prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jun 26 10:17:51 2020 description : Sampling methods from sir space to data space author : bveitch version : 1.0 project : EpidPy (epidemic modelling in python) Usage: Data fitting in least squares fit Also acts on labels for data description and fitting randSampler: adds random noise/sampling bias to synthetics """ import numpy as np; def labels_from_type(sir_type,nstage=0): if(sir_type == 'sir'): return list(sir_type) elif(sir_type == 'seir'): return list(sir_type) elif(sir_type == 'sirs'): return list(sir_type) elif(sir_type == 'si2r'): return ['s','i1','i2','r'] elif(sir_type == 'sir_nstage'): assert(nstage>0),'nstage must be >0' labels=['s'] [labels.append('i'+str(istage)) for istage in range(nstage)] labels.append('r') return labels else: raise ValueError("Invalid modelling type") class Sampler: def __init__(self, nsize,intervals): for ival in intervals: assert(ival[1] > ival[0]),'interval must be increasing' self.insize = nsize self.intervals = intervals self.outsize = len(intervals) def F(self,data): [nt,nsize]=data.shape assert(nsize == self.insize),"data size doesnt match insize" data_samp=np.zeros((nt,self.outsize)) icount=0 for ival in self.intervals: isum = np.zeros(nt) for i in range(ival[0],ival[1]): isum += data[:,i] # isum=np.sum(data[:,ival[0]:ival[1]],1) data_samp[:,icount]=isum icount+=1 return data_samp def Ft(self,data_samp): [nt,isize]=data_samp.shape assert(isize == self.outsize),"data sampled size doesnt match outsize" data=np.zeros((nt,self.insize)) icount=0 for ival in self.intervals: isum = data_samp[:,icount] # data[:,ival[0]:ival[1]] +=isum for i in range(ival[0],ival[1]): data[:,i]+=isum icount+=1 return data def Flabels(self,labels): sampled_labels=[] for ival in self.intervals: if(ival[1] == ival[0]+1): l0=labels[ival[0]] sampled_labels.append(l0) else: l0=labels[ival[0] ] l1=labels[ival[1]-1] sampled_labels.append(l0 + '-' + l1) return sampled_labels def Flabels_from_type(self,sir_type,nstage=0): labels=labels_from_type(sir_type,nstage) return self.Flabels(labels) #def draw_samples(pT,n,Ntests): # np.random.seed(0) # s = np.random.normal(0, 1,n) # mu = Ntests*pT # sigma = np.sqrt(Ntests*pT*(1-pT)) # data_samp = (sigma*s+mu)/Ntests # return data_samp def randSampler(data,pTT,pTF,Ntests): def draw_samples(pT,n,Ntests): np.random.seed(0) s = np.random.normal(0, 1,n) mu = Ntests*pT sigma =
np.sqrt(Ntests*pT*(1-pT))
numpy.sqrt
"""With the goal of a 2p2c simulation, implement incompressible 2p1c. Credit and first contact: <NAME>. """ import time import porepy as pp import numpy as np import scipy.sparse as sps import scipy.optimize as spo from porepy.numerics.fv.generaltpfaad import ( GeneralTpfaAd, UpwindAd, FluxBasedUpwindAd, HarmAvgAd, ) from porepy.numerics.ad.functions import ( exp, sin, cos, tanh, heaviside, RegularizedHeaviside, ) from porepy.numerics.ad.equation_manager import Expression from porepy.numerics.ad.operators import SecondOrderTensorAd from porepy.numerics.ad.grid_operators import DirBC from porepy.numerics.ad.forward_mode import initAdArrays from porepy.numerics.solvers.andersonacceleration import AndersonAcceleration # Material parameters # Rock - arbitrary, exact solution will integrate these porosity = 1e-1 permeability_value = 1e-12 # Brine rho_b = 1000 # kg m**-3 mu_b = 300.3 * 1e-6 # Pa s kappa_b = 3 # 1 - arbitrary def lambda_b(sat_b, sat_c): sat_b_scaled = sat_b / (sat_b + sat_c) return sat_b_scaled ** kappa_b / mu_b # CO2 rho_c = 750 # kg m**-3 mu_c = 42.5 * 1e-6 # Pa s kappa_c = 3 # 1 - arbitrary krc_max = 0.4 # 1 - arbitrary def lambda_c(sat_b, sat_c): sat_c_scaled = sat_c / (sat_b + sat_c) return krc_max * sat_c_scaled ** kappa_c / mu_c # Define fractional flow function as function of merely sat_c; and its derivative. def total_lambda(sat_c): return lambda_b(1 - sat_c, sat_c) + lambda_c(1 - sat_c, sat_c) def frac_c(sat_c): return lambda_c(1 - sat_c, sat_c) / total_lambda(sat_c) def lambda_b_prime(sat_c): return -kappa_b * (1 - sat_c) ** (kappa_b - 1) / mu_b def lambda_c_prime(sat_c): return krc_max * kappa_c * sat_c ** (kappa_c - 1) / mu_c def frac_c_prime(sat_c): return lambda_c_prime(sat_c) / total_lambda(sat_c) - lambda_c( 1 - sat_c, sat_c ) / total_lambda(sat_c) ** 2 * (lambda_b_prime(sat_c) + lambda_c_prime(sat_c)) # Setup grid, gridbucket and data dx = 1000 dy = 200 dz = 40 N = 50 gb = pp.meshing.cart_grid([], nx=[N, 1, 1], physdims=[dx, dy, dz]) g = gb.grids_of_dimension(3)[0] d = gb.node_props(g) # Time step size one_day = 24 * 60 * 60 # in seconds final_time = 100 * one_day current_time = 0 dt = 0.1 * one_day num_time_steps = 10 # int(final_time / dt) # Define keywords pressure_variable = "pressure" brine_saturation_variable = "brine" co2_saturation_variable = "co2" flow_kw = "flow" # Flow parameters perm = SecondOrderTensorAd(permeability_value * np.ones(g.num_cells)) # Injection over whole cross section; rest impermeable all_faces = g.tags["domain_boundary_faces"].nonzero()[0] injection_faces = all_faces[g.face_centers[0, all_faces] < 1e-6] extraction_faces = all_faces[g.face_centers[0, all_faces] > dx - 1e-6] bc_labels = np.array(["neu"] * all_faces.size) bc_labels[injection_faces] = "dir" bc_flow = pp.BoundaryCondition(g, all_faces, bc_labels) bc_val_flow = np.zeros(g.num_faces) one_year = 365 * one_day injection_area = dy * dz p_ref = 5e6 # Pa q_ext = 0.1 # ca. 1.427e6 / one_year / porosity # m**3/s bc_val_flow[injection_faces] = p_ref bc_val_flow[extraction_faces] = q_ext # outflow = inflow flow_param = {"second_order_tensor": perm, "bc": bc_flow, "bc_values": bc_val_flow} pp.initialize_default_data(g, d, flow_kw, flow_param) # AD Boundary condition bc_flow = pp.ad.BoundaryCondition(flow_kw, [g]) dir_bc_flow = DirBC(bc_flow, [g]) # Primary variables / DOFs d[pp.PRIMARY_VARIABLES] = { pressure_variable: {"cells": 1}, brine_saturation_variable: {"cells": 1}, co2_saturation_variable: {"cells": 1}, } # Initialize current states - constant reference pressure; 100% saturated with brine. pressure_state = p_ref *
np.ones(g.num_cells)
numpy.ones
import numpy as np from scipy import signal import matplotlib.pyplot as plt import argparse, sys, time, math, json from scipy.fftpack import fft, fftshift, ifft class Waterfall(): """Waterfall Tool Main Class""" def __init__(self, fs, fc, f_chan, BW): self.fs = fs self.BW = BW self.fc = fc self.f_chan = f_chan def calFFT(self, sig): norm_fft = (1/self.fs)*fftshift(fft(sig)) abs_fft = np.abs(norm_fft) return abs_fft def calFFTPower(self, afft, fs): transform = 10 * np.log10(afft/127) return transform def run(self,filename, save_flag=False): """Loads the data and performs fft in chunks. Params: filename: str name of the iq file in .wav save_flag: bool Enable to the save the fft of iq in .npy which will autoload next time. """ self.overlap = 0.5 offset = 44 T = 1/fs iterate = 0 adc_offset = -127.5 window = self.fs self.filename = filename self.save_flag = save_flag data = np.memmap(filename, offset=offset) self.total_duration = T*(len(data)/2) self.num_chunks = int(len(data)/(window*2)) file_name = 'Spec_'+self.filename.split('.wav')[0]+'.npy' # self.filename = self.filename.split('/')[-1].split('.wav')[0] #ErrorHandling: if len(self.BW) > 1: if not len(self.BW) == len(self.f_chan): print('Error: Number of bw need to be equal to number of f_chan given') sys.exit() elif len(self.f_chan) > 1: self.BW = self.BW * len(self.f_chan) for j in range(len(self.f_chan)): if
np.abs(self.f_chan[j] - self.fc)
numpy.abs
# encoding: utf-8 # # @Author: <NAME>, <NAME> # @Date: Nov 15, 2021 # @Filename: ism.py # @License: BSD 3-Clause # @Copyright: <NAME>, <NAME> import os.path from astropy import units as u from astropy import constants as c import numpy as np from astropy.io import fits, ascii from astropy.table import Table from scipy.special import sph_harm from astropy.wcs import WCS from astropy.wcs.utils import proj_plane_pixel_scales from astropy.coordinates import SkyCoord from astropy.modeling.models import Sersic2D from dataclasses import dataclass import sys if (sys.version_info[0]+sys.version_info[1]/10.) < 3.8: from backports.cached_property import cached_property else: from functools import cached_property from scipy.ndimage.interpolation import map_coordinates from scipy.interpolate import interp1d, interp2d import lvmdatasimulator from lvmdatasimulator import log import progressbar from joblib import Parallel, delayed from astropy.convolution import convolve_fft, kernels from lvmdatasimulator.utils import calc_circular_mask, convolve_array, set_default_dict_values, \ ism_extinction, check_overlap, assign_units fluxunit = u.erg / (u.cm ** 2 * u.s * u.arcsec ** 2) velunit = u.km / u.s def brightness_inhomogeneities_sphere(harm_amplitudes, ll, phi_cur, theta_cur, rho, med, radius, thickness): """ Auxiliary function producing the inhomogeneities on the brightness distribution for the Cloud of Bubble objects using the spherical harmonics. """ brt = theta_cur * 0 for m in np.arange(-ll, ll + 1): brt += (harm_amplitudes[m + ll * (ll + 1) - 1] * sph_harm(m, ll, phi_cur, theta_cur).real * med * (1 - np.sqrt(abs(rho.value ** 2 / radius.value ** 2 - (1 - thickness / 2) ** 2)))) return brt def sphere_brt_in_line(brt_3d, rad_3d, rad_model, flux_model): """ Auxiliary function computing the brightness of the Cloud or Bubble at given radii and in given line according to the Cloudy models """ p = interp1d(rad_model, flux_model, fill_value='extrapolate', assume_sorted=True) return p(rad_3d) * brt_3d def interpolate_sphere_to_cartesian(spherical_array, x_grid=None, y_grid=None, z_grid=None, rad_grid=None, theta_grid=None, phi_grid=None, pxscale=1. * u.pc): """ Auxiliary function to project the brightness or velocities from the spherical to cartesian coordinates """ x, y, z = np.meshgrid(x_grid, y_grid, z_grid, indexing='ij') phi_c, theta_c, rad_c = xyz_to_sphere(x, y, z, pxscale=pxscale) ir = interp1d(rad_grid, np.arange(len(rad_grid)), bounds_error=False) ith = interp1d(theta_grid, np.arange(len(theta_grid))) iphi = interp1d(phi_grid, np.arange(len(phi_grid))) new_ir = ir(rad_c.ravel()) new_ith = ith(theta_c.ravel()) new_iphi = iphi(phi_c.ravel()) cart_data = map_coordinates(spherical_array, np.vstack([new_ir, new_ith, new_iphi]), order=1, mode='constant', cval=0) return cart_data.reshape([len(x_grid), len(y_grid), len(z_grid)]).T def limit_angle(value, bottom_limit=0, top_limit=np.pi): """ Auxiliary function to limit the angle values to the range of [0, pi] """ value[value < bottom_limit] += (top_limit - bottom_limit) value[value > top_limit] -= (top_limit - bottom_limit) return value def xyz_to_sphere(x, y, z, pxscale=1. * u.pc): """ Auxiliary function to map the coordinates from cartesian to spherical system """ phi_c = np.arctan2(y, x) rad_c = (np.sqrt(x ** 2 + y ** 2 + z ** 2)) rad_c[rad_c == 0 * u.pc] = 1e-3 * pxscale theta_c = (np.arccos(z / rad_c)) phi_c = limit_angle(phi_c, 0 * u.radian, 2 * np.pi * u.radian) theta_c = limit_angle(theta_c, 0 * u.radian, np.pi * u.radian) return phi_c, theta_c, rad_c def find_model_id(file=lvmdatasimulator.CLOUDY_MODELS, check_id=None, params=lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id']): """ Checks the input parameters of the pre-computed Cloudy model and return corresponding index in the grid """ with fits.open(file) as hdu: if check_id is None: if params is None: check_id = lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id'] log.warning(f'Default Cloudy model will be used (id = {check_id})') else: summary_table = Table(hdu['Summary'].data) indexes = np.arange(len(summary_table)).astype(int) rec_table = np.ones(shape=len(summary_table), dtype=bool) def closest(rec, prop, val): unique_col = np.unique(summary_table[prop][rec]) if isinstance(val, str): res = unique_col[unique_col == val] if len(res) == 0: return "" return res else: return unique_col[np.argsort(np.abs(unique_col - val))[0]] for p in params: if p not in summary_table.colnames or params[p] is None or \ ((isinstance(params[p], float) or isinstance(params[p], int)) and ~np.isfinite(params[p])): continue rec_table = rec_table & (summary_table[p] == closest(indexes, p, params[p])) indexes = np.flatnonzero(rec_table) if len(indexes) == 0: break if len(indexes) == 0 or len(indexes) == len(summary_table): check_id = lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id'] log.warning('Input parameters do not correspond to any pre-computed Cloudy model.' 'Default Cloudy model will be used (id = {0})'.format(check_id)) elif len(indexes) == 1: check_id = summary_table['Model_ID'][indexes[0]] for p in params: if p not in summary_table.colnames or params[p] is None or \ ((isinstance(params[p], float) or isinstance(params[p], int)) and ~np.isfinite(params[p])): continue if params[p] != summary_table[p][indexes[0]]: log.warning(f'Use the closest pre-computed Cloudy model with id = {check_id}') break else: check_id = summary_table['Model_ID'][indexes[0]] log.warning(f'Select one of the closest pre-computed Cloudy model with id = {check_id}') # # for cur_ext in range(len(hdu)): # if cur_ext == 0: # continue # found = False # for p in params: # if p == 'id': # continue # precision = 1 # if p == 'Z': # precision = 2 # if np.round(params[p], precision) != np.round(hdu[cur_ext].header[p], precision): # break # else: # found = True # if found: # return cur_ext, check_id # check_id = lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id'] # log.warning('Input parameters do not correspond to any pre-computed Cloudy model.' # 'Default Cloudy model will be used (id = {0})'.format(check_id)) extension_index = None while extension_index is None: extension_index = [cur_ext for cur_ext in range(len(hdu)) if ( check_id == hdu[cur_ext].header.get('MODEL_ID'))] if len(extension_index) == 0: if check_id == lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id']: log.warning('Model_ID = {0} is not found in the Cloudy models grid. ' 'Use the first one in the grid instead'.format(check_id)) extension_index = 1 else: log.warning('Model_ID = {0} is not found in the Cloudy models grid. ' 'Use default ({1}) instead'.format(check_id, lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id'])) check_id = lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id'] extension_index = None else: extension_index = extension_index[0] return extension_index, check_id @dataclass class Nebula: """ Base class defining properties of every nebula type. By itself it describes the rectangular nebula (e.g. DIG) Constructed nebula has 4 dimensions, where 4th derive its appearance in different lines (if spectrum_id is None, or if it is dark nebula => only one line) """ xc: int = None # Center of the region in the field of view, pix yc: int = None # Center of the region in the field of view, pix x0: int = 0 # Coordinates of the bottom-left corner in the field of view, pix y0: int = 0 # Coordinates of the bottom-left corner in the field of view, pix pix_width: int = None # full width of cartesian grid, pix (should be odd) pix_height: int = None # full height of cartesian grid, pix (should be odd) width: u.pc = 0 * u.pc # width of the nebula in pc (not used if pix_width is set up) height: u.pc = 0 * u.pc # height of the nebula in pc (not used if pix_height is set up) pxscale: u.pc = 0.01 * u.pc # pixel size in pc spectrum_id: int = None # ID of a template Cloudy emission spectrum for this nebula n_brightest_lines: int = None # limit the number of the lines to the first N brightest sys_velocity: velunit = 0 * velunit # Systemic velocity turbulent_sigma: velunit = 10 * velunit # Velocity dispersion due to turbulence; included in calculations of LSF max_brightness: fluxunit = 1e-15 * fluxunit max_extinction: u.mag = 0 * u.mag perturb_scale: int = 0 * u.pc # Spatial scale of correlated perturbations perturb_amplitude: float = 0.1 # Maximal amplitude of perturbations _npix_los: int = 1 # full size along line of sight in pixels nchunks: int = -1 # number of chuncks to use for the convolution. If negative, select automatically vel_gradient: (velunit / u.pc) = 0 # velocity gradient along the nebula vel_pa: u.degree = 0 # Position angle of the kinematical axis (for the velocity gradient or rotation velocity) def __post_init__(self): self._assign_all_units() self._assign_position_params() self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula def _assign_all_units(self): whole_list_properties = ['pxscale', 'sys_velocity', 'turbulent_sigma', 'max_brightness', 'max_extinction', 'perturb_scale', 'radius', 'PA', 'length', 'width', 'vel_gradient', 'r_eff', 'vel_rot', 'expansion_velocity', 'spectral_axis', 'vel_pa'] whole_list_units = [u.pc, velunit, velunit, fluxunit, u.mag, u.pc, u.pc, u.degree, u.pc, u.pc, (velunit / u.pc), u.kpc, velunit, velunit, velunit, u.degree] cur_list_properties = [] cur_list_units = [] for prp, unit in zip(whole_list_properties, whole_list_units): if hasattr(self, prp): cur_list_properties.append(prp) cur_list_units.append(unit) assign_units(self, cur_list_properties, cur_list_units) def _assign_position_params(self, conversion_type='rect'): if conversion_type == 'rect': for v in ['height', 'width']: if self.__getattribute__(f'pix_{v}') is None: val = np.round((self.__getattribute__(v) / self.pxscale).value / 2.).astype(int) * 2 + 1 else: val = np.round(self.__getattribute__(f'pix_{v}') / 2.).astype(int) * 2 + 1 setattr(self, f'pix_{v}', val) elif conversion_type == 'ellipse': self.pix_width = (np.round(np.abs(self.radius / self.pxscale * np.sin(self.PA)) + np.abs(self.radius / self.pxscale * self.ax_ratio * np.cos(self.PA))).astype(int) * 2 + 1).value self.pix_height = (np.round(np.abs(self.radius / self.pxscale * np.cos(self.PA)) + np.abs(self.radius / self.pxscale * self.ax_ratio * np.sin(self.PA))).astype(int) * 2 + 1).value elif conversion_type == 'galaxy': self.pix_width = (np.round(np.abs(self.r_max * np.sin(self.PA)) + np.abs(self.r_max * self.ax_ratio * np.cos(self.PA))).astype(int) * 2 + 1).value self.pix_height = (np.round(np.abs(self.r_max * np.cos(self.PA)) + np.abs(self.r_max * self.ax_ratio * np.sin(self.PA))).astype(int) * 2 + 1).value elif conversion_type == 'cylinder': self.pix_width = (np.ceil((self.length * np.abs(np.sin(self.PA)) + self.width * np.abs(np.cos(self.PA))) / self.pxscale / 2. ).astype(int) * 2 + 1).value self.pix_height = (np.ceil((self.length * np.abs(np.cos(self.PA)) + self.width * np.abs(np.sin(self.PA))) / self.pxscale / 2. ).astype(int) * 2 + 1).value if (self.xc is not None) and (self.yc is not None): self.x0 = self.xc - np.round((self.pix_width - 1) / 2).astype(int) self.y0 = self.yc - np.round((self.pix_height - 1) / 2).astype(int) elif (self.x0 is not None) and (self.y0 is not None): self.xc = self.x0 + np.round((self.pix_width - 1) / 2).astype(int) self.yc = self.y0 + np.round((self.pix_height - 1) / 2).astype(int) @cached_property def _cartesian_x_grid(self): return np.arange(self.pix_width) * self.pxscale @cached_property def _cartesian_y_grid(self): return np.arange(self.pix_height) * self.pxscale @cached_property def _cartesian_z_grid(self): return np.arange(self._npix_los) * self.pxscale @cached_property def _max_density(self): return self.max_extinction * (1.8e21 / (u.cm ** 2 * u.mag)) @cached_property def _brightness_3d_cartesian(self): """ Method to obtain the brightness (or density) distribution of the nebula in cartesian coordinates """ brt = np.ones(shape=(self.pix_height, self.pix_width, self._npix_los), dtype=float) / self._npix_los if (self.perturb_scale > 0) and (self.perturb_amplitude > 0): pertscale = (self.perturb_scale / self.pxscale).value perturb = np.random.uniform(-1, 1, (self.pix_height, self.pix_width) ) * self.perturb_amplitude / self._npix_los xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height)) f = np.exp(-2 * (xx ** 2 + yy ** 2) / pertscale) perturb = 4 / np.sqrt(np.pi) / pertscale * np.fft.ifft2(np.fft.fft2(perturb) * np.fft.fft2(f)).real brt += (perturb[:, :, None] - np.median(perturb)) return brt @cached_property def _brightness_4d_cartesian(self): """ Derive the brightness (or density) distribution of the nebula for each emission line in cartesian coordinates """ if self.spectrum_id is None or self.linerat_constant: flux_ratios = np.array([1.]) else: with fits.open(lvmdatasimulator.CLOUDY_MODELS) as hdu: flux_ratios = hdu[self.spectrum_id].data[1:, 1] index_ha = np.flatnonzero(hdu[self.spectrum_id].data[1:, 0] == 6562.81) if self.n_brightest_lines is not None and \ (self.n_brightest_lines > 0) and (self.n_brightest_lines < len(flux_ratios)): indexes_sorted = np.argsort(flux_ratios)[::-1] flux_ratios = flux_ratios[indexes_sorted[: self.n_brightest_lines]] index_ha = np.flatnonzero(hdu[self.spectrum_id].data[1:, 0][indexes_sorted] == 6562.81) if len(index_ha) == 1: self._ref_line_id = index_ha[0] return self._brightness_3d_cartesian[None, :, :, :] * flux_ratios[:, None, None, None] @cached_property def brightness_skyplane(self): """ Project the 3D nebula onto sky plane (for emission or continuum sources) """ if self.max_brightness > 0: norm_max = self.max_brightness else: norm_max = 1 map2d = np.nansum(self._brightness_3d_cartesian, 2) return map2d / np.nanmax(map2d) * norm_max @cached_property def brightness_skyplane_lines(self): """ Project the 3D emission nebula line onto sky plane (return images in each emission line) """ if self.max_brightness > 0: map2d = np.nansum(self._brightness_4d_cartesian, 3) return map2d / np.nanmax(map2d[self._ref_line_id, :, :]) * self.max_brightness else: return None @cached_property def extinction_skyplane(self): """ Project the 3D nebula onto sky plane (for dark clouds) """ if self.max_extinction > 0: map2d = np.nansum(self._brightness_3d_cartesian, 2) return map2d / np.nanmax(map2d) * self._max_density / (1.8e21 / (u.cm ** 2 * u.mag)) else: return None @cached_property def vel_field(self): return self._get_2d_velocity() # if vel_field is None: # return np.atleast_1d(self.sys_velocity) # else: # return vel_field + self.sys_velocity def _get_2d_velocity(self): if hasattr(self, 'vel_gradient') and (self.vel_gradient is not None) and (self.vel_gradient != 0): xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height)) vel_field = (- (xx - (self.pix_width - 1) / 2) * np.sin(self.vel_pa) + (yy - (self.pix_height - 1) / 2) * np.cos(self.vel_pa)) * self.pxscale * self.vel_gradient return vel_field else: return None # @cached_property # def line_profile(self): # lprf = np.zeros(shape=len(self.los_velocity), dtype=float) # lprf[np.floor(len(lprf) / 2.).astype(int)] = 1. # return lprf @dataclass class Rectangle(Nebula): """ Class defining a simple rectangular component. This is equal to Nebula, but no perturbations and turbulence by default """ perturb_amplitude: float = 0.0 # Maximal amplitude of perturbations turbulent_sigma: velunit = 0 * velunit # Velocity dispersion due to turbulence; included in calculations of LSF def __post_init__(self): self._assign_all_units() self._assign_position_params() self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula @dataclass class Ellipse(Nebula): """ Class defining a simple elliptical component. No perturbations and turbulence by default """ perturb_amplitude: float = 0.0 # Maximal amplitude of perturbations turbulent_sigma: velunit = 0 * velunit # Velocity dispersion due to turbulence; included in calculations of LSF radius: u.pc = 1.0 * u.pc # Radius along the major axis of the ellipse (or radius of the circle) PA: u.degree = 90 * u.degree # position angle of the major axis ax_ratio: float = 1. # ratio of minor/major axes def __post_init__(self): self._assign_all_units() self._npix_los = 1 self._assign_position_params(conversion_type='ellipse') self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula @cached_property def _brightness_3d_cartesian(self): """ Method to obtain the brightness (or density) distribution of the nebula in cartesian coordinates """ xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height)) brt = np.ones(shape=(self.pix_height, self.pix_width), dtype=np.float32) angle = (self.PA + 90 * u.degree).to(u.radian).value xct = (xx - (self.pix_width - 1) / 2) * np.cos(angle) + \ (yy - (self.pix_height - 1) / 2) * np.sin(angle) yct = (xx - (self.pix_width - 1) / 2) * np.sin(angle) - \ (yy - (self.pix_height - 1) / 2) * np.cos(angle) rmaj = (self.radius.to(u.pc) / self.pxscale.to(u.pc)).value rmin = (self.radius.to(u.pc) / self.pxscale.to(u.pc)).value * self.ax_ratio rec = (xct ** 2 / rmaj ** 2) + (yct ** 2 / rmin ** 2) >= 1 brt[rec] = 0 brt = brt.reshape((self.pix_height, self.pix_width, 1)) return brt @dataclass class Circle(Ellipse): """ Class defining a simple circular component. """ def __post_init__(self): self._assign_all_units() self.ax_ratio = 1. self._npix_los = 1 self._assign_position_params(conversion_type='ellipse') self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula @dataclass class Filament(Nebula): """ Class of an isotropic cylindrical shape filament. Defined by its position, length, PA, radius, maximal optical depth. If it is emission-type filament, then also maximal brightness is required. Velocity gradient also can be set up """ PA: u.degree = 90 * u.degree # position angle of the filament length: u.pc = 10 * u.pc # full length of the filament width: u.pc = 0.1 * u.pc # full width (diameter) of the filament def __post_init__(self): self._assign_all_units() self._assign_position_params(conversion_type='cylinder') self._npix_los = 1 self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula @cached_property def _brightness_3d_cartesian(self): """ Method to obtain the brightness (or density) distribution of the nebula in cartesian coordinates """ xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height)) brt = np.zeros_like(xx, dtype=np.float32) xct = (xx - (self.pix_width - 1) / 2) * np.cos(self.PA + 90 * u.degree) + \ (yy - (self.pix_height - 1) / 2) * np.sin(self.PA + 90 * u.degree) yct = (xx - (self.pix_width - 1) / 2) * np.sin(self.PA + 90 * u.degree) - \ (yy - (self.pix_height - 1) / 2) * np.cos(self.PA + 90 * u.degree) rad = ((self.width / self.pxscale).value / 2.) len_px = ((self.length / self.pxscale).value / 2.) rec = (np.abs(yct) <= rad) & (np.abs(xct) <= len_px) brt[rec] = np.sqrt(1. - (yct[rec] / rad) ** 2) brt = brt.reshape((self.pix_height, self.pix_width, 1)) return brt @dataclass class _ObsoleteFilament(Nebula): """ Class of an isotropic cylindrical shape filament. Defined by its position, length, PA, radius, maximal optical depth if it is emission-type filament, then maximal brightness NB: this class is obsolete, but might be considered later in case of implementation of varying line ratios """ PA: u.degree = 90 * u.degree # position angle of the filament length: u.pc = 10 * u.pc # full length of the filament width: u.pc = 0.1 * u.pc # full width (diameter) of the filament vel_gradient: (velunit / u.pc) = 0 # velocity gradient along the filament (to be added) _theta_bins: int = 50 _rad_bins: int = 0 _h_bins: int = 2 _npix_los: int = 101 def __post_init__(self): self._assign_all_units() if self._rad_bins == 0: self._rad_bins = np.ceil(self.width.to(u.pc).value / self.pxscale.to(u.pc).value * 5).astype(int) if (self.xc is not None) and (self.yc is not None): self.x0 = self.xc - np.round((len(self._cartesian_y_grid) - 1) / 2).astype(int) self.y0 = self.yc - np.round((len(self._cartesian_z_grid) - 1) / 2).astype(int) elif (self.x0 is not None) and (self.y0 is not None): self.xc = self.x0 + np.round((len(self._cartesian_y_grid) - 1) / 2).astype(int) self.yc = self.y0 + np.round((len(self._cartesian_z_grid) - 1) / 2).astype(int) self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula @cached_property def _theta_grid(self): return np.linspace(0, 2 * np.pi, self._theta_bins) @cached_property def _h_grid(self): return np.linspace(0, self.length, self._h_bins) @cached_property def _rad_grid(self): return np.linspace(0, self.width / 2, self._rad_bins) @cached_property def _cartesian_y_grid(self): npix = np.ceil(1.01 * (self.length * np.abs(np.sin(self.PA)) + self.width * np.abs(np.cos(self.PA))) / self.pxscale).astype(int) npix_l = npix / 2 - np.ceil(self.length / 2 * np.sin(-self.PA) / self.pxscale).astype(int) return (np.linspace(0, npix, npix + 1) - npix_l) * self.pxscale @cached_property def _cartesian_z_grid(self): npix = np.ceil(1.01 * (self.length * np.abs(np.cos(self.PA)) + self.width * np.abs(np.sin(self.PA))) / self.pxscale).astype(int) npix_l = npix / 2 - np.ceil(self.length / 2 * np.cos(-self.PA) / self.pxscale).astype(int) return (np.linspace(0, npix, npix + 1) - npix_l) * self.pxscale @cached_property def _cartesian_x_grid(self): return np.linspace(-1.01, 1.01, self._npix_los) * self.width / 2 @cached_property def _brightness_3d_cylindrical(self): """ Method to calculate brightness (or opacity) of the cloud at given theta, phi and radii theta: float -- azimuthal angle [0, 2 * np.pi] rad: float -- radius [0, self.width / 2] h: float -- height [0, self.length] Returns: 3D cube of normalized brightness in theta-rad-h grid; total brightness = 1 """ rho, theta, h = np.meshgrid(self._rad_grid, self._theta_grid, self._h_grid, indexing='ij') brt = np.ones_like(theta) brt[rho > (self.width / 2)] = 0 norm = np.sum(brt) if norm > 0: brt = brt / np.sum(brt) return brt @cached_property def _brightness_3d_cartesian(self): x, y, z = np.meshgrid(self._cartesian_x_grid, self._cartesian_y_grid, self._cartesian_z_grid, indexing='ij') h_c = -y * np.sin(self.PA) + z * np.cos(self.PA) theta_c = np.arctan2(y * np.cos(self.PA) + z * np.sin(self.PA), x) rad_c = np.sqrt(x ** 2 + (y * np.cos(self.PA) + z * np.sin(self.PA)) ** 2) rad_c[rad_c == 0 * u.pc] = 1e-3 * self.pxscale theta_c = limit_angle(theta_c, 0 * u.radian, 2 * np.pi * u.radian) ir = interp1d(self._rad_grid, np.arange(self._rad_bins), bounds_error=False) ith = interp1d(self._theta_grid, np.arange(self._theta_bins)) ih = interp1d(self._h_grid, np.arange(self._h_bins), bounds_error=False) new_ir = ir(rad_c.ravel()) new_ith = ith(theta_c.ravel()) new_ih = ih(h_c.ravel()) cart_data = map_coordinates(self._brightness_3d_cylindrical, np.vstack([new_ir, new_ith, new_ih]), order=1, mode='constant', cval=0) return cart_data.reshape([len(self._cartesian_x_grid), len(self._cartesian_y_grid), len(self._cartesian_z_grid)]).T @dataclass class Galaxy(Nebula): """ Class defining the galaxy object (set up it as Sersic2D profile assuming it has continuum and emission components) """ PA: u.degree = 90 * u.degree # position angle of the major axis ax_ratio: float = 0.7 # ratio of minor/major axes r_eff: u.kpc = 1 * u.kpc # Effective radius in kpc rad_lim: float = 3. # Maximum radius for calculations (in R_eff) n: float = 1. # Sersic index vel_rot: velunit = 0 * velunit # Rotational velocity (not implemented yet) def __post_init__(self): self._assign_all_units() self._npix_los = 1 self.r_max = self.r_eff.to(u.pc).value / self.pxscale.to(u.pc).value * self.rad_lim self._assign_position_params(conversion_type='galaxy') self._ref_line_id = 0 self.linerat_constant = True # True if the ratio of line fluxes shouldn't change across the nebula @cached_property def _brightness_3d_cartesian(self): """ Method to obtain the brightness (or density) distribution of the nebula in cartesian coordinates """ xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height)) angle = (self.PA + 90 * u.degree).to(u.radian).value mod = Sersic2D(amplitude=1, r_eff=(self.r_eff.to(u.pc) / self.pxscale.to(u.pc)).value, n=self.n, x_0=(self.pix_width - 1) / 2, y_0=(self.pix_height - 1) / 2, ellip=1 - self.ax_ratio, theta=angle) brt = mod(xx, yy) xct = (xx - (self.pix_width - 1) / 2) * np.cos(angle) + \ (yy - (self.pix_height - 1) / 2) * np.sin(angle) yct = (xx - (self.pix_width - 1) / 2) * np.sin(angle) - \ (yy - (self.pix_height - 1) / 2) * np.cos(angle) rmaj = self.rad_lim * (self.r_eff.to(u.pc) / self.pxscale.to(u.pc)).value rmin = self.rad_lim * (self.r_eff.to(u.pc) / self.pxscale.to(u.pc)).value * self.ax_ratio mask = np.ones_like(brt, dtype=np.float32) rec = (xct ** 2 / rmaj ** 2) + (yct ** 2 / rmin ** 2) >= 1 mask[rec] = 0 mask = convolve_fft(mask, kernels.Gaussian2DKernel(3.), fill_value=0, allow_huge=True) brt = brt * mask brt = brt.reshape(self.pix_height, self.pix_width, 1) return brt def _get_2d_velocity(self): if hasattr(self, 'vel_rot') and (self.vel_rot is not None) and (self.vel_rot != 0): xx, yy = np.meshgrid(np.arange(self.pix_width), np.arange(self.pix_height)) angle = (self.PA + 90 * u.degree).to(u.radian).value xct = (xx - (self.pix_width - 1) / 2) * np.cos(angle) + \ (yy - (self.pix_height - 1) / 2) * np.sin(angle) yct = (xx - (self.pix_width - 1) / 2) * np.sin(angle) - \ (yy - (self.pix_height - 1) / 2) * np.cos(angle) rad = np.sqrt(xct ** 2 + yct ** 2) vel_field = np.zeros_like(xx, dtype=np.float32) * velunit rec = rad > 0 vel_field[rec] = self.vel_rot * np.sqrt(1 - self.ax_ratio ** 2) * xct[rec] / rad[rec] return vel_field else: return None @dataclass class DIG(Nebula): """ Class defining the DIG component. For now it is defined just by its brightness (constant) """ max_brightness: fluxunit = 1e-17 * fluxunit vel_gradient: (velunit / u.pc) = 0 @dataclass class Cloud(Nebula): """Class of an isotropic spherical gas cloud without any ionization source. Defined by its position, radius, density, maximal optical depth""" radius: u.pc = 1.0 * u.pc max_brightness: fluxunit = 0 * fluxunit max_extinction: u.mag = 2.0 * u.mag thickness: float = 1.0 perturb_degree: int = 0 # Degree of perturbations (max. degree of spherical harmonics for cloud) linerat_constant: bool = False # True if the ratio of line fluxes shouldn't change across the nebula _phi_bins: int = 90 _theta_bins: int = 90 _rad_bins: int = 0 _npix_los: int = 100 def __post_init__(self): self._assign_all_units() if self._rad_bins == 0: self._rad_bins = np.ceil(self.radius.to(u.pc).value / self.pxscale.to(u.pc).value * 3).astype(int) delta = np.round((len(self._cartesian_y_grid) - 1) / 2).astype(int) if (self.xc is not None) and (self.yc is not None): self.x0 = self.xc - delta self.y0 = self.yc - delta elif (self.x0 is not None) and (self.y0 is not None): self.xc = self.x0 + delta self.yc = self.y0 + delta self._ref_line_id = 0 @cached_property def _theta_grid(self): return np.linspace(0, np.pi, self._theta_bins) @cached_property def _phi_grid(self): return np.linspace(0, 2 * np.pi, self._phi_bins) @cached_property def _rad_grid(self): return np.linspace(0, self.radius, self._rad_bins) @cached_property def _cartesian_z_grid(self): npix = np.ceil(1.02 * self.radius / self.pxscale).astype(int) return np.linspace(-npix, npix, 2 * npix + 1) * self.pxscale @cached_property def _cartesian_y_grid(self): return self._cartesian_z_grid.copy() @cached_property def _cartesian_x_grid(self): return np.linspace(-1.02, 1.02, self._npix_los) * self.radius @cached_property def _brightness_3d_spherical(self): """ Method to calculate brightness (or opacity) of the cloud at given theta, phi and radii theta: float -- polar angle [0, np.pi] phi: float -- azimuthal angle [0, 2 * np.pi] rad: float -- radius [0, self.radius] Returns: 3D cube of normalized brightness in theta-phi-rad grid; total brightness = 1 """ rho, theta, phi = np.meshgrid(self._rad_grid, self._theta_grid, self._phi_grid, indexing='ij') brt = np.ones_like(theta) brt[rho < (self.radius * (1 - self.thickness))] = 0 brt[rho > self.radius] = 0 med = np.median(brt[brt > 0]) if self.perturb_degree > 0: phi_cur = limit_angle(phi + np.random.uniform(0, 2 * np.pi, 1), 0, 2 * np.pi) theta_cur = limit_angle(theta + np.random.uniform(0, np.pi, 1), 0, np.pi) harm_amplitudes = self.perturb_amplitude * np.random.randn(self.perturb_degree * (self.perturb_degree + 2)) brt += np.nansum(Parallel(n_jobs=lvmdatasimulator.n_process)(delayed(brightness_inhomogeneities_sphere) (harm_amplitudes, ll, phi_cur, theta_cur, rho, med, self.radius, self.thickness) for ll in np.arange(1, self.perturb_degree + 1)), axis=0) brt[brt < 0] = 0 if med > 0: brt = brt / np.nansum(brt) return brt @cached_property def _brightness_4d_spherical(self): """ Method to calculate brightness of the cloud at given theta, phi and radii for each line theta: float -- polar angle [0, np.pi] phi: float -- azimuthal angle [0, 2 * np.pi] rad: float -- radius [0, self.radius] Returns: 4D cube of brightness in line-theta-phi-rad grid; normalized to the total brightness in Halpha """ s = self._brightness_3d_spherical.shape if self.spectrum_id is None or self.linerat_constant: return self._brightness_3d_spherical.reshape((1, s[0], s[1], s[2])) rho, _, _ = np.meshgrid(self._rad_grid, self._theta_grid, self._phi_grid, indexing='ij') with fits.open(lvmdatasimulator.CLOUDY_MODELS) as hdu: radius = hdu[self.spectrum_id].data[0, 2:] * (self.thickness * self.radius) + \ self.radius * (1 - self.thickness) fluxes = hdu[self.spectrum_id].data[1:, 2:] radius = np.insert(radius, 0, self.radius * (1 - self.thickness)) fluxes = np.insert(fluxes, 0, fluxes[:, 0], axis=1) index_ha = np.flatnonzero(hdu[self.spectrum_id].data[1:, 0] == 6562.81) if self.n_brightest_lines is not None and \ (self.n_brightest_lines > 0) and (self.n_brightest_lines < len(fluxes)): indexes_sorted = np.argsort(hdu[self.spectrum_id].data[1:, 1])[::-1] fluxes = fluxes[indexes_sorted[:self.n_brightest_lines], :] index_ha = np.flatnonzero(hdu[self.spectrum_id].data[1:, 0][indexes_sorted] == 6562.81) if len(index_ha) == 1: self._ref_line_id = index_ha[0] brt = np.array(Parallel(n_jobs=lvmdatasimulator.n_process)(delayed(sphere_brt_in_line) (self._brightness_3d_spherical, rho, radius, flux) for flux in fluxes)).reshape((fluxes.shape[0], s[0], s[1], s[2])) return brt / np.nansum(brt[self._ref_line_id]) @cached_property def _brightness_3d_cartesian(self): return interpolate_sphere_to_cartesian(self._brightness_3d_spherical, x_grid=self._cartesian_x_grid, y_grid=self._cartesian_y_grid, z_grid=self._cartesian_z_grid, rad_grid=self._rad_grid, theta_grid=self._theta_grid, phi_grid=self._phi_grid, pxscale=self.pxscale) @cached_property def _brightness_4d_cartesian(self): s = self._brightness_4d_spherical.shape return np.array(Parallel(n_jobs=lvmdatasimulator.n_process)(delayed(interpolate_sphere_to_cartesian) (cur_line_array, self._cartesian_x_grid, self._cartesian_y_grid, self._cartesian_z_grid, self._rad_grid, self._theta_grid, self._phi_grid, self.pxscale) for cur_line_array in self._brightness_4d_spherical) ).reshape((s[0], len(self._cartesian_z_grid), len(self._cartesian_y_grid), len(self._cartesian_x_grid))) @dataclass class Bubble(Cloud): """Class of an isotropic thin expanding bubble.""" spectral_axis: velunit = np.arange(-20, 20, 10) * velunit expansion_velocity: velunit = 20 * velunit max_brightness: fluxunit = 1e-15 * fluxunit max_extinction: u.mag = 0 * u.mag thickness: float = 0.2 @cached_property def _velocity_3d_spherical(self) -> velunit: """ Calculate line of sight velocity at given radius, phi, theta V ~ 1/brightness (given that v~1/n_e^2 and brightness~ne^2) """ rho, theta, phi = np.meshgrid(self._rad_grid, self._theta_grid, self._phi_grid, indexing='ij') vel_cube = np.zeros_like(self._brightness_3d_spherical) rec = (rho <= self.radius) & (rho >= (self.radius * (1 - self.thickness))) vel_cube[rec] = \ np.sin(theta[rec]) * \ np.cos(phi[rec]) * \ self.expansion_velocity / self._brightness_3d_spherical[rec] * \ np.median(self._brightness_3d_spherical[self._brightness_3d_spherical > 0]) return vel_cube @cached_property def _velocity_3d_cartesian(self) -> velunit: return interpolate_sphere_to_cartesian(self._velocity_3d_spherical, x_grid=self._cartesian_x_grid, y_grid=self._cartesian_y_grid, z_grid=self._cartesian_z_grid, rad_grid=self._rad_grid, theta_grid=self._theta_grid, phi_grid=self._phi_grid, pxscale=self.pxscale) def _turbulent_lsf(self, velocity): """Line spread function as a function of coorinates, including the velocity center shift""" # mu = self.velocity(theta, phi) mu = self._velocity_3d_cartesian[:, :, :, None] * velunit + self.sys_velocity sig = self.turbulent_sigma return 1. / (np.sqrt(2. * np.pi) * sig) * np.exp(-np.power((velocity - mu) / sig, 2.) / 2) def _d_spectrum_cartesian(self, velocity: velunit): """Returns local spectrum, per pc**3 of area""" return (self._brightness_3d_cartesian[:, :, :, None] * ( fluxunit / u.pc ** 3) * self._turbulent_lsf(velocity)).to(fluxunit / velunit / u.pc ** 3) @cached_property def line_profile(self) -> (fluxunit / velunit): """ Produces the distribution of the observed line profiles in each pixels of the sky plane """ vel_axis = self.spectral_axis.to(velunit, equivalencies=u.spectral()) _, _, _, vels = np.meshgrid(self._cartesian_z_grid, self._cartesian_y_grid, self._cartesian_x_grid, vel_axis, indexing='ij') spectrum = ( np.sum(self._d_spectrum_cartesian(vels), axis=2 ).T * (self._cartesian_x_grid[1] - self._cartesian_x_grid[0] ) * (self._cartesian_y_grid[1] - self._cartesian_y_grid[0] ) * (self._cartesian_z_grid[1] - self._cartesian_z_grid[0]) ) return spectrum / np.sum(spectrum, axis=0) @dataclass class CustomNebula(Nebula): """ Class defining the custom nebulae with the user-defined distribution of the brighntess, continuum and line shapes in different lines. """ pass @dataclass class ISM: """ Class defining the ISM contribution to the field of view """ wcs: WCS width: int = 401 # Width of field of view in pixels height: int = 401 # Width of field of view in pixels spec_resolution: u.Angstrom = 0.06 * u.Angstrom # Spectral resolution of the simulation npix_line: int = 1 # Minimal number of pixels for a resolution element at wl = 10000A for construction of vel.grid distance: u.kpc = 50 * u.kpc # Distance to the object for further conversion between arcsec and pc sys_velocity: velunit = 0 * velunit # Systemic velocity to center the vel.grid on vel_amplitude: velunit = 150 * velunit # Maximal deviation from the systemic velocity to setup vel.grid turbulent_sigma: velunit = 20. * velunit # turbulence vel. disp. to be used for every nebula unless other specified R_V: float = 3.1 # R_V value defining the reddening curve (to be used unless other value is provided for a nebula) ext_law: str = 'F99' # Reddening law (to be used unless other value is provided for a nebula) def __post_init__(self): assign_units(self, ['vel_amplitude', 'turbulent_sigma', 'sys_velocity', 'distance', 'spec_resolution'], [velunit, velunit, velunit, u.kpc, u.Angstrom]) self.content = fits.HDUList() self.content.append(fits.PrimaryHDU(header=self.wcs.to_header(), data=np.zeros(shape=(2, 2), dtype=int))) self.vel_grid = np.linspace(-self.vel_amplitude + self.sys_velocity, self.vel_amplitude + self.sys_velocity, np.ceil(self.vel_amplitude / self.vel_resolution).astype(int) * 2 + 1) self.pxscale = proj_plane_pixel_scales(self.wcs)[0] * 3600 * self.distance.to(u.pc) / 206265. self.content[0].header['width'] = (self.width, "Width of field of view, px") self.content[0].header['height'] = (self.height, "Height of field of view, px") self.content[0].header['PhysRes'] = (self.pxscale.value, "Physical resolution, pc/px") self.content[0].header['Dist'] = (self.distance.value, "Distance, kpc") self.content[0].header['Vsys'] = (self.distance.value, "Systemic Velocity, km/s") self.content[0].header['VelRes'] = (self.vel_resolution.value, "Velocity resolution, km/s/px") self.content[0].header['TurbSig'] = (self.turbulent_sigma.value, "Default turbulent velocity dispersion, km/s") self.content[0].header['Nobj'] = (0, "Number of generated nebulae") @cached_property def vel_resolution(self): return (self.spec_resolution / self.npix_line / (10000 * u.Angstrom) * c.c).to(velunit) def _get_continuum(self, my_comp, wl_grid): """ Properly extracts continuum for current nebula taking into account its shape and surface brightness :param my_comp: :param wl_grid: :return: continuum """ cont_type = self.content[my_comp + "_CONTINUUM"].header.get("CONTTYPE") continuum = self.content[my_comp + "_CONTINUUM"].data cont_norm = self.content[my_comp + "_CONTINUUM"].header.get("CONTFLUX") cont_norm_wl = self.content[my_comp + "_CONTINUUM"].header.get("CONTWL") if cont_type.lower() == 'model': cont_wl_fullrange = continuum[0, :] cont_fullrange = continuum[1, :] p = interp1d(continuum[0, :], continuum[1, :], assume_sorted=True, bounds_error=False, fill_value='extrapolate') continuum = p(wl_grid) elif cont_type.lower() == 'poly': p = np.poly1d(continuum) cont_wl_fullrange = np.linspace(3500, 10000, 501) cont_fullrange = p(cont_wl_fullrange) continuum = p(wl_grid) elif cont_type.lower() == 'bb': cont_wl_fullrange = np.linspace(3500, 10000, 501) cont_fullrange = 1 / cont_wl_fullrange ** 5 / ( np.exp(6.63e-27 * 3e10 / cont_wl_fullrange / 1e-8 / continuum / 1.38e-16) - 1) continuum = 1 / wl_grid ** 5 / (np.exp(6.63e-27 * 3e10 / wl_grid / 1e-8 / continuum / 1.38e-16) - 1) t_filter = None if type(cont_norm_wl) == str: file_filter = os.path.join(lvmdatasimulator.ROOT_DIR, 'data', 'instrument', 'filters', cont_norm_wl+".dat") if not os.path.isfile(file_filter): log.warning("Cannot find filter {0}. " "Default Wavelength = 5500A will be used for continuum normalization".format(cont_norm_wl)) cont_norm_wl = 5500. t_filter = None else: t_filter = ascii.read(file_filter, names=['lambda', 'transmission']) cont_norm_wl = np.sum(t_filter['lambda'] * t_filter['transmission']) / np.sum(t_filter['transmission']) if t_filter is None: cont_model_max = cont_fullrange[np.argmin(abs(cont_wl_fullrange - cont_norm_wl))] else: dl = np.roll(t_filter['lambda'], -1) - t_filter['lambda'] dl[-1] = dl[-2] w_filter = np.sum(dl * t_filter['transmission'])/np.max(t_filter['transmission']) p = interp1d(t_filter['lambda'], t_filter['transmission'], assume_sorted=True, fill_value=0, bounds_error=False) cont_model_max = np.sum(cont_fullrange * p(cont_wl_fullrange)) / w_filter if ~np.isfinite(cont_norm) or cont_norm <= 0: cont_norm = self.content[my_comp + "_CONTINUUM"].header.get("CONTMAG") * u.ABmag cont_norm = cont_norm.to(u.STmag, u.spectral_density(cont_norm_wl * u.AA)).to(u.erg/u.s/u.cm**2/u.AA).value return continuum / cont_model_max * cont_norm * (wl_grid[1] - wl_grid[0]) def _add_fits_extension(self, name, value, obj_to_add, zorder=0, cur_wavelength=0, add_fits_kw=None, add_counter=False): self.content.append(fits.ImageHDU(np.atleast_1d(value), name=name)) self.content[-1].header['Nebtype'] = (type(obj_to_add).__name__, "Type of the nebula") is_dark = ((obj_to_add.max_brightness <= 0) and (obj_to_add.max_extinction > 0)) self.content[-1].header['Dark'] = (is_dark, " Emitting or absorbing nebula?") self.content[-1].header['X0'] = (obj_to_add.x0, "Position in the field of view") self.content[-1].header['Y0'] = (obj_to_add.y0, "Position in the field of view") self.content[-1].header['Zorder'] = (zorder, "Z-order in the field of view") self.content[-1].header['NCHUNKS'] = (obj_to_add.nchunks, "N of chunks for convolution") if type(obj_to_add) in [Bubble, Cloud]: self.content[-1].header['Radius'] = (obj_to_add.radius.to_value(u.pc), "Radius of the nebula, pc") self.content[-1].header['PertOrd'] = (obj_to_add.perturb_degree, "Degree to produce random perturbations") self.content[-1].header['PertAmp'] = (obj_to_add.perturb_amplitude, "Max amplitude of random perturb.") if type(obj_to_add) in [DIG, Nebula, Rectangle, Ellipse, Circle]: self.content[-1].header['PertScl'] = (obj_to_add.perturb_scale.to_value(u.pc), "Scale of the random perturbations, pc") self.content[-1].header['PertAmp'] = (obj_to_add.perturb_amplitude, "Max amplitude of random perturb.") if type(obj_to_add) in [Filament]: self.content[-1].header['Width'] = (obj_to_add.width.to_value(u.pc), 'Width of the filament, pc') self.content[-1].header['Length'] = (obj_to_add.length.to_value(u.pc), 'Length of the filament, pc') if type(obj_to_add) not in [Bubble, Cloud, Galaxy]: if obj_to_add.vel_gradient is not None: self.content[-1].header['Vgrad'] = (obj_to_add.vel_gradient.to_value(velunit / u.pc), 'Velocity gradient, km/s per pc') if obj_to_add.vel_pa is not None: self.content[-1].header['PAkin'] = (obj_to_add.vel_pa.to_value(u.degree), 'Kinematical PA, degree') if type(obj_to_add) in [Nebula, Rectangle]: self.content[-1].header['Width'] = (obj_to_add.width.to_value(u.pc), 'Width of the nebula, pc') self.content[-1].header['Height'] = (obj_to_add.height.to_value(u.pc), 'Height of the nebula, pc') if type(obj_to_add) in [Ellipse, Filament, Galaxy]: self.content[-1].header['PA'] = (obj_to_add.PA.to_value(u.degree), 'Position angle, degree') if type(obj_to_add) in [Galaxy]: self.content[-1].header['Reff'] = (obj_to_add.r_eff.to_value(u.kpc), 'Effective radius of the galaxy, kpc') self.content[-1].header['NSersic'] = (obj_to_add.n, 'Sersic index') self.content[-1].header['Rlim'] = (obj_to_add.rad_lim, 'Limiting distance in Reff') self.content[-1].header['Vrot'] = (obj_to_add.vel_rot.to_value(velunit), 'Rotational velocity, km/s') self.content[-1].header['PAkin'] = (obj_to_add.vel_pa.to_value(u.degree), 'Kinematical PA, degree') if type(obj_to_add) in [Ellipse, Circle]: self.content[-1].header['Radius'] = (obj_to_add.radius.to_value(u.kpc), 'Radius (major axis), pc') if type(obj_to_add) in [Ellipse, Galaxy]: self.content[-1].header['AxRat'] = (obj_to_add.ax_ratio, "Axis ratio") if (obj_to_add.max_brightness <= 0) and (obj_to_add.max_extinction > 0): self.content[-1].header['MaxExt'] = (obj_to_add.max_extinction.value, "Max extinction, mag/pix") elif obj_to_add.max_brightness > 0: self.content[-1].header['MaxBrt'] = (obj_to_add.max_brightness.value, "Max brightness, erg/s/cm^2/arcsec^2") if type(obj_to_add) == Bubble: self.content[-1].header['Vexp'] = (obj_to_add.expansion_velocity.to_value(velunit), 'Expansion velocity, km/s') self.content[-1].header['SysVel'] = (obj_to_add.sys_velocity.to_value(velunit), "Systemic velocity, km/s") self.content[-1].header['TurbVel'] = (obj_to_add.turbulent_sigma.to_value(velunit), "ISM Velocity dispersion, km/s") self.content[-1].header['SpecID'] = (obj_to_add.spectrum_id, "Ref. spectrum ID in model grid") self.content[-1].header['NLines'] = (obj_to_add.n_brightest_lines, "Maximal number of lines to use") if cur_wavelength: self.content[-1].header['Lambda'] = (cur_wavelength, "Current line wavelength") if add_fits_kw is not None: for kw in add_fits_kw: self.content[-1].header[kw] = add_fits_kw[kw] if add_counter: self.content[0].header['Nobj'] = (self.content[0].header['Nobj'] + 1, "Total number of nebulae") def add_nebula(self, obj_to_add, obj_id=0, zorder=0, add_fits_kw=None, continuum=None): """ Method to add the particular nebula to the ISM object and to the output multi-extensions fits file """ if type(obj_to_add) not in [Nebula, Bubble, Filament, DIG, Cloud, Galaxy, Ellipse, Circle, Rectangle, CustomNebula]: log.warning('Skip nebula of wrong type ({0})'.format(type(obj_to_add))) return if (obj_to_add.max_brightness <= 0) and (obj_to_add.max_extinction <= 0) and (continuum is None): log.warning('Skip nebula with zero extinction and brightness') return if obj_to_add.max_brightness > 0: brt = obj_to_add.brightness_skyplane.value if obj_to_add.spectrum_id is not None and not obj_to_add.linerat_constant: brt_4d = obj_to_add.brightness_skyplane_lines.value else: brt_4d = None elif obj_to_add.max_extinction > 0: brt = obj_to_add.extinction_skyplane.value brt_4d = None elif continuum is not None: brt = obj_to_add.brightness_skyplane brt_4d = None self._add_fits_extension(name="Comp_{0}_Brightness".format(obj_id), value=brt, obj_to_add=obj_to_add, zorder=zorder, add_fits_kw=add_fits_kw, add_counter=True) if obj_to_add.max_brightness > 0: if brt_4d is not None: with fits.open(lvmdatasimulator.CLOUDY_MODELS) as hdu: wl_list = hdu[obj_to_add.spectrum_id].data[1:, 0] if obj_to_add.n_brightest_lines is not None and \ (obj_to_add.n_brightest_lines > 0) and (obj_to_add.n_brightest_lines < len(wl_list)): wl_list = wl_list[np.argsort(hdu[obj_to_add.spectrum_id].data[1:, 1] )[::-1][: obj_to_add.n_brightest_lines]] for line_ind in range(brt_4d.shape[0]): self._add_fits_extension(name="Comp_{0}_Flux_{1}".format(obj_id, wl_list[line_ind]), value=brt_4d[line_ind], obj_to_add=obj_to_add, zorder=zorder, add_fits_kw=add_fits_kw, cur_wavelength=wl_list[line_ind]) elif obj_to_add.spectrum_id is not None and obj_to_add.linerat_constant: with fits.open(lvmdatasimulator.CLOUDY_MODELS) as hdu: data_save = hdu[obj_to_add.spectrum_id].data[1:, :2] if obj_to_add.n_brightest_lines is not None and \ (obj_to_add.n_brightest_lines > 0) and \ (obj_to_add.n_brightest_lines < len(hdu[obj_to_add.spectrum_id].data[1:, 0])): data_save = data_save[np.argsort(data_save[:, 1])[::-1][: obj_to_add.n_brightest_lines]] self._add_fits_extension(name="Comp_{0}_FluxRatios".format(obj_id), value=data_save.T, obj_to_add=obj_to_add, zorder=zorder, add_fits_kw=add_fits_kw) if type(obj_to_add) == Bubble: self._add_fits_extension(name="Comp_{0}_LineProfile".format(obj_id), value=obj_to_add.line_profile.value, obj_to_add=obj_to_add, zorder=zorder, add_fits_kw=add_fits_kw) if obj_to_add.vel_field is not None: self._add_fits_extension(name="Comp_{0}_Vel".format(obj_id), value=obj_to_add.vel_field.value, obj_to_add=obj_to_add, zorder=zorder, add_fits_kw=add_fits_kw) if continuum is not None: self._add_fits_extension(name="Comp_{0}_Continuum".format(obj_id), value=continuum, obj_to_add=obj_to_add, zorder=zorder, add_fits_kw=add_fits_kw) return self.content def save_ism(self, filename): self.content.writeto(filename, overwrite=True) log.info("Generated ISM saved to {0}".format(filename)) def generate(self, all_objects): """ Generate all the Nebulae from the input list Args: all_objects: list -- contains a dictionary describing the nebula to add: example: all_objects = [{type: "Bubble, Filament, DIG, ....", sys_velocity: 0 * u.km/u.s, expansion_velocity: 30 * u.km/u.s, turbulent_sigma: 10 * u.km/u.s, radius: 5 * u.pc, max_brightness: 1e-16 * u.erg / u.cm**2 / u.s / u.arcsec ** 2, RA: "08h12m13s", DEC: "-20d14m13s", 'perturb_degree': 8, # max. order of spherical harmonics to generate inhomogeneities 'perturb_amplitude': 0.1, # relative max. amplitude of inhomogeneities, 'perturb_scale': 200 * u.pc, # spatial scale to generate inhomogeneities (DIG only) 'distance': 50 * u.kpc, # distance to the nebula (default is from ISM) 'cloudy_id': None, # id of pre-generated Cloudy model 'cloudy_params': {'Z': 0.5, 'qH': 49., 'nH': 10, 'Teff': 30000, 'Geometry': 'Sphere'}, # parameters defining the pre-generated Cloudy model (used if spectrum_id is None) 'n_brightest_lines': 10, # only this number of the brightest lines will be evaluated 'linerat_constant': False # if True -> lines ratios don't vary across Cloud/Bubble 'continuum_type': 'BB' or 'Model' or 'Poly' # type of the continuum model 'continuum_data': model_id or [poly_coefficients] or Teff or dict with "wl" and "flux" # value defining cont. shape 'continuum_flux': 1e-16 * u.erg / u.cm ** 2 / u.s / u.arcsec **2 / u.AA, 'continuum_mag': 22 * u.mag, 'continuum_wl': 5500, # could be also R, V, B, 'ext_law': 'F99', # Extinction law, one of those used by pyneb (used for dark nebulae) 'ext_rv': 3.1, # Value of R_V for extinction curve calculation (used for dark nebulae) 'vel_gradient: 12. * u.km / u.s / u.pc # Line-of-sight velocity gradient 'vel_pa: 30. * u.degree # PA of kinematical axis (for vel_gradient or vel_rot) }] """ if type(all_objects) is dict: all_objects = [all_objects] if type(all_objects) not in [list, tuple]: log.warning('Cannot generate nebulae as the input is not a list or tuple') return None all_objects = [cobj for cobj in all_objects if cobj.get('type') in ['Nebula', 'Bubble', 'Galaxy', 'Filament', 'DIG', 'Cloud', 'Rectangle', 'Circle', 'Ellipse', 'CustomNebula']] n_objects = len(all_objects) log.info("Start generating {} nebulae".format(n_objects)) bar = progressbar.ProgressBar(max_value=n_objects).start() obj_id = self.content[0].header['Nobj'] obj_id_ini = self.content[0].header['Nobj'] for ind_obj, cur_obj in enumerate(all_objects): bar.update(ind_obj) # Setup default parameters for missing keywords kin_pa_default = 0 if 'PA' in cur_obj: kin_pa_default = cur_obj['PA'] for k, v, unit in zip(['max_brightness', 'max_extinction', 'thickness', 'expansion_velocity', 'sys_velocity', 'turbulent_sigma', 'perturb_degree', 'perturb_amplitude', 'perturb_scale', 'radius', 'distance', 'continuum_type', 'continuum_data', 'continuum_flux', 'continuum_mag', 'continuum_wl', 'ext_law', 'ext_rv', 'vel_gradient', 'vel_rot', 'vel_pa', 'n_brightest_lines', 'offset_RA', 'offset_DEC', 'RA', 'DEC'], [0, 0, 1., 0, self.sys_velocity, self.turbulent_sigma, 0, 0.1, 0, 0, self.distance, None, None, 0, None, 5500., self.ext_law, self.R_V, 0, 0, kin_pa_default, None, None, None, None, None], [fluxunit, u.mag, None, velunit, velunit, velunit, None, None, u.pc, u.pc, u.kpc, None, None, fluxunit/u.AA, None, u.Angstrom, None, None, velunit / u.pc, velunit, u.degree, None, u.arcsec, u.arcsec, u.degree, u.degree]): set_default_dict_values(cur_obj, k, v, unit=unit) for k in ['max_brightness', 'max_extinction', 'radius', 'continuum_flux']: if cur_obj[k] < 0: cur_obj[k] = 0 if (cur_obj['max_brightness'] == 0) and (cur_obj['max_extinction'] == 0) and \ (((cur_obj['continuum_mag'] is None) and (cur_obj['continuum_flux'] == 0)) or (cur_obj['continuum_data'] is None) or (cur_obj['continuum_type'] is None)): log.warning("Wrong set of parameters for the nebula #{0}: skip this one".format(ind_obj)) continue if lvmdatasimulator.CLOUDY_MODELS is None or (cur_obj['max_brightness'] <= 0): cloudy_model_index = None cloudy_model_id = None else: if cur_obj.get('cloudy_id') is None: if cur_obj.get('cloudy_params') is None or (type(cur_obj.get('cloudy_params')) is not dict): log.warning("Neither of 'cloudy_id' or 'cloudy_params' is set for the nebula #{0}: " "use default 'cloudy_id={1}'".format(ind_obj, lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id'])) cur_obj['cloudy_id'] = lvmdatasimulator.CLOUDY_SPEC_DEFAULTS['id'] else: for p in lvmdatasimulator.CLOUDY_SPEC_DEFAULTS: if p == 'id': continue if cur_obj['cloudy_params'].get(p) is None: cur_obj['cloudy_params'][p] = lvmdatasimulator.CLOUDY_SPEC_DEFAULTS[p] cloudy_model_index, cloudy_model_id = find_model_id(file=lvmdatasimulator.CLOUDY_MODELS, check_id=cur_obj.get('cloudy_id'), params=cur_obj.get('cloudy_params')) if cur_obj.get('linerat_constant') is None: if cur_obj['type'] in ['Bubble', 'Cloud']: cur_obj['linerat_constant'] = False else: cur_obj['linerat_constant'] = True if cur_obj['type'] == 'DIG': if cur_obj.get('max_brightness') is None or cur_obj.get('max_brightness') <= 0: log.warning("Wrong set of parameters for the nebula #{0}: skip this one".format(ind_obj)) continue if not cur_obj.get('zorder'): cur_obj['zorder'] = -1 if cur_obj['perturb_scale'] < 0: cur_obj['perturb_scale'] = 0 generated_object = DIG(max_brightness=cur_obj.get('max_brightness'), turbulent_sigma=cur_obj['turbulent_sigma'], sys_velocity=cur_obj['sys_velocity'], vel_gradient=cur_obj['vel_gradient'], vel_pa=cur_obj['vel_pa'], spectrum_id=cloudy_model_index, n_brightest_lines=cur_obj['n_brightest_lines'], pxscale=self.pxscale * (cur_obj['distance'].to(u.pc) / self.distance.to(u.pc)), perturb_scale=cur_obj['perturb_scale'], perturb_amplitude=cur_obj['perturb_amplitude'], pix_width=self.width, pix_height=self.height, ) else: # ==== Check input parameters and do necessary conversions if not cur_obj.get('zorder'): cur_obj['zorder'] = 0 if not ((cur_obj.get('RA') is not None and cur_obj.get('DEC') is not None) or (cur_obj.get('X') is not None and cur_obj.get('Y') is not None) or (cur_obj.get('offset_X') is not None and cur_obj.get('offset_Y') is not None) or (cur_obj.get('offset_RA') is not None and cur_obj.get('offset_DEC') is not None)): log.warning("Wrong set of parameters for the nebula #{0}: skip this one".format(ind_obj)) continue if cur_obj['type'] in ['Rectangle', 'Nebula'] and not (('width' in cur_obj) and ('height' in cur_obj)): log.warning("Wrong set of parameters for the nebula #{0}: skip this one".format(ind_obj)) continue if (cur_obj['type'] in ["Bubble", "Cloud", "Ellipse", 'Circle']) and (cur_obj['radius'] == 0): log.warning("Wrong set of parameters for the nebula #{0}: skip this one".format(ind_obj)) continue if cur_obj['type'] == 'Filament' and not (('length' in cur_obj) and ('PA' in cur_obj)): log.warning("Wrong set of parameters for the nebula #{0}: skip this one".format(ind_obj)) continue if cur_obj['type'] == 'Galaxy' and not (('r_eff' in cur_obj) and ('PA' in cur_obj) and ('ax_ratio' in cur_obj)): log.warning("Wrong set of parameters for the nebula #{0}: skip this one".format(ind_obj)) continue if cur_obj['type'] == 'Galaxy': if 'n' not in cur_obj: log.info("Set default Sersic index n=1 for the nebula #{0}".format(ind_obj)) cur_obj['n'] = 1 if 'rad_lim' not in cur_obj: cur_obj['rad_lim'] = 3. if not (cur_obj.get('X') is not None and cur_obj.get('Y') is not None): if cur_obj.get('offset_X') is not None and cur_obj.get('offset_Y') is not None: x = (self.width - 1) / 2. + cur_obj.get('offset_X') y = (self.height - 1) / 2. + cur_obj.get('offset_Y') elif cur_obj.get('RA') is not None and cur_obj.get('DEC') is not None: radec = SkyCoord(ra=cur_obj.get('RA'), dec=cur_obj.get('DEC')) x, y = self.wcs.world_to_pixel(radec) elif cur_obj.get('offset_RA') is not None and cur_obj.get('offset_DEC') is not None: x = (self.width - 1) / 2. - (cur_obj.get('offset_RA').to_value(u.degree) / proj_plane_pixel_scales(self.wcs)[0]) y = (self.height - 1) / 2. + (cur_obj.get('offset_DEC').to_value(u.degree) / proj_plane_pixel_scales(self.wcs)[0]) x = np.round(x).astype(int) y = np.round(y).astype(int) else: x, y = [cur_obj.get('X'), cur_obj.get('Y')] if (cur_obj['thickness'] <= 0) or (cur_obj['thickness'] > 1): log.warning("Wrong value of thickness of the nebula #{0}: set it to 1.".format(ind_obj)) cur_obj['thickness'] = 1. if cur_obj['type'] == "Bubble" and cur_obj.get('expansion_velocity') <= 0: log.warning("Contracting bubbles are not supported (nebula #{0})." " Use non-expanding cloud instead".format(ind_obj)) cur_obj['type'] = "Cloud" if cur_obj['type'] in ["Bubble", "Cloud"]: if cur_obj['perturb_degree'] < 0: cur_obj['perturb_degree'] = 0 elif cur_obj['type'] == 'Filament' and ('width' not in cur_obj): log.info("Set default width of the filament 0.1 pc for the nebula #{0}".format(ind_obj)) cur_obj['width'] = 0.1 * u.pc # ==== Start calculations of different nebulae if cur_obj['type'] == "Bubble": generated_object = Bubble(xc=x, yc=y, max_brightness=cur_obj.get('max_brightness'), max_extinction=cur_obj.get('max_extinction'), spectral_axis=self.vel_grid, expansion_velocity=cur_obj.get('expansion_velocity'), thickness=cur_obj['thickness'], radius=cur_obj['radius'], pxscale=self.pxscale * (cur_obj['distance'].to(u.pc) / self.distance.to(u.pc)), perturb_degree=cur_obj['perturb_degree'], perturb_amplitude=cur_obj['perturb_amplitude'], turbulent_sigma=cur_obj['turbulent_sigma'], sys_velocity=cur_obj['sys_velocity'], spectrum_id=cloudy_model_index, n_brightest_lines=cur_obj['n_brightest_lines'], linerat_constant=cur_obj['linerat_constant'], ) elif cur_obj['type'] == "Cloud": generated_object = Cloud(xc=x, yc=y, max_brightness=cur_obj.get('max_brightness'), max_extinction=cur_obj.get('max_extinction'), thickness=cur_obj['thickness'], radius=cur_obj['radius'], pxscale=self.pxscale * (cur_obj['distance'].to(u.pc) / self.distance.to(u.pc)), perturb_degree=cur_obj['perturb_degree'], perturb_amplitude=cur_obj['perturb_amplitude'], spectrum_id=cloudy_model_index, n_brightest_lines=cur_obj['n_brightest_lines'], turbulent_sigma=cur_obj['turbulent_sigma'], sys_velocity=cur_obj['sys_velocity'], linerat_constant=cur_obj['linerat_constant'], vel_gradient=cur_obj['vel_gradient'], vel_pa=cur_obj['vel_pa'], ) elif cur_obj['type'] == "Filament": generated_object = Filament(xc=x, yc=y, max_brightness=cur_obj.get('max_brightness'), max_extinction=cur_obj.get('max_extinction'), width=cur_obj['width'], length=cur_obj['length'], PA=cur_obj['PA'], vel_gradient=cur_obj['vel_gradient'], vel_pa=cur_obj['vel_pa'], spectrum_id=cloudy_model_index, n_brightest_lines=cur_obj['n_brightest_lines'], turbulent_sigma=cur_obj['turbulent_sigma'], sys_velocity=cur_obj['sys_velocity'], pxscale=self.pxscale * (cur_obj['distance'].to(u.pc) / self.distance.to(u.pc)), ) elif cur_obj['type'] == "Galaxy": generated_object = Galaxy(xc=x, yc=y, max_brightness=cur_obj.get('max_brightness'), max_extinction=cur_obj.get('max_extinction'), r_eff=cur_obj['r_eff'], rad_lim=cur_obj['rad_lim'], ax_ratio=cur_obj['ax_ratio'], PA=cur_obj['PA'], n=cur_obj['n'], vel_rot=cur_obj.get('vel_rot'), vel_pa=cur_obj['vel_pa'], spectrum_id=cloudy_model_index, n_brightest_lines=cur_obj['n_brightest_lines'], turbulent_sigma=cur_obj['turbulent_sigma'], sys_velocity=cur_obj['sys_velocity'], pxscale=self.pxscale * (cur_obj['distance'].to(u.pc) / self.distance.to(u.pc)), ) elif cur_obj['type'] == "Ellipse": generated_object = Ellipse(xc=x, yc=y, max_brightness=cur_obj.get('max_brightness'), max_extinction=cur_obj.get('max_extinction'), radius=cur_obj['radius'], ax_ratio=cur_obj['ax_ratio'], PA=cur_obj['PA'], spectrum_id=cloudy_model_index, n_brightest_lines=cur_obj['n_brightest_lines'], turbulent_sigma=cur_obj['turbulent_sigma'], sys_velocity=cur_obj['sys_velocity'], vel_gradient=cur_obj['vel_gradient'], vel_pa=cur_obj['vel_pa'], pxscale=self.pxscale * (cur_obj['distance'].to(u.pc) / self.distance.to(u.pc)), perturb_scale=cur_obj['perturb_scale'], perturb_amplitude=cur_obj['perturb_amplitude'], ) elif cur_obj['type'] == "Circle": generated_object = Circle(xc=x, yc=y, max_brightness=cur_obj.get('max_brightness'), max_extinction=cur_obj.get('max_extinction'), radius=cur_obj['radius'], spectrum_id=cloudy_model_index, n_brightest_lines=cur_obj['n_brightest_lines'], turbulent_sigma=cur_obj['turbulent_sigma'], sys_velocity=cur_obj['sys_velocity'], vel_gradient=cur_obj['vel_gradient'], vel_pa=cur_obj['vel_pa'], pxscale=self.pxscale * (cur_obj['distance'].to(u.pc) / self.distance.to(u.pc)), perturb_scale=cur_obj['perturb_scale'], perturb_amplitude=cur_obj['perturb_amplitude'], ) elif cur_obj['type'] == "Rectangle" or (cur_obj['type'] == "Nebula"): generated_object = Rectangle(xc=x, yc=y, width=cur_obj.get('width'), height=cur_obj.get('height'), max_brightness=cur_obj.get('max_brightness'), max_extinction=cur_obj.get('max_extinction'), spectrum_id=cloudy_model_index, n_brightest_lines=cur_obj['n_brightest_lines'], turbulent_sigma=cur_obj['turbulent_sigma'], sys_velocity=cur_obj['sys_velocity'], vel_gradient=cur_obj['vel_gradient'], vel_pa=cur_obj['vel_pa'], pxscale=self.pxscale * (cur_obj['distance'].to(u.pc) / self.distance.to(u.pc)), perturb_scale=cur_obj['perturb_scale'], perturb_amplitude=cur_obj['perturb_amplitude'], ) elif cur_obj['type'] == "CustomNebulae": # generated_object = CustomNebula(xc=x, yc=y,) log.warning("Custom Nebulae will be added soon") continue else: log.warning("Unrecognized type of the nebula #{0}: skip this one".format(ind_obj)) continue if cloudy_model_index is not None: if cur_obj['linerat_constant']: lr = "Constant" else: lr = "Variable" add_fits_kw = {"Model_ID": cloudy_model_id, "LineRat": lr} else: add_fits_kw = {} add_fits_kw["Distance"] = (cur_obj['distance'].to_value(u.kpc), "Distance to the nebula, kpc") continuum = None if cur_obj['continuum_type'] is not None and cur_obj['continuum_data'] is not None \ and cur_obj['continuum_type'].lower() in ['bb', 'poly', 'model']: if cur_obj['continuum_type'].lower() == 'model': if isinstance(cur_obj['continuum_data'], dict) and ('wl' in cur_obj['continuum_data']) and \ ('flux' in cur_obj['continuum_data']): if len(cur_obj['continuum_data']['wl']) != len(cur_obj['continuum_data']['flux']): log.error("Number of wavelength and flux points is inconsistent for continuum") else: wlscale = cur_obj['continuum_data']['wl'] continuum = np.vstack([wlscale, cur_obj['continuum_data']['flux']]) elif ~isinstance(cur_obj['continuum_data'], dict) and lvmdatasimulator.CONTINUUM_MODELS is not None: with fits.open(lvmdatasimulator.CONTINUUM_MODELS) as hdu: if cur_obj['continuum_data'] >= hdu[0].data.shape[0]: log.warning("Wrong continuum model ID for nebula #{0}".format(obj_id)) else: wlscale = (np.arange(hdu[0].data.shape[1]) - hdu[0].header['CRPIX1'] + 1 ) * hdu[0].header['CDELT1'] + hdu[0].header['CRVAL1'] continuum = np.vstack([wlscale, hdu[0].data[cur_obj['continuum_data']]]) elif cur_obj['continuum_type'].lower() in ['poly', 'bb']: continuum = cur_obj['continuum_data'] if continuum is not None: if add_fits_kw is None: add_fits_kw = {} add_fits_kw['CONTTYPE'] = (cur_obj['continuum_type'], "Type of the continuum") if cur_obj['continuum_flux'] > 0: contflux = cur_obj['continuum_flux'].to_value(u.erg / u.cm ** 2 / u.s / u.arcsec ** 2 / u.AA) else: contflux = 0 add_fits_kw['CONTFLUX'] = (contflux, "Continuum brightness (in erg/s/cm^2/asec^2/AA) at ref. wl/Filter") if cur_obj['continuum_mag'] is not None: contmag = cur_obj['continuum_mag'].to_value(u.mag) else: contmag = None add_fits_kw['CONTMAG'] = (contmag, "Continuum brightness (in mag/asec^2) at ref. wl/Filter") if isinstance(cur_obj['continuum_wl'], str): cont_wl = cur_obj['continuum_wl'] else: cont_wl = cur_obj['continuum_wl'].to_value(u.AA) add_fits_kw['CONTWL'] = (cont_wl, 'Reference wavelength/filter for cont. flux/mag') if cur_obj.get('max_extinction') > 0: if add_fits_kw is None: add_fits_kw = {} add_fits_kw['EXT_LAW'] = (cur_obj['ext_law'], "Extinction law according to pyneb list") add_fits_kw['EXT_RV'] = (cur_obj['ext_rv'], "R_V value for extinction calculations") self.add_nebula(generated_object, obj_id=obj_id, zorder=cur_obj.get('zorder'), add_fits_kw=add_fits_kw, continuum=continuum) obj_id += 1 bar.finish() if (obj_id - obj_id_ini) == 0: return None else: return True def load_nebulae(self, file): """ Load previously saved fits-file containing the information about all nebulae. Note: Grid should be equal to that used when fits-file was generated! """ if not os.path.isfile(file): log.warning("ISM doesn't contain any nebula") return None else: with fits.open(file) as hdu: wcs = WCS(hdu[0].header) cdelt_file = [cdelt.to(u.degree).value for cdelt in wcs.proj_plane_pixel_scales()] cdelt_ism = [cdelt.to(u.degree).value for cdelt in self.wcs.proj_plane_pixel_scales()] check = ~np.isclose(cdelt_file, cdelt_ism) check = np.append(check, ~
np.isclose(wcs.wcs.crval, self.wcs.wcs.crval)
numpy.isclose
from utilities.edef import EventDefinition from PyQt5.QtCore import QObject, pyqtSignal from PyQt5.QtWidgets import QApplication import pyca from psp.Pv import Pv import time import numpy as np import pickle from operator import attrgetter import utilities.matlog from utilities.batch_get import batch_get import math import subprocess import re import os import json from datetime import datetime MODEL_AVAILABLE = False try: import utilities.model as model import utilities.fit MODEL_AVAILABLE = True except ImportError: MODEL_AVAILABLE = False """A collection of classes to represent a linac orbit""" class BaseBPM(object): """Abstract base class for a Beam Position Monitor. Each BPM has an X, Y, and TMIT value, and a Z Position.""" def __init__(self, name, z_pos=None): self.name = name self.z = z_pos self.is_energy_bpm = False @property def x(self): raise NotImplementedError @property def y(self): raise NotImplementedError @property def tmit(self): raise NotImplementedError def __getitem__(self, key): if key.lower() == "x": return self.x if key.lower() == "y": return self.y if key.lower() == "tmit": return self.tmit if key.lower() == "z": return self.z def __str__(self): return self.name class StaticBPM(BaseBPM): """StaticBPM is a BPM, frozen in time. An Orbit with Static BPMs is how you make a reference orbit.""" def __init__(self, name, z_pos=None, x_val=None, y_val=None, tmit_val=None, x_rms=0.0, y_rms=0.0, tmit_rms=0.0, x_severity=None, y_severity=None, tmit_severity=None, x_status=None, y_status=None, tmit_status=None, is_energy_bpm=False): super(StaticBPM, self).__init__(name, z_pos=z_pos) self._x = x_val self._y = y_val self._tmit = tmit_val self._x_rms = x_rms self._y_rms = y_rms self._tmit_rms = tmit_rms self._x_sevr = x_severity self._y_sevr = y_severity self._tmit_sevr = tmit_severity self._x_status = x_status self._y_status = y_status self._tmit_status = tmit_status self.is_energy_bpm = is_energy_bpm @BaseBPM.x.getter def x(self): return self._x @BaseBPM.y.getter def y(self): return self._y @BaseBPM.tmit.getter def tmit(self): return self._tmit @property def x_rms(self): return self._x_rms @property def y_rms(self): return self._y_rms @property def tmit_rms(self): return self._tmit_rms def severity(self, axis): if axis == "x": return self._x_sevr if axis == "y": return self._y_sevr if axis == "tmit": return self._tmit_sevr raise Exception("Axis parameter not valid") @property def x_severity(self): return self.severity('x') @property def y_severity(self): return self.severity('y') @property def tmit_severity(self): return self.severity('tmit') def status(self, axis): if axis == "x": return self._x_status if axis == "y": return self._y_status if axis == "tmit": return self._tmit_status raise Exception("Axis parameter not valid") @property def x_status(self): return self.status('x') @property def y_status(self): return self.status('y') @property def tmit_status(self): return self.status('tmit') def to_static(self): return self class BPM(BaseBPM): """BPM is a BPM value backed by EPICS PVs for X, Y, TMIT, and Z Position.""" def __init__(self, name, edef=None): super(BPM, self).__init__(name) self.edef = None self.edef_suffix = '' self.set_edef(edef) self.z_pv_obj = None self.x_pv_obj = None self.y_pv_obj = None self.tmit_pv_obj = None @classmethod def pv_count(cls): return 4 def set_edef(self, edef): if self.edef == edef: return self.edef_suffix = '' self.edef = edef if edef is not None: if isinstance(edef, EventDefinition): self.edef_suffix = str(edef.edef_num) else: self.edef_suffix = str(edef) @BaseBPM.x.getter def x(self): return self.x_pv_obj.data["value"] @BaseBPM.y.getter def y(self): return self.y_pv_obj.data["value"] @BaseBPM.tmit.getter def tmit(self): return self.tmit_pv_obj.data["value"] @property def x_rms(self): return 0.0 @property def y_rms(self): return 0.0 @property def tmit_rms(self): return 0.0 def pv_objects(self): return [self.x_pv_obj, self.y_pv_obj, self.tmit_pv_obj] def z_pv(self): return self.name + ":Z" def x_pv(self): return self.name + ":X" + self.edef_suffix def y_pv(self): return self.name + ":Y" + self.edef_suffix def tmit_pv(self): return self.name + ":TMIT" + self.edef_suffix def buffer_pv(self, axis, suffix='HST'): return self.edef.buffer_pv("{name}:{axis}".format(name=self.name, axis=axis.upper()), suffix=suffix) def x_buffer(self): return self.get_buffer('X') def y_buffer(self): return self.get_buffer('Y') def tmit_buffer(self): return self.get_buffer('TMIT') def x_rms_buffer(self): return self.get_buffer('X', 'RMSHST') def y_rms_buffer(self): return self.get_buffer('Y', 'RMSHST') def tmit_rms_buffer(self): return self.get_buffer('TMIT', 'RMSHST') def get_buffer(self, axis, suffix='HST'): if self.edef is None: raise Exception("BPM must have an EDEF to gather buffered data.") return self.edef.get_buffer("{name}:{axis}".format(name=self.name, axis=axis.upper()), suffix=suffix) def to_static(self, use_buffer=False): if isinstance(self.edef, EventDefinition): #Make extra sure we've got the latest data. self.x_pv_obj.get() self.y_pv_obj.get() self.tmit_pv_obj.get() x = self.x y = self.y tmit = self.tmit x_rms = 0.0 y_rms = 0.0 tmit_rms = 0.0 if use_buffer and isinstance(self.edef, EventDefinition): x = self.x_buffer()[-1] y = self.y_buffer()[-1] tmit = self.tmit_buffer()[-1] x_rms = self.x_rms_buffer()[-1] y_rms = self.y_rms_buffer()[-1] tmit_rms = self.tmit_rms_buffer()[-1] return StaticBPM(self.name, z_pos=self.z, x_val=x, y_val=y, tmit_val=tmit, x_rms=x_rms, y_rms=y_rms, tmit_rms=tmit_rms, x_status=self.status('x'), y_status=self.status('y'), tmit_status=self.status('tmit'), x_severity=self.severity('x'), y_severity=self.severity('y'), tmit_severity=self.severity('tmit'), is_energy_bpm=self.is_energy_bpm) def status(self, axis): if axis == 'x': return self.x_pv_obj.data["status"] if axis == 'y': return self.y_pv_obj.data["status"] if axis == "tmit": return self.tmit_pv_obj.data["status"] raise Exception("Axis parameter not valid.") @property def x_status(self): return self.status('x') @property def y_status(self): return self.status('y') @property def tmit_status(self): return self.status('tmit') def severity(self, axis): if axis == 'x': return self.x_pv_obj.data["severity"] if axis == 'y': return self.y_pv_obj.data["severity"] if axis == "tmit": return self.tmit_pv_obj.data["severity"] raise Exception("Axis parameter not valid.") @property def x_severity(self): return self.severity('x') @property def y_severity(self): return self.severity('y') @property def tmit_severity(self): return self.severity('tmit') class DiffBPM(BaseBPM): """Represents the difference between two BPMs. Usually used for making a difference orbit between a live orbit and a static reference orbit.""" def __init__(self, bpm_a, bpm_b): if bpm_a.name != bpm_b.name: raise ValueError("{a} != {b}. BPMs used to created a DiffBPM must have the same name.".format(a=bpm_a.name, b=bpm_b.name)) else: self.name = bpm_a.name if bpm_a.z != bpm_b.z: raise ValueError("For {bpm_name} Z_A = {za}, but Z_B = {zb}. BPMs used to create a DiffBPM must have the same z position.".format(bpm_name=self.name, za=bpm_a.z, zb=bpm_b.z)) else: self.z = bpm_a.z self.bpm_a = bpm_a self.bpm_b = bpm_b #self.bpm_b = bpm_b.to_static() self.is_energy_bpm = bpm_a.is_energy_bpm or bpm_b.is_energy_bpm @BaseBPM.x.getter def x(self): return self.bpm_a.x - self.bpm_b.x @BaseBPM.y.getter def y(self): return self.bpm_a.y - self.bpm_b.y @BaseBPM.tmit.getter def tmit(self): return self.bpm_a.tmit - self.bpm_b.tmit @property def x_rms(self): try: a_rms = self.bpm_a.x_rms except AttributeError: a_rms = 0.0 try: b_rms = self.bpm_b.x_rms except AttributeError: b_rms = 0.0 return math.sqrt(a_rms**2.0 + b_rms**2.0) @property def y_rms(self): try: a_rms = self.bpm_a.y_rms except AttributeError: a_rms = 0.0 try: b_rms = self.bpm_b.y_rms except AttributeError: b_rms = 0.0 return math.sqrt(a_rms**2.0 + b_rms**2.0) @property def tmit_rms(self): try: a_rms = self.bpm_a.tmit_rms except AttributeError: a_rms = 0.0 try: b_rms = self.bpm_b.tmit_rms except AttributeError: b_rms = 0.0 return math.sqrt(a_rms**2.0 + b_rms**2.0) def status(self, axis): return max(self.bpm_a.status(axis), self.bpm_b.status(axis)) def severity(self, axis): return max(self.bpm_a.severity(axis), self.bpm_b.severity(axis)) @property def x_severity(self): return self.severity('x') @property def y_severity(self): return self.severity('y') @property def tmit_severity(self): return self.severity('tmit') class DiffTMITBPM(DiffBPM): """A DiffTMITBPM works exactly like a DiffBPM, except that its TMIT value is calculated as TMIT_A / TMIT_B instead of TMIT_A - TMIT_B.""" @DiffBPM.tmit.getter def tmit(self): return self.bpm_a.tmit / self.bpm_b.tmit @DiffBPM.tmit_rms.getter def tmit_rms(self): try: a_rms = self.bpm_a.tmit_rms except AttributeError: a_rms = 0.0 try: b_rms = self.bpm_b.tmit_rms except AttributeError: b_rms = 0.0 return math.sqrt((a_rms/self.bpm_a.tmit)**2.0 + (b_rms/self.bpm_b.tmit)**2.0)*self.tmit() class BaseOrbit(QObject): @classmethod def from_dict(cls, d): orbit = cls() for (i, name) in enumerate(d['names']): bpm = StaticBPM(str(name).strip(), z_pos=d['z'][i], x_val=d['x'][i], y_val=d['y'][i], tmit_val=d['tmit'][i], x_rms=d['x_rms'][i], y_rms=d['y_rms'][i], tmit_rms=d['tmit_rms'][i], x_severity=d['x_severity'][i], y_severity=d['y_severity'][i], tmit_severity=d['tmit_severity'][i]) orbit.append(bpm) return orbit @classmethod def from_MATLAB_file(cls, filepath): """Files saved in the matlab format are awful to deal with: Plain-old lists turn into crazy nested nonsense.""" d = matlog.load(filepath) orbit = cls() for (i, name) in enumerate(d['data']['names'][0][0]): bpm = StaticBPM(str(name).strip(), z_pos=d['data']['z'][0][0][0][i], x_val=d['data']['x'][0][0][0][i], y_val=d['data']['y'][0][0][0][i], tmit_val=d['data']['tmit'][0][0][0][i], x_rms=d['data']['x_rms'][0][0][0][i], y_rms=d['data']['y_rms'][0][0][0][i], tmit_rms=d['data']['tmit_rms'][0][0][0][i], x_severity=d['data']['x_severity'][0][0][0][i], y_severity=d['data']['y_severity'][0][0][0][i], tmit_severity=d['data']['tmit_severity'][0][0][0][i]) orbit.append(bpm) orbit.name = os.path.basename(filepath) return orbit @classmethod def from_json_file(cls, filepath): with open(filepath) as json_file: d = json.load(json_file) orbit = cls.from_dict(d) orbit.name = os.path.basename(filepath) return orbit def __init__(self, name=None, parent=None): super(BaseOrbit, self).__init__(parent=parent) self._bpms = [] self._bpm_name_dict = {} self._zmin = None self._zmax = None self._rmat_cache = None self._rmats_for_fit = None self._zs_for_fit = None self._saved_fit_start = None self._saved_fit_end = None self._saved_fit_point = None self.name = name self.fit_data = None def __str__(self): return str(self.name) @property def bpms(self): return self._bpms @bpms.setter def bpms(self, new_bpms): self._clear_all_caches() self._bpms = new_bpms self._bpm_name_dict = {} for bpm in new_bpms: self._bpm_name_dict[bpm.name] = bpm def append(self, new_bpm): if new_bpm.name in self._bpm_name_dict: raise ValueError('Orbit already contains a BPM named "{}". BPM names in an orbit must be unique.'.format(new_bpm.name)) self._bpm_name_dict[new_bpm.name] = new_bpm self._bpms.append(new_bpm) def bpm_with_name(self, name): return self._bpm_name_dict[name] def _clear_z_cache(self): self._zmin = None self._zmax = None def _clear_all_caches(self): self._rmat_cache = None self._clear_z_cache() def _find_z_min_and_max(self): for bpm in self.bpms: if (self._zmin is None) or bpm.z < self._zmin: self._zmin = bpm.z if (self._zmax is None) or bpm.z > self._zmax: self._zmax = bpm.z def zmin(self): if self._zmin is None: self._find_z_min_and_max() return self._zmin def zmax(self): if self._zmax is None: self._find_z_min_and_max() return self._zmax def xmin(self): xmin = None for bpm in self.bpms: if bpm.x < xmin or (xmin is None): xmin = bpm.x return xmin def xmax(self): xmax = None for bpm in self.bpms: if bpm.x > xmax or (xmax is None): xmax = bpm.x return xmax def ymin(self): ymin = None for bpm in self.bpms: if bpm.y < ymin or (ymin is None): ymin = bpm.y return ymin def ymax(self): ymax = None for bpm in self.bpms: if bpm.y > ymax or (ymax is None): ymax = bpm.y return ymax def tmitmin(self): tmitmin = None for bpm in self.bpms: if bpm.tmit < tmitmin or (tmitmin is None): tmitmin = bpm.tmit return tmitmin def tmitmax(self): tmitmax = None for bpm in self.bpms: if bpm.tmit > tmitmax or (tmitmax is None): tmitmax = bpm.tmit return tmitmax def names(self): return [bpm.name for bpm in self.bpms] def vals(self, axis): return [getattr(bpm,axis) for bpm in self.bpms] def x_vals(self): return self.vals('x') def y_vals(self): return self.vals('y') def tmit_vals(self): return self.vals('tmit') def x_rms_vals(self): return self.vals('x_rms') def y_rms_vals(self): return self.vals('y_rms') def tmit_rms_vals(self): return self.vals('tmit_rms') def z_vals(self): return self.vals('z') def x_severity_vals(self): return self.vals('x_severity') def y_severity_vals(self): return self.vals('y_severity') def tmit_severity_vals(self): return self.vals('tmit_severity') def x_status_vals(self): return self.vals('x_status') def y_status_vals(self): return self.vals('y_status') def tmit_status_vals(self): return self.vals('tmit_status') def sort_bpms_by_z(self): self.bpms.sort(key=attrgetter('z')) def export_to_json(self, filename): raise NotImplementedError def __getitem__(self, item): return self.bpms[item] def __len__(self): return len(self._bpms) def __iter__(self): return iter(self._bpms) def to_static(self): return self def to_dict(self): d = {'x': self.vals('x'), 'y': self.vals('y'), 'tmit': self.vals('tmit'), 'z': self.vals('z'), 'x_rms': self.vals('x_rms'), 'y_rms': self.vals('y_rms'), 'tmit_rms': self.vals('tmit_rms'), 'x_severity': self.vals('x_severity'), 'y_severity': self.vals('y_severity'), 'tmit_severity': self.vals('tmit_severity')} d['names'] = self.names() return d def save_to_file(self, filepath='default'): self.save_to_MATLAB_file(filepath) self.save_to_json(filepath) def save_to_MATLAB_file(self, filepath='default'): if filepath == 'default': filename = "orbit" else: (filepath, filename) = os.path.split(filepath) matlog.save(filename, self.to_dict(), filepath, oned_as="row") def save_to_json_file(self, filepath='default'): if filepath=='default': filename = "orbit-{}.json".format(datetime.now().strftime("%Y-%m-%d-%H%M%S")) filepath = os.path.join("/home/physics/mgibbs/orbit_data/", filename) with open(filepath, 'w') as f: json.dump(self.to_dict(), f) def sector_locations(self): # This assumes BPM names follow the pattern BPMS:SECTOR:UNITNUMBER ticks = [] current_sector = None for (i, bpm) in enumerate(self.bpms): bpm_sector = bpm.name.split(':',2)[1] if current_sector != bpm_sector: current_sector = bpm_sector if i==0: z = bpm.z else: z = (bpm.z + self.bpms[i-1].z)/2.0 ticks.append((z, current_sector)) return ticks def rmats(self, from_device=None): """Get R-Matrices for each BPM from the model. The matrices for this orbit are then cached, for performance reasons. If the orbit's bpms property changes, this cache is cleared. Returns ------- numpy.ndarray A Nx6x6 numpy array with R matrices for each BPM. N is equal to len(self.bpms).""" if self._rmat_cache is None: self._rmat_cache = model.get_rmat(self.names()) return self._rmat_cache def fit(self, start, end, fit_point, fit_xpos=True, fit_xang=True, fit_ypos=True, fit_yang=True, fit_energy_difference=True, fit_xkick=True, fit_ykick=True, opt_dict=None): """Fit a trajectory to the orbit's BPM readings, given the R-matrices at each BPM. Parameters: ---------- start : BaseBPM or int The first BPM to include in the fit. end : BaseBPM or int The last BPM to include in the fit. fit_point : BaseBPM or int The BPM to use for the initial fit point. fit_xpos : Optional[bool] Whether or not to fit the x position. fit_xang : Optional[bool] Whether or not to fit the x angle. fit_ypos : Optional[bool] Whether or not to fit the y position. fit_yang : Optional[bool] Whether or not to fit the y angle. fit_energy_difference : Optional[bool] Whether or not to fit dE/E. fit_xkick : Optional[bool] Whether or not to fit the x kick. fit_ykick : Optional[bool] Whether or not to fit the y kick. opt_dict : Optional[dict] A dictionary which provides keys matching any of the above options. Returns ------- dict A dictionary with the following keys: 'xpos': a numpy.ndarray of fitted x trajectories in mm. 'ypos': a numpy.ndarray of fitted y trajectories in mm. 'xpos0': the fitted x position at z0 in mm. 'xang0': the fitted x angle at z0 in mrad. 'ypos0': the fitted y position at z0 in mm. 'yang0': the fitted y angle at z0 in mrad. 'dE/E': the fitted dE/E in parts per 1000. Only returned if R16 or R36 > 10mm in the fit region. 'xkick': the fitted x kick in mrad. 'ykick': the fitted y kick in mrad. 'dp': A dictionary with all of the above keys, but this time with values representing the fitted error. Raises ------ Exception If the machine model is not available (usually this is because EPICSv4 could not be imported) ValueError If the number of R matrices in Rs does not equal the number of BPMs in the orbit. """ #This method is really crappy - its an almost line-for-line port of the MATLAB BPM GUI's fitting routine, # which ends up really awkward in numpy. There are probably performance gains to be had here - unnecessary # copies, unnecessary conversions between numpy arrays and numpy matrices, etc. if MODEL_AVAILABLE == False: raise Exception("Model is not available, cannot perform fitting.") if isinstance(start, BaseBPM): start_index = self.bpms.index(start) else: start_index = int(start) if isinstance(end, BaseBPM): end_index = self.bpms.index(end) else: end_index = int(end) if isinstance(fit_point, BaseBPM): z0 = fit_point.z fit_point_index = self.bpms.index(fit_point) else: fit_point_index = int(fit_point) z0 = self.bpms[fit_point_index].z if start_index == self._saved_fit_start and end_index == self._saved_fit_end and fit_point_index == self._saved_fit_point: Rs = self._rmats_for_fit else: Rs = model.get_rmat(self.bpms[fit_point_index].name, self.names()) self._rmats_for_fit = Rs self._saved_fit_start = start_index self._saved_fit_end = end_index self._saved_fit_point = fit_point_index Rs = Rs[start_index:end_index+1] zs = np.array(self.z_vals())[start_index:end_index+1] xs = np.array(self.x_vals())[start_index:end_index+1] ys = np.array(self.y_vals())[start_index:end_index+1] dxs = np.array(self.x_rms_vals())[start_index:end_index+1] #dxs = np.ones(len(zs))/1.0e-3 dys = np.array(self.y_rms_vals())[start_index:end_index+1] #dys = np.ones(len(zs))/1.0e-3 tmit_sevrs = np.array(self.tmit_severity_vals())[start_index:end_index+1] #Filter out BPMS with bad TMIT severity (usually a good indicator of no beam) tmit_good = np.where(tmit_sevrs == 0) tmit_sevrs = tmit_sevrs[tmit_good] num_bpms = len(tmit_sevrs) if num_bpms == 0: self.fit_data = None raise NoValidBPMDataException("No BPMS with sufficient TMIT for fit.") zs = zs[tmit_good] xs = xs[tmit_good] ys = ys[tmit_good] dxs = dxs[tmit_good] dys = dys[tmit_good] Rs = Rs[tmit_good] if Rs.shape != (num_bpms,6,6): raise ValueError("Number of R matrices in Rs does not equal the number of BPMs in the orbit.") xsf = np.zeros((1, num_bpms)) ysf = np.zeros((1, num_bpms)) #Grab just the R1s and R3s, except for R15 and R35. R1s = Rs[:, 0, [0, 1, 2, 3, 5]] R3s = Rs[:, 2, [0, 1, 2, 3, 5]] if not (np.any(np.abs(R1s[:, 4]) > 0.010) or np.any(np.abs(R3s[:,4]) > 0.010)): #Not enough dispersion to fit energy, disabling energy fit. fit_energy_difference = False I = np.where(np.array([fit_xpos, fit_xang, fit_ypos, fit_yang, fit_energy_difference, fit_xkick, fit_ykick]))[0] R1s_kick = R1s.copy() R3s_kick = R3s.copy() R1s_kick[zs <= z0, :] = 0.0 R3s_kick[zs <= z0, :] = 0.0 R1s_kick = np.mat(R1s_kick) R3s_kick = np.mat(R3s_kick) R1s = np.append(R1s, R1s_kick[:,1], 1) R1s = np.append(R1s, R1s_kick[:,3], 1) R3s = np.append(R3s, R3s_kick[:,1], 1) R3s = np.append(R3s, R3s_kick[:,3], 1) Q = np.append(R1s[:, I], R3s[:, I], 0) S = np.mat(
