence, Union, Tuple from numbers import Number import random import numpy as np from toolz import curry from toolz.curried import get from common import _tuple __all__ = [ "resize", "resized_crop", "center_crop", "drop_boundary_bboxes", "to_absolute_coords", "to_percent_coords", "hflip", "hflip2", "vflip", "vflip2", "random_sample_crop", "move" ] def iou_1m(box, boxes): r""" Calculates one-to-many ious. Parameters ---------- box : ``Sequences[Number]`` A bounding box. boxes : ``array_like`` Many bounding boxes. Returns ------- ious : ``array_like`` IoUs between the box and boxes. """ xi1 = np.maximum(boxes[..., 0], box[0]) yi1 = np.maximum(boxes[..., 1], box[1]) xi2 = np.minimum(boxes[..., 2], box[2]) yi2 =
np.minimum(boxes[..., 3], box[3])
numpy.minimum
import numpy as np import itertools from .contrib import compress_filter, smooth, residual_model from .contrib import reduce_interferences def expectation_maximization(y, x, iterations=2, verbose=0, eps=None): r"""Expectation maximization algorithm, for refining source separation estimates. This algorithm allows to make source separation results better by enforcing multichannel consistency for the estimates. This usually means a better perceptual quality in terms of spatial artifacts. The implementation follows the details presented in [1]_, taking inspiration from the original EM algorithm proposed in [2]_ and its weighted refinement proposed in [3]_, [4]_. It works by iteratively: * Re-estimate source parameters (power spectral densities and spatial covariance matrices) through :func:`get_local_gaussian_model`. * Separate again the mixture with the new parameters by first computing the new modelled mixture covariance matrices with :func:`get_mix_model`, prepare the Wiener filters through :func:`wiener_gain` and apply them with :func:`apply_filter``. References ---------- .. [1] <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME>, "Improving music source separation based on deep neural networks through data augmentation and network blending." 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017. .. [2] <NAME> and <NAME> and R.Gribonval. "Under-determined reverberant audio source separation using a full-rank spatial covariance model." IEEE Transactions on Audio, Speech, and Language Processing 18.7 (2010): 1830-1840. .. [3] <NAME> and <NAME> and <NAME>. "Multichannel audio source separation with deep neural networks." IEEE/ACM Transactions on Audio, Speech, and Language Processing 24.9 (2016): 1652-1664. .. [4] <NAME> and <NAME> and <NAME>. "Multichannel music separation with deep neural networks." 2016 24th European Signal Processing Conference (EUSIPCO). IEEE, 2016. .. [5] <NAME> and <NAME> and <NAME> "Kernel additive models for source separation." IEEE Transactions on Signal Processing 62.16 (2014): 4298-4310. Parameters ---------- y: np.ndarray [shape=(nb_frames, nb_bins, nb_channels, nb_sources)] initial estimates for the sources x: np.ndarray [shape=(nb_frames, nb_bins, nb_channels)] complex STFT of the mixture signal iterations: int [scalar] number of iterations for the EM algorithm. verbose: boolean display some information if True eps: float or None [scalar] The epsilon value to use for regularization and filters. If None, the default will use the epsilon of np.real(x) dtype. Returns ------- y: np.ndarray [shape=(nb_frames, nb_bins, nb_channels, nb_sources)] estimated sources after iterations v: np.ndarray [shape=(nb_frames, nb_bins, nb_sources)] estimated power spectral densities R: np.ndarray [shape=(nb_bins, nb_channels, nb_channels, nb_sources)] estimated spatial covariance matrices Note ----- * You need an initial estimate for the sources to apply this algorithm. This is precisely what the :func:`wiener` function does. * This algorithm *is not* an implementation of the "exact" EM proposed in [1]_. In particular, it does compute the posterior covariance matrices the same (exact) way. Instead, it uses the simplified approximate scheme initially proposed in [5]_ and further refined in [3]_, [4]_, that boils down to just take the empirical covariance of the recent source estimates, followed by a weighted average for the update of the spatial covariance matrix. It has been empirically demonstrated that this simplified algorithm is more robust for music separation. Warning ------- It is *very* important to make sure `x.dtype` is `np.complex` if you want double precision, because this function will **not** do such conversion for you from `np.complex64`, in case you want the smaller RAM usage on purpose. It is usually always better in terms of quality to have double precision, by e.g. calling :func:`expectation_maximization` with ``x.astype(np.complex)``. This is notably needed if you let common deep learning frameworks like PyTorch or TensorFlow do the STFT, because this usually happens in single precision. """ # to avoid dividing by zero if eps is None: eps = np.finfo(np.real(x[0]).dtype).eps # dimensions (nb_frames, nb_bins, nb_channels) = x.shape nb_sources = y.shape[-1] # allocate the spatial covariance matrices and PSD R = np.zeros((nb_bins, nb_channels, nb_channels, nb_sources), x.dtype) v =
np.zeros((nb_frames, nb_bins, nb_sources))
numpy.zeros
# Copyright 2019 The TensorNetwork Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import pytest import numpy as np import tensornetwork as tn from tensornetwork.backends import backend_factory from tensornetwork.matrixproductstates.base_mps import BaseMPS import tensorflow as tf from jax.config import config config.update("jax_enable_x64", True) tf.compat.v1.enable_v2_behavior() @pytest.fixture( name="backend_dtype_values", params=[('numpy', np.float64), ('numpy', np.complex128), ('tensorflow', np.float64), ('tensorflow', np.complex128), ('pytorch', np.float64), ('jax', np.float64)]) def backend_dtype(request): return request.param def get_random_np(shape, dtype, seed=0): np.random.seed(seed) #get the same tensors every time you call this function if dtype is np.complex64: return
np.random.randn(*shape)
numpy.random.randn
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ The Amplitude Estimation Algorithm. """ from typing import Optional import logging from collections import OrderedDict import numpy as np from scipy.stats import chi2, norm from scipy.optimize import bisect from qiskit.aqua import AquaError from qiskit.aqua.utils import CircuitFactory from qiskit.aqua.circuits import PhaseEstimationCircuit from qiskit.aqua.components.iqfts import IQFT, Standard from qiskit.aqua.utils.validation import validate_min from .ae_algorithm import AmplitudeEstimationAlgorithm from .ae_utils import pdf_a, derivative_log_pdf_a, bisect_max logger = logging.getLogger(__name__) # pylint: disable=invalid-name class AmplitudeEstimation(AmplitudeEstimationAlgorithm): """ The Amplitude Estimation algorithm. """ def __init__(self, num_eval_qubits: int, a_factory: Optional[CircuitFactory] = None, i_objective: Optional[int] = None, q_factory: Optional[CircuitFactory] = None, iqft: Optional[IQFT] = None) -> None: """ Args: num_eval_qubits: number of evaluation qubits, has a min. value of 1. a_factory: the CircuitFactory subclass object representing the problem unitary i_objective: i objective q_factory: the CircuitFactory subclass object representing an amplitude estimation sample (based on a_factory) iqft: the Inverse Quantum Fourier Transform component, defaults to using a standard iqft when None """ validate_min('num_eval_qubits', num_eval_qubits, 1) super().__init__(a_factory, q_factory, i_objective) # get parameters self._m = num_eval_qubits self._M = 2 ** num_eval_qubits if iqft is None: iqft = Standard(self._m) self._iqft = iqft self._circuit = None self._ret = {} @property def _num_qubits(self): if self.a_factory is None: # if A factory is not set, no qubits are specified return 0 num_ancillas = self.q_factory.required_ancillas_controlled() num_qubits = self.a_factory.num_target_qubits + self._m + num_ancillas return num_qubits def construct_circuit(self, measurement=False): """ Construct the Amplitude Estimation quantum circuit. Args: measurement (bool): Boolean flag to indicate if measurement should be included in the circuit. Returns: QuantumCircuit: the QuantumCircuit object for the constructed circuit """ pec = PhaseEstimationCircuit( iqft=self._iqft, num_ancillae=self._m, state_in_circuit_factory=self.a_factory, unitary_circuit_factory=self.q_factory ) self._circuit = pec.construct_circuit(measurement=measurement) return self._circuit def _evaluate_statevector_results(self, probabilities): # map measured results to estimates y_probabilities = OrderedDict() for i, probability in enumerate(probabilities): b = '{0:b}'.format(i).rjust(self._num_qubits, '0')[::-1] y = int(b[:self._m], 2) y_probabilities[y] = y_probabilities.get(y, 0) + probability a_probabilities = OrderedDict() for y, probability in y_probabilities.items(): if y >= int(self._M / 2): y = self._M - y a = np.round(np.power(np.sin(y * np.pi / 2 ** self._m), 2), decimals=7) a_probabilities[a] = a_probabilities.get(a, 0) + probability return a_probabilities, y_probabilities def _compute_fisher_information(self, observed=False): fisher_information = None mlv = self._ret['ml_value'] # MLE in [0,1] m = self._m if observed: ai = np.asarray(self._ret['values']) pi = np.asarray(self._ret['probabilities']) # Calculate the observed Fisher information fisher_information = sum(p * derivative_log_pdf_a(a, mlv, m)**2 for p, a in zip(pi, ai)) else: def integrand(x): return (derivative_log_pdf_a(x, mlv, m))**2 * pdf_a(x, mlv, m) M = 2**m grid = np.sin(np.pi * np.arange(M / 2 + 1) / M)**2 fisher_information = sum(integrand(x) for x in grid) return fisher_information def _fisher_ci(self, alpha, observed=False): shots = self._ret['shots'] mle = self._ret['ml_value'] std = np.sqrt(shots * self._compute_fisher_information(observed)) ci = mle + norm.ppf(1 - alpha / 2) / std * np.array([-1, 1]) return [self.a_factory.value_to_estimation(bound) for bound in ci] def _likelihood_ratio_ci(self, alpha): # Compute the two intervals in which we the look for values above # the likelihood ratio: the two bubbles next to the QAE estimate M = 2**self._m qae = self._ret['value'] y = M * np.arcsin(np.sqrt(qae)) / np.pi left_of_qae = np.sin(np.pi * (y - 1) / M)**2 right_of_qae = np.sin(np.pi * (y + 1) / M)**2 bubbles = [left_of_qae, qae, right_of_qae] # likelihood function ai = np.asarray(self._ret['values']) pi = np.asarray(self._ret['probabilities']) m = self._m shots = self._ret['shots'] def loglikelihood(a): return np.sum(shots * pi * np.log(pdf_a(ai, a, m))) # The threshold above which the likelihoods are in the # confidence interval loglik_mle = loglikelihood(self._ret['ml_value']) thres = loglik_mle - chi2.ppf(1 - alpha, df=1) / 2 def cut(x): return loglikelihood(x) - thres # Store the boundaries of the confidence interval lower = upper = self._ret['ml_value'] # Check the two intervals/bubbles: check if they surpass the # threshold and if yes add the part that does to the CI for a, b in zip(bubbles[:-1], bubbles[1:]): # Compute local maximum and perform a bisect search between # the local maximum and the bubble boundaries locmax, val = bisect_max(loglikelihood, a, b, retval=True) if val >= thres: # Bisect pre-condition is that the function has different # signs at the boundaries of the interval we search in if cut(a) * cut(locmax) < 0: left = bisect(cut, a, locmax) lower = np.minimum(lower, left) if cut(locmax) * cut(b) < 0: right = bisect(cut, locmax, b) upper = np.maximum(upper, right) # Put together CI ci = [lower, upper] return [self.a_factory.value_to_estimation(bound) for bound in ci] def confidence_interval(self, alpha, kind='likelihood_ratio'): """ Compute the (1 - alpha) confidence interval Args: alpha (float): confidence level: compute the (1 - alpha) confidence interval kind (str): the method to compute the confidence interval, can be 'fisher', 'observed_fisher' or 'likelihood_ratio' (default) Returns: list[float]: the (1 - alpha) confidence interval Raises: AquaError: if 'mle' is not in self._ret.keys() (i.e. `run` was not called yet) NotImplementedError: if the confidence interval method `kind` is not implemented """ # check if AE did run already if 'mle' not in self._ret.keys(): raise AquaError('Call run() first!') # if statevector simulator the estimate is exact if self._quantum_instance.is_statevector: return 2 * [self._ret['estimation']] if kind in ['likelihood_ratio', 'lr']: return self._likelihood_ratio_ci(alpha) if kind in ['fisher', 'fi']: return self._fisher_ci(alpha, observed=False) if kind in ['observed_fisher', 'observed_information', 'oi']: return self._fisher_ci(alpha, observed=True) raise NotImplementedError('CI `{}` is not implemented.'.format(kind)) def _run_mle(self): """ Compute the Maximum Likelihood Estimator (MLE) Returns: The MLE for the previous AE run Note: Before calling this method, call the method `run` of the AmplitudeEstimation instance """ M = self._M qae = self._ret['value'] # likelihood function ai = np.asarray(self._ret['values']) pi = np.asarray(self._ret['probabilities']) m = self._m shots = self._ret['shots'] def loglikelihood(a): return np.sum(shots * pi * np.log(pdf_a(ai, a, m))) # y is pretty much an integer, but to map 1.9999 to 2 we must first # use round and then int conversion y = int(np.round(M * np.arcsin(np.sqrt(qae)) / np.pi)) # Compute the two intervals in which are candidates for containing # the maximum of the log-likelihood function: the two bubbles next to # the QAE estimate bubbles = None if y == 0: right_of_qae = np.sin(np.pi * (y + 1) / M)**2 bubbles = [qae, right_of_qae] elif y == int(M / 2): left_of_qae = np.sin(np.pi * (y - 1) / M)**2 bubbles = [left_of_qae, qae] else: left_of_qae = np.sin(np.pi * (y - 1) / M)**2 right_of_qae =
np.sin(np.pi * (y + 1) / M)
numpy.sin
import numpy as np import sys from os import path, getcwd, makedirs import pickle from utils import get_filename from plotter_params import plot_setup import scipy.stats as stats import matplotlib.pyplot as plt import pylab as pl import matplotlib.ticker as ticker plot_setup() epsilon = 0.1 length = 160 filename = path.join(getcwd(), "data", "full_trace_estimations", f"epsilon_{epsilon}_length_{length}".replace('.', '_')) with open(path.join(filename, 'true_process_fidelity.pickle'), 'rb') as f: true_pf = pickle.load(f) with open(path.join(filename, 'true_zero_fidelity.pickle'), 'rb') as f: true_zf = pickle.load(f) with open(path.join(filename, 'process_fidelity_estimates.pickle'), 'rb') as f: proc_fs = pickle.load(f) with open(path.join(filename, 'zero_fidelity_estimates.pickle'), 'rb') as f: zero_fs = pickle.load(f) nbin = 80 pf_diffs = [i - true_pf for i in proc_fs[::]] pf_range = np.max(pf_diffs) - np.min(pf_diffs) pf_width = pf_range/nbin p_fidels = sorted(pf_diffs) fmean = np.mean(p_fidels) fx, fy, _ = plt.hist(p_fidels, bins=nbin, alpha=0.6, density=True, label='Fidelity') f_fit = stats.norm.pdf(p_fidels, fmean, np.std(p_fidels)) f_fit = f_fit*(np.max(fx)/
np.max(f_fit)
numpy.max
import sys import os import platform from xoppylib.xoppy_util import locations import numpy import scipy.constants as codata # # WS # def xoppy_calc_ws(ENERGY=7.0, CUR=100.0, PERIOD=8.5, N=28.0, KX=0.0, KY=8.739999771118164, \ EMIN=1000.0, EMAX=100000.0, NEE=2000, D=30.0, XPC=0.0, YPC=0.0, XPS=2.0, YPS=2.0, NXP=10, NYP=10): print("Inside xoppy_calc_ws. ") try: with open("ws.inp", "wt") as f: f.write("inputs from xoppy \n") f.write("%f %f\n" % (ENERGY, CUR)) f.write("%f %d %f %f\n" % (PERIOD, N, KX, KY)) f.write("%f %f %d\n" % (EMIN, EMAX, NEE)) f.write("%f %f %f %f %f %d %d\n" % (D, XPC, YPC, XPS, YPS, NXP, NYP)) f.write("%d \n" % (4)) if platform.system() == "Windows": command = "\"" + os.path.join(locations.home_bin(), 'ws.exe') + "\"" else: command = "'" + os.path.join(locations.home_bin(), 'ws') + "'" print("Running command '%s' in directory: %s \n" % (command, locations.home_bin_run())) # TODO try to capture the text output of the external code os.system(command) # write spec file txt = open("ws.out").readlines() outFile = os.path.join(locations.home_bin_run(), "ws.spec") f = open(outFile, "w") f.write("#F ws.spec\n") f.write("\n") f.write("#S 1 ws results\n") f.write("#N 4\n") f.write("#L Energy(eV) Flux(photons/s/0.1%bw) Spectral power(W/eV) Cumulated power(W)\n") cum = 0.0 estep = (EMAX - EMIN) / (NEE - 1) for i in txt: tmp = i.strip(" ") if tmp[0].isdigit(): tmp1 = numpy.fromstring(tmp, dtype=float, sep=' ') cum += tmp1[1] * codata.e * 1e3 f.write("%f %g %f %f \n" % (tmp1[0], tmp1[1], tmp1[1] * codata.e * 1e3, cum * estep)) else: f.write("#UD " + tmp) f.close() print("File written to disk: ws.spec") # print output file # for line in txt: # print(line, end="") print("Results written to file: %s" % os.path.join(locations.home_bin_run(), 'ws.out')) return outFile except Exception as e: raise e # # TUNING CURVES # def xoppy_calc_xtc( ENERGY = 7.0, CURRENT = 100.0, ENERGY_SPREAD = 0.00096, SIGX = 0.274, SIGY = 0.011, SIGX1 = 0.0113, SIGY1 = 0.0036, PERIOD = 3.23, NP = 70, EMIN = 2950.0, EMAX = 13500.0, N = 40, HARMONIC_FROM = 1, HARMONIC_TO = 15, HARMONIC_STEP = 2, HELICAL = 0, METHOD = 1, NEKS = 100, ): for file in ["tc.inp","tc.out"]: try: os.remove(os.path.join(locations.home_bin_run(),file)) except: pass with open("tc.inp", "wt") as f: f.write("TS called from xoppy\n") f.write("%10.3f %10.2f %10.6f %s\n"%(ENERGY,CURRENT,ENERGY_SPREAD,"Ring-Energy(GeV) Current(mA) Beam-Energy-Spread")) f.write("%10.4f %10.4f %10.4f %10.4f %s\n"%(SIGX,SIGY,SIGX1,SIGY1,"Sx(mm) Sy(mm) Sx1(mrad) Sy1(mrad)")) f.write("%10.3f %d %s\n"%(PERIOD,NP,"Period(cm) N")) f.write("%10.1f %10.1f %d %s\n"%(EMIN,EMAX,N,"Emin Emax Ne")) f.write("%d %d %d %s\n"%(HARMONIC_FROM,HARMONIC_TO,HARMONIC_STEP,"Hmin Hmax Hstep")) f.write("%d %d %d %d %s\n"%(HELICAL,METHOD,1,NEKS,"Helical Method Print_K Neks")) f.write("foreground\n") if platform.system() == "Windows": command = "\"" + os.path.join(locations.home_bin(),'tc.exe') + "\"" else: command = "'" + os.path.join(locations.home_bin(), 'tc') + "'" print("Running command '%s' in directory: %s "%(command, locations.home_bin_run())) print("\n--------------------------------------------------------\n") os.system(command) print("Output file: %s"%("tc.out")) print("\n--------------------------------------------------------\n") # # parse result files to exchange object # with open("tc.out","r") as f: lines = f.readlines() # print output file # for line in lines: # print(line, end="") # remove returns lines = [line[:-1] for line in lines] harmonics_data = [] # separate numerical data from text floatlist = [] harmoniclist = [] txtlist = [] for line in lines: try: tmp = line.strip() if tmp.startswith("Harmonic"): harmonic_number = int(tmp.split("Harmonic")[1].strip()) if harmonic_number != HARMONIC_FROM: harmonics_data[-1][1] = harmoniclist harmoniclist = [] harmonics_data.append([harmonic_number, None]) tmp = float(line.strip()[0]) floatlist.append(line) harmoniclist.append(line) except: txtlist.append(line) harmonics_data[-1][1] = harmoniclist data = numpy.loadtxt(floatlist) for index in range(0, len(harmonics_data)): # print (harmonics_data[index][0], harmonics_data[index][1]) harmonics_data[index][1] = numpy.loadtxt(harmonics_data[index][1]) return data, harmonics_data def xoppy_calc_xtcap( ENERGY = 6.0, CURRENT = 200.0, ENERGY_SPREAD = 0.00138, SIGX = 0.0148, SIGY = 0.0037, SIGX1 = 0.0029, SIGY1 = 0.0015, PERIOD = 2.8, NP = 84, EMIN = 3217.0, EMAX = 11975.0, N = 50, DISTANCE = 30.0, XPS = 1.0, YPS = 1.0, XPC = 0.0, YPC = 0.0, HARMONIC_FROM = 1, HARMONIC_TO = 7, HARMONIC_STEP = 2, HRED = 0, HELICAL = 0, NEKS = 100, METHOD = 0, BSL = 0, ): for file in ["tcap.inp","tcap.out","tcap.log"]: try: os.remove(os.path.join(locations.home_bin_run(),file)) except: pass with open("tcap.inp", "wt") as f: f.write("TCAP called from xoppy\n") f.write("%10.3f %10.2f %10.6f %s\n"%(ENERGY,CURRENT,ENERGY_SPREAD,"Ring-Energy(GeV) Current(mA) Beam-Energy-Spread")) f.write("%10.4f %10.4f %10.4f %10.4f %s\n"%(SIGX,SIGY,SIGX1,SIGY1,"Sx(mm) Sy(mm) Sx1(mrad) Sy1(mrad)")) f.write("%10.3f %d %s\n"%(PERIOD,NP,"Period(cm) N")) f.write("%10.1f %10.1f %d %s\n"%(EMIN,EMAX,N,"Emin Emax Ne")) f.write("%10.3f %10.3f %10.3f %10.3f %10.3f %d %d %s\n"%(DISTANCE,XPC,YPC,XPS,YPS,10,10,"d xpc ypc xps yps nxp nyp")) f.write("%d %d %d %d %s\n"%(HARMONIC_FROM,HARMONIC_TO,HARMONIC_STEP,HRED,"Hmin Hmax Hstep Hreduction")) f.write("%d %d %d %d %d %s\n"%(HELICAL,METHOD,1,NEKS,BSL,"Helical Method Print_K Neks Bsl-Subtr ")) f.write("foreground\n") if platform.system() == "Windows": command = "\"" + os.path.join(locations.home_bin(),'tcap.exe') + "\"" else: command = "'" + os.path.join(locations.home_bin(), 'tcap') + "'" print("Running command '%s' in directory: %s "%(command, locations.home_bin_run())) print("\n--------------------------------------------------------\n") # os.system(command) # # catch the optut and write the output to a log file as well as print it. # retvalue = os.popen(command).read() print(retvalue) with open("tcap.log", "wt") as f: f.write(retvalue) print("Output file: '%s/tcap.out'"%(os.getcwd()) ) print("\n--------------------------------------------------------\n") # # parse result files to exchange object # with open("tcap.out","r") as f: lines = f.readlines() # remove returns lines = [line[:-1] for line in lines] harmonics_data = [] # separate numerical data from text floatlist = [] harmoniclist = [] txtlist = [] for line in lines: try: tmp = line.strip() if tmp.startswith("Harmonic"): # harmonic_number = int(tmp.split("Harmonic")[1].strip()) harmonic_number = int(tmp.split()[1]) if harmonic_number != HARMONIC_FROM: harmonics_data[-1][1] = harmoniclist harmoniclist = [] harmonics_data.append([harmonic_number, None]) tmp = float(line.strip()[0]) floatlist.append(line) harmoniclist.append(line) except: txtlist.append(line) harmonics_data[-1][1] = harmoniclist data = numpy.loadtxt(floatlist) for index in range(0, len(harmonics_data)): # print (harmonics_data[index][0], harmonics_data[index][1]) harmonics_data[index][1] = numpy.loadtxt(harmonics_data[index][1]) return data, harmonics_data # # YAUP # def run_external_binary(binary="ls", post_command="", info=""): if platform.system() == "Windows": command = "\"" + os.path.join(locations.home_bin(), '%s.exe' % binary) + "\"" else: command = "'" + os.path.join(locations.home_bin(), binary) + "'" command += " " + post_command print("Running command '%s' in directory: %s " % (command, locations.home_bin_run())) print("\n--------------------------------------------------------\n") os.system(command) if info != "": print(info) print("\n--------------------------------------------------------\n") def xoppy_calc_yaup( #yaup TITLE = "YAUP EXAMPLE (ESRF BL-8)", PERIOD = 4.0, NPER = 42, NPTS = 40, EMIN = 3000.0, EMAX = 30000.0, NENERGY = 100, ENERGY = 6.04, CUR = 0.1, SIGX = 0.426, SIGY = 0.085, SIGX1 = 0.017, SIGY1 = 0.0085, D = 30.0, XPC = 0.0, YPC = 0.0, XPS = 2.0, YPS = 2.0, NXP = 69, NYP = 69, MODE = 4, NSIG = 2, TRAJECTORY = "new+keep", XSYM = "yes", HANNING = 0, BFILE = "undul.bf", TFILE = "undul.traj", # B field BFIELD_FLAG = 1, BFIELD_ASCIIFILE = "", PERIOD_BFIELD = 4.0, NPER_BFIELD = 42, NPTS_BFIELD = 40, IMAGNET = 0, ITYPE = 0, K = 1.38, GAP = 2.0, GAPTAP = 10.0, FILE = "undul.bf", I2TYPE = 0, A1 = 0.5, A2 = 1.0, ): for file in ["bfield.inp","bfield.out","bfield.dat","u2txt_bfield.inp", "yaup.inp", "yaup-0.out","undul.bf", "u2txt_traj.inp","undul_traj.dat"]: try: os.remove(os.path.join(locations.home_bin_run(),file)) except: print("Failed to remove file: %s " % (os.path.join(locations.home_bin_run(),file)) ) if BFIELD_FLAG == 0: #TODO: test this option... message = '' message += 'This option takes an ASCII file and convert it to YAUP format.' message += 'The text file should be column-formatted, and contain three colums:' message += ' z, B(z), and phi(z), where the z s are equidistant with step ' message += ' PERIOD/NPTS. See HELP/YAUP for definitions of PERIOD and NPTS.' message += ' There should be NPTS*NPER+1 lines in the ASCII file.' ok = showConfirmMessage(message, "OK?") if not ok: return f = open('txt2u.inp', 'w') f.write("%s\n" % (BFIELD_ASCIIFILE) ) f.write("%s\n" % (BFILE)) f.write("%g\n" % (PERIOD_BFIELD)) f.write("%d\n" % (PERIOD_BFIELD)) f.write("%d\n" % (NPTS_BFIELD) ) f.close run_external_binary(binary="txt2u", post_command="< txt2u.inp", info="Output file should be: %s" % BFILE) elif BFIELD_FLAG == 1: with open("bfield.inp", "wt") as f: f.write("%g\n" % (PERIOD_BFIELD)) f.write("%d\n" % (NPER_BFIELD)) f.write("%d\n" % (NPTS_BFIELD)) f.write("%d\n" % (1 + ITYPE)) if ITYPE == 0: f.write("%g\n" % (K)) elif ITYPE == 1: f.write("%g\n" % (GAP)) f.write("%g\n" % (GAPTAP)) f.write("%s\n" % (FILE)) with open("u2txt_bfield.inp", "wt") as f: f.write("1\n") f.write("%s\n" % (FILE)) f.write("bfield.dat\n") if IMAGNET == 0: run_external_binary(binary="bfield", post_command="< bfield.inp > bfield.out", info="Output file: bfield.out") elif IMAGNET == 1: run_external_binary(binary="bfield2", post_command="< bfield.inp > bfield.out", info="Output file: bfield.out") run_external_binary(binary="u2txt", post_command="< u2txt_bfield.inp", info="Output file should be bfield.dat") elif BFIELD_FLAG == 2: n = NPER lambdau = PERIOD_BFIELD npts_per = NPTS_BFIELD if ITYPE == 0: b1 = A1 b2 = A2 else: b1 = A1/0.934/PERIOD_BFIELD b2 = A2/0.934/PERIOD_BFIELD und_len = lambdau * npts_per z = numpy.arange( n * npts_per + 1) / float( n * npts_per) z *= und_len bmod = numpy.arange(n * npts_per + 1) / float( n * npts_per) * (b2 - b1) + b1 berr =
numpy.arange(n * npts_per + 1)
numpy.arange
import numpy as np from scipy import interpolate, optimize from scipy.integrate import cumtrapz from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression from frenet_path import * Kern = lambda x: (3/4)*(1-np.power(x,2))*(np.abs(x)<1) Kern_bis = lambda x,delta: np.power((1 - np.power((np.abs(x)/delta),3)), 3) class Trajectory: """ A class used to represent a 3D curve. ... Attributes ---------- data : numpy array of shape (N,3) that contained the coordinates of the curve t : numpy array of shape N, time of each point in data, supposed to be croissant dim : 3 t0 : float, initial time value tmax : float, final time value scale : Boolean, True if the curve is scale, False otherwise dX1 : function, estimated first derivative dX2 : function, estimated second derivative dX3 : function, estimated third derivative S : function, estimated of the arclenght function Sdot : function, estimated derivative of the arclenght function L : float, estimated lenght of the curve curv_extrins : function, extrinsic estimates of the curvature tors_extrins : function, extrinsic estimates of the torsion Methods ------- loc_poly_estimation(t_out, deg, h): estimation of derivatives using local polynomial regression with parameters "h" and degree "deg" evaluted of the grid "t_out" compute_S(scale=False): compute the arclenght function, the lenght of the curve and scale it if "scale" equals True. scale(): scale the curve, needs to have run compute_S before. TNB_GramSchmidt(t): compute the T,N,B frame of the curve from the pointwise estimated derivatives (of Higher Order : 1,2,3) by Gram-Schmidt Orthonormalization on t return: instance of class FrenetPath theta_extrinsic_formula(t): compute the curvature and torsion functions from the pointwise estimated derivatives (of Higher Order : 1,2,3) computed by the classical formulas BECAREFUL very unstable (numerically ill-posed). return: pointwise estimate of curvature, pointwise estimate of torsion TNB_locPolyReg(grid_in, grid_out, h, p=3, iflag=[1,1], ibound=0, local=True): TNB estimates based on constrained local polynomial regression |T|=1, <T,N>=0 b0 + b1(t-t_0)+b2(t-t0)^2/2 + b3(t-t0)^3/6 + ... + bp(t-t0)^p/p!, |b1|=1, <b1,b2>=0 minimize (Y-XB)'W(Y-XB) -la*(|b1|^2-1) - mu(2*<b1,b2>) inputs: grid_in - input grid grid_out - output grid h - scalar p - degree of polynomial (defaul = 3) iflag - [1,1] for both constraints, [1,0] for |b1|=1, [0,1] for <b1,b2>=0 ibound - 1 for boundary correction, 0 by default local - True for local version, False for regular version return: Q - instance of class FrenetPath kappa - [kappa, kappap, tau] Param - estimates with constraints Param0 - estimates without constraints vparam - [la, mu, vla, vmu] tuning parameters [la, mu]: optimal values amongst vla, and vmu success - True if a solution was found for all point, False otherwise """ def __init__(self, data, t): self.t = t self.data = data self.dim = data.shape[1] self.t0 = np.min(t) self.tmax = np.max(t) self.scale = False def loc_poly_estimation(self, t_out, deg, h): pre_process = PolynomialFeatures(degree=deg) deriv_estim = np.zeros((len(t_out),(deg+1)*self.dim)) for i in range(len(t_out)): T = self.t - t_out[i] # print(T) W = Kern(T/h) # print(W) T_poly = pre_process.fit_transform(T.reshape(-1,1)) for j in range(deg+1): T_poly[:,j] = T_poly[:,j]/np.math.factorial(j) pr_model = LinearRegression(fit_intercept = False) pr_model.fit(T_poly, self.data, W) B = pr_model.coef_ deriv_estim[i,:] = B.reshape(1,(deg+1)*self.dim, order='F') self.derivatives = deriv_estim def dx1(t): return interpolate.griddata(self.t, deriv_estim[:,3:6], t, method='cubic') self.dX1 = dx1 def dx2(t): return interpolate.griddata(self.t, deriv_estim[:,6:9], t, method='cubic') self.dX2 = dx2 def dx3(t): return interpolate.griddata(self.t, deriv_estim[:,9:12], t, method='cubic') self.dX3 = dx3 def compute_S(self, scale=False): def Sdot_fun(t): return np.linalg.norm(self.dX1(t), axis=1) self.Sdot = Sdot_fun def S_fun(t): return cumtrapz(self.Sdot(t), t, initial=0) # S_fun = interpolate.interp1d(self.t, cumtrapz(self.Sdot(self.t), self.t, initial=0)) self.L = S_fun(self.t)[-1] # print(self.L) if scale==True: self.scale = True def S_fun_scale(t): return cumtrapz(self.Sdot(t), t, initial=0)/self.L # S_fun_scale = interpolate.interp1d(self.t, cumtrapz(self.Sdot(self.t), self.t, initial=0)/self.L) self.S = S_fun_scale self.data = self.data/self.L else: self.S = S_fun def scale(self): self.scale = True def S_fun_scale(t): return cumtrapz(self.Sdot(t), t, initial=0)/self.L self.S = S_fun_scale self.data = self.data/self.L def TNB_GramSchmidt(self, t_grid): def GramSchmidt(DX1, DX2, DX3): normdX1 = np.linalg.norm(DX1) normdX2 = np.linalg.norm(DX2) normdX3 = np.linalg.norm(DX3) T = DX1/normdX1 N = DX2 - np.dot(np.transpose(T),DX2)*T N = N/np.linalg.norm(N) B = DX3 - np.dot(np.transpose(N),DX3)*N - np.dot(np.transpose(T),DX3)*T B = B/np.linalg.norm(B) Q = np.stack((T, N, B)) if np.linalg.det(Q)<0: B = -B Q =
np.stack((T, N, B))
numpy.stack
# Copyright 2020 SAS Project Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Useful geo routines. Outside regular use""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import shapely.geometry as sgeo from shapely import affinity from reference_models.geo import utils from reference_models.geo import vincenty # Earth ellipsoidal parameters. _EARTH_MEAN_RADIUS_KM = 6371.0088 # By IUGG _WGS_EQUATORIAL_RADIUS_KM2 = 6378.137 _WGS_POLAR_RADIUS_KM2 = 6356.753 _EQUATORIAL_DIST_PER_DEGREE = 2 * np.pi * _WGS_EQUATORIAL_RADIUS_KM2 / 360 _POLAR_DIST_PER_DEGREE = 2 * np.pi * _WGS_POLAR_RADIUS_KM2 / 360 def _ProjectEqc(geometry, ref_latitude=None): """Projects a geometry using equirectangular projection. Args: geometry: A |shapely| geometry with lon,lat coordinates. ref_latitude: A reference latitude for the Eqc projection. If None, using the centroid of the geometry. Returns: A tuple of: the same geometry in equirectangular projection. the reference latitude parameter used for the equirectangular projection. """ if ref_latitude is None: ref_latitude = geometry.centroid.y geometry = affinity.affine_transform( geometry, (_EQUATORIAL_DIST_PER_DEGREE * np.cos(np.radians(ref_latitude)), 0.0, 0.0, _POLAR_DIST_PER_DEGREE, 0, 0)) return geometry, ref_latitude def _InvProjectEqc(geometry, ref_latitude): """Returns the inverse equirectangular projection of a geometry. Args: geometry: A |shapely| geometry with lon,lat coordinates. ref_latitude: The reference latitude of the equirectangular projection. """ geometry = affinity.affine_transform( geometry, (1./(_EQUATORIAL_DIST_PER_DEGREE * np.cos(np.radians(ref_latitude))), 0.0, 0.0, 1./_POLAR_DIST_PER_DEGREE, 0, 0)) return geometry def Buffer(geometry, distance_km, ref_latitude=None, **kwargs): """Returns a geometry with an enveloppe at a given distance (in km). This uses the traditional shapely `buffer` method but on the reprojected geometry. As such this is somewhat approximate depending on the size of the geometry and the buffering distance. Args: geometry: A |shapely| or geojson geometry. distance_km: The buffering distance in km. ref_latitude: A reference latitude for the Eqc projection. If None, using the centroid of the geometry. **kwargs: The optional parameters forwarded to the shapely `buffer` routine: (for example: resolution, cap_style, join_style) """ geom = utils.ToShapely(geometry) proj_geom, ref_latitude = _ProjectEqc(geom, ref_latitude) proj_geom = proj_geom.buffer(distance_km, **kwargs) geom = _InvProjectEqc(proj_geom, ref_latitude) if isinstance(geometry, sgeo.base.BaseGeometry): return geom else: return utils.ToGeoJson(geom, as_dict=isinstance(geometry, dict)) def GridPolygonApprox(poly, res_km): """Grids a polygon or multi-polygon with approximate resolution (in km). This is a replacement of `geo.utils.GridPolygon()` for gridding with approximate metric distance on both latitude and longitude directions. The regular gridding is still done in PlateCarree (equirectangular) projection, but with different steps in degrees in lat and long direction. Points falling in the boundary of polygon will be included. Args: poly: A Polygon or MultiPolygon in WGS84 or NAD83, defined either as a shapely, GeoJSON (dict or str) or generic geometry. A generic geometry is any object implementing the __geo_interface__ protocol. res_km: The resolution (in km) used for gridding. Returns: A list of (lon, lat) defining the grid points. """ poly = utils.ToShapely(poly) bound_area = ((poly.bounds[2] - poly.bounds[0]) * (poly.bounds[3] - poly.bounds[1])) if isinstance(poly, sgeo.MultiPolygon) and poly.area < bound_area * 0.01: # For largely disjoint polygons, we process per polygon # to avoid inefficiencies if polygons largely disjoint. pts = ops.unary_union( [sgeo.asMultiPoint(GridPolygonApprox(p, res_km)) for p in poly]) return [(p.x, p.y) for p in pts] # Note: using as reference the min latitude, ie actual resolution < res_km. # This is to match NTIA procedure. ref_latitude = poly.bounds[1] # ref_latitude = poly.centroid.y res_lat = res_km / _POLAR_DIST_PER_DEGREE res_lng = res_km / ( _EQUATORIAL_DIST_PER_DEGREE * np.cos(np.radians(ref_latitude))) bounds = poly.bounds lng_min = np.floor(bounds[0] / res_lng) * res_lng lat_min = np.floor(bounds[1] / res_lat) * res_lat lng_max = np.ceil(bounds[2] / res_lng) * res_lng + res_lng/2. lat_max = np.ceil(bounds[3] / res_lat) * res_lat + res_lat/2. # The mesh creation is conceptually equivalent to # mesh_lng, mesh_lat = np.mgrid[lng_min:lng_max:res_lng, # lat_min:lat_max:res_lat] # but without the floating point accumulation errors mesh_lng, mesh_lat = np.meshgrid( np.arange(np.floor((lng_max - lng_min) / res_lng) + 1), np.arange(np.floor((lat_max - lat_min) / res_lat) + 1), indexing='ij') mesh_lng = lng_min + mesh_lng * res_lng mesh_lat = lat_min + mesh_lat * res_lat points = np.vstack((mesh_lng.ravel(), mesh_lat.ravel())).T # Performs slight buffering by 1mm to include border points in case they fall # exactly on a multiple of pts = poly.buffer(1e-8).intersection(sgeo.asMultiPoint(points)) if isinstance(pts, sgeo.Point): return [(pts.x, pts.y)] return [(p.x, p.y) for p in pts] def SampleLine(line, res_km, ref_latitude=None, equal_intervals=False, precision=5, ratio=1.0): """Samples a line with approximate resolution (in km). Args: line: A shapely or GeoJSON |LineString|. res_km: The resolution (in km). ref_latitude: A reference latitude for the Eqc projection. If None, using the centroid of the line. equal_intervals: If True, all intervals are equal to finish on the edges. precision: Simplify final coordinates with provided precision. ratio: Only span the given line length. Returns: A list of (lon, lat) along the line every `res_km`. """ line = utils.ToShapely(line) proj_line, ref_latitude = _ProjectEqc(line, ref_latitude) if not equal_intervals: points = sgeo.MultiPoint( [proj_line.interpolate(dist) for dist in np.arange(0, ratio * proj_line.length - 1e-6, res_km)]) else: n_intervals = ratio * proj_line.length // res_km points = sgeo.MultiPoint( [proj_line.interpolate(dist) for dist in np.linspace(0, ratio * proj_line.length, n_intervals)]) points = _InvProjectEqc(points, ref_latitude) return [(round(p.x, precision), round(p.y, precision)) for p in points] def AreaPlateCarreePixel(res_arcsec, ref_latitude): """Returns the approximate area in km of a Plate Carree pixel of size `res_arcsec`.""" return np.cos(np.radians(ref_latitude)) * ( 2 * np.pi * _EARTH_MEAN_RADIUS_KM * res_arcsec / (360 * 3600))**2 def ReplaceVincentyDistanceByHaversine(): """Replaces Vincenty distance routines by Haversine great circle routines.""" vincenty.GeodesicDistanceBearing = GreatCircleDistanceBearing vincenty.GeodesicPoint = GreatCirclePoint vincenty.GeodesicPoints = GreatCirclePoints # pylint: disable=unused-argument # Great Circle methods in replacement of Vincenty methods. # A good description of Haversine formula in their numerical stable version # can be found at : https://www.movable-type.co.uk/scripts/latlong.html def GreatCircleDistanceBearing(lat1, lon1, lat2, lon2, accuracy=None): """Calculates distance and bearings between points on earth. This uses Haversine method considering the earth as a sphere. See: https://en.wikipedia.org/wiki/Haversine_formula This routine is designed to be a pure replacement of the similar 'google3.third_party.winnforum_sas.vincenty.GeodesicDistanceBearing()' which uses the more precise Vincenty-based formula but is much slower. It also goes beyond the vincenty implementation as it supports sequence of points, either on the initial, final points or both. Args: lat1 (float or iterable of float): The initial point(s) latitude (degrees). lon1 (float or iterable of float): The initial point(s) longitude (degrees). lat2 (float or iterable of float): The final point(s) latitude (degrees). lon2 (float or iterable of float): The final point(s) longitude (degrees). accuracy: (unused) For compatibility with vincenty method prototype. Returns: A tuple of distance (km), direct bearing and back bearing (degrees). If an iterable of points are passed as input, ndarray are returned. """ if lat1 == lat2 and lon1 == lon2: return 0, 0, -180 lat1 = np.deg2rad(lat1) lat2 = np.deg2rad(lat2) delta_lat = lat2 - lat1 delta_lon = np.deg2rad(lon2) - np.deg2rad(lon1) sin_lat1 = np.sin(lat1) cos_lat1 = np.cos(lat1) sin_lat2 = np.sin(lat2) cos_lat2 = np.cos(lat2) phi = ( np.sin(delta_lat / 2)**2 + cos_lat1 * cos_lat2 * (np.sin(delta_lon / 2)**2)) phi = 2 * np.arctan2(np.sqrt(phi), np.sqrt(1 - phi)) distance = _EARTH_MEAN_RADIUS_KM * phi bearing = np.rad2deg( np.arctan2( np.sin(delta_lon) * cos_lat2, cos_lat1 * sin_lat2 - sin_lat1 * cos_lat2 * np.cos(delta_lon))) rev_bearing = np.rad2deg( np.arctan2(-np.sin(delta_lon) * cos_lat1, cos_lat2 * sin_lat1 - sin_lat2 * cos_lat1 * np.cos(delta_lon))) if np.isscalar(bearing): if bearing < 0: bearing += 360 if rev_bearing < 0: rev_bearing += 360 else: bearing[bearing < 0] += 360 rev_bearing[rev_bearing < 0] += 360 return distance, bearing, rev_bearing def GreatCirclePoint(lat, lon, dist_km, bearing, accuracy=None): """Computes the coordinates of a point towards a bearing at given distance. This uses Haversine method considering the earth as a sphere. See: https://en.wikipedia.org/wiki/Haversine_formula This routine is designed to be a pure replacement of the similar 'google3.third_party.winnforum_sas.vincenty.GeodesicDistanceBearing()' which uses the more precise Vincenty-based formula but is much slower. Args: lat (float): The initial point latitude (degrees). lon (float): The initial point longitude (degrees). dist_km (float): The distance of the target point (km). bearing (float): The bearing angle (in degrees) accuracy (unused): For compatibility with vincenty method prototype. Returns: A tuple of the final point latitude, longitude and final reverse bearing, all in degrees. """ tgt_lat, tgt_lon, rev_bearing = GreatCirclePoints(lat, lon, [dist_km], bearing) return tgt_lat[0], tgt_lon[0], rev_bearing[0] def GreatCirclePoints(lat, lon, distances_km, bearing, accuracy=None): """Computes the coordinates of points towards a bearing at several distances. This uses Haversine method considering the earth as a sphere. See: https://en.wikipedia.org/wiki/Haversine_formula This routine is designed to be a pure replacement of the similar 'google3.third_party.winnforum_sas.vincenty.GeodesicPoints()' which uses the more precise Vincenty-based formula but is much slower. This routine is similar to `GreatCirclePoint` but can take any coherent sequence of values for the initial point, distances or bearing, and perform an efficient vectorized operation internally. 'Coherent' means that either only one of the input is a sequence, or several are with the same shapes. Args: lat: The initial point latitude (degrees). lon: The initial point longitude (degrees). distances_km (iterable of float): A sequence of distance of the target points (in km). Can be for example a ndarray or a list. bearing (float or iterable of float): The bearing angle (in degrees). accuracy (unused): For compatibility with vincenty method prototype. Returns: A tuple of the points latitude, longitude and reverse bearing, all in degrees. If one of the input is a ndarray, ndarray are returned, otherwise lists are returned. """ is_array = ( isinstance(distances_km, np.ndarray) or isinstance(bearing, np.ndarray) or isinstance(lat, np.ndarray)) lat = np.deg2rad(lat) lon = np.deg2rad(lon) bearing = np.deg2rad(bearing) norm_distances = np.asarray(distances_km) / _EARTH_MEAN_RADIUS_KM tgt_lat = np.arcsin( np.sin(lat) * np.cos(norm_distances) + np.cos(lat) * np.sin(norm_distances) * np.cos(bearing)) tgt_lon = lon + np.arctan2( np.sin(bearing) * np.sin(norm_distances) * np.cos(lat), np.cos(norm_distances) - np.sin(lat) * np.sin(tgt_lat)) rev_bearing = np.rad2deg( np.arctan2(-np.sin(tgt_lon - lon) * np.cos(lat), np.cos(tgt_lat) *
np.sin(lat)
numpy.sin
# -*- coding: utf-8 -*- """LDFA-H: Latent Dynamic Factor Analysis of High-dimensional time-series This module implements the fitting algorithm of LDFA-H and the accessory functions to facilitate the associate analyses or inferences. Todo ---- * Correct function ``fit_Phi``. .. _[1] Bong et al. (2020). Latent Dynamic Factor Analysis of High-Dimensional Neural Recordings. Submitted to NeurIPS2020. """ import time, sys, traceback import numpy as np from scipy import linalg import ldfa.optimize as core def _generate_lambda_glasso(bin_num, lambda_glasso, offset, lambda_diag=None): """Generate sparsity penalty matrix Lambda for a submatrix in Pi.""" lambda_glasso_out = np.full((bin_num, bin_num), -1) + (1+lambda_glasso) * \ (np.abs(np.arange(bin_num) - np.arange(bin_num)[:,np.newaxis]) <= offset) if lambda_diag: lambda_glasso_out[np.arange(bin_num), np.arange(bin_num)] = lambda_diag return lambda_glasso_out def _switch_back(Sigma, Phi_S, Gamma_T, Phi_T, beta): """Make the initial Phi_S positive definite.""" w, v = np.linalg.eig(Sigma) sqrtS = (v*np.sqrt(w)[...,None,:])@v.transpose(0,2,1) alpha = np.min(np.linalg.eigvals( sqrtS @ linalg.block_diag(*Gamma_T) @ sqrtS),-1)/2 return (Sigma - alpha[:,None,None]*linalg.block_diag(*Phi_T), [P + (b*alpha)@b.T for P, b in zip(Phi_S, beta)]) def _make_PD(m, thres_eigen=1e-4): """Make a coariance PSD based on its eigen decomposition.""" s, v = np.linalg.eigh(m) if np.min(s)<=thres_eigen*np.max(s): delta = thres_eigen*np.max(s) - np.min(s) s = s + delta return ([email protected](s)@np.linalg.inv(v)) def _temporal_est(V_eps_T, ar_order): """Perform temporal estimate given V_T. .. _[1] <NAME>. and <NAME>. (2008). Regularized estimation of large covariance matrices. Ann. Statist., 36(1):199–227. """ num_time = V_eps_T.shape[0] resids = np.zeros(num_time) Amatrix = np.zeros([num_time, num_time]) resids[0] = V_eps_T[0,0] for i in np.arange(1, ar_order): Amatrix[i,:i] = np.linalg.pinv(V_eps_T[:i,:i]) @ V_eps_T[:i,i] resids[i] = V_eps_T[i,i] \ - V_eps_T[i,:i] @ np.linalg.pinv(V_eps_T[:i,:i]) @ V_eps_T[:i,i] for i in np.arange(ar_order, num_time): Amatrix[i,i-ar_order:i] = np.linalg.pinv(V_eps_T[i-ar_order:i,i-ar_order:i]) \ @ V_eps_T[i-ar_order:i,i] resids[i] = V_eps_T[i,i] \ - V_eps_T[i,i-ar_order:i] \ @ np.linalg.pinv(V_eps_T[i-ar_order:i,i-ar_order:i]) \ @ V_eps_T[i-ar_order:i,i] # invIA = np.linalg.pinv(np.eye(num_time) - Amatrix) # Psi_T_hat = invIA @ np.diag(resids) @ invIA.T # Gamma_T_hat = np.linalg.inv(Psi_T_hat) Gamma_T_hat = (np.eye(num_time)-Amatrix).T @ np.diag(1/resids) \ @ (np.eye(num_time)-Amatrix) Psi_T_hat = np.linalg.pinv(Gamma_T_hat) return Gamma_T_hat, Psi_T_hat def fit(data, num_f, lambda_cross, offset_cross, lambda_auto=None, offset_auto=None, lambda_aug=0, ths_ldfa=1e-2, max_ldfa=1000, ths_glasso=1e-8, max_glasso=1000, ths_lasso=1e-8, max_lasso=1000, params_init=dict(), make_PD=False, verbose=False): """The main function to perform multi-factor LDFA-H estimation. Parameters ---------- data: list of (N, p_k, T) ndarrays Observed data from K areas. Data from each area k consists of p_k-variate time-series over T time bins in N trials. num_f: int The number of factors. lambda_cross, lambda_auto: float The sparsity penalty parameter for the inverse cross-correlation and inverse auto-correlation matrix, respectively. The default value for lambda_auto is 0. offset_cross, offset_auto: int The bandwidth parameter for the inverse cross-correlation matrix and inverse auto-correlation matrix, respectively. The default value for offset_auto is the given value of offset_cross. ths_ldfa, ths_glasso, ths_lasso: float, optional The threshold values for deciding the convergence of the main iteration, the glasso iteration, and the lasso iteration, respectively. max_ldfa, max_glasso, max_lasso: int, optional The maximum number of iteration for the main iteration, the glasso iteration, and the lasso iteration, respectively. beta_init: list of (p_k, num_f) ndarrays, optional Custom initial values for beta. If not given, beta is initialized by CCA. make_PD: boolean, optional Switch for manual positive definitization. If data does not generate a positive definite estimate of the covariance matrix, ``make_PD = True`` helps with maintaining the matrix positive definite throughout the fitting algorithm. The default value is False for the sake of running time. verbose: boolean, optional Swith for vocal feedback throughout the fitting algorithm. The default value is False. Returns ------- Pi: (K*T, K*T) ndarray The estimated sparse inverse correlation matrix. Rho: (K*T, K*T) ndarray The estimated correlation matrix before sparsification. Note that Rho != Pi^{-1}. params: dict The dictionary of the estimated parameters. It provides with the estimation of Omega: (num_f, K*T, K*T) ndarray; Gamma_S: a list of (p_k, p_k) ndarrays for k = 1, ..., K; Gamma_T: a list of (T, T) ndarrays for k = 1, ..., K; beta: a list of (p_k, num_f) ndarrays for k = 1, ..., K; and mu: a list of (p_k, T) ndarrays for k = 1, ..., K. Examples -------- Pi, Rho, params =\ fit(data, num_f, lambda_cross, offset_cross, lambda_auto, offset_auto) .. _[1] Bong et al. (2020). Latent Dynamic Factor Analysis of High-Dimensional Neural Recordings. Submitted to NeurIPS2020. """ dims = [dat.shape[1] for dat in data] num_time = data[0].shape[2] num_trial = data[0].shape[0] # get full_graph if lambda_auto is None: lambda_auto = lambda_cross if offset_auto is None: offset_auto = offset_cross lambda_glasso_auto = _generate_lambda_glasso(num_time, lambda_auto, offset_auto) lambda_glasso_cross = _generate_lambda_glasso(num_time, lambda_cross, offset_cross) lambda_glasso = np.array(np.block( [[lambda_glasso_auto if j==i else lambda_glasso_cross for j, _ in enumerate(data)] for i, _ in enumerate(data)])) # set mu mu= [np.mean(dat, 0) for dat in data] # initialization if all(key in params_init for key in ('Omega', 'mu', 'beta', 'Gamma_S', 'Gamma_T')): Omega = params_init['Omega']; mu = params_init['mu']; beta = params_init['beta'] Gamma_S = params_init['Gamma_S']; Gamma_T = params_init['Gamma_T'] Sigma = np.linalg.inv(Omega) sig = np.sqrt(np.diagonal(Sigma,0,1,2)) Rho = Sigma/sig[:,None,:]/sig[:,:,None] Pi = np.linalg.inv(Rho) else: if 'beta' in params_init: beta = [b.copy() for b in params['beta_init']] weight = [np.linalg.pinv(b) for b in beta] elif len(data)==2: # initialize beta by CCA S_xt = np.tensordot( np.concatenate([dat-m for dat, m in zip(data,mu)], 1), np.concatenate([dat-m for dat, m in zip(data,mu)], 1), axes=((0,2),(0,2)))/num_trial/num_time S_1 = S_xt[:dims[0],:dims[0]] S_12 = S_xt[:dims[0],dims[0]:] S_2 = S_xt[dims[0]:,dims[0]:] U_1 = linalg.inv(linalg.sqrtm(S_1)) U_2 = linalg.inv(linalg.sqrtm(S_2)) u, s, vh = np.linalg.svd(U_1 @ S_12 @ U_2) weight = [u[:,:num_f].T @ U_1, vh[:num_f] @ U_2] beta = [linalg.inv(U_1) @ u[:,:num_f], linalg.inv(U_2) @ vh[:num_f].T] else: print("Default initialization only supports 2 populations now.") raise weight = [w*np.sqrt(np.sum(b**2, 0))[:,None] for w, b in zip(weight,beta)] beta = [b/np.sqrt(np.sum(b**2, 0)) for b in beta] # initialization on other parameters m_z_x = np.concatenate([np.matmul(w, dat-m)[...,None,:] for m, w, dat in zip(mu, weight, data)], -2) V_z_x = np.zeros((num_f,len(dims),num_time)*2) m_zk_x = m_z_x.transpose((2,0,1,3)) V_zk_x = np.diagonal(V_z_x,0,1,4).transpose(4,0,1,2,3) # mu = [np.mean(dat - b @ m, 0) # for dat, m, b in zip(data, m_zk_x, beta)] m_eps = [dat - b @ m1 - m2 for dat, m1, b, m2 in zip(data, m_zk_x, beta, mu)] v_eps = [(np.sum(np.square(m))*(1+lambda_aug)/num_trial + np.trace(V.reshape(num_f*num_time,num_f*num_time))) # /(d-1) for m, V, d in zip(m_eps, V_zk_x, dims)] V_eps_S = [np.tensordot(m,m,axes=((0,2),(0,2)))*(1+lambda_aug)/num_trial/v + [email protected](np.diagonal(V,0,1,3),-1)@b.T/v for m, V, v, b, d in zip(m_eps, V_zk_x, v_eps, beta, dims)] V_eps_T = [np.tensordot(m,np.linalg.pinv(V2)@m, axes=((0,1),(0,1))) *(lambda_aug*np.eye(num_time)+1)/d/num_trial + np.tensordot(V1,[email protected](V2)@b,axes=([0,2],[0,1]))/d for m, V1, V2, b, d in zip(m_eps, V_zk_x, V_eps_S, beta, dims)] sd_eps_T = [np.sqrt(np.diag(V)) for V in V_eps_T] R_eps_T = [V/sd/sd[:,None] for V, sd in zip(V_eps_T, sd_eps_T)] Phi_T = [R*sd*sd[:,None] for sd, R in zip(sd_eps_T, R_eps_T)] Gamma_T = [np.linalg.inv(P) for P in Phi_T] V_zf = (np.diagonal(V_z_x,0,0,3).transpose((4,0,1,2,3)) + (m_z_x.reshape((-1,num_f,len(dims)*num_time)).transpose((1,2,0)) @ m_z_x.reshape((-1,num_f,len(dims)*num_time)).transpose((1,0,2)) * (lambda_aug*np.eye(2*num_time)+1)/ num_trial)\ .reshape((num_f,len(dims),num_time,len(dims),num_time))) Sigma, Phi_S = _switch_back( V_zf.reshape(num_f,len(dims)*num_time,len(dims)*num_time), V_eps_S, Gamma_T, Phi_T, beta) if make_PD: Phi_S = [_make_PD(P) for P in Phi_S] for f in np.arange(num_f): Sigma[f] = _make_PD(Sigma[f]) Gamma_S = [np.linalg.inv(P) for P in Phi_S] sig = np.sqrt(np.diagonal(Sigma,0,1,2)) Rho = Sigma/sig[:,None,:]/sig[:,:,None] Pi = np.linalg.inv(Rho) Omega = Pi/sig[:,None,:]/sig[:,:,None] cost = (- log_like(data, {'Omega': Omega, 'beta': beta, 'mu': mu, 'Gamma_S': Gamma_S, 'Gamma_T': Gamma_T}, lambda_aug) / num_trial + np.sum(np.where(lambda_glasso*np.abs(Pi)>=0, lambda_glasso*np.abs(Pi), np.inf))) # EM algorithm try: for iter_ldfa in np.arange(max_ldfa): Rho_ldfa = Rho.copy() # np.linalg.inv(Pi) beta_ldfa = [b.copy() for b in beta] cost_ldfa = cost start_ldfa = time.time() # E-step for Z W_z_x = np.zeros((num_f,len(dims),num_time)*2) for i, (G_S, G_T, b) in enumerate(zip(Gamma_S, Gamma_T, beta)): W_z_x[:,i,:,:,i,:] += G_T[None,:,None,:]*(b.T@G_S@b)[:,None,:,None] for j, W in enumerate(Omega): W_z_x[j,:,:,j,:,:] += W.reshape(len(dims),num_time,len(dims),num_time) V_z_x = np.linalg.inv( W_z_x.reshape((num_f*len(dims)*num_time,num_f*len(dims)*num_time))) \ .reshape((num_f,len(dims),num_time)*2) V_zk_x = np.diagonal(V_z_x,0,1,4).transpose(4,0,1,2,3) y = np.stack([(b.T @ G_S) @ (dat - m) for dat, m, b, G_S in zip(data, mu, beta, Gamma_S)], axis=-2) S_y = np.tensordot(y, y, (0,0)) / num_trial \ * (lambda_aug*np.eye(len(dims)*num_time) .reshape(len(dims),num_time,1,len(dims),num_time)+1) V_z_y = np.stack([np.tensordot(V_z_x[...,i,:], G_T, [-1, 0]) for i, G_T in enumerate(Gamma_T)], -2) S_mz = np.tensordot(np.tensordot(V_z_y, S_y, [(-3,-2,-1),(0,1,2)]), V_z_y, [(-3,-2,-1),(-3,-2,-1)]) for iter_pb in np.arange(10): beta_pb = [b.copy() for b in beta] # coordinate descent for beta S_mz_x_S = [np.tensordot(np.tensordot(y, np.stack( [(np.tensordot(Gamma_T[i], V_z_y[:,i,:,:,j,:], [-1,1]) * (lambda_aug*(i==j)*np.eye(num_time)+1)[:,None,None,:]) for j in np.arange(len(dims))], -2), [(-3,-2,-1),(-3,-2,-1)]), data[i] - mu[i], [(0,1),(0,-1)]) / num_trial for i in np.arange(len(dims))] S_mz_S = [np.tensordot(S_mz[:,i,:,:,i,:], G_T, [(-3,-1),(0,1)]) for i, G_T in enumerate(Gamma_T)] beta = [S1.T @ np.linalg.inv(S2 + np.tensordot(G_T, V, axes=((0,1),(1,3)))) for S1, S2, V, G_T in zip(S_mz_x_S, S_mz_S, V_zk_x, Gamma_T)] # fitting Matrix-variate for Phi_S V_eps_S = [ (np.tensordot((dat-m) @ (G_T*(lambda_aug*np.eye(num_time)+1)), dat-m, axes=((0,2),(0,2)))/num_trial - b @ S1 - S1.T @ b.T + b @ S2 @ b.T + b @ np.tensordot(V, G_T, [(-3,-1),(0,1)]) @ b.T)/num_time for dat, m, b, G_T, V, S1, S2 in zip(data, mu, beta, Gamma_T, V_zk_x, S_mz_x_S, S_mz_S)] Phi_S = [V.copy() for V in V_eps_S] Gamma_S = [np.linalg.inv(P) for P in Phi_S] # fitting Matrix_variate for Phi_T y1 = np.stack([(b.T @ G_S) @ (dat - m) for dat, m, b, G_S in zip(data, mu, beta, Gamma_S)], axis=-2) S_y_y1 = np.tensordot(y, y1, (0,0)) / num_trial \ * (lambda_aug*np.eye(len(dims)*num_time) .reshape(len(dims),num_time,1,len(dims),num_time)+1) S_bmz_x_T = [np.tensordot(V_z_y[:,i,:,:,:,:], S_y_y1[:,:,:,:,i,:], [(0,2,3,4),(3,0,1,2)]) for i in np.arange(len(dims))] S_bmz_T = [np.tensordot(S_mz[:,i,:,:,i,:], b.T @ G_S @ b, [(0,2),(0,1)]) for i, (b, G_S) in enumerate(zip(beta, Gamma_S))] V_eps_T = [ (np.tensordot(dat-m, G_S@(dat-m), axes=((0,1),(0,1)))/num_trial * (lambda_aug * np.eye(num_time) + 1) - S1 - S1.T + S2 + np.tensordot(V, b.T@G_S@b, axes=([0,2],[0,1])))/d for dat, d, m, b, G_S, V, S1, S2 in zip(data, dims, mu, beta, Gamma_S, V_zk_x, S_bmz_x_T, S_bmz_T)] sd_eps_T = [np.sqrt(np.diag(V)) for V in V_eps_T] R_eps_T = [V/sd/sd[:,None] for V, sd in zip(V_eps_T, sd_eps_T)] Phi_T = [] for i, (Rt, sd, d) \ in enumerate(zip(R_eps_T, sd_eps_T, dims)): Tt, Pt = _temporal_est(Rt, offset_auto) Gamma_T[i] = Tt / sd / sd[:,None] Phi_T.append(Pt * sd * sd[:,None]) # M-step for mu # mu = [np.mean(dat - b @ m, 0) for dat, m, b in zip(data, m_zk_x, beta)] beta_diff = [1-np.sum(b1*b2,0)/np.sqrt(np.sum(b1**2,0)*np.sum(b2**2,0)) for b1, b2 in zip(beta, beta_pb)] if np.max(beta_diff) < 1e-12: break # Normalize beta V_zf = (np.diagonal(V_z_x,0,0,3)+np.diagonal(S_mz,0,0,3)).transpose(4,0,1,2,3) B = np.concatenate([np.sqrt(np.sum(b**2,0))[:,None] for b in beta], -1) Sigma = (V_zf * B[:,:,None,None,None] * B[:,None,None,:,None]) \ .reshape((num_f,len(dims)*num_time,len(dims)*num_time)) beta = [b / np.sqrt(np.sum(b**2, 0)) for b in beta] # Switch forward # Sigma, Phi_S = switch_forward(Sigma, Phi_S, Phi_T, beta) # M-step for Pi sig = np.sqrt(np.diagonal(Sigma,0,1,2)) Rho = Sigma/sig[:,None,:]/sig[:,:,None] for i, R in enumerate(Rho): P = Pi[i].copy() core.glasso(P, np.linalg.inv(P), R, lambda_glasso, ths_glasso, max_glasso, ths_lasso, max_lasso) Pi[i] = P Omega = Pi/sig[:,None,:]/sig[:,:,None] # Switch back # Sigma, Phi_S = switch_back(Sigma, Phi_S, Theta_T, beta) # Omega = np.linalg.inv(Sigma) # Theta_S = [np.linalg.inv(P) for P in Phi_S] # calculate cost cost = (- log_like(data, {'Omega': Omega, 'beta': beta, 'mu': mu, 'Gamma_S': Gamma_S, 'Gamma_T': Gamma_T}, lambda_aug) / num_trial + np.sum(np.where(lambda_glasso*np.abs(Pi)>=0, lambda_glasso*np.abs(Pi), np.inf))) change_Sigma = np.max(np.abs(Rho - Rho_ldfa)) change_beta = np.max([1-
np.sum(b1*b2,0)