np.append(xs, ys, 0)
numpy.append
import code # For development: code.interact(local = dict(globals(), **locals())) import numpy as np import xml.etree.ElementTree as et from scipy.io import netcdf import matplotlib.dates as mdates from datetime import datetime, timedelta import matplotlib.pyplot as plt import math # ============================================================================= # # This module processes and compares model output to census benchmarks. # Currently, this module assumes that FATES size structured outputs are # available. Benchmarks are prepared in another script, one such script # is the NGEET/tools_benchmarking_evaluation set. # # Here is the list of model output needed: # # Basal Area: BA_SCPF (SIZE x PFT) # Diameter Increment: DDBH_SCPF (SIZE x PFT) / NPLANT_SCPF # Mortality Rate: (M1_SCPF + M2_SCPF + M3_SCPF + M4_SCPF + M5_SCPF + # M6_SCPF + M7_SCPF + M8_SCPF) / NPLANT_SCPF # Recruitment Rate: RECRUITMENT (PFT) # # # # # ============================================================================= # The CTFS processed files use an invalid flag of -9e+30 # We will consider anything very large negative invalid invalid_flag = -9.9e10 # Anything that is a rate, needs to be normalized by the number of plants # This is a restriction on nplant_scpf_name = 'NPLANT_SCPF' # BA_SCPF (SIZE x PFT) # DDBH_SCPF (SIZE x PFT) # (M1_SCPF + M2_SCPF + M3_SCPF + M4_SCPF + M5_SCPF + M6_SCPF + M7_SCPF + M8_SCPF) / NPLANT_SCPF # RECRUITMENT (PFT) # This object is bound to each site # It should contain a list of viable benchmarks class benchmark_obj: def __init__(self,census_filename): self.bvarlist = [] self.census_filename = census_filename # Lets check through the census file and see if any of these variables # are in the file. We will later look through the model output # and pop off list entries that are not there. if(census_filename.strip() != ''): print("Loading census file: {}".format(census_filename)) fp = netcdf.netcdf_file(census_filename, 'r', mmap=False) cens_var_name = 'basal_area_by_size_census' if (fp.variables.has_key(cens_var_name)): self.bvarlist.append(benchmark_vars( name = 'Basal Area', \ mod_symbols = 'BA_SCPF', \ obs_symbol = cens_var_name, \ mod_dimclass = 'scpf', \ obs_dimclass = 'size-class', \ unit = 'm2/ha', \ vartype = 'quantity')) self.bvarlist[-1].load_census(fp) else: print('Census variable: '+cens_var_name+', was not found in the census file') cens_var_name = 'growth_increment_by_size_census' if (fp.variables.has_key(cens_var_name)): self.bvarlist.append(benchmark_vars( name = 'Growth Increment', \ mod_symbols = 'DDBH_SCPF', \ obs_symbol = cens_var_name, \ mod_dimclass = 'scpf', \ obs_dimclass = 'size-class', \ unit = 'cm/yr', \ vartype = 'rate')) self.bvarlist[-1].load_census(fp) else: print('Census variable: '+cens_var_name+', was not found in the census file') cens_var_name = 'mortality_rate_by_size_census' if (fp.variables.has_key(cens_var_name)): self.bvarlist.append(benchmark_vars( name = 'Mortality Rate', \ mod_symbols = 'M1_SCPF,M2_SCPF,M3_SCPF,M4_SCPF,M5_SCPF,M6_SCPF,M7_SCPF,M8_SCPF', \ obs_symbol = cens_var_name, \ mod_dimclass = 'scpf', \ obs_dimclass = 'size-class', \ unit = '/yr', \ vartype = 'rate')) self.bvarlist[-1].load_census(fp) cens_var_name = 'new_recruits_by_census' if (fp.variables.has_key(cens_var_name)): self.bvarlist.append(benchmark_vars( name = 'Recruitment Rate', \ mod_symbols = 'RECRUITMENT', \ obs_symbol = cens_var_name, \ mod_dimclass = 'pft', \ obs_dimclass = 'scalar', \ unit = 'indv ha-1 yr-1', \ vartype = 'quantity')) self.bvarlist[-1].load_census(fp) else: print('Census variable: '+cens_var_name+', was not found in the census file') fp.close() # =================================================================================== ## Check the first history file in the list to see which benchmarking variables # are available. def init_history(self,hist_file0,n_htypes): fp = netcdf.netcdf_file(hist_file0, 'r', mmap=False) for bvar in self.bvarlist: all_symbols_found = True for mod_symbol in bvar.mod_symbols: if( not fp.variables.has_key(mod_symbol) ): all_symbols_found = False if( all_symbols_found ): bvar.active = True if( bvar.mod_dimclass == 'scpf'): dims = fp.variables[bvar.mod_symbols[0]].dimensions if(dims[1] != 'fates_levscpf'): print('An SCPF benchmark variable: {} does not actually'.format(bvar.mod_symbols[0])) print(' have the correct dimensions: {}... exiting'.format(dims)) exit(2) fates_levscls = fp.variables['fates_levscls'].data if (fates_levscls[0] == 0.0): bvar.offset0 = True if(fates_levscls.size-1 != bvar.scv_obs_ar.shape[0]): print('Dimensions of model output size-classes dont match observations') for isc,scvar in enumerate(fates_levscls[1:]): if( np.abs(scvar- bvar.scv_x[isc])>1.0e-10 ): print('Dimensions of model output size-classes dont match observations') print('Observed classes: {}'.format(bvar.scv_x)) print('Modeled (0 is ignored): {}',format(fates_levscls)) else: bvar.offset0 = False if(fates_levscls.size != bvar.scv_obs_ar.shape[0]): print('Dimensions of model output size-classes dont match observations') for isc,scvar in enumerate(fates_levscls[:]): if( np.abs(scvar- bvar.scv_x[isc])>1.0e-10 ): print('Dimensions of model output size-classes dont match observations') print('Observed classes: {}'.format(bvar.scv_x)) print('Modeled (0 is ignored): {}',format(fates_levscls)) d_sizes = bvar.scv_obs_ar.shape bvar.modlist = [] for imod in range(n_htypes): bvar.modlist.append(mod_scv_array(d_sizes[0])) elif( bvar.mod_dimclass == 'pft' ): dims = fp.variables[bvar.mod_symbols[0]].dimensions if(dims[1] != 'fates_levpft'): print('A PFT benchmark variable: {} does not actually'.format(bvar.mod_symbols[0])) print(' have the correct dimensions: {}... exiting'.format(dims)) exit(2) fates_levpft = fp.variables['fates_levpft'].data scalar_size = 1 bvar.modlist = [] for imod in range(n_htypes): bvar.modlist.append(mod_scv_array(scalar_size)) fp.close() # =================================================================================== def load_history(self,filename,h_index,site_index): # Objective is to push new estimates of the benchmark variables fp = netcdf.netcdf_file(filename, 'r', mmap=False) #code.interact(local = dict(globals(), **locals())) for bvar in self.bvarlist: if(bvar.active): d_sizes = fp.variables[bvar.mod_symbols[0]].shape hist_arr =
np.ma.zeros(fp.variables[bvar.mod_symbols[0]].shape)
numpy.ma.zeros
""" Functions used in Metabolite annotation """ import numpy as np from scipy.interpolate import interpolate from scipy.optimize import leastsq def find(a,cond): b=np.nonzero(cond) return b def cauchy(p2,p3): siz=(p2-1)/2*(np.ones(2)) xxrange = np.arange(-siz[1],siz[1]+1) yyrange = np.arange(-siz[1],siz[1]+1) X,Y = np.meshgrid(xxrange,yyrange) arg=((1/(p3[0]*3.14159))/((1/p3[0])**2+(X*X)))*((1/(p3[1]*3.14159))/((1/p3[1])**2+(Y*Y))) eps=2.2204*10**(-16) h=arg h[h<(eps*np.amax(h))]=0 sumh=np.sum(h) if sumh!=0: h=h/sumh h=h/np.amax(h) return h def expon(p2,p3): siz=(p2-1)/2*(np.ones(2)) xxrange = np.arange(-siz[1],siz[1]+1) yyrange = np.arange(-siz[1],siz[1]+1) X,Y = np.meshgrid(xxrange,yyrange) #arg=((1/p3[0])/((1/p3[0])**2+(X*X)))*((1/p3[1])/((1/p3[1])**2+(Y*Y))) arg=(1/6.28)*(1/p3[0])*np.exp(-X*X/(2*p3[0]**2))*(1/p3[1])*np.exp(-X*X/(2*p3[1]**2)) eps=2.2204*10**(-16) h=arg h[h<(eps*np.amax(h))]=0 sumh=np.sum(h) if sumh!=0: h=h/sumh h=h/np.amax(h) return h def exponcauchy(p2,p3): siz=(p2-1)/2*(np.ones(2)) xxrange = np.arange(-siz[1],siz[1]+1) yyrange = np.arange(-siz[1],siz[1]+1) X,Y = np.meshgrid(xxrange,yyrange) #arg=((1/p3[0])/((1/p3[0])**2+(X*X)))*((1/p3[1])/((1/p3[1])**2+(Y*Y))) arg=(1/3.14159)*(1/p3[0])*np.exp(-X*X/(2*p3[0]**2))*((1/(p3[1]*3.14159))/((1/p3[1])**2+(Y*Y))) eps=2.2204*10**(-16) h=arg h[h<(eps*np.amax(h))]=0 sumh=np.sum(h) if sumh!=0: h=h/sumh h=h/np.amax(h) return h def cauchyexpon(p2,p3): siz=(p2-1)/2*(np.ones(2)) xxrange = np.arange(-siz[1],siz[1]+1) yyrange = np.arange(-siz[1],siz[1]+1) X,Y = np.meshgrid(xxrange,yyrange) #arg=((1/p3[0])/((1/p3[0])**2+(X*X)))*((1/p3[1])/((1/p3[1])**2+(Y*Y))) arg=((1/(p3[0]*3.14159))/((1/p3[0])**2+(X*X)))*(1/3.14159)*(1/p3[1])*np.exp(-Y*Y/(2*p3[0]**2)) eps=2.2204*10**(-16) h=arg h[h<(eps*np.amax(h))]=0 sumh=np.sum(h) if sumh!=0: h=h/sumh h=h/np.amax(h) return h def subpix2(z,ii,jj): trange = np.arange(7) ttrange = np.arange(7) X,Y = np.meshgrid(trange,ttrange) outgrid = interpolate.interp2d(X,Y,z,kind='quintic') xx=yy=np.arange(61)/10. l=outgrid(xx,yy) l=l[30-9:30+10,30-9:30+10] ind=find(l,l==np.amax(l)) #print l #print ind[0][0],ind[1][0] ni=ii+(ind[0][0]-9.)/10 nj=jj+(ind[1][0]-9.)/10 #print ii,jj #print ni,nj return[ni,nj] def dephcl(z): e = lambda v,z,: np.sum(np.abs(z-z[9,9]*cauchy(19,v)),1) vi=[0.3,0.3] v, success = leastsq(e, vi, args=(z), maxfev=1000) if v[0]<0.001 or v[0]>2 or v[1]<0.001 or v[1]>2 : v[0]=v[1]=0.3+np.random.normal(0, 0.05, 1) return v def dephcg(z): e = lambda v,z,: np.sum(np.abs(z-z[9,9]*expon(19,v)),1) vi=[1,1] #z[z<0]=0 v, success = leastsq(e, vi, args=(z), maxfev=1000) if v[0]<0.1 or v[0]>4 or v[1]<0.1 or v[1]>4 : v[0]=v[1]=2+np.random.normal(0, 0.05, 1) return v def dephcaprio(z,a,b,c): if c[0]=='g' and c[1]=='g': e = lambda v,z,: np.sum(np.abs(z-z[9,9]*expon(19,v)),1) vi=[a,b] #z[z<0]=0 v, success = leastsq(e, vi, args=(z), maxfev=1000) if np.abs(float(v[0]-a))>1 or v[0]<0.5 or v[0]>6: v[0]=a+np.random.normal(0, 0.05, 1) if np.abs(float(v[1]-b))>1 or v[0]<0.5 or v[0]>6: v[1]=b+np.random.normal(0, 0.05, 1) if c[0]=='l' and c[1]=='l': e = lambda v,z,: np.sum(np.abs(z-z[9,9]*cauchy(19,v)),1) a=float(1/float(a)) b=float(1/float(b)) vi=[a,b] v, success = leastsq(e, vi, args=(z), maxfev=1000) #print vi if np.abs(float(v[0]-float(1/float(a))))>0.5 or v[0]<0.08 or v[0]>4: v[0]=a+np.random.normal(0, 0.05, 1) #print float(1/float(a)) v[0]=1/v[0] if np.abs(float(v[1]-float(1/float(b))))>0.5 or v[1]<0.08 or v[1]>4: v[1]=b+np.random.normal(0, 0.05, 1) v[1]=1/v[1] if c[0]=='g' and c[1]=='l': e = lambda v,z,: np.sum(np.abs(z-z[9,9]*exponcauchy(19,v)),1) b=float(1/float(b)) vi=[a,b] v, success = leastsq(e, vi, args=(z), maxfev=1000) #print 'ham',v #print vi if np.abs(float(v[0]-a))>1 or v[0]<0.5 or v[0]>6: v[0]=a+np.random.normal(0, 0.05, 1) #print float(1/float(a)) if np.abs(float(v[1]-float(b)))>0.5 or v[1]<0.08 or v[1]>4: v[1]=b+np.random.normal(0, 0.05, 1) v[1]=1/v[1] if c[0]=='l' and c[1]=='g': e = lambda v,z,: np.sum(np.abs(z-z[9,9]*cauchyexpon(19,v)),1) a=float(1/float(a)) vi=[a,b] v, success = leastsq(e, vi, args=(z), maxfev=1000) #print vi if np.abs(float(v[1]-b))>1 or v[0]<0.5 or v[0]>6: v[1]=b+np.random.normal(0, 0.05, 1) #print float(1/float(a)) if np.abs(float(v[0]-float(1/float(a))))>0.5 or v[1]<0.08 or v[1]>4: v[0]=a+np.random.normal(0, 0.05, 1) v[0]=1/v[0] #print c #print vi #print v return v,c def exp_hand(z,newn): c=0 for i in range(len(z)): if z[i]==newn: c=1 break return c def exp_yn(amp,ampref,test): artest=np.array(test) ol=np.nonzero(artest==1) #print np.size(ol) #print len(amp)/2 #print amp if np.size(ol)>len(amp)/2: ver=0 else: o=np.nonzero(artest==0) vamp=np.array(amp) vampref=np.array(ampref) ivamref=vampref[o] ivam=vamp[o] ii=ivamref[ivamref==np.amax(ivamref)] jj=ivam[ivamref==np.amax(ivamref)] ver=1 if np.size(ol)>1: ol=ol[0] #print np.size(ol) #print vampref #print vamp #print ol if np.size(ol)>1: for kkk in range(np.size(ol)): #print float(((vampref[ol[kkk]]/ii)/(vamp[ol[kkk]]/jj))) if (((vampref[ol[kkk]]/ii)/(vamp[ol[kkk]]/jj)))>50 or (((vampref[ol[kkk]]/ii)/(vamp[ol[kkk]]/jj)))<0.0200: #print 'lela' ver=0 else: for kkk in range(np.size(ol)): #print float(((vampref[ol[kkk]][0]/ii)/(vamp[ol[kkk]][0]/jj))[0]) <0.001 if (((vampref[ol[kkk]][0]/ii)/(vamp[ol[kkk]][0]/jj))[0])>50 or (((vampref[ol[kkk]][0]/ii)/(vamp[ol[kkk]][0]/jj))[0])<0.0200: #print 'lela' ver=0 return ver def exp_ync(amp,ampref,test): artest=np.array(test) ol=
np.nonzero(artest==1)
numpy.nonzero
# -*- coding: utf-8 -*- """ Модуль определения места повреждения (КЗ) на высоковольтных ВЛ Базируется на упрощенных способах одностороннего замера, описанных в книге Аржанникова <NAME>. Определение места короткого замыкания на высоковольтных линиях электропередачи / Под ред. <NAME>. - М: Энергоатомиздат, 2003. """ import numpy as np r2d = 180/np.pi a = -0.5 + 0.5j*np.sqrt(3) a2 = -0.5 - 0.5j*np.sqrt(3) a0 = 1.0 + 0.0j v1 = np.array([a0,a,a2])/3 v2 = np.array([a0,a2,a])/3 v0 = np.array([a0,a0,a0])/3 vA = np.array([a0,a0,a0]) vB = np.array([a2,a ,a0]) vC = np.array([a, a2,a0]) vAB = vA - vB vBC = vB - vC vCA = vC - vA Mf2s =
np.array([v1,v2,v0])
numpy.array
""" This file has functions about bounding box processing. """ import numpy as np def bbox_transform(ex_rois, gt_rois): """ compute bounding box regression targets from ex_rois to gt_rois :param ex_rois: [N, 4] :param gt_rois: [N, 4] :return: [N, 4] """ ex_widths = ex_rois[:, 2] - ex_rois[:, 0] + 1.0 ex_heights = ex_rois[:, 3] - ex_rois[:, 1] + 1.0 ex_ctr_x = ex_rois[:, 0] + 0.5 * (ex_widths - 1.0) ex_ctr_y = ex_rois[:, 1] + 0.5 * (ex_heights - 1.0) gt_widths = gt_rois[:, 2] - gt_rois[:, 0] + 1.0 gt_heights = gt_rois[:, 3] - gt_rois[:, 1] + 1.0 gt_ctr_x = gt_rois[:, 0] + 0.5 * (gt_widths - 1.0) gt_ctr_y = gt_rois[:, 1] + 0.5 * (gt_heights - 1.0) targets_dx = (gt_ctr_x - ex_ctr_x) / (ex_widths + 1e-14) targets_dy = (gt_ctr_y - ex_ctr_y) / (ex_heights + 1e-14) targets_dw = np.log(gt_widths / ex_widths) targets_dh = np.log(gt_heights / ex_heights) targets = np.vstack( (targets_dx, targets_dy, targets_dw, targets_dh)).transpose() return targets def bbox_pred(boxes, box_deltas, is_train=False): """ Transform the set of class-agnostic boxes into class-specific boxes by applying the predicted offsets (box_deltas) :param boxes: !important [N 4] :param box_deltas: [N, 4 * num_classes] :return: [N 4 * num_classes] """ if boxes.shape[0] == 0: return np.zeros((0, box_deltas.shape[1])) boxes = boxes.astype(np.float, copy=False) widths = boxes[:, 2] - boxes[:, 0] + 1.0 heights = boxes[:, 3] - boxes[:, 1] + 1.0 ctr_x = boxes[:, 0] + 0.5 * (widths - 1.0) ctr_y = boxes[:, 1] + 0.5 * (heights - 1.0) dx = box_deltas[:, 0::4] dy = box_deltas[:, 1::4] dw = box_deltas[:, 2::4] dh = box_deltas[:, 3::4] if is_train: dx = np.array(map(lambda x:
np.sign(x)
numpy.sign
import numpy as np from lmfit import Parameters import sys import os sys.path.append(os.path.abspath('.')) sys.path.append(os.path.abspath('./Functions')) from utils import find_minmax from PeakFunctions import Gaussian, LogNormal class Sphere: def __init__(self, x=0.001, R=1.0, Rsig=0.0, dist='Gaussian', N=50, integ='Trapezoid', rhoc=1.0, rhosol=0.0, norm=1.0, bkg=0.0,mpar={}): """ Calculates the form factor of a solid sphere with size distribution x : Array of q-values in the same reciprocal unit as R and Rsig R : Mean radius of the solid spheres Rsig : Width of the distribution of solid spheres dist : Gaussian or LogNormal N : No. of points on which the distribution will be calculated integ : The type of integration ('Trapizoid' or 'MonteCarlo') Default: 'Trapezoid' rhoc : Electron density of the particle rhosol : Electron density of the solvent or surrounding environment """ if type(x)==list: self.x=np.array(x) else: self.x=x self.R=R self.Rsig=Rsig self.dist=dist self.rhoc=rhoc self.rhosol=rhosol self.norm=norm self.integ=integ self.bkg=bkg self.N=N self.__mpar__=mpar self.choices={'dist':['Gaussian','LogNormal'],'integ':['Trapezoid','MonteCarlo']} self.init_params() self.output_params = {'scaler_parameters': {}} def init_params(self): self.params=Parameters() self.params.add('R',value=self.R,vary=0,min=-np.inf,max=np.inf,expr=None,brute_step=0.1) self.params.add('Rsig',value=self.Rsig,vary=0,min=-np.inf,max=np.inf,expr=None,brute_step=0.1) self.params.add('rhoc',value=self.rhoc,vary=0,min=-np.inf,max=np.inf,expr=None,brute_step=0.1) self.params.add('rhosol',value=self.rhosol,vary=0,min=-np.inf,max=np.inf,expr=None,brute_step=0.1) self.params.add('norm',value=self.norm,vary=0,min=-np.inf,max=np.inf,expr=None,brute_step=0.1) self.params.add('bkg',value=self.bkg,vary=0,min=-np.inf,max=np.inf,expr=None,brute_step=0.1) def y(self): rho=self.rhoc-self.rhosol if self.Rsig<1e-3: return self.norm*rho**2*16*np.pi**2*(np.sin(self.x*self.R)-self.x*self.R*np.cos(self.x*self.R))**2/self.x**6+self.bkg else: if self.integ=='Trapezoid': if self.dist=='Gaussian': gau=Gaussian.Gaussian(x=0.001,pos=self.R,wid=self.Rsig) rmin, rmax = max(0.001, self.R-5*self.Rsig),self.R+5*self.Rsig r=np.linspace(rmin,rmax,self.N) gau.x=r dist=gau.y() sumdist=np.sum(dist) self.output_params['Distribution']={'x':r,'y':dist/sumdist} self.output_params['scaler_parameters']['Rmean']=self.R self.output_params['scaler_parameters']['Rwidth']=2.35482*self.Rsig print(dist) if type(self.x)==np.ndarray: ffactor=[] for x in self.x: f=np.sum(16.0*np.pi**2*(np.sin(x*r)-x*r*np.cos(x*r))**2*dist/x**6) ffactor.append(f/sumdist) return self.norm*rho**2*np.array(ffactor)+self.bkg else: return self.norm*rho**2*np.sum(16*np.pi**2*(np.sin(self.x*r)-self.x*r*np.cos(self.x*r))**2*dist/self.x**6)/sumdist+self.bkg elif self.dist=='LogNormal': lgn=LogNormal.LogNormal(x=0.001,pos=self.R,wid=self.Rsig) rmin,rmax=max(0.001, np.exp(np.log(self.R) - 5*self.Rsig)), np.exp(np.log(self.R) + 5.0*self.Rsig) r=np.logspace(np.log10(rmin),np.log10(rmax),self.N) lgn.x=r dist=lgn.y() sumdist=np.sum(dist) self.output_params['Distribution']={'x':r,'y':dist/sumdist} self.output_params['scaler_parameters']['Rmean'] = np.exp(np.log(self.R)+self.Rsig**2/2) self.output_params['scaler_parameters']['Rwidth'] = np.sqrt((np.exp(self.Rsig**2)-1)*np.exp(2*np.log(self.R)+self.Rsig**2)) if type(self.x)==np.ndarray: ffactor=[] for x in self.x: f=np.sum(16*np.pi**2*(np.sin(x*r)-x*r*np.cos(x*r))**2*dist/x**6) ffactor.append(f/sumdist) return self.norm*rho**2*np.array(ffactor)+self.bkg else: return self.norm*rho**2*np.sum(16*np.pi**2*(np.sin(self.x*r)-self.x*r*np.cos(self.x*r))**2*dist/self.x**6)/sumdist+self.bkg else: np.random.seed(100) if self.dist == 'Gaussian': r=np.sort(np.random.normal(self.R,self.Rsig,10000)) gau = Gaussian.Gaussian(x=r, pos=self.R, wid=self.Rsig) dist = gau.y() sumdist = np.sum(dist) self.output_params['Distribution'] = {'x': r, 'y': dist / sumdist} self.output_params['scaler_parameters']['Rmean'] = self.R self.output_params['scaler_parameters']['Rwidth'] = 2.35482 * self.Rsig if type(self.x) == np.ndarray: ffactor = [] for x in self.x: f = np.sum(16.0*np.pi**2*(np.sin(x * r) - x * r *
np.cos(x * r)
numpy.cos
""" Creates Figure 4 -- Model Interpretation """ from os.path import abspath, dirname from string import ascii_uppercase import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from sklearn.preprocessing import scale from sklearn.utils import resample from .common import getSetup from ..dataImport import form_tensor, import_cytokines from ..predict import run_model, predict_regression from tensorpack import perform_CMTF N_BOOTSTRAP = 30 PATH_HERE = dirname(dirname(abspath(__file__))) TARGETS = ['status', 'gender', 'race', 'age'] def bootstrap_weights(): """ Predicts samples with unknown outcomes. Parameters: None Returns: weights (pandas.DataFrame): mean and StD of component weights w/r to prediction targets """ tensor, matrix, patient_data = form_tensor() patient_data = patient_data.reset_index(drop=True) patient_data = patient_data.loc[patient_data['status'] != 'Unknown'] components = perform_CMTF(tensor, matrix) components = components[1][0] components = components[patient_data.index, :] stats = ['Mean', 'StD'] index = pd.MultiIndex.from_product([TARGETS, stats]) weights = pd.DataFrame( index=index, columns=list(range(1, components.shape[1] + 1)) ) for target in TARGETS: coef = [] for sample in range(N_BOOTSTRAP): data, labels = resample(components, patient_data.loc[:, target]) if target == 'age': _, _coef = predict_regression(data, labels, return_coef=True) else: _, _, _coef = run_model(data, labels, return_coef=True) coef.append(_coef) coef = scale(coef, axis=1) weights.loc[(target, 'Mean'), :] = np.mean(coef, axis=0) weights.loc[(target, 'StD'), :] = np.std(coef, axis=0, ddof=1) return weights def tfac_setup(): """ Import cytokine data and correlate tfac components to cytokines and data sources. Parameters: None Returns: subjects (pandas.DataFrame): patient correlations to tfac components cytos (pandas.DataFrame): cytokine correlations to tfac components source (pandas.DataFrame): cytokine source correlations to tfac components pat_info (pandas.DataFrame): patient meta-data """ tensor, matrix, pat_info = form_tensor() plasma, _ = import_cytokines() cytokines = plasma.index pat_info.loc[:, 'sorted'] = range(pat_info.shape[0]) pat_info = pat_info.sort_values(['cohort', 'type', 'status']) sort_idx = pat_info.loc[:, 'sorted'] pat_info = pat_info.drop('sorted', axis=1) pat_info = pat_info.T factors = perform_CMTF(tensor, matrix) col_names = [f"Cmp. {i}" for i in np.arange(1, factors.rank + 1)] subjects = pd.DataFrame( factors.factors[0][sort_idx, :], columns=col_names, index=[str(x) for x in pat_info.columns] ) cytos = pd.DataFrame( factors.factors[1], columns=col_names, index=cytokines ) source = pd.DataFrame( factors.factors[2], columns=col_names, index=["Serum", "Plasma"] ) return subjects, cytos, source, pat_info def plot_results(weights, subjects, cytos, source, pat_info): """ Plots component weights and interpretation. Parameters: weights (pandas.DataFrame): mean and StD of component weights w/r to prediction targets subjects (pandas.DataFrame): patient correlations to tfac components cytos (pandas.DataFrame): cytokine correlations to tfac components source (pandas.DataFrame): cytokine source correlations to tfac components pat_info (pandas.DataFrame): patient meta-data """ fig_size = (5, 5) layout = { # 'height_ratios': [1, 0.5], 'hspace': 0.3, 'ncols': 1, 'nrows': 2, 'wspace': 0 } _, fig, gs = getSetup( fig_size, layout, style=None ) top_gs = gs[0].subgridspec( ncols=3, nrows=1, width_ratios=[35, 4, 25] ) bottom_gs = gs[1].subgridspec( ncols=14, nrows=1, width_ratios=[25, 12, 1, 5, 1, 5, 1, 1, 1, 1, 1, 25, 1, 1], wspace=0 ) for gs in [top_gs, bottom_gs]: for col in range(gs.ncols): fig.add_subplot(gs[col]) fig.delaxes(fig.axes[0]) fig.delaxes(fig.axes[0]) axs = fig.axes for ax in axs: ax.set_frame_on(False) axs[0].set_frame_on(True) spacers = [1, 4, 5, 6, 8, 10, 16] for spacer in spacers: axs[spacer].set_xticks([]) axs[spacer].set_yticks([]) # Determine scale vmin = min(subjects.values.min(), cytos.values.min(), source.values.min()) vmax = max(subjects.values.max(), cytos.values.max(), source.values.max()) # Plot main graphs sns.heatmap( subjects, cmap="PRGn", center=0, xticklabels=True, yticklabels=False, cbar_ax=axs[15], vmin=vmin, vmax=vmax, ax=axs[14] ) sns.heatmap( cytos, cmap="PRGn", center=0, yticklabels=True, cbar=False, vmin=vmin, vmax=vmax, ax=axs[2] ) sns.heatmap( source, cmap="PRGn", center=0, yticklabels=True, cbar=False, vmin=vmin, vmax=vmax, ax=axs[3] ) axs[2].set_yticklabels(cytos.index, fontsize=7) axs[3].set_yticklabels(["Serum", "Plasma"], rotation=0) axs[3].set_xticks(
np.arange(0.5, source.shape[1])
numpy.arange
# reference EVO toolkit from evo.tools import file_interface from evo.tools.file_interface import csv_read_matrix, FileInterfaceException from pysvso.lib.maths.rotation import Euler, Quaternion import numpy as np import logging from pysvso.lib.log import LoggerAdaptor _logger = logging.getLogger("validation.tum") from pysvso.config import Settings settings = Settings() TUM_DATASET_NAME = settings.DATASET_NAME # "rgbd_dataset_freiburg1_xyz" HDD = settings.HDD # "/home/yiakwy" ROOT = settings.ROOT # "{hdd}/WorkSpace".format(hdd=HDD) REPO = settings.REPO # "SEMANTIC_SLAM" PROJECT_ROOT = settings.PROJECT_ROOT # "{root}/Github/{repo}".format(root=ROOT, repo=REPO) # TUM_DATA_DIR = "{project_base}/data/tum/{dataset_name}".format(project_base=Project_base, # dataset_name=TUM_DATASET_NAME) TUM_DATA_DIR = settings.DATA_DIR Project_base = PROJECT_ROOT class Trajectory3D: # Implements STL iterator class Trajectory3DIterator(object): def __init__(self, trajectory): self._trajectory = trajectory self.counter = self.__counter__() def __iter__(self): return self def __counter__(self): l = len(self._trajectory) # one dimension index ind = 0 while True: yield ind ind += 1 if ind >= l: break def __next__(self): try: ind = next(self.counter) return self._trajectory[ind] except StopIteration: raise StopIteration() def __str__(self): return "Trajectory iterator" def __init__(self, timestamp, rots, trans): self.timestamps = timestamp # Rotations self.rots = rots # Translations self.trans = trans pass def __iter__(self): data = np.c_[self.timestamps, self.trans, self.rots] return Trajectory3D.Trajectory3DIterator(data) # @todo TODO return aligned pose data # This parts implements EVO synchronoization algorithm to fetch ground truth for a picture timestamp specified def query_timestamp(self, timestamp, max_diff=0.01): diffs =
np.abs(self.timestamps - timestamp)
numpy.abs
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Jun 13 14:51:29 2019 @author: nk7g14 This for some reason runs fine in the linux terminal but doesn't in the ipython one? https://heasarc.nasa.gov/ftools/caldb/help/uvotsource.html """ import logging import subprocess import glob from astropy.io import fits import pandas as pd import numpy as np import matplotlib.pyplot as plt import re import os import auxil as aux import swift logging.basicConfig(level=logging.DEBUG, format=' %(asctime)s -- %(message)s') home_path = os.getcwd() img_path = 'sources/NGC1313/swift/uvot/img' def uvotsource(image_file): ''' Performs the 'uvotsource' command on a given .img file ''' output_file = image_file[:-4] + '.fits' subprocess.call(['uvotsource image={} srcreg=src.reg bkgreg=bkg.reg sigma=1.0 outfile=uvotsource/{}'.format(image_file, output_file)], shell=True) def uvotproduct(image_file): ''' #TODO translate the following into python my @in = <file>; $t = $in3[0]; $MET = (($t - 53769.415972)*24*3600) + 160653541.0; system "uvotproduct timezero=$MET infile=$dir outfile=$outfile plotfile=$outfile2 srcreg=src.reg bkgreg=bkg.reg batpos=NONE xrtpos=NONE uvotpos=NONE groundpos=NONE reportfile=$rep clobber=yes"; ''' pass def GetFluxes(fits_file): df = pd.DataFrame() data = fits.open(fits_file) df['MET'] = np.array(data[1].data['MET'], dtype=float) df['TSTART'] = np.array(data[1].data['TSTART'], dtype=float) df['TSTOP'] = np.array(data[1].data['TSTOP'], dtype=float) df['RAW_TOT_CNTS'] = np.array(data[1].data['RAW_TOT_CNTS'], dtype=float) df['RAW_TOT_CNTS_ERR'] =
np.array(data[1].data['RAW_TOT_CNTS_ERR'], dtype=float)
numpy.array
import numpy as np from scipy.interpolate import interp1d class NormalizedPulseTemplate: """ Class for handling the template for the pulsed response of the pixels of the camera to a single photo-electron in high and low gain. """ def __init__(self, amplitude_HG, amplitude_LG, time, amplitude_HG_err=None, amplitude_LG_err=None): """ Save the pulse template and optional error and create an interpolation. Parameters ---------- amplitude_HG/LG: array Amplitude of the signal produced in a pixel by a photo-electron in high gain (HG) and low gain (LG) for successive time samples time: array Times of the samples amplitude_HG/LG_err: array Error on the pulse template amplitude """ self.time = np.array(time) self.amplitude_HG = np.array(amplitude_HG) self.amplitude_LG =
np.array(amplitude_LG)
numpy.array
# -*- coding: utf-8 -*- """NOISE ROUTINES This module contains methods for adding and removing noise from data. :Author: <NAME> <<EMAIL>> """ from builtins import zip import numpy as np def add_noise(data, sigma=1.0, noise_type='gauss'): r"""Add noise to data This method adds Gaussian or Poisson noise to the input data Parameters ---------- data : np.ndarray, list or tuple Input data array sigma : float or list, optional Standard deviation of the noise to be added ('gauss' only) noise_type : str {'gauss', 'poisson'} Type of noise to be added (default is 'gauss') Returns ------- np.ndarray input data with added noise Raises ------ ValueError If `noise_type` is not 'gauss' or 'poisson' ValueError If number of `sigma` values does not match the first dimension of the input data Examples -------- >>> import numpy as np >>> from modopt.signal.noise import add_noise >>> x = np.arange(9).reshape(3, 3).astype(float) >>> x array([[ 0., 1., 2.], [ 3., 4., 5.], [ 6., 7., 8.]]) >>> np.random.seed(1) >>> add_noise(x, noise_type='poisson') array([[ 0., 2., 2.], [ 4., 5., 10.], [ 11., 15., 18.]]) >>> import numpy as np >>> from modopt.signal.noise import add_noise >>> x = np.zeros(5) >>> x array([ 0., 0., 0., 0., 0.]) >>> np.random.seed(1) >>> add_noise(x, sigma=2.0) array([ 3.24869073, -1.22351283, -1.0563435 , -2.14593724, 1.73081526]) """ data =
np.array(data)
numpy.array
import os import numpy as np import pandas as pd from tqdm import tqdm def load_hydroSystem(file_path): ''' Função responsável pelo processamento e importação dos dados do Condition Monitoring of Hydraulic Systems Dataset I/O: path: uma string contendo o diretório onde os conjuntos de dados dos sensores estão contidos; return: um Numpy Array de formato ((nº de instâncias, timestamp, features), label) ''' # Listagem dos arquivos contendo os dados dos sensores load_names = os.listdir(file_path) load_names.remove('description.txt') load_names.remove('documentation.txt') # Indexição das colunas para o upsamplig das variáveis com maior taxa de amostragem cols_1 = np.arange(0, 6000, 100) cols_10 =
np.arange(0, 6000, 10)
numpy.arange
# The purpose of these tests are to ensure that calling ufuncs with quantities # returns quantities with the right units, or raises exceptions. import numpy as np from numpy.testing.utils import assert_allclose from ... import units as u from ...tests.helper import pytest, raises class TestUfuncCoverage(object): """Test that we cover all ufunc's""" def test_coverage(self): all_np_ufuncs = set([ufunc for ufunc in np.core.umath.__dict__.values() if type(ufunc) == np.ufunc]) from .. import quantity_helper as qh all_q_ufuncs = (qh.UNSUPPORTED_UFUNCS | set(qh.UFUNC_HELPERS.keys())) assert all_np_ufuncs - all_q_ufuncs == set([]) assert all_q_ufuncs - all_np_ufuncs == set([]) class TestQuantityTrigonometricFuncs(object): """ Test trigonometric functions """ def test_sin_scalar(self): q = np.sin(30. * u.degree) assert q.unit == u.dimensionless_unscaled assert_allclose(q.value, 0.5) def test_sin_array(self): q = np.sin(np.array([0., np.pi / 4., np.pi / 2.]) * u.radian) assert q.unit == u.dimensionless_unscaled assert_allclose(q.value, np.array([0., 1. / np.sqrt(2.), 1.]), atol=1.e-15) def test_arcsin_scalar(self): q1 = 30. * u.degree q2 = np.arcsin(np.sin(q1)).to(q1.unit) assert_allclose(q1.value, q2.value) def test_arcsin_array(self): q1 = np.array([0., np.pi / 4., np.pi / 2.]) * u.radian q2 = np.arcsin(np.sin(q1)).to(q1.unit) assert_allclose(q1.value, q2.value) def test_sin_invalid_units(self): with pytest.raises(TypeError) as exc: np.sin(3. * u.m) assert exc.value.args[0] == ("Can only apply 'sin' function " "to quantities with angle units") def test_arcsin_invalid_units(self): with pytest.raises(TypeError) as exc: np.arcsin(3. * u.m) assert exc.value.args[0] == ("Can only apply 'arcsin' function to " "dimensionless quantities") def test_cos_scalar(self): q = np.cos(np.pi / 3. * u.radian) assert q.unit == u.dimensionless_unscaled assert_allclose(q.value, 0.5) def test_cos_array(self): q = np.cos(np.array([0., np.pi / 4., np.pi / 2.]) * u.radian) assert q.unit == u.dimensionless_unscaled assert_allclose(q.value, np.array([1., 1. / np.sqrt(2.), 0.]), atol=1.e-15) def test_arccos_scalar(self): q1 = np.pi / 3. * u.radian q2 = np.arccos(np.cos(q1)).to(q1.unit) assert_allclose(q1.value, q2.value) def test_arccos_array(self): q1 = np.array([0., np.pi / 4., np.pi / 2.]) * u.radian q2 = np.arccos(np.cos(q1)).to(q1.unit) assert_allclose(q1.value, q2.value) def test_cos_invalid_units(self): with pytest.raises(TypeError) as exc: np.cos(3. * u.s) assert exc.value.args[0] == ("Can only apply 'cos' function " "to quantities with angle units") def test_arccos_invalid_units(self): with pytest.raises(TypeError) as exc: np.arccos(3. * u.s) assert exc.value.args[0] == ("Can only apply 'arccos' function to " "dimensionless quantities") def test_tan_scalar(self): q = np.tan(np.pi / 3. * u.radian) assert q.unit == u.dimensionless_unscaled assert_allclose(q.value, np.sqrt(3.)) def test_tan_array(self): q = np.tan(np.array([0., 45., 135., 180.]) * u.degree) assert q.unit == u.dimensionless_unscaled assert_allclose(q.value, np.array([0., 1., -1., 0.]), atol=1.e-15) def test_arctan_scalar(self): q = np.pi / 3. * u.radian assert np.arctan(np.tan(q)) def test_arctan_array(self): q = np.array([10., 30., 70., 80.]) * u.degree assert_allclose(np.arctan(np.tan(q)).to(q.unit).value, q.value) def test_tan_invalid_units(self): with pytest.raises(TypeError) as exc: np.tan(np.array([1, 2, 3]) * u.N) assert exc.value.args[0] == ("Can only apply 'tan' function " "to quantities with angle units") def test_arctan_invalid_units(self): with pytest.raises(TypeError) as exc: np.arctan(np.array([1, 2, 3]) * u.N) assert exc.value.args[0] == ("Can only apply 'arctan' function to " "dimensionless quantities") def test_arctan2_valid(self): q1 = np.array([10., 30., 70., 80.]) * u.m q2 = 2.0 * u.km assert np.arctan2(q1, q2).unit == u.radian assert_allclose(np.arctan2(q1, q2).value, np.arctan2(q1.value, q2.to(q1.unit).value)) q3 = q1 / q2 q4 = 1. at2 = np.arctan2(q3, q4) assert_allclose(at2.value, np.arctan2(q3.to(1).value, q4)) def test_arctan2_invalid(self): with pytest.raises(u.UnitsError) as exc: np.arctan2(np.array([1, 2, 3]) * u.N, 1. * u.s) assert "compatible dimensions" in exc.value.args[0] with pytest.raises(u.UnitsError) as exc: np.arctan2(np.array([1, 2, 3]) * u.N, 1.) assert "dimensionless quantities when other arg" in exc.value.args[0] def test_radians(self): q1 = np.deg2rad(180. * u.degree) assert_allclose(q1.value, np.pi) assert q1.unit == u.radian q2 = np.radians(180. * u.degree) assert_allclose(q2.value, np.pi) assert q2.unit == u.radian # the following doesn't make much sense in terms of the name of the # routine, but we check it gives the correct result. q3 = np.deg2rad(3. * u.radian) assert_allclose(q3.value, 3.) assert q3.unit == u.radian q4 = np.radians(3. * u.radian) assert_allclose(q4.value, 3.) assert q4.unit == u.radian with pytest.raises(TypeError): np.deg2rad(3. * u.m) with pytest.raises(TypeError): np.radians(3. * u.m) def test_degrees(self): # the following doesn't make much sense in terms of the name of the # routine, but we check it gives the correct result. q1 = np.rad2deg(60. * u.degree) assert_allclose(q1.value, 60.) assert q1.unit == u.degree q2 = np.degrees(60. * u.degree) assert_allclose(q2.value, 60.) assert q2.unit == u.degree q3 = np.rad2deg(np.pi * u.radian) assert_allclose(q3.value, 180.) assert q3.unit == u.degree q4 = np.degrees(np.pi * u.radian) assert_allclose(q4.value, 180.) assert q4.unit == u.degree with pytest.raises(TypeError): np.rad2deg(3. * u.m) with pytest.raises(TypeError): np.degrees(3. * u.m) class TestQuantityMathFuncs(object): """ Test other mathematical functions """ def test_multiply_scalar(self): assert np.multiply(4. * u.m, 2. / u.s) == 8. * u.m / u.s assert np.multiply(4. * u.m, 2.) == 8. * u.m assert np.multiply(4., 2. / u.s) == 8. / u.s def test_multiply_array(self): assert np.all(np.multiply(np.arange(3.) * u.m, 2. / u.s) == np.arange(0, 6., 2.) * u.m / u.s) @pytest.mark.parametrize('function', (np.divide, np.true_divide)) def test_divide_scalar(self, function): assert function(4. * u.m, 2. * u.s) == function(4., 2.) * u.m / u.s assert function(4. * u.m, 2.) == function(4., 2.) * u.m assert function(4., 2. * u.s) == function(4., 2.) / u.s @pytest.mark.parametrize('function', (np.divide, np.true_divide)) def test_divide_array(self, function): assert np.all(function(np.arange(3.) * u.m, 2. * u.s) == function(np.arange(3.), 2.) * u.m / u.s) def test_divmod_and_floor_divide(self): inch = u.Unit(0.0254 * u.m) dividend = np.array([1., 2., 3.]) * u.m divisor = np.array([3., 4., 5.]) * inch quotient = dividend // divisor assert_allclose(quotient.value, [13., 19., 23.]) assert quotient.unit == u.dimensionless_unscaled quotient2, remainder = divmod(dividend, divisor) assert np.all(quotient2 == quotient) assert_allclose(remainder.value, [0.0094, 0.0696, 0.079]) assert remainder.unit == dividend.unit with pytest.raises(TypeError): divmod(dividend, u.km) with pytest.raises(TypeError): dividend // u.km def test_sqrt_scalar(self): assert np.sqrt(4. * u.m) == 2. * u.m ** 0.5 def test_sqrt_array(self): assert np.all(np.sqrt(np.array([1., 4., 9.]) * u.m) == np.array([1., 2., 3.]) * u.m ** 0.5) def test_square_scalar(self): assert np.square(4. * u.m) == 16. * u.m ** 2 def test_square_array(self): assert np.all(np.square(np.array([1., 2., 3.]) * u.m) == np.array([1., 4., 9.]) * u.m ** 2) def test_reciprocal_scalar(self): assert np.reciprocal(4. * u.m) == 0.25 / u.m def test_reciprocal_array(self): assert np.all(np.reciprocal(np.array([1., 2., 4.]) * u.m) == np.array([1., 0.5, 0.25]) / u.m) # cbrt only introduced in numpy 1.10 @pytest.mark.skipif("not hasattr(np, 'cbrt')") def test_cbrt_scalar(self): assert np.cbrt(8. * u.m**3) == 2. * u.m @pytest.mark.skipif("not hasattr(np, 'cbrt')") def test_cbrt_array(self): # Calculate cbrt on both sides since on Windows the cube root of 64 # does not exactly equal 4. See 4388. values = np.array([1., 8., 64.]) assert np.all(np.cbrt(values * u.m**3) == np.cbrt(values) * u.m) def test_power_scalar(self): assert np.power(4. * u.m, 2.) == 16. * u.m ** 2 assert np.power(4., 200. * u.cm / u.m) == \ u.Quantity(16., u.dimensionless_unscaled) # regression check on #1696 assert np.power(4. * u.m, 0.) == 1. * u.dimensionless_unscaled def test_power_array(self): assert np.all(np.power(np.array([1., 2., 3.]) * u.m, 3.) == np.array([1., 8., 27.]) * u.m ** 3) # regression check on #1696 assert np.all(np.power(np.arange(4.) * u.m, 0.) == 1. * u.dimensionless_unscaled) @raises(ValueError) def test_power_array_array(self): np.power(4. * u.m, [2., 4.]) @raises(ValueError) def test_power_array_array2(self): np.power([2., 4.] * u.m, [2., 4.]) def test_power_invalid(self): with pytest.raises(TypeError) as exc: np.power(3., 4. * u.m) assert "raise something to a dimensionless" in exc.value.args[0] def test_copysign_scalar(self): assert np.copysign(3 * u.m, 1.) == 3. * u.m assert np.copysign(3 * u.m, 1. * u.s) == 3. * u.m assert np.copysign(3 * u.m, -1.) == -3. * u.m assert np.copysign(3 * u.m, -1. * u.s) == -3. * u.m def test_copysign_array(self): assert np.all(np.copysign(np.array([1., 2., 3.]) * u.s, -1.) == -np.array([1., 2., 3.]) * u.s) assert np.all(np.copysign(np.array([1., 2., 3.]) * u.s, -1. * u.m) == -np.array([1., 2., 3.]) * u.s) assert np.all(np.copysign(np.array([1., 2., 3.]) * u.s, np.array([-2.,2.,-4.]) * u.m) == np.array([-1., 2., -3.]) * u.s) q = np.copysign(np.array([1., 2., 3.]), -3 * u.m) assert np.all(q == np.array([-1., -2., -3.])) assert not isinstance(q, u.Quantity) def test_ldexp_scalar(self): assert np.ldexp(4. * u.m, 2) == 16. * u.m def test_ldexp_array(self): assert np.all(np.ldexp(np.array([1., 2., 3.]) * u.m, [3, 2, 1]) == np.array([8., 8., 6.]) * u.m) def test_ldexp_invalid(self): with pytest.raises(TypeError): np.ldexp(3. * u.m, 4.) with pytest.raises(TypeError): np.ldexp(3., u.Quantity(4, u.m, dtype=int)) @pytest.mark.parametrize('function', (np.exp, np.expm1, np.exp2, np.log, np.log2, np.log10, np.log1p)) def test_exp_scalar(self, function): q = function(3. * u.m / (6. * u.m)) assert q.unit == u.dimensionless_unscaled assert q.value == function(0.5) @pytest.mark.parametrize('function', (np.exp, np.expm1, np.exp2, np.log, np.log2, np.log10, np.log1p)) def test_exp_array(self, function): q = function(np.array([2., 3., 6.]) * u.m / (6. * u.m)) assert q.unit == u.dimensionless_unscaled assert np.all(q.value == function(np.array([1. / 3., 1. / 2., 1.]))) # should also work on quantities that can be made dimensionless q2 = function(np.array([2., 3., 6.]) * u.m / (6. * u.cm)) assert q2.unit == u.dimensionless_unscaled assert_allclose(q2.value, function(np.array([100. / 3., 100. / 2., 100.]))) @pytest.mark.parametrize('function', (np.exp, np.expm1, np.exp2, np.log, np.log2, np.log10, np.log1p)) def test_exp_invalid_units(self, function): # Can't use exp() with non-dimensionless quantities with pytest.raises(TypeError) as exc: function(3. * u.m / u.s) assert exc.value.args[0] == ("Can only apply '{0}' function to " "dimensionless quantities" .format(function.__name__)) def test_modf_scalar(self): q = np.modf(9. * u.m / (600. * u.cm)) assert q == (0.5 * u.dimensionless_unscaled, 1. * u.dimensionless_unscaled) def test_modf_array(self): v = np.arange(10.) * u.m / (500. * u.cm) q = np.modf(v) n = np.modf(v.to(1).value) assert q[0].unit == u.dimensionless_unscaled assert q[1].unit == u.dimensionless_unscaled assert all(q[0].value == n[0]) assert all(q[1].value == n[1]) def test_frexp_scalar(self): q = np.frexp(3. * u.m / (6. * u.m)) assert q == (np.array(0.5), np.array(0.0)) def test_frexp_array(self): q = np.frexp(np.array([2., 3., 6.]) * u.m / (6. * u.m)) assert all((_q0, _q1) == np.frexp(_d) for _q0, _q1, _d in zip(q[0], q[1], [1. / 3., 1. / 2., 1.])) def test_frexp_invalid_units(self): # Can't use prod() with non-dimensionless quantities with pytest.raises(TypeError) as exc: np.frexp(3. * u.m / u.s) assert exc.value.args[0] == ("Can only apply 'frexp' function to " "unscaled dimensionless quantities") # also does not work on quantities that can be made dimensionless with pytest.raises(TypeError) as exc: np.frexp(np.array([2., 3., 6.]) * u.m / (6. * u.cm)) assert exc.value.args[0] == ("Can only apply 'frexp' function to " "unscaled dimensionless quantities") @pytest.mark.parametrize('function', (np.logaddexp, np.logaddexp2)) def test_dimensionless_twoarg_array(self, function): q = function(np.array([2., 3., 6.]) * u.m / (6. * u.cm), 1.) assert q.unit == u.dimensionless_unscaled assert_allclose(q.value, function(np.array([100. / 3., 100. / 2., 100.]), 1.)) @pytest.mark.parametrize('function', (np.logaddexp, np.logaddexp2)) def test_dimensionless_twoarg_invalid_units(self, function): with pytest.raises(TypeError) as exc: function(1. * u.km / u.s, 3. * u.m / u.s) assert exc.value.args[0] == ("Can only apply '{0}' function to " "dimensionless quantities" .format(function.__name__)) class TestInvariantUfuncs(object): @pytest.mark.parametrize(('ufunc'), [np.absolute, np.fabs, np.conj, np.conjugate, np.negative, np.spacing, np.rint, np.floor, np.ceil]) def test_invariant_scalar(self, ufunc): q_i = 4.7 * u.m q_o = ufunc(q_i) assert isinstance(q_o, u.Quantity) assert q_o.unit == q_i.unit assert q_o.value == ufunc(q_i.value) @pytest.mark.parametrize(('ufunc'), [np.absolute, np.conjugate, np.negative, np.rint, np.floor, np.ceil]) def test_invariant_array(self, ufunc): q_i = np.array([-3.3, 2.1, 10.2]) * u.kg / u.s q_o = ufunc(q_i) assert isinstance(q_o, u.Quantity) assert q_o.unit == q_i.unit assert np.all(q_o.value == ufunc(q_i.value)) @pytest.mark.parametrize(('ufunc'), [np.add, np.subtract, np.hypot, np.maximum, np.minimum, np.nextafter, np.remainder, np.mod, np.fmod]) def test_invariant_twoarg_scalar(self, ufunc): q_i1 = 4.7 * u.m q_i2 = 9.4 * u.km q_o = ufunc(q_i1, q_i2) assert isinstance(q_o, u.Quantity) assert q_o.unit == q_i1.unit assert_allclose(q_o.value, ufunc(q_i1.value, q_i2.to(q_i1.unit).value)) @pytest.mark.parametrize(('ufunc'), [np.add, np.subtract, np.hypot, np.maximum, np.minimum, np.nextafter, np.remainder, np.mod, np.fmod]) def test_invariant_twoarg_array(self, ufunc): q_i1 = np.array([-3.3, 2.1, 10.2]) * u.kg / u.s q_i2 = np.array([10., -5., 1.e6]) * u.g / u.us q_o = ufunc(q_i1, q_i2) assert isinstance(q_o, u.Quantity) assert q_o.unit == q_i1.unit assert_allclose(q_o.value, ufunc(q_i1.value, q_i2.to(q_i1.unit).value)) @pytest.mark.parametrize(('ufunc'), [np.add, np.subtract, np.hypot, np.maximum, np.minimum, np.nextafter, np.remainder, np.mod, np.fmod]) def test_invariant_twoarg_one_arbitrary(self, ufunc): q_i1 = np.array([-3.3, 2.1, 10.2]) * u.kg / u.s arbitrary_unit_value = np.array([0.]) q_o = ufunc(q_i1, arbitrary_unit_value) assert isinstance(q_o, u.Quantity) assert q_o.unit == q_i1.unit assert_allclose(q_o.value, ufunc(q_i1.value, arbitrary_unit_value)) @pytest.mark.parametrize(('ufunc'), [np.add, np.subtract, np.hypot, np.maximum, np.minimum, np.nextafter, np.remainder, np.mod, np.fmod]) def test_invariant_twoarg_invalid_units(self, ufunc): q_i1 = 4.7 * u.m q_i2 = 9.4 * u.s with pytest.raises(u.UnitsError) as exc: ufunc(q_i1, q_i2) assert "compatible dimensions" in exc.value.args[0] class TestComparisonUfuncs(object): @pytest.mark.parametrize(('ufunc'), [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal, np.equal]) def test_comparison_valid_units(self, ufunc): q_i1 = np.array([-3.3, 2.1, 10.2]) * u.kg / u.s q_i2 = np.array([10., -5., 1.e6]) * u.g / u.Ms q_o = ufunc(q_i1, q_i2) assert not isinstance(q_o, u.Quantity) assert q_o.dtype == np.bool assert np.all(q_o == ufunc(q_i1.value, q_i2.to(q_i1.unit).value)) q_o2 = ufunc(q_i1 / q_i2, 2.) assert not isinstance(q_o2, u.Quantity) assert q_o2.dtype == np.bool assert np.all(q_o2 == ufunc((q_i1 / q_i2).to(1).value, 2.)) # comparison with 0., inf, nan is OK even for dimensional quantities for arbitrary_unit_value in (0., np.inf, np.nan): ufunc(q_i1, arbitrary_unit_value) ufunc(q_i1, arbitrary_unit_value*np.ones(len(q_i1))) # and just for completeness ufunc(q_i1, np.array([0., np.inf, np.nan])) @pytest.mark.parametrize(('ufunc'), [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal, np.equal]) def test_comparison_invalid_units(self, ufunc): q_i1 = 4.7 * u.m q_i2 = 9.4 * u.s with pytest.raises(u.UnitsError) as exc: ufunc(q_i1, q_i2) assert "compatible dimensions" in exc.value.args[0] class TestInplaceUfuncs(object): @pytest.mark.parametrize(('value'), [1., np.arange(10.)]) def test_one_argument_ufunc_inplace(self, value): # without scaling s = value * u.rad check = s np.sin(s, out=s) assert check is s assert check.unit == u.dimensionless_unscaled # with scaling s2 = (value * u.rad).to(u.deg) check2 = s2 np.sin(s2, out=s2) assert check2 is s2 assert check2.unit == u.dimensionless_unscaled assert_allclose(s.value, s2.value) @pytest.mark.parametrize(('value'), [1., np.arange(10.)]) def test_one_argument_ufunc_inplace_2(self, value): """Check inplace works with non-quantity input and quantity output""" s = value * u.m check = s np.absolute(value, out=s) assert check is s assert np.all(check.value == np.absolute(value)) assert check.unit is u.dimensionless_unscaled np.sqrt(value, out=s) assert check is s assert np.all(check.value == np.sqrt(value)) assert check.unit is u.dimensionless_unscaled np.exp(value, out=s) assert check is s assert np.all(check.value == np.exp(value)) assert check.unit is u.dimensionless_unscaled
np.arcsin(value/10., out=s)
numpy.arcsin
from typing import Tuple, Callable, Optional import pickle import pytest from copy import copy from pathlib import Path from _helpers import ( bias_knn, create_kernels, density_normalization, jax_not_installed_skip, random_transition_matrix, ) import scanpy as sc import cellrank as cr from scanpy import Neighbors from anndata import AnnData from cellrank._key import Key from cellrank.tl._utils import _normalize from cellrank.ul._utils import _get_neighs, _get_neighs_params from cellrank.tl.kernels import ( VelocityKernel, CytoTRACEKernel, PseudotimeKernel, PrecomputedKernel, ConnectivityKernel, ) from cellrank.tl.kernels._base_kernel import ( Kernel, Constant, KernelAdd, KernelMul, _dtype, _is_bin_mult, ) from cellrank.tl.kernels._cytotrace_kernel import CytoTRACEAggregation import numpy as np from scipy.sparse import eye as speye from scipy.sparse import isspmatrix_csr from pandas.core.dtypes.common import is_bool_dtype, is_integer_dtype _rtol = 1e-6 class CustomFunc(cr.tl.kernels.SimilaritySchemeABC): def __call__( self, v: np.ndarray, D: np.ndarray, softmax_scale: float = 1.0 ) -> Tuple[np.ndarray, np.ndarray]: probs, logits = np.zeros((D.shape[0],), dtype=np.float64), np.zeros( (D.shape[0],), dtype=np.float64 ) probs[0] = 1.0 return probs, logits class CustomFuncHessian(CustomFunc): def hessian( self, v: np.ndarray, D: np.ndarray, _softmax_scale: float = 1.0 ) -> np.ndarray: # should be either (n, g, g) or (n, g), will be (g, g) return np.zeros((D.shape[0], v.shape[0], v.shape[0])) class CustomKernel(Kernel): def compute_transition_matrix( self, sparse: bool = False, dnorm: bool = False ) -> "KernelExpression": if sparse: tmat = speye(self.adata.n_obs, dtype=np.float32) else: tmat = np.eye(self.adata.n_obs, dtype=np.float32) self._compute_transition_matrix(tmat, density_normalize=dnorm) return self def copy(self) -> "KernelExpression": return copy(self) class InvalidFuncProbs(cr.tl.kernels.SimilaritySchemeABC): def __call__( self, v: np.ndarray, D: np.ndarray, _softmax_scale: float = 1.0 ) -> Tuple[np.ndarray, np.ndarray]: return np.ones((D.shape[0],), dtype=np.float64), np.zeros( (D.shape[0],), dtype=np.float64 ) class InvalidFuncHessianShape(CustomFunc): def __call__( self, v: np.ndarray, D: np.ndarray, _softmax_scale: float = 1.0 ) -> Tuple[np.ndarray, np.ndarray]: probs, logits = np.zeros((D.shape[0],), dtype=np.float64), np.zeros( (D.shape[0],), dtype=np.float64 ) probs[-1] = 1.0 return probs, logits def hessian( self, v: np.ndarray, _D: np.ndarray, _softmax_scale: float = 1.0 ) -> np.ndarray: # should be either (n, g, g) or (n, g), will be (g, g) return np.zeros((v.shape[0], v.shape[0])) class TestInitializeKernel: def test_none_transition_matrix(self, adata: AnnData): vk = VelocityKernel(adata) ck = ConnectivityKernel(adata) pk = PseudotimeKernel(adata, time_key="latent_time") assert vk._transition_matrix is None assert ck._transition_matrix is None assert pk._transition_matrix is None def test_not_none_transition_matrix_compute(self, adata: AnnData): vk = VelocityKernel(adata).compute_transition_matrix(softmax_scale=4) ck = ConnectivityKernel(adata).compute_transition_matrix() pk = PseudotimeKernel(adata, time_key="latent_time").compute_transition_matrix() assert vk.transition_matrix is not None assert ck.transition_matrix is not None assert pk.transition_matrix is not None def test_not_none_transition_matrix_accessor(self, adata: AnnData): vk = VelocityKernel(adata) ck = ConnectivityKernel(adata) pk = PseudotimeKernel(adata, time_key="latent_time") assert vk.transition_matrix is not None assert ck.transition_matrix is not None assert pk.transition_matrix is not None def test_adding_hidden_constants(self, adata: AnnData): k = VelocityKernel(adata) + ConnectivityKernel(adata) assert _is_bin_mult(k[0]) assert isinstance(k[0], KernelMul) assert isinstance(k[0][0], Constant) assert isinstance(k[0][1], VelocityKernel) assert k[0][0].transition_matrix == 1.0 assert _is_bin_mult(k[1]) assert isinstance(k[1], KernelMul) assert isinstance(k[1][0], Constant) assert isinstance(k[1][1], ConnectivityKernel) assert k[1][0].transition_matrix == 1.0 def test_length(self, adata: AnnData): k = VelocityKernel(adata) + ConnectivityKernel(adata) assert len(k) == 2 def test_accessor_out_of_range(self, adata: AnnData): k = VelocityKernel(adata) + ConnectivityKernel(adata) with pytest.raises(IndexError): _ = k[2] def test_parent(self, adata: AnnData): vk = VelocityKernel(adata) ck = ConnectivityKernel(adata) k = vk + ck assert vk._parent._parent is k # invisible constants assert ck._parent._parent is k assert k._parent is None def test_uninitialized_both(self, adata: AnnData): k = VelocityKernel(adata) + ConnectivityKernel(adata) with pytest.raises(RuntimeError): k.compute_transition_matrix() def test_uninitialized_one(self, adata: AnnData): k = ( VelocityKernel(adata) + ConnectivityKernel(adata).compute_transition_matrix() ) with pytest.raises(RuntimeError): k.compute_transition_matrix() def test_initialized(self, adata: AnnData): k = ( VelocityKernel(adata).compute_transition_matrix(softmax_scale=4) + ConnectivityKernel(adata).compute_transition_matrix() ) k.compute_transition_matrix() assert k.transition_matrix is not None def test_invalida_type(self, adata: AnnData): with pytest.raises(TypeError): _ = None * VelocityKernel(adata) def test_negative_constant(self, adata: AnnData): with pytest.raises(ValueError): _ = -1 * VelocityKernel(adata) def test_invalid_constant(self, adata: AnnData): with pytest.raises(TypeError): _ = Constant(adata, None) def test_inversion(self, adata: AnnData): c = ConnectivityKernel(adata, backward=False) assert not c.backward nc = ~c assert nc.backward def test_inversion_inplace(self, adata: AnnData): c = ConnectivityKernel(adata, backward=False) assert not c.backward _ = ~c assert c.backward def test_inversion_propagation(self, adata: AnnData): c = ConnectivityKernel(adata, backward=False) v = VelocityKernel(adata, backward=False) k = ~(c + v) assert c.backward assert v.backward assert k.backward def test_inversion_recalculation(self, adata: AnnData): c = ConnectivityKernel(adata).compute_transition_matrix() z = ~(c + c) with pytest.raises(RuntimeError): z.compute_transition_matrix() def test_inversion_preservation_of_constants(self, adata: AnnData): c = ConnectivityKernel(adata).compute_transition_matrix() a = (3 * c + 1 * c).compute_transition_matrix() b = ~a c.compute_transition_matrix() assert a[0][0].transition_matrix == 3 / 4 assert b[0][0].transition_matrix == 3 / 4 assert a[1][0].transition_matrix == 1 / 4 assert b[1][0].transition_matrix == 1 / 4 def test_addition_simple(self, adata: AnnData): k = VelocityKernel(adata) + ConnectivityKernel(adata) assert isinstance(k, KernelAdd) def test_multiplication_simple(self, adata: AnnData): k = 10 * VelocityKernel(adata) c = _is_bin_mult(k) assert isinstance(c, Constant) assert c.transition_matrix == 10 def test_multiplication_simple_normalization(self, adata: AnnData): k = 10 * VelocityKernel(adata).compute_transition_matrix(softmax_scale=4) c = _is_bin_mult(k) assert c.transition_matrix == 10 def test_constant(self, adata: AnnData): k = 9 * VelocityKernel(adata) + 1 * ConnectivityKernel(adata) c1, c2 = _is_bin_mult(k[0]), _is_bin_mult(k[1]) assert c1.transition_matrix == 9 assert c2.transition_matrix == 1 def test_constant_normalize_2(self, adata: AnnData): k = ( 9 * VelocityKernel(adata).compute_transition_matrix(softmax_scale=4) + 1 * ConnectivityKernel(adata).compute_transition_matrix() ) k.compute_transition_matrix() c1, c2 = _is_bin_mult(k[0]), _is_bin_mult(k[1]) assert c1.transition_matrix == 9 / 10 assert c2.transition_matrix == 1 / 10 def test_constant_normalize_3(self, adata: AnnData): k = ( VelocityKernel(adata).compute_transition_matrix(softmax_scale=4) + ConnectivityKernel(adata).compute_transition_matrix() + ConnectivityKernel(adata).compute_transition_matrix() ) k.compute_transition_matrix() c1, c2, c3 = _is_bin_mult(k[0]), _is_bin_mult(k[1]), _is_bin_mult(k[2]) assert c1.transition_matrix == 1 / 3 assert c2.transition_matrix == 1 / 3 assert c3.transition_matrix == 1 / 3 def test_constant_wrong_parentheses(self, adata: AnnData): k = VelocityKernel(adata).compute_transition_matrix(softmax_scale=4) + ( ConnectivityKernel(adata).compute_transition_matrix() + ConnectivityKernel(adata).compute_transition_matrix() ) k.compute_transition_matrix() c1, c2, c3 = _is_bin_mult(k[0]), _is_bin_mult(k[1]), _is_bin_mult(k[2]) assert c1.transition_matrix == 1 / 3 assert c2.transition_matrix == 1 / 3 assert c3.transition_matrix == 1 / 3 def test_constant_correct_parentheses(self, adata: AnnData): k = 1 * VelocityKernel(adata).compute_transition_matrix(softmax_scale=4) + 1 * ( ConnectivityKernel(adata).compute_transition_matrix() + ConnectivityKernel(adata).compute_transition_matrix() ) k.compute_transition_matrix() c1, c2, c3 = ( _is_bin_mult(k[0]), _is_bin_mult(k[1][1][0]), _is_bin_mult(k[1][1][1]), ) assert c1.transition_matrix == 1 / 2 assert c2.transition_matrix == 1 / 2 assert c3.transition_matrix == 1 / 2 def test_adaptive_kernel_constants(self, adata: AnnData): ck1 = ConnectivityKernel(adata).compute_transition_matrix() ck1._mat_scaler = np.random.normal(size=(adata.n_obs, adata.n_obs)) ck2 = ConnectivityKernel(adata).compute_transition_matrix() ck2._mat_scaler = np.random.normal(size=(adata.n_obs, adata.n_obs)) k = (3 * ck1) ^ (1 * ck2) k.compute_transition_matrix() assert k[0][0]._value == 3 / 4 assert k[1][0]._value == 1 / 4 def test_adaptive_kernel_complex(self, adata: AnnData): ck1 = ConnectivityKernel(adata).compute_transition_matrix() ck1._mat_scaler = np.random.normal(size=(adata.n_obs, adata.n_obs)) ck2 = ConnectivityKernel(adata).compute_transition_matrix() ck2._mat_scaler = np.random.normal(size=(adata.n_obs, adata.n_obs)) ck3 = ConnectivityKernel(adata).compute_transition_matrix() ck3._mat_scaler = np.random.normal(size=(adata.n_obs, adata.n_obs)) k = 4 * ((3 * ck1) ^ (1 * ck2)) + 2 * ck3 k.compute_transition_matrix() assert k[0][0].transition_matrix == 4 / 6 assert k[1][0].transition_matrix == 2 / 6 assert k[0][1][0][0]._value == 3 / 4 assert k[0][1][1][0]._value == 1 / 4 def test_repr(self, adata: AnnData): rpr = repr(VelocityKernel(adata)) assert rpr == f"<{VelocityKernel.__name__}>" def test_repr_inv(self, adata: AnnData): rpr = repr(~VelocityKernel(adata)) assert rpr == f"~<{VelocityKernel.__name__}>" def test_repr_inv_comb(self, adata: AnnData): rpr = repr(~(VelocityKernel(adata) + ConnectivityKernel(adata))) assert ( rpr == f"~((1 * <{VelocityKernel.__name__}>) + (1 * <{ConnectivityKernel.__name__}>))" ) def test_str_repr_equiv_no_transition_matrix(self, adata: AnnData): vk = VelocityKernel(adata) string = str(vk) rpr = repr(vk) assert string == rpr assert string == f"<{VelocityKernel.__name__}>" def test_str(self, adata: AnnData): string = str(ConnectivityKernel(adata).compute_transition_matrix()) assert ( string == f"<{ConnectivityKernel.__name__}[dnorm=True, key=connectivities]>" ) def test_str_inv(self, adata: AnnData): string = str( ConnectivityKernel(adata, backward=True).compute_transition_matrix() ) assert ( string == f"~<{ConnectivityKernel.__name__}[dnorm=True, key=connectivities]>" ) def test_combination_correct_parameters(self, adata: AnnData): from cellrank.tl.kernels import CosineScheme k = VelocityKernel(adata).compute_transition_matrix( softmax_scale=4, seed=42, scheme="cosine", ) + ( ConnectivityKernel(adata).compute_transition_matrix(density_normalize=False) + ConnectivityKernel(adata).compute_transition_matrix( density_normalize=True ) ) k.compute_transition_matrix() assert isinstance(k.params, dict) assert len(k.params) == 3 assert {"dnorm": True, "key": "connectivities"} in k.params.values() assert {"dnorm": False, "key": "connectivities"} in k.params.values() assert { "softmax_scale": 4, "mode": "deterministic", "seed": 42, "scheme": str(CosineScheme()), } in k.params.values() class TestKernel: def test_precomputed_not_array(self): with pytest.raises(TypeError): _ = PrecomputedKernel([[1, 0], [0, 1]]) def test_precomputed_not_square(self): with pytest.raises(ValueError): _ = PrecomputedKernel(np.random.normal(size=(10, 9))) def test_precomputed_not_a_transition_matrix(self): mat = random_transition_matrix(100) mat[0, 0] = 0xDEADBEEF with pytest.raises(ValueError): _ = PrecomputedKernel(mat) def test_precomputed_from_kernel_no_transition(self, adata: AnnData): vk = VelocityKernel(adata) with pytest.raises(ValueError): PrecomputedKernel(vk) @pytest.mark.parametrize( "clazz", [ ConnectivityKernel, VelocityKernel, PseudotimeKernel, CytoTRACEKernel, PrecomputedKernel, ], ) @pytest.mark.parametrize("key_added", [None, "foo"]) def test_kernel_reads_correct_connectivities( self, adata: AnnData, key_added: Optional[str], clazz: type ): del adata.uns["neighbors"] del adata.obsp["connectivities"] del adata.obsp["distances"] sc.pp.neighbors(adata, key_added=key_added) kwargs = {"adata": adata, "conn_key": key_added} if clazz == PseudotimeKernel: kwargs["time_key"] = "latent_time" elif clazz == PrecomputedKernel: adata.obsp["foo"] = np.eye(adata.n_obs) kwargs["transition_matrix"] = "foo" conn = ( adata.obsp["connectivities"] if key_added is None else adata.obsp[f"{key_added}_connectivities"] ) k = clazz(**kwargs) if isinstance(k, PrecomputedKernel): assert k._conn is None else: np.testing.assert_array_equal(k._conn.A, conn.A) def test_precomputed_from_kernel(self, adata: AnnData): vk = VelocityKernel(adata).compute_transition_matrix( mode="deterministic", softmax_scale=4, ) pk = PrecomputedKernel(vk) pk.write_to_adata() assert pk.adata is vk.adata assert pk._origin == str(vk).strip("~<>") assert pk.params is not vk.params assert pk.params == vk.params assert pk.transition_matrix is not vk.transition_matrix np.testing.assert_array_equal(pk.transition_matrix.A, vk.transition_matrix.A) def test_precomputed_no_adata(self): pk = PrecomputedKernel(random_transition_matrix(50)) pk.write_to_adata() assert isinstance(pk.adata, AnnData) assert pk._origin == "'array'" assert pk.adata.shape == (50, 1) assert pk.adata.obs.shape == (50, 0) assert pk.adata.var.shape == (1, 0) assert "T_fwd_params" in pk.adata.uns.keys() assert pk.adata.uns["T_fwd_params"] == {"params": pk.params} np.testing.assert_array_equal( pk.adata.obsp["T_fwd"].toarray(), pk.transition_matrix.toarray() ) def test_precomputed_different_adata(self, adata: AnnData): vk = VelocityKernel(adata).compute_transition_matrix( mode="deterministic", softmax_scale=4 ) bdata = adata.copy() pk = PrecomputedKernel(vk, adata=bdata) assert pk.adata is adata assert pk.adata is vk.adata assert pk.adata is not bdata def test_precomputed_adata_origin(self, adata: AnnData): vk = VelocityKernel(adata).compute_transition_matrix( mode="deterministic", softmax_scale=4 ) vk.write_to_adata("foo") pk = PrecomputedKernel("foo", adata=adata) assert pk._origin == "adata.obsp['foo']" def test_precomputed_adata(self, adata: AnnData): pk = PrecomputedKernel(random_transition_matrix(adata.n_obs), adata=adata) assert pk.adata is adata def test_precomputed_transition_matrix(self, adata: AnnData): mat = random_transition_matrix(adata.n_obs) pk = PrecomputedKernel(mat) np.testing.assert_array_equal(mat, pk.transition_matrix.toarray()) def test_precomputed_sum(self, adata: AnnData): mat = random_transition_matrix(adata.n_obs) pk = PrecomputedKernel(mat) vk = VelocityKernel(adata).compute_transition_matrix(softmax_scale=4) expected = (0.5 * vk.transition_matrix) + (0.5 * pk.transition_matrix) actual = (pk + vk).compute_transition_matrix() np.testing.assert_array_almost_equal( expected.toarray(), actual.transition_matrix.toarray() ) @pytest.mark.parametrize("dnorm", [False, True]) @pytest.mark.parametrize("sparse", [False, True]) def test_custom_preserves_type(self, adata: AnnData, sparse: bool, dnorm: bool): c = CustomKernel(adata).compute_transition_matrix(sparse=sparse, dnorm=dnorm) if sparse: assert isspmatrix_csr(c.transition_matrix) else: assert isinstance(c.transition_matrix, np.ndarray) assert c.transition_matrix.dtype == _dtype def test_write_adata(self, adata: AnnData): vk = VelocityKernel(adata).compute_transition_matrix(softmax_scale=4) vk.write_to_adata() assert adata is vk.adata assert "T_fwd_params" in adata.uns.keys() np.testing.assert_array_equal( adata.obsp["T_fwd"].toarray(), vk.transition_matrix.toarray() ) def test_write_adata_key(self, adata: AnnData): vk = VelocityKernel(adata).compute_transition_matrix(softmax_scale=4) vk.write_to_adata(key="foo") assert adata is vk.adata assert "foo_params" in adata.uns.keys() np.testing.assert_array_equal( adata.obsp["foo"].toarray(), vk.transition_matrix.toarray() ) @pytest.mark.parametrize("mode", ["deterministic", "stochastic"]) def test_vk_row_normalized(self, adata: AnnData, mode: str): if mode == "stochastic": pytest.importorskip("jax") pytest.importorskip("jaxlib") vk = VelocityKernel(adata) vk.compute_transition_matrix(mode="stochastic", softmax_scale=4) np.testing.assert_allclose(vk.transition_matrix.sum(1), 1, rtol=_rtol) # only to 15 because in kernel, if a row sums to 0, abs. states are created # this happens because `k_thresh = frac_to_keep = 0` @pytest.mark.parametrize("k", range(1, 15)) def test_pseudotime_frac_to_keep(self, adata: AnnData, k: int): conn = _get_neighs(adata, "connectivities") n_neighbors = _get_neighs_params(adata)["n_neighbors"] pseudotime = adata.obs["latent_time"] k_thresh = max(0, min(int(np.floor(n_neighbors / k)) - 1, 30)) frac_to_keep = k_thresh / float(n_neighbors) conn_biased = bias_knn( conn.copy(), pseudotime, n_neighbors, k=k, frac_to_keep=frac_to_keep ) T_1 = _normalize(conn_biased) pk = PseudotimeKernel(adata, time_key="latent_time").compute_transition_matrix( frac_to_keep=frac_to_keep, threshold_scheme="hard", ) T_2 = pk.transition_matrix np.testing.assert_allclose(T_1.A, T_2.A, rtol=_rtol) def test_pseudotime_parallelize(self, adata: AnnData): pk1 = PseudotimeKernel(adata, time_key="latent_time").compute_transition_matrix( n_jobs=None ) pk2 = PseudotimeKernel(adata, time_key="latent_time").compute_transition_matrix( n_jobs=2 ) np.testing.assert_allclose( pk1.transition_matrix.A, pk2.transition_matrix.A, rtol=_rtol ) def test_pseudotime_inverse(self, adata: AnnData): pk = PseudotimeKernel(adata, time_key="latent_time") pt = pk.pseudotime.copy() pk_inv = ~pk assert pk_inv is pk assert pk_inv.backward np.testing.assert_allclose(pt, 1 - pk_inv.pseudotime) @pytest.mark.parametrize("mode", ["deterministic", "stochastic", "sampling"]) def test_manual_combination(self, adata: AnnData, mode: str): if mode == "stochastic": pytest.importorskip("jax") pytest.importorskip("jaxlib") vk = VelocityKernel(adata).compute_transition_matrix(mode=mode, softmax_scale=4) ck = ConnectivityKernel(adata).compute_transition_matrix() T_vk = vk.transition_matrix T_ck = ck.transition_matrix T_comb_manual = 0.8 * T_vk + 0.2 * T_ck comb_kernel = 0.8 * vk + 0.2 * ck T_comb_kernel = comb_kernel.transition_matrix np.testing.assert_allclose(T_comb_kernel.A, T_comb_manual.A, rtol=_rtol) def test_manual_combination_no_precomputed(self, adata: AnnData): density_normalize = False vk = VelocityKernel(adata).compute_transition_matrix(softmax_scale=4) ck = ConnectivityKernel(adata).compute_transition_matrix( density_normalize=density_normalize ) T_vk = vk.transition_matrix T_ck = ck.transition_matrix T_comb_manual = 0.8 * T_vk + 0.2 * T_ck vk = VelocityKernel(adata).compute_transition_matrix(softmax_scale=4) ck = ConnectivityKernel(adata).compute_transition_matrix( density_normalize=density_normalize ) comb_kernel = 0.8 * vk + 0.2 * ck comb_kernel.compute_transition_matrix() T_comb_kernel = comb_kernel.transition_matrix np.testing.assert_allclose(T_comb_manual.A, T_comb_kernel.A, rtol=_rtol) def test_manual_combination_backward(self, adata: AnnData): backward, density_normalize = True, False vk = VelocityKernel(adata, backward=backward).compute_transition_matrix( softmax_scale=4 ) ck = ConnectivityKernel(adata, backward=backward).compute_transition_matrix( density_normalize=density_normalize ) T_vk = vk.transition_matrix T_ck = ck.transition_matrix T_comb_manual = 0.8 * T_vk + 0.2 * T_ck comb_kernel = 0.8 * vk + 0.2 * ck T_comb_kernel = comb_kernel.transition_matrix np.testing.assert_allclose(T_comb_manual.A, T_comb_kernel.A, rtol=_rtol) def test_manual_combination_backward_dense_norm(self, adata: AnnData): backward, density_normalize = True, True vk = VelocityKernel(adata, backward=backward).compute_transition_matrix( softmax_scale=4 ) ck = ConnectivityKernel(adata, backward=backward).compute_transition_matrix( density_normalize=density_normalize ) T_vk = vk.transition_matrix T_ck = ck.transition_matrix T_comb_manual = 0.8 * T_vk + 0.2 * T_ck comb_kernel = 0.8 * vk + 0.2 * ck T_comb_kernel = comb_kernel.transition_matrix np.testing.assert_allclose(T_comb_manual.A, T_comb_kernel.A, rtol=_rtol) def compare_with_scanpy_density_normalize(self, adata: AnnData): # check whether cellrank's transition matrix matches scanpy's density_normalize = True ck = ConnectivityKernel(adata).compute_transition_matrix( density_normalize=density_normalize ) T_cr = ck.transition_matrix neigh = Neighbors(adata) neigh.compute_transitions(density_normalize=density_normalize) T_sc = neigh.transitions # check whether these are the same while leaving them sparse assert T_sc.shape == T_cr.shape assert len(T_sc.indices) == len(T_cr.indices) assert np.allclose((T_cr - T_sc).data, 0) def compare_with_scanpy(self, adata: AnnData): # check whether cellrank's transition matrix matches scanpy's density_normalize = False ck = ConnectivityKernel(adata).compute_transition_matrix( density_normalize=density_normalize ) T_cr = ck.transition_matrix neigh = Neighbors(adata) neigh.compute_transitions(density_normalize=density_normalize) T_sc = neigh.transitions # check whether these are the same while leaving them sparse assert T_sc.shape == T_cr.shape assert len(T_sc.indices) == len(T_cr.indices) assert np.allclose((T_cr - T_sc).data, 0) def test_connectivities_key_kernel(self, adata: AnnData): key = "foobar" assert key not in adata.obsp adata.obsp[key] = np.eye(adata.n_obs) ck = ConnectivityKernel(adata, conn_key=key).compute_transition_matrix() T_cr = ck.transition_matrix assert key == ck.params["key"] np.testing.assert_array_equal(T_cr, adata.obsp[key]) del adata.obsp[key] class TestKernelAddition: def test_simple_addition(self, adata: AnnData): vk, ck = create_kernels(adata) # diagonal + upper diag k = (vk + ck).compute_transition_matrix() expected = np.eye(adata.n_obs) * 0.75 + np.eye(adata.n_obs, k=1) * 0.25 expected[-1, -1] = 1 np.testing.assert_allclose(k.transition_matrix.A, expected) def test_addtion_with_constant(self, adata: AnnData): vk, ck = create_kernels(adata) # diagonal + upper diag k = (2 * vk + 3 * ck).compute_transition_matrix() expected = ( np.eye(adata.n_obs) * (2 / 5) + np.eye(adata.n_obs) * (3 / 5) * 0.5 + np.eye(adata.n_obs, k=1) * (3 / 5) * 0.5 ) expected[-1, -1] = 1 np.testing.assert_allclose(k.transition_matrix.A, expected) def test_addition_3_kernels(self, adata: AnnData): vk, ck = create_kernels(adata) # diagonal + upper diag vk1 = VelocityKernel(adata) vk1._transition_matrix = np.eye(adata.n_obs, k=-1) / 2 + np.eye(adata.n_obs) / 2 vk1._transition_matrix[0, 0] = 1 np.testing.assert_allclose( np.sum(ck._transition_matrix, axis=1), 1 ) # sanity check k = (vk + ck + vk1).compute_transition_matrix() expected = ( np.eye(adata.n_obs) * (1 / 3 + 1 / 6 + 1 / 6) + np.eye(adata._n_obs, k=1) * 1 / 6 + np.eye(adata.n_obs, k=-1) * 1 / 6 ) expected[0, 0] = expected[-1, -1] = 2 / 3 + 1 / 3 * 0.5 expected[0, 1] = expected[-1, -2] = 1 - expected[0, 0] np.testing.assert_allclose(k.transition_matrix.A, expected) def test_addition_adaptive(self, adata: AnnData): adata.obsp["velocity_variances"] = vv = np.random.random( size=(adata.n_obs, adata.n_obs) ) adata.obsp["connectivity_variances"] = cv = np.random.random( size=(adata.n_obs, adata.n_obs) ) vk, ck = create_kernels( adata, velocity_variances="velocity_variances", connectivity_variances="connectivity_variances", ) k = vk ^ ck expected = _normalize( 0.5 * vv * vk.transition_matrix + 0.5 * cv * ck.transition_matrix ) np.testing.assert_allclose(k.transition_matrix.A, expected) def test_addition_adaptive_constants(self, adata: AnnData): a, b = np.random.uniform(0, 10, 2) s = a + b adata.obsp["velocity_variances"] = vv = np.random.random( size=(adata.n_obs, adata.n_obs) ) adata.obsp["connectivity_variances"] = cv = np.random.random( size=(adata.n_obs, adata.n_obs) ) vk, ck = create_kernels( adata, velocity_variances="velocity_variances", connectivity_variances="connectivity_variances", ) k = a * vk ^ b * ck expected = _normalize( a / s * vv * vk.transition_matrix + b / s * cv * ck.transition_matrix ) np.testing.assert_allclose(k.transition_matrix.A, expected) def test_addition_adaptive_wrong_variances(self, adata: AnnData): a, b = np.random.uniform(0, 10, 2) s = a + b adata.obsp["velocity_variances"] = np.random.random( size=(adata.n_obs, adata.n_obs) ) adata.obsp["connectivity_variances"] = np.random.random( size=(adata.n_obs, adata.n_obs) ) vk, ck = create_kernels( adata, velocity_variances="velocity_variances", connectivity_variances="connectivity_variances", ) k = a * vk ^ b * ck expected = _normalize( a / s * vk.transition_matrix + b / s * ck.transition_matrix ) assert not np.allclose(k.transition_matrix.A, expected.A) def test_addition_adaptive_4_kernels(self, adata: AnnData): a, b, c, d = np.random.uniform(0, 10, 4) s = a + b + c + d adata.obsp["velocity_variances"] = vv = np.random.random( size=(adata.n_obs, adata.n_obs) ) adata.obsp["connectivity_variances"] = cv = np.random.random( size=(adata.n_obs, adata.n_obs) ) vk, ck = create_kernels( adata, velocity_variances="velocity_variances", connectivity_variances="connectivity_variances", ) vk1, ck1 = create_kernels( adata, velocity_variances="velocity_variances", connectivity_variances="connectivity_variances", ) k = a * vk ^ b * ck ^ c * vk1 ^ d * ck1 expected = _normalize( a / s * vv * vk.transition_matrix + b / s * cv * ck.transition_matrix + c / s * vv * vk1.transition_matrix + d / s * cv * ck1.transition_matrix ) np.testing.assert_allclose(k.transition_matrix.A, expected) class TestKernelCopy: def test_copy_simple(self, adata: AnnData): vk1 = VelocityKernel(adata) vk2 = vk1.copy() assert vk1 is not vk2 def test_copy_no_adata_copy(self, adata: AnnData): vk1 = VelocityKernel(adata) vk2 = vk1.copy() assert vk1.adata is adata assert vk2.adata is adata def test_copy_transition_matrix(self, adata: AnnData): vk1 = VelocityKernel(adata).compute_transition_matrix(softmax_scale=4) vk2 = vk1.copy() np.testing.assert_array_equal(vk1.transition_matrix.A, vk2.transition_matrix.A) def test_copy_params(self, adata: AnnData): vk1 = VelocityKernel(adata).compute_transition_matrix(softmax_scale=4) vk2 = vk1.copy() assert vk1.params == vk2.params def test_copy_cond_num(self, adata: AnnData): for KernelClass in [ VelocityKernel, ConnectivityKernel, PseudotimeKernel, PrecomputedKernel, ]: if KernelClass is PrecomputedKernel: k1 = KernelClass( random_transition_matrix(adata.n_obs), compute_cond_num=True ) elif KernelClass is VelocityKernel: k1 = KernelClass( adata, compute_cond_num=True ).compute_transition_matrix(softmax_scale=4) else: k1 = KernelClass( adata, compute_cond_num=True ).compute_transition_matrix() k2 = k1.copy() assert k1.condition_number == k2.condition_number def test_copy_velocity_kernel(self, adata: AnnData): vk1 = VelocityKernel(adata).compute_transition_matrix(softmax_scale=4) vk2 = vk1.copy() np.testing.assert_array_equal(vk1.transition_matrix.A, vk2.transition_matrix.A) np.testing.assert_array_equal(vk1.logits.A, vk2.logits.A) assert vk1.params == vk2.params assert vk1.backward == vk2.backward def test_copy_connectivity_kernel(self, adata: AnnData): ck1 = ConnectivityKernel(adata).compute_transition_matrix() ck2 = ck1.copy() np.testing.assert_array_equal(ck1.transition_matrix.A, ck2.transition_matrix.A) assert ck1.params == ck2.params assert ck1.backward == ck2.backward def test_copy_palantir_kernel(self, adata: AnnData): pk1 = PseudotimeKernel(adata).compute_transition_matrix() pk2 = pk1.copy() np.testing.assert_array_equal(pk1.transition_matrix.A, pk2.transition_matrix.A) assert pk1.params == pk2.params assert pk1.backward == pk2.backward def test_copy_works(self, adata: AnnData): ck1 = ConnectivityKernel(adata) ck2 = ck1.copy() ck1.compute_transition_matrix() assert ( ck1._transition_matrix is not None ) # calling the property would trigger the calculation assert ck2._transition_matrix is None class TestGeneral: def test_kernels(self, adata: AnnData): vk = VelocityKernel(adata) assert len(vk.kernels) == 1 assert vk.kernels[0] is vk def test_kernels_multiple(self, adata: AnnData): vk = VelocityKernel(adata) ck = ConnectivityKernel(adata) v = vk + ck assert len(v.kernels) == 2 assert vk in v.kernels assert ck in v.kernels def test_kernels_multiple_constant(self, adata: AnnData): vk = VelocityKernel(adata) ck = ConnectivityKernel(adata) v = 100 * vk + 42 * ck assert len(v.kernels) == 2 assert vk in v.kernels assert ck in v.kernels def test_kernels_unique(self, adata: AnnData): vk = VelocityKernel(adata) v = vk + vk + vk + vk assert len(v.kernels) == 1 assert v.kernels[0] is vk def test_no_comp_cond_num(self, adata: AnnData): vk = VelocityKernel(adata).compute_transition_matrix(softmax_scale=4) assert vk.condition_number is None def test_comp_cond_num(self, adata: AnnData): vk = VelocityKernel(adata, compute_cond_num=True).compute_transition_matrix( softmax_scale=4 ) assert isinstance(vk.condition_number, float) def test_comp_cond_num_or_policy(self, adata: AnnData): vk = VelocityKernel(adata, compute_cond_num=True).compute_transition_matrix( softmax_scale=4 ) ck = ConnectivityKernel( adata, compute_cond_num=False ).compute_transition_matrix() v = (vk + ck).compute_transition_matrix() assert isinstance(vk.condition_number, float) assert ck.condition_number is None assert isinstance(v.condition_number, float) class TestTransitionProbabilities: def test_pearson_correlations_fwd(self, adata: AnnData): # test whether pearson correlations in cellrank match those from scvelo, forward case backward = False # compute pearson correlations using scvelo velo_graph = adata.obsp["velocity_graph"] + adata.obsp["velocity_graph_neg"] # compute pearson correlations using cellrank vk = VelocityKernel(adata, backward=backward) vk.compute_transition_matrix(mode="deterministic", softmax_scale=4) pearson_correlations_cr = vk.logits pc_r = velo_graph.copy() pc_r.data = np.array(pearson_correlations_cr[(velo_graph != 0)]).squeeze() assert np.max(np.abs((pc_r - velo_graph).data)) < _rtol def test_pearson_correlations_bwd(self, adata: AnnData): # test whether pearson correlations in cellrank match those from scvelo, backward case backward = True # compute pearson correlations using scvelo velo_graph = (adata.obsp["velocity_graph"] + adata.obsp["velocity_graph_neg"]).T # compute pearson correlations using cellrak vk = VelocityKernel(adata, backward=backward) vk.compute_transition_matrix( mode="deterministic", backward_mode="transpose", softmax_scale=4 ) pearson_correlations_cr = vk.logits pc_r = velo_graph.copy() pc_r.data = np.array(pearson_correlations_cr[(velo_graph != 0)]).squeeze() assert np.max(np.abs((pc_r - velo_graph.T).data)) < _rtol def test_transition_probabilities_fwd(self, adata: AnnData): # test whether transition probabilities in cellrank match those from scvelo, forward case sigma_test = 3 # compute transition probabilities using cellrank vk = VelocityKernel(adata) vk.compute_transition_matrix(softmax_scale=sigma_test, mode="deterministic") T_cr = vk.transition_matrix pearson_correlation = vk.logits T_exp = np.expm1(pearson_correlation * sigma_test) T_exp.data += 1 T_exp = _normalize(T_exp) np.testing.assert_allclose(T_exp.A, T_cr.A) # don't use data, can be reordered def test_transition_probabilities_bwd(self, adata: AnnData): # test whether transition probabilities in cellrank match those from scvelo, backward case sigma_test = 3 # compute transition probabilities using cellrank vk = VelocityKernel(adata, backward=True) vk.compute_transition_matrix(softmax_scale=sigma_test, mode="deterministic") T_cr = vk.transition_matrix pearson_correlation = vk.logits T_exp = np.expm1(pearson_correlation * sigma_test) T_exp.data += 1 T_exp = _normalize(T_exp) np.testing.assert_allclose(T_exp.A, T_cr.A) # don't use data, can be reordered def test_estimate_softmax_scale(self, adata: AnnData): vk = VelocityKernel(adata) vk.compute_transition_matrix( mode="deterministic", show_progress_bar=False, softmax_scale=None ) assert isinstance(vk.params["softmax_scale"], float) class TestMonteCarlo: def test_mc_and_mc_fwd_1k(self, adata: AnnData): vk_mc = VelocityKernel(adata, backward=False) vk_mc.compute_transition_matrix( mode="monte_carlo", show_progress_bar=False, n_samples=1000, n_jobs=4, softmax_scale=4, ) vk_s = VelocityKernel(adata, backward=False) vk_s.compute_transition_matrix( mode="monte_carlo", show_progress_bar=False, n_samples=1000, n_jobs=4, softmax_scale=4, ) val = np.mean( np.abs(vk_mc.transition_matrix.data - vk_s.transition_matrix.data) ) assert val < 1e-5, val def test_monte_carlo_5k(self, adata: AnnData): vk_mc = VelocityKernel(adata, backward=False) vk_mc.compute_transition_matrix( mode="monte_carlo", show_progress_bar=False, n_samples=5000, n_jobs=4, softmax_scale=4, seed=42, ) vk_s = VelocityKernel(adata, backward=False) vk_s.compute_transition_matrix( mode="monte_carlo", show_progress_bar=False, n_samples=5000, n_jobs=4, softmax_scale=4, seed=43, ) val = np.mean( np.abs(vk_mc.transition_matrix.data - vk_s.transition_matrix.data) ) assert val < 1e-5, val @jax_not_installed_skip def test_monte_carlo_and_stochastic(self, adata: AnnData): vk_mc = VelocityKernel(adata, backward=False) vk_mc.compute_transition_matrix( mode="monte_carlo", show_progress_bar=False, n_samples=1000, n_jobs=4, softmax_scale=4, ) vk_s = VelocityKernel(adata, backward=False) vk_s.compute_transition_matrix( mode="stochastic", show_progress_bar=False, n_jobs=4, softmax_scale=4 ) val = np.mean( np.abs(vk_mc.transition_matrix.data - vk_s.transition_matrix.data) ) assert val < 1e-3, val class TestVelocityScheme: def test_invalid_string_key(self, adata: AnnData): vk = VelocityKernel(adata) with pytest.raises(ValueError): vk.compute_transition_matrix(scheme="foobar") def test_not_callable(self, adata: AnnData): vk = VelocityKernel(adata) with pytest.raises( TypeError, match="Expected `scheme` to be a function, found" ): vk.compute_transition_matrix(scheme=1311) def test_custom_function_not_sum_to_1(self, adata: AnnData): vk = VelocityKernel(adata) with pytest.raises(ValueError, match=r"Matrix is not row-stochastic."): vk.compute_transition_matrix(scheme=InvalidFuncProbs()) def test_custom_function_invalid_hessian(self, adata: AnnData): vk = VelocityKernel(adata) with pytest.raises(ValueError, match=r"Expected full Hessian matrix"): vk.compute_transition_matrix( mode="stochastic", scheme=InvalidFuncHessianShape(), softmax_scale=4 ) @pytest.mark.parametrize("backward", [True, False]) def test_implementations_differ(self, adata: AnnData, backward: bool): vk_dot = VelocityKernel(adata, backward=backward) vk_dot.compute_transition_matrix( mode="deterministic", softmax_scale=4, scheme="dot_product" ) vk_cos = VelocityKernel(adata, backward=backward) vk_cos.compute_transition_matrix( mode="deterministic", softmax_scale=4, scheme="cosine" ) vk_cor = VelocityKernel(adata, backward=backward) vk_cor.compute_transition_matrix( mode="deterministic", softmax_scale=4, scheme="correlation" ) np.testing.assert_allclose(vk_dot.transition_matrix.sum(1), 1.0) np.testing.assert_allclose(vk_cor.transition_matrix.sum(1), 1.0) np.testing.assert_allclose(vk_cor.transition_matrix.sum(1), 1.0) assert not np.allclose(vk_dot.transition_matrix.A, vk_cos.transition_matrix.A) assert not np.allclose(vk_cos.transition_matrix.A, vk_cor.transition_matrix.A) assert not np.allclose(vk_cor.transition_matrix.A, vk_dot.transition_matrix.A) @pytest.mark.parametrize( "key,fn", zip( ["dot_product", "cosine", "correlation"], [ cr.tl.kernels.DotProductScheme(), cr.tl.kernels.CosineScheme(), cr.tl.kernels.CorrelationScheme(), ], ), ) def test_function_and_string_key(self, adata: AnnData, key: str, fn: Callable): vk_k = VelocityKernel(adata) vk_fn = VelocityKernel(adata) vk_k.compute_transition_matrix( mode="deterministic", softmax_scale=4, scheme=key ) vk_fn.compute_transition_matrix( mode="deterministic", softmax_scale=4, scheme=fn ) np.testing.assert_allclose(vk_k.transition_matrix.A, vk_fn.transition_matrix.A) @pytest.mark.parametrize("backward", [True, False]) def test_custom_function(self, adata: AnnData, backward: bool): vk = VelocityKernel(adata, backward=backward) vk.compute_transition_matrix( mode="deterministic", softmax_scale=4, scheme=CustomFuncHessian() ) assert vk.params["scheme"] == str(CustomFuncHessian()) def test_custom_function_stochastic_no_hessian(self, adata: AnnData): vk = VelocityKernel(adata) vk.compute_transition_matrix( mode="stochastic", scheme=CustomFunc(), softmax_scale=4, n_samples=10 ) assert vk.params["mode"] == "monte_carlo" assert vk.params["scheme"] == str(CustomFunc()) class TestComputeProjection: def test_no_transition_matrix(self, adata: AnnData): with pytest.raises(RuntimeError, match=r"Compute transition matrix first as"): cr.tl.kernels.ConnectivityKernel(adata).compute_projection() def test_no_basis(self, adata: AnnData): ck = cr.tl.kernels.ConnectivityKernel(adata).compute_transition_matrix() with pytest.raises(KeyError, match=r"Unable to find a basis in"): ck.compute_projection(basis="foo") def test_basis_prefix(self, adata: AnnData): ck = cr.tl.kernels.ConnectivityKernel(adata).compute_transition_matrix() ck.compute_projection(basis="X_umap") @pytest.mark.parametrize("write_first", [True, False]) def test_write_to_adata(self, adata: AnnData, write_first: bool): ck = cr.tl.kernels.ConnectivityKernel(adata).compute_transition_matrix() if write_first: ck.write_to_adata() ck.compute_projection(basis="umap") else: ck.compute_projection(basis="umap") ck.write_to_adata() assert adata.uns[Key.uns.kernel(ck.backward) + "_params"] == { "params": ck.params, "embeddings": ["umap"], } @pytest.mark.parametrize("key_added", [None, "foo"]) def test_key_added(self, adata: AnnData, key_added: Optional[str]): ck = cr.tl.kernels.ConnectivityKernel(adata).compute_transition_matrix() ck.compute_projection(basis="umap", copy=False, key_added=key_added) key = Key.uns.kernel(ck.backward, key=key_added) ukey = f"{key}_params" key = f"{key}_umap" assert adata.uns[ukey] == {"embeddings": ["umap"]} np.testing.assert_array_equal(adata.obsm[key].shape, adata.obsm["X_umap"].shape) @pytest.mark.parametrize("copy", [True, False]) def test_copy(self, adata: AnnData, copy: bool): ck = cr.tl.kernels.ConnectivityKernel(adata).compute_transition_matrix() res = ck.compute_projection(basis="umap", copy=copy) if copy: assert isinstance(res, np.ndarray) np.testing.assert_array_equal(res.shape, adata.obsm["X_umap"].shape) else: assert res is None key = Key.uns.kernel(ck.backward) + "_umap" np.testing.assert_array_equal( adata.obsm[key].shape, adata.obsm["X_umap"].shape ) def test_nan_in_embedding(self, adata: AnnData): adata.obsm["X_umap"][-1] = np.nan ck = cr.tl.kernels.ConnectivityKernel(adata).compute_transition_matrix() res = ck.compute_projection(basis="umap", copy=True) assert not np.all(
np.isnan(res)
numpy.isnan
# Copyright (C) 2020 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions # and limitations under the License. import mmcv import numpy as np import pycocotools.mask as mask_util from ..utils.misc import to_numpy def mask2result(det_bboxes, det_labels, det_masks, num_classes, mask_thr_binary=0.5, rle=True, full_size=True, img_size=None): masks = to_numpy(det_masks) bboxes = to_numpy(det_bboxes, np.int32)[:, :4] labels = to_numpy(det_labels, np.int32) cls_masks = [[] for _ in range(num_classes - 1)] for bbox, label, mask in zip(bboxes, labels, masks): w = max(bbox[2] - bbox[0] + 1, 1) h = max(bbox[3] - bbox[1] + 1, 1) mask = mmcv.imresize(mask, (w, h)) mask = (mask > mask_thr_binary).astype(np.uint8) if full_size: assert img_size is not None im_mask =
np.zeros(img_size[:2], dtype=np.uint8)
numpy.zeros
# FUNZIONI PER LA VALUTAZIONE DEI MODELLI. import matplotlib.pyplot as plt import numpy as np from sklearn.utils import resample from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn.metrics import mean_squared_error, accuracy_score from sklearn.preprocessing import MinMaxScaler ################# VALUTAZIONE MODELLI CON TRAINING/VALIDATION/TEST # Funzione che calcola lo score di un dato modello rispetto al training set, validation set e test set. # In input si passa il modello e il dataset (X,y). Posso specificare se voglio scalare le features in X con MinMaxScaler. Si può specificare inoltre la # size del test set, il random state per splittare in training e test, il numero di fold per la cross validation. Infine si può specificare se si tratta # di regressione o classificazione. # X ha dimenzione (n_istanze,n_features) ; y ha dimensione (n_istanze,). def compute_train_val_test(model ,X ,y ,scale=False ,test_size=0.2 ,random_state=123, cv=5 ,regr=True): scoring="" if regr: scoring="neg_mean_squared_error" else: scoring="accuracy" if(scale): # Scalo le features in X scaler = MinMaxScaler() scaler.fit(X) X = scaler.transform(X) # Splitto in training e test. X_train_80, X_test, y_train_80, y_test = train_test_split(X, y, test_size=test_size, random_state=random_state) # Cross validation scores = cross_val_score(model, X_train_80, y_train_80, cv=cv, scoring=scoring) val_acc = scores.mean() # score sul validation if regr: val_acc = -val_acc model.fit(X_train_80,y_train_80) # Fitto usando tutto il training. # Calcolo la score sul training e sul test. train_acc=0 test_acc=0 if regr: train_acc = mean_squared_error(y_true=y_train_80, y_pred=model.predict(X_train_80)) test_acc = mean_squared_error(y_true=y_test, y_pred=model.predict(X_test)) else: train_acc = accuracy_score(y_true=y_train_80, y_pred=model.predict(X_train_80)) test_acc = accuracy_score(y_true=y_test, y_pred=model.predict(X_test)) return train_acc, val_acc, test_acc # Ritorno una tripla : score sul training, validation, test. # Funzione che data una lista modelli calcola per ciascuno di essi lo score su training/validation/test. Ritorna una lista dove per ogni modello è # appunto calcolato lo score su training/validation/test (tripla) e ritorna anche l'indice del modello migliore : il modello migliore è quello con score # migliore rispetto al validation. # Alla funzione passo la lista di modelli da valutare e il dataset completo (X,y). Posso inoltre passare: # - scale, test_size, random_state, cv, regr --> come spiegato in precedenza # - plotta --> specifica alla funzione se deve fare il grafico sulla valutazione dei modelli # - plottaTrain --> specifica se nel grafico si vuole mostrare anche lo score dei vari modelli sul training # - plottaTest --> specifica se nel grafico si vuole mostrare anche lo score dei vari modelli sul test set # - xvalues --> specifica i valori da mettere sull'asse delle x # - xlabel --> specifica l'etichetta da mettere sull'asse x # - title --> specifica il titolo da mettere al grafico def model_selection_TrainValTest(model_list, X, y, scale=False, test_size=0.2, random_state=123, cv=5, regr=True, plotta=False, plottaTrain=False, plottaTest=False, xvalues=None, xlabel="Complessità", title="Valutazione modelli con Training/Validation/Test"): if(scale): # Scalo le features in X, se specificato. scaler = MinMaxScaler() scaler.fit(X) X = scaler.transform(X) # Lista trainValTest_list : conterrà per ogni modello la tripla degli score su training/validation/test. trainValTest_list = [] # Calcolo i vari score per ogni modello. for model in model_list: trainValTest_list.append(list(compute_train_val_test(model ,X, y, False, test_size, random_state, cv, regr=regr))) trainValTest_list = np.array(trainValTest_list) # in numpy if(plotta): # Faccio il grafico if(xvalues is None): # Valori di deafult sull'asse delle x xvalues = range(len(model_list)) fig, ax = plt.subplots(figsize=(6,6)) if plottaTrain: # Devo disegnare anche lo score sul training set. ax.plot(xvalues,trainValTest_list[:,0], 'o:', label='Train') ax.plot(xvalues,trainValTest_list[:,1], 'o:', label='Validation') # Score validation if plottaTest: # Devo disegnare anche lo score sul test set. ax.plot(xvalues,trainValTest_list[:,2], 'o:', label='Test') ax.set_xlabel(xlabel) ax.set_title(title) ax.grid() ax.legend() # Ritorno una coppia : la lista di score train/val/test per ogni modello ; l'indice del modello con score sul validation migliore. if regr: # regressione return trainValTest_list, np.argmin(trainValTest_list,axis=0)[1] return trainValTest_list, np.argmax(trainValTest_list,axis=0)[1] # classificazione ########## VALUTAZIONE MODELLI CON BIAS/VARIANCE/ERROR # Funzione che calcola il bias, la varianza e l'errore di un dato modello. # In input si passa il modello, il dataset su cui si vuole effettuare la valutazione (X,y). Posso anche specificare se le features in X devono essere # scalate usando MinMaxScaler. E si possono anche specificare il numero di test da fare per calcolare bias/variance/error e la dimensione di ogni # campione rispetto al dataset completo. # X ha dimenzione (n_istanze,n_features) ; y ha dimensione (n_istanze,). def compute_bias_variance_error(model ,X ,y ,scale=False ,N_TESTS = 20 ,sample_size=0.67): # Scalo X se specificato if(scale): scaler = MinMaxScaler() scaler.fit(X) X = scaler.transform(X) # Vettore "vector_ypred": alla fine sarà una matrice con tante righe quanto N_TESTS (ogni riga corrisponde ad un campione) e tante colonne quanto # ogni punto di X (ogni colonna è un punto del dataset). # Riga i ---> ci sono le predizioni fatte dal modello sul campione i su tutti i punti del dataset # Colonna j ---> ci sono le predizioni fatte sul punto j da tutti gli N_TESTS campioni. vector_ypred = [] # Itero su N_TESTS. Ad ogni iterazione estraggo il modello dallo specifico campione i. for i in range(N_TESTS): # Prendo un campione del dataset. Xs, ys = resample(X,y, n_samples=int(sample_size*len(y)) ) # Estraggo il modello dal campione i. model.fit(Xs,ys) # Aggiungo le predizioni fatte dal modello su tutti i punti del dataset. vector_ypred.append(list(model.predict(X))) vector_ypred = np.array(vector_ypred) # Trasformo in numpy # Vettore che ha tanti elementi quanti i punti del dataset e per ciascuno ha il relativo bias calcolato sugli N_TESTS campioni. vector_bias = (y - np.mean(vector_ypred, axis=0))**2 #Vettore che ha tanti elementi quanti i punti del dataset e per ciascuno ha la relativa variance calcolata sugli N_TESTS campioni. vector_variance = np.var(vector_ypred, axis=0) # Vettore che ha tanti elementi quanti i punti del dataset e per ciascuno ha il relativo error calcolato sugli N_TESTS campioni. vector_error =
np.sum((vector_ypred - y)**2, axis=0)
numpy.sum
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Mar 18 11:01:22 2020 @author: twallema Copyright (c) 2020 by <NAME>, BIOMATH, Ghent University. All Rights Reserved. """ import numpy as np import pandas as pd from random import choices import scipy from scipy.integrate import odeint import math import models import networkx from scipy import interpolate as inter from gekko import GEKKO def sampleFromDistribution(filename,k): df = pd.read_csv(filename) x = df.iloc[:,0] y = df.iloc[:,1] return(np.asarray(choices(x, y, k = k))) def runSimulation(initN,beta,sigmavect,Nc,zeta,smvect,mvect,hvect,cvect,dsm,dm,dhospitalvect,dh,dcfvect,dcrvect,mc0,ICU,theta_S,theta_E,theta_SM,theta_M,theta_R,totalTests,psi_FP,psi_PP,dq,phi_S,phi_E,phi_SM,phi_R,initE, initSM, initM, initH, initC,initHH,initCH,initR,initF,initSQ,initEQ,initSMQ,initMQ,initRQ,simtime,monteCarlo,method,modelType,checkpoints,**stoArgs): tN = simtime + 1 if monteCarlo == True: n_samples = dcfvect.size S = np.zeros([tN,n_samples]) E = np.zeros([tN,n_samples]) SM = np.zeros([tN,n_samples]) M = np.zeros([tN,n_samples]) H = np.zeros([tN,n_samples]) C = np.zeros([tN,n_samples]) HH = np.zeros([tN,n_samples]) CH = np.zeros([tN,n_samples]) R = np.zeros([tN,n_samples]) F = np.zeros([tN,n_samples]) SQ =
np.zeros([tN,n_samples])
numpy.zeros
import numpy as np import pandas as pd from scipy import stats import itertools import time import pdb from operator import itemgetter from sklearn.metrics.pairwise import cosine_similarity from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LinearRegression import statsmodels.formula.api as sm import statsmodels.formula.api as smf import matplotlib.pyplot as plt import seaborn as sns def intervention_order(num_features, text_i2r=False, numeric=False): if text_i2r or numeric: intervention_inds_numeric = [] intervention_inds = [] for f_i in range(2 ** num_features): bitstr = to_bitstring(f_i, num_features) # Indices where where we have 0 in this bitstring correspond # to features where an intervention has been performed (i.e., feature is # assigned to input value). intervention_inds.append(str([i for i, b in enumerate(bitstr) if b == '0'])) if text_i2r or numeric: intervention_inds_numeric.append([i for i, b in enumerate(bitstr) if b == '0']) if text_i2r: return intervention_inds, intervention_inds_numeric if numeric: return intervention_inds_numeric return intervention_inds def to_bitstring(num, num_bits): # Returns the bitstring corresponding to (base 10) number 'num' bitstr = bin(num)[2:] # 2: to remove the initial '0b' # Append '0's at the beginning to make it of length 'num_bits' return ''.join(['0' for _ in range(num_bits - len(bitstr))]) + bitstr def close_or_distant_neighbours(df, inp, col_name, like=True, perc=0.1): similars = df[col_name].apply(lambda x: cosine_similarity(x.reshape(1, -1), inp[col_name].item().reshape(1, -1))) if like: chosen = similars.sort_values(ascending=False)[:int(len(similars) * perc)] else: chosen = similars.sort_values(ascending=True)[:int(len(similars) * perc)] return chosen.index def create_CF(inp, refs, clf, num_features, MAD_features_cost, r2i=True, datatype='Tabular', raw_text=False, causal_SCM=None, col_con=None, col_cat=None, predict=False): np.random.seed(42) CF = {'cfs': [], 'intervention_sets': [], 'cardinality': [], 'original': [], 'cost': [], 'model_pred': []} intervention_order_ids = intervention_order(num_features) cardinalities = [len(eval(x)) for x in intervention_order_ids] # Keep track of col types for cost computation if not col_con: col_con = [i for i in range(num_features) if (isinstance(inp.iloc[0, i], int) | isinstance(inp.iloc[0, i], float))] col_cat = list(set(range(num_features)) - set(col_con)) # construction of interventions for ind, ref in refs.iterrows(): cfs_ref = [] if r2i: if not causal_SCM: cfs_ref = list(itertools.product(*zip(np.array(inp)[0][:num_features], np.array(ref)[:num_features]))) else: for interv_ind in intervention_order_ids: original_values = pd.DataFrame(ref).T # This line is to prevent from applying intervention that are the same as origin. values # Note that order of columns in diff_values_intervention are different than original # b/c sets do not respect order, but all access in sample_from_SCM is invariant to column order if interv_ind != '[]': intervention_values = inp.iloc[:, eval(interv_ind)].to_dict('records')[0].items() diff_values_intervention = \ pd.DataFrame.from_dict(dict(intervention_values - (original_values.to_dict('records')[0].items() & intervention_values)), orient='index').T else: diff_values_intervention = pd.DataFrame([]) cfs_ref.append(sample_from_SCM(diff_values_intervention, original_values, causal_SCM)) CF['original'] += [str(ref.values[:num_features])] * (2 ** num_features) else: if not causal_SCM: cfs_ref = list(itertools.product(*zip(np.array(ref)[:num_features], np.array(inp)[0][:num_features]))) else: for interv_ind in intervention_order_ids: original_values = inp # This block is to prevent from applying intervention that are the same as origin. values # Note that order of columns in diff_values_intervention are different than original # b/c sets do not respect order, but all access in sample_from_SCM is invariant to column order if interv_ind != '[]': intervention_values = pd.DataFrame(ref[eval(interv_ind)]).T.to_dict('records')[0].items() diff_values_intervention = \ pd.DataFrame.from_dict(dict(intervention_values - (original_values.to_dict('records')[0].items() & intervention_values)), orient='index').T else: diff_values_intervention = pd.DataFrame([]) cfs_ref.append(sample_from_SCM(diff_values_intervention, original_values, causal_SCM)) CF['original'] += [str(inp.values[0][:num_features])] * (2 ** num_features) CF['cfs'] += cfs_ref # for raw text, just interested in text rep of possible interventions if not raw_text: # otherwise, compute model preds, cost, etc. # mark intervention targets CF['intervention_sets'] += intervention_order_ids CF['cardinality'] += cardinalities # obtain model prediction for CFs if predict: if datatype == 'Text': CF['model_pred'].extend(clf.predict( np.array(cfs_ref).reshape(len(cfs_ref), -1))) elif datatype == 'Dice': hstacked = np.hstack(np.hstack( np.array(cfs_ref, dtype=object))).reshape(len(cfs_ref), -1) CF['model_pred'].extend((clf.predict(hstacked) >= 0.5) * 1.) else: CF['model_pred'].extend(clf.predict(cfs_ref)) # cost computation if r2i: if not causal_SCM: costs = cost(cfs_ref, ref.values[:num_features], MAD_features_cost, col_con, col_cat, l1_MAD=True, datatype=datatype) else: # This block is to prevent assigning cost to downstream effects of interventions intervention_inds = intervention_order(num_features, numeric=True) intervention_inds_len = len(intervention_inds) cost_mask = np.zeros((intervention_inds_len, num_features)) for i, intervention in enumerate(intervention_inds): cost_mask[i, intervention] = 1. ref_tiled = np.tile(ref.values[:num_features], (intervention_inds_len, 1)) cfs_ref_masked_w_ref = np.where(cost_mask == 0, ref_tiled, np.array(cfs_ref)) costs = cost(cfs_ref_masked_w_ref, ref.values[:num_features], MAD_features_cost, col_con, col_cat, l1_MAD=True, datatype=datatype) else: if not causal_SCM: costs = cost(cfs_ref, inp.values[0][:num_features], MAD_features_cost, col_con, col_cat, l1_MAD=True, datatype=datatype) else: # This block is to prevent assigning cost to downstream effects of interventions intervention_inds = intervention_order(num_features, numeric=True) intervention_inds_len = len(intervention_inds) cost_mask = np.zeros((intervention_inds_len, num_features)) for i, intervention in enumerate(intervention_inds): cost_mask[i, intervention] = 1. inp_tiled = np.tile(inp.values[0][:num_features], (intervention_inds_len, 1)) cfs_ref_masked_w_inp = np.where(cost_mask == 0, inp_tiled, np.array(cfs_ref)) costs = cost(cfs_ref_masked_w_inp, inp.values[0][:num_features], MAD_features_cost, col_con, col_cat, l1_MAD=True, datatype=datatype) CF['cost'] += list(costs) CF_df = pd.DataFrame(CF['cfs'], columns=inp.columns[:num_features]) if not raw_text: CF_df['Original'] = CF['original'] CF_df['Intervention_index'] = CF['intervention_sets'] if predict: CF_df['Model_pred'] = CF['model_pred'] CF_df['Cost'] = CF['cost'] CF_df['Cardinality'] = CF['cardinality'] return CF_df # Causal model fitting and predicting def fit_scm(dataset): np.random.seed(42) # Age and Sex are root nodes and don't need fitting # Job job_fn = RandomForestClassifier() job_fn.fit(np.vstack((dataset['Age'].values, dataset['Sex'].values)).reshape(-1, 2), dataset['Job'].values) # Savings savings_fn = smf.ols(formula="Savings ~ Age + Sex + Job", data=dataset).fit() savings_rmse = np.sqrt(np.mean(savings_fn.resid ** 2)) # Housing housing_fn = RandomForestClassifier() housing_fn.fit(np.vstack((dataset['Job'].values, dataset['Savings'].values)).reshape(-1, 2), dataset['Housing'].values) # Checking checking_fn = smf.ols(formula="Checking ~ Job + Savings", data=dataset).fit() checking_rmse = np.sqrt(np.mean(checking_fn.resid ** 2)) # Credit credit_fn = smf.ols(formula="Credit ~ Age + Job + Housing", data=dataset).fit() credit_rmse = np.sqrt(np.mean(credit_fn.resid ** 2)) # Duration duration_fn = smf.ols(formula="Duration ~ Credit + Savings", data=dataset).fit() duration_rmse = np.sqrt(np.mean(duration_fn.resid ** 2)) # Purpose purpose_fn = RandomForestClassifier() purpose_fn.fit(np.vstack((dataset['Age'].values, dataset['Housing'].values, dataset['Credit'].values, dataset['Duration'].values)).reshape(-1, 4), dataset['Purpose'].values) return {'job_fn': job_fn, 'savings_fn': savings_fn, 'savings_rmse': savings_rmse, 'housing_fn': housing_fn, 'checking_fn': checking_fn, 'checking_rmse': checking_rmse, 'credit_fn': credit_fn, 'credit_rmse': credit_rmse, 'duration_fn': duration_fn, 'duration_rmse': duration_rmse, 'purpose_fn': purpose_fn} def sample_from_SCM(intervention_values, original_values, SCM_model, n=1): intervened = 0 # Age if 'Age' in intervention_values.columns: age_SCM = intervention_values['Age'].item() intervened = 1 else: age_SCM = original_values['Age'].item() # Sex if 'Sex' in intervention_values.columns: sex_SCM = intervention_values['Sex'].item() intervened = 1 else: sex_SCM = original_values['Sex'].item() # Job if 'Job' in intervention_values.columns: job_SCM = intervention_values['Job'].item() intervened = 1 else: if intervened == 0: job_SCM = original_values['Job'].item() else: predict_proba_job = SCM_model['job_fn'].predict_proba( np.vstack((age_SCM, sex_SCM)).reshape(-1, 2)) job_SCM = np.random.choice(len(predict_proba_job.squeeze(0)), 1, p=predict_proba_job.squeeze(0)).item() # Savings if 'Savings' in intervention_values.columns: savings_SCM = intervention_values['Savings'].item() intervened = 1 else: if intervened == 0: savings_SCM = original_values['Savings'].item() else: savings_SCM = (SCM_model['savings_fn'].predict( exog=dict(Age=age_SCM, Sex=sex_SCM, Job=job_SCM)).item() + np.random.normal(scale=SCM_model['savings_rmse'], size=n))[0] if savings_SCM < 0: savings_SCM = 0. # Housing if 'Housing' in intervention_values.columns: housing_SCM = intervention_values['Housing'].item() intervened = 1 else: if intervened == 0: housing_SCM = original_values['Housing'].item() else: predict_proba_housing = SCM_model['housing_fn'].predict_proba( np.vstack((job_SCM, savings_SCM)).reshape(-1, 2)) housing_SCM = np.random.choice(len(predict_proba_housing.squeeze(0)), 1, p=predict_proba_housing.squeeze(0)).item() # Checking if 'Checking' in intervention_values.columns: checking_SCM = intervention_values['Checking'].item() intervened = 1 else: if intervened == 0: checking_SCM = original_values['Checking'].item() else: checking_SCM = (SCM_model['checking_fn'].predict( exog=dict(Job=job_SCM, Savings=savings_SCM)).item() +
np.random.normal(scale=SCM_model['checking_rmse'], size=n)
numpy.random.normal
import numpy as np import numpy.random as npr import scipy as sc from scipy import stats from scipy.special import logsumexp from scipy.stats import multivariate_normal as mvn from scipy.stats import invwishart from sds.utils.stats import multivariate_normal_logpdf as lg_mvn from sds.utils.general import linear_regression, one_hot from sds.distributions.categorical import Categorical from sds.distributions.gaussian import StackedGaussiansWithPrecision from sds.distributions.gaussian import StackedGaussiansWithDiagonalPrecision from sds.distributions.lingauss import StackedLinearGaussiansWithPrecision from sds.distributions.gaussian import GaussianWithPrecision from sds.distributions.gaussian import GaussianWithDiagonalPrecision from sklearn.preprocessing import PolynomialFeatures from functools import partial from operator import mul import copy class InitCategoricalState: def __init__(self, nb_states, **kwargs): self.nb_states = nb_states self.pi = 1. / self.nb_states * np.ones(self.nb_states) @property def params(self): return self.pi @params.setter def params(self, value): self.pi = value def permute(self, perm): self.pi = self.pi[perm] def initialize(self): pass def likeliest(self): return np.argmax(self.pi) def sample(self): return npr.choice(self.nb_states, p=self.pi) def log_init(self): return np.log(self.pi) def mstep(self, p, **kwargs): eps = kwargs.get('eps', 1e-8) pi = sum([_p[0, :] for _p in p]) + eps self.pi = pi / sum(pi) class InitGaussianObservation: def __init__(self, nb_states, obs_dim, act_dim, nb_lags=1, **kwargs): assert nb_lags > 0 self.nb_states = nb_states self.obs_dim = obs_dim self.act_dim = act_dim self.nb_lags = nb_lags # self.mu = npr.randn(self.nb_states, self.obs_dim) # self._sigma_chol = 5. * npr.randn(self.nb_states, self.obs_dim, self.obs_dim) self.mu = np.zeros((self.nb_states, self.obs_dim)) self._sigma_chol = np.zeros((self.nb_states, self.obs_dim, self.obs_dim)) for k in range(self.nb_states): _sigma = invwishart.rvs(self.obs_dim + 1, np.eye(self.obs_dim)) self._sigma_chol[k] = np.linalg.cholesky(_sigma * np.eye(self.obs_dim)) self.mu[k] = mvn.rvs(mean=None, cov=1e2 * _sigma, size=(1, )) @property def sigma(self): return np.matmul(self._sigma_chol, np.swapaxes(self._sigma_chol, -1, -2)) @sigma.setter def sigma(self, value): self._sigma_chol = np.linalg.cholesky(value + 1e-8 * np.eye(self.obs_dim)) @property def params(self): return self.mu, self._sigma_chol @params.setter def params(self, value): self.mu, self._sigma_chol = value def permute(self, perm): self.mu = self.mu[perm] self._sigma_chol = self._sigma_chol[perm] def initialize(self, x, **kwargs): x0 = np.vstack([_x[:self.nb_lags] for _x in x]) self.mu = np.array([np.mean(x0, axis=0) for k in range(self.nb_states)]) self.sigma = np.array([np.cov(x0, rowvar=False) for k in range(self.nb_states)]) def mean(self, z): return self.mu[z] def sample(self, z): x = mvn(mean=self.mean(z), cov=self.sigma[z]).rvs() return np.atleast_1d(x) def log_likelihood(self, x): if isinstance(x, np.ndarray): x0 = x[:self.nb_lags] log_lik = np.zeros((x0.shape[0], self.nb_states)) for k in range(self.nb_states): log_lik[:, k] = lg_mvn(x0, self.mean(k), self.sigma[k]) return log_lik else: return list(map(self.log_likelihood, x)) def mstep(self, p, x, **kwargs): x0, p0 = [], [] for _x, _p in zip(x, p): x0.append(_x[:self.nb_lags]) p0.append(_p[:self.nb_lags]) J = np.zeros((self.nb_states, self.obs_dim)) h = np.zeros((self.nb_states, self.obs_dim)) for _x, _p in zip(x0, p0): J += np.sum(_p[:, :, None], axis=0) h += np.sum(_p[:, :, None] * _x[:, None, :], axis=0) self.mu = h / J sqerr = np.zeros((self.nb_states, self.obs_dim, self.obs_dim)) norm = np.zeros((self.nb_states, )) for _x, _p in zip(x0, p0): resid = _x[:, None, :] - self.mu sqerr += np.sum(_p[:, :, None, None] * resid[:, :, None, :] * resid[:, :, :, None], axis=0) norm += np.sum(_p, axis=0) self.sigma = sqerr / norm[:, None, None] def smooth(self, p, x): if all(isinstance(i, np.ndarray) for i in [p, x]): p0 = p[:self.nb_lags] return p0.dot(self.mu) else: return list(map(self.smooth, p, x)) class InitGaussianControl: def __init__(self, nb_states, obs_dim, act_dim, nb_lags=1, degree=1, **kwargs): assert nb_lags > 0 self.nb_states = nb_states self.obs_dim = obs_dim self.act_dim = act_dim self.nb_lags = nb_lags self.degree = degree self.feat_dim = int(sc.special.comb(self.degree + self.obs_dim, self.degree)) - 1 self.basis = PolynomialFeatures(self.degree, include_bias=False) # self.K = npr.randn(self.nb_states, self.act_dim, self.feat_dim) # self.kff = npr.randn(self.nb_states, self.act_dim) # self._sigma_chol = 5. * npr.randn(self.nb_states, self.act_dim, self.act_dim) self.K = np.zeros((self.nb_states, self.act_dim, self.feat_dim)) self.kff = np.zeros((self.nb_states, self.act_dim)) self._sigma_chol = np.zeros((self.nb_states, self.act_dim, self.act_dim)) for k in range(self.nb_states): _sigma = invwishart.rvs(self.act_dim + 1, np.eye(self.act_dim)) self._sigma_chol[k] = np.linalg.cholesky(_sigma * np.eye(self.act_dim)) self.K[k] = mvn.rvs(mean=None, cov=1e2 * _sigma, size=(self.feat_dim, )).T self.kff[k] = mvn.rvs(mean=None, cov=1e2 * _sigma, size=(1, )) @property def sigma(self): return np.matmul(self._sigma_chol,
np.swapaxes(self._sigma_chol, -1, -2)
numpy.swapaxes
import sys import itertools from typing import Tuple import numpy as np from tqdm import tqdm from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import cross_validate, train_test_split from scipy.special import xlogy def select_rf(z: np.ndarray, t: np.ndarray, random_state: int): assert z.ndim == 2 assert z.shape[0] == t.shape[0] batch_size, z_dim = z.shape _, t_dim = t.shape # t = (t >= t_threshold).astype(np.uint8) hyperparameters = { "max_depth": [2, 4, 8, 12], "n_estimators": [10], "n_jobs": [-1], } names = list(hyperparameters.keys()) indices = itertools.product(*hyperparameters.values()) best_score, best_kwargs = float("inf"), {} for index in list(indices): kwargs = dict(zip(names, index)) estimator = RandomForestRegressor(**kwargs, random_state=random_state) scores = [] for i in tqdm(range(t_dim)): score_i_cv = cross_validate(estimator, z, t[:,i], scoring="neg_mean_squared_error", n_jobs=-1, cv=5) score_i = -np.mean(score_i_cv["test_score"]) scores.append(score_i) entire_score = np.mean(scores) if best_score > entire_score: best_score = entire_score best_kwargs = kwargs print(f"[classifier.py: select_rf()] {entire_score:.6f} in {kwargs}", file=sys.stderr) print(f"[classifier.py: select_rf()] {best_score:.6f} in {best_kwargs}", file=sys.stderr) return RandomForestRegressor(**best_kwargs) def disentanglement(gini: np.ndarray) -> float: z_dim, t_dim = gini.shape p = np.abs(gini) p = p / np.maximum(1e-12, np.sum(p, axis=1, keepdims=True)) d = 1 + np.sum(xlogy(p, p) / np.log(t_dim), axis=1) rho = np.sum(gini, axis=1) / np.maximum(1e-12, np.sum(gini)) return float(np.sum(rho * d)) def completeness(gini: np.ndarray) -> np.ndarray: z_dim, t_dim = gini.shape p = np.abs(gini) p = p / np.maximum(1e-12, np.sum(p, axis=0, keepdims=True)) d = 1 + np.sum(xlogy(p, p) / np.log(z_dim), axis=0) return d def explicitness(pred_error: np.ndarray) -> np.ndarray: return np.maximum(0, 1 - 6 * pred_error) def dci_score(z: np.ndarray, t: np.ndarray, random_state: int = 42) -> Tuple[float, np.ndarray, np.ndarray]: assert z.ndim == 2 assert z.shape[0] == t.shape[0] batch_size, z_dim = z.shape _, t_dim = t.shape z_train, z_test, t_train, t_test = train_test_split(z, t, test_size=0.33, random_state=random_state) estimator = select_rf(z_train, t_train, random_state) gini = np.empty(shape=(z_dim, t_dim), dtype=np.float32) pred_error = np.empty(shape=(t_dim, ), dtype=np.float32) for i in tqdm(range(t_dim)): estimator.fit(z_train, t_train[:,i]) square_error = (estimator.predict(z_test) - t_test[:,i]) ** 2 pred_error[i] = np.mean(square_error) gini[:,i] = estimator.feature_importances_ return disentanglement(gini), completeness(gini), explicitness(pred_error) # unit tests if __name__ == "__main__": print("independent case:") t = np.random.uniform(size=(2048, 10)) z = np.random.normal(size=(2048, 10)) d, c, i = dci_score(z, t) print(d, c.mean(), i.mean()) print("dependent case:") t = np.random.uniform(size=(2048, 10)) z = t @ np.random.normal(size=(10, 10)) d, c, i = dci_score(z, t) print(d, c.mean(), i.mean()) print("perfect case:") t = np.random.uniform(size=(2048, 10)) z = t d, c, i = dci_score(z, t) print(d, c.mean(), i.mean()) print("lo-mod hi-com:") t = np.random.uniform(size=(2048, 10)) z = np.random.normal(size=(2048, 10)) * 2 - 1 z[:,:1] = t @ np.random.normal(size=(10, 1)) d, c, i = dci_score(z, t) print(d, c.mean(), i.mean()) print("hi-mod lo-com:") t =
np.random.uniform(size=(2048, 3))
numpy.random.uniform
from numba import cuda import numpy as np from numba.cuda.testing import SerialMixin import unittest class TestCudaAutojit(SerialMixin, unittest.TestCase): def test_device_array(self): @cuda.autojit def foo(x, y): i = cuda.grid(1) y[i] = x[i] x = np.arange(10) y =
np.empty_like(x)
numpy.empty_like
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ kuehbach at fhi - berlin . mpg . de parser for file formats processtype: post-processing/analyze methodgroup: aptfim methodtype: parser methodvariant: rrng file format, ###MK::give more detail what this format is 2021/03/01 """ import os, sys, glob, re import numpy as np from aptfimleapparser.utils.nomad4exp_keyvalue_struct import * from aptfimleapparser.utils.nomad4exp_process_aptfim_utils_ranging import * class rrng_range(): def __init__(self, i, line, ionnm_dict, *args, **kwargs): #i = 1 #line = txt_stripped[fp] #line = txt_stripped[85] self.id = None self.mqmin = None self.mqmax = None self.comp = [] self.vol = None self.color = None tmp = re.split(r'[\s=]+', line) if tmp[0] == 'Range' + str(i) and len(tmp) >= 6: self.id = 'Range' + str(i) else: raise ValueError('RRNG file is corrupted in line for ' + line + ' for range keyword and/or insufficient number of key-value pairs !') ###MK::color field is an optional entry ###MK::D. <NAME>son et al. 2013 book p253 report that ###MK::mqmin, mqmax, vol, ion composition is required, name and color fields are optional ###MK::'Range6 = 106.1250 213.4110 vol:0.00000 Name: Noise Color:0000FF' ###MK::'Range7 = 42.8160 43.3110 vol:0.04543 Al:1 O:1 Name: AlOLikely Color:00FFFF' ###MK::the Name: field is optional for giving ranges custom names. ###MK::custom ion names cannot be used to define ion types if tmp[-1].lower().startswith('color:') and len(re.split(r':', tmp[-1])[1]) == 6: ##MK::make more robust to handle optionality of color and self.color = '#' + re.split(r':', tmp[-1])[1] #HEX_COLOR_REGEX = r'^([A-Fa-f0-9]{6}|[A-Fa-f0-9]{3})$' #replace r'^#( ... #regexp = re.compile(HEX_COLOR_REGEX) #if regexp.search(tmp[-1].split(r':')): # return True #return False else: raise ValueError('RRNG file is corrupted in line ' + line + ' for color keyword !') if np.float64(tmp[1]) > 0.0 and np.float64(tmp[2]) > 0.0: if (np.float64(tmp[2]) - np.float64(tmp[1])) > np.float64(MQ_EPSILON): self.mqmin = tmp[1] self.mqmax = tmp[2] else: raise ValueError('RRNG file is corrupted in line ' + line + ' for mqmin <= mqmax !') else: raise ValueError('RRNG file is corrupted in line ' + line + ' for mqmax and/or mqmin <= 0.0 !') if tmp[3].lower().startswith('vol:'): V = re.split(r':', tmp[3])[1] if np.float64(V) > 0.0: self.vol = V else: Warning('RRNG file is corrupted in line ' + line + ' for volume <= 0.0 !') else: raise ValueError('RRNG file is corrupted in line ' + line + ' for volume keyword !') components = tmp[4:-1] for c in components: name_mult = re.split(r':+', c) if name_mult[0] in ionnm_dict['metadata']['ionnames'].values() and np.uint8(name_mult[1]) > 0: for j in np.arange(0,int(name_mult[1])): self.comp.append( name_mult[0] ) class n4e_parser_aptfim_io_read_rrng(): def __init__(self, fn, *args, **kwargs): """ reads all content from a RRNG file in: string fn, name of file to be read out: class object instance representing content of rrng file """ #specify which information content, (meta)data-wise an RRNG file holds to parse for/inform nomad self.a = {} self.a['metadata'] = {} self.a['metadata']['ionnames'] = {} self.a['metadata']['ranges'] = {} self.a['metadata']['species'] = {} #self.a['metadata']['colors'] = {} #read the ASCII textfile RRNG format and interpret it #fnm = '/home/kuehbach/GITHUB/FAIRMAT-PARSER/fairmat_areab_parser/tutorials/aptfim/examples/usa_richland_pnnl/R31_06365-v02.rrng' #fnm = '/home/kuehbach/GITHUB/FAIRMAT-PARSER/fairmat_areab_parser/tutorials/aptfim/examples/deu_duesseldorf_mpie/Se Ho Beispiel R5076_44076-v02.rrng' #fnm = '/home/kuehbach/FHI_FHI_FHI/Paper/xxxx_ParaprobeAnalyticsAsAFairMatPlugin/research/aus_sydney_rielli_primig/R04_22071.RRNG' fnm = fn with open( fnm, mode='r', encoding='utf8' ) as rrngf: txt = rrngf.read() #replace eventual windows line breaks with unix line feeds, ##MK::required for the splitting in next line to work txt = txt.replace('\r\n', '\n') #replace eventual comma decimal points by dots txt = txt.replace(',', '.') #strip empty lines and lines with comments (see <NAME>. Larson et al. book 2013) txt_stripped = [line for line in txt.split('\n') if line.strip() != '' and '#' not in line] del txt #the equivalent of a file respective line pointer, here an index which line we process fp = 0 #parse ion names including real periodic table element names, as well as user specified ranges ###MK::needed because sometimes experimentalists hijack the RRNG file format to define custom names for post-processing certain regions of ###MK::a mass-to-charge-state spectrum #a = {} #a['metadata'] = {} #a['metadata']['ionnames'] = {} if txt_stripped[fp] == '[Ions]': fp += 1 tmp = re.split(r'[\s=]+', txt_stripped[fp]) if tmp[0] == 'Number' and np.int64(tmp[1]) > 0: Nions = int(tmp[1]) fp += 1 for i in np.arange(0,Nions): tmp = re.split(r'[\s=]+', txt_stripped[fp+i]) if tmp[0] == 'Ion' + str(i+1) and type(tmp[1]) == str and len(tmp[1]) > 0: self.a['metadata']['ionnames'][tmp[0]] = tmp[1] else: raise ValueError('RRNG file is corrupted because Ion*= line is incorrectly formatted !') fp += Nions else: raise ValueError('RRNG file is corrupted because [Ions] Number=* line is incorrectly formatted !') else: raise ValueError('RRNG file is corrupted because [Ions] list header is not at expected position !') #parse range specifications #a['metadata']['ranges'] = {} if txt_stripped[fp] == '[Ranges]': fp += 1 tmp = re.split(r'[\s=]+', txt_stripped[fp]) if tmp[0] == 'Number' and np.int64(tmp[1]) > 0: Nranges = int(tmp[1]) fp += 1 for i in np.arange(0,Nranges): obj = None obj = rrng_range(i+1, txt_stripped[fp+i], self.a) if obj != None: self.a['metadata']['ranges'][obj.id] = obj else: raise ValueError('RRNG file is corrupted because Range*= line is incorrectly formatted !') fp += Nranges else: raise ValueError('RRNG file is corrupted because [Ranges] Number=* line is incorrectly formatted !') else: raise ValueError('RRNG file is corrupted because [Ranges] list header is not at expected position !') #build NOMAD ion species #b = aa.a #b['metadata']['species'] = {} #iontype_id = 1 #usertype_id = 1 element_symbols = [] #create lookup table for known elements element_z = [] for el in pse.elements: element_symbols.append(el.symbol) element_z.append(el.number) for obj in self.a['metadata']['ranges'].values(): #obj = b['metadata']['ranges']['Range65'] #create an identifier hashvector = np.empty(0, dtype=np.uint16()) for c in obj.comp: if c in element_symbols: nprotons = element_z[element_symbols.index(c)] nneutrons = 0 ###MK::rrng stores no isotope pieces of information else: raise Warning('Skipping user type for now !') hashvector = np.append( hashvector, hash_isotope(nprotons, nneutrons) ) hashvector = np.flip(
np.sort(hashvector, kind='stable')
numpy.sort
""" Module for defining function spaces in the Fourier family """ import sympy as sp import numpy as np from mpi4py_fft import fftw from shenfun.spectralbase import SpectralBase, Transform, islicedict, slicedict from shenfun.optimization.cython import convolve __all__ = ['FourierBase', 'R2C', 'C2C'] #pylint: disable=method-hidden, no-member, line-too-long, arguments-differ class FourierBase(SpectralBase): r"""Fourier base class A basis function :math:`\phi_k` is given as .. math:: \phi_k(x) = \exp(ikx) and an expansion is given as .. math:: :label: u u(x) = \sum_k \hat{u}_k \exp(ikx) where .. math:: k = -N/2, -N/2+1, ..., N/2-1 However, since :math:`\exp(ikx) = \exp(i(k \pm N)x)` this expansion can also be written as an interpolator .. math:: :label: u2 u(x) = \sum_k \frac{\hat{u}_k}{c_k} \exp(ikx) where .. math:: k = -N/2, -N/2+1, ..., N/2-1, N/2 and :math:`c_{N/2} = c_{-N/2} = 2`, whereas :math:`c_k = 1` for :math:`k=-N/2+1, ..., N/2-1`. Furthermore, :math:`\hat{u}_{N/2} = \hat{u}_{-N/2}`. The interpolator form is used for computing odd derivatives. Otherwise, it makes no difference and therefore :eq:`u` is used in transforms, since this is the form expected by fftw. The inner product is defined as .. math:: (u, v) = \frac{1}{L} \int_{0}^{L} u \overline{v} dx where :math:`\overline{v}` is the complex conjugate of :math:`v`, and :math:`L` is the length of the (periodic) domain. Parameters ---------- N : int Number of quadrature points. Should be even for efficiency, but this is not required. padding_factor : float, optional Factor for padding backward transforms. padding_factor=1.5 corresponds to a 3/2-rule for dealiasing. domain : 2-tuple of floats, optional The computational domain. dtype : data-type, optional dealias_direct : bool, optional True for dealiasing using 2/3-rule. Must be used with padding_factor = 1. coordinates: 2- or 3-tuple (coordinate, position vector (, sympy assumptions)), optional Map for curvilinear coordinatesystem. The new coordinate variable in the new coordinate system is the first item. Second item is a tuple for the Cartesian position vector as function of the new variable in the first tuple. Example:: theta = sp.Symbols('x', real=True, positive=True) rv = (sp.cos(theta), sp.sin(theta)) """ def __init__(self, N, padding_factor=1, domain=(0, 2*np.pi), dtype=float, dealias_direct=False, coordinates=None): self._k = None self._planned_axes = None # Collapsing of axes means that this base can be used to plan transforms over several collapsed axes. Store the axes planned for here. SpectralBase.__init__(self, N, dtype=dtype, padding_factor=padding_factor, dealias_direct=dealias_direct, domain=domain, coordinates=coordinates) @staticmethod def family(): return 'fourier' @staticmethod def boundary_condition(): return 'Periodic' def points_and_weights(self, N=None, map_true_domain=False, weighted=True, **kw): if N is None: N = self.shape(False) points = np.arange(N, dtype=float)*2*np.pi/N if map_true_domain is True: points = self.map_true_domain(points) if weighted: return points, np.array([1/N]) return points, np.array([2*np.pi/N]) def sympy_basis(self, i=0, x=sp.symbols('x', real=True)): k = self.wavenumbers(False, False, False) return sp.exp(sp.I*k[i]*x) def weight(self, x=sp.symbols('x', real=True)): return 1/(2*sp.pi) def evaluate_basis(self, x=None, i=0, output_array=None): if x is None: x = self.mesh(False, False) x = np.atleast_1d(x) if output_array is None: output_array = np.zeros(x.shape, dtype=complex) if self._k is None: self._k = self.wavenumbers(bcast=False) k = self._k[i] output_array[:] = np.exp(1j*x*k) return output_array def evaluate_basis_derivative(self, x=None, i=0, k=0, output_array=None): output_array = self.evaluate_basis(x, i, output_array) l = self._k[i] output_array *= ((1j*l)**k) return output_array def vandermonde(self, x): k = self.wavenumbers(bcast=False) x = np.atleast_1d(x) return np.exp(1j*x[:, np.newaxis]*k[np.newaxis, :]) def evaluate_basis_derivative_all(self, x=None, k=0): V = self.evaluate_basis_all(x=x) if k > 0: l = self.wavenumbers(bcast=False, scaled=False, eliminate_highest_freq=False) V = V*((1j*l)**k)[np.newaxis, :] return V # Reimplemented for efficiency (smaller array in *= when truncated) def forward(self, input_array=None, output_array=None, fast_transform=True): if fast_transform is False: return SpectralBase.forward(self, input_array, output_array, False) if input_array is not None: self.forward.input_array[...] = input_array self.forward.xfftn() self._truncation_forward(self.forward.tmp_array, self.forward.output_array) M = self.get_normalization() self.forward._output_array *= M self.apply_inverse_mass(self.forward.output_array) if output_array is not None: output_array[...] = self.forward.output_array return output_array return self.forward.output_array def apply_inverse_mass(self, array): coors = self.tensorproductspace.coors if self.tensorproductspace else self.coors if not coors.is_cartesian: # mass matrix may not be diagonal, or there is scaling return SpectralBase.apply_inverse_mass(self, array) return array def _evaluate_scalar_product(self, fast_transform=True): if fast_transform is False: SpectralBase._evaluate_scalar_product(self) return output = self.scalar_product.xfftn() output *= self.get_normalization() def reference_domain(self): return (0., 2*np.pi) def sympy_reference_domain(self): return (0, 2*sp.pi) @property def is_orthogonal(self): return True def get_orthogonal(self): return self def get_unplanned(self): return self.__class__(self.N, domain=self.domain, padding_factor=1, dealias_direct=False, coordinates=self.coors.coordinates) def get_dealiased(self, padding_factor=1.5, dealias_direct=False): return self.__class__(self.N, domain=self.domain, padding_factor=padding_factor, dealias_direct=dealias_direct, coordinates=self.coors.coordinates) def get_refined(self, N): return self.__class__(N, domain=self.domain, padding_factor=self.padding_factor, dealias_direct=self.dealias_direct, coordinates=self.coors.coordinates) def mask_nyquist(self, u_hat, mask=None): """Return array `u_hat` with zero Nyquist coefficients Parameters ---------- u_hat : array Array to be masked mask : array or None, optional mask array, if not provided then get the mask by calling :func:`get_mask_nyquist` """ if mask is None: mask = self.get_mask_nyquist(bcast=False) if mask is not None: u_hat *= mask return u_hat def plan(self, shape, axis, dtype, options): if shape in (0, (0,)): return if isinstance(axis, int): axis = [axis] s = list(np.take(shape, axis)) if isinstance(self.forward, Transform): if self.forward.input_array.shape == shape and axis == self._planned_axes: # Already planned return plan_fwd = self._xfftn_fwd plan_bck = self._xfftn_bck self.axis = axis[-1] self._planned_axes = axis opts = dict( overwrite_input='FFTW_DESTROY_INPUT', planner_effort='FFTW_MEASURE', threads=1, ) opts.update(options) threads = opts['threads'] flags = (fftw.flag_dict[opts['planner_effort']], fftw.flag_dict[opts['overwrite_input']]) U = fftw.aligned(shape, dtype=dtype) xfftn_fwd = plan_fwd(U, s=s, axes=axis, threads=threads, flags=flags) V = xfftn_fwd.output_array if np.issubdtype(dtype, np.floating): flags = (fftw.flag_dict[opts['planner_effort']],) xfftn_bck = plan_bck(V, s=s, axes=axis, threads=threads, flags=flags, output_array=U) V.fill(0) U.fill(0) self._M = xfftn_fwd.get_normalization() if self.padding_factor > 1.+1e-8: trunc_array = self._get_truncarray(shape, V.dtype) self.scalar_product = Transform(self.scalar_product, xfftn_fwd, U, V, trunc_array) self.forward = Transform(self.forward, xfftn_fwd, U, V, trunc_array) self.backward = Transform(self.backward, xfftn_bck, trunc_array, V, U) else: self.scalar_product = Transform(self.scalar_product, xfftn_fwd, U, V, V) self.forward = Transform(self.forward, xfftn_fwd, U, V, V) self.backward = Transform(self.backward, xfftn_bck, V, V, U) self.si = islicedict(axis=self.axis, dimensions=self.dimensions) self.sl = slicedict(axis=self.axis, dimensions=self.dimensions) class R2C(FourierBase): """Fourier function space for real to complex transforms Parameters ---------- N : int Number of quadrature points. Should be even for efficiency, but this is not required. padding_factor : float, optional Factor for padding backward transforms. padding_factor=1.5 corresponds to a 3/2-rule for dealiasing. domain : 2-tuple of floats, optional The computational domain. dealias_direct : bool, optional True for dealiasing using 2/3-rule. Must be used with padding_factor = 1. coordinates: 2- or 3-tuple (coordinate, position vector (, sympy assumptions)), optional Map for curvilinear coordinatesystem. The new coordinate variable in the new coordinate system is the first item. Second item is a tuple for the Cartesian position vector as function of the new variable in the first tuple. Example:: theta = sp.Symbols('x', real=True, positive=True) rv = (sp.cos(theta), sp.sin(theta)) """ def __init__(self, N, padding_factor=1., domain=(0., 2.*np.pi), dealias_direct=False, coordinates=None): FourierBase.__init__(self, N, padding_factor=padding_factor, dtype=float, domain=domain, dealias_direct=dealias_direct, coordinates=coordinates) self.N = N self._xfftn_fwd = fftw.rfftn self._xfftn_bck = fftw.irfftn self._sn = [] self._sm = [] self.plan((int(padding_factor*N),), (0,), float, {}) def wavenumbers(self, bcast=True, scaled=False, eliminate_highest_freq=False): k = np.fft.rfftfreq(self.N, 1./self.N).astype(int) if self.N % 2 == 0 and eliminate_highest_freq: k[-1] = 0 if scaled: k = k*self.domain_factor() if bcast is True: k = self.broadcast_to_ndims(k) return k def get_mask_nyquist(self, bcast=True): """Return None or an array with zeros for Nyquist coefficients and one otherwise Parameters ---------- bcast : boolean, optional If True then broadcast returned mask array to dimensions of the :class:`TensorProductSpace` this base belongs to. """ if self.N % 2 == 0: f = np.ones(self.N//2+1, dtype=int) f[-1] = 0 else: return None if bcast is True: f = self.broadcast_to_ndims(f) return f def _get_truncarray(self, shape, dtype): shape = list(shape) shape[self.axis] = int(shape[self.axis] / self.padding_factor) shape[self.axis] = shape[self.axis]//2 + 1 return fftw.aligned(shape, dtype=dtype) @staticmethod def short_name(): return 'R2C' def slice(self): return slice(0, self.N//2+1) def shape(self, forward_output=True): if forward_output: return self.N//2+1 return int(np.floor(self.padding_factor*self.N)) def _evaluate_expansion_all(self, input_array, output_array, x=None, fast_transform=True): if fast_transform is False: assert abs(self.padding_factor-1) < 1e-8 P = self.evaluate_basis_all(x=x) if output_array.ndim == 1: output_array[:] = np.dot(P, input_array).real if self.N % 2 == 0: output_array += np.conj(np.dot(P[:, 1:-1], input_array[1:-1])).real else: output_array += np.conj(np.dot(P[:, 1:], input_array[1:])).real else: fc =
np.moveaxis(input_array, self.axis, -2)
numpy.moveaxis
import numpy as np import matplotlib import os import matplotlib from matplotlib import pyplot as plt import matplotlib.ticker as mtick from matplotlib.colors import hex2color import utils from utils.io import SMLAResultsReader from datasets import brazil if __name__ == '__main__': # Whether to save figures. If false, figures are displayed only. save_figs = True # Location to save the figures (will be created if nonexistent) figpath = 'figures/science' # Figure format fmt = 'png' if fmt == 'pdf': matplotlib.rc('pdf', fonttype=42) # Figure DPI for raster formats dpi = 200 # Paths to results files. Figures will be skipped if data cannot be found. # Note that the legend is based off of the EO figure, so it will not be # generated if EO data is unavailable. eodds_path = 'results/science_brazil_eodds_0/science_brazil_eodds.h5' di_path = 'results/science_brazil_di_0/science_brazil_di.h5' dp_path = 'results/science_brazil_dp_0/science_brazil_dp.h5' pe_path = 'results/science_brazil_pe_0/science_brazil_pe.h5' eo_path = 'results/science_brazil_eo_0/science_brazil_eo.h5' # Epsilon constants used in experiments di_e = -0.80 dp_e = 0.15 eodds_e = 0.35 pe_e = 0.2 eo_e = 0.2 # Value of delta used in experiments delta = 0.05 # Constants for rendering figures n_total = brazil.load(gpa_cutoff=3.0).training_splits()[0].shape[0] # Mapping from model names that will appear on legends pprint_map = { 'SC' : 'SC', 'QSC' : 'QSC', 'FairlearnSVC' : 'FL', 'LinSVC' : 'SVC$_{linear}$', 'SGD' : 'SGD', 'SGD(hinge)' : 'SGD$_{hinge}$', 'SGD(log)' : 'SGD$_{log}$', 'SGD(perceptron)' : 'SGD$_{perc}$', 'SVC' : 'SVC$_{rbf}$', 'FairConst' : 'FC' } base_smla_names = ['SC', 'QSC'] base_bsln_names = ['SGD', 'LinSVC', 'SVC'] # Create the figure directory if nonexistent if save_figs and not(os.path.isdir(figpath)): os.makedirs(figpath) ############# # Helpers # ############# def save(fig, path, *args, **kwargs): if not(os.path.isdir(figpath)): os.makedirs(figpath) path = os.path.join(figpath, path) print('Saving figure to \'%s\'' % path) fig.savefig(path, *args, **kwargs) def get_ls(name): if name == 'SC': return ':' elif name == 'QSC': return '--' return '-' def get_lw(name): if name == 'SC': return 2 elif name == 'QSC': return 2 return 1 def get_samples(results, dpct, e, include_fairlearn=False, include_fairconst=False): ''' Helper for filtering results files. ''' _smla_names = base_smla_names _bsln_names = base_bsln_names.copy() if include_fairlearn: _bsln_names.append('FairlearnSVC') if include_fairconst: _bsln_names.append('FairConst') # Get the SMLA samples smla_samples = [] smla_names = [] psmla_names = [] for nm in _smla_names: smla_names.append(nm) psmla_names.append(pprint_map[nm]) sample = results.extract(['accept','loss_test', 'co_0_mean', 'data_pct'], name=nm, data_pct=dpct, e=e) smla_samples.append(sample) # get the baseline samples (note different versions of SGD) bsln_samples = [] bsln_names = [] pbsln_names = [] for nm in _bsln_names: if nm == 'SGD': for loss in ['log','perceptron','hinge']: bsln_names.append(nm) pbsln_names.append(pprint_map[nm+('(%s)'%loss)]) sample = results.extract(['accept','loss_test', 'co_0_mean', 'data_pct'], name=nm, data_pct=dpct, loss=loss) bsln_samples.append(sample) elif nm == 'FairlearnSVC': fl_e_vals = np.unique(results._store['method_parameters/FairlearnSVC']['fl_e']) for fl_e in fl_e_vals: bsln_names.append(nm + ('(%.2f)'%fl_e)) pbsln_names.append(pprint_map[nm] + ('$_{%.2f}$'%fl_e)) sample = results.extract(['accept','loss_test', 'co_0_mean', 'data_pct'], name=nm, data_pct=dpct, fl_e=fl_e) bsln_samples.append(sample) elif nm == 'FairConst': cov_vals = np.unique(results._store['method_parameters/FairConst']['cov']) for cov in cov_vals: bsln_names.append(nm + ('(%.2f)'%cov)) pbsln_names.append(pprint_map[nm] + ('$_{%.2f}$'%cov)) sample = results.extract(['accept','loss_test', 'co_0_mean', 'data_pct'], name=nm, data_pct=dpct, cov=cov) bsln_samples.append(sample) elif nm == 'SVC': continue else: bsln_names.append(nm) pbsln_names.append(pprint_map[nm]) sample = results.extract(['accept','loss_test', 'co_0_mean', 'data_pct'], name=nm, data_pct=dpct) bsln_samples.append(sample) is_smla = np.array([True]*len(smla_names) + [False]*len(bsln_names)) return is_smla, (smla_names, psmla_names, smla_samples), (bsln_names, pbsln_names, bsln_samples) def get_brazil_stats(path, e, include_fairlearn=False, include_fairconst=False): ''' Helper for extracting resutls from brazil results files. ''' results = SMLAResultsReader(path) results.open() dpcts = np.array(sorted(results.extract(['data_pct']).data_pct.unique())) nvals = np.array(sorted(np.floor(dpcts * n_total).astype(int))) is_smla, (smla_names, psmla_names, smla_samples), (bsln_names, pbsln_names, bsln_samples) = get_samples(results, dpcts.max(), e, include_fairlearn=include_fairlearn, include_fairconst=include_fairconst) all_samples = smla_samples + bsln_samples mnames = np.array(smla_names + bsln_names) pmnames = np.array(psmla_names + pbsln_names) # Compute statistics and close the results file arates, arates_se = [], [] # Acceptance rates and SEs frates, frates_se = [], [] # Failure rates ans SEs (rate that accepted solutions have g(theta) > 0 on the test set) lrates, lrates_se = [], [] # Test set error and SEs for _dpct in dpcts: _, (_,_,_smla_samples), (_,_,_bsln_samples) = get_samples(results, _dpct, e, include_fairlearn=include_fairlearn, include_fairconst=include_fairconst) _arates, _arates_se = [], [] _frates, _frates_se = [], [] _lrates, _lrates_se = [], [] for s in _smla_samples + _bsln_samples: accepts = 1 * s.accept _arates.append(np.mean(accepts)) _arates_se.append(np.std(accepts,ddof=1)/np.sqrt(len(accepts))) failures = 1 * np.logical_and(s.co_0_mean>0, s.accept) _frates.append(np.mean(failures)) _frates_se.append(np.std(failures,ddof=1)/np.sqrt(len(failures))) if any(s.accept): losses = s.loss_test[s.accept] _lrates.append(np.mean(losses)) _lrates_se.append(np.std(losses,ddof=1)/np.sqrt(len(losses))) else: _lrates.append(np.nan) _lrates_se.append(np.nan) arates.append(_arates) arates_se.append(_arates_se) frates.append(_frates) frates_se.append(_frates_se) lrates.append(_lrates) lrates_se.append(_lrates_se) arates = np.array(arates) arates_se = np.array(arates_se) frates = np.array(frates) frates_se = np.array(frates_se) lrates = np.array(lrates) lrates_se =
np.array(lrates_se)
numpy.array
#!/usr/bin/env python # coding: utf-8 # Copyright (c) Nanjing University, Vision Lab. # Last update: # 2019.10.27 # 2019.11.14 # 2020.11.26 import os import time import numpy as np import tensorflow as tf import matplotlib.pylab as plt import pandas as pd import subprocess import glob import configparser import argparse import importlib # from numba import cuda tf.enable_eager_execution() from process import preprocess, postprocess # import models.model_voxception as model from transform import compress_factorized, decompress_factorized from transform import compress_hyper, decompress_hyper from dataprocess.inout_bitstream import write_binary_files_factorized, read_binary_files_factorized from dataprocess.inout_bitstream import write_binary_files_hyper, read_binary_files_hyper os.environ['CUDA_VISIBLE_DEVICES']="0" # set gpu. cfg = tf.ConfigProto() cfg.gpu_options.per_process_gpu_memory_fraction = 1.0 cfg.gpu_options.allow_growth = True cfg.log_device_placement=True # config.device_count={'gpu':0} sess = tf.Session(config=cfg) from myutils.pc_error_wrapper import pc_error from myutils.pc_error_wrapper import get_points_number def test_factorized(input_file, model, ckpt_dir, scale, cube_size, min_num, postfix=''): # Pre-process cubes, cube_positions, points_numbers = preprocess(input_file, scale, cube_size, min_num) ### Encoding strings, min_v, max_v, shape = compress_factorized(cubes, model, ckpt_dir) # Write files filename = os.path.split(input_file)[-1][:-4] print(filename) rootdir = './compressed'+ postfix +'/' bytes_strings, bytes_pointnums, bytes_cubepos = write_binary_files_factorized( filename, strings.numpy(), points_numbers, cube_positions, min_v.numpy(), max_v.numpy(), shape.numpy(), rootdir) # Read files strings_d, points_numbers_d, cube_positions_d, min_v_d, max_v_d, shape_d = \ read_binary_files_factorized(filename, rootdir) # Decoding cubes_d = decompress_factorized(strings_d, min_v_d, max_v_d, shape_d, model, ckpt_dir) # bpp N = get_points_number(input_file) bpp = round(8*(bytes_strings + bytes_pointnums + bytes_cubepos)/float(N), 4) bpp_strings = round(8*bytes_strings/float(N), 4) bpp_pointsnums = round(8*bytes_pointnums/float(N) ,4) bpp_cubepos = round(8*bytes_cubepos/float(N), 4) bpp_strings_hyper = 0 bpp_strings_head = 0 bpps = [bpp, bpp_strings, bpp_strings_hyper, bpp_strings_head, bpp_pointsnums, bpp_cubepos] return cubes_d, cube_positions_d, points_numbers_d, N, bpps def test_hyper(input_file, model, ckpt_dir, scale, cube_size, min_num, postfix=''): # Pre-process cubes, cube_positions, points_numbers = preprocess(input_file, scale, cube_size, min_num) ### Encoding y_strings, y_min_vs, y_max_vs, y_shape, z_strings, z_min_v, z_max_v, z_shape, x_ds = compress_hyper(cubes, model, ckpt_dir, True) # Write files filename = os.path.split(input_file)[-1][:-4] print(filename) rootdir = './compressed'+ postfix +'/' bytes_strings, bytes_strings_head, bytes_strings_hyper, bytes_pointnums, bytes_cubepos = write_binary_files_hyper( filename, y_strings.numpy(), z_strings.numpy(), points_numbers, cube_positions, y_min_vs.numpy(), y_max_vs.numpy(), y_shape.numpy(), z_min_v.numpy(), z_max_v.numpy(), z_shape.numpy(), rootdir) # Read files y_strings_d, z_strings_d, points_numbers_d, cube_positions_d, y_min_vs_d, y_max_vs_d, y_shape_d, z_min_v_d, z_max_v_d, z_shape_d = \ read_binary_files_hyper(filename, rootdir) # Decoding cubes_d = decompress_hyper(y_strings_d, y_min_vs_d.astype('int32'), y_max_vs_d.astype('int32'), y_shape_d, z_strings_d, z_min_v_d, z_max_v_d, z_shape_d, model, ckpt_dir) # cheat!!! ############## cubes_d = x_ds ############## # bpp N = get_points_number(input_file) bpp = round(8*(bytes_strings + bytes_strings_head + bytes_strings_hyper + bytes_pointnums + bytes_cubepos)/float(N), 4) bpp_strings = round(8*bytes_strings/float(N), 4) bpp_strings_hyper = round(8*bytes_strings_hyper/float(N), 4) bpp_strings_head = round(8*bytes_strings_head/float(N), 4) bpp_pointsnums = round(8*bytes_pointnums/float(N) ,4) bpp_cubepos = round(8*bytes_cubepos/float(N), 4) bpps = [bpp, bpp_strings, bpp_strings_hyper, bpp_strings_head, bpp_pointsnums, bpp_cubepos] return cubes_d, cube_positions_d, points_numbers_d, N, bpps def collect_results(results, results_d1, results_d2, bpps, N, scale, rho_d1, rho_d2): # bpp results["ori_points"] = N results["scale"] = scale # results["cube_size"] = cube_size # results["res"] = res results["bpp"] = bpps[0] results["bpp_strings"] = bpps[1] results["bpp_strings_hyper"] = bpps[2] results["bpp_strings_head"] = bpps[3] results["bpp_pointsnums"] = bpps[4] results["bpp_cubepos"] = bpps[5] results["rho_d1"] = rho_d1 results["optimal D1 PSNR"] = results_d1["mseF,PSNR (p2point)"] results["rho_d2"] = rho_d2 results["optimal D2 PSNR"] = results_d2["mseF,PSNR (p2plane)"] print(results) return results def plot_results(all_results, filename, root_dir): fig, ax = plt.subplots(figsize=(7.3, 4.2)) plt.plot(np.array(all_results["bpp"][:]), np.array(all_results["mseF,PSNR (p2point)"][:]), label="D1", marker='x', color='red') plt.plot(np.array(all_results["bpp"][:]), np.array(all_results["mseF,PSNR (p2plane)"][:]), label="D2", marker='x', color = 'blue') plt.plot(np.array(all_results["bpp"][:]),
np.array(all_results["optimal D1 PSNR"][:])
numpy.array
from collections.abc import Mapping from ctypes import c_int, c_int32, c_double, c_char_p, POINTER, \ create_string_buffer, c_size_t from weakref import WeakValueDictionary import numpy as np from numpy.ctypeslib import as_array from openmc.exceptions import AllocationError, InvalidIDError from . import _dll from .core import _FortranObjectWithID from .error import _error_handler from .material import Material from .mesh import _get_mesh __all__ = [ 'Filter', 'AzimuthalFilter', 'CellFilter', 'CellbornFilter', 'CellfromFilter', 'CellInstanceFilter', 'CollisionFilter', 'DistribcellFilter', 'DelayedGroupFilter', 'EnergyFilter', 'EnergyoutFilter', 'EnergyFunctionFilter', 'LegendreFilter', 'MaterialFilter', 'MeshFilter', 'MeshSurfaceFilter', 'MuFilter', 'ParticleFilter', 'PolarFilter', 'SphericalHarmonicsFilter', 'SpatialLegendreFilter', 'SurfaceFilter', 'UniverseFilter', 'ZernikeFilter', 'ZernikeRadialFilter', 'filters' ] # Tally functions _dll.openmc_cell_filter_get_bins.argtypes = [ c_int32, POINTER(POINTER(c_int32)), POINTER(c_int32)] _dll.openmc_cell_filter_get_bins.restype = c_int _dll.openmc_cell_filter_get_bins.errcheck = _error_handler _dll.openmc_energy_filter_get_bins.argtypes = [ c_int32, POINTER(POINTER(c_double)), POINTER(c_size_t)] _dll.openmc_energy_filter_get_bins.restype = c_int _dll.openmc_energy_filter_get_bins.errcheck = _error_handler _dll.openmc_energy_filter_set_bins.argtypes = [c_int32, c_size_t, POINTER(c_double)] _dll.openmc_energy_filter_set_bins.restype = c_int _dll.openmc_energy_filter_set_bins.errcheck = _error_handler _dll.openmc_energyfunc_filter_set_data.restype = c_int _dll.openmc_energyfunc_filter_set_data.errcheck = _error_handler _dll.openmc_energyfunc_filter_set_data.argtypes = [ c_int32, c_size_t, POINTER(c_double), POINTER(c_double)] _dll.openmc_energyfunc_filter_get_energy.resttpe = c_int _dll.openmc_energyfunc_filter_get_energy.errcheck = _error_handler _dll.openmc_energyfunc_filter_get_energy.argtypes = [ c_int32, POINTER(c_size_t), POINTER(POINTER(c_double))] _dll.openmc_energyfunc_filter_get_y.resttpe = c_int _dll.openmc_energyfunc_filter_get_y.errcheck = _error_handler _dll.openmc_energyfunc_filter_get_y.argtypes = [ c_int32, POINTER(c_size_t), POINTER(POINTER(c_double))] _dll.openmc_filter_get_id.argtypes = [c_int32, POINTER(c_int32)] _dll.openmc_filter_get_id.restype = c_int _dll.openmc_filter_get_id.errcheck = _error_handler _dll.openmc_filter_get_type.argtypes = [c_int32, c_char_p] _dll.openmc_filter_get_type.restype = c_int _dll.openmc_filter_get_type.errcheck = _error_handler _dll.openmc_filter_set_id.argtypes = [c_int32, c_int32] _dll.openmc_filter_set_id.restype = c_int _dll.openmc_filter_set_id.errcheck = _error_handler _dll.openmc_get_filter_index.argtypes = [c_int32, POINTER(c_int32)] _dll.openmc_get_filter_index.restype = c_int _dll.openmc_get_filter_index.errcheck = _error_handler _dll.openmc_legendre_filter_get_order.argtypes = [c_int32, POINTER(c_int)] _dll.openmc_legendre_filter_get_order.restype = c_int _dll.openmc_legendre_filter_get_order.errcheck = _error_handler _dll.openmc_legendre_filter_set_order.argtypes = [c_int32, c_int] _dll.openmc_legendre_filter_set_order.restype = c_int _dll.openmc_legendre_filter_set_order.errcheck = _error_handler _dll.openmc_material_filter_get_bins.argtypes = [ c_int32, POINTER(POINTER(c_int32)), POINTER(c_size_t)] _dll.openmc_material_filter_get_bins.restype = c_int _dll.openmc_material_filter_get_bins.errcheck = _error_handler _dll.openmc_material_filter_set_bins.argtypes = [c_int32, c_size_t, POINTER(c_int32)] _dll.openmc_material_filter_set_bins.restype = c_int _dll.openmc_material_filter_set_bins.errcheck = _error_handler _dll.openmc_mesh_filter_get_mesh.argtypes = [c_int32, POINTER(c_int32)] _dll.openmc_mesh_filter_get_mesh.restype = c_int _dll.openmc_mesh_filter_get_mesh.errcheck = _error_handler _dll.openmc_mesh_filter_set_mesh.argtypes = [c_int32, c_int32] _dll.openmc_mesh_filter_set_mesh.restype = c_int _dll.openmc_mesh_filter_set_mesh.errcheck = _error_handler _dll.openmc_meshsurface_filter_get_mesh.argtypes = [c_int32, POINTER(c_int32)] _dll.openmc_meshsurface_filter_get_mesh.restype = c_int _dll.openmc_meshsurface_filter_get_mesh.errcheck = _error_handler _dll.openmc_meshsurface_filter_set_mesh.argtypes = [c_int32, c_int32] _dll.openmc_meshsurface_filter_set_mesh.restype = c_int _dll.openmc_meshsurface_filter_set_mesh.errcheck = _error_handler _dll.openmc_mesh_filter_get_translation.argtypes = [c_int32, POINTER(c_double*3)] _dll.openmc_mesh_filter_get_translation.restype = c_int _dll.openmc_mesh_filter_get_translation.errcheck = _error_handler _dll.openmc_mesh_filter_set_translation.argtypes = [c_int32, POINTER(c_double*3)] _dll.openmc_mesh_filter_set_translation.restype = c_int _dll.openmc_mesh_filter_set_translation.errcheck = _error_handler _dll.openmc_new_filter.argtypes = [c_char_p, POINTER(c_int32)] _dll.openmc_new_filter.restype = c_int _dll.openmc_new_filter.errcheck = _error_handler _dll.openmc_spatial_legendre_filter_get_order.argtypes = [c_int32, POINTER(c_int)] _dll.openmc_spatial_legendre_filter_get_order.restype = c_int _dll.openmc_spatial_legendre_filter_get_order.errcheck = _error_handler _dll.openmc_spatial_legendre_filter_set_order.argtypes = [c_int32, c_int] _dll.openmc_spatial_legendre_filter_set_order.restype = c_int _dll.openmc_spatial_legendre_filter_set_order.errcheck = _error_handler _dll.openmc_sphharm_filter_get_order.argtypes = [c_int32, POINTER(c_int)] _dll.openmc_sphharm_filter_get_order.restype = c_int _dll.openmc_sphharm_filter_get_order.errcheck = _error_handler _dll.openmc_sphharm_filter_set_order.argtypes = [c_int32, c_int] _dll.openmc_sphharm_filter_set_order.restype = c_int _dll.openmc_sphharm_filter_set_order.errcheck = _error_handler _dll.openmc_zernike_filter_get_order.argtypes = [c_int32, POINTER(c_int)] _dll.openmc_zernike_filter_get_order.restype = c_int _dll.openmc_zernike_filter_get_order.errcheck = _error_handler _dll.openmc_zernike_filter_set_order.argtypes = [c_int32, c_int] _dll.openmc_zernike_filter_set_order.restype = c_int _dll.openmc_zernike_filter_set_order.errcheck = _error_handler _dll.tally_filters_size.restype = c_size_t class Filter(_FortranObjectWithID): __instances = WeakValueDictionary() def __new__(cls, obj=None, uid=None, new=True, index=None): mapping = filters if index is None: if new: # Determine ID to assign if uid is None: uid = max(mapping, default=0) + 1 else: if uid in mapping: raise AllocationError('A filter with ID={} has already ' 'been allocated.'.format(uid)) # Set the filter type -- note that the filter_type attribute # only exists on subclasses! index = c_int32() _dll.openmc_new_filter(cls.filter_type.encode(), index) index = index.value else: index = mapping[uid]._index if index not in cls.__instances: instance = super().__new__(cls) instance._index = index if uid is not None: instance.id = uid cls.__instances[index] = instance return cls.__instances[index] @property def id(self): filter_id = c_int32() _dll.openmc_filter_get_id(self._index, filter_id) return filter_id.value @id.setter def id(self, filter_id): _dll.openmc_filter_set_id(self._index, filter_id) class EnergyFilter(Filter): filter_type = 'energy' def __init__(self, bins=None, uid=None, new=True, index=None): super().__init__(uid, new, index) if bins is not None: self.bins = bins @property def bins(self): energies = POINTER(c_double)() n = c_size_t() _dll.openmc_energy_filter_get_bins(self._index, energies, n) return
as_array(energies, (n.value,))
numpy.ctypeslib.as_array
import sys import numpy as np import scipy.sparse as sp from ctypes import c_int, byref from numpy.ctypeslib import ndpointer import time import qutip.settings as qset # Load solver functions from mkl_lib pardiso = qset.mkl_lib.pardiso pardiso_delete = qset.mkl_lib.pardiso_handle_delete if sys.maxsize > 2**32: # Running 64-bit pardiso_64 = qset.mkl_lib.pardiso_64 pardiso_delete_64 = qset.mkl_lib.pardiso_handle_delete_64 def _pardiso_parameters(hermitian, has_perm, max_iter_refine, scaling_vectors, weighted_matching): iparm = np.zeros(64, dtype=np.int32) iparm[0] = 1 # Do not use default values iparm[1] = 3 # Use openmp nested dissection if has_perm: iparm[4] = 1 iparm[7] = max_iter_refine # Max number of iterative refinements if hermitian: iparm[9] = 8 else: iparm[9] = 13 if not hermitian: iparm[10] = int(scaling_vectors) iparm[12] = int(weighted_matching) # Non-symmetric weighted matching iparm[17] = -1 iparm[20] = 1 iparm[23] = 1 # Parallel factorization iparm[26] = 0 # Check matrix structure iparm[34] = 1 # Use zero-based indexing return iparm # Set error messages pardiso_error_msgs = { '-1': 'Input inconsistant', '-2': 'Out of memory', '-3': 'Reordering problem', '-4': 'Zero pivot, numerical factorization or iterative refinement problem', '-5': 'Unclassified internal error', '-6': 'Reordering failed', '-7': 'Diagonal matrix is singular', '-8': '32-bit integer overflow', '-9': 'Not enough memory for OOC', '-10': 'Error opening OOC files', '-11': 'Read/write error with OOC files', '-12': 'Pardiso-64 called from 32-bit library', } def _default_solver_args(): return { 'hermitian': False, 'posdef': False, 'max_iter_refine': 10, 'scaling_vectors': True, 'weighted_matching': True, 'return_info': False, } class mkl_lu: """ Object pointing to LU factorization of a sparse matrix generated by mkl_splu. Methods ------- solve(b, verbose=False) Solve system of equations using given RHS vector 'b'. Returns solution ndarray with same shape as input. info() Returns the statistics of the factorization and solution in the lu.info attribute. delete() Deletes the allocated solver memory. """ def __init__(self, np_pt=None, dim=None, is_complex=None, data=None, indptr=None, indices=None, iparm=None, np_iparm=None, mtype=None, perm=None, np_perm=None, factor_time=None): self._np_pt = np_pt self._dim = dim self._is_complex = is_complex self._data = data self._indptr = indptr self._indices = indices self._iparm = iparm self._np_iparm = np_iparm self._mtype = mtype self._perm = perm self._np_perm = np_perm self._factor_time = factor_time self._solve_time = None def solve(self, b, verbose=None): b_shp = b.shape if b.ndim == 2 and b.shape[1] == 1: b = b.ravel() nrhs = 1 elif b.ndim == 2 and b.shape[1] != 1: nrhs = b.shape[1] b = b.ravel(order='F') else: b = b.ravel() nrhs = 1 data_type = np.complex128 if self._is_complex else np.float64 if b.dtype != data_type: b = b.astype(np.complex128, copy=False) # Create solution array (x) and pointers to x and b x = np.zeros(b.shape, dtype=data_type, order='C') np_x = x.ctypes.data_as(ndpointer(data_type, ndim=1, flags='C')) np_b = b.ctypes.data_as(ndpointer(data_type, ndim=1, flags='C')) error = np.zeros(1, dtype=np.int32) np_error = error.ctypes.data_as(ndpointer(np.int32, ndim=1, flags='C')) # Call solver _solve_start = time.time() pardiso( self._np_pt, byref(c_int(1)), byref(c_int(1)), byref(c_int(self._mtype)), byref(c_int(33)), byref(c_int(self._dim)), self._data, self._indptr, self._indices, self._np_perm, byref(c_int(nrhs)), self._np_iparm, byref(c_int(0)), np_b, np_x, np_error, ) self._solve_time = time.time() - _solve_start if error[0] != 0: raise Exception(pardiso_error_msgs[str(error[0])]) if verbose: print('Solution Stage') print('--------------') print('Solution time: ', round(self._solve_time, 4)) print('Solution memory (Mb): ', round(self._iparm[16]/1024, 4)) print('Number of iterative refinements:', self._iparm[6]) print('Total memory (Mb): ', round(sum(self._iparm[15:17])/1024, 4)) print() return np.reshape(x, b_shp, order=('C' if nrhs == 1 else 'F')) def info(self): info = {'FactorTime': self._factor_time, 'SolveTime': self._solve_time, 'Factormem': round(self._iparm[15]/1024, 4), 'Solvemem': round(self._iparm[16]/1024, 4), 'IterRefine': self._iparm[6]} return info def delete(self): # Delete all data error = np.zeros(1, dtype=np.int32) np_error = error.ctypes.data_as(ndpointer(np.int32, ndim=1, flags='C')) pardiso( self._np_pt, byref(c_int(1)), byref(c_int(1)), byref(c_int(self._mtype)), byref(c_int(-1)), byref(c_int(self._dim)), self._data, self._indptr, self._indices, self._np_perm, byref(c_int(1)), self._np_iparm, byref(c_int(0)), byref(c_int(0)), byref(c_int(0)), np_error, ) if error[0] == -10: raise Exception('Error freeing solver memory') _MATRIX_TYPE_NAMES = { 4: 'Complex Hermitian positive-definite', -4: 'Complex Hermitian indefinite', 2: 'Real symmetric positive-definite', -2: 'Real symmetric indefinite', 11: 'Real non-symmetric', 13: 'Complex non-symmetric', } def _mkl_matrix_type(dtype, solver_args): if not solver_args['hermitian']: return 13 if dtype == np.complex128 else 11 out = 4 if dtype == np.complex128 else 2 return out if solver_args['posdef'] else -out def mkl_splu(A, perm=None, verbose=False, **kwargs): """ Returns the LU factorization of the sparse matrix A. Parameters ---------- A : csr_matrix Sparse input matrix. perm : ndarray (optional) User defined matrix factorization permutation. verbose : bool {False, True} Report factorization details. Returns ------- lu : mkl_lu Returns object containing LU factorization with a solve method for solving with a given RHS vector. """ if not sp.isspmatrix_csr(A): raise TypeError('Input matrix must be in sparse CSR format.') if A.shape[0] != A.shape[1]: raise Exception('Input matrix must be square') dim = A.shape[0] solver_args = _default_solver_args() if set(kwargs) - set(solver_args): raise ValueError( "Unknown keyword arguments pass to mkl_splu: {!r}" .format(set(kwargs) - set(solver_args)) ) solver_args.update(kwargs) # If hermitian, then take upper-triangle of matrix only if solver_args['hermitian']: B = sp.triu(A, format='csr') A = B # This gets around making a full copy of A in triu is_complex = bool(A.dtype == np.complex128) if not is_complex: A = sp.csr_matrix(A, dtype=np.float64, copy=False) data_type = A.dtype # Create pointer to internal memory pt = np.zeros(64, dtype=int) np_pt = pt.ctypes.data_as(ndpointer(int, ndim=1, flags='C')) # Create pointers to sparse matrix arrays data = A.data.ctypes.data_as(
ndpointer(data_type, ndim=1, flags='C')
numpy.ctypeslib.ndpointer
""" part2.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1Y7UoHD_lSTrIXDF3iy3j09a7YhH6lcwd # Information Authors: <NAME> (SSP210009) and <NAME> (PXS200095) Dataset Owner/Donor Information: Name: Prof. <NAME> Institutions: Department of Civil Engineering, Tamkang University, Taiwan Email: <EMAIL> TEL: 886-2-26215656 ext. 3181 Date Donated: Aug. 18, 2018 Dataset Information: The market historical data set of real estate valuation are collected from Sindian Dist., New Taipei City, Taiwan. The real estate valuation is a regression problem. The data set was randomly split into the training data set (2/3 samples) and the testing data set (1/3 samples). Target Variable: Y = House price of unit area (10000 New Taiwan Dollar/Ping, where Ping is a local unit, 1 Ping = 3.3 meter squared) References: 1) https://scikit-learn.org/stable/modules/classes.html 2) https://numpy.org/doc/stable/reference/ 3) https://archive.ics.uci.edu/ml/datasets/Real+estate+valuation+data+set 4) https://www.kaggle.com/dskagglemt/real-estate-valuation-using-linearsvr 5) https://medium.com/@powusu381/multiple-regression-in-python-using-scikit-learn-predicting-the-miles-per-gallon-mpg-of-cars-4c8e512234be """ # Commented out IPython magic to ensure Python compatibility. # Library Imports import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as matplt from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.linear_model import SGDRegressor from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score from sklearn.metrics import explained_variance_score # %matplotlib inline # Dataset Loading dataframe = pd.DataFrame(pd.read_excel("https://github.com/Shreyans1602/Machine_Learning_Linear_Regression/raw/main/Dataset.xlsx", sheet_name = 'Dataset', index_col = 'No')) # Loaded Successfully print("Data Loaded Successfully") print("Real Estate Valuation Data Set has {} data points with {} variables each.".format(*dataframe.shape)) # Pre-Processing Stage print("Pre-Processing the Data:\n") # Check for null values in the dataframe print("Null entries found?:", ("No\n" if dataframe.isnull().sum().sum() == 0 else "Yes\n")) # Check for duplicate values in the dataframe print("Duplicate entries found?:", ("No\n" if dataframe.duplicated().sum() == 0 else "Yes\n")) # Check if there is any categorical values print("Check for categorical values:") print(dataframe.dtypes) # Rename attributes and describe the dataframe dataframe.rename( columns = { "X1 transaction date": "Transaction_Date", "X2 house age": "House_Age", "X3 distance to the nearest MRT station": "MRT_Distance", "X4 number of convenience stores": "Num_Stores_NearBy", "X5 latitude": "Latitude", "X6 longitude": "Longitude", "Y house price of unit area": "House_Price", }, inplace = True ) print("\nRenaming the attributes for convenience. The dataframe is as follows:\n") print(dataframe.head()) print("\nDescription of the dataframe is as follows:") print(dataframe.describe()) # Printing correlation matrix print("\nCorrelation matrix is as follows:") print(dataframe.corr()) # Show the impact of different attributes on the House_Price variable print("\nMost impactful attributes on House_Price variable are shows below in decending order:") print(abs(dataframe.corr())['House_Price'].sort_values(ascending = False)) # Show various plots for visualization of the above information. Un-Comment lines 97 to 108 to see the plots. # sns.set(rc = {'figure.figsize':(18,10)}) # hmap = sns.heatmap(dataframe.corr(), vmin = -1, vmax = 1) # # Checking the correlation of all the attributes vs the House_Price variable # sns.barplot(y = dataframe.corr().loc['House_Price'].index, x = dataframe.corr().loc['House_Price'].values) # # Show plots for effect of each variable on House_Price # columns = dataframe.columns # for i in range(len(columns) - 1): # matplt.figure(i) # sns.scatterplot(x = columns[i], y = 'House_Price', data = dataframe) # Based on the above heatmap, correlation scatter and bar graphs # High Correlation Attributes w.r.t target are Distance, Num_Stores_NearBy, Latitude, Longitude, House_Age. # Neligible Correlation Attributes w.r.t target is No and Transaction_Date. # Dropping the insignificant attributes from the data set dataframe = dataframe.drop(['Transaction_Date'], axis = 1) print(dataframe.columns) # Prepare X and Y matrix X = np.array(dataframe.drop(['House_Price'], axis = 1)) Y = np.array(dataframe['House_Price']) # Split train and test data X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.3, random_state = 99) print(X_train.shape, X_test.shape, Y_train.shape, Y_test.shape) # Scaling the data set std_scaler = StandardScaler() std_scaler.fit(X_train) X_train_scaled = std_scaler.transform(X_train) X_test_scaled = std_scaler.transform(X_test) # Train model with different parameters and log the results # Training Parameters train_learning_rates = [0.1, 0.01, 0.001] train_iterations = [100, 120, 140, 160, 180, 200, 300, 400, 500, 600, 700, 800, 900, 1000] config_count = 1 # Training Results Arrays mse_arr = [] rmse_arr = [] r2_arr = [] ev_arr = [] # Open Log File log_file = open("logs_library_implementation.txt","w") for i in train_learning_rates: for j in train_iterations: # Skip iterations less than or equal to 200 for learning rate = 0.001 to avoid failure in convergence warning if i == 0.001: if j <= 200: continue # Learning Rate as i and the max_iterations as j lrsgd = SGDRegressor(eta0 = i, max_iter = j, random_state = 99) lrsgd.fit(X_train_scaled, np.array(Y_train)) Y_pred = lrsgd.predict(X_test_scaled) # Evaluate Performance mse = mean_squared_error(Y_test, Y_pred) rmse = np.sqrt(mse) r2 = r2_score(Y_test, Y_pred) ev = explained_variance_score(Y_test, Y_pred) # Store Results mse_arr.append(mse) rmse_arr.append(rmse) r2_arr.append(r2) ev_arr.append(ev) # Log Data log_file.write("Run: " + str(config_count) + " || MSE: " + str(mse) + " || R^2 Score: " + str(r2) + " || Explained Variance Score: " + str(ev) + " || Learning Rate: " + str(i) + "|| Iterations: " + str(j) + "\n") config_count += 1 best_param_idx = mse_arr.index(min(mse_arr)) print("\nEvaluation Parameters:\n") print("Best Performance Results:") print("MSE:", mse_arr[best_param_idx]) print("RMSE:", rmse_arr[best_param_idx]) print("R^2 Score:", r2_arr[best_param_idx]) print("Explained Variance Score: ", ev_arr[best_param_idx]) print("\nBest Parameters for Model Training:") print("Learning Rate:", train_learning_rates[(best_param_idx % len(train_learning_rates))]) print("Iterations:", train_iterations[(best_param_idx % len(train_iterations))]) log_file.close() # Train model with same parameters as manual implementation # Model Training Stage print("\nTraining model with same parameters as manual implementation:") lrsgd = SGDRegressor(eta0 = 0.01, max_iter = 100, random_state = 99) lrsgd.fit(X_train_scaled, np.array(Y_train)) Y_pred = lrsgd.predict(X_test_scaled) # Evaluate Performance mse = mean_squared_error(Y_test, Y_pred) rmse = np.sqrt(mse) r2 = r2_score(Y_test, Y_pred) ev = explained_variance_score(Y_test, Y_pred) print("\nEvaluation Parameters:\n") print("Performance Results:") print("MSE:", mse) print("RMSE:", rmse) print("R^2 Score:", r2) print("Explained Variance Score: ", ev) # Train model with default library parameters # Model Training Stage print("\nTraining model with default library parameters:") lrsgd = SGDRegressor() lrsgd.fit(X_train_scaled, np.array(Y_train)) Y_pred = lrsgd.predict(X_test_scaled) # Evaluate Performance mse = mean_squared_error(Y_test, Y_pred) rmse =
np.sqrt(mse)
numpy.sqrt
import numpy as np import matplotlib.pyplot as plt; plt.ioff() import copy from .class_utils import * from .utils import * from astropy.cosmology import Planck15 import astropy.constants as co c = co.c.value # speed of light, in m/s G = co.G.value # gravitational constant in SI units Msun = co.M_sun.value # solar mass, in kg Mpc = 1e6*co.pc.value # 1 Mpc, in m arcsec2rad = np.pi/(180.*3600.) rad2arcsec =3600.*180./np.pi deg2rad = np.pi/180. rad2deg = 180./np.pi __all__ = ['LensRayTrace','GenerateLensingGrid','thetaE','get_caustics','CausticsSIE'] def LensRayTrace(xim,yim,lens,Dd,Ds,Dds): """ Wrapper to pass off lensing calculations to any number of functions defined below, accumulating lensing offsets from multiple lenses and shear as we go. """ # Ensure lens is a list, for convenience lens = list(np.array([lens]).flatten()) ximage = xim.copy() yimage = yim.copy() for i,ilens in enumerate(lens): if ilens.__class__.__name__ == 'SIELens': ilens.deflect(xim,yim,Dd,Ds,Dds) elif ilens.__class__.__name__ == 'ExternalShear': ilens.deflect(xim,yim,lens[0]) ximage += ilens.deflected_x; yimage += ilens.deflected_y return ximage,yimage def GenerateLensingGrid(data=None,xmax=None,emissionbox=[-5,5,-5,5],fieldres=None,emitres=None): """ Routine to generate two grids for lensing. The first will be a lower-resolution grid with resolution determined by fieldres and size determined by xmax. The second is a much higher resolution grid which will be used for the lensing itself, with resolution determined by emitres and size determined from emissionbox - i.e., emissionbox should contain the coordinates which conservatively encompass the real emission, so we only have to lens that part of the field at high resolution. Since we're going to be FFT'ing with these coordinates, the resolution isn't directly set-able. For the low-res full-field map, it instead is set to the next-higher power of 2 from what would be expected from having ~4 resolution elements across the synthesized beam. Inputs: data: A Visdata object, used to determine the resolutions of the two grids (based on the image size or maximum uvdistance in the dataset) xmax: Field size for the low-resolution grid in arcsec, which will extend from (-xmax,-xmax) to (+xmax,+xmax), e.g. (-30,-30) to (+30,+30)arcsec. Should be at least a bit bigger than the primary beam. Not needed for images. emissionbox: A 1x4 list of [xmin,xmax,ymin,ymax] defining a box (in arcsec) which contains the source emission. Coordinates should be given in arcsec relative to the pointing/image center. fieldres,emitres: Resolutions of the coarse, full-field and fine (lensed) field, in arcsec. If not given, suitable values will be calculated from the visibilities. fieldres is unnecessary for images. Returns: If there are any Visdata objects in the datasets, returns: xmapfield,ymapfield: 2xN matrices containing x and y coordinates for the full-field, lower-resolution grid, in arcsec. xmapemission,ymapemission: 2xN matrices containing x and y coordinates for the smaller, very high resolution grid, in arcsec. indices: A [4x1] array containing the indices of xmapfield,ymapfield which overlap with the high resolution grid. """ # Factors higher-resolution than (1/2*max(uvdist)) to make the field and emission grids Nover_field = 4. Nover_emission = 8. # Allow multiple visdata objects to be passed, pick the highest resolution point of all uvmax = 0. try: for vis in data: uvmax = max(uvmax,vis.uvdist.max()) except TypeError: uvmax = data.uvdist.max() # Calculate resolutions of the grids if fieldres is None: fieldres = (2*Nover_field*uvmax)**-1. else: fieldres *= arcsec2rad if emitres is None: emitres = (2*Nover_emission*uvmax)**-1. else: emitres *= arcsec2rad # Calculate the field grid size as a power of 2. Nfield = 2**np.ceil(np.log2(2*np.abs(xmax)*arcsec2rad/fieldres)) # Calculate the grid coordinates for the larger field. fieldcoords = np.linspace(-
np.abs(xmax)
numpy.abs