numpy.sum
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functional tests for basic component wise operations using a GPU device.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import threading import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import random_seed from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import gradient_checker_v2 from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import variables from tensorflow.python.ops.gen_array_ops import broadcast_gradient_args from tensorflow.python.platform import test class GPUBinaryOpsTest(test.TestCase): def _compareGPU(self, x, y, np_func, tf_func): with self.cached_session(): inx = ops.convert_to_tensor(x) iny = ops.convert_to_tensor(y) out = tf_func(inx, iny) tf_gpu = self.evaluate(out) with self.cached_session(use_gpu=False): inx = ops.convert_to_tensor(x) iny = ops.convert_to_tensor(y) out = tf_func(inx, iny) tf_cpu = self.evaluate(out) self.assertAllClose(tf_cpu, tf_gpu) def testFloatBasic(self): x = np.linspace(-5, 20, 15).reshape(1, 3, 5).astype(np.float32) # pylint: disable=too-many-function-args y = np.linspace(20, -5, 15).reshape(1, 3, 5).astype(np.float32) # pylint: disable=too-many-function-args self._compareGPU(x, y, np.add, math_ops.add) self._compareGPU(x, y, np.subtract, math_ops.subtract) self._compareGPU(x, y, np.multiply, math_ops.multiply) self._compareGPU(x, y + 0.1, np.true_divide, math_ops.truediv) self._compareGPU(x, y + 0.1, np.floor_divide, math_ops.floordiv) self._compareGPU(x, y, np.power, math_ops.pow) def testFloatWithBCast(self): x = np.linspace(-5, 20, 15).reshape(3, 5).astype(np.float32) y = np.linspace(20, -5, 30).reshape(2, 3, 5).astype(np.float32) # pylint: disable=too-many-function-args self._compareGPU(x, y, np.add, math_ops.add) self._compareGPU(x, y, np.subtract, math_ops.subtract) self._compareGPU(x, y, np.multiply, math_ops.multiply) self._compareGPU(x, y + 0.1, np.true_divide, math_ops.truediv) def testDoubleBasic(self): x = np.linspace(-5, 20, 15).reshape(1, 3, 5).astype(np.float64) # pylint: disable=too-many-function-args y = np.linspace(20, -5, 15).reshape(1, 3, 5).astype(np.float64) # pylint: disable=too-many-function-args self._compareGPU(x, y, np.add, math_ops.add) self._compareGPU(x, y, np.subtract, math_ops.subtract) self._compareGPU(x, y, np.multiply, math_ops.multiply) self._compareGPU(x, y + 0.1, np.true_divide, math_ops.truediv) def testDoubleWithBCast(self): x = np.linspace(-5, 20, 15).reshape(3, 5).astype(np.float64) y = np.linspace(20, -5, 30).reshape(2, 3, 5).astype(np.float64) # pylint: disable=too-many-function-args self._compareGPU(x, y, np.add, math_ops.add) self._compareGPU(x, y, np.subtract, math_ops.subtract) self._compareGPU(x, y, np.multiply, math_ops.multiply) self._compareGPU(x, y + 0.1, np.true_divide, math_ops.truediv) class MathBuiltinUnaryTest(test.TestCase): def _compare(self, x, np_func, tf_func, use_gpu): np_out = np_func(x) with self.cached_session(use_gpu=use_gpu) as sess: inx = ops.convert_to_tensor(x) ofunc = tf_func(inx) tf_out = self.evaluate(ofunc) self.assertAllClose(np_out, tf_out) def _inv(self, x): return 1.0 / x def _rsqrt(self, x): return self._inv(np.sqrt(x)) def _testDtype(self, dtype, use_gpu): data = (np.arange(-3, 3) / 4.).reshape([1, 3, 2]).astype(dtype) data_gt_1 = data + 2 # for x > 1 self._compare(data, np.abs, math_ops.abs, use_gpu) self._compare(data, np.arccos, math_ops.acos, use_gpu) self._compare(data, np.arcsin, math_ops.asin, use_gpu) self._compare(data, np.arcsinh, math_ops.asinh, use_gpu) self._compare(data_gt_1, np.arccosh, math_ops.acosh, use_gpu) self._compare(data, np.arctan, math_ops.atan, use_gpu) self._compare(data, np.ceil, math_ops.ceil, use_gpu) self._compare(data, np.cos, math_ops.cos, use_gpu) self._compare(data, np.cosh, math_ops.cosh, use_gpu) self._compare(data, np.exp, math_ops.exp, use_gpu) self._compare(data, np.floor, math_ops.floor, use_gpu) self._compare(data, np.log, math_ops.log, use_gpu) self._compare(data, np.log1p, math_ops.log1p, use_gpu) self._compare(data, np.negative, math_ops.negative, use_gpu) self._compare(data, self._rsqrt, math_ops.rsqrt, use_gpu) self._compare(data, np.sin, math_ops.sin, use_gpu) self._compare(data, np.sinh, math_ops.sinh, use_gpu) self._compare(data, np.sqrt, math_ops.sqrt, use_gpu) self._compare(data, np.square, math_ops.square, use_gpu) self._compare(data, np.tan, math_ops.tan, use_gpu) self._compare(data, np.tanh, math_ops.tanh, use_gpu) self._compare(data, np.arctanh, math_ops.atanh, use_gpu) def testTypes(self): for dtype in [np.float32]: self._testDtype(dtype, use_gpu=True) def testFloorDivide(self): x = (1 + np.linspace(0, 5,
np.prod([1, 3, 2])
numpy.prod
""" A billboarded particle layer with texture/shader support """ import numpy as np from abc import ABC from collections.abc import Iterable from napari.layers import Surface from napari.layers.utils.layer_utils import calc_data_range from vispy.visuals.filters import Filter from vispy.visuals.shaders import Function, Varying from vispy.gloo import Texture2D, VertexBuffer from .utils import generate_billboards_2d from .filters import ShaderFilter, _shader_functions class BillboardsFilter(Filter): """ Billboard geometry filter (transforms vertices to always face camera) """ def __init__(self, antialias=0): vmat_inv = Function(""" mat2 inverse(mat2 m) { return mat2(m[1][1],-m[0][1],-m[1][0], m[0][0]) / (m[0][0]*m[1][1] - m[0][1]*m[1][0]); } """) vfunc = Function(""" varying float v_z_center; varying float v_scale_intensity; varying mat2 covariance_inv; void apply(){ // original world coordinates of the (constant) particle squad, e.g. [5,5] for size 5 vec4 pos = $transform_inv(gl_Position); pos.z *= pos.w; vec2 tex = $texcoords; mat4 cov = mat4(1.0); cov[0][0] = sqrt($sigmas[0]); cov[1][1] = sqrt($sigmas[1]); cov[2][2] = sqrt($sigmas[2]); // get new inverse covariance matrix (for rotating a gaussian) vec4 ex = vec4(1,0,0,0); vec4 ey = vec4(0,1,0,0); vec4 ez = vec4(0,0,1,0); vec3 ex2 = $camera(cov*$camera_inv(ex)).xyz; vec3 ey2 = $camera(cov*$camera_inv(ey)).xyz; vec3 ez2 = $camera(cov*$camera_inv(ez)).xyz; mat3 Rmat = mat3(ex2, ey2, ez2); covariance_inv = mat2(transpose(Rmat)*mat3(cov)*Rmat); covariance_inv = $inverse(covariance_inv); // get first and second column of view (which is the inverse of the camera) vec3 camera_right = $camera_inv(vec4(1,0,0,0)).xyz; vec3 camera_up = $camera_inv(vec4(0,1,0,0)).xyz; // when particles become too small, lock texture size and apply antialiasing (only used when antialias=1) // decrease this value to increase antialiasing //float dist_cutoff = .2 * max(abs(pos.x), abs(pos.y)); // increase this value to increase antialiasing float dist_cutoff = $antialias; float len = length(camera_right); //camera_right = normalize(camera_right); //camera_up = normalize(camera_up); camera_right = camera_right/len; camera_up = camera_up/len; vec4 p1 = $transform(vec4($vertex_center.xyz + camera_right*pos.x + camera_up*pos.y, 1.)); vec4 p2 = $transform(vec4($vertex_center,1)); float dist = length(p1.xy/p1.w-p2.xy/p2.w); // if antialias and far away zoomed out, keep sprite size constant and shrink texture... // else adjust sprite size if (($antialias>0) && (dist<dist_cutoff)) { float scale = dist_cutoff/dist; //tex = .5+(tex-.5)*clamp(scale,1,10); tex = .5+(tex-.5); camera_right = camera_right*scale; camera_up = camera_up*scale; v_scale_intensity = scale; } vec3 pos_real = $vertex_center.xyz + camera_right*pos.x + camera_up*pos.y; gl_Position = $transform(vec4(pos_real, 1.)); vec4 center = $transform(vec4($vertex_center,1)); v_z_center = center.z/center.w; $v_texcoords = tex; } """) ffunc = Function(""" varying float v_scale_intensity; varying float v_z_center; void apply() { gl_FragDepth = v_z_center; $texcoords; } """) self._texcoord_varying = Varying('v_texcoord', 'vec2') vfunc['inverse'] = vmat_inv vfunc['v_texcoords'] = self._texcoord_varying ffunc['texcoords'] = self._texcoord_varying self._texcoords_buffer = VertexBuffer( np.zeros((0, 2), dtype=np.float32) ) vfunc['texcoords'] = self._texcoords_buffer vfunc['antialias'] = float(antialias) self._centercoords_buffer = VertexBuffer( np.zeros((0, 3), dtype=np.float32)) self._sigmas_buffer = VertexBuffer( np.zeros((0, 3), dtype=np.float32)) vfunc['vertex_center'] = self._centercoords_buffer vfunc['sigmas'] = self._sigmas_buffer super().__init__(vcode=vfunc, vhook='post',fcode=ffunc, fhook='post') @property def centercoords(self): """The vertex center coordinates as an (N, 3) array of floats.""" return self._centercoords @centercoords.setter def centercoords(self, centercoords): self._centercoords = centercoords self._update_coords_buffer(centercoords) def _update_coords_buffer(self, centercoords): if self._attached and self._visual is not None: self._centercoords_buffer.set_data(centercoords[:,::-1], convert=True) @property def sigmas(self): """The vertex center coordinates as an (N, 3) array of floats.""" return self._sigmas @centercoords.setter def sigmas(self, sigmas): self._sigmas = sigmas self._update_sigmas_buffer(sigmas) def _update_sigmas_buffer(self, sigmas): if self._attached and self._visual is not None: self._sigmas_buffer.set_data(sigmas[:,::-1], convert=True) @property def texcoords(self): """The texture coordinates as an (N, 2) array of floats.""" return self._texcoords @texcoords.setter def texcoords(self, texcoords): self._texcoords = texcoords self._update_texcoords_buffer(texcoords) def _update_texcoords_buffer(self, texcoords): if self._attached or self._visual is not None: self._texcoords_buffer.set_data(texcoords[:,::-1], convert=True) def _attach(self, visual): # the full projection model view self.vshader['transform'] = visual.transforms.get_transform('visual', 'render') # the inverse of it self.vshader['transform_inv'] = visual.transforms.get_transform('render', 'visual') # the modelview self.vshader['camera_inv'] = visual.transforms.get_transform('document', 'scene') # inverse of it self.vshader['camera'] = visual.transforms.get_transform('scene', 'document') super()._attach(visual) class Particles(Surface): """ Billboarded particle layer that renders camera facing quads of given size Can be combined with other (e.g. texture) filter to create particle systems etc """ def __init__(self, coords, size=10, sigmas=(1,1,1), values=1, filter=ShaderFilter('gaussian'), antialias=False, **kwargs): kwargs.setdefault('shading', 'none') kwargs.setdefault('blending', 'additive') coords = np.asarray(coords) sigmas = np.asarray(sigmas, dtype=np.float32) if np.isscalar(values): values = values * np.ones(len(coords)) values = np.broadcast_to(values, len(coords)) size = np.broadcast_to(size, len(coords)) sigmas = np.broadcast_to(sigmas, (len(coords),3)) if not coords.ndim == 2 : raise ValueError(f'coords should be of shape (M,D)') if not len(size)==len(coords)==len(sigmas): raise ValueError() # add dummy z if 2d coords if coords.shape[1] == 2: coords = np.concatenate([np.zeros((len(coords),1)), coords], axis=-1) assert coords.shape[-1]==sigmas.shape[-1]==3 vertices, faces, texcoords = generate_billboards_2d(coords, size=size) # repeat values for each 4 vertices centercoords = np.repeat(coords, 4, axis=0) sigmas = np.repeat(sigmas, 4, axis=0) values = np.repeat(values, 4, axis=0) self._coords = coords self._centercoords = centercoords self._sigmas = sigmas self._size = size self._texcoords = texcoords self._billboard_filter = BillboardsFilter(antialias=antialias) self.filter = filter self._viewer = None super().__init__((vertices, faces, values), **kwargs) def _set_view_slice(self): """Sets the view given the indices to slice with.""" super()._set_view_slice() self._update_billboard_filter() def _update_billboard_filter(self): faces = self._view_faces.flatten() if self._billboard_filter._attached and len(faces)>0: self._billboard_filter.texcoords = self._texcoords[faces] self._billboard_filter.centercoords = self._centercoords[faces][:,-3:] self._billboard_filter.sigmas = self._sigmas[faces][:,-3:] @property def filter(self): """The filter property.""" return self._filter @filter.setter def filter(self, value): if value is None: value = () elif not isinstance(value, Iterable): value = (value,) self._filter = tuple(value) @property def _extent_data(self) -> np.ndarray: """Extent of layer in data coordinates. Returns ------- extent_data : array, shape (2, D) """ if len(self._coords) == 0: extrema = np.full((2, self.ndim), np.nan) else: size = np.repeat(self._size[:,np.newaxis], self.ndim, axis=-1) size[:,:-2] *=0 maxs = np.max(self._coords+.5*size, axis=0) mins = np.min(self._coords-.5*size, axis=0) extrema =
np.vstack([mins, maxs])
numpy.vstack
import numpy as np import matplotlib.pyplot as plt from scipy.io import wavfile from scipy.signal import fftconvolve from librosa.core import load from librosa.core import stft from librosa.core import istft from librosa import amplitude_to_db, db_to_amplitude from librosa.display import specshow from librosa.output import write_wav from scipy.signal import butter, lfilter, csd from scipy.linalg import svd, pinv from utils import apply_reverb, read_wav import corpus import mir_eval from pypesq import pypesq import pyroomacoustics as pra import roomsimove_single import olafilt def load_file(files): print(files[0]) print(files[1]) s1, _ = load(files[0], sr=16000) s2, _ = load(files[1], sr=16000) # s1, s2 = map(read_wav, files) if len(s1) > len(s2): pad_length = len(s1) - len(s2) s2 = np.pad(s2, (0,pad_length), 'reflect') else: pad_length = len(s2) - len(s1) s1 =
np.pad(s1, (0,pad_length), 'reflect')
numpy.pad
# Copyright (c) 2020: <NAME> (<EMAIL>). # # This file is modified from <https://github.com/philip-huang/PIXOR>: # Copyright (c) [2019] [<NAME>] # # This work is licensed under the terms of the MIT license. # For a copy, see <https://opensource.org/licenses/MIT>. """Utils for PIXOR detection.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import cv2 import os import pickle import numpy as np import tensorflow as tf from shapely.geometry import Polygon def get_eval_lists(images, latents, model_net, pixor_size=128): gt_boxes_list = [] corners_list = [] scores_list = [] gt_pixor_state_list = [] recons_pixor_state_list = [] for i in range(len(latents)): latent_eps = latents[i] image_eps = images[i] for j in range(len(latent_eps)): latent = latent_eps[j] dict_obs = image_eps[j] dict_recons = model_net.reconstruct_pixor(latent) vh_clas_recons = tf.squeeze(dict_recons['vh_clas'], axis=-1) # (B,H,W,1) vh_regr_recons = dict_recons['vh_regr'] # (B,H,W,6) decoded_reg_recons = decode_reg(vh_regr_recons, pixor_size) # (B,H,W,8) pixor_state_recons = dict_recons['pixor_state'] vh_clas_obs = tf.squeeze(dict_obs['vh_clas'], axis=-1) # (B,H,W,1) vh_regr_obs = dict_obs['vh_regr'] # (B,H,W,6) decoded_reg_obs = decode_reg(vh_regr_obs, pixor_size) # (B,H,W,8) pixor_state_obs = dict_obs['pixor_state'] B = vh_regr_obs.shape[0] for k in range(B): gt_boxes, _ = pixor_postprocess(vh_clas_obs[k], decoded_reg_obs[k]) corners, scores = pixor_postprocess(vh_clas_recons[k], decoded_reg_recons[k]) # (N,4,2) gt_boxes_list.append(gt_boxes) corners_list.append(corners) scores_list.append(scores) gt_pixor_state_list.append(pixor_state_obs[k]) recons_pixor_state_list.append(pixor_state_recons[k]) return gt_boxes_list, corners_list, scores_list, gt_pixor_state_list, recons_pixor_state_list def get_eval_metrics(images, latents, model_net, pixor_size=128, ap_range=[0.3,0.5,0.7], filename = 'metrics'): gt_boxes_list, corners_list, scores_list, gt_pixor_state_list, recons_pixor_state_list \ = get_eval_lists(images, latents, model_net, pixor_size=pixor_size) N = len(gt_boxes_list) APs = {} precisions = {} recalls = {} for ap in ap_range: gts = 0 preds = 0 all_scores = [] all_matches = [] for i in range(N): gt_boxes = gt_boxes_list[i] corners = corners_list[i] scores = scores_list[i] gt_match, pred_match, overlaps = compute_matches(gt_boxes, corners, scores, iou_threshold=ap) num_gt = gt_boxes.shape[0] num_pred = len(scores) gts += num_gt preds += num_pred all_scores.extend(list(scores)) all_matches.extend(list(pred_match)) all_scores = np.array(all_scores) all_matches = np.array(all_matches) sort_ids = np.argsort(all_scores) all_matches = all_matches[sort_ids[::-1]] if gts == 0 or preds == 0: return AP, precision, recall, p, r = compute_ap(all_matches, gts, preds) print('ap', ap) print('AP', AP) print('precision', p) print('recall', r) APs[ap] = AP precisions[ap] = precision recalls[ap] = recall results = {} results['APs'] = APs results['precisions'] = precisions results['recalls'] = recalls error_position = [] error_heading = [] error_velocity = [] for i in range(N): gt_pixor_state = gt_pixor_state_list[i] recons_pixor_state = recons_pixor_state_list[i] x0, y0, cos0, sin0, v0 = gt_pixor_state x, y, cos, sin, v = recons_pixor_state error_position.append(np.sqrt((x-x0)**2+(y-y0)**2)) yaw0 = np.arctan2(sin0, cos0) cos0 = np.cos(yaw0) sin0 = np.sin(yaw0) yaw = np.arctan2(sin, cos) cos = np.cos(yaw) sin = np.sin(yaw) error_heading.append(np.arccos(np.dot([cos,sin],[cos0,sin0]))) error_velocity.append(abs(v-v0)) results['error_position'] = np.mean(error_position) results['error_heading'] = np.mean(error_heading) results['error_velocity'] = np.mean(error_velocity) results['std_position'] = np.std(error_position) results['std_heading'] = np.std(error_heading) results['std_velocity'] = np.std(error_velocity) if not os.path.exists('results'): os.makedirs('results') path = os.path.join('results', filename) with open(path, 'wb') as f: pickle.dump(results, f, protocol=pickle.HIGHEST_PROTOCOL) def compute_matches(gt_boxes, pred_boxes, pred_scores, iou_threshold=0.5, score_threshold=0.0): """Finds matches between prediction and ground truth instances. Returns: gt_match: 1-D array. For each GT box it has the index of the matched predicted box. pred_match: 1-D array. For each predicted box, it has the index of the matched ground truth box. overlaps: [pred_boxes, gt_boxes] IoU overlaps. """ if len(pred_scores) == 0: return -1 * np.ones([gt_boxes.shape[0]]), np.array([]), np.array([]) gt_class_ids = np.ones(len(gt_boxes), dtype=int) pred_class_ids = np.ones(len(pred_scores), dtype=int) # Sort predictions by score from high to low indices = np.argsort(pred_scores)[::-1] pred_boxes = pred_boxes[indices] pred_class_ids = pred_class_ids[indices] pred_scores = pred_scores[indices] # Compute IoU overlaps [pred_boxes, gt_boxes] overlaps = compute_overlaps(pred_boxes, gt_boxes) # Loop through predictions and find matching ground truth boxes match_count = 0 pred_match = -1 * np.ones([pred_boxes.shape[0]]) gt_match = -1 * np.ones([gt_boxes.shape[0]]) for i in range(len(pred_boxes)): # Find best matching ground truth box # 1. Sort matches by score sorted_ixs = np.argsort(overlaps[i])[::-1] # 2. Remove low scores low_score_idx = np.where(overlaps[i, sorted_ixs] < score_threshold)[0] if low_score_idx.size > 0: sorted_ixs = sorted_ixs[:low_score_idx[0]] # 3. Find the match for j in sorted_ixs: # If ground truth box is already matched, go to next one if gt_match[j] > 0: continue # If we reach IoU smaller than the threshold, end the loop iou = overlaps[i, j] if iou < iou_threshold: break # Do we have a match? if pred_class_ids[i] == gt_class_ids[j]: match_count += 1 gt_match[j] = i pred_match[i] = j break return gt_match, pred_match, overlaps def compute_overlaps(boxes1, boxes2): """Computes IoU overlaps between two sets of boxes. boxes1, boxes2: a np array of boxes For better performance, pass the largest set first and the smaller second. :return: a matrix of overlaps [boxes1 count, boxes2 count] """ # Compute overlaps to generate matrix [boxes1 count, boxes2 count] # Each cell contains the IoU value. boxes1 = convert_format(boxes1) boxes2 = convert_format(boxes2) overlaps = np.zeros((len(boxes1), len(boxes2))) for i in range(overlaps.shape[1]): box2 = boxes2[i] overlaps[:, i] = compute_iou(box2, boxes1) return overlaps def compute_ap(pred_match, num_gt, num_pred): assert num_gt != 0 assert num_pred != 0 tp = (pred_match > -1).sum() # Compute precision and recall at each prediction box step precisions = np.cumsum(pred_match > -1) / (np.arange(num_pred) + 1) recalls = np.cumsum(pred_match > -1).astype(np.float32) / num_gt # Ensure precision values decrease but don't increase. This way, the # precision value at each recall threshold is the maximum it can be # for all following recall thresholds, as specified by the VOC paper. for i in range(len(precisions) - 2, -1, -1): precisions[i] =
np.maximum(precisions[i], precisions[i + 1])
numpy.maximum
""" Classes to simplify and standardize the process of drawing samples from the posterior distribution in Bayesian inference problems. """ import numpy as np import scipy as sp class Quad_Sampler(object): """ Class for drawing samples from an arbitrary one-dimensional probability distribution using numerical integration and interpolation. In general this will be superior to more sophisticated sampling methods for 1D problems. Assumes that priors are uniform. Args: ln_likelihood: Function which takes the independent variable x as its first argument and returns the log of the likelihood function, p(d|x,I), up to a constant. May take other *args or **kwargs. priors: List-type of the form [a,b], where a and b define the upper and lower bounds of the uniform prior p(x|I). optioinal: vect: (bool) Set to true if the log-likelihood accepts a vectorized input. """ def __init__(self, ln_likelihood, priors, vect=False): self._ln_likelihood = ln_likelihood self._a, self._b = priors self._vect = vect # Default values self.ln_Z = np.nan self.mean = np.nan self.std = np.nan def fit(self, n_pts=200, args=(), **kwargs): """ Perform the fit. Optional: n_pts: (int) Number of evenly-spaced points over which to compute the probability. args: (tuple) All additional arguments to be passed on the the likelihood function. **kwargs: All other keywords are passed on the the likelihood function. """ # Evaluate the pdf self.xs = np.linspace(self._a, self._b, num=n_pts) if self._vect: self.ln_pdf = self._ln_likelihood(self.xs, *args, **kwargs) else: self.ln_pdf = np.array([self._ln_likelihood(x, *args, **kwargs) for x in self.xs]) # Rescale with the maxima ln_C = np.amax(self.ln_pdf) pdf_scaled = np.exp(self.ln_pdf - ln_C) # Compute the evidence and rescale Z_scaled = np.trapz(pdf_scaled, x=self.xs) self.ln_Z = np.log(Z_scaled) + ln_C self.pdf = pdf_scaled / Z_scaled self.cdf = sp.integrate.cumtrapz(self.pdf, x=self.xs, initial=0) # Estimate summary statistics - assuming a normal distribution samples = self.get_samples(1000) self.mean = np.mean(samples) self.std = np.std(samples) def get_samples(self, n_samples): """ """ u_samp = np.random.rand(n_samples) return np.interp(u_samp, self.cdf, self.xs) class Quad_Sampler_ND(object): """ Class for drawing samples from an arbitrary N-dimensional probability distribution using numerical integration and interpolation. This can be useful for problems with a low number of dimensions (~3) for which the likelihood function can be computed quickly (<< 1 second). Assumes that priors are uniform. Currently does not support vectorized likelihoods. Args: ln_likelihood: Function which takes the independent variables (x1, x2, ..., xN) as its first argument and returns the log of the likelihood function, p(d|x1,...,I), up to a constant. May take other *args or **kwargs. priors: List of tuples, of the form [(a1,b1), (a2,b2), ..., (aN,bN)] where a and b define the upper and lower bounds of the uniform prior p(x1,...|I). optioinal: vect: (bool) Set to true if the log-likelihood accepts a vectorized input. """ def __init__(self, ln_likelihood, ndim, priors): self._ln_likelihood = ln_likelihood self.ndim = ndim self._a =
np.zeros(self.ndim)
numpy.zeros
import os import argparse from itertools import chain from operator import itemgetter import numpy as np from keras import backend as K from keras.preprocessing import sequence from keras.models import load_model, Model from keras.layers import Dense from keras.optimizers import SGD, Adam import tensorflow as tf from sklearn.model_selection import LeaveOneOut from sklearn.metrics import confusion_matrix, classification_report from nltk.corpus import stopwords from evidencedetection.reader import AnnotationReader from evidencedetection.vectorizer import EmbeddingVectorizer from evidencedetection.analyzer import Analyzer from evidencedetection.models.neuralnetwork import BiLSTM def parse_arguments(): parser = argparse.ArgumentParser("Tests an argument mining model on the evidence annotations.") parser.add_argument("--annotations", type=str, help="The path to the user annotations.") parser.add_argument("--test", type=str, help="The testing file.") parser.add_argument("--user", type=str, help="The user for which to test the model.") parser.add_argument("--embeddings", type=str, help="The path to the embeddings folder") parser.add_argument("--epochs", type=int, default=0, help="The number of epochs to train for") parser.add_argument("--initial", type=int, default=0, help="""The number of initial epochs in which all, except the new classifier layer are frozen. This number will be added to the other training epochs.""") parser.add_argument("--lr", type=float, default=0.001, help="The learning rate for the combined learning phase") parser.add_argument("--ilr", type=float, default=0.01, help="The learning for the initial learning phase.") parser.add_argument("--suffix", type=str, default="AM", help="The suffix to use, e.g. AM or ED") parser.add_argument("--modeldir", type=str, default="../models/sentential-argument-mining", help="The model directory. The directory name is also the specific model name + .h5") parser.add_argument("--maxlen", type=int, default=189, help="The maximum length of the input sentences") parser.add_argument("--topicSpecific", action="store_true", help="Specifies whether or not the model to load will be topic specific") parser.add_argument("--seed", type=int, default=0, help="The random seed to use for training.") return parser.parse_args() class Experiment: def __init__(self, vectorizer, epochs, initial, lr, ilr, model_name, max_length, seed): self.max_length = max_length self.vectorizer = vectorizer self.epochs = epochs self.initial = initial self.lr = lr self.ilr = ilr self.model_name = model_name self.seed = seed def run_experiment(self, train, test, old_model_name): loo = LeaveOneOut() all_preds = list() all_targets = list() training_data = list() for num_training_files, training_file in enumerate(reversed(train)): new_training_sentences = training_file[1] training_data.append(new_training_sentences) filename = test[0][0] print("Testing on: ", filename) test_data = np.array(test[0][1]) flat_training_data = np.array(list(chain(*training_data))) # labels, preds = self.evaluate(flat_training_data, test_data, filename, old_model_name, num_training_files) self.evaluate(flat_training_data, test_data, filename, old_model_name, num_training_files) # all_preds.extend(preds) # all_targets.extend(labels) # print(classification_report(all_targets, all_preds, target_names=["no-annotation", "Evidence"])) def evaluate(self, flat_training_data, test_data, filename, old_model_name, num_training_files): training_sentences = flat_training_data[:, 0] training_labels = flat_training_data[:, 1] == "True" train_data, _ = self.vectorizer.prepare_data(training_sentences, []) padded_train_data = sequence.pad_sequences(train_data, maxlen=self.max_length) test_labels = test_data[:, 1] == "True" test_sentences = test_data[:, 0] padded_test_sentences = vectorizer.sentences_to_padded_indices(test_sentences, self.max_length) analyzer = Analyzer({True: "Evidence", False: "no-annotation"}, self.model_name.format(self.epochs, self.initial, self.lr, self.ilr, self.seed)) preds = self._run_iteration(padded_train_data, training_labels, padded_test_sentences, self.max_length, filename, old_model_name) predictions = np.argmax(preds, axis=1) == 1 results = analyzer.analyze(test_sentences, test_labels, predictions) print("Saving predictions for num_training files {0}".format(num_training_files)) analyzer.save_prediction_file(results, filename, num_training_files) # return test_labels.tolist(), predictions.tolist() def _run_iteration(self, padded_train_data, train_labels, padded_test_sentences, max_length, filename, old_model_name): num_true_labels = np.count_nonzero(train_labels == True) num_false_labels = np.count_nonzero(train_labels == False) class_weight = {0: len(train_labels) - num_false_labels, 1: len(train_labels) - num_true_labels} # preparing model for fine-tuning tf.set_random_seed(self.seed) session_conf = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1) sess = tf.Session(graph=tf.get_default_graph(), config=session_conf) K.set_session(sess) old_model = load_model(old_model_name) if self.initial > 0: # replace old classifier layer with new one in case we want some initial training old_model.layers.pop() last_hidden = old_model.layers[-1].output new_output = Dense(units=2, activation="softmax", name="new_dense")(last_hidden) model = Model(old_model.input, new_output) print(model.summary()) else: # no training, therefore just testing the old model model = old_model label_array = np.array(train_labels) two_d_train_labels = np.zeros((label_array.shape[0], 2)) two_d_train_labels[
np.where(label_array==0)
numpy.where
import numpy as np from toolkitJ import cell2dmatlab_jsp import GVal def fScore(beta, P, R): F = (1 + beta**2) * (P * R) / ((beta**2) * P + R) return F def dataSetPreparation(feature_index, X_train_raw, Y_train_raw, X_valid_raw, Y_valid_raw): X = X_train_raw[:, feature_index] y = Y_train_raw[:, 0] X_valid = X_valid_raw[:, feature_index] y_valid = Y_valid_raw[:, 0] index_no = cell2dmatlab_jsp([2, 4], 2, []) for i in range(4): index_no[0][i] = np.nonzero(y == i)[0] index_no[1][i] =
np.nonzero(y_valid == i)
numpy.nonzero
""" This module is an example of a barebones function plugin for napari It implements the ``napari_experimental_provide_function`` hook specification. see: https://napari.org/docs/dev/plugins/hook_specifications.html Replace code below according to your needs. """ from __future__ import print_function, division from typing import TYPE_CHECKING, DefaultDict from unicodedata import name import six # import modules import sys # input, output, errors, and files import os # interacting with file systems import time # getting time import datetime import inspect # get passed parameters import yaml # parameter importing import json # for importing tiff metadata try: import cPickle as pickle # loading and saving python objects except: import pickle import numpy as np # numbers package import struct # for interpretting strings as binary data import re # regular expressions from pprint import pprint # for human readable file output import traceback # for error messaging import warnings # error messaging import copy # not sure this is needed import h5py # working with HDF5 files import pandas as pd import networkx as nx import collections # scipy and image analysis from scipy.signal import find_peaks_cwt # used in channel finding from scipy.optimize import curve_fit # fitting ring profile from scipy.optimize import leastsq # fitting 2d gaussian from scipy import ndimage as ndi # labeling and distance transform from skimage import io from skimage import segmentation # used in make_masks and segmentation from skimage.transform import rotate from skimage.feature import match_template # used to align images from skimage.feature import blob_log # used for foci finding from skimage.filters import threshold_otsu, median # segmentation from skimage import filters from skimage import morphology # many functions is segmentation used from this from skimage.measure import regionprops # used for creating lineages from skimage.measure import profile_line # used for ring an nucleoid analysis from skimage import util, measure, transform, feature import tifffile as tiff from sklearn import metrics # deep learning import tensorflow as tf # ignore message about how tf was compiled from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras import models from tensorflow.keras import losses from tensorflow.keras import utils from tensorflow.keras import backend as K # os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # supress warnings # Parralelization modules import multiprocessing from multiprocessing import Pool # Plotting for debug import matplotlib as mpl font = {'family' : 'sans-serif', 'weight' : 'normal', 'size' : 12} mpl.rc('font', **font) mpl.rcParams['pdf.fonttype'] = 42 from matplotlib.patches import Ellipse from pathlib import Path import time import matplotlib.pyplot as plt # import modules import os import glob import re import numpy as np import tifffile as tiff import pims_nd2 from skimage import io, measure, morphology import tifffile as tiff from scipy import stats from pprint import pprint # for human readable file output import multiprocessing from multiprocessing import Pool import numpy as np import warnings from tensorflow.python.keras import models from enum import Enum import numpy as np import multiprocessing from multiprocessing import Pool import os from napari_plugin_engine import napari_hook_implementation from skimage.filters import threshold_otsu # segmentation from skimage import morphology # many functions is segmentation used from this from skimage import segmentation # used in make_masks and segmentation from scipy import ndimage as ndi # labeling and distance transform import matplotlib.gridspec as gridspec from skimage.exposure import rescale_intensity # for displaying in GUI from skimage import io, morphology, segmentation # import mm3_helpers as mm3 import napari # This is the actual plugin function, where we export our function # (The functions themselves are defined below) @napari_hook_implementation def napari_experimental_provide_function(): # we can return a single function # or a tuple of (function, magicgui_options) # or a list of multiple functions with or without options, as shown here: #return [Segment, threshold, image_arithmetic] return [Compile, ChannelPicker, Segment] # 1. First example, a simple function that thresholds an image and creates a labels layer def threshold(data: "napari.types.ImageData", threshold: int) -> "napari.types.LabelsData": """Threshold an image and return a mask.""" return (data > threshold).astype(int) # print a warning def warning(*objs): print(time.strftime("%H:%M:%S WARNING:", time.localtime()), *objs, file=sys.stderr) # print information def information(*objs): print(time.strftime("%H:%M:%S", time.localtime()), *objs, file=sys.stdout) def julian_day_number(): """ Need this to solve a bug in pims_nd2.nd2reader.ND2_Reader instance initialization. The bug is in /usr/local/lib/python2.7/site-packages/pims_nd2/ND2SDK.py in function `jdn_to_datetime_local`, when the year number in the metadata (self._lim_metadata_desc) is not in the correct range. This causes a problem when calling self.metadata. https://en.wikipedia.org/wiki/Julian_day """ dt=datetime.datetime.now() tt=dt.timetuple() jdn=(1461.*(tt.tm_year + 4800. + (tt.tm_mon - 14.)/12))/4. + (367.*(tt.tm_mon - 2. - 12.*((tt.tm_mon -14.)/12)))/12. - (3.*((tt.tm_year + 4900. + (tt.tm_mon - 14.)/12.)/100.))/4. + tt.tm_mday - 32075 return jdn def get_plane(filepath): pattern = r'(c\d+).tif' res = re.search(pattern,filepath) if (res != None): return res.group(1) else: return None def get_fov(filepath): pattern = r'xy(\d+)\w*.tif' res = re.search(pattern,filepath) if (res != None): return int(res.group(1)) else: return None def get_time(filepath): pattern = r't(\d+)xy\w+.tif' res = re.search(pattern,filepath) if (res != None): return np.int_(res.group(1)) else: return None # loads and image stack from TIFF or HDF5 using mm3 conventions def load_stack(fov_id, peak_id, color='c1', image_return_number=None): ''' Loads an image stack. Supports reading TIFF stacks or HDF5 files. Parameters ---------- fov_id : int The FOV id peak_id : int The peak (channel) id. Dummy None value incase color='empty' color : str The image stack type to return. Can be: c1 : phase stack cN : where n is an integer for arbitrary color channel sub : subtracted images seg : segmented images empty : get the empty channel for this fov, slightly different Returns ------- image_stack : np.ndarray The image stack through time. Shape is (t, y, x) ''' # things are slightly different for empty channels if 'empty' in color: if params['output'] == 'TIFF': img_filename = params['experiment_name'] + '_xy%03d_%s.tif' % (fov_id, color) with tiff.TiffFile(os.path.join(params['empty_dir'],img_filename)) as tif: img_stack = tif.asarray() if params['output'] == 'HDF5': with h5py.File(os.path.join(params['hdf5_dir'],'xy%03d.hdf5' % fov_id), 'r') as h5f: img_stack = h5f[color][:] return img_stack # load normal images for either TIFF or HDF5 if params['output'] == 'TIFF': if color[0] == 'c': img_dir = params['chnl_dir'] elif 'sub' in color: img_dir = params['sub_dir'] elif 'foci' in color: img_dir = params['foci_seg_dir'] elif 'seg' in color: img_dir = params['seg_dir'] img_filename = params['experiment_name'] + '_xy%03d_p%04d_%s.tif' % (fov_id, peak_id, color) with tiff.TiffFile(os.path.join(img_dir, img_filename)) as tif: img_stack = tif.asarray() if params['output'] == 'HDF5': with h5py.File(os.path.join(params['hdf5_dir'], 'xy%03d.hdf5' % fov_id), 'r') as h5f: # normal naming # need to use [:] to get a copy, else it references the closed hdf5 dataset img_stack = h5f['channel_%04d/p%04d_%s' % (peak_id, peak_id, color)][:] return img_stack # load the time table and add it to the global params def load_time_table(): '''Add the time table dictionary to the params global dictionary. This is so it can be used during Cell creation. ''' # try first for yaml, then for pkl try: with open(os.path.join(params['ana_dir'], 'time_table.yaml'), 'rb') as time_table_file: params['time_table'] = yaml.safe_load(time_table_file) except: with open(os.path.join(params['ana_dir'], 'time_table.pkl'), 'rb') as time_table_file: params['time_table'] = pickle.load(time_table_file) return # function for loading the channel masks def load_channel_masks(): '''Load channel masks dictionary. Should be .yaml but try pickle too. ''' information("Loading channel masks dictionary.") # try loading from .yaml before .pkl try: information('Path:', os.path.join(params['ana_dir'], 'channel_masks.yaml')) with open(os.path.join(params['ana_dir'], 'channel_masks.yaml'), 'r') as cmask_file: channel_masks = yaml.safe_load(cmask_file) except: warning('Could not load channel masks dictionary from .yaml.') try: information('Path:', os.path.join(params['ana_dir'], 'channel_masks.pkl')) with open(os.path.join(params['ana_dir'], 'channel_masks.pkl'), 'rb') as cmask_file: channel_masks = pickle.load(cmask_file) except ValueError: warning('Could not load channel masks dictionary from .pkl.') return channel_masks # function for loading the specs file def load_specs(): '''Load specs file which indicates which channels should be analyzed, used as empties, or ignored.''' try: with open(os.path.join(params['ana_dir'], 'specs.yaml'), 'r') as specs_file: specs = yaml.safe_load(specs_file) except: try: with open(os.path.join(params['ana_dir'], 'specs.pkl'), 'rb') as specs_file: specs = pickle.load(specs_file) except ValueError: warning('Could not load specs file.') return specs ### functions for dealing with raw TIFF images # get params is the major function which processes raw TIFF images def get_initial_tif_params(image_filename): '''This is a function for getting the information out of an image for later trap identification, cropping, and aligning with Unet. It loads a tiff file and pulls out the image metadata. it returns a dictionary like this for each image: 'filename': image_filename, 'fov' : image_metadata['fov'], # fov id 't' : image_metadata['t'], # time point 'jdn' : image_metadata['jdn'], # absolute julian time 'x' : image_metadata['x'], # x position on stage [um] 'y' : image_metadata['y'], # y position on stage [um] 'plane_names' : image_metadata['plane_names'] # list of plane names Called by mm3_Compile.py __main__ Calls mm3.extract_metadata mm3.find_channels ''' try: # open up file and get metadata with tiff.TiffFile(os.path.join(params['TIFF_dir'],image_filename)) as tif: image_data = tif.asarray() #print(image_data.shape) # uncomment for debug #if len(image_data.shape) == 2: # img_shape = [image_data.shape[0],image_data.shape[1]] #else: img_shape = [image_data.shape[1],image_data.shape[2]] plane_list = [str(i+1) for i in range(image_data.shape[0])] #print(plane_list) # uncomment for debug if params['TIFF_source'] == 'elements': image_metadata = get_tif_metadata_elements(tif) elif params['TIFF_source'] == 'nd2ToTIFF': image_metadata = get_tif_metadata_nd2ToTIFF(tif) else: image_metadata = get_tif_metadata_filename(tif) information('Analyzed %s' % image_filename) # return the file name, the data for the channels in that image, and the metadata return {'filepath': os.path.join(params['TIFF_dir'], image_filename), 'fov' : image_metadata['fov'], # fov id 't' : image_metadata['t'], # time point 'jd' : image_metadata['jd'], # absolute julian time 'x' : image_metadata['x'], # x position on stage [um] 'y' : image_metadata['y'], # y position on stage [um] 'planes' : plane_list, # list of plane names 'shape' : img_shape} # image shape x y in pixels except: warning('Failed get_params for ' + image_filename.split("/")[-1]) print(sys.exc_info()[0]) print(sys.exc_info()[1]) print(traceback.print_tb(sys.exc_info()[2])) return {'filepath': os.path.join(params['TIFF_dir'],image_filename), 'analyze_success': False} # get params is the major function which processes raw TIFF images def get_tif_params(image_filename, find_channels=True): '''This is a damn important function for getting the information out of an image. It loads a tiff file, pulls out the image data, and the metadata, including the location of the channels if flagged. it returns a dictionary like this for each image: 'filename': image_filename, 'fov' : image_metadata['fov'], # fov id 't' : image_metadata['t'], # time point 'jdn' : image_metadata['jdn'], # absolute julian time 'x' : image_metadata['x'], # x position on stage [um] 'y' : image_metadata['y'], # y position on stage [um] 'plane_names' : image_metadata['plane_names'] # list of plane names 'channels': cp_dict, # dictionary of channel locations, in the case of Unet-based channel segmentation, it's a dictionary of channel labels Called by mm3_Compile.py __main__ Calls mm3.extract_metadata mm3.find_channels ''' try: # open up file and get metadata with tiff.TiffFile(os.path.join(params['TIFF_dir'],image_filename)) as tif: image_data = tif.asarray() if params['TIFF_source'] == 'elements': image_metadata = get_tif_metadata_elements(tif) elif params['TIFF_source'] == 'nd2ToTIFF': image_metadata = get_tif_metadata_nd2ToTIFF(tif) else: image_metadata = get_tif_metadata_filename(tif) # look for channels if flagged if find_channels: # fix the image orientation and get the number of planes image_data = fix_orientation(image_data) # if the image data has more than 1 plane restrict image_data to phase, # which should have highest mean pixel data if len(image_data.shape) > 2: #ph_index = np.argmax([np.mean(image_data[ci]) for ci in range(image_data.shape[0])]) ph_index = int(params['phase_plane'][1:]) - 1 image_data = image_data[ph_index] # get shape of single plane img_shape = [image_data.shape[0], image_data.shape[1]] # find channels on the processed image chnl_loc_dict = find_channel_locs(image_data) information('Analyzed %s' % image_filename) # return the file name, the data for the channels in that image, and the metadata return {'filepath': os.path.join(params['TIFF_dir'], image_filename), 'fov' : image_metadata['fov'], # fov id 't' : image_metadata['t'], # time point 'jd' : image_metadata['jd'], # absolute julian time 'x' : image_metadata['x'], # x position on stage [um] 'y' : image_metadata['y'], # y position on stage [um] 'planes' : image_metadata['planes'], # list of plane names 'shape' : img_shape, # image shape x y in pixels # 'channels' : {1 : {'A' : 1, 'B' : 2}, 2 : {'C' : 3, 'D' : 4}}} 'channels' : chnl_loc_dict} # dictionary of channel locations except: warning('Failed get_params for ' + image_filename.split("/")[-1]) print(sys.exc_info()[0]) print(sys.exc_info()[1]) print(traceback.print_tb(sys.exc_info()[2])) return {'filepath': os.path.join(params['TIFF_dir'],image_filename), 'analyze_success': False} # finds metdata in a tiff image which has been expoted with Nikon Elements. def get_tif_metadata_elements(tif): '''This function pulls out the metadata from a tif file and returns it as a dictionary. This if tiff files as exported by Nikon Elements as a stacked tiff, each for one tpoint. tif is an opened tif file (using the package tifffile) arguments: fname (tifffile.TiffFile): TIFF file object from which data will be extracted returns: dictionary of values: 'jdn' (float) 'x' (float) 'y' (float) 'plane_names' (list of strings) Called by mm3.Compile ''' # image Metadata idata = { 'fov': -1, 't' : -1, 'jd': -1 * 0.0, 'x': -1 * 0.0, 'y': -1 * 0.0, 'planes': []} # get the fov and t simply from the file name idata['fov'] = int(tif.fname.split('xy')[1].split('.tif')[0]) idata['t'] = int(tif.fname.split('xy')[0].split('t')[-1]) # a page is plane, or stack, in the tiff. The other metdata is hidden down in there. for page in tif: for tag in page.tags.values(): #print("Checking tag",tag.name,tag.value) t = tag.name, tag.value t_string = u"" time_string = u"" # Interesting tag names: 65330, 65331 (binary data; good stuff), 65332 # we wnat to work with the tag of the name 65331 # if the tag name is not in the set of tegs we find interesting then skip this cycle of the loop if tag.name not in ('65331', '65332', 'strip_byte_counts', 'image_width', 'orientation', 'compression', 'new_subfile_type', 'fill_order', 'max_sample_value', 'bits_per_sample', '65328', '65333'): #print("*** " + tag.name) #print(tag.value) pass #if tag.name == '65330': # return tag.value if tag.name in ('65331'): # make info list a list of the tag values 0 to 65535 by zipoing up a paired list of two bytes, at two byte intervals i.e. fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b # note that 0X100 is hex for 256 infolist = [a+b*0x100 for a,b in zip(tag.value[0::2], tag.value[1::2])] # get char values for each element in infolist for c_entry in range(0, len(infolist)): # the element corresponds to an ascii char for a letter or bracket (and a few other things) if infolist[c_entry] < 127 and infolist[c_entry] > 64: # add the letter to the unicode string t_string t_string += chr(infolist[c_entry]) #elif infolist[c_entry] == 0: # continue else: t_string += " " # this block will find the dTimeAbsolute and print the subsequent integers # index 170 is counting seconds, and rollover of index 170 leads to increment of index 171 # rollover of index 171 leads to increment of index 172 # get the position of the array by finding the index of the t_string at which dTimeAbsolute is listed not that 2*len(dTimeAbsolute)=26 #print(t_string) arraypos = t_string.index("dXPos") * 2 + 16 xarr = tag.value[arraypos:arraypos+4] b = ''.join(chr(i) for i in xarr) idata['x'] = float(struct.unpack('<f', b)[0]) arraypos = t_string.index("dYPos") * 2 + 16 yarr = tag.value[arraypos:arraypos+4] b = ''.join(chr(i) for i in yarr) idata['y'] = float(struct.unpack('<f', b)[0]) arraypos = t_string.index("dTimeAbsolute") * 2 + 26 shortarray = tag.value[arraypos+2:arraypos+10] b = ''.join(chr(i) for i in shortarray) idata['jd'] = float(struct.unpack('<d', b)[0]) # extract plane names il = [a+b*0x100 for a,b in zip(tag.value[0::2], tag.value[1::2])] li = [a+b*0x100 for a,b in zip(tag.value[1::2], tag.value[2::2])] strings = list(zip(il, li)) allchars = "" for c_entry in range(0, len(strings)): if 31 < strings[c_entry][0] < 127: allchars += chr(strings[c_entry][0]) elif 31 < strings[c_entry][1] < 127: allchars += chr(strings[c_entry][1]) else: allchars += " " allchars = re.sub(' +',' ', allchars) words = allchars.split(" ") planes = [] for idx in [i for i, x in enumerate(words) if x == "sOpticalConfigName"]: planes.append(words[idx+1]) idata['planes'] = planes return idata # finds metdata in a tiff image which has been expoted with nd2ToTIFF.py. def get_tif_metadata_nd2ToTIFF(tif): '''This function pulls out the metadata from a tif file and returns it as a dictionary. This if tiff files as exported by the mm3 function mm3_nd2ToTIFF.py. All the metdata is found in that script and saved in json format to the tiff, so it is simply extracted here Paramters: tif: TIFF file object from which data will be extracted Returns: dictionary of values: 'fov': int, 't' : int, 'jdn' (float) 'x' (float) 'y' (float) 'planes' (list of strings) Called by mm3_Compile.get_tif_params ''' # get the first page of the tiff and pull out image description # this dictionary should be in the above form for tag in tif.pages[0].tags: if tag.name=="ImageDescription": idata=tag.value break #print(idata) idata = json.loads(idata) return idata # Finds metadata from the filename def get_tif_metadata_filename(tif): '''This function pulls out the metadata from a tif file and returns it as a dictionary. This just gets the tiff metadata from the filename and is a backup option when the known format of the metadata is not known. Paramters: tif: TIFF file object from which data will be extracted Returns: dictionary of values: 'fov': int, 't' : int, 'jdn' (float) 'x' (float) 'y' (float) Called by mm3_Compile.get_tif_params ''' idata = {'fov' : get_fov(tif.filename), # fov id 't' : get_time(tif.filename), # time point 'jd' : -1 * 0.0, # absolute julian time 'x' : -1 * 0.0, # x position on stage [um] 'y' : -1 * 0.0} # y position on stage [um] return idata # make a lookup time table for converting nominal time to elapsed time in seconds def make_time_table(analyzed_imgs): ''' Loops through the analyzed images and uses the jd time in the metadata to find the elapsed time in seconds that each picture was taken. This is later used for more accurate elongation rate calculation. Parametrs --------- analyzed_imgs : dict The output of get_tif_params. params['use_jd'] : boolean If set to True, 'jd' time will be used from the image metadata to use to create time table. Otherwise the 't' index will be used, and the parameter 'seconds_per_time_index' will be used from the parameters.yaml file to convert to seconds. Returns ------- time_table : dict Look up dictionary with keys for the FOV and then the time point. ''' information('Making time table...') # initialize time_table = {} first_time = float('inf') # need to go through the data once to find the first time for iname, idata in six.iteritems(analyzed_imgs): if params['use_jd']: if idata['jd'] < first_time: first_time = idata['jd'] else: if idata['t'] < first_time: first_time = idata['t'] # init dictionary for specific times per FOV if idata['fov'] not in time_table: time_table[idata['fov']] = {} for iname, idata in six.iteritems(analyzed_imgs): if params['use_jd']: # convert jd time to elapsed time in seconds t_in_seconds = np.around((idata['jd'] - first_time) * 24*60*60, decimals=0).astype('uint32') else: t_in_seconds = np.around((idata['t'] - first_time) * params['moviemaker']['seconds_per_time_index'], decimals=0).astype('uint32') time_table[int(idata['fov'])][int(idata['t'])] = int(t_in_seconds) # save to .pkl. This pkl will be loaded into the params # with open(os.path.join(params['ana_dir'], 'time_table.pkl'), 'wb') as time_table_file: # pickle.dump(time_table, time_table_file, protocol=pickle.HIGHEST_PROTOCOL) # with open(os.path.join(params['ana_dir'], 'time_table.txt'), 'w') as time_table_file: # pprint(time_table, stream=time_table_file) with open(os.path.join(params['ana_dir'], 'time_table.yaml'), 'w') as time_table_file: yaml.dump(data=time_table, stream=time_table_file, default_flow_style=False, tags=None) information('Time table saved.') return time_table # saves traps sliced via Unet def save_tiffs(imgDict, analyzed_imgs, fov_id): savePath = os.path.join(params['experiment_directory'], params['analysis_directory'], params['chnl_dir']) img_names = [key for key in analyzed_imgs.keys()] image_params = analyzed_imgs[img_names[0]] for peak,img in six.iteritems(imgDict): img = img.astype('uint16') if not os.path.isdir(savePath): os.mkdir(savePath) for planeNumber in image_params['planes']: channel_filename = os.path.join(savePath, params['experiment_name'] + '_xy{0:0=3}_p{1:0=4}_c{2}.tif'.format(fov_id, peak, planeNumber)) io.imsave(channel_filename, img[:,:,:,int(planeNumber)-1]) # slice_and_write cuts up the image files one at a time and writes them out to tiff stacks def tiff_stack_slice_and_write(images_to_write, channel_masks, analyzed_imgs): '''Writes out 4D stacks of TIFF images per channel. Loads all tiffs from and FOV into memory and then slices all time points at once. Called by __main__ ''' # make an array of images and then concatenate them into one big stack image_fov_stack = [] # go through list of images and get the file path for n, image in enumerate(images_to_write): # analyzed_imgs dictionary will be found in main scope. [0] is the key, [1] is jd image_params = analyzed_imgs[image[0]] information("Loading %s." % image_params['filepath'].split('/')[-1]) if n == 1: # declare identification variables for saving using first image fov_id = image_params['fov'] # load the tif and store it in array with tiff.TiffFile(image_params['filepath']) as tif: image_data = tif.asarray() # channel finding was also done on images after orientation was fixed image_data = fix_orientation(image_data) # add additional axis if the image is flat if len(image_data.shape) == 2: image_data = np.expand_dims(image_data, 0) # change axis so it goes Y, X, Plane image_data = np.rollaxis(image_data, 0, 3) # add it to list. The images should be in time order image_fov_stack.append(image_data) # concatenate the list into one big ass stack image_fov_stack = np.stack(image_fov_stack, axis=0) # cut out the channels as per channel masks for this fov for peak, channel_loc in six.iteritems(channel_masks[fov_id]): #information('Slicing and saving channel peak %s.' % channel_filename.split('/')[-1]) information('Slicing and saving channel peak %d.' % peak) # channel masks should only contain ints, but you can use this for hard fix # for i in range(len(channel_loc)): # for j in range(len(channel_loc[i])): # channel_loc[i][j] = int(channel_loc[i][j]) # slice out channel. # The function should recognize the shape length as 4 and cut all time points channel_stack = cut_slice(image_fov_stack, channel_loc) # save a different time stack for all colors for color_index in range(channel_stack.shape[3]): # this is the filename for the channel # # chnl_dir and p will be looked for in the scope above (__main__) channel_filename = os.path.join(params['chnl_dir'], params['experiment_name'] + '_xy%03d_p%04d_c%1d.tif' % (fov_id, peak, color_index+1)) # save stack tiff.imsave(channel_filename, channel_stack[:,:,:,color_index], compress=4) return # saves traps sliced via Unet to an hdf5 file def save_hdf5(imgDict, img_names, analyzed_imgs, fov_id, channel_masks): '''Writes out 4D stacks of images to an HDF5 file. Called by mm3_Compile.py ''' savePath = params['hdf5_dir'] if not os.path.isdir(savePath): os.mkdir(savePath) img_times = [analyzed_imgs[key]['t'] for key in img_names] img_jds = [analyzed_imgs[key]['jd'] for key in img_names] fov_ids = [analyzed_imgs[key]['fov'] for key in img_names] # get image_params from first image from current fov image_params = analyzed_imgs[img_names[0]] # establish some variables for hdf5 attributes fov_id = image_params['fov'] x_loc = image_params['x'] y_loc = image_params['y'] image_shape = image_params['shape'] image_planes = image_params['planes'] fov_channel_masks = channel_masks[fov_id] with h5py.File(os.path.join(savePath,'{}_xy{:0=2}.hdf5'.format(params['experiment_name'],fov_id)), 'w', libver='earliest') as h5f: # add in metadata for this FOV # these attributes should be common for all channel h5f.attrs.create('fov_id', fov_id) h5f.attrs.create('stage_x_loc', x_loc) h5f.attrs.create('stage_y_loc', y_loc) h5f.attrs.create('image_shape', image_shape) # encoding is because HDF5 has problems with numpy unicode h5f.attrs.create('planes', [plane.encode('utf8') for plane in image_planes]) h5f.attrs.create('peaks', sorted([key for key in imgDict.keys()])) # this is for things that change across time, for these create a dataset img_names = np.asarray(img_names) img_names = np.expand_dims(img_names, 1) img_names = img_names.astype('S100') h5ds = h5f.create_dataset(u'filenames', data=img_names, chunks=True, maxshape=(None, 1), dtype='S100', compression="gzip", shuffle=True, fletcher32=True) h5ds = h5f.create_dataset(u'times', data=np.expand_dims(img_times, 1), chunks=True, maxshape=(None, 1), compression="gzip", shuffle=True, fletcher32=True) h5ds = h5f.create_dataset(u'times_jd', data=np.expand_dims(img_jds, 1), chunks=True, maxshape=(None, 1), compression="gzip", shuffle=True, fletcher32=True) # cut out the channels as per channel masks for this fov for peak,channel_stack in six.iteritems(imgDict): channel_stack = channel_stack.astype('uint16') # create group for this trap h5g = h5f.create_group('channel_%04d' % peak) # add attribute for peak_id, channel location # add attribute for peak_id, channel location h5g.attrs.create('peak_id', peak) channel_loc = fov_channel_masks[peak] h5g.attrs.create('channel_loc', channel_loc) # save a different dataset for all colors for color_index in range(channel_stack.shape[3]): # create the dataset for the image. Review docs for these options. h5ds = h5g.create_dataset(u'p%04d_c%1d' % (peak, color_index+1), data=channel_stack[:,:,:,color_index], chunks=(1, channel_stack.shape[1], channel_stack.shape[2]), maxshape=(None, channel_stack.shape[1], channel_stack.shape[2]), compression="gzip", shuffle=True, fletcher32=True) # h5ds.attrs.create('plane', image_planes[color_index].encode('utf8')) # write the data even though we have more to write (free up memory) h5f.flush() return # same thing as tiff_stack_slice_and_write but do it for hdf5 def hdf5_stack_slice_and_write(images_to_write, channel_masks, analyzed_imgs): '''Writes out 4D stacks of TIFF images to an HDF5 file. Called by __main__ ''' # make an array of images and then concatenate them into one big stack image_fov_stack = [] # make arrays for filenames and times image_filenames = [] image_times = [] # times is still an integer but may be indexed arbitrarily image_jds = [] # jds = julian dates (times) # go through list of images, load and fix them, and create arrays of metadata for n, image in enumerate(images_to_write): image_name = image[0] # [0] is the key, [1] is jd # analyzed_imgs dictionary will be found in main scope. image_params = analyzed_imgs[image_name] information("Loading %s." % image_params['filepath'].split('/')[-1]) # add information to metadata arrays image_filenames.append(image_name) image_times.append(image_params['t']) image_jds.append(image_params['jd']) # declare identification variables for saving using first image if n == 1: # same across fov fov_id = image_params['fov'] x_loc = image_params['x'] y_loc = image_params['y'] image_shape = image_params['shape'] image_planes = image_params['planes'] # load the tif and store it in array with tiff.TiffFile(image_params['filepath']) as tif: image_data = tif.asarray() # channel finding was also done on images after orientation was fixed image_data = fix_orientation(image_data) # add additional axis if the image is flat if len(image_data.shape) == 2: image_data = np.expand_dims(image_data, 0) #change axis so it goes X, Y, Plane image_data = np.rollaxis(image_data, 0, 3) # add it to list. The images should be in time order image_fov_stack.append(image_data) # concatenate the list into one big ass stack image_fov_stack = np.stack(image_fov_stack, axis=0) # create the HDF5 file for the FOV, first time this is being done. with h5py.File(os.path.join(params['hdf5_dir'],'xy%03d.hdf5' % fov_id), 'w', libver='earliest') as h5f: # add in metadata for this FOV # these attributes should be common for all channel h5f.attrs.create('fov_id', fov_id) h5f.attrs.create('stage_x_loc', x_loc) h5f.attrs.create('stage_y_loc', y_loc) h5f.attrs.create('image_shape', image_shape) # encoding is because HDF5 has problems with numpy unicode h5f.attrs.create('planes', [plane.encode('utf8') for plane in image_planes]) h5f.attrs.create('peaks', sorted(channel_masks[fov_id].keys())) # this is for things that change across time, for these create a dataset h5ds = h5f.create_dataset(u'filenames', data=np.expand_dims(image_filenames, 1), chunks=True, maxshape=(None, 1), dtype='S100', compression="gzip", shuffle=True, fletcher32=True) h5ds = h5f.create_dataset(u'times', data=np.expand_dims(image_times, 1), chunks=True, maxshape=(None, 1), compression="gzip", shuffle=True, fletcher32=True) h5ds = h5f.create_dataset(u'times_jd', data=np.expand_dims(image_jds, 1), chunks=True, maxshape=(None, 1), compression="gzip", shuffle=True, fletcher32=True) # cut out the channels as per channel masks for this fov for peak, channel_loc in six.iteritems(channel_masks[fov_id]): #information('Slicing and saving channel peak %s.' % channel_filename.split('/')[-1]) information('Slicing and saving channel peak %d.' % peak) # create group for this channel h5g = h5f.create_group('channel_%04d' % peak) # add attribute for peak_id, channel location h5g.attrs.create('peak_id', peak) h5g.attrs.create('channel_loc', channel_loc) # channel masks should only contain ints, but you can use this for a hard fix # for i in range(len(channel_loc)): # for j in range(len(channel_loc[i])): # channel_loc[i][j] = int(channel_loc[i][j]) # slice out channel. # The function should recognize the shape length as 4 and cut all time points channel_stack = cut_slice(image_fov_stack, channel_loc) # save a different dataset for all colors for color_index in range(channel_stack.shape[3]): # create the dataset for the image. Review docs for these options. h5ds = h5g.create_dataset(u'p%04d_c%1d' % (peak, color_index+1), data=channel_stack[:,:,:,color_index], chunks=(1, channel_stack.shape[1], channel_stack.shape[2]), maxshape=(None, channel_stack.shape[1], channel_stack.shape[2]), compression="gzip", shuffle=True, fletcher32=True) # h5ds.attrs.create('plane', image_planes[color_index].encode('utf8')) # write the data even though we have more to write (free up memory) h5f.flush() return def tileImage(img, subImageNumber): divisor = int(np.sqrt(subImageNumber)) M = img.shape[0]//divisor N = img.shape[0]//divisor print(img.shape, M, N, divisor, subImageNumber) ans = ([img[x:x+M,y:y+N] for x in range(0,img.shape[0],M) for y in range(0,img.shape[1],N)]) tiles=[] for m in ans: if m.shape[0]==512 and m.shape[1]==512: tiles.append(m) tiles=np.asarray(tiles) #print(tiles) return(tiles) def get_weights(img, subImageNumber): divisor = int(np.sqrt(subImageNumber)) M = img.shape[0]//divisor N = img.shape[0]//divisor weights = np.ones((img.shape[0],img.shape[1]),dtype='uint8') for i in range(divisor-1): weights[(M*(i+1))-25:(M*(i+1)+25),:] = 0 weights[:,(N*(i+1))-25:(N*(i+1)+25)] = 0 return(weights) def permute_image(img, trap_align_metadata): # are there three dimensions? if len(img.shape) == 3: if img.shape[0] < 3: # for tifs with fewer than three imageing channels, the first dimension separates channels # img = np.transpose(img, (1,2,0)) img = img[trap_align_metadata['phase_plane_index'],:,:] # grab just the phase channel else: img = img[:,:,trap_align_metadata['phase_plane_index']] # grab just the phase channel return(img) def imageConcatenatorFeatures(imgStack, subImageNumber = 64): rowNumPerImage = int(np.sqrt(subImageNumber)) # here I'm assuming our large images are square, with equal number of crops in each dimension #print(rowNumPerImage) imageNum = int(imgStack.shape[0]/subImageNumber) # total number of sub-images divided by the number of sub-images in each original large image iterNum = int(imageNum*rowNumPerImage) imageDims = int(np.sqrt(imgStack.shape[1]*imgStack.shape[2]*subImageNumber)) featureNum = int(imgStack.shape[3]) bigImg = np.zeros(shape=(imageNum, imageDims, imageDims, featureNum), dtype='float32') # create array to store reconstructed images featureRowDicts = [] for j in range(featureNum): rowDict = {} for i in range(iterNum): baseNum = int(i*iterNum/imageNum) # concatenate columns of 256x256 images to build each 256x2048 row rowDict[i] = np.column_stack((imgStack[baseNum,:,:,j],imgStack[baseNum+1,:,:,j], imgStack[baseNum+2,:,:,j], imgStack[baseNum+3,:,:,j]))#, #imgStack[baseNum+4,:,:,j],imgStack[baseNum+5,:,:,j], #imgStack[baseNum+6,:,:,j],imgStack[baseNum+7,:,:,j])) featureRowDicts.append(rowDict) for j in range(featureNum): for i in range(imageNum): baseNum = int(i*rowNumPerImage) # concatenate appropriate 256x2048 rows to build a 2048x2048 image and place it into bigImg bigImg[i,:,:,j] = np.row_stack((featureRowDicts[j][baseNum],featureRowDicts[j][baseNum+1], featureRowDicts[j][baseNum+2],featureRowDicts[j][baseNum+3]))#, #featureRowDicts[j][baseNum+4],featureRowDicts[j][baseNum+5], #featureRowDicts[j][baseNum+6],featureRowDicts[j][baseNum+7])) return(bigImg) def imageConcatenatorFeatures2(imgStack, subImageNumber = 81): rowNumPerImage = int(np.sqrt(subImageNumber)) # here I'm assuming our large images are square, with equal number of crops in each dimension imageNum = int(imgStack.shape[0]/subImageNumber) # total number of sub-images divided by the number of sub-images in each original large image iterNum = int(imageNum*rowNumPerImage) imageDims = int(np.sqrt(imgStack.shape[1]*imgStack.shape[2]*subImageNumber)) featureNum = int(imgStack.shape[3]) bigImg = np.zeros(shape=(imageNum, imageDims, imageDims, featureNum), dtype='float32') # create array to store reconstructed images featureRowDicts = [] for j in range(featureNum): rowDict = {} for i in range(iterNum): baseNum = int(i*iterNum/imageNum) # concatenate columns of 256x256 images to build each 256x2048 row rowDict[i] = np.column_stack((imgStack[baseNum,:,:,j],imgStack[baseNum+1,:,:,j], imgStack[baseNum+2,:,:,j], imgStack[baseNum+3,:,:,j], imgStack[baseNum+4,:,:,j]))#,imgStack[baseNum+5,:,:,j], #imgStack[baseNum+6,:,:,j],imgStack[baseNum+7,:,:,j], #imgStack[baseNum+8,:,:,j])) featureRowDicts.append(rowDict) for j in range(featureNum): for i in range(imageNum): baseNum = int(i*rowNumPerImage) # concatenate appropriate 256x2048 rows to build a 2048x2048 image and place it into bigImg bigImg[i,:,:,j] = np.row_stack((featureRowDicts[j][baseNum],featureRowDicts[j][baseNum+1], featureRowDicts[j][baseNum+2],featureRowDicts[j][baseNum+3], featureRowDicts[j][baseNum+4]))#,featureRowDicts[j][baseNum+5], #featureRowDicts[j][baseNum+6],featureRowDicts[j][baseNum+7], #featureRowDicts[j][baseNum+8])) return(bigImg) def get_weights_array(arr=np.zeros((2048,2048)), shiftDistance=128, subImageNumber=64, padSubImageNumber=81): originalImageWeights = get_weights(arr, subImageNumber=subImageNumber) shiftLeftWeights = np.pad(originalImageWeights, pad_width=((0,0),(0,shiftDistance)), mode='constant', constant_values=((0,0),(0,0)))[:,shiftDistance:] shiftRightWeights = np.pad(originalImageWeights, pad_width=((0,0),(shiftDistance,0)), mode='constant', constant_values=((0,0),(0,0)))[:,:(-1*shiftDistance)] shiftUpWeights = np.pad(originalImageWeights, pad_width=((0,shiftDistance),(0,0)), mode='constant', constant_values=((0,0),(0,0)))[shiftDistance:,:] shiftDownWeights = np.pad(originalImageWeights, pad_width=((shiftDistance,0),(0,0)), mode='constant', constant_values=((0,0),(0,0)))[:(-1*shiftDistance),:] expandedImageWeights = get_weights(np.zeros((arr.shape[0]+2*shiftDistance,arr.shape[1]+2*shiftDistance)), subImageNumber=padSubImageNumber)[shiftDistance:-shiftDistance,shiftDistance:-shiftDistance] allWeights = np.stack((originalImageWeights, expandedImageWeights, shiftUpWeights, shiftDownWeights, shiftLeftWeights,shiftRightWeights), axis=-1) stackWeights = np.stack((allWeights,allWeights),axis=0) stackWeights = np.stack((stackWeights,stackWeights,stackWeights),axis=3) return(stackWeights) # predicts locations of channels in an image using deep learning model def get_frame_predictions(img,model,stackWeights, shiftDistance=256, subImageNumber=16, padSubImageNumber=25, debug=False): pred = predict_first_image_channels(img, model, shiftDistance=shiftDistance, subImageNumber=subImageNumber, padSubImageNumber=padSubImageNumber, debug=debug)[0,...] # print(pred.shape) if debug: print(pred.shape) compositePrediction = np.average(pred, axis=3, weights=stackWeights) # print(compositePrediction.shape) padSize = (compositePrediction.shape[0]-img.shape[0])//2 compositePrediction = util.crop(compositePrediction,((padSize,padSize), (padSize,padSize), (0,0))) # print(compositePrediction.shape) return(compositePrediction) def apply_median_filter_normalize(imgs): selem = morphology.disk(3) for i in range(imgs.shape[0]): # Store sample tmpImg = imgs[i,:,:,0] medImg = median(tmpImg, selem) tmpImg = medImg/np.max(medImg) tmpImg = np.expand_dims(tmpImg, axis=-1) imgs[i,:,:,:] = tmpImg return(imgs) def predict_first_image_channels(img, model, subImageNumber=16, padSubImageNumber=25, shiftDistance=128, batchSize=1, debug=False): imgSize = img.shape[0] padSize = (2048-imgSize)//2 # how much to pad on each side to get up to 2048x2048? imgStack = np.pad(img, pad_width=((padSize,padSize),(padSize,padSize)), mode='constant', constant_values=((0,0),(0,0))) # pad the images to make them 2048x2048 # pad the stack by 128 pixels on each side to get complemetary crops that I can run the network on. This # should help me fill in low-confidence regions where the crop boundaries were for the original image imgStackExpand = np.pad(imgStack, pad_width=((shiftDistance,shiftDistance),(shiftDistance,shiftDistance)), mode='constant', constant_values=((0,0),(0,0))) imgStackShiftRight = np.pad(imgStack, pad_width=((0,0),(0,shiftDistance)), mode='constant', constant_values=((0,0),(0,0)))[:,shiftDistance:] imgStackShiftLeft = np.pad(imgStack, pad_width=((0,0),(shiftDistance,0)), mode='constant', constant_values=((0,0),(0,0)))[:,:-shiftDistance] imgStackShiftDown = np.pad(imgStack, pad_width=((0,shiftDistance),(0,0)), mode='constant', constant_values=((0,0),(0,0)))[shiftDistance:,:] imgStackShiftUp = np.pad(imgStack, pad_width=((shiftDistance,0),(0,0)), mode='constant', constant_values=((0,0),(0,0)))[:-shiftDistance,:] #print(imgStackShiftUp.shape) crops = tileImage(imgStack, subImageNumber=subImageNumber) print("Crops: ", crops.shape) crops = np.expand_dims(crops, -1) data_gen_args = {'batch_size':params['compile']['channel_prediction_batch_size'], 'n_channels':1, 'normalize_to_one':True, 'shuffle':False} predict_gen_args = {'verbose':1, 'use_multiprocessing':True, 'workers':params['num_analyzers']} img_generator = TrapSegmentationDataGenerator(crops, **data_gen_args) predictions = model.predict_generator(img_generator, **predict_gen_args) prediction = imageConcatenatorFeatures(predictions, subImageNumber=subImageNumber) #print(prediction.shape) cropsExpand = tileImage(imgStackExpand, subImageNumber=padSubImageNumber) cropsExpand = np.expand_dims(cropsExpand, -1) img_generator = TrapSegmentationDataGenerator(cropsExpand, **data_gen_args) predictions = model.predict_generator(img_generator, **predict_gen_args) predictionExpand = imageConcatenatorFeatures2(predictions, subImageNumber=padSubImageNumber) predictionExpand = util.crop(predictionExpand, ((0,0),(shiftDistance,shiftDistance),(shiftDistance,shiftDistance),(0,0))) #print(predictionExpand.shape) cropsShiftLeft = tileImage(imgStackShiftLeft, subImageNumber=subImageNumber) cropsShiftLeft = np.expand_dims(cropsShiftLeft, -1) img_generator = TrapSegmentationDataGenerator(cropsShiftLeft, **data_gen_args) predictions = model.predict_generator(img_generator, **predict_gen_args) predictionLeft = imageConcatenatorFeatures(predictions, subImageNumber=subImageNumber) predictionLeft = np.pad(predictionLeft, pad_width=((0,0),(0,0),(0,shiftDistance),(0,0)), mode='constant', constant_values=((0,0),(0,0),(0,0),(0,0)))[:,:,shiftDistance:,:] #print(predictionLeft.shape) cropsShiftRight = tileImage(imgStackShiftRight, subImageNumber=subImageNumber) cropsShiftRight = np.expand_dims(cropsShiftRight, -1) img_generator = TrapSegmentationDataGenerator(cropsShiftRight, **data_gen_args) predictions = model.predict_generator(img_generator, **predict_gen_args) predictionRight = imageConcatenatorFeatures(predictions, subImageNumber=subImageNumber) predictionRight = np.pad(predictionRight, pad_width=((0,0),(0,0),(shiftDistance,0),(0,0)), mode='constant', constant_values=((0,0),(0,0),(0,0),(0,0)))[:,:,:(-1*shiftDistance),:] #print(predictionRight.shape) cropsShiftUp = tileImage(imgStackShiftUp, subImageNumber=subImageNumber) #print(cropsShiftUp.shape) cropsShiftUp = np.expand_dims(cropsShiftUp, -1) img_generator = TrapSegmentationDataGenerator(cropsShiftUp, **data_gen_args) predictions = model.predict_generator(img_generator, **predict_gen_args) predictionUp = imageConcatenatorFeatures(predictions, subImageNumber=subImageNumber) predictionUp = np.pad(predictionUp, pad_width=((0,0),(0,shiftDistance),(0,0),(0,0)), mode='constant', constant_values=((0,0),(0,0),(0,0),(0,0)))[:,shiftDistance:,:,:] #print(predictionUp.shape) cropsShiftDown = tileImage(imgStackShiftDown, subImageNumber=subImageNumber) cropsShiftDown = np.expand_dims(cropsShiftDown, -1) img_generator = TrapSegmentationDataGenerator(cropsShiftDown, **data_gen_args) predictions = model.predict_generator(img_generator, **predict_gen_args) predictionDown = imageConcatenatorFeatures(predictions, subImageNumber=subImageNumber) predictionDown = np.pad(predictionDown, pad_width=((0,0),(shiftDistance,0),(0,0),(0,0)), mode='constant', constant_values=((0,0),(0,0),(0,0),(0,0)))[:,:(-1*shiftDistance),:,:] #print(predictionDown.shape) allPredictions = np.stack((prediction, predictionExpand, predictionUp, predictionDown, predictionLeft, predictionRight), axis=-1) return(allPredictions) # takes initial U-net centroids for trap locations, and creats bounding boxes for each trap at the defined height and width def get_frame_trap_bounding_boxes(trapLabels, trapProps, trapAreaThreshold=2000, trapWidth=27, trapHeight=256): badTrapLabels = [reg.label for reg in trapProps if reg.area < trapAreaThreshold] # filter out small "trap" regions goodTraps = trapLabels.copy() for label in badTrapLabels: goodTraps[goodTraps == label] = 0 # re-label bad traps as background (0) goodTrapProps = measure.regionprops(goodTraps) trapCentroids = [(int(np.round(reg.centroid[0])),int(np.round(reg.centroid[1]))) for reg in goodTrapProps] # get centroids as integers trapBboxes = [] for centroid in trapCentroids: rowIndex = centroid[0] colIndex = centroid[1] minRow = rowIndex-trapHeight//2 maxRow = rowIndex+trapHeight//2 minCol = colIndex-trapWidth//2 maxCol = colIndex+trapWidth//2 if trapWidth % 2 != 0: maxCol += 1 coordArray = np.array([minRow,maxRow,minCol,maxCol]) # remove any traps at edges of image if np.any(coordArray > goodTraps.shape[0]): continue if np.any(coordArray < 0): continue trapBboxes.append((minRow,minCol,maxRow,maxCol)) return(trapBboxes) # this function performs image alignment as defined by the shifts passed as an argument def crop_traps(fileNames, trapProps, labelledTraps, bboxesDict, trap_align_metadata): frameNum = trap_align_metadata['frame_count'] channelNum = trap_align_metadata['plane_number'] trapImagesDict = {key:np.zeros((frameNum, trap_align_metadata['trap_height'], trap_align_metadata['trap_width'], channelNum)) for key in bboxesDict} trapClosedEndPxDict = {} flipImageDict = {} trapMask = labelledTraps for frame in range(frameNum): if (frame+1) % 20 == 0: print("Cropping trap regions for frame number {} of {}.".format(frame+1, frameNum)) imgPath = os.path.join(params['experiment_directory'],params['image_directory'],fileNames[frame]) fullFrameImg = io.imread(imgPath) if len(fullFrameImg.shape) == 3: if fullFrameImg.shape[0] < 3: # for tifs with less than three imaging channels, the first dimension separates channels fullFrameImg = np.transpose(fullFrameImg, (1,2,0)) trapClosedEndPxDict[fileNames[frame]] = {key:{} for key in bboxesDict.keys()} for key in trapImagesDict.keys(): bbox = bboxesDict[key][frame] trapImagesDict[key][frame,:,:,:] = fullFrameImg[bbox[0]:bbox[2],bbox[1]:bbox[3],:] #tmpImg = np.reshape(fullFrameImg[trapMask==key], (trapHeight,trapWidth,channelNum)) if frame == 0: medianProfile = np.median(trapImagesDict[key][frame,:,:,0],axis=1) # get intensity of middle column of trap maxIntensityRow = np.argmax(medianProfile) if maxIntensityRow > trap_align_metadata['trap_height']//2: flipImageDict[key] = 0 else: flipImageDict[key] = 1 if flipImageDict[key] == 1: trapImagesDict[key][frame,:,:,:] = trapImagesDict[key][frame,::-1,:,:] trapClosedEndPxDict[fileNames[frame]][key]['closed_end_px'] = bbox[0] trapClosedEndPxDict[fileNames[frame]][key]['open_end_px'] = bbox[2] else: trapClosedEndPxDict[fileNames[frame]][key]['closed_end_px'] = bbox[2] trapClosedEndPxDict[fileNames[frame]][key]['open_end_px'] = bbox[0] continue return(trapImagesDict, trapClosedEndPxDict) # gets shifted bounding boxes to crop traps through time def shift_bounding_boxes(bboxesDict, shifts, imgSize): bboxesShiftDict = {} for key in bboxesDict.keys(): bboxesShiftDict[key] = [] bboxes = bboxesDict[key] for i in range(shifts.shape[0]): if i == 0: bboxesShiftDict[key].append(bboxes) else: minRow = bboxes[0]+shifts[i,0] minCol = bboxes[1]+shifts[i,1] maxRow = bboxes[2]+shifts[i,0] maxCol = bboxes[3]+shifts[i,1] bboxesShiftDict[key].append((minRow, minCol, maxRow, maxCol)) if np.any(np.asarray([minRow,minCol,maxRow,maxCol]) < 0): print("channel {} removed: out of frame".format(key)) del bboxesShiftDict[key] break if np.any(np.asarray([minRow,minCol,maxRow,maxCol]) > imgSize): print("channel {} removed: out of frame".format(key)) del bboxesShiftDict[key] break return(bboxesShiftDict) # finds the location of channels in a tif def find_channel_locs(image_data): '''Finds the location of channels from a phase contrast image. The channels are returned in a dictionary where the key is the x position of the channel in pixel and the value is a dicionary with the open and closed end in pixels in y. Called by mm3_Compile.get_tif_params ''' # declare temp variables from yaml parameter dict. chan_w = params['compile']['channel_width'] chan_sep = params['compile']['channel_separation'] crop_wp = int(params['compile']['channel_width_pad'] + chan_w/2) chan_snr = params['compile']['channel_detection_snr'] # Detect peaks in the x projection (i.e. find the channels) projection_x = image_data.sum(axis=0).astype(np.int32) # find_peaks_cwt is a function which attempts to find the peaks in a 1-D array by # convolving it with a wave. here the wave is the default Mexican hat wave # but the minimum signal to noise ratio is specified # *** The range here should be a parameter or changed to a fraction. peaks = find_peaks_cwt(projection_x, np.arange(chan_w-5,chan_w+5), min_snr=chan_snr) # If the left-most peak position is within half of a channel separation, # discard the channel from the list. if peaks[0] < (chan_sep / 2): peaks = peaks[1:] # If the diference between the right-most peak position and the right edge # of the image is less than half of a channel separation, discard the channel. if image_data.shape[1] - peaks[-1] < (chan_sep / 2): peaks = peaks[:-1] # Find the average channel ends for the y-projected image projection_y = image_data.sum(axis=1) # find derivative, must use int32 because it was unsigned 16b before. proj_y_d = np.diff(projection_y.astype(np.int32)) # use the top third to look for closed end, is pixel location of highest deriv onethirdpoint_y = int(projection_y.shape[0]/3.0) default_closed_end_px = proj_y_d[:onethirdpoint_y].argmax() # use bottom third to look for open end, pixel location of lowest deriv twothirdpoint_y = int(projection_y.shape[0]*2.0/3.0) default_open_end_px = twothirdpoint_y + proj_y_d[twothirdpoint_y:].argmin() default_length = default_open_end_px - default_closed_end_px # used for checks # go through peaks and assign information # dict for channel dimensions chnl_loc_dict = {} # key is peak location, value is dict with {'closed_end_px': px, 'open_end_px': px} for peak in peaks: # set defaults chnl_loc_dict[peak] = {'closed_end_px': default_closed_end_px, 'open_end_px': default_open_end_px} # redo the previous y projection finding with just this channel channel_slice = image_data[:, peak-crop_wp:peak+crop_wp] slice_projection_y = channel_slice.sum(axis = 1) slice_proj_y_d = np.diff(slice_projection_y.astype(np.int32)) slice_closed_end_px = slice_proj_y_d[:onethirdpoint_y].argmax() slice_open_end_px = twothirdpoint_y + slice_proj_y_d[twothirdpoint_y:].argmin() slice_length = slice_open_end_px - slice_closed_end_px # check if these values make sense. If so, use them. If not, use default # make sure lenght is not 30 pixels bigger or smaller than default # *** This 15 should probably be a parameter or at least changed to a fraction. if slice_length + 15 < default_length or slice_length - 15 > default_length: continue # make sure ends are greater than 15 pixels from image edge if slice_closed_end_px < 15 or slice_open_end_px > image_data.shape[0] - 15: continue # if you made it to this point then update the entry chnl_loc_dict[peak] = {'closed_end_px' : slice_closed_end_px, 'open_end_px' : slice_open_end_px} return chnl_loc_dict # make masks from initial set of images (same images as clusters) def make_masks(analyzed_imgs): ''' Make masks goes through the channel locations in the image metadata and builds a consensus Mask for each image per fov, which it returns as dictionary named channel_masks. The keys in this dictionary are fov id, and the values is a another dictionary. This dict's keys are channel locations (peaks) and the values is a [2][2] array: [[minrow, maxrow],[mincol, maxcol]] of pixel locations designating the corner of each mask for each channel on the whole image One important consequence of these function is that the channel ids and the size of the channel slices are decided now. Updates to mask must coordinate with these values. Parameters analyzed_imgs : dict image information created by get_params Returns channel_masks : dict dictionary of consensus channel masks. Called By mm3_Compile.py Calls ''' information("Determining initial channel masks...") # declare temp variables from yaml parameter dict. crop_wp = int(params['compile']['channel_width_pad'] + params['compile']['channel_width']/2) chan_lp = int(params['compile']['channel_length_pad']) #intiaize dictionary channel_masks = {} # get the size of the images (hope they are the same) for img_k in analyzed_imgs.keys(): img_v = analyzed_imgs[img_k] image_rows = img_v['shape'][0] # x pixels image_cols = img_v['shape'][1] # y pixels break # just need one. using iteritems mean the whole dict doesn't load # get the fov ids fovs = [] for img_k in analyzed_imgs.keys(): img_v = analyzed_imgs[img_k] if img_v['fov'] not in fovs: fovs.append(img_v['fov']) # max width and length across all fovs. channels will get expanded by these values # this important for later updates to the masks, which should be the same max_chnl_mask_len = 0 max_chnl_mask_wid = 0 # for each fov make a channel_mask dictionary from consensus mask for fov in fovs: # initialize a the dict and consensus mask channel_masks_1fov = {} # dict which holds channel masks {peak : [[y1, y2],[x1,x2]],...} consensus_mask = np.zeros([image_rows, image_cols]) # mask for labeling # bring up information for each image for img_k in analyzed_imgs.keys(): img_v = analyzed_imgs[img_k] # skip this one if it is not of the current fov if img_v['fov'] != fov: continue # for each channel in each image make a single mask img_chnl_mask = np.zeros([image_rows, image_cols]) # and add the channel mask to it for chnl_peak, peak_ends in six.iteritems(img_v['channels']): # pull out the peak location and top and bottom location # and expand by padding (more padding done later for width) x1 = max(chnl_peak - crop_wp, 0) x2 = min(chnl_peak + crop_wp, image_cols) y1 = max(peak_ends['closed_end_px'] - chan_lp, 0) y2 = min(peak_ends['open_end_px'] + chan_lp, image_rows) # add it to the mask for this image img_chnl_mask[y1:y2, x1:x2] = 1 # add it to the consensus mask consensus_mask += img_chnl_mask # Normalize concensus mask between 0 and 1. consensus_mask = consensus_mask.astype('float32') / float(np.amax(consensus_mask)) # threshhold and homogenize each channel mask within the mask, label them # label when value is above 0.1 (so 90% occupancy), transpose. # the [0] is for the array ([1] is the number of regions) # It transposes and then transposes again so regions are labeled left to right # clear border it to make sure the channels are off the edge consensus_mask = ndi.label(consensus_mask)[0] # go through each label for label in np.unique(consensus_mask): if label == 0: # label zero is the background continue binary_core = consensus_mask == label # clean up the rough edges poscols = np.any(binary_core, axis = 0) # column positions where true (any) posrows = np.any(binary_core, axis = 1) # row positions where true (any) # channel_id givin by horizontal position # this is important. later updates to the positions will have to check # if their channels contain this median value to match up channel_id = int(np.median(np.where(poscols)[0])) # store the edge locations of the channel mask in the dictionary. Will be ints min_row = np.min(np.where(posrows)[0]) max_row = np.max(np.where(posrows)[0]) min_col = np.min(np.where(poscols)[0]) max_col = np.max(np.where(poscols)[0]) # if the min/max cols are within the image bounds, # add the mask, as 4 points, to the dictionary if min_col > 0 and max_col < image_cols: channel_masks_1fov[channel_id] = [[min_row, max_row], [min_col, max_col]] # find the largest channel width and height while you go round max_chnl_mask_len = int(max(max_chnl_mask_len, max_row - min_row)) max_chnl_mask_wid = int(max(max_chnl_mask_wid, max_col - min_col)) # add channel_mask dictionary to the fov dictionary, use copy to play it safe channel_masks[fov] = channel_masks_1fov.copy() # update all channel masks to be the max size cm_copy = channel_masks.copy() for fov, peaks in six.iteritems(channel_masks): # f_id = int(fov) for peak, chnl_mask in six.iteritems(peaks): # p_id = int(peak) # just add length to the open end (bottom of image, low column) if chnl_mask[0][1] - chnl_mask[0][0] != max_chnl_mask_len: cm_copy[fov][peak][0][1] = chnl_mask[0][0] + max_chnl_mask_len # enlarge widths around the middle, but make sure you don't get floats if chnl_mask[1][1] - chnl_mask[1][0] != max_chnl_mask_wid: wid_diff = max_chnl_mask_wid - (chnl_mask[1][1] - chnl_mask[1][0]) if wid_diff % 2 == 0: cm_copy[fov][peak][1][0] = max(chnl_mask[1][0] - wid_diff/2, 0) cm_copy[fov][peak][1][1] = min(chnl_mask[1][1] + wid_diff/2, image_cols - 1) else: cm_copy[fov][peak][1][0] = max(chnl_mask[1][0] - (wid_diff-1)/2, 0) cm_copy[fov][peak][1][1] = min(chnl_mask[1][1] + (wid_diff+1)/2, image_cols - 1) # convert all values to ints chnl_mask[0][0] = int(chnl_mask[0][0]) chnl_mask[0][1] = int(chnl_mask[0][1]) chnl_mask[1][0] = int(chnl_mask[1][0]) chnl_mask[1][1] = int(chnl_mask[1][1]) # cm_copy[fov][peak] = {'y_top': chnl_mask[0][0], # 'y_bot': chnl_mask[0][1], # 'x_left': chnl_mask[1][0], # 'x_right': chnl_mask[1][1]} # print(type(cm_copy[fov][peak][1][0]), cm_copy[fov][peak][1][0]) #save the channel mask dictionary to a pickle and a text file # with open(os.path.join(params['ana_dir'], 'channel_masks.pkl'), 'wb') as cmask_file: # pickle.dump(cm_copy, cmask_file, protocol=pickle.HIGHEST_PROTOCOL) with open(os.path.join(params['ana_dir'], 'channel_masks.txt'), 'w') as cmask_file: pprint(cm_copy, stream=cmask_file) with open(os.path.join(params['ana_dir'], 'channel_masks.yaml'), 'w') as cmask_file: yaml.dump(data=cm_copy, stream=cmask_file, default_flow_style=False, tags=None) information("Channel masks saved.") return cm_copy # get each fov_id, peak_id, frame's mask bounding box from bounding boxes arrived at by convolutional neural network def make_channel_masks_CNN(bboxes_dict): ''' The keys in this dictionary are peak_ids and the values of each is an array of shape (frameNumber,2,2): Each frameNumber's 2x2 slice of the array represents the given peak_id's [[minrow, maxrow],[mincol, maxcol]]. One important consequence of these function is that the channel ids and the size of the channel slices are decided now. Updates to mask must coordinate with these values. Parameters analyzed_imgs : dict image information created by get_params Returns channel_masks : dict dictionary of consensus channel masks. Called By mm3_Compile.py Calls ''' # initialize the new channel_masks dict channel_masks = {} # reorder elements of tuples in bboxes_dict to match [[minrow, maxrow], [mincol, maxcol]] convention above peak_ids = [peak_id for peak_id in bboxes_dict.keys()] peak_ids.sort() bbox_array = np.zeros((len(bboxes_dict[peak_ids[0]]),2,2), dtype='uint16') for peak_id in peak_ids: # get each frame's bounding boxes for the given peak_id frame_bboxes = bboxes_dict[peak_id] for frame_index in range(len(frame_bboxes)): # replace the values in bbox_array with the proper ones from frame_bboxes minrow = frame_bboxes[frame_index][0] maxrow = frame_bboxes[frame_index][2] mincol = frame_bboxes[frame_index][1] maxcol = frame_bboxes[frame_index][3] bbox_array[frame_index,0,0] = minrow bbox_array[frame_index,0,1] = maxrow bbox_array[frame_index,1,0] = mincol bbox_array[frame_index,1,1] = maxcol channel_masks[peak_id] = bbox_array return(channel_masks) ### functions about trimming, padding, and manipulating images # define function for flipping the images on an FOV by FOV basis def fix_orientation(image_data): ''' Fix the orientation. The standard direction for channels to open to is down. called by process_tif get_params ''' # user parameter indicates how things should be flipped image_orientation = params['compile']['image_orientation'] # if this is just a phase image give in an extra layer so rest of code is fine flat = False # flag for if the image is flat or multiple levels if len(image_data.shape) == 2: image_data = np.expand_dims(image_data, 0) flat = True # setting image_orientation to 'auto' will use autodetection if image_orientation == "auto": # use 'phase_plane' to find the phase plane in image_data, assuming c1, c2, c3... naming scheme here. try: ph_channel = int(re.search('[0-9]', params['phase_plane']).group(0)) - 1 except: # Pick the plane to analyze with the highest mean px value (should be phase) ph_channel = np.argmax([np.mean(image_data[ci]) for ci in range(image_data.shape[0])]) # flip based on the index of the higest average row value # this should be closer to the opening if np.argmax(image_data[ph_channel].mean(axis = 1)) < image_data[ph_channel].shape[0] / 2: image_data = image_data[:,::-1,:] else: pass # no need to do anything # flip if up is chosen elif image_orientation == "up": return image_data[:,::-1,:] # do not flip the images if "down is the specified image orientation" elif image_orientation == "down": pass if flat: image_data = image_data[0] # just return that first layer return image_data # cuts out channels from the image def cut_slice(image_data, channel_loc): '''Takes an image and cuts out the channel based on the slice location slice location is the list with the peak information, in the form [][y1, y2],[x1, x2]]. Returns the channel slice as a numpy array. The numpy array will be a stack if there are multiple planes. if you want to slice all the channels from a picture with the channel_masks dictionary use a loop like this: for channel_loc in channel_masks[fov_id]: # fov_id is the fov of the image channel_slice = cut_slice[image_pixel_data, channel_loc] # ... do something with the slice NOTE: this function will try to determine what the shape of your image is and slice accordingly. It expects the images are in the order [t, x, y, c]. It assumes images with three dimensions are [x, y, c] not [t, x, y]. ''' # case where image is in form [x, y] if len(image_data.shape) == 2: # make slice object channel_slicer = np.s_[channel_loc[0][0]:channel_loc[0][1], channel_loc[1][0]:channel_loc[1][1]] # case where image is in form [x, y, c] elif len(image_data.shape) == 3: channel_slicer = np.s_[channel_loc[0][0]:channel_loc[0][1], channel_loc[1][0]:channel_loc[1][1],:] # case where image in form [t, x , y, c] elif len(image_data.shape) == 4: channel_slicer = np.s_[:,channel_loc[0][0]:channel_loc[0][1], channel_loc[1][0]:channel_loc[1][1],:] # slice based on appropriate slicer object. channel_slice = image_data[channel_slicer] # pad y of channel if slice happened to be outside of image y_difference = (channel_loc[0][1] - channel_loc[0][0]) - channel_slice.shape[1] if y_difference > 0: paddings = [[0, 0], # t [0, y_difference], # y [0, 0], # x [0, 0]] # c channel_slice = np.pad(channel_slice, paddings, mode='edge') return channel_slice # calculate cross correlation between pixels in channel stack def channel_xcorr(fov_id, peak_id): ''' Function calculates the cross correlation of images in a stack to the first image in the stack. The output is an array that is the length of the stack with the best cross correlation between that image and the first image. The very first value should be 1. ''' pad_size = params['subtract']['alignment_pad'] # Use this number of images to calculate cross correlations number_of_images = 20 # load the phase contrast images image_data = load_stack(fov_id, peak_id, color=params['phase_plane']) # if there are more images than number_of_images, use number_of_images images evenly # spaced across the range if image_data.shape[0] > number_of_images: spacing = int(image_data.shape[0] / number_of_images) image_data = image_data[::spacing,:,:] if image_data.shape[0] > number_of_images: image_data = image_data[:number_of_images,:,:] # we will compare all images to this one, needs to be padded to account for image drift first_img = np.pad(image_data[0,:,:], pad_size, mode='reflect') xcorr_array = [] # array holds cross correlation vaues for img in image_data: # use match_template to find all cross correlations for the # current image against the first image. xcorr_array.append(np.max(match_template(first_img, img))) return xcorr_array ### functions about subtraction # average empty channels from stacks, making another TIFF stack def average_empties_stack(fov_id, specs, color='c1', align=True): '''Takes the fov file name and the peak names of the designated empties, averages them and saves the image Parameters fov_id : int FOV number specs : dict specifies whether a channel should be analyzed (1), used for making an average empty (0), or ignored (-1). color : string Which plane to use. align : boolean Flag that is passed to the worker function average_empties, indicates whether images should be aligned be for averaging (use False for fluorescent images) Returns True if succesful. Saves empty stack to analysis folder ''' information("Creating average empty channel for FOV %d." % fov_id) # get peak ids of empty channels for this fov empty_peak_ids = [] for peak_id, spec in six.iteritems(specs[fov_id]): if spec == 0: # 0 means it should be used for empty empty_peak_ids.append(peak_id) empty_peak_ids = sorted(empty_peak_ids) # sort for repeatability # depending on how many empties there are choose what to do # if there is no empty the user is going to have to copy another empty stack if len(empty_peak_ids) == 0: information("No empty channel designated for FOV %d." % fov_id) return False # if there is just one then you can just copy that channel elif len(empty_peak_ids) == 1: peak_id = empty_peak_ids[0] information("One empty channel (%d) designated for FOV %d." % (peak_id, fov_id)) # load the one phase contrast as the empties avg_empty_stack = load_stack(fov_id, peak_id, color=color) # but if there is more than one empty you need to align and average them per timepoint elif len(empty_peak_ids) > 1: # load the image stacks into memory empty_stacks = [] # list which holds phase image stacks of designated empties for peak_id in empty_peak_ids: # load data and append to list image_data = load_stack(fov_id, peak_id, color=color) empty_stacks.append(image_data) information("%d empty channels designated for FOV %d." % (len(empty_stacks), fov_id)) # go through time points and create list of averaged empties avg_empty_stack = [] # list will be later concatentated into numpy array time_points = range(image_data.shape[0]) # index is time for t in time_points: # get images from one timepoint at a time and send to alignment and averaging imgs = [stack[t] for stack in empty_stacks] avg_empty = average_empties(imgs, align=align) # function is in mm3 avg_empty_stack.append(avg_empty) # concatenate list and then save out to tiff stack avg_empty_stack = np.stack(avg_empty_stack, axis=0) # save out data if params['output'] == 'TIFF': # make new name and save it empty_filename = params['experiment_name'] + '_xy%03d_empty_%s.tif' % (fov_id, color) tiff.imsave(os.path.join(params['empty_dir'],empty_filename), avg_empty_stack, compress=4) if params['output'] == 'HDF5': h5f = h5py.File(os.path.join(params['hdf5_dir'],'xy%03d.hdf5' % fov_id), 'r+') # delete the dataset if it exists (important for debug) if 'empty_%s' % color in h5f: del h5f[u'empty_%s' % color] # the empty channel should be it's own dataset h5ds = h5f.create_dataset(u'empty_%s' % color, data=avg_empty_stack, chunks=(1, avg_empty_stack.shape[1], avg_empty_stack.shape[2]), maxshape=(None, avg_empty_stack.shape[1], avg_empty_stack.shape[2]), compression="gzip", shuffle=True, fletcher32=True) # give attribute which says which channels contribute h5ds.attrs.create('empty_channels', empty_peak_ids) h5f.close() information("Saved empty channel for FOV %d." % fov_id) return True # averages a list of empty channels def average_empties(imgs, align=True): ''' This function averages a set of images (empty channels) and returns a single image of the same size. It first aligns the images to the first image before averaging. Alignment is done by enlarging the first image using edge padding. Subsequent images are then aligned to this image and the offset recorded. These images are padded such that they are the same size as the first (padded) image but with the image in the correct (aligned) place. Edge padding is again used. The images are then placed in a stack and aveaged. This image is trimmed so it is the size of the original images Called by average_empties_stack ''' aligned_imgs = [] # list contains the aligned, padded images if align: # pixel size to use for padding (ammount that alignment could be off) pad_size = params['subtract']['alignment_pad'] for n, img in enumerate(imgs): # if this is the first image, pad it and add it to the stack if n == 0: ref_img = np.pad(img, pad_size, mode='reflect') # padded reference image aligned_imgs.append(ref_img) # otherwise align this image to the first padded image else: # find correlation between a convolution of img against the padded reference match_result = match_template(ref_img, img) # find index of highest correlation (relative to top left corner of img) y, x = np.unravel_index(np.argmax(match_result), match_result.shape) # pad img so it aligns and is the same size as reference image pad_img = np.pad(img, ((y, ref_img.shape[0] - (y + img.shape[0])), (x, ref_img.shape[1] - (x + img.shape[1]))), mode='reflect') aligned_imgs.append(pad_img) else: # don't align, just link the names to go forward easily aligned_imgs = imgs # stack the aligned data along 3rd axis aligned_imgs = np.dstack(aligned_imgs) # get a mean image along 3rd axis avg_empty = np.nanmean(aligned_imgs, axis=2) # trim off the padded edges (only if images were alinged, otherwise there was no padding) if align: avg_empty = avg_empty[pad_size:-1*pad_size, pad_size:-1*pad_size] # change type back to unsigned 16 bit not floats avg_empty = avg_empty.astype(dtype='uint16') return avg_empty # this function is used when one FOV doesn't have an empty def copy_empty_stack(from_fov, to_fov, color='c1'): '''Copy an empty stack from one FOV to another''' # load empty stack from one FOV information('Loading empty stack from FOV {} to save for FOV {}.'