import os import torch import numpy as np from tqdm import tqdm import json from torch.utils.data import Dataset, DataLoader from arcface.resnet import ResNet from arcface.googlenet import GoogLeNet from arcface.inception_v4 import InceptionV4 from arcface.inceptionresnet_v2 import InceptionResNetV2 from arcface.densenet import DenseNet from arcface.resnet_cbam import ResNetCBAM import torchvision.transforms as transforms import cv2 import random import jieba from autoaugment import rand_augment_transform from PIL import Image ''' for image-text match ''' class ITMatchTrain(Dataset): def __init__(self, opt): arcfaceDataset = ArcfaceDataset(root_dir=opt.data_path, mode="train", size=(opt.size, opt.size), imgORvdo='video') batch_size = 256 training_params = {"batch_size": batch_size, "shuffle": False, "drop_last": False, "num_workers": opt.workers} arcfaceLoader = DataLoader(arcfaceDataset, **training_params) self.vocab_size = arcfaceDataset.vocab_size if opt.network == 'resnet': model = ResNet(opt) b_name = opt.network+'_'+opt.mode+'_{}'.format(opt.num_layers_r) elif opt.network == 'googlenet': model = GoogLeNet(opt) b_name = opt.network elif opt.network == 'inceptionv4': model = InceptionV4(opt) b_name = opt.network elif opt.network == 'inceptionresnetv2': model = InceptionResNetV2(opt) b_name = opt.network elif opt.network == 'densenet': model = DenseNet(opt) b_name = opt.network+'_{}'.format(opt.num_layers_d) elif opt.network == 'resnet_cbam': model = ResNetCBAM(opt) b_name = opt.network+'_{}'.format(opt.num_layers_c) else: raise RuntimeError('Cannot Find the Model: {}'.format(opt.network)) model.load_state_dict(torch.load(os.path.join(opt.saved_path, b_name+'.pth'))) model.cuda() model.eval() self.model_name = b_name self.features = torch.zeros((len(arcfaceDataset), opt.embedding_size)) self.texts = torch.zeros((len(arcfaceDataset), 64)).long() self.instances = torch.zeros((len(arcfaceDataset))).long() print('Calculating features...') for i, d in enumerate(tqdm(arcfaceLoader)): # img = d['img'].cuda() text = d['text'] instance = d['instance'] # with torch.no_grad(): # feature = model(img).cpu() # self.features[i*batch_size:(i+1)*batch_size] = feature self.texts[i*batch_size:(i+1)*batch_size] = text self.instances[i*batch_size:(i+1)*batch_size] = instance def __len__(self): return self.texts.size(0) def __getitem__(self, index): text = self.texts[index] # feature = self.features[index] feature = None instance = self.instances[index] # return {'feature': feature, 'text':text, 'instance':instance} return {'text':text, 'instance':instance} class ITMatchValidation(Dataset): def __init__(self, size=(224, 224), root_dir='data/validation_instance/', maxLen=64, PAD=0, imgORvdo='video'): self.root_dir = root_dir self.size = size text2num = Text2Num(maxLen=maxLen, root_dir='data', PAD=PAD) self.vocab_size = text2num.vocab_size assert imgORvdo in ['image', 'video'] tat = 'validation_'+imgORvdo+'s' # tat = 'train_'+imgORvdo+'s' with open(os.path.join('data', tat+'_text.json'), 'r') as f: textDic = json.load(f) for k in textDic.keys(): textDic[k] = text2num(textDic[k]) instances = os.listdir(root_dir) self.items = [] print('Loading Data...') for instance in tqdm(instances): imgs = os.listdir(root_dir+instance) l = [] for img in imgs: if imgORvdo in img: l.append(os.path.join(instance, img)) text_name = img.split(instance)[-1].split('_')[0] l.append(textDic[text_name]) break if len(l) < 2: continue self.items.append(l) print('Done') self.transform = transforms.Normalize( mean=[0.55574415, 0.51230767, 0.51123354], std=[0.21303795, 0.21604613, 0.21273348]) def __len__(self): return len(self.items) def __getitem__(self, index): imgPath, text = self.items[index] text = torch.Tensor(text).long() # img = np.load(os.path.join(self.root_dir, imgPath)) img = cv2.imread(os.path.join(self.root_dir, imgPath)) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = img.astype(np.float32) / 255 hi, wi, ci = img.shape rh = (hi-self.size[0])//2 rw = (wi-self.size[1])//2 img = img[rh:self.size[0]+rh, rw:self.size[1]+rw, :] img = torch.from_numpy(img) img = img.permute(2, 0, 1) img = self.transform(img) return { 'img': img, 'text': text } ''' for text ''' class Text2Num: def __init__(self, maxLen, root_dir='data', PAD=0): with open(os.path.join(root_dir, 'vocab.json'), 'r') as f: self.vocab = json.load(f) self.PAD = PAD self.maxLen = maxLen self.vocab_size = len(self.vocab) def __call__(self, text): words = jieba.cut(text, cut_all=False, HMM=True) # l = [len(self.vocab)]# CLS l = [] for w in words: if w.strip() in self.vocab: l.append(self.vocab[w.strip()]) if len(l) > self.maxLen: l = l[:self.maxLen] elif len(l) < self.maxLen: l += [self.PAD]*(self.maxLen-len(l)) assert len(l) == self.maxLen return l ''' for efficientdet ''' class EfficientdetDataset(Dataset): def __init__(self, root_dir='data', mode='train', imgORvdo='all', transform=None, maxLen=64, PAD=0): assert mode in ['train', 'validation'] assert imgORvdo in ['image', 'video', 'all'] self.root_dir = root_dir self.transform = transform text2num = Text2Num(maxLen=maxLen, root_dir=root_dir, PAD=PAD) self.vocab_size = text2num.vocab_size label_file = 'label.json' with open(os.path.join(root_dir, label_file), 'r') as f: self.labelDic = json.load(f) self.num_classes = len(self.labelDic['label2index']) if imgORvdo == 'image': tats = [mode + '_images'] elif imgORvdo == 'video': tats = [mode + '_videos'] else: tats = [mode + '_images', mode + '_videos'] self.textDic = {} ds = [] for t in tats: with open(os.path.join(root_dir, t+'_annotation.json'), 'r') as f: ds.append(json.load(f)) with open(os.path.join(root_dir, t+'_text.json'), 'r') as f: self.textDic[t] = json.load(f) for k in self.textDic.keys(): for kk in self.textDic[k].keys(): self.textDic[k][kk] = text2num(self.textDic[k][kk]) ls = [d['annotations'] for d in ds] self.images = [] print('Loading {} {} data...'.format(mode, imgORvdo)) for i, l in enumerate(ls): for d in l: if len(d['annotations']) == 0: continue t = [] t.append(os.path.join(tats[i], d['img_name'])) t.append(d['annotations']) t.append(d['img_name']) t.append(tats[i]) self.images.append(t) # print(len(self.images)) # self.images = self.images[:1000] print('Done') def __len__(self): return len(self.images) def __getitem__(self, index): imgPath, annotationsList, imgName, t = self.images[index] text_name = imgName.split('_')[0] text = self.textDic[t][text_name] text = torch.Tensor(text).long() img = cv2.imread(os.path.join(self.root_dir, imgPath)) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = img.astype(np.float32) / 255 annotations = np.zeros((len(annotationsList), 6)) for i, annotationDic in enumerate(annotationsList): annotation = np.zeros((1, 6)) annotation[0, :4] = annotationDic['box'] annotation[0, 4] = annotationDic['label'] if annotationDic['instance_id'] > 0: annotation[0, 5] = 1 else: annotation[0, 5] = 0 annotations[i:i+1, :] = annotation # annotations = np.append(annotations, annotation, axis=0) sample = {'img': img, 'annot': annotations, 'text': text} if self.transform: sample = self.transform(sample) return sample def label2index(self, label): return self.labelDic['label2index'][label] def index2label(self, index): return self.labelDic['index2label'][str(index)] def getImagePath(self, index): imgPath, annotationsList, imgName, t = self.images[index] return imgPath def getImageInfo(self, index): imgPath, annotationsList, imgName, t = self.images[index] imgID, frame = imgName[:-4].split('_') return imgPath, imgID, frame class EfficientdetDatasetVideo(Dataset): def __init__(self, root_dir='data', mode='train', imgORvdo='video', transform=None, maxLen=64, PAD=0): assert mode in ['train', 'validation'] assert imgORvdo in ['video'] self.root_dir = root_dir self.transform = transform text2num = Text2Num(maxLen=maxLen, root_dir=root_dir, PAD=PAD) self.vocab_size = text2num.vocab_size label_file = 'label.json' with open(os.path.join(root_dir, label_file), 'r') as f: self.labelDic = json.load(f) self.num_classes = len(self.labelDic['label2index']) tats = [mode + '_videos'] self.textDic = {} ds = [] for t in tats: with open(os.path.join(root_dir, t+'_annotation.json'), 'r') as f: ds.append(json.load(f)) with open(os.path.join(root_dir, t+'_text.json'), 'r') as f: self.textDic[t] = json.load(f) for k in self.textDic.keys(): for kk in self.textDic[k].keys(): self.textDic[k][kk] = text2num(self.textDic[k][kk]) ls = [d['annotations'] for d in ds] self.images = [] self.videos = {} print('Loading {} {} data...'.format(mode, imgORvdo)) for i, l in enumerate(ls): for d in l: if d['img_name'][:6] not in self.videos: self.videos[d['img_name'][:6]] = [] # if len(d['annotations']) == 0: # continue t = [] t.append(os.path.join(tats[i], d['img_name'])) t.append(d['annotations']) t.append(d['img_name']) t.append(tats[i]) self.videos[d['img_name'][:6]].append(t) # self.images.append(t) self.videos = list(self.videos.values()) for l in self.videos: assert len(l) == 10 # print(len(self.images)) self.videos = self.videos[:100] print('Done') def __len__(self): return len(self.videos) def __getitem__(self, index): lst = self.videos[index] datas = [] for imgPath, annotationsList, imgName, t in lst: # imgPath, annotationsList, imgName, t = self.images[index] text_name = imgName.split('_')[0] text = self.textDic[t][text_name] text = torch.Tensor(text).long() img = cv2.imread(os.path.join(self.root_dir, imgPath)) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = img.astype(np.float32) / 255 annotations = np.zeros((len(annotationsList), 6)) for i, annotationDic in enumerate(annotationsList): annotation = np.zeros((1, 6)) annotation[0, :4] = annotationDic['box'] annotation[0, 4] = annotationDic['label'] if annotationDic['instance_id'] > 0: annotation[0, 5] = 1 else: annotation[0, 5] = 0 annotations[i:i+1, :] = annotation # annotations = np.append(annotations, annotation, axis=0) sample = {'img': img, 'annot': annotations, 'text': text} datas.append(sample) if self.transform: datas = self.transform(datas) return datas # def label2index(self, label): # return self.labelDic['label2index'][label] # def index2label(self, index): # return self.labelDic['index2label'][str(index)] # def getImagePath(self, index): # imgPath, annotationsList, imgName, t = self.images[index] # return imgPath # def getImageInfo(self, index): # imgPath, annotationsList, imgName, t = self.images[index] # imgID, frame = imgName[:-4].split('_') # return imgPath, imgID, frame ''' for arcface ''' class ArcfaceDataset(Dataset): def __init__(self, root_dir='data', mode='train', size=(112, 112), flip_x=0.5, maxLen=64, PAD=0, imgORvdo='all'): assert mode in ['train', 'all'] assert imgORvdo in ['all', 'image', 'video'] mean=[0.55574415, 0.51230767, 0.51123354] aa_params = dict( translate_const=int(size[0] * 0.40), img_mean=tuple([min(255, round(255 * x)) for x in mean]), ) self.randAug = rand_augment_transform('rand-m9-n3-mstd0.5', aa_params) self.root_dir = root_dir self.size = size self.flip_x = flip_x if mode == 'train': modes = ['train'] instanceFile = 'instanceID.json' elif mode == 'train_2': modes = ['train', 'validation_2'] instanceFile = 'instanceID_2.json' elif mode == 'all': modes = ['train', 'validation_2', 'validation'] instanceFile = 'instanceID_all.json' with open(os.path.join(root_dir, instanceFile), 'r') as f: self.clsDic = json.load(f) with open(os.path.join(root_dir, 'instance2label.json'), 'r') as f: self.instance2label = json.load(f) text2num = Text2Num(maxLen=maxLen, root_dir=root_dir, PAD=PAD) self.vocab_size = text2num.vocab_size self.images = [] self.textDics = {} for mode in modes: if imgORvdo == 'all': tats = [mode + '_images', mode + '_videos'] elif imgORvdo == 'image': tats = [mode + '_images'] elif imgORvdo == 'video': tats = [mode + '_videos'] # img_tat = mode + '_images' # vdo_tat = mode + '_videos' savePath = mode + '_instance' self.savePath = os.path.join(root_dir, savePath) d = [] textDic = [] for tat in tats: with open(os.path.join(root_dir, tat+'_annotation.json'), 'r') as f: d.append(json.load(f)) with open(os.path.join(root_dir, tat+'_text.json'), 'r') as f: textDic.append(json.load(f)) for i in range(len(textDic)): for k in textDic[i].keys(): textDic[i][k] = text2num(textDic[i][k]) self.textDics[mode] = textDic l = [dd['annotations'] for dd in d] print('Loading data...') for i, ll in enumerate(l): for d in ll: for dd in d['annotations']: if dd['instance_id'] > 0 and str(dd['instance_id']) in self.clsDic.keys(): t = [] t.append(os.path.join(self.savePath, str(dd['instance_id']), tats[i]+str(dd['instance_id'])+d['img_name'])) t.append(dd['instance_id']) t.append(d['img_name'].split('_')[0]) t.append(i) t.append(mode) self.images.append(t) self.num_classes = len(self.clsDic) self.num_labels = len(set(self.instance2label.values())) # self.images = self.images[:2222] print('Done') self.transform = transforms.Normalize( mean=[0.55574415, 0.51230767, 0.51123354], std=[0.21303795, 0.21604613, 0.21273348]) def __len__(self): return len(self.images) def __getitem__(self, index): imgName, instance_id, textName, iORv, mode = self.images[index] img = np.load(imgName[:-4]+'.npy') # img = cv2.imread(imgName[:-4]+'.jpg') # img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # img = img.astype(np.float32) / 255 # '''randAug''' # img = Image.fromarray(np.uint8(img*255)) # img = self.randAug(img) # img.save('aaa.jpg') # img = np.array(img) # img = img.astype(np.float32) / 255 # '''randAug''' text = self.textDics[mode][iORv][textName] text = torch.tensor(text).long() iORv = torch.tensor(iORv).long() h, w, c = img.shape # print(h,w,c) rh = random.randint(0, h-256) rw = random.randint(0, w-256) img = img[rh:256+rh, rw:256+rw, :] img = cv2.resize(img, self.size) # '''random erasing''' # if np.random.rand() < 0.5: # w = h = 256 # while w >= 256 or h >= 256: # r = np.random.uniform(0.3, 1/0.3) # s = 256*256*np.random.uniform(0.02, 0.4) # w = int(np.sqrt(s*r)) # h = int(np.sqrt(s/r)) # s_w = random.randint(0, 256-w) # s_h = random.randint(0, 256-h) # img[s_h:s_h+h, s_w:s_w+w, :] = 0 # print(img.shape) instance = torch.tensor(self.clsDic[str(instance_id)]) label = torch.tensor(self.instance2label[str(instance_id)]) if np.random.rand() < self.flip_x: img = img[:, ::-1, :].copy() img = torch.from_numpy(img) img = img.permute(2, 0, 1) img = self.transform(img) return {'img':img, 'instance':instance, 'label':label, 'text': text, 'iORv': iORv} # return {'instance':instance, 'label':label, 'text': text, 'iORv': iORv} class ArcfaceDatasetSeparate(Dataset): def __init__(self, root_dir='data', mode='train', size=(112, 112), flip_x=0.5, maxLen=64, PAD=0, imgORvdo='all'): assert mode in ['train'] assert imgORvdo in ['all'] self.root_dir = root_dir self.size = size self.flip_x = flip_x if imgORvdo == 'all': tats = [mode + '_images', mode + '_videos'] elif imgORvdo == 'image': tats = [mode + '_images'] elif imgORvdo == 'video': tats = [mode + '_videos'] savePath = mode + '_instance' self.savePath = os.path.join(root_dir, savePath) text2num = Text2Num(maxLen=maxLen, root_dir=root_dir, PAD=PAD) self.vocab_size = text2num.vocab_size d = [] self.textDic = [] for tat in tats: with open(os.path.join(root_dir, tat+'_annotation.json'), 'r') as f: d.append(json.load(f)) with open(os.path.join(root_dir, tat+'_text.json'), 'r') as f: self.textDic.append(json.load(f)) for i in range(len(self.textDic)): for k in self.textDic[i].keys(): self.textDic[i][k] = text2num(self.textDic[i][k]) l = [dd['annotations'] for dd in d] self.images = [] with open(os.path.join(root_dir, 'instanceID.json'), 'r') as f: self.clsDic = json.load(f) with open(os.path.join(root_dir, 'instance2label.json'), 'r') as f: self.instance2label = json.load(f) names = ['image', 'video'] print('Loading data...') for i, ll in enumerate(l): for d in ll: for dd in d['annotations']: if dd['instance_id'] > 0 and str(dd['instance_id']) in self.clsDic.keys(): t = [] t.append(os.path.join(str(dd['instance_id']), tats[i]+str(dd['instance_id'])+d['img_name'])) t.append(dd['instance_id']) t.append(d['img_name'].split('_')[0]) t.append(names[i]) self.images.append(t) self.num_classes = len(self.clsDic) self.num_labels = len(set(self.instance2label.values())) self.dic = {} for i in range(len(self.images)): imgName, instance_id, textName, iORv = self.images[i] if instance_id not in self.dic: self.dic[instance_id] = {} self.dic[instance_id]['image'] = [] self.dic[instance_id]['video'] = [] self.dic[instance_id][iORv].append(i) for k in self.dic.keys(): if len(self.dic[k]['image']) == 0 or len(self.dic[k]['video']) == 0: del self.dic[k] self.dic = list(self.dic.items()) # self.images = self.images[:2222] print('Done') self.transform = transforms.Normalize( mean=[0.55574415, 0.51230767, 0.51123354], std=[0.21303795, 0.21604613, 0.21273348]) def __len__(self): return len(self.dic) def __getitem__(self, index): imgIndex = random.choice(self.dic[index][1]['image']) vdoIndex = random.choice(self.dic[index][1]['video']) sample = [] instances = [] for index in [imgIndex, vdoIndex]: imgName, instance_id, textName, iORv = self.images[index] img = np.load(os.path.join(self.savePath, imgName)[:-4]+'.npy') # text = self.textDic[iORv][textName] # text = torch.tensor(text).long() # iORv = torch.tensor(iORv).long() h, w, c = img.shape rh_1 = random.randint(0, h-224) rh_2 = random.randint(224, h) rw_1 = random.randint(0, w-224) rw_2 = random.randint(224, w) img = img[rh_1:rh_2, rw_1:rw_2, :] img = cv2.resize(img, self.size) instances.append(torch.tensor(self.clsDic[str(instance_id)])) # label = torch.tensor(self.instance2label[str(instance_id)]) if np.random.rand() < self.flip_x: img = img[:, ::-1, :].copy() img = torch.from_numpy(img) img = img.permute(2, 0, 1) img = self.transform(img) sample.append(img) assert instances[0] == instances[1] return {'img': sample[0], 'vdo':sample[1], 'instance':instances[0]} class TripletDataset(Dataset): def __init__(self, root_dir='data', mode='train', size=(112, 112), flip_x=0.5): assert mode in ['train'] self.root_dir = root_dir self.size = size self.flip_x = flip_x img_tat = mode + '_images' vdo_tat = mode + '_videos' savePath = mode + '_instance' self.savePath = os.path.join(root_dir, savePath) with open(os.path.join(root_dir, img_tat+'_annotation.json'), 'r') as f: d_i = json.load(f) with open(os.path.join(root_dir, vdo_tat+'_annotation.json'), 'r') as f: d_v = json.load(f) with open(os.path.join(root_dir, 'instanceID.json'), 'r') as f: self.clsDic = json.load(f) with open(os.path.join(root_dir, 'instance2label.json'), 'r') as f: instance2label = json.load(f) l_i = d_i['annotations'] l_v = d_v['annotations'] self.images = [] print('Loading data...') for d in l_i: for dd in d['annotations']: if dd['instance_id'] > 0 and str(dd['instance_id']) in self.clsDic.keys(): t = [] t.append(os.path.join(str(dd['instance_id']), img_tat+str(dd['instance_id'])+d['img_name'])) t.append(self.clsDic[str(dd['instance_id'])]) t.append(instance2label[str(dd['instance_id'])]) self.images.append(t) for d in l_v: for dd in d['annotations']: if dd['instance_id'] > 0 and str(dd['instance_id']) in self.clsDic.keys(): t = [] t.append(os.path.join(str(dd['instance_id']), vdo_tat+str(dd['instance_id'])+d['img_name'])) t.append(self.clsDic[str(dd['instance_id'])]) t.append(instance2label[str(dd['instance_id'])]) self.images.append(t) self.num_classes = len(self.clsDic) self.num_labels = len(set(instance2label.values())) self.cls_ins_dic = {} for i, l in enumerate(self.images): imgName, instance_id, label = l if label not in self.cls_ins_dic: self.cls_ins_dic[label] = {} if instance_id not in self.cls_ins_dic[label]: self.cls_ins_dic[label][instance_id] = [] self.cls_ins_dic[label][instance_id].append(i) for k in self.cls_ins_dic.keys(): if len(self.cls_ins_dic[k]) < 2: raise RuntimeError('size of self.cls_ins_dic[k] must be larger than 1') print('Done') self.transform = transforms.Normalize( mean=[0.55574415, 0.51230767, 0.51123354], std=[0.21303795, 0.21604613, 0.21273348]) def __len__(self): return len(self.images) def __getitem__(self, index): imgName_q, instance_id_q, label_q = self.images[index] p_index = index while p_index == index: p_index = random.choice(self.cls_ins_dic[label_q][instance_id_q]) instance_id_n = instance_id_q while instance_id_n == instance_id_q: instance_id_n = random.choice(list(self.cls_ins_dic[label_q].keys())) n_index = random.choice(self.cls_ins_dic[label_q][instance_id_n]) imgName_p, instance_id_p, label_p = self.images[p_index] imgName_n, instance_id_n, label_n = self.images[n_index] assert len(set([label_q, label_p, label_n])) == 1 assert len(set([instance_id_q, instance_id_p])) == 1 instance_id_q = torch.tensor(instance_id_q) instance_id_p = torch.tensor(instance_id_p) instance_id_n = torch.tensor(instance_id_n) img_q = np.load(os.path.join(self.savePath, imgName_q)[:-4]+'.npy') img_p = np.load(os.path.join(self.savePath, imgName_p)[:-4]+'.npy') img_n = np.load(os.path.join(self.savePath, imgName_n)[:-4]+'.npy') hq, wq, cq = img_q.shape hp, wp, cp = img_p.shape hn, wn, cn = img_n.shape rh = random.randint(0, hq-self.size[0]) rw = random.randint(0, wq-self.size[1]) img_q = img_q[rh:self.size[0]+rh, rw:self.size[1]+rw, :] rh = random.randint(0, hp-self.size[0]) rw = random.randint(0, wp-self.size[1]) img_p = img_p[rh:self.size[0]+rh, rw:self.size[1]+rw, :] rh = random.randint(0, hn-self.size[0]) rw = random.randint(0, wn-self.size[1]) img_n = img_n[rh:self.size[0]+rh, rw:self.size[1]+rw, :] if np.random.rand() < self.flip_x: img_q = img_q[:, ::-1, :].copy() if np.random.rand() < self.flip_x: img_p = img_p[:, ::-1, :].copy() if np.random.rand() < self.flip_x: img_n = img_n[:, ::-1, :].copy() img_q = torch.from_numpy(img_q).permute(2, 0, 1) img_p = torch.from_numpy(img_p).permute(2, 0, 1) img_n = torch.from_numpy(img_n).permute(2, 0, 1) img_q = self.transform(img_q) img_p = self.transform(img_p) img_n = self.transform(img_n) return { 'img_q':img_q, 'img_p':img_p, 'img_n':img_n, 'img_q_instance':instance_id_q, 'img_p_instance':instance_id_p, 'img_n_instance':instance_id_n, } class HardTripletDataset(Dataset): def __init__(self, root_dir='data', mode='train', size=(112, 112), flip_x=0.5, n_samples=4): assert mode in ['train', 'all', 'train_2'] mean=[0.55574415, 0.51230767, 0.51123354] aa_params = dict( translate_const=int(size[0] * 0.40), img_mean=tuple([min(255, round(255 * x)) for x in mean]), ) self.randAug = rand_augment_transform('rand-m9-n3-mstd0.5', aa_params) self.root_dir = root_dir self.size = size self.flip_x = flip_x self.n_samples = n_samples if mode == 'train': modes = ['train'] instanceFile = 'instanceID.json' elif mode == 'train_2': modes = ['train', 'validation_2'] instanceFile = 'instanceID_2.json' elif mode == 'all': modes = ['train', 'validation_2', 'validation'] instanceFile = 'instanceID_all.json' with open(os.path.join(root_dir, instanceFile), 'r') as f: self.clsDic = json.load(f) self.samples = {} for mode in modes: img_tat = mode + '_images' vdo_tat = mode + '_videos' savePath = mode + '_instance' savePath = os.path.join(root_dir, savePath) with open(os.path.join(root_dir, img_tat+'_annotation.json'), 'r') as f: d_i = json.load(f) with open(os.path.join(root_dir, vdo_tat+'_annotation.json'), 'r') as f: d_v = json.load(f) l_i = d_i['annotations'] l_v = d_v['annotations'] print('Loading data...') for d in l_i: for dd in d['annotations']: if dd['instance_id'] > 0 and str(dd['instance_id']) in self.clsDic.keys(): instance = self.clsDic[str(dd['instance_id'])] if instance not in self.samples: self.samples[instance] = [] self.samples[instance].append( os.path.join(savePath, str(dd['instance_id']), img_tat+str(dd['instance_id'])+d['img_name'])) for d in l_v: for dd in d['annotations']: if dd['instance_id'] > 0 and str(dd['instance_id']) in self.clsDic.keys(): instance = self.clsDic[str(dd['instance_id'])] if instance not in self.samples: self.samples[instance] = [] self.samples[instance].append( os.path.join(savePath, str(dd['instance_id']), vdo_tat+str(dd['instance_id'])+d['img_name'])) self.num_classes = len(self.clsDic) for k in self.samples.keys(): while len(self.samples[k]) < n_samples: self.samples[k] *= 2 assert len(self.samples[k]) >= n_samples self.instances = list(self.samples.keys()) print('Done') self.transform = transforms.Normalize( mean=[0.55574415, 0.51230767, 0.51123354], std=[0.21303795, 0.21604613, 0.21273348]) def __len__(self): return len(self.instances) def __getitem__(self, index): instance = self.instances[index] imgPaths = random.sample(self.samples[instance], self.n_samples) imgs = [] instances = [] for imgPath in imgPaths: img = np.load(imgPath[:-4]+'.npy') # '''randAug''' # img = Image.fromarray(np.uint8(img*255)) # img = self.randAug(img) # img.save('aaa.jpg') # img = np.array(img) # img = img.astype(np.float32) / 255 # '''randAug''' assert self.size[0] == 256 if self.size[0] != 256: r = 256 / self.size[0] img = cv2.resize(img, (int(270/r), int(270/r))) h, w, c = img.shape rh = random.randint(0, h-self.size[0]) rw = random.randint(0, w-self.size[1]) img = img[rh:self.size[0]+rh, rw:self.size[1]+rw, :] # if np.random.rand() < 0.5: # w = h = 256 # while w >= 256 or h >= 256: # r = np.random.uniform(0.3, 1/0.3) # s = 256*256*np.random.uniform(0.02, 0.4) # w = int(np.sqrt(s*r)) # h = int(np.sqrt(s/r)) # s_w = random.randint(0, 256-w) # s_h = random.randint(0, 256-h) # img[s_h:s_h+h, s_w:s_w+w, :] = 0 instance_t = torch.tensor(instance) if
np.random.rand()
numpy.random.rand
# # lines.py # # purpose: Reproduce LineCurvature2D.m and LineNormals2D.m # author: <NAME> # e-mail: <EMAIL> # web: http://ocefpaf.tiddlyspot.com/ # created: 17-Jul-2012 # modified: Mon 02 Mar 2015 10:07:06 AM BRT # # obs: # import numpy as np def LineNormals2D(Vertices, Lines): r"""This function calculates the normals, of the line points using the neighbouring points of each contour point, and forward an backward differences on the end points. N = LineNormals2D(V, L) inputs, V : List of points/vertices 2 x M (optional) Lines : A N x 2 list of line pieces, by indices of the vertices (if not set assume Lines=[1 2; 2 3 ; ... ; M-1 M]) outputs, N : The normals of the Vertices 2 x M Examples -------- >>> import numpy as np >>> import matplotlib.pyplot as plt >>> data = np.load('testdata.npz') >>> Lines, Vertices = data['Lines'], data['Vertices'] >>> N = LineNormals2D(Vertices, Lines) >>> fig, ax = plt.subplots(nrows=1, ncols=1) >>> _ = ax.plot(np.c_[Vertices[:, 0], Vertices[:,0 ] + 10 * N[:, 0]].T, ... np.c_[Vertices[:, 1], Vertices[:, 1] + 10 * N[:, 1]].T) Function based on LineNormals2D.m written by D.Kroon University of Twente (August 2011) """ eps = np.spacing(1) if isinstance(Lines, np.ndarray): pass elif not Lines: Lines = np.c_[np.arange(1, Vertices.shape[0]), np.arange(2, Vertices.shape[0] + 1)] else: print("Lines is passed but not recognized.") # Calculate tangent vectors. DT = Vertices[Lines[:, 0] - 1, :] - Vertices[Lines[:, 1] - 1, :] # Make influence of tangent vector 1/Distance (Weighted Central # Differences. Points which are closer give a more accurate estimate of # the normal). LL = np.sqrt(DT[:, 0] ** 2 + DT[:, 1] ** 2) DT[:, 0] = DT[:, 0] / np.maximum(LL ** 2, eps) DT[:, 1] = DT[:, 1] / np.maximum(LL ** 2, eps) D1 = np.zeros_like(Vertices) D2 = np.zeros_like(Vertices) D1[Lines[:, 0] - 1, :] = DT D2[Lines[:, 1] - 1, :] = DT D = D1 + D2 # Normalize the normal. LL = np.sqrt(D[:, 0] ** 2 + D[:, 1] ** 2) N = np.zeros_like(D) N[:, 0] = -D[:, 1] / LL N[:, 1] = D[:, 0] / LL return N def LineCurvature2D(Vertices, Lines=None): r"""This function calculates the curvature of a 2D line. It first fits polygons to the points. Then calculates the analytical curvature from the polygons. k = LineCurvature2D(Vertices,Lines) inputs, Vertices : A M x 2 list of line points. (optional) Lines : A N x 2 list of line pieces, by indices of the vertices (if not set assume Lines=[1 2; 2 3 ; ... ; M-1 M]) outputs, k : M x 1 Curvature values Examples -------- >>> import numpy as np >>> import matplotlib.pyplot as plt >>> data = np.load('testdata.npz', squeeze_me=True) >>> Lines, Vertices = data['Lines'], data['Vertices'] >>> k = LineCurvature2D(Vertices, Lines) >>> N = LineNormals2D(Vertices, Lines) >>> k = k * 100 >>> fig, ax = plt.subplots(nrows=1, ncols=1) >>> _ = ax.plot(np.c_[Vertices[:, 0], Vertices[:, 0] + k * N[:, 0]].T, ... np.c_[Vertices[:, 1], Vertices[:, 1] + k * N[:, 1]].T, 'g') >>> _ = ax.plot(np.c_[Vertices[Lines[:, 0] - 1, 0], ... Vertices[Lines[:, 1] - 1, 0]].T, ... np.c_[Vertices[Lines[:, 0] - 1, 1], ... Vertices[Lines[:, 1] - 1, 1]].T, 'b') >>> _ = ax.plot(Vertices[:, 0], Vertices[:, 1], 'r.') Function based on LineCurvature2D.m written by <NAME> of Twente (August 2011) """ # If no line-indices, assume a x[0] connected with x[1], x[2] with x[3]. if isinstance(Lines, np.ndarray): pass elif not Lines: Lines = np.c_[np.arange(1, Vertices.shape[0]), np.arange(2, Vertices.shape[0] + 1)] else: print("Lines is passed but not recognized.") # Get left and right neighbor of each points. Na = np.zeros(Vertices.shape[0], dtype=np.int) Nb = np.zeros_like(Na) # As int because we use it to index an array... Na[Lines[:, 0] - 1] = Lines[:, 1] Nb[Lines[:, 1] - 1] = Lines[:, 0] # Check for end of line points, without a left or right neighbor. checkNa = Na == 0 checkNb = Nb == 0 Naa, Nbb = Na, Nb Naa[checkNa] = np.where(checkNa)[0] Nbb[checkNb] = np.where(checkNb)[0] # If no left neighbor use two right neighbors, and the same for right. Na[checkNa] = Nbb[Nbb[checkNa]] Nb[checkNb] = Naa[Naa[checkNb]] # ... Also, I remove `1` to get python indexing correctly. Na -= 1 Nb -= 1 # Correct for sampling differences. Ta = -np.sqrt(np.sum((Vertices - Vertices[Na, :]) ** 2, axis=1)) Tb = np.sqrt(np.sum((Vertices - Vertices[Nb, :]) ** 2, axis=1)) # If no left neighbor use two right neighbors, and the same for right. Ta[checkNa] = -Ta[checkNa] Tb[checkNb] = -Tb[checkNb] x = np.c_[Vertices[Na, 0], Vertices[:, 0], Vertices[Nb, 0]] y = np.c_[Vertices[Na, 1], Vertices[:, 1], Vertices[Nb, 1]] M = np.c_[np.ones_like(Tb), -Ta, Ta ** 2,
np.ones_like(Tb)
numpy.ones_like
import tensorflow as tf import os import joblib import numpy as np from mpi4py import MPI from baselines.common.vec_env.vec_frame_stack import VecFrameStack # from coinrun.config import Config from coinrun.config_dqn import Config from coinrun import setup_utils, wrappers import platform import gym class Scalarize: """ Convert a VecEnv into an Env There is a minor difference between this and a normal Env, which is that the final observation (when done=True) does not exist, and instead you will receive the second to last observation a second time due to how the VecEnv interface handles resets. In addition, you are cannot step this environment after done is True, since that is not possible for VecEnvs. """ def __init__(self, venv) -> None: assert venv.num_envs == 1 self._venv = venv self._waiting_for_reset = True self._previous_obs = None self.observation_space = self._venv.observation_space self.action_space = self._venv.action_space self.metadata = self._venv.metadata # self.spec = self._venv.spec self.reward_range = self._venv.reward_range def _process_obs(self, obs): if isinstance(obs, dict): # dict space scalar_obs = {} for k, v in obs.items(): scalar_obs[k] = v[0] return scalar_obs else: return obs[0] def reset(self): self._waiting_for_reset = False obs = self._venv.reset() self._previous_obs = obs return self._process_obs(obs) def step(self, action): assert not self._waiting_for_reset final_action = action if isinstance(self.action_space, gym.spaces.Discrete): final_action = np.array([action], dtype=self._venv.action_space.dtype) else: final_action = np.expand_dims(action, axis=0) obs, rews, dones, infos = self._venv.step(final_action) if dones[0]: self._waiting_for_reset = True obs = self._previous_obs else: self._previous_obs = obs return self._process_obs(obs), rews[0], dones[0], infos[0] def render(self, mode="human"): if mode == "human": return self._venv.render(mode=mode) else: return self._venv.get_images(mode=mode)[0] def close(self): return self._venv.close() def seed(self, seed=None): return self._venv.seed(seed) @property def unwrapped(self): # it might make more sense to return the venv.unwrapped here # except that the interface is different for a venv so things are unlikely to work return self def __repr__(self): return f"<Scalarize venv={self._venv}>" def make_general_env(num_env, seed=0, use_sub_proc=True): from coinrun import coinrunenv env = coinrunenv.make(Config.GAME_TYPE, num_env) if Config.FRAME_STACK > 1: env = VecFrameStack(env, Config.FRAME_STACK) epsilon = Config.EPSILON_GREEDY if epsilon > 0: env = wrappers.EpsilonGreedyWrapper(env, epsilon) return env def file_to_path(filename): return setup_utils.file_to_path(filename) def load_all_params(sess): load_params_for_scope(sess, 'model') def load_params_for_scope(sess, scope, load_key='default'): load_data = Config.get_load_data(load_key) if load_data is None: return False params_dict = load_data['params'] if scope in params_dict: print('Loading saved file for scope', scope) loaded_params = params_dict[scope] loaded_params, params = get_savable_params(loaded_params, scope, keep_heads=True) restore_params(sess, loaded_params, params) return True def get_savable_params(loaded_params, scope, keep_heads=False): params = tf.trainable_variables(scope) filtered_params = [] filtered_loaded = [] if len(loaded_params) != len(params): print('param mismatch', len(loaded_params), len(params)) assert(False) for p, loaded_p in zip(params, loaded_params): keep = True if any((scope + '/' + x) in p.name for x in ['v','pi']): keep = keep_heads if keep: filtered_params.append(p) filtered_loaded.append(loaded_p) else: print('drop', p) return filtered_loaded, filtered_params def restore_params(sess, loaded_params, params): if len(loaded_params) != len(params): print('param mismatch', len(loaded_params), len(params)) assert(False) restores = [] for p, loaded_p in zip(params, loaded_params): print('restoring', p) restores.append(p.assign(loaded_p)) sess.run(restores) def save_params_in_scopes(sess, scopes, filename, base_dict=None): data_dict = {} if base_dict is not None: data_dict.update(base_dict) save_path = file_to_path(filename) data_dict['args'] = Config.get_args_dict() param_dict = {} for scope in scopes: params = tf.trainable_variables(scope) if len(params) > 0: print('saving scope', scope, filename) ps = sess.run(params) param_dict[scope] = ps data_dict['params'] = param_dict joblib.dump(data_dict, save_path) def setup_mpi_gpus(): if 'RCALL_NUM_GPU' not in os.environ: return num_gpus = int(os.environ['RCALL_NUM_GPU']) node_id = platform.node() nodes = MPI.COMM_WORLD.allgather(node_id) local_rank = len([n for n in nodes[:MPI.COMM_WORLD.Get_rank()] if n == node_id]) os.environ['CUDA_VISIBLE_DEVICES'] = str(local_rank % num_gpus) def is_mpi_root(): return MPI.COMM_WORLD.Get_rank() == 0 def tf_initialize(sess): sess.run(tf.initialize_all_variables()) sync_from_root(sess) def sync_from_root(sess, vars=None): if vars is None: vars = tf.trainable_variables() if Config.SYNC_FROM_ROOT: rank = MPI.COMM_WORLD.Get_rank() print('sync from root', rank) for var in vars: if rank == 0: MPI.COMM_WORLD.bcast(sess.run(var)) else: sess.run(tf.assign(var, MPI.COMM_WORLD.bcast(None))) def mpi_average(values): return mpi_average_comm(values, MPI.COMM_WORLD) def mpi_average_comm(values, comm): size = comm.size x = np.array(values) buf = np.zeros_like(x) comm.Allreduce(x, buf, op=MPI.SUM) buf = buf / size return buf def mpi_average_train_test(values): return mpi_average_comm(values, Config.TRAIN_TEST_COMM) def mpi_print(*args): rank = MPI.COMM_WORLD.Get_rank() if rank == 0: print(*args) def process_ep_buf(epinfobuf, tb_writer=None, suffix='', step=0): rewards = [epinfo['r'] for epinfo in epinfobuf] rew_mean =
np.nanmean(rewards)
numpy.nanmean
# -*- coding: utf-8 -*- """ Created on Wed Mar 21 10:00:33 2018 @author: jdkern """ from __future__ import division from sklearn import linear_model from statsmodels.tsa.api import VAR import scipy.stats as st import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns ###################################################################### # LOAD ###################################################################### #import data df_load = pd.read_excel('Synthetic_demand_pathflows/hist_demanddata.xlsx',sheet_name='hourly_load',header=0) df_weather = pd.read_excel('Synthetic_demand_pathflows/hist_demanddata.xlsx',sheet_name='weather',header=0) BPA_weights = pd.read_excel('Synthetic_demand_pathflows/hist_demanddata.xlsx',sheet_name='BPA_location_weights',header=0) CAISO_weights = pd.read_excel('Synthetic_demand_pathflows/hist_demanddata.xlsx',sheet_name='CAISO_location_weights',header=0) Name_list=pd.read_csv('Synthetic_demand_pathflows/Covariance_Calculation.csv') Name_list=list(Name_list.loc['SALEM_T':]) Name_list=Name_list[1:] df_wind=pd.read_csv('Synthetic_wind_power/wind_power_sim.csv',header=0) sim_years = int(len(df_wind)/8760) + 3 sim_weather=pd.read_csv('Synthetic_weather/synthetic_weather_data.csv',header=0,index_col=0) sim_weather = sim_weather.iloc[0:365*sim_years,:] sim_weather = sim_weather.iloc[365:len(sim_weather)-730,:] sim_weather = sim_weather.reset_index(drop=True) #weekday designation dow = df_weather.loc[:,'Weekday'] #generate simulated day of the week assuming starts from monday count=0 sim_dow= np.zeros(len(sim_weather)) for i in range(0,len(sim_weather)): count = count +1 if count <=5: sim_dow[i]=1 elif count > 5: sim_dow[i]=0 if count ==7: count =0 #Generate a datelist datelist=pd.date_range(pd.datetime(2017,1,1),periods=365).tolist() sim_month=np.zeros(len(sim_weather)) sim_day=np.zeros(len(sim_weather)) sim_year=np.zeros(len(sim_weather)) count=0 for i in range(0,len(sim_weather)): if count <=364: sim_month[i]=datelist[count].month sim_day[i]=datelist[count].day sim_year[i]=datelist[count].year else: count=0 sim_month[i]=datelist[count].month sim_day[i]=datelist[count].day sim_year[i]=datelist[count].year count=count+1 ###################################################################### # BPAT ###################################################################### #Find the simulated data at the sites col_BPA_T = ['SALEM_T','SEATTLE_T','PORTLAND_T','EUGENE_T','BOISE_T'] col_BPA_W = ['SALEM_W','SEATTLE_W','PORTLAND_W','EUGENE_W','BOISE_W'] BPA_sim_T=sim_weather[col_BPA_T].values BPA_sim_W=sim_weather[col_BPA_W].values sim_days = len(sim_weather) weighted_SimT = np.zeros((sim_days,1)) ########################################### #find average temps cities = ['Salem','Seattle','Portland','Eugene','Boise'] num_cities = len(cities) num_days = len(df_weather) AvgT = np.zeros((num_days,num_cities)) Wind = np.zeros((num_days,num_cities)) weighted_AvgT = np.zeros((num_days,1)) for i in cities: n1 = i + '_MaxT' n2 = i + '_MinT' n3 = i + '_Wind' j = int(cities.index(i)) AvgT[:,j] = 0.5*df_weather.loc[:,n1] + 0.5*df_weather.loc[:,n2] weighted_AvgT[:,0] = weighted_AvgT[:,0] + AvgT[:,j]*BPA_weights.loc[0,i] Wind[:,j] = df_weather.loc[:,n3] weighted_SimT[:,0] = weighted_SimT[:,0] + BPA_sim_T[:,j]*BPA_weights.loc[0,i] #Convert simulated temperature to F weighted_SimT=(weighted_SimT * 9/5) +32 BPA_sim_T_F=(BPA_sim_T * 9/5) +32 #convert to degree days HDD = np.zeros((num_days,num_cities)) CDD = np.zeros((num_days,num_cities)) HDD_sim = np.zeros((sim_days,num_cities)) CDD_sim = np.zeros((sim_days,num_cities)) for i in range(0,num_days): for j in range(0,num_cities): HDD[i,j] = np.max((0,65-AvgT[i,j])) CDD[i,j] = np.max((0,AvgT[i,j] - 65)) for i in range(0,sim_days): for j in range(0,num_cities): HDD_sim[i,j] = np.max((0,65-BPA_sim_T_F[i,j])) CDD_sim[i,j] = np.max((0,BPA_sim_T_F[i,j] - 65)) #separate wind speed by cooling/heating degree day binary_CDD = CDD>0 binary_HDD = HDD>0 CDD_wind = np.multiply(Wind,binary_CDD) HDD_wind = np.multiply(Wind,binary_HDD) binary_CDD_sim = CDD_sim > 0 binary_HDD_sim = HDD_sim > 0 CDD_wind_sim = np.multiply(BPA_sim_W,binary_CDD_sim) HDD_wind_sim = np.multiply(BPA_sim_W,binary_HDD_sim) #convert load to array BPA_load = df_load.loc[:,'BPA'].values #remove NaNs a = np.argwhere(np.isnan(BPA_load)) for i in a: BPA_load[i] = BPA_load[i+24] peaks = np.zeros((num_days,1)) #find peaks for i in range(0,num_days): peaks[i] = np.max(BPA_load[i*24:i*24+24]) #Separate data by weighted temperature M = np.column_stack((weighted_AvgT,peaks,dow,HDD,CDD,HDD_wind,CDD_wind)) M_sim=np.column_stack((weighted_SimT,sim_dow,HDD_sim,CDD_sim,HDD_wind_sim,CDD_wind_sim)) X70p = M[(M[:,0] >= 70),2:] y70p = M[(M[:,0] >= 70),1] X65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),2:] y65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),1] X60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),2:] y60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),1] X55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),2:] y55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),1] X50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),2:] y50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),1] X40_50 = M[(M[:,0] >= 40) & (M[:,0] < 50),2:] y40_50 = M[(M[:,0] >= 40) & (M[:,0] < 50),1] X30_40 = M[(M[:,0] >= 30) & (M[:,0] < 40),2:] y30_40 = M[(M[:,0] >= 30) & (M[:,0] < 40),1] X25_30 = M[(M[:,0] >= 25) & (M[:,0] < 30),2:] y25_30 = M[(M[:,0] >= 25) & (M[:,0] < 30),1] X25m = M[(M[:,0] < 25),2:] y25m = M[(M[:,0] < 25),1] X70p_Sim = M_sim[(M_sim[:,0] >= 70),1:] X65_70_Sim = M_sim[(M_sim[:,0] >= 65) & (M_sim[:,0] < 70),1:] X60_65_Sim = M_sim[(M_sim[:,0] >= 60) & (M_sim[:,0] < 65),1:] X55_60_Sim = M_sim[(M_sim[:,0] >= 55) & (M_sim[:,0] < 60),1:] X50_55_Sim = M_sim[(M_sim[:,0] >= 50) & (M_sim[:,0] < 55),1:] X40_50_Sim = M_sim[(M_sim[:,0] >= 40) & (M_sim[:,0] < 50),1:] X30_40_Sim = M_sim[(M_sim[:,0] >= 30) & (M_sim[:,0] < 40),1:] X25_30_Sim = M_sim[(M_sim[:,0] >= 25) & (M_sim[:,0] < 30),1:] X25m_Sim = M_sim[(M_sim[:,0] < 25),1:] #multivariate regression #Create linear regression object reg70p = linear_model.LinearRegression() reg65_70 = linear_model.LinearRegression() reg60_65 = linear_model.LinearRegression() reg55_60 = linear_model.LinearRegression() reg50_55 = linear_model.LinearRegression() reg40_50 = linear_model.LinearRegression() reg30_40 = linear_model.LinearRegression() reg25_30 = linear_model.LinearRegression() reg25m = linear_model.LinearRegression() # Train the model using the training sets if len(y70p) > 0: reg70p.fit(X70p,y70p) if len(y65_70) > 0: reg65_70.fit(X65_70,y65_70) if len(y60_65) > 0: reg60_65.fit(X60_65,y60_65) if len(y55_60) > 0: reg55_60.fit(X55_60,y55_60) if len(y50_55) > 0: reg50_55.fit(X50_55,y50_55) if len(y40_50) > 0: reg40_50.fit(X40_50,y40_50) if len(y30_40) > 0: reg30_40.fit(X30_40,y30_40) if len(y25_30) > 0: reg25_30.fit(X25_30,y25_30) if len(y25m) > 0: reg25m.fit(X25m,y25m) # Make predictions using the testing set predicted = [] for i in range(0,num_days): s = M[i,2:] s = s.reshape((1,len(s))) if M[i,0]>=70: y_hat = reg70p.predict(s) elif M[i,0] >= 65 and M[i,0] < 70: y_hat = reg65_70.predict(s) elif M[i,0] >= 60 and M[i,0] < 65: y_hat = reg60_65.predict(s) elif M[i,0] >= 55 and M[i,0] < 60: y_hat = reg55_60.predict(s) elif M[i,0] >= 50 and M[i,0] < 55: y_hat = reg50_55.predict(s) elif M[i,0] >= 40 and M[i,0] < 50: y_hat = reg40_50.predict(s) elif M[i,0] >= 30 and M[i,0] < 40: y_hat = reg30_40.predict(s) elif M[i,0] >= 25 and M[i,0] < 30: y_hat = reg25_30.predict(s) elif M[i,0] < 25: y_hat = reg25m.predict(s) predicted = np.append(predicted,y_hat) BPA_p = predicted.reshape((len(predicted),1)) #Simulate using the regression above simulated=[] for i in range(0,sim_days): s = M_sim[i,1:] s = s.reshape((1,len(s))) if M_sim[i,0]>=70: y_hat = reg70p.predict(s) elif M_sim[i,0] >= 65 and M_sim[i,0] < 70: y_hat = reg65_70.predict(s) elif M_sim[i,0] >= 60 and M_sim[i,0] < 65: y_hat = reg60_65.predict(s) elif M_sim[i,0] >= 55 and M_sim[i,0] < 60: y_hat = reg55_60.predict(s) elif M_sim[i,0] >= 50 and M_sim[i,0] < 55: y_hat = reg50_55.predict(s) elif M_sim[i,0] >= 40 and M_sim[i,0] < 50: y_hat = reg40_50.predict(s) elif M_sim[i,0] >= 30 and M_sim[i,0] < 40: y_hat = reg30_40.predict(s) elif M_sim[i,0] >= 25 and M_sim[i,0] < 30: y_hat = reg25_30.predict(s) elif M_sim[i,0] < 25: y_hat = reg25m.predict(s) simulated = np.append(simulated,y_hat) BPA_sim = simulated.reshape((len(simulated),1)) a=st.pearsonr(peaks,BPA_p) print(a[0]**2, a[1]) # Residuals BPAresiduals = BPA_p - peaks BPA_y = peaks # RMSE RMSE = (np.sum((BPAresiduals**2))/len(BPAresiduals))**.5 output = np.column_stack((BPA_p,peaks)) ######################################################################### # CAISO ######################################################################### #Find the simulated data at the sites col_CAISO_T = ['FRESNO_T','OAKLAND_T','LOS ANGELES_T','SAN DIEGO_T','SACRAMENTO_T','SAN JOSE_T','SAN FRANCISCO_T'] col_CAISO_W = ['FRESNO_W','OAKLAND_W','LOS ANGELES_W','SAN DIEGO_W','SACRAMENTO_W','SAN JOSE_W','SAN FRANCISCO_W'] CAISO_sim_T=sim_weather[col_CAISO_T].values CAISO_sim_W=sim_weather[col_CAISO_W].values sim_days = len(sim_weather) weighted_SimT = np.zeros((sim_days,1)) #find average temps cities = ['Fresno','Oakland','LA','SanDiego','Sacramento','SanJose','SanFran'] num_cities = len(cities) num_days = len(df_weather) AvgT = np.zeros((num_days,num_cities)) Wind = np.zeros((num_days,num_cities)) weighted_AvgT = np.zeros((num_days,1)) for i in cities: n1 = i + '_MaxT' n2 = i + '_MinT' n3 = i + '_Wind' j = int(cities.index(i)) AvgT[:,j] = 0.5*df_weather.loc[:,n1] + 0.5*df_weather.loc[:,n2] Wind[:,j] = df_weather.loc[:,n3] weighted_AvgT[:,0] = weighted_AvgT[:,0] + AvgT[:,j]*CAISO_weights.loc[1,i] weighted_SimT[:,0] = weighted_SimT[:,0] + CAISO_sim_T[:,j]*CAISO_weights.loc[1,i] #Convert simulated temperature to F weighted_SimT=(weighted_SimT * 9/5) +32 CAISO_sim_T_F=(CAISO_sim_T * 9/5) +32 #convert to degree days HDD = np.zeros((num_days,num_cities)) CDD = np.zeros((num_days,num_cities)) HDD_sim = np.zeros((sim_days,num_cities)) CDD_sim = np.zeros((sim_days,num_cities)) for i in range(0,num_days): for j in range(0,num_cities): HDD[i,j] = np.max((0,65-AvgT[i,j])) CDD[i,j] = np.max((0,AvgT[i,j] - 65)) for i in range(0,sim_days): for j in range(0,num_cities): HDD_sim[i,j] = np.max((0,65-CAISO_sim_T_F[i,j])) CDD_sim[i,j] = np.max((0,CAISO_sim_T_F[i,j] - 65)) #separate wind speed by cooling/heating degree day binary_CDD = CDD>0 binary_HDD = HDD>0 binary_CDD_sim = CDD_sim > 0 binary_HDD_sim = HDD_sim > 0 CDD_wind = np.multiply(Wind,binary_CDD) HDD_wind = np.multiply(Wind,binary_HDD) CDD_wind_sim = np.multiply(CAISO_sim_W,binary_CDD_sim) HDD_wind_sim = np.multiply(CAISO_sim_W,binary_HDD_sim) ########################### # CAISO - SDGE ########################### #convert load to array SDGE_load = df_load.loc[:,'SDGE'].values #remove NaNs a = np.argwhere(np.isnan(SDGE_load)) for i in a: SDGE_load[i] = SDGE_load[i+24] peaks = np.zeros((num_days,1)) #find peaks for i in range(0,num_days): peaks[i] = np.max(SDGE_load[i*24:i*24+24]) #Separate data by weighted temperature M = np.column_stack((weighted_AvgT,peaks,dow,HDD,CDD,HDD_wind,CDD_wind)) M_sim=np.column_stack((weighted_SimT,sim_dow,HDD_sim,CDD_sim,HDD_wind_sim,CDD_wind_sim)) X80p = M[(M[:,0] >= 80),2:] y80p = M[(M[:,0] >= 80),1] X75_80 = M[(M[:,0] >= 75) & (M[:,0] < 80),2:] y75_80 = M[(M[:,0] >= 75) & (M[:,0] < 80),1] X70_75 = M[(M[:,0] >= 70) & (M[:,0] < 75),2:] y70_75 = M[(M[:,0] >= 70) & (M[:,0] < 75),1] X65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),2:] y65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),1] X60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),2:] y60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),1] X55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),2:] y55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),1] X50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),2:] y50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),1] X50 = M[(M[:,0] < 50),2:] y50 = M[(M[:,0] < 50),1] X80p_Sim = M_sim[(M_sim[:,0] >= 80),1:] X75_80_Sim = M_sim[(M_sim[:,0] >= 75) & (M_sim[:,0] < 80),1:] X70_75_Sim = M_sim[(M_sim[:,0] >= 70) & (M_sim[:,0] < 75),1:] X65_70_Sim = M_sim[(M_sim[:,0] >= 65) & (M_sim[:,0] < 70),1:] X60_65_Sim = M_sim[(M_sim[:,0] >= 60) & (M_sim[:,0] < 65),1:] X55_60_Sim = M_sim[(M_sim[:,0] >= 55) & (M_sim[:,0] < 60),1:] X50_55_Sim = M_sim[(M_sim[:,0] >= 50) & (M_sim[:,0] < 55),1:] X50_Sim = M_sim[(M_sim[:,0] < 50),1:] #Create linear regression object reg80p = linear_model.LinearRegression() reg75_80 = linear_model.LinearRegression() reg70_75 = linear_model.LinearRegression() reg65_70 = linear_model.LinearRegression() reg60_65 = linear_model.LinearRegression() reg55_60 = linear_model.LinearRegression() reg50_55 = linear_model.LinearRegression() reg50m = linear_model.LinearRegression() ## Train the model using the training sets if len(y80p) > 0: reg80p.fit(X80p,y80p) if len(y75_80) > 0: reg75_80.fit(X75_80,y75_80) if len(y70_75) > 0: reg70_75.fit(X70_75,y70_75) if len(y65_70) > 0: reg65_70.fit(X65_70,y65_70) if len(y60_65) > 0: reg60_65.fit(X60_65,y60_65) if len(y55_60) > 0: reg55_60.fit(X55_60,y55_60) if len(y50_55) > 0: reg50_55.fit(X50_55,y50_55) if len(y50) > 0: reg50m.fit(X50,y50) # Make predictions using the testing set predicted = [] for i in range(0,num_days): s = M[i,2:] s = s.reshape((1,len(s))) if M[i,0]>=80: y_hat = reg80p.predict(s) elif M[i,0] >= 75 and M[i,0] < 80: y_hat = reg75_80.predict(s) elif M[i,0] >= 70 and M[i,0] < 75: y_hat = reg70_75.predict(s) elif M[i,0] >= 65 and M[i,0] < 70: y_hat = reg65_70.predict(s) elif M[i,0] >= 60 and M[i,0] < 65: y_hat = reg60_65.predict(s) elif M[i,0] >= 55 and M[i,0] < 60: y_hat = reg55_60.predict(s) elif M[i,0] >= 50 and M[i,0] < 55: y_hat = reg50_55.predict(s) elif M[i,0] < 50: y_hat = reg50m.predict(s) predicted = np.append(predicted,y_hat) SDGE_p = predicted.reshape((len(predicted),1)) simulated=[] for i in range(0,sim_days): s = M_sim[i,1:] s = s.reshape((1,len(s))) if M_sim[i,0]>=80: y_hat = reg80p.predict(s) elif M_sim[i,0] >= 75 and M_sim[i,0] < 80: y_hat = reg75_80.predict(s) elif M_sim[i,0] >= 70 and M_sim[i,0] < 75: y_hat = reg70_75.predict(s) elif M_sim[i,0] >= 65 and M_sim[i,0] < 70: y_hat = reg65_70.predict(s) elif M_sim[i,0] >= 60 and M_sim[i,0] < 65: y_hat = reg60_65.predict(s) elif M_sim[i,0] >= 55 and M_sim[i,0] < 60: y_hat = reg55_60.predict(s) elif M_sim[i,0] >= 50 and M_sim[i,0] < 55: y_hat = reg50_55.predict(s) elif M_sim[i,0] < 50: y_hat = reg50m.predict(s) # simulated = np.append(simulated,y_hat) SDGE_sim = simulated.reshape((len(simulated),1)) # Residuals SDGEresiduals = SDGE_p - peaks SDGE_y = peaks #a=st.pearsonr(peaks,SDGE_p) #print a[0]**2 # RMSE RMSE = (np.sum((SDGEresiduals**2))/len(SDGEresiduals))**.5 ########################### # CAISO - SCE ########################### #convert load to array SCE_load = df_load.loc[:,'SCE'].values #remove NaNs a = np.argwhere(np.isnan(SCE_load)) for i in a: SCE_load[i] = SCE_load[i+24] peaks = np.zeros((num_days,1)) #find peaks for i in range(0,num_days): peaks[i] = np.max(SCE_load[i*24:i*24+24]) #Separate data by weighted temperature M = np.column_stack((weighted_AvgT,peaks,dow,HDD,CDD,HDD_wind,CDD_wind)) M_sim=np.column_stack((weighted_SimT,sim_dow,HDD_sim,CDD_sim,HDD_wind_sim,CDD_wind_sim)) X80p = M[(M[:,0] >= 80),2:] y80p = M[(M[:,0] >= 80),1] X75_80 = M[(M[:,0] >= 75) & (M[:,0] < 80),2:] y75_80 = M[(M[:,0] >= 75) & (M[:,0] < 80),1] X70_75 = M[(M[:,0] >= 70) & (M[:,0] < 75),2:] y70_75 = M[(M[:,0] >= 70) & (M[:,0] < 75),1] X65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),2:] y65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),1] X60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),2:] y60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),1] X55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),2:] y55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),1] X50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),2:] y50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),1] X50 = M[(M[:,0] < 50),2:] y50 = M[(M[:,0] < 50),1] X80p_Sim = M_sim[(M_sim[:,0] >= 80),1:] X75_80_Sim = M_sim[(M_sim[:,0] >= 75) & (M_sim[:,0] < 80),1:] X70_75_Sim = M_sim[(M_sim[:,0] >= 70) & (M_sim[:,0] < 75),1:] X65_70_Sim = M_sim[(M_sim[:,0] >= 65) & (M_sim[:,0] < 70),1:] X60_65_Sim = M_sim[(M_sim[:,0] >= 60) & (M_sim[:,0] < 65),1:] X55_60_Sim = M_sim[(M_sim[:,0] >= 55) & (M_sim[:,0] < 60),1:] X50_55_Sim = M_sim[(M_sim[:,0] >= 50) & (M_sim[:,0] < 55),1:] X50_Sim = M_sim[(M_sim[:,0] < 50),1:] ##multivariate regression # #Create linear regression object reg80p = linear_model.LinearRegression() reg75_80 = linear_model.LinearRegression() reg70_75 = linear_model.LinearRegression() reg65_70 = linear_model.LinearRegression() reg60_65 = linear_model.LinearRegression() reg55_60 = linear_model.LinearRegression() reg50_55 = linear_model.LinearRegression() reg50m = linear_model.LinearRegression() ## Train the model using the training sets if len(y80p) > 0: reg80p.fit(X80p,y80p) if len(y75_80) > 0: reg75_80.fit(X75_80,y75_80) if len(y70_75) > 0: reg70_75.fit(X70_75,y70_75) if len(y65_70) > 0: reg65_70.fit(X65_70,y65_70) if len(y60_65) > 0: reg60_65.fit(X60_65,y60_65) if len(y55_60) > 0: reg55_60.fit(X55_60,y55_60) if len(y50_55) > 0: reg50_55.fit(X50_55,y50_55) if len(y50) > 0: reg50m.fit(X50,y50) # Make predictions using the testing set predicted = [] for i in range(0,num_days): s = M[i,2:] s = s.reshape((1,len(s))) if M[i,0]>=80: y_hat = reg80p.predict(s) elif M[i,0] >= 75 and M[i,0] < 80: y_hat = reg75_80.predict(s) elif M[i,0] >= 70 and M[i,0] < 75: y_hat = reg70_75.predict(s) elif M[i,0] >= 65 and M[i,0] < 70: y_hat = reg65_70.predict(s) elif M[i,0] >= 60 and M[i,0] < 65: y_hat = reg60_65.predict(s) elif M[i,0] >= 55 and M[i,0] < 60: y_hat = reg55_60.predict(s) elif M[i,0] >= 50 and M[i,0] < 55: y_hat = reg50_55.predict(s) elif M[i,0] < 50: y_hat = reg50m.predict(s) predicted = np.append(predicted,y_hat) SCE_p = predicted.reshape((len(predicted),1)) simulated=[] for i in range(0,sim_days): s = M_sim[i,1:] s = s.reshape((1,len(s))) if M_sim[i,0]>=80: y_hat = reg80p.predict(s) elif M_sim[i,0] >= 75 and M_sim[i,0] < 80: y_hat = reg75_80.predict(s) elif M_sim[i,0] >= 70 and M_sim[i,0] < 75: y_hat = reg70_75.predict(s) elif M_sim[i,0] >= 65 and M_sim[i,0] < 70: y_hat = reg65_70.predict(s) elif M_sim[i,0] >= 60 and M_sim[i,0] < 65: y_hat = reg60_65.predict(s) elif M_sim[i,0] >= 55 and M_sim[i,0] < 60: y_hat = reg55_60.predict(s) elif M_sim[i,0] >= 50 and M_sim[i,0] < 55: y_hat = reg50_55.predict(s) elif M_sim[i,0] < 50: y_hat = reg50m.predict(s) simulated = np.append(simulated,y_hat) SCE_sim = simulated.reshape((len(simulated),1)) #a=st.pearsonr(peaks,SCE_p) #print a[0]**2 # Residuals SCEresiduals = SCE_p - peaks SCE_y = peaks # RMSE RMSE = (np.sum((SCEresiduals**2))/len(SCEresiduals))**.5 ########################### # CAISO - PG&E Valley ########################### #convert load to array PGEV_load = df_load.loc[:,'PGE_V'].values #remove NaNs a = np.argwhere(np.isnan(PGEV_load)) for i in a: PGEV_load[i] = PGEV_load[i+24] peaks = np.zeros((num_days,1)) #find peaks for i in range(0,num_days): peaks[i] = np.max(PGEV_load[i*24:i*24+24]) #Separate data by weighted temperature M = np.column_stack((weighted_AvgT,peaks,dow,HDD,CDD,HDD_wind,CDD_wind)) M_sim=np.column_stack((weighted_SimT,sim_dow,HDD_sim,CDD_sim,HDD_wind_sim,CDD_wind_sim)) X80p = M[(M[:,0] >= 80),2:] y80p = M[(M[:,0] >= 80),1] X75_80 = M[(M[:,0] >= 75) & (M[:,0] < 80),2:] y75_80 = M[(M[:,0] >= 75) & (M[:,0] < 80),1] X70_75 = M[(M[:,0] >= 70) & (M[:,0] < 75),2:] y70_75 = M[(M[:,0] >= 70) & (M[:,0] < 75),1] X65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),2:] y65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),1] X60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),2:] y60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),1] X55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),2:] y55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),1] X50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),2:] y50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),1] X50 = M[(M[:,0] < 50),2:] y50 = M[(M[:,0] < 50),1] X80p_Sim = M_sim[(M_sim[:,0] >= 80),1:] X75_80_Sim = M_sim[(M_sim[:,0] >= 75) & (M_sim[:,0] < 80),1:] X70_75_Sim = M_sim[(M_sim[:,0] >= 70) & (M_sim[:,0] < 75),1:] X65_70_Sim = M_sim[(M_sim[:,0] >= 65) & (M_sim[:,0] < 70),1:] X60_65_Sim = M_sim[(M_sim[:,0] >= 60) & (M_sim[:,0] < 65),1:] X55_60_Sim = M_sim[(M_sim[:,0] >= 55) & (M_sim[:,0] < 60),1:] X50_55_Sim = M_sim[(M_sim[:,0] >= 50) & (M_sim[:,0] < 55),1:] X50_Sim = M_sim[(M_sim[:,0] < 50),1:] ##multivariate regression # #Create linear regression object reg80p = linear_model.LinearRegression() reg75_80 = linear_model.LinearRegression() reg70_75 = linear_model.LinearRegression() reg65_70 = linear_model.LinearRegression() reg60_65 = linear_model.LinearRegression() reg55_60 = linear_model.LinearRegression() reg50_55 = linear_model.LinearRegression() reg50m = linear_model.LinearRegression() ## Train the model using the training sets if len(y80p) > 0: reg80p.fit(X80p,y80p) if len(y75_80) > 0: reg75_80.fit(X75_80,y75_80) if len(y70_75) > 0: reg70_75.fit(X70_75,y70_75) if len(y65_70) > 0: reg65_70.fit(X65_70,y65_70) if len(y60_65) > 0: reg60_65.fit(X60_65,y60_65) if len(y55_60) > 0: reg55_60.fit(X55_60,y55_60) if len(y50_55) > 0: reg50_55.fit(X50_55,y50_55) if len(y50) > 0: reg50m.fit(X50,y50) # Make predictions using the testing set predicted = [] for i in range(0,num_days): s = M[i,2:] s = s.reshape((1,len(s))) if M[i,0]>=80: y_hat = reg80p.predict(s) elif M[i,0] >= 75 and M[i,0] < 80: y_hat = reg75_80.predict(s) elif M[i,0] >= 70 and M[i,0] < 75: y_hat = reg70_75.predict(s) elif M[i,0] >= 65 and M[i,0] < 70: y_hat = reg65_70.predict(s) elif M[i,0] >= 60 and M[i,0] < 65: y_hat = reg60_65.predict(s) elif M[i,0] >= 55 and M[i,0] < 60: y_hat = reg55_60.predict(s) elif M[i,0] >= 50 and M[i,0] < 55: y_hat = reg50_55.predict(s) elif M[i,0] < 50: y_hat = reg50m.predict(s) predicted = np.append(predicted,y_hat) PGEV_p = predicted.reshape((len(predicted),1)) simulated=[] for i in range(0,sim_days): s = M_sim[i,1:] s = s.reshape((1,len(s))) if M_sim[i,0]>=80: y_hat = reg80p.predict(s) elif M_sim[i,0] >= 75 and M_sim[i,0] < 80: y_hat = reg75_80.predict(s) elif M_sim[i,0] >= 70 and M_sim[i,0] < 75: y_hat = reg70_75.predict(s) elif M_sim[i,0] >= 65 and M_sim[i,0] < 70: y_hat = reg65_70.predict(s) elif M_sim[i,0] >= 60 and M_sim[i,0] < 65: y_hat = reg60_65.predict(s) elif M_sim[i,0] >= 55 and M_sim[i,0] < 60: y_hat = reg55_60.predict(s) elif M_sim[i,0] >= 50 and M_sim[i,0] < 55: y_hat = reg50_55.predict(s) elif M_sim[i,0] < 50: y_hat = reg50m.predict(s) simulated = np.append(simulated,y_hat) PGEV_sim = simulated.reshape((len(simulated),1)) a=st.pearsonr(peaks,PGEV_p) print(a[0]**2, a[1]) # Residuals PGEVresiduals = PGEV_p - peaks PGEV_y = peaks # RMSE RMSE = (np.sum((PGEVresiduals**2))/len(PGEVresiduals))**.5 ########################### # CAISO - PG&E Bay ########################### #convert load to array PGEB_load = df_load.loc[:,'PGE_B'].values #remove NaNs a = np.argwhere(np.isnan(PGEB_load)) for i in a: PGEB_load[i] = PGEB_load[i+24] peaks = np.zeros((num_days,1)) #find peaks for i in range(0,num_days): peaks[i] = np.max(PGEB_load[i*24:i*24+24]) #Separate data by weighted temperature M = np.column_stack((weighted_AvgT,peaks,dow,HDD,CDD,HDD_wind,CDD_wind)) M_sim=np.column_stack((weighted_SimT,sim_dow,HDD_sim,CDD_sim,HDD_wind_sim,CDD_wind_sim)) X80p = M[(M[:,0] >= 80),2:] y80p = M[(M[:,0] >= 80),1] X75_80 = M[(M[:,0] >= 75) & (M[:,0] < 80),2:] y75_80 = M[(M[:,0] >= 75) & (M[:,0] < 80),1] X70_75 = M[(M[:,0] >= 70) & (M[:,0] < 75),2:] y70_75 = M[(M[:,0] >= 70) & (M[:,0] < 75),1] X65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),2:] y65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),1] X60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),2:] y60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),1] X55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),2:] y55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),1] X50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),2:] y50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),1] X50 = M[(M[:,0] < 50),2:] y50 = M[(M[:,0] < 50),1] X80p_Sim = M_sim[(M_sim[:,0] >= 80),1:] X75_80_Sim = M_sim[(M_sim[:,0] >= 75) & (M_sim[:,0] < 80),1:] X70_75_Sim = M_sim[(M_sim[:,0] >= 70) & (M_sim[:,0] < 75),1:] X65_70_Sim = M_sim[(M_sim[:,0] >= 65) & (M_sim[:,0] < 70),1:] X60_65_Sim = M_sim[(M_sim[:,0] >= 60) & (M_sim[:,0] < 65),1:] X55_60_Sim = M_sim[(M_sim[:,0] >= 55) & (M_sim[:,0] < 60),1:] X50_55_Sim = M_sim[(M_sim[:,0] >= 50) & (M_sim[:,0] < 55),1:] X50_Sim = M_sim[(M_sim[:,0] < 50),1:] #Create linear regression object reg80p = linear_model.LinearRegression() reg75_80 = linear_model.LinearRegression() reg70_75 = linear_model.LinearRegression() reg65_70 = linear_model.LinearRegression() reg60_65 = linear_model.LinearRegression() reg55_60 = linear_model.LinearRegression() reg50_55 = linear_model.LinearRegression() reg50m = linear_model.LinearRegression() ## Train the model using the training sets if len(y80p) > 0: reg80p.fit(X80p,y80p) if len(y75_80) > 0: reg75_80.fit(X75_80,y75_80) if len(y70_75) > 0: reg70_75.fit(X70_75,y70_75) if len(y65_70) > 0: reg65_70.fit(X65_70,y65_70) if len(y60_65) > 0: reg60_65.fit(X60_65,y60_65) if len(y55_60) > 0: reg55_60.fit(X55_60,y55_60) if len(y50_55) > 0: reg50_55.fit(X50_55,y50_55) if len(y50) > 0: reg50m.fit(X50,y50) # Make predictions using the testing set predicted = [] for i in range(0,num_days): s = M[i,2:] s = s.reshape((1,len(s))) if M[i,0]>=80: y_hat = reg80p.predict(s) elif M[i,0] >= 75 and M[i,0] < 80: y_hat = reg75_80.predict(s) elif M[i,0] >= 70 and M[i,0] < 75: y_hat = reg70_75.predict(s) elif M[i,0] >= 65 and M[i,0] < 70: y_hat = reg65_70.predict(s) elif M[i,0] >= 60 and M[i,0] < 65: y_hat = reg60_65.predict(s) elif M[i,0] >= 55 and M[i,0] < 60: y_hat = reg55_60.predict(s) elif M[i,0] >= 50 and M[i,0] < 55: y_hat = reg50_55.predict(s) elif M[i,0] < 50: y_hat = reg50m.predict(s) predicted = np.append(predicted,y_hat) PGEB_p = predicted.reshape((len(predicted),1)) simulated=[] for i in range(0,sim_days): s = M_sim[i,1:] s = s.reshape((1,len(s))) if M_sim[i,0]>=80: y_hat = reg80p.predict(s) elif M_sim[i,0] >= 75 and M_sim[i,0] < 80: y_hat = reg75_80.predict(s) elif M_sim[i,0] >= 70 and M_sim[i,0] < 75: y_hat = reg70_75.predict(s) elif M_sim[i,0] >= 65 and M_sim[i,0] < 70: y_hat = reg65_70.predict(s) elif M_sim[i,0] >= 60 and M_sim[i,0] < 65: y_hat = reg60_65.predict(s) elif M_sim[i,0] >= 55 and M_sim[i,0] < 60: y_hat = reg55_60.predict(s) elif M_sim[i,0] >= 50 and M_sim[i,0] < 55: y_hat = reg50_55.predict(s) elif M_sim[i,0] < 50: y_hat = reg50m.predict(s) # simulated = np.append(simulated,y_hat) PGEB_sim = simulated.reshape((len(simulated),1)) #a=st.pearsonr(peaks,PGEB_p) #print a[0]**2 # Residuals PGEBresiduals = PGEB_p - peaks PGEB_y = peaks # RMSE RMSE = (np.sum((PGEBresiduals**2))/len(PGEBresiduals))**.5 #Collect residuals from load regression R = np.column_stack((BPAresiduals,SDGEresiduals,SCEresiduals,PGEVresiduals,PGEBresiduals)) ResidualsLoad = R[0:3*365,:] ################################### # PATH 46 ################################### #import data df_data1 = pd.read_excel('Synthetic_demand_pathflows/46_daily.xlsx',sheet_name='Sheet1',header=0) #find average temps cities = ['Tuscon','Phoenix','Vegas','Fresno','Oakland','LA','SanDiego','Sacramento','SanJose','SanFran'] num_cities = len(cities) num_days = len(df_data1) AvgT = np.zeros((num_days,num_cities)) Wind = np.zeros((num_days,num_cities)) for i in cities: n1 = i + '_AvgT' n2 = i + '_Wind' j = int(cities.index(i)) AvgT[:,j] = df_data1.loc[:,n1] Wind[:,j] = df_data1.loc[:,n2] #convert to degree days HDD = np.zeros((num_days,num_cities)) CDD = np.zeros((num_days,num_cities)) for i in range(0,num_days): for j in range(0,num_cities): HDD[i,j] = np.max((0,65-AvgT[i,j])) CDD[i,j] = np.max((0,AvgT[i,j] - 65)) #separate wind speed by cooling/heating degree day binary_CDD = CDD>0 binary_HDD = HDD>0 CDD_wind = np.multiply(Wind,binary_CDD) HDD_wind = np.multiply(Wind,binary_HDD) X1 = np.array(df_data1.loc[:,'Month':'Path66']) X2 = np.column_stack((HDD,CDD,HDD_wind,CDD_wind)) cX = np.column_stack((X1,X2)) df_data = pd.DataFrame(cX) df_data.rename(columns={0:'Month'}, inplace=True) df_data.rename(columns={3:'Path46'}, inplace=True) df_data.rename(columns={4:'Weekday'}, inplace=True) jan = df_data.loc[df_data['Month'] == 1,:] feb = df_data.loc[df_data['Month'] == 2,:] mar = df_data.loc[df_data['Month'] == 3,:] apr = df_data.loc[df_data['Month'] == 4,:] may = df_data.loc[df_data['Month'] == 5,:] jun = df_data.loc[df_data['Month'] == 6,:] jul = df_data.loc[df_data['Month'] == 7,:] aug = df_data.loc[df_data['Month'] == 8,:] sep = df_data.loc[df_data['Month'] == 9,:] oct = df_data.loc[df_data['Month'] == 10,:] nov = df_data.loc[df_data['Month'] == 11,:] dec = df_data.loc[df_data['Month'] == 12,:] y = df_data.loc[:,'Path46'] #multivariate regression jan_reg_46 = linear_model.LinearRegression() feb_reg_46 = linear_model.LinearRegression() mar_reg_46 = linear_model.LinearRegression() apr_reg_46 = linear_model.LinearRegression() may_reg_46 = linear_model.LinearRegression() jun_reg_46 = linear_model.LinearRegression() jul_reg_46 = linear_model.LinearRegression() aug_reg_46 = linear_model.LinearRegression() sep_reg_46 = linear_model.LinearRegression() oct_reg_46 = linear_model.LinearRegression() nov_reg_46 = linear_model.LinearRegression() dec_reg_46 = linear_model.LinearRegression() # Train the model using the training sets jan_reg_46.fit(jan.loc[:,'Weekday':],jan.loc[:,'Path46']) feb_reg_46.fit(feb.loc[:,'Weekday':],feb.loc[:,'Path46']) mar_reg_46.fit(mar.loc[:,'Weekday':],mar.loc[:,'Path46']) apr_reg_46.fit(apr.loc[:,'Weekday':],apr.loc[:,'Path46']) may_reg_46.fit(may.loc[:,'Weekday':],may.loc[:,'Path46']) jun_reg_46.fit(jun.loc[:,'Weekday':],jun.loc[:,'Path46']) jul_reg_46.fit(jul.loc[:,'Weekday':],jul.loc[:,'Path46']) aug_reg_46.fit(aug.loc[:,'Weekday':],aug.loc[:,'Path46']) sep_reg_46.fit(sep.loc[:,'Weekday':],sep.loc[:,'Path46']) oct_reg_46.fit(oct.loc[:,'Weekday':],oct.loc[:,'Path46']) nov_reg_46.fit(nov.loc[:,'Weekday':],nov.loc[:,'Path46']) dec_reg_46.fit(dec.loc[:,'Weekday':],dec.loc[:,'Path46']) # Make predictions using the testing set predicted = [] rc = np.shape(jan.loc[:,'Weekday':]) n = rc[1] for i in range(0,len(y)): m = df_data.loc[i,'Month'] if m==1: s = jan.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = jan_reg_46.predict(s) predicted = np.append(predicted,p) elif m==2: s = feb.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = feb_reg_46.predict(s) predicted = np.append(predicted,p) elif m==3: s = mar.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = mar_reg_46.predict(s) predicted = np.append(predicted,p) elif m==4: s = apr.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = apr_reg_46.predict(s) predicted = np.append(predicted,p) elif m==5: s = may.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = may_reg_46.predict(s) predicted = np.append(predicted,p) elif m==6: s = jun.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = jun_reg_46.predict(s) predicted = np.append(predicted,p) elif m==7: s = jul.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = jul_reg_46.predict(s) predicted = np.append(predicted,p) elif m==8: s = aug.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = aug_reg_46.predict(s) predicted = np.append(predicted,p) elif m==9: s = sep.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = sep_reg_46.predict(s) predicted = np.append(predicted,p) elif m==10: s = oct.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = oct_reg_46.predict(s) predicted = np.append(predicted,p) elif m==11: s = nov.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = nov_reg_46.predict(s) predicted = np.append(predicted,p) else: s = dec.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = dec_reg_46.predict(s) predicted = np.append(predicted,p) Path46_p = predicted # Residuals residuals = predicted - y.values Residuals46 = np.reshape(residuals[730:],(1095,1)) Path46_y = y.values # RMSE RMSE = (np.sum((residuals**2))/len(residuals))**.5 ##R2 #a=st.pearsonr(y,predicted) #print a[0]**2 ############################### # NW PATHS ############################### #import data df_data1 = pd.read_excel('Synthetic_demand_pathflows/NW_Path_data.xlsx',sheet_name='Daily',header=0) #find average temps cities = ['Salem','Seattle','Portland','Eugene','Boise','Tuscon','Phoenix','Vegas','Fresno','Oakland','LA','SanDiego','Sacramento','SanJose','SanFran'] num_cities = len(cities) num_days = len(df_data1) AvgT = np.zeros((num_days,num_cities)) Wind = np.zeros((num_days,num_cities)) for i in cities: n1 = i + '_AvgT' n2 = i + '_Wind' j = int(cities.index(i)) AvgT[:,j] = df_data1.loc[:,n1] Wind[:,j] = df_data1.loc[:,n2] #convert to degree days HDD = np.zeros((num_days,num_cities)) CDD = np.zeros((num_days,num_cities)) for i in range(0,num_days): for j in range(0,num_cities): HDD[i,j] =
np.max((0,65-AvgT[i,j]))
numpy.max
from sklearn import svm from menpo.shape import PointCloud from menpo.shape import TriMesh from menpo.image import MaskedImage from menpo.visualize.base import Viewable from scipy.spatial.distance import euclidean as dist import numpy as np class SVS(Viewable): def __init__(self, points, tplt_edge=None, nu=0.5, kernel='rbf', gamma=0.03, tolerance=0.5, max_f=5): self.points = points self._build(nu, kernel, gamma, tolerance, tplt_edge, max_f) def _build(self, nu, kernel, gamma, tolerance, tplt_edge, max_f): accept_rate = 0.5 margin = 10 sample_step = 1 min_p = np.min(self.points, axis=0).astype('int') max_p = np.max(self.points, axis=0).astype('int') self._range_x = range_x = np.arange( min_p[0]-margin, max_p[0]+margin, sample_step ) self._range_y = range_y = np.arange( min_p[1]-margin, max_p[1]+margin, sample_step ) # Generate negtive points # Build Triangle Mesh if tplt_edge is None: tplt_tri = TriMesh(self.points).trilist # Generate Edge List tplt_edge = tplt_tri[:, [0, 1]] tplt_edge = np.vstack((tplt_edge, tplt_tri[:, [0, 2]])) tplt_edge = np.vstack((tplt_edge, tplt_tri[:, [1, 2]])) tplt_edge = np.sort(tplt_edge) # Get Unique Edge b = np.ascontiguousarray(tplt_edge).view( np.dtype( (np.void, tplt_edge.dtype.itemsize * tplt_edge.shape[1]) ) ) _, idx = np.unique(b, return_index=True) tplt_edge = tplt_edge[idx] # Sample Points training_points_negative = [] training_points_positive = [] for i in range_x: for j in range_y: valid = True max_dist = 100*tolerance for e in tplt_edge: min_dist = minimum_distance( self.points[e[0]], self.points[e[1]], np.array([i, j]), accept_rate ) if min_dist < max_dist: max_dist = min_dist if min_dist < tolerance: valid = False if min_dist < accept_rate: training_points_positive.append([i, j]) break if valid and max_dist < max_f*tolerance: training_points_negative.append([i, j]) training_points_negative =
np.array(training_points_negative)
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Mar 21 11:03:10 2020 @author: sergio.lordano """ import numpy as np from scipy import ndimage def read_shadow_beam(beam, x_column_index=1, y_column_index=3, nbins_x=100, nbins_y=100, nolost = 1, ref = 23, zeroPadding=0, gaussian_filter=0): """ Parameters ---------- beam : ShadowBeam() General Shadow beam object. x_column_index : int Shadow column number for x axis. The default is 1. y_column_index : int Shadow column number for y axis. The default is 3. nbins_x : int Number of bins for x axis. The default is 100. nbins_y : int Number of bins for y axis. The default is 100. nolost : int 1 to use only good rays; 0 to use good and lost rays. The default is 1. ref : TYPE, optional Shadow column used as weights. The default is 23 (intensity). zeroPadding : float Range factor for inserting zeros in the beam matrix. The default is 0. gaussian_filter : float A float larger than 0 to apply gaussian filter. The default is 0. Returns ------- XY : float array returns a 2D numpy array where first row is x coordinates, first column is y coordinates, [0,0] is not used, and [1:1:] is the 2D histogram. """ histo2D = beam.histo2(col_h = x_column_index, col_v = y_column_index, nbins_h = nbins_x, nbins_v = nbins_y, nolost = nolost, ref = ref) x_axis = histo2D['bin_h_center'] y_axis = histo2D['bin_v_center'] xy = histo2D['histogram'] if(zeroPadding==0): XY = np.zeros((nbins_y+1,nbins_x+1)) XY[1:,0] = y_axis XY[0,1:] = x_axis XY[1:,1:] = np.array(xy).transpose() if(gaussian_filter != 0): XY[1:,1:] = ndimage.gaussian_filter(np.array(xy).transpose(), gaussian_filter) else: x_step = x_axis[1]-x_axis[0] y_step = y_axis[1]-y_axis[0] fct = zeroPadding XY = np.zeros((nbins_y+15, nbins_x+15)) XY[8:nbins_y+8,0] = y_axis XY[0,8:nbins_x+8] = x_axis XY[8:nbins_y+8,8:nbins_x+8] = np.array(xy).transpose() XY[1,0] = np.min(y_axis) - (np.max(y_axis) - np.min(y_axis))*fct XY[2:-1,0] = np.linspace(y_axis[0] - 6*y_step, y_axis[-1] + 6*y_step, nbins_y+12) XY[-1,0] = np.max(y_axis) + (np.max(y_axis) - np.min(y_axis))*fct XY[0,1] = np.min(x_axis) - (np.max(x_axis) - np.min(x_axis))*fct XY[0,2:-1] = np.linspace(x_axis[0] - 6*x_step, x_axis[-1] + 6*x_step, nbins_x+12) XY[0,-1] = np.max(x_axis) + (
np.max(x_axis)
numpy.max
import logging import os import shutil import sys import scipy.sparse as sparse import numpy as np import torch def save_checkpoint(state, is_best, checkpoint_dir, logger=None): """Saves model and training parameters at '{checkpoint_dir}/last_checkpoint.pytorch'. If is_best==True saves '{checkpoint_dir}/best_checkpoint.pytorch' as well. Args: state (dict): contains model's state_dict, optimizer's state_dict, epoch and best evaluation metric value so far is_best (bool): if True state contains the best model seen so far checkpoint_dir (string): directory where the checkpoint are to be saved """ def log_info(message): if logger is not None: logger.info(message) if not os.path.exists(checkpoint_dir): log_info( f"Checkpoint directory does not exists. Creating {checkpoint_dir}") os.mkdir(checkpoint_dir) last_file_path = os.path.join(checkpoint_dir, 'last_checkpoint.pytorch') log_info(f"Saving last checkpoint to '{last_file_path}'") torch.save(state, last_file_path) if is_best: best_file_path = os.path.join(checkpoint_dir, 'best_checkpoint.pytorch') log_info(f"Saving best checkpoint to '{best_file_path}'") shutil.copyfile(last_file_path, best_file_path) def load_checkpoint(checkpoint_path, model, optimizer=None): """Loads model and training parameters from a given checkpoint_path If optimizer is provided, loads optimizer's state_dict of as well. Args: checkpoint_path (string): path to the checkpoint to be loaded model (torch.nn.Module): model into which the parameters are to be copied optimizer (torch.optim.Optimizer) optional: optimizer instance into which the parameters are to be copied Returns: state """ if not os.path.exists(checkpoint_path): raise IOError(f"Checkpoint '{checkpoint_path}' does not exist") state = torch.load(checkpoint_path) model.load_state_dict(state['model_state_dict']) if optimizer is not None: optimizer.load_state_dict(state['optimizer_state_dict']) return state def get_logger(name, level=logging.INFO): logger = logging.getLogger(name) logger.setLevel(level) # Logging to console stream_handler = logging.StreamHandler(sys.stdout) formatter = logging.Formatter( '%(asctime)s [%(threadName)s] %(levelname)s %(name)s - %(message)s') stream_handler.setFormatter(formatter) logger.addHandler(stream_handler) return logger def get_number_of_learnable_parameters(model): model_parameters = filter(lambda p: p.requires_grad, model.parameters()) return sum([np.prod(p.size()) for p in model_parameters]) class RunningAverage: """Computes and stores the average """ def __init__(self): self.count = 0 self.sum = 0 self.avg = 0 def update(self, value, n=1): self.count += n self.sum += value * n self.avg = self.sum / self.count def find_maximum_patch_size(model, device): """Tries to find the biggest patch size that can be send to GPU for inference without throwing CUDA out of memory""" logger = get_logger('PatchFinder') in_channels = model.in_channels patch_shapes = [(64, 128, 128), (96, 128, 128), (64, 160, 160), (96, 160, 160), (64, 192, 192), (96, 192, 192)] for shape in patch_shapes: # generate random patch of a given size patch = np.random.randn(*shape).astype('float32') patch = torch \ .from_numpy(patch) \ .view((1, in_channels) + patch.shape) \ .to(device) logger.info(f"Current patch size: {shape}") model(patch) def unpad(probs, index, shape, pad_width=8): def _new_slices(slicing, max_size): if slicing.start == 0: p_start = 0 i_start = 0 else: p_start = pad_width i_start = slicing.start + pad_width if slicing.stop == max_size: p_stop = None i_stop = max_size else: p_stop = -pad_width i_stop = slicing.stop - pad_width return slice(p_start, p_stop), slice(i_start, i_stop) D, H, W = shape i_c, i_z, i_y, i_x = index p_c = slice(0, probs.shape[0]) p_z, i_z = _new_slices(i_z, D) p_y, i_y = _new_slices(i_y, H) p_x, i_x = _new_slices(i_x, W) probs_index = (p_c, p_z, p_y, p_x) index = (i_c, i_z, i_y, i_x) return probs[probs_index], index def create_feature_maps(init_channel_number, number_of_fmaps): # return [init_channel_number * 2 ** k for k in range(number_of_fmaps)] return [min(init_channel_number * 2 ** k, 1024) for k in range(number_of_fmaps)] # Code taken from https://github.com/cremi/cremi_python def adapted_rand(seg, gt, all_stats=False): """Compute Adapted Rand error as defined by the SNEMI3D contest [1] Formula is given as 1 - the maximal F-score of the Rand index (excluding the zero component of the original labels). Adapted from the SNEMI3D MATLAB script, hence the strange style. Parameters ---------- seg : np.ndarray the segmentation to score, where each value is the label at that point gt : np.ndarray, same shape as seg the groundtruth to score against, where each value is a label all_stats : boolean, optional whether to also return precision and recall as a 3-tuple with rand_error Returns ------- are : float The adapted Rand error; equal to $1 - \frac{2pr}{p + r}$, where $p$ and $r$ are the precision and recall described below. prec : float, optional The adapted Rand precision. (Only returned when `all_stats` is ``True``.) rec : float, optional The adapted Rand recall. (Only returned when `all_stats` is ``True``.) References ---------- [1]: http://brainiac2.mit.edu/SNEMI3D/evaluation """ # just to prevent division by 0 epsilon = 1e-6 # segA is truth, segB is query segA = np.ravel(gt) segB = np.ravel(seg) n = segA.size n_labels_A = np.amax(segA) + 1 n_labels_B = np.amax(segB) + 1 ones_data = np.ones(n) p_ij = sparse.csr_matrix((ones_data, (segA[:], segB[:])), shape=(n_labels_A, n_labels_B)) a = p_ij[1:n_labels_A, :] b = p_ij[1:n_labels_A, 1:n_labels_B] c = p_ij[1:n_labels_A, 0].todense() d = b.multiply(b) a_i = np.array(a.sum(1)) b_i = np.array(b.sum(0)) sumA = np.sum(a_i * a_i) sumB =
np.sum(b_i * b_i)
numpy.sum
#! /usr/bin/env python3 """This script demonstrates Aboleth's imputation layers.""" import logging import tensorflow as tf import numpy as np from sklearn.datasets import fetch_covtype from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, log_loss, confusion_matrix from sklearn.preprocessing import StandardScaler import aboleth as ab # Set up a python logger so we can see the output of MonitoredTrainingSession logger = logging.getLogger() logger.setLevel(logging.INFO) RSEED = 666 ab.set_hyperseed(RSEED) CONFIG = tf.ConfigProto(device_count={'GPU': 0}) # Use GPU ? FRAC_TEST = 0.1 # Fraction of data to use for hold-out testing FRAC_MISSING = 0.2 # Fraction of data that is missing MISSING_VAL = -666 # Value to indicate missingness NCLASSES = 7 # Number of target classes # Imputation method CHANGE THESE # METHOD = None # METHOD = "LearnedNormalImpute" # METHOD = "FixedNormalImpute" # METHOD = "FixedScalarImpute" METHOD = "LearnedScalarImpute" # METHOD = "MeanImpute" # Optimization NEPOCHS = 5 # Number of times to see the data in training BSIZE = 100 # Mini batch size LSAMPLES = 3 # Number of samples for training PSAMPLES = 50 # Number of predictions samples def main(): """Run the imputation demo.""" # Fetch data, one-hot targets and standardise data data = fetch_covtype() Xo = data.data[:, :10] Xc = data.data[:, 10:] Y = (data.target - 1) Xo[:, :10] = StandardScaler().fit_transform(Xo[:, :10]) # Network construction n_samples_ = tf.placeholder_with_default(LSAMPLES, []) data_input = ab.InputLayer(name='Xo', n_samples=n_samples_) # Data input # Run this with imputation if METHOD is not None: print("Imputation method {}.".format(METHOD)) # Fake some missing data rnd = np.random.RandomState(RSEED) mask = rnd.rand(*Xo.shape) < FRAC_MISSING Xo[mask] = MISSING_VAL # Use Aboleth to imputate mask_input = ab.MaskInputLayer(name='M') # Missing data mask input xm = np.ma.array(Xo, mask=mask) if METHOD == "LearnedNormalImpute": mean = tf.Variable(
np.ma.mean(xm, axis=0)
numpy.ma.mean
from ClusterDataGen.Feature_env import Features import networkx as nx import pandas as pd import numpy as np import itertools import copy # return reticulation nodes def reticulations(G): return [v for v in G.nodes() if G.in_degree(v) == 2] # for non-binary give ret number per reticulation node def reticulations_non_binary(G): return [G.in_degree(i)-1 for i in G.nodes if G.in_degree(i) >= 2] # return leaves from network def leaves(net): return [u for u in net.nodes() if net.out_degree(u) == 0] # MAKE TREES FROM NETWORK def net_to_tree(net, num_trees=None, distances=True, partial=False, net_lvs=None): # we only consider binary networks here tree_set = dict() rets = reticulations(net) ret_num = len(rets) if net_lvs is not None: tree_lvs = [] if ret_num == 0: return False if num_trees is None: ret_dels_tmp = itertools.product(*[np.arange(2)]*ret_num) ret_dels = None for opt in ret_dels_tmp: opt = np.array(opt).reshape([1, -1]) try: ret_dels = np.vstack([ret_dels, opt]) except: ret_dels = opt else: ret_dels_set = set() its = 0 while len(ret_dels_set) < num_trees: ret_dels_set.add(tuple(
np.random.randint(0, 2, ret_num)
numpy.random.randint
import numpy as np import scipy.stats.distributions as sc_dist from itertools import compress def aggarwal_limits(mu, alpha=0.68268949): """Get Poissonian limits for specified contour levels Parameters ---------- pdfs : array_like The expected number of events (Poisson mean) in each observable bin. Shape: [n_bins] alpha : float or list of float, optional The list of alpha values, which define the contour levels which will be computed. Returns ------- array_like The lower limits (minus -0.5) for each of the observable bins and chosen contour value alpha. Shape: [n_bins, n_alpha] array_like The upper limits (plus +0.5) for each of the observable bins and chosen contour value alpha. Shape: [n_bins, n_alpha] """ if isinstance(alpha, float): alpha = [alpha] mu_large = np.zeros((len(mu), len(alpha))) alpha_large = np.zeros_like(mu_large) for i, a_i in enumerate(alpha): alpha_large[:, i] = a_i mu_large[:, i] = mu mu_large_flat = mu_large.reshape(np.prod(mu_large.shape)) alpha_large_flat = alpha_large.reshape(mu_large_flat.shape) lower, upper = sc_dist.poisson.interval(alpha_large_flat, mu_large_flat) lower[lower != 0] -= 0.5 upper += 0.5 return lower.reshape(mu_large.shape), upper.reshape(mu_large.shape) def aggarwal_limits_pdf(pdfs, ks, alpha=0.68268949): """Get limits for specified contour levels In contrast to `aggarwal_limits` this function computes the limits based on the evaluated and normalized likelihood as opposed to the theoretical limits from the Poisson disribution. Parameters ---------- pdfs : list of list of float The pdf values for each feature bin and for each value k. The value k is the observed number of events in the Poisson Likelihood. The number of evaluted k values is different for each observable bin, and it is chosen such that a certain coverage is obtained. Shape: [n_bins, n_k_values] (note that n_k_values is not constant!) ks : list of list of int The corresponding k value for each of the evaluated pdf values `pdfs`. Shape: [n_bins, n_k_values] (note that n_k_values is not constant!) alpha : float or list of float, optional The list of alpha values, which define the contour levels which will be computed. Returns ------- array_like The lower limits (minus -0.5) for each of the observable bins and chosen contour value alpha. Shape: [n_bins, n_alpha] array_like The upper limits (plus +0.5) for each of the observable bins and chosen contour value alpha. Shape: [n_bins, n_alpha] """ if isinstance(alpha, float): alpha = [alpha] lower = np.zeros((len(pdfs), len(alpha))) upper = np.zeros((len(pdfs), len(alpha))) for i, pdf in enumerate(pdfs): if len(ks[i]) == 0: continue cdf = np.cumsum(pdf) if cdf[-1] < 0.999: print('Cdf only goes up to {}'.format(cdf[-1])) lower[i, :] = np.nan upper[i, :] = np.nan continue for j, alpha_j in enumerate(alpha): q1 = (1.-alpha_j) / 2. q2 = (1.+alpha_j) / 2. lower_idx = np.searchsorted(cdf, q1) upper_idx = np.searchsorted(cdf, q2) lower[i, j] = ks[i][lower_idx] upper[i, j] = ks[i][upper_idx] lower[lower != 0] -= 0.5 upper += 0.5 return lower, upper def evaluate_normalized_likelihood(llh_func, coverage, first_guess, **llh_kwargs): """Compute normalized likelihood This function evaluates the likelihood function `llh_func` iteratively over possible values of k (observed number of events in Poissonian) until the specified coverage is reached. This can then be used to normalize the likelihood and to define the PDF in observed values k and to compute the limits in k. Parameters ---------- llh_func : callable The likelihood function coverage : float The minimum coverage value to obtain. Max value is 1. The closer to 1, the more accurate, but also more time consuming. first_guess : float A first guess of the valid range of k values. Typically, this can be set to the expected number of values in the observable bin. **llh_kwargs Keyword arguments that are passed on to the likelihood function. Returns ------- array_like The (sorted) k values at which the likelhood was evaluted. array_like The corresponding likelihood values to each of the (sorted) k values. These are normalized, i.e. their sum should approach 1, but be at least as high as the specified `coverage`. """ mu = int(first_guess) prob = np.exp(llh_func(mu, **llh_kwargs)) unsorted_pdf = [prob] ks = [mu] max_k = mu min_k = mu reached_bottom = False while prob < coverage: if not reached_bottom: if min_k == 0: reached_bottom = True else: min_k -= 1 ks.append(min_k) new_val = np.exp(llh_func(min_k, **llh_kwargs)) unsorted_pdf.append( new_val) prob += new_val max_k += 1 ks.append(max_k) new_val = np.exp(llh_func(max_k, **llh_kwargs)) unsorted_pdf.append(new_val) prob += new_val ks = np.array(ks) unsorted_pdf = np.array(unsorted_pdf) sort_idx = np.argsort(ks) sorted_ks = ks[sort_idx] sorted_pdf = unsorted_pdf[sort_idx] return sorted_ks, sorted_pdf def map_aggarwal_ratio(y_values, y_0=1., upper=True): """Map p-values to relative y-values wrt minimium p-value. The provided p-values `y_values` are mapped to relative y-values. These transformed y-values are relative to the minimum p-value (in log10). Depending on whether or not `upper` is True, these relative values will either be positive or negative. In other words, the p-values are mapped to y-values in the range of [0, 1] for upper == True and [-1, 0] for upper == False. Parameters ---------- y_values : array_like The p-values for each observable bin. Shape: [n_bins] y_0 : float, optional The highest possible p-value. Anything above this is set to NaN, i.e. it will not be plotted later. upper : bool, optional If True, the ratios are above the expectation values, i.e. the transformed values will be in the range of [0, 1]. If False, the ratios are below the expectation values in each bin and the transformed values will be in the range of [-1, 0]. Returns ------- array_like The transformed y-values for each of the p-values `y_values`. Shape: [n_bins] """ flattened_y = np.copy(y_values.reshape(np.prod(y_values.shape))) finite = np.isfinite(flattened_y) finite_y = flattened_y[finite] if len(finite_y) == 0: return y_values, 0. finite_y[finite_y > y_0] = np.NaN finite_y = np.log10(finite_y) y_min = np.min(finite_y) y_min *= 1.1 finite_y /= y_min transformed_values = np.copy(flattened_y) transformed_values[finite] = finite_y is_nan = np.isnan(flattened_y) is_pos_inf = np.isposinf(flattened_y) is_neg_inf = np.isneginf(flattened_y) got_divided_by_zero = flattened_y == 1. if upper: transformed_values[is_nan] = np.nan transformed_values[is_pos_inf] = np.inf transformed_values[is_neg_inf] = -np.inf else: transformed_values[finite] *= -1. transformed_values[is_nan] = np.nan transformed_values[is_pos_inf] = np.inf transformed_values[is_neg_inf] = -np.inf transformed_values[got_divided_by_zero] = 0 transformed_values = transformed_values.reshape(y_values.shape) return transformed_values, y_min def map_aggarwal_limits(y_values, y_0=1., upper=True): """Map p-values to relative y-values wrt minimium p-value. The provided p-values `y_values` are mapped to relative y-values. These transformed y-values are relative to the minimum p-value (in log10). Depending on whether or not `upper` is True, these relative values will either be positive or negative. In other words, the p-values are mapped to y-values in the range of [0, 1] for upper == True and [-1, 0] for upper == False. This function is similar to `map_aggarwal_ratio`, but the handling of positive and negative infinities are different. These are set to finite values, such that appropriate limit contours may be drawn. Parameters ---------- y_values : array_like The p-values for each observable bin. Shape: [n_bins] y_0 : float, optional The highest possible p-value. Anything above this is set to NaN, i.e. it will not be plotted later. upper : bool, optional If True, the limits are upper limits, i.e. the transformed values will be in the range of [0, 1]. If False, the limits are lower limits and the transformed values will be in the range of [-1, 0]. Returns ------- array_like The transformed y-values for each of the p-values `y_values`. Shape: [n_bins] """ flattened_y = np.copy(y_values.reshape(np.prod(y_values.shape))) finite = np.isfinite(flattened_y) finite_y = flattened_y[finite] if len(finite_y) == 0: return y_values, 0. finite_y[finite_y > y_0] = np.NaN finite_y = np.log10(finite_y) y_min = np.min(finite_y) y_min *= 1.1 finite_y /= y_min transformed_values =
np.copy(flattened_y)
numpy.copy
# -*- coding: utf-8 -*- """ Created on Mon Jul 13 09:18:30 2020 @author: firo """ import xarray as xr import os import numpy as np import scipy as sp from scipy.interpolate import interp1d def weighted_ecdf(data, weight = False): """ input: 1D arrays of data and corresponding weights sets weight to 1 if no weights given (= "normal" ecdf, but better than the statsmodels version) """ if not np.any(weight): weight = np.ones(len(data)) sorting = np.argsort(data) x = data[sorting] weight = weight[sorting] y = np.cumsum(weight)/weight.sum() # clean duplicates, statsmodels does not do this, but it is necessary for us x_clean = np.unique(x) y_clean = np.zeros(x_clean.shape) for i in range(len(x_clean)): y_clean[i] = y[x==x_clean[i]].max() return x_clean, y_clean def generalized_gamma_cdf(x, xm, d, b, x0): y = sp.special.gammainc(d/b, ((x-x0)/xm)**b)/sp.special.gamma(d/b) return y def generalized_gamma(x, xm, d, b, x0): y= b/xm**d/sp.special.gamma(d/b)*(x-x0)**(d-1)*np.exp(-((x-x0)/xm)**b) return y sample = 'T3_025_3_III' #sample name, get e.g. by dyn_data.attrs['name'] path = r"W:\Robert_TOMCAT_3_netcdf4_archives\processed_1200_dry_seg_aniso_sep" file = os.path.join(path, ''.join(['peak_diff_data_',sample,'.nc'])) diff_data = xr.load_dataset(file) def waiting_time_from_ecdf(diff_data, n): """ Parameters ---------- diff_data : netcdf4 dataset containing waiting times as peak differences. n : int number of nodes. Returns ------- array of waiting times with lentgh n. """ inter_diffs = diff_data['diffs_v2'][2:,:].data inter_weights = np.ones(inter_diffs.shape) intra_diffs = diff_data['diffs_v4'][2:,:].data intra_weights =
np.ones(intra_diffs.shape)
numpy.ones
#coding:utf-8 # # a class of gammatone (gammachirp) FIR filter # filtering uses scipy overlap add convolution import sys import numpy as np from matplotlib import pyplot as plt from scipy import signal # scipy > 1.14.1 # Check version # Python 3.6.4 on win32 (Windows 10) # numpy 1.14.0 # matplotlib 2.1.1 # scipy 1.4.1 class Class_Gammatone(object): def __init__(self, fc=1000, sampling_rate=48000, gammachirp=False): # initalize self.sr= sampling_rate self.fc= fc # center frequency by unit is [Hz] self.ERB_width, self.ERB_rate = self.ERB_N( self.fc ) print ('fc, ERB_width', self.fc, self.ERB_width) self.N= 4 # 4th order self.a= 1.0 self.b= 1.019 self.phi= 0.0 self.c= 1.0 # only use for gammachirp self.gammachirp= gammachirp # self.bz FIR coefficient # self.nth FIR length _,_= self.get_gt() def ERB_N(self, fin): # Equivalent Rectangular Bandwidth return 24.7 * ( 4.37 * fin / 1000. + 1.0), 21.4 * np.log10( 4.37 * fin / 1000. + 1.0) def gt(self, t0): # gammatone return self.a * np.power( t0, self.N-1) * np.exp( -2.0 * np.pi * self.b * self.ERB_width * t0) * np.cos( 2.0 * np.pi * self.fc * t0 + self.phi) def gt_chirp(self, t0): # gammachirp return self.a * np.power( t0, self.N-1) * np.exp( -2.0 * np.pi * self.b * self.ERB_width * t0) * np.cos( 2.0 * np.pi * self.fc * t0 + self.c * np.log(t0) + self.phi) def get_gt(self,nsec=0.1, neffective=1E-12): # compute some duration tlist= np.arange(0.0, (1000.0 / self.fc) * nsec, 1.0/self.sr) if self.gammachirp : tlist= tlist[1:] print ('warning: t is from 1/sampling rate, due to log(0.0) is error') self.gt_nsec= self.gt_chirp( tlist) else: self.gt_nsec= self.gt( tlist) self.a= 1.0 / np.sum(
np.abs(self.gt_nsec)
numpy.abs
""" Contains class Affine2D for preforming affine transformation (general linear transformation followed by translation) on points (vectors) in 2D. # Author: <NAME> (Max Planck Institute for Biochemistry) # $Id$ """ from __future__ import unicode_literals from __future__ import absolute_import from __future__ import division #from past.utils import old_div from past.builtins import basestring __version__ = "$Revision$" import logging import numpy import scipy import scipy.linalg as linalg from .points import Points from .affine import Affine class Affine2D(Affine): """ Finds and preforms affine transformation (general linear transformation followed by translation) on points (vectors) in 2D. The transformation that transforms points x to points y has the following form: y = gl x + d where: gl = q s p m Main methods: - find: finds a transformation between two sets of points - transform: transforms a (set of) point(s) - inverse: calculates inverse transformation - compose: composition of two transformations Important attributes and properties (see formulas above): - d: translation vector - gl: general linear transformation matrix - q: rotation matrix - phi: rotational angle (radians) - phiDeg: rotational angle (degrees) - s: scaling matrix (diagonal) - scale: vector of scaling parameters (diagonal of s) - p: parity matrix (diagonal) - parity: parity (+1 or -1) - m: shear matrix (upper-triangular) - error: error of transformation for all points - rmsError: root mean square error of the transformation """ def __init__(self, d=None, gl=None, phi=None, scale=None, parity=1, shear=0, order='qpsm', xy_axes='point_dim'): """ Initialization. Following argument combinations are valid: - no arguments: no transformation matrices are initialized - d and gl: d and gl are set - d, phi and scale (parity and shear optional): d and gl (gl = q p s m) are set If arg d is None it is set to [0, 0]. If it is a single number it is set to the same value in both directions. If the arg xy_axes is 'point_dim' / 'dim_point', points used in this instance should be specified as n_point x 2 / 2 x n_point matrices. Arguments - gl: gl matrix - phi: angle - scale: single number or 1d array - parity: 1 or -1 - shear: (number) shear - d: single number, 1d array, or None (means 0) - order: decomposition order - xy_axes: order of axes in matrices representing points, can be 'point_dim' (default) or 'dim_point' """ # set d d = Affine.makeD(d, ndim=2) if (gl is not None) and (d is not None): super(self.__class__, self).__init__( gl, d, order=order, xy_axes=xy_axes) elif (phi is not None) and (scale is not None) and (d is not None): if not isinstance(scale, (numpy.ndarray, list)): scale = self.makeS(scale) elif isinstance(scale, numpy.ndarray) and (len(scale.shape) == 1): scale = self.makeS(scale) elif isinstance(scale, list) and not isinstance(scale[0], list): scale = self.makeS(scale) qp = numpy.inner(self.makeQ(phi), self.makeP(parity)) sm = numpy.inner(scale, self.makeM(shear)) gl = numpy.inner(qp, sm) super(self.__class__, self).__init__( gl, d, order=order, xy_axes=xy_axes) else: raise ValueError("Transformation could not be created because " + " not enough parameters were specified.") @classmethod def downcast(cls, affine): """ Returns instance of this class that was obtained by dowoncasting art affine (instance of Affine, base class of this class). Argument: - affine: instance of Affine """ # copy gl and d, obligatory new = cls(gl=affine.gl, d=affine.d, xy_axes=affine.xy_axes) # copy attributes that are not obligarory for name in ['order', 'resids', 'rank', 'singular', 'error', '_xPrime', '_yPrime', 'q', 'p', 's', 'm', 'xy_axes']: try: value = getattr(affine, name) setattr(new, name, value) except AttributeError: pass return new ############################################################## # # Parameters # @classmethod def identity(cls, ndim=2): """ Returnes an identity object of this class, that is a transformation that leaves all vectors invariant. Argument ndim is ignored, it should be 2 here. """ obj = cls.__base__.identity(ndim=2) return obj @classmethod def makeQ(cls, phi): """ Returns rotation matrix corresponding to angle phi """ q = numpy.array([[numpy.cos(phi), -numpy.sin(phi)], [numpy.sin(phi), numpy.cos(phi)]]) return q @classmethod def getAngle(cls, q): """ Returns angle corresponding to the rotation matrix specified by arg q """ res = numpy.arctan2(q[1,0], q[0,0]) return res @classmethod def makeS(cls, scale): """ Returns scale transformation corresponding to 1D array scale. Argument: - scale: can be given as an 1d array (or a list), or as a single number in which case the scale is the same in all directions """ s = cls.__base__.makeS(scale=scale, ndim=2) return s @classmethod def makeP(cls, parity, axis=-1): """ Returns parity matrix corresponding to arg parity. If parity is -1, the element of the parity matrix corresponding to axis is set to -1 (all other are 1). Arguments: - parity: can be 1 or -1 - axis: axis denoting parity element that can be -1 """ p = cls.__base__.makeP(parity=parity, axis=axis, ndim=2) return p @classmethod def makeM(cls, shear): """ Returns share matrix corresponding to (arg) shear. """ m = numpy.array([[1, shear], [0, 1]]) return m @classmethod def makeD(cls, d, ndim=2): """ Returns d (translation) array corresponding to arg parity. Arguments: - d: (single number) translation """ d = cls.__base__.makeD(d, ndim=ndim) return d def getPhi(self): """ Rotation angle of matrix self.q in radians. """ #try: # qq = self.q #except AttributeError: # self.decompose(order='qpsm') res = numpy.arctan2(self.q[1,0], self.q[0,0]) return res def setPhi(self, phi): """ Sets transformation matrices related to phi (q and gl). Matrix gl is calculated using the current values of other matrices (p, s and m). """ self.q = self.makeQ(phi) try: gg = self.gl self.gl = self.composeGl() except AttributeError: pass phi = property(fget=getPhi, fset=setPhi, doc='Rotation angle in radians') def getPhiDeg(self): """ Rotation angle in degrees """ res = self.phi * 180 / numpy.pi return res def setPhiDeg(self, phi): """ Sets transformation matrices related to phi (q and gl). Matrix gl is calculated using the current values of other matrices (p, s and m). """ phi_rad = phi * numpy.pi / 180 self.q = self.makeQ(phi_rad) try: gg = self.gl self.gl = self.composeGl() except AttributeError: pass phiDeg = property(fget=getPhiDeg, fset=setPhiDeg, doc='Rotation angle in degrees') def getUAngle(self): """ Returns angle alpha corresponding to rotation matrix self.u """ return self.getAngle(q=self.u) def setUAngle(self, angle): """ Sets U matrix (as in usv decomposition) and adjusts gl. """ self.u = self.makeQ(angle) self.gl = self.composeGl() uAngle = property(fget=getUAngle, fset=setUAngle, doc='Rotation angle corresponding to matrix U in radians') def getUAngleDeg(self): """ Returns angle alpha corresponding to rotation matrix self.u """ res = self.getAngle(q=self.u) * 180 / numpy.pi return res def setUAngleDeg(self, angle): """ Sets U matrix (as in usv decomposition) and adjusts gl. """ angle_rad = angle * numpy.pi / 180 self.u = self.makeQ(angle_rad) self.gl = self.composeGl() uAngleDeg = property(fget=getUAngleDeg, fset=setUAngleDeg, doc='Rotation angle corresponding to matrix U in degrees') def getVAngle(self): """ Returns angle alpha corresponding to rotation matrix self.v """ return self.getAngle(q=self.v) def setVAngle(self, angle): """ Sets V matrix (as in usv decomposition) and adjusts gl. """ self.v = self.makeQ(angle) self.gl = self.composeGl() vAngle = property(fget=getVAngle, fset=setVAngle, doc='Rotation angle corresponding to matrix V in radians') def getVAngleDeg(self): """ Returns angle alpha corresponding to rotation matrix self.v """ res = self.getAngle(q=self.v) * 180 / numpy.pi return res def setVAngleDeg(self, angle): """ Sets V matrix (as in usv decomposition) and adjusts gl. """ angle_rad = angle * numpy.pi / 180 self.v = self.makeQ(angle_rad) self.gl = self.composeGl() vAngleDeg = property(fget=getVAngleDeg, fset=setVAngleDeg, doc='Rotation angle corresponding to matrix V in degrees') def getScaleAngle(self): """ Returns angle (in rad) that corresponds to the scaling: arccos(scale_smaller / scale_larger) where scale_smaller and scale_larger are the smaller and larger scale factors, respectively. Rotation of an 2D object by this angle around x-axis in 3D is eqivalent to scaling this object by self.scale (up to a common scale factor). """ ratio = self.scale[1] / self.scale[0] if ratio > 1: ratio = 1. / ratio res = numpy.arccos(ratio) return res scaleAngle = property( fget=getScaleAngle, doc='Angle corresponding to the ratio of scales (in rad)') def getScaleAngleDeg(self): """ Returns angle in degrees that corresponds to the scaling: arccos(scale[1]/scale[0]) Rotation of an 2D object by this angle around x-axis in 3D is eqivalent to scaling this object by self.scale (up to a common scale factor). """ return self.scaleAngle * 180 / numpy.pi scaleAngleDeg = property( fget=getScaleAngleDeg, doc='Angle corresponding to the ratio of scales in degrees') def getShear(self): """ Shear """ try: mm = self.m except AttributeError: self.decompose() res = self.m[0, 1] return res shear = property(fget=getShear, doc='Shear') ############################################################## # # Finding and applying transformations # @classmethod def find( cls, x, y, x_ref='cm', y_ref='cm', type_='gl', xy_axes='point_dim'): """ Finds affine transformation (general linear transformation folowed by a translation) that minimizes square error for transforming points x to points y in 2D. The transformation has the form y = gl x + d, (1) and: gl = q s p m for type_='gl' gl = S q p for type_='rs' where d is translation vector, q, s, p and m are rotation, scaling, parity and shear matrices, respectivly and S is a scalar scale (same for both directions) In the default mode (x_ref='cm' and y_ref='cm') the parameters are calculated by minimizing square error to get gl from: y - y_cm = gl (x - x_cm) and d = y_cm - gl x_cm where x_cm and y_cm are the centers of mass for x and y respectivly. In this case the square error of eq 1 is minimized In case args x_ref and y_ref are coordinates, gl is determined by minimizing square error in: y - y_ref = gl (x - x_ref) and d = y_ref - gl x_ref Note that in this case the parameters found do not minimize the error of eq 1. In case type_='gl', general linear transformation (matrix gl) is calculated using Affine.find which in turn uses scipy.linalg.lstsq. Alternatively, if type_='rs', rotation angle parity and scale are calculated using findRS() method. Arguments: - x, y: sets of points, both having shape (n_points, n_dim) - x_ref, y_ref: (ndarray) coordinates of reference points, or 'cm' to use center of mass Returns the transformation found as an instance of class cls, with following attributes: - gl: general linear transformation matrix - d: translation vector - q, p, s, m: rotation, parity, scale and shear matrices - error: difference between y and transformed x values - resids, rank, singular: values returned from scipy.linalg.lstsq - _xPrime: x - x_ref - _yPrime: y - y_ref - type_: type of the optimization, 'gl' to find Gl transformation that optimizes the square error, or 'rs' to find the best rotation and one scale (currently implemented for 2D transformations only) """ if type_ == 'gl': # run Affine.base and downcast base_inst = cls.__base__.find( x=x, y=y, x_ref=x_ref, y_ref=y_ref, xy_axes=xy_axes) inst = cls.downcast(affine=base_inst) elif type_ == 'rs': # call special method for 'rs' type in 2D inst = cls.findRS( x=x, y=y, x_ref=x_ref, y_ref=y_ref, xy_axes=xy_axes) else: raise ValueError("Argument type_: ", type_, "was not ", "understood. Valid values are 'gl', and 'rs'.") return inst @classmethod def findRS(cls, x, y, x_ref='cm', y_ref='cm', xy_axes='point_dim'): """ Finds transformation consisting of rotation, single scale factor and translation in 2D that minimizes square error for transforming points x to points y. The transformation has the form y = gl x + d, gl = S q p (1) where d is translation vector, q and p are rotation and parity matrices, respectivly and S is a scalar scale (same for both directions) In the default mode (x_ref='cm' and y_ref='cm') the parameters are calculated by minimizing square error to get gl from: y - y_cm = gl (x - x_cm) and d = y_cm - gl x_cm where x_cm and y_cm are the centers of mass for x and y respectivly. In this case the square error of eq 1 is minimized In case args x_ref and y_ref are coordinates, gl is determined by minimizing square error in: y - y_ref = gl (x - x_ref) and d = y_ref - gl x_ref Note that in this case the parameters found do not minimize the error of eq 1. In center of mass coordinates, scale and parity are calculated directly using: S = sqrt( det(yx) / det(xx) ) P = sign( det(yx) / det(xx) ) Rotation angle is calculated so that the square error is minimized: tan(phi + pi/2) = tr(y p x) / tr(y r0 p x) where: r0 = 0 -1 1 0 Arguments: - x, y: sets of points, both having shape (n_points, n_dim) - x_ref, y_ref: (ndarray) coordinates of reference points, or 'cm' to use center of mass Returns the transformation found as an instance of class cls, with following attributes: - gl: general linear transformation matrix - d: translation vector - q, p, s, m: rotation, parity, scale and shear matrices - error: difference between y and transformed x values - resids, rank, singular: values returned from scipy.linalg.lstsq Note: To be replaced by SVD based method """ # bring x and y to n_points x n_dim shape if xy_axes == 'point_dim': pass elif xy_axes == 'dim_point': x = x.transpose() y = y.transpose() else: raise ValueError( "Argument xy_axes was not understood. Possible values are: " + "'point_dim' and 'dim_point'.") # bring x to reference frame if isinstance(x_ref, basestring) and (x_ref == 'cm'): x_ref = numpy.mean(x, axis=0) elif isinstance(x_ref, (list, tuple, numpy.ndarray)): pass else: raise ValueError(\ 'Argument x_ref: ', x_ref, ' was not understood.', " Allowed values are None, 'cm', or an array.") x_prime = x - x_ref # bring y to reference frame if isinstance(y_ref, basestring) and (y_ref == 'cm'): y_ref =
numpy.mean(y, axis=0)
numpy.mean
import re import os import argparse import json import random import numpy as np import torch import torch.utils.data from scipy.io.wavfile import read from scipy.stats import betabinom from audio_processing import TacotronSTFT from text import text_to_sequence, cmudict, _clean_text, get_arpabet def beta_binomial_prior_distribution(phoneme_count, mel_count): P, M = phoneme_count, mel_count x =
np.arange(0, P)
numpy.arange
import os from datetime import datetime import numpy as np import pandas as pd import pytest import mikeio from mikeio import Dataset, Dfsu, Dfs2, Dfs0 from mikeio.eum import EUMType, ItemInfo, EUMUnit @pytest.fixture def ds1(): nt = 10 ne = 7 d1 = np.zeros([nt, ne]) + 0.1 d2 = np.zeros([nt, ne]) + 0.2 data = [d1, d2] time = pd.date_range(start=datetime(2000, 1, 1), freq="S", periods=nt) items = [ItemInfo("Foo"), ItemInfo("Bar")] return Dataset(data, time, items) @pytest.fixture def ds2(): nt = 10 ne = 7 d1 = np.zeros([nt, ne]) + 1.0 d2 = np.zeros([nt, ne]) + 2.0 data = [d1, d2] time = pd.date_range(start=datetime(2000, 1, 1), freq="S", periods=nt) items = [ItemInfo("Foo"), ItemInfo("Bar")] return Dataset(data, time, items) def test_create_wrong_data_type_error(): data = ["item 1", "item 2"] nt = 2 time = pd.date_range(start=datetime(2000, 1, 1), freq="S", periods=nt) with pytest.raises(TypeError, match="numpy"): Dataset(data=data, time=time) def test_get_names(): data = [] nt = 100 d = np.zeros([nt, 100, 30]) + 1.0 data.append(d) time = pd.date_range(start=datetime(2000, 1, 1), freq="S", periods=nt) items = [ItemInfo("Foo")] ds = Dataset(data, time, items) assert ds.items[0].name == "Foo" assert ds.items[0].type == EUMType.Undefined assert repr(ds.items[0].unit) == "undefined" def test_select_subset_isel(): nt = 100 d1 = np.zeros([nt, 100, 30]) + 1.5 d2 = np.zeros([nt, 100, 30]) + 2.0 d1[0, 10, :] = 2.0 d2[0, 10, :] = 3.0 data = [d1, d2] time = pd.date_range(start=datetime(2000, 1, 1), freq="S", periods=nt) items = [ItemInfo("Foo"), ItemInfo("Bar")] ds = Dataset(data, time, items) selds = ds.isel(10, axis=1) assert len(selds.items) == 2 assert len(selds.data) == 2 assert selds["Foo"].shape == (100, 30) assert selds["Foo"][0, 0] == 2.0 assert selds["Bar"][0, 0] == 3.0 def test_select_subset_isel_axis_out_of_range_error(ds2): assert len(ds2.shape) == 2 dss = ds2.isel(idx=0) # After subsetting there is only one dimension assert len(dss.shape) == 1 with pytest.raises(ValueError): dss.isel(idx=0, axis="spatial") def test_select_temporal_subset_by_idx(): nt = 100 d1 = np.zeros([nt, 100, 30]) + 1.5 d2 = np.zeros([nt, 100, 30]) + 2.0 d1[0, 10, :] = 2.0 d2[0, 10, :] = 3.0 data = [d1, d2] time = pd.date_range(start=datetime(2000, 1, 1), freq="S", periods=nt) items = [ItemInfo("Foo"), ItemInfo("Bar")] ds = Dataset(data, time, items) selds = ds.isel([0, 1, 2], axis=0) assert len(selds) == 2 assert selds["Foo"].shape == (3, 100, 30) def test_temporal_subset_fancy(): nt = (24 * 31) + 1 d1 = np.zeros([nt, 100, 30]) + 1.5 d2 = np.zeros([nt, 100, 30]) + 2.0 data = [d1, d2] time = pd.date_range("2000-1-1", freq="H", periods=nt) items = [ItemInfo("Foo"), ItemInfo("Bar")] ds = Dataset(data, time, items) assert ds.time[0].hour == 0 assert ds.time[-1].hour == 0 selds = ds["2000-01-01 00:00":"2000-01-02 00:00"] assert len(selds) == 2 assert selds["Foo"].shape == (25, 100, 30) selds = ds[:"2000-01-02 00:00"] assert selds["Foo"].shape == (25, 100, 30) selds = ds["2000-01-31 00:00":] assert selds["Foo"].shape == (25, 100, 30) selds = ds["2000-01-30":] assert selds["Foo"].shape == (49, 100, 30) def test_subset_with_datetime_is_not_supported(): nt = (24 * 31) + 1 d1 = np.zeros([nt, 100, 30]) + 1.5 d2 = np.zeros([nt, 100, 30]) + 2.0 data = [d1, d2] time = pd.date_range("2000-1-2", freq="H", periods=nt) items = [ItemInfo("Foo"), ItemInfo("Bar")] ds = Dataset(data, time, items) with pytest.raises(ValueError): ds[datetime(2000, 1, 1)] def test_select_item_by_name(): nt = 100 d1 = np.zeros([nt, 100, 30]) + 1.5 d2 = np.zeros([nt, 100, 30]) + 2.0 d1[0, 10, :] = 2.0 d2[0, 10, :] = 3.0 data = [d1, d2] time = pd.date_range("2000-1-2", freq="H", periods=nt) items = [ItemInfo("Foo"), ItemInfo("Bar")] ds = Dataset(data, time, items) foo_data = ds["Foo"] assert foo_data[0, 10, 0] == 2.0 def test_select_multiple_items_by_name(): nt = 100 d1 = np.zeros([nt, 100, 30]) + 1.5 d2 = np.zeros([nt, 100, 30]) + 2.0 d3 = np.zeros([nt, 100, 30]) + 3.0 data = [d1, d2, d3] time = pd.date_range("2000-1-2", freq="H", periods=nt) # items = [ItemInfo("Foo"), ItemInfo("Bar"), ItemInfo("Baz")] items = [ItemInfo(x) for x in ["Foo", "Bar", "Baz"]] ds = Dataset(data, time, items) assert len(ds) == 3 # Length of a dataset is the number of items newds = ds[["Baz", "Foo"]] assert newds.items[0].name == "Baz" assert newds.items[1].name == "Foo" assert newds["Foo"][0, 10, 0] == 1.5 assert len(newds) == 2 def test_select_multiple_items_by_index(): nt = 100 d1 = np.zeros([nt, 100, 30]) + 1.5 d2 = np.zeros([nt, 100, 30]) + 2.0 d3 = np.zeros([nt, 100, 30]) + 3.0 data = [d1, d2, d3] time = pd.date_range("2000-1-2", freq="H", periods=nt) items = [ItemInfo(x) for x in ["Foo", "Bar", "Baz"]] ds = Dataset(data, time, items) assert len(ds) == 3 # Length of a dataset is the number of items newds = ds[[2, 0]] assert newds.items[0].name == "Baz" assert newds.items[1].name == "Foo" assert newds["Foo"][0, 10, 0] == 1.5 assert len(newds) == 2 def test_select_item_by_iteminfo(): nt = 100 d1 = np.zeros([nt, 100, 30]) + 1.5 d2 = np.zeros([nt, 100, 30]) + 2.0 d1[0, 10, :] = 2.0 d2[0, 10, :] = 3.0 data = [d1, d2] time = pd.date_range("2000-1-2", freq="H", periods=nt) items = [ItemInfo("Foo"), ItemInfo("Bar")] ds = Dataset(data, time, items) foo_item = items[0] foo_data = ds[foo_item] assert foo_data[0, 10, 0] == 2.0 def test_select_subset_isel_multiple_idxs(): nt = 100 d1 = np.zeros([nt, 100, 30]) + 1.5 d2 = np.zeros([nt, 100, 30]) + 2.0 data = [d1, d2] time = pd.date_range("2000-1-2", freq="H", periods=nt) items = [ItemInfo("Foo"), ItemInfo("Bar")] ds = Dataset(data, time, items) selds = ds.isel([10, 15], axis=1) assert len(selds.items) == 2 assert len(selds.data) == 2 assert selds["Foo"].shape == (100, 2, 30) def test_decribe(ds1): df = ds1.describe() assert df.columns[0] == "Foo" assert df.loc["mean"][1] == pytest.approx(0.2) assert df.loc["max"][0] == pytest.approx(0.1) def test_create_undefined(): nt = 100 d1 = np.zeros([nt]) d2 = np.zeros([nt]) data = [d1, d2] time = pd.date_range("2000-1-2", freq="H", periods=nt) # items = 2 ds = Dataset(data, time) assert len(ds.items) == 2 assert len(ds.data) == 2 assert ds.items[0].name == "Item 1" assert ds.items[0].type == EUMType.Undefined def test_create_named_undefined(): nt = 100 d1 = np.zeros([nt]) d2 = np.zeros([nt]) data = [d1, d2] time = pd.date_range("2000-1-2", freq="H", periods=nt) ds = Dataset(data=data, time=time, items=["Foo", "Bar"]) assert len(ds.items) == 2 assert len(ds.data) == 2 assert ds.items[1].name == "Bar" assert ds.items[1].type == EUMType.Undefined def test_to_dataframe_single_timestep(): nt = 1 d1 = np.zeros([nt]) d2 = np.zeros([nt]) data = [d1, d2] time = pd.date_range("2000-1-2", freq="H", periods=nt) items = [ItemInfo("Foo"), ItemInfo("Bar")] ds = Dataset(data, time, items) df = ds.to_dataframe() assert list(df.columns) == ["Foo", "Bar"] assert isinstance(df.index, pd.DatetimeIndex) def test_to_dataframe(): nt = 100 d1 = np.zeros([nt]) d2 = np.zeros([nt]) data = [d1, d2] time = pd.date_range("2000-1-2", freq="H", periods=nt) items = [ItemInfo("Foo"), ItemInfo("Bar")] ds = Dataset(data, time, items) df = ds.to_dataframe() assert list(df.columns) == ["Foo", "Bar"] assert isinstance(df.index, pd.DatetimeIndex) def test_multidimensional_to_dataframe_no_supported(): nt = 100 d1 = np.zeros([nt, 2]) time = pd.date_range("2000-1-2", freq="H", periods=nt) items = [ItemInfo("Foo")] ds = Dataset([d1], time, items) with pytest.raises(ValueError): ds.to_dataframe() def test_get_data(): data = [] nt = 100 d = np.zeros([nt, 100, 30]) + 1.0 data.append(d) time = pd.date_range("2000-1-2", freq="H", periods=nt) items = [ItemInfo("Foo")] ds = Dataset(data, time, items) assert ds.data[0].shape == (100, 100, 30) def test_interp_time(): nt = 4 d = np.zeros([nt, 10, 3]) d[1] = 2.0 d[3] = 4.0 data = [d] time = pd.date_range("2000-1-1", freq="D", periods=nt) items = [ItemInfo("Foo")] ds = Dataset(data, time, items) assert ds.data[0].shape == (nt, 10, 3) dsi = ds.interp_time(dt=3600) assert ds.time[0] == dsi.time[0] assert dsi.data[0].shape == (73, 10, 3) def test_interp_time_to_other_dataset(): # Arrange ## Dataset 1 nt = 4 data = [np.zeros([nt, 10, 3])] time = pd.date_range("2000-1-1", freq="D", periods=nt) items = [ItemInfo("Foo")] ds1 = Dataset(data, time, items) assert ds1.data[0].shape == (nt, 10, 3) ## Dataset 2 nt = 12 data = [np.ones([nt, 10, 3])] time = pd.date_range("2000-1-1", freq="H", periods=nt) items = [ItemInfo("Foo")] ds2 = Dataset(data, time, items) # Act ## interp dsi = ds1.interp_time(dt=ds2.time) # Assert assert dsi.time[0] == ds2.time[0] assert dsi.time[-1] == ds2.time[-1] assert len(dsi.time) == len(ds2.time) assert dsi.data[0].shape[0] == ds2.data[0].shape[0] # Accept dataset as argument dsi2 = ds1.interp_time(ds2) assert dsi2.time[0] == ds2.time[0] def test_extrapolate(): # Arrange ## Dataset 1 nt = 2 data = [np.zeros([nt, 10, 3])] time = pd.date_range("2000-1-1", freq="D", periods=nt) items = [ItemInfo("Foo")] ds1 = Dataset(data, time, items) assert ds1.data[0].shape == (nt, 10, 3) ## Dataset 2 partly overlapping with Dataset 1 nt = 3 data = [np.ones([nt, 10, 3])] time = pd.date_range("2000-1-2", freq="H", periods=nt) items = [ItemInfo("Foo")] ds2 = Dataset(data, time, items) # Act ## interp dsi = ds1.interp_time(dt=ds2.time, fill_value=1.0) # Assert assert dsi.time[0] == ds2.time[0] assert dsi.time[-1] == ds2.time[-1] assert len(dsi.time) == len(ds2.time) assert dsi.data[0][0] == pytest.approx(0.0) assert dsi.data[0][1] == pytest.approx(1.0) # filled assert dsi.data[0][2] == pytest.approx(1.0) # filled def test_extrapolate_not_allowed(): ## Dataset 1 nt = 2 data = [np.zeros([nt, 10, 3])] time = pd.date_range("2000-1-1", freq="D", periods=nt) items = [ItemInfo("Foo")] ds1 = Dataset(data, time, items) assert ds1.data[0].shape == (nt, 10, 3) ## Dataset 2 partly overlapping with Dataset 1 nt = 3 data = [np.ones([nt, 10, 3])] time = pd.date_range("2000-1-2", freq="H", periods=nt) items = [ItemInfo("Foo")] ds2 = Dataset(data, time, items) with pytest.raises(ValueError): dsi = ds1.interp_time(dt=ds2.time, fill_value=1.0, extrapolate=False) def test_get_data_2(): nt = 100 data = [] d = np.zeros([nt, 100, 30]) + 1.0 data.append(d) time = pd.date_range("2000-1-2", freq="H", periods=nt) items = [ItemInfo("Foo")] ds = Dataset(data, time, items) assert data[0].shape == (100, 100, 30) def test_get_data_name(): nt = 100 data = [] d = np.zeros([nt, 100, 30]) + 1.0 data.append(d) time = pd.date_range("2000-1-2", freq="H", periods=nt) items = [ItemInfo("Foo")] ds = Dataset(data, time, items) assert ds["Foo"].shape == (100, 100, 30) def test_set_data_name(): nt = 100 time = pd.date_range("2000-1-2", freq="H", periods=nt) items = [ItemInfo("Foo")] ds = Dataset([np.zeros((nt, 10))], time, items) assert ds["Foo"][0, 0] == 0.0 ds["Foo"] = np.zeros((nt, 10)) + 1.0 assert ds["Foo"][0, 0] == 1.0 ds[0] = np.zeros((nt, 10)) + 2.0 # Set using position assert ds["Foo"][0, 0] == 2.0 # Read using name with pytest.raises(ValueError): ds[[0, 1]] = ( np.zeros((nt, 10)) + 2.0 ) # You can't set data for several items (at least not yet) def test_get_bad_name(): nt = 100 data = [] d = np.zeros([100, 100, 30]) + 1.0 data.append(d) time = pd.date_range("2000-1-2", freq="H", periods=nt) items = [ItemInfo("Foo")] ds = Dataset(data, time, items) with pytest.raises(Exception): ds["BAR"] def test_head(): nt = 100 data = [] d = np.zeros([nt, 100, 30]) + 1.0 data.append(d) time = pd.date_range("2000-1-2", freq="H", periods=nt) items = [ItemInfo("Foo")] ds = Dataset(data, time, items) dshead = ds.head() assert len(dshead.time) == 5 assert ds.time[0] == dshead.time[0] dshead10 = ds.head(n=10) assert len(dshead10.time) == 10 def test_head_small_dataset(): nt = 2 data = [] d = np.zeros([nt, 100, 30]) + 1.0 data.append(d) time = pd.date_range("2000-1-2", freq="H", periods=nt) items = [ItemInfo("Foo")] ds = Dataset(data, time, items) dshead = ds.head() assert len(dshead.time) == nt def test_tail(): nt = 100 data = [] d = np.zeros([nt, 100, 30]) + 1.0 data.append(d) time = pd.date_range("2000-1-2", freq="H", periods=nt) items = [ItemInfo("Foo")] ds = Dataset(data, time, items) dstail = ds.tail() assert len(dstail.time) == 5 assert ds.time[-1] == dstail.time[-1] dstail10 = ds.tail(n=10) assert len(dstail10.time) == 10 def test_thin(): nt = 100 data = [] d = np.zeros([nt, 100, 30]) + 1.0 data.append(d) time = pd.date_range("2000-1-2", freq="H", periods=nt) items = [ItemInfo("Foo")] ds = Dataset(data, time, items) dsthin = ds.thin(2) assert len(dsthin.time) == 50 def test_tail_small_dataset(): nt = 2 data = [] d = np.zeros([nt, 100, 30]) + 1.0 data.append(d) time = pd.date_range("2000-1-2", freq="H", periods=nt) items = [ItemInfo("Foo")] ds = Dataset(data, time, items) dstail = ds.tail() assert len(dstail.time) == nt def test_flipud(): nt = 2 d = np.random.random([nt, 100, 30]) time = pd.date_range("2000-1-2", freq="H", periods=nt) items = [ItemInfo("Foo")] ds = Dataset([d], time, items) dsud = ds.copy() dsud.flipud() assert dsud.shape == ds.shape assert dsud["Foo"][0, 0, 0] == ds["Foo"][0, -1, 0] def test_aggregation_workflows(tmpdir): filename = "tests/testdata/HD2D.dfsu" dfs = Dfsu(filename) ds = dfs.read(["Surface elevation", "Current speed"]) ds2 = ds.max(axis=1) outfilename = os.path.join(tmpdir.dirname, "max.dfs0") ds2.to_dfs0(outfilename) assert os.path.isfile(outfilename) ds3 = ds.min(axis=1) outfilename = os.path.join(tmpdir.dirname, "min.dfs0") ds3.to_dfs0(outfilename) assert os.path.isfile(outfilename) def test_aggregations(): filename = "tests/testdata/gebco_sound.dfs2" dfs = Dfs2(filename) ds = dfs.read() for axis in [0, 1, 2]: ds.mean(axis=axis) ds.nanmean(axis=axis) ds.nanmin(axis=axis) ds.nanmax(axis=axis) assert ds.mean(axis=None).shape == (1,) assert ds.mean(axis=(1, 2)).shape == (1,) assert ds.mean(axis=(0, 1)).shape == (1, 216) assert ds.mean(axis=(0, 2)).shape == (1, 264) assert ds.mean(axis="spatial").shape == (1,) assert ds.mean(axis="space").shape == (1,) with pytest.raises(ValueError, match="space"): ds.mean(axis="spaghetti") def test_weighted_average(tmpdir): filename = "tests/testdata/HD2D.dfsu" dfs = Dfsu(filename) ds = dfs.read(["Surface elevation", "Current speed"]) area = dfs.get_element_area() ds2 = ds.average(weights=area, axis=1) outfilename = os.path.join(tmpdir.dirname, "average.dfs0") ds2.to_dfs0(outfilename) assert os.path.isfile(outfilename) def test_quantile_axis1(ds1): dsq = ds1.quantile(q=0.345, axis=1) assert dsq[0][0] == 0.1 assert dsq[1][0] == 0.2 assert dsq.n_items == ds1.n_items assert dsq.n_timesteps == ds1.n_timesteps # q as list dsq = ds1.quantile(q=[0.25, 0.75], axis=1) assert dsq.n_items == 2 * ds1.n_items assert "Quantile 0.75, " in dsq.items[1].name assert "Quantile 0.25, " in dsq.items[2].name def test_quantile_axis0(ds1): dsq = ds1.quantile(q=0.345) # axis=0 is default assert dsq[0][0, 0] == 0.1 assert dsq[1][0, 0] == 0.2 assert dsq.n_items == ds1.n_items assert dsq.n_timesteps == 1 assert dsq.shape[-1] == ds1.shape[-1] # q as list dsq = ds1.quantile(q=[0.25, 0.75], axis=0) assert dsq[0][0, 0] == 0.1 assert dsq[1][0, 0] == 0.1 assert dsq[2][0, 0] == 0.2 assert dsq[3][0, 0] == 0.2 assert dsq.n_items == 2 * ds1.n_items assert "Quantile 0.75, " in dsq.items[1].name assert "Quantile 0.25, " in dsq.items[2].name assert "Quantile 0.75, " in dsq.items[3].name def test_nanquantile(): q = 0.99 fn = "tests/testdata/random.dfs0" # has delete value ds = Dfs0(fn).read() dsq1 = ds.quantile(q=q) dsq2 = ds.nanquantile(q=q) assert np.isnan(dsq1[0]) assert not np.isnan(dsq2[0]) qnt = np.quantile(ds[0], q=q) nqnt = np.nanquantile(ds[0], q=q) assert np.isnan(qnt) assert dsq2[0] == nqnt def test_copy(): nt = 100 d1 = np.zeros([nt, 100, 30]) + 1.5 d2 = np.zeros([nt, 100, 30]) + 2.0 data = [d1, d2] time = pd.date_range("2000-1-2", freq="H", periods=nt) items = [ItemInfo("Foo"), ItemInfo("Bar")] ds = Dataset(data, time, items) assert len(ds.items) == 2 assert len(ds.data) == 2 assert ds.items[0].name == "Foo" ds2 = ds.copy() ds2.items[0].name = "New name" assert ds2.items[0].name == "New name" assert ds.items[0].name == "Foo" def test_dropna(): nt = 10 d1 =
np.zeros([nt, 100, 30])
numpy.zeros
from __future__ import print_function, division, absolute_import import functools import sys import warnings # unittest only added in 3.4 self.subTest() if sys.version_info[0] < 3 or sys.version_info[1] < 4: import unittest2 as unittest else: import unittest # unittest.mock is not available in 2.7 (though unittest2 might contain it?) try: import unittest.mock as mock except ImportError: import mock import matplotlib matplotlib.use('Agg') # fix execution of tests involving matplotlib on travis import numpy as np import six.moves as sm import imgaug as ia from imgaug import augmenters as iaa from imgaug import parameters as iap from imgaug import dtypes as iadt from imgaug.testutils import (array_equal_lists, keypoints_equal, reseed, runtest_pickleable_uint8_img) import imgaug.augmenters.arithmetic as arithmetic_lib import imgaug.augmenters.contrast as contrast_lib class TestAdd(unittest.TestCase): def setUp(self): reseed() def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _ = iaa.Add(value="test") except Exception: got_exception = True assert got_exception got_exception = False try: _ = iaa.Add(value=1, per_channel="test") except Exception: got_exception = True assert got_exception def test_add_zero(self): # no add, shouldnt change anything base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Add(value=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) def test_add_one(self): # add > 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Add(value=1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) def test_minus_one(self): # add < 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Add(value=-1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) def test_uint8_every_possible_value(self): # uint8, every possible addition for base value 127 for value_type in [float, int]: for per_channel in [False, True]: for value in np.arange(-255, 255+1): aug = iaa.Add(value=value_type(value), per_channel=per_channel) expected = np.clip(127 + value_type(value), 0, 255) img = np.full((1, 1), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == expected img = np.full((1, 1, 3), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert np.all(img_aug == expected) def test_add_floats(self): # specific tests with floats aug = iaa.Add(value=0.75) img = np.full((1, 1), 1, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == 2 img = np.full((1, 1), 1, dtype=np.uint16) img_aug = aug.augment_image(img) assert img_aug.item(0) == 2 aug = iaa.Add(value=0.45) img = np.full((1, 1), 1, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == 1 img = np.full((1, 1), 1, dtype=np.uint16) img_aug = aug.augment_image(img) assert img_aug.item(0) == 1 def test_stochastic_parameters_as_value(self): # test other parameters base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.Add(value=iap.DiscreteUniform(1, 10)) observed = aug.augment_images(images) assert 100 + 1 <= np.average(observed) <= 100 + 10 aug = iaa.Add(value=iap.Uniform(1, 10)) observed = aug.augment_images(images) assert 100 + 1 <= np.average(observed) <= 100 + 10 aug = iaa.Add(value=iap.Clip(iap.Normal(1, 1), -3, 3)) observed = aug.augment_images(images) assert 100 - 3 <= np.average(observed) <= 100 + 3 aug = iaa.Add(value=iap.Discretize(iap.Clip(iap.Normal(1, 1), -3, 3))) observed = aug.augment_images(images) assert 100 - 3 <= np.average(observed) <= 100 + 3 def test_keypoints_dont_change(self): # keypoints shouldnt be changed base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.Add(value=1) aug_det = iaa.Add(value=1).to_deterministic() observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) def test_tuple_as_value(self): # varying values base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.Add(value=(0, 10)) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.7) assert nb_changed_aug_det == 0 def test_per_channel(self): # test channelwise aug = iaa.Add(value=iap.Choice([0, 1]), per_channel=True) observed = aug.augment_image(np.zeros((1, 1, 100), dtype=np.uint8)) uq = np.unique(observed) assert observed.shape == (1, 1, 100) assert 0 in uq assert 1 in uq assert len(uq) == 2 def test_per_channel_with_probability(self): # test channelwise with probability aug = iaa.Add(value=iap.Choice([0, 1]), per_channel=0.5) seen = [0, 0] for _ in sm.xrange(400): observed = aug.augment_image(np.zeros((1, 1, 20), dtype=np.uint8)) assert observed.shape == (1, 1, 20) uq = np.unique(observed) per_channel = (len(uq) == 2) if per_channel: seen[0] += 1 else: seen[1] += 1 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.Add(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_unusual_channel_numbers(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.Add(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_get_parameters(self): # test get_parameters() aug = iaa.Add(value=1, per_channel=False) params = aug.get_parameters() assert isinstance(params[0], iap.Deterministic) assert isinstance(params[1], iap.Deterministic) assert params[0].value == 1 assert params[1].value == 0 def test_heatmaps(self): # test heatmaps (not affected by augmenter) base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 aug = iaa.Add(value=10) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_other_dtypes_bool(self): image = np.zeros((3, 3), dtype=bool) aug = iaa.Add(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.Add(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.Add(value=-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.Add(value=-2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) def test_other_dtypes_uint_int(self): for dtype in [np.uint8, np.uint16, np.int8, np.int16]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) for _ in sm.xrange(10): image = np.full((1, 1, 3), 20, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) == 1 image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 image = np.full((1, 1, 3), 20, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) == 1 image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 def test_other_dtypes_float(self): # float for dtype in [np.float16, np.float32]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) if dtype == np.float16: atol = 1e-3 * max_value else: atol = 1e-9 * max_value _allclose = functools.partial(np.allclose, atol=atol, rtol=0) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) for _ in sm.xrange(10): image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) def test_pickleable(self): aug = iaa.Add((0, 50), per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=10) class TestAddElementwise(unittest.TestCase): def setUp(self): reseed() def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _aug = iaa.AddElementwise(value="test") except Exception: got_exception = True assert got_exception got_exception = False try: _aug = iaa.AddElementwise(value=1, per_channel="test") except Exception: got_exception = True assert got_exception def test_add_zero(self): # no add, shouldnt change anything base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.AddElementwise(value=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) def test_add_one(self): # add > 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.AddElementwise(value=1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) def test_add_minus_one(self): # add < 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.AddElementwise(value=-1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) def test_uint8_every_possible_value(self): # uint8, every possible addition for base value 127 for value_type in [int]: for per_channel in [False, True]: for value in np.arange(-255, 255+1): aug = iaa.AddElementwise(value=value_type(value), per_channel=per_channel) expected = np.clip(127 + value_type(value), 0, 255) img = np.full((1, 1), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == expected img = np.full((1, 1, 3), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert np.all(img_aug == expected) def test_stochastic_parameters_as_value(self): # test other parameters base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.AddElementwise(value=iap.DiscreteUniform(1, 10)) observed = aug.augment_images(images) assert np.min(observed) >= 100 + 1 assert np.max(observed) <= 100 + 10 aug = iaa.AddElementwise(value=iap.Uniform(1, 10)) observed = aug.augment_images(images) assert np.min(observed) >= 100 + 1 assert np.max(observed) <= 100 + 10 aug = iaa.AddElementwise(value=iap.Clip(iap.Normal(1, 1), -3, 3)) observed = aug.augment_images(images) assert np.min(observed) >= 100 - 3 assert np.max(observed) <= 100 + 3 aug = iaa.AddElementwise(value=iap.Discretize(iap.Clip(iap.Normal(1, 1), -3, 3))) observed = aug.augment_images(images) assert np.min(observed) >= 100 - 3 assert np.max(observed) <= 100 + 3 def test_keypoints_dont_change(self): # keypoints shouldnt be changed base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.AddElementwise(value=1) aug_det = iaa.AddElementwise(value=1).to_deterministic() observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) def test_tuple_as_value(self): # varying values base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.AddElementwise(value=(0, 10)) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.7) assert nb_changed_aug_det == 0 def test_samples_change_by_spatial_location(self): # values should change between pixels base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.AddElementwise(value=(-50, 50)) nb_same = 0 nb_different = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_flat = observed_aug.flatten() last = None for j in sm.xrange(observed_aug_flat.size): if last is not None: v = observed_aug_flat[j] if v - 0.0001 <= last <= v + 0.0001: nb_same += 1 else: nb_different += 1 last = observed_aug_flat[j] assert nb_different > 0.9 * (nb_different + nb_same) def test_per_channel(self): # test channelwise aug = iaa.AddElementwise(value=iap.Choice([0, 1]), per_channel=True) observed = aug.augment_image(np.zeros((100, 100, 3), dtype=np.uint8)) sums = np.sum(observed, axis=2) values = np.unique(sums) assert all([(value in values) for value in [0, 1, 2, 3]]) def test_per_channel_with_probability(self): # test channelwise with probability aug = iaa.AddElementwise(value=iap.Choice([0, 1]), per_channel=0.5) seen = [0, 0] for _ in sm.xrange(400): observed = aug.augment_image(np.zeros((20, 20, 3), dtype=np.uint8)) sums = np.sum(observed, axis=2) values = np.unique(sums) all_values_found = all([(value in values) for value in [0, 1, 2, 3]]) if all_values_found: seen[0] += 1 else: seen[1] += 1 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.AddElementwise(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_unusual_channel_numbers(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.AddElementwise(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_get_parameters(self): # test get_parameters() aug = iaa.AddElementwise(value=1, per_channel=False) params = aug.get_parameters() assert isinstance(params[0], iap.Deterministic) assert isinstance(params[1], iap.Deterministic) assert params[0].value == 1 assert params[1].value == 0 def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.AddElementwise(value=10) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_other_dtypes_bool(self): # bool image = np.zeros((3, 3), dtype=bool) aug = iaa.AddElementwise(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.AddElementwise(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.AddElementwise(value=-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.AddElementwise(value=-2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) def test_other_dtypes_uint_int(self): # uint, int for dtype in [np.uint8, np.uint16, np.int8, np.int16]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) for _ in sm.xrange(10): image = np.full((5, 5, 3), 20, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 assert np.all(image_aug[..., 0] == image_aug[..., 1]) image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 image = np.full((5, 5, 3), 20, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 assert np.all(image_aug[..., 0] == image_aug[..., 1]) image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 def test_other_dtypes_float(self): # float for dtype in [np.float16, np.float32]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) if dtype == np.float16: atol = 1e-3 * max_value else: atol = 1e-9 * max_value _allclose = functools.partial(np.allclose, atol=atol, rtol=0) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) for _ in sm.xrange(10): image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) def test_pickleable(self): aug = iaa.AddElementwise((0, 50), per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=2) class AdditiveGaussianNoise(unittest.TestCase): def setUp(self): reseed() def test_loc_zero_scale_zero(self): # no noise, shouldnt change anything base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 images = np.array([base_img]) aug = iaa.AdditiveGaussianNoise(loc=0, scale=0) observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) def test_loc_zero_scale_nonzero(self): # zero-centered noise base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 images = np.array([base_img]) images_list = [base_img] keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.AdditiveGaussianNoise(loc=0, scale=0.2 * 255) aug_det = aug.to_deterministic() observed = aug.augment_images(images) assert not np.array_equal(observed, images) observed = aug_det.augment_images(images) assert not np.array_equal(observed, images) observed = aug.augment_images(images_list) assert not array_equal_lists(observed, images_list) observed = aug_det.augment_images(images_list) assert not array_equal_lists(observed, images_list) observed = aug.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints) observed = aug_det.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints) def test_std_dev_of_added_noise_matches_scale(self): # std correct? base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0, scale=0.2 * 255) images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 nb_iterations = 1000 values = [] for i in sm.xrange(nb_iterations): images_aug = aug.augment_images(images) values.append(images_aug[0, 0, 0, 0]) values = np.array(values) assert np.min(values) == 0 assert 0.1 < np.std(values) / 255.0 < 0.4 def test_nonzero_loc(self): # non-zero loc base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0.25 * 255, scale=0.01 * 255) images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 nb_iterations = 1000 values = [] for i in sm.xrange(nb_iterations): images_aug = aug.augment_images(images) values.append(images_aug[0, 0, 0, 0] - 128) values = np.array(values) assert 54 < np.average(values) < 74 # loc=0.25 should be around 255*0.25=64 average def test_tuple_as_loc(self): # varying locs base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=(0, 0.5 * 255), scale=0.0001 * 255) aug_det = aug.to_deterministic() images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.95) assert nb_changed_aug_det == 0 def test_stochastic_parameter_as_loc(self): # varying locs by stochastic param base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=iap.Choice([-20, 20]), scale=0.0001 * 255) images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 seen = [0, 0] for i in sm.xrange(200): observed = aug.augment_images(images) mean = np.mean(observed) diff_m20 = abs(mean - (128-20)) diff_p20 = abs(mean - (128+20)) if diff_m20 <= 1: seen[0] += 1 elif diff_p20 <= 1: seen[1] += 1 else: assert False assert 75 < seen[0] < 125 assert 75 < seen[1] < 125 def test_tuple_as_scale(self): # varying stds base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0, scale=(0.01 * 255, 0.2 * 255)) aug_det = aug.to_deterministic() images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.95) assert nb_changed_aug_det == 0 def test_stochastic_parameter_as_scale(self): # varying stds by stochastic param base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0, scale=iap.Choice([1, 20])) images = np.ones((1, 20, 20, 1), dtype=np.uint8) * 128 seen = [0, 0, 0] for i in sm.xrange(200): observed = aug.augment_images(images) std = np.std(observed.astype(np.int32) - 128) diff_1 = abs(std - 1) diff_20 = abs(std - 20) if diff_1 <= 2: seen[0] += 1 elif diff_20 <= 5: seen[1] += 1 else: seen[2] += 1 assert seen[2] <= 5 assert 75 < seen[0] < 125 assert 75 < seen[1] < 125 def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _ = iaa.AdditiveGaussianNoise(loc="test") except Exception: got_exception = True assert got_exception got_exception = False try: _ = iaa.AdditiveGaussianNoise(scale="test") except Exception: got_exception = True assert got_exception def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0.5, scale=10) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_pickleable(self): aug = iaa.AdditiveGaussianNoise(scale=(0.1, 10), per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=2) class TestDropout(unittest.TestCase): def setUp(self): reseed() def test_p_is_zero(self): # no dropout, shouldnt change anything base_img = np.ones((512, 512, 1), dtype=np.uint8) * 255 images = np.array([base_img]) images_list = [base_img] aug = iaa.Dropout(p=0) observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) # 100% dropout, should drop everything aug = iaa.Dropout(p=1.0) observed = aug.augment_images(images) expected = np.zeros((1, 512, 512, 1), dtype=np.uint8) assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = [np.zeros((512, 512, 1), dtype=np.uint8)] assert array_equal_lists(observed, expected) def test_p_is_50_percent(self): # 50% dropout base_img = np.ones((512, 512, 1), dtype=np.uint8) * 255 images = np.array([base_img]) images_list = [base_img] keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.Dropout(p=0.5) aug_det = aug.to_deterministic() observed = aug.augment_images(images) assert not np.array_equal(observed, images) percent_nonzero = len(observed.flatten().nonzero()[0]) \ / (base_img.shape[0] * base_img.shape[1] * base_img.shape[2]) assert 0.35 <= (1 - percent_nonzero) <= 0.65 observed = aug_det.augment_images(images) assert not
np.array_equal(observed, images)
numpy.array_equal
import os import glob import random import numpy as np import trimesh import imageio import struct from mesh2tex.data.core import Field # Make sure loading xlr works imageio.plugins.freeimage.download() # Basic index field class IndexField(Field): def load(self, model_path, idx): return idx def check_complete(self, files): return True class MeshField(Field): def __init__(self, folder_name, transform=None): self.folder_name = folder_name self.transform = transform def load(self, model_path, idx): folder_path = os.path.join(model_path, self.folder_name) file_path = os.path.join(folder_path, 'model.off') mesh = trimesh.load(file_path, process=False) if self.transform is not None: mesh = self.transform(mesh) data = { 'vertices': np.array(mesh.vertices), 'faces': np.array(mesh.faces), } return data def check_complete(self, files): complete = (self.folder_name in files) return complete # Image field class ImagesField(Field): def __init__(self, folder_name, transform=None, extension='jpg', random_view=True, with_camera=False, imageio_kwargs=dict()): self.folder_name = folder_name self.transform = transform self.extension = extension self.random_view = random_view self.with_camera = with_camera self.imageio_kwargs = dict() def load(self, model_path, idx): folder = os.path.join(model_path, self.folder_name) files = glob.glob(os.path.join(folder, '*.%s' % self.extension)) files.sort() if self.random_view: idx_img = random.randint(0, len(files)-1) else: idx_img = 0 filename = files[idx_img] image = imageio.imread(filename, **self.imageio_kwargs) image =
np.asarray(image)
numpy.asarray
#!/usr/bin/env python import gzip import logging import os.path import time from typing import List, Tuple import anndata import numpy as np import pandas as pd import tables from scipy.io import mmread from scipy.sparse import csr_matrix, issparse from . import Array2D, MemData logger = logging.getLogger("pegasus") def load_10x_h5_file_v2(h5_in: "tables.File", fn: str, ngene: int = None) -> "MemData": """Load 10x v2 format matrix from hdf5 file Parameters ---------- h5_in : tables.File An instance of tables.File class that is connected to a 10x v2 formatted hdf5 file. fn : `str` File name, can be used to indicate channel-specific name prefix. ngene : `int`, optional (default: None) Minimum number of genes to keep a barcode. Default is to keep all barcodes. Returns ------- An MemData object containing genome-Array2D pair per genome. Examples -------- >>> io.load_10x_h5_file_v2(h5_in) """ data = MemData() for group in h5_in.list_nodes("/", "Group"): genome = group._v_name M, N = h5_in.get_node("/" + genome + "/shape").read() mat = csr_matrix( ( h5_in.get_node("/" + genome + "/data").read(), h5_in.get_node("/" + genome + "/indices").read(), h5_in.get_node("/" + genome + "/indptr").read(), ), shape=(N, M), ) barcodes = h5_in.get_node("/" + genome + "/barcodes").read().astype(str) ids = h5_in.get_node("/" + genome + "/genes").read().astype(str) names = h5_in.get_node("/" + genome + "/gene_names").read().astype(str) array2d = Array2D( {"barcodekey": barcodes}, {"featurekey": ids, "featurename": names}, mat ) array2d.filter(ngene=ngene) array2d.separate_channels(fn) data.addData(genome, array2d) return data def load_10x_h5_file_v3(h5_in: "tables.File", fn: str, ngene: int = None) -> "MemData": """Load 10x v3 format matrix from hdf5 file Parameters ---------- h5_in : tables.File An instance of tables.File class that is connected to a 10x v3 formatted hdf5 file. fn : `str` File name, can be used to indicate channel-specific name prefix. ngene : `int`, optional (default: None) Minimum number of genes to keep a barcode. Default is to keep all barcodes. Returns ------- An MemData object containing genome-Array2D pair per genome. Examples -------- >>> io.load_10x_h5_file_v3(h5_in) """ M, N = h5_in.get_node("/matrix/shape").read() bigmat = csr_matrix( ( h5_in.get_node("/matrix/data").read(), h5_in.get_node("/matrix/indices").read(), h5_in.get_node("/matrix/indptr").read(), ), shape=(N, M), ) barcodes = h5_in.get_node("/matrix/barcodes").read().astype(str) genomes = h5_in.get_node("/matrix/features/genome").read().astype(str) ids = h5_in.get_node("/matrix/features/id").read().astype(str) names = h5_in.get_node("/matrix/features/name").read().astype(str) data = MemData() for genome in np.unique(genomes): idx = genomes == genome barcode_metadata = {"barcodekey": barcodes} feature_metadata = {"featurekey": ids[idx], "featurename": names[idx]} mat = bigmat[:, idx].copy() array2d = Array2D(barcode_metadata, feature_metadata, mat) array2d.filter(ngene) array2d.separate_channels(fn) data.addData(genome, array2d) return data def load_10x_h5_file(input_h5: str, ngene: int = None) -> "MemData": """Load 10x format matrix (either v2 or v3) from hdf5 file Parameters ---------- input_h5 : `str` The matrix in 10x v2 or v3 hdf5 format. ngene : `int`, optional (default: None) Minimum number of genes to keep a barcode. Default is to keep all barcodes. Returns ------- An MemData object containing genome-Array2D pair per genome. Examples -------- >>> io.load_10x_h5_file('example_10x.h5') """ fn = os.path.basename(input_h5)[:-3] data = None with tables.open_file(input_h5) as h5_in: try: node = h5_in.get_node("/matrix") data = load_10x_h5_file_v3(h5_in, fn, ngene) except tables.exceptions.NoSuchNodeError: data = load_10x_h5_file_v2(h5_in, fn, ngene) return data def determine_file_name( path: str, names: List[str], errmsg: str, fname: str = None, exts: List[str] = None ) -> str: """ Try several file name options and determine which one is correct. """ for name in names: file_name = os.path.join(path, name) if os.path.isfile(file_name): return file_name if fname is not None: for ext in exts: file_name = fname + ext if os.path.isfile(file_name): return file_name raise ValueError(errmsg) def load_one_mtx_file(path: str, ngene: int = None, fname: str = None) -> "Array2D": """Load one gene-count matrix in mtx format into an Array2D object """ mtx_file = determine_file_name( path, ["matrix.mtx.gz", "matrix.mtx"], "Expression matrix in mtx format is not found", fname=fname, exts=[".mtx"], ) mat = csr_matrix(mmread(mtx_file).T) barcode_file = determine_file_name( path, ["cells.tsv.gz", "barcodes.tsv.gz", "barcodes.tsv"], "Barcode metadata information is not found", fname=fname, exts=["_barcode.tsv", ".cells.tsv"], ) feature_file = determine_file_name( path, ["genes.tsv.gz", "features.tsv.gz", "genes.tsv"], "Feature metadata information is not found", fname=fname, exts=["_gene.tsv", ".genes.tsv"], ) barcode_base = os.path.basename(barcode_file) feature_base = os.path.basename(feature_file) if barcode_base == "cells.tsv.gz" and feature_base == "genes.tsv.gz": format_type = "HCA DCP" elif barcode_base == "barcodes.tsv.gz" and feature_base == "features.tsv.gz": format_type = "10x v3" elif barcode_base == "barcodes.tsv" and feature_base == "genes.tsv": format_type = "10x v2" elif barcode_base.endswith("_barcode.tsv") and feature_base.endswith("_gene.tsv"): format_type = "scumi" elif barcode_base.endswith(".cells.tsv") and feature_base.endswith(".genes.tsv"): format_type = "dropEst" else: raise ValueError("Unknown format type") if format_type == "HCA DCP": barcode_metadata = pd.read_csv(barcode_file, sep="\t", header=0) assert "cellkey" in barcode_metadata barcode_metadata.rename(columns={"cellkey": "barcodekey"}, inplace=True) feature_metadata = pd.read_csv(feature_file, sep="\t", header=0) else: barcode_metadata = pd.read_csv( barcode_file, sep="\t", header=None, names=["barcodekey"] ) if format_type == "10x v3": feature_metadata = pd.read_csv( feature_file, sep="\t", header=None, names=["featurekey", "featurename", "featuretype"], ) elif format_type == "10x v2": feature_metadata = pd.read_csv( feature_file, sep="\t", header=None, names=["featurekey", "featurename"] ) elif format_type == "scumi": values = ( pd.read_csv(feature_file, sep="\t", header=None) .iloc[:, 0] .values.astype(str) ) arr = np.array(np.char.split(values, sep="_", maxsplit=1).tolist()) feature_metadata = pd.DataFrame( data={"featurekey": arr[:, 0], "featurename": arr[:, 1]} ) elif format_type == "dropEst": feature_metadata = pd.read_csv( feature_file, sep="\t", header=None, names=["featurekey"] ) feature_metadata["featurename"] = feature_metadata["featurekey"] else: raise ValueError("Unknown format type") array2d = Array2D(barcode_metadata, feature_metadata, mat) array2d.filter(ngene=ngene) if format_type == "10x v3" or format_type == "10x v2": array2d.separate_channels("") # fn == '' refers to 10x mtx format return array2d def load_mtx_file(path: str, genome: str = None, ngene: int = None) -> "MemData": """Load gene-count matrix from Market Matrix files (10x v2, v3 and HCA DCP formats) Parameters ---------- path : `str` Path to mtx files. The directory impiled by path should either contain matrix, feature and barcode information, or folders containg these information. genome : `str`, optional (default: None) Genome name of the matrix. If None, genome will be inferred from path. ngene : `int`, optional (default: None) Minimum number of genes to keep a barcode. Default is to keep all barcodes. Returns ------- An MemData object containing a genome-Array2D pair. Examples -------- >>> io.load_10x_h5_file('example_10x.h5') """ orig_file = None if not os.path.isdir(path): orig_file = path path = os.path.dirname(path) data = MemData() if ( os.path.isfile(os.path.join(path, "matrix.mtx.gz")) or os.path.isfile(os.path.join(path, "matrix.mtx")) or (orig_file is not None and os.path.isfile(orig_file)) ): if genome is None: genome = os.path.basename(path) data.addData( genome, load_one_mtx_file( path, ngene=ngene, fname=None if orig_file is None else os.path.splitext(orig_file)[0], ), ) else: for dir_entry in os.scandir(path): if dir_entry.is_dir(): data.addData( dir_entry.name, load_one_mtx_file(dir_entry.path, ngene=ngene) ) return data def load_csv_file( input_csv: str, genome: str, sep: str = ",", ngene: int = None ) -> "MemData": """Load count matrix from a CSV-style file, such as CSV file or DGE style tsv file. Parameters ---------- input_csv : `str` The CSV file, gzipped or not, containing the count matrix. genome : `str` The genome reference. sep: `str`, optional (default: ',') Separator between fields, either ',' or '\t'. ngene : `int`, optional (default: None) Minimum number of genes to keep a barcode. Default is to keep all barcodes. Returns ------- An MemData object containing a genome-Array2D pair. Examples -------- >>> io.load_csv_file('example_ADT.csv', genome = 'GRCh38') >>> io.load_csv_file('example.umi.dge.txt.gz', genome = 'GRCh38', sep = '\t') """ path = os.path.dirname(input_csv) base = os.path.basename(input_csv) is_hca_csv = base == "expression.csv" if sep == "\t": # DGE, columns are cells, which is around thousands and we can use pandas.read_csv df = pd.read_csv(input_csv, header=0, index_col=0, sep=sep) mat = csr_matrix(df.values.T) barcode_metadata = {"barcodekey": df.columns.values} feature_metadata = { "featurekey": df.index.values, "featurename": df.index.values, } else: # For CSV files, wide columns prevent fast pd.read_csv loading converter = ( float if base.startswith("expression") else int ) # If expression -> float otherwise int barcodes = [] names = [] stacks = [] with ( gzip.open(input_csv, mode="rt") if input_csv.endswith(".gz") else open(input_csv) ) as fin: barcodes = next(fin).strip().split(sep)[1:] for line in fin: fields = line.strip().split(sep) names.append(fields[0]) stacks.append([converter(x) for x in fields[1:]]) mat = csr_matrix(
np.stack(stacks, axis=1 if not is_hca_csv else 0)
numpy.stack
import numpy as np import os # Point exposure for Wall Depositions #Automation Additions HPC_toggle = False multi_run_folder_toggle = False# single or multi folder (True is multi,False is single) desktop_toggle = True date = "/20_8_2021/" # Parameters Geom voxel_size = 0.3; # voxel size in nanometers (0.27 nm is appr. one atom of Si)(Smith uses 0.25nm for Tungsten(W)) size_x= 401 # horizontal size in the x direction in voxels (now for +/- x) size_y = 401 # horizontal size in the y direction in voxels (now for +/- y) size_z = 1001 # vertical size in voxels volume = size_x*size_y*size_z # total voxel volume voxel_size_pm = int(voxel_size*1000) # Parameters Pri num_x = int(11) # number of pillars in the x direction num_y = int(21) #number of pillars in the y direction num_x_range = np.linspace(-(num_x-1)/2,(num_x-1)/2,num_x) num_y_range = np.linspace(-(num_y-1)/2,(num_y-1)/2,num_y) x = size_x*voxel_size/2 # starting x y = size_y*voxel_size/2 # starting y z = 1 # starting z in nm N = int(1e3) # Number of electrons per pillar seq_lines = 100 energy = 1000 # Beam energy, in eV sigma_beam = 1 # Beam standard deviation in nm sigma_beam_pm = round(sigma_beam*1000) # Beam standard deviation in pm tot_e = int(num_x*num_y*N) #line_pitch_x_list = [6,6.5,7] #line_pitch_x_list = [3,3.5,4] line_pitch_x_list = [4.5] #line_pitch_x_list = np.around(np.linspace(3,4,num=10),decimals=1) #line_pitch_y_list = [1.7,1.7,1.7] #space between points nm line_pitch_y_list = np.ones(len(line_pitch_x_list))*1.7 #line_pitch_list = np.around(np.linspace(1,5,num=20),decimals=1) #space between points nm dep_strat = "seq_ll" #seq_ll (sequential layered lines), seq_d (sequential diagonals) # This is a numpy datatype that corresponds to pri files dt = np.dtype([ ('x', np.float32), ('y', np.float32), ('z', np.float32), # Starting position ('dx', np.float32), ('dy', np.float32), ('dz', np.float32), # Starting direction ('K', np.float32), # Starting energy ('px', np.uint32), ('py', np.uint32)]) # Pixel index total_runs = len(line_pitch_y_list) # For now only iterates over line_pitches --> may update to include any possible combination of parameters #Folder Location if multi_run_folder_toggle: #Multi-Runs - Run all files in folder (for multi-runs exectuable) if HPC_toggle: file_path = "/home/richarddejong/nebula_test_files/vox_tri_pri/multi_runs"+date elif desktop_toggle: file_path = "C:/Users/Richard/source/repos/Nebula/nebula_test_files/vox_tri_pri/multi_runs"+date else: file_path = "C:/Users/richa/Documents/repos/nebula_test_files/vox_tri_pri/multi_runs"+date else: #Single Runs - Run a single file (for single-run executable) if HPC_toggle: file_path = "/home/richarddejong/nebula_test_files/vox_tri_pri/single_runs"+date elif desktop_toggle: file_path = "C:/Users/Richard/source/repos/Nebula/nebula_test_files/vox_tri_pri/single_runs"+date else: file_path = "C:/Users/richa/Documents/repos/nebula_test_files/vox_tri_pri/single_runs"+date if dep_strat == "seq_d": for i in range(total_runs): # Update Iterative Parameters line_pitch_x = line_pitch_x_list[i] line_pitch_x_pm = int(line_pitch_x*1000) line_pitch_y = line_pitch_y_list[i] line_pitch_y_pm = int(line_pitch_y*1000) #title creation title_pri = str(int(energy/1000))+"keV_"+str(num_x)+"_"+str(num_y)+"_"+str(int(N/1000))+"kpp_pitchx_"+str(line_pitch_x_pm)+"_pitchy_"+str(line_pitch_y_pm)+"_"+dep_strat+"_" title_geom = str(size_x)+"_"+str(size_y)+"_"+str(size_z)+"_sb_"+str(sigma_beam_pm)+"_vs_"+str(voxel_size_pm) title = title_pri+title_geom+".pri" x_p = [] y_p = [] inputx = np.zeros(tot_e) inputy = np.zeros(tot_e) for k in num_x_range: for j in num_y_range: startx = k*line_pitch_x+x starty = j*line_pitch_y+y xj = np.random.normal(startx, sigma_beam, N) yj = np.random.normal(starty, sigma_beam, N) x_p.append(xj) y_p.append(yj) for j in range(num_y*num_x): inputx[j*N:N*(j+1)] = x_p[j] inputy[j*N:N*(j+1)] = y_p[j] # Open file if not os.path.exists(file_path): os.makedirs(file_path) with open(file_path+title, 'wb') as file: # Allocate numpy buffer array = np.empty(tot_e, dtype=dt) # Fill with data array['x'] = inputx array['y'] = inputy array['z'] = z array['dx'] = 0 array['dy'] = 0 array['dz'] = 1 array['K'] = energy array['px'] = 0 array['py'] = 0 # Write buffer to file array.tofile(file) #Progress Tracker if i%10 == 0: print("Creating Primary Files :" + str(round(i/total_runs*100)) + "%") if dep_strat == "seq_ll": for i in range(total_runs): # Update Iterative Parameters line_pitch_x = line_pitch_x_list[i] line_pitch_x_pm = int(line_pitch_x*1000) line_pitch_y = line_pitch_y_list[i] line_pitch_y_pm = int(line_pitch_y*1000) #title creation title_pri = str(int(energy/1000))+"keV_"+str(num_x)+"_"+str(num_y)+"_"+str(int(N/1000))+"kpp_pitchx_"+str(line_pitch_x_pm)+"_pitchy_"+str(line_pitch_y_pm)+"_"+dep_strat+"_" title_geom = str(size_x)+"_"+str(size_y)+"_"+str(size_z)+"_sb_"+str(sigma_beam_pm)+"_vs_"+str(voxel_size_pm) title = title_pri+title_geom+".pri" x_p = [] y_p = [] inputx = np.zeros(tot_e) inputy =
np.zeros(tot_e)
numpy.zeros
''' CONFIDENTIAL Copyright (c) 2021 <NAME>, Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute (FGI), National Land Survey of Finland (NLS) PERMISSION IS HEREBY LIMITED TO FGI'S INTERNAL USE ONLY. THE CODE MAY BE RE-LICENSED, SHARED, OR TAKEN INTO OTHER USE ONLY WITH A WRITTEN CONSENT FROM THE HEAD OF THE DEPARTMENT. The software is provided "as is", without warranty of any kind, express or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall the authors or copyright holders be liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise, arising from, out of or in connection with the software or the use or other dealings in the software. ''' import numpy as np import math import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.widgets import Slider, Button, RadioButtons, CheckButtons try: import pcl from pyquaternion import Quaternion except: print('cannot import pcl -> change python version') import matplotlib.cm as cmx from scipy.spatial import distance_matrix from scipy.optimize import leastsq import matplotlib import matplotlib.animation as animation import open3d as o3d import glob import cv2 import cv2.aruco as aruco import os from mpl_toolkits.mplot3d.proj3d import proj_transform from matplotlib.text import Annotation import pickle from matplotlib.lines import Line2D import pandas as pd import random from scipy.spatial import ConvexHull from math import sqrt from math import atan2, cos, sin, pi from collections import namedtuple from matplotlib.patches import Circle import mpl_toolkits.mplot3d.art3d as art3d from pyquaternion import Quaternion np.set_printoptions(suppress=True) def eulerAnglesToRotationMatrix2(theta): R_x = np.array([[1, 0, 0], [0, math.cos(theta[0]), -math.sin(theta[0])], [0, math.sin(theta[0]), math.cos(theta[0])] ]) R_y = np.array([[math.cos(theta[1]), 0, math.sin(theta[1])], [0, 1, 0], [-math.sin(theta[1]), 0, math.cos(theta[1])] ]) R_z = np.array([[math.cos(theta[2]), -math.sin(theta[2]), 0], [math.sin(theta[2]), math.cos(theta[2]), 0], [0, 0, 1] ]) R = np.dot(R_z, np.dot(R_y, R_x)) return R Rot_matrix = eulerAnglesToRotationMatrix2([0, 0, np.deg2rad(-90)]) InitLidar = True InitLidar = False global globalTrigger globalTrigger = True stereoRectify = False# True #stereoRectify = True class Annotation3D(Annotation): def __init__(self, s, xyz, *args, **kwargs): Annotation.__init__(self, s, xy=(0, 0), *args, **kwargs) self._verts3d = xyz def draw(self, renderer): xs3d, ys3d, zs3d = self._verts3d xs, ys, zs = proj_transform(xs3d, ys3d, zs3d, renderer.M) self.xy = (xs, ys) Annotation.draw(self, renderer) def save_obj(obj, name): with open('/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/data/' + name + '.pkl', 'wb') as f: pickle.dump(obj, f, protocol=2) print('{}.pkl Object saved'.format(name)) def load_obj(name): with open('/home/eugeniu/Desktop/my_data/CameraCalibration/data/saved_files/' + name + '.pkl', 'rb') as f: return pickle.load(f) def showErros(_3DErros, IMageNames): print('len(_3DErros)->{}'.format(np.shape(_3DErros))) if len(_3DErros)>1: _3DErros = np.array(_3DErros).squeeze() # norm_total = np.array(_3DErros[:,0]).squeeze() norm_axis = np.array(_3DErros).squeeze() * 1000 index, bar_width = np.arange(len(IMageNames)), 0.24 fig, ax = plt.subplots() X = ax.bar(index, norm_axis[:, 0], bar_width, label="X") Y = ax.bar(index + bar_width, norm_axis[:, 1], bar_width, label="Y") Z = ax.bar(index + bar_width + bar_width, norm_axis[:, 2], bar_width, label="Z") ax.set_xlabel('images') ax.set_ylabel('errors in mm') ax.set_title('3D error') ax.set_xticks(index + bar_width / 3) ax.set_xticklabels(IMageNames) ax.legend() plt.show() def triangulation(kp1, kp2, T_1w, T_2w): """Triangulation to get 3D points Args: kp1 (Nx2): keypoint in view 1 (normalized) kp2 (Nx2): keypoints in view 2 (normalized) T_1w (4x4): pose of view 1 w.r.t i.e. T_1w (from w to 1) T_2w (4x4): pose of view 2 w.r.t world, i.e. T_2w (from w to 2) Returns: X (3xN): 3D coordinates of the keypoints w.r.t world coordinate X1 (3xN): 3D coordinates of the keypoints w.r.t view1 coordinate X2 (3xN): 3D coordinates of the keypoints w.r.t view2 coordinate """ kp1_3D = np.ones((3, kp1.shape[0])) kp2_3D = np.ones((3, kp2.shape[0])) kp1_3D[0], kp1_3D[1] = kp1[:, 0].copy(), kp1[:, 1].copy() kp2_3D[0], kp2_3D[1] = kp2[:, 0].copy(), kp2[:, 1].copy() X = cv2.triangulatePoints(T_1w[:3], T_2w[:3], kp1_3D[:2], kp2_3D[:2]) X /= X[3] X1 = T_1w[:3].dot(X) X2 = T_2w[:3].dot(X) return X[:3].T, X1.T, X2.T def triangulate(R1,R2,t1,t2,K1,K2,D1,D2, pts1, pts2): P1 = np.hstack([R1.T, -R1.T.dot(t1)]) P2 = np.hstack([R2.T, -R2.T.dot(t2)]) P1 = K1.dot(P1) P2 = K2.dot(P2) # Triangulate _3d_points = [] for i,point in enumerate(pts1): point3D = cv2.triangulatePoints(P1, P2, pts1[i], pts2[i]).T point3D = point3D[:, :3] / point3D[:, 3:4] _3d_points.append(point3D) print('Triangulate _3d_points -> {}'.format(np.shape(_3d_points))) return np.array(_3d_points).squeeze() def mai(R1,R2,t1,t2,imagePoint1,imagePoint2, K2=None,K1=None, D2=None,D1=None): # Set up two cameras near each other if K1 is None: K = np.array([ [718.856, 0., 607.1928], [0., 718.856, 185.2157], [0., 0., 1.], ]) R1 = np.array([ [1., 0., 0.], [0., 1., 0.], [0., 0., 1.] ]) R2 = np.array([ [0.99999183, -0.00280829, -0.00290702], [0.0028008, 0.99999276, -0.00257697], [0.00291424, 0.00256881, 0.99999245] ]) t1 = np.array([[0.], [0.], [0.]]) t2 = np.array([[-0.02182627], [0.00733316], [0.99973488]]) # Corresponding image points imagePoint1 = np.array([371.91915894, 221.53485107]) imagePoint2 = np.array([368.26071167, 224.86262512]) P1 = np.hstack([R1.T, -R1.T.dot(t1)]) P2 = np.hstack([R2.T, -R2.T.dot(t2)]) P1 = K1.dot(P1) P2 = K2.dot(P2) # Triangulate point3D = cv2.triangulatePoints(P1, P2, imagePoint1, imagePoint2).T point3D = point3D[:, :3] / point3D[:, 3:4] print('Triangulate point3D -> {}'.format(point3D)) # Reproject back into the two cameras rvec1, _ = cv2.Rodrigues(R1.T) # Change rvec2, _ = cv2.Rodrigues(R2.T) # Change p1, _ = cv2.projectPoints(point3D, rvec1, -t1, K1, distCoeffs=D1) # Change p2, _ = cv2.projectPoints(point3D, rvec2, -t2, K2, distCoeffs=D2) # Change # measure difference between original image point and reporjected image point reprojection_error1 = np.linalg.norm(imagePoint1 - p1[0, :]) reprojection_error2 = np.linalg.norm(imagePoint2 - p2[0, :]) print('difference between original image point and reporjected image point') print(reprojection_error1, reprojection_error2) return p1,p2 class PointCloud_filter(object): def __init__(self, file, img_file=None, img_file2=None, debug=True): self.debug = debug self.img_file = img_file self.img_file2 = img_file2 self.name = os.path.basename(file).split('.')[0] self.file = file self.useVoxel, self.voxel_size = False, 0.15 self.lowerTemplate, self.showImage = False, True self.showError = False self.points_correspondences = None self.OK = False self.useInitialPointCloud = False #user all point to fit or only margins self.chessBoard = False self.applyICP_directly = False self.s = .1 # scale self.plotInit, self.axis_on, self.colour, self.Annotate = False, True, False, False self.chess, self.corn, self.p1, self.p2, self.p3, self.ICP_finetune_plot = None, None, None, None, None, None if self.showImage: b = 1 self.pts = np.float32([[0, b, 0], [b, b, 0], [b, 0, 0], [-0.03, -0.03, 0]]) self.ImageNames = [] self._3DErros = [] self.criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.0001) self.axis = np.float32([[1, 0, 0], [0, 1, 0], [0, 0, -1]]).reshape(-1, 3) self.objp = np.zeros((7 * 10, 3), np.float32) self.objp[:, :2] = np.mgrid[0:10, 0:7].T.reshape(-1, 2) * self.s self.fig = plt.figure(figsize=plt.figaspect(0.5)) self.fig.suptitle('Data collection', fontsize=16) self.ax = self.fig.add_subplot(1, 2, 1, projection='3d') #self.ax = self.fig.add_subplot(1, 2, 2, projection='3d') self.readCameraIntrin() self.QueryImg = cv2.imread(img_file) self.ImageNames.append(os.path.basename(img_file)) if self.img_file2: # use stereo case self.QueryImg2 = cv2.imread(img_file2) if stereoRectify: self.QueryImg = cv2.remap(src=self.QueryImg, map1=self.leftMapX, map2=self.leftMapY, interpolation=cv2.INTER_LINEAR, dst=None, borderMode=cv2.BORDER_CONSTANT) self.QueryImg2 = cv2.remap(src=self.QueryImg2, map1=self.rightMapX, map2=self.rightMapY, interpolation=cv2.INTER_LINEAR, dst=None, borderMode=cv2.BORDER_CONSTANT) gray_left = cv2.cvtColor(self.QueryImg, cv2.COLOR_BGR2GRAY) ret_left, corners_left = cv2.findChessboardCorners(gray_left, (10, 7), None) gray_right = cv2.cvtColor(self.QueryImg2, cv2.COLOR_BGR2GRAY) ret_right, corners_right = cv2.findChessboardCorners(gray_right, (10, 7), None) if ret_right and ret_left: print('Found chessboard in both images') self.chessBoard = True corners2_left = cv2.cornerSubPix(gray_left, corners_left, (11, 11), (-1, -1), self.criteria) self.corners2 = corners2_left cv2.drawChessboardCorners(self.QueryImg, (10, 7), self.corners2, ret_left) ret, self.rvecs, self.tvecs = cv2.solvePnP(self.objp, self.corners2, self.K_left, self.D_left) imgpts, jac = cv2.projectPoints(self.axis, self.rvecs, self.tvecs, self.K_left, self.D_left) self.QueryImg = self.draw(self.QueryImg, corners=corners2_left, imgpts=imgpts) self.pixelsPoints = np.asarray(corners2_left).squeeze() self.pixels_left = np.asarray(corners2_left).squeeze() corners2_right = cv2.cornerSubPix(gray_right, corners_right, (11, 11), (-1, -1), self.criteria) cv2.drawChessboardCorners(self.QueryImg2, (10, 7), corners2_right, ret_right) self.pixels_right = np.asarray(corners2_right).squeeze() self.T = np.array([-0.977, 0.004, 0.215])[:, np.newaxis] angles = np.array([np.deg2rad(1.044), np.deg2rad(22.632), np.deg2rad(-.95)]) self.R = euler_matrix(angles) #self.baseline = self.T = np.array([-1.07, 0.004, 0.215])[:, np.newaxis] self.baseline = abs(self.T[0]) print('baseline:{} m'.format(self.baseline)) self.focal_length, self.cx, self.cy = self.K[0, 0], self.K[0, 2], self.K[1, 2] self.x_left, self.x_right = self.pixels_left, self.pixels_right disparity = np.sum(np.sqrt((self.x_left - self.x_right) ** 2), axis=1) # depth = baseline (meter) * focal length (pixel) / disparity-value (pixel) -> meter self.depth = (self.baseline * self.focal_length / disparity) print('depth:{}'.format(np.shape(self.depth))) self.fxypxy = [self.K[0, 0], self.K[1, 1], self.cx, self.cy] '''print('TRIANGULATE HERE==========================================') P_1 = np.vstack((np.hstack((np.eye(3), np.zeros(3)[:, np.newaxis])), [0, 0, 0, 1])) # left camera P_2 = np.vstack((np.hstack((self.R, self.T)), [0, 0, 0, 1])) # right camera print('P1_{}, P_2{}, x_left:{}, x_right:{}'.format(np.shape(P_1), np.shape(P_2), np.shape(self.x_left), np.shape(self.x_right))) X_w, X1, X2 = triangulation(self.x_left,self.x_right,P_1,P_2) print('X_w:{}, X1:{}, X2:{}, '.format(np.shape(X_w), np.shape(X1), np.shape(X2))) print(X_w[0]) print(X1[0]) print(X2[0])''' '''R1 = np.eye(3) R2 = self.R t1 = np.array([[0.], [0.], [0.]]) t2 = self.T # Corresponding image points imagePoint1 = np.array([371.91915894, 221.53485107]) imagePoint2 = np.array([368.26071167, 224.86262512]) imagePoint1 = self.x_left[0] imagePoint2 = self.x_right[0] print('imagePoint1:{}, imagePoint2:{}'.format(np.shape(imagePoint1), np.shape(imagePoint2))) print('self.K_left ') print(self.K_left) print('self.K_right ') print(self.K_right) p1,p2 = test(R1,R2,t1,t2,imagePoint1,imagePoint2,K1=self.K_left,K2=self.K_right, D1=self.D_left,D2=self.D_right) p1 = np.array(p1).squeeze().astype(int) p2 = np.array(p2).squeeze().astype(int) print('p1:{}, p2:{}'.format(np.shape(p1), np.shape(p2))) #d2 = distance_matrix(X_w, X_w) #print('d2:{}'.format(d2)) cv2.circle(self.QueryImg, (p1[0],p1[1]), 7, (255, 0, 0), 7) cv2.circle(self.QueryImg2, (p2[0], p2[1]), 7, (255, 0, 0), 7) cv2.imshow('QueryImg', cv2.resize(self.QueryImg,None,fx=.5,fy=.5)) cv2.imshow('QueryImg2', cv2.resize(self.QueryImg2, None, fx=.5, fy=.5)) cv2.waitKey(0) cv2.destroyAllWindows()''' else: self.chessBoard = False self.useVoxel = False print('No chessboard ') corners2_left, ids_left, rejectedImgPoints = aruco.detectMarkers(gray_left, self.ARUCO_DICT) corners2_left, ids_left, _, _ = aruco.refineDetectedMarkers(image=gray_left, board=self.calibation_board, detectedCorners=corners2_left, detectedIds=ids_left, rejectedCorners=rejectedImgPoints, cameraMatrix=self.K_left, distCoeffs=self.D_left) corners2_right, ids_right, rejectedImgPoints = aruco.detectMarkers(gray_right, self.ARUCO_DICT) corners2_right, ids_right, _, _ = aruco.refineDetectedMarkers(image=gray_right, board=self.calibation_board, detectedCorners=corners2_right, detectedIds=ids_right, rejectedCorners=rejectedImgPoints, cameraMatrix=self.K_right, distCoeffs=self.D_right) if np.all(ids_left != None) and np.all(ids_right != None): print('found charuco board, in both images') retval_left, self.rvecs, self.tvecs = aruco.estimatePoseBoard(corners2_left, ids_left, self.calibation_board, self.K_left, self.D_left, None, None) retval_right, self.rvecs_right, self.tvecs_right = aruco.estimatePoseBoard(corners2_right, ids_right, self.calibation_board, self.K_right, self.D_right, None, None) if retval_left and retval_right: self.QueryImg = aruco.drawAxis(self.QueryImg, self.K_left, self.D_left, self.rvecs, self.tvecs, 0.3) self.QueryImg = aruco.drawDetectedMarkers(self.QueryImg, corners2_left, ids_left, borderColor=(0, 0, 255)) b = 1 imgpts, _ = cv2.projectPoints(self.pts, self.rvecs_right, self.tvecs_right, self.K_right, self.D_right) self.corners2_right = np.append(imgpts, np.mean(imgpts, axis=0)).reshape(-1, 2) self.dst, jacobian = cv2.Rodrigues(self.rvecs) a, circle_tvec, b = .49, [], 1 circle_tvec.append( np.asarray(self.tvecs).squeeze() + np.dot(self.dst, np.asarray([a, a, 0]))) circle_tvec = np.mean(circle_tvec, axis=0) self.QueryImg = aruco.drawAxis(self.QueryImg, self.K_left, self.D_left, self.rvecs, circle_tvec, 0.2) imgpts, _ = cv2.projectPoints(self.pts, self.rvecs, self.tvecs, self.K_left, self.D_left) self.corners2 = np.append(imgpts, np.mean(imgpts, axis=0)).reshape(-1, 2) self.pt_dict = {} for i in range(len(self.pts)): self.pt_dict[tuple(self.pts[i])] = tuple(imgpts[i].ravel()) top_right = self.pt_dict[tuple(self.pts[0])] bot_right = self.pt_dict[tuple(self.pts[1])] bot_left = self.pt_dict[tuple(self.pts[2])] top_left = self.pt_dict[tuple(self.pts[3])] cv2.circle(self.QueryImg, top_right, 4, (0, 0, 255), 5) cv2.circle(self.QueryImg, bot_right, 4, (0, 0, 255), 5) cv2.circle(self.QueryImg, bot_left, 4, (0, 0, 255), 5) cv2.circle(self.QueryImg, top_left, 4, (0, 0, 255), 5) self.QueryImg = cv2.line(self.QueryImg, top_right, bot_right, (0, 255, 0), 4) self.QueryImg = cv2.line(self.QueryImg, bot_right, bot_left, (0, 255, 0), 4) self.QueryImg = cv2.line(self.QueryImg, bot_left, top_left, (0, 255, 0), 4) self.QueryImg = cv2.line(self.QueryImg, top_left, top_right, (0, 255, 0), 4) else: print('Cannot estimate board position for both charuco') self.pixelsPoints = self.corners2.squeeze() self.pixels_left = self.pixelsPoints self.pixels_right = self.corners2_right.squeeze() self.T = np.array([-0.977, 0.004, 0.215])[:, np.newaxis] angles = np.array([np.deg2rad(1.044), np.deg2rad(22.632), np.deg2rad(-.95)]) self.R = euler_matrix(angles) # self.baseline = self.T = np.array([-1.07, 0.004, 0.215])[:, np.newaxis] self.baseline = abs(self.T[0]) print('baseline:{} m'.format(self.baseline)) self.focal_length, self.cx, self.cy = self.K[0, 0], self.K[0, 2], self.K[1, 2] self.x_left, self.x_right = self.pixels_left, self.pixels_right disparity = np.sum(np.sqrt((self.x_left - self.x_right) ** 2), axis=1) print('disparity:{}'.format(np.shape(disparity))) # depth = baseline (meter) * focal length (pixel) / disparity-value (pixel) -> meter self.depth = (self.baseline * self.focal_length / disparity) print('depth:{}'.format(np.shape(self.depth))) self.fxypxy = [self.K[0, 0], self.K[1, 1], self.cx, self.cy] else: print('No any board found!!!') else: # Undistortion h, w = self.QueryImg.shape[:2] newcameramtx, roi = cv2.getOptimalNewCameraMatrix(self.K, self.D, (w, h), 1, (w, h)) dst = cv2.undistort(self.QueryImg, self.K, self.D, None, newcameramtx) x, y, w, h = roi self.QueryImg = dst[y:y + h, x:x + w] gray = cv2.cvtColor(self.QueryImg, cv2.COLOR_BGR2GRAY) ret, corners = cv2.findChessboardCorners(gray, (10, 7), None) if ret: # found chessboard print('Found chessboard') self.chessBoard = True self.corners2 = cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), self.criteria) cv2.drawChessboardCorners(self.QueryImg, (10, 7), corners, ret) ret, self.rvecs, self.tvecs = cv2.solvePnP(self.objp, self.corners2, self.K, self.D) # ret, self.rvecs, self.tvecs, inliers = cv2.solvePnPRansac(self.objp, self.corners2, self.K, self.D) self.imgpts, jac = cv2.projectPoints(self.axis, self.rvecs, self.tvecs, self.K, self.D) self.QueryImg = self.draw(self.QueryImg, self.corners2, self.imgpts) self.pixelsPoints = np.asarray(self.corners2).squeeze() else: # check for charuco self.chessBoard = False self.useVoxel = False corners, ids, rejectedImgPoints = aruco.detectMarkers(gray, self.ARUCO_DICT) corners, ids, rejectedImgPoints, recoveredIds = aruco.refineDetectedMarkers( image=gray, board=self.calibation_board, detectedCorners=corners, detectedIds=ids, rejectedCorners=rejectedImgPoints, cameraMatrix=self.K, distCoeffs=self.D) if np.all(ids != None): print('found charuco board, ids:{}'.format(np.shape(ids))) self.chessBoard = False if len(ids) > 0: retval, self.rvecs, self.tvecs = aruco.estimatePoseBoard(corners, ids, self.calibation_board, self.K, self.D, None, None) if retval: self.QueryImg = aruco.drawAxis(self.QueryImg, self.K, self.D, self.rvecs, self.tvecs, 0.3) self.QueryImg = aruco.drawDetectedMarkers(self.QueryImg, corners, ids, borderColor=(0, 0, 255)) self.dst, jacobian = cv2.Rodrigues(self.rvecs) a, circle_tvec, b = .49, [], 1 circle_tvec.append( np.asarray(self.tvecs).squeeze() + np.dot(self.dst, np.asarray([a, a, 0]))) circle_tvec = np.mean(circle_tvec, axis=0) self.QueryImg = aruco.drawAxis(self.QueryImg, self.K, self.D, self.rvecs, circle_tvec, 0.2) imgpts, _ = cv2.projectPoints(self.pts, self.rvecs, self.tvecs, self.K, self.D) self.corners2 = np.append(imgpts, np.mean(imgpts, axis=0)).reshape(-1, 2) self.pt_dict = {} for i in range(len(self.pts)): self.pt_dict[tuple(self.pts[i])] = tuple(imgpts[i].ravel()) top_right = self.pt_dict[tuple(self.pts[0])] bot_right = self.pt_dict[tuple(self.pts[1])] bot_left = self.pt_dict[tuple(self.pts[2])] top_left = self.pt_dict[tuple(self.pts[3])] cv2.circle(self.QueryImg, top_right, 4, (0, 0, 255), 5) cv2.circle(self.QueryImg, bot_right, 4, (0, 0, 255), 5) cv2.circle(self.QueryImg, bot_left, 4, (0, 0, 255), 5) cv2.circle(self.QueryImg, top_left, 4, (0, 0, 255), 5) self.QueryImg = cv2.line(self.QueryImg, top_right, bot_right, (0, 255, 0), 4) self.QueryImg = cv2.line(self.QueryImg, bot_right, bot_left, (0, 255, 0), 4) self.QueryImg = cv2.line(self.QueryImg, bot_left, top_left, (0, 255, 0), 4) self.QueryImg = cv2.line(self.QueryImg, top_left, top_right, (0, 255, 0), 4) else: print('No board Found') self.image_ax = self.fig.add_subplot(1, 2, 2) #self.image_ax = self.fig.add_subplot(1, 2, 1) self.image_ax.imshow(self.QueryImg) self.image_ax.set_axis_off() self.image_ax.set_xlabel('Y') self.image_ax.set_ylabel('Z') else: self.fig = plt.figure() self.ax = self.fig.add_subplot(111, projection="3d") self.ax.set_xlabel('X', fontsize=10) self.ax.set_ylabel('Y', fontsize=10) self.ax.set_zlabel('Z', fontsize=10) self.fig.tight_layout() plt.subplots_adjust(left=.15, bottom=0.2) #plt.subplots_adjust( bottom=0.2) self.Rx, self.Ry, self.Rz = [np.deg2rad(-90), 0, np.deg2rad(-40)] if self.chessBoard else [0, 0, 0] self.Tx, self.Ty, self.Tz = 0, 0, 0 self.board_origin = [self.Tx, self.Ty, self.Tz] self.savePoints = Button(plt.axes([0.03, 0.45, 0.15, 0.04], ), 'filter points', color='white') self.savePoints.on_clicked(self.getClosestPoints) self.resetBtn = Button(plt.axes([0.03, 0.25, 0.15, 0.04], ), 'reset', color='white') self.resetBtn.on_clicked(self.reset) self.X_btn = Button(plt.axes([0.03, 0.9, 0.024, 0.04], ), 'X', color='red') self.X_btn.on_clicked(self.Close) self.OK_btn = Button(plt.axes([0.03, 0.83, 0.074, 0.04], ), 'OK', color='green') self.OK_btn.on_clicked(self.OK_btnClick) self.not_OK_btn = Button(plt.axes([0.105, 0.83, 0.074, 0.04], ), 'not OK', color='red') self.not_OK_btn.on_clicked(self.not_OK_btnClick) self.saveCorrespondences = Button(plt.axes([0.03, 0.76, 0.15, 0.04], ), 'Save points', color='white') self.saveCorrespondences.on_clicked(self.savePointsCorrespondences) self.fitChessboard = Button(plt.axes([0.03, 0.66, 0.15, 0.04], ), 'auto fit', color='white') self.fitChessboard.on_clicked(self.auto_fitBoard) # set up sliders self.Rx_Slider = Slider(plt.axes([0.25, 0.15, 0.65, 0.03]), 'Rx', -180, 180.0, valinit=np.degrees(self.Rx)) self.Ry_Slider = Slider(plt.axes([0.25, 0.1, 0.65, 0.03]), 'Ry', -180, 180.0, valinit=np.degrees(self.Ry)) self.Rz_Slider = Slider(plt.axes([0.25, 0.05, 0.65, 0.03]), 'Rz', -180, 180.0, valinit=np.degrees(self.Rz)) self.Rx_Slider.on_changed(self.update_R) self.Ry_Slider.on_changed(self.update_R) self.Rz_Slider.on_changed(self.update_R) self.check = CheckButtons(plt.axes([0.03, 0.3, 0.15, 0.12]), ('Axes', 'Black', 'Annotate'), (self.axis_on, self.colour, self.Annotate)) self.check.on_clicked(self.func_CheckButtons) # set up translation buttons self.step = .1 # m self.trigger = True self.Tx_btn_plus = Button(plt.axes([0.05, 0.15, 0.04, 0.045]), '+Tx', color='white') self.Tx_btn_plus.on_clicked(self.Tx_plus) self.Tx_btn_minus = Button(plt.axes([0.12, 0.15, 0.04, 0.045]), '-Tx', color='white') self.Tx_btn_minus.on_clicked(self.Tx_minus) self.Ty_btn_plus = Button(plt.axes([0.05, 0.1, 0.04, 0.045]), '+Ty', color='white') self.Ty_btn_plus.on_clicked(self.Ty_plus) self.Ty_btn_minus = Button(plt.axes([0.12, 0.1, 0.04, 0.045]), '-Ty', color='white') self.Ty_btn_minus.on_clicked(self.Ty_minus) self.Tz_btn_plus = Button(plt.axes([0.05, 0.05, 0.04, 0.045]), '+Tz', color='white') self.Tz_btn_plus.on_clicked(self.Tz_plus) self.Tz_btn_minus = Button(plt.axes([0.12, 0.05, 0.04, 0.045]), '-Tz', color='white') self.Tz_btn_minus.on_clicked(self.Tz_minus) self.Tx_flip = Button(plt.axes([0.17, 0.15, 0.04, 0.045]), 'FlipX', color='white') self.Tx_flip.on_clicked(self.flipX) self.Ty_flip = Button(plt.axes([0.17, 0.1, 0.04, 0.045]), 'FlipY', color='white') self.Ty_flip.on_clicked(self.flipY) self.Tz_flip = Button(plt.axes([0.17, 0.05, 0.04, 0.045]), 'FlipZ', color='white') self.Tz_flip.on_clicked(self.flipZ) self.radio = RadioButtons(plt.axes([0.03, 0.5, 0.15, 0.15], ), ('Final', 'Init'), active=0) self.radio.on_clicked(self.colorfunc) self.tag = None self.circle_center = None self.errors = {0: "Improper input parameters were entered.", 1: "The solution converged.", 2: "The number of calls to function has " "reached maxfev = %d.", 3: "xtol=%f is too small, no further improvement " "in the approximate\n solution " "is possible.", 4: "The iteration is not making good progress, as measured " "by the \n improvement from the last five " "Jacobian evaluations.", 5: "The iteration is not making good progress, " "as measured by the \n improvement from the last " "ten iterations.", 'unknown': "An error occurred."