.format(from_fov, to_fov)) avg_empty_stack = load_stack(from_fov, 0, color='empty_{}'.format(color)) # save out data if params['output'] == 'TIFF': # make new name and save it empty_filename = params['experiment_name'] + '_xy%03d_empty_%s.tif' % (to_fov, color) tiff.imsave(os.path.join(params['empty_dir'],empty_filename), avg_empty_stack, compress=4) if params['output'] == 'HDF5': h5f = h5py.File(os.path.join(params['hdf5_dir'],'xy%03d.hdf5' % to_fov), 'r+') # delete the dataset if it exists (important for debug) if 'empty_%s' % color in h5f: del h5f[u'empty_%s' % color] # the empty channel should be it's own dataset h5ds = h5f.create_dataset(u'empty_%s' % color, data=avg_empty_stack, chunks=(1, avg_empty_stack.shape[1], avg_empty_stack.shape[2]), maxshape=(None, avg_empty_stack.shape[1], avg_empty_stack.shape[2]), compression="gzip", shuffle=True, fletcher32=True) # give attribute which says which channels contribute. Just put 0 h5ds.attrs.create('empty_channels', [0]) h5f.close() information("Saved empty channel for FOV %d." % to_fov) # Do subtraction for an fov over many timepoints def subtract_fov_stack(fov_id, specs, color='c1', method='phase'): ''' For a given FOV, loads the precomputed empty stack and does subtraction on all peaks in the FOV designated to be analyzed Parameters ---------- color : string, 'c1', 'c2', etc. This is the channel to subtraction. will be appended to the word empty. Called by mm3_Subtract.py Calls mm3.subtract_phase ''' information('Subtracting peaks for FOV %d.' % fov_id) # load empty stack feed dummy peak number to get empty avg_empty_stack = load_stack(fov_id, 0, color='empty_{}'.format(color)) # determine which peaks are to be analyzed ana_peak_ids = [] for peak_id, spec in six.iteritems(specs[fov_id]): if spec == 1: # 0 means it should be used for empty, -1 is ignore ana_peak_ids.append(peak_id) ana_peak_ids = sorted(ana_peak_ids) # sort for repeatability information("Subtracting %d channels for FOV %d." % (len(ana_peak_ids), fov_id)) # just break if there are to peaks to analize if not ana_peak_ids: return False # load images for the peak and get phase images for peak_id in ana_peak_ids: information('Subtracting peak %d.' % peak_id) image_data = load_stack(fov_id, peak_id, color=color) # make a list for all time points to send to a multiprocessing pool # list will length of image_data with tuples (image, empty) subtract_pairs = zip(image_data, avg_empty_stack) # # set up multiprocessing pool to do subtraction. Should wait until finished # pool = Pool(processes=params['num_analyzers']) # if method == 'phase': # subtracted_imgs = pool.map(subtract_phase, subtract_pairs, chunksize=10) # elif method == 'fluor': # subtracted_imgs = pool.map(subtract_fluor, subtract_pairs, chunksize=10) # pool.close() # tells the process nothing more will be added. # pool.join() # blocks script until everything has been processed and workers exit # linear loop for debug subtracted_imgs = [subtract_phase(subtract_pair) for subtract_pair in subtract_pairs] # stack them up along a time axis subtracted_stack = np.stack(subtracted_imgs, axis=0) # save out the subtracted stack if params['output'] == 'TIFF': sub_filename = params['experiment_name'] + '_xy%03d_p%04d_sub_%s.tif' % (fov_id, peak_id, color) tiff.imsave(os.path.join(params['sub_dir'],sub_filename), subtracted_stack, compress=4) # save it if fov_id==1 and peak_id<50: napari.current_viewer().add_image(subtracted_stack, name='Subtracted' + '_xy1_p'+str(peak_id)+'_sub_'+str(color)+'.tif', visible=True) if params['output'] == 'HDF5': h5f = h5py.File(os.path.join(params['hdf5_dir'],'xy%03d.hdf5' % fov_id), 'r+') # put subtracted channel in correct group h5g = h5f['channel_%04d' % peak_id] # delete the dataset if it exists (important for debug) if 'p%04d_sub_%s' % (peak_id, color) in h5g: del h5g['p%04d_sub_%s' % (peak_id, color)] h5ds = h5g.create_dataset(u'p%04d_sub_%s' % (peak_id, color), data=subtracted_stack, chunks=(1, subtracted_stack.shape[1], subtracted_stack.shape[2]), maxshape=(None, subtracted_stack.shape[1], subtracted_stack.shape[2]), compression="gzip", shuffle=True, fletcher32=True) information("Saved subtracted channel %d." % peak_id) if params['output'] == 'HDF5': h5f.close() return True # subtracts one phase contrast image from another. def subtract_phase(image_pair): '''subtract_phase aligns and subtracts a . Modified from subtract_phase_only by jt on 20160511 The subtracted image returned is the same size as the image given. It may however include data points around the edge that are meaningless but not marked. We align the empty channel to the phase channel, then subtract. Parameters image_pair : tuple of length two with; (image, empty_mean) Returns channel_subtracted : np.array The subtracted image Called by subtract_fov_stack ''' # get out data and pad cropped_channel, empty_channel = image_pair # [channel slice, empty slice] # this is for aligning the empty channel to the cell channel. ### Pad cropped channel. pad_size = params['subtract']['alignment_pad'] # pixel size to use for padding (ammount that alignment could be off) padded_chnl = np.pad(cropped_channel, pad_size, mode='reflect') # ### Align channel to empty using match template. # use match template to get a correlation array and find the position of maximum overlap match_result = match_template(padded_chnl, empty_channel) # get row and colum of max correlation value in correlation array y, x = np.unravel_index(np.argmax(match_result), match_result.shape) # pad the empty channel according to alignment to be overlayed on padded channel. empty_paddings = [[y, padded_chnl.shape[0] - (y + empty_channel.shape[0])], [x, padded_chnl.shape[1] - (x + empty_channel.shape[1])]] aligned_empty = np.pad(empty_channel, empty_paddings, mode='reflect') # now trim it off so it is the same size as the original channel aligned_empty = aligned_empty[pad_size:-1*pad_size, pad_size:-1*pad_size] ### Compute the difference between the empty and channel phase contrast images # subtract cropped cell image from empty channel. channel_subtracted = aligned_empty.astype('int32') - cropped_channel.astype('int32') # channel_subtracted = cropped_channel.astype('int32') - aligned_empty.astype('int32') # just zero out anything less than 0. This is what Sattar does channel_subtracted[channel_subtracted < 0] = 0 channel_subtracted = channel_subtracted.astype('uint16') # change back to 16bit return channel_subtracted # subtract one fluorescence image from another. def subtract_fluor(image_pair): ''' subtract_fluor does a simple subtraction of one image to another. Unlike subtract_phase, there is no alignment. Also, the empty channel is subtracted from the full channel. Parameters image_pair : tuple of length two with; (image, empty_mean) Returns channel_subtracted : np.array The subtracted image. Called by subtract_fov_stack ''' # get out data and pad cropped_channel, empty_channel = image_pair # [channel slice, empty slice] # check frame size of cropped channel and background, always keep crop channel size the same crop_size = np.shape(cropped_channel)[:2] empty_size = np.shape(empty_channel)[:2] if crop_size != empty_size: if crop_size[0] > empty_size[0] or crop_size[1] > empty_size[1]: pad_row_length = max(crop_size[0] - empty_size[0], 0) # prevent negatives pad_column_length = max(crop_size[1] - empty_size[1], 0) empty_channel = np.pad(empty_channel, [[np.int(.5*pad_row_length), pad_row_length-np.int(.5*pad_row_length)], [np.int(.5*pad_column_length), pad_column_length-np.int(.5*pad_column_length)], [0,0]], 'edge') # mm3.information('size adjusted 1') empty_size = np.shape(empty_channel)[:2] if crop_size[0] < empty_size[0] or crop_size[1] < empty_size[1]: empty_channel = empty_channel[:crop_size[0], :crop_size[1],] ### Compute the difference between the empty and channel phase contrast images # subtract cropped cell image from empty channel. channel_subtracted = cropped_channel.astype('int32') - empty_channel.astype('int32') # channel_subtracted = cropped_channel.astype('int32') - aligned_empty.astype('int32') # just zero out anything less than 0. channel_subtracted[channel_subtracted < 0] = 0 channel_subtracted = channel_subtracted.astype('uint16') # change back to 16bit return channel_subtracted ### functions that deal with segmentation and lineages # Do segmentation for an channel time stack def segment_chnl_stack(fov_id, peak_id): ''' For a given fov and peak (channel), do segmentation for all images in the subtracted .tif stack. Called by mm3_Segment.py Calls mm3.segment_image ''' information('Segmenting FOV %d, channel %d.' % (fov_id, peak_id)) # load subtracted images sub_stack = load_stack(fov_id, peak_id, color='sub_{}'.format(params['phase_plane'])) # set up multiprocessing pool to do segmentation. Will do everything before going on. #pool = Pool(processes=params['num_analyzers']) # send the 3d array to multiprocessing #segmented_imgs = pool.map(segment_image, sub_stack, chunksize=8) #pool.close() # tells the process nothing more will be added. #pool.join() # blocks script until everything has been processed and workers exit # image by image for debug segmented_imgs = [] for sub_image in sub_stack: segmented_imgs.append(segment_image(sub_image)) # stack them up along a time axis segmented_imgs = np.stack(segmented_imgs, axis=0) segmented_imgs = segmented_imgs.astype('uint8') # save out the segmented stack if params['output'] == 'TIFF': seg_filename = params['experiment_name'] + '_xy%03d_p%04d_%s.tif' % (fov_id, peak_id, params['seg_img']) tiff.imsave(os.path.join(params['seg_dir'],seg_filename), segmented_imgs, compress=5) if fov_id==1 and peak_id<50: napari.current_viewer().add_image(segmented_imgs, name='Segmented' + '_xy1_p'+str(peak_id)+'_sub_'+str(params['seg_img'])+'.tif', visible=True) if params['output'] == 'HDF5': h5f = h5py.File(os.path.join(params['hdf5_dir'],'xy%03d.hdf5' % fov_id), 'r+') # put segmented channel in correct group h5g = h5f['channel_%04d' % peak_id] # delete the dataset if it exists (important for debug) if 'p%04d_%s' % (peak_id, params['seg_img']) in h5g: del h5g['p%04d_%s' % (peak_id, params['seg_img'])] h5ds = h5g.create_dataset(u'p%04d_%s' % (peak_id, params['seg_img']), data=segmented_imgs, chunks=(1, segmented_imgs.shape[1], segmented_imgs.shape[2]), maxshape=(None, segmented_imgs.shape[1], segmented_imgs.shape[2]), compression="gzip", shuffle=True, fletcher32=True) h5f.close() information("Saved segmented channel %d." % peak_id) return True # segmentation algorithm def segment_image(image): '''Segments a subtracted image and returns a labeled image Parameters image : a ndarray which is an image. This should be the subtracted image Returns labeled_image : a ndarray which is also an image. Labeled values, which should correspond to cells, all have the same integer value starting with 1. Non labeled area should have value zero. ''' # load in segmentation parameters OTSU_threshold = params['segment']['otsu']['OTSU_threshold'] first_opening_size = params['segment']['otsu']['first_opening_size'] distance_threshold = params['segment']['otsu']['distance_threshold'] second_opening_size = params['segment']['otsu']['second_opening_size'] min_object_size = params['segment']['otsu']['min_object_size'] # threshold image try: thresh = threshold_otsu(image) # finds optimal OTSU threshhold value except: return np.zeros_like(image) threshholded = image > OTSU_threshold*thresh # will create binary image # if there are no cells, good to clear the border # because otherwise the OTSU is just for random bullshit, most # likely on the side of the image threshholded = segmentation.clear_border(threshholded) # Opening = erosion then dialation. # opening smooths images, breaks isthmuses, and eliminates protrusions. # "opens" dark gaps between bright features. morph = morphology.binary_opening(threshholded, morphology.disk(first_opening_size)) # if this image is empty at this point (likely if there were no cells), just return # zero array if np.amax(morph) == 0: return np.zeros_like(image) ### Calculate distance matrix, use as markers for random walker (diffusion watershed) # Generate the markers based on distance to the background distance = ndi.distance_transform_edt(morph) # threshold distance image distance_thresh = np.zeros_like(distance) distance_thresh[distance < distance_threshold] = 0 distance_thresh[distance >= distance_threshold] = 1 # do an extra opening on the distance distance_opened = morphology.binary_opening(distance_thresh, morphology.disk(second_opening_size)) # remove artifacts connected to image border cleared = segmentation.clear_border(distance_opened) # remove small objects. Remove small objects wants a # labeled image and will fail if there is only one label. Return zero image in that case # could have used try/except but remove_small_objects loves to issue warnings. cleared, label_num = morphology.label(cleared, connectivity=1, return_num=True) if label_num > 1: cleared = morphology.remove_small_objects(cleared, min_size=min_object_size) else: # if there are no labels, then just return the cleared image as it is zero return np.zeros_like(image) # relabel now that small objects and labels on edges have been cleared markers = morphology.label(cleared, connectivity=1) # just break if there is no label if np.amax(markers) == 0: return np.zeros_like(image) # the binary image for the watershed, which uses the unmodified OTSU threshold threshholded_watershed = threshholded threshholded_watershed = segmentation.clear_border(threshholded_watershed) # label using the random walker (diffusion watershed) algorithm try: # set anything outside of OTSU threshold to -1 so it will not be labeled markers[threshholded_watershed == 0] = -1 # here is the main algorithm labeled_image = segmentation.random_walker(-1*image, markers) # put negative values back to zero for proper image labeled_image[labeled_image == -1] = 0 except: return np.zeros_like(image) return labeled_image # loss functions for model def dice_coeff(y_true, y_pred): smooth = 1. # Flatten y_true_f = tf.reshape(y_true, [-1]) y_pred_f = tf.reshape(y_pred, [-1]) intersection = tf.reduce_sum(y_true_f * y_pred_f) score = (2. * intersection + smooth) / (tf.reduce_sum(y_true_f) + tf.reduce_sum(y_pred_f) + smooth) return score def dice_loss(y_true, y_pred): loss = 1 - dice_coeff(y_true, y_pred) return loss def bce_dice_loss(y_true, y_pred): loss = losses.binary_crossentropy(y_true, y_pred) + dice_loss(y_true, y_pred) return loss def tversky_loss(y_true, y_pred): alpha = 0.5 beta = 0.5 ones = K.ones((512,512,3)) #K.ones(K.shape(y_true)) p0 = y_pred # proba that voxels are class i p1 = ones-y_pred # proba that voxels are not class i g0 = y_true g1 = ones-y_true num = K.sum(p0*g0, (0,1,2)) den = num + alpha*K.sum(p0*g1,(0,1,2)) + beta*K.sum(p1*g0,(0,1,2)) T = K.sum(num/den) # when summing over classes, T has dynamic range [0 Ncl] Ncl = K.cast(K.shape(y_true)[-1], 'float32') return Ncl-T def cce_tversky_loss(y_true, y_pred): loss = losses.categorical_crossentropy(y_true, y_pred) + tversky_loss(y_true, y_pred) return loss def get_pad_distances(unet_shape, img_height, img_width): '''Finds padding and trimming sizes to make the input image the same as the size expected by the U-net model. Padding is done evenly to the top and bottom of the image. Trimming is only done from the right or bottom. ''' half_width_pad = (unet_shape[1]-img_width)/2 if half_width_pad > 0: left_pad = int(np.floor(half_width_pad)) right_pad = int(np.ceil(half_width_pad)) right_trim = 0 else: left_pad = 0 right_pad = 0 right_trim = img_width - unet_shape[1] half_height_pad = (unet_shape[0]-img_height)/2 if half_height_pad > 0: top_pad = int(np.floor(half_height_pad)) bottom_pad = int(np.ceil(half_height_pad)) bottom_trim = 0 else: top_pad = 0 bottom_pad = 0 bottom_trim = img_height - unet_shape[0] pad_dict = {'top_pad' : top_pad, 'bottom_pad' : bottom_pad, 'right_pad' : right_pad, 'left_pad' : left_pad, 'bottom_trim' : bottom_trim, 'right_trim' : right_trim} return pad_dict #@profile def segment_cells_unet(ana_peak_ids, fov_id, pad_dict, unet_shape, model): batch_size = params['segment']['batch_size'] cellClassThreshold = params['segment']['cell_class_threshold'] if cellClassThreshold == 'None': # yaml imports None as a string cellClassThreshold = False min_object_size = params['segment']['min_object_size'] # arguments to data generator # data_gen_args = {'batch_size':batch_size, # 'n_channels':1, # 'normalize_to_one':False, # 'shuffle':False} # arguments to predict_generator predict_args = dict(use_multiprocessing=True, workers=params['num_analyzers'], verbose=1) for peak_id in ana_peak_ids: information('Segmenting peak {}.'.format(peak_id)) img_stack = load_stack(fov_id, peak_id, color=params['phase_plane']) if params['segment']['normalize_to_one']: med_stack = np.zeros(img_stack.shape) selem = morphology.disk(1) for frame_idx in range(img_stack.shape[0]): tmpImg = img_stack[frame_idx,...] med_stack[frame_idx,...] = median(tmpImg, selem) # robust normalization of peak's image stack to 1 max_val = np.max(med_stack) img_stack = img_stack/max_val img_stack[img_stack > 1] = 1 # trim and pad image to correct size img_stack = img_stack[:, :unet_shape[0], :unet_shape[1]] img_stack = np.pad(img_stack, ((0,0), (pad_dict['top_pad'],pad_dict['bottom_pad']), (pad_dict['left_pad'],pad_dict['right_pad'])), mode='constant') img_stack = np.expand_dims(img_stack, -1) # TF expects images to be 4D # set up image generator # image_generator = CellSegmentationDataGenerator(img_stack, **data_gen_args) image_datagen = ImageDataGenerator() image_generator = image_datagen.flow(x=img_stack, batch_size=batch_size, shuffle=False) # keep same order # predict cell locations. This has multiprocessing built in but I need to mess with the parameters to see how to best utilize it. *** predictions = model.predict_generator(image_generator, **predict_args) # post processing # remove padding including the added last dimension predictions = predictions[:, pad_dict['top_pad']:unet_shape[0]-pad_dict['bottom_pad'], pad_dict['left_pad']:unet_shape[1]-pad_dict['right_pad'], 0] # pad back incase the image had been trimmed predictions = np.pad(predictions, ((0,0), (0,pad_dict['bottom_trim']), (0,pad_dict['right_trim'])), mode='constant') if params['segment']['save_predictions']: pred_filename = params['experiment_name'] + '_xy%03d_p%04d_%s.tif' % (fov_id, peak_id, params['pred_img']) if not os.path.isdir(params['pred_dir']): os.makedirs(params['pred_dir']) int_preds = (predictions * 255).astype('uint8') tiff.imsave(os.path.join(params['pred_dir'], pred_filename), int_preds, compress=4) # binarized and label (if there is a threshold value, otherwise, save a grayscale for debug) if cellClassThreshold: predictions[predictions >= cellClassThreshold] = 1 predictions[predictions < cellClassThreshold] = 0 predictions = predictions.astype('uint8') segmented_imgs = np.zeros(predictions.shape, dtype='uint8') # process and label each frame of the channel for frame in range(segmented_imgs.shape[0]): # get rid of small holes predictions[frame,:,:] = morphology.remove_small_holes(predictions[frame,:,:], min_object_size) # get rid of small objects. predictions[frame,:,:] = morphology.remove_small_objects(morphology.label(predictions[frame,:,:], connectivity=1), min_size=min_object_size) # remove labels which touch the boarder predictions[frame,:,:] = segmentation.clear_border(predictions[frame,:,:]) # relabel now segmented_imgs[frame,:,:] = morphology.label(predictions[frame,:,:], connectivity=1) else: # in this case you just want to scale the 0 to 1 float image to 0 to 255 information('Converting predictions to grayscale.') segmented_imgs = np.around(predictions * 100) # both binary and grayscale should be 8bit. This may be ensured above and is unneccesary segmented_imgs = segmented_imgs.astype('uint8') # save out the segmented stacks if params['output'] == 'TIFF': seg_filename = params['experiment_name'] + '_xy%03d_p%04d_%s.tif' % (fov_id, peak_id, params['seg_img']) tiff.imsave(os.path.join(params['seg_dir'], seg_filename), segmented_imgs, compress=4) if params['output'] == 'HDF5': h5f = h5py.File(os.path.join(params['hdf5_dir'],'xy%03d.hdf5' % fov_id), 'r+') # put segmented channel in correct group h5g = h5f['channel_%04d' % peak_id] # delete the dataset if it exists (important for debug) if 'p%04d_%s' % (peak_id, params['seg_img']) in h5g: del h5g['p%04d_%s' % (peak_id, params['seg_img'])] h5ds = h5g.create_dataset(u'p%04d_%s' % (peak_id, params['seg_img']), data=segmented_imgs, chunks=(1, segmented_imgs.shape[1], segmented_imgs.shape[2]), maxshape=(None, segmented_imgs.shape[1], segmented_imgs.shape[2]), compression="gzip", shuffle=True, fletcher32=True) h5f.close() #@profile def segment_fov_unet(fov_id, specs, model, color=None): ''' Segments the channels from one fov using the U-net CNN model. Parameters ---------- fov_id : int specs : dict model : TensorFlow model ''' information('Segmenting FOV {} with U-net.'.format(fov_id)) if color is None: color = params['phase_plane'] # load segmentation parameters unet_shape = (params['segment']['trained_model_image_height'], params['segment']['trained_model_image_width']) ### determine stitching of images. # need channel shape, specifically the width. load first for example # this assumes that all channels are the same size for this FOV, which they should for peak_id, spec in six.iteritems(specs[fov_id]): if spec == 1: break # just break out with the current peak_id img_stack = load_stack(fov_id, peak_id, color=color) img_height = img_stack.shape[1] img_width = img_stack.shape[2] pad_dict = get_pad_distances(unet_shape, img_height, img_width) # dermine how many channels we have to analyze for this FOV ana_peak_ids = [] for peak_id, spec in six.iteritems(specs[fov_id]): if spec == 1: ana_peak_ids.append(peak_id) ana_peak_ids.sort() # sort for repeatability #ana_peak_ids = ana_peak_ids[:2] segment_cells_unet(ana_peak_ids, fov_id, pad_dict, unet_shape, model) information("Finished segmentation for FOV {}.".format(fov_id)) return def segment_foci_unet(ana_peak_ids, fov_id, pad_dict, unet_shape, model): # batch_size = params['foci']['batch_size'] focusClassThreshold = params['foci']['focus_threshold'] if focusClassThreshold == 'None': # yaml imports None as a string focusClassThreshold = False # arguments to data generator data_gen_args = {'batch_size':params['foci']['batch_size'], 'n_channels':1, 'normalize_to_one':False, 'shuffle':False} # arguments to predict_generator predict_args = dict(use_multiprocessing=False, # workers=params['num_analyzers'], verbose=1) for peak_id in ana_peak_ids: information('Segmenting foci in peak {}.'.format(peak_id)) # print(peak_id) # debugging a shape error at some traps img_stack = load_stack(fov_id, peak_id, color=params['foci']['foci_plane']) # pad image to correct size img_stack = np.pad(img_stack, ((0,0), (pad_dict['top_pad'],pad_dict['bottom_pad']), (pad_dict['left_pad'],pad_dict['right_pad'])), mode='constant') img_stack = np.expand_dims(img_stack, -1) # set up image generator image_generator = FocusSegmentationDataGenerator(img_stack, **data_gen_args) # predict foci locations. predictions = model.predict_generator(image_generator, **predict_args) # post processing # remove padding including the added last dimension predictions = predictions[:, pad_dict['top_pad']:unet_shape[0]-pad_dict['bottom_pad'], pad_dict['left_pad']:unet_shape[1]-pad_dict['right_pad'], 0] if params['foci']['save_predictions']: pred_filename = params['experiment_name'] + '_xy%03d_p%04d_%s.tif' % (fov_id, peak_id, params['pred_img']) if not os.path.isdir(params['foci_pred_dir']): os.makedirs(params['foci_pred_dir']) int_preds = (predictions * 255).astype('uint8') tiff.imsave(os.path.join(params['foci_pred_dir'], pred_filename), int_preds, compress=4) # binarized and label (if there is a threshold value, otherwise, save a grayscale for debug) if focusClassThreshold: predictions[predictions >= focusClassThreshold] = 1 predictions[predictions < focusClassThreshold] = 0 predictions = predictions.astype('uint8') segmented_imgs = np.zeros(predictions.shape, dtype='uint8') # process and label each frame of the channel for frame in range(segmented_imgs.shape[0]): # get rid of small holes # predictions[frame,:,:] = morphology.remove_small_holes(predictions[frame,:,:], min_object_size) # get rid of small objects. # predictions[frame,:,:] = morphology.remove_small_objects(morphology.label(predictions[frame,:,:], connectivity=1), min_size=min_object_size) # remove labels which touch the boarder predictions[frame,:,:] = segmentation.clear_border(predictions[frame,:,:]) # relabel now segmented_imgs[frame,:,:] = morphology.label(predictions[frame,:,:], connectivity=2) else: # in this case you just want to scale the 0 to 1 float image to 0 to 255 information('Converting predictions to grayscale.') segmented_imgs = np.around(predictions * 100) # both binary and grayscale should be 8bit. This may be ensured above and is unneccesary segmented_imgs = segmented_imgs.astype('uint8') # save out the segmented stacks if params['output'] == 'TIFF': seg_filename = params['experiment_name'] + '_xy%03d_p%04d_%s.tif' % (fov_id, peak_id, params['seg_img']) tiff.imsave(os.path.join(params['foci_seg_dir'], seg_filename), segmented_imgs, compress=4) if params['output'] == 'HDF5': h5f = h5py.File(os.path.join(params['hdf5_dir'],'xy%03d.hdf5' % fov_id), 'r+') # put segmented channel in correct group h5g = h5f['channel_%04d' % peak_id] # delete the dataset if it exists (important for debug) if 'p%04d_%s' % (peak_id, params['seg_img']) in h5g: del h5g['p%04d_%s' % (peak_id, params['seg_img'])] h5ds = h5g.create_dataset(u'p%04d_%s' % (peak_id, params['seg_img']), data=segmented_imgs, chunks=(1, segmented_imgs.shape[1], segmented_imgs.shape[2]), maxshape=(None, segmented_imgs.shape[1], segmented_imgs.shape[2]), compression="gzip", shuffle=True, fletcher32=True) h5f.close() def segment_fov_foci_unet(fov_id, specs, model, color=None): ''' Segments the channels from one fov using the U-net CNN model. Parameters ---------- fov_id : int specs : dict model : TensorFlow model ''' information('Segmenting FOV {} with U-net.'.format(fov_id)) if color is None: color = params['phase_plane'] # load segmentation parameters unet_shape = (params['segment']['trained_model_image_height'], params['segment']['trained_model_image_width']) ### determine stitching of images. # need channel shape, specifically the width. load first for example # this assumes that all channels are the same size for this FOV, which they should for peak_id, spec in six.iteritems(specs[fov_id]): if spec == 1: break # just break out with the current peak_id img_stack = load_stack(fov_id, peak_id, color=color) img_height = img_stack.shape[1] img_width = img_stack.shape[2] # find padding and trimming distances pad_dict = get_pad_distances(unet_shape, img_height, img_width) # timepoints = img_stack.shape[0] # dermine how many channels we have to analyze for this FOV ana_peak_ids = [] for peak_id, spec in six.iteritems(specs[fov_id]): if spec == 1: ana_peak_ids.append(peak_id) ana_peak_ids.sort() # sort for repeatability k = segment_foci_unet(ana_peak_ids, fov_id, pad_dict, unet_shape, model) information("Finished segmentation for FOV {}.".format(fov_id)) return(k) # class for image generation for predicting cell locations in phase-contrast images class CellSegmentationDataGenerator(utils.Sequence): 'Generates data for Keras' def __init__(self, img_array, batch_size=32, n_channels=1, shuffle=False, normalize_to_one=False): 'Initialization' self.dim = (img_array.shape[1], img_array.shape[2]) self.batch_size = batch_size self.img_array = img_array self.img_number = img_array.shape[0] self.n_channels = n_channels self.shuffle = shuffle self.on_epoch_end() self.normalize_to_one = normalize_to_one if normalize_to_one: self.selem = morphology.disk(1) def __len__(self): 'Denotes the number of batches per epoch' return(int(np.ceil(self.img_number / self.batch_size))) def __getitem__(self, index): 'Generate one batch of data' # Generate indexes of the batch indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size] # Find list of IDs array_list_temp = [self.img_array[k,:,:,0] for k in indexes] # Generate data X = self.__data_generation(array_list_temp) return X def on_epoch_end(self): 'Updates indexes after each epoch' self.indexes = np.arange(self.img_number) if self.shuffle == True: np.random.shuffle(self.indexes) def __data_generation(self, array_list_temp): 'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels) # Initialization X = np.zeros((self.batch_size, self.dim[0], self.dim[1], self.n_channels)) # Generate data for i in range(self.batch_size): # Store sample try: tmpImg = array_list_temp[i] except IndexError: X = X[:i,...] break # ensure image is uint8 if tmpImg.dtype=="uint16": tmpImg = tmpImg / 2**16 * 2**8 tmpImg = tmpImg.astype('uint8') if self.normalize_to_one: with warnings.catch_warnings(): warnings.simplefilter('ignore') medImg = median(tmpImg, self.selem) tmpImg = tmpImg/np.max(medImg) tmpImg[tmpImg > 1] = 1 X[i,:,:,0] = tmpImg return (X) class TemporalCellDataGenerator(utils.Sequence): 'Generates data for Keras' def __init__(self, fileName, batch_size=32, dim=(32,32,32), n_channels=1, n_classes=10, shuffle=False, normalize_to_one=False): 'Initialization' self.dim = dim self.batch_size = batch_size self.fileName = fileName self.n_channels = n_channels self.n_classes = n_classes self.shuffle = shuffle self.on_epoch_end() self.normalize_to_one = normalize_to_one if normalize_to_one: self.selem = morphology.disk(1) def __len__(self): 'Denotes the number of batches per epoch' return int(np.ceil(self.batch_size / self.batch_size)) def __getitem__(self, index): 'Generate one batch of data' # Generate data X = self.__data_generation() return X def on_epoch_end(self): 'Updates indexes after each epoch' pass def __data_generation(self): 'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels) # Initialization X = np.zeros((self.batch_size, self.dim[0], self.dim[1], self.dim[2], self.n_channels)) full_stack = io.imread(self.fileName) if full_stack.dtype=="uint16": full_stack = full_stack / 2**16 * 2**8 full_stack = full_stack.astype('uint8') img_height = full_stack.shape[1] img_width = full_stack.shape[2] pad_dict = get_pad_distances(self.dim, img_height, img_width) full_stack = np.pad(full_stack, ((0,0), (pad_dict['top_pad'],pad_dict['bottom_pad']), (pad_dict['left_pad'],pad_dict['right_pad']) ), mode='constant') full_stack = full_stack.transpose(1,2,0) # Generate data for i in range(self.batch_size): if i == 0: tmpImg = np.zeros((self.dim[0], self.dim[1], self.dim[2], 1)) tmpImg[:,:,0,0] = full_stack[:,:,0] for j in range(1,self.dim[2]): tmpImg[:,:,j,0] = full_stack[:,:,j] elif i == (self.batch_size - 1): tmpImg = np.zeros((self.dim[0], self.dim[1], self.dim[2], 1)) tmpImg[:,:,-1,0] = full_stack[:,:,-1] for j in range(self.dim[2]-1): tmpImg[:,:,j,0] = full_stack[:,:,j] else: tmpImg = np.zeros((self.dim[0], self.dim[1], self.dim[2], 1)) tmpImg[:,:,:,0] = full_stack[:,:,(i-1):(i+2)] X[i,:,:,:,:] = tmpImg return X # class for image generation for predicting cell locations in phase-contrast images class FocusSegmentationDataGenerator(utils.Sequence): 'Generates data for Keras' def __init__(self, img_array, batch_size=32, n_channels=1, shuffle=False, normalize_to_one=False): 'Initialization' self.dim = (img_array.shape[1], img_array.shape[2]) self.batch_size = batch_size self.img_array = img_array self.img_number = img_array.shape[0] self.n_channels = n_channels self.shuffle = shuffle self.on_epoch_end() self.normalize_to_one = normalize_to_one if normalize_to_one: self.selem = morphology.disk(1) def __len__(self): 'Denotes the number of batches per epoch' return(int(np.ceil(self.img_number / self.batch_size))) def __getitem__(self, index): 'Generate one batch of data' # Generate indexes of the batch indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size] # Find list of IDs array_list_temp = [self.img_array[k,:,:,0] for k in indexes] # Generate data X = self.__data_generation(array_list_temp) return X def on_epoch_end(self): 'Updates indexes after each epoch' self.indexes = np.arange(self.img_number) if self.shuffle == True: np.random.shuffle(self.indexes) def __data_generation(self, array_list_temp): 'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels) # Initialization X = np.zeros((self.batch_size, self.dim[0], self.dim[1], self.n_channels), 'uint16') if self.normalize_to_one: max_pixels = [] # Generate data for i in range(self.batch_size): # Store sample try: tmpImg = array_list_temp[i] if self.normalize_to_one: # tmpMedian = filters.median(tmpImg, self.selem) tmpMax = np.max(tmpImg) max_pixels.append(tmpMax) except IndexError: X = X[:i,...] break # ensure image is uint8 # if tmpImg.dtype=="uint16": # tmpImg = tmpImg / 2**16 * 2**8 # tmpImg = tmpImg.astype('uint8') # if self.normalize_to_one: # with warnings.catch_warnings(): # warnings.simplefilter('ignore') # medImg = median(tmpImg, self.selem) # tmpImg = tmpImg/np.max(medImg) # tmpImg[tmpImg > 1] = 1 X[i,:,:,0] = tmpImg if self.normalize_to_one: channel_max = np.max(max_pixels) / (2**8 - 1) # print("Channel max: {}".format(channel_max)) # print("Array max: {}".format(np.max(X))) X = X/channel_max # print("Normalized array max: {}".format(np.max(X))) X[X > 1] = 1 return (X) # class for image generation for predicting trap locations in phase-contrast images class TrapSegmentationDataGenerator(utils.Sequence): 'Generates data for Keras' def __init__(self, img_array, batch_size=32, n_channels=1, normalize_to_one=False, shuffle=False): 'Initialization' self.dim = (img_array.shape[1], img_array.shape[2]) self.img_number = img_array.shape[0] self.img_array = img_array self.batch_size = batch_size self.n_channels = n_channels self.shuffle = shuffle self.on_epoch_end() self.normalize_to_one = normalize_to_one if normalize_to_one: self.selem = morphology.disk(3) def __len__(self): 'Denotes the number of batches per epoch' return int(np.ceil(self.img_number / self.batch_size)) def __getitem__(self, index): 'Generate one batch of data' # Generate indexes of the batch indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size] # Find list of IDs array_list_temp = [self.img_array[k,:,:,0] for k in indexes] # Generate data X = self.__data_generation(array_list_temp) return X def on_epoch_end(self): 'Updates indexes after each epoch' self.indexes = np.arange(self.img_number) if self.shuffle == True: np.random.shuffle(self.indexes) def __data_generation(self, array_list_temp): 'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels) # Initialization X = np.zeros((self.batch_size, self.dim[0], self.dim[1], self.n_channels)) # Generate data for i in range(self.batch_size): # Store sample try: tmpImg = array_list_temp[i] except IndexError: X = X[:i,...] break if self.normalize_to_one: medImg = median(tmpImg, self.selem) tmpImg = medImg/np.max(medImg) X[i,:,:,0] = tmpImg return (X) # class for image generation for classifying traps as good, empty, out-of-focus, or defective class TrapKymographPredictionDataGenerator(utils.Sequence): 'Generates data for Keras' def __init__(self, list_fileNames, batch_size=32, dim=(32,32,32), n_channels=1, n_classes=10, shuffle=False): 'Initialization' self.dim = dim self.batch_size = batch_size self.list_fileNames = list_fileNames self.n_channels = n_channels self.n_classes = n_classes self.shuffle = shuffle self.on_epoch_end() def __len__(self): 'Denotes the number of batches per epoch' return int(np.ceil(len(self.list_fileNames) / self.batch_size)) def __getitem__(self, index): 'Generate one batch of data' # Generate indexes of the batch indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size] # Find list of IDs list_fileNames_temp = [self.list_fileNames[k] for k in indexes] # Generate data X = self.__data_generation(list_fileNames_temp) return X def on_epoch_end(self): 'Updates indexes after each epoch' self.indexes = np.arange(len(self.list_fileNames)) if self.shuffle == True: np.random.shuffle(self.indexes) def __data_generation(self, list_fileNames_temp): 'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels) # Initialization X = np.zeros((self.batch_size, self.dim[0], self.dim[1], self.n_channels)) # Generate data for i, fName in enumerate(list_fileNames_temp): # Store sample tmpImg = io.imread(fName) tmpImgShape = tmpImg.shape if tmpImgShape[0] < self.dim[0]: t_end = tmpImgShape[0] else: t_end = self.dim[0] X[i,:t_end,:,:] = np.expand_dims(tmpImg[:t_end,:,tmpImg.shape[-1]//2], axis=-1) return X def absolute_diff(y_true, y_pred): y_true_sum = K.sum(y_true) y_pred_sum = K.sum(y_pred) diff = K.abs(y_pred_sum - y_true_sum)/tf.to_float(tf.size(y_true)) return diff def all_loss(y_true, y_pred): loss = losses.binary_crossentropy(y_true, y_pred) + dice_loss(y_true, y_pred) + absolute_diff(y_true, y_pred) return loss def absolute_dice_loss(y_true, y_pred): loss = dice_loss(y_true, y_pred) + absolute_diff(y_true, y_pred) return loss def recall_m(y_true, y_pred): true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) possible_positives = K.sum(K.round(K.clip(y_true, 0, 1))) recall = true_positives / (possible_positives + K.epsilon()) return recall def precision_m(y_true, y_pred): true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1))) precision = true_positives / (predicted_positives + K.epsilon()) return precision def f1_m(y_true, y_pred): precision = precision_m(y_true, y_pred) recall = recall_m(y_true, y_pred) return 2*((precision*recall)/(precision+recall+K.epsilon())) def f2_m(y_true, y_pred, beta=2): precision = precision_m(y_true, y_pred) recall = recall_m(y_true, y_pred) numer = (1+beta**2)*recall*precision denom = recall + (beta**2)*precision + K.epsilon() return numer/denom def f_precision_m(y_true, y_pred, beta=0.5): precision = precision_m(y_true, y_pred) recall = recall_m(y_true, y_pred) numer = (1+beta**2)*recall*precision denom = recall + (beta**2)*precision + K.epsilon() return numer/denom # finds lineages for all peaks in a fov def make_lineages_fov(fov_id, specs): ''' For a given fov, create the lineages from the segmented images. Called by mm3_Segment.py Calls mm3.make_lineage_chnl_stack ''' ana_peak_ids = [] # channels to be analyzed for peak_id, spec in six.iteritems(specs[fov_id]): if spec == 1: # 1 means analyze ana_peak_ids.append(peak_id) ana_peak_ids = sorted(ana_peak_ids) # sort for repeatability information('Creating lineage for FOV %d with %d channels.' % (fov_id, len(ana_peak_ids))) # just break if there are no peaks to analize if not ana_peak_ids: # returning empty dictionary will add nothing to current cells dictionary return {} # This is a list of tuples (fov_id, peak_id) to send to the Pool command fov_and_peak_ids_list = [(fov_id, peak_id) for peak_id in ana_peak_ids] # set up multiprocessing pool. will complete pool before going on #pool = Pool(processes=params['num_analyzers']) # create the lineages for each peak individually # the output is a list of dictionaries #lineages = pool.map(make_lineage_chnl_stack, fov_and_peak_ids_list, chunksize=8) #pool.close() # tells the process nothing more will be added. #pool.join() # blocks script until everything has been processed and workers exit # This is the non-parallelized version (useful for debug) lineages = [] for fov_and_peak_ids in fov_and_peak_ids_list: lineages.append(make_lineage_chnl_stack(fov_and_peak_ids)) # combine all dictionaries into one dictionary Cells = {} # create dictionary to hold all information for cell_dict in lineages: # for all the other dictionaries in the list Cells.update(cell_dict) # updates Cells with the entries in cell_dict return Cells # get number of cells in each frame and total number of pairwise interactions def get_cell_counts(regionprops_list): cell_count_list = [len(time_regions) for time_regions in regionprops_list] interaction_count_list = [] for i,cell_count in enumerate(cell_count_list): if i+1 == len(cell_count_list): break interaction_count_list.append(cell_count*cell_count_list[i+1]) total_cells = np.sum(cell_count_list) total_interactions = np.sum(interaction_count_list) return(total_cells, total_interactions, cell_count_list, interaction_count_list) # get cells' information for track prediction def gather_interactions_and_events(regionprops_list): total_cells, total_interactions, cell_count_list, interaction_count_list = get_cell_counts(regionprops_list) # instantiate an array with a 2x4 array for each pair of cells' # min_y, max_y, centroid_y, and area # in reality it would be much, much more efficient to # look this information up in the data generator at run time # for now, this will work pairwise_cell_data = np.zeros((total_interactions,2,5,1)) # make a dictionary, the keys of which will be row indices so that we # can quickly look up which timepoints/cells correspond to which # rows of our model's ouput pairwise_cell_lookup = {} # populate arrays interaction_count = 0 cell_count = 0 for frame, frame_regions in enumerate(regionprops_list): for region in frame_regions: cell_label = region.label y,x = region.centroid bbox = region.bbox orientation = region.orientation min_y = bbox[0] max_y = bbox[2] area = region.area cell_label = region.label cell_info = (min_y, max_y, y, area, orientation) cell_count += 1 try: frame_plus_one_regions = regionprops_list[frame+1] except IndexError as e: # print(e) break for region_plus_one in frame_plus_one_regions: paired_cell_label = region_plus_one.label y,x = region_plus_one.centroid bbox = region_plus_one.bbox min_y = bbox[0] max_y = bbox[2] area = region_plus_one.area paired_cell_label = region_plus_one.label pairwise_cell_data[interaction_count,0,:,0] = cell_info pairwise_cell_data[interaction_count,1,:,0] = (min_y, max_y, y, area, orientation) pairwise_cell_lookup[interaction_count] = {'frame':frame, 'cell_label':cell_label, 'paired_cell_label':paired_cell_label} interaction_count += 1 return(pairwise_cell_data, pairwise_cell_lookup) # look up which cells are interacting according to the track model def cell_interaction_lookup(predictions, lookup_table): ''' Accepts prediction matrix and ''' frame = [] cell_label = [] paired_cell_label = [] interaction_type = [] # loop over rows of predictions for row_index in range(predictions.shape[0]): row_predictions = predictions[row_index] row_relationship = np.where(row_predictions > 0.95)[0] if row_relationship.size == 0: continue elif row_relationship[0] == 3: continue elif row_relationship[0] == 0: interaction_type.append('migration') elif row_relationship[0] == 1: interaction_type.append('child') elif row_relationship[0] == 2: interaction_type.append('false_join') frame.append(lookup_table[row_index]['frame']) cell_label.append(lookup_table[row_index]['cell_label']) paired_cell_label.append(lookup_table[row_index]['paired_cell_label']) track_df = pd.DataFrame(data={'frame':frame, 'cell_label':cell_label, 'paired_cell_label':paired_cell_label, 'interaction_type':interaction_type}) return(track_df) def get_tracking_model_dict(): model_dict = {} if not 'migrate_model' in model_dict: model_dict['migrate_model'] = models.load_model(params['tracking']['migrate_model'], custom_objects={'all_loss':all_loss, 'f2_m':f2_m}) if not 'child_model' in model_dict: model_dict['child_model'] = models.load_model(params['tracking']['child_model'], custom_objects={'bce_dice_loss':bce_dice_loss, 'f2_m':f2_m}) if not 'appear_model' in model_dict: model_dict['appear_model'] = models.load_model(params['tracking']['appear_model'], custom_objects={'all_loss':all_loss, 'f2_m':f2_m}) if not 'die_model' in model_dict: model_dict['die_model'] = models.load_model(params['tracking']['die_model'], custom_objects={'all_loss':all_loss, 'f2_m':f2_m}) if not 'disappear_model' in model_dict: model_dict['disappear_model'] = models.load_model(params['tracking']['disappear_model'], custom_objects={'all_loss':all_loss, 'f2_m':f2_m}) if not 'born_model' in model_dict: model_dict['born_model'] = models.load_model(params['tracking']['born_model'], custom_objects={'all_loss':all_loss, 'f2_m':f2_m}) # if not 'zero_cell_model' in model_dict: # model_dict['zero_cell_model'] = models.load_model(params['tracking']['zero_cell_model'], # custom_objects={'absolute_dice_loss':absolute_dice_loss, # 'f2_m':f2_m}) # if not 'one_cell_model' in model_dict: # model_dict['one_cell_model'] = models.load_model(params['tracking']['one_cell_model'], # custom_objects={'bce_dice_loss':bce_dice_loss, # 'f2_m':f2_m}) # if not 'two_cell_model' in model_dict: # model_dict['two_cell_model'] = models.load_model(params['tracking']['two_cell_model'], # custom_objects={'all_loss':all_loss, # 'f2_m':f2_m}) # if not 'geq_three_cell_model' in model_dict: # model_dict['geq_three_cell_model'] = models.load_model(params['tracking']['geq_three_cell_model'], # custom_objects={'bce_dice_loss':bce_dice_loss, # 'f2_m':f2_m}) return(model_dict) # Creates lineage for a single channel def make_lineage_chnl_stack(fov_and_peak_id): ''' Create the lineage for a set of segmented images for one channel. Start by making the regions in the first time points potenial cells. Go forward in time and map regions in the timepoint to the potential cells in previous time points, building the life of a cell. Used basic checks such as the regions should overlap, and grow by a little and not shrink too much. If regions do not link back in time, discard them. If two regions map to one previous region, check if it is a sensible division event. Parameters ---------- fov_and_peak_ids : tuple. (fov_id, peak_id) Returns ------- Cells : dict A dictionary of all the cells from this lineage, divided and undivided ''' # load in parameters # if leaf regions see no action for longer than this, drop them lost_cell_time = params['track']['lost_cell_time'] # only cells with y positions below this value will recieve the honor of becoming new # cells, unless they are daughters of current cells new_cell_y_cutoff = params['track']['new_cell_y_cutoff'] # only regions with labels less than or equal to this value will be considered to start cells new_cell_region_cutoff = params['track']['new_cell_region_cutoff'] # get the specific ids from the tuple fov_id, peak_id = fov_and_peak_id # start time is the first time point for this series of TIFFs. start_time_index = min(params['time_table'][fov_id].keys()) information('Creating lineage for FOV %d, channel %d.' % (fov_id, peak_id)) # load segmented data image_data_seg = load_stack(fov_id, peak_id, color=params['track']['seg_img']) # image_data_seg = load_stack(fov_id, peak_id, color='seg') # Calculate all data for all time points. # this list will be length of the number of time points regions_by_time = [regionprops(label_image=timepoint) for timepoint in image_data_seg] # removed coordinates='xy' # Set up data structures. Cells = {} # Dict that holds all the cell objects, divided and undivided cell_leaves = [] # cell ids of the current leaves of the growing lineage tree # go through regions by timepoint and build lineages # timepoints start with the index of the first image for t, regions in enumerate(regions_by_time, start=start_time_index): # if there are cell leaves who are still waiting to be linked, but # too much time has passed, remove them. for leaf_id in cell_leaves: if t - Cells[leaf_id].times[-1] > lost_cell_time: cell_leaves.remove(leaf_id) # make all the regions leaves if there are no current leaves if not cell_leaves: for region in regions: if region.centroid[0] < new_cell_y_cutoff and region.label <= new_cell_region_cutoff: # Create cell and put in cell dictionary cell_id = create_cell_id(region, t, peak_id, fov_id) Cells[cell_id] = Cell(cell_id, region, t, parent_id=None) # add thes id to list of current leaves cell_leaves.append(cell_id) # Determine if the regions are children of current leaves else: ### create mapping between regions and leaves leaf_region_map = {} leaf_region_map = {leaf_id : [] for leaf_id in cell_leaves} # get the last y position of current leaves and create tuple with the id current_leaf_positions = [(leaf_id, Cells[leaf_id].centroids[-1][0]) for leaf_id in cell_leaves] # go through regions, they will come off in Y position order for r, region in enumerate(regions): # create tuple which is cell_id of closest leaf, distance current_closest = (None, float('inf')) # check this region against all positions of all current leaf regions, # find the closest one in y. for leaf in current_leaf_positions: # calculate distance between region and leaf y_dist_region_to_leaf = abs(region.centroid[0] - leaf[1]) # if the distance is closer than before, update if y_dist_region_to_leaf < current_closest[1]: current_closest = (leaf[0], y_dist_region_to_leaf) # update map with the closest region leaf_region_map[current_closest[0]].append((r, y_dist_region_to_leaf)) # go through the current leaf regions. # limit by the closest two current regions if there are three regions to the leaf for leaf_id, region_links in six.iteritems(leaf_region_map): if len(region_links) > 2: closest_two_regions = sorted(region_links, key=lambda x: x[1])[:2] # but sort by region order so top region is first closest_two_regions = sorted(closest_two_regions, key=lambda x: x[0]) # replace value in dictionary leaf_region_map[leaf_id] = closest_two_regions # for the discarded regions, put them as new leaves # if they are near the closed end of the channel discarded_regions = sorted(region_links, key=lambda x: x[1])[2:] for discarded_region in discarded_regions: region = regions[discarded_region[0]] if region.centroid[0] < new_cell_y_cutoff and region.label <= new_cell_region_cutoff: cell_id = create_cell_id(region, t, peak_id, fov_id) Cells[cell_id] = Cell(cell_id, region, t, parent_id=None) cell_leaves.append(cell_id) # add to leaves else: # since the regions are ordered, none of the remaining will pass break ### iterate over the leaves, looking to see what regions connect to them. for leaf_id, region_links in six.iteritems(leaf_region_map): # if there is just one suggested descendant, # see if it checks out and append the data if len(region_links) == 1: region = regions[region_links[0][0]] # grab the region from the list # check if the pairing makes sense based on size and position # this function returns true if things are okay if check_growth_by_region(Cells[leaf_id], region): # grow the cell by the region in this case Cells[leaf_id].grow(region, t) # there may be two daughters, or maybe there is just one child and a new cell elif len(region_links) == 2: # grab these two daughters region1 = regions[region_links[0][0]] region2 = regions[region_links[1][0]] # check_division returns 3 if cell divided, # 1 if first region is just the cell growing and the second is trash # 2 if the second region is the cell, and the first is trash # or 0 if it cannot be determined. check_division_result = check_division(Cells[leaf_id], region1, region2) if check_division_result == 3: # create two new cells and divide the mother daughter1_id = create_cell_id(region1, t, peak_id, fov_id) daughter2_id = create_cell_id(region2, t, peak_id, fov_id) Cells[daughter1_id] = Cell(daughter1_id, region1, t, parent_id=leaf_id) Cells[daughter2_id] = Cell(daughter2_id, region2, t, parent_id=leaf_id) Cells[leaf_id].divide(Cells[daughter1_id], Cells[daughter2_id], t) # remove mother from current leaves cell_leaves.remove(leaf_id) # add the daughter ids to list of current leaves if they pass cutoffs if region1.centroid[0] < new_cell_y_cutoff and region1.label <= new_cell_region_cutoff: cell_leaves.append(daughter1_id) if region2.centroid[0] < new_cell_y_cutoff and region2.label <= new_cell_region_cutoff: cell_leaves.append(daughter2_id) # 1 means that daughter 1 is just a continuation of the mother # The other region should be a leaf it passes the requirements elif check_division_result == 1: Cells[leaf_id].grow(region1, t) if region2.centroid[0] < new_cell_y_cutoff and region2.label <= new_cell_region_cutoff: cell_id = create_cell_id(region2, t, peak_id, fov_id) Cells[cell_id] = Cell(cell_id, region2, t, parent_id=None) cell_leaves.append(cell_id) # add to leaves # ditto for 2 elif check_division_result == 2: Cells[leaf_id].grow(region2, t) if region1.centroid[0] < new_cell_y_cutoff and region1.label <= new_cell_region_cutoff: cell_id = create_cell_id(region1, t, peak_id, fov_id) Cells[cell_id] = Cell(cell_id, region1, t, parent_id=None) cell_leaves.append(cell_id) # add to leaves # return the dictionary with all the cells return Cells ### Cell class and related functions # this is the object that holds all information for a detection class Detection(): ''' The Detection is a single detection in a single frame. ''' # initialize (birth) the cell def __init__(self, detection_id, region, t): '''The detection must be given a unique detection_id and passed the region information from the segmentation Parameters __________ detection_id : str detection_id is a string in the form fXpXtXrX f is 3 digit FOV number p is 4 digit peak number t is 4 digit time point r is region label for that segmentation Use the function create_detection_id to return a proper string. region : region properties object Information about the labeled region from skimage.measure.regionprops() ''' # create all the attributes # id self.id = detection_id # identification convenience self.fov = int(detection_id.split('f')[1].split('p')[0]) self.peak = int(detection_id.split('p')[1].split('t')[0]) self.t = t self.cell_count = 1 # self.abs_times = [params['time_table'][self.fov][t]] # elapsed time in seconds if region is not None: self.label = region.label self.bbox = region.bbox self.area = region.area # calculating cell length and width by using Feret Diamter. These values are in pixels length_tmp, width_tmp = feretdiameter(region) if length_tmp == None: warning('feretdiameter() failed for ' + self.id + ' at t=' + str(t) + '.') self.length = length_tmp self.width = width_tmp # calculate cell volume as cylinder plus hemispherical ends (sphere). Unit is px^3 self.volume = (length_tmp - width_tmp) * np.pi * (width_tmp/2)**2 + (4/3) * np.pi * (width_tmp/2)**3 # angle of the fit elipsoid and centroid location self.orientation = region.orientation self.centroid = region.centroid else: self.label = None self.bbox = None self.area = None # calculating cell length and width by using Feret Diamter. These values are in pixels length_tmp, width_tmp = (None, None) self.length = None self.width = None # calculate cell volume as cylinder plus hemispherical ends (sphere). Unit is px^3 self.volume = None # angle of the fit elipsoid and centroid location self.orientation = None self.centroid = None # this is the object that holds all information for a cell class Cell(): ''' The Cell class is one cell that has been born. It is not neccesarily a cell that has divided. ''' # initialize (birth) the cell def __init__(self, cell_id, region, t, parent_id=None): '''The cell must be given a unique cell_id and passed the region information from the segmentation Parameters __________ cell_id : str cell_id is a string in the form fXpXtXrX f is 3 digit FOV number p is 4 digit peak number t is 4 digit time point at time of birth r is region label for that segmentation Use the function create_cell_id to do return a proper string. region : region properties object Information about the labeled region from skimage.measure.regionprops() parent_id : str id of the parent if there is one. ''' # create all the attributes # id self.id = cell_id # identification convenience self.fov = int(cell_id.split('f')[1].split('p')[0]) self.peak = int(cell_id.split('p')[1].split('t')[0]) self.birth_label = int(cell_id.split('r')[1]) # parent id may be none self.parent = parent_id # daughters is updated when cell divides # if this is none then the cell did not divide self.daughters = None # birth and division time self.birth_time = t self.division_time = None # filled out if cell divides # the following information is on a per timepoint basis self.times = [t] self.abs_times = [params['time_table'][self.fov][t]] # elapsed time in seconds self.labels = [region.label] self.bboxes = [region.bbox] self.areas = [region.area] # calculating cell length and width by using Feret Diamter. These values are in pixels length_tmp, width_tmp = feretdiameter(region) if length_tmp == None: warning('feretdiameter() failed for ' + self.id + ' at t=' + str(t) + '.') self.lengths = [length_tmp] self.widths = [width_tmp] # calculate cell volume as cylinder plus hemispherical ends (sphere). Unit is px^3 self.volumes = [(length_tmp - width_tmp) * np.pi * (width_tmp/2)**2 + (4/3) * np.pi * (width_tmp/2)**3] # angle of the fit elipsoid and centroid location self.orientations = [region.orientation] self.centroids = [region.centroid] # these are special datatype, as they include information from the daugthers for division # computed upon division self.times_w_div = None self.lengths_w_div = None self.widths_w_div = None # this information is the "production" information that # we want to extract at the end. Some of this is for convenience. # This is only filled out if a cell divides. self.sb = None # in um self.sd = None # this should be combined lengths of daughters, in um self.delta = None self.tau = None self.elong_rate = None self.septum_position = None self.width = None self.death = None def grow(self, region, t): '''Append data from a region to this cell. use cell.times[-1] to get most current value''' self.times.append(t) self.abs_times.append(params['time_table'][self.fov][t]) self.labels.append(region.label) self.bboxes.append(region.bbox) self.areas.append(region.area) #calculating cell length and width by using <NAME> length_tmp, width_tmp = feretdiameter(region) if length_tmp == None: warning('feretdiameter() failed for ' + self.id + ' at t=' + str(t) + '.') self.lengths.append(length_tmp) self.widths.append(width_tmp) self.volumes.append((length_tmp - width_tmp) * np.pi * (width_tmp/2)**2 + (4/3) * np.pi * (width_tmp/2)**3) self.orientations.append(region.orientation) self.centroids.append(region.centroid) def die(self, region, t): ''' Annotate cell as dying from current t to next t. ''' self.death = t def divide(self, daughter1, daughter2, t): '''Divide the cell and update stats. daugther1 and daugther2 are instances of the Cell class. daughter1 is the daugther closer to the closed end.''' # put the daugther ids into the cell self.daughters = [daughter1.id, daughter2.id] # give this guy a division time self.division_time = daughter1.birth_time # update times self.times_w_div = self.times + [self.division_time] self.abs_times.append(params['time_table'][self.fov][self.division_time]) # flesh out the stats for this cell # size at birth self.sb = self.lengths[0] * params['pxl2um'] # force the division length to be the combined lengths of the daughters self.sd = (daughter1.lengths[0] + daughter2.lengths[0]) * params['pxl2um'] # delta is here for convenience self.delta = self.sd - self.sb # generation time. Use more accurate times and convert to minutes self.tau = np.float64((self.abs_times[-1] - self.abs_times[0]) / 60.0) # include the data points from the daughters self.lengths_w_div = [l * params['pxl2um'] for l in self.lengths] + [self.sd] self.widths_w_div = [w * params['pxl2um'] for w in self.widths] + [((daughter1.widths[0] + daughter2.widths[0])/2) * params['pxl2um']] # volumes for all timepoints, in um^3 self.volumes_w_div = [] for i in range(len(self.lengths_w_div)): self.volumes_w_div.append((self.lengths_w_div[i] - self.widths_w_div[i]) * np.pi * (self.widths_w_div[i]/2)**2 + (4/3) * np.pi * (self.widths_w_div[i]/2)**3) # calculate elongation rate. try: times = np.float64((np.array(self.abs_times) - self.abs_times[0]) / 60.0) log_lengths = np.float64(np.log(self.lengths_w_div)) p = np.polyfit(times, log_lengths, 1) # this wants float64 self.elong_rate = p[0] * 60.0 # convert to hours except: self.elong_rate = np.float64('NaN') warning('Elongation rate calculate failed for {}.'