} self.legend_elements = [ Line2D([0], [0], marker='o', color='w', label='Original pointcloud', markerfacecolor='g', markersize=4), Line2D([0], [0], marker='o', color='w', label='Corners', markerfacecolor='k', markersize=4), Line2D([0], [0], marker='o', color='w', label='Margins', markerfacecolor='r', markersize=4), ] def setUp(self): self.getPointCoud() self.axisEqual3D(centers=np.mean(self.point_cloud, axis=0)) self.board() self.ax.legend(handles=self.legend_elements, loc='best') if self.showImage: self.getDepth_Inside_Outside() self.fitNewPlan() def auto_fitBoard(self, args): # estimate 3D-R and 3D-t between chess and PointCloud # Inital guess of the transformation x0 = np.array([np.degrees(self.Rx), np.degrees(self.Ry), np.degrees(self.Rz), self.Tx, self.Ty, self.Tz]) report = {"error": [], "template": []} def f_min(x): self.Rx, self.Ry, self.Rz = np.deg2rad(x[0]), np.deg2rad(x[1]), np.deg2rad(x[2]) self.Tx, self.Ty, self.Tz = x[3], x[4], x[5] template = self.board(plot=False) if self.useInitialPointCloud: dist_mat = distance_matrix(template, self.point_cloud) else: dist_mat = distance_matrix(template, self.corners_) err_func = dist_mat.sum(axis=1) # N x 1 # err_func = dist_mat.sum(axis=0) # N x 1 if self.debug: print('errors = {}, dist_mat:{}, err_func:{}'.format(round(np.sum(err_func), 2), np.shape(dist_mat), np.shape(err_func))) report["error"].append(np.sum(err_func)) report["template"].append(template) return err_func maxIters = 700 sol, status = leastsq(f_min, x0, ftol=1.49012e-07, xtol=1.49012e-07, maxfev=maxIters) print('sol:{}, status:{}'.format(sol, status)) print(self.errors[status]) if self.chess: self.chess.remove() if self.corn: self.corn.remove() if self.ICP_finetune_plot: self.ICP_finetune_plot.remove() self.lowerTemplate = False self.board() point_cloud = np.asarray(self.point_cloud, dtype=np.float32) template = np.asarray(report["template"][0], dtype=np.float32) if self.applyICP_directly else np.asarray( self.template_cloud, dtype=np.float32) converged, self.transf, estimate, fitness = self.ICP_finetune(template, point_cloud) # converged, self.transf, estimate, fitness = self.ICP_finetune(point_cloud,template) self.estimate = np.array(estimate) if self.chessBoard: self.ICP_finetune_plot = self.ax.scatter(self.estimate[:, 0], self.estimate[:, 1], self.estimate[:, 2], c='k', marker='o', alpha=0.8, s=4) else: idx = np.arange(start=0, stop=100, step=1) idx = np.delete(idx, [44, 45, 54, 55]) cornersToPLot = self.estimate[idx, :] self.ICP_finetune_plot = self.ax.scatter(cornersToPLot[:, 0], cornersToPLot[:, 1], cornersToPLot[:, 2], c='k', marker='o', alpha=0.8, s=4) self.trigger = False # set values of sol to Sliders self.Rx_Slider.set_val(np.rad2deg(self.Rx)) self.Ry_Slider.set_val(np.rad2deg(self.Ry)) self.Rz_Slider.set_val(np.rad2deg(self.Rz)) if self.chess: self.chess.remove() if self.corn: self.corn.remove() self.trigger = True self.board() self.AnnotateEdges() self.fig.canvas.draw_idle() if self.showError: print('min error:{} , at index:{}'.format(np.min(report["error"]), np.argmin(report["error"]))) rep = plt.figure(figsize=(15, 8)) plt.xlim(0, len(report["error"]) + 1) plt.xlabel('Iteration') plt.ylabel('RMSE') plt.yticks(color='w') plt.plot(np.arange(len(report["error"])) + 1, report["error"]) print('Start animation gif') def update_graph(num): data = np.asarray(report["template"][num]) graph._offsets3d = (data[:, 0], data[:, 1], data[:, 2]) title.set_text('Iteration {}'.format(num)) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') title = ax.set_title('3D Test') data = report["template"][0] graph = ax.scatter(data[:, 0], data[:, 1], data[:, 2]) ax.scatter(self.point_cloud[:, 0], self.point_cloud[:, 1], self.point_cloud[:, 2]) ani = animation.FuncAnimation(fig, update_graph, 101, interval=2, blit=False, repeat=False) ani.save('myAnimation.gif', writer='imagemagick', fps=30) print('Animation done') plt.show() def flipX(self, event): self.Rx_Slider.set_val(np.rad2deg(self.Rx + np.pi)) self.update_R(0) def flipY(self, event): self.Ry_Slider.set_val(np.rad2deg(self.Ry + np.pi)) self.update_R(0) def flipZ(self, event): self.Rz_Slider.set_val(np.rad2deg(self.Rz + np.pi)) self.update_R(0) def update_R(self, val): if self.trigger: if self.chess: self.chess.remove() if self.corn: self.corn.remove() self.Rx = np.deg2rad(self.Rx_Slider.val) self.Ry = np.deg2rad(self.Ry_Slider.val) self.Rz = np.deg2rad(self.Rz_Slider.val) self.board() self.fig.canvas.draw_idle() def board(self, plot=True, given_origin=None, angle=None): self.board_origin = [self.Tx, self.Ty, self.Tz] if given_origin is None else given_origin if self.chessBoard: self.nCols, self.nRows, org = 7 + 2, 10 + 2, np.asarray(self.board_origin) #org[0] -= self.nCols / 2 #org[1] -= self.nRows / 2 org[0] -= 4 org[1] -= 6 #org = np.zeros(3) if self.lowerTemplate: nrCols, nrRows = 2, 3 else: nrCols, nrRows = self.nCols, self.nRows #nrCols, nrRows = self.nCols+1, self.nRows+1 #remove later print('org:{}, self.nCols - >{}, nrCols:{}'.format(org,self.nCols,nrCols)) X, Y = np.linspace(org[0], org[0] + self.nCols, num=nrCols), np.linspace(org[1], org[1] + self.nRows,num=nrRows) X, Y = np.linspace(org[0], org[0] + self.nCols-1, num=nrCols), np.linspace(org[1], org[1] + self.nRows-1, num=nrRows) print('X:{}'.format(X)) X, Y = np.meshgrid(X, Y) Z = np.full(np.shape(X), org[2]) colors, colortuple = np.empty(X.shape, dtype=str), ('k', 'w') for y in range(nrCols): for x in range(nrRows): colors[x, y] = colortuple[(x + y) % len(colortuple)] colors[0, 0] = 'r' alpha = 0.65 else: self.nCols, self.nRows, org = 10, 10, np.asarray(self.board_origin) org[0] -= self.nCols / 2 org[1] -= self.nRows / 2 # nrCols, nrRows = 4,4z nrCols, nrRows = self.nCols, self.nRows # nrCols, nrRows = 20, 20 X, Y = np.linspace(org[0], org[0] + self.nCols, num=nrCols), np.linspace(org[1], org[1] + self.nRows, num=nrRows) X, Y = np.meshgrid(X, Y) Z = np.full(np.shape(X), org[2]) alpha = 0.25 angles = np.array([self.Rx, self.Ry, self.Rz]) if angle is None else np.array(angle) Rot_matrix = self.eulerAnglesToRotationMatrix(angles) X, Y, Z = X * self.s, Y * self.s, Z * self.s corners = np.transpose(np.array([X, Y, Z]), (1, 2, 0)) init = corners.reshape(-1, 3) print('corners-----------------------------------------------------') #print(init) print('corners -> {}'.format(np.shape(init))) dist_Lidar = distance_matrix(init, init) print('dist_Lidar corners---------------------------------------------------------') print(dist_Lidar[0, :11]) translation = np.mean(init, axis=0) # get the mean point corners = np.subtract(corners, translation) # substract it from all the other points X, Y, Z = np.transpose(np.add(np.dot(corners, Rot_matrix), translation), (2, 0, 1)) # corners = np.transpose(np.array([X, Y, Z]), (1, 2, 0)).reshape(-1, 3) corners = np.transpose(np.array([X, Y, Z]), (2, 1, 0)).reshape(-1, 3) if plot: if self.chessBoard: self.chess = self.ax.plot_surface(X, Y, Z, facecolors=colors, linewidth=0.2, cmap='gray', alpha=alpha) else: self.chess = self.ax.plot_surface(X, Y, Z, linewidth=0.2, cmap='gray', alpha=alpha) idx = np.arange(start=0, stop=100, step=1) idx = np.delete(idx, [44, 45, 54, 55]) cornersToPLot = corners[idx, :] self.corn = self.ax.scatter(cornersToPLot[:, 0], cornersToPLot[:, 1], cornersToPLot[:, 2], c='tab:blue', marker='o', s=5) self.template_cloud = corners return np.array(corners) def getPointCoud(self, colorsMap='jet', skip=1, useRing = True): # X, Y, Z, intensity, ring if useRing: originalCloud = np.array(np.load(self.file, mmap_mode='r'))[:,:5] if InitLidar: xyz = originalCloud[:, 0:3] new_xyz = np.dot(xyz, Rot_matrix) originalCloud[:, 0:3] = new_xyz #mean_x = np.mean(originalCloud[:, 0]) #originalCloud[:, 0] = mean_x df = pd.DataFrame(data=originalCloud, columns=["X", "Y", "Z","intens","ring"]) gp = df.groupby('ring') keys = gp.groups.keys() #groups = gp.groups coolPoints, circlePoints = [],[] for i in keys: line = np.array(gp.get_group(i), dtype=np.float) first,last = np.array(line[0], dtype=np.float)[:3],np.array(line[-1], dtype=np.float)[:3] coolPoints.append(first) coolPoints.append(last) if self.chessBoard == False: if len(line) > 50: l = line[:,:3] for i in range(2,len(l)-2,1): d = np.linalg.norm(l[i]-l[i+1]) if d > 0.08: #half of the circle circlePoints.append(l[i]) circlePoints.append(l[i+1]) self.coolPoints = np.array(coolPoints).squeeze() self.ax.scatter(*self.coolPoints.T, color='r', marker='o', alpha=1, s=2) print('coolPoints:{}, circlePoints:{}'.format(np.shape(self.coolPoints), np.shape(circlePoints))) circlePoints = np.array(circlePoints) if len(circlePoints)>0: self.ax.scatter(*circlePoints.T, color='r', marker='o', alpha=1, s=5) self.fitCircle(circlePoints) #self.point_cloud = np.array(self.coolPoints, dtype=np.float32) self.point_cloud = np.array(np.load(self.file, mmap_mode='r')[::skip, :3], dtype=np.float32) if InitLidar: xyz = self.point_cloud[:, 0:3] new_xyz = np.dot(xyz, Rot_matrix) self.point_cloud[:, 0:3] = new_xyz # center the point_cloud #mean_x = np.mean(self.point_cloud[:, 0]) #self.point_cloud[:, 0] = mean_x self.point_cloud_mean = np.mean(self.point_cloud, axis=0) self.Tx, self.Ty, self.Tz = self.point_cloud_mean # self.point_cloud = self.point_cloud - self.point_cloud_mean self.point_cloud_colors = np.array(np.load(self.file, mmap_mode='r'))[::skip, 3] if self.plotInit: cm = plt.get_cmap(colorsMap) cNorm = matplotlib.colors.Normalize(vmin=min(self.point_cloud_colors), vmax=max(self.point_cloud_colors)) scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=cm) self.p1 = self.ax.scatter(self.point_cloud[:, 0], self.point_cloud[:, 1], self.point_cloud[:, 2], color=scalarMap.to_rgba(self.point_cloud_colors), s=0.2) else: self.p = pcl.PointCloud(self.point_cloud) inlier, outliner, coefficients = self.do_ransac_plane_segmentation(self.p, pcl.SACMODEL_PLANE, pcl.SAC_RANSAC, 0.01) #self.planeEquation(coef=np.array(coefficients).squeeze()) self.point_cloud_init = self.point_cloud.copy() if self.useVoxel: pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(self.point_cloud) self.point_cloud = np.array(pcd.voxel_down_sample(voxel_size=self.voxel_size).points) # self.p1 = self.ax.scatter(outliner[:, 0], outliner[:, 1], outliner[:, 2], c='y', s=0.2) self.p2 = self.ax.scatter(inlier[:, 0], inlier[:, 1], inlier[:, 2], c='g', s=0.2) w, v = self.PCA(inlier) point = np.mean(inlier, axis=0) if self.chessBoard == False and self.circle_center: #point[1:] = self.circle_center point[[0,2]]= self.circle_center w *= 2 if self.chessBoard==False and self.circle_center: p = Circle(self.circle_center, self.circle_radius, alpha = .3, color='tab:blue') self.ax.add_patch(p) art3d.pathpatch_2d_to_3d(p, z=point[1], zdir="y") self.p3 = self.ax.quiver([point[0]], [point[1]], [point[2]], [v[0, :] * np.sqrt(w[0])], [v[1, :] * np.sqrt(w[0])], [v[2, :] * np.sqrt(w[0])], linewidths=(1.8,)) def axisEqual3D(self, centers=None): extents = np.array([getattr(self.ax, 'get_{}lim'.format(dim))() for dim in 'xyz']) sz = extents[:, 1] - extents[:, 0] # centers = np.mean(extents, axis=1) if centers is None maxsize = max(abs(sz)) r = maxsize / 2 for ctr, dim in zip(centers, 'xyz'): getattr(self.ax, 'set_{}lim'.format(dim))(ctr - r, ctr + r) def planeEquation(self, coef): a, b, c, d = coef mean = np.mean(self.point_cloud, axis=0) normal = [a, b, c] d2 = -mean.dot(normal) # print('d2:{}'.format(d2)) # print('mean:{}'.format(mean)) # print('The equation is {0}x + {1}y + {2}z = {3}'.format(a, b, c, d)) # plot the normal vector startX, startY, startZ = mean[0], mean[1], mean[2] startZ = (-normal[0] * startX - normal[1] * startY - d) * 1. / normal[2] self.ax.quiver([startX], [startY], [startZ], [normal[0]], [normal[1]], [normal[2]], linewidths=(3,),edgecolor="red") def PCA(self, data, correlation=False, sort=True): # data = nx3 mean = np.mean(data, axis=0) data_adjust = data - mean #: the data is transposed due to np.cov/corrcoef syntax if correlation: matrix = np.corrcoef(data_adjust.T) else: matrix = np.cov(data_adjust.T) eigenvalues, eigenvectors = np.linalg.eig(matrix) if sort: #: sort eigenvalues and eigenvectors sort = eigenvalues.argsort()[::-1] eigenvalues = eigenvalues[sort] eigenvectors = eigenvectors[:, sort] return eigenvalues, eigenvectors def eulerAnglesToRotationMatrix(self, theta): R_x = np.array([[1, 0, 0], [0, math.cos(theta[0]), -math.sin(theta[0])], [0, math.sin(theta[0]), math.cos(theta[0])] ]) R_y = np.array([[math.cos(theta[1]), 0, math.sin(theta[1])], [0, 1, 0], [-math.sin(theta[1]), 0, math.cos(theta[1])] ]) R_z = np.array([[math.cos(theta[2]), -math.sin(theta[2]), 0], [math.sin(theta[2]), math.cos(theta[2]), 0], [0, 0, 1] ]) R = np.dot(R_z, np.dot(R_y, R_x)) return R def do_ransac_plane_segmentation(self, pcl_data, pcl_sac_model_plane, pcl_sac_ransac, max_distance): """ Create the segmentation object :param pcl_data: point could data subscriber :param pcl_sac_model_plane: use to determine plane models :param pcl_sac_ransac: RANdom SAmple Consensus :param max_distance: Max distance for apoint to be considered fitting the model :return: segmentation object """ seg = pcl_data.make_segmenter() seg.set_model_type(pcl_sac_model_plane) seg.set_method_type(pcl_sac_ransac) seg.set_distance_threshold(max_distance) inliers, coefficients = seg.segment() inlier_object = pcl_data.extract(inliers, negative=False) outlier_object = pcl_data.extract(inliers, negative=True) if len(inliers) <= 1: outlier_object = [0, 0, 0] inlier_object, outlier_object = np.array(inlier_object), np.array(outlier_object) return inlier_object, outlier_object, coefficients def func_CheckButtons(self, label): if label == 'Axes': if self.axis_on: self.ax.set_axis_off() self.axis_on = False else: self.ax.set_axis_on() self.axis_on = True elif label == 'Black': if self.colour: self.colour = False self.ax.set_facecolor((1, 1, 1)) else: self.colour = True self.ax.set_facecolor((0, 0, 0)) elif label == 'Annotate': self.Annotate = not self.Annotate self.AnnotateEdges() self.fig.canvas.draw_idle() def ICP_finetune(self, points_in, points_out): cloud_in = pcl.PointCloud() cloud_out = pcl.PointCloud() cloud_in.from_array(points_in) cloud_out.from_array(points_out) # icp = cloud_in.make_IterativeClosestPoint() icp = cloud_out.make_IterativeClosestPoint() converged, transf, estimate, fitness = icp.icp(cloud_in, cloud_out) print('fitness:{}, converged:{}, transf:{}, estimate:{}'.format(fitness, converged, np.shape(transf), np.shape(estimate))) return converged, transf, estimate, fitness def colorfunc(self, label): if label == 'Init': self.plotInit = True else: self.plotInit = False self.reset(0) def OK_btnClick(self, args): self.OK = True plt.close() def not_OK_btnClick(self, args): self.OK = False plt.close() def Close(self, args): global globalTrigger globalTrigger = False plt.close() def reset(self, args): self.ax.cla() self.getPointCoud() self.axisEqual3D(centers=np.mean(self.point_cloud, axis=0)) self.Rx, self.Ry, self.Rz = 0, 0, 0 self.Tx, self.Ty, self.Tz = 0, 0, 0 self.board_origin = [self.Tx, self.Ty, self.Tz] self.board() self.fig.canvas.draw_idle() def getClosestPoints(self, arg): dist_mat = distance_matrix(self.template_cloud, self.point_cloud_init) self.neighbours = np.argsort(dist_mat, axis=1)[:, 0] self.finaPoints = np.asarray(self.point_cloud_init[self.neighbours, :]).squeeze() if self.chess: self.chess.remove() if self.corn: self.corn.remove() if self.p3: self.p3.remove() if self.p2: self.p2.remove() if self.p1: self.p1.remove() self.scatter_finalPoints = self.ax.scatter(self.finaPoints[:, 0], self.finaPoints[:, 1], self.finaPoints[:, 2], c='k', marker='x', s=1) self.corn = self.ax.scatter(self.template_cloud[:, 0], self.template_cloud[:, 1], self.template_cloud[:, 2], c='blue', marker='o', s=5) self.fig.canvas.draw_idle() def Tz_plus(self, event): self.Tz += self.step self.update_R(0) def Tz_minus(self, event): self.Tz -= self.step self.update_R(0) def Ty_plus(self, event): self.Ty += self.step self.update_R(0) def Ty_minus(self, event): self.Ty -= self.step self.update_R(0) def Tx_plus(self, event): self.Tx += self.step self.update_R(0) def Tx_minus(self, event): self.Tx -= self.step self.update_R(0) def readCameraIntrin(self): name = 'inside' name = 'outside' self.camera_model = load_obj('{}_combined_camera_model'.format(name)) self.camera_model_rectify = load_obj('{}_combined_camera_model_rectify'.format(name)) self.K_left = self.camera_model['K_left'] self.K_right = self.camera_model['K_right'] self.D_left = self.camera_model['D_left'] self.D_right = self.camera_model['D_right'] # self.K_left = self.camera_model['K_right'] # self.K_right = self.camera_model['K_left'] # self.D_left = self.camera_model['D_right'] # self.D_right = self.camera_model['D_left'] # print('K_left') # print(self.K_left) # print('K_right') # print(self.K_right) self.R = self.camera_model['R'] self.T = self.camera_model['T'] self.T = np.array([-0.977, 0.004, 0.215])[:, np.newaxis] angles = np.array([np.deg2rad(1.044), np.deg2rad(22.632), np.deg2rad(-.95)]) self.R = euler_matrix(angles) #self.T = np.array([-0.98, 0., 0.12])[:, np.newaxis] #self.T = np.array([-.75, 0., 0.])[:, np.newaxis] #print('self T after {}'.format(np.shape(self.T))) #angles = np.array([np.deg2rad(0.68), np.deg2rad(22.66), np.deg2rad(-1.05)]) #self.R = euler_matrix(angles) #Q = self.camera_model_rectify['Q'] #roi_left, roi_right = self.camera_model_rectify['roi_left'], self.camera_model_rectify['roi_right'] self.leftMapX, self.leftMapY = self.camera_model_rectify['leftMapX'], self.camera_model_rectify['leftMapY'] self.rightMapX, self.rightMapY = self.camera_model_rectify['rightMapX'], self.camera_model_rectify['rightMapY'] img_shape = (1936, 1216) print('img_shape:{}'.format(img_shape)) R1, R2, P1, P2, Q, roi_left, roi_right = cv2.stereoRectify(self.K_left, self.D_left, self.K_right, self.D_right, imageSize=img_shape, R=self.camera_model['R'], T=self.camera_model['T'], flags=cv2.CALIB_ZERO_DISPARITY, alpha=-1 #alpha=0 ) self.leftMapX, self.leftMapY = cv2.initUndistortRectifyMap( self.K_left, self.D_left, R1, P1, img_shape, cv2.CV_32FC1) self.rightMapX, self.rightMapY = cv2.initUndistortRectifyMap( self.K_right, self.D_right, R2, P2, img_shape, cv2.CV_32FC1) self.K = self.K_right self.D = self.D_right try: N = 5 aruco_dict = aruco.custom_dictionary(0, N, 1) aruco_dict.bytesList = np.empty(shape=(4, N - 1, N - 1), dtype=np.uint8) A = np.array([[0, 0, 1, 0, 0], [0, 1, 0, 1, 0], [0, 1, 0, 1, 0], [0, 1, 1, 1, 0], [0, 1, 0, 1, 0]], dtype=np.uint8) aruco_dict.bytesList[0] = aruco.Dictionary_getByteListFromBits(A) R = np.array([[1, 1, 1, 1, 0], [1, 0, 0, 1, 0], [1, 1, 1, 0, 0], [1, 0, 0, 1, 0], [1, 0, 0, 0, 1]], dtype=np.uint8) aruco_dict.bytesList[1] = aruco.Dictionary_getByteListFromBits(R) V = np.array([[1, 0, 0, 0, 1], [1, 0, 0, 0, 1], [1, 0, 0, 0, 1], [0, 1, 0, 1, 0], [0, 0, 1, 0, 0]], dtype=np.uint8) O = np.array([[0, 1, 1, 1, 0], [1, 0, 0, 0, 1], [1, 0, 0, 0, 1], [1, 0, 0, 0, 1], [0, 1, 1, 1, 0]], dtype=np.uint8) aruco_dict.bytesList[2] = aruco.Dictionary_getByteListFromBits(O) aruco_dict.bytesList[3] = aruco.Dictionary_getByteListFromBits(V) self.ARUCO_DICT = aruco_dict self.calibation_board = aruco.GridBoard_create( markersX=2, markersY=2, markerLength=0.126, markerSeparation=0.74, dictionary=self.ARUCO_DICT) except: print('Install Aruco') def draw(self, img, corners, imgpts): corner = tuple(corners[0].ravel()) cv2.line(img, corner, tuple(imgpts[0].ravel()), (255, 0, 0), 5) cv2.line(img, corner, tuple(imgpts[1].ravel()), (0, 255, 0), 5) cv2.line(img, corner, tuple(imgpts[2].ravel()), (0, 0, 255), 5) return img def annotate3D(self, ax, s, *args, **kwargs): self.tag = Annotation3D(s, *args, **kwargs) ax.add_artist(self.tag) def AnnotateEdges(self, giveAX=None, givenPoints=None): if self.Annotate: # add vertices annotation. if giveAX is None: if self.lowerTemplate or self.chessBoard == False: if self.chessBoard == False: pts = np.asarray(self.template_cloud.copy()).reshape(self.nCols, self.nRows, 3) idx = np.array([44, 45, 54, 55]) center = np.mean(self.template_cloud[idx], axis=0) self.templatePoints = [pts[0, -1, :], pts[-1, -1, :], pts[-1, 0, :], pts[0, 0, :], center] self.templatePoints = np.array(self.templatePoints).reshape(-1, 3) cornersToPLot = self.estimate[idx, :] for j, xyz_ in enumerate(self.templatePoints): self.annotate3D(self.ax, s=str(j), xyz=xyz_, fontsize=12, xytext=(-1, 1), textcoords='offset points', ha='right', va='bottom') else: for j, xyz_ in enumerate(self.template_cloud): self.annotate3D(self.ax, s=str(j), xyz=xyz_, fontsize=8, xytext=(-1, 1), textcoords='offset points', ha='right', va='bottom') else: try: templatePoints = np.asarray(self.template_cloud.copy()).reshape(self.nCols, self.nRows, 3)[ 1:self.nCols - 1, 1:self.nRows - 1, :] except: templatePoints = np.asarray(self.template_cloud.copy()).reshape(self.nCols+1, self.nRows+1, 3)[ 1:self.nCols - 1, 1:self.nRows - 1, :] # templatePoints = np.asarray(self.template_cloud.copy()).reshape(self.nRows,self.nCols, 3)[1:self.nRows-1,1:self.nCols-1,:] self.templatePoints = np.array(templatePoints).reshape(-1, 3) for j, xyz_ in enumerate(self.templatePoints): self.annotate3D(self.ax, s=str(j), xyz=xyz_, fontsize=8, xytext=(-3, 3), textcoords='offset points', ha='right', va='bottom') else: for j, xyz_ in enumerate(givenPoints): self.annotate3D(giveAX, s=str(j), xyz=xyz_, fontsize=10, xytext=(-3, 3), textcoords='offset points', ha='right', va='bottom') if self.showImage: # annotate image points = np.asarray(self.corners2).squeeze() font, lineType = cv2.FONT_HERSHEY_SIMPLEX, 2 if self.chessBoard else 10 for i, point in enumerate(points): point = tuple(point.ravel()) cv2.putText(self.QueryImg, '{}'.format(i), point, font, 1 if self.chessBoard else 3, (0, 0, 0) if self.chessBoard else (255, 0, 0), lineType) self.image_ax.imshow(self.QueryImg) def getCamera_XYZ_Stereo(self): #cam_rot, jac = cv2.Rodrigues(self.rvecs) #mR = np.matrix(cam_rot) #mT = np.matrix(self.tvecs) #cam_trans = -mR * mT _3DPoints = [] for i, pixel in enumerate(self.x_left): u, v = pixel.ravel() u, v = int(u), int(v) distance = self.depth[i] pt = np.array([u, v, distance]) pt[0] = pt[2] * (pt[0] - self.fxypxy[2]) / self.fxypxy[0] pt[1] = pt[2] * (pt[1] - self.fxypxy[3]) / self.fxypxy[1] # pt = pt.dot(cam_rot.T) + self.tvecs _3DPoints.append(pt) print('_3DPoints {}'.format(np.shape(_3DPoints))) print('tvec : {}'.format(np.asarray(self.tvecs).squeeze())) print('Camera_XYZ_Stereo mean {}'.format(np.mean(_3DPoints, axis=0))) _3DPoints = np.array(_3DPoints).squeeze() print('from disparity getCamera_XYZ_Stereo ') d = distance_matrix(_3DPoints,_3DPoints) print(d) return _3DPoints def getCamera_XYZ(self): R_mtx, jac = cv2.Rodrigues(self.rvecs) inv_R_mtx = np.linalg.inv(R_mtx) inv_K = np.linalg.inv(self.K) def compute_XYZ(u, v): # from 2D pixels to 3D world uv_ = np.array([[u, v, 1]], dtype=np.float32).T suv_ = uv_ xyz_ = inv_K.dot(suv_) - self.tvecs XYZ = inv_R_mtx.dot(xyz_) pred = XYZ.T[0] return pred Camera_XYZ = [] for i, point in enumerate(self.pixelsPoints): xyz = compute_XYZ(u=point[0], v=point[1]) # print 'xyz:{}'.format(xyz) Camera_XYZ.append(xyz) Camera_XYZ = np.array(Camera_XYZ) print('init tvec : {}'.format(np.asarray(self.tvecs).squeeze())) print('Camera_XYZ mean {}'.format(np.mean(Camera_XYZ, axis=0))) if self.img_file2 is None: for i, point in enumerate(Camera_XYZ): imgpts, jac = cv2.projectPoints(point, self.rvecs, self.tvecs, self.K, self.D) imgpts = np.asarray(imgpts).squeeze() cv2.circle(self.QueryImg, (int(imgpts[0]), int(imgpts[1])), 7, (255, 0, 0), 7) self.image_ax.imshow(self.QueryImg) return Camera_XYZ def getImagePixels(self): img = cv2.imread(self.img_file) #left image img2 = cv2.imread(self.img_file2) # left image gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY) pixelsPoints,pixelsPoints2, _3DreconstructedBoard = [],[],[] if self.chessBoard: ret, corners = cv2.findChessboardCorners(gray, (10, 7), None) ret2, corners2 = cv2.findChessboardCorners(gray2, (10, 7), None) if ret and ret2: # found chessboard print('Found chessboard') corners_2 = cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), self.criteria) corners2_2 = cv2.cornerSubPix(gray2, corners2, (11, 11), (-1, -1), self.criteria) pixelsPoints = np.asarray(corners_2).squeeze() pixelsPoints2 = np.asarray(corners2_2).squeeze() cv2.drawChessboardCorners(img, (10, 7), corners_2, ret) cv2.drawChessboardCorners(img2, (10, 7), corners2_2, ret) # Find the rotation and translation vectors. success, rvecs, tvecs, inliers = cv2.solvePnPRansac(self.objp, corners_2, self.K, self.D) rvecs, _ = cv2.Rodrigues(rvecs) _3Dpoints = self.objp # project 3D points to image plane _2Dpoints, jac = cv2.projectPoints(_3Dpoints, rvecs, tvecs, self.K, self.D) _2Dpoints = np.array(_2Dpoints, dtype=np.float32).squeeze() print('_2Dpoints -> {}'.format(np.shape(_2Dpoints))) for i in range(len(_2Dpoints)): cv2.circle(img, tuple(_2Dpoints[i]), 5, (0, 255, 0), 3) _3Dpoints = rvecs.dot(_3Dpoints.T) + tvecs _3Dpoints = _3Dpoints.T print('_3Dpoints->{}'.format(np.shape(_3Dpoints))) dist_mat = distance_matrix(_3Dpoints, _3Dpoints) print('dist_mat for OpencvReconstructed') print(dist_mat[0, :11]) _3DreconstructedBoard = _3Dpoints else: return None,None else: corners, ids, rejectedImgPoints = aruco.detectMarkers(gray, self.ARUCO_DICT) corners, ids, rejectedImgPoints, recoveredIds = aruco.refineDetectedMarkers( image=gray, board=self.calibation_board, detectedCorners=corners, detectedIds=ids, rejectedCorners=rejectedImgPoints, cameraMatrix=self.K, distCoeffs=self.D) corners2, ids2, rejectedImgPoints2 = aruco.detectMarkers(gray2, self.ARUCO_DICT) corners2, ids2, rejectedImgPoints2, recoveredIds2 = aruco.refineDetectedMarkers( image=gray2, board=self.calibation_board, detectedCorners=corners2, detectedIds=ids2, rejectedCorners=rejectedImgPoints2, cameraMatrix=self.K, distCoeffs=self.D) if np.all(ids != None) and np.all(ids2 != None): print('found charuco board, ids:{}'.format(np.shape(ids))) if len(ids) and len(ids2) > 0: retval, self.rvecs, self.tvecs = aruco.estimatePoseBoard(corners, ids, self.calibation_board, self.K, self.D, None, None) retval2, self.rvecs2, self.tvecs2 = aruco.estimatePoseBoard(corners2, ids2, self.calibation_board, self.K, self.D, None, None) img = aruco.drawDetectedMarkers(img, corners, ids,borderColor=(0, 0, 255)) img2 = aruco.drawDetectedMarkers(img2, corners2, ids2, borderColor=(0, 0, 255)) if retval and retval2: self.dst, jacobian = cv2.Rodrigues(self.rvecs) self.dst2, jacobian = cv2.Rodrigues(self.rvecs2) #self.pts = np.float32([[0, b, 0], [b, b, 0], [b, 0, 0], [-0.03, -0.03, 0]]) b = 1 self.pts = np.float32([[0, b, 0], [b, b, 0], [b, 0, 0], [-0.03, -0.03, 0],[.5,.5,0]]) _3Dpoints = self.dst.T.dot(np.array(self.pts).squeeze().T) + self.tvecs _3Dpoints = _3Dpoints.T print('_3Dpoints->{}'.format(np.shape(_3Dpoints))) dist_mat = distance_matrix(_3Dpoints, _3Dpoints) print('dist_mat for OpencvReconstructed') print(dist_mat) _3DreconstructedBoard = _3Dpoints imgpts, _ = cv2.projectPoints(self.pts, self.rvecs, self.tvecs, self.K, self.D) #corners2 = np.append(imgpts, np.mean(imgpts, axis=0)).reshape(-1, 2) corners2 = np.array(imgpts).squeeze() self.pt_dict = {} for i in range(len(self.pts)): self.pt_dict[tuple(self.pts[i])] = tuple(imgpts[i].ravel()) top_right = self.pt_dict[tuple(self.pts[0])] bot_right = self.pt_dict[tuple(self.pts[1])] bot_left = self.pt_dict[tuple(self.pts[2])] top_left = self.pt_dict[tuple(self.pts[3])] img = cv2.line(img, top_right, bot_right, (0, 255, 0), 4) img = cv2.line(img, bot_right, bot_left, (0, 255, 0), 4) img = cv2.line(img, bot_left, top_left, (0, 255, 0), 4) img = cv2.line(img, top_left, top_right, (0, 255, 0), 4) cv2.circle(img, tuple(corners2[-1]), 5, (0, 255, 0), 3) cv2.circle(img, tuple(corners2[-2]), 5, (0, 0, 255), 3) pixelsPoints = np.asarray(corners2).squeeze() imgpts, _ = cv2.projectPoints(self.pts, self.rvecs2, self.tvecs2, self.K, self.D) #corners2 = np.append(imgpts, np.mean(imgpts, axis=0)).reshape(-1, 2) corners2 = np.array(imgpts).squeeze() self.pt_dict = {} for i in range(len(self.pts)): self.pt_dict[tuple(self.pts[i])] = tuple(imgpts[i].ravel()) top_right = self.pt_dict[tuple(self.pts[0])] bot_right = self.pt_dict[tuple(self.pts[1])] bot_left = self.pt_dict[tuple(self.pts[2])] top_left = self.pt_dict[tuple(self.pts[3])] img2 = cv2.line(img2, top_right, bot_right, (0, 255, 0), 4) img2 = cv2.line(img2, bot_right, bot_left, (0, 255, 0), 4) img2 = cv2.line(img2, bot_left, top_left, (0, 255, 0), 4) img2 = cv2.line(img2, top_left, top_right, (0, 255, 0), 4) cv2.circle(img2, tuple(corners2[-1]), 5, (0, 255, 0), 3) #cv2.circle(img2, tuple(corners2[-2]), 5, (0, 0, 255), 3) pixelsPoints2 = np.asarray(corners2).squeeze() else: return None,None else: return None,None else: return None,None scale = .4 _horizontal = np.hstack( (cv2.resize(img, None, fx=scale, fy=scale), cv2.resize(img2, None, fx=scale, fy=scale))) cv2.imshow('_horizontal', _horizontal) cv2.waitKey(0) cv2.destroyAllWindows() return pixelsPoints,pixelsPoints2, _3DreconstructedBoard def savePointsCorrespondences(self, args): display = True fig = plt.figure(figsize=plt.figaspect(1)) ax = plt.axes(projection='3d') ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') if self.chessBoard: legend_elements = [ Line2D([0], [0], marker='o', label='board template', markerfacecolor='tab:blue', markersize=6), Line2D([0], [0], marker='o', label='ICP finetuned', markerfacecolor='green', markersize=6), Line2D([0], [0], marker='o', label='closest lidar points', markerfacecolor='k', markersize=6), Line2D([0], [0], marker='o', label='Camera_XYZ', markerfacecolor='red', markersize=6), ] board_template = self.template_cloud board_template_ICP_finetuned = self.estimate closest_lidar_points = self.finaPoints try: icp_finetuned_inside = np.asarray(self.estimate).reshape(self.nCols, self.nRows, 3)[1:self.nCols - 1, 1:self.nRows - 1, :] board_template_inside = board_template.reshape(self.nCols, self.nRows, 3)[1:self.nCols - 1, 1:self.nRows - 1, :] closest_lidar_points_inside = closest_lidar_points.reshape(self.nCols, self.nRows, 3)[1:self.nCols - 1, 1:self.nRows - 1, :] except: print('Second-----------------------------') icp_finetuned_inside = np.asarray(self.estimate).reshape(self.nCols+1, self.nRows+1, 3)[1:self.nCols - 1, 1:self.nRows - 1, :] board_template_inside = board_template.reshape(self.nCols+1, self.nRows+1, 3)[1:self.nCols - 1, 1:self.nRows - 1, :] closest_lidar_points_inside = closest_lidar_points.reshape(self.nCols+1, self.nRows+1, 3)[1:self.nCols - 1, 1:self.nRows - 1, :] icp_finetuned_inside = np.array(icp_finetuned_inside).reshape(-1, 3) board_template_inside = np.array(board_template_inside).reshape(-1, 3) print('board_template_inside-----------------------------------------------------') print(board_template_inside) print('board_template_inside -> {}'.format(np.shape(board_template_inside))) dist_Lidar = distance_matrix(board_template_inside, board_template_inside) print('dist_Lidar---------------------------------------------------------') print(dist_Lidar[0, :11]) closest_lidar_points_inside = np.array(closest_lidar_points_inside).reshape(-1, 3) Camera_XYZ = self.getCamera_XYZ() if self.img_file2: Camera_XYZ_Stereo = self.getCamera_XYZ_Stereo() else: Camera_XYZ_Stereo = np.array([[0, 0, 0]]) display = True if display: print('board_template:{}'.format(np.shape(board_template))) print('board_template_ICP_finetuned:{}'.format(np.shape(board_template_ICP_finetuned))) print('icp_finetuned_inside:{}'.format(np.shape(icp_finetuned_inside))) print('board_template_inside:{}'.format(np.shape(board_template_inside))) print('closest_lidar_points:{}'.format(np.shape(closest_lidar_points))) print('closest_lidar_points_inside:{}'.format(np.shape(closest_lidar_points_inside))) print('Camera_XYZ:{}'.format(np.shape(Camera_XYZ))) print('Camera_XYZ_Stereo:{}'.format(np.shape(Camera_XYZ_Stereo))) #dist = distance_matrix(Camera_XYZ_Stereo, Camera_XYZ_Stereo) #print('distance matrix Camera_XYZ_Stereo:{}'.format(dist)) ax.scatter(*board_template.T, color='b', marker='o', alpha=.5, s=8) ax.scatter(*board_template_ICP_finetuned.T, color='r', marker='o', alpha=.5, s=8) ax.scatter(*board_template_inside.T, color='tab:blue', marker='x', alpha=1, s=10) ax.scatter(*icp_finetuned_inside.T, color='g', marker='x', alpha=1, s=10) ax.scatter(*closest_lidar_points.T, color='r', marker='x', alpha=.8, s=10) ax.scatter(*closest_lidar_points_inside.T, color='k', marker='x', alpha=1, s=20) ax.scatter(*Camera_XYZ.T, color='k', marker='x', alpha=1, s=30) ax.scatter(*Camera_XYZ_Stereo.T, color='r', marker='o', alpha=1, s=3) self.AnnotateEdges(giveAX=ax, givenPoints=board_template_inside) extents = np.array([getattr(ax, 'get_{}lim'.format(dim))() for dim in 'xyz']) sz = extents[:, 1] - extents[:, 0] centers = np.mean(board_template, axis=0) # centers = np.mean(Camera_XYZ_Stereo, axis=0) if self.img_file2 is not None else np.mean(board_template,axis=0) maxsize = max(abs(sz)) r = maxsize / 2 for ctr, dim in zip(centers, 'xyz'): getattr(ax, 'set_{}lim'.format(dim))(ctr - r, ctr + r) self.pixelsPointsLeft, self.pixelsPointsRight, _3DreconstructedBoard = self.getImagePixels() print('_3DreconstructedBoard -> {}'.format(np.shape(_3DreconstructedBoard))) if len(self.pixelsPointsLeft)<=0: print('Cannot get pixels points !!! ') self.points_correspondences = dict([ ('board_template', board_template), ('board_template_ICP_finetuned', board_template_ICP_finetuned), ('board_template_inside', board_template_inside), ('icp_finetuned_inside', icp_finetuned_inside), ('closest_lidar_points', closest_lidar_points), ('closest_lidar_points_inside', closest_lidar_points_inside), ('pixelsPointsLeft', self.pixelsPointsLeft), ('pixelsPointsRight', self.pixelsPointsRight), ('Camera_XYZ_Stereo', Camera_XYZ_Stereo), ('_3DreconstructedBoard',_3DreconstructedBoard), ('Camera_XYZ', Camera_XYZ)]) # save_obj(self.points_correspondences, self.name) else: legend_elements = [ Line2D([0], [0], marker='o', label='board template all', markerfacecolor='b', markersize=6), Line2D([0], [0], marker='o', label='ICP finetuned', markerfacecolor='red', markersize=6), Line2D([0], [0], marker='o', label='board template inside', markerfacecolor='tab:blue', markersize=6), Line2D([0], [0], marker='o', label='closest lidar points', markerfacecolor='red', markersize=6), ] pts = np.asarray(self.template_cloud.copy()).reshape(self.nCols, self.nRows, 3) idx = np.array([44, 45, 54, 55]) center = np.mean(self.template_cloud[idx], axis=0) board_template = np.array([pts[0, -1, :], pts[-1, -1, :], pts[-1, 0, :], pts[0, 0, :], center]).reshape(-1, 3) board_template = board_template pts = np.asarray(self.estimate.copy()).reshape(self.nCols, self.nRows, 3) center = np.mean(self.estimate[idx], axis=0) board_template_ICP_finetuned = np.array( [pts[0, -1, :], pts[-1, -1, :], pts[-1, 0, :], pts[0, 0, :], center]).reshape(-1, 3) board_template_inside = self.templatePoints pts = np.asarray(self.finaPoints.copy()).reshape(self.nCols, self.nRows, 3) center = np.mean(self.finaPoints[idx], axis=0) closest_lidar_points = np.array( [pts[0, -1, :], pts[-1, -1, :], pts[-1, 0, :], pts[0, 0, :], center]).reshape(-1, 3) if self.img_file2: Camera_XYZ_Stereo = self.getCamera_XYZ_Stereo() else: Camera_XYZ_Stereo = np.array([[0, 0, 0]]) if display: print('board_template:{}'.format(np.shape(board_template))) print('board_template_ICP_finetuned:{}'.format(np.shape(board_template_ICP_finetuned))) print('board_template_inside:{}'.format(np.shape(board_template_inside))) print('closest_lidar_points:{}'.format(np.shape(closest_lidar_points))) print('Camera_XYZ_Stereo:{}'.format(np.shape(Camera_XYZ_Stereo))) ax.scatter(*board_template.T, color='b', marker='o', alpha=.5, s=8) ax.scatter(*board_template_ICP_finetuned.T, color='r', marker='o', alpha=.5, s=8) ax.scatter(*board_template_inside.T, color='tab:blue', marker='x', alpha=1, s=10) ax.scatter(*closest_lidar_points.T, color='r', marker='x', alpha=.8, s=10) ax.scatter(*Camera_XYZ_Stereo.T, color='r', marker='o', alpha=.8, s=20) self.AnnotateEdges(giveAX=ax, givenPoints=board_template_inside) extents = np.array([getattr(ax, 'get_{}lim'.format(dim))() for dim in 'xyz']) sz = extents[:, 1] - extents[:, 0] centers = np.mean(board_template, axis=0) # centers = np.mean(Camera_XYZ, axis=0) if self.img_file2 is not None else np.mean(board_template, axis=0) maxsize = max(abs(sz)) r = maxsize / 2 for ctr, dim in zip(centers, 'xyz'): getattr(ax, 'set_{}lim'.format(dim))(ctr - r, ctr + r) self.pixelsPointsLeft, self.pixelsPointsRight, _3DreconstructedBoard = self.getImagePixels() _3DreconstructedBoard = np.array(_3DreconstructedBoard).squeeze() print('_3DreconstructedBoard -> {}'.format(np.shape(_3DreconstructedBoard))) if len(self.pixelsPointsLeft) <= 0: print('Cannot get pixels points !!! ') ax.scatter(*_3DreconstructedBoard.T, color='b', marker='x', alpha=1, s=20) print('pixelsPointsLeft:{}'.format(np.shape(self.pixelsPointsLeft))) print('pixelsPointsRight:{}'.format(np.shape(self.pixelsPointsRight))) print('_3DreconstructedBoard:{}'.format(np.shape(_3DreconstructedBoard))) self.points_correspondences = dict([ ('board_template', board_template), ('board_template_ICP_finetuned', board_template_ICP_finetuned), ('board_template_inside', board_template_inside), ('pixelsPointsLeft', self.pixelsPointsLeft), ('pixelsPointsRight', self.pixelsPointsRight), ('_3DreconstructedBoard',_3DreconstructedBoard), ('Camera_XYZ_Stereo', Camera_XYZ_Stereo), ('closest_lidar_points', closest_lidar_points)]) # save_obj(self.points_correspondences, self.name) ax.legend(handles=legend_elements, loc='best') plt.show() def getDepth_Inside_Outside(self): calibrations = ['inside', 'outside'] output = [] for calib in calibrations: camera_model = load_obj('{}_combined_camera_model'.format(calib)) camera_model_rectify = load_obj('{}_combined_camera_model_rectify'.format(calib)) K_left = camera_model['K_right'] D_left = camera_model['D_right'] T = camera_model['T'] leftMapX, leftMapY = camera_model_rectify['leftMapX'], camera_model_rectify['leftMapY'] rightMapX, rightMapY = camera_model_rectify['rightMapX'], camera_model_rectify['rightMapY'] imgleft = cv2.imread(self.img_file) imgright = cv2.imread(self.img_file2) if stereoRectify: imgleft = cv2.remap(src=imgleft, map1=leftMapX, map2=leftMapY, interpolation=cv2.INTER_LINEAR, dst=None,borderMode=cv2.BORDER_CONSTANT) imgright = cv2.remap(src=imgright, map1=rightMapX, map2=rightMapY, interpolation=cv2.INTER_LINEAR, dst=None,borderMode=cv2.BORDER_CONSTANT) gray_left = cv2.cvtColor(imgleft, cv2.COLOR_BGR2GRAY) ret_left, corners_left = cv2.findChessboardCorners(gray_left, (10, 7), None) gray_right = cv2.cvtColor(imgright, cv2.COLOR_BGR2GRAY) ret_right, corners_right = cv2.findChessboardCorners(gray_right, (10, 7), None) if ret_left and ret_right: # found chessboard corners2_left = cv2.cornerSubPix(gray_left, corners_left, (11, 11), (-1, -1), self.criteria) x_left = np.asarray(corners2_left).squeeze() corners2_right = cv2.cornerSubPix(gray_right, corners_right, (11, 11), (-1, -1), self.criteria) x_right = np.asarray(corners2_right).squeeze() baseline = abs(T[0]) focal_length, cx, cy = K_left[0, 0], K_left[0, 2], K_left[1, 2] disparity = np.sum(np.sqrt((x_left - x_right) ** 2), axis=1) # depth = baseline (meter) * focal length (pixel) / disparity-value (pixel) -> meter depth = (baseline * focal_length / disparity) # .reshape(10,7) fxypxy = [K_left[0, 0], K_left[1, 1], cx, cy] print('{} fx:{}, fy:{}'.format(calib, round(K_left[0, 0],2), round(K_left[1, 1],2))) _3DPoints = [] for i, pixel in enumerate(x_left): u, v = pixel.ravel() u, v = int(u), int(v) distance = depth[i] # print('u:{},v:{},distance:{}'.format(u,v, distance)) pt = np.array([u, v, distance]) pt[0] = pt[2] * (pt[0] - fxypxy[2]) / fxypxy[0] pt[1] = pt[2] * (pt[1] - fxypxy[3]) / fxypxy[1] _3DPoints.append(pt) _3DPoints = np.array(_3DPoints) output.append(_3DPoints) else: print('cannot detect board in both images') if len(output)>1: inside_3D = np.array(output[0]).squeeze() outisde_3D = np.array(output[1]).squeeze() #get the error for each point a_min_b = inside_3D - outisde_3D norm_total = np.linalg.norm(a_min_b)/70 norm_axis = np.linalg.norm(a_min_b, axis=0)/70 print('norm_total:{}, norm_axis:{}'.format(norm_total,norm_axis)) self._3DErros.append(norm_axis) def fitNewPlan(self): coolPoints = self.coolPoints def minimum_bounding_rectangle(points): pi2 = np.pi / 2. # get the convex hull for the points hull = ConvexHull(points) hull_points = points[hull.vertices] y_saved = [] for simplex in hull.simplices: y = coolPoints[simplex,1] x = points[simplex, 0] z = points[simplex, 1] self.ax.plot(x, y, z, 'k-', alpha = .5) y_saved.append(y) y_saved = np.array(y_saved) # calculate edge angles edges = hull_points[1:] - hull_points[:-1] angles = np.arctan2(edges[:, 1], edges[:, 0]) angles = np.abs(np.mod(angles, pi2)) angles = np.unique(angles) rotations = np.vstack([ np.cos(angles),np.cos(angles - pi2), np.cos(angles + pi2),np.cos(angles)]).T rotations = rotations.reshape((-1, 2, 2)) # apply rotations to the hull rot_points = np.dot(rotations, hull_points.T) # find the bounding points min_x = np.nanmin(rot_points[:, 0], axis=1) max_x = np.nanmax(rot_points[:, 0], axis=1) min_y = np.nanmin(rot_points[:, 1], axis=1) max_y = np.nanmax(rot_points[:, 1], axis=1) # find the box with the best area areas = (max_x - min_x) * (max_y - min_y) best_idx = np.argmin(areas) # return the best box x1 = max_x[best_idx] x2 = min_x[best_idx] y1 = max_y[best_idx] y2 = min_y[best_idx] r = rotations[best_idx] rval = np.zeros((4, 2)) rval[0] = np.dot([x1, y2], r) rval[1] = np.dot([x2, y2], r) rval[2] = np.dot([x2, y1], r) rval[3] = np.dot([x1, y1], r) rval = np.array(rval) d_matrix = distance_matrix(rval, points) neighbours = np.argsort(d_matrix, axis=1)[:, 0] rval2 = np.asarray(coolPoints[neighbours, 1]).squeeze() return rval, rval2 points = list(self.coolPoints[:, [0, -1]]) y = np.mean(self.coolPoints[:, 1]) c, c2 = minimum_bounding_rectangle(np.array(points)) self.corners_ = [] for i,point in enumerate(c): #self.corners_.append([point[0],y, point[1]]) self.corners_.append([point[0],c2[i], point[1]]) if self.chessBoard==False and self.circle_center: self.corners_.append([self.circle_center[0],y,self.circle_center[1]]) self.corners_ = np.array(self.corners_) self.ax.scatter(*self.corners_.T, color='k', marker='x', alpha=1, s=50) def fitCircle(self, points): if len(points)>0: def calc_R(x, y, xc, yc): """calculate the distance of each 2D points from the center (xc, yc)""" return np.sqrt((x - xc) ** 2 + (y - yc) ** 2) def f(c, x, y): """calculate the algebraic distance between the data points and the mean circle centered at c=(xc, yc)""" Ri = calc_R(x, y, *c) return Ri - Ri.mean() def sigma(coords, x, y, r): """Computes Sigma for circle fit.""" dx, dy, sum_ = 0., 0., 0. for i in range(len(coords)): dx = coords[i][1] - x dy = coords[i][0] - y sum_ += (sqrt(dx * dx + dy * dy) - r) ** 2 return sqrt(sum_ / len(coords)) def hyper_fit(coords, IterMax=99, verbose=False): """ Fits coords to circle using hyperfit algorithm. Inputs: - coords, list or numpy array with len>2 of the form: [ [x_coord, y_coord], ..., [x_coord, y_coord] ] or numpy array of shape (n, 2) Outputs: - xc : x-coordinate of solution center (float) - yc : y-coordinate of solution center (float) - R : Radius of solution (float) - residu : s, sigma - variance of data wrt solution (float) """ X, Y = None, None if isinstance(coords, np.ndarray): X = coords[:, 0] Y = coords[:, 1] elif isinstance(coords, list): X = np.array([x[0] for x in coords]) Y = np.array([x[1] for x in coords]) else: raise Exception("Parameter 'coords' is an unsupported type: " + str(type(coords))) n = X.shape[0] Xi = X - X.mean() Yi = Y - Y.mean() Zi = Xi * Xi + Yi * Yi # compute moments Mxy = (Xi * Yi).sum() / n Mxx = (Xi * Xi).sum() / n Myy = (Yi * Yi).sum() / n Mxz = (Xi * Zi).sum() / n Myz = (Yi * Zi).sum() / n Mzz = (Zi * Zi).sum() / n # computing the coefficients of characteristic polynomial Mz = Mxx + Myy Cov_xy = Mxx * Myy - Mxy * Mxy Var_z = Mzz - Mz * Mz A2 = 4 * Cov_xy - 3 * Mz * Mz - Mzz A1 = Var_z * Mz + 4. * Cov_xy * Mz - Mxz * Mxz - Myz * Myz A0 = Mxz * (Mxz * Myy - Myz * Mxy) + Myz * (Myz * Mxx - Mxz * Mxy) - Var_z * Cov_xy A22 = A2 + A2 # finding the root of the characteristic polynomial y = A0 x = 0. for i in range(IterMax): Dy = A1 + x * (A22 + 16. * x * x) xnew = x - y / Dy if xnew == x or not np.isfinite(xnew): break ynew = A0 + xnew * (A1 + xnew * (A2 + 4. * xnew * xnew)) if abs(ynew) >= abs(y): break x, y = xnew, ynew det = x * x - x * Mz + Cov_xy Xcenter = (Mxz * (Myy - x) - Myz * Mxy) / det / 2. Ycenter = (Myz * (Mxx - x) - Mxz * Mxy) / det / 2. x = Xcenter + X.mean() y = Ycenter + Y.mean() r = sqrt(abs(Xcenter ** 2 + Ycenter ** 2 + Mz)) s = sigma(coords, x, y, r) iter_ = i if verbose: print('Regression complete in {} iterations.'.format(iter_)) print('Sigma computed: ', s) return x, y, r, s def least_squares_circle(coords): """Circle fit using least-squares solver. Inputs: - coords, list or numpy array with len>2 of the form: [ [x_coord, y_coord], ..., [x_coord, y_coord] ] or numpy array of shape (n, 2) Outputs: - xc : x-coordinate of solution center (float) - yc : y-coordinate of solution center (float) - R : Radius of solution (float) - residu : MSE of solution against training data (float) """ x, y = None, None if isinstance(coords, np.ndarray): x = coords[:, 0] y = coords[:, 1] elif isinstance(coords, list): x = np.array([point[0] for point in coords]) y = np.array([point[1] for point in coords]) else: raise Exception("Parameter 'coords' is an unsupported type: " + str(type(coords))) # coordinates of the barycenter x_m = np.mean(x) y_m = np.mean(y) center_estimate = x_m, y_m center, _ = leastsq(f, center_estimate, args=(x, y)) xc, yc = center Ri = calc_R(x, y, *center) R = Ri.mean() residu = np.sum((Ri - R) ** 2) return xc, yc, R, residu def plot_data_circle(x, y, xc, yc, R): """ Plot data and a fitted circle. Inputs: x : data, x values (array) y : data, y values (array) xc : fit circle center (x-value) (float) yc : fit circle center (y-value) (float) R : fir circle radius (float) Output: None (generates matplotlib plot). """ f = plt.figure(facecolor='white') plt.axis('equal') theta_fit = np.linspace(-pi, pi, 180) x_fit = xc + R * np.cos(theta_fit) y_fit = yc + R * np.sin(theta_fit) plt.plot(x_fit, y_fit, 'b-', label="fitted circle", lw=2) plt.plot([xc], [yc], 'bD', mec='y', mew=1) plt.xlabel('x') plt.ylabel('y') # plot data plt.scatter(x, y, c='red', label='data') plt.legend(loc='best', labelspacing=0.1) plt.grid() plt.title('Fit Circle') x1, y1, r1, resid1 = hyper_fit(points[:,[0,2]]) x2, y2, r2, resid2 = least_squares_circle(points[:,[0,2]]) #plot_data_circle(points[:,1], points[:,2],x,y,r) if resid1>resid2: x, y, r = x2, y2, r2 else: x, y, r = x1, y1, r1 self.circle_center = (x, y) self.circle_radius = r def getData(chess=True): pcl_files = glob.glob('/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/data/{}/*.npy'.format('chess' if chess else 'charuco')) imgleft_files = glob.glob('/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/data/{}/left/*.png'.format('chess' if chess else 'charuco')) imgright_files = glob.glob('/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/data/{}/right/*.png'.format('chess' if chess else 'charuco')) pcl_files.sort() imgleft_files.sort() imgright_files.sort() GoodPoints,_3DErros, IMageNames = [],[],[] for i, file in enumerate(pcl_files): if globalTrigger: print('work with {}'.format(file)) image_left = imgleft_files[i] image_right = imgright_files[i] filt = PointCloud_filter(file=file, img_file=image_left, img_file2=image_right, debug=False) filt.setUp() plt.show() plt.close() print('\n OK:{}, Save points_correspondences : {}'.format(filt.OK, np.shape(filt.points_correspondences))) if filt.OK: GoodPoints.append(filt.points_correspondences) print('save data {} '.format(np.shape(GoodPoints))) _3DErros.append(filt._3DErros) IMageNames.append(os.path.basename(image_left)) else: print('Close') break #save_obj(GoodPoints, 'GoodPoints2_{}'.format('chess' if chess else 'charuco')) print('Data saved in GoodPoints') showErros(_3DErros, IMageNames) def euler_from_matrix(R): beta = -np.arcsin(R[2, 0]) alpha = np.arctan2(R[2, 1] / np.cos(beta), R[2, 2] / np.cos(beta)) gamma = np.arctan2(R[1, 0] / np.cos(beta), R[0, 0] / np.cos(beta)) return np.array((alpha, beta, gamma)) def euler_matrix(theta): R = np.array([[np.cos(theta[1]) * np.cos(theta[2]), np.sin(theta[0]) * np.sin(theta[1]) * np.cos(theta[2]) - np.sin(theta[2]) * np.cos(theta[0]), np.sin(theta[1]) * np.cos(theta[0]) * np.cos(theta[2]) + np.sin(theta[0]) * np.sin( theta[2])], [np.sin(theta[2]) * np.cos(theta[1]), np.sin(theta[0]) * np.sin(theta[1]) * np.sin(theta[2]) + np.cos(theta[0]) * np.cos(theta[2]), np.sin(theta[1]) * np.sin(theta[2]) * np.cos(theta[0]) - np.sin(theta[0]) * np.cos( theta[2])], [-np.sin(theta[1]), np.sin(theta[0]) * np.cos(theta[1]), np.cos(theta[0]) * np.cos(theta[1])]]) return R class LiDAR_Camera_Calibration(object): def __init__(self, file, chess = True, debug=True): self.criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.0001) self.objp = np.zeros((7 * 10, 3), np.float32) self.objp[:, :2] = np.mgrid[0:10, 0:7].T.reshape(-1, 2) * .1 self.debug = debug self.file = file self.chess = chess if chess: self.data_key = ['board_template','board_template_ICP_finetuned','board_template_inside', 'icp_finetuned_inside','closest_lidar_points','closest_lidar_points_inside', 'pixelsPoints','Camera_XYZ_Stereo','Camera_XYZ'] else: self.data_key = ['board_template','board_template_ICP_finetuned','board_template_inside','pixelsPoints', 'Camera_XYZ_Stereo','closest_lidar_points'] self.readIntrinsics() try: self.load_points() except: print('cannot load data points') '''self.Rotation = np.array([[ 0.94901505, 0.01681284, 0.3147821 ], [-0.01003801, 0.99968204, -0.02313113], [-0.31507091, 0.018792, 0.94888207]]).squeeze() self.Translation = np.array([[-0.98078971], [ 0.00600202], [ 0.19497569]]).squeeze() #self.Translation[0] = -.64 euler = euler_from_matrix(self.Rotation) # print('euler1->{}'.format(euler)) angles = euler_from_matrix(self.Rotation) print('rotation1: ', [(180.0 / math.pi) * i for i in angles]) euler[1] = np.deg2rad(22.598) self.Rotation = euler_matrix(euler)''' def rmse(self, objp, imgp, K, D, rvec, tvec): print('objp:{}, imgp:{}'.format(np.shape(objp), np.shape(imgp))) predicted, _ = cv2.projectPoints(objp, rvec, tvec, K, D) print('rmse=====================================================') print('predicted -> {}, type - >{}'.format(np.shape(predicted), type(predicted))) predicted = cv2.undistortPoints(predicted, K, D, P=K) predicted = predicted.squeeze() pix_serr = [] for i in range(len(predicted)): xp = predicted[i, 0] yp = predicted[i, 1] xo = imgp[i, 0] yo = imgp[i, 1] pix_serr.append((xp - xo) ** 2 + (yp - yo) ** 2) ssum = sum(pix_serr) return math.sqrt(ssum / len(pix_serr)) def readIntrinsics(self): name = 'inside' name = 'outside' self.camera_model = load_obj('{}_combined_camera_model'.format(name)) self.camera_model_rectify = load_obj('{}_combined_camera_model_rectify'.format(name)) self.K_right = self.camera_model['K_left'] self.K_left = self.camera_model['K_right'] self.D_right = self.camera_model['D_left'] self.D_left = self.camera_model['D_right'] print(' self.K_right') print( self.K_right) print(' self.K_left') print(self.K_left) self.R = self.camera_model['R'] self.T = self.camera_model['T'] self.K = self.K_right self.D = self.D_right print('self T before {}'.format(np.shape(self.T))) self.T = np.array([-0.96, 0., 0.12])[:, np.newaxis] print('self T after {}'.format(np.shape(self.T))) angles = np.array([np.deg2rad(0.68), np.deg2rad(22.66), np.deg2rad(-1.05)]) self.R = euler_matrix(angles) #----------------------------------------------------- self.T = np.array([-0.977, 0.004, 0.215])[:, np.newaxis] angles = np.array([np.deg2rad(1.044), np.deg2rad(22.632), np.deg2rad(-.95)]) self.R = euler_matrix(angles) #print(self.R) print('translation is {}-----------------------------'.format(self.T)) img_shape = (1936, 1216) print('img_shape:{}'.format(img_shape)) R1, R2, P1, P2, Q, roi_left, roi_right = cv2.stereoRectify(self.K_left, self.D_left, self.K_right, self.D_right, imageSize=img_shape, R=self.camera_model['R'], T=self.camera_model['T'], flags=cv2.CALIB_ZERO_DISPARITY, alpha=-1 #alpha=0 ) #print('R1:{}'.format(R1)) #print('R2:{}'.format(R2)) # print('euler1->{}'.format(euler)) angles = euler_from_matrix(self.R) print('self.R: ', [(180.0 / math.pi) * i for i in angles]) euler = euler_from_matrix(R1) #print('euler1->{}'.format(euler)) angles = euler_from_matrix(R1) #print('rotation1: ', [(180.0 / math.pi) * i for i in angles]) euler = euler_from_matrix(R2) #print('euler2->{}'.format(euler)) angles = euler_from_matrix(R2) #print('rotation2: ', [(180.0 / math.pi) * i for i in angles]) self.R1 = R1 self.R2 = R2 self.P1 = P1 self.leftMapX, self.leftMapY = cv2.initUndistortRectifyMap( self.K_left, self.D_left, R1, P1, img_shape, cv2.CV_32FC1) self.rightMapX, self.rightMapY = cv2.initUndistortRectifyMap( self.K_right, self.D_right, R2, P2, img_shape, cv2.CV_32FC1) print('Got camera intrinsic') print('Got camera-lidar extrinsics') def load_points(self): self.Lidar_3D, self.Image_2D,self.Image_2D2, self.Image_3D,self.Camera_XYZ = [],[],[],[],[] with open(self.file, 'rb') as f: self.dataPoinst = pickle.load(f, encoding='latin1') #with open(self.file,'rb') as f: #self.dataPoinst = pickle.load(f) self.N = len(self.dataPoinst) print('Got {} data views'.format(self.N)) #self.N = 1 for i in range(self.N): try: dictionary_data = self.dataPoinst[i] LiDAR_3D_points = dictionary_data['board_template_inside'] #N x 3 #pixelsPoints = dictionary_data['pixelsPoints'] #N x 2 #StereoCam_3D_points = dictionary_data['Camera_XYZ_Stereo'] #N x 3 pixelsPointsLeft = dictionary_data['pixelsPointsLeft'] pixelsPointsRight = dictionary_data['pixelsPointsRight'] StereoCam_3D_points = dictionary_data['_3DreconstructedBoard'] #N x 3 self.Lidar_3D.append(LiDAR_3D_points) self.Image_2D.append(pixelsPointsLeft) self.Image_2D2.append(pixelsPointsRight) self.Image_3D.append(StereoCam_3D_points) if self.chess: self.Camera_XYZ.append(dictionary_data['Camera_XYZ']) except: #print('Cannot read data') pass #self.Lidar_3D = np.array(self.Lidar_3D).reshape(-1,3) #self.Image_2D = np.array(self.Image_2D).reshape(-1,2) #self.Image_3D = np.array( self.Image_3D).reshape(-1,3) print('Lidar_3D:{}, Image_2D:{}, Image_2D2:{}, Image_3D:{}'.format(np.shape(self.Lidar_3D), np.shape(self.Image_2D),np.shape(self.Image_2D2), np.shape(self.Image_3D))) def plotData(self): self.fig = plt.figure(figsize=plt.figaspect(0.33)) self.fig.tight_layout() for i in range(self.N): print('{}/{}'.format(i+1,self.N)) ax1 = self.fig.add_subplot(1, 3, 1, projection='3d') #ax1.set_title('3D LiDAR') ax1.set_xlabel('X', fontsize=8) ax1.set_ylabel('Y', fontsize=8) ax1.set_zlabel('Z', fontsize=8) ax2 = self.fig.add_subplot(1, 3, 2, projection='3d') ax2.set_title('3D Stereo cameras') ax2.set_xlabel('X', fontsize=8) ax2.set_ylabel('Y', fontsize=8) ax2.set_zlabel('Z', fontsize=8) ax3 = self.fig.add_subplot(1, 3, 3, projection='3d') ax3.set_title('2D pixels') ax3.set_xlabel('X', fontsize=8) ax3.set_ylabel('Y', fontsize=8) ax3.set_zlabel('Z', fontsize=8) _3d_LIDAR = np.array(self.Lidar_3D[i]) ax1.scatter(*_3d_LIDAR.T) self.axisEqual3D(ax1, _3d_LIDAR) _3d_cam = np.array(self.Image_3D[i]) ax2.scatter(*_3d_cam.T, c='r') self.axisEqual3D(ax2,_3d_cam) _2d_cam = np.array(self.Image_2D[i]) ax3.scatter(*_2d_cam.T, c='g') self.axisEqual3D(ax3, _2d_cam) plt.show() def axisEqual3D(self,ax,data): extents = np.array([getattr(ax, 'get_{}lim'.format(dim))() for dim in 'xyz']) sz = extents[:, 1] - extents[:, 0] centers = np.mean(data, axis=0) maxsize = max(abs(sz)) r = maxsize / 2 for ctr, dim in zip(centers, 'xyz'): getattr(ax, 'set_{}lim'.format(dim))(ctr - r, ctr + r) def get3D_3D_homography(self, src, dst): #both or Nx3 matrices src_mean = np.mean(src, axis=0) dst_mean = np.mean(dst, axis=0) # Compute covariance """try: H = reduce(lambda s, (a, b): s + np.outer(a, b), zip(src - src_mean, dst - dst_mean), np.zeros((3, 3))) u, s, v = np.linalg.svd(H) R = v.T.dot(u.T) # Rotation T = - R.dot(src_mean) + dst_mean # Translation H = np.hstack((R, T[:, np.newaxis])) return H,R.T,T except: print('switch to python 2')""" def calibrate_3D_3D_old(self): print('3D-3D ========================================================================================') file = '/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/data/GoodPoints_3D3D_{}.pkl'.format('chess') file = '/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/data/GoodPoints_{}.pkl'.format('chess') self.Lidar_3D, self.Image_2D, self.Image_3D, self.Camera_XYZ = [], [], [], [] with open(file, 'rb') as f: self.dataPoinst = pickle.load(f) self.N = len(self.dataPoinst) print('Got {} data views'.format(self.N)) for i in range(self.N): try: dictionary_data = self.dataPoinst[i] LiDAR_3D_points = dictionary_data['board_template_inside'] # N x 3 pixelsPoints = dictionary_data['pixelsPoints'] # N x 2 StereoCam_3D_points = dictionary_data['Camera_XYZ_Stereo'] # N x 3 #StereoCam_3D_points = dictionary_data['point3D_trianguate'] self.Lidar_3D.append(LiDAR_3D_points) self.Image_2D.append(pixelsPoints) self.Image_3D.append(StereoCam_3D_points) if self.chess: self.Camera_XYZ.append(dictionary_data['Camera_XYZ']) except: print('Cannot read data===================================================') break print('Lidar_3D:{}, Image_2D:{}, Image_3D:{}'.format(np.shape(self.Lidar_3D), np.shape(self.Image_2D), np.shape(self.Image_3D))) Lidar_3D = np.array(self.Lidar_3D).reshape(-1, 3) Image_3D = np.array( self.Image_3D).reshape(-1,3) print('Lidar_3D:{}, Image_3D:{}'.format(np.shape(Lidar_3D),np.shape(Image_3D))) #-------------------------------------#------------------------------------- c_, R_, t_ = self.estimate(Lidar_3D,Image_3D) #import superpose3d as super #(RMSD, R_, t_, c_) = super.Superpose3D(Lidar_3D, Image_3D) #print('RMSD -> {}, t_{}, c_->{}'.format(RMSD, t_, c_)) # -------------------------------------#------------------------------------- def similarity_transform(from_points, to_points): assert len(from_points.shape) == 2, \ "from_points must be a m x n array" assert from_points.shape == to_points.shape, \ "from_points and to_points must have the same shape" N, m = from_points.shape mean_from = from_points.mean(axis=0) mean_to = to_points.mean(axis=0) delta_from = from_points - mean_from # N x m delta_to = to_points - mean_to # N x m sigma_from = (delta_from * delta_from).sum(axis=1).mean() sigma_to = (delta_to * delta_to).sum(axis=1).mean() cov_matrix = delta_to.T.dot(delta_from) / N U, d, V_t = np.linalg.svd(cov_matrix, full_matrices=True) cov_rank = np.linalg.matrix_rank(cov_matrix) S = np.eye(m) if cov_rank >= m - 1 and np.linalg.det(cov_matrix) < 0: S[m - 1, m - 1] = -1 elif cov_rank < m - 1: raise ValueError("colinearility detected in covariance matrix:\n{}".format(cov_matrix)) R = U.dot(S).dot(V_t) c = (d * S.diagonal()).sum() / sigma_from t = mean_to - c * R.dot(mean_from) print('R:{},t:{},c:{}'.format(R,t,c)) return c * R, t print('similarity_transform===============================') from_points = Lidar_3D to_points = Image_3D M_ans, t_ans = similarity_transform(from_points, to_points) H, R, T = self.get3D_3D_homography(src = Lidar_3D, dst=Image_3D) print('H:{}, R:{}, T:{}'.format(np.shape(H), np.shape(R), np.shape(T))) print(H) self.fig = plt.figure(figsize=plt.figaspect(1.)) ax1 = self.fig.add_subplot(1, 1, 1, projection='3d') #ax1.set_title('3D LiDAR') ax1.set_xlabel('X', fontsize=8) ax1.set_ylabel('Y', fontsize=8) ax1.set_zlabel('Z', fontsize=8) ax1.set_axis_off() _3d_LIDAR = self.Lidar_3D[0] ax1.scatter(*_3d_LIDAR.T, label = 'LiDAR') _3d_Image = self.Image_3D[0] ax1.scatter(*_3d_Image.T, s=25, label = 'Stereo Cam') T = _3d_LIDAR.dot(c_ * R_) + t_ print('T -> {}'.format(np.shape(T))) ax1.scatter(*T.T, marker='x', label='T') d2 = distance_matrix(_3d_Image,_3d_Image) print('d2:{}'.format(d2)) print('d2 shape :{}'.format(np.shape(d2))) ones = np.ones(len(_3d_LIDAR))[:, np.newaxis] transformed_ = np.hstack((_3d_LIDAR,ones)) transformed = np.dot(H, transformed_.T).T #transformation estimated with SVD print(np.shape(transformed)) ax1.scatter(*transformed.T, s=25, label = 'ICP sol') #ax1.set_axis_off() primary = Lidar_3D# _3d_LIDAR secondary = Image_3D# _3d_Image pad = lambda x: np.hstack([x, np.ones((x.shape[0], 1))]) unpad = lambda x: x[:, :-1] X = pad(primary) Y = pad(secondary) # Solve the least squares problem X * A = Y # to find our transformation matrix A A, res, rank, s = np.linalg.lstsq(X, Y) transform = lambda x: unpad(np.dot(pad(x), A)) #print transform(primary) print("Max error:", np.abs(secondary - transform(primary)).max()) trns2 = transform(_3d_LIDAR) #transformation estimated with LS ax1.scatter(*trns2.T, label = 'least square sol') to_points = M_ans.dot(_3d_LIDAR.T).T + t_ans print('to_points ->{}'.format(np.shape(to_points))) ax1.scatter(*to_points.T, label = 'to_points') self.axisEqual3D(ax1, transformed) ax1.legend() plt.show() #---------------------------------- if True: img = cv2.imread('/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/data/chess/left/left_4.png') img2 = cv2.imread('/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/data/chess/right/right_4.png') cloud_file = '/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/data/chess/cloud_4.npy' else: img = cv2.imread('/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/data/charuco/left/left_4.png') img2 = cv2.imread('/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/data/charuco/right/right_4.png') cloud_file = '/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/data/charuco/cloud_4.npy' i = 12 l = '/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/cool/left_{}.png'.format(i) r = '/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/cool/right_{}.png'.format(i) #img, img2 = cv2.imread(l), cv2.imread(r) #cloud_file = '/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/cool/cloud_{}.npy'.format(i) if stereoRectify and True: img = cv2.remap(src=img, map1=self.leftMapX, map2=self.leftMapY, interpolation=cv2.INTER_LINEAR, dst=None, borderMode=cv2.BORDER_CONSTANT) img2 = cv2.remap(src=img2, map1=self.rightMapX, map2=self.rightMapY, interpolation=cv2.INTER_LINEAR, dst=None, borderMode=cv2.BORDER_CONSTANT) #Points in LiDAR frame LiDAR_points3D = np.array(np.load(cloud_file, mmap_mode='r'), dtype=np.float32)[:, :3] # print('LiDAR_points3D:{}'.format(np.shape(LiDAR_points3D))) #converted in camera frame ones = np.ones(len(LiDAR_points3D))[:, np.newaxis] transformed_ = np.hstack((LiDAR_points3D, ones)) Camera_points3D = np.dot(H, transformed_.T).T #Camera_points3D = transform(LiDAR_points3D) #print('Camera_points3D:{}'.format(np.shape(Camera_points3D))) #Camera_points3D = LiDAR_points3D.dot(c_ * R_) + t_ #Camera_points3D = LiDAR_points3D.dot(R_) + t_ #Camera_points3D = transform(LiDAR_points3D) #transformation estimated with LS print('Camera_points3D -> {}'.format(Camera_points3D)) rvec, _ = cv2.Rodrigues(np.eye(3)) tvec = np.zeros(3) #Camera_points3D = LiDAR_points3D#.dot(R_) + t_ #rvec = R_ #tran = t_ #tran[0] = -0.02 #tran[1] = -0.03 print('rvec -> {}, tvec->{}'.format(np.shape(rvec),np.shape(tvec))) print('Camera_points3D -> {}'.format(np.shape(Camera_points3D))) # Reproject back into the two cameras rvec1, _ = cv2.Rodrigues(np.eye(3).T) # Change rvec2, _ = cv2.Rodrigues(self.R.T) # Change t1 = np.array([[0.], [0.], [0.]]) t2 = self.T p1, _ = cv2.projectPoints(Camera_points3D[:, :3], rvec1, -t1, self.K, distCoeffs=self.D) # Change p2, _ = cv2.projectPoints(Camera_points3D[:, :3], rvec2, -t2, self.K, distCoeffs=self.D) # Change #points2D = [cv2.projectPoints(point, rvec, tvec, self.K, self.D)[0] for point in Camera_points3D[:, :3]] points2D, _ = cv2.projectPoints(Camera_points3D[:, :3], np.identity(3), np.array([0., 0., 0.]), self.K, self.D) points2D = np.asarray(points2D).squeeze() points2D = np.asarray(p1).squeeze() print('points2D:{}, img.shape[1]:{}'.format(np.shape(points2D), img.shape[1])) inrange = np.where( (points2D[:, 0] >= 0) & (points2D[:, 1] >= 0) & (points2D[:, 0] < img.shape[1]) & (points2D[:, 1] < img.shape[0]) ) points2D = points2D[inrange[0]].round().astype('int') # Draw the projected 2D points for i in range(len(points2D)): cv2.circle(img, tuple(points2D[i]), 2, (0, 255, 0), -1) #cv2.circle(img2, tuple(points2D[i]), 2, (0, 255, 0), -1) print('rvec -> {}, tvec->{}'.format(np.shape(rvec),np.shape(tvec))) T_01 = np.vstack((np.hstack((np.eye(3), tvec[:,np.newaxis])), [0, 0, 0, 1])) # from lidar to right camera T_12 = np.vstack((np.hstack((self.R, self.T)), [0, 0, 0, 1])) # between cameras T_final = np.dot(T_01,T_12) rotation, translation = T_final[:3, :3], T_final[:3, -1] points2D = [cv2.projectPoints(point, rotation, translation, self.K, self.D)[0] for point in Camera_points3D[:, :3]] points2D = np.asarray(points2D).squeeze() points2D = np.asarray(p2).squeeze() print('points2D:{}, img.shape[1]:{}'.format(np.shape(points2D), img.shape[1])) inrange = np.where( (points2D[:, 0] >= 0) & (points2D[:, 1] >= 0) & (points2D[:, 0] < img.shape[1]) & (points2D[:, 1] < img.shape[0]) ) points2D = points2D[inrange[0]].round().astype('int') # Draw the projected 2D points for i in range(len(points2D)): cv2.circle(img2, tuple(points2D[i]), 2, (0, 255, 0), -1) cv2.imshow('left', cv2.resize(img,None, fx=.4, fy=.4)) cv2.imshow('right', cv2.resize(img2, None, fx=.4, fy=.4)) cv2.waitKey() cv2.destroyAllWindows() def drawCharuco(self, QueryImg): points2D = np.array(self.Image_2D[0]).reshape(-1, 2) for p in points2D: cv2.circle(QueryImg, tuple(p), 4, (0, 0, 255), 5) return QueryImg def calibrate_3D_2D(self, userRansac = False): points3D = np.array(self.Lidar_3D).reshape(-1, 3) points2D = np.array(self.Image_2D).reshape(-1,2) print('points3D:{}, points2D:{}'.format(np.shape(points3D),np.shape(points2D))) # Estimate extrinsics if userRansac: success, rotation_vector, translation_vector, inliers = cv2.solvePnPRansac(points3D, points2D, self.K, self.D, flags=cv2.SOLVEPNP_ITERATIVE) print('success:{},rotation_vector:{},translation_vector:{},inliers:{}'.format(success, np.shape(rotation_vector), np.shape(translation_vector), np.shape(inliers))) # Compute re-projection error. points2D_reproj = cv2.projectPoints(points3D, rotation_vector, translation_vector, self.K, self.D)[0].squeeze(1) error = (points2D_reproj - points2D)[inliers] # Compute error only over inliers. error = np.asarray(error).squeeze() print('points2D_reproj:{}, points2D:{},error:{}'.format(np.shape(points2D_reproj), np.shape(points2D), np.shape(error))) rmse = np.sqrt(np.mean(error[:, 0] ** 2 + error[:, 1] ** 2)) print('Re-projection error before LM refinement (RMSE) in px: ' + str(rmse)) # Refine estimate using LM if not success: print('Initial estimation unsuccessful, skipping refinement') elif not hasattr(cv2, 'solvePnPRefineLM'): print('solvePnPRefineLM requires OpenCV >= 4.1.1, skipping refinement') else: assert len(inliers) >= 3, 'LM refinement requires at least 3 inlier points' rotation_vector, translation_vector = cv2.solvePnPRefineLM(points3D[inliers], points2D[inliers], self.K, self.D, rotation_vector, translation_vector) # Compute re-projection error. points2D_reproj = cv2.projectPoints(points3D, rotation_vector, translation_vector, self.K, self.D)[0].squeeze(1) assert (points2D_reproj.shape == points2D.shape) error = (points2D_reproj - points2D)[inliers] # Compute error only over inliers. error = np.array(error).squeeze() rmse = np.sqrt(np.mean(error[:, 0] ** 2 + error[:, 1] ** 2)) print('Re-projection error after LM refinement (RMSE) in px: ' + str(rmse)) # Convert rotation vector #from tf.transformations import euler_from_matrix rotation_matrix = cv2.Rodrigues(rotation_vector)[0] euler = euler_from_matrix(rotation_matrix) # Save extrinsics np.savez('extrinsics{}.npz'.format('chess' if self.chess else 'charuco'),euler=euler,Rodrigues=rotation_matrix, R=rotation_vector, T=translation_vector) # Display results print('Euler angles (RPY):', euler) print('Rotation Matrix Rodrigues :', rotation_matrix) print('rotation_vector:', rotation_vector) print('Translation Offsets:', translation_vector) points2D = cv2.projectPoints(points3D, rotation_vector, translation_vector, self.K, self.D)[0].squeeze(1) print('========points3D:{}, points2D:{}=================================================='.format(np.shape(points3D),np.shape(points2D))) else: #------------------------------------------------------------------------------------------------- imgp = np.array([points2D], dtype=np.float32).squeeze() objp = np.array([points3D], dtype=np.float32).squeeze() retval, rvec, tvec = cv2.solvePnP(objp, imgp, self.K, self.D, flags=cv2.SOLVEPNP_ITERATIVE) rmat, jac = cv2.Rodrigues(rvec) q = Quaternion(matrix=rmat) print("Transform from camera to laser") print("T = ") print(tvec) print("R = ") print(rmat) print("Quaternion = ") print(q) print("RMSE in pixel = %f" % self.rmse(objp, imgp, self.K, self.D, rvec, tvec)) result_file = 'solvePnP_extrinsics{}.npz'.format('chess' if self.chess else 'charuco') with open(result_file, 'w') as f: f.write("%f %f %f %f %f %f %f" % (q.x, q.y, q.z, q.w, tvec[0], tvec[1], tvec[2])) print("Result output format: qx qy qz qw tx ty tz") #refine results print('refine results------------------------------------>') rvec, tvec = cv2.solvePnPRefineLM(objp,imgp, self.K, self.D, rvec, tvec) rmat, jac = cv2.Rodrigues(rvec) q = Quaternion(matrix=rmat) print("Transform from camera to laser") print("T = ") print(tvec) print("R = ") print(rmat) print("Quaternion = ") print(q) print('Euler angles') angles = euler_from_matrix(rmat) print(angles) print('euler angles ', [(180.0 / math.pi) * i for i in angles]) print("RMSE in pixel = %f" % self.rmse(objp, imgp, self.K, self.D, rvec, tvec)) result_file = 'refined_solvePnP_extrinsics{}.npz'.format('chess' if self.chess else 'charuco') with open(result_file, 'w') as f: f.write("%f %f %f %f %f %f %f" % (q.x, q.y, q.z, q.w, tvec[0], tvec[1], tvec[2])) def get_z(self, T_cam_world, T_world_pc, K): R = T_cam_world[:3, :3] t = T_cam_world[:3, 3] proj_mat = np.dot(K, np.hstack((R, t[:, np.newaxis]))) xyz_hom = np.hstack((T_world_pc, np.ones((T_world_pc.shape[0], 1)))) xy_hom = np.dot(proj_mat, xyz_hom.T).T z = xy_hom[:, -1] z = np.asarray(z).squeeze() return z def callback_solvePnP(self, img, cloud_file): #init calibraiton calib_file = '/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/solvePnP_extrinsics{}.npz'.format( 'chess' if self.chess else 'charuco') calib_file_ = '/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/combined_extrinsics{}.npz' with open(calib_file, 'r') as f: data = f.read().split() #print('data:{}'.format(data)) qx = float(data[0]) qy = float(data[1]) qz = float(data[2]) qw = float(data[3]) tx = float(data[4]) ty = float(data[5]) tz = float(data[6]) q = Quaternion(qw, qx, qy, qz).transformation_matrix q[0, 3] = tx q[1, 3] = ty q[2, 3] = tz print("Extrinsic parameter - camera to laser") print(q) tvec = q[:3, 3] rot_mat = q[:3, :3] rvec, _ = cv2.Rodrigues(rot_mat) try: objPoints = np.array(np.load(cloud_file, mmap_mode='r'), dtype=np.float32)[:, :3] print('objPoints:{}'.format(np.shape(objPoints))) Z = self.get_z(q, objPoints, self.K) objPoints = objPoints[Z > 0] #print('objPoints:{}'.format(objPoints)) img_points, _ = cv2.projectPoints(objPoints, rvec, tvec, self.K, self.D) img_points = np.squeeze(img_points) for i in range(len(img_points)): try: cv2.circle(img, (int(round(img_points[i][0])), int(round(img_points[i][1]))), 3, (0, 255, 0), 1) except OverflowError: continue if self.chess: cv2.drawChessboardCorners(img, (10, 7), np.array(self.Image_2D).reshape(-1,2), True) else: self.drawCharuco(img) except: print('callback_solvePnP - error') image = cv2.resize(img, None, fx=.6, fy=.6) return image def callback_solvePnP_Ransac(self, img, cloud_file): points3D = np.array(np.load(cloud_file, mmap_mode='r'), dtype=np.float32)[:, :3] print('points3D:{}'.format(np.shape(points3D))) file = np.load('extrinsics{}.npz'.format('chess' if self.chess else 'charuco')) euler = np.array(file["euler"]) rotation_matrix = np.array(file["Rodrigues"]) rotation_vector = np.array(file["R"]) translation_vector = np.array(file["T"]) print('Euler angles (RPY):', euler) print('Rotation Matrix Rodrigues :', rotation_matrix) print('rotation_vector:', rotation_vector) print('Translation Offsets:', translation_vector) rvec = rotation_matrix #rvec, _ = cv2.Rodrigues(rotation_matrix) print('========points3D:{}=================================================='.format( np.shape(points3D))) #points2D = cv2.projectPoints(points3D, rotation_vector, translation_vector, self.K, self.D)[0].squeeze(1) #print('points2D:{}'.format(np.shape(points2D))) points2D = [cv2.projectPoints(point, rvec, translation_vector, self.K, self.D)[0] for point in points3D[:, :3]] points2D = np.asarray(points2D).squeeze() print('points2D:{}, img.shape[1]:{}'.format(np.shape(points2D),img.shape[1])) inrange = np.where( (points2D[:, 0] >= 0) & (points2D[:, 1] >= 0) & (points2D[:, 0] < img.shape[1]) & (points2D[:, 1] < img.shape[0]) ) points2D = points2D[inrange[0]].round().astype('int') # Draw the projected 2D points for i in range(len(points2D)): cv2.circle(img, tuple(points2D[i]), 2, (0, 255, 0), -1) if self.chess: cv2.drawChessboardCorners(img, (10, 7), np.array(self.Image_2D).reshape(-1,2), True) else: self.drawCharuco(img) image = cv2.resize(img, None, fx=.6, fy=.6) return image def callback(self): if self.chess: img = cv2.imread('/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/data/chess/left/left_0.png') cloud_file = '/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/data/chess/cloud_0.npy' else: img = cv2.imread('/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/data/charuco/left/left_0.png') cloud_file = '/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/data/charuco/cloud_0.npy' #img = cv2.imread('/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/data/charuco/left/left_0.png') #cloud_file = '/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/data/charuco/cloud_0.npy' #img = cv2.imread('/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/data/chess/left/left_0.png') #cloud_file = '/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/data/chess/cloud_0.npy' #solvePnP_Ransac_image = self.callback_solvePnP_Ransac(img=img.copy(),cloud_file=cloud_file) cv2.imshow('solvePnP_Ransac', cv2.resize(img,None,fx=.4,fy=.4)) cv2.waitKey() solvePnP_image = self.callback_solvePnP(img=img.copy(),cloud_file=cloud_file) cv2.imshow('solvePnP', solvePnP_image) cv2.waitKey() cv2.destroyAllWindows() def combine_both_boards_and_train(self): #get data from chessboard name = 'chess' self.file = '/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/data/GoodPoints_{}.pkl'.format(name) self.load_points() Lidar_3D, Image_2D, Image_3D = np.array(self.Lidar_3D).reshape(-1,3), np.array(self.Image_2D).reshape(-1,2), np.array(self.Image_3D).reshape(-1,3) #get data from charuco name = 'charuco' self.file = '/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/data/GoodPoints_{}.pkl'.format(name) self.load_points() Lidar_3D, Image_2D = np.vstack((Lidar_3D, np.array(self.Lidar_3D).reshape(-1,3))), np.vstack((Image_2D, np.array(self.Image_2D).reshape(-1,2))) print('Lidar_3D:->{}, Image_2D:->{}'.format(np.shape(Lidar_3D), np.shape(Image_2D))) imgp = np.array([Image_2D], dtype=np.float32).squeeze() objp = np.array([Lidar_3D], dtype=np.float32).squeeze() retval, rvec, tvec = cv2.solvePnP(objp, imgp, self.K, self.D, flags=cv2.SOLVEPNP_ITERATIVE) print('tvec -> {}'.format(tvec.ravel())) rmat, jac = cv2.Rodrigues(rvec) q = Quaternion(matrix=rmat) angles = euler_from_matrix(rmat) print(angles) print('euler angles ', [(180.0 / math.pi) * i for i in angles]) print("RMSE in pixel = %f" % self.rmse(objp, imgp, self.K, self.D, rvec, tvec)) result_file = 'combined_extrinsics{}.npz' with open(result_file, 'w') as f: f.write("%f %f %f %f %f %f %f" % (q.x, q.y, q.z, q.w, tvec[0], tvec[1], tvec[2])) print('Combined calibration done!!!') def computeTransformation(self): i = 5 l = '/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/cool/left_{}.png'.format(i) r = '/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/cool/right_{}.png'.format(i) img1 = cv2.imread(l) img2 = cv2.imread(r) #sift = cv2.SIFT_create() sift = cv2.xfeatures2d.SIFT_create() # find the keypoints and descriptors with SIFT kp1, des1 = sift.detectAndCompute(img1, None) kp2, des2 = sift.detectAndCompute(img2, None) # FLANN parameters FLANN_INDEX_KDTREE = 1 index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5) search_params = dict(checks=50) flann = cv2.FlannBasedMatcher(index_params, search_params) matches = flann.knnMatch(des1, des2, k=2) pts1 = [] pts2 = [] # ratio test as per Lowe's paper for i, (m, n) in enumerate(matches): if m.distance < 0.8 * n.distance: pts2.append(kp2[m.trainIdx].pt) pts1.append(kp1[m.queryIdx].pt) pts1 = np.int32(pts1) pts2 = np.int32(pts2) #F, mask = cv2.findFundamentalMat(pts1, pts2, cv2.FM_LMEDS) E, mask = cv2.findEssentialMat(pts1, pts2, self.K, cv2.RANSAC, 0.999, 1.0, None) print(E) points, R, t, mask = cv2.recoverPose(E, pts1, pts2, self.K) print('R') print(R) angles = euler_from_matrix(R) print('rotation angles: ', [(180.0 / math.pi) * i for i in angles]) print('t') print(t) for pt1, pt2 in zip(pts1, pts2): color = tuple(np.random.randint(0, 255, 3).tolist()) img1 = cv2.circle(img1, tuple(pt1), 5, color, -1) img2 = cv2.circle(img2, tuple(pt2), 5, color, -1) cv2.imshow('imgL', cv2.resize(img1, None, fx=.4, fy=.4)) cv2.imshow('imgR', cv2.resize(img2, None, fx=.4, fy=.4)) cv2.waitKey(0) cv2.destroyAllWindows() def write_ply(self, fn, verts, colors): ply_header = '''ply format ascii 1.0 element vertex %(vert_num)d property float x property float y property float z property uchar red property uchar green property uchar blue end_header ''' out_colors = colors.copy() verts = verts.reshape(-1, 3) verts = np.hstack([verts, out_colors]) with open(fn, 'wb') as f: f.write((ply_header % dict(vert_num=len(verts))).encode('utf-8')) np.savetxt(f, verts, fmt='%f %f %f %d %d %d ') def view(self): import glob import open3d file = glob.glob('/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/*.ply') pcda = [] for i, file_path in enumerate(file): print("{} Load a ply point cloud, print it, and render it".format(file_path)) pcd = open3d.io.read_point_cloud(file_path) pcda.append(pcd) open3d.visualization.draw_geometries([pcd]) #o3d.visualization.draw_geometries([pcda[1], pcda[-1]]) def reproject_on_3D(self, useUnique = True): def readCalibrationExtrinsic(): calib_file = '/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/solvePnP_extrinsics{}.npz'.format( 'chess' if self.chess else 'charuco') calib_file = '/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/combined_extrinsics{}.npz' with open(calib_file, 'r') as f: data = f.read().split() #print('data:{}'.format(data)) qx = float(data[0]) qy = float(data[1]) qz = float(data[2]) qw = float(data[3]) tx = float(data[4]) ty = float(data[5]) tz = float(data[6]) q = Quaternion(qw, qx, qy, qz).transformation_matrix q[0, 3],q[1, 3],q[2, 3] = tx,ty,tz tvec = q[:3, 3] rot_mat = q[:3, :3] #rvec, _ = cv2.Rodrigues(rot_mat) rvec = rot_mat print('tvec -> {}'.format(tvec)) return rvec, tvec, q rvec, tvec, q = readCalibrationExtrinsic() print(self.K) print(self.D) print(rvec) print(tvec) i=1 i=11 l = '/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/cool/left_{}.png'.format(i) r = '/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/cool/right_{}.png'.format(i) imgLeft, imgRight = cv2.imread(l),cv2.imread(r) cloud_file = '/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/cool/cloud_{}.npy'.format(i) _3DPoints = np.array(np.load(cloud_file, mmap_mode='r'), dtype=np.float32)[:, :3] #Left image-------------------------------------------------------------------------------------------- objPoints_left = _3DPoints.copy() Z = self.get_z(q, objPoints_left, self.K) objPoints_left = objPoints_left[Z > 0] print('objPoints_left:{}'.format(np.shape(objPoints_left))) points2D_left, _ = cv2.projectPoints(objPoints_left, rvec, tvec, self.K, self.D) points2D_left = np.squeeze(points2D_left) print('objPoints_left -> {}, points2D_left -> {}, '.format(np.shape(objPoints_left), np.shape(points2D_left))) inrange_left = np.where((points2D_left[:, 0] > 0) & (points2D_left[:, 1] > 0) & (points2D_left[:, 0] < imgLeft.shape[1]-1) & (points2D_left[:, 1] < imgLeft.shape[0]-1)) print('inrange_left : {}'.format(np.shape(inrange_left))) points2D_left = points2D_left[inrange_left[0]].round().astype('int') print('points2D_left:{}, '.format(np.shape(points2D_left))) #Right image ---------------------------------------------------------------------------------------- objPoints_right = _3DPoints.copy() Z = self.get_z(q, objPoints_right, self.K_left) objPoints_right = objPoints_right[Z > 0] T_01 = np.vstack((np.hstack((rvec, tvec[:, np.newaxis])), [0,0,0,1])) #from lidar to right camera T_12 = np.vstack((np.hstack((self.R, self.T)), [0,0,0,1])) #between cameras T_final = np.dot(T_12, T_01) rotation, translation = T_final[:3,:3], T_final[:3,-1] points2D_right, _ = cv2.projectPoints(objPoints_right, rotation, translation, self.K_left, self.D_left) points2D_right = np.squeeze(points2D_right) inrange_right = np.where((points2D_right[:, 0] >= 0) &(points2D_right[:, 1] >= 0) & (points2D_right[:, 0] < imgRight.shape[1]-1) &(points2D_right[:, 1] < imgRight.shape[0]-1)) print('points2D_right init ->{}'.format(np.shape(points2D_right))) points2D_right = points2D_right[inrange_right[0]].round().astype('int') print('points2D_right now ->{}'.format(np.shape(points2D_right))) #columns=["X", "Y", "Z","intens","ring"] colors = np.array(np.load(cloud_file, mmap_mode='r'))[:, 3] # # Color map for the points colors = colors[inrange_left[0]] cmap = matplotlib.cm.get_cmap('hsv') colors = cmap(colors / np.max(colors)) print('colors -> {}, min:{}, max:{}'.format(np.shape(colors), np.min(colors), np.max(colors))) colorImageLeft,colorImageRight = imgLeft.copy(),imgRight.copy() fig, axs = plt.subplots(1, 2) fig.set_size_inches(20, 10.5, forward=True) axs[0].imshow(imgLeft) #axs[0].scatter(points2D_left[:,0],points2D_left[:,1], s=.1, c='green') axs[0].scatter(points2D_left[:,0],points2D_left[:,1], s=.3, c=colors) axs[0].set_title("Left image") axs[1].set_title("Right image") axs[1].imshow(imgRight) #axs[1].scatter(points2D_right[:,0],points2D_right[:,1], s=.1, c='red') # Color map for the points colors = np.array(np.load(cloud_file, mmap_mode='r'))[:, 3] # colors = colors[inrange_right[0]] colors = cmap(colors / np.max(colors)) print('points2D_right->{}, colors->{}'.format(np.shape(points2D_right), np.shape(colors))) axs[1].scatter(points2D_right[:,0],points2D_right[:,1], s=.1, c=colors) fig.tight_layout() plt.show() points_left = objPoints_left[inrange_left[0]] points_right = objPoints_right[inrange_right[0]] print('points_left -> {}, colorImageLeft->{}'.format(np.shape(points_left), np.shape(colorImageLeft))) print('points_right -> {}, colorImageRight->{}'.format(np.shape(points_right), np.shape(colorImageRight))) colors_left = colorImageLeft[points2D_left[:, 1], points2D_left[:, 0], :] colors_right = colorImageRight[points2D_right[:, 1], points2D_right[:, 0], :] print('colors_left -> {}'.format(
np.shape(colors_left)
numpy.shape
# Copyright (c) OpenMMLab. All rights reserved. import copy import tempfile import numpy as np import pytest from mmcv import Config from mmpose.datasets import DATASETS from mmpose.datasets.builder import build_dataset def test_body3d_h36m_dataset(): # Test Human3.6M dataset dataset = 'Body3DH36MDataset' dataset_class = DATASETS.get(dataset) dataset_info = Config.fromfile( 'configs/_base_/datasets/h36m.py').dataset_info # test single-frame input data_cfg = dict( num_joints=17, seq_len=1, seq_frame_interval=1, joint_2d_src='pipeline', joint_2d_det_file=None, causal=False, need_camera_param=True, camera_param_file='tests/data/h36m/cameras.pkl') _ = dataset_class( ann_file='tests/data/h36m/test_h36m_body3d.npz', img_prefix='tests/data/h36m', data_cfg=data_cfg, dataset_info=dataset_info, pipeline=[], test_mode=False) custom_dataset = dataset_class( ann_file='tests/data/h36m/test_h36m_body3d.npz', img_prefix='tests/data/h36m', data_cfg=data_cfg, dataset_info=dataset_info, pipeline=[], test_mode=True) assert custom_dataset.dataset_name == 'h36m' assert custom_dataset.test_mode is True _ = custom_dataset[0] results = [] for result in custom_dataset: results.append({ 'preds': result['target'][None, ...], 'target_image_paths': [result['target_image_path']], }) metrics = ['mpjpe', 'p-mpjpe', 'n-mpjpe'] infos = custom_dataset.evaluate(results, metric=metrics)
np.testing.assert_almost_equal(infos['MPJPE'], 0.0)
numpy.testing.assert_almost_equal
#!/usr/bin/env python3 from os import mkdir, rename from os.path import isdir, isfile import time import numpy as np from matplotlib import pyplot as plt import h5py from scipy.optimize import minimize from LoLIM.utilities import v_air, RTD, processed_data_dir, logger from LoLIM.IO.raw_tbb_IO import MultiFile_Dal1, filePaths_by_stationName, read_antenna_delays, read_station_delays, read_bad_antennas, read_antenna_pol_flips from LoLIM.findRFI import FindRFI, window_and_filter from LoLIM.signal_processing import half_hann_window, remove_saturation, num_double_zeros from LoLIM.antenna_response import LBA_antenna_model from LoLIM.interferometry import impulsive_imager_tools as II_tools def do_nothing(*A, **B): pass #### some algorithms for choosing pairs of antennas #### def pairData_NumAntPerStat(input_files, num_ant_per_stat=1, bad_antennas=[]): """return the antenna-pair data for choosing one antenna per station""" num_stations = len(input_files) even_bad_antennas = [A[0] for A in bad_antennas] antennas = [] for file_index in range(num_stations): ant_names = input_files[file_index].get_antenna_names() num_antennas_in_station = len( ant_names ) for x in range(num_ant_per_stat): if x*2 < num_antennas_in_station and ant_names[x*2] not in even_bad_antennas: antennas.append( [file_index,x*2] ) return np.array(antennas, dtype=int) def pairData_NumAntPerStat_PolO(input_files, num_ant_per_stat=1, bad_antennas=[]): """return the antenna-pair data for choosing one antenna per station""" num_stations = len(input_files) even_bad_antennas = [A[0] for A in bad_antennas] antennas = [] for file_index in range(num_stations): ant_names = input_files[file_index].get_antenna_names() num_antennas_in_station = len( ant_names ) for x in range(num_ant_per_stat): if x*2 < num_antennas_in_station and ant_names[x*2] not in even_bad_antennas: antennas.append( [file_index,(x*2)+1] ) return np.array(antennas, dtype=int) def pairData_NumAntPerStat_DualPol(input_files, num_ant_per_stat=1, bad_antennas=[]): """return the antenna-pair data for choosing one antenna per station""" num_stations = len(input_files) even_bad_antennas = [A[0] for A in bad_antennas] antennas = [] for file_index in range(num_stations): ant_names = input_files[file_index].get_antenna_names() num_antennas_in_station = len( ant_names ) for x in range(num_ant_per_stat): if x*2 < num_antennas_in_station and ant_names[x*2] not in even_bad_antennas: antennas.append( [file_index,x*2] ) antennas.append( [file_index,x*2+1] ) return
np.array(antennas, dtype=int)
numpy.array
import numpy as np import h5py import os import time import cPickle as pkl import atexit, signal from time import strftime, sleep from itertools import cycle, product from multiprocessing import Process, Queue, sharedctypes from dataset import Dataset from trajectory import traj_iou, object_trajectory_proposal from baseline import * class SharedArray(object): """Numpy array that uses sharedctypes to store data""" def __init__(self, shape, dtype=np.float32): # Compute total number of elements size =
np.prod(shape)
numpy.prod
""" Linear State Beam Element Class """ from sharpy.linear.utils.ss_interface import BaseElement, linear_system, LinearVector import sharpy.linear.src.lingebm as lingebm import numpy as np import sharpy.utils.settings as settings import sharpy.utils.algebra as algebra @linear_system class LinearBeam(BaseElement): r""" State space member Define class for linear state-space realisation of GEBM flexible-body equations from SHARPy ``timestep_info`` class and with the nonlinear structural information. State-space models can be defined in continuous or discrete time (dt required). Modal projection, either on the damped or undamped modal shapes, is also avaiable. Notes on the settings: a. ``modal_projection={True,False}``: determines whether to project the states onto modal coordinates. Projection over damped or undamped modal shapes can be obtained selecting: - ``proj_modes = {'damped','undamped'}`` while - ``inout_coords={'modes','nodal'}`` determines whether the modal state-space inputs/outputs are modal coords or nodal degrees-of-freedom. If ``modes`` is selected, the ``Kin`` and ``Kout`` gain matrices are generated to transform nodal to modal dofs b. ``dlti={True,False}``: if true, generates discrete-time system. The continuous to discrete transformation method is determined by:: discr_method={ 'newmark', # Newmark-beta 'zoh', # Zero-order hold 'bilinear'} # Bilinear (Tustin) transformation DLTIs can be obtained directly using the Newmark-:math:`\beta` method ``discr_method='newmark'`` ``newmark_damp=xx`` with ``xx<<1.0`` for full-states descriptions (``modal_projection=False``) and modal projection over the undamped structural modes (``modal_projection=True`` and ``proj_modes``). The Zero-order holder and bilinear methods, instead, work in all descriptions, but require the continuous state-space equations. """ sys_id = "LinearBeam" settings_types = dict() settings_default = dict() settings_description = dict() settings_options = dict() settings_default['modal_projection'] = True settings_types['modal_projection'] = 'bool' settings_description['modal_projection'] = 'Use modal projection' settings_default['inout_coords'] = 'nodes' settings_types['inout_coords'] = 'str' settings_description['inout_coords'] = 'Beam state space input/output coordinates' settings_options['inout_coords'] = ['nodes', 'modes'] settings_types['num_modes'] = 'int' settings_default['num_modes'] = 10 settings_description['num_modes'] = 'Number of modes to retain' settings_default['discrete_time'] = True settings_types['discrete_time'] = 'bool' settings_description['discrete_time'] = 'Assemble beam in discrete time' settings_default['dt'] = 0.001 settings_types['dt'] = 'float' settings_description['dt'] = 'Discrete time system integration time step' settings_default['proj_modes'] = 'undamped' settings_types['proj_modes'] = 'str' settings_description['proj_modes'] = 'Use ``undamped`` or ``damped`` modes' settings_options['proj_modes'] = ['damped', 'undamped'] settings_default['discr_method'] = 'newmark' settings_types['discr_method'] = 'str' settings_description['discr_method'] = 'Discrete time assembly system method:' settings_options['discr_method'] = ['newmark', 'zoh', 'bilinear'] settings_default['newmark_damp'] = 1e-4 settings_types['newmark_damp'] = 'float' settings_description['newmark_damp'] = 'Newmark damping value. For systems assembled using ``newmark``' settings_default['use_euler'] = False settings_types['use_euler'] = 'bool' settings_description['use_euler'] = 'Use euler angles for rigid body parametrisation' settings_default['print_info'] = True settings_types['print_info'] = 'bool' settings_description['print_info'] = 'Display information on screen' settings_default['gravity'] = False settings_types['gravity'] = 'bool' settings_description['gravity'] = 'Linearise gravitational forces' settings_types['remove_dofs'] = 'list(str)' settings_default['remove_dofs'] = [] settings_description['remove_dofs'] = 'Remove desired degrees of freedom' settings_options['remove_dofs'] = ['eta', 'V', 'W', 'orient'] settings_types['remove_sym_modes'] = 'bool' settings_default['remove_sym_modes'] = False settings_description['remove_sym_modes'] = 'Remove symmetric modes if wing is clamped' settings_table = settings.SettingsTable() __doc__ += settings_table.generate(settings_types, settings_default, settings_description, settings_options) def __init__(self): self.sys = None # The actual object self.ss = None # The state space object self.clamped = None self.tsstruct0 = None self.settings = dict() self.state_variables = None self.linearisation_vectors = dict() def initialise(self, data, custom_settings=None): if custom_settings: self.settings = custom_settings else: try: self.settings = data.settings['LinearAssembler']['linear_system_settings'] except KeyError: pass settings.to_custom_types(self.settings, self.settings_types, self.settings_default, self.settings_options, no_ctype=True) beam = lingebm.FlexDynamic(data.linear.tsstruct0, data.structure, self.settings) self.sys = beam self.tsstruct0 = data.linear.tsstruct0 # State variables num_dof_flex = self.sys.structure.num_dof.value num_dof_rig = self.sys.Mstr.shape[0] - num_dof_flex state_db = {'eta': [0, num_dof_flex], 'V_bar': [num_dof_flex, num_dof_flex + 3], 'W_bar': [num_dof_flex + 3, num_dof_flex + 6], 'orient_bar': [num_dof_flex + 6, num_dof_flex + num_dof_rig], 'dot_eta': [num_dof_flex + num_dof_rig, 2 * num_dof_flex + num_dof_rig], 'V': [2 * num_dof_flex + num_dof_rig, 2 * num_dof_flex + num_dof_rig + 3], 'W': [2 * num_dof_flex + num_dof_rig + 3, 2 * num_dof_flex + num_dof_rig + 6], 'orient': [2 * num_dof_flex + num_dof_rig + 6, 2 * num_dof_flex + 2 * num_dof_rig]} self.state_variables = LinearVector(state_db, self.sys_id) if num_dof_rig == 0: self.clamped = True self.linearisation_vectors['eta'] = self.tsstruct0.q self.linearisation_vectors['eta_dot'] = self.tsstruct0.dqdt self.linearisation_vectors['forces_struct'] = self.tsstruct0.steady_applied_forces.reshape(-1, order='C') def assemble(self, t_ref=None): """ Assemble the beam state-space system. Args: t_ref (float): Scaling factor to non-dimensionalise the beam's time step. Returns: """ if self.settings['gravity']: self.sys.linearise_gravity_forces() if self.settings['remove_dofs']: self.trim_nodes(self.settings['remove_dofs']) if self.settings['modal_projection'] and self.settings['remove_sym_modes'] and self.clamped: self.remove_symmetric_modes() if t_ref is not None: self.sys.scale_system_normalised_time(t_ref) # import sharpy.linear.assembler.linearthrust as linearthrust # engine = linearthrust.LinearThrust() # engine.initialise() # K_thrust = engine.generate(self.tsstruct0, self.sys) # # self.sys.Kstr += K_thrust self.sys.assemble() # TODO: remove integrals of the rigid body modes (and change mode shapes to account for this in the coupling matrices) # Option to remove certain dofs via dict: i.e. dofs to remove # Map dofs to equations # Boundary conditions # Same with modal, remove certain modes. Need to specify that modes to keep refer to flexible ones only if self.sys.SSdisc: self.ss = self.sys.SSdisc elif self.sys.SScont: self.ss = self.sys.SScont return self.ss def x0(self): x = np.concatenate((self.tsstruct0.q, self.tsstruct0.dqdt)) return x def trim_nodes(self, trim_list=list): num_dof_flex = self.sys.structure.num_dof.value num_dof_rig = self.sys.Mstr.shape[0] - num_dof_flex # Dictionary containing DOFs and corresponding equations dof_db = {'eta': [0, num_dof_flex, 1], 'V': [num_dof_flex, num_dof_flex + 3, 2], 'W': [num_dof_flex + 3, num_dof_flex + 6, 3], 'orient': [num_dof_flex + 6, num_dof_flex + num_dof_rig, 4], 'yaw': [num_dof_flex + 8, num_dof_flex + num_dof_rig, 1]} # ----------------------------------------------------------------------- # Better to place in a function available to all elements since it will equally apply # Therefore, the dof_db should be a class attribute # Take away alongside the vector variable class # All variables vec_db = dict() for item in dof_db: vector_var = VectorVariable(item, dof_db[item], 'LinearBeam') vec_db[item] = vector_var used_vars_db = vec_db.copy() # Variables to remove removed_dofs = 0 removed_db = dict() for item in trim_list: removed_db[item] = vec_db[item] removed_dofs += vec_db[item].size del used_vars_db[item] # Update variables position for rem_item in removed_db: for item in used_vars_db: if used_vars_db[item].rows_loc[0] < removed_db[rem_item].first_pos: continue else: # Update order and position used_vars_db[item].first_pos -= removed_db[rem_item].size used_vars_db[item].end_pos -= removed_db[rem_item].size self.state_variables = used_vars_db # TODO: input and output variables ### ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # Map dofs to equations trim_matrix = np.zeros((num_dof_rig+num_dof_flex, num_dof_flex+num_dof_rig-removed_dofs)) for item in used_vars_db: trim_matrix[used_vars_db[item].rows_loc, used_vars_db[item].cols_loc] = 1 # Update matrices self.sys.Mstr = trim_matrix.T.dot(self.sys.Mstr.dot(trim_matrix)) self.sys.Cstr = trim_matrix.T.dot(self.sys.Cstr.dot(trim_matrix)) self.sys.Kstr = trim_matrix.T.dot(self.sys.Kstr.dot(trim_matrix)) def remove_symmetric_modes(self): """ Removes symmetric modes when the wing is clamped at the midpoint. It will force the wing tip displacements in ``z`` to be postive for all modes. Updates the mode shapes matrix, the natural frequencies and the number of modes. """ # Group modes into symmetric and anti-symmetric modes modes_sym = np.zeros_like(self.sys.U) # grouped modes total_modes = self.sys.num_modes for i in range(total_modes//2): je = 2*i jo = 2*i + 1 modes_sym[:, je] = 1./np.sqrt(2)*(self.sys.U[:, je] + self.sys.U[:, jo]) modes_sym[:, jo] = 1./np.sqrt(2)*(self.sys.U[:, je] - self.sys.U[:, jo]) self.sys.U = modes_sym # Remove anti-symmetric modes # Wing 1 and 2 nodes # z-displacement index ind_w1 = [6*i + 2 for i in range(self.sys.structure.num_node // 2)] # Wing 1 nodes are in the first half rows ind_w1_x = [6*i for i in range(self.sys.structure.num_node // 2)] # Wing 1 nodes are in the first half rows ind_w1_y = [6*i + 1 for i in range(self.sys.structure.num_node // 2)] # Wing 1 nodes are in the first half rows ind_w2 = [6*i + 2 for i in range(self.sys.structure.num_node // 2, self.sys.structure.num_node - 1)] # Wing 2 nodes are in the second half rows sym_mode_index = [] for i in range(self.sys.num_modes//2): found_symmetric = False for j in range(2): ind = 2*i + j # Maximum z displacement for wings 1 and 2 ind_max_w1 = np.argmax(np.abs(modes_sym[ind_w1, ind])) ind_max_w2 = np.argmax(np.abs(modes_sym[ind_w2, ind])) z_max_w1 = modes_sym[ind_w1, ind][ind_max_w1] z_max_w2 = modes_sym[ind_w2, ind][ind_max_w2] z_max_diff = np.abs(z_max_w1 - z_max_w2) if z_max_diff <
np.abs(z_max_w1 + z_max_w2)
numpy.abs
"""Rangeland Production Model.""" import os import logging import tempfile import shutil from builtins import range import re import math import pickle import numpy import pandas from osgeo import ogr from osgeo import osr from osgeo import gdal import pygeoprocessing from rangeland_production import utils from rangeland_production import validation LOGGER = logging.getLogger('rangeland_production.forage') # we only have these types of soils SOIL_TYPE_LIST = ['clay', 'silt', 'sand'] # temporary directory to store intermediate files PROCESSING_DIR = None # user-supplied crude protein of vegetation CRUDE_PROTEIN = None # state variables and parameters take their names from Century # _SITE_STATE_VARIABLE_FILES contains state variables that are a # property of the site, including: # carbon in each soil compartment # (structural, metabolic, som1, som2, som3) and layer (1=surface, 2=soil) # e.g., som2c_2 = carbon in soil som2; # N and P in each soil layer and compartment (1=N, 2=P) # e.g., som2e_1_1 = N in surface som2, som2e_1_2 = P in surface som2; # water in each soil layer, asmos_<layer> # state variables fully described in this table: # https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing _SITE_STATE_VARIABLE_FILES = { 'metabc_1_path': 'metabc_1.tif', 'metabc_2_path': 'metabc_2.tif', 'som1c_1_path': 'som1c_1.tif', 'som1c_2_path': 'som1c_2.tif', 'som2c_1_path': 'som2c_1.tif', 'som2c_2_path': 'som2c_2.tif', 'som3c_path': 'som3c.tif', 'strucc_1_path': 'strucc_1.tif', 'strucc_2_path': 'strucc_2.tif', 'strlig_1_path': 'strlig_1.tif', 'strlig_2_path': 'strlig_2.tif', 'metabe_1_1_path': 'metabe_1_1.tif', 'metabe_2_1_path': 'metabe_2_1.tif', 'som1e_1_1_path': 'som1e_1_1.tif', 'som1e_2_1_path': 'som1e_2_1.tif', 'som2e_1_1_path': 'som2e_1_1.tif', 'som2e_2_1_path': 'som2e_2_1.tif', 'som3e_1_path': 'som3e_1.tif', 'struce_1_1_path': 'struce_1_1.tif', 'struce_2_1_path': 'struce_2_1.tif', 'metabe_1_2_path': 'metabe_1_2.tif', 'metabe_2_2_path': 'metabe_2_2.tif', 'plabil_path': 'plabil.tif', 'secndy_2_path': 'secndy_2.tif', 'parent_2_path': 'parent_2.tif', 'occlud_path': 'occlud.tif', 'som1e_1_2_path': 'som1e_1_2.tif', 'som1e_2_2_path': 'som1e_2_2.tif', 'som2e_1_2_path': 'som2e_1_2.tif', 'som2e_2_2_path': 'som2e_2_2.tif', 'som3e_2_path': 'som3e_2.tif', 'struce_1_2_path': 'struce_1_2.tif', 'struce_2_2_path': 'struce_2_2.tif', 'asmos_1_path': 'asmos_1.tif', 'asmos_2_path': 'asmos_2.tif', 'asmos_3_path': 'asmos_3.tif', 'asmos_4_path': 'asmos_4.tif', 'asmos_5_path': 'asmos_5.tif', 'asmos_6_path': 'asmos_6.tif', 'asmos_7_path': 'asmos_7.tif', 'asmos_8_path': 'asmos_8.tif', 'asmos_9_path': 'asmos_9.tif', 'avh2o_3_path': 'avh2o_3.tif', 'minerl_1_1_path': 'minerl_1_1.tif', 'minerl_2_1_path': 'minerl_2_1.tif', 'minerl_3_1_path': 'minerl_3_1.tif', 'minerl_4_1_path': 'minerl_4_1.tif', 'minerl_5_1_path': 'minerl_5_1.tif', 'minerl_6_1_path': 'minerl_6_1.tif', 'minerl_7_1_path': 'minerl_7_1.tif', 'minerl_8_1_path': 'minerl_8_1.tif', 'minerl_9_1_path': 'minerl_9_1.tif', 'minerl_10_1_path': 'minerl_10_1.tif', 'minerl_1_2_path': 'minerl_1_2.tif', 'minerl_2_2_path': 'minerl_2_2.tif', 'minerl_3_2_path': 'minerl_3_2.tif', 'minerl_4_2_path': 'minerl_4_2.tif', 'minerl_5_2_path': 'minerl_5_2.tif', 'minerl_6_2_path': 'minerl_6_2.tif', 'minerl_7_2_path': 'minerl_7_2.tif', 'minerl_8_2_path': 'minerl_8_2.tif', 'minerl_9_2_path': 'minerl_9_2.tif', 'minerl_10_2_path': 'minerl_10_2.tif', 'snow_path': 'snow.tif', 'snlq_path': 'snlq.tif', } # _PFT_STATE_VARIABLES contains state variables that are a # property of a PFT, including: # carbon, nitrogen, and phosphorous in aboveground biomass # where 1=N, 2=P # e.g. aglivc = C in aboveground live biomass, # aglive_1 = N in aboveground live biomass; # carbon, nitrogen, and phosphorous in aboveground standing dead # biomass, stdedc and stdede; # carbon, nitrogen and phosphorous in belowground live biomass, # aglivc and aglive # state variables fully described in this table: # https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing _PFT_STATE_VARIABLES = [ 'aglivc', 'bglivc', 'stdedc', 'aglive_1', 'bglive_1', 'stdede_1', 'aglive_2', 'bglive_2', 'stdede_2', 'avh2o_1', 'crpstg_1', 'crpstg_2', ] # intermediate parameters that do not change between timesteps, # including field capacity and wilting point of each soil layer, # coefficients describing effect of soil texture on decomposition # rates _PERSISTENT_PARAMS_FILES = { 'afiel_1_path': 'afiel_1.tif', 'afiel_2_path': 'afiel_2.tif', 'afiel_3_path': 'afiel_3.tif', 'afiel_4_path': 'afiel_4.tif', 'afiel_5_path': 'afiel_5.tif', 'afiel_6_path': 'afiel_6.tif', 'afiel_7_path': 'afiel_7.tif', 'afiel_8_path': 'afiel_8.tif', 'afiel_9_path': 'afiel_9.tif', 'awilt_1_path': 'awilt_1.tif', 'awilt_2_path': 'awilt_2.tif', 'awilt_3_path': 'awilt_3.tif', 'awilt_4_path': 'awilt_4.tif', 'awilt_5_path': 'awilt_5.tif', 'awilt_6_path': 'awilt_6.tif', 'awilt_7_path': 'awilt_7.tif', 'awilt_8_path': 'awilt_8.tif', 'awilt_9_path': 'awilt_9.tif', 'wc_path': 'wc.tif', 'eftext_path': 'eftext.tif', 'p1co2_2_path': 'p1co2_2.tif', 'fps1s3_path': 'fps1s3.tif', 'orglch_path': 'orglch.tif', 'fps2s3_path': 'fps2s3.tif', 'rnewas_1_1_path': 'rnewas_1_1.tif', 'rnewas_2_1_path': 'rnewas_2_1.tif', 'rnewas_1_2_path': 'rnewas_1_2.tif', 'rnewas_2_2_path': 'rnewas_2_2.tif', 'rnewbs_1_1_path': 'rnewbs_1_1.tif', 'rnewbs_1_2_path': 'rnewbs_1_2.tif', 'rnewbs_2_1_path': 'rnewbs_2_1.tif', 'rnewbs_2_2_path': 'rnewbs_2_2.tif', 'vlossg_path': 'vlossg.tif', } # site-level values that are updated once per year _YEARLY_FILES = { 'annual_precip_path': 'annual_precip.tif', 'baseNdep_path': 'baseNdep.tif', } # pft-level values that are updated once per year _YEARLY_PFT_FILES = ['pltlig_above', 'pltlig_below'] # intermediate values for each plant functional type that are shared # between submodels, but do not need to be saved as output _PFT_INTERMEDIATE_VALUES = [ 'h2ogef_1', 'tgprod_pot_prod', 'cercrp_min_above_1', 'cercrp_min_above_2', 'cercrp_max_above_1', 'cercrp_max_above_2', 'cercrp_min_below_1', 'cercrp_min_below_2', 'cercrp_max_below_1', 'cercrp_max_below_2', 'tgprod', 'rtsh', 'flgrem', 'fdgrem'] # intermediate site-level values that are shared between submodels, # but do not need to be saved as output _SITE_INTERMEDIATE_VALUES = [ 'amov_1', 'amov_2', 'amov_3', 'amov_4', 'amov_5', 'amov_6', 'amov_7', 'amov_8', 'amov_9', 'amov_10', 'snowmelt', 'bgwfunc', 'diet_sufficiency'] # fixed parameters for each grazing animal type are adapted from the GRAZPLAN # model as described by Freer et al. 2012, "The GRAZPLAN animal biology model # for sheep and cattle and the GrazFeed decision support tool" _FREER_PARAM_DICT = { 'b_indicus': { 'CN1': 0.0115, 'CN2': 0.27, 'CN3': 0.4, 'CI1': 0.025, 'CI2': 1.7, 'CI8': 62, 'CI9': 1.7, 'CI15': 0.5, 'CI19': 0.416, 'CI20': 1.5, 'CR1': 0.8, 'CR2': 0.17, 'CR3': 1.7, 'CR4': 0.00078, 'CR5': 0.6, 'CR6': 0.00074, 'CR7': 0.5, 'CR12': 0.8, 'CR13': 0.35, 'CK1': 0.5, 'CK2': 0.02, 'CK3': 0.85, 'CK5': 0.4, 'CK6': 0.02, 'CK8': 0.133, 'CL0': 0.375, 'CL1': 4, 'CL2': 30, 'CL3': 0.6, 'CL5': 0.94, 'CL6': 3.1, 'CL15': 0.032, 'CM1': 0.09, 'CM2': 0.31, 'CM3': 0.00008, 'CM4': 0.84, 'CM6': 0.0025, 'CM7': 0.9, 'CM16': 0.0026, 'CRD1': 0.3, 'CRD2': 0.25, 'CRD4': 0.007, 'CRD5': 0.005, 'CRD6': 0.35, 'CRD7': 0.1, 'CA1': 0.05, 'CA2': 0.85, 'CA3': 5.5, 'CA4': 0.178, 'CA6': 1, 'CA7': 0.6, 'CP1': 285, 'CP4': 0.33, 'CP5': 1.8, 'CP6': 2.42, 'CP7': 1.16, 'CP8': 4.11, 'CP9': 343.5, 'CP10': 0.0164, 'CP15': 0.07, }, 'b_taurus': { 'CN1': 0.0115, 'CN2': 0.27, 'CN3': 0.4, 'CI1': 0.025, 'CI2': 1.7, 'CI8': 62, 'CI9': 1.7, 'CI15': 0.5, 'CI19': 0.416, 'CI20': 1.5, 'CR1': 0.8, 'CR2': 0.17, 'CR3': 1.7, 'CR4': 0.00078, 'CR5': 0.6, 'CR6': 0.00074, 'CR7': 0.5, 'CR12': 0.8, 'CR13': 0.35, 'CK1': 0.5, 'CK2': 0.02, 'CK3': 0.85, 'CK5': 0.4, 'CK6': 0.02, 'CK8': 0.133, 'CL0': 0.375, 'CL1': 4, 'CL2': 30, 'CL3': 0.6, 'CL5': 0.94, 'CL6': 3.1, 'CL15': 0.032, 'CM1': 0.09, 'CM2': 0.36, 'CM3': 0.00008, 'CM4': 0.84, 'CM6': 0.0025, 'CM7': 0.9, 'CM16': 0.0026, 'CRD1': 0.3, 'CRD2': 0.25, 'CRD4': 0.007, 'CRD5': 0.005, 'CRD6': 0.35, 'CRD7': 0.1, 'CA1': 0.05, 'CA2': 0.85, 'CA3': 5.5, 'CA4': 0.178, 'CA6': 1, 'CA7': 0.6, 'CP1': 285, 'CP4': 0.33, 'CP5': 1.8, 'CP6': 2.42, 'CP7': 1.16, 'CP8': 4.11, 'CP9': 343.5, 'CP10': 0.0164, 'CP15': 0.07, }, 'indicus_x_taurus': { 'CN1': 0.0115, 'CN2': 0.27, 'CN3': 0.4, 'CI1': 0.025, 'CI2': 1.7, 'CI8': 62, 'CI9': 1.7, 'CI15': 0.5, 'CI19': 0.416, 'CI20': 1.5, 'CR1': 0.8, 'CR2': 0.17, 'CR3': 1.7, 'CR4': 0.00078, 'CR5': 0.6, 'CR6': 0.00074, 'CR7': 0.5, 'CR12': 0.8, 'CR13': 0.35, 'CK1': 0.5, 'CK2': 0.02, 'CK3': 0.85, 'CK5': 0.4, 'CK6': 0.02, 'CK8': 0.133, 'CL0': 0.375, 'CL1': 4, 'CL2': 30, 'CL3': 0.6, 'CL5': 0.94, 'CL6': 3.1, 'CL15': 0.032, 'CM1': 0.09, 'CM2': 0.335, 'CM3': 0.00008, 'CM4': 0.84, 'CM6': 0.0025, 'CM7': 0.9, 'CM16': 0.0026, 'CRD1': 0.3, 'CRD2': 0.25, 'CRD4': 0.007, 'CRD5': 0.005, 'CRD6': 0.35, 'CRD7': 0.1, 'CA1': 0.05, 'CA2': 0.85, 'CA3': 5.5, 'CA4': 0.178, 'CA6': 1, 'CA7': 0.6, 'CP1': 285, 'CP4': 0.33, 'CP5': 1.8, 'CP6': 2.42, 'CP7': 1.16, 'CP8': 4.11, 'CP9': 343.5, 'CP10': 0.0164, 'CP15': 0.07, }, 'sheep': { 'CN1': 0.0157, 'CN2': 0.27, 'CN3': 0.4, 'CI1': 0.04, 'CI2': 1.7, 'CI8': 28, 'CI9': 1.4, 'CI12': 0.15, 'CI13': 0.02, 'CI14': 0.002, 'CI20': 1.5, 'CR1': 0.8, 'CR2': 0.17, 'CR3': 1.7, 'CR4': 0.00112, 'CR5': 0.6, 'CR6': 0.00112, 'CR7': 0, 'CR12': 0.8, 'CR13': 0.35, 'CK1': 0.5, 'CK2': 0.02, 'CK3': 0.85, 'CK5': 0.4, 'CK6': 0.02, 'CK8': 0.133, 'CL0': 0.486, 'CL1': 2, 'CL2': 22, 'CL3': 1, 'CL5': 0.94, 'CL6': 4.7, 'CL15': 0.045, 'CM1': 0.09, 'CM2': 0.26, 'CM3': 0.00008, 'CM4': 0.84, 'CM6': 0.02, 'CM7': 0.9, 'CM16': 0.0026, 'CRD1': 0.3, 'CRD2': 0.25, 'CRD4': 0.007, 'CRD5': 0.005, 'CRD6': 0.35, 'CRD7': 0.1, 'CA1': 0.05, 'CA2': 0.85, 'CA3': 5.5, 'CA4': 0.178, 'CA6': 1, 'CA7': 0.6, 'CW1': 24, 'CW2': 0.004, 'CW3': 0.7, 'CW5': 0.25, 'CW6': 0.072, 'CW7': 1.35, 'CW8': 0.016, 'CW9': 1, 'CW12': 0.025, 'CP1': 150, 'CP4': 0.33, 'CP5': 1.43, 'CP6': 3.38, 'CP7': 0.91, 'CP8': 4.33, 'CP9': 4.37, 'CP10': 0.965, 'CP15': 0.1, }, } # Target nodata is for general rasters that are positive, and _IC_NODATA are # for rasters that are any range _TARGET_NODATA = -1.0 _IC_NODATA = float(numpy.finfo('float32').min) # SV_NODATA is for state variables _SV_NODATA = -1.0 def execute(args): """InVEST Forage Model. [model description] Parameters: args['workspace_dir'] (string): path to target output workspace. args['results_suffix'] (string): (optional) string to append to any output file names args['starting_month'] (int): what month to start reporting where the range 1..12 is equivalent to Jan..Dec. args['starting_year'] (int): what year to start runs. this value is used to notate outputs in the form [month_int]_[year] args['n_months'] (int): number of months to run model, the model run will start reporting in `args['starting_month']`. args['aoi_path'] (string): path to polygon vector indicating the desired spatial extent of the model. This has the effect of clipping the computational area of the input datasets to be the area intersected by this polygon. args['management_threshold'] (float): biomass in kg/ha required to be left standing at each model step after offtake by grazing animals args['proportion_legume_path'] (string): path to raster containing fraction of pasture that is legume, by weight args['bulk_density_path'] (string): path to bulk density raster. args['ph_path'] (string): path to soil pH raster. args['clay_proportion_path'] (string): path to raster representing per-pixel proportion of soil component that is clay args['silt_proportion_path'] (string): path to raster representing per-pixel proportion of soil component that is silt args['sand_proportion_path'] (string): path to raster representing per-pixel proportion of soil component that is sand args['precip_dir'] (string): path to a directory containing monthly precipitation rasters. The model requires at least 12 months of precipitation and expects to find a precipitation file input for every month of the simulation, so the number of precipitation files should be the maximum of 12 and `n_months`. The file name of each precipitation raster must end with the year, followed by an underscore, followed by the month number. E.g., Precip_2016_1.tif for January of 2016. args['min_temp_dir'] (string): path to a directory containing monthly minimum temperature rasters. The model requires one minimum temperature raster for each month of the year, or each month that the model is run, whichever is smaller. The file name of each minimum temperature raster must end with the month number. E.g., Min_temperature_1.tif for January. args['max_temp_dir'] (string): path to a directory containing monthly maximum temperature rasters. The model requires one maximum temperature raster for each month of the year, or each month that the model is run, whichever is smaller. The file name of each maximum temperature raster must end with the month number. E.g., Max_temperature_1.tif for January. args['site_param_table'] (string): path to csv file giving site parameters. This file must contain a column named "site" that contains unique integers. These integer values correspond to site type identifiers which are values in the site parameter spatial index raster. Other required fields for this table are site and "fixed" parameters from the Century model, i.e., the parameters in the Century input files site.100 and fix.100. args['site_param_spatial_index_path'] (string): path to a raster file that indexes site parameters, indicating which set of site parameter values should apply at each pixel in the raster. The raster should be composed of integers that correspond to values in the field "site" in `site_param_table`. args['veg_trait_path'] (string): path to csv file giving vegetation traits for each plant functional type available for grazing. This file must contain a column named "PFT" that contains unique integers. These integer values correspond to PFT identifiers of veg spatial composition rasters. Other required fields for this table are vegetation input parameters from the Century model, for example maximum intrinsic growth rate, optimum temperature for production, minimum C/N ratio, etc. args['veg_spatial_composition_path_pattern'] (string): path to vegetation rasters, one per plant functional type available for grazing, where <PFT> can be replaced with an integer that is indexed in the veg trait csv. Example: if this value is given as `./vegetation/pft_<PFT>.tif` and the directory `./vegetation/` contains these files: "pft_1.tif" "pft_12.tif" "pft_50.tif", then the "PFT" field in the vegetation trait table must contain the values 1, 12, and 50. args['animal_trait_path'] (string): path to csv file giving animal traits for each animal type - number - duration combination. This table must contain a column named "animal_id" that contains unique integers. These integer values correspond to features in the animal management layer. Other required fields in this table are: type (allowable values: b_indicus, b_taurus, indicus_x_taurus, sheep, camelid, hindgut_fermenter) sex (allowable values: entire_m, castrate, breeding_female, NA) age (days) weight (kg) SRW (standard reference weight, kg; the weight of a mature female in median condition) SFW (standard fleece weight, kg; the average weight of fleece of a mature adult; for sheep only) birth_weight (kg) grz_months (a string of integers, separated by ','; months of the simulation when animals are present, relative to `starting_month`. For example, if `n_months` is 3, and animals are present during the entire simulation period, `grz_months` should be "1,2,3") args['animal_grazing_areas_path'] (string): path to animal vector inputs giving the location of grazing animals. Must have a field named "animal_id", containing unique integers that correspond to the values in the "animal_id" column of the animal trait csv, and a field named "num_animal" giving the number of animals grazing inside each polygon feature. args['initial_conditions_dir'] (string): optional input, path to directory containing initial conditions. If this directory is not supplied, a site_initial_table and pft_initial_table must be supplied. If supplied, this directory must contain a series of rasters with initial values for each PFT and for the site. Required rasters for each PFT: initial variables that are a property of PFT in the table https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing e.g., aglivc_<PFT>.tif Required for the site: initial variables that are a property of site in the table https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing args['site_initial_table'] (string): optional input, path to table containing initial conditions for each site state variable. If an initial conditions directory is not supplied, this table must be supplied. This table must contain a value for each site code and each state variable listed in the following table: https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing args['pft_initial_table'] (string): optional input, path to table containing initial conditions for each plant functional type state variable. If an initial conditions directory is not supplied, this table must be supplied. This table must contain a value for each plant functional type index and each state variable listed in the following table: https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing args['save_sv_rasters'] (boolean): optional input, default false. Should rasters containing all state variables be saved for each model time step? args['animal_density'] (string): optional input, density of grazing animals in animals per hectare. args['crude_protein'] (float): optional input, crude protein concentration of forage for the purposes of animal diet selection. Should be a value between 0-1. If included, this value is substituted for N content of forage when calculating digestibility and "ingestibility" of forage, and protein content of the diet, for grazing animals. Returns: None. """ LOGGER.info("model execute: %s", args) starting_month = int(args['starting_month']) starting_year = int(args['starting_year']) n_months = int(args['n_months']) try: delete_sv_folders = not args['save_sv_rasters'] except KeyError: delete_sv_folders = True try: global CRUDE_PROTEIN CRUDE_PROTEIN = args['crude_protein'] except KeyError: pass try: animal_density_path = args['animal_density'] except KeyError: args['animal_density'] = None # this set will build up the integer months that are used so we can index # them with temperature later temperature_month_set = set() # this dict will be used to build the set of input rasters associated with # a reasonable lookup ID so we can have a nice dataset to align for raster # stack operations base_align_raster_path_id_map = {} precip_dir_list = [ os.path.join(args['precip_dir'], f) for f in os.listdir(args['precip_dir'])] for month_index in range(n_months): month_i = (starting_month + month_index - 1) % 12 + 1 temperature_month_set.add(month_i) year = starting_year + (starting_month + month_index - 1) // 12 year_month_match = re.compile( r'.*[^\d]%d_%d\.[^.]+$' % (year, month_i)) file_list = [ month_file_path for month_file_path in precip_dir_list if year_month_match.match(month_file_path)] if len(file_list) == 0: raise ValueError( "No precipitation data found for year %d, month %d" % (year, month_i)) if len(file_list) > 1: raise ValueError( "Ambiguous set of files found for year %d, month %d: %s" % (year, month_i, file_list)) base_align_raster_path_id_map[ 'precip_{}'.format(month_index)] = file_list[0] # the model requires 12 months of precipitation data to calculate # atmospheric N deposition and potential production from annual precip n_precip_months = int(args['n_months']) if n_precip_months < 12: m_index = int(args['n_months']) while n_precip_months < 12: month_i = (starting_month + m_index - 1) % 12 + 1 year = starting_year + (starting_month + m_index - 1) // 12 year_month_match = re.compile( r'.*[^\d]%d_%d\.[^.]+$' % (year, month_i)) file_list = [ month_file_path for month_file_path in precip_dir_list if year_month_match.match(month_file_path)] if len(file_list) == 0: break if len(file_list) > 1: raise ValueError( "Ambiguous set of files found for year %d, month %d: %s" % (year, month_i, file_list)) base_align_raster_path_id_map[ 'precip_%d' % m_index] = file_list[0] n_precip_months = n_precip_months + 1 m_index = m_index + 1 if n_precip_months < 12: raise ValueError("At least 12 months of precipitation data required") # collect monthly temperature data min_temp_dir_list = [ os.path.join(args['min_temp_dir'], f) for f in os.listdir(args['min_temp_dir'])] for month_i in temperature_month_set: month_file_match = re.compile(r'.*[^\d]%d\.[^.]+$' % month_i) file_list = [ month_file_path for month_file_path in min_temp_dir_list if month_file_match.match(month_file_path)] if len(file_list) == 0: raise ValueError( "No minimum temperature data found for month %d" % month_i) if len(file_list) > 1: raise ValueError( "Ambiguous set of files found for month %d: %s" % (month_i, file_list)) base_align_raster_path_id_map[ 'min_temp_%d' % month_i] = file_list[0] max_temp_dir_list = [ os.path.join(args['max_temp_dir'], f) for f in os.listdir(args['max_temp_dir'])] for month_i in temperature_month_set: month_file_match = re.compile(r'.*[^\d]%d\.[^.]+$' % month_i) file_list = [ month_file_path for month_file_path in max_temp_dir_list if month_file_match.match(month_file_path)] if len(file_list) == 0: raise ValueError( "No maximum temperature data found for month %d" % month_i) if len(file_list) > 1: raise ValueError( "Ambiguous set of files found for month %d: %s" % (month_i, file_list)) base_align_raster_path_id_map[ 'max_temp_%d' % month_i] = file_list[0] # lookup to provide path to soil percent given soil type for soil_type in SOIL_TYPE_LIST: base_align_raster_path_id_map[soil_type] = ( args['%s_proportion_path' % soil_type]) if not os.path.exists(base_align_raster_path_id_map[soil_type]): raise ValueError( "Couldn't find %s for %s" % ( base_align_raster_path_id_map[soil_type], soil_type)) base_align_raster_path_id_map['bulk_d_path'] = args['bulk_density_path'] base_align_raster_path_id_map['ph_path'] = args['ph_path'] # make sure site initial conditions and parameters exist for each site # identifier base_align_raster_path_id_map['site_index'] = ( args['site_param_spatial_index_path']) n_bands = pygeoprocessing.get_raster_info( args['site_param_spatial_index_path'])['n_bands'] if n_bands > 1: raise ValueError( 'Site spatial index raster must contain only one band') site_datatype = pygeoprocessing.get_raster_info( args['site_param_spatial_index_path'])['datatype'] if site_datatype not in [1, 2, 3, 4, 5]: raise ValueError('Site spatial index raster must be integer type') # get unique values in site param raster site_index_set = set() for offset_map, raster_block in pygeoprocessing.iterblocks( (args['site_param_spatial_index_path'], 1)): site_index_set.update(numpy.unique(raster_block)) site_nodata = pygeoprocessing.get_raster_info( args['site_param_spatial_index_path'])['nodata'][0] if site_nodata in site_index_set: site_index_set.remove(site_nodata) site_param_table = utils.build_lookup_from_csv( args['site_param_table'], 'site') missing_site_index_list = list( site_index_set.difference(site_param_table.keys())) if missing_site_index_list: raise ValueError( "Couldn't find parameter values for the following site " + "indices: %s\n\t" + ", ".join(missing_site_index_list)) # make sure plant functional type parameters exist for each pft raster pft_dir = os.path.dirname(args['veg_spatial_composition_path_pattern']) pft_basename = os.path.basename( args['veg_spatial_composition_path_pattern']) files = [ f for f in os.listdir(pft_dir) if os.path.isfile( os.path.join(pft_dir, f))] pft_regex = re.compile(pft_basename.replace('<PFT>', r'(\d+)')) pft_matches = [ m for m in [pft_regex.search(f) for f in files] if m is not None] pft_id_set = set([int(m.group(1)) for m in pft_matches]) for pft_i in pft_id_set: pft_path = args['veg_spatial_composition_path_pattern'].replace( '<PFT>', '%d' % pft_i) base_align_raster_path_id_map['pft_%d' % pft_i] = pft_path veg_trait_table = utils.build_lookup_from_csv( args['veg_trait_path'], 'PFT') missing_pft_trait_list = pft_id_set.difference(veg_trait_table.keys()) if missing_pft_trait_list: raise ValueError( "Couldn't find trait values for the following plant functional " + "types: %s\n\t" + ", ".join(missing_pft_trait_list)) frtcindx_set = set([ pft_i['frtcindx'] for pft_i in veg_trait_table.values()]) if frtcindx_set.difference(set([0, 1])): raise ValueError("frtcindx parameter contains invalid values") base_align_raster_path_id_map['proportion_legume_path'] = args[ 'proportion_legume_path'] # track separate state variable files for each PFT pft_sv_dict = {} for pft_i in pft_id_set: for sv in _PFT_STATE_VARIABLES: pft_sv_dict['{}_{}_path'.format( sv, pft_i)] = '{}_{}.tif'.format(sv, pft_i) # make sure animal traits exist for each feature in animal management # layer anim_id_list = [] driver = ogr.GetDriverByName('ESRI Shapefile') datasource = driver.Open(args['animal_grazing_areas_path'], 0) layer = datasource.GetLayer() for feature in layer: anim_id_list.append(feature.GetField('animal_id')) input_animal_trait_table = utils.build_lookup_from_csv( args['animal_trait_path'], 'animal_id') missing_animal_trait_list = set( anim_id_list).difference(input_animal_trait_table.keys()) if missing_animal_trait_list: raise ValueError( "Couldn't find trait values for the following animal " + "ids: %s\n\t" + ", ".join(missing_animal_trait_list)) # if animal density is supplied, align inputs to match its resolution # otherwise, match resolution of precipitation rasters if args['animal_density']: target_pixel_size = pygeoprocessing.get_raster_info( args['animal_density'])['pixel_size'] base_align_raster_path_id_map['animal_density'] = args[ 'animal_density'] else: target_pixel_size = pygeoprocessing.get_raster_info( base_align_raster_path_id_map['precip_0'])['pixel_size'] LOGGER.info( "pixel size of aligned inputs: %s", target_pixel_size) # temporary directory for intermediate files global PROCESSING_DIR PROCESSING_DIR = os.path.join(args['workspace_dir'], "temporary_files") if not os.path.exists(PROCESSING_DIR): os.makedirs(PROCESSING_DIR) # set up a dictionary that uses the same keys as # 'base_align_raster_path_id_map' to point to the clipped/resampled # rasters to be used in raster calculations for the model. aligned_raster_dir = os.path.join( args['workspace_dir'], 'aligned_inputs') if os.path.exists(aligned_raster_dir): shutil.rmtree(aligned_raster_dir) os.makedirs(aligned_raster_dir) aligned_inputs = dict([(key, os.path.join( aligned_raster_dir, 'aligned_%s' % os.path.basename(path))) for key, path in base_align_raster_path_id_map.items()]) # align all the base inputs to be the minimum known pixel size and to # only extend over their combined intersections source_input_path_list = [ base_align_raster_path_id_map[k] for k in sorted( base_align_raster_path_id_map.keys())] aligned_input_path_list = [ aligned_inputs[k] for k in sorted(aligned_inputs.keys())] pygeoprocessing.align_and_resize_raster_stack( source_input_path_list, aligned_input_path_list, ['near'] * len(source_input_path_list), target_pixel_size, 'intersection', base_vector_path_list=[args['aoi_path']], vector_mask_options={'mask_vector_path': args['aoi_path']}) _check_pft_fractional_cover_sum(aligned_inputs, pft_id_set) file_suffix = utils.make_suffix_string(args, 'results_suffix') # create animal trait spatial index raster from management polygon aligned_inputs['animal_index'] = os.path.join( aligned_raster_dir, 'animal_spatial_index.tif') pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], aligned_inputs['animal_index'], gdal.GDT_Int32, [_TARGET_NODATA], fill_value_list=[_TARGET_NODATA]) pygeoprocessing.rasterize( args['animal_grazing_areas_path'], aligned_inputs['animal_index'], option_list=["ATTRIBUTE=animal_id"]) # create uniform animal density raster, if not supplied as input if not args['animal_density']: aligned_inputs['animal_density'] = os.path.join( aligned_raster_dir, 'animal_density.tif') _animal_density(aligned_inputs, args['animal_grazing_areas_path']) # Initialization sv_dir = os.path.join(args['workspace_dir'], 'state_variables_m-1') os.makedirs(sv_dir) initial_conditions_dir = None try: initial_conditions_dir = args['initial_conditions_dir'] except KeyError: pass if initial_conditions_dir: # check that a raster for each required state variable is supplied missing_initial_values = [] # set _SV_NODATA from initial rasters state_var_nodata = set([]) # align initial state variables to resampled inputs resample_initial_path_map = {} for sv in _SITE_STATE_VARIABLE_FILES: sv_path = os.path.join( initial_conditions_dir, _SITE_STATE_VARIABLE_FILES[sv]) state_var_nodata.update( set([pygeoprocessing.get_raster_info(sv_path)['nodata'][0]])) resample_initial_path_map[sv] = sv_path if not os.path.exists(sv_path): missing_initial_values.append(sv_path) for pft_i in pft_id_set: for sv in _PFT_STATE_VARIABLES: sv_key = '{}_{}_path'.format(sv, pft_i) sv_path = os.path.join( initial_conditions_dir, '{}_{}.tif'.format(sv, pft_i)) state_var_nodata.update( set([pygeoprocessing.get_raster_info(sv_path)['nodata'] [0]])) resample_initial_path_map[sv_key] = sv_path if not os.path.exists(sv_path): missing_initial_values.append(sv_path) if missing_initial_values: raise ValueError( "Couldn't find the following required initial values: " + "\n\t".join(missing_initial_values)) if len(state_var_nodata) > 1: raise ValueError( "Initial state variable rasters contain >1 nodata value") global _SV_NODATA _SV_NODATA = list(state_var_nodata)[0] # align initial values with inputs initial_path_list = ( [aligned_inputs['precip_0']] + [resample_initial_path_map[key] for key in sorted( resample_initial_path_map.keys())]) aligned_initial_path_list = ( [os.path.join(PROCESSING_DIR, 'aligned_input_template.tif')] + [os.path.join( sv_dir, os.path.basename(resample_initial_path_map[key])) for key in sorted(resample_initial_path_map.keys())]) pygeoprocessing.align_and_resize_raster_stack( initial_path_list, aligned_initial_path_list, ['near'] * len(initial_path_list), target_pixel_size, 'intersection', base_vector_path_list=[args['aoi_path']], raster_align_index=0, vector_mask_options={'mask_vector_path': args['aoi_path']}) sv_reg = dict( [(key, os.path.join(sv_dir, os.path.basename(path))) for key, path in resample_initial_path_map.items()]) else: # create initialization rasters from tables try: site_initial_conditions_table = utils.build_lookup_from_csv( args['site_initial_table'], 'site') except KeyError: raise ValueError( "If initial conditions rasters are not supplied, initial " + "conditions tables must be supplied") missing_site_index_list = list( site_index_set.difference(site_initial_conditions_table.keys())) if missing_site_index_list: raise ValueError( "Couldn't find initial conditions values for the following " + "site indices: %s\n\t" + ", ".join(missing_site_index_list)) try: pft_initial_conditions_table = utils.build_lookup_from_csv( args['pft_initial_table'], 'PFT') except KeyError: raise ValueError( "If initial conditions rasters are not supplied, initial " + "conditions tables must be supplied") missing_pft_index_list = pft_id_set.difference( pft_initial_conditions_table.keys()) if missing_pft_index_list: raise ValueError( "Couldn't find initial condition values for the following " "plant functional types: %s\n\t" + ", ".join( missing_pft_index_list)) sv_reg = initial_conditions_from_tables( aligned_inputs, sv_dir, pft_id_set, site_initial_conditions_table, pft_initial_conditions_table) # calculate persistent intermediate parameters that do not change during # the simulation persist_param_dir = os.path.join( args['workspace_dir'], 'intermediate_parameters') utils.make_directories([persist_param_dir]) pp_reg = utils.build_file_registry( [(_PERSISTENT_PARAMS_FILES, persist_param_dir)], file_suffix) # calculate derived animal traits that do not change during the simulation freer_parameter_df = pandas.DataFrame.from_dict( _FREER_PARAM_DICT, orient='index') freer_parameter_df['type'] = freer_parameter_df.index animal_trait_table = calc_derived_animal_traits( input_animal_trait_table, freer_parameter_df) # calculate maximum potential intake of each animal type for animal_id in animal_trait_table.keys(): revised_animal_trait_dict = calc_max_intake( animal_trait_table[animal_id]) animal_trait_table[animal_id] = revised_animal_trait_dict # calculate field capacity and wilting point LOGGER.info("Calculating field capacity and wilting point") _afiel_awilt( aligned_inputs['site_index'], site_param_table, sv_reg['som1c_2_path'], sv_reg['som2c_2_path'], sv_reg['som3c_path'], aligned_inputs['sand'], aligned_inputs['silt'], aligned_inputs['clay'], aligned_inputs['bulk_d_path'], pp_reg) # calculate other persistent parameters LOGGER.info("Calculating persistent parameters") _persistent_params( aligned_inputs['site_index'], site_param_table, aligned_inputs['sand'], aligned_inputs['clay'], pp_reg) # calculate required ratios for decomposition of structural material LOGGER.info("Calculating required ratios for structural decomposition") _structural_ratios( aligned_inputs['site_index'], site_param_table, sv_reg, pp_reg) # make yearly directory for values that are updated every twelve months year_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) year_reg = dict( [(key, os.path.join(year_dir, path)) for key, path in _YEARLY_FILES.items()]) for pft_i in pft_id_set: for file in _YEARLY_PFT_FILES: year_reg['{}_{}'.format(file, pft_i)] = os.path.join( year_dir, '{}_{}.tif'.format(file, pft_i)) # make monthly directory for monthly intermediate parameters that are # shared between submodels, but do not need to be saved as output month_temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) month_reg = {} for pft_i in pft_id_set: for val in _PFT_INTERMEDIATE_VALUES: month_reg['{}_{}'.format( val, pft_i)] = os.path.join( month_temp_dir, '{}_{}.tif'.format(val, pft_i)) for val in _SITE_INTERMEDIATE_VALUES: month_reg[val] = os.path.join(month_temp_dir, '{}.tif'.format(val)) output_dir = os.path.join(args['workspace_dir'], "output") if not os.path.exists(output_dir): os.makedirs(output_dir) # provisional state variable registry contains provisional biomass in # absence of grazing provisional_sv_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) provisional_sv_reg = utils.build_file_registry( [(_SITE_STATE_VARIABLE_FILES, provisional_sv_dir), (pft_sv_dict, provisional_sv_dir)], file_suffix) intermediate_sv_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) # Main simulation loop # for each step in the simulation for month_index in range(n_months): if (month_index % 12) == 0: # Update yearly quantities _yearly_tasks( aligned_inputs, site_param_table, veg_trait_table, month_index, pft_id_set, year_reg) current_month = (starting_month + month_index - 1) % 12 + 1 current_year = starting_year + (starting_month + month_index - 1) // 12 # track state variables from previous step prev_sv_reg = sv_reg for animal_id in animal_trait_table.keys(): if animal_trait_table[animal_id]['sex'] == 'breeding_female': revised_animal_trait_dict = update_breeding_female_status( animal_trait_table[animal_id], month_index) animal_trait_table[animal_id] = revised_animal_trait_dict revised_animal_trait_dict = calc_max_intake( animal_trait_table[animal_id]) animal_trait_table[animal_id] = revised_animal_trait_dict # enforce absence of grazing as zero biomass removed for pft_i in pft_id_set: pygeoprocessing.new_raster_from_base( aligned_inputs['pft_{}'.format(pft_i)], month_reg['flgrem_{}'.format(pft_i)], gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0]) pygeoprocessing.new_raster_from_base( aligned_inputs['pft_{}'.format(pft_i)], month_reg['fdgrem_{}'.format(pft_i)], gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0]) # populate provisional_sv_reg with provisional biomass in absence of # grazing _potential_production( aligned_inputs, site_param_table, current_month, month_index, pft_id_set, veg_trait_table, prev_sv_reg, pp_reg, month_reg) _root_shoot_ratio( aligned_inputs, site_param_table, current_month, pft_id_set, veg_trait_table, prev_sv_reg, year_reg, month_reg) _soil_water( aligned_inputs, site_param_table, veg_trait_table, current_month, month_index, prev_sv_reg, pp_reg, pft_id_set, month_reg, provisional_sv_reg) _decomposition( aligned_inputs, current_month, month_index, pft_id_set, site_param_table, year_reg, month_reg, prev_sv_reg, pp_reg, provisional_sv_reg) _death_and_partition( 'stded', aligned_inputs, site_param_table, current_month, year_reg, pft_id_set, veg_trait_table, prev_sv_reg, provisional_sv_reg) _death_and_partition( 'bgliv', aligned_inputs, site_param_table, current_month, year_reg, pft_id_set, veg_trait_table, prev_sv_reg, provisional_sv_reg) _shoot_senescence( pft_id_set, veg_trait_table, prev_sv_reg, month_reg, current_month, provisional_sv_reg) intermediate_sv_reg = copy_intermediate_sv( pft_id_set, provisional_sv_reg, intermediate_sv_dir) delta_agliv_dict = _new_growth( pft_id_set, aligned_inputs, site_param_table, veg_trait_table, month_reg, current_month, provisional_sv_reg) _apply_new_growth(delta_agliv_dict, pft_id_set, provisional_sv_reg) # estimate grazing offtake by animals relative to provisional biomass # at an intermediate step, after senescence but before new growth _calc_grazing_offtake( aligned_inputs, args['aoi_path'], args['management_threshold'], intermediate_sv_reg, pft_id_set, aligned_inputs['animal_index'], animal_trait_table, veg_trait_table, current_month, month_reg) # estimate actual biomass production for this step, integrating impacts # of grazing sv_dir = os.path.join( args['workspace_dir'], 'state_variables_m%d' % month_index) utils.make_directories([sv_dir]) sv_reg = utils.build_file_registry( [(_SITE_STATE_VARIABLE_FILES, sv_dir), (pft_sv_dict, sv_dir)], file_suffix) _potential_production( aligned_inputs, site_param_table, current_month, month_index, pft_id_set, veg_trait_table, prev_sv_reg, pp_reg, month_reg) _root_shoot_ratio( aligned_inputs, site_param_table, current_month, pft_id_set, veg_trait_table, prev_sv_reg, year_reg, month_reg) _soil_water( aligned_inputs, site_param_table, veg_trait_table, current_month, month_index, prev_sv_reg, pp_reg, pft_id_set, month_reg, sv_reg) _decomposition( aligned_inputs, current_month, month_index, pft_id_set, site_param_table, year_reg, month_reg, prev_sv_reg, pp_reg, sv_reg) _death_and_partition( 'stded', aligned_inputs, site_param_table, current_month, year_reg, pft_id_set, veg_trait_table, prev_sv_reg, sv_reg) _death_and_partition( 'bgliv', aligned_inputs, site_param_table, current_month, year_reg, pft_id_set, veg_trait_table, prev_sv_reg, sv_reg) _shoot_senescence( pft_id_set, veg_trait_table, prev_sv_reg, month_reg, current_month, sv_reg) delta_agliv_dict = _new_growth( pft_id_set, aligned_inputs, site_param_table, veg_trait_table, month_reg, current_month, sv_reg) _animal_diet_sufficiency( sv_reg, pft_id_set, aligned_inputs, animal_trait_table, veg_trait_table, current_month, month_reg) _grazing( aligned_inputs, site_param_table, month_reg, animal_trait_table, pft_id_set, sv_reg) _apply_new_growth(delta_agliv_dict, pft_id_set, sv_reg) _leach(aligned_inputs, site_param_table, month_reg, sv_reg) _write_monthly_outputs( aligned_inputs, provisional_sv_reg, sv_reg, month_reg, pft_id_set, current_year, current_month, output_dir, file_suffix) # summary results summary_output_dir = os.path.join(output_dir, 'summary_results') os.makedirs(summary_output_dir) summary_shp_path = os.path.join( summary_output_dir, 'grazing_areas_results_rpm{}.shp'.format(file_suffix)) create_vector_copy( args['animal_grazing_areas_path'], summary_shp_path) field_pickle_map, field_header_order_list = aggregate_and_pickle_results( output_dir, summary_shp_path) _add_fields_to_shapefile( field_pickle_map, field_header_order_list, summary_shp_path) # clean up shutil.rmtree(persist_param_dir) shutil.rmtree(PROCESSING_DIR) if delete_sv_folders: for month_index in range(-1, n_months): shutil.rmtree( os.path.join( args['workspace_dir'], 'state_variables_m%d' % month_index)) def raster_multiplication( raster1, raster1_nodata, raster2, raster2_nodata, target_path, target_path_nodata): """Multiply raster1 by raster2. Multiply raster1 by raster2 element-wise. In any pixel where raster1 or raster2 is nodata, the result is nodata. The result is always of float datatype. Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ def raster_multiply_op(raster1, raster2): """Multiply two rasters.""" valid_mask = ( (~numpy.isclose(raster1, raster1_nodata)) & (~numpy.isclose(raster2, raster2_nodata))) result = numpy.empty(raster1.shape, dtype=numpy.float32) result[:] = target_path_nodata result[valid_mask] = raster1[valid_mask] * raster2[valid_mask] return result pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_multiply_op, target_path, gdal.GDT_Float32, target_path_nodata) def raster_division( raster1, raster1_nodata, raster2, raster2_nodata, target_path, target_path_nodata): """Divide raster1 by raster2. Divide raster1 by raster2 element-wise. In any pixel where raster1 or raster2 is nodata, the result is nodata. The result is always of float datatype. Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ def raster_divide_op(raster1, raster2): """Divide raster1 by raster2.""" valid_mask = ( (~numpy.isclose(raster1, raster1_nodata)) & (~numpy.isclose(raster2, raster2_nodata))) raster1 = raster1.astype(numpy.float32) raster2 = raster2.astype(numpy.float32) result = numpy.empty(raster1.shape, dtype=numpy.float32) result[:] = target_path_nodata error_mask = ((raster1 != 0) & (raster2 == 0.) & valid_mask) zero_mask = ((raster1 == 0.) & (raster2 == 0.) & valid_mask) nonzero_mask = ((raster2 != 0.) & valid_mask) result[error_mask] = target_path_nodata result[zero_mask] = 0. result[nonzero_mask] = raster1[nonzero_mask] / raster2[nonzero_mask] return result pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_divide_op, target_path, gdal.GDT_Float32, target_path_nodata) def raster_list_sum( raster_list, input_nodata, target_path, target_nodata, nodata_remove=False): """Calculate the sum per pixel across rasters in a list. Sum the rasters in `raster_list` element-wise, allowing nodata values in the rasters to propagate to the result or treating nodata as zero. If nodata is treated as zero, areas where all inputs are nodata will be nodata in the output. Parameters: raster_list (list): list of paths to rasters to sum input_nodata (float or int): nodata value in the input rasters target_path (string): path to location to store the result target_nodata (float or int): nodata value for the result raster nodata_remove (bool): if true, treat nodata values in input rasters as zero. If false, the sum in a pixel where any input raster is nodata is nodata. Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ def raster_sum_op(*raster_list): """Add the rasters in raster_list without removing nodata values.""" invalid_mask = numpy.any( numpy.isclose(numpy.array(raster_list), input_nodata), axis=0) for r in raster_list: numpy.place(r, numpy.isclose(r, input_nodata), [0]) sum_of_rasters = numpy.sum(raster_list, axis=0) sum_of_rasters[invalid_mask] = target_nodata return sum_of_rasters def raster_sum_op_nodata_remove(*raster_list): """Add the rasters in raster_list, treating nodata as zero.""" invalid_mask = numpy.all( numpy.isclose(numpy.array(raster_list), input_nodata), axis=0) for r in raster_list: numpy.place(r, numpy.isclose(r, input_nodata), [0]) sum_of_rasters = numpy.sum(raster_list, axis=0) sum_of_rasters[invalid_mask] = target_nodata return sum_of_rasters if nodata_remove: pygeoprocessing.raster_calculator( [(path, 1) for path in raster_list], raster_sum_op_nodata_remove, target_path, gdal.GDT_Float32, target_nodata) else: pygeoprocessing.raster_calculator( [(path, 1) for path in raster_list], raster_sum_op, target_path, gdal.GDT_Float32, target_nodata) def raster_sum( raster1, raster1_nodata, raster2, raster2_nodata, target_path, target_nodata, nodata_remove=False): """Add raster 1 and raster2. Add raster1 and raster2, allowing nodata values in the rasters to propagate to the result or treating nodata as zero. Parameters: raster1 (string): path to one raster operand raster1_nodata (float or int): nodata value in raster1 raster2 (string): path to second raster operand raster2_nodata (float or int): nodata value in raster2 target_path (string): path to location to store the sum target_nodata (float or int): nodata value for the result raster nodata_remove (bool): if true, treat nodata values in input rasters as zero. If false, the sum in a pixel where any input raster is nodata is nodata. Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ def raster_sum_op(raster1, raster2): """Add raster1 and raster2 without removing nodata values.""" valid_mask = ( (~numpy.isclose(raster1, raster1_nodata)) & (~numpy.isclose(raster2, raster2_nodata))) result = numpy.empty(raster1.shape, dtype=numpy.float32) result[:] = target_nodata result[valid_mask] = raster1[valid_mask] + raster2[valid_mask] return result def raster_sum_op_nodata_remove(raster1, raster2): """Add raster1 and raster2, treating nodata as zero.""" numpy.place(raster1, numpy.isclose(raster1, raster1_nodata), [0]) numpy.place(raster2, numpy.isclose(raster2, raster2_nodata), [0]) result = raster1 + raster2 return result if nodata_remove: pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_sum_op_nodata_remove, target_path, gdal.GDT_Float32, target_nodata) else: pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_sum_op, target_path, gdal.GDT_Float32, target_nodata) def raster_difference( raster1, raster1_nodata, raster2, raster2_nodata, target_path, target_nodata, nodata_remove=False): """Subtract raster2 from raster1. Subtract raster2 from raster1 element-wise, allowing nodata values in the rasters to propagate to the result or treating nodata as zero. Parameters: raster1 (string): path to raster from which to subtract raster2 raster1_nodata (float or int): nodata value in raster1 raster2 (string): path to raster which should be subtracted from raster1 raster2_nodata (float or int): nodata value in raster2 target_path (string): path to location to store the difference target_nodata (float or int): nodata value for the result raster nodata_remove (bool): if true, treat nodata values in input rasters as zero. If false, the difference in a pixel where any input raster is nodata is nodata. Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ def raster_difference_op(raster1, raster2): """Subtract raster2 from raster1 without removing nodata values.""" valid_mask = ( (~numpy.isclose(raster1, raster1_nodata)) & (~numpy.isclose(raster2, raster2_nodata))) result = numpy.empty(raster1.shape, dtype=numpy.float32) result[:] = target_nodata result[valid_mask] = raster1[valid_mask] - raster2[valid_mask] return result def raster_difference_op_nodata_remove(raster1, raster2): """Subtract raster2 from raster1, treating nodata as zero.""" numpy.place(raster1, numpy.isclose(raster1, raster1_nodata), [0]) numpy.place(raster2, numpy.isclose(raster2, raster2_nodata), [0]) result = raster1 - raster2 return result if nodata_remove: pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_difference_op_nodata_remove, target_path, gdal.GDT_Float32, target_nodata) else: pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_difference_op, target_path, gdal.GDT_Float32, target_nodata) def reclassify_nodata(target_path, new_nodata_value): """Reclassify the nodata value of a raster to a new value. Convert all areas of nodata in the target raster to the new nodata value, which must be an integer. Parameters: target_path (string): path to target raster new_nodata_value (integer): new value to set as nodata Side effects: modifies the raster indicated by `target_path` Returns: None """ def reclassify_op(target_raster): reclassified_raster = numpy.copy(target_raster) reclassify_mask = (target_raster == previous_nodata_value) reclassified_raster[reclassify_mask] = new_nodata_value return reclassified_raster fd, temp_path = tempfile.mkstemp(dir=PROCESSING_DIR) shutil.copyfile(target_path, temp_path) previous_nodata_value = pygeoprocessing.get_raster_info( target_path)['nodata'][0] pygeoprocessing.raster_calculator( [(temp_path, 1)], reclassify_op, target_path, gdal.GDT_Float32, new_nodata_value) # clean up os.close(fd) os.remove(temp_path) def weighted_state_variable_sum( sv, sv_reg, aligned_inputs, pft_id_set, weighted_sum_path): """Calculate weighted sum of state variable across plant functional types. To sum a state variable across PFTs within a grid cell, the state variable must be weighted by the fractional cover of each PFT inside the grid cell. First multiply the state variable by its fractional cover, and then add up the weighted products. Parameters: sv (string): state variable to be summed across plant functional types sv_reg (dict): map of key, path pairs giving paths to state variables, including sv, the state variable to be summed aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including fractional cover of each plant functional type pft_id_set (set): set of integers identifying plant functional types weighted_sum_path (string): path to raster that should contain the weighted sum across PFTs Side effects: modifies or creates the raster indicated by `weighted_sum_path` Returns: None """ temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for pft_i in pft_id_set: val = '{}_weighted'.format(sv) temp_val_dict['{}_{}'.format(val, pft_i)] = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) weighted_path_list = [] for pft_i in pft_id_set: target_path = temp_val_dict['{}_weighted_{}'.format(sv, pft_i)] pft_nodata = pygeoprocessing.get_raster_info( aligned_inputs['pft_{}'.format(pft_i)])['nodata'][0] raster_multiplication( sv_reg['{}_{}_path'.format(sv, pft_i)], _SV_NODATA, aligned_inputs['pft_{}'.format(pft_i)], pft_nodata, target_path, _TARGET_NODATA) weighted_path_list.append(target_path) raster_list_sum( weighted_path_list, _TARGET_NODATA, weighted_sum_path, _TARGET_NODATA, nodata_remove=True) # clean up temporary files shutil.rmtree(temp_dir) def _check_pft_fractional_cover_sum(aligned_inputs, pft_id_set): """Check the sum of fractional cover across plant functional types. Parameters: aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including fractional cover of each plant functional type pft_id_set (set): set of integers identifying plant functional types Raises: ValueError if the pixel-wise sum of fractional cover values across plant functional types exceeds 1 Returns: None """ with tempfile.NamedTemporaryFile( prefix='cover_sum', dir=PROCESSING_DIR) as cover_sum_temp_file: cover_sum_path = cover_sum_temp_file.name with tempfile.NamedTemporaryFile( prefix='operand_temp', dir=PROCESSING_DIR) as operand_temp_file: operand_temp_path = operand_temp_file.name # initialize sum to zero pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], cover_sum_path, gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0]) for pft_i in pft_id_set: shutil.copyfile(cover_sum_path, operand_temp_path) pft_nodata = pygeoprocessing.get_raster_info( aligned_inputs['pft_{}'.format(pft_i)])['nodata'][0] raster_sum( aligned_inputs['pft_{}'.format(pft_i)], pft_nodata, operand_temp_path, _TARGET_NODATA, cover_sum_path, _TARGET_NODATA) # get maximum sum of fractional cover max_cover = 0. for offset_map, raster_block in pygeoprocessing.iterblocks( (cover_sum_path, 1)): valid_mask = (raster_block != _TARGET_NODATA) if raster_block[valid_mask].size > 0: max_cover = max(max_cover, numpy.amax(raster_block[valid_mask])) if max_cover > 1: raise ValueError( "Fractional cover across plant functional types exceeds 1") # clean up os.remove(cover_sum_path) def initial_conditions_from_tables( aligned_inputs, sv_dir, pft_id_set, site_initial_conditions_table, pft_initial_conditions_table): """Generate initial state variable registry from initial conditions tables. Parameters: aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including site spatial index raster and fractional cover of each plant functional type sv_dir (string): path to directory where initial state variable rasters should be stored pft_id_set (set): set of integers identifying plant functional types site_initial_conditions_table (dict): map of site spatial index to dictionaries that contain initial values for site-level state variables pft_initial_conditions_table (dict): map of plant functional type index to dictionaries that contain initial values for plant functional type-level state variables Returns: initial_sv_reg, map of key, path pairs giving paths to initial state variable rasters """ def full_masked(pft_cover, fill_val): """Create a constant raster masked by pft fractional cover. Parameters: pft_cover (numpy.ndarray): input, fractional cover of the plant functional type fill_val (float): constant value with which to fill raster in areas where fractional cover > 0 Returns: full_masked, a raster containing `fill_val` in areas where `pft_cover` > 0 """ valid_mask = ( (~numpy.isclose(pft_cover, _SV_NODATA)) & (pft_cover > 0)) full_masked = numpy.empty(pft_cover.shape, dtype=numpy.float32) full_masked[:] = _SV_NODATA full_masked[valid_mask] = fill_val return full_masked initial_sv_reg = {} # site-level state variables # check for missing state variable values required_site_state_var = set( [sv_key[:-5] for sv_key in _SITE_STATE_VARIABLE_FILES.keys()]) for site_code in site_initial_conditions_table.keys(): missing_site_state_var = required_site_state_var.difference( site_initial_conditions_table[site_code].keys()) if missing_site_state_var: raise ValueError( "The following state variables were not found in the site " + "initial conditions table: \n\t" + "\n\t".join( missing_site_state_var)) for sv_key, basename in _SITE_STATE_VARIABLE_FILES.items(): state_var = sv_key[:-5] site_to_val = dict( [(site_code, float(table[state_var])) for ( site_code, table) in site_initial_conditions_table.items()]) target_path = os.path.join(sv_dir, basename) initial_sv_reg[sv_key] = target_path pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _SV_NODATA) # PFT-level state variables for pft_i in pft_id_set: # check for missing values missing_pft_state_var = set(_PFT_STATE_VARIABLES).difference( pft_initial_conditions_table[pft_i].keys()) if missing_pft_state_var: raise ValueError( "The following state variables were not found in the plant " + "functional type initial conditions table: \n\t" + "\n\t".join( missing_pft_state_var)) for state_var in _PFT_STATE_VARIABLES: fill_val = pft_initial_conditions_table[pft_i][state_var] pft_cover_path = aligned_inputs['pft_{}'.format(pft_i)] target_path = os.path.join( sv_dir, '{}_{}.tif'.format(state_var, pft_i)) sv_key = '{}_{}_path'.format(state_var, pft_i) initial_sv_reg[sv_key] = target_path pygeoprocessing.raster_calculator( [(pft_cover_path, 1), (fill_val, 'raw')], full_masked, target_path, gdal.GDT_Float32, _SV_NODATA) return initial_sv_reg def _calc_ompc( som1c_2_path, som2c_2_path, som3c_path, bulkd_path, edepth_path, ompc_path): """Estimate total soil organic matter. Total soil organic matter is the sum of soil carbon across slow, active, and passive compartments, weighted by bulk density and total modeled soil depth. Lines 220-222, Prelim.f Parameters: som1c_2_path (string): path to active organic soil carbon raster som2c_2_path (string): path to slow organic soil carbon raster som3c_path (string): path to passive organic soil carbon raster bulkd_path (string): path to bulk density of soil raster edepth (string): path to depth of soil raster ompc_path (string): path to result, total soil organic matter Side effects: modifies or creates the raster indicated by `ompc_path` Returns: None """ def ompc_op(som1c_2, som2c_2, som3c, bulkd, edepth): """Estimate total soil organic matter. Total soil organic matter is the sum of soil carbon across slow, active, and passive compartments, weighted by bulk density and total modeled soil depth. Lines 220-222, Prelim.f Parameters: som1c_2_path (string): state variable, active organic soil carbon som2c_2_path (string): state variable, slow organic soil carbon som3c_path (string): state variable, passive organic soil carbon bulkd_path (string): input, bulk density of soil edepth_path (string): parameter, depth of soil for this calculation Returns: ompc, total soil organic matter weighted by bulk density. """ ompc = numpy.empty(som1c_2.shape, dtype=numpy.float32) ompc[:] = _TARGET_NODATA valid_mask = ( (~numpy.isclose(som1c_2, _SV_NODATA)) & (~numpy.isclose(som2c_2, _SV_NODATA)) & (~numpy.isclose(som3c, _SV_NODATA)) & (~numpy.isclose(bulkd, bulkd_nodata)) & (edepth != _IC_NODATA)) ompc[valid_mask] = ( (som1c_2[valid_mask] + som2c_2[valid_mask] + som3c[valid_mask]) * 1.724 / (10000. * bulkd[valid_mask] * edepth[valid_mask])) return ompc bulkd_nodata = pygeoprocessing.get_raster_info(bulkd_path)['nodata'][0] pygeoprocessing.raster_calculator( [(path, 1) for path in [ som1c_2_path, som2c_2_path, som3c_path, bulkd_path, edepth_path]], ompc_op, ompc_path, gdal.GDT_Float32, _TARGET_NODATA) def _calc_afiel( sand_path, silt_path, clay_path, ompc_path, bulkd_path, afiel_path): """Calculate field capacity for one soil layer. Parameters: sand_path (string): path to proportion sand in soil raster silt_path (string): path to proportion silt in soil raster clay_path (string): path to proportion clay in soil raster ompc_path (string): path to estimated total soil organic matter raster bulkd_path (string): path to bulk density of soil raster afiel_path (string): path to result raster, field capacity for this soil layer Side effects: creates the raster indicated by `afiel_path` Returns: None """ def afiel_op(sand, silt, clay, ompc, bulkd): """Calculate field capacity for one soil layer. Field capacity, maximum soil moisture retention capacity, from <NAME> Larson 1979, 'Estimating soil and water retention characteristics from particle size distribution, organic matter percent and bulk density'. Water Resources Research 15:1633. Parameters: sand_path (string): input, proportion sand in soil silt_path (string): input, proportion silt in soil clay_path (string): input, proportion clay in soil ompc_path (string): derived, estimated total soil organic matter bulkd_path (string): input, bulk density of soil Returns: afiel, field capacity for this soil layer """ afiel = numpy.empty(sand.shape, dtype=numpy.float32) afiel[:] = _TARGET_NODATA valid_mask = ( (~numpy.isclose(sand, sand_nodata)) & (~numpy.isclose(silt, silt_nodata)) & (~numpy.isclose(clay, clay_nodata)) & (ompc != _TARGET_NODATA) & (~numpy.isclose(bulkd, bulkd_nodata))) afiel[valid_mask] = ( 0.3075 * sand[valid_mask] + 0.5886 * silt[valid_mask] + 0.8039 * clay[valid_mask] + 2.208E-03 * ompc[valid_mask] + -0.1434 * bulkd[valid_mask]) return afiel sand_nodata = pygeoprocessing.get_raster_info(sand_path)['nodata'][0] silt_nodata = pygeoprocessing.get_raster_info(silt_path)['nodata'][0] clay_nodata = pygeoprocessing.get_raster_info(clay_path)['nodata'][0] bulkd_nodata = pygeoprocessing.get_raster_info(bulkd_path)['nodata'][0] pygeoprocessing.raster_calculator( [(path, 1) for path in [ sand_path, silt_path, clay_path, ompc_path, bulkd_path]], afiel_op, afiel_path, gdal.GDT_Float32, _TARGET_NODATA) def _calc_awilt( sand_path, silt_path, clay_path, ompc_path, bulkd_path, awilt_path): """Calculate wilting point for one soil layer. Wilting point, minimum soil water required by plants before wilting, from Gupta and Larson 1979, 'Estimating soil and water retention characteristics from particle size distribution, organic matter percent and bulk density'. Water Resources Research 15:1633. Parameters: sand_path (string): path to proportion sand in soil raster silt_path (string): path to proportion silt in soil raster clay_path (string): path to proportion clay in soil raster ompc_path (string): path to estimated total soil organic matter raster bulkd_path (string): path to bulk density of soil raster awilt_path (string): path to result raster, wilting point for this soil layer Side effects: creates the raster indicated by `awilt_path` Returns: None """ def awilt_op(sand, silt, clay, ompc, bulkd): """Calculate wilting point for one soil layer. Wilting point, minimum soil water required by plants before wilting, from Gupta and Larson 1979, 'Estimating soil and water retention characteristics from particle size distribution, organic matter percent and bulk density'. Water Resources Research 15:1633. Parameters: sand_path (string): input, proportion sand in soil silt_path (string): input, proportion silt in soil clay_path (string): input, proportion clay in soil ompc_path (string): derived, estimated total soil organic matter bulkd_path (string): input, bulk density of soil Returns: awilt, wilting point for this soil layer """ awilt = numpy.empty(sand.shape, dtype=numpy.float32) awilt[:] = _TARGET_NODATA valid_mask = ( (~numpy.isclose(sand, sand_nodata)) & (~numpy.isclose(silt, silt_nodata)) & (~numpy.isclose(clay, clay_nodata)) & (ompc != _TARGET_NODATA) & (~numpy.isclose(bulkd, bulkd_nodata))) awilt[valid_mask] = ( -0.0059 * sand[valid_mask] + 0.1142 * silt[valid_mask] + 0.5766 * clay[valid_mask] + 2.228E-03 * ompc[valid_mask] + 0.02671 * bulkd[valid_mask]) return awilt sand_nodata = pygeoprocessing.get_raster_info(sand_path)['nodata'][0] silt_nodata = pygeoprocessing.get_raster_info(silt_path)['nodata'][0] clay_nodata = pygeoprocessing.get_raster_info(clay_path)['nodata'][0] bulkd_nodata = pygeoprocessing.get_raster_info(bulkd_path)['nodata'][0] pygeoprocessing.raster_calculator( [(path, 1) for path in [ sand_path, silt_path, clay_path, ompc_path, bulkd_path]], awilt_op, awilt_path, gdal.GDT_Float32, _TARGET_NODATA) def _afiel_awilt( site_index_path, site_param_table, som1c_2_path, som2c_2_path, som3c_path, sand_path, silt_path, clay_path, bulk_d_path, pp_reg): """Calculate field capacity and wilting point for each soil layer. Computations based on Gupta and Larson 1979, 'Estimating soil and water retention characteristics from particle size distribution, organic matter percent and bulk density'. Water Resources Research 15:1633. Field capacity is calculated for -0.33 bar; wilting point is calculated for water content at -15 bars. Parameters: site_index_path (string): path to site spatial index raster site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters including 'edepth' field som1c_2_path (string): path to the state variable 'som1c_2', active organic soil carbon som2c_2_path (string): path to the state variable 'som2c_2', slow organic soil carbon som3c_path (string): path to the state variable 'som3c', passive organic soil carbon sand_path (string): path to raster containing proportion sand in soil silt_path (string): path to raster containing proportion silt in soil clay_path (string): path to raster containing proportion clay in soil bulk_d_path (string): path to raster containing bulk density of soil pp_reg (dict): map of key, path pairs giving paths to persistent intermediate parameters that do not change over the course of the simulation Modifies the rasters pp_reg['afiel_<layer>'] and pp_reg['awilt_<layer>'] for all soil layers. Returns: None """ def decrement_ompc(ompc_orig_path, ompc_dec_path): """Decrease estimated organic matter to 85% of its value. In each subsequent soil layer, estimated organic matter is decreased by 15%, to 85% of its previous value. Parameters: ompc_orig_path (string): path to estimated soil organic matter raster ompc_dec_path (string): path to result raster, estimated soil organic matter decreased to 85% of its previous value Side effects: modifies or creates the raster indicated by `ompc_dec_path` Returns: None """ def decrement_op(ompc_orig): """Reduce organic matter to 85% of its previous value.""" ompc_dec = numpy.empty(ompc_orig.shape, dtype=numpy.float32) ompc_dec[:] = _TARGET_NODATA valid_mask = (ompc_orig != _TARGET_NODATA) ompc_dec[valid_mask] = ompc_orig[valid_mask] * 0.85 return ompc_dec pygeoprocessing.raster_calculator( [(ompc_orig_path, 1)], decrement_op, ompc_dec_path, gdal.GDT_Float32, _TARGET_NODATA) # temporary intermediate rasters for calculating field capacity and # wilting point temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) edepth_path = os.path.join(temp_dir, 'edepth.tif') ompc_path = os.path.join(temp_dir, 'ompc.tif') site_to_edepth = dict( [(site_code, float(table['edepth'])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_edepth, edepth_path, gdal.GDT_Float32, _IC_NODATA) # estimate total soil organic matter _calc_ompc( som1c_2_path, som2c_2_path, som3c_path, bulk_d_path, edepth_path, ompc_path) # calculate field capacity and wilting point for each soil layer, # decreasing organic matter content by 85% with each layer for lyr in range(1, 10): afiel_path = pp_reg['afiel_{}_path'.format(lyr)] awilt_path = pp_reg['awilt_{}_path'.format(lyr)] _calc_afiel( sand_path, silt_path, clay_path, ompc_path, bulk_d_path, afiel_path) _calc_awilt( sand_path, silt_path, clay_path, ompc_path, bulk_d_path, awilt_path) ompc_dec_path = os.path.join(temp_dir, 'ompc{}.tif'.format(lyr)) decrement_ompc(ompc_path, ompc_dec_path) ompc_path = ompc_dec_path # clean up temporary files shutil.rmtree(temp_dir) def _persistent_params( site_index_path, site_param_table, sand_path, clay_path, pp_reg): """Calculate persistent parameters. The calculated values do not change over the course of the simulation. Parameters: site_index_path (string): path to site spatial index raster site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters sand_path (string): path to raster containing proportion sand in soil clay_path (string): path to raster containing proportion clay in soil pp_reg (dict): map of key, path pairs giving paths to persistent intermediate parameters that do not change over the course of the simulation. Modifies the persistent parameter rasters indexed by the following keys: pp_reg['wc_path'] pp_reg['eftext_path'] pp_reg['p1co2_2_path'] pp_reg['fps1s3_path'] pp_reg['fps2s3_path'] pp_reg['orglch_path'] pp_reg['vlossg_path'] Returns: None """ sand_nodata = pygeoprocessing.get_raster_info(sand_path)['nodata'][0] clay_nodata = pygeoprocessing.get_raster_info(clay_path)['nodata'][0] # temporary intermediate rasters for persistent parameters calculation temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) param_val_dict = {} for val in[ 'peftxa', 'peftxb', 'p1co2a_2', 'p1co2b_2', 'ps1s3_1', 'ps1s3_2', 'ps2s3_1', 'ps2s3_2', 'omlech_1', 'omlech_2', 'vlossg']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for ( site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) def calc_wc(afiel_1, awilt_1): """Calculate water content of soil layer 1.""" return afiel_1 - awilt_1 pygeoprocessing.raster_calculator( [(path, 1) for path in [ pp_reg['afiel_1_path'], pp_reg['awilt_1_path']]], calc_wc, pp_reg['wc_path'], gdal.GDT_Float32, _TARGET_NODATA) def calc_eftext(peftxa, peftxb, sand): """Calculate effect of soil texture on microbial decomposition. Use an empirical regression to estimate the effect of soil sand content on the microbe decomposition rate. Line 359 Prelim.f Parameters: peftxa (numpy.ndarray): parameter, regression intercept peftxb (numpy.ndarray): parameter, regression slope sand (numpy.ndarray): input, proportion sand in soil Returns: eftext, coefficient that modifies microbe decomposition rate. """ eftext = numpy.empty(sand.shape, dtype=numpy.float32) eftext[:] = _IC_NODATA valid_mask = ( (peftxa != _IC_NODATA) & (peftxb != _IC_NODATA) & (~numpy.isclose(sand, sand_nodata))) eftext[valid_mask] = ( peftxa[valid_mask] + (peftxb[valid_mask] * sand[valid_mask])) return eftext pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['peftxa'], param_val_dict['peftxb'], sand_path]], calc_eftext, pp_reg['eftext_path'], gdal.GDT_Float32, _IC_NODATA) def calc_p1co2_2(p1co2a_2, p1co2b_2, sand): """Calculate the fraction of carbon lost to CO2 from som1c_2. During decomposition from active organic soil carbon, a fraction of decomposing material is lost to CO2 as the soil respires. Line 366 Prelim.f Parameters: p1co2a_2 (numpy.ndarray): parameter, intercept of regression predicting loss to CO2 from active organic soil carbon p1co2b_2 (numpy.ndarray): parameter, slope of regression predicting loss to CO2 from active organic soil carbon sand (numpy.ndarray): input, proportion sand in soil Returns: p1co2_2, fraction of carbon that flows to CO2 from active organic soil carbon """ p1co2_2 = numpy.empty(sand.shape, dtype=numpy.float32) p1co2_2[:] = _IC_NODATA valid_mask = ( (p1co2a_2 != _IC_NODATA) & (p1co2b_2 != _IC_NODATA) & (~numpy.isclose(sand, sand_nodata))) p1co2_2[valid_mask] = ( p1co2a_2[valid_mask] + (p1co2b_2[valid_mask] * sand[valid_mask])) return p1co2_2 pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['p1co2a_2'], param_val_dict['p1co2b_2'], sand_path]], calc_p1co2_2, pp_reg['p1co2_2_path'], gdal.GDT_Float32, _IC_NODATA) def calc_fps1s3(ps1s3_1, ps1s3_2, clay): """Calculate effect of clay content on decomposition from som1c_2. Use an empirical regression to estimate the effect of clay content of soil on flow from soil organic matter with fast turnover to soil organic matter with slow turnover. Line 370 Prelim.f Parameters: ps1s3_1 (numpy.ndarray): parameter, regression intercept ps1s3_2 (numpy.ndarray): parameter, regression slope clay (numpy.ndarray): input, proportion clay in soil Returns: fps1s3, coefficient that modifies rate of decomposition from som1c_2 """ fps1s3 = numpy.empty(clay.shape, dtype=numpy.float32) fps1s3[:] = _IC_NODATA valid_mask = ( (ps1s3_1 != _IC_NODATA) & (ps1s3_2 != _IC_NODATA) & (~numpy.isclose(clay, clay_nodata))) fps1s3[valid_mask] = ( ps1s3_1[valid_mask] + (ps1s3_2[valid_mask] * clay[valid_mask])) return fps1s3 pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['ps1s3_1'], param_val_dict['ps1s3_2'], clay_path]], calc_fps1s3, pp_reg['fps1s3_path'], gdal.GDT_Float32, _IC_NODATA) def calc_fps2s3(ps2s3_1, ps2s3_2, clay): """Calculate effect of clay content on decomposition from som2c_2. Use an empirical regression to estimate the effect of clay content of soil on flow from slow soil organic carbon to soil passive organic carbon. Line 