.format(self.id)) # calculate the septum position as a number between 0 and 1 # which indicates the size of daughter closer to the closed end # compared to the total size self.septum_position = daughter1.lengths[0] / (daughter1.lengths[0] + daughter2.lengths[0]) # calculate single width over cell's life self.width = np.mean(self.widths_w_div) # convert data to smaller floats. No need for float64 # see https://docs.scipy.org/doc/numpy-1.13.0/user/basics.types.html convert_to = 'float16' # numpy datatype to convert to self.sb = self.sb.astype(convert_to) self.sd = self.sd.astype(convert_to) self.delta = self.delta.astype(convert_to) self.elong_rate = self.elong_rate.astype(convert_to) self.tau = self.tau.astype(convert_to) self.septum_position = self.septum_position.astype(convert_to) self.width = self.width.astype(convert_to) self.lengths = [length.astype(convert_to) for length in self.lengths] self.lengths_w_div = [length.astype(convert_to) for length in self.lengths_w_div] self.widths = [width.astype(convert_to) for width in self.widths] self.widths_w_div = [width.astype(convert_to) for width in self.widths_w_div] self.volumes = [vol.astype(convert_to) for vol in self.volumes] self.volumes_w_div = [vol.astype(convert_to) for vol in self.volumes_w_div] # note the float16 is hardcoded here self.orientations = [np.float16(orientation) for orientation in self.orientations] self.centroids = [(y.astype(convert_to), x.astype(convert_to)) for y, x in self.centroids] def print_info(self): '''prints information about the cell''' print('id = %s' % self.id) print('times = {}'.format(', '.join('{}'.format(t) for t in self.times))) print('lengths = {}'.format(', '.join('{:.2f}'.format(l) for l in self.lengths))) class CellTree(): def __init__(self): self.cells = {} self.scores = [] # probably needs to be different self.score = 0 self.cell_id_list = [] def add_cell(self, cell): self.cells[cell.id] = cell self.cell_id_list.append(cell.id) self.cell_id_list.sort() def update_score(self): pass def get_cell(self, cell_id): return(self.cells[cell_id]) def get_top_from_cell(self, cell_id): pass # this is the object that holds all information for a cell class CellFromGraph(): ''' The CellFromGraph class is one cell that has been born. It is not neccesarily a cell that has divided. ''' # initialize (birth) the cell def __init__(self, cell_id, region, t, parent=None): '''The cell must be given a unique cell_id and passed the region information from the segmentation Parameters __________ cell_id : str cell_id is a string in the form fXpXtXrX f is 3 digit FOV number p is 4 digit peak number t is 4 digit time point at time of birth r is region label for that segmentation Use the function create_cell_id to do return a proper string. region : region properties object Information about the labeled region from skimage.measure.regionprops() parent_id : str id of the parent if there is one. ''' # create all the attributes # id self.id = cell_id # identification convenience self.fov = int(cell_id.split('f')[1].split('p')[0]) self.peak = int(cell_id.split('p')[1].split('t')[0]) self.birth_label = int(region.label) self.regions = [region] # parent is a CellFromGraph object, can be None self.parent = parent # daughters is updated when cell divides # if this is none then the cell did not divide self.daughters = None # birth and division time self.birth_time = t self.division_time = None # filled out if cell divides # the following information is on a per timepoint basis self.times = [t] self.abs_times = [params['time_table'][self.fov][t]] # elapsed time in seconds self.labels = [region.label] self.bboxes = [region.bbox] self.areas = [region.area] # calculating cell length and width by using Feret Diamter. These values are in pixels length_tmp, width_tmp = feretdiameter(region) if length_tmp == None: warning('feretdiameter() failed for ' + self.id + ' at t=' + str(t) + '.') self.lengths = [length_tmp] self.widths = [width_tmp] # calculate cell volume as cylinder plus hemispherical ends (sphere). Unit is px^3 self.volumes = [(length_tmp - width_tmp) * np.pi * (width_tmp/2)**2 + (4/3) * np.pi * (width_tmp/2)**3] # angle of the fit elipsoid and centroid location self.orientations = [region.orientation] self.centroids = [region.centroid] # these are special datatype, as they include information from the daugthers for division # computed upon division self.times_w_div = None self.lengths_w_div = None self.widths_w_div = None # this information is the "production" information that # we want to extract at the end. Some of this is for convenience. # This is only filled out if a cell divides. self.sb = None # in um self.sd = None # this should be combined lengths of daughters, in um self.delta = None self.tau = None self.elong_rate = None self.septum_position = None self.width = None self.death = None self.disappear = None self.area_mean_fluorescence = {} self.volume_mean_fluorescence = {} self.total_fluorescence = {} self.foci = {} def __len__(self): return(len(self.times)) def add_parent(self, parent): self.parent = parent def grow(self, region, t): '''Append data from a region to this cell. use cell.times[-1] to get most current value''' self.times.append(t) self.abs_times.append(params['time_table'][self.fov][t]) self.labels.append(region.label) self.bboxes.append(region.bbox) self.areas.append(region.area) self.regions.append(region) #calculating cell length and width by using Feret Diamter length_tmp, width_tmp = feretdiameter(region) if length_tmp == None: warning('feretdiameter() failed for ' + self.id + ' at t=' + str(t) + '.') self.lengths.append(length_tmp) self.widths.append(width_tmp) self.volumes.append((length_tmp - width_tmp) * np.pi * (width_tmp/2)**2 + (4/3) * np.pi * (width_tmp/2)**3) self.orientations.append(region.orientation) self.centroids.append(region.centroid) def die(self, region, t): ''' Annotate cell as dying from current t to next t. ''' self.death = t def disappears(self, region, t): ''' Annotate cell as disappearing from current t to next t. ''' self.disappear = t def add_daughter(self, daughter, t): if self.daughters is None: self.daughters = [daughter] else: self.daughters.append(daughter) assert len(self.daughters) < 3, "Too many daughter cells in cell {}".format(self.id) # sort daughters by y position, with smaller y-value first. # this will cause the daughter closer to the closed end of the trap to be listed first. self.daughters.sort(key=lambda cell: cell.centroids[0][0]) self.divide(t) def divide(self, t): '''Divide the cell and update stats. daughter1 is the daugther closer to the closed end.''' # put the daugther ids into the cell # self.daughters = [daughter1.id, daughter2.id] # give this guy a division time self.division_time = self.daughters[0].birth_time # update times self.times_w_div = self.times + [self.division_time] self.abs_times.append(params['time_table'][self.fov][self.division_time]) # flesh out the stats for this cell # size at birth self.sb = self.lengths[0] * params['pxl2um'] # force the division length to be the combined lengths of the daughters self.sd = (self.daughters[0].lengths[0] + self.daughters[1].lengths[0]) * params['pxl2um'] # delta is here for convenience self.delta = self.sd - self.sb # generation time. Use more accurate times and convert to minutes self.tau = np.float64((self.abs_times[-1] - self.abs_times[0]) / 60.0) # include the data points from the daughters self.lengths_w_div = [l * params['pxl2um'] for l in self.lengths] + [self.sd] self.widths_w_div = [w * params['pxl2um'] for w in self.widths] + [((self.daughters[0].widths[0] + self.daughters[1].widths[0])/2) * params['pxl2um']] # volumes for all timepoints, in um^3 self.volumes_w_div = [] for i in range(len(self.lengths_w_div)): self.volumes_w_div.append((self.lengths_w_div[i] - self.widths_w_div[i]) * np.pi * (self.widths_w_div[i]/2)**2 + (4/3) * np.pi * (self.widths_w_div[i]/2)**3) # calculate elongation rate. try: times = np.float64((np.array(self.abs_times) - self.abs_times[0]) / 60.0) # convert times to minutes log_lengths = np.float64(np.log(self.lengths_w_div)) p = np.polyfit(times, log_lengths, 1) # this wants float64 self.elong_rate = p[0] * 60.0 # convert to hours except: self.elong_rate = np.float64('NaN') warning('Elongation rate calculate failed for {}.'.format(self.id)) # calculate the septum position as a number between 0 and 1 # which indicates the size of daughter closer to the closed end # compared to the total size self.septum_position = self.daughters[0].lengths[0] / (self.daughters[0].lengths[0] + self.daughters[1].lengths[0]) # calculate single width over cell's life self.width = np.mean(self.widths_w_div) # convert data to smaller floats. No need for float64 # see https://docs.scipy.org/doc/numpy-1.13.0/user/basics.types.html convert_to = 'float16' # numpy datatype to convert to self.sb = self.sb.astype(convert_to) self.sd = self.sd.astype(convert_to) self.delta = self.delta.astype(convert_to) self.elong_rate = self.elong_rate.astype(convert_to) self.tau = self.tau.astype(convert_to) self.septum_position = self.septum_position.astype(convert_to) self.width = self.width.astype(convert_to) self.lengths = [length.astype(convert_to) for length in self.lengths] self.lengths_w_div = [length.astype(convert_to) for length in self.lengths_w_div] self.widths = [width.astype(convert_to) for width in self.widths] self.widths_w_div = [width.astype(convert_to) for width in self.widths_w_div] self.volumes = [vol.astype(convert_to) for vol in self.volumes] self.volumes_w_div = [vol.astype(convert_to) for vol in self.volumes_w_div] # note the float16 is hardcoded here self.orientations = [np.float16(orientation) for orientation in self.orientations] self.centroids = [(y.astype(convert_to), x.astype(convert_to)) for y, x in self.centroids] def add_focus(self, focus, t): '''Adds a focus to the cell. See function foci_info_unet''' self.foci[focus.id] = focus def print_info(self): '''prints information about the cell''' print('id = %s' % self.id) print('times = {}'.format(', '.join('{}'.format(t) for t in self.times))) print('lengths = {}'.format(', '.join('{:.2f}'.format(l) for l in self.lengths))) if self.daughters is not None: print('daughters = {}'.format(', '.join('{}'.format(daughter.id) for daughter in self.daughters))) if self.parent is not None: print('parent = {}'.format(self.parent.id)) def make_wide_df(self): data = {} data['id'] = self.id data['fov'] = self.fov data['trap'] = self.peak data['parent'] = self.parent data['child1'] = None data['child2'] = None data['division_time'] = self.division_time data['birth_label'] = self.birth_label data['birth_time'] = self.birth_time data['sb'] = self.sb data['sd'] = self.sd data['delta'] = self.delta data['tau'] = self.tau data['elong_rate'] = self.elong_rate data['septum_position'] = self.septum_position data['death'] = self.death data['disappear'] = self.disappear if self.daughters is not None: data['child1'] = self.daughters[0] if len(self.daughters) == 2: data['child2'] = self.daughters[1] df = pd.DataFrame(data, index=[self.id]) return(df) def make_long_df(self): data = {} data['id'] = [self.id]*len(self.times) data['times'] = self.times data['length'] = self.lengths data['volume'] = self.volumes data['area'] = self.areas # if a cell divides then there is one extra value in abs_times if self.division_time is None: data['seconds'] = self.abs_times else: data['seconds'] = self.abs_times[:-1] # if there is fluorescence data, place it into the dataframe if len(self.area_mean_fluorescence.keys()) != 0: for fluorescence_channel in self.area_mean_fluorescence.keys(): data['{}_area_mean_fluorescence'.format(fluorescence_channel)] = self.area_mean_fluorescence[fluorescence_channel] data['{}_volume_mean_fluorescence'.format(fluorescence_channel)] = self.volume_mean_fluorescence[fluorescence_channel] data['{}_total_fluorescence'.format(fluorescence_channel)] = self.total_fluorescence[fluorescence_channel] df = pd.DataFrame(data, index=data['id']) return(df) # this is the object that holds all information for a fluorescent focus # this class can eventually be used in focus tracking, much like the Cell class # is used for cell tracking class Focus(): ''' The Focus class holds information on fluorescent foci. A single focus can be present in multiple different cells. ''' # initialize the focus def __init__(self, cell, region, seg_img, intensity_image, t): '''The cell must be given a unique cell_id and passed the region information from the segmentation Parameters __________ cell : a Cell object region : region properties object Information about the labeled region from skimage.measure.regionprops() seg_img : 2D numpy array Labelled image of cell segmentations intensity_image : 2D numpy array Fluorescence image with foci ''' # create all the attributes # id focus_id = create_focus_id(region, t, cell.peak, cell.fov, experiment_name=params['experiment_name']) self.id = focus_id # identification convenience self.appear_label = int(region.label) self.regions = [region] self.fov = cell.fov self.peak = cell.peak # cell is a CellFromGraph object # cells are added later using the .add_cell method self.cells = [cell] # daughters is updated when focus splits # if this is none then the focus did not split self.parent = None self.daughters = None self.merger_partner = None # appearance and split time self.appear_time = t self.split_time = None # filled out if focus splits # the following information is on a per timepoint basis self.times = [t] self.abs_times = [params['time_table'][cell.fov][t]] # elapsed time in seconds self.labels = [region.label] self.bboxes = [region.bbox] self.areas = [region.area] # calculating focus length and width by using Feret Diamter. # These values are in pixels # NOTE: in the future, update to straighten a focus an get straightened length/width # print(region) length_tmp = region.major_axis_length width_tmp = region.minor_axis_length # length_tmp, width_tmp = feretdiameter(region) # if length_tmp == None: # warning('feretdiameter() failed for ' + self.id + ' at t=' + str(t) + '.') self.lengths = [length_tmp] self.widths = [width_tmp] # calculate focus volume as cylinder plus hemispherical ends (sphere). Unit is px^3 self.volumes = [(length_tmp - width_tmp) * np.pi * (width_tmp/2)**2 + (4/3) * np.pi * (width_tmp/2)**3] # angle of the fit elipsoid and centroid location self.orientations = [region.orientation] self.centroids = [region.centroid] # special information for focci self.elong_rate = None self.disappear = None self.area_mean_fluorescence = [] self.volume_mean_fluorescence = [] self.total_fluorescence = [] self.median_fluorescence = [] self.sd_fluorescence = [] self.disp_l = [] self.disp_w = [] self.calculate_fluorescence(seg_img, intensity_image, region) def __len__(self): return(len(self.times)) def __str__(self): return(self.print_info()) def add_cell(self, cell): self.cells.append(cell) def add_parent_focus(self, parent): self.parent = parent def merge(self, partner): self.merger_partner = partner def grow(self, region, t, seg_img, intensity_image, current_cell): '''Append data from a region to this focus. use self.times[-1] to get most current value.''' if current_cell is not self.cells[-1]: self.add_cell(current_cell) self.times.append(t) self.abs_times.append(params['time_table'][self.cells[-1].fov][t]) self.labels.append(region.label) self.bboxes.append(region.bbox) self.areas.append(region.area) self.regions.append(region) #calculating focus length and width by using Feret Diamter length_tmp = region.major_axis_length width_tmp = region.minor_axis_length # length_tmp, width_tmp = feretdiameter(region) # if length_tmp == None: # warning('feretdiameter() failed for ' + self.id + ' at t=' + str(t) + '.') self.lengths.append(length_tmp) self.widths.append(width_tmp) self.volumes.append((length_tmp - width_tmp) * np.pi * (width_tmp/2)**2 + (4/3) * np.pi * (width_tmp/2)**3) self.orientations.append(region.orientation) self.centroids.append(region.centroid) self.calculate_fluorescence(seg_img, intensity_image, region) def calculate_fluorescence(self, seg_img, intensity_image, region): total_fluor = np.sum(intensity_image[seg_img == region.label]) self.total_fluorescence.append(total_fluor) self.area_mean_fluorescence.append(total_fluor/self.areas[-1]) self.volume_mean_fluorescence.append(total_fluor/self.volumes[-1]) self.median_fluorescence.append(np.median(intensity_image[seg_img == region.label])) self.sd_fluorescence.append(np.std(intensity_image[seg_img == region.label])) # get the focus' displacement from center of cell # find x and y position relative to the whole image (convert from small box) # calculate distance of foci from middle of cell (scikit image) orientation = region.orientation if orientation < 0: orientation = np.pi+orientation cell_idx = self.cells[-1].times.index(self.times[-1]) # final time in self.times is current time cell_centroid = self.cells[-1].centroids[cell_idx] focus_centroid = region.centroid disp_y = (focus_centroid[0]-cell_centroid[0])*np.sin(orientation) - (focus_centroid[1]-cell_centroid[1])*np.cos(orientation) disp_x = (focus_centroid[0]-cell_centroid[0])*np.cos(orientation) + (focus_centroid[1]-cell_centroid[1])*np.sin(orientation) # append foci information to the list self.disp_l = np.append(self.disp_l, disp_y) self.disp_w = np.append(self.disp_w, disp_x) def disappears(self, region, t): ''' Annotate focus as disappearing from current t to next t. ''' self.disappear = t def add_daughter(self, daughter, t): if self.daughters is None: self.daughters = [daughter] else: self.daughters.append(daughter) # sort daughters by y position, with smaller y-value first. # this will cause the daughter closer to the closed end of the trap to be listed first. self.daughters.sort(key=lambda focus: focus.centroids[0][0]) self.divide(t) def divide(self, t): '''Divide the cell and update stats. daughter1 is the daugther closer to the closed end.''' # put the daugther ids into the cell # self.daughters = [daughter1.id, daughter2.id] # give this guy a division time self.split_time = self.daughters[0].appear_time # convert data to smaller floats. No need for float64 # see https://docs.scipy.org/doc/numpy-1.13.0/user/basics.types.html convert_to = 'float16' # numpy datatype to convert to self.lengths = [length.astype(convert_to) for length in self.lengths] self.widths = [width.astype(convert_to) for width in self.widths] self.volumes = [vol.astype(convert_to) for vol in self.volumes] # note the float16 is hardcoded here self.orientations = [np.float16(orientation) for orientation in self.orientations] self.centroids = [(y.astype(convert_to), x.astype(convert_to)) for y, x in self.centroids] def print_info(self): '''prints information about the focus''' print('id = %s' % self.id) print('times = {}'.format(', '.join('{}'.format(t) for t in self.times))) print('lengths = {}'.format(', '.join('{:.2f}'.format(l) for l in self.lengths))) if self.daughters is not None: print('daughters = {}'.format(', '.join('{}'.format(daughter.id) for daughter in self.daughters))) if self.cells is not None: print('cells = {}'.format([cell.id for cell in self.cells])) def make_wide_df(self): data = {} data['id'] = self.id data['cells'] = self.cells data['parent'] = self.parent data['child1'] = None data['child2'] = None # data['division_time'] = self.division_time data['appear_label'] = self.appear_label data['appear_time'] = self.appear_time data['disappear'] = self.disappear if self.daughters is not None: data['child1'] = self.daughters[0] if len(self.daughters) == 2: data['child2'] = self.daughters[1] df = pd.DataFrame(data, index=[self.id]) return(df) def make_long_df(self): data = {} data['id'] = [self.id]*len(self.times) data['time'] = self.times # data['cell'] = self.cells data['length'] = self.lengths data['volume'] = self.volumes data['area'] = self.areas data['seconds'] = self.abs_times data['area_mean_fluorescence'] = self.area_mean_fluorescence data['volume_mean_fluorescence'] = self.volume_mean_fluorescence data['total_fluorescence'] = self.total_fluorescence data['median_fluorescence'] = self.median_fluorescence data['sd_fluorescence'] = self.sd_fluorescence data['disp_l'] = self.disp_l data['disp_w'] = self.disp_w # print(data['id']) df = pd.DataFrame(data, index=data['id']) return(df) class PredictTrackDataGenerator(utils.Sequence): '''Generates data for running tracking class preditions Input is a stack of labeled images''' def __init__(self, data, batch_size=32, dim=(4,5,9)): 'Initialization' self.batch_size = batch_size self.data = data self.dim = dim self.on_epoch_end() def __len__(self): 'Denotes the number of batches per epoch' return int(np.ceil(len(self.data) / self.batch_size)) def __getitem__(self, index): 'Generate one batch of data' # Generate keys of the batch batch_indices = self.indices[index*self.batch_size:(index+1)*self.batch_size] # Generate data X = self.__data_generation(batch_indices) return X def on_epoch_end(self): 'Updates indexes after each epoch' self.indices = np.arange(len(self.data)) def __data_generation(self, batch_indices): 'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels) # Initialization # shape is (batch_size, max_cell_num, frame_num, cell_feature_num, 1) X = np.zeros((self.batch_size, self.dim[0], self.dim[1], self.dim[2], 1)) # Generate data for idx in batch_indices: start_idx = idx-2 end_idx = idx+3 # print(start_idx, end_idx) if start_idx < 0: batch_frame_list = [] for empty_idx in range(abs(start_idx)): batch_frame_list.append([]) batch_frame_list.extend(self.data[0:end_idx]) elif end_idx > len(self.data): batch_frame_list = self.data[start_idx:len(self.data)+1] for empty_idx in range(abs(end_idx - len(self.data))): batch_frame_list.extend([]) else: batch_frame_list = self.data[start_idx:end_idx] for i,frame_region_list in enumerate(batch_frame_list): # shape is (max_cell_num, frame_num, cell_feature_num) # tmp_x = np.zeros((self.dim[0], self.dim[1], self.dim[2])) if not frame_region_list: continue for region_idx, region, in enumerate(frame_region_list): y,x = region.centroid bbox = region.bbox orientation = region.orientation min_y = bbox[0] max_y = bbox[2] min_x = bbox[1] max_x = bbox[3] area = region.area length = region.major_axis_length cell_label = region.label cell_index = cell_label - 1 cell_info = (min_x, max_x, x, min_y, max_y, y, orientation, area, length) if region_idx + 1 > self.dim[0]: continue # supplement tmp_x at (region_idx, ) # tmp_x[region_idx, i, :] = cell_info X[idx, cell_index, i, :,0] = cell_info # tmp_x return X def get_greatest_score_info(first_node, second_node, graph): '''A function that is useful for track linking ''' score_names = [k for k in graph.get_edge_data(first_node, second_node).keys()] pred_scores = [val['score'] for k,val in graph.get_edge_data(first_node, second_node).items()] max_score_index = np.argmax(pred_scores) max_name = score_names[max_score_index] max_score = pred_scores[max_score_index] return(max_name, max_score) def get_score_by_type(first_node, second_node, graph, score_type='child'): '''A function useful in track linking ''' pred_score = graph.get_edge_data(first_node, second_node)[score_type]['score'] return(pred_score) def count_unvisited(G, experiment_name): count = 0 for node_id in G.nodes: if node_id.startswith(experiment_name): if not G.nodes[node_id]['visited']: count += 1 return(count) def create_lineages_from_graph(graph, graph_df, fov_id, peak_id, ): ''' This function iterates through nodes in a graph of detections to link the nodes as "CellFromGraph" objects, eventually leading to the ultimate goal of returning a CellTree object with each cell's information for the experiment. For now it ignores the number of cells in a detection and simply assumes a 1:1 relationship between detections and cell number. ''' # iterate through all nodes in graph # graph_score = 0 # track_dict = {} # tracks = CellTree() tracks = {} for node_id in graph.nodes: graph.nodes[node_id]['visited'] = False graph_df['visited'] = False num_unvisited = count_unvisited(graph, params['experiment_name']) while num_unvisited > 0: # which detection nodes are not yet visited unvisited_detection_nodes = graph_df[(~(graph_df.visited) & graph_df.node_id.str.startswith(params['experiment_name']))] # grab the first unvisited node_id from the dataframe prior_node_id = unvisited_detection_nodes.iloc[0,1] prior_node_time = graph.nodes[prior_node_id]['time'] prior_node_region = graph.nodes[prior_node_id]['region'] cell_id = create_cell_id(prior_node_region, prior_node_time, peak_id, fov_id, experiment_name=params['experiment_name']) current_cell = CellFromGraph(cell_id, prior_node_region, prior_node_time, parent=None) if not cell_id in tracks.keys(): tracks[cell_id] = current_cell else: current_cell = tracks[cell_id] # for use later in establishing predecessors current_node_id = prior_node_id # set this detection's "visited" status to True in the graph and in the dataframe graph.nodes[prior_node_id]['visited'] = True graph_df.iloc[np.where(graph_df.node_id==prior_node_id)[0][0],3] = True # build current_track list to this detection's node current_track = collections.deque() current_track.append(current_node_id) predecessors_list = [k for k in graph.predecessors(prior_node_id)] unvisited_predecessors_list = [k for k in predecessors_list if not graph.nodes[k]['visited']] while len(unvisited_predecessors_list) != 0: # initialize a scores array to select highest score from the available options predecessor_scores = np.zeros(len(unvisited_predecessors_list)) # populate array with scores for i in range(len(unvisited_predecessors_list)): predecessor_node_id = unvisited_predecessors_list[i] edge_type, edge_score = get_greatest_score_info(predecessor_node_id, current_node_id, graph) predecessor_scores[i] = edge_score # find highest score max_index = np.argmax(predecessor_scores) # grab the node_id corresponding to traversing the highest-scoring edge from the prior node current_node_id = unvisited_predecessors_list[max_index] current_track.appendleft(current_node_id) predecessors_list = [k for k in graph.predecessors(current_node_id)] unvisited_predecessors_list = [k for k in predecessors_list if not graph.nodes[k]['visited']] while prior_node_id is not 'B': # which nodes succeed our current node? successor_node_ids = [node_id for node_id in graph.successors(prior_node_id)] # keep only the potential successor detections that have not yet been visited unvisited_node_ids = [] for i,successor_node_id in enumerate(successor_node_ids): # if it starts with params['experiment_name'], it is a detection node, and not born, appear, etc. if successor_node_id.startswith(params['experiment_name']): # if it has been used in the cell track graph, i.e., if 'visited' is True, # move on. Otherwise, append to our list if graph.nodes[successor_node_id]['visited']: continue else: unvisited_node_ids.append(successor_node_id) # if it doesn't start with params['experiment_name'], it is a born, appear, etc., and should always be appended else: unvisited_node_ids.append(successor_node_id) # initialize a scores array to select highest score from the available options successor_scores = np.zeros(len(unvisited_node_ids)) successor_edge_types = [] # populate array with scores for i in range(len(unvisited_node_ids)): successor_node_id = unvisited_node_ids[i] edge_type, edge_score = get_greatest_score_info(prior_node_id, successor_node_id, graph) successor_scores[i] = edge_score successor_edge_types.append(edge_type) # find highest score max_score = np.max(successor_scores) max_index =
np.argmax(successor_scores)
numpy.argmax
import h5py import numpy as np import datetime import matplotlib.pyplot as plt from matplotlib import dates import pyresample as pr from scipy.spatial import cKDTree from pyproj import Proj from scipy.interpolate import interp1d import scipy import pandas as pd import netCDF4 def apr3tocit(apr3filename,fl,sphere_size,psd_filename_2ds,psd_filename_HVPS,query_k = 1,plotson=False,QC=False,slimfast=True,cit_aver=False,cit_aver2=False, attenuation_correct=False,O2H2O={},per_for_atten = 50, return_indices=False,BB=True,bbguess=500, cal_adj_bool = False,cal_adj=0, cloudtop=True,rollfix=True): """ ================= This function finds either the closest gate or averages over a number of gates (query_k) nearest to the citation aircraft in the radar volume of the APR3. It can return a dict of the original full length arrays and the matched arrays. ===== Vars: ===== apr3filename = str, filename of the apr hdf file fl = awot object, the citation awot object sphere_size = int, maximum distance allowed in the kdTree search psd_filename_2ds = str, filename of the processed 2DS file psd_filename_HVPS = str, filename of the processed HVPS3 file query_k = int, number of gates considered in the average (if 1, use closest) plotson = boolean, will create some premade plots that describe the matched data QC = boolean, will apply a simple QC method: eliminates any gate within 0.5 km to the surface and the outliers (plus/minus 1.5IQR) slimfast = boolean, will not save original data. Cuts down on output file size by only outputting the matched data and the citation data. cit_aver = boolean, averages the ciation data varibles using a 5 second moving average (there is overlap) cit_aver2 = boolean, averages the ciation data varibles using a 5 second discrete average (there is NO overlap) O2H20 = dict, data from sounding to correct for attenuation from O2 and H2O vapor attenuation_correct = boolean, corrects for attenuation using LWC prof and Sounding. Uses 50th percentile of LWC Prof per_for_atten = int, the percentile for the supercooled liquid water profile used in the attenuation correction. return_indeices of matches = boolean, returns the matched gates in 1d coords BB = boolean, mask gates from the BB and lower. Masks data using the BB_alt algorithm bbguess = int, give your first guess of where the Bright Band is to assist the BB_alt algorithm cal_adj_bool = bool, turn on calibration adjustment or not. cal_adj = array, array of the adjustment needed for correct calibration between frequencies. [ka_adj, w_adj] cloudtop = bool, eliminates sensativity issues with the Ku-band data (~ < 10 dBZ) by masking out the cloudtop noise using a gausian filter rollfix = bool, turn on or off the masking of data where the plane is rolling more than 10 degrees (can change the degree of degrees). ================= """ #get citation times (datetimes) cit_time = fl['time']['data'] #Eliminate BB? if BB: #Get rid of anything below the melting level + 250 m apr = apr3read(apr3filename) #there are two methods to this. One is more conservative (using mean Ku) the other more intense with LDR Ku #apr = BB_alt(apr,bbguess) #old if cloudtop: print('Removing cloudtop noise..') apr = cloudtopmask(apr) ###new BB tech 2/27/18 RJC print('Removing BB and below') apr = mask_surf(apr) apr['ldr'] = np.ma.masked_where(apr['Ku'].mask,apr['ldr']) #find bb profs bb = precip_echo_filt3D(apr['ldr'],thresh=7) ind1 = np.where(bb[12,:] == 1) #BB profiles based on LDR top_a = find_bb(apr,ind1) bb_long = extend_bb(ind1,apr['timedates'][12,:],top_a) apr['Ku'][:,:,:] = np.ma.masked_where(apr['alt_gate'][:,:,:] <= bb_long,apr['Ku'][:,:,:]) apr['Ka'] = np.ma.masked_where(apr['Ku'].mask,apr['Ka']) apr['W'] = np.ma.masked_where(apr['Ku'].mask,apr['W']) ### #correct for attenuation using SLW and Ku if attenuation_correct: print('correcting for attenuation...') apr = atten_cor3(apr,fl,per_for_atten,O2H2O,lwc_alt=False) print('corrected.') maxchange = apr['maxchange'] elif attenuation_correct: print('correcting for attenuation...') apr = atten_cor2(apr3filename,fl,per_for_atten,O2H2O,lwc_alt=False) print('corrected.') maxchange = apr['maxchange'] else: apr = apr3read(apr3filename) if cloudtop: print('Removing cloudtop noise..') apr = cloudtopmask(apr) if cal_adj_bool: print('adding calibration means...') # These values come from the analysis preformed by 3 reasearch groups: NASA JPL, University of Leister, and the University of Illinois. Techniques use sigma_0 of the ocean surface, comparision of frequencies at low Z and numerical simulations of particles.(error/uncertainty:+- 0.5 dB) apr['Ku'] = apr['Ku'] + 0.8 apr['Ka'] = apr['Ka'] + 1 #Whh is the only one with a time varient calibration adjustment apr['W'] = apr['W'] + cal_adj #While calibrating the data, radar artifacts showed up when the roll of the aircraft was > 10degrees. if rollfix: roll = apr['roll'] roll3d = np.zeros(apr['Ku'].shape) for i in np.arange(0,apr['Ku'].shape[1]): for j in np.arange(0,apr['Ku'].shape[2]): roll3d[:,i,j] = roll[i,j] apr['Ku'] = np.ma.masked_where(np.abs(roll3d) > 10, apr['Ku']) apr['Ka'] = np.ma.masked_where(np.abs(roll3d) > 10, apr['Ka']) apr['W'] = np.ma.masked_where(np.abs(roll3d) > 10, apr['W']) #Get APR3 times (datetimes) time_dates = apr['timedates'][:,:] #fix a few radar files where w-band disapears if time_dates[12,0] >= datetime.datetime(2015,12,18,6,58): for i in np.arange(0,time_dates.shape[0]): for j in np.arange(0,550): temp = np.ma.masked_where(time_dates[12,:] >= datetime.datetime(2015,12,18,7,6),apr['W'][j,i,:]) apr['W'][j,i,:] = temp if time_dates[12,0] >= datetime.datetime(2015,12,1,23,43,48) and time_dates[12,0] <=datetime.datetime(2015,12,1,23,43,49): for i in np.arange(0,time_dates.shape[0]): for j in np.arange(0,550): temp = np.ma.masked_where(time_dates[12,:] >= datetime.datetime(2015,12,2,0,1,40),apr['W'][j,i,:]) apr['W'][j,i,:] = temp #Check if radar file is large enought to use (50 gates is arbitrary) if time_dates[12,:].shape[0] < 50: print('Limited radar gates in time') #return # #Load PSD dtime_psd,ND,dD,midpoints = PSD_load(psd_filename_2ds,psd_filename_HVPS,day = time_dates[0,0].day,month=time_dates[0,0].month) # #Make ND a masked array (i.e. get rid of nans from loading it in) ind = np.isnan(ND) ND = np.ma.masked_where(ind,ND) #for plotting routine fontsize=14 # #Varibles needed for the kdtree leafsize = 16 query_eps = 0 query_p=2 query_distance_upper_bound = sphere_size query_n_jobs =1 Barnes = True K_d = sphere_size # #Pre-Determine arrays Ku_gate = np.ma.array([]) Ka_gate = np.ma.array([]) W_gate = np.ma.array([]) DFR_gate = np.ma.array([]) DFR2_gate = np.ma.array([]) DFR3_gate = np.ma.array([]) lon_c = np.ma.array([]) lat_c = np.ma.array([]) alt_c = np.ma.array([]) t_c = np.ma.array([]) lon_r = np.ma.array([]) lat_r = np.ma.array([]) alt_r = np.ma.array([]) t_r = np.ma.array([]) dis_r = np.ma.array([]) ind_r = np.ma.array([]) conc_hvps3 = np.ma.array([]) T_c = np.ma.array([]) lwc_c = np.ma.array([]) ice_c = np.ma.array([]) cdp_c = np.ma.array([]) twc_c = np.ma.array([]) iwc_c = np.ma.array([]) # #Set reference point (Currently Mount Olympus, Washington) lat_0 = 47.7998 lon_0 = -123.7066 # #Set up map projection to calculate cartesian distances p = Proj(proj='laea', zone=10, ellps='WGS84', lat_0=lat_0, lon_0=lon_0) # #make a 1d array of times and find radar start and end times td = np.ravel(time_dates) datestart = td[0] dateend = td[td.shape[0]-1] # #Expand apr3 time to plus/minus 4 mins (added 11/8/17) 4 minutes is arbitrary, but what I used for 'good' matches. datestart = datestart - datetime.timedelta(minutes=4) dateend = dateend + datetime.timedelta(minutes=4) # #Constrain Citation data to radar time ind = np.where(cit_time > datestart) ind2 = np.where(cit_time < dateend) ind3 = np.intersect1d(ind,ind2) cit_time2 = fl['time']['data'][ind3] cit_lon = fl['longitude']['data'][ind3] cit_lat = fl['latitude']['data'][ind3] cit_alt = fl['altitude']['data'][ind3] bigins = 0 # #Average Citation data if cit_aver: #Moving average tech. temp1 = fl['temperature']['data'] temp2 = fl['lwc1']['data'] temp3 = fl['mso_frequency']['data'] temp4 = fl['Conc_CDP']['data'] temp5 = fl['twc']['data'] temp6 = fl['Nev_IWC']['data'] temp7 = fl['dewpoint_temperature1']['data'] temp8 = fl['Wwind']['data'] temp9 = fl['static_pressure']['data'] temp10 = fl['mixing_ratio']['data'] temp11 = fl['Uwind']['data'] temp12 = fl['Vwind']['data'] nsecs = 2 indarray1 = ind3 - nsecs indarray2 = ind3 + nsecs + 1 temperature_1 = np.ma.zeros(len(ind3)) lwc = np.ma.zeros(len(ind3)) ice = np.ma.zeros(len(ind3)) cdp = np.ma.zeros(len(ind3)) twc = np.ma.zeros(len(ind3)) iwc = np.ma.zeros(len(ind3)) td = np.ma.zeros(len(ind3)) w = np.ma.zeros(len(ind3)) P = np.ma.zeros(len(ind3)) mix = np.ma.zeros(len(ind3)) U = np.ma.zeros(len(ind3)) V = np.ma.zeros(len(ind3)) for i in np.arange(0,len(ind3)): temperature_1[i] = np.ma.mean(temp1[indarray1[i]:indarray2[i]]) lwc[i] = np.ma.mean(temp2[indarray1[i]:indarray2[i]]) ice[i] = np.ma.mean(temp3[indarray1[i]:indarray2[i]]) cdp[i] = np.ma.mean(temp4[indarray1[i]:indarray2[i]]) twc[i] = np.ma.mean(temp5[indarray1[i]:indarray2[i]]) iwc[i] = np.ma.mean(temp6[indarray1[i]:indarray2[i]]) td[i] = np.ma.mean(temp7[indarray1[i]:indarray2[i]]) w[i] = np.ma.mean(temp8[indarray1[i]:indarray2[i]]) P[i] = np.ma.mean(temp9[indarray1[i]:indarray2[i]]) mix[i] = np.ma.mean(temp10[indarray1[i]:indarray2[i]]) U[i] = np.ma.mean(temp11[indarray1[i]:indarray2[i]]) V[i] = np.ma.mean(temp12[indarray1[i]:indarray2[i]]) #Find average N(D) ND_sub_a = np.ma.zeros(ND[0,:].shape) ND_aver = np.ma.zeros([ind3.shape[0],ND[0,:].shape[0]]) for i in np.arange(0,ind3.shape[0]): if indarray2[i] > ND.shape[0]: print('indarray4 is too big') break ND_sub = ND[indarray1[i]:indarray2[i],:] ind = np.where(ND_sub < 0) ND_sub[ind] = np.ma.masked for j in np.arange(ND.shape[1]): ND_sub_a[j] = np.ma.mean(ND_sub[:,j]) ND_aver[i,:] = ND_sub_a elif cit_aver2: #Discrete average tech. temp1 = fl['temperature']['data'][ind3] temp2 = fl['lwc1']['data'][ind3] temp3 = fl['mso_frequency']['data'][ind3] temp4 = fl['Conc_CDP']['data'][ind3] temp5 = fl['twc']['data'][ind3] temp6 = fl['Nev_IWC']['data'][ind3] temp7 = fl['dewpoint_temperature1']['data'][ind3] temp8 = fl['Wwind']['data'][ind3] temp9 = fl['static_pressure']['data'][ind3] temp10 = fl['mixing_ratio']['data'][ind3] temp11 = fl['Uwind']['data'][ind3] temp12 = fl['Vwind']['data'][ind3] ND = ND[ind3,:] max_dtime = cit_time2.max() min_dtime = cit_time2.min() total_seconds = max_dtime-min_dtime total_seconds = total_seconds.total_seconds() dtime_1s = np.zeros(int(total_seconds)-1,dtype=object) its = dtime_1s.shape[0]/5. dtime_5s = np.zeros(int(its),dtype=object) array = np.ma.zeros(int(its)) array2 = np.ma.zeros(int(its)) array3 = np.ma.zeros(int(its)) array4 = np.ma.zeros(int(its)) array5 = np.ma.zeros(int(its)) array6 = np.ma.zeros(int(its)) array7 = np.ma.zeros(int(its)) array8 = np.ma.zeros(int(its)) array9 = np.ma.zeros(int(its)) array10 = np.ma.zeros(int(its)) array11 = np.ma.zeros(int(its)) array12 = np.ma.zeros(int(its)) array13 = np.ma.zeros(int(its)) array14 = np.ma.zeros(int(its)) array15 = np.ma.zeros(int(its)) #create dtime_array monotonic increase but 5 seconds for i in np.arange(0,int(its)): dtime_5s[i] = min_dtime + datetime.timedelta(seconds = i*5) print('time averaging into 5 second averages...') for i in np.arange(1,dtime_5s.shape[0]): time_left = dtime_5s[i-1] time_right = dtime_5s[i] ind = np.where(cit_time2 >= time_left) ind2 = np.where(cit_time2 < time_right) ind3 = np.intersect1d(ind,ind2) if len(ind3) >= 1: temp = temp1[ind3] array[i-1] = np.ma.mean(temp) temp = temp2[ind3] array2[i-1] = np.ma.mean(temp) temp = temp3[ind3] array3[i-1] = np.ma.mean(temp) temp = temp4[ind3] array4[i-1] = np.ma.mean(temp) temp = temp5[ind3] array5[i-1] = np.ma.mean(temp) temp = temp6[ind3] array6[i-1] = np.ma.mean(temp) temp = temp7[ind3] array7[i-1] = np.ma.mean(temp) temp = temp8[ind3] array8[i-1] = np.ma.mean(temp) temp = temp9[ind3] array9[i-1] = np.ma.mean(temp) temp = temp10[ind3] array10[i-1] = np.ma.mean(temp) temp = temp11[ind3] array11[i-1] = np.ma.mean(temp) temp = temp12[ind3] array12[i-1] = np.ma.mean(temp) temp = cit_lat[ind3] array13[i-1] = np.ma.mean(temp) temp = cit_lon[ind3] array14[i-1] = np.ma.mean(temp) temp = cit_alt[ind] array15[i-1] = np.ma.mean(temp) else: array[i-1] = np.ma.masked array2[i-1] = np.ma.masked array3[i-1] = np.ma.masked array4[i-1] = np.ma.masked array5[i-1] = np.ma.masked array6[i-1] =np.ma.masked array7[i-1] = np.ma.masked array8[i-1] = np.ma.masked array9[i-1] = np.ma.masked array10[i-1] = np.ma.masked array11[i-1] = np.ma.masked array12[i-1] = np.ma.masked array13[i-1] = np.ma.masked array14[i-1] = np.ma.masked array15[i-1] = np.ma.masked continue #pre-allocate arrays ND_sub_a = np.ma.zeros(ND[0,:].shape) ND_aver = np.ma.zeros([dtime_5s.shape[0],ND[0,:].shape[0]]) # ind = np.where(ND < 0) ND[ind] = np.ma.masked for i in np.arange(1,dtime_5s.shape[0]): time_left = dtime_5s[i-1] time_right = dtime_5s[i] ind = np.where(cit_time2 >= time_left) ind2 = np.where(cit_time2 < time_right) ind3 = np.intersect1d(ind,ind2) if len(ind3) >= 1: ND_sub = ND[ind3,:] for j in np.arange(ND.shape[1]): ND_sub_a[j] = np.ma.mean(ND_sub[:,j]) ND_aver[i-1,:] = ND_sub_a else: ND_aver[i-1,:] = np.ma.masked #get rid of last point (less than 5 obs needed for average) temperature_1 = array[:-1] lwc = array2[:-1] ice = array3[:-1] cdp = array4[:-1] twc = array5[:-1] iwc = array6[:-1] td = array7[:-1] w = array8[:-1] P = array9[:-1] mix = array10[:-1] U = array11[:-1] V = array12[:-1] cit_lat = array13[:-1] cit_lon = array14[:-1] cit_alt = array15[:-1] ND_aver = ND_aver[:-1,:] #In reality our time should be the midpoint of each time interval. I will add 2.5 seconds to the 5s array cit_time2 = dtime_5s[:-1] + datetime.timedelta(seconds=2.5) #get rid of masked spatial cit data. Kd tree doesnt liked masked values (i.e. fill_values sneak in) ind = cit_lon.mask cit_lon = cit_lon[~ind] cit_lat = cit_lat[~ind] cit_alt = cit_alt[~ind] cit_time2 = cit_time2[~ind] temperature_1 = temperature_1[~ind] lwc = lwc[~ind] ice = ice[~ind] cdp = cdp[~ind] twc = twc[~ind] iwc = iwc[~ind] td = td[~ind] w = w[~ind] P = P[~ind] mix = mix[~ind] U = U[~ind] V = V[~ind] ND_aver = ND_aver[~ind,:] ind = cit_lat.mask cit_lon = cit_lon[~ind] cit_lat = cit_lat[~ind] cit_alt = cit_alt[~ind] cit_time2 = cit_time2[~ind] temperature_1 = temperature_1[~ind] lwc = lwc[~ind] ice = ice[~ind] cdp = cdp[~ind] twc = twc[~ind] iwc = iwc[~ind] td = td[~ind] w = w[~ind] P = P[~ind] mix = mix[~ind] U = U[~ind] V = V[~ind] ND_aver = ND_aver[~ind,:] ind = cit_alt.mask cit_lon = cit_lon[~ind] cit_lat = cit_lat[~ind] cit_alt = cit_alt[~ind] cit_time2 = cit_time2[~ind] temperature_1 = temperature_1[~ind] lwc = lwc[~ind] ice = ice[~ind] cdp = cdp[~ind] twc = twc[~ind] iwc = iwc[~ind] td = td[~ind] w = w[~ind] P = P[~ind] mix = mix[~ind] U = U[~ind] V = V[~ind] ND_aver = ND_aver[~ind,:] else: #no averaging tech. temperature_1 = fl['temperature']['data'][ind3] lwc = fl['lwc1']['data'][ind3] ice = fl['mso_frequency']['data'][ind3] cdp = fl['Conc_CDP']['data'][ind3] twc = fl['twc']['data'][ind3] iwc = fl['Nev_IWC']['data'][ind3] td = fl['dewpoint_temperature1']['data'][ind3] w = fl['Wwind']['data'][ind3] P = fl['static_pressure']['data'][ind3] mix = fl['mixing_ratio']['data'][ind3] U = fl['Uwind']['data'][ind3] V = fl['Vwind']['data'][ind3] ND = ND[ind3,:] # # ND is in cm**-4 and dD+midpoints is in mm #Find the echotop of Ku at near nadir print('finding Ku echotop and constraining Cit...') precip_yn = precip_echo_filt(apr['Ku'][:,12,:]) ind = np.where(precip_yn ==1) ku_filt = np.squeeze(apr['Ku'][:,12,ind]) alt_filt = np.squeeze(apr['alt_gate'][:,12,ind]) echo = find_echo(ku_filt,alt_filt) scan = 12 lat_0 = apr['lat'][scan,0] lon_0 = apr['lon'][scan,0] p2 = Proj(proj='laea', zone=10, ellps='WGS84', lat_0=lat_0, lon_0=lon_0) x = apr['lon_gate'][:,scan,:] y = apr['lat_gate'][:,scan,:] x2,y2 = p2(x,y) x3,y3 = p2(lon_0,lat_0) x_c,y_c = p2(cit_lon,cit_lat) alt_c = cit_alt x4 = np.array([]) y4 = np.array([]) x2_c = np.array([]) y2_c = np.array([]) for j in np.arange(0,x2.shape[1]): x4 = np.append(x4,x2[0,j]-x3) y4 = np.append(y4,y2[0,j]-y3) for j in np.arange(0,x_c.shape[0]): x2_c = np.append(x2_c,x_c[j]-x3) y2_c = np.append(y2_c,y_c[j]-y3) R = np.sqrt(x4**2+y4**2)/1000. R_c = np.sqrt(x2_c**2+y2_c**2)/1000. R_echo = R[ind] echo_func = interp1d(R_echo,echo,kind='cubic',bounds_error=False) echo_c = echo_func(R_c) ind = np.where(alt_c <= echo_c + 50) #can change this threshold, just arbitrary cit_lon = cit_lon[ind] cit_lat = cit_lat[ind] cit_alt = cit_alt[ind] cit_time2 = cit_time2[ind] temperature_1 = temperature_1[ind] lwc = lwc[ind] ice = ice[ind] cdp = cdp[ind] twc = twc[ind] iwc = iwc[ind] td = td[ind] w = w[ind] P = P[ind] mix = mix[ind] U = U[ind] V = V[ind] ND_aver = np.squeeze(ND_aver[ind,:]) R_c = R_c[ind] echo_c = echo_c[ind] # if BB: print('Constraining Cit above BB..') bb_func = interp1d(R,bb_long,kind='cubic',bounds_error=False) bb_c = bb_func(R_c) ind = np.where(cit_alt >= bb_c - 100) #can change this threshold, just arbitrary cit_lon = cit_lon[ind] cit_lat = cit_lat[ind] cit_alt = cit_alt[ind] cit_time2 = cit_time2[ind] temperature_1 = temperature_1[ind] lwc = lwc[ind] ice = ice[ind] cdp = cdp[ind] twc = twc[ind] iwc = iwc[ind] td = td[ind] w = w[ind] P = P[ind] mix = mix[ind] U = U[ind] V = V[ind] ND_aver = np.squeeze(ND_aver[ind,:]) R_c = R_c[ind] echo_c = echo_c[ind] # #Mask out warmer than 0 (i.e. when particles melt) ind = np.where(temperature_1 > 0) ND_aver[ind,:] = np.ma.masked # #Calculate some PSD parameters (could add other things here, i.e. running IGF for Mu,lambda and N0) rho_tot2,iwc_HY = rho_e(midpoints/10.,dD/10.,ND_aver,np.zeros(ND_aver.shape),2,2,twc,return_ice=True) #HYs rho_tot3,iwc_BF = rho_e(midpoints/10.,dD/10.,ND_aver,np.zeros(ND_aver.shape),2,3,twc,return_ice=True) #BF rho_tot4 = rho_e(midpoints/10.,dD/10.,ND_aver,np.zeros(ND_aver.shape),2,4,twc) #BF dmm_BF = Dmm(ND_aver*1e8,midpoints/1000.,dD/1000.,0) dmm_HY = Dmm(ND_aver*1e8,midpoints/1000.,dD/1000.,1) # rho_tot2 = 0 # rho_tot3 =0 # dmm_BF = Dmm(ND_aver/1e8,midpoints/1000.,dD/1000.,0) # dmm_HY = Dmm(ND_aver/1e8,midpoints/1000.,dD/1000.,1) # #Print out number of potential match points print(cit_lon.shape) # #Make 1-D arrays of radar spatial data apr_x = np.ravel(apr['lon_gate'][:,:,:]) apr_y = np.ravel(apr['lat_gate'][:,:,:]) apr_alt = np.ravel(apr['alt_gate'][:,:,:]) apr_t = np.ravel(apr['time_gate'][:,:,:]) # #Make 1-D arrays of radar data apr_ku = np.ma.ravel(apr['Ku'][:,:,:]) apr_ka = np.ma.ravel(apr['Ka'][:,:,:]) apr_w = np.ma.ravel(apr['W'][:,:,:]) # #If you want to neglect masked gates throw them out here (Speeds things up and gives better results) #ku ind = apr_ku.mask apr_x = apr_x[~ind] apr_y = apr_y[~ind] apr_alt = apr_alt[~ind] apr_t = apr_t[~ind] apr_ku = apr_ku[~ind] apr_ka = apr_ka[~ind] apr_w = apr_w[~ind] #ka ind = apr_ka.mask apr_x = apr_x[~ind] apr_y = apr_y[~ind] apr_alt = apr_alt[~ind] apr_t = apr_t[~ind] apr_ku = apr_ku[~ind] apr_ka = apr_ka[~ind] apr_w = apr_w[~ind] #w ind = apr_w.mask apr_x = apr_x[~ind] apr_y = apr_y[~ind] apr_alt = apr_alt[~ind] apr_t = apr_t[~ind] apr_ku = apr_ku[~ind] apr_ka = apr_ka[~ind] apr_w = apr_w[~ind] # #Use projection to get cartiesian distances apr_x2,apr_y2 = p(apr_x,apr_y) cit_x2,cit_y2 = p(cit_lon,cit_lat) # #Kdtree things (this is where the matchups are found) kdt = cKDTree(zip(apr_x2, apr_y2, apr_alt), leafsize=leafsize) prdistance, prind1d = kdt.query(zip(cit_x2,cit_y2,cit_alt),k=query_k, eps=query_eps, p=query_p, distance_upper_bound=query_distance_upper_bound,n_jobs=query_n_jobs) # #if query_k >1 means you are considering more than one gate and an average is needed if query_k > 1: #Issue with prind1d being the size of apr_ku... that means that it is outside you allowed upperbound (sphere_size) ind = np.where(prind1d == apr_ku.shape[0]) if len(ind[0]) > 0 or len(ind[1]) > 0: print('gate was outside distance upper bound, eliminating those instances') #mask values outside search area. Actually setting values to 0? # prind1d = np.ma.masked_where(prind1d == apr_ku.shape[0],prind1d) # prdistance = np.ma.masked_where(prind1d == apr_ku.shape[0],prdistance) prind1d[ind] = np.ma.masked prdistance[ind] = np.ma.masked if QC: #Eliminate observations that are outliers before averaging the data (i.e. get rid of skin paints) Ku_sub = apr_ku[prind1d] Ku_sub = np.ma.masked_where(prind1d == 0,Ku_sub) Q_med = np.array([]) Q_max = np.array([]) Q_min = np.array([]) Q_1 = np.array([]) Q_2 = np.array([]) n_1 = np.array([]) for i in np.arange(Ku_sub.shape[0]): kk = Ku_sub[i,:] numberofmasks = kk.mask kk = kk[~numberofmasks] if len(kk) < 1: Q_med = np.append(Q_med,np.nan) Q_max = np.append(Q_max,np.nan) Q_min = np.append(Q_min,np.nan) Q_1 = np.append(Q_1,np.nan) Q_2 = np.append(Q_2,np.nan) n_1 = np.append(n_1,0) continue Q = np.nanpercentile(kk,[0,10,25,50,75,90,100]) Q_med = np.append(Q_med,Q[3]) Q_max = np.append(Q_max,Q[6]) Q_min = np.append(Q_min,Q[0]) Q_1 = np.append(Q_1,Q[2]) Q_2 = np.append(Q_2,Q[4]) numberofmasks = np.isnan(kk) kk = kk[~numberofmasks] #print(notmask) notmask = kk.shape[0] n_1 = np.append(n_1,notmask) IQR = Q_2 - Q_1 outlierup = Q_2 + 1.5*IQR outlierdown = Q_1- 1.5*IQR IQR_ku = IQR Ku_sub = apr_ku[prind1d] Ku_sub = np.ma.masked_where(prind1d == 0,Ku_sub) for i in np.arange(Ku_sub.shape[0]): Ku_subsub = Ku_sub[i,:] Ku_subsub = np.ma.masked_where(Ku_subsub >= outlierup[i],Ku_subsub) Ku_sub[i,:] = Ku_subsub Ka_sub = apr_ka[prind1d] Ka_sub = np.ma.masked_where(prind1d == 0,Ka_sub) Q_med = np.array([]) Q_max = np.array([]) Q_min = np.array([]) Q_1 = np.array([]) Q_2 = np.array([]) n_2 = np.array([]) for i in np.arange(Ka_sub.shape[0]): kk = Ka_sub[i,:] numberofmasks = kk.mask kk = kk[~numberofmasks] if len(kk) < 1: Q_med = np.append(Q_med,np.nan) Q_max = np.append(Q_max,np.nan) Q_min = np.append(Q_min,np.nan) Q_1 = np.append(Q_1,np.nan) Q_2 = np.append(Q_2,np.nan) n_2 = np.append(n_2,0) continue Q = np.nanpercentile(kk,[0,10,25,50,75,90,100]) Q_med = np.append(Q_med,Q[3]) Q_max = np.append(Q_max,Q[6]) Q_min = np.append(Q_min,Q[0]) Q_1 = np.append(Q_1,Q[2]) Q_2 = np.append(Q_2,Q[4]) numberofmasks = np.isnan(kk) kk = kk[~numberofmasks] notmask = kk.shape[0] n_2 = np.append(n_2,notmask) IQR = Q_2 - Q_1 outlierup = Q_2 + 1.5*IQR outlierdown = Q_1- 1.5*IQR IQR_ka = IQR Ka_sub = apr_ka[prind1d] Ka_sub = np.ma.masked_where(prind1d == 0,Ka_sub) for i in np.arange(Ka_sub.shape[0]): Ka_subsub = Ka_sub[i,:] Ka_subsub = np.ma.masked_where(Ka_subsub >= outlierup[i],Ka_subsub) Ka_sub[i,:] = Ka_subsub W_sub = apr_w[prind1d] W_sub = np.ma.masked_where(prind1d == 0,W_sub) Q_med = np.array([]) Q_max = np.array([]) Q_min = np.array([]) Q_1 = np.array([]) Q_2 = np.array([]) n_3 = np.array([]) for i in np.arange(W_sub.shape[0]): kk = W_sub[i,:] numberofmasks = kk.mask kk = kk[~numberofmasks] if len(kk) < 1: Q_med = np.append(Q_med,np.nan) Q_max = np.append(Q_max,np.nan) Q_min = np.append(Q_min,np.nan) Q_1 = np.append(Q_1,np.nan) Q_2 = np.append(Q_2,np.nan) n_3 = np.append(n_3,0) continue Q = np.nanpercentile(kk,[0,10,25,50,75,90,100]) Q_med = np.append(Q_med,Q[3]) Q_max = np.append(Q_max,Q[6]) Q_min = np.append(Q_min,Q[0]) Q_1 = np.append(Q_1,Q[2]) Q_2 = np.append(Q_2,Q[4]) numberofmasks = np.isnan(kk) kk = kk[~numberofmasks] #print(notmask) notmask = kk.shape[0] n_3 = np.append(n_3,notmask) IQR = Q_2 - Q_1 outlierup = Q_2 + 1.5*IQR outlierdown = Q_1- 1.5*IQR IQR_w = IQR W_sub = apr_w[prind1d] W_sub = np.ma.masked_where(prind1d == 0,W_sub) for i in np.arange(W_sub.shape[0]): W_subsub = W_sub[i,:] W_subsub = np.ma.masked_where(W_subsub >= outlierup[i],W_subsub) W_sub[i,:] = W_subsub apr_DFR = apr_ku - apr_ka apr_DFR2 = apr_ku - apr_w apr_DFR3 = apr_ka - apr_w #Barnes weighting ku_getridof0s = Ku_sub ku_getridof0s = np.ma.masked_where(prind1d == 0,ku_getridof0s) ku_getridof0s = np.ma.masked_where(np.isnan(ku_getridof0s),ku_getridof0s) W_d_k = np.ma.array(np.exp(-1*prdistance**2./K_d**2.)) W_d_k2 = np.ma.masked_where(np.ma.getmask(ku_getridof0s), W_d_k.copy()) w1 = np.ma.sum(W_d_k2 * 10. **(ku_getridof0s / 10.),axis=1) w2 = np.ma.sum(W_d_k2, axis=1) ku_temp = 10. * np.ma.log10(w1/w2) #Find weighted STD IQR_ku2 = np.ma.zeros([ku_getridof0s.shape[0]]) for i in np.arange(ku_getridof0s.shape[0]): ts = np.ma.zeros(len(ku_getridof0s[i,:])) for j in np.arange(0,len(ku_getridof0s[i,:])): diffs = np.ma.subtract(ku_getridof0s[i,j],ku_temp[i]) diffs = np.ma.power(diffs,2.) ts[j] = diffs temporary = np.ma.sqrt((np.ma.sum(ts)/n_1[i])) IQR_ku2[i] = temporary ka_getridof0s = Ka_sub ka_getridof0s = np.ma.masked_where(prind1d == 0,ka_getridof0s) W_d_k = np.ma.array(np.exp(-1*prdistance**2./K_d**2.)) W_d_k2 = np.ma.masked_where(np.ma.getmask(ka_getridof0s), W_d_k.copy()) w1 = np.ma.sum(W_d_k2 * 10. **(ka_getridof0s / 10.),axis=1) w2 = np.ma.sum(W_d_k2, axis=1) ka_temp = 10. * np.ma.log10(w1/w2) #Find weighted STD IQR_ka2 = np.ma.zeros([ka_getridof0s.shape[0]]) for i in np.arange(ka_getridof0s.shape[0]): ts = np.ma.zeros(len(ka_getridof0s[i,:])) for j in np.arange(0,len(ka_getridof0s[i,:])): diffs = np.ma.subtract(ka_getridof0s[i,j],ka_temp[i]) diffs = np.ma.power(diffs,2.) ts[j] = diffs temporary = np.ma.sqrt((np.ma.sum(ts)/n_2[i])) IQR_ka2[i] = temporary w_getridof0s = W_sub w_getridof0s = np.ma.masked_where(prind1d == 0,w_getridof0s) W_d_k = np.ma.array(np.exp(-1*prdistance**2./K_d**2.)) W_d_k2 = np.ma.masked_where(np.ma.getmask(w_getridof0s), W_d_k.copy()) w1 = np.ma.sum(W_d_k2 * 10. **(w_getridof0s / 10.),axis=1) w2 = np.ma.sum(W_d_k2, axis=1) w_temp = 10. * np.ma.log10(w1/w2) #Find weighted STD IQR_w2 = np.ma.zeros([w_getridof0s.shape[0]]) for i in np.arange(w_getridof0s.shape[0]): ts = np.ma.zeros(len(w_getridof0s[i,:])) for j in np.arange(0,len(w_getridof0s[i,:])): diffs = np.ma.subtract(w_getridof0s[i,j],w_temp[i]) diffs = np.ma.power(diffs,2.) ts[j] = diffs temporary = np.ma.sqrt((np.ma.sum(ts)/n_3[i])) IQR_w2[i] = temporary W_d_k = np.ma.array(np.exp(-1*prdistance**2./K_d**2.)) W_d_k2 = np.ma.masked_where(np.ma.getmask(prdistance), W_d_k.copy()) w1 = np.ma.sum(W_d_k2 * prdistance,axis=1) w2 = np.ma.sum(W_d_k2, axis=1) dis_temp = w1/w2 Ku_gate = ku_temp Ka_gate = ka_temp W_gate = w_temp DFR_gate = ku_temp - ka_temp DFR2_gate = ku_temp - w_temp DFR3_gate = ka_temp - w_temp # else: #Eliminate observations that are outliers Ku_sub = apr_ku[prind1d] Ku_sub = np.ma.masked_where(prind1d == 0,Ku_sub) Ka_sub = apr_ka[prind1d] Ka_sub = np.ma.masked_where(prind1d == 0,Ka_sub) W_sub = apr_w[prind1d] W_sub = np.ma.masked_where(prind1d == 0,W_sub) apr_DFR = apr_ku - apr_ka apr_DFR2 = apr_ku - apr_w apr_DFR3 = apr_ka - apr_w # #Barnes weighting ku_getridof0s = Ku_sub ku_getridof0s = np.ma.masked_where(prind1d == 0,ku_getridof0s) ku_getridof0s = np.ma.masked_where(np.isnan(ku_getridof0s),ku_getridof0s) W_d_k = np.ma.array(np.exp(-1*prdistance**2./K_d**2.)) W_d_k2 = np.ma.masked_where(np.ma.getmask(ku_getridof0s), W_d_k.copy()) w1 = np.ma.sum(W_d_k2 * 10. **(ku_getridof0s / 10.),axis=1) w2 = np.ma.sum(W_d_k2, axis=1) ku_temp = 10. * np.ma.log10(w1/w2) ka_getridof0s = Ka_sub ka_getridof0s = np.ma.masked_where(prind1d == 0,ka_getridof0s) W_d_k = np.ma.array(np.exp(-1*prdistance**2./K_d**2.)) W_d_k2 = np.ma.masked_where(np.ma.getmask(ka_getridof0s), W_d_k.copy()) w1 = np.ma.sum(W_d_k2 * 10. **(ka_getridof0s / 10.),axis=1) w2 = np.ma.sum(W_d_k2, axis=1) ka_temp = 10. * np.ma.log10(w1/w2) w_getridof0s = W_sub w_getridof0s = np.ma.masked_where(prind1d == 0,w_getridof0s) W_d_k = np.ma.array(np.exp(-1*prdistance**2./K_d**2.)) W_d_k2 = np.ma.masked_where(np.ma.getmask(w_getridof0s), W_d_k.copy()) w1 = np.ma.sum(W_d_k2 * 10. **(w_getridof0s / 10.),axis=1) w2 = np.ma.sum(W_d_k2, axis=1) w_temp = 10. * np.ma.log10(w1/w2) W_d_k = np.ma.array(np.exp(-1*prdistance**2./K_d**2.)) W_d_k2 = np.ma.masked_where(np.ma.getmask(prdistance), W_d_k.copy()) w1 = np.ma.sum(W_d_k2 * prdistance,axis=1) w2 = np.ma.sum(W_d_k2, axis=1) dis_temp = w1/w2 Ku_gate = ku_temp Ka_gate = ka_temp W_gate = w_temp DFR_gate = ku_temp - ka_temp DFR2_gate = ku_temp - w_temp DFR3_gate = ka_temp - w_temp # #append current lat,lon and alt of the citation plane lat_c = cit_lat lon_c = cit_lon alt_c = cit_alt t_c = cit_time2 T_c = temperature_1 lwc_c = lwc ice_c = ice cdp_c = cdp twc_c = twc iwc_c = iwc # #Use plane location for barnes averaged radar value lat_r = cit_lat lon_r = cit_lon alt_r = cit_alt t_r = cit_time2 # dis_r = dis_temp ind_r = np.nan #Calculate time difference, weighted the same as everything else t_tiled = np.empty([t_c.shape[0],query_k],dtype=object) for i in np.arange(0,t_c.shape[0]): t_tiled[i,:] = t_c[i] diftime = apr_t[prind1d] - t_tiled diftime2 = np.empty(diftime.shape) for i in np.arange(0,diftime.shape[0]-1): for j in np.arange(0,diftime.shape[1]-1): diftime2[i,j] = diftime[i,j].total_seconds() W_d_k = np.ma.array(np.exp(-1*prdistance**2./K_d**2.)) W_d_k2 = np.ma.masked_where(np.ma.getmask(diftime2), W_d_k.copy()) w1 = np.ma.sum(W_d_k2 *diftime2,axis=1) w2 = np.ma.sum(W_d_k2, axis=1) dif_temp = w1/w2 dif_t = dif_temp # else: #For closest gate: Tested 11/09/17 #If gate outside sphere will need to remove flaged data == apr_ku.shape[0] ind = np.where(prind1d == apr_ku.shape[0]) if len(ind[0]) > 0: print('gate was outside distance upper bound, eliminating those instances') #mask ind and distances that are outside the search area prind1d[ind] = np.ma.masked prdistance[ind] = np.ma.masked # ku_temp = apr_ku[prind1d] ka_temp = apr_ka[prind1d] w_temp = apr_w[prind1d] ku_temp = np.ma.masked_where(prind1d == 0,ku_temp) ka_temp = np.ma.masked_where(prind1d == 0,ka_temp) w_temp = np.ma.masked_where(prind1d == 0,w_temp) dfr_temp = ku_temp - ka_temp dfr2_temp = ku_temp - w_temp dfr3_temp = ka_temp - w_temp Ku_gate = ku_temp Ka_gate = ka_temp W_gate = w_temp DFR_gate = dfr_temp DFR2_gate = dfr2_temp DFR3_gate = dfr3_temp # #append current lat,lon and alt of the citation plane lat_c = cit_lat lon_c = cit_lon alt_c = cit_alt t_c = cit_time2 T_c = temperature_1 lwc_c = lwc ice_c = ice cdp_c = cdp twc_c = twc iwc_c = iwc # diftime = apr_t[prind1d] - t_c diftime2 = np.empty(diftime.shape) for i in np.arange(0,diftime.shape[0]): diftime2[i] = diftime[i].total_seconds() #Get radar gate info and append it lat_r = apr_y[prind1d] lon_r = apr_x[prind1d] alt_r = apr_alt[prind1d] t_r = apr_t[prind1d] dis_r = prdistance ind_r = prind1d dif_t = diftime2 #Make lists full of all the data matcher = {} Cit = {} APR = {} matched = {} kdtree = {} info_c = {} info_r = {} info_m = {} info_k = {} #Pack values in lists for export info_k['prind1d'] = 'Index in the raveled apr3 array of the selected gate/gates. Units = None' info_k['prdistance'] = 'Cartesian distance between Citation and "matched" radar gate. This will be a barnes average if query_k is greater than 1. Units = meters' info_k['query_k'] = 'How many gates were considered to be matched. Units = None' kdtree['prind1d'] = prind1d kdtree['prdistance'] = prdistance kdtree['query_k'] = query_k kdtree['info'] = info_k info_c['lat'] = 'Latitude of the citation aircraft. Units = Degrees' info_c['lon'] = 'Longitude of the Citation aircraft. Units = Degrees' info_c['alt'] = 'Altitude above sea level of Citation aircraft. Units = meters' info_c['time'] = 'Time of observation in the Citation aircraft. Units = datetime' info_c['temperature'] = 'Temperature observed on the Citation aircraft. Units = Degrees C' info_c['lwc'] = 'Liquid water content measured using the King hot wire probe. Units = grams per meter cubed' info_c['iwc'] = 'Ice water content estimated from the Nevzorov probe. Units = grams per meter cubed' info_c['ice'] = 'Frequency from Rosemount Icing detector. Units = Hz' info_c['cdp'] = 'Cloud droplet concentration measured from the CDP. Units = Number per cc' info_c['twc'] = 'Nevzorov total water content measured by deep cone. Units = grams per meter' info_c['td'] = 'Dewpoint temperature, Units = Degrees Celcius' info_c['w'] = 'Vertical velocity, Units = meters per second' info_c['P'] = 'static pressure, Units = ?' info_c['mix'] = 'mixing ratio, Units = none (i.e. kg/kg)' info_c['U'] = 'U componate of the wind, Units = meters per second' info_c['V'] = 'V componate of the wind, Units = meters per second' info_r['lat'] = 'Latitude of the center of the radar gate. Units = Degrees' info_r['lon'] = 'Longitude of the center of the radar gate. Units = Degrees' info_r['alt'] = 'Altitude above sea level of the radar gate. Units = meters' info_r['time'] = 'Time of observation at the start of the ray. Units = datetime' info_r['Ku'] = 'Ku band measured reflectivity at the gate. Units = dBZ' info_r['Ka'] = 'Ka band measured reflectivity at the gate. Units = dBZ' info_r['W'] = 'W band measured reflectivity at the gate. Units = dBZ' info_r['DFR'] = 'Ku - Ka band measured reflectivity at the gate. Units = dB' info_r['DFR2'] = 'Ku - W band measured reflectivity at the gate. Units = dB' info_r['DFR3'] = 'Ka - W band measured reflectivity at the gate. Units = dB' info_m['lat_r'] = 'Latitude of the center of the matched radar gates. Units = Degrees' info_m['lon_r'] = 'Longitude of the center of the matched radar gates. Units = Degrees' info_m['alt_r'] = 'Altitude above sea level of the matched radar gates. Units = meters' info_m['time_r'] = 'Time of the matched observation at the start of the ray. Units = datetime' info_m['lat_c'] = 'Latitude of the citation aircraft. Units = Degrees' info_m['lon_c'] = 'Longitude of the Citation aircraft. Units = Degrees' info_m['alt_c'] = 'Altitude above sea level of Citation aircraft. Units = meters' info_m['time_c'] = 'Time of observation in the Citation aircraft. Units = datetime' info_m['Ku'] = 'Ku band measured reflectivity matched to Citation location. Units = dBZ' info_m['Ka'] = 'Ka band measured reflectivity matched to Citation location. Units = dBZ' info_m['W'] = 'W band measured reflectivity matched to Citation location. Units = dBZ' info_m['DFR'] = 'Ku - Ka band measured reflectivity matched to Citation location. Units = dB' info_m['DFR2'] = 'Ku - W band measured reflectivity matched to Citation location. Units = dB' info_m['DFR3'] = 'Ka - W band measured reflectivity matched to Citation location. Units = dB' info_m['dist'] = 'Cartesian distance between Citation and "matched" radar gate. This will be a barnes average if query_k is greater than 1. Units = meters' info_m['dif_t'] = 'Time difference between the radar gate and the citation observation. Units = Seconds' info_m['PSD'] = 'N(D) for the matched points. Units = meteres ^ -4' info_m['dD'] = 'Binwidths for the N(D). Units = meters' info_m['midpoints'] = 'Bin midpoints for the N(D). Units= meters' info_m['rho_BF'] = 'Effective density of the particles using the N(D), a and b from Brown and Francis 1995 and assuming a ellipsoidal fit of 0.6' info_m['rho_HY'] = 'Effective density of the particles using the N(D), a and b from Heymsfield et al. 2004 and assuming a ellipsoidal fit of 0.6' info_m['rho_NV'] = 'Effective density of the particles using the N(D), mass from Nev TWC, volume of ellip sphere' info_m['Dmm_BF'] = 'Two types: Dmm, and Dmm_interp. Interp uses a simple interpolation, while Dmm is the Bin that exceeds 50% of the accumulated mass.Median mass dimension using N(D) and a-b from Brown and Francis 1995' info_m['Dmm_HY'] = 'Two types: Dmm, and Dmm_interp. Interp uses a simple interpolation, while Dmm is the Bin that exceeds 50% of the accumulated mass.Median mass dimension using N(D) and a-b from Heymsfield et al. 2004' Cit['info'] = info_c Cit['lat'] = cit_lat Cit['lon'] = cit_lon Cit['alt'] = cit_alt Cit['time'] = cit_time2 Cit['temperature'] = T_c Cit['lwc'] = lwc_c Cit['ice'] = ice_c Cit['cdp'] = cdp_c Cit['twc'] = twc_c Cit['iwc'] = iwc_c Cit['td'] = td Cit['w'] = w Cit['P'] = P Cit['mix'] = mix Cit['U'] = U Cit['V'] = V APR['info'] = info_r APR['lat'] = apr_y APR['lon'] = apr_x APR['alt'] = apr_alt APR['Ku'] = apr_ku APR['Ka'] = apr_ka APR['W'] = apr_w APR['DFR'] = apr_ku - apr_ka APR['DFR2'] = apr_ku - apr_w APR['DFR3'] = apr_ka - apr_w APR['time'] = apr_t matched['info'] = info_m matched['Ku'] = Ku_gate matched['Ka'] = Ka_gate matched['W'] = W_gate matched['DFR'] = DFR_gate matched['DFR2'] = DFR2_gate matched['DFR3'] = DFR3_gate matched['lat_r'] = lat_r matched['lon_r'] = lon_r matched['alt_r'] = alt_r matched['lat_c'] = lat_c matched['lon_c'] = lon_c matched['alt_c'] = alt_c matched['time_r'] = t_r matched['time_c'] = t_c matched['dist'] = dis_r matched['dif_t'] = dif_t matched['PSD'] = ND_aver*1e8 #convert to m matched['dD'] = dD /1000. #convert to m matched['midpoints'] = midpoints / 1000. #convert to m matched['rho_BF'] = rho_tot3 matched['rho_HY'] = rho_tot2 matched['rho_NV'] = rho_tot4 matched['Dmm_BF'] = dmm_BF matched['Dmm_HY'] = dmm_HY matched['iwc_BF'] = iwc_BF matched['iwc_HY'] = iwc_HY if attenuation_correct: matched['maxchange'] = maxchange matched['lwc_prof'] = apr['lwc_prof'] matched['altbins_prof']= apr['altbins_prof'] matched['k_store'] = apr['k_store'] if attenuation_correct and BB: matched['gas_w'] = apr['gas_w'] matched['gas_ku'] = apr['gas_ku'] matched['gas_ka'] = apr['gas_ka'] matched['liquid_w'] = apr['liquid'] matched['ice_w'] = apr['ice'] if return_indices: matched['prind1d'] = prind1d matched['APR_dim'] = apr['Ku'].shape matched['time'] = apr['timedates'] matched['APR_lat'] = apr['lat_gate'] matched['APR_lon'] = apr['lon_gate'] matched['APR_alt'] = apr['alt_gate'] matched['APR_Ku'] = apr['Ku'] matched['APR_Ka'] = apr['Ka'] matched['APR_W'] = apr['W'] matched['R'] = R matched['R_c'] = R_c matched['echo_c'] = echo_c matched['echo'] = echo matched['R_echo'] = R_echo matched['bb_long'] = bb_long if query_k > 1 and QC: matched['IQR_ku'] = IQR_ku matched['IQR_ka'] = IQR_ka matched['IQR_w'] = IQR_w matched['n_1'] = n_1 matched['n_2'] = n_2 matched['n_3'] = n_3 matched['IQR_w_w'] = IQR_w2 matched['IQR_ka_w'] = IQR_ka2 matched['IQR_ku_w'] = IQR_ku2 #Not needed currently (RJC May 31 2017) #matched['array index'] = ind_r #matched['conc_hvps3'] = conc_hvps3 if slimfast: matcher['matched'] = matched matcher['Cit'] = Cit else: matcher['Cit'] = Cit matcher['APR'] = APR matcher['matched'] = matched matcher['kdtree'] = kdtree #Several plots to visualize data if plotson: fontsize=fontsize matched = matcher if query_k <= 1: diftime = matched['matched']['time_r'] - matched['matched']['time_c'] diftime2 = np.array([]) for i in np.arange(0,diftime.shape[0]): diftime2 = np.append(diftime2,diftime[i].total_seconds()) else: diftime2= matched['matched']['dif_t'] fig1,axes = plt.subplots(1,2,) #ax1 is the histogram of times ax1 = axes[0] ax1.hist(diftime2/60.,facecolor='b',edgecolor='k') ax1.set_xlabel('$t_{gate} - t_{Cit}, [min]$') ax1.set_ylabel('Number of gates') ax1.set_title(matched['matched']['time_r'][0]) #ax2 is the histogram of distances ax2 = axes[1] distances = matched['matched']['dist'] ax2.hist(distances,facecolor='r',edgecolor='k') ax2.set_xlabel('Distance, $[m]$') ax2.set_ylabel('Number of gates') ax2.set_title(matched['matched']['time_r'][0]) plt.tight_layout() #Print some quick stats print(distances.shape[0],np.nanmean(diftime2)/60.,np.nanmean(distances)) # fig = plt.figure() #ax3 is the swath plot to show radar and plane location ax3 = plt.gca() apr = apr3read(apr3filename) lat3d = apr['lat_gate'] lon3d = apr['lon_gate'] alt3d = apr['alt_gate'] radar_n = apr['Ku'] lon_s = np.empty(alt3d.shape[1:]) lat_s = np.empty(alt3d.shape[1:]) swath = np.empty(alt3d.shape[1:]) for i in np.arange(0,alt3d.shape[2]): for j in np.arange(0,alt3d.shape[1]): ind = np.where(alt3d[:,j,i]/1000. > 3.5) ind2 = np.where(alt3d[:,j,i]/1000. < 3.6) ind3 = np.intersect1d(ind,ind2) ind3= ind3[0] l1 = lat3d[ind3,j,i] l2 = lon3d[ind3,j,i] k1 = radar_n[ind3,j,i] lon_s[j,i] = l2 lat_s[j,i] = l1 swath[j,i] = k1 area_def = pr.geometry.AreaDefinition('areaD', 'IPHEx', 'areaD', {'a': '6378144.0', 'b': '6356759.0', 'lat_0': '47.7998', 'lat_ts': '47.7998','lon_0': '-123.7066', 'proj': 'stere'}, 400, 400, [-70000., -70000., 70000., 70000.]) bmap = pr.plot.area_def2basemap(area_def,resolution='l',ax=ax3) bmap.drawcoastlines(linewidth=2) bmap.drawstates(linewidth=2) bmap.drawcountries(linewidth=2) parallels = np.arange(-90.,90,4) bmap.drawparallels(parallels,labels=[1,0,0,0],fontsize=12) meridians = np.arange(180.,360.,4) bmap.drawmeridians(meridians,labels=[0,0,0,1],fontsize=12) bmap.drawmapboundary(fill_color='aqua') bmap.fillcontinents(lake_color='aqua') x,y = bmap(lon_s,lat_s) swath[np.where(swath < 0)] = np.nan pm1 = bmap.pcolormesh(x,y,swath,vmin=0,vmax=40,zorder=11,cmap='seismic') cbar1 = plt.colorbar(pm1,label='$Z_m, [dBZ]$') x2,y2 = bmap(matched['matched']['lon_c'],matched['matched']['lat_c']) pm2 = bmap.scatter(x2,y2,c=diftime2/60.,marker='o',zorder=12,cmap='PuOr',edgecolor=[],vmin=-10,vmax=10) cbar2 = plt.colorbar(pm2,label = '$\Delta{t}, [min]$') ax3.set_ylabel('Latitude',fontsize=fontsize,labelpad=20) ax3.set_xlabel('Longitude',fontsize=fontsize,labelpad=20) plt.tight_layout() plt.show() #Plot timeseries of barnes averaged or closest gate. plt.figure() plt.plot(matched['matched']['time_c'],matched['matched']['Ku'],'b',label='Ku',lw=3) plt.plot(matched['matched']['time_c'],matched['matched']['Ka'],'r',label='Ka',lw=3) plt.plot(matched['matched']['time_c'],matched['matched']['W'],'g',label='W',lw=3) #plt.plot(matched['matched']['time_c'],matched['matched']['DFR'],'--b',label='Ku-Ka') #plt.plot(matched['matched']['time_c'],matched['matched']['DFR2'],'--r',label='Ku-W') #plt.plot(matched['matched']['time_c'],matched['matched']['DFR3'],'--g',label='Ka-W') plt.xlabel('Time') plt.ylabel('Z, [dBZ]') plt.legend() plt.show() print('done') return matcher def apr3read(filename): """ =========== This is for reading in apr3 hdf (HDF5 updated 2/21/18) files from OLYMPEX and return them all in one dictionary =========== filename = filename of the apr3 file """ apr = {} flag = 0 ##Radar varibles in hdf file found by hdf.datasets radar_freq = 'zhh14' #Ku radar_freq2 = 'zhh35' #Ka radar_freq3 = 'z95s' #W radar_freq4 = 'ldr14' #LDR vel_str = 'vel14' #Doppler ## hdf = h5py.File(filename,"r") listofkeys = hdf['lores'].keys() alt = hdf['lores']['alt3D'][:] lat = hdf['lores']['lat'][:] lon = hdf['lores']['lon'][:] time = hdf['lores']['scantime'][:] surf = hdf['lores']['surface_index'][:] isurf = hdf['lores']['isurf'][:] plane = hdf['lores']['alt_nav'][:] radar = hdf['lores'][radar_freq][:] radar2 = hdf['lores'][radar_freq2][:] radar4 = hdf['lores'][radar_freq4][:] vel = hdf['lores']['vel14c'][:] lon3d = hdf['lores']['lon3D'][:] lat3d = hdf['lores']['lat3D'][:] alt3d = hdf['lores']['alt3D'][:] #see if there is W band if 'z95s' in listofkeys: if 'z95n' in listofkeys: radar_nadir = hdf['lores']['z95n'] radar_scanning = hdf['lores']['z95s'] radar3 = radar_scanning ##uncomment if you want high sensativty as nadir scan (WARNING, CALIBRATION) #radar3[:,12,:] = radar_nadir[:,12,:] else: radar3 = hdf['lores']['z95s'] print('No vv, using hh') else: radar3 = np.ma.array([]) flag = 1 print('No W band') ##convert time to datetimes time_dates = np.empty(time.shape,dtype=object) for i in np.arange(0,time.shape[0]): for j in np.arange(0,time.shape[1]): tmp = datetime.datetime.utcfromtimestamp(time[i,j]) time_dates[i,j] = tmp #Create a time at each gate (assuming it is the same down each ray, there is a better way to do this) time_gate = np.empty(lat3d.shape,dtype=object) for k in np.arange(0,550): for i in np.arange(0,time_dates.shape[0]): for j in np.arange(0,time_dates.shape[1]): time_gate[k,i,j] = time_dates[i,j] #Quality control (masked where invalid) radar = np.ma.masked_where(radar <= -99,radar) radar2 = np.ma.masked_where(radar2 <= -99,radar2) radar3 = np.ma.masked_where(radar3 <= -99,radar3) radar4 = np.ma.masked_where(radar4 <= -99,radar4) #Get rid of nans, the new HDF has builtin radar = np.ma.masked_where(np.isnan(radar),radar) radar2 = np.ma.masked_where(np.isnan(radar2),radar2) radar3 = np.ma.masked_where(np.isnan(radar3),radar3) radar4 = np.ma.masked_where(np.isnan(radar4),radar4) apr['Ku'] = radar apr['Ka'] = radar2 apr['W'] = radar3 apr['DFR_1'] = radar - radar2 #Ku - Ka if flag == 0: apr['DFR_3'] = radar2 - radar3 #Ka - W apr['DFR_2'] = radar - radar3 #Ku - W apr['info'] = 'The shape of these arrays are: Radar[Vertical gates,Time/DistanceForward]' else: apr['DFR_3'] = np.array([]) #Ka - W apr['DFR_2'] = np.array([]) #Ku - W apr['info'] = 'The shape of these arrays are: Radar[Vertical gates,Time/DistanceForward], Note No W band avail' apr['ldr'] = radar4 apr['vel'] = vel apr['lon'] = lon apr['lat'] = lat apr['alt_gate'] = alt3d apr['alt_plane'] = plane apr['surface'] = isurf apr['time']= time apr['timedates']= time_dates apr['time_gate'] = time_gate apr['lon_gate'] = lon3d apr['lat_gate'] = lat3d # fileheader = hdf.select('fileheader') roll = hdf['lores']['roll'] pitch = hdf['lores']['pitch'] drift = hdf['lores']['drift'] ngates = alt.shape[0] apr['ngates'] = ngates apr['roll'] = roll apr['pitch'] = pitch apr['drift'] = drift _range = np.arange(15,550*30,30) _range = np.asarray(_range,float) ind = np.where(_range >= plane.mean()) _range[ind] = np.nan apr['range'] = _range return apr def atten_cor2(filename1,fl,percentile,matlab_g,lwc_alt=True): """ ======== This is a first order attenuation correction algorithm for Ku,Ka and W band radar. filename1: string, filename of apr3 file filename2: string, filename of citation file percentile: threshold for lwc prof matlab_g: dict, from matlab calc of gaseous attenuation ======== """ #Read in APR data apr = apr3read(filename1) #Determine altitude bins for profile of LWC altbins = np.arange(1000,9000,500) altmidpoints = np.arange(1500,9000,500) coldcloud = True #lwc1 = King probe #twc = Nevzorov total water content lwc1 = fl['lwc1']['data'] twc = fl['twc']['data'] #Get rid negative values lwc1 = np.ma.masked_where(lwc1 <=0,lwc1) twc = np.ma.masked_where(lwc1 <=0,twc) T = fl['temperature']['data'] if coldcloud: lwc1 = np.ma.masked_where(T > -5,lwc1) twc = np.ma.masked_where(T > -5,twc) #Correct for ice response on hot wire probe, Cober et al. 2001 if lwc_alt: lwc1 = lwc1 - twc *.15 lwc1 = np.ma.masked_where(lwc1 <=0,lwc1) alt = fl['altitude']['data'] #Get rid of masked values before doing percentiles ind = lwc1.mask lwc1 = lwc1[~ind] alt = alt[~ind] T = T[~ind] #Create top and bottom for interp (fit gets weird outside this range) fit_min = np.min(alt) fit_max = np.max(alt) #Do percentiles for each bin q = np.array([percentile]) Q = np.zeros([altbins.shape[0]-1]) for i in np.arange(1,altbins.shape[0]): bottom = altbins[i-1] top = altbins[i] ind1 = np.where(alt>=bottom) ind2 = np.where(alt<top) ind3 = np.intersect1d(ind1,ind2) if len(ind3) < 1: Q[i-1] = np.nan else: Q[i-1] = np.nanpercentile(lwc1[ind3],q) #get rid of any nans ind = np.isnan(Q) Q_temp = Q[~ind] altmidpoints_temp = altmidpoints[~ind] #lwc profile func lwc_func = interp1d(altmidpoints_temp,Q_temp,kind='cubic',bounds_error=False) # #W_lwc_coeff_func t_ks = np.array([-20,-10,0]) ks = np.array([5.41,5.15,4.82]) k_coeff = np.polyfit(t_ks,ks,deg=1) k_func = np.poly1d(k_coeff) #Ka_lwc_coeff_func t_ks2 = np.array([-20,-10,0]) ks2 = np.array([1.77,1.36,1.05]) k_coeff2 = np.polyfit(t_ks2,ks2,deg=1) k_func2 = np.poly1d(k_coeff2) #Ku_lwc_coeff_func t_ks3 = np.array([-20,-10,0]) ks3 = np.array([0.45,0.32,0.24]) k_coeff3 = np.polyfit(t_ks3,ks3,deg=1) k_func3 = np.poly1d(k_coeff3) #temperature function t_coef = np.polyfit(alt,T,deg=1) t_func = np.poly1d(t_coef) #Functions for O2 and H2O atten alt = np.squeeze(matlab_g['alt']) L =np.squeeze(matlab_g['L']) L3 = np.squeeze(matlab_g['L3']) L5 = np.squeeze(matlab_g['L5']) k_func4 = interp1d(alt,L,kind='cubic',bounds_error=False) k_func5 = interp1d(alt,L3,kind='cubic',bounds_error=False) k_func6 = interp1d(alt,L5,kind='cubic',bounds_error=False) #function to correct for ice scattering (kulie et al. 2014 fig 7) k = pd.read_csv('Kulie_specific_attenuation.csv') x = k['x'].values y = k['y'].values x_min = x.min() x_max = x.max() #fit function so we can crank out any value of Ku k_coef7 = np.polyfit(x,y,deg=1) k_func7 = np.poly1d(k_coef7) #Make new data arrays w_new_new = np.ma.zeros(apr['W'].shape) ka_new_new = np.ma.zeros(apr['Ka'].shape) ku_new_new = np.ma.zeros(apr['Ku'].shape) k_store2 = np.ma.zeros(apr['W'].shape) #Main loop for correcting the profile for j in np.arange(0,apr['alt_gate'].shape[1]): alt = np.squeeze(apr['alt_gate'][:,j,:]) w = np.squeeze(apr['W'][:,j,:]) ka = np.squeeze(apr['Ka'][:,j,:]) ku = np.squeeze(apr['Ku'][:,j,:]) #need ku in linear units for ice scatter correction ku_lin = 10**(ku/10.) ind = np.ma.where(ku_lin > x_max) ku_lin[ind] = x_max w_new = np.ma.zeros(w.shape) ka_new = np.ma.zeros(ka.shape) ku_new = np.ma.zeros(ku.shape) k_store = np.ma.zeros(w.shape) for i in np.arange(0,alt.shape[1]): a1 = alt[:,i] w1 = w[:,i] ka1 = ka[:,i] ku1 = ku[:,i] ku_lin1 = ku_lin[:,i] #Create a function to get T from alt ts = t_func(a1) #Get the right coeffs for the right alts (based on T) ks = k_func(ts) ks2 = k_func2(ts) ks3 = k_func3(ts) # #Get the right attenuation from atmospheric gases ks4 = k_func4(a1) ks5 = k_func5(a1) ks6 = k_func6(a1) # #get db/m caused by ice from ku following Kulie et al 2014 ks7 = k_func7(ku_lin1) #zero where ref is masked... ks7[ku_lin1.mask] = 0. # #Get lwc prof ls = lwc_func(a1) # coeff = ls*ks coeff2 = ls*ks2 coeff3 = ls*ks3 coeff4 = ks4 coeff5 = ks5 coeff6 = ks6 coeff7 = ks7 coeff[a1 <= fit_min+500] = 0 coeff[a1 >= fit_max-500] = 0 coeff2[a1 <= fit_min+500] = 0 coeff2[a1 >= fit_max-500] = 0 coeff3[a1 <= fit_min+500] = 0 coeff3[a1 >= fit_max-500] = 0 #This is an error, was only applying the gaseous attenuation to -5 deg C. Now it goes to the surface (12/13/17) # coeff4[a1 <= fit_min+500] = 0 # coeff4[a1 >= fit_max-500] = 0 # coeff5[a1 <= fit_min+500] = 0 # coeff5[a1 >= fit_max-500] = 0 # coeff6[a1 <= fit_min+500] = 0 # coeff6[a1 >= fit_max-500] = 0 #Convert to dB/gate coeff = (coeff/1000.)*30. coeff2 = (coeff2/1000.)*30. coeff3 = (coeff3/1000.)*30. coeff4 = (coeff4/1000.)*30. coeff5 = (coeff5/1000.)*30. coeff6 = (coeff6/1000.)*30. coeff7 = coeff7 * 30. # #get rid of nans so cumsum works right, nans are inserted if radar is masked ind = np.isnan(coeff) coeff[ind] = 0. ind = np.isnan(coeff2) coeff2[ind] = 0. ind = np.isnan(coeff3) coeff3[ind] = 0. ind = np.isnan(coeff4) coeff4[ind] = 0. ind = np.isnan(coeff5) coeff5[ind] = 0. ind = np.isnan(coeff6) coeff6[ind] = 0. ind = np.isnan(coeff7) coeff7[ind] = 0. #path integrate k = np.cumsum(coeff)*2 k2 = np.cumsum(coeff2)*2 k3 = np.cumsum(coeff3)*2 k4 = np.cumsum(coeff4)*2 k5 = np.cumsum(coeff5)*2 k6 = np.cumsum(coeff6)*2 k7 = np.cumsum(coeff7)*2 # #correct w1 = w1+k+k4+k7 #uncomment if you wish to correct Ka and Ku #ka1 = ka1+k2+k5 #ku1 = ku1+k3+k6 #correcting just for gases ka1 = ka1+k5 ku1 = ku1+k6 w_new[:,i] = w1 ka_new[:,i] = ka1 ku_new[:,i] = ku1 # k_store[:,i] = k + k4 + k7 w_new_new[:,j,:] = w_new ka_new_new[:,j,:] = ka_new ku_new_new[:,j,:] = ku_new k_store2[:,j,:] = k_store #mask the attenuation field to where the ref. field is masked (i.e. BB algo) (12/13/17) k_store2 = np.ma.masked_where(w_new_new.mask,k_store2) #Find max correction values for table wmax = np.ma.max(w_new_new - apr['W']) kamax = np.ma.max(ka_new_new - apr['Ka']) kumax = np.ma.max(ku_new_new - apr['Ku']) maxchange = np.array([wmax,kamax,kumax]) #Pack data back into dict data_corrected = {} data_corrected['Ku'] = ku_new_new data_corrected['Ka'] = ka_new_new data_corrected['W'] = w_new_new data_corrected['Ku_uc'] = apr['Ku'] data_corrected['Ka_uc'] =apr['Ka'] data_corrected['W_uc'] = apr['W'] data_corrected['lwc_prof'] = Q_temp data_corrected['altbins_prof'] = altmidpoints_temp data_corrected['timedates'] = apr['timedates'] data_corrected['alt_gate'] = apr['alt_gate'] data_corrected['lat'] = apr['lat'] data_corrected['lon'] = apr['lon'] data_corrected['lat_gate'] = apr['lat_gate'] data_corrected['lon_gate'] = apr['lon_gate'] data_corrected['surface'] = apr['surface'] data_corrected['time_gate'] = apr['time_gate'] data_corrected['maxchange'] = maxchange data_corrected['k_store'] = k_store2 data_corrected['roll'] = apr['roll'] return data_corrected def atten_cor3(apr,fl,percentile,matlab_g,lwc_alt=True): """ ======== This is a first order attenuation correction algorithm for Ku,Ka and W band radar. filename1: string, filename of apr3 file filename2: string, filename of citation file percentile: threshold for lwc prof matlab_g: dict, from matlab calc of gaseous attenuation ======== """ #Determine altitude bins for profile of LWC altbins = np.arange(1000,9000,500) altmidpoints = np.arange(1500,9000,500) coldcloud = True #lwc1 = King probe #twc = Nevzorov total water content lwc1 = fl['lwc1']['data'] twc = fl['twc']['data'] #Get rid negative values lwc1 = np.ma.masked_where(lwc1 <=0,lwc1) twc = np.ma.masked_where(lwc1 <=0,twc) T = fl['temperature']['data'] if coldcloud: lwc1 = np.ma.masked_where(T > -5,lwc1) twc = np.ma.masked_where(T > -5,twc) #Correct for ice response on hot wire probe, Cober et al. 2001 if lwc_alt: lwc1 = lwc1 - twc *.15 lwc1 = np.ma.masked_where(lwc1 <=0,lwc1) alt = fl['altitude']['data'] #Get rid of masked values before doing percentiles ind = lwc1.mask lwc1 = lwc1[~ind] alt = alt[~ind] T = T[~ind] #Create top and bottom for interp (fit gets weird outside this range) fit_min = np.min(alt) fit_max = np.max(alt) #Do percentiles for each bin q = np.array([percentile]) Q = np.zeros([altbins.shape[0]-1]) for i in np.arange(1,altbins.shape[0]): bottom = altbins[i-1] top = altbins[i] ind1 = np.where(alt>=bottom) ind2 = np.where(alt<top) ind3 = np.intersect1d(ind1,ind2) if len(ind3) < 1: Q[i-1] = np.nan else: Q[i-1] = np.nanpercentile(lwc1[ind3],q) #get rid of any nans ind = np.isnan(Q) Q_temp = Q[~ind] altmidpoints_temp = altmidpoints[~ind] #lwc profile func lwc_func = interp1d(altmidpoints_temp,Q_temp,kind='cubic',bounds_error=False) # #W_lwc_coeff_func t_ks = np.array([-20,-10,0]) ks = np.array([5.41,5.15,4.82]) k_coeff = np.polyfit(t_ks,ks,deg=1) k_func = np.poly1d(k_coeff) #Ka_lwc_coeff_func t_ks2 = np.array([-20,-10,0]) ks2 = np.array([1.77,1.36,1.05]) k_coeff2 = np.polyfit(t_ks2,ks2,deg=1) k_func2 = np.poly1d(k_coeff2) #Ku_lwc_coeff_func t_ks3 = np.array([-20,-10,0]) ks3 = np.array([0.45,0.32,0.24]) k_coeff3 = np.polyfit(t_ks3,ks3,deg=1) k_func3 = np.poly1d(k_coeff3) #temperature function t_coef = np.polyfit(alt,T,deg=1) t_func = np.poly1d(t_coef) #Functions for O2 and H2O atten alt = np.squeeze(matlab_g['alt']) L =np.squeeze(matlab_g['L']) L3 = np.squeeze(matlab_g['L3']) L5 = np.squeeze(matlab_g['L5']) k_func4 = interp1d(alt,L,kind='cubic',bounds_error=False) k_func5 = interp1d(alt,L3,kind='cubic',bounds_error=False) k_func6 = interp1d(alt,L5,kind='cubic',bounds_error=False) #function to correct for ice scattering (kulie et al. 2014 fig 7) k = pd.read_csv('Kulie_specific_attenuation.csv') x = k['x'].values y = k['y'].values x_min = x.min() x_max = x.max() #fit function so we can crank out any value of Ku k_coef7 = np.polyfit(x,y,deg=1) k_func7 = np.poly1d(k_coef7) #Make new data arrays w_new_new = np.ma.zeros(apr['W'].shape) ka_new_new = np.ma.zeros(apr['Ka'].shape) ku_new_new = np.ma.zeros(apr['Ku'].shape) k_store2 = np.ma.zeros(apr['W'].shape) gas2_w = np.ma.zeros(apr['W'].shape) gas2_ku = np.ma.zeros(apr['W'].shape) gas2_ka = np.ma.zeros(apr['W'].shape) liquid2 = np.ma.zeros(apr['W'].shape) ice2 = np.ma.zeros(apr['W'].shape) #Main loop for correcting the profile for j in np.arange(0,apr['alt_gate'].shape[1]): alt = np.squeeze(apr['alt_gate'][:,j,:]) w = np.squeeze(apr['W'][:,j,:]) ka = np.squeeze(apr['Ka'][:,j,:]) ku = np.squeeze(apr['Ku'][:,j,:]) #need ku in linear units for ice scatter correction ku_lin = 10**(ku/10.) ind = np.ma.where(ku_lin > x_max) ku_lin[ind] = x_max w_new = np.ma.zeros(w.shape) ka_new = np.ma.zeros(ka.shape) ku_new = np.ma.zeros(ku.shape) k_store = np.ma.zeros(w.shape) gas_w =
np.ma.zeros(w.shape)
numpy.ma.zeros
# Copyright 2012,2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. try: import pmt_swig as pmt except: import pmt import numpy # SWIG isn't taking in the #define PMT_NIL; # getting the singleton locally. PMT_NIL = pmt.get_PMT_NIL() #define missing def pmt_to_tuple(p): elems = list() for i in range(pmt.length(p)): elem = pmt.tuple_ref(p, i) elems.append(pmt_to_python(elem)) return tuple(elems) def pmt_from_tuple(p): args = map(python_to_pmt, p) return pmt.make_tuple(*args) def pmt_to_vector(p): v = list() for i in range(pmt.length(p)): elem = pmt.vector_ref(p, i) v.append(pmt_to_python(elem)) return v def pmt_from_vector(p): v = pmt.make_vector(len(p), PMT_NIL) for i, elem in enumerate(p): pmt.vector_set(v, i, python_to_pmt(elem)) return v def pmt_to_dict(p): d = dict() items = pmt.dict_items(p) for i in range(pmt.length(items)): pair = pmt.nth(i, items) k = pmt.car(pair) v = pmt.cdr(pair) d[pmt_to_python(k)] = pmt_to_python(v) return d def pmt_from_dict(p): d = pmt.make_dict() for k, v in p.iteritems(): #dict is immutable -> therefore pmt_dict_add returns the new dict d = pmt.dict_add(d, python_to_pmt(k), python_to_pmt(v)) return d numpy_mappings = { numpy.dtype(numpy.float32): (pmt.init_f32vector, float, pmt.f32vector_elements, pmt.is_f32vector), numpy.dtype(numpy.float64): (pmt.init_f64vector, float, pmt.f64vector_elements, pmt.is_f64vector), numpy.dtype(numpy.complex64): (pmt.init_c32vector, complex, pmt.c32vector_elements, pmt.is_c32vector), numpy.dtype(numpy.complex128): (pmt.init_c64vector, complex, pmt.c64vector_elements, pmt.is_c64vector), numpy.dtype(numpy.int8): (pmt.init_s8vector, int, pmt.s8vector_elements, pmt.is_s8vector), numpy.dtype(numpy.int16): (pmt.init_s16vector, int, pmt.s16vector_elements, pmt.is_s16vector), numpy.dtype(numpy.int32): (pmt.init_s32vector, int, pmt.s32vector_elements, pmt.is_s32vector), # numpy.dtype(numpy.int64): (pmt.init_s64vector, int, pmt.s64vector_elements, pmt.is_s64vector), numpy.dtype(numpy.uint8): (pmt.init_u8vector, int, pmt.u8vector_elements, pmt.is_u8vector), numpy.dtype(numpy.uint16): (pmt.init_u16vector, int, pmt.u16vector_elements, pmt.is_u16vector), numpy.dtype(numpy.uint32): (pmt.init_u32vector, int, pmt.u32vector_elements, pmt.is_u32vector), # numpy.dtype(numpy.uint64): (pmt.init_u64vector, int, pmt.u64vector_elements, pmt.is_u64vector), numpy.dtype(numpy.byte): (pmt.init_u8vector, int, pmt.u8vector_elements, pmt.is_u8vector), } uvector_mappings = dict([ (numpy_mappings[key][3], (numpy_mappings[key][2], key)) for key in numpy_mappings ]) def numpy_to_uvector(numpy_array): try: mapping = numpy_mappings[numpy_array.dtype] pc = map(mapping[1],
numpy.ravel(numpy_array)
numpy.ravel
import os import torch import torchvision.transforms as transforms import pandas as pd from PIL import Image import numpy as np class SIIM_ISIC(torch.utils.data.Dataset): def __init__(self, data_root='/home/group3/DataSet/', csv_file=None, img_folder=None, type='train', transform=None): self.transform = transform self.type = type if type == 'train': self.df = pd.read_csv(os.path.join(data_root, 'training_set.csv')) self.imageFolder = os.path.join(data_root, 'Training_set') if type == 'validate': self.df = pd.read_csv(os.path.join(data_root, 'validation_set.csv')) self.imageFolder = os.path.join(data_root, 'Validation_set') if type == 'test': self.df = pd.read_csv(os.path.join(data_root, csv_file)) self.imageFolder = os.path.join(data_root, img_folder) self.df['sex'].fillna('unknown', inplace=True) self.df['age_approx'].fillna(-1, inplace=True) self.df['anatom_site_general_challenge'].fillna('unknown', inplace=True) def __getitem__(self, idx): image_name = self.df.iloc[idx]["image_name"] path = os.path.join(self.imageFolder, '{}.jpg'.format(image_name)) image = Image.open(path) if self.transform: image = self.transform(image) target = [] if self.type != 'test': target = self.df.iloc[idx]["target"] sex = self.df.iloc[idx]["sex"] age_approx = self.df.iloc[idx]["age_approx"] anatom_site_general_challenge = self.df.iloc[idx]["anatom_site_general_challenge"] meta = { "sex": sex, "age_approx": age_approx, "anatom_site_general_challenge": anatom_site_general_challenge, } return image, meta, target def __len__(self): return len(self.df) class Cutout(object): def __init__(self, length): self.length = length def __call__(self, img): h, w = img.size(1), img.size(2) mask =
np.ones((h, w), np.float32)
numpy.ones
#!/usr/bin/env python # coding: utf-8 # In[1]: import os, re, sys import numpy as np # In[2]: def cal_angle_between_two_vectors(vec_1, vec_2): """calculate and return the angle between two vectors. The angle is in radians""" unit_vec_1 = vec_1 / np.linalg.norm(vec_1) unit_vec_2 = vec_2 / np.linalg.norm(vec_2) dot_product =
np.dot(unit_vec_1, unit_vec_2)
numpy.dot
# Copyright 2018 Jetperch LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from . import datafile from joulescope import JOULESCOPE_DIR from joulescope.calibration import Calibration from joulescope.stream_buffer import reduction_downsample, Statistics, stats_to_api, \ STATS_FIELDS, STATS_VALUES, I_RANGE_MISSING, SUPPRESS_SAMPLES_MAX, RawProcessor import json import numpy as np import datetime import os import logging log = logging.getLogger(__name__) DATA_RECORDER_FORMAT_VERSION = '1' SAMPLING_FREQUENCY = 2000000 SAMPLES_PER_BLOCK = 100000 def construct_record_filename(): time_start = datetime.datetime.utcnow() timestamp_str = time_start.strftime('%Y%m%d_%H%M%S') name = '%s.jls' % (timestamp_str, ) return os.path.join(JOULESCOPE_DIR, name) class DataRecorder: """Record Joulescope data to a file.""" def __init__(self, filehandle, sampling_frequency, calibration=None): """Create a new instance. :param filehandle: The file-like object or file name. :param sampling_frequency: The sampling frequency in Hertz. :param calibration: The calibration bytes in datafile format. None (default) uses the unit gain calibration. """ log.info('init') if isinstance(filehandle, str): self._fh = open(filehandle, 'wb') filehandle = self._fh else: self._fh = None self._sampling_frequency = sampling_frequency # constraints: # int1 * _samples_per_reduction = _samples_per_block # int2 * _samples_per_reduction = _samples_per_tlv # int3 * _samples_per_tlv = _samples_per_block self._samples_per_reduction = int(sampling_frequency) // 100 # ~100 Hz self._samples_per_tlv = self._samples_per_reduction * 20 # ~ 5 Hz self._samples_per_block = self._samples_per_tlv * 5 # ~1 Hz # dependent vars self._reductions_per_tlv = self._samples_per_tlv // self._samples_per_reduction reduction_block_size = self._samples_per_block // self._samples_per_reduction self._reduction = np.empty((reduction_block_size, STATS_FIELDS, STATS_VALUES), dtype=np.float32) self._reduction[:] = np.nan self._sample_id_tlv = 0 # sample id for start of next TLV self._sample_id_block = None # sample id for start of current block, None if not started yet self._stream_buffer = None # to ensure same self._sb_sample_id_last = None self._voltage_range = None self._writer = datafile.DataFileWriter(filehandle) self._closed = False self._total_size = 0 self._append_configuration() if calibration is not None: if isinstance(calibration, Calibration): calibration = calibration.data self._writer.append_subfile('calibration', calibration) self._writer.collection_start(0, 0) def _append_configuration(self): config = { 'type': 'config', 'data_recorder_format_version': DATA_RECORDER_FORMAT_VERSION, 'sampling_frequency': self._sampling_frequency, 'samples_per_reduction': self._samples_per_reduction, 'samples_per_tlv': self._samples_per_tlv, 'samples_per_block': self._samples_per_block, 'reduction_fields': ['current', 'voltage', 'power', 'current_range', 'current_lsb', 'voltage_lsb'] } cfg_data = json.dumps(config).encode('utf-8') self._writer.append(datafile.TAG_META_JSON, cfg_data) def _collection_start(self, data=None): log.debug('_collection_start()') c = self._writer.collection_start(1, 0, data=data) c.metadata = {'start_sample_id': self._sample_id_tlv} c.on_end = self._collection_end self._sample_id_block = self._sample_id_tlv def _collection_end(self, collection): tlv_offset = (self._sample_id_tlv - self._sample_id_block) // self._samples_per_tlv r_stop = tlv_offset * self._reductions_per_tlv log.debug('_collection_end(%s, %s)', r_stop, len(self._reduction)) self._writer.collection_end(collection, self._reduction[:r_stop, :, :].tobytes()) self._sample_id_block = None self._reduction[:] = np.nan def stream_notify(self, stream_buffer): """Process data from a stream buffer. :param stream_buffer: The stream_buffer instance which has a "sample_id_range" member, "voltage_range" member, raw(start_sample_id, stop_sample_id) and get_reduction(reduction_idx, start_sample_id, stop_sample_id). """ sb_start, sb_stop = stream_buffer.sample_id_range if self._stream_buffer is None: self._stream_buffer = stream_buffer self._sample_id_tlv = sb_stop self._sample_id_block = None elif self._stream_buffer != stream_buffer: raise ValueError('Supports only a single stream_buffer instance') sample_id_next = self._sample_id_tlv + self._samples_per_tlv while sb_stop >= sample_id_next: # have at least one block if self._samples_per_tlv > len(stream_buffer): raise ValueError('stream_buffer length too small. %s > %s' % (self._samples_per_tlv, len(stream_buffer))) self._voltage_range = stream_buffer.voltage_range if self._sample_id_block is None: collection_data = { 'v_range': stream_buffer.voltage_range, 'sample_id': sample_id_next, } collection_data = json.dumps(collection_data).encode('utf-8') self._collection_start(data=collection_data) log.debug('_process() add tlv %d', self._sample_id_tlv) b = stream_buffer.raw_get(self._sample_id_tlv, sample_id_next) self._append_data(b.tobytes()) tlv_offset = (self._sample_id_tlv - self._sample_id_block) // self._samples_per_tlv r_start = tlv_offset * self._reductions_per_tlv r_stop = r_start + self._reductions_per_tlv stream_buffer.data_get(self._sample_id_tlv, sample_id_next, self._samples_per_reduction, out=self._reduction[r_start:r_stop, :, :]) self._sample_id_tlv = sample_id_next if self._sample_id_tlv - self._sample_id_block >= self._samples_per_block: self._collection_end(self._writer.collections[-1]) sample_id_next += self._samples_per_tlv def _append_data(self, data): if self._closed: return expected_len = self._samples_per_tlv * 2 * 2 # two uint16's per sample if expected_len != len(data): raise ValueError('invalid data length: %d != %d', expected_len, len(data)) self._writer.append(datafile.TAG_DATA_BINARY, data, compress=False) self._total_size += len(data) // 4 def _append_meta(self): index = { 'type': 'footer', 'size': self._total_size, # in samples } data = json.dumps(index).encode('utf-8') self._writer.append(datafile.TAG_META_JSON, data) def close(self): if self._closed: return self._closed = True while len(self._writer.collections): collection = self._writer.collections[-1] if len(collection.metadata): self._collection_end(collection) else: self._writer.collection_end() self._append_meta() self._writer.finalize() if self._fh is not None: self._fh.close() self._fh = None class DataReader: def __init__(self): self.calibration = None self.config = None self.footer = None self._fh_close = False self._fh = None self._f = None # type: datafile.DataFileReader self._data_start_position = 0 self._voltage_range = 0 self._sample_cache = None self.raw_processor = RawProcessor() def __str__(self): if self._f is not None: return 'DataReader %.2f seconds (%d samples)' % (self.duration, self.footer['size']) def close(self): if self._fh_close: self._fh.close() self._fh_close = False self._fh = None self._f = None self._sample_cache = None self._reduction_cache = None def open(self, filehandle): self.close() self.calibration = Calibration() # default calibration self.config = None self.footer = None self._data_start_position = 0 if isinstance(filehandle, str): log.info('DataReader(%s)', filehandle) self._fh = open(filehandle, 'rb') self._fh_close = True else: self._fh = filehandle self._fh_close = False self._f = datafile.DataFileReader(self._fh) while True: tag, value = self._f.peek() if tag is None: raise ValueError('could not read file') elif tag == datafile.TAG_SUBFILE: name, data = datafile.subfile_split(value) if name == 'calibration': self.calibration = Calibration().load(data) elif tag == datafile.TAG_COLLECTION_START: self._data_start_position = self._f.tell() elif tag == datafile.TAG_META_JSON: meta = json.loads(value.decode('utf-8')) type_ = meta.get('type') if type_ == 'config': self.config = meta elif type_ == 'footer': self.footer = meta break else: log.warning('Unknown JSON section type=%s', type_) self._f.skip() if self._data_start_position == 0 or self.config is None or self.footer is None: raise ValueError('could not read file') log.info('DataReader with %d samples:\n%s', self.footer['size'], json.dumps(self.config, indent=2)) if self.config['data_recorder_format_version'] != DATA_RECORDER_FORMAT_VERSION: raise ValueError('Invalid file format') self.config.setdefault('reduction_fields', ['current', 'voltage', 'power']) cal = self.calibration self.raw_processor.calibration_set(cal.current_offset, cal.current_gain, cal.voltage_offset, cal.voltage_gain) return self @property def sample_id_range(self): if self._f is not None: s_start = 0 s_end = int(s_start + self.footer['size']) return [s_start, s_end] return 0 @property def sampling_frequency(self): if self._f is not None: return float(self.config['sampling_frequency']) return 0.0 @property def reduction_frequency(self): if self._f is not None: return self.config['sampling_frequency'] / self.config['samples_per_reduction'] return 0.0 @property def duration(self): f = self.sampling_frequency if f > 0: r = self.sample_id_range return (r[1] - r[0]) / f return 0.0 @property def voltage_range(self): return self._voltage_range def _validate_range(self, start=None, stop=None, increment=None): idx_start, idx_end = self.sample_id_range if increment is not None: idx_end = ((idx_end + increment - 1) // increment) * increment # log.debug('[%d, %d] : [%d, %d]', start, stop, idx_start, idx_end) if not idx_start <= start < idx_end: raise ValueError('start out of range: %d <= %d < %d' % (idx_start, start, idx_end)) if not idx_start <= stop <= idx_end: raise ValueError('stop out of range: %d <= %d <= %d: %s' % (idx_start, stop, idx_end, increment)) def _sample_tlv(self, sample_idx): if self._sample_cache and self._sample_cache['start'] <= sample_idx < self._sample_cache['stop']: # cache hit return self._sample_cache idx_start, idx_end = self.sample_id_range if not idx_start <= sample_idx < idx_end: raise ValueError('sample index out of range: %d <= %d < %d' % (idx_start, sample_idx, idx_end)) if self._sample_cache is not None: log.debug('_sample_cache cache miss: %s : %s %s', sample_idx, self._sample_cache['start'], self._sample_cache['stop']) # seek samples_per_tlv = self.config['samples_per_tlv'] samples_per_block = self.config['samples_per_block'] tgt_block = sample_idx // samples_per_block if self._sample_cache is not None and sample_idx > self._sample_cache['start']: # continue forward self._fh.seek(self._sample_cache['tlv_pos']) voltage_range = self._sample_cache['voltage_range'] block_fh_pos = self._sample_cache['block_pos'] current_sample_idx = self._sample_cache['start'] block_counter = current_sample_idx // samples_per_block else: # add case for rewind? log.debug('_sample_tlv resync to beginning') self._fh.seek(self._data_start_position) voltage_range = 0 block_fh_pos = 0 block_counter = 0 current_sample_idx = 0 if self._f.advance() != datafile.TAG_COLLECTION_START: raise ValueError('data section must be single collection') while True: tag, _ = self._f.peek_tag_length() if tag is None: log.error('sample_tlv not found before end of file: %s > %s', sample_idx, current_sample_idx) break if tag == datafile.TAG_COLLECTION_START: if block_counter < tgt_block: self._f.skip() block_counter += 1 else: block_fh_pos = self._f.tell() tag, collection_bytes = next(self._f) c = datafile.Collection.decode(collection_bytes) if c.data: collection_start_meta = json.loads(c.data) voltage_range = collection_start_meta.get('v_range', 0) self._voltage_range = voltage_range current_sample_idx = block_counter * samples_per_block elif tag == datafile.TAG_COLLECTION_END: block_counter += 1 self._f.advance() elif tag == datafile.TAG_DATA_BINARY: tlv_stop = current_sample_idx + samples_per_tlv if current_sample_idx <= sample_idx < tlv_stop: # found it! tlv_pos = self._f.tell() tag, value = next(self._f) data = np.frombuffer(value, dtype=np.uint16).reshape((-1, 2)) self._sample_cache = { 'voltage_range': voltage_range, 'start': current_sample_idx, 'stop': tlv_stop, 'buffer': data, 'tlv_pos': tlv_pos, 'block_pos': block_fh_pos, } return self._sample_cache else: self._f.advance() current_sample_idx = tlv_stop else: self._f.advance() def raw(self, start=None, stop=None, units=None): """Get the raw data. :param start: The starting time relative to the first sample. :param stop: The ending time. :param units: The units for start and stop: ['seconds', 'samples']. None (default) is 'samples'. :return: The output which is (out_raw, bits, out_cal). """ start, stop = self.normalize_time_arguments(start, stop, units) x_start, x_stop = self.sample_id_range if start is None: start = x_start if stop is None: stop = x_stop self._fh.seek(self._data_start_position) self._validate_range(start, stop) length = stop - start if length <= 0: return np.empty((0, 2), dtype=np.uint16) # process extra before & after to handle filtering if start > SUPPRESS_SAMPLES_MAX: sample_idx = start - SUPPRESS_SAMPLES_MAX prefix_count = SUPPRESS_SAMPLES_MAX else: sample_idx = 0 prefix_count = start if stop + SUPPRESS_SAMPLES_MAX <= x_stop: end_idx = stop + SUPPRESS_SAMPLES_MAX else: end_idx = x_stop out_idx = 0 d_raw = np.empty((end_idx - sample_idx, 2), dtype=np.uint16) if self._f.advance() != datafile.TAG_COLLECTION_START: raise ValueError('data section must be single collection') while sample_idx < end_idx: sample_cache = self._sample_tlv(sample_idx) if sample_cache is None: break data = sample_cache['buffer'] b_start = sample_idx - sample_cache['start'] length = sample_cache['stop'] - sample_cache['start'] - b_start out_remaining = end_idx - sample_idx length = min(length, out_remaining) if length <= 0: break b_stop = b_start + length d = data[b_start:b_stop, :] d_raw[out_idx:(out_idx + length), :] = d out_idx += length sample_idx += length d_raw = d_raw[:out_idx, :] self.raw_processor.reset() self.raw_processor.voltage_range = self._voltage_range d_cal, d_bits = self.raw_processor.process_bulk(d_raw.reshape((-1, ))) j = prefix_count k = min(prefix_count + stop - start, out_idx) return d_raw[j:k, :], d_bits[j:k], d_cal[j:k, :] def _reduction_tlv(self, reduction_idx): sz = self.config['samples_per_reduction'] incr = self.config['samples_per_block'] // sz tgt_r_idx = reduction_idx if self._reduction_cache and self._reduction_cache['r_start'] <= tgt_r_idx < self._reduction_cache['r_stop']: return self._reduction_cache if self._reduction_cache is not None: log.debug('_reduction_tlv cache miss: %s : %s %s', tgt_r_idx, self._reduction_cache['r_start'], self._reduction_cache['r_stop']) idx_start, idx_end = self.sample_id_range r_start = idx_start // sz r_stop = idx_end // sz if not r_start <= tgt_r_idx < r_stop: raise ValueError('reduction index out of range: %d <= %d < %d', r_start, tgt_r_idx, r_stop) if self._reduction_cache is not None and tgt_r_idx > self._reduction_cache['r_start']: # continue forward self._fh.seek(self._reduction_cache['next_collection_pos']) r_idx = self._reduction_cache['r_stop'] else: # add case for rewind? log.debug('_reduction_tlv resync to beginning') self._fh.seek(self._data_start_position) r_idx = 0 if self._f.advance() != datafile.TAG_COLLECTION_START: raise ValueError('data section must be single collection') self._fh.seek(self._data_start_position) if self._f.advance() != datafile.TAG_COLLECTION_START: raise ValueError('data section must be single collection') while True: tag, _ = self._f.peek_tag_length() if tag is None or tag == datafile.TAG_COLLECTION_END: log.error('reduction_tlv not found before end of file: %s > %s', r_stop, r_idx) break elif tag != datafile.TAG_COLLECTION_START: raise ValueError('invalid file format: not collection start') r_idx_next = r_idx + incr if tgt_r_idx >= r_idx_next: self._f.skip() r_idx = r_idx_next continue self._f.collection_goto_end() tag, value = next(self._f) if tag != datafile.TAG_COLLECTION_END: raise ValueError('invalid file format: not collection end') field_count = len(self.config['reduction_fields']) data = np.frombuffer(value, dtype=np.float32).reshape((-1, field_count, STATS_VALUES)) if field_count != STATS_FIELDS: d_nan = np.full((len(data), STATS_FIELDS - field_count, STATS_VALUES), np.nan, dtype=np.float32) data = np.concatenate((data, d_nan), axis=1) self._reduction_cache = { 'r_start': r_idx, 'r_stop': r_idx_next, 'buffer': data, 'next_collection_pos': self._f.tell() } return self._reduction_cache def get_reduction(self, start=None, stop=None, units=None, out=None): """Get the fixed reduction with statistics. :param start: The starting sample identifier (inclusive). :param stop: The ending sample identifier (exclusive). :param units: The units for start and stop. 'seconds' or None is in floating point seconds relative to the view. 'samples' is in stream buffer sample indices. :return: The Nx3x4 sample data. """ start, stop = self.normalize_time_arguments(start, stop, units) self._fh.seek(self._data_start_position) self._validate_range(start, stop) sz = self.config['samples_per_reduction'] r_start = start // sz total_length = (stop - start) // sz r_stop = r_start + total_length log.info('DataReader.get_reduction(r_start=%r,r_stop=%r)', r_start, r_stop) if total_length <= 0: return np.empty((0, STATS_FIELDS, STATS_VALUES), dtype=np.float32) if out is None: out = np.empty((total_length, STATS_FIELDS, STATS_VALUES), dtype=np.float32) elif len(out) < total_length: raise ValueError('out too small') r_idx = r_start out_idx = 0 while r_idx < r_stop: reduction_cache = self._reduction_tlv(r_idx) if reduction_cache is None: break data = reduction_cache['buffer'] b_start = r_idx - reduction_cache['r_start'] length = reduction_cache['r_stop'] - reduction_cache['r_start'] - b_start out_remaining = r_stop - r_idx length = min(length, out_remaining) if length <= 0: break out[out_idx:(out_idx + length), :, :] = data[b_start:(b_start + length), :, :] out_idx += length r_idx += length if out_idx != total_length: log.warning('DataReader length mismatch: out_idx=%s, length=%s', out_idx, total_length) total_length = min(out_idx, total_length) return out[:total_length, :] def _get_reduction_stats(self, start, stop): """Get statistics over the reduction :param start: The starting sample identifier (inclusive). :param stop: The ending sample identifier (exclusive). :return: The tuple of ((sample_start, sample_stop), :class:`Statistics`). """ # log.debug('_get_reduction_stats(%s, %s)', start, stop) s = Statistics() sz = self.config['samples_per_reduction'] incr = self.config['samples_per_block'] // sz r_start = start // sz if (r_start * sz) < start: r_start += 1 r_stop = stop // sz if r_start >= r_stop: # cannot use the reductions s_start = r_start * sz return (s_start, s_start), s r_idx = r_start while r_idx < r_stop: reduction_cache = self._reduction_tlv(r_idx) if reduction_cache is None: break data = reduction_cache['buffer'] b_start = r_idx - reduction_cache['r_start'] length = reduction_cache['r_stop'] - reduction_cache['r_start'] - b_start out_remaining = r_stop - r_idx length = min(length, out_remaining) if length <= 0: break r = reduction_downsample(data, b_start, b_start + length, length) s.combine(Statistics(length=length * sz, stats=r[0, :, :])) r_idx += length return (r_start * sz, r_stop * sz), s def get_calibrated(self, start=None, stop=None, units=None): """Get the calibrated data (no statistics). :param start: The starting sample identifier (inclusive). :param stop: The ending sample identifier (exclusive). :param units: The units for start and stop. 'seconds' or None is in floating point seconds relative to the view. 'samples' is in stream buffer sample indices. :return: The tuple of (current, voltage), each as np.ndarray with dtype=np.float32. """ log.debug('get_calibrated(%s, %s, %s)', start, stop, units) _, _, d = self.raw(start, stop) i, v = d[:, 0], d[:, 1] return i, v def get(self, start=None, stop=None, increment=None, units=None): """Get the calibrated data with statistics. :param start: The starting sample identifier (inclusive). :param stop: The ending sample identifier (exclusive). :param increment: The number of raw samples per output sample. :param units: The units for start and stop. 'seconds' or None is in floating point seconds relative to the view. 'samples' is in stream buffer sample indices. :return: The Nx3x4 sample data. """ log.debug('DataReader.get(start=%r,stop=%r,increment=%r)', start, stop, increment) start, stop = self.normalize_time_arguments(start, stop, units) if increment is None: increment = 1 if self._fh is None: raise IOError('file not open') increment = max(1, int(np.round(increment))) out_len = (stop - start) // increment if out_len <= 0: return np.empty((0, STATS_FIELDS, STATS_VALUES), dtype=np.float32) out = np.empty((out_len, STATS_FIELDS, STATS_VALUES), dtype=np.float32) if increment == 1: _, d_bits, d_cal = self.raw(start, stop) i, v = d_cal[:, 0], d_cal[:, 1] out[:, 0, 0] = i out[:, 1, 0] = v out[:, 2, 0] = i * v out[:, 3, 0] = np.bitwise_and(d_bits, 0x0f) out[:, 4, 0] = np.bitwise_and(np.right_shift(d_bits, 4), 0x01) out[:, 5, 0] = np.bitwise_and(np.right_shift(d_bits, 5), 0x01) out[:, :, 1] = 0.0 # zero variance, only one sample! out[:, :, 2] = np.nan # min out[:, :, 3] = np.nan # max elif increment == self.config['samples_per_reduction']: out = self.get_reduction(start, stop, out=out) elif increment > self.config['samples_per_reduction']: r_out = self.get_reduction(start, stop) increment = int(increment / self.config['samples_per_reduction']) out = reduction_downsample(r_out, 0, len(r_out), increment) else: k_start = start for idx in range(out_len): k_stop = k_start + increment out[idx, :, :] = self._stats_get(k_start, k_stop).value k_start = k_stop return out def summary_string(self): s = [str(self)] config_fields = ['sampling_frequency', 'samples_per_reduction', 'samples_per_tlv', 'samples_per_block'] for field in config_fields: s.append(' %s = %r' % (field, self.config[field])) return '\n'.join(s) def time_to_sample_id(self, t): if t is None: return None s_min, s_max = self.sample_id_range s = int(t * self.sampling_frequency) if s < s_min or s > s_max: return None return s def sample_id_to_time(self, s): if s is None: return None return s / self.sampling_frequency def normalize_time_arguments(self, start, stop, units): s_min, s_max = self.sample_id_range if units == 'seconds': start = self.time_to_sample_id(start) stop = self.time_to_sample_id(stop) elif units is None or units == 'samples': if start is not None and start < 0: start = s_max + start if stop is not None and stop < 0: stop = s_max + start else: raise ValueError(f'invalid time units: {units}') s1 = s_min if start is None else start s2 = s_max if stop is None else stop if not s_min <= s1 < s_max: raise ValueError(f'start sample out of range: {s1}') if not s_min <= s2 <= s_max: raise ValueError(f'start sample out of range: {s2}') return s1, s2 def _stats_get(self, start, stop): s1, s2 = start, stop (k1, k2), s = self._get_reduction_stats(s1, s2) if k1 >= k2: # compute directly over samples stats = np.empty((STATS_FIELDS, STATS_VALUES), dtype=np.float32) _, d_bits, z = self.raw(s1, s2) i, v = z[:, 0], z[:, 1] p = i * v zi = np.isfinite(i) i_view = i[zi] if len(i_view): i_range = np.bitwise_and(d_bits, 0x0f) i_lsb = np.right_shift(np.bitwise_and(d_bits, 0x10), 4) v_lsb = np.right_shift(np.bitwise_and(d_bits, 0x20), 5) for idx, field in enumerate([i_view, v[zi], p[zi], i_range, i_lsb[zi], v_lsb[zi]]): stats[idx, 0] = np.mean(field, axis=0) stats[idx, 1] = np.var(field, axis=0) stats[idx, 2] = np.amin(field, axis=0) stats[idx, 3] =
np.amax(field, axis=0)
numpy.amax
''' ----------------------------------------------- File Name: data_seg$ Description: Author: Jing$ Date: 6/29/2021$ ----------------------------------------------- ''' from __future__ import division import warnings warnings.filterwarnings('ignore') # ignore warnings import os os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" # only show error import numpy as np import pandas as pd import cv2 as cv from PIL import Image import skimage.io as io from skimage import img_as_ubyte import os from medpy.metric.binary import dc, hd, assd from keras import backend as K from keras.optimizers import Adam #from tensorflow.keras.optimizers import Adam # only for doubleunet from keras.callbacks import CSVLogger, ModelCheckpoint, EarlyStopping import segmentation_models as sm from model_seg import * from doubleu_net import * def load_data(img_path_aug, img_path_ori, gt_path_aug, gt_path_ori, csv_aug, csv_ori, H, W): df_ori = pd.read_csv(csv_ori) df_aug = pd.read_csv(csv_aug) filename_list_ori = df_ori['filename'].values filename_list_aug = df_aug['filename'].values pixel_size_ori = df_ori['pixel size(mm)'].values hcpx_ori = df_ori['head circumference(px)'].values img_ori = [] label_ori = [] img_aug = [] label_aug = [] pixel_ori = [] label_hc = [] for (i, f) in enumerate(filename_list_ori): img = Image.open(img_path_ori + f).convert('RGB') # 3 channels img = img.resize((H,W)) img = np.array(img) img_norm = (img - np.mean(img)) / np.std(img) # normalize img_ori.append(img_norm) pixel_ori.append(pixel_size_ori[i]) label_hc.append(hcpx_ori[i]) gt = Image.open(gt_path_ori + f).convert('L') gt = gt.resize((H,W)) gt = np.array(gt) gt[gt > 0.5] = 1 # normalize gt[gt <= 0.5] = 0 gt = gt[:, :, np.newaxis] label_ori.append(gt) for (i, f) in enumerate(filename_list_aug): img = Image.open(img_path_aug + f).convert('RGB') img = img.resize((H,W)) img = np.array(img) img_norm = (img - np.mean(img)) / np.std(img) # normalize # img = img_norm[:, :, np.newaxis] img_aug.append(img_norm) gt = Image.open(gt_path_aug + f).convert('L') gt = gt.resize((H,W)) gt = np.array(gt) gt[gt > 0.5] = 1 # normalize gt[gt <= 0.5] = 0 gt = gt[:, :, np.newaxis] label_aug.append(gt) print("load data successfully!") return np.asarray(img_aug, dtype=np.float64), np.asarray(label_aug), np.asarray(label_hc), \ np.asarray(img_ori, dtype=np.float64), np.asarray(label_ori), np.asarray(pixel_ori) def save_data(save_path, segment_results, label, shape=(800, 540)): image_resize = [] label_resize = [] for i, item in enumerate(segment_results): img = item[:, :, 0] if np.isnan(np.sum(img)): img = img[~np.isnan(img)] # just remove nan elements from vector img[img > 0.5] = 1 img[img <= 0.5] = 0 img_resize = cv.resize(img, shape, interpolation=cv.INTER_AREA) image_resize.append(img_resize) io.imsave(os.path.join(save_path, "%d_predict.png" % i), img_as_ubyte(img_resize)) for i, item in enumerate(label): gt_resize = cv.resize(item, shape, interpolation=cv.INTER_AREA) label_resize.append(gt_resize) print("save data successfully!") return np.asarray(image_resize), np.asarray(label_resize) def Dice(y_true, y_pred): y_true_f = K.flatten(y_true) y_pred_f = K.flatten(y_pred) intersection = K.sum(y_true_f * y_pred_f) return (2. * intersection) / (K.sum(y_true_f) + K.sum(y_pred_f)) def Dice_score(gt, seg): dice = [] for item in range(len(gt)): dice.append(dc(gt[item], seg[item])) print("The mean and std dice score is: ", '%.2f' % np.mean(dice), '%.2f' % np.std(dice)) return np.mean(dice), np.std(dice) def HausdorffDistance_score(gt, seg, pixelsize): hausdorff = [] for item in range(len(gt)): if np.sum(seg[item]) > 0: # If the structure is predicted on at least one pixel hausdorff.append(hd(seg[item], gt[item], voxelspacing=[pixelsize[item], pixelsize[item]])) print("The mean and std Hausdorff Distance is: ", '%.2f' % np.mean(hausdorff), '%.2f' % np.std(hausdorff)) return np.mean(hausdorff), np.std(hausdorff) def ASSD_score(gt, seg, pixelsize): ASSD = [] for item in range(len(gt)): if np.sum(seg[item]) > 0: ASSD.append(assd(seg[item], gt[item], voxelspacing=[pixelsize[item], pixelsize[item]])) print("The mean and std ASSD is: ", '%.2f' % np.mean(ASSD), '%.2f' % np.std(ASSD)) return np.mean(ASSD), np.std(ASSD) def EllipseCircumference(a,b): # Ramanujan approximation II # HC = pi*(a+b)*(1+3h/(10+sqrt(4-3*h))),h = (a-b)**2/(a+b)**2 h = ((a / 2 - b / 2) ** 2) / ((a / 2 + b / 2) ** 2) perimeter_ellipse = np.pi * (a / 2 + b / 2) * (1 + 3 * h / (10 + np.sqrt(4 - 3 * h))) return perimeter_ellipse def HC_calculate(pred): ''' 3 ways to calculate HC: 1. the number of contour points; 2. the length of contour; 3. the length of fitted ellipse ''' num_points_pp = [] len_contour_pp = [] len_ellipse_pp = [] num_points = [] len_contour = [] len_ellipse = [] for item in range(len(pred)): image = np.uint8(pred[item]) image[image > 0.5] = 255 image[image <= 0.5] = 0 contour = cv.Canny(image, 80, 160) contours, hierarchy = cv.findContours(contour, mode=cv.RETR_EXTERNAL, method=cv.CHAIN_APPROX_NONE) #print("performing with post processing") max_contour = [] for i in range(len(contours)): if len(contours[i]) > len(max_contour): max_contour = contours[i] if len(max_contour) != 0: perimeter_contour = cv.arcLength(max_contour, True) # para2:indicating whether the curve is closed or not # fitting ellipse, return center points, axis (cx, cy), (a, b), angle = cv.fitEllipse(max_contour) perimeter_ellipse = EllipseCircumference(a,b) else: perimeter_contour = 0 perimeter_ellipse = 0 num_points_pp.append(len(max_contour)) len_contour_pp.append(perimeter_contour) len_ellipse_pp.append(perimeter_ellipse) #print("performing without post processing") if len(contours) !=0: num_points_unit=0 len_contour_unit=0 len_ellipse_unit=0 for i in range(len(contours)): num_points_unit +=len(contours[i]) len_contour_unit +=cv.arcLength(contours[i], True) if len(contours[i])>5:#There should be at least 5 points to fit the ellipse in function 'cv::fitEllipse' (cx, cy), (a, b), angle = cv.fitEllipse(contours[i]) len_ellipse_unit +=EllipseCircumference(a,b) else: num_points_unit = 0 len_contour_unit = 0 len_ellipse_unit = 0 num_points.append(num_points_unit) len_contour.append(len_contour_unit) len_ellipse.append(len_ellipse_unit) return np.asarray(num_points), np.asarray(len_contour), np.asarray(len_ellipse),\ np.asarray(num_points_pp), np.asarray(len_contour_pp), np.asarray(len_ellipse_pp) def predictions(x_text, y_test, label_hc_px, pixelsize, model, save_path): score = model.evaluate(x_text, y_test, verbose=2) print("Loss,iou sore:", '%.2f' % score[0], '%.2f' % score[1]) results = model.predict(x_text) # return probability pred, y_test = save_data(save_path, results, y_test) # segmentation analysis mean_dice, std_dice = Dice_score(y_test, pred) mean_hd, std_hd = HausdorffDistance_score(y_test, pred, pixelsize) mean_assd, std_assd = ASSD_score(y_test, pred, pixelsize) # HC analysis HC_pred_points, HC_pred_contour, HC_pred_ellipse,\ HC_pred_points_pp, HC_pred_contour_pp, HC_pred_ellipse_pp= HC_calculate(pred) print("predicted value in mm:", HC_pred_ellipse_pp * pixelsize) print("predicted value in mm wo pp:", HC_pred_ellipse * pixelsize) absDiff_points = np.abs((HC_pred_points - label_hc_px) * pixelsize) absDiff_contour = np.abs((HC_pred_contour - label_hc_px) * pixelsize) absDiff_ellipse = np.abs((HC_pred_ellipse - label_hc_px) * pixelsize) absDiff_points_pp = np.abs((HC_pred_points_pp - label_hc_px) * pixelsize) absDiff_contour_pp = np.abs((HC_pred_contour_pp - label_hc_px) * pixelsize) absDiff_ellipse_pp = np.abs((HC_pred_ellipse_pp - label_hc_px) * pixelsize) mean_mae_points = round(np.mean(absDiff_points), 2) # compute mae in mm mean_mae_contour = round(np.mean(absDiff_contour), 2) # compute mae in mm mean_mae_ellipse = round(np.mean(absDiff_ellipse), 2) # compute mae in mm mean_mae_points_pp = round(np.mean(absDiff_points_pp), 2) # compute mae in mm mean_mae_contour_pp = round(np.mean(absDiff_contour_pp), 2) # compute mae in mm mean_mae_ellipse_pp = round(np.mean(absDiff_ellipse_pp), 2) # compute mae in mm std_mae_points = round(np.std(absDiff_points), 2) std_mae_contour = round(np.std(absDiff_contour), 2) std_mae_ellipse = round(np.std(absDiff_ellipse), 2) std_mae_points_pp = round(np.std(absDiff_points_pp), 2) std_mae_contour_pp = round(np.std(absDiff_contour_pp), 2) std_mae_ellipse_pp = round(np.std(absDiff_ellipse_pp), 2) mean_mae_px_points = round(np.mean(absDiff_points / pixelsize), 2) # compute mae in pixel mean_mae_px_contour = round(np.mean(absDiff_contour / pixelsize), 2) # compute mae in pixel mean_mae_px_ellipse = round(np.mean(absDiff_ellipse / pixelsize), 2) # compute mae in pixel mean_mae_px_points_pp = round(np.mean(absDiff_points_pp / pixelsize), 2) # compute mae in pixel mean_mae_px_contour_pp = round(np.mean(absDiff_contour_pp / pixelsize), 2) # compute mae in pixel mean_mae_px_ellipse_pp = round(np.mean(absDiff_ellipse_pp / pixelsize), 2) # compute mae in pixel std_mae_px_points = round(np.std(absDiff_points / pixelsize), 2) std_mae_px_contour = round(np.std(absDiff_contour / pixelsize), 2) std_mae_px_ellipse = round(np.std(absDiff_ellipse / pixelsize), 2) std_mae_px_points_pp = round(
np.std(absDiff_points_pp / pixelsize)
numpy.std
from jax import lax import numpy as np from scipy.integrate import solve_ivp from sklearn.preprocessing import StandardScaler from .utils import generate_diff_kernels __all__ = ["generate_dataset"] def generate_dataset(dt=1e-2, tmax=None, num_visible=2, num_der=2, raw_sol=False): if tmax is None: tmax = 100 + 2 * dt def rossler(t, y0, a, b, c): """Rossler equations""" u, v, w = y0[..., 0], y0[..., 1], y0[..., 2] up = -v - w vp = u + a * v wp = b + w * (u - c) return np.stack((up, vp, wp), axis=-1) # Rossler parameters and initial conditions a, b, c = 0.2, 0.2, 5.7 u0, v0, w0 = 0, 1, 1.05 # Integrate the Rossler equations on the time grid t print("Generating Rossler system dataset...") t_eval =
np.arange(0, tmax, dt)
numpy.arange
# -*- coding: utf-8 -*- """ Created on Wed Dec 4 22:45:19 2019 @author: Pavan """ import numpy as np import scipy.stats as sc import math ################################################################################################ # Helper Functions def column_wise(fun,*args): return np.apply_along_axis(fun,0,*args) def rolling_window(a, shape): # rolling window for 2D array s = (a.shape[0] - shape[0] + 1,) + (a.shape[1] - shape[1] + 1,) + shape strides = a.strides + a.strides return np.lib.stride_tricks.as_strided(a, shape=s, strides=strides) def fisher_helper_ema(array,alpha,window): def numpy_ewma(a, alpha, windowSize): # a=a.flatten() wghts = (1-alpha)**np.arange(windowSize) # wghts /= wghts.sum() out = np.convolve(a,wghts) out[:windowSize-1] = np.nan return out[:a.size] return column_wise(numpy_ewma,array,alpha,window) ################################################################################################ # A. Mathematical Functions # Rolling Median def median(a,window): me = np.empty_like(a) me[:window-1,:]=np.nan me[window-1:,:]= np.squeeze(np.median(rolling_window(a,(window,a.shape[1])),axis=2),axis=1) return me # Rolling Mean def mean(a,window): me = np.empty_like(a) me[:window-1,:]=np.nan me[window-1:,:]= np.squeeze(np.mean(rolling_window(a,(window,a.shape[1])),axis=2),axis=1) return me #Rolling Standard Deviation def stdev(a,window): std = np.empty_like(a) std[:window-1,:]=np.nan std[window-1:,:]= np.squeeze(np.std(rolling_window(a,(window,a.shape[1])),axis=2),axis=1) return std #Rolling Product def product(a,window): prod = np.empty_like(a) prod[:window-1,:]=np.nan prod[window-1:,:]= np.squeeze(np.prod(rolling_window(a,(window,a.shape[1])),axis=2),axis=1) return prod #Rolling Summation def summation(a,window): summ = np.empty_like(a) summ[:window-1,:]=np.nan summ[window-1:,:]= np.squeeze(np.sum(rolling_window(a,(window,a.shape[1])),axis=2),axis=1) return summ #Rolling Nan Product. Treats nan values as 1 def nanprod(a,window): nanprod = np.empty_like(a) nanprod[:window-1,:]=np.nan nanprod[window-1:,:]= np.squeeze(np.nanprod(rolling_window(a,(window,a.shape[1])),axis=2),axis=1) return nanprod #Rolling Nan Summation. Treats nan values as 0 def nansum(a,window): summ = np.empty_like(a) summ[:window-1,:]=np.nan summ[window-1:,:]= np.squeeze(np.nansum(rolling_window(a,(window,a.shape[1])),axis=2),axis=1) return summ #Rolling Cummulative Product def cumproduct(a,window): prod = np.empty_like(a) prod[:window-1,:]=np.nan prod[window-1:,:]= np.squeeze(np.cumprod(rolling_window(a,(window,a.shape[1])),axis=2),axis=1) return prod #Rolling Summation def cumsummation(a,window): summ = np.empty_like(a) summ[:window-1,:]=np.nan summ[window-1:,:]= np.squeeze(np.cumsum(rolling_window(a,(window,a.shape[1])),axis=2),axis=1) return summ #Rolling nan Cummulative Product. Treats nan as 1 def nancumproduct(a,window): prod = np.empty_like(a) prod[:window-1,:]=np.nan prod[window-1:,:]= np.squeeze(np.nancumprod(rolling_window(a,(window,a.shape[1])),axis=2),axis=1) return prod #Rolling nan Cummulative Summation. Treats nan as 0 def nancumsummation(a,window): summ = np.empty_like(a) summ[:window-1,:]=np.nan summ[window-1:,:]= np.squeeze(np.nancumsum(rolling_window(a,(window,a.shape[1])),axis=2),axis=1) return summ #backward difference: a[n]=b[n]-b[n-(window-1)] def back_diff(a,window): back= np.empty_like(a) back[:window-1,:]=np.nan back[window-1:,:]=a[window-1:,:]-a[:-(window-1),:] return back # rolling integration def integrate(a,window): inte= np.empty_like(a) inte[:window-1,:]=np.nan inte[window-1:,:]=np.squeeze(np.trapz(rolling_window(a,(window,a.shape[1])),axis=2),axis=1) return inte # rolling integration def integrate_along_x(y,x,window): inte= np.empty_like(y) inte[:window-1,:]=np.nan inte[window-1:,:]=np.squeeze(np.trapz(rolling_window(y,(window,y.shape[1])),rolling_window(x,(window,x.shape[1])),axis=2),axis=1) return inte #Centers Value by subtracting its median over the TimePeriod. #Using the median instead of the mean reduces the effect of outliers. def center(a,window): cen = np.empty_like(a) cen[:window-1,:]=np.nan cen[window-1:,:]= a[window-1:,:]-np.squeeze(np.median(rolling_window(a,(window,a.shape[1])),axis=2),axis=1) return cen #Compresses Value to the -100...+100 range. For this, Value is divided by its interquartile range # - the difference of the 75th and 25th percentile - taken over TimePeriod, and # then compressed by a cdf function. Works best when Value is an oscillator that crosses # the zero line. Formula: 200 * cdf(0.25*Value/(P75-P25)) - 100. def compress(a,window): from scipy.stats import norm com = np.empty_like(a) com[:window-1,:]=np.nan value = a[window-1:,:] q25 = np.squeeze(np.quantile(rolling_window(a,(window,a.shape[1])),0.25,axis=2),axis=1) q75 = np.squeeze(np.quantile(rolling_window(a,(window,a.shape[1])),0.75,axis=2),axis=1) com[window-1:,:] = 200*(norm.cdf((0.25*value/(q75-q25))))-100 return com #Centers and compresses Value to the -100...+100 scale. #The deviation of Value from its median is divided by its interquartile range and then #compressed by a cdf function. Formula: 200 * cdf(0.5*(Value-Median)/(P75-P25)) - 100. def scale(a,window): from scipy.stats import norm scale = np.empty_like(a) scale[:window-1,:]=np.nan value = a[window-1:,:] median = np.squeeze(np.median(rolling_window(a,(window,a.shape[1])),axis=2),axis=1) q25 = np.squeeze(np.quantile(rolling_window(a,(window,a.shape[1])),0.25,axis=2),axis=1) q75 = np.squeeze(np.quantile(rolling_window(a,(window,a.shape[1])),0.75,axis=2),axis=1) scale[window-1:,:] = 200*(norm.cdf((0.25*(value-median)/(q75-q25))))-100 return scale #Normalizes Value to the -100...+100 range through subtracting its minimum and dividing #by its range over TimePeriod. Formula: 200 * (Value-Min)/(Max-Min) - 100 . #For a 0..100 oscillator, multiply the returned value with 0.5 and add 50. def normalize(a,window): norm = np.empty_like(a) norm[:window-1,:]=np.nan value = a[window-1:,:] minimum = np.squeeze(rolling_window(a,(window,a.shape[1])).min(axis=2),axis=1) maximum = np.squeeze(rolling_window(a,(window,a.shape[1])).max(axis=2),axis=1) norm[window-1:,:] = 200*((value-minimum)/(maximum-minimum))-100 return norm def normalize_o(a,window): norm = np.empty_like(a) norm[:window-1,:]=np.nan value = a[window-1:,:] minimum = np.squeeze(rolling_window(a,(window,a.shape[1])).min(axis=2),axis=1) maximum = np.squeeze(rolling_window(a,(window,a.shape[1])).max(axis=2),axis=1) norm[window-1:,:] = 2*((value-minimum)/(maximum-minimum))-1 return norm #Calculates the Z-score of the Value. The Z-score is the deviation from # the mean over the TimePeriod, divided by the standard deviation. # Formula: (Value-Mean)/StdDev. def zscore(a,window): z = np.empty_like(a) z[:window-1,:]=np.nan value = a[window-1:,:] mean =np.squeeze(np.mean(rolling_window(a,(window,a.shape[1])),axis=2),axis=1) stddev = np.squeeze(np.std(rolling_window(a,(window,a.shape[1])),axis=2),axis=1) z[window-1:,:] = (value-mean)/stddev return z #### Mathematical functions def absolute(a): return np.absolute(a) def sin(a): return np.sin(a) def cos(a): return np.cos(a) def tan(a): return np.tan(a) def asin(a): return np.arcsin(a) def acos(a): return np.arccos(a) def atan(a): return np.arctan(a) def sinh(a): return np.sinh(a) def cosh(a): return np.cosh(a) def tanh(a): return np.tanh(a) def asinh(a): return np.arcsinh(a) def acosh(a): return np.arccosh(a) def atanh(a): return np.arctanh(a) def floor(a): return np.floor(a) def ceil(a): return np.ceil(a) def clamp(a,minimum,maximum): return np.clip(a,minimum,maximum) def around(a,decimals=0): return np.around(a,decimals) def round_(a,decimals=0): return np.round_(a,decimals) def rint(a): return np.rint(a) def fix(a): return np.fix(a) def trunc(a): return np.trunc(a) def pdf(a): from scipy.stats import norm return norm.pdf(a) def logpdf(a): from scipy.stats import norm return norm.logpdf(a) def cdf(a): from scipy.stats import norm return norm.cdf(a) def logcdf(a): from scipy.stats import norm return norm.logcdf(a) def qnorm(a): from scipy.stats import norm return norm.ppf(a) def survival(a): from scipy.stats import norm return norm.sf(a) def inv_survival(a): from scipy.stats import norm return norm.isf(a) def errorf(a): from scipy.special import erf return erf(a) def errorfc(a): from scipy.special import erfc return erfc(a) def exp(a): return np.exp(a) def exp1(a): return np.exp1(a) def exp2(a): return np.exp2(a) def log(a): return np.log(a) def log10(a): return np.log10(a) def log2(a): return np.log2(a) def log1p(a): return np.log1p(a) def add(a,b): return np.add(a,b) def receiprocal(a): return np.reciprocal(a) def negative(a): return np.negative(a) def multiply(a,b): return np.multiply(a,b) def divide(a,b): return np.divide(a,b) def power(a,b): return np.power(a,b) def subtract(a,b): return np.subtract(a,b) def true_divide(a,b): return np.true_divide(a,b) def remainder(a,b): return np.remainder(a,b) def sqrt(a): return np.sqrt(a) def square(a): return np.square(a) def sign(a): return np.sign(a) def maximum(a,b): return np.maximum(a,b) def minimum(a,b): return np.minimum(a,b) def nan_to_num(a): return np.nan_to_num(a) ############################################################################################ ### Time Series properties, transformations and statistics #Rolling Pearson Correlation def corr(a,b,window): from skimage.util import view_as_windows A = view_as_windows(a,(window,1))[...,0] B = view_as_windows(b,(window,1))[...,0] A_mA = A - A.mean(-1, keepdims=True) B_mB = B - B.mean(-1, keepdims=True) # ## Sum of squares across rows # ssA = (A_mA**2).sum(-1) # or better : np.einsum('ijk,ijk->ij',A_mA,A_mA) # ssB = (B_mB**2).sum(-1) # or better : np.einsum('ijk,ijk->ij',B_mB,B_mB) ssA = np.einsum('ijk,ijk->ij',A_mA,A_mA) ssB = np.einsum('ijk,ijk->ij',B_mB,B_mB) ## Finally get corr coeff out = np.full(a.shape, np.nan) out[window-1:] = np.einsum('ijk,ijk->ij',A_mA,B_mB)/np.sqrt(ssA*ssB) return out # Rolling Covariance def covariance(a,b,window): from skimage.util import view_as_windows A = view_as_windows(a,(window,1))[...,0] B = view_as_windows(b,(window,1))[...,0] A_mA = A - A.mean(-1, keepdims=True) B_mB = B - B.mean(-1, keepdims=True) out = np.full(a.shape, np.nan) out[window-1:] = np.einsum('ijk,ijk->ij',A_mA,B_mB) return out ## Fisher transformation #Fisher Transform; transforms a normalized Data series to a normal distributed range. # The return value has no theoretical limit, but most values are between -1 .. +1. # All Data values must be in the -1 .. +1 range f.i. by normalizing with # the AGC, Normalize, or cdf function. The minimum Data length is 1. def fisher(a): tran = np.clip(a,-0.998,0.998) return 0.5*np.log((1+tran)/(1-tran)) def invfisher(a): return (np.exp(2*a)-1)/(np.exp(2*a)+1) # Simple Moving average def sma(array,window): def sma_array(array,window): weights = np.ones(window)/window ma = np.full_like(array,np.nan) ma[window-1:] = np.convolve(array, weights, 'valid') return ma return column_wise(sma_array,array,window) def ema_v1(array,alpha,window): def numpy_ewma(a, alpha, windowSize): wghts = (1-alpha)**np.arange(windowSize) wghts /= wghts.sum() out = np.convolve(a,wghts) out[:windowSize-1] = np.nan return out[:a.size] return column_wise(numpy_ewma,array,alpha,window) def ema(array,window): def ExpMovingAverage(values, window): alpha = 2/(1.0+window) weights = (1-alpha)**
np.arange(window)
numpy.arange
import numpy as np import matplotlib.pyplot as plt from matplotlib import animation ''' This package is to be used as a library. Please do not edit. ''' def runge_function(n: int = 100, min_x: float = -5.0, max_x: float = 5.0) -> (np.ndarray, np.ndarray): """ Compute the discrete Runge function on the linearly spaced inverval [min_x, max_x] with n function values. Arguments: min_x: left border of the interval max_x: right border of the interval n: number of function values inside the interval Return: x: vector containing all x values, correspond to values in y y: vector containing all function values, correspond to values in x """ x = np.linspace(min_x, max_x, n) y = 1.0 / (1.0 + x ** 2) return x, y def pad_coefficients(poly, length): """Adds zeros to the coefficients of poly if they have not the proper length.""" return np.pad(poly.coeffs, (length - poly.coeffs.size, 0), mode='constant', constant_values=0) def plot_function(x, y): """ Plot the function that is given by the discrete point pairs in x and y. """ plt.grid(True) plt.plot(x, y, 'r-') min_x = np.min(x) min_y = np.min(y) max_x = np.max(x) max_y = np.max(y) scale_x = max_x - min_x scale_y = max_y - min_y plt.xlim(min_x - 0.05 * scale_x, max_x + 0.05 * scale_x) plt.ylim(min_y - 0.05 * scale_y, max_y + 0.05 * scale_y) plt.show() def plot_function_interpolations(function, support_points, interpolations, bases): """ Plot a grid with the given function, the support points, interpolation and bases in each plot. """ x_f, y_f = function fig1 = plt.figure() for i in range(len(support_points)): x_s, y_s = support_points[i] x_i, y_i = interpolations[i] p = fig1.add_subplot(3, 3, i + 1) p.grid(True) p.set_xlim(-5.3, 5.3) p.set_xticks([-5, 0, 5]) p.set_ylim(-1.2, 2.2) p.plot(x_f, y_f, 'r-') p.plot(x_s, y_s, 'ko') p.plot(x_i, y_i, 'b-') fig2 = plt.figure() for i in range(len(bases)): p1 = fig2.add_subplot(3, 3, i + 1) p1.grid(True) p1.set_xlim(-5.3, 5.3) p1.set_xticks([-5, 0, 5]) p1.set_ylim(-1.2, 2.2) for base_func in bases[i]: plt.plot(x_f, base_func(x_f), '-') plt.show() def plot_spline(points, interpolations): """ Plot a spline with the interpolation points.""" # Plot interpolation points plt.plot(points[0], points[1], 'ko') # Plot piecewise interpolants for i in range(len(points[0]) - 1): # plot local interpolant p = interpolations[i] px = np.linspace(points[0][i], points[0][i + 1], 100 / len(points[0])) py = p(px) plt.plot(px, py, '-') # Plot Runge function rx = np.linspace(-5, 5, 100) ry = 1.0 / (1 + rx ** 2) plt.plot(rx, ry, '--', color='0.7') # Beautify plot plt.grid(True) plt.xlim(-5.1, 5.1) plt.xticks(np.linspace(-5, 5, 11)) plt.ylim(-0.1, 1.1) plt.subplots_adjust(left=0.05, right=0.98, top=0.98, bottom=0.05) plt.show() class Stickguy: """ The stick guy. Only use in this package. """ def __init__(self, ax): self.spine, = ax.plot([], [], lw=2) self.left_arm, = ax.plot([], [], lw=2) self.right_arm, = ax.plot([], [], lw=2) self.left_leg, = ax.plot([], [], lw=2) self.right_leg, = ax.plot([], [], lw=2) def linear_animation(keytime, keyframe): """ The returned function computes interpolated keyframe curframe at given time t. It uses the given keytime and splines parameters for this. """ def animation_function(t): k = np.searchsorted(keytime, t, side='right') - 1 u = (t - keytime[k]) / (keytime[k + 1] - keytime[k]) curframe = (1.0 - u) * keyframe[k] + u * keyframe[k + 1] return curframe return animation_function def cubic_animation(keytime, splines): """ The returned function computes interpolated keyframe curframe at given time t. It uses the given keytime and splines parameters for this. """ def animation_function(t): k = np.searchsorted(keytime, t, side='right') - 1 curframe = np.array([s[k](t) for s in splines]) return curframe return animation_function def param2pos(param, stickguy): """ Computes positions of joints for the stick guy. Inputs: param : list of parameters describing the pose param[0]: height of hip param[1]: angle of spine to vertical axis param[2]: angle of upper arm 0 to spine param[3]: angle of lower arm 0 to upper arm 0 param[4,5]: as above, other arm param[6]: angle of neck/head to spine param[7]: angle of upper leg 0 to vertical axis param[8]: angle of lower leg 0 to upper leg 0 param[9,10]: as above, other leg """ hip_pos = np.array([0.0, param[0]]) spine_vec = np.array([0.0, 1.0]) spine_vec = rotate(spine_vec, param[1]) neck_pos = hip_pos + spine_vec basic_arm_vec = -0.6 * spine_vec arm_vec = rotate(basic_arm_vec, param[2]) left_elbow_pos = neck_pos + arm_vec arm_vec = rotate(arm_vec, param[3]) left_hand_pos = left_elbow_pos + arm_vec lad = np.array([neck_pos, left_elbow_pos, left_hand_pos]) stickguy.left_arm.set_data(lad[:, 0], lad[:, 1]) arm_vec = rotate(basic_arm_vec, param[4]) right_elbow_pos = neck_pos + arm_vec arm_vec = rotate(arm_vec, param[5]) right_hand_pos = right_elbow_pos + arm_vec rad = np.array([neck_pos, right_elbow_pos, right_hand_pos]) stickguy.right_arm.set_data(rad[:, 0], rad[:, 1]) neck_vec = 0.3 * spine_vec neck_vec = rotate(neck_vec, param[6]) head_pos = neck_pos + neck_vec sd = np.array([hip_pos, neck_pos, head_pos]) stickguy.spine.set_data(sd[:, 0], sd[:, 1]) basic_leg_vec = (0.0, -0.7) leg_vec = rotate(basic_leg_vec, param[7]) left_knee_pos = hip_pos + leg_vec leg_vec = rotate(leg_vec, param[8]) left_foot_pos = left_knee_pos + leg_vec lld = np.array([hip_pos, left_knee_pos, left_foot_pos]) stickguy.left_leg.set_data(lld[:, 0], lld[:, 1]) leg_vec = rotate(basic_leg_vec, param[9]) right_knee_pos = hip_pos + leg_vec leg_vec = rotate(leg_vec, param[10]) right_foot_pos = right_knee_pos + leg_vec rld = np.array([hip_pos, right_knee_pos, right_foot_pos]) stickguy.right_leg.set_data(rld[:, 0], rld[:, 1]) return def rotate(v, angle): """ Helper function to turn a vector for a given angle. """ s = np.sin(angle) c = np.cos(angle) rv =
np.array([v[0] * c - v[1] * s, v[0] * s + v[1] * c])
numpy.array
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ '''NPT''' import numpy as np import mindspore.common.dtype as mstype from mindspore import Tensor from mindspore import nn from mindspore.common.parameter import Parameter from mindspore.ops import functional as F from mindspore.ops import operations as P from mindsponge import Angle from mindsponge import Bond from mindsponge import Dihedral from mindsponge import LangevinLiujian from mindsponge import LennardJonesInformation from mindsponge import MdInformation from mindsponge import NonBond14 from mindsponge import NeighborList from mindsponge import ParticleMeshEwald from mindsponge import RestrainInformation from mindsponge import SimpleConstarin from mindsponge import VirtualInformation from mindsponge import CoordinateMolecularMap from mindsponge import BDBARO class Controller: '''controller''' def __init__(self, args_opt): self.input_file = args_opt.i self.initial_coordinates_file = args_opt.c self.amber_parm = args_opt.amber_parm self.restrt = args_opt.r self.mdcrd = args_opt.x self.mdout = args_opt.o self.mdbox = args_opt.box self.command_set = {} self.md_task = None self.commands_from_in_file() self.punctuation = "," def commands_from_in_file(self): '''command from in file''' file = open(self.input_file, 'r') context = file.readlines() file.close() self.md_task = context[0].strip() for val in context: val = val.strip() if val and val[0] != '#' and ("=" in val): val = val[:val.index(",")] if ',' in val else val assert len(val.strip().split("=")) == 2 flag, value = val.strip().split("=") value = value.replace(" ", "") flag = flag.replace(" ", "") if flag not in self.command_set: self.command_set[flag] = value else: print("ERROR COMMAND FILE") # print(self.command_set) # print("========================commands_from_in_file") class NPT(nn.Cell): '''npt''' def __init__(self, args_opt): super(NPT, self).__init__() self.control = Controller(args_opt) self.md_info = MdInformation(self.control) self.mode = self.md_info.mode self.update_step = 0 self.bond = Bond(self.control) self.bond_is_initialized = self.bond.is_initialized self.angle = Angle(self.control) self.angle_is_initialized = self.angle.is_initialized self.dihedral = Dihedral(self.control) self.dihedral_is_initialized = self.dihedral.is_initialized self.nb14 = NonBond14( self.control, self.dihedral, self.md_info.atom_numbers) self.nb14_is_initialized = self.nb14.is_initialized self.nb_info = NeighborList( self.control, self.md_info.atom_numbers, self.md_info.box_length) self.lj_info = LennardJonesInformation( self.control, self.md_info.nb.cutoff, self.md_info.sys.box_length) self.lj_info_is_initialized = self.lj_info.is_initialized self.liujian_info = LangevinLiujian( self.control, self.md_info.atom_numbers) self.liujian_info_is_initialized = self.liujian_info.is_initialized self.pme_method = ParticleMeshEwald(self.control, self.md_info) self.pme_is_initialized = self.pme_method.is_initialized self.restrain = RestrainInformation( self.control, self.md_info.atom_numbers, self.md_info.crd) self.restrain_is_initialized = self.restrain.is_initialized self.simple_constrain_is_initialized = 0 self.simple_constrain = SimpleConstarin( self.control, self.md_info, self.bond, self.angle, self.liujian_info) self.simple_constrain_is_initialized = self.simple_constrain.is_initialized self.freedom = self.simple_constrain.system_freedom self.vatom = VirtualInformation( self.control, self.md_info, self.md_info.sys.freedom) self.vatom_is_initialized = 1 self.random = P.UniformReal(seed=1) self.pow = P.Pow() self.five = Tensor(5.0, mstype.float32) self.third = Tensor(1 / 3, mstype.float32) self.mol_map = CoordinateMolecularMap(self.md_info.atom_numbers, self.md_info.sys.box_length, self.md_info.crd, self.md_info.nb.excluded_atom_numbers, self.md_info.nb.h_excluded_numbers, self.md_info.nb.h_excluded_list_start, self.md_info.nb.h_excluded_list) self.mol_map_is_initialized = 1 self.init_params() self.init_tensor_1() self.init_tensor_2() self.op_define_1() self.op_define_2() self.depend = P.Depend() self.print = P.Print() self.total_count = Parameter( Tensor(0, mstype.int32), requires_grad=False) self.accept_count = Parameter( Tensor(0, mstype.int32), requires_grad=False) self.is_molecule_map_output = self.md_info.output.is_molecule_map_output self.target_pressure = Tensor([self.md_info.sys.target_pressure], mstype.float32) self.nx = self.nb_info.nx self.ny = self.nb_info.ny self.nz = self.nb_info.nz self.nxyz = Tensor([self.nx, self.ny, self.nz], mstype.int32) self.pme_inverse_box_vector = Parameter(Tensor( self.pme_method.pme_inverse_box_vector, mstype.float32), requires_grad=False) self.pme_inverse_box_vector_init = Parameter(Tensor( self.pme_method.pme_inverse_box_vector, mstype.float32), requires_grad=False) self.mc_baro_is_initialized = 0 self.bd_baro_is_initialized = 0 self.constant_uint_max_float = 4294967296.0 self.volume = Parameter(Tensor(self.pme_method.volume, mstype.float32), requires_grad=False) self.crd_scale_factor = Parameter(Tensor([1.0,], mstype.float32), requires_grad=False) self.bd_baro = BDBARO(self.control, self.md_info.sys.target_pressure, self.md_info.sys.box_length, self.md_info.mode) self.bd_baro_is_initialized = self.bd_baro.is_initialized self.update_interval = Tensor([self.bd_baro.update_interval], mstype.float32) self.pressure = Parameter(Tensor([self.md_info.sys.d_pressure,], mstype.float32), requires_grad=False) self.compressibility = Tensor([self.bd_baro.compressibility], mstype.float32) self.bd_baro_dt = Tensor([self.bd_baro.dt], mstype.float32) self.bd_baro_taup = Tensor([self.bd_baro.taup], mstype.float32) self.system_reinitializing_count = Parameter( Tensor(0, mstype.int32), requires_grad=False) self.bd_baro_newv = Parameter( Tensor(self.bd_baro.new_v, mstype.float32), requires_grad=False) self.bd_baro_v0 = Parameter( Tensor(self.bd_baro.v0, mstype.float32), requires_grad=False) def init_params(self): '''init params''' self.bond_energy_sum = Tensor(0, mstype.int32) self.angle_energy_sum = Tensor(0, mstype.int32) self.dihedral_energy_sum = Tensor(0, mstype.int32) self.nb14_lj_energy_sum = Tensor(0, mstype.int32) self.nb14_cf_energy_sum = Tensor(0, mstype.int32) self.lj_energy_sum = Tensor(0, mstype.int32) self.ee_ene = Tensor(0, mstype.int32) self.total_energy = Tensor(0, mstype.int32) self.ntwx = self.md_info.ntwx self.atom_numbers = self.md_info.atom_numbers self.residue_numbers = self.md_info.residue_numbers self.bond_numbers = self.bond.bond_numbers self.angle_numbers = self.angle.angle_numbers self.dihedral_numbers = self.dihedral.dihedral_numbers self.nb14_numbers = self.nb14.nb14_numbers self.nxy = self.nb_info.nxy self.grid_numbers = self.nb_info.grid_numbers self.max_atom_in_grid_numbers = self.nb_info.max_atom_in_grid_numbers self.max_neighbor_numbers = self.nb_info.max_neighbor_numbers self.excluded_atom_numbers = self.md_info.nb.excluded_atom_numbers self.refresh_count = Parameter( Tensor(self.nb_info.refresh_count, mstype.int32), requires_grad=False) self.refresh_interval = self.nb_info.refresh_interval self.skin = self.nb_info.skin self.cutoff = self.nb_info.cutoff self.cutoff_square = self.nb_info.cutoff_square self.cutoff_with_skin = self.nb_info.cutoff_with_skin self.half_cutoff_with_skin = self.nb_info.half_cutoff_with_skin self.cutoff_with_skin_square = self.nb_info.cutoff_with_skin_square self.half_skin_square = self.nb_info.half_skin_square self.beta = self.pme_method.beta self.d_beta = Parameter(Tensor([self.pme_method.beta], mstype.float32), requires_grad=False) self.d_beta_init = Parameter(Tensor([self.pme_method.beta], mstype.float32), requires_grad=False) self.neutralizing_factor = Parameter(Tensor([self.pme_method.neutralizing_factor], mstype.float32), requires_grad=False) self.fftx = self.pme_method.fftx self.ffty = self.pme_method.ffty self.fftz = self.pme_method.fftz self.random_seed = self.liujian_info.random_seed self.dt = self.liujian_info.dt self.half_dt = self.liujian_info.half_dt self.exp_gamma = self.liujian_info.exp_gamma self.update = False self.file = None self.datfile = None self.max_velocity = self.liujian_info.max_velocity self.constant_kb = 0.00198716 def init_tensor_1(self): '''init tensor''' self.uint_crd = Parameter(Tensor(np.zeros([self.atom_numbers, 3], dtype=np.uint32), mstype.uint32), requires_grad=False) self.need_potential = Parameter(Tensor(0, mstype.int32), requires_grad=False) self.need_pressure = Parameter(Tensor(0, mstype.int32), requires_grad=False) self.atom_energy = Parameter(Tensor([0] * self.atom_numbers, mstype.float32), requires_grad=False) self.atom_virial = Parameter(Tensor([0] * self.atom_numbers, mstype.float32), requires_grad=False) self.frc = Parameter(Tensor(np.zeros([self.atom_numbers, 3]), mstype.float32), requires_grad=False) self.crd = Parameter( Tensor(np.array(self.md_info.coordinate).reshape( [self.atom_numbers, 3]), mstype.float32), requires_grad=False) self.crd_to_uint_crd_cof = Parameter(Tensor( self.md_info.pbc.crd_to_uint_crd_cof, mstype.float32), requires_grad=False) self.quarter_crd_to_uint_crd_cof = Parameter(Tensor( self.md_info.pbc.quarter_crd_to_uint_crd_cof, mstype.float32), requires_grad=False) self.uint_dr_to_dr_cof = Parameter( Tensor(self.md_info.pbc.uint_dr_to_dr_cof, mstype.float32), requires_grad=False) self.box_length = Parameter( Tensor(self.md_info.box_length, mstype.float32), requires_grad=False) self.box_length_1 = Tensor(self.md_info.box_length, mstype.float32) self.charge = Parameter(Tensor(np.asarray(self.md_info.h_charge), mstype.float32), requires_grad=False) self.old_crd = Parameter(Tensor(np.zeros([self.atom_numbers, 3]), mstype.float32), requires_grad=False) self.last_crd = Parameter(Tensor(np.zeros([self.atom_numbers, 3]), mstype.float32), requires_grad=False) self.mass = Tensor(self.md_info.h_mass, mstype.float32) self.mass_inverse = Tensor(self.md_info.h_mass_inverse, mstype.float32) self.res_mass = Tensor(self.md_info.res.h_mass, mstype.float32) self.res_mass_inverse = Tensor( self.md_info.res.h_mass_inverse, mstype.float32) self.res_start = Tensor(self.md_info.h_res_start, mstype.int32) self.res_end = Tensor(self.md_info.h_res_end, mstype.int32) self.velocity = Parameter( Tensor(self.md_info.velocity, mstype.float32), requires_grad=False) self.acc = Parameter(Tensor(np.zeros( [self.atom_numbers, 3], np.float32), mstype.float32), requires_grad=False) self.bond_atom_a = Tensor(np.asarray( self.bond.h_atom_a, np.int32), mstype.int32) self.bond_atom_b = Tensor(np.asarray( self.bond.h_atom_b, np.int32), mstype.int32) self.bond_k = Tensor(np.asarray( self.bond.h_k, np.float32), mstype.float32) self.bond_r0 = Tensor(np.asarray( self.bond.h_r0, np.float32), mstype.float32) self.angle_atom_a = Tensor(np.asarray( self.angle.h_atom_a, np.int32), mstype.int32) self.angle_atom_b = Tensor(np.asarray( self.angle.h_atom_b, np.int32), mstype.int32) self.angle_atom_c = Tensor(np.asarray( self.angle.h_atom_c, np.int32), mstype.int32) self.angle_k = Tensor(np.asarray( self.angle.h_angle_k, np.float32), mstype.float32) self.angle_theta0 = Tensor(np.asarray( self.angle.h_angle_theta0, np.float32), mstype.float32) self.dihedral_atom_a = Tensor(np.asarray( self.dihedral.h_atom_a, np.int32), mstype.int32) self.dihedral_atom_b = Tensor(np.asarray( self.dihedral.h_atom_b, np.int32), mstype.int32) self.dihedral_atom_c = Tensor(np.asarray( self.dihedral.h_atom_c, np.int32), mstype.int32) self.dihedral_atom_d = Tensor(np.asarray( self.dihedral.h_atom_d, np.int32), mstype.int32) self.pk = Tensor(np.asarray(self.dihedral.h_pk, np.float32), mstype.float32) self.gamc = Tensor(np.asarray( self.dihedral.h_gamc, np.float32), mstype.float32) self.gams = Tensor(np.asarray( self.dihedral.h_gams, np.float32), mstype.float32) self.pn = Tensor(np.asarray(self.dihedral.h_pn, np.float32), mstype.float32) self.ipn = Tensor(np.asarray( self.dihedral.h_ipn, np.int32), mstype.int32) def init_tensor_2(self): '''init tensor 2''' self.nb14_atom_a = Tensor(np.asarray( self.nb14.h_atom_a, np.int32), mstype.int32) self.nb14_atom_b = Tensor(np.asarray( self.nb14.h_atom_b, np.int32), mstype.int32) self.lj_scale_factor = Tensor(np.asarray( self.nb14.h_lj_scale_factor, np.float32), mstype.float32) self.cf_scale_factor = Tensor(np.asarray( self.nb14.h_cf_scale_factor, np.float32), mstype.float32) self.grid_n = Tensor(self.nb_info.grid_n, mstype.int32) self.grid_length = Parameter( Tensor(self.nb_info.grid_length, mstype.float32), requires_grad=False) self.grid_length_inverse = Parameter( Tensor(self.nb_info.grid_length_inverse, mstype.float32), requires_grad=False) self.bucket = Parameter(Tensor( np.asarray(self.nb_info.bucket, np.int32).reshape( [self.grid_numbers, self.max_atom_in_grid_numbers]), mstype.int32), requires_grad=False) # Tobe updated self.bucket_init = Parameter(Tensor( np.asarray(self.nb_info.bucket, np.int32).reshape( [self.grid_numbers, self.max_atom_in_grid_numbers]), mstype.int32), requires_grad=False) # Tobe updated self.atom_numbers_in_grid_bucket = Parameter(Tensor(self.nb_info.atom_numbers_in_grid_bucket, mstype.int32), requires_grad=False) # to be updated self.atom_numbers_in_grid_bucket_init = Parameter( Tensor(self.nb_info.atom_numbers_in_grid_bucket, mstype.int32), requires_grad=False) # to be updated self.atom_in_grid_serial = Parameter(Tensor(np.zeros([self.nb_info.atom_numbers,], np.int32), mstype.int32), requires_grad=False) # to be updated self.atom_in_grid_serial_init = Parameter( Tensor(np.zeros([self.nb_info.atom_numbers,], np.int32), mstype.int32), requires_grad=False) # to be updated self.pointer = Parameter( Tensor(
np.asarray(self.nb_info.pointer, np.int32)
numpy.asarray
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Oct 31 13:38:02 2019 @author: brsr """ import geopandas import pandas as pd import shapely from shapely.geometry import LineString, Polygon, Point import pyproj #import homography import warnings import numpy as np from abc import ABC from scipy.optimize import minimize, minimize_scalar, root_scalar from scipy.special import hyp2f1, gamma, ellipj, ellipk, ellipkinc #TODO: #vectorize all the things #find a better implementation of conformal # (some kind of circle-packing thing?) #repeated subdivision #arange3 = np.arange(3) #FIRST AXIS IS SPATIAL TGTPTS3 = np.eye(3) TGTPTS4 = np.array([[0, 1, 1, 0], [0, 0, 1, 1]]) def normalize(vectors, axis=0): """Normalizes vectors in n-space. The zero vector remains the zero vector. Args: vectors: Array of vectors axis: Which axis to take the norm over (by default the first axis, 0) >>> x = np.stack((np.ones(5), np.arange(5)), axis=0) >>> normalize(x) array([[1. , 0.70710678, 0.4472136 , 0.31622777, 0.24253563], [0. , 0.70710678, 0.89442719, 0.9486833 , 0.9701425 ]]) """ n = np.linalg.norm(vectors, axis=axis, keepdims=True) return np.where(n <= 0, 0, vectors / n) def complex_to_float2d(arr): """Converts a complex array to a multidimensional float array. >>> x = np.exp(2j*np.pi*np.linspace(0, 1, 5)).round() >>> complex_to_float2d(x.round()) array([[ 1., 0.], [ 0., 1.], [-1., 0.], [-0., -1.], [ 1., -0.]]) """ return arr.view(float).reshape(list(arr.shape) + [-1]) def float2d_to_complex(arr): """Converts a multidimensional float array to a complex array. Input must be a float type, since there is no integer complex type. >>> y = np.arange(8, dtype=float).reshape((-1, 2)) >>> float2d_to_complex(y) array([[0.+1.j], [2.+3.j], [4.+5.j], [6.+7.j]]) """ return arr.view(complex) def sqrt(x): """Real sqrt clipped to 0 for negative values. >>> x = np.array([-np.inf, -1, 0, 1, np.inf, np.nan]) >>> sqrt(x) array([ 0., 0., 0., 1., inf, nan]) """ return np.where(x < 0, 0, np.sqrt(x)) def geodesics(lon, lat, geod, n=100, includepts=False): """Draw geodesics between each adjacent pair of points given by lon and lat. """ lon2 = np.roll(lon, -1, axis=0) lat2 = np.roll(lat, -1, axis=0) result = [] for l, t, l2, t2 in zip(lon, lat, lon2, lat2): g = geod.npts(l, t, l2, t2, n) g.insert(0, (l, t)) g.append((l2, t2)) result.append(LineString(g)) ctrlboundary = geopandas.GeoSeries(result) if includepts: controlpts = arraytoptseries(np.array([lon, lat])) ctrlpoly = geopandas.GeoSeries(pd.concat([ctrlboundary, controlpts], ignore_index=True)) return ctrlpoly else: return ctrlboundary def transform_antipode(lon, lat): """Transform a point given by lon and lat to its antipode.""" lon2 = lon - 180 np.where(lon2 <= -180, lon2 + 360, lon2) return lon2, -lat def ptseriestoarray(ser): """Convert a geopandas GeoSeries containing shapely Points (or LineStrings of all the same length) to an array of shape (2, n) or (3, n). """ return np.stack([x.coords for x in ser], axis=-1).squeeze() def arraytoptseries(arr, crs={'epsg': '4326'}): """Convert an array of shape (2, ...) or (3, ...) to a geopandas GeoSeries containing shapely Point objects. """ if arr.shape[0] == 2: result = geopandas.GeoSeries([Point(x[0], x[1]) for x in arr.reshape(2, -1).T]) else: result = geopandas.GeoSeries([Point(x[0], x[1], x[2]) for x in arr.reshape(3, -1).T]) #result.crs = crs return result def transeach(func, geoms): """Transform each element of geoms using the function func.""" plist = [] for geom in geoms: if isinstance(geom, Point): #special logic for points ll = geom.coords[0] plist.append(Point(func(*ll))) else: plist.append(shapely.ops.transform(func, geom)) return geopandas.GeoSeries(plist) def graticule(spacing1=15, spacing2=1, lonrange = [-180, 180], latrange = [-90, 90]): """ Create a graticule (or another square grid) """ a = int((lonrange[1] - lonrange[0])//spacing2) b = int((latrange[1] - latrange[0])//spacing1) c = int((lonrange[1] - lonrange[0])//spacing1) d = int((latrange[1] - latrange[0])//spacing2) plx = np.linspace(lonrange[0], lonrange[1], num=a + 1) ply = np.linspace(latrange[0], latrange[1], num=b + 1) mex = np.linspace(lonrange[0], lonrange[1], num=c + 1) mey = np.linspace(latrange[0], latrange[1], num=d + 1) parallels = np.stack(np.meshgrid(plx, ply), axis=-1).transpose((1,0,2)) meridians = np.stack(np.meshgrid(mex, mey), axis=-1) gratlist = [parallels[:, i] for i in range(parallels.shape[1])] gratlist += [meridians[:, i] for i in range(meridians.shape[1])] gratl2 = [LineString(line) for line in gratlist] grat = geopandas.GeoSeries(gratl2) grat.crs = {'init': 'epsg:4326'} return grat #%% def trigivenangles(angles, scale=np.pi/180): """Given angles, create the vertices of a triangle with those vertex angles. Only uses the first 2 angles. The last vertex is always 1, 0. >>> angles = np.array([45,90,45]) >>> np.round(trigivenangles(angles), decimals=8) array([[-1., 0., 1.], [ 0., -1., 0.]]) """ angles = angles * scale p0 = [np.cos(2*angles[1]), np.sin(2*angles[1])] p1 = [np.cos(2*angles[0]), np.sin(-2*angles[0])] p2 = [1, 0] return np.array([p0, p1, p2]).T def anglesgivensides(sides, scale=180/np.pi): """Given side lengths of a triangle, determines the interior angle at each vertex, and the radius of the circumcircle. >>> sides=np.array( [3,4,5]) >>> anglesgivensides(sides) """ #might be more stable to use law of cotangents, but eh r = np.product(sides)/sqrt( 2*np.sum(sides**2*np.roll(sides,1)**2) -np.sum(sides**4)) s1 = sides s2 = np.roll(sides, -1) s3 = np.roll(sides, 1) cosangle = (s2**2 + s3**2 - s1**2)/ (2*s2*s3) angles = np.arccos(cosangle) return angles*scale, r def trigivenlengths(sides): """Given side lengths, creates the vertices of a triangle with those side lengths, and having circumcenter at 0,0. >>> sides=np.array( [3,4,5]) >>> np.round(trigivenlengths(sides), decimals=8) array([[-2.5, -0.7, 2.5], [ 0. , -2.4, 0. ]]) """ angles, r = anglesgivensides(sides, scale=1) return r*trigivenangles(np.roll(angles, -1), scale=1) #%% def central_angle(x, y, signed=False): """Central angle between vectors with respect to 0. If vectors have norm 1, this is the spherical distance between them. Args: x, y: Coordinates of points on the sphere. axis: Which axis the vectors lie along. By default, -1. Returns: Array of central angles. >>> t = np.linspace(0, np.pi, 5) >>> c = np.cos(t) >>> s = np.sin(t) >>> z = np.zeros(t.shape) >>> x = np.stack((c, s, z), axis=0) >>> y = np.stack((c, z, s), axis=0) >>> np.round(central_angle(x, y)/np.pi*180) array([ 0., 60., 90., 60., 0.]) """ cos = np.sum(x*y, axis=0) sin = np.linalg.norm(np.cross(x, y, axis=0), axis=0) result = np.arctan2(sin, cos) return result if signed else abs(result) def slerp(pt1, pt2, intervals): """Spherical linear interpolation. Args: pt1: Array of points. When interval is 0, the result is pt1. pt2: Array of points. When interval is 1, the result is pt2. intervals: Array of intervals at which to evaluate the linear interpolation >>> x = np.array([1, 0, 0]) >>> y = np.array([0, 0, 1]) >>> t = np.linspace(0, 1, 4)[:, np.newaxis] >>> slerp(x, y, t) array([[1. , 0. , 0. ], [0.8660254, 0. , 0.5 ], [0.5 , 0. , 0.8660254], [0. , 0. , 1. ]]) """ t = intervals angle = central_angle(pt1, pt2)[..., np.newaxis] return (np.sin((1 - t)*angle)*pt1 + np.sin((t)*angle)*pt2)/np.sin(angle) def dslerp(pt1, pt2, intervals): """The derivative of slerp.""" t = intervals angle = central_angle(pt1, pt2)[..., np.newaxis] return (-np.cos((1 - t)*angle)*pt1 + np.cos(t*angle)*pt2)/np.sin(angle) def triangle_solid_angle(a, b, c, axis=0): """Solid angle of a triangle with respect to 0. If vectors have norm 1, this is the spherical area. Note there are two solid angles defined by three points, determined by orientation of a, b, c. Formula is from <NAME>; <NAME> (1983). "The Solid Angle of a Plane Triangle". IEEE Trans. Biom. Eng. BME-30 (2): 125–126. doi:10.1109/TBME.1983.325207. Args: a, b, c: Coordinates of points on the sphere. Returns: Array of solid angles. >>> t = np.linspace(0, np.pi, 5) >>> a = np.stack([np.cos(t), np.sin(t), np.zeros(5)],axis=0) >>> b = np.array([0, 1, 1])/np.sqrt(2) >>> c = np.array([0, -1, 1])/np.sqrt(2) >>> np.round(triangle_solid_angle(a, b, c), 4) array([ 1.5708, 1.231 , 0. , -1.231 , -1.5708]) """ axes = (axis,axis) top = np.tensordot(a, np.cross(b, c, axis=axis), axes=axes) na = np.linalg.norm(a, axis=0) nb = np.linalg.norm(b, axis=0) nc = np.linalg.norm(c, axis=0) bottom = (na * nb * nc + np.tensordot(a, b, axes=axes) * nc + np.tensordot(b, c, axes=axes) * na + np.tensordot(c, a, axes=axes) * nb) return 2 * np.arctan2(top, bottom) def shoelace(pts): """Find area of polygon in the plane defined by pts, where pts is an array with shape (2,n). >>> pts = np.arange(6).reshape(2,-1)%4 >>> shoelace(pts) 2.0 """ return abs(np.sum(np.cross(pts, np.roll(pts, -1, axis=1), axis=0)))/2 def antipode_v(ll): """Antipodes of points given by longitude and latitude.""" antipode = ll.copy() antipode[0] -= 180 index = antipode[0] < -180 antipode[0, index] += 360 antipode[1] *= -1 return antipode def omegascale(adegpts, degpts_t, geod, spacing=1): """Estimate scale factor and max deformation angle for a map projection based on a grid of points """ #actrlpts, tgtpts, #ar, p = geod.polygon_area_perimeter(actrlpts[0], actrlpts[1]) #at = shoelace(tgtpts) es = geod.es a = geod.a factor = np.pi/180 #lon = adegpts[0]*factor lat = adegpts[1]*factor x = degpts_t[0] y = degpts_t[1] dx = np.gradient(x, factor*spacing) dy = np.gradient(y, factor*spacing) dxdlat, dxdlon = dx dydlat, dydlon = dy J = (dydlat*dxdlon - dxdlat*dydlon) R = a*np.sqrt(1-es)/(1-es*np.sin(lat)**2) h = sqrt((dxdlat)**2 + (dydlat)**2)*(1-es*np.sin(lat)**2)**(3/2)/(a*(1-es)) k = sqrt((dxdlon)**2 + (dydlon)**2)*(1-es*np.sin(lat)**2)**(1/2)/(a*np.cos(lat)) scale = J/(R**2*np.cos(lat)) sinthetaprime = np.clip(scale/(h*k), -1, 1) aprime = sqrt(h**2 + k**2 + 2*h*k*sinthetaprime) bprime = sqrt(h**2 + k**2 - 2*h*k*sinthetaprime) sinomegav2 = np.clip(bprime/aprime, -1, 1) omega = 360*np.arcsin(sinomegav2)/np.pi return omega, scale def rodrigues(center, v, theta): """Rodrigues formula: rotate vector v around center by angle theta """ cxv = np.cross(center, v) cv = np.sum(center* v, axis=-1, keepdims=True) cc = v*np.cos(theta) + cxv*np.sin(theta) + center*cv*(1-np.cos(theta)) return cc #%% class Projection(ABC): """Don't subclass this without subclassing one of transform and transform_v and one of invtransform and invtransform_v, or else an infinite regression will occur""" def transform(self, x, y, z = None, **kwargs): if z is None: pts = np.stack([x,y]) else: pts = np.stack([x,y,z]) vresult = self.transform_v(pts, **kwargs) return vresult def invtransform(self, x, y, z=None, **kwargs): if z is None: pts = np.stack([x,y]) else: pts = np.stack([x,y,z]) vresult = self.invtransform_v(pts, **kwargs) return vresult def transform_v(self, pts, **kwargs): rpts = pts.reshape((pts.shape[0],-1)).T result = [] for xy in rpts: result.append(self.transform(*xy, **kwargs)) result = np.array(result) shape = [-1, ] + list(pts.shape[1:]) return result.T.reshape(shape) def invtransform_v(self, pts, **kwargs): rpts = pts.reshape((pts.shape[0],-1)).T result = [] for xy in rpts: result.append(self.invtransform(*xy, **kwargs)) result = np.array(result) shape = [-1, ] + list(pts.shape[1:]) return result.T.reshape(shape) #%% class UV(Projection): nctrlpts = 4 @staticmethod def grid(**kwargs): """Create a square grid""" return graticule(spacing1=1, spacing2=0.01, lonrange=[0,1], latrange=[0,1]) @staticmethod def gridpolys(n=11): poi = np.array(np.meshgrid(np.linspace(0, 1, n), np.linspace(0, 1, n))) poilist = [] for i, j in np.ndindex(n-1,n-1): x = Polygon([poi[:, i, j], poi[:, i, j+1], poi[:, i+1, j+1], poi[:, i+1, j]]) poilist.append(x) poiframe = geopandas.geoseries.GeoSeries(poilist) return poiframe @staticmethod def segment(uv): u, v = uv index1 = u > v index2 = u < 1 - v #1 and 2 = 0 #1 and not 2 = 1 #not 1 and not 2 = 2 #not 1 and 2 = 3 result = np.zeros(u.shape) result[index1 & ~index2] = 1 result[~index1 & ~index2] = 2 result[~index1 & index2] = 3 return result class Bilinear(UV): """Bilinear interpolation """ _bilinear_mat = np.array([[ 1, 1, 1, 1], [-1, 1, 1,-1], [-1,-1, 1, 1], [ 1,-1, 1,-1]])/4 def __init__(self, tgtpts): self.tgtpts = tgtpts self.abcd = self._bilinear_mat @ tgtpts.T def transform(self, u, v): """u and v should have the same shape""" abcd = self.abcd stack = np.stack([np.ones(u.shape), u, v, u*v]) return (abcd @ stack).T def transform_v(self, pts, **kwargs): return self.transform(pts[0], pts[1]) def invtransform_v(self, pts): abcd = self.abcd A = abcd[:,0] B = abcd[:,1] C = abcd[:,2] D = abcd[:,3] - pts AB = np.cross(A,B) AC = np.cross(A,C) AD = np.cross(A,D) BC = np.cross(B,C) BD = np.cross(B,D) CD = np.cross(C,D) ua = 2*BD ub = AD + BC uc = 2*AC va = 2*CD vb = AD - BC vc = 2*AB u1 = (-ub + sqrt(ub**2 - ua*uc) )/ua #u2 = (-ub - sqrt(ub**2 - ua*uc) )/ua #v2 = (-vb + sqrt(vb**2 - va*vc) )/va v1 = (-vb - sqrt(vb**2 - va*vc) )/va return u1, v1 class Homeomorphism(UV): """Homeomorphism""" def __init__(self, tgtpts): self.tgtpts = tgtpts class Barycentric(Projection): """Transforms between plane and barycentric coordinates""" nctrlpts = 3 def __init__(self, tgtpts): self.tgtpts = tgtpts m = np.concatenate([self.tgtpts, np.ones((1, 3))]) self.minv = np.linalg.inv(m) def transform_v(self, bary): """Convert barycentric to plane""" rbary = bary.reshape(3,-1) result = self.tgtpts @ rbary shape = [2,] + list(bary.shape[1:]) return result.reshape(shape) def invtransform_v(self, xy): """Convert plane to barycentric""" rxy = xy.reshape(2,-1) shape = list(rxy.shape) shape[0] = 1 xy1 = np.concatenate([rxy, np.ones(shape)]) result = self.minv @ xy1 shape = [3,] + list(xy.shape[1:]) return result.reshape(shape) @staticmethod def grid(spacing1=0.1, spacing2=1E-2, rang = [0, 1], eps=1E-8): """Create a triangle grid in barycentric coordinates """ nx = int((rang[1] - rang[0])/spacing1 + 1) ny = int((rang[1] - rang[0])/spacing2 + 1) x = np.linspace(rang[0], rang[1], nx) y = np.linspace(rang[0], rang[1], ny) z = 1 - x[..., np.newaxis] - y #valid = (rang[0] <= z) & (z <= rang[1]) #z[~valid] = np.nan bary1 = np.stack([np.broadcast_to(x[..., np.newaxis], (nx, ny)), np.broadcast_to(y, (nx, ny)), z]) bary = np.concatenate([bary1, np.roll(bary1, -1, axis=0), np.roll(bary1, -2, axis=0)], axis=1) gratlist = [bary[:, i] for i in range(nx*3)] gratl2 = [] for i in range(nx*3): g = gratlist[i] valid = np.all((rang[0]-eps <= g) & (g <= rang[1]+eps), axis=0) if np.sum(valid) > 1: g = g[..., valid] gratl2.append(LineString(g.T)) grat = geopandas.GeoSeries(gratl2) return grat @staticmethod def gridpolys(n=11, eps=0.01): poi = np.meshgrid(np.linspace(0, 1, n), np.linspace(0, 1, n)) poi.append(1 - poi[0] - poi[1]) poi = np.array(poi) poilist = [] for i,j in np.ndindex(n-1,n-1): if poi[2, i, j] >= eps: x = Polygon([poi[:, i, j],poi[:, i, j+1],poi[:, i+1, j]]) poilist.append(x) if poi[2, i+1, j+1] >= -eps: y = Polygon([poi[:, i+1, j+1],poi[:, i+1, j],poi[:, i, j+1]]) poilist.append(y) poiframe = geopandas.geoseries.GeoSeries(poilist) return poiframe @staticmethod def segment(bary): return np.argmin(bary, axis=0) class UnitVector(Projection): """Convert longitude and latitude to unit vector normals. The methods of this class are static, and mostly organized in a class for consistency.""" @staticmethod def transform(x, y, **kwargs): pts = np.stack([x,y]) vresult = UnitVector.transform_v(pts, **kwargs) return vresult @staticmethod def invtransform(x, y, z, **kwargs): pts = np.stack([x,y,z]) vresult = UnitVector.invtransform_v(pts, **kwargs) return vresult @staticmethod def transform_v(ll, scale=np.pi/180): """Convert longitude and latitude to 3-vector >>> ll = np.arange(6).reshape(2,3)*18 >>> UnitVector.transform_v(ll) array([[5.87785252e-01, 2.93892626e-01, 4.95380036e-17], [0.00000000e+00, 9.54915028e-02, 3.59914664e-17], [8.09016994e-01, 9.51056516e-01, 1.00000000e+00]]) """ lon, lat = ll*scale x = np.cos(lat)*np.cos(lon) y = np.cos(lat)*np.sin(lon) z = np.sin(lat) return np.stack([x, y, z], axis=0) @staticmethod def invtransform_v(pts, scale=180/np.pi): """Convert 3-vector to longitude and latitude. Vector does not have to be normalized. >>> UnitVector.invtransform_v(np.eye(3)) array([[ 0., 90., 0.], [ 0., 0., 90.]]) """ lat = scale*np.arctan2(pts[2], sqrt(pts[1]**2 + pts[0]**2)) lon = scale*np.arctan2(pts[1], pts[0]) return np.stack([lon, lat], axis=0) _unitsphgeod = pyproj.Geod(a=1, b=1) class CtrlPtsProjection(Projection, ABC): """Subclass for any map projection that uses (2 or more) control points.""" def __init__(self, ctrlpts, geod = _unitsphgeod): """Parameters: ctrlpts: 2x3 or 2x4 Numpy array, latitude and longitude of each control point geod= a pyproj.Geod object. For a unit sphere use pyproj.Geod(a=1,b=1) """ n = ctrlpts.shape[1] if self.nctrlpts != n: raise ValueError( 'ctrlpts has wrong number of points for this projection') self.geod = geod #it's possible to get a geod where this would give the wrong answer, #but I think it would have to be really weird area, _ = geod.polygon_area_perimeter([0,120,-120],[0,0,0]) self.totalarea = 2*area self.ctrlpts = ctrlpts ctrlpts_v = UnitVector.transform_v(ctrlpts) self.ctrlpts_v = ctrlpts_v center_v = ctrlpts_v.sum(axis=1) self.center_v = center_v / np.linalg.norm(center_v) self.center = UnitVector.invtransform_v(center_v) antipode = antipode_v(ctrlpts) self.antipode = antipode self.antipode_v = UnitVector.transform_v(antipode) self.sa = 0 if self.nctrlpts > 2: faz, baz, sides = self.geod.inv(ctrlpts[0], ctrlpts[1], np.roll(ctrlpts[0], -1), np.roll(ctrlpts[1], -1)) self.sides = sides self.faz = faz self.baz = baz self.ctrl_angles = (faz - np.roll(baz, 1))%360 area, _ = geod.polygon_area_perimeter(*ctrlpts) self.area = area self.ca = central_angle(ctrlpts_v, np.roll(ctrlpts_v, -1, axis=1)) for i in range(1, self.nctrlpts-1): self.sa += triangle_solid_angle(ctrlpts_v[..., 0], ctrlpts_v[..., i], ctrlpts_v[..., i+1]) self.edgenormals = np.cross(ctrlpts_v, np.roll(ctrlpts_v, -1, axis=1), axis=0) else: faz, baz, sides = self.geod.inv(ctrlpts[0,0], ctrlpts[1,0], ctrlpts[0,1], ctrlpts[1,1]) self.sides = sides self.faz = faz self.baz = baz self.area = 0 self.ca = central_angle(ctrlpts_v[..., 0], ctrlpts_v[..., 1]) self.edgenormals = np.cross(ctrlpts_v[..., 0], ctrlpts_v[..., 1]) self.cosca = np.cos(self.ca) self.sinca = np.sin(self.ca) if self.sa < 0: warnings.warn('control polygon is in negative orientation, ' + 'may cause unusual results') if self.nctrlpts == 4: ctrlpts_v = self.ctrlpts_v v0 = ctrlpts_v[..., 0] v1 = ctrlpts_v[..., 1] v2 = ctrlpts_v[..., 2] v3 = ctrlpts_v[..., 3] poip1 = np.cross(np.cross(v0, v1), np.cross(v3, v2)) poip2 = np.cross(np.cross(v0, v3), np.cross(v1, v2)) poip = np.stack([[poip1, -poip1], [poip2, -poip2]]).transpose(2,0,1) poip = poip / np.linalg.norm(poip, axis=0) self.poi_v = poip self.poi = UnitVector.invtransform_v(poip) self.crossx = np.cross(ctrlpts_v, np.roll(ctrlpts_v, -2, axis=1), axis=0)[..., :2] def orienttgtpts(self, tgtpts, N = (0, 90)): """Orient target points so that line from 0 to the projection of N points up. Will fail if map projection doesn't define tgtpts.""" pN = self.transform(*N) if np.allclose(pN, [0,0]): raise ValueError('projection of N too close to 0') angle = np.arctan2(pN[0],pN[1]) rotm = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]]) result = rotm @ tgtpts self.tgtpts = result def lune(self, lon, lat): """ Determine which lune a point or series of points lies in. Lune 0 is the lune with vertex at the centroid and edges passing through control points 0 and 1. Lune 1 is the same using control pts 1 and 2, and Lune 2 uses control pts 2 and 0. """ #inexact on ellipsoids but close enough testpt = UnitVector.transform(lon, lat) testpt_v = testpt.reshape(3,-1) ctrlpts_v = self.ctrlpts_v center_v = self.center_v cx = np.cross(center_v, ctrlpts_v, axis=0) sk = cx.T @ testpt_v sg = sk >= 0 ind = sg & ~np.roll(sg, shift=-1, axis=0) result = np.argmax(ind, axis=0) return result.reshape(testpt.shape[1:]) class BarycentricMapProjection(CtrlPtsProjection): nctrlpts = 3 tweak = False bcenter = np.ones(3)/3 def fixbary(self, bary): if self.tweak: return self.fixbary_normalize(bary) else: return self.fixbary_subtract(bary) @staticmethod def fixbary_normalize(bary): """Converts array bary to an array with sum = 1 by dividing by bary.sum(). Will return nan if bary.sum() == 0. >>> fixbary_normalize(np.arange(3)) array([0. , 0.33333333, 0.66666667]) """ bary = np.array(bary) return bary / np.sum(bary, axis=0, keepdims=True) @staticmethod def fixbary_subtract(bary): """Converts array bary to an array with sum = 1 by subtracting (bary.sum() - 1)/bary.shape[0]. >>> fixbary_subtract(np.arange(3)) array([-0.66666667, 0.33333333, 1.33333333]) """ bary = np.array(bary) s = (np.sum(bary, axis=0, keepdims=True) - 1)/bary.shape[0] return bary - s def _fix_corners(self, lon, lat, result): ctrlpts = self.ctrlpts index0 = (lon == ctrlpts[0,0]) & (lat == ctrlpts[1,0]) index1 = (lon == ctrlpts[0,1]) & (lat == ctrlpts[1,1]) index2 = (lon == ctrlpts[0,2]) & (lat == ctrlpts[1,2]) #print(lon, lat, ctrlpts, result) #print(index0.shape, result.shape, np.array([1, 0, 0])[..., np.newaxis].shape) result[..., index0] = np.array([1, 0, 0])[..., np.newaxis] result[..., index1] = np.array([0, 1, 0])[..., np.newaxis] result[..., index2] = np.array([0, 0, 1])[..., np.newaxis] return result def _fix_corners_inv(self, bary, result): index0 = (bary[0] == 1) index1 = (bary[1] == 1) index2 = (bary[2] == 1) if np.any(index0): result[..., index0] = self.ctrlpts_v[..., 0, np.newaxis] if np.any(index1): result[..., index1] = self.ctrlpts_v[..., 1, np.newaxis] if np.any(index2): result[..., index2] = self.ctrlpts_v[..., 2, np.newaxis] return result class UVMapProjection(CtrlPtsProjection): nctrlpts = 4 bcenter = np.ones(2)/2 def _fix_corners(self, lon, lat, result): ctrlpts = self.ctrlpts index0 = (lon == ctrlpts[0,0]) & (lat == ctrlpts[1,0]) index1 = (lon == ctrlpts[0,1]) & (lat == ctrlpts[1,1]) index2 = (lon == ctrlpts[0,2]) & (lat == ctrlpts[1,2]) index3 = (lon == ctrlpts[0,3]) & (lat == ctrlpts[1,3]) result[..., index0] = np.array([ 0, 0])[..., np.newaxis] result[..., index1] = np.array([ 1, 0])[..., np.newaxis] result[..., index2] = np.array([ 1, 1])[..., np.newaxis] result[..., index3] = np.array([ 0, 1])[..., np.newaxis] return result def _fix_corners_inv(self, x, y, result): index0 = (x == 0) & (y == 0) index1 = (x == 1) & (y == 0) index2 = (x == 1) & (y == 1) index3 = (x == 0) & (y == 1) if np.any(index0): result[..., index0] = self.ctrlpts_v[..., 0, np.newaxis] if np.any(index1): result[..., index1] = self.ctrlpts_v[..., 1, np.newaxis] if np.any(index2): result[..., index2] = self.ctrlpts_v[..., 2, np.newaxis] if np.any(index3): result[..., index3] = self.ctrlpts_v[..., 3, np.newaxis] return result #%% not-polygonal projections class ChambTrimetric(CtrlPtsProjection): """Chamberlin trimetric projection""" #FIXME this implementation fails for control triangles with #high aspect ratios nctrlpts = 3 def __init__(self, ctrlpts, geod=_unitsphgeod): super().__init__(ctrlpts, geod) self.tgtpts = trigivenlengths(self.sides) try: self.orienttgtpts(self.tgtpts) except ValueError: pass def transform(self, x, y, **kwargs): if hasattr(x, '__iter__'): raise TypeError() tgtpts = self.tgtpts f, b, rad = self.geod.inv(self.ctrlpts[0], self.ctrlpts[1], x*np.ones(3), y*np.ones(3)) faz = self.faz raz1 = (faz - f) % 360 radsq = np.array(rad).squeeze()**2 ctgt = tgtpts.T.copy().view(dtype=complex).squeeze() a = np.roll(ctgt, -1) - ctgt b = ctgt l = abs(a) lsq = l**2 rsq = radsq/lsq ssq = np.roll(radsq, -1, axis=-1)/lsq x0 = (rsq - ssq + 1)/2 y0 = sqrt(-rsq**2 + 2*rsq*(ssq + 1) - (ssq - 1)**2)/2 y0[np.isnan(y0)] = 0 y = np.where(raz1 > 180, -y0, y0) z0 = x0 +1j*y pts = (a * z0 + b) result = np.mean(pts) return result.real, result.imag def invtransform(self, *args, **kwargs): return NotImplemented class LstSqTrimetric(ChambTrimetric): """Least-squares variation of the Chamberlin trimetric projection""" def transform(self, x, y, **kwargs): init = super().transform(x, y) tgtpts = self.tgtpts f, b, rad = self.geod.inv(self.ctrlpts[0], self.ctrlpts[1], x*np.ones(3), y*np.ones(3)) def objective(v): x = v[0] y = v[1] a = tgtpts[0] b = tgtpts[1] xma = x-a ymb = y-b dist = np.sqrt(xma**2 + ymb**2) result = np.sum((dist - rad)**2 ) f = 1 - rad/dist f[rad <= 0] = 1 jac = 2*np.array([np.sum(xma*f), np.sum(ymb*f)]) return result, jac res = minimize(objective, init, jac=True, method = 'BFGS') return res.x class LinearTrimetric(CtrlPtsProjection): """The linear variation of the Chamberlin Trimetric projection.""" nctrlpts = 3 matrix1 = np.array([[0,-1], [1,0]]) matrix2 = np.array([[0, -1, 1], [1, 0, -1], [-1, 1, 0]]) matrixinv1 = np.array([[-2,1,1], [1,-2,1], [1,1,-2]])*2/3 def __init__(self, ctrlpts, geod=_unitsphgeod): """Parameters: ctrlpts: 2x3 Numpy array, latitude and longitude of each control point geod= a pyproj.Geod object. For a unit sphere use pyproj.Geod(a=1,b=1). """ super().__init__(ctrlpts, geod) self.radius = ((geod.a**(3/2) + geod.b**(3/2))/2)**(2/3) self.tgtpts = trigivenlengths(self.sides) self.setmat() # try: # self.orienttgtpts(self.tgtpts) # self.setmat() # except ValueError: # pass vctrl = self.ctrlpts_v self.invctrlvector = np.linalg.pinv(vctrl) self.invperpmatrix = self.invctrlvector @ self.invctrlvector.T cosrthmin = 1 / np.sqrt(self.invperpmatrix.sum()) self.hminall = np.arccos(cosrthmin)**2 def setmat(self, tgtpts=None): """Set matrices that use tgtpts""" if tgtpts is None: tgtpts = self.tgtpts else: self.tgtpts = tgtpts tgtde = np.linalg.det(np.concatenate([tgtpts, np.ones((1,3))], axis=0)) self.m = self.matrix1 @ tgtpts @ self.matrix2 /(2*tgtde) self.minv = self.matrixinv1 @ tgtpts.T def transform_v(self, pts): rpts = pts.reshape((2,-1)).T rad = [] for x,y in rpts: f, b, radi = self.geod.inv(x*np.ones(3), y*np.ones(3), self.ctrlpts[0], self.ctrlpts[1]) rad.append(radi) shape = list(pts.shape) shape[0] = 3 rad = np.array(rad).T radsq = np.array(rad)**2 result = self.m @ radsq return result.reshape(pts.shape) def invtransform_v(self, pts, n=20, stop=1E-8): if not self.geod.sphere: warnings.warn('inverse transform is approximate on ellipsoids') rpts = pts.reshape((2,-1)) k = self.minv @ rpts/self.radius**2 hmin = -np.min(k, axis=0) print('k: ', k) #hmax = np.pi**2-np.max(k, axis=0) hminall = self.hminall h = np.where(hmin < hminall, hminall, hmin) print('h: ', h) for i in range(n): rsq = (k + h) #pos = rsq > 0 neg = rsq < 0 zer = rsq == 0 c = np.where(neg, np.cosh(np.sqrt(-rsq)), np.cos(np.sqrt(rsq))) b = np.where(neg, np.sinh(np.sqrt(-rsq)), np.sin(np.sqrt(rsq)))/np.sqrt(np.abs(rsq)) b[zer] = 1 f = np.einsum('i...,ij,j...', c, self.invperpmatrix, c) - 1 fprime = np.einsum('i...,ij,j...', c, self.invperpmatrix, b) delta = f/fprime h += delta print('delta:', delta) print('h: ', h) if np.max(np.abs(delta)) < stop: break #h = np.clip(h, hmin, hmax) rsq = np.clip(k + h, 0, np.pi**2) c = np.cos(np.sqrt(rsq)) vector = self.invctrlvector.T @ c print(c) print(vector) return UnitVector.invtransform_v(vector).reshape(pts.shape) def nmforplot(self, pts, n=100): rpts = pts.reshape((2,-1)) k = self.minv @ rpts/self.radius**2 hmin = -np.min(k, axis=0) hmax = np.pi**2-np.max(k, axis=0) h = np.linspace(hmin,hmax,100).T rsq = (k[..., np.newaxis] + h) c = np.cos(np.sqrt(rsq)) nm = np.einsum('i...,ij,j...', c, self.invperpmatrix, c) return h, nm class Alfredo(BarycentricMapProjection): """this doesn't really accomplish anything""" def __init__(self, ctrlpts, tweak=False): """Parameters: ctrlpts: 2x3 Numpy array, latitude and longitude of each control point """ super().__init__(ctrlpts) ctrlpts_v = self.ctrlpts_v self.cosADfactor = (np.cross(np.roll(ctrlpts_v, 1, axis=1), np.roll(ctrlpts_v, -1, axis=1), axis=0) + ctrlpts_v * np.linalg.det(ctrlpts_v)) self.tweak = tweak def transform_v(self, ll): rll = ll.reshape(2, -1) ctrlpts_v = self.ctrlpts_v cosADfactor = self.cosADfactor vtestpt = UnitVector.transform_v(rll) cosAPi = (vtestpt.T @ ctrlpts_v).T cosADi = (vtestpt.T @ cosADfactor).T pli = np.sqrt((1-cosAPi)/(1-cosADi)) b = 1 - pli result = self.fixbary(b) shape = (3,) + ll.shape[1:] return result.reshape(shape) def invtransform(self, *args, **kwargs): return NotImplemented #%% class Areal(BarycentricMapProjection): """Spherical areal projection.""" def __init__(self, ctrlpts, geod=_unitsphgeod): """Parameters: ctrlpts: 2x3 Numpy array, latitude and longitude of each control point geod: a pyproj.Geod object. For a unit sphere use pyproj.Geod(a=1,b=1). """ super().__init__(ctrlpts, geod) a_i = np.sum(np.roll(self.ctrlpts_v, -1, axis=1) * np.roll(self.ctrlpts_v, 1, axis=1), axis=0) self.a_i = a_i self.b_i = (np.roll(a_i, -1) + np.roll(a_i, 1))/(1+a_i) self.tau_c = self.tau(self.area) def tau(self, area): """Convert areas on the geod to tau values for inverse transform""" return np.tan(area/self.totalarea*2*np.pi) def transform(self, x, y): try: areas = [] for i in range(3): smtri = self.ctrlpts.copy() smtri[:, i] = np.array([x,y]) a, _ = self.geod.polygon_area_perimeter(smtri[0], smtri[1]) areas.append(a) areas = np.array(areas) return areas/self.area except ValueError: raise TypeError() def invtransform_v(self, bary): rbary = bary.reshape(3,-1) if not self.geod.sphere: warnings.warn('inverse transform is approximate on ellipsoids') b_i = self.b_i[:,np.newaxis] tau = self.tau_c tau_i = self.tau(self.area*rbary) t_i = tau_i/tau c_i = t_i / ((1+b_i) + (1-b_i) * t_i) f_i = c_i / (1 - np.sum(c_i, axis=0)) vector = self.ctrlpts_v @ f_i shape = [2] + list(bary.shape[1:]) result = UnitVector.invtransform_v(vector).reshape(shape) return result #%% class BisectTri(BarycentricMapProjection): """Inverse is only approximate """ def __init__(self, ctrlpts): """Parameters: ctrlpts: 2xn Numpy array, latitude and longitude of each control point """ super().__init__(ctrlpts) ctrlpts_v = self.ctrlpts_v #v_0 = ctrlpts_v[..., 0] #v_1 = ctrlpts_v[..., 1] #v_2 = ctrlpts_v[..., 2] midpoint_v = np.roll(ctrlpts_v, 1, axis=1) + np.roll(ctrlpts_v, -1, axis=1) midpoint_v /= np.linalg.norm(midpoint_v, axis=0, keepdims=True) self.midpoint_v = midpoint_v self.midpoint = UnitVector.invtransform_v(self.midpoint_v) aream = [] for i in range(3): #index = np.roll(np.arange(3), -i)[:2] #lona = list(ctrlpts[0, index]) + [self.midpoint[0,i],] #lata = list(ctrlpts[1, index]) + [self.midpoint[1,i],] #am, _ = self.geod.polygon_area_perimeter(lona, lata) am = triangle_solid_angle(ctrlpts_v[:,i], ctrlpts_v[:,(i+1)%3], midpoint_v[:,i]) #vc[:,0], mi, lproj) aream.append(am) self.aream = np.array(aream) def transform(self, lon, lat): lon + 0 vtestpt = UnitVector.transform(lon, lat) areas = [] vctrlpts = self.ctrlpts_v actrlpts = self.ctrlpts geod = self.geod area = self.area for i in range(3): vc = np.roll(vctrlpts, i, axis=1) #ac = np.roll(actrlpts, i, axis=1) mi = self.midpoint_v[:,-i]#? lproj = -np.cross(np.cross(vc[..., 1], vc[..., 2]), np.cross(vc[..., 0], vtestpt)) #lllproj = UnitVector.invtransform_v(lproj) #loni = [ac[0,0], mi[0], lllproj[0]] #lati = [ac[1,0], mi[1], lllproj[1]] #a1, _ = geod.polygon_area_perimeter(loni, lati) a1 = triangle_solid_angle(vc[:,0], mi, lproj) areas.append(a1) areas = np.array(areas) + self.aream aa = areas/area bx = [] for i in range(3): x,y,z = np.roll(aa, i, axis=0) b = (y**2 * x**2 + z**2 * x**2 - y**2 * z**2 - x * y**2 + z * y**2 - 2*y*x**2 - x*z**2 + y*z**2 + x**2 + 3*y*x + z*x - 2*y*z - 2*x - y + z + 1) bx.append(b) bx = np.array(bx) betax = bx/bx.sum() return self._fix_corners(lon, lat, betax) def invtransform(self, b1, b2, b3): b1 + 0 beta = np.array([b1,b2,b3]) vctrlpts3 = self.ctrlpts_v #xs = [] ptts = [] for i in range(3): beta1, beta2, beta3 = np.roll(beta, -i, axis=0) x = beta2/(1 - beta1) #xs.append(x) a = x * self.area pt0 = vctrlpts3[:,i] pt1 = vctrlpts3[:,i-2] pt2 = vctrlpts3[:,i-1] cosw = pt1 @ pt2 w = np.arccos(cosw) sinw = np.sin(w) p2 = ((np.cos(a/2)* pt2 @ np.cross(pt0, pt1)- np.sin(a/2)*pt2 @ (pt1 + pt0)) + np.sin(a/2)*cosw*(1 + pt1 @ pt0)) p3 = sinw*np.sin(a/2)*(1 + pt0 @ pt1) r = 2*p3*p2/(p2**2 - p3**2) t = np.arctan(r)/w#really close to just x #print(x, t) #t = x ptt = slerp(pt2, pt1, t) ptts.append(ptt) ptts = np.array(ptts).T ns = np.cross(vctrlpts3, ptts, axis=0) pts = np.cross(ns, np.roll(ns, -1, axis=1), axis=0) v = pts.sum(axis=1) v = self._fix_corners_inv(beta, v) return UnitVector.invtransform_v(v) class BisectTri2(BarycentricMapProjection): """Inverse is only approximate""" def __init__(self, ctrlpts): """Parameters: ctrlpts: 2xn Numpy array, latitude and longitude of each control point """ super().__init__(ctrlpts) ctrlpts_v = self.ctrlpts_v #v_0 = ctrlpts_v[..., 0] #v_1 = ctrlpts_v[..., 1] #v_2 = ctrlpts_v[..., 2] midpoint_v = np.roll(ctrlpts_v, 1, axis=1) + np.roll(ctrlpts_v, -1, axis=1) midpoint_v /= np.linalg.norm(midpoint_v, axis=0, keepdims=True) self.midpoint_v = midpoint_v self.midpoint = UnitVector.invtransform_v(self.midpoint_v) def transform(self, lon, lat): lon + 0 vtestpt = UnitVector.transform(lon, lat) aa = [] vctrlpts = self.ctrlpts_v actrlpts = self.ctrlpts for i in range(3): vc = np.roll(vctrlpts, i, axis=1) ac = np.roll(actrlpts, i, axis=1) mi = self.midpoint[:,-i] lproj = -np.cross(np.cross(vc[..., 1], vc[..., 2]), np.cross(vc[..., 0], vtestpt)) lllproj = UnitVector.invtransform_v(lproj) dist1x = central_angle(vc[..., 1], lproj) f, b, dist1x = self.geod.inv(mi[0], mi[1], lllproj[0],lllproj[1]) f0, b0, _ = self.geod.inv(mi[0], mi[1], ac[0,2], ac[1,2]) deltaf = (f-f0) % 360 if (deltaf <= 90) | (deltaf > 270): s = 1 else: s = -1 t = s*dist1x/self.sides[i] + 1/2 #print(t) aa.append(t) bx = [] for i in range(3): x,y,z = np.roll(aa, i, axis=0) b = (y**2 * x**2 + z**2 * x**2 - y**2 * z**2 - x * y**2 + z * y**2 - 2*y*x**2 - x*z**2 + y*z**2 + x**2 + 3*y*x + z*x - 2*y*z - 2*x - y + z + 1) bx.append(b) bx = np.array(bx) betax = bx/bx.sum() return self._fix_corners(lon, lat, betax) def invtransform(self, b1, b2, b3): b1 + 0 beta = np.array([b1,b2,b3]) vctrlpts3 = self.ctrlpts_v #xs = [] ptts = [] for i in range(3): beta1, beta2, beta3 = np.roll(beta, -i, axis=0) x = beta2/(1 - beta1) pt1 = vctrlpts3[:,i-2] pt2 = vctrlpts3[:,i-1] ptt = slerp(pt2, pt1, x) ptts.append(ptt) ptts = np.array(ptts).T ns = np.cross(vctrlpts3, ptts, axis=0) pts = np.cross(ns, np.roll(ns, -1, axis=1), axis=0) v = pts.sum(axis=1) v = self._fix_corners_inv(beta, v) return UnitVector.invtransform_v(v) class FullerEq(BarycentricMapProjection): def transform_v(self, ll): vtestpt_pre = UnitVector.transform(*ll) vtestpt = vtestpt_pre.reshape(3,-1) ctrlpts_v = self.ctrlpts_v b = [] for i in range(3): v0 = ctrlpts_v[..., i] v1 = ctrlpts_v[..., (i+1)%3] v2 = ctrlpts_v[..., (i-1)%3] cosw01 = v0 @ v1 cosw02 = v0 @ v2 w01 = np.arccos(cosw01) w02 = np.arccos(cosw02) w = (w01 + w02) / 2 sinw = np.sin(w) cosw = np.cos(w) vt01 = np.tensordot(vtestpt, np.cross(v0, v1), axes=(0,0)) vt12 = np.tensordot(vtestpt, np.cross(v1, v2), axes=(0,0)) vt20 = np.tensordot(vtestpt, np.cross(v2, v0), axes=(0,0)) bi = np.arctan2(sinw*vt12, cosw*vt12 + vt01 + vt20)/w #gx = vt12 + cosw*(vt01 + vt20) #tx = np.arctan2(sinw*(vt20 + vt01),gx)/w b.append(bi) #b.append(1-tx) b = np.array(b) result = self.fixbary_subtract(b) return result.reshape(vtestpt_pre.shape) def invtransform(self, b1, b2, b3): b1 + 0 #still not vectorized bi = np.array([b1, b2, b3]) v0 = self.ctrlpts_v[..., 0] v1 = self.ctrlpts_v[..., 1] v2 = self.ctrlpts_v[..., 2] w = self.ca.mean() bi = np.array([b1, b2, b3]) cw = np.cos(w) #sw = np.sin(w) cbw = np.cos(bi*w) sbw = np.sin(bi*w) pcbw = np.product(cbw) psbw = np.product(sbw) scc = np.sum(sbw * np.roll(cbw, -1) * np.roll(cbw, 1)) css = np.sum(cbw*np.roll(sbw, -1)*np.roll(sbw, 1)) objw2 = np.array([2*pcbw - cw - 1, 2*scc, 3*pcbw + 3 - css, 2*psbw]) rts = np.roots(objw2)[-1]#FIXME solve this cubic explicitly rts = rts.real k = np.arctan(rts)/w #f0 = np.where(bi[0] + k > 1, -1, 1) f1 = np.where(bi[1] + k > 1, -1, 1) f2 = np.where(bi[2] + k > 1, -1, 1) #v01 = slerp(v1, v0, bi[0] + k) #v02 = slerp(v2, v0, bi[0] + k) #cx12 = np.cross(v01, v02)*f0 v12 = slerp(v2, v1, bi[1] + k) v10 = slerp(v0, v1, bi[1] + k) cx20 = np.cross(v12, v10)*f1 v20 = slerp(v0, v2, bi[2] + k) v21 = slerp(v1, v2, bi[2] + k) cx01 = np.cross(v20, v21)*f2 v0x = normalize(np.cross(cx20, cx01)) #v1x = normalize(np.cross(cx01, cx12)) #v2x = normalize(np.cross(cx12, cx20)) v0x = self._fix_corners_inv(bi, v0x) #print(v0x) return UnitVector.invtransform_v(v0x) class Fuller(BarycentricMapProjection): def __init__(self, ctrlpts, tweak=False): """Parameters: ctrlpts: 2xn Numpy array, latitude and longitude of each control point """ super().__init__(ctrlpts) self.tweak = tweak def transform(self, lon, lat): lon + 0#will TypeError if lon is not a number vtestpt = UnitVector.transform(lon, lat) ctrlpts_v = self.ctrlpts_v b = [] for i in range(3): v0 = ctrlpts_v[..., i] v1 = ctrlpts_v[..., (i+1)%3] v2 = ctrlpts_v[..., (i+2)%3] vt01 = vtestpt @ np.cross(v0, v1) vt12 = vtestpt @ np.cross(v1, v2) vt20 = vtestpt @ np.cross(v2, v0) cosw01 = v0 @ v1 cosw02 = v0 @ v2 w01 = np.arccos(cosw01) w02 = np.arccos(cosw02) if np.isclose(w01, w02): w = (w01 + w02) / 2 sinw = np.sin(w) cosw = np.cos(w) g = vt12 + cosw*(vt01 + vt20) ti = self._b_eq(w, sinw, vt20, vt01, g) else: sinw01 = sqrt(1 - cosw01**2) sinw02 = sqrt(1 - cosw02**2) g = vt12 + cosw02*vt01 + cosw01*vt20 ti = self._b_neq(w01, sinw02, vt01, w02, sinw01, vt20, g) b.append(1-ti) return self.fixbary(b) def _b_neq(self, w01, sinw02, vt01, w02, sinw01, vt20, g): t0 = (w01*sinw02*vt01 + w02*sinw01*vt20)/(g*w01*w02) if ~np.isfinite(t0): t0 = 0 else: lim = np.pi/np.array([w01,w02]).max() t0 = np.clip(t0, -lim, lim) if abs(t0) < 1E-3: return t0 w = (w01 + w02) / 2 sinw = np.sin(w) t1 = self._b_eq(w, sinw, vt20, vt01, g) t0 = np.clip(t0, -abs(t1), abs(t1)) c1 = sqrt(g**2 + (sinw01*vt20 - sinw02*vt01)**2) c2 = sqrt(g**2 + (sinw01*vt20 + sinw02*vt01)**2) d1 = np.arctan2(sinw01*vt20 - sinw02*vt01, g) d2 = np.arctan2(sinw01*vt20 + sinw02*vt01, g) def objective(t): if t < -lim or t > lim: return t**2, 2*t if t == 0: t =
np.finfo(float)
numpy.finfo
""" :Author(s) <NAME>, <NAME>: This file contains the methods used to perform calculations on scuba diving profiles. """ from rpy2.robjects.vectors import IntVector import rpy2.robjects as robjects import numpy as np import math import DiveConstants as dc class Calculations: def initialise_dive(self, data, gas_combinations): """ Creates and initialises the dive_profile object. :param data: dataframe: a dataframe containing columns: time and depth :param gas_combinations: list: A list of gases in the format [[fO2,fHe,fN2,time]] :returns tuple: :dive_profile: a scuba dive object :gas_list: a list of scuba gas objects """ dive = robjects.r['dive'] gas_list, tank_times = self.trimix_list(gas_combinations) size = len(gas_list) d = dive(data, tanklist=gas_list) # Use Imbedded R script to name and swap gas tanks for dive custom_gas = robjects.r(''' customGas <- function(dive_profile, numgas, list_of_times) { #Applies names to the tanklist in the format c("1":"n") - necessary to select which gas to use at a specific time. names(tanklist(dive_profile)) <- c(1:numgas) #Cuts the dive_profile and switches to the specific gas at the time listed d <- cut(times.dive(dive_profile), breaks = c(do.call(c, list_of_times), Inf), include.lowest = TRUE, labels = names(tanklist(dive_profile))) whichtank(dive_profile) <- cut(times.dive(dive_profile), breaks = c(do.call(c, list_of_times), Inf), include.lowest = TRUE, labels = names(tanklist(dive_profile))) return(dive_profile) } ''') dive_profile = custom_gas(d, size, tank_times) return dive_profile, gas_list def trimix_list(self, gas_combinations): """ converts gas_combination string into trimix gas objects :param gas_combinations: dataframe: a list of strings in the format [[f02 fHe fN2 time][...]] :returns tuple: :gas_list: a list of trimix gas objects :time_list: a list of times to pair with gas_list """ trimix = robjects.r['trimix'] gas_list = [] time_list = [] try: # set default gas to air if no gas specified at time 0 if((len(gas_combinations) < 1 or gas_combinations[0][3] > 0)): gas_list.append(trimix(0.21, 0, 0.79)) time_list.append(-1) for gas in gas_combinations: gas_list.append(trimix(gas[0], gas[1])) time_list.append(gas[3]) except IndexError: pass return gas_list, time_list def o2_tox(self, dive_profile): """ calculates oxygen toxcity exposure :param dive_profile: dive: a dive profile to test OTU level :returns float: value representing pulmonary oxygen toxicity dose for a given dive profile and breathing gas is NaN if scuba is unable to calculate. """ oxtox = robjects.r['oxtox'] otu = oxtox(dive_profile, progressive=False) ret = float(np.asarray(otu)) if(math.isnan(ret)): ret = '.' return ret def max_ascent(self, dive_csv): """ finds the maximum ascent rate :param dive_csv: dataframe: a dataframe containing columns: time and depth :returns: the maximum ascent rate """ data = np.array(dive_csv) max = 0 ascent_rate = 0 time_interval = data[0][3] - data[0][2] for idx, depth in np.ndenumerate(data[1, :]): try: temp = data[1][idx[0]+1] if ((depth - temp) > max): max = depth - temp except IndexError: pass # calculates the max ascent rate per min div = 60.0 / time_interval ascent_rate = round(max * div, 3) return ascent_rate def compartment_pressures(self, dive_profile, halftime_set): """ Gets compartment pressures from dive profile based on given half time set. :param data: dataframe: a dataframe containing columns: time and depth :param halftime_set: str: the name of the halftime set to be used :returns: :cp: a dataframe containing compartment pressures from 1,1b - 16 """ # setup R functions haldane = robjects.r['haldane'] pickmodel = robjects.r['pickmodel'] data_frame = robjects.r['data.frame'] if(not(halftime_set == 'ZH-L16A' or halftime_set == 'ZH-L16B' or halftime_set == 'ZH-L16C' or halftime_set == 'Haldane' or halftime_set == 'DSAT' or halftime_set == 'Workman65' or halftime_set == 'Buzzacott')): raise ValueError('Invalid halftime-set') else: # if halftime set is decimate, set up decimate model. if(halftime_set == 'Buzzacott'): hm = robjects.r['hm'] buzzacott_model = hm(HalfT=IntVector((1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)), M0=IntVector(( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)), dM=IntVector((1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1))) cp = haldane(dive_profile, model=buzzacott_model, progressive=True) # if halftime set is ZH-L16B or ZH-L16C use ZH-L16A. This is like this in order to use model for different gradient factor calculations elif(halftime_set == 'ZH-L16B' or halftime_set == 'ZH-L16C'): cp = haldane(dive_profile, model=pickmodel( 'ZH-L16A'), progressive=True) # for all other models, set up normally else: cp = haldane(dive_profile, model=pickmodel( halftime_set), progressive=True) # return the compartment pressures as dataframe return data_frame(cp) def max_values(self, ambient_pressures, compartment_pressures, totalIPP, nIPP, heIPP): """ merges max_bubble, max_inspired into a single function Calculates max inspired, bubble and surf values as well as recording the compartment pressure values at the time of max bubble :param ambient_pressures: float[]: a list of ambient pressures at each time point (depth/10) :param compartment_pressures: float[]: a list of compartment pressure values (cp_value) :param totalIPP: float[]: the total inert gas partial pressure at given time points :returns float[]: max_values : array containing the collumns: :max_ins: cp_value - totalIPP :max_bub: cp_value - ambient_pressure :n2_cp: cp_value where maxbub occured :he_cp: helium cp_value where maxbub occured :surf: the cp when the diver surfaces. :he_surf: the helium cp when the diver surfaces """ # get compartment pressures and ambient pressure data # cp = [row][col] cp = np.array(compartment_pressures, dtype=np.float64).transpose() ap = ambient_pressures rows = cp.shape[0] cols = cp.shape[1] if cols > 17: cols = 17 # initialize output array, array is same length as comparment pressures max_values = np.zeros((cols, 8)) # for each column for i in range(cols): max_bub = 0 max_ins = -9999 max_he_ins = -9999 total_ins = -9999 n2_cp = 0 he_cp = 0 # for each row for j, cp_val in np.ndenumerate(cp[:, i]): try: # for buhlmann models if(cols == 17): temp_ins = cp_val - nIPP[j] he_ins = cp[j][i+17] - heIPP[j] temp_total = temp_ins + he_ins temp_bub = (cp_val + cp[j][i+17]) - ap[j] if(he_ins > max_he_ins): max_he_ins = he_ins # for air dives else: temp_bub = cp_val - ap[j] temp_ins = cp_val - totalIPP[j] temp_total = temp_ins if(temp_total > total_ins): total_ins = temp_total if(temp_ins > max_ins): max_ins = temp_ins if(temp_bub > max_bub): max_bub = temp_bub n2_cp = cp_val # get he_cp value iff buhlmann model if(cols == 17): he_cp = cp[j][i+17] except IndexError: pass max_values[i][0] = max_ins max_values[i][1] = max_bub max_values[i][2] = n2_cp max_values[i][3] = he_cp max_values[i][4] = cp[rows-1][i] # N2Surf if(cols == 17): max_values[i][5] = cp[rows-1][i+17] # heSurf max_values[i][6] = max_he_ins # helium maxins values max_values[i][7] = total_ins return max_values def ambient_pressures(self, dive): """ calculates ambient pressures :param dive: dataframe: a dataframe containing columns: time and depth :returns float[]: a list of ambient pressures at each time point """ # get dive data (times/depths) and convert to np array df = np.array(dive, dtype=np.float64) # initialize output array ap = np.zeros(df.shape[1]) # enumerate 2nd column of array (depths) and calculate ambient pressure for idx, depth in np.ndenumerate(df[1, :]): ap[idx] = depth/10 + 1 return ap def gradient_factors(self, data, compartment_pressures, halftime_set, surf_vals): """ Calculates the maximum percentage of the respective M-value any compartment reaches known as the GFHigh and GFLow specific to the user selected halftime set, Finds the depth at which any compartment reaches 100% of its m value and finds the first miss according to that depth. :param data: dataframe: a dataframe containing columns: time and depth :param compartment_pressures: dataframe: a dataframe containing compartment pressures specific to each halftime set :param halftime_set: str: the name of the halftime set to be used :param surf_vals: array: a 2D array containing the surface values for nitrogen and helium needed to calculate the GFHigh values :returns list: :GF_Lows_final: all final values GFLowNMax :GF_Lows_max_max: the maximum value of all GFLowNMax values, :gf_100D: an integer representing the depth at which a compartment hits 100% of its m value :first_miss: the closest multiple of 3 to gf_100D :GF_Highs: all GFHigh values :GF_Highs_max: the maximum value of all GFHigh values """ # convert compartment pressures to numpy array, transpose so we have [rows][cols] rather than [cols][rows] cp = np.array(compartment_pressures, dtype=np.float64).transpose() if halftime_set == 'ZH-L16A' or halftime_set == 'ZH-L16B' or halftime_set == 'ZH-L16C': num_compartments = 17 elif halftime_set == 'DSAT': num_compartments = 8 elif halftime_set == 'Workman65': num_compartments = 9 elif halftime_set == 'Haldane': num_compartments = 5 gaugeP = np.zeros(cp.shape[0]) # nitrogen and helium XDM, calculation = (the respective gas * gauge pressure at each timepoint) nXDM =
np.zeros((gaugeP.shape[0], num_compartments))
numpy.zeros
# -*- coding: utf-8 -*- """ Created on Tue Oct 26 16:46:44 2021 @author: OTPS """ import matplotlib.pyplot as plt import numpy as np from matplotlib.colors import LogNorm import scipy as scipy from CQED_fit import fit from CQED_fit import avoided_crossing_direct_coupling_flat from CQED_fit import avoided_crossing_direct_coupling from CQED_fit import data_set from CQED_fit import shortest_dist def amp_to_volt(amp): # amp in mV x = 0.15 amp_fs = 2*2*amp/x/1e3 # in V! out_range = 0.750 amp_HL = 5 rect_wave = 1 signal_voltage = rect_wave*amp_fs*out_range return signal_voltage vpk_to_dbm = lambda v: 10*np.log10((v/np.sqrt(2))**2/(50*1e-3)) ### DATA 211026 1014 I_211026_1014 = np.loadtxt('211026_1014_QUHFLICh0cav_spec.dat', unpack = True, skiprows=1) R_211026_1014 = np.loadtxt('211026_1014_IUHFLICh0cav_spec.dat', unpack = True, skiprows=1) mod211026_1014 = np.sqrt(R_211026_1014**2 + I_211026_1014**2) mod_mat211026_1014 = mod211026_1014.reshape(17,301) nr_of_volt_measurements = np.arange(6.6, 7.4, 0.05).size volt_measurements = np.arange(6.6, 7.4, 0.05) # ### DATA 211026 1016 --> irregular measurement, needs to be discarded # I_211026_1016 = np.loadtxt('211026_1016_QUHFLICh0cav_spec.dat', unpack = True, skiprows=1) # R_211026_1016 = np.loadtxt('211026_1016_IUHFLICh0cav_spec.dat', unpack = True, skiprows=1) # mod211026_1016 = np.sqrt(R_211026_1016**2 + I_211026_1016**2) # mod_mat211026_1016 = mod211026_1016.reshape(17,301) # nr_of_volt_measurements = np.arange(6.6, 7.4, 0.05).size # volt_measurements = -np.arange(-6.6, -7.4, -0.05) ### DATA 211027 1005 I_211027_1005 = np.loadtxt('211027_1005_QUHFLICh0cav_spec.dat', unpack = True, skiprows=1) R_211027_1005 = np.loadtxt('211027_1005_IUHFLICh0cav_spec.dat', unpack = True, skiprows=1) mod211027_1005 = np.sqrt(R_211027_1005**2 + I_211027_1005**2) mod_mat211027_1005 = mod211027_1005.reshape(17,301) nr_of_volt_measurements = np.arange(6.6, 7.4, 0.05).size volt_measurements = -np.arange(-6.6, -7.4, -0.05) ### DATA 211027 1007 I_211027_1007 = np.loadtxt('211027_1007_QUHFLICh0cav_spec.dat', unpack = True, skiprows=1) R_211027_1007 = np.loadtxt('211027_1007_IUHFLICh0cav_spec.dat', unpack = True, skiprows=1) mod211027_1007 = np.sqrt(R_211027_1007**2 + I_211027_1007**2) mod_mat211027_1007 = mod211027_1007.reshape(17,301) nr_of_volt_measurements = np.arange(6.6, 7.4, 0.05).size volt_measurements = -np.arange(-6.6, -7.4, -0.05) ### DATA 211027 1008 I_211027_1008 = np.loadtxt('211027_1008_QUHFLICh0cav_spec.dat', unpack = True, skiprows=1) R_211027_1008 = np.loadtxt('211027_1008_IUHFLICh0cav_spec.dat', unpack = True, skiprows=1) mod211027_1008 = np.sqrt(R_211027_1008**2 + I_211027_1008**2) mod_mat211027_1008 = mod211027_1008.reshape(17,301) nr_of_volt_measurements = np.arange(6.6, 7.4, 0.05).size volt_measurements = -np.arange(-6.6, -7.4, -0.05) ### DATA 211029 1008 I_211029_1008 = np.loadtxt('211029_1008_QUHFLICh0cav_spec.dat', unpack = True, skiprows=1) R_211029_1008 = np.loadtxt('211029_1008_IUHFLICh0cav_spec.dat', unpack = True, skiprows=1) mod211029_1008 = np.sqrt(R_211029_1008**2 + I_211029_1008**2) mod_mat211029_1008 = mod211029_1008.reshape(17,301) ### DATA 211029 1009 I_211029_1009 = np.loadtxt('211029_1009_QUHFLICh0cav_spec.dat', unpack = True, skiprows=1) R_211029_1009 = np.loadtxt('211029_1009_IUHFLICh0cav_spec.dat', unpack = True, skiprows=1) mod211029_1009 = np.sqrt(R_211029_1009**2 + I_211029_1009**2) mod_mat211029_1009 = mod211029_1009.reshape(17,301) ### DATA 21112 1009 I_21112_1005 = np.loadtxt('21112_1005_QUHFLICh0cav_spec.dat', unpack = True, skiprows=1) R_21112_1005 = np.loadtxt('21112_1005_IUHFLICh0cav_spec.dat', unpack = True, skiprows=1) mod21112_1005 =
np.sqrt(R_21112_1005**2 + I_21112_1005**2)
numpy.sqrt
import sys, os import numpy as np from keras.preprocessing.image import transform_matrix_offset_center, apply_transform, Iterator,random_channel_shift, flip_axis from scipy.ndimage.interpolation import map_coordinates from scipy.ndimage.filters import gaussian_filter import cv2 import random import pdb from skimage.io import imsave, imread from skimage.transform import rotate from skimage import transform from skimage.transform import resize from params import * import json import math #import matplotlib.pyplot as plt def clip(img, dtype, maxval): return np.clip(img, 0, maxval).astype(dtype) def RandomLight(img,img_right): lights = random.choice(["Rfilter","Rbright","Rcontr", "RSat","RhueSat"]) #print(lights) if lights=="Rfilter": alpha = 0.5 * random.uniform(0, 1) kernel = np.ones((3, 3), np.float32)/9 * 0.2 colored = img[..., :3] colored = alpha * cv2.filter2D(colored, -1, kernel) + (1-alpha) * colored maxval = np.max(img[..., :3]) dtype = img.dtype img[..., :3] = clip(colored, dtype, maxval) #right image colored = img_right[..., :3] colored = alpha * cv2.filter2D(colored, -1, kernel) + (1-alpha) * colored maxval = np.max(img_right[..., :3]) dtype = img_right.dtype img_right[..., :3] = clip(colored, dtype, maxval) if lights=="Rbright": alpha = 1.0 + 0.1*random.uniform(-1, 1) maxval = np.max(img[..., :3]) dtype = img.dtype img[..., :3] = clip(alpha * img[...,:3], dtype, maxval) #right image maxval = np.max(img_right[..., :3]) dtype = img_right.dtype img_right[..., :3] = clip(alpha * img_right[...,:3], dtype, maxval) if lights=="Rcontr": alpha = 1.0 + 0.1*random.uniform(-1, 1) gray = cv2.cvtColor(img[:, :, :3], cv2.COLOR_BGR2GRAY) gray = (3.0 * (1.0 - alpha) / gray.size) * np.sum(gray) maxval = np.max(img[..., :3]) dtype = img.dtype img[:, :, :3] = clip(alpha * img[:, :, :3] + gray, dtype, maxval) #right image gray = cv2.cvtColor(img_right[:, :, :3], cv2.COLOR_BGR2GRAY) gray = (3.0 * (1.0 - alpha) / gray.size) * np.sum(gray) maxval = np.max(img_right[..., :3]) dtype = img.dtype img_right[:, :, :3] = clip(alpha * img_right[:, :, :3] + gray, dtype, maxval) if lights=="RSat": maxval = np.max(img[..., :3]) dtype = img.dtype alpha = 1.0 + random.uniform(-0.1, 0.1) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gray = cv2.cvtColor(gray, cv2.COLOR_GRAY2BGR) img[..., :3] = alpha * img[..., :3] + (1.0 - alpha) * gray img[..., :3] = clip(img[..., :3], dtype, maxval) #righ image maxval = np.max(img_right[..., :3]) dtype = img_right.dtype alpha = 1.0 + random.uniform(-0.1, 0.1) gray = cv2.cvtColor(img_right, cv2.COLOR_BGR2GRAY) gray = cv2.cvtColor(gray, cv2.COLOR_GRAY2BGR) img_right[..., :3] = alpha * img_right[..., :3] + (1.0 - alpha) * gray img_right[..., :3] = clip(img_right[..., :3], dtype, maxval) if lights=="RhueSat": img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) h, s, v = cv2.split(img) hue_shift = np.random.uniform(-25,25) h = cv2.add(h, hue_shift) sat_shift = np.random.uniform(-25,25) s = cv2.add(s, sat_shift) val_shift = np.random.uniform(-25, 25) v = cv2.add(v, val_shift) img = cv2.merge((h, s, v)) img = cv2.cvtColor(img, cv2.COLOR_HSV2BGR) #right image img_right = cv2.cvtColor(img_right, cv2.COLOR_BGR2HSV) h, s, v = cv2.split(img_right) h = cv2.add(h, hue_shift) s = cv2.add(s, sat_shift) v = cv2.add(v, val_shift) img_right = cv2.merge((h, s, v)) img_right = cv2.cvtColor(img_right, cv2.COLOR_HSV2BGR) return img,img_right def perspectivedist(img,img_right,img_mask, flag='all'): if flag=='all': magnitude=3 # pdb.set_trace() rw=img.shape[0] cl=img.shape[1] #x = random.randrange(50, 200) #nonzeromask=(img_mask>0).nonzero() #nonzeroy = np.array(nonzeromask[0]) #nonzerox = np.array(nonzeromask[1]) #bbox = (( np.maximum(np.min(nonzerox)-x,0), np.maximum(np.min(nonzeroy)-x,0)), (np.minimum(np.max(nonzerox)+x,cl), np.minimum(np.max(nonzeroy)+x,rw))) #pdb.set_trace() # img=img[bbox[0][1]:(bbox[1][1]),bbox[0][0]:(bbox[1][0])] # img_mask=img_mask[bbox[0][1]:(bbox[1][1]),bbox[0][0]:(bbox[1][0])] skew = random.choice(["TILT", "TILT_LEFT_RIGHT", "TILT_TOP_BOTTOM", "CORNER"]) w, h,_ = img.shape x1 = 0 x2 = h y1 = 0 y2 = w original_plane = np.array([[(y1, x1), (y2, x1), (y2, x2), (y1, x2)]], dtype=np.float32) max_skew_amount = max(w, h) max_skew_amount = int(math.ceil(max_skew_amount *magnitude)) skew_amount = random.randint(1, max_skew_amount) if skew == "TILT" or skew == "TILT_LEFT_RIGHT" or skew == "TILT_TOP_BOTTOM": if skew == "TILT": skew_direction = random.randint(0, 3) elif skew == "TILT_LEFT_RIGHT": skew_direction = random.randint(0, 1) elif skew == "TILT_TOP_BOTTOM": skew_direction = random.randint(2, 3) if skew_direction == 0: # Left Tilt new_plane = np.array([(y1, x1 - skew_amount), # Top Left (y2, x1), # Top Right (y2, x2), # Bottom Right (y1, x2 + skew_amount)], dtype=np.float32) # Bottom Left elif skew_direction == 1: # Right Tilt new_plane = np.array([(y1, x1), # Top Left (y2, x1 - skew_amount), # Top Right (y2, x2 + skew_amount), # Bottom Right (y1, x2)],dtype=np.float32) # Bottom Left elif skew_direction == 2: # Forward Tilt new_plane = np.array([(y1 - skew_amount, x1), # Top Left (y2 + skew_amount, x1), # Top Right (y2, x2), # Bottom Right (y1, x2)], dtype=np.float32) # Bottom Left elif skew_direction == 3: # Backward Tilt new_plane = np.array([(y1, x1), # Top Left (y2, x1), # Top Right (y2 + skew_amount, x2), # Bottom Right (y1 - skew_amount, x2)], dtype=np.float32) # Bottom Left if skew == "CORNER": skew_direction = random.randint(0, 7) if skew_direction == 0: # Skew possibility 0 new_plane = np.array([(y1 - skew_amount, x1), (y2, x1), (y2, x2), (y1, x2)], dtype=np.float32) elif skew_direction == 1: # Skew possibility 1 new_plane = np.array([(y1, x1 - skew_amount), (y2, x1), (y2, x2), (y1, x2)], dtype=np.float32) elif skew_direction == 2: # Skew possibility 2 new_plane = np.array([(y1, x1), (y2 + skew_amount, x1), (y2, x2), (y1, x2)],dtype=np.float32) elif skew_direction == 3: # Skew possibility 3 new_plane = np.array([(y1, x1), (y2, x1 - skew_amount), (y2, x2), (y1, x2)], dtype=np.float32) elif skew_direction == 4: # Skew possibility 4 new_plane = np.array([(y1, x1), (y2, x1), (y2 + skew_amount, x2), (y1, x2)], dtype=np.float32) elif skew_direction == 5: # Skew possibility 5 new_plane = np.array([(y1, x1), (y2, x1), (y2, x2 + skew_amount), (y1, x2)], dtype=np.float32) elif skew_direction == 6: # Skew possibility 6 new_plane = np.array([(y1, x1), (y2, x1), (y2, x2), (y1 - skew_amount, x2)],dtype=np.float32) elif skew_direction == 7: # Skew possibility 7 new_plane =np.array([(y1, x1), (y2, x1), (y2, x2), (y1, x2 + skew_amount)], dtype=np.float32) # pdb.set_trace() perspective_matrix = cv2.getPerspectiveTransform(original_plane, new_plane) img = cv2.warpPerspective(img, perspective_matrix, (img.shape[1], img.shape[0]), flags = cv2.INTER_LINEAR) img_right = cv2.warpPerspective(img_right, perspective_matrix, (img.shape[1], img.shape[0]), flags = cv2.INTER_LINEAR) img_mask = cv2.warpPerspective(img_mask, perspective_matrix, (img.shape[1], img.shape[0]), flags = cv2.INTER_LINEAR) return img, img_right, img_mask def apply_clahe(img): lab= cv2.cvtColor(img, cv2.COLOR_BGR2LAB) l, a, b = cv2.split(lab) clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8)) cl = clahe.apply(l) limg = cv2.merge((cl,a,b)) img = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR) return img def add_gaussian_noise(X_imgs): #pdb.set_trace() row, col,_= X_imgs.shape #X_imgs=X_imgs/255 X_imgs = X_imgs.astype(np.float32) # Gaussian distribution parameters mean = 0 var = 0.1 sigma = var ** 0.5 gaussian = np.random.random((row, col, 1)).astype(np.float32) gaussian = np.concatenate((gaussian, gaussian, gaussian), axis = 2) gaussian_img = cv2.addWeighted(X_imgs, 0.75, 0.25 * gaussian, 0.25, 0) gaussian_img = np.array(gaussian_img, dtype = np.uint8) return gaussian_img def random_affine(img,img_right,img_mask): flat_sum_mask=sum(img_mask.flatten()) (row,col,_)=img_mask.shape angle=shear_deg=0 zoom=1 center_shift = np.array((1000, 1000)) / 2. - 0.5 tform_center = transform.SimilarityTransform(translation=-center_shift) tform_uncenter = transform.SimilarityTransform(translation=center_shift) big_img=np.zeros((1000,1000,3), dtype=np.uint8) big_img_right=np.zeros((1000,1000,3), dtype=np.uint8) big_mask=np.zeros((1000,1000,3), dtype=np.uint8) big_img[190:(190+row),144:(144+col)]=img big_img_right[190:(190+row),144:(144+col)]=img_right big_mask[190:(190+row),144:(144+col)]=img_mask affine = random.choice(["rotate", "zoom", "shear"]) if affine == "rotate": angle= random.uniform(-90, 90) if affine == "zoom": zoom = random.uniform(0.5, 1.5) if affine=="shear": shear_deg = random.uniform(-5, 5) # pdb.set_trace() tform_aug = transform.AffineTransform(rotation = np.deg2rad(angle), scale =(1/zoom, 1/zoom), shear = np.deg2rad(shear_deg), translation = (0, 0)) tform = tform_center + tform_aug + tform_uncenter # pdb.set_trace() img_tr=transform.warp((big_img), tform) img_tr_right=transform.warp((big_img_right), tform) mask_tr=transform.warp((big_mask), tform) # pdb.set_trace() masktemp = cv2.cvtColor((img_tr*255).astype(np.uint8), cv2.COLOR_BGR2GRAY)>20 img_tr=img_tr[np.ix_(masktemp.any(1),masktemp.any(0))] mask_tr = mask_tr[np.ix_(masktemp.any(1),masktemp.any(0))] img_tr_right = img_tr_right[np.ix_(masktemp.any(1),masktemp.any(0))] return (img_tr*255).astype(np.uint8),(img_tr_right*255).astype(np.uint8),(mask_tr*255).astype(np.uint8) class CustomNumpyArrayIterator(Iterator): def __init__(self, X, y, image_data_generator, batch_size=32, shuffle=False, seed=None, dim_ordering='th'): self.X = X self.y = y self.image_data_generator = image_data_generator self.dim_ordering = dim_ordering self.training=image_data_generator.training self.img_rows=image_data_generator.netparams.img_rows self.img_cols=image_data_generator.netparams.img_cols with open('labels_2017.json') as json_file: self.Data = json.load(json_file) #pdb.set_trace() super(CustomNumpyArrayIterator, self).__init__(X.shape[0], batch_size, shuffle, seed) def _get_batches_of_transformed_samples(self, index_array): # pdb.set_trace() batch_x_right = np.zeros((len(index_array),self.img_rows,self.img_cols,3), dtype=np.float32) batch_x_left = np.zeros((len(index_array),self.img_rows,self.img_cols,3), dtype=np.float32) if self.training: if self.image_data_generator.netparams.task=='all': ch_num=11 elif self.image_data_generator.netparams.task=='binary': ch_num=1 elif self.image_data_generator.netparams.task=='parts': ch_num=3 elif self.image_data_generator.netparams.task=='instrument': ch_num=7 else: ch_num=3 batch_y=np.zeros((len(index_array), self.img_rows,self.img_cols,ch_num), dtype=np.float32) infos=[] for i, j in enumerate(index_array): #pdb.set_trace() x_left = imread(self.X[j][0]) x_right =imread(self.X[j][1]) y1 =imread(self.y[j]) y1 = y1[...,[1,2,0]] #print(j) #pdb.set_trace() infos.append((self.X[j][0], x_left.shape)) _x_left, _x_right, _y1 = self.image_data_generator.random_transform(x_left.astype(np.uint8), x_right.astype(np.uint8),y1.astype(np.uint8),self.Data) batch_x_left[i]=_x_left batch_x_right[i]=_x_right batch_y[i]=_y1 #inf_temp=[] #inf_temp.append() # inf_temp.append() # infos.append( # pdb.set_trace() batch_y=np.reshape(batch_y,(-1,self.img_rows,self.img_cols,ch_num)) return batch_x_left,batch_x_right,batch_y,infos def next(self): with self.lock: index_array = next(self.index_generator) #print(index_array) return self._get_batches_of_transformed_samples(index_array) def convert_gray(data,im, tasktype): #pdb.set_trace() #np.shape(self.Data['instrument']) if tasktype.task=='all': out = (np.zeros((im.shape[0],im.shape[1],11)) ).astype(np.uint8) #pdb.set_trace() image=np.squeeze(im[:,:,0]) indexc=0 for label_info,index in zip(data['instrument'],range(0,np.shape(data['instrument'])[0]+1)): rgb=label_info['color'][0] if rgb==0: continue temp_out = (np.zeros(im.shape[:2]) ).astype(np.uint8) gray_val=255 #pdb.set_trace() match_pxls =
np.where(image == rgb)
numpy.where
import sys import numpy as np from skimage.measure import label def getSegType(mid): m_type = np.uint64 if mid<2**8: m_type = np.uint8 elif mid<2**16: m_type = np.uint16 elif mid<2**32: m_type = np.uint32 return m_type def seg2Count(seg,do_sort=True,rm_zero=False): sm = seg.max() if sm==0: return None,None if sm>1: segIds,segCounts = np.unique(seg,return_counts=True) if rm_zero: segCounts = segCounts[segIds>0] segIds = segIds[segIds>0] if do_sort: sort_id = np.argsort(-segCounts) segIds=segIds[sort_id] segCounts=segCounts[sort_id] else: segIds=np.array([1]) segCounts=np.array([np.count_nonzero(seg)]) return segIds, segCounts def removeSeg(seg, did, invert=False): sm = seg.max() did = did[did<=sm] if invert: rl = np.zeros(1+sm).astype(seg.dtype) rl[did] = did else: rl =
np.arange(1+sm)
numpy.arange