371 Prelim.f Parameters: ps2s3_1 (numpy.ndarray): parameter, regression intercept ps2s3_2 (numpy.ndarray): parameter, regression slope clay (numpy.ndarray): input, proportion clay in soil Returns: fps2s3, coefficient that modifies rate of decomposition from som2c_2 to som3c """ fps2s3 = numpy.empty(clay.shape, dtype=numpy.float32) fps2s3[:] = _IC_NODATA valid_mask = ( (ps2s3_1 != _IC_NODATA) & (ps2s3_2 != _IC_NODATA) & (~numpy.isclose(clay, clay_nodata))) fps2s3[valid_mask] = ( ps2s3_1[valid_mask] + (ps2s3_2[valid_mask] * clay[valid_mask])) return fps2s3 pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['ps2s3_1'], param_val_dict['ps2s3_2'], clay_path]], calc_fps2s3, pp_reg['fps2s3_path'], gdal.GDT_Float32, _IC_NODATA) def calc_orglch(omlech_1, omlech_2, sand): """Calculate the effect of sand content on leaching from soil. Use an empirical regression to estimate the effect of sand content of soil on rate of organic leaching from soil when there is drainage of soil water from soil layer 1 to soil layer 2. Line 110 Predec.f Parameters: omlech_1 (numpy.ndarray): parameter, regression intercept omlech_2 (numpy.ndarray): parameter, regression slope sand (numpy.ndarray): input, proportion sand in soil Returns: orglch, the fraction of organic compounds leaching from soil with drainage from soil layer 1 to layer 2 """ orglch = numpy.empty(sand.shape, dtype=numpy.float32) orglch[:] = _IC_NODATA valid_mask = ( (omlech_1 != _IC_NODATA) & (omlech_2 != _IC_NODATA) & (~numpy.isclose(sand, sand_nodata))) orglch[valid_mask] = ( omlech_1[valid_mask] + (omlech_2[valid_mask] * sand[valid_mask])) return orglch pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['omlech_1'], param_val_dict['omlech_2'], sand_path]], calc_orglch, pp_reg['orglch_path'], gdal.GDT_Float32, _IC_NODATA) def calc_vlossg(vlossg_param, clay): """Calculate proportion of gross mineralized N that is volatized. During decomposition, some N is lost to volatilization. This is a function of the gross mineralized N and is calculated according to this multiplier, which varies with soil clay content. Parameters: vlossg (numpy.ndarray): parameter, volatilization loss multiplier clay (numpy.ndarray): input, proportion clay in soil Returns: vlossg, proportion of gross mineralized N that is volatized """ valid_mask = ( (vlossg_param != _IC_NODATA) & (~numpy.isclose(clay, clay_nodata))) vlossg = numpy.empty(vlossg_param.shape, dtype=numpy.float32) vlossg[:] = _IC_NODATA max_mask = ((clay > 0.3) & valid_mask) min_mask = ((clay < 0.1) & valid_mask) vlossg[valid_mask] = -0.1 * (clay[valid_mask] - 0.3) + 0.01 vlossg[max_mask] = 0.01 vlossg[min_mask] = 0.03 vlossg[valid_mask] = vlossg[valid_mask] * vlossg_param[valid_mask] return vlossg pygeoprocessing.raster_calculator( [(path, 1) for path in [param_val_dict['vlossg'], clay_path]], calc_vlossg, pp_reg['vlossg_path'], gdal.GDT_Float32, _IC_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _aboveground_ratio(anps, tca, pcemic_1, pcemic_2, pcemic_3): """Calculate C/<iel> ratios of decomposing aboveground material. This ratio is used to test whether there is sufficient <iel> (N or P) in aboveground material for the material to decompose. Agdrat.f Parameters: anps (numpy.ndarray): state variable, N or P in the donor material tca (numpy.ndarray): state variable, total C in the donor material pcemic_1 (numpy.ndarray): parameter, maximum C/<iel> of new material pcemic_2 (numpy.ndarray): parameter, minimum C/<iel> of new material pcemic_3 (numpy.ndarray): parameter, minimum <iel> content of decomposing material that gives minimum C/<iel> of new material Returns: agdrat, the C/<iel> ratio of new material """ valid_mask = ( (~numpy.isclose(anps, _SV_NODATA)) & (~numpy.isclose(tca, _SV_NODATA)) & (pcemic_1 != _IC_NODATA) & (pcemic_2 != _IC_NODATA) & (pcemic_3 != _IC_NODATA)) cemicb = numpy.empty(anps.shape, dtype=numpy.float32) cemicb[:] = _IC_NODATA cemicb[valid_mask] = ( (pcemic_2[valid_mask] - pcemic_1[valid_mask]) / pcemic_3[valid_mask]) econt = numpy.empty(anps.shape, dtype=numpy.float32) econt[:] = _TARGET_NODATA econt[valid_mask] = 0 decompose_mask = ((tca > 0.) & valid_mask) econt[decompose_mask] = anps[decompose_mask] / (tca[decompose_mask] * 2.5) agdrat = numpy.empty(anps.shape, dtype=numpy.float32) agdrat[:] = _TARGET_NODATA agdrat[valid_mask] = pcemic_2[valid_mask] compute_mask = ((econt <= pcemic_3) & valid_mask) agdrat[compute_mask] = ( pcemic_1[compute_mask] + econt[compute_mask] * cemicb[compute_mask]) return agdrat def _belowground_ratio(aminrl, varat_1_iel, varat_2_iel, varat_3_iel): """Calculate C/<iel> ratios of decomposing belowground material. This ratio is used to test whether there is sufficient <iel> (N or P) in soil metabolic material to decompose. Bgdrat.f Parameters: aminrl (numpy.ndarray): derived, average surface mineral <iel> varat_1_iel (numpy.ndarray): parameter, maximum C/<iel> ratio for newly decomposed material varat_2_iel (numpy.ndarray): parameter, minimum C/<iel> ratio varat_3_iel (numpy.ndarray): parameter, amount of <iel> present when minimum ratio applies Returns: bgdrat, the C/<iel> ratio of new material """ valid_mask = ( (~numpy.isclose(aminrl, _SV_NODATA)) & (varat_1_iel != _IC_NODATA) & (varat_2_iel != _IC_NODATA) & (varat_3_iel != _IC_NODATA)) bgdrat = numpy.empty(aminrl.shape, dtype=numpy.float32) bgdrat[:] = _TARGET_NODATA bgdrat[valid_mask] = ( (1. - aminrl[valid_mask] / varat_3_iel[valid_mask]) * (varat_1_iel[valid_mask] - varat_2_iel[valid_mask]) + varat_2_iel[valid_mask]) max_mask = ((aminrl <= 0) & valid_mask) bgdrat[max_mask] = varat_1_iel[max_mask] min_mask = ((aminrl > varat_3_iel) & valid_mask) bgdrat[min_mask] = varat_2_iel[min_mask] return bgdrat def _structural_ratios(site_index_path, site_param_table, sv_reg, pp_reg): """Calculate maximum C/N and C/P ratios for structural material. These ratios limit decomposition of structural material (i.e., material containing lignin). Lines 31-77 Predec.f Parameters: site_index_path (string): path to site spatial index raster site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters sv_reg (dict): map of key, path pairs giving paths to state variables for the current month pp_reg (dict): map of key, path pairs giving paths to persistent intermediate parameters that do not change over the course of the simulation. Modifies the persistent parameter rasters indexed by the following keys: pp_reg['rnewas_1_1_path'] pp_reg['rnewas_1_2_path'] pp_reg['rnewas_2_1_path'] pp_reg['rnewas_2_2_path'] pp_reg['rnewbs_1_1_path'] pp_reg['rnewbs_1_2_path'] pp_reg['rnewbs_2_1_path'] pp_reg['rnewbs_2_2_path'] Returns: None """ # temporary parameter rasters for structural ratios calculations temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) param_val_dict = {} for iel in [1, 2]: for val in[ 'pcemic1_2', 'pcemic1_1', 'pcemic1_3', 'pcemic2_2', 'pcemic2_1', 'pcemic2_3', 'rad1p_1', 'rad1p_2', 'rad1p_3', 'varat1_1', 'varat22_1']: target_path = os.path.join(temp_dir, '{}_{}.tif'.format(val, iel)) param_val_dict['{}_{}'.format(val, iel)] = target_path site_to_val = dict( [(site_code, float(table['{}_{}'.format(val, iel)])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) def calc_rnewas_som2( pcemic2_2, pcemic2_1, pcemic2_3, struce_1, strucc_1, rad1p_1, rad1p_2, rad1p_3, pcemic1_2, rnewas1): """Calculate C/<iel> ratio for decomposition into som2. This ratio is calculated separately for each nutrient (i.e., N, P). When material decomposes into the surface slow organic pool, the C/<iel> ratio of decomposing material must be smaller than or equal to this ratio. A portion of the ratio of material entering som1, the surface active pool, is also added to som2 and calculated here. Parameters: pcemic2_2 (numpy.ndarray): parameter, minimum C/<iel> ratio for surface slow organic pool pcemic2_1 (numpy.ndarray): parameter, maximum C/<iel> ratio for surface slow organic pool pcemic2_3 (numpy.ndarray): parameter, mimimum <iel> content of decomposing aboveground material, above which the C/<iel> ratio of the surface slow organic pool equals pcemic1_2 struce_1 (numpy.ndarray): state variable, <iel> in surface structural material strucc_1 (numpy.ndarray): state variable, C in surface structural material rad1p_1 (numpy.ndarray): parameter, intercept of regression used to calculate addition of <iel> from surface active pool rad1p_2 (numpy.ndarray): parameter, slope of regression used to calculate addition of <iel> from surface active pool rad1p_3 (numpy.ndarray): parameter, minimum allowable C/<iel> used to calculate addition term for C/<iel> ratio of som2 formed from surface active pool pcemic1_2 (numpy.ndarray): parameter, minimum C/<iel> ratio for surface active organic pool rnewas1 (numpy.ndarray): derived, C/<iel> ratio for decomposition into som1 Returns: rnewas2, required ratio for decomposition of structural material into som2 for one nutrient """ valid_mask = ( (pcemic2_2 != _IC_NODATA) & (pcemic2_1 != _IC_NODATA) & (pcemic2_3 != _IC_NODATA) & (~numpy.isclose(struce_1, _SV_NODATA)) & (~numpy.isclose(strucc_1, _SV_NODATA)) & (rad1p_1 != _IC_NODATA) & (rad1p_2 != _IC_NODATA) & (rad1p_3 != _IC_NODATA) & (pcemic1_2 != _IC_NODATA) & (rnewas1 != _TARGET_NODATA)) rnewas2 = _aboveground_ratio( struce_1, strucc_1, pcemic2_1, pcemic2_2, pcemic2_3) radds1 = numpy.empty(strucc_1.shape, dtype=numpy.float32) radds1[:] = _TARGET_NODATA radds1[valid_mask] = ( rad1p_1[valid_mask] + rad1p_2[valid_mask] * (rnewas1[valid_mask] - pcemic1_2[valid_mask])) rnewas2[valid_mask] = rnewas1[valid_mask] + radds1[valid_mask] rnewas2[valid_mask] = numpy.maximum( rnewas2[valid_mask], rad1p_3[valid_mask]) return rnewas2 for iel in [1, 2]: # calculate rnewas_iel_1 - aboveground material to SOM1 pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['struce_1_{}_path'.format(iel)], sv_reg['strucc_1_path'], param_val_dict['pcemic1_1_{}'.format(iel)], param_val_dict['pcemic1_2_{}'.format(iel)], param_val_dict['pcemic1_3_{}'.format(iel)]]], _aboveground_ratio, pp_reg['rnewas_{}_1_path'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) # calculate rnewas_iel_2 - aboveground material to SOM2 pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['pcemic2_2_{}'.format(iel)], param_val_dict['pcemic2_1_{}'.format(iel)], param_val_dict['pcemic2_3_{}'.format(iel)], sv_reg['struce_1_{}_path'.format(iel)], sv_reg['strucc_1_path'], param_val_dict['rad1p_1_{}'.format(iel)], param_val_dict['rad1p_2_{}'.format(iel)], param_val_dict['rad1p_3_{}'.format(iel)], param_val_dict['pcemic1_2_{}'.format(iel)], pp_reg['rnewas_{}_1_path'.format(iel)]]], calc_rnewas_som2, pp_reg['rnewas_{}_2_path'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) # calculate rnewbs_iel_1 - belowground material to SOM1 site_to_varat1_1 = dict([ (site_code, float(table['varat1_1_{}'.format(iel)])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_varat1_1, pp_reg['rnewbs_{}_1_path'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) # calculate rnewbs_iel_2 - belowground material to SOM2 # rnewbs(iel,2) = varat22(1,iel) site_to_varat22_1 = dict([ (site_code, float(table['varat22_1_{}'.format(iel)])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_varat22_1, pp_reg['rnewbs_{}_2_path'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _yearly_tasks( aligned_inputs, site_param_table, veg_trait_table, month_index, pft_id_set, year_reg): """Calculate quantities that remain static for 12 months. These quantities are annual precipitation, annual atmospheric N deposition, and the fraction of plant residue which is lignin for each pft. Century also calculates non-symbiotic soil N fixation once yearly, but here those were moved to monthly tasks. Century uses precipitation in the future 12 months (prcgrw) to predict root:shoot ratios, but here we instead use the sum of monthly precipitation in 12 months including the current one, if data for 12 future months are not available. Lines 79-82, 164 Eachyr.f Parameters: aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including monthly precipitation and site spatial index raster site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters veg_trait_table (dict): map of pft id to dictionaries containing plant functional type parameters month_index (int): current monthly step, relative to 0 so that month_index=0 at first monthly time step pft_id_set (set): set of integers identifying plant functional types year_reg (dict): map of key, path pairs giving paths to the annual precipitation and N deposition rasters Side effects: modifies or creates the rasters indicated by: year_reg['annual_precip_path'] year_reg['baseNdep_path'] year_reg['pltlig_above_<pft>'] for each pft year_reg['pltlig_below_<pft>'] for each pft Returns: None Raises: ValueError if fewer than 12 monthly precipitation rasters can be found """ def calc_base_N_dep(epnfa_1, epnfa_2, prcann): """Calculate base annual atmospheric N deposition. Parameters: epnfa_1 (numpy.ndarray): parameter, intercept of regression predicting atmospheric N deposition from precipitation epnfa_2 (numpy.ndarray): parameter, slope of regression predicting atmospheric N deposition from precipitation prcann (numpy.ndarray): derived, annual precipitation Returns: baseNdep, annual atmospheric N deposition """ baseNdep = numpy.empty(prcann.shape, dtype=numpy.float32) baseNdep[:] = 0. valid_mask = ( (epnfa_1 != _IC_NODATA) & (epnfa_2 != _IC_NODATA) & (prcann != _TARGET_NODATA)) baseNdep[valid_mask] = ( epnfa_1[valid_mask] + (epnfa_2[valid_mask] * numpy.minimum(prcann[valid_mask], 80.))) baseNdep[baseNdep < 0] = 0. return baseNdep def calc_pltlig(fligni_1_lyr, fligni_2_lyr, prcann): """Calculate the fraction of residue that is lignin. Cmplig.f This fraction is used to calculate the fraction of residue (i.e., incoming litter from fall of standing dead or incoming soil from death of roots) that is partitioned to metabolic vs structural pools. It is calculated once per year from annual precipitation and fixed parameters. Parameters: fligni_1_lyr (numpy.ndarray): parameter, intercept for regression predicting lignin content fraction from rainfall fligni_2_lyr (numpy.ndarray): parameter, slope for regression predicting lignin content fraction from rainfall prcann (numpy.ndarray): derived, annual precipitation Returns: pltlig_lyr, fraction of residue that is lignin """ valid_mask = ( (fligni_1_lyr != _IC_NODATA) & (fligni_2_lyr != _IC_NODATA) & (prcann != _TARGET_NODATA)) pltlig = numpy.empty(fligni_1_lyr.shape, dtype=numpy.float32) pltlig[:] = _TARGET_NODATA pltlig[valid_mask] = ( fligni_1_lyr[valid_mask] + fligni_2_lyr[valid_mask] * prcann[valid_mask]) pltlig[valid_mask] = numpy.clip(pltlig[valid_mask], 0.02, 0.5) return pltlig offset = -12 annual_precip_rasters = [] while len(annual_precip_rasters) < 12: offset += 1 if offset == 12: raise ValueError("Insufficient precipitation rasters were found") precip_month = month_index + offset try: annual_precip_rasters.append( aligned_inputs['precip_%d' % precip_month]) except KeyError: continue precip_nodata = set([]) for precip_raster in annual_precip_rasters: precip_nodata.update( set([pygeoprocessing.get_raster_info(precip_raster)['nodata'][0]])) if len(precip_nodata) > 1: raise ValueError("Precipitation rasters include >1 nodata value") precip_nodata = list(precip_nodata)[0] raster_list_sum( annual_precip_rasters, precip_nodata, year_reg['annual_precip_path'], _TARGET_NODATA) # intermediate parameter rasters for this operation temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) param_val_dict = {} for val in['epnfa_1', 'epnfa_2']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) for val in ['fligni_1_1', 'fligni_2_1', 'fligni_1_2', 'fligni_2_2']: for pft_i in pft_id_set: target_path = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) param_val_dict['{}_{}'.format(val, pft_i)] = target_path fill_val = veg_trait_table[pft_i][val] pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], target_path, gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[fill_val]) # calculate base N deposition pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['epnfa_1'], param_val_dict['epnfa_2'], year_reg['annual_precip_path']]], calc_base_N_dep, year_reg['baseNdep_path'], gdal.GDT_Float32, _TARGET_NODATA) for pft_i in pft_id_set: # fraction of surface residue that is lignin pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['fligni_1_1_{}'.format(pft_i)], param_val_dict['fligni_2_1_{}'.format(pft_i)], year_reg['annual_precip_path']]], calc_pltlig, year_reg['pltlig_above_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) # fraction of soil residue that is lignin pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['fligni_1_2_{}'.format(pft_i)], param_val_dict['fligni_2_2_{}'.format(pft_i)], year_reg['annual_precip_path']]], calc_pltlig, year_reg['pltlig_below_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def calc_latitude(template_raster, latitude_raster_path): """Calculate latitude at the center of each pixel in a template raster.""" pygeoprocessing.new_raster_from_base( template_raster, latitude_raster_path, gdal.GDT_Float32, [_IC_NODATA]) latitude_raster = gdal.OpenEx( latitude_raster_path, gdal.OF_RASTER | gdal.GA_Update) target_band = latitude_raster.GetRasterBand(1) base_raster_info = pygeoprocessing.get_raster_info(template_raster) geotransform = base_raster_info['geotransform'] for offset_map, raster_block in pygeoprocessing.iterblocks( (template_raster, 1)): n_y_block = raster_block.shape[0] n_x_block = raster_block.shape[1] # offset by .5 so we're in the center of the pixel xoff = offset_map['xoff'] + 0.5 yoff = offset_map['yoff'] + 0.5 # calculate the projected x and y coordinate bounds for the block x_range = numpy.linspace( geotransform[0] + geotransform[1] * xoff, geotransform[0] + geotransform[1] * (xoff + n_x_block - 1), n_x_block) y_range = numpy.linspace( geotransform[3] + geotransform[5] * yoff, geotransform[3] + geotransform[5] * (yoff + n_y_block - 1), n_y_block) # we'll use this to avoid generating any nodata points valid_mask = raster_block != base_raster_info['nodata'] # these indexes correspond to projected coordinates # y_vector is what we want, an array of latitude coordinates x_vector, y_vector = numpy.meshgrid(x_range, y_range) target_band.WriteArray( y_vector, xoff=offset_map['xoff'], yoff=offset_map['yoff']) # Making sure the band and dataset is flushed and not in memory target_band.FlushCache() target_band.FlushCache() target_band = None gdal.Dataset.__swig_destroy__(latitude_raster) latitude_raster = None def _calc_daylength(template_raster, month, daylength_path): """Calculate estimated hours of daylength. Daylen.c. Parameters: template_raster (string): path to a raster in geographic coordinates that is aligned with model inputs month (int): current month of the year, such that month=0 indicates January daylength_path (string): path to shortwave radiation raster Side effects: modifies or creates the raster indicated by `daylength_path` Returns: None """ def daylength(month): def _daylength(latitude): """Estimate hours of daylength for a given month and latitude.""" # Julian day at beginning of each month jday_list = [ 1, 32, 61, 92, 122, 153, 183, 214, 245, 275, 306, 337] jday = jday_list[month - 1] # Convert latitude from degrees to radians rlatitude = latitude * (numpy.pi / 180.0) declin = 0.4014 * numpy.sin(6.283185 * (jday - 77.0) / 365) temp = 1.0 - (-numpy.tan(rlatitude) * numpy.tan(declin))**2 temp[temp < 0] = 0 par1 = numpy.sqrt(temp) par2 = -numpy.tan(rlatitude) * numpy.tan(declin) ahou = numpy.arctan2(par1, par2) hours_of_daylength = (ahou / numpy.pi) * 24 return hours_of_daylength return _daylength # calculate an intermediate input, latitude at each pixel center temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) latitude_raster_path = os.path.join(temp_dir, 'latitude.tif') calc_latitude(template_raster, latitude_raster_path) pygeoprocessing.raster_calculator( [(latitude_raster_path, 1)], daylength(month), daylength_path, gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _shortwave_radiation(template_raster, month, shwave_path): """Calculate shortwave radiation outside the atmosphere. Shortwave radiation outside the atmosphere is calculated according to Penman (1948), "Natural evaporation from open water, bare soil and grass", Proc. Roy. Soc. London. The latitude of each pixel is required to calculate radiation and is calculated as an intermediate step from the input `template_raster`. shwave.f Parameters: template_raster (string): path to a raster in geographic coordinates that is aligned with model inputs month (int): current month of the year, such that month=0 indicates January shwave_path (string): path to shortwave radiation raster Side effects: Modifies the raster indicated by `shwave_path` Returns: None """ def shwave(month): def _shwave(latitude): """Calculate shortwave radiation outside the atmosphere. Parameters: latitude (float): latitude of current site in degrees month (int): current month of the year, such that month=1 indicates January Returns: shwave, short wave solar radiation outside the atmosphere """ # Julian date in middle of each month of the year jday_list = [ 16, 46, 75, 106, 136, 167, 197, 228, 259, 289, 320, 350] jday = jday_list[month - 1] transcof = 0.8 # Convert latitude from degrees to radians rlatitude = latitude * (numpy.pi / 180.0) # short wave solar radiation on a clear day declin = 0.401426 * numpy.sin(6.283185 * (jday - 77.0) / 365.0) temp = 1.0 - (-numpy.tan(rlatitude) * numpy.tan(declin))**2 temp[temp < 0.] = 0. par1 = numpy.sqrt(temp) par2 = (-numpy.tan(rlatitude) * numpy.tan(declin)) ahou = numpy.arctan2(par1, par2) ahou[ahou < 0.] = 0. solrad = ( 917.0 * transcof * ( ahou * numpy.sin(rlatitude) * numpy.sin(declin) + numpy.cos(rlatitude) * numpy.cos(declin) * numpy.sin(ahou))) # short wave radiation outside the atmosphere shwave = solrad / transcof return shwave return _shwave # calculate an intermediate input, latitude at each pixel center temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) latitude_raster_path = os.path.join(temp_dir, 'latitude.tif') calc_latitude(template_raster, latitude_raster_path) pygeoprocessing.raster_calculator( [(latitude_raster_path, 1)], shwave(month), shwave_path, gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _reference_evapotranspiration( max_temp_path, min_temp_path, shwave_path, fwloss_4_path, pevap_path): """Calculate reference evapotranspiration. Reference evapotranspiration from the FAO Penman-Monteith equation in "Guidelines for computing crop water requirements", FAO Irrigation and drainage paper 56 (http://www.fao.org/docrep/X0490E/x0490e08.htm), modified by the parameter fwloss(4). Parameters: max_temp_path (string): path to maximum monthly temperature min_temp_path (string): path to minimum monthly temperature shwave_path (string): path to shortwave radiation outside the atmosphere fwloss_4_path (string): path to parameter, scaling factor for reference evapotranspiration pevap_path (string): path to result, reference evapotranspiration raster Side effects: modifies or creates the raster indicated by `pevap_path` Returns: None """ def _calc_pevap(max_temp, min_temp, shwave, fwloss_4): """Calculate reference evapotranspiration. Pevap.f Parameters: max_temp (numpy.ndarray): input, maximum monthly temperature min_temp (numpy.ndarray): input, minimum monthly temperature shwave (numpy.ndarray): derived, shortwave radiation outside the atmosphere fwloss_4 (numpy.ndarray): parameter, scaling factor for reference evapotranspiration Returns: pevap, reference evapotranspiration """ const1 = 0.0023 const2 = 17.8 langleys2watts = 54.0 valid_mask = ( (~numpy.isclose(max_temp, maxtmp_nodata)) & (~numpy.isclose(min_temp, mintmp_nodata)) & (shwave != _TARGET_NODATA) & (fwloss_4 != _IC_NODATA)) trange = numpy.empty(fwloss_4.shape, dtype=numpy.float32) trange[:] = _TARGET_NODATA trange[valid_mask] = max_temp[valid_mask] - min_temp[valid_mask] tmean = numpy.empty(fwloss_4.shape, dtype=numpy.float32) tmean[:] = _IC_NODATA tmean[valid_mask] = (max_temp[valid_mask] + min_temp[valid_mask]) / 2.0 # daily reference evapotranspiration daypet = numpy.empty(fwloss_4.shape, dtype=numpy.float32) daypet[:] = _TARGET_NODATA in1 = const1 * (tmean[valid_mask] + const2) in2 = numpy.sqrt(trange[valid_mask]) in3 = (shwave[valid_mask] / langleys2watts) daypet[valid_mask] = ( const1 * (tmean[valid_mask] + const2) * numpy.sqrt(trange[valid_mask]) * (shwave[valid_mask] / langleys2watts)) # monthly reference evapotranspiration, from mm to cm, # bounded to be at least 0.5 monpet = (daypet * 30.) / 10. monpet[monpet <= 0.5] = 0.5 pevap = numpy.empty(fwloss_4.shape, dtype=numpy.float32) pevap[:] = _TARGET_NODATA pevap[valid_mask] = monpet[valid_mask] * fwloss_4[valid_mask] return pevap maxtmp_nodata = pygeoprocessing.get_raster_info( max_temp_path)['nodata'][0] mintmp_nodata = pygeoprocessing.get_raster_info( min_temp_path)['nodata'][0] pygeoprocessing.raster_calculator( [(path, 1) for path in [ max_temp_path, min_temp_path, shwave_path, fwloss_4_path]], _calc_pevap, pevap_path, gdal.GDT_Float32, _TARGET_NODATA) def _potential_production( aligned_inputs, site_param_table, current_month, month_index, pft_id_set, veg_trait_table, prev_sv_reg, pp_reg, month_reg): """Calculate above- and belowground potential production. Potential production of each plant functional type is calculated as total potential production given incoming solar radiation, limited by temperature, soil moisture, and obstruction by biomass and litter. Further modification of potential production according to limitation by water and nutrient availability is calculated in the root:shoot ratio submodel. Lines 57-148 Potcrp.f Parameters: aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including precipitation, temperature, plant functional type composition, and site spatial index site_param_table (dict): map of site spatial indices to dictionaries containing site parameters current_month (int): month of the year, such that current_month=1 indicates January month_index (int): month of the simulation, such that month_index=13 indicates month 13 of the simulation pft_id_set (set): set of integers identifying plant functional types veg_trait_table (dict): map of pft id to dictionaries containing plant functional type parameters prev_sv_reg (dict): map of key, path pairs giving paths to state variables for the previous month pp_reg (dict): map of key, path pairs giving paths to persistent intermediate parameters that do not change over the course of the simulation month_reg (dict): map of key, path pairs giving paths to intermediate calculated values that are shared between submodels Side effects: creates the raster indicated by `month_reg['h2ogef_1_<PFT>']` for each plant functional type (PFT) where growth is scheduled to occur in this month creates the raster indicated by `month_reg['tgprod_pot_prod_<PFT>']` for each plant functional type (PFT) where growth is scheduled to occur in this month Returns: None """ # if growth does not occur this month for all PFTs, # skip the rest of the function do_PFT = [] for pft_i in pft_id_set: if str(current_month) in veg_trait_table[pft_i]['growth_months']: do_PFT.append(pft_i) if not do_PFT: return def calc_ctemp(aglivc, pmxbio, maxtmp, pmxtmp, mintmp, pmntmp): """Calculate soil temperature relative to its effect on growth. Soil temperature is calculated from monthly temperature inputs and modified by total standing live biomass. Lines 69-84 Potcrp.f Parameters: aglivc (numpy.ndarray): derived, sum of aglivc (carbon in aboveground live biomass) across plant functional types pmxbio (numpy.ndarray): parameter, maximum biomass impact on temperature maxtmp (numpy.ndarray): input, average maximum monthly temperature pmxtmp (numpy.ndarray): parameter, scaling factor for effect of biomass on monthly maximum temperature mintmp (numpy.ndarray): input, average minimum monthly temperature pmntmp (numpy.ndarray): parameter, scaling factor for effect of biomass on monthly minimum temperature Returns: ctemp, effect of soil temperature on potential production """ bio = numpy.empty(aglivc.shape, dtype=numpy.float32) bio[:] = _IC_NODATA valid_mask = ( (aglivc >= 0.) & (pmxbio != _IC_NODATA) & (~numpy.isclose(maxtmp, maxtmp_nodata)) & (pmxtmp != _IC_NODATA) & (~numpy.isclose(mintmp, mintmp_nodata)) & (pmntmp != _IC_NODATA)) bio[valid_mask] = aglivc[valid_mask] * 2.5 bio[bio > pmxbio] = pmxbio[bio > pmxbio] bio[pmxbio < 0] = _IC_NODATA # Maximum temperature tmxs = numpy.empty(aglivc.shape, dtype=numpy.float32) tmxs[:] = _IC_NODATA tmxs[valid_mask] = ( maxtmp[valid_mask] + ( (25.4/(1. + 18. * numpy.exp(-0.20 * maxtmp[valid_mask]))) * (numpy.exp(pmxtmp[valid_mask] * bio[valid_mask]) - 0.13))) # Minimum temperature tmns = numpy.empty(aglivc.shape, dtype=numpy.float32) tmns[:] = _IC_NODATA tmns[valid_mask] = ( mintmp[valid_mask] + (pmntmp[valid_mask] * bio[valid_mask] - 1.78)) # Average temperature ctemp = numpy.empty(aglivc.shape, dtype=numpy.float32) ctemp[:] = _IC_NODATA ctemp[valid_mask] = (tmxs[valid_mask] + tmns[valid_mask])/2. return ctemp def calc_potprd(mintmp, maxtmp, ctemp, ppdf_1, ppdf_2, ppdf_3, ppdf_4): """Calculate the limiting effect of temperature on growth. Estimated soil temperature restricts potential production according to a Poisson Density Function curve described by the plant functional type-specific parameters ppdf_1-4.. Lines 73-84 Potcrp.f Parameters: mintmp (numpy.ndarray): input, average minimum monthly temperature maxtmp (numpy.ndarray): input, average maximum monthly temperature ctemp (numpy.ndarray): derived, soil temperature as calculated from monthly temperature and modified by standing live biomass ppdf_1 (numpy.ndarray): parameter, optimum temperature for growth ppdf_2 (numpy.ndarray): parameter, maximum temperature for growth ppdf_3 (numpy.ndarray): parameter, left curve shape for Poisson Density Function curve describing growth as function of temperature ppdf_4 (numpy.ndarray): parameter, right curve shape for Poisson Density Function curve describing growth as function of temperature Returns: potprd, scaling factor describing potential production limited by temperature """ valid_mask = ( (~numpy.isclose(mintmp, mintmp_nodata)) & (~numpy.isclose(maxtmp, maxtmp_nodata)) & (ctemp != _IC_NODATA) & (ppdf_1 != _IC_NODATA) & (ppdf_2 != _IC_NODATA) & (ppdf_3 != _IC_NODATA) & (ppdf_4 != _IC_NODATA)) frac = numpy.empty(ctemp.shape, dtype=numpy.float32) frac[:] = _TARGET_NODATA frac[valid_mask] = ( (ppdf_2[valid_mask] - ctemp[valid_mask]) / (ppdf_2[valid_mask] - ppdf_1[valid_mask])) avg_tmp = numpy.empty(ctemp.shape, dtype=numpy.float32) avg_tmp[valid_mask] = (mintmp[valid_mask] + maxtmp[valid_mask]) / 2. grow_mask = ( (avg_tmp > 0) & (frac > 0) & valid_mask) potprd = numpy.empty(ctemp.shape, dtype=numpy.float32) potprd[:] = _TARGET_NODATA potprd[valid_mask] = 0. potprd[grow_mask] = (numpy.exp( (ppdf_3[grow_mask]/ppdf_4[grow_mask]) * (1. - numpy.power(frac[grow_mask], ppdf_4[grow_mask]))) * numpy.power(frac[grow_mask], ppdf_3[grow_mask])) return potprd def calc_h2ogef_1( pevap, avh2o_1, precip, wc, pprpts_1, pprpts_2, pprpts_3): """Calculate the limiting factor of water availability on growth. Soil moisture restricts potential production according to the ratio of available water to reference evapotranspiration. The shape of the linear relationship of this ratio to potential production is controlled by the site parameters pprpts_1, pprpts_2, and pprpts_3. Lines 57-64 Potcrp.f Parameters: pevap (numpy.ndarray): derived, reference evapotranspiration avh2o_1 (numpy.ndarray): state variable, water available to this plant functional type for growth precip (numpy.ndarray): input, precipitation for the current month wc (numpy.ndarray): derived, water content in soil layer 1 pprpts_1 (numpy.ndarray): parameter, the minimum ratio of available water to reference evapotranspiration that limits production completely pprpts_2 (numpy.ndarray): parameter, influences the slope of the line predicting potential production from available water pprpts_3 (numpy.ndarray): parameter, the ratio of available water to reference evapotranspiration above which production is not restricted Returns: h2ogef_1, scaling factor describing potential production limited by soil moisture """ valid_mask = ( (pevap != _TARGET_NODATA) & (~numpy.isclose(avh2o_1, _SV_NODATA)) & (~numpy.isclose(precip, precip_nodata)) & (wc != _TARGET_NODATA) & (pprpts_1 != _IC_NODATA) & (pprpts_2 != _IC_NODATA) & (pprpts_3 != _IC_NODATA)) h2ogef_prior = numpy.empty(pevap.shape, dtype=numpy.float32) h2ogef_prior[:] = _TARGET_NODATA h2ogef_prior[valid_mask] = numpy.where( pevap[valid_mask] >= 0.01, (avh2o_1[valid_mask] + precip[valid_mask])/pevap[valid_mask], 0.01) intcpt = ( pprpts_1[valid_mask] + (pprpts_2[valid_mask] * wc[valid_mask])) slope = 1. / (pprpts_3[valid_mask] - intcpt) h2ogef_1 = numpy.empty(pevap.shape, dtype=numpy.float32) h2ogef_1[:] = _TARGET_NODATA h2ogef_1[valid_mask] = ( 1.0 + slope * (h2ogef_prior[valid_mask] - pprpts_3[valid_mask])) h2ogef_1[valid_mask] = numpy.clip(h2ogef_1[valid_mask], 0.01, 1.) return h2ogef_1 def calc_biof(sum_stdedc, sum_aglivc, strucc_1, pmxbio, biok5): """Calculate the effect of obstruction on growth. Live biomass, standing dead biomass, and litter reduce potential production through obstruction. The shape of the relationship between standing biomass and litter and potential production is controlled by the site parameter pmxbio and the plant functional type parameter biok5. Lines 91-120 Potcrp.f Parameters: sum_stdedc (numpy.ndarray): derived, total carbon in standing dead biomass across plant functional types sum_aglivc (numpy.ndarray): derived, total carbon in aboveground live biomass across plant functional types strucc_1 (numpy.ndarray): derived, carbon in surface litter pmxbio (numpy.ndarray): parameter, maximum biomass impact on potential production biok5 (numpy.ndarray): parameter, level of standing dead biomass and litter Returns: biof, scaling factor describing potential production limited by obstruction """ valid_mask = ( (~numpy.isclose(strucc_1, _SV_NODATA)) & (pmxbio != _IC_NODATA) & (biok5 != _IC_NODATA)) bioc = numpy.empty(sum_stdedc.shape, dtype=numpy.float32) bioc[:] = _IC_NODATA bioc[valid_mask] = numpy.where( ((sum_stdedc[valid_mask] + 0.1*strucc_1[valid_mask]) <= 0.), 0.01, (sum_stdedc[valid_mask] + 0.1*strucc_1[valid_mask])) bioc[valid_mask] = numpy.where( (bioc[valid_mask] > pmxbio[valid_mask]), pmxbio[valid_mask], bioc[valid_mask]) bioprd = numpy.empty(sum_stdedc.shape, dtype=numpy.float32) bioprd[:] = _IC_NODATA bioprd[valid_mask] = 1. - ( bioc[valid_mask] / (biok5[valid_mask] + bioc[valid_mask])) temp1 = 1. - bioprd temp2 = temp1 * 0.75 temp3 = temp1 * 0.25 ratlc = numpy.empty(sum_stdedc.shape, dtype=numpy.float32) ratlc[:] = _IC_NODATA ratlc[valid_mask] = sum_aglivc[valid_mask] / bioc[valid_mask] biof = numpy.empty(sum_stdedc.shape, dtype=numpy.float32) biof[:] = _TARGET_NODATA biof[valid_mask] = numpy.where( ratlc[valid_mask] <= 1., (bioprd[valid_mask] + (temp2[valid_mask] * ratlc[valid_mask])), numpy.where( ratlc[valid_mask] <= 2., (bioprd[valid_mask] + temp2[valid_mask]) + temp3[valid_mask] * (ratlc[valid_mask] - 1.), 1.)) return biof def calc_tgprod_pot_prod(prdx_1, shwave, potprd, h2ogef_1, biof): """Calculate total potential production. Total above- and belowground potential biomass production is calculated as the total potential production given solar radiation and the intrinsinc growth capacity of the plant functional type, modified by limiting factors of temperature, soil moisture, and obstruction by standing biomass and litter. Line 147 Potcrp.f Parameters: prdx_1 (numpy.ndarray): parameter, the intrinsic capacity of the plant functional type for growth per unit of solar radiation shwave (numpy.ndarray): derived, shortwave solar radiation outside the atmosphere potprd (numpy.ndarray): parameter, scaling factor describing limiting effect of temperature h2ogef_1 (numpy.ndarray): derived, scaling factor describing the limiting effect of soil moisture biof (numpy.ndarray): derived, scaling factor describing the limiting effect of obstruction by standing biomass and litter Returns: tgprod_pot_prod, total above- and belowground potential biomass production (g biomass) """ valid_mask = ( (prdx_1 != _IC_NODATA) & (shwave != _TARGET_NODATA) & (potprd != _TARGET_NODATA) & (h2ogef_1 != _TARGET_NODATA) & (biof != _TARGET_NODATA)) tgprod_pot_prod = numpy.empty(prdx_1.shape, dtype=numpy.float32) tgprod_pot_prod[:] = _TARGET_NODATA tgprod_pot_prod[valid_mask] = ( prdx_1[valid_mask] * shwave[valid_mask] * potprd[valid_mask] * h2ogef_1[valid_mask] * biof[valid_mask]) return tgprod_pot_prod # temporary intermediate rasters for calculating total potential production temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} # site-level temporary calculated values for val in ['sum_aglivc', 'sum_stdedc', 'ctemp', 'shwave', 'pevap']: temp_val_dict[val] = os.path.join(temp_dir, '{}.tif'.format(val)) # PFT-level temporary calculated values for pft_i in pft_id_set: for val in [ 'aglivc_weighted', 'stdedc_weighted', 'potprd', 'biof']: temp_val_dict['{}_{}'.format(val, pft_i)] = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) # temporary parameter rasters for calculating total potential production param_val_dict = {} # site-level parameters for val in [ 'pmxbio', 'pmxtmp', 'pmntmp', 'fwloss_4', 'pprpts_1', 'pprpts_2', 'pprpts_3']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) # PFT-level parameters for val in [ 'ppdf_1', 'ppdf_2', 'ppdf_3', 'ppdf_4', 'biok5', 'prdx_1']: for pft_i in do_PFT: target_path = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) param_val_dict['{}_{}'.format(val, pft_i)] = target_path fill_val = veg_trait_table[pft_i][val] pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], target_path, gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[fill_val]) maxtmp_nodata = pygeoprocessing.get_raster_info( aligned_inputs['max_temp_{}'.format(current_month)])['nodata'][0] mintmp_nodata = pygeoprocessing.get_raster_info( aligned_inputs['min_temp_{}'.format(current_month)])['nodata'][0] precip_nodata = pygeoprocessing.get_raster_info( aligned_inputs['precip_{}'.format(month_index)])['nodata'][0] # calculate intermediate quantities that do not differ between PFTs: # sum of aglivc (standing live biomass) and stdedc (standing dead biomass) # across PFTs, weighted by % cover of each PFT for sv in ['aglivc', 'stdedc']: weighted_sum_path = temp_val_dict['sum_{}'.format(sv)] weighted_state_variable_sum( sv, prev_sv_reg, aligned_inputs, pft_id_set, weighted_sum_path) # ctemp, soil temperature relative to impacts on growth pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['sum_aglivc'], param_val_dict['pmxbio'], aligned_inputs['max_temp_{}'.format(current_month)], param_val_dict['pmxtmp'], aligned_inputs['min_temp_{}'.format(current_month)], param_val_dict['pmntmp']]], calc_ctemp, temp_val_dict['ctemp'], gdal.GDT_Float32, _IC_NODATA) # shwave, shortwave radiation outside the atmosphere _shortwave_radiation( aligned_inputs['site_index'], current_month, temp_val_dict['shwave']) # pet, reference evapotranspiration modified by fwloss parameter _reference_evapotranspiration( aligned_inputs['max_temp_{}'.format(current_month)], aligned_inputs['min_temp_{}'.format(current_month)], temp_val_dict['shwave'], param_val_dict['fwloss_4'], temp_val_dict['pevap']) # calculate quantities that differ between PFTs for pft_i in do_PFT: # potprd, the limiting effect of temperature pygeoprocessing.raster_calculator( [(path, 1) for path in [ aligned_inputs['min_temp_{}'.format(current_month)], aligned_inputs['max_temp_{}'.format(current_month)], temp_val_dict['ctemp'], param_val_dict['ppdf_1_{}'.format(pft_i)], param_val_dict['ppdf_2_{}'.format(pft_i)], param_val_dict['ppdf_3_{}'.format(pft_i)], param_val_dict['ppdf_4_{}'.format(pft_i)]]], calc_potprd, temp_val_dict['potprd_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) # h2ogef_1, the limiting effect of soil water availability pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['pevap'], prev_sv_reg['avh2o_1_{}_path'.format(pft_i)], aligned_inputs['precip_{}'.format(month_index)], pp_reg['wc_path'], param_val_dict['pprpts_1'], param_val_dict['pprpts_2'], param_val_dict['pprpts_3']]], calc_h2ogef_1, month_reg['h2ogef_1_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) # biof, the limiting effect of obstruction pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['sum_stdedc'], temp_val_dict['sum_aglivc'], prev_sv_reg['strucc_1_path'], param_val_dict['pmxbio'], param_val_dict['biok5_{}'.format(pft_i)]]], calc_biof, temp_val_dict['biof_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) # total potential production pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['prdx_1_{}'.format(pft_i)], temp_val_dict['shwave'], temp_val_dict['potprd_{}'.format(pft_i)], month_reg['h2ogef_1_{}'.format(pft_i)], temp_val_dict['biof_{}'.format(pft_i)]]], calc_tgprod_pot_prod, month_reg['tgprod_pot_prod_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _calc_favail_P(sv_reg, param_val_dict): """Calculate the fraction of P in surface layer available to plants. This must be performed after the sum of mineral N in the surface layer is calculated because the fraction of labile P available to plants is impacted by the amount of mineral N in the surface layer. Parameters: sv_reg (dict): map of key, path pairs giving paths to state variables for the current month, including minerl_1_1, mineral N in the surface layer param_val_dict (dict): map of key, path pairs giving paths to site-level parameters, including favail_4, favail_5, favail_6, and favail_2 Side effects: modifies or creates the raster indicated by `param_val_dict['favail_2']` Returns: None """ def favail_P_op(minerl_1_1, favail_4, favail_5, favail_6): """Calculate the fraction of P in surface layer available to plants. The fraction of labile P available to plants depends on mineral N in the surface layer and site parameters favail_4, favail_5, favail_6. Line 395 Simsom.f Parameters: minerl_1_1 (numpy.ndarray): state variable, mineral N in the surface layer favail_4 (numpy.ndarray): parameter, minimum fraction of P available favail_5 (numpy.ndarray): parameter, maximum fraction of P available favail_6 (numpy.ndarray): parameter, mineral N in surface layer required to attain maximum fraction of P available Returns: favail_P, fraction of mineral P available to plants """ valid_mask = ( (~numpy.isclose(minerl_1_1, _SV_NODATA)) & (favail_4 != _IC_NODATA) & (favail_5 != _IC_NODATA) & (favail_6 != _IC_NODATA)) interim = numpy.empty(minerl_1_1.shape, dtype=numpy.float32) interim[:] = _IC_NODATA interim[valid_mask] = ( favail_4[valid_mask] + minerl_1_1[valid_mask] * (favail_5[valid_mask] - favail_4[valid_mask]) / favail_6[valid_mask]) favail_P = numpy.empty(minerl_1_1.shape, dtype=numpy.float32) favail_P[:] = _IC_NODATA favail_P[valid_mask] = numpy.maximum( favail_4[valid_mask], numpy.minimum( interim[valid_mask], favail_5[valid_mask])) return favail_P pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['minerl_1_1_path'], param_val_dict['favail_4'], param_val_dict['favail_5'], param_val_dict['favail_6']]], favail_P_op, param_val_dict['favail_2'], gdal.GDT_Float32, _IC_NODATA) def _calc_avail_mineral_nutrient(pft_param_dict, sv_reg, iel, target_path): """Calculate one mineral nutrient available to one plant functional type. The mineral nutrient available to a plant functional type is calculated from the mineral nutrient content of soil layers accessible by that plant function type. Parameters: pft_param_dict (dict): map of key, value pairs giving the values of parameters for this plant functional type (i.e., veg_trait_table[pft_i] for this pft_i) sv_reg (dict): map of key, path pairs giving paths to state variables for the current month iel (int): integer index for current nutrient (1=N, 2=P) target_path (string): path to raster to contain available mineral nutrient for this plant functional type and nutrient Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ nlay = int(pft_param_dict['nlaypg']) mineral_raster_list = [ sv_reg['minerl_{}_{}_path'.format(lyr, iel)] for lyr in range( 1, nlay + 1)] raster_list_sum( mineral_raster_list, _SV_NODATA, target_path, _TARGET_NODATA, nodata_remove=True) def _calc_available_nutrient( pft_i, iel, pft_param_dict, sv_reg, site_param_table, site_index_path, availm_path, favail_path, tgprod_path, eavail_path): """Calculate nutrient available to a plant functional type. The nutrient available is the sum of mineral nutrient (N or P) in soil layers accessible by the roots of the plant functional type, modified by the fraction of nutrient available to plants and the current root biomass. Parameters: pft_i (int): plant functional type index iel (int): nutrient index (iel=1 indicates N, iel=2 indicates P) pft_param_dict (dict): map of key, value pairs giving the values of parameters for this plant functional type (i.e., veg_trait_table[pft_i] for this pft_i) sv_reg (dict): map of key, path pairs giving paths to state variables for the current month site_index_path (string): path to site spatial index raster availm_path (string): path to raster containing available mineral nutrient for the given plant functional type and nutrient site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters favail_path (string): path to raster containing the appropriate value of the parameter favail. For nitrogen, this parameter is supplied directly as user input, but for phosphorus, it must be calculated from other parameters. tgprod_path (string): path to raster containing total potential production (g biomass) eavail_path (string): path to location to store the result, nutrient available to the plant functional type Side effects: modifies or creates the raster indicated by `eavail_path` Returns: None """ def calc_eavail(rictrl, bglivc, riint, availm, favail, crpstg): """Calculate available nutrient. Parameters: rictrl (numpy.ndarray): parameter, scaling factor used to calculate the impact of root biomass on nutrient availability bglivc (numpy.ndarray): state variable, carbon in belowground live biomass riint (numpy.ndarray): parameter, intercept used to calculate the impact of root biomass on nutrient availability availm (numpy.ndarray): derived, the sum of mineral nutrient in soil layers accessible by this plant functional type favail (numpy.ndarray): parameter, fraction of the nutrient available each month to plants crpstg (numpy.ndarray): state variable, nutrient in retranslocation storage pool for the plant functional type Returns: eavail, the nutrient available to the plant functional type """ valid_mask = ( (rictrl != _IC_NODATA) & (~numpy.isclose(bglivc, _SV_NODATA)) & (riint != _IC_NODATA) & (availm != _TARGET_NODATA) & (favail != _IC_NODATA) & (~numpy.isclose(crpstg, _SV_NODATA))) rimpct = numpy.empty(rictrl.shape, dtype=numpy.float32) rimpct[:] = _TARGET_NODATA rimpct[valid_mask] = numpy.where( ((rictrl[valid_mask] * bglivc[valid_mask] * 2.5) > 33.), 1., 1. - riint[valid_mask] * numpy.exp( -rictrl[valid_mask] * bglivc[valid_mask] * 2.5)) eavail = numpy.empty(rictrl.shape, dtype=numpy.float32) eavail[:] = _TARGET_NODATA eavail[valid_mask] = ( (availm[valid_mask] * favail[valid_mask] * rimpct[valid_mask]) + crpstg[valid_mask]) return eavail def add_symbiotic_fixed_N(eavail_prior, snfxmx, tgprod): """Add nitrogen fixed by the plant to nutrient available. Some nitrogen may be fixed by the plant, and this must be added to available mineral nitrogen. Nitrogen fixed by the plant is calculated from total potential production and the maximum rate of N fixation. Parameters: eavail_prior (numpy.ndarray): derived, mineral nitrogen available to the plant functional type, calculated with calc_eavail() snfxmx (numpy.ndarray): parameter, maximum rate of symbiotic nitrogen fixation tgprod (numpy.ndarray): derived, total above- and belowground potential production (g biomass) Returns: eavail, total N available including N fixed by the plant """ valid_mask = ( (eavail_prior != _TARGET_NODATA) & (snfxmx != _IC_NODATA) & (tgprod != _TARGET_NODATA)) maxNfix = numpy.empty(eavail_prior.shape, dtype=numpy.float32) maxNfix[:] = _TARGET_NODATA maxNfix[valid_mask] = snfxmx[valid_mask] * (tgprod[valid_mask] / 2.5) eavail = numpy.empty(eavail_prior.shape, dtype=numpy.float32) eavail[:] = _TARGET_NODATA eavail[valid_mask] = eavail_prior[valid_mask] + maxNfix[valid_mask] return eavail # temporary intermediate rasters for calculating available nutrient temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) param_val_dict = {} for val in ['rictrl', 'riint']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) for val in ['snfxmx_1']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path fill_val = pft_param_dict[val] pygeoprocessing.new_raster_from_base( site_index_path, target_path, gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[fill_val]) pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['rictrl'], sv_reg['bglivc_{}_path'.format(pft_i)], param_val_dict['riint'], availm_path, favail_path, sv_reg['crpstg_{}_{}_path'.format(iel, pft_i)]]], calc_eavail, eavail_path, gdal.GDT_Float32, _TARGET_NODATA) if iel == 1: eavail_prior_path = os.path.join(temp_dir, 'eavail_prior.tif') shutil.copyfile(eavail_path, eavail_prior_path) pygeoprocessing.raster_calculator( [(path, 1) for path in [ eavail_prior_path, param_val_dict['snfxmx_1'], tgprod_path]], add_symbiotic_fixed_N, eavail_path, gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _calc_nutrient_demand( biomass_production_path, fraction_allocated_to_roots_path, cercrp_min_above_path, cercrp_min_below_path, demand_path): """Calculate the demand of one nutrient by a plant functional type. Demand is calculated from total biomass production, the fraction of biomass production allocated to roots, and the minimum carbon/nutrient ratios of above- and belowground live biomass. Lines 88-92 CropDynC.f and line 65, Nutrlm.f Parameters: biomass_production_path (string): path to raster giving total biomass production fraction_allocated_to_roots_path (string): path to raster giving the fraction fo total biomass production allocated to roots cercrp_min_above_path (string): path to raster giving the minimum ratio of carbon to nutrient in aboveground live biomass cercrp_min_below_path (string): path to raster giving the minimum ratio of carbon to nutrient in belowground live biomass Side effects: modifies or creates the raster indicated by `demand_path` Returns: None """ def nutrient_demand_op( biomass_production, root_fraction, cercrp_min_above, cercrp_min_below): """Calculate nutrient demand. Parameters: biomass_production (numpy.ndarray): derived, total biomass production root_fraction (numpy.ndarray): derived, fraction of biomass allocated to roots cercrp_min_above (numpy.ndarray): derived, minimum carbon to nutrient ratio of new aboveground live material cercrp_min_below (numpy.ndarray): derived, minimum carbon to nutrient ratio of new belowground live material Returns: demand_e, nutrient demand """ valid_mask = ( (biomass_production != _TARGET_NODATA) & (root_fraction != _TARGET_NODATA) & (cercrp_min_above != _TARGET_NODATA) & (cercrp_min_above > 0) & (cercrp_min_below > 0) & (cercrp_min_below != _TARGET_NODATA)) demand_above = numpy.empty(root_fraction.shape, dtype=numpy.float32) demand_above[:] = _TARGET_NODATA demand_above[valid_mask] = ( ((biomass_production[valid_mask] * (1. - root_fraction[valid_mask])) / 2.5) * (1. / cercrp_min_above[valid_mask])) demand_below = numpy.empty(root_fraction.shape, dtype=numpy.float32) demand_below[:] = _TARGET_NODATA demand_below[valid_mask] = ( ((biomass_production[valid_mask] * (root_fraction[valid_mask])) / 2.5) * (1. / cercrp_min_below[valid_mask])) demand_e = numpy.empty(root_fraction.shape, dtype=numpy.float32) demand_e[:] = _TARGET_NODATA demand_e[valid_mask] = ( demand_above[valid_mask] + demand_below[valid_mask]) return demand_e pygeoprocessing.raster_calculator( [(path, 1) for path in [ biomass_production_path, fraction_allocated_to_roots_path, cercrp_min_above_path, cercrp_min_below_path]], nutrient_demand_op, demand_path, gdal.GDT_Float32, _TARGET_NODATA) def calc_provisional_fracrc( annual_precip, frtcindx, bgppa, bgppb, agppa, agppb, cfrtcw_1, cfrtcw_2, cfrtcn_1, cfrtcn_2): """Calculate provisional fraction of carbon allocated to roots. A temporary provisional fraction of carbon allocated to roots must be calculated prior to calculating plant demand for N and P. The value of this provisional fraction depends on whether the plant functional type is modeled as a perennial plant or with the "Great Plains" equation of Parton et al. 1987, "Analysis of factors controlling soil organic matter levels in Great Plains grasslands", Soil Science Society of America Journal. Lines 36-47 cropDynC.f Parameters: annual_precip (numpy.ndarray): derived, sum of monthly precipitation over twelve months including the current month frtcindx (numpy.ndarray): parameter, flag indicating whether root:shoot allocation follows the Great Plains equation (frtcindx=0) or as a perennial plant (frtcindx=1) bgppa (numpy.ndarray): parameter, intercept in regression estimating belowground production from annual precipitation if frtcindx=0 bgppb (numpy.ndarray): parameter, slope in regression estimating belowground production from annual precipitation if frtcindx=0 agppa (numpy.ndarray): parameter, intercept in regression estimating aboveground production from annual precipitation if frtcindx=0 agppb (numpy.ndarray): parameter, slope in regression estimating aboveground production from annual precipitation if frtcindx=0 cfrtcw_1 (numpy.ndarray): parameter, maximum fraction of carbon allocated to roots under maximum water stress if frtcindx=1 cfrtcw_2 (numpy.ndarray): parameter, minimum fraction of carbon allocated to roots without water stress if frtcindx=1 cfrtcn_1 (numpy.ndarray): parameter, maximum fraction of carbon allocated to roots under maximum nutrient stress if frtcindx=1 cfrtcn_2 (numpy.ndarray): parameter, minimum fraction of carbon allocated to roots under no nutrient stress if frtcindx=1 Returns: fracrc_p, provisional fraction of carbon allocated to roots """ valid_mask = ( (annual_precip != _TARGET_NODATA) & (frtcindx != _IC_NODATA) & (bgppa != _IC_NODATA)) rtsh = numpy.empty(annual_precip.shape, dtype=numpy.float32) rtsh[:] = _TARGET_NODATA rtsh[valid_mask] = ( (bgppa[valid_mask] + annual_precip[valid_mask] * bgppb[valid_mask]) / (agppa[valid_mask] + annual_precip[valid_mask] * agppb[valid_mask])) fracrc_p = numpy.empty(annual_precip.shape, dtype=numpy.float32) fracrc_p[:] = _TARGET_NODATA fracrc_p[valid_mask] = numpy.where( frtcindx[valid_mask] == 0, (1.0 / (1.0 / rtsh[valid_mask] + 1.0)), ((cfrtcw_1[valid_mask] + cfrtcw_2[valid_mask] + cfrtcn_1[valid_mask] + cfrtcn_2[valid_mask]) / 4.0)) return fracrc_p def calc_ce_ratios( pramn_1_path, pramn_2_path, aglivc_path, biomax_path, pramx_1_path, pramx_2_path, prbmn_1_path, prbmn_2_path, prbmx_1_path, prbmx_2_path, annual_precip_path, pft_i, iel, month_reg): """Calculate minimum and maximum carbon to nutrient ratios. Minimum and maximum C/E ratios are used to calculate demand for a nutrient by a plant functional type. This function calculates the ratios for above- and belowground plant portions, for one plant functional type and one nutrient. Fltce.f Parameters: pramn_1_path (string): path to raster containing the parameter pramn_<iel>_1, the minimum aboveground ratio with zero biomass pramn_2_path (string): path to raster containing the parameter pramn_<iel>_2, the minimum aboveground ratio with biomass greater than or equal to biomax aglivc_path (string): path to raster containing carbon in aboveground live biomass biomax_path (string): path to raster containing the parameter biomax, the biomass above which the ratio equals pramn_2 or pramx_2 pramx_1_path (string): path to raster containing the parameter pramx_<iel>_1, the maximum aboveground ratio with zero biomass pramx_2_path (string): path to raster containing the parameter pramx_<iel>_2, the maximum aboveground ratio with biomass greater than or equal to biomax prbmn_1_path (string): path to raster containing the parameter prbmn_<iel>_1, intercept of regression to predict minimum belowground ratio from annual precipitation prbmn_2_path (string): path to raster containing the parameter prbmn_<iel>_2, slope of regression to predict minimum belowground ratio from annual precipitation prbmx_1_path (string): path to raster containing the parameter prbmx_<iel>_1, intercept of regression to predict maximum belowground ratio from annual precipitation prbmx_2_path (string): path to raster containing the parameter prbmx_<iel>_2, slope of regression to predict maximum belowground ratio from annual precipitation annual_precip_path (string): path to annual precipitation raster pft_i (int): plant functional type index iel (int): nutrient index (iel=1 indicates N, iel=2 indicates P) month_reg (dict): map of key, path pairs giving paths to intermediate calculated values that are shared between submodels Side effects: creates the rasters indicated by `month_reg['cercrp_min_above_<iel>_<pft_i>']`, `month_reg['cercrp_max_above_<iel>_<pft_i>']`, `month_reg['cercrp_min_below_<iel>_<pft_i>']`, `month_reg['cercrp_max_below_<iel>_<pft_i>']`, Returns: None """ def calc_above_ratio(pra_1, pra_2, aglivc, biomax): """Calculate carbon to nutrient ratio for aboveground material. Parameters: pra_1 (numpy.ndarray): parameter, minimum or maximum ratio with zero biomass pra_2 (numpy.ndarray): parameter, minimum or maximum ratio with biomass greater than or equal to biomax aglivc (numpy.ndarray): state variable, carbon in aboveground live material biomax (numpy:ndarray): parameter, biomass above which the ratio equals pra_2 Returns: cercrp_above, carbon to nutrient ratio for aboveground material """ valid_mask = ( (pra_1 != _IC_NODATA) & (pra_2 != _IC_NODATA) & (~numpy.isclose(aglivc, _SV_NODATA)) & (biomax != _IC_NODATA)) cercrp_above = numpy.empty(pra_1.shape, dtype=numpy.float32) cercrp_above[:] = _TARGET_NODATA cercrp_above[valid_mask] = numpy.minimum( (pra_1[valid_mask] + (pra_2[valid_mask] - pra_1[valid_mask]) * 2.5 * aglivc[valid_mask] / biomax[valid_mask]), pra_2[valid_mask]) return cercrp_above def calc_below_ratio(prb_1, prb_2, annual_precip): """Calculate carbon to nutrient ratio for belowground material. Parameters: prb_1 (numpy.ndarray): parameter, intercept of regression to predict ratio from annual precipitation prb_2 (numpy.ndarray): parameter, slope of regression to predict ratio from annual precipitation annual_precip (numpy.ndarray): derived, precipitation in twelve months including the current month Returns: cercrp_below, carbon to nutrient ratio for belowground material """ valid_mask = ( (prb_1 != _IC_NODATA) & (prb_2 != _IC_NODATA) & (annual_precip != _TARGET_NODATA)) cercrp_below = numpy.empty(prb_1.shape, dtype=numpy.float32) cercrp_below[:] = _TARGET_NODATA cercrp_below[valid_mask] = ( prb_1[valid_mask] + (prb_2[valid_mask] * annual_precip[valid_mask])) return cercrp_below pygeoprocessing.raster_calculator( [(path, 1) for path in [ pramn_1_path, pramn_2_path, aglivc_path, biomax_path]], calc_above_ratio, month_reg['cercrp_min_above_{}_{}'.format(iel, pft_i)], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ pramx_1_path, pramx_2_path, aglivc_path, biomax_path]], calc_above_ratio, month_reg['cercrp_max_above_{}_{}'.format(iel, pft_i)], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ prbmn_1_path, prbmn_2_path, annual_precip_path]], calc_below_ratio, month_reg['cercrp_min_below_{}_{}'.format(iel, pft_i)], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ prbmx_1_path, prbmx_2_path, annual_precip_path]], calc_below_ratio, month_reg['cercrp_max_below_{}_{}'.format(iel, pft_i)], gdal.GDT_Float32, _TARGET_NODATA) def calc_revised_fracrc( frtcindx_path, fracrc_p_path, totale_1_path, totale_2_path, demand_1_path, demand_2_path, h2ogef_1_path, cfrtcw_1_path, cfrtcw_2_path, cfrtcn_1_path, cfrtcn_2_path, fracrc_r_path): """ Calculate revised fraction of carbon allocated to roots. The revised fraction of carbon allocated to roots includes the impacts of water and nutrient limitation. The method of the revised calculation depends on whether the plant functional type is modeled as a perennial plant or with the "Great Plains" equation of Parton et al. 1987, "Analysis of factors controlling soil organic matter levels in Great Plains grasslands", Soil Science Society of America Journal. Lines 96-104, cropDynC.f, froota.f Parameters: frtcindx_path (string): path to raster containing the parameter frtcindx fracrc_p_path (string): path to raster containing provisional fraction of carbon allocated to roots totale_1_path (string): path to raster containing total available nitrogen totale_2_path (string): path to raster containing total available phosphorus demand_1_path (string): path to raster containing nitrogen demand demand_2_path (string): path to raster containing phosphorus demand h2ogef_1_path (string): path to raster containing the limiting effect of water availability on growth cfrtcw_1_path (string): path to raster containing the parameter cfrtcw_1 cfrtcw_2_path (string): path to raster containing the parameter cfrtcw_2 cfrtcn_1_path (string): path to raster containing the parameter cfrtcn_1 cfrtcn_2_path (string): path to raster containing the parameter cfrtcn_2 fracrc_r_path (string): path to raster that should contain the result, revised fraction of carbon allocated to roots Side effects: creates the raster indicated by `fracrc_r_path` Returns: None """ def calc_a2drat(totale, demand): """Calculate the ratio of available nutrient to nutrient demand. The ratio of nutrient available to demand for the nutrient is restricted to be between 0 and 1. Parameters: totale (numpy.ndarray): derived, nutrient available demand (numpy.ndarray): derived, demand for the nutrient Returns: a2drat, the ratio of available nutrient to demand, restricted to be between 0 and 1 """ valid_mask = ( (totale != _TARGET_NODATA) & (demand != _TARGET_NODATA)) a2drat = numpy.empty(totale.shape, dtype=numpy.float32) a2drat[:] = _TARGET_NODATA demand_mask = ((demand > 0) & valid_mask) a2drat[valid_mask] = 1. a2drat[demand_mask] = numpy.clip( totale[demand_mask] / demand[demand_mask], 0., 1.) return a2drat def calc_perennial_fracrc( h2ogef, cfrtcw_1, cfrtcw_2, a2drat_1, a2drat_2, cfrtcn_1, cfrtcn_2): """Calculate fraction C allocated to roots for a perennial plant. The fraction of carbon allocated to roots is determined by water availability, described by h2ogef, and nutrient availability, described by a2drat_1 for nitrogen and a2drat_2 for phosphorus. Lines 114-125 froota.f Parameters: h2ogef (numpy.ndarray): derived, the limiting factor of water availability on growth cfrtcw_1 (numpy.ndarray): parameter, the maximum fraction of carbon allocated to roots with maximum water stress cfrtcw_2 (numpy.ndarray): parameter, the minimum fraction of carbon allocated to roots with no water stress a2drat_1 (numpy.ndarray): derived, the ratio of available nitrogen to nitrogen demand, restricted to be between 0 and 1 a2drat_2 (numpy.ndarray): derived, the ratio of available phosphorus to phosphorus demand, restricted to be between 0 and 1 cfrtcn_1 (numpy.ndarray): parameter, maximum fraction of carbon allocated to roots with maximum nutrient stress cfrtcn_2 (numpy.ndarray): parameter, minimum fraction of carbon allocated to roots with no nutrient stress Returns: fracrc_perennial, revised fraction of C allocated to roots for a perennial plant """ valid_mask = ( (h2ogef != _TARGET_NODATA) & (cfrtcw_1 != _IC_NODATA) & (cfrtcw_2 != _IC_NODATA) & (a2drat_1 != _TARGET_NODATA) & (a2drat_2 != _TARGET_NODATA) & (cfrtcn_1 != _IC_NODATA) & (cfrtcn_2 != _IC_NODATA)) h2oeff = numpy.empty(h2ogef.shape, dtype=numpy.float32) h2oeff[:] = _TARGET_NODATA h2oeff[valid_mask] = ( (cfrtcw_2[valid_mask] - cfrtcw_1[valid_mask]) * (h2ogef[valid_mask] - 1.) + cfrtcw_2[valid_mask]) ntreff_1 = numpy.empty(h2ogef.shape, dtype=numpy.float32) ntreff_1[:] = _TARGET_NODATA ntreff_1[valid_mask] = ( (cfrtcn_2[valid_mask] - cfrtcn_1[valid_mask]) * (a2drat_1[valid_mask] - 1.0) + cfrtcn_2[valid_mask]) ntreff_2 = numpy.empty(h2ogef.shape, dtype=numpy.float32) ntreff_2[:] = _TARGET_NODATA ntreff_1[valid_mask] = ( (cfrtcn_2[valid_mask] - cfrtcn_1[valid_mask]) * (a2drat_2[valid_mask] - 1.0) + cfrtcn_2[valid_mask]) ntreff = numpy.empty(h2ogef.shape, dtype=numpy.float32) ntreff[:] = _TARGET_NODATA ntreff[valid_mask] = numpy.maximum( ntreff_1[valid_mask], ntreff_2[valid_mask]) fracrc_perennial = numpy.empty( h2ogef.shape, dtype=numpy.float32) fracrc_perennial[:] = _TARGET_NODATA fracrc_perennial[valid_mask] = numpy.minimum( numpy.maximum(h2oeff[valid_mask], ntreff[valid_mask]), 0.99) return fracrc_perennial def revised_fracrc_op(frtcindx, fracrc_p, fracrc_perennial): """Calculate revised fraction of carbon allocated to roots. The revised fraction of carbon allocated to roots is calculated according to the parameter frtcindx. If frtcindx=0 (use the "Great Plains equation"), the revised fraction is equal to the provisional fraction. If frtcindx=1 (a perennial plant), the revised fraction is calculated from water and nutrient stress. Parameters: frtcindx (numpy.ndarray): parameter, indicates whether revised fraction of carbon allocated to roots should follow the "Great Plains equation" or the algorithm for a perennial plant fracrc_p (numpy.ndarray): derived, provisional fraction of carbon allocated to roots fracrc_perennial (numpy.ndarray): derived, fraction of carbon allocated to roots for a perennial plant Returns: fracrc_r, revised fraction of carbon allocated to roots """ valid_mask = ( (frtcindx != _IC_NODATA) & (fracrc_p != _TARGET_NODATA) & (fracrc_perennial != _TARGET_NODATA)) fracrc_r = numpy.empty(frtcindx.shape, dtype=numpy.float32) fracrc_r[:] = _TARGET_NODATA fracrc_r[valid_mask] = numpy.where( frtcindx[valid_mask] == 0, fracrc_p[valid_mask], fracrc_perennial[valid_mask]) return fracrc_r # temporary intermediate rasters for calculating revised fracrc temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for val in ['a2drat_1', 'a2drat_2', 'fracrc_perennial']: temp_val_dict[val] = os.path.join( temp_dir, '{}.tif'.format(val)) pygeoprocessing.raster_calculator( [(path, 1) for path in [totale_1_path, demand_1_path]], calc_a2drat, temp_val_dict['a2drat_1'], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [totale_2_path, demand_2_path]], calc_a2drat, temp_val_dict['a2drat_2'], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ h2ogef_1_path, cfrtcw_1_path, cfrtcw_2_path, temp_val_dict['a2drat_1'], temp_val_dict['a2drat_2'], cfrtcn_1_path, cfrtcn_2_path]], calc_perennial_fracrc, temp_val_dict['fracrc_perennial'], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ frtcindx_path, fracrc_p_path, temp_val_dict['fracrc_perennial']]], revised_fracrc_op, fracrc_r_path, gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def grazing_effect_on_aboveground_production(tgprod, fracrc, flgrem, grzeff): """Adjust aboveground production with the impact of grazing. Removal of biomass by herbivores directly impacts potential aboveground production according to the amount of biomass removed and the parameter grzeff, which acts as a switch to determine the effect. If grzeff=0, 3, or 4, aboveground production is not changed. If grzeff=1 or 6, production decreases linearly with biomass removed; if grzeff=2 or 5, biomass removed has a quadratic impact on production. Grazrst.f Parameters: tgprod (numpy.ndarray): derived, total potential biomass production restricted by water and nutrient availability fracrc (numpy.ndarray): derived, fraction of carbon allocated to roots according to water and nutrient availability flgrem (numpy.ndarray): derived, fraction of live biomass removed by grazing in previous monthly step grzeff (numpy.ndarray): parameter, the effect of defoliation on production and root:shoot ratio Returns: agprod, aboveground production impacted by grazing """ valid_mask = ( (tgprod != _TARGET_NODATA) & (fracrc != _TARGET_NODATA) & (flgrem != _TARGET_NODATA) & (grzeff != _IC_NODATA)) agprod_prior = numpy.empty(tgprod.shape, dtype=numpy.float32) agprod_prior[:] = _TARGET_NODATA agprod_prior[valid_mask] = ( tgprod[valid_mask] * (1. - fracrc[valid_mask])) linear_effect = numpy.empty(tgprod.shape, dtype=numpy.float32) linear_effect[:] = _TARGET_NODATA linear_effect[valid_mask] = numpy.maximum( (1. - (2.21*flgrem[valid_mask])) * agprod_prior[valid_mask], 0.02) quadratic_effect = numpy.empty(tgprod.shape, dtype=numpy.float32) quadratic_effect[:] = _TARGET_NODATA quadratic_effect[valid_mask] = ( (1. + 2.6*flgrem[valid_mask] - (5.83*(numpy.power(flgrem[valid_mask], 2)))) * agprod_prior[valid_mask]) quadratic_effect[valid_mask] = numpy.maximum( quadratic_effect[valid_mask], 0.02) no_effect_mask = (valid_mask & numpy.isin(grzeff, [0, 3, 4])) linear_mask = (valid_mask & numpy.isin(grzeff, [1, 6])) quadratic_mask = (valid_mask & numpy.isin(grzeff, [2, 5])) agprod = numpy.empty(tgprod.shape, dtype=numpy.float32) agprod[:] = _TARGET_NODATA agprod[no_effect_mask] = agprod_prior[no_effect_mask] agprod[linear_mask] = linear_effect[linear_mask] agprod[quadratic_mask] = quadratic_effect[quadratic_mask] return agprod def grazing_effect_on_root_shoot(fracrc, flgrem, grzeff, gremb): """Adjust root:shoot ratio according to the impact of grazing. Removal of biomass by herbivores directly impacts the root:shoot ratio of production according to the amount of biomass removed and the parameter grzeff, which acts as a switch to determine the effect. If grzeff=0 or 1, the root:shoot ratio is not changed. If grzeff=2 or 3, biomass removed has a quadratic impact on the root:shoot ratio. If grzeff=4, 5, or 6, biomass removed has a linear effect on the root:shoot ratio. The parameter gremb multiplies the linear impact of grazing when grzeff=4, 5 or 6. Grzrst.f Parameters: fracrc (numpy.ndarray): derived, fraction of carbon allocated to roots according to water and nutrient availability flgrem (numpy.ndarray): derived, fraction of live biomass removed by grazing in previous monthly step grzeff (numpy.ndarray): parameter, the effect of defoliation on production and root:shoot ratio grzemb (numpy.ndarray): parameter, grazing effect multiplier Returns: rtsh, root:shoot ratio impacted by grazing """ valid_mask = ( (fracrc != _TARGET_NODATA) & (flgrem != _TARGET_NODATA) & (grzeff != _IC_NODATA) & (gremb != _IC_NODATA)) rtsh_prior = numpy.empty(fracrc.shape, dtype=numpy.float32) rtsh_prior[:] = _TARGET_NODATA rtsh_prior[valid_mask] = ( fracrc[valid_mask] / (1. - fracrc[valid_mask])) quadratic_effect = numpy.empty(fracrc.shape, dtype=numpy.float32) quadratic_effect[:] = _TARGET_NODATA quadratic_effect[valid_mask] = numpy.maximum( rtsh_prior[valid_mask] + 3.05 * flgrem[valid_mask] - 11.78 * numpy.power(flgrem[valid_mask], 2), 0.01) linear_effect = numpy.empty(fracrc.shape, dtype=numpy.float32) linear_effect[:] = _TARGET_NODATA linear_effect[valid_mask] = numpy.maximum( 1. - (flgrem[valid_mask] * gremb[valid_mask]), 0.01) no_effect_mask = (valid_mask & numpy.isin(grzeff, [0, 1])) quadratic_mask = (valid_mask & numpy.isin(grzeff, [2, 3])) linear_mask = (valid_mask & numpy.isin(grzeff, [4, 5, 6])) rtsh = numpy.empty(fracrc.shape, dtype=numpy.float32) rtsh[:] = _TARGET_NODATA rtsh[no_effect_mask] = rtsh_prior[no_effect_mask] rtsh[quadratic_mask] = quadratic_effect[quadratic_mask] rtsh[linear_mask] = linear_effect[linear_mask] return rtsh def calc_tgprod_final(rtsh, agprod): """Calculate final total potential production. Final total potential production is calculated from aboveground production impacted by grazing and the final root:shoot ratio impacted by grazing. Parameters: rtsh (numpy.ndarray): derived, final root:shoot ratio impacted by grazing agprod (numpy.ndarray): derived, final aboveground potential production impacted by grazing Returns: tgprod, final total potential production """ valid_mask = ( (rtsh != _TARGET_NODATA) & (agprod != _TARGET_NODATA)) tgprod = numpy.empty(rtsh.shape, dtype=numpy.float32) tgprod[:] = _TARGET_NODATA tgprod[valid_mask] = ( agprod[valid_mask] + (rtsh[valid_mask] * agprod[valid_mask])) return tgprod def calc_final_tgprod_rtsh( tgprod_pot_prod_path, fracrc_path, flgrem_path, grzeff_path, gremb_path, tgprod_path, rtsh_path): """Calculate final potential production and root:shoot ratio. Final potential production and root:shoot ratio include the impact of grazing. First calculate final aboveground production including the impact of grazing; then calculate rtsh, the final root:shoot ratio including the impact of grazing; then calculate tgprod, final total potential production, from final aboveground production and final root:shoot ratio. Grazrst.f Parameters: tgprod_pot_prod_path (string): path to raster containing total potential biomass production restricted by water and nutrient availability, prior to effects of grazing fracrc_path (string): path to raster containing the fraction of carbon production allocated to roots according to restriction by water and nutrient availability, prior to effects of grazing flgrem_path (string): path to raster containing the fraction of live aboveground biomass removed by herbivores according to diet selection in the previous step grzeff_path (string): path to raster containing the parameter grzeff, the effect of defolation on production and root:shoot ratio gremb_path (string): path to raster containing the parameter gremb, the grazing effect multiplier tgprod_path (string): path to raster containing final total potential production (g biomass) rtsh_path (string): path to raster containing final root:shoot ratio of potential production Side effects: creates the raster indicated by tgprod_path creates the raster indicated by rtsh_path Returns: None """ # temporary intermediate rasters for grazing effect temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) agprod_path = os.path.join(temp_dir, 'agprod.tif') # grazing effect on aboveground production pygeoprocessing.raster_calculator( [(path, 1) for path in [ tgprod_pot_prod_path, fracrc_path, flgrem_path, grzeff_path]], grazing_effect_on_aboveground_production, agprod_path, gdal.GDT_Float32, _TARGET_NODATA) # grazing effect on final root:shoot ratio pygeoprocessing.raster_calculator( [(path, 1) for path in [ fracrc_path, flgrem_path, grzeff_path, gremb_path]], grazing_effect_on_root_shoot, rtsh_path, gdal.GDT_Float32, _TARGET_NODATA) # final total potential production pygeoprocessing.raster_calculator( [(path, 1) for path in [rtsh_path, agprod_path]], calc_tgprod_final, tgprod_path, gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _root_shoot_ratio( aligned_inputs, site_param_table, current_month, pft_id_set, veg_trait_table, prev_sv_reg, year_reg, month_reg): """Calculate final potential production and root:shoot ratio. Final potential biomass production and root:shoot ratio is calculated according to nutrient availability and demand for the nutrient, and the impact of defoliation by herbivores. CropDynC.f Parameters: aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including the site spatial index raster site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters current_month (int): month of the year, such that current_month=1 indicates January pft_id_set (set): set of integers identifying plant functional types veg_trait_table (dict): map of pft id to dictionaries containing plant functional type parameters prev_sv_reg (dict): map of key, path pairs giving paths to state variables for the previous month year_reg (dict): map of key, path pairs giving paths to rasters that are modified once per year, including annual precipitation month_reg (dict): map of key, path pairs giving paths to intermediate calculated values that are shared between submodels Side effects: creates the raster indicated by `month_reg['tgprod_<PFT>']`, total potential production (g biomass) for each plant functional type (PFT) creates the raster indicated by `month_reg['rtsh_<PFT>']` for each plant functional type (PFT) Returns: None """ # if growth does not occur this month for all PFTs, # skip the rest of the function do_PFT = [] for pft_i in pft_id_set: # growth occurs in growth months and when senescence not scheduled do_growth = ( current_month != veg_trait_table[pft_i]['senescence_month'] and str(current_month) in veg_trait_table[pft_i]['growth_months']) if do_growth: do_PFT.append(pft_i) if not do_PFT: return # temporary intermediate rasters for root:shoot submodel temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for pft_i in do_PFT: for val in ['fracrc_p', 'fracrc', 'availm']: temp_val_dict['{}_{}'.format(val, pft_i)] = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) for iel in [1, 2]: for val in ['eavail', 'demand']: temp_val_dict[ '{}_{}_{}'.format(val, iel, pft_i)] = os.path.join( temp_dir, '{}_{}_{}.tif'.format(val, iel, pft_i)) # temporary parameter rasters for root:shoot submodel param_val_dict = {} # site-level parameters for val in [ 'bgppa', 'bgppb', 'agppa', 'agppb', 'favail_1', 'favail_4', 'favail_5', 'favail_6']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) # PFT-level parameters for pft_i in do_PFT: for val in [ 'frtcindx', 'cfrtcw_1', 'cfrtcw_2', 'cfrtcn_1', 'cfrtcn_2', 'biomax', 'cfrtcw_1', 'cfrtcw_2', 'cfrtcn_1', 'cfrtcn_2', 'grzeff', 'gremb']: target_path = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) param_val_dict['{}_{}'.format(val, pft_i)] = target_path fill_val = veg_trait_table[pft_i][val] pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], target_path, gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[fill_val]) for val in [ 'pramn_1_1', 'pramn_1_2', 'pramx_1_1', 'pramx_1_2', 'prbmn_1_1', 'prbmn_1_2', 'prbmx_1_1', 'prbmx_1_2', 'pramn_2_1', 'pramn_2_2', 'pramx_2_1', 'pramx_2_2', 'prbmn_2_1', 'prbmn_2_2', 'prbmx_2_1', 'prbmx_2_2']: target_path = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) param_val_dict[ '{}_{}'.format(val, pft_i)] = target_path fill_val = veg_trait_table[pft_i][val] pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], target_path, gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[fill_val]) # the parameter favail_2 must be calculated from current mineral N in # surface layer param_val_dict['favail_2'] = os.path.join(temp_dir, 'favail_2.tif') _calc_favail_P(prev_sv_reg, param_val_dict) for pft_i in do_PFT: # fracrc_p, provisional fraction of C allocated to roots pygeoprocessing.raster_calculator( [(path, 1) for path in [ year_reg['annual_precip_path'], param_val_dict['frtcindx_{}'.format(pft_i)], param_val_dict['bgppa'], param_val_dict['bgppb'], param_val_dict['agppa'], param_val_dict['agppb'], param_val_dict['cfrtcw_1_{}'.format(pft_i)], param_val_dict['cfrtcw_2_{}'.format(pft_i)], param_val_dict['cfrtcn_1_{}'.format(pft_i)], param_val_dict['cfrtcn_2_{}'.format(pft_i)]]], calc_provisional_fracrc, temp_val_dict['fracrc_p_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) for iel in [1, 2]: # persistent ratios used here and in plant growth submodel calc_ce_ratios( param_val_dict['pramn_{}_1_{}'.format(iel, pft_i)], param_val_dict['pramn_{}_2_{}'.format(iel, pft_i)], prev_sv_reg['aglivc_{}_path'.format(pft_i)], param_val_dict['biomax_{}'.format(pft_i)], param_val_dict['pramx_{}_1_{}'.format(iel, pft_i)], param_val_dict['pramx_{}_2_{}'.format(iel, pft_i)], param_val_dict['prbmn_{}_1_{}'.format(iel, pft_i)], param_val_dict['prbmn_{}_2_{}'.format(iel, pft_i)], param_val_dict['prbmx_{}_1_{}'.format(iel, pft_i)], param_val_dict['prbmx_{}_2_{}'.format(iel, pft_i)], year_reg['annual_precip_path'], pft_i, iel, month_reg) # sum of mineral nutrient in accessible soil layers _calc_avail_mineral_nutrient( veg_trait_table[pft_i], prev_sv_reg, iel, temp_val_dict['availm_{}'.format(pft_i)]) # eavail_iel, available nutrient _calc_available_nutrient( pft_i, iel, veg_trait_table[pft_i], prev_sv_reg, site_param_table, aligned_inputs['site_index'], temp_val_dict['availm_{}'.format(pft_i)], param_val_dict['favail_{}'.format(iel)], month_reg['tgprod_pot_prod_{}'.format(pft_i)], temp_val_dict['eavail_{}_{}'.format(iel, pft_i)]) # demand_iel, demand for the nutrient _calc_nutrient_demand( month_reg['tgprod_pot_prod_{}'.format(pft_i)], temp_val_dict['fracrc_p_{}'.format(pft_i)], month_reg['cercrp_min_above_{}_{}'.format(iel, pft_i)], month_reg['cercrp_min_below_{}_{}'.format(iel, pft_i)], temp_val_dict['demand_{}_{}'.format(iel, pft_i)]) # revised fraction of carbon allocated to roots calc_revised_fracrc( param_val_dict['frtcindx_{}'.format(pft_i)], temp_val_dict['fracrc_p_{}'.format(pft_i)], temp_val_dict['eavail_1_{}'.format(pft_i)], temp_val_dict['eavail_2_{}'.format(pft_i)], temp_val_dict['demand_1_{}'.format(pft_i)], temp_val_dict['demand_2_{}'.format(pft_i)], month_reg['h2ogef_1_{}'.format(pft_i)], param_val_dict['cfrtcw_1_{}'.format(pft_i)], param_val_dict['cfrtcw_2_{}'.format(pft_i)], param_val_dict['cfrtcn_1_{}'.format(pft_i)], param_val_dict['cfrtcn_2_{}'.format(pft_i)], temp_val_dict['fracrc_{}'.format(pft_i)]) # final potential production and root:shoot ratio accounting for # impacts of grazing calc_final_tgprod_rtsh( month_reg['tgprod_pot_prod_{}'.format(pft_i)], temp_val_dict['fracrc_{}'.format(pft_i)], month_reg['flgrem_{}'.format(pft_i)], param_val_dict['grzeff_{}'.format(pft_i)], param_val_dict['gremb_{}'.format(pft_i)], month_reg['tgprod_{}'.format(pft_i)], month_reg['rtsh_{}'.format(pft_i)]) # clean up temporary files shutil.rmtree(temp_dir) def _snow( site_index_path, site_param_table, precip_path, tave_path, max_temp_path, min_temp_path, prev_snow_path, prev_snlq_path, current_month, snowmelt_path, snow_path, snlq_path, inputs_after_snow_path, pet_rem_path): """Account for precipitation as snow and snowmelt from snowpack. Determine whether precipitation falls as snow. Track the fate of new and existing snowpack including evaporation and melting. Track the the remaining snowpack and liquid in snow and potential evapotranspiration remaining after evaporation of snow. Snowcent.f Parameters: site_index_path (string): path to site spatial index raster site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters precip_path (string): path to raster containing precipitation for the current month tave_path (string): path to raster containing average temperature for the current month max_temp_path (string): path to raster containing maximum temperature for the current month min_temp_path (string): path to raster containing minimum temperature for the current month prev_snow_path (string): path to raster containing current snowpack prev_snlq_path (string): path to raster containing current liquid in snow current_month (int): current month of the year, such that month=0 indicates January snow_path (string): path to raster to contain modified snowpack snlq_path (string): path to raster to contain modified liquid in snow inputs_after_snow_path (string): path to raster containing water inputs to the system after accounting for snow pet_rem_path (string): path to raster containing potential evapotranspiration remaining after any evaporation of snow Side effects: creates the raster indicated by `snowmelt_path` creates the raster indicated by `snow_path` creates the raster indicated by `snlq_path` creates the raster indicated by `inputs_after_snow_path` creates the raster indicated by `pet_rem_path` Returns: None """ def calc_snow_moisture(return_type): """Calculate change in snow, pet, snow liquid, and moisture inputs. Record changes in snowpack, liquid in snow, potential evapotranspiration energy, and liquid draining into soil from snow. Parameters: return_type (string): flag indicating whether modified snowpack, modified liquid in snow, modified potential evapotranspiration, or soil moisture inputs after snow should be returned Returns: the function `_calc_snow_moisture` """ def _calc_snow_moisture( tave, precip, snow, snlq, pet, tmelt_1, tmelt_2, shwave): """Calculate the fate of moisture from snow. Calculate new snowfall or rain on snow. Calculate direct evaporation of snow and consumption of potential evapotranspiration energy. Calculate snowmelt and liquid draining from snow into the soil. Parameters: tave (numpy.ndarray): derived, average temperature precip (numpy.ndarray): input, precipitation for this month snow (numpy.ndarray): derived, existing snowpack prior to new snowfall snlq (numpy.ndarray): derived, existing liquid in snowpack pet (numpy.ndarray): derived, potential evapotranspiration tmelt_1 (numpy.ndarray): parameter, minimum temperature above which snow will melt tmelt_2 (numpy.ndarray): parameter, ratio between degrees above the minimum temperature and cm of snow that will melt shwave (numpy.ndarray): derived, shortwave radiation outside the atmosphere Returns: snowmelt if return_type is 'snowmelt' snow_revised if return_type is 'snow' snlq_revised if return_type is 'snlq' pet_revised if return_type is 'pet' inputs_after_snow if return_type is 'inputs_after_snow' """ valid_mask = ( (tave != _IC_NODATA) & (~numpy.isclose(precip, precip_nodata)) & (~numpy.isclose(snow, _SV_NODATA)) & (~numpy.isclose(snlq, _SV_NODATA)) & (pet != _TARGET_NODATA) & (tmelt_1 != _IC_NODATA) & (tmelt_2 != _IC_NODATA) & (shwave != _TARGET_NODATA)) inputs_after_snow = numpy.empty(precip.shape, dtype=numpy.float32) inputs_after_snow[:] = _TARGET_NODATA inputs_after_snow[valid_mask] = precip[valid_mask] snowfall_mask = (valid_mask & (tave <= 0)) snow[snowfall_mask] = (snow[snowfall_mask] + precip[snowfall_mask]) inputs_after_snow[snowfall_mask] = 0. rain_on_snow_mask = ( (valid_mask) & (tave > 0) & (snow > 0)) snlq[rain_on_snow_mask] = ( snlq[rain_on_snow_mask] + precip[rain_on_snow_mask]) inputs_after_snow[rain_on_snow_mask] = 0. snowtot = numpy.zeros(snow.shape, dtype=numpy.float32) snowtot[valid_mask] = numpy.maximum( snow[valid_mask] + snlq[valid_mask], 0) evap_mask = (valid_mask & (snowtot > 0.)) evsnow = numpy.zeros(snow.shape, dtype=numpy.float32) evsnow[evap_mask] = numpy.minimum( snowtot[evap_mask], pet[evap_mask] * 0.87) snow_revised = numpy.empty(snow.shape, dtype=numpy.float32) snow_revised[:] = _TARGET_NODATA snow_revised[valid_mask] = snow[valid_mask] snow_revised[evap_mask] = numpy.maximum( snow[evap_mask] - evsnow[evap_mask] * (snow[evap_mask] / snowtot[evap_mask]), 0.) snlq_revised = numpy.zeros(snow.shape, dtype=numpy.float32) snlq_revised[valid_mask] = snlq[valid_mask] snlq_revised[evap_mask] = numpy.maximum( snlq[evap_mask] - evsnow[evap_mask] * (snlq[evap_mask] / snowtot[evap_mask]), 0.) pet_revised = numpy.empty(snow.shape, dtype=numpy.float32) pet_revised[:] = _TARGET_NODATA pet_revised[valid_mask] = pet[valid_mask] pet_revised[evap_mask] = numpy.maximum( (pet[evap_mask] - evsnow[evap_mask] / 0.87), 0.) melt_mask = (valid_mask & (tave >= tmelt_1)) snowmelt = numpy.zeros(snow.shape, dtype=numpy.float32) snowmelt[melt_mask] = numpy.clip( tmelt_2[melt_mask] * (tave[melt_mask] - tmelt_1[melt_mask]) * shwave[melt_mask], 0., snow_revised[melt_mask]) snow_revised[melt_mask] = ( snow_revised[melt_mask] - snowmelt[melt_mask]) snlq_revised[melt_mask] = ( snlq_revised[melt_mask] + snowmelt[melt_mask]) drain_mask = (melt_mask & (snlq_revised > 0.5 * snow_revised)) inputs_after_snow[drain_mask] = ( snlq_revised[drain_mask] - 0.5 * snow_revised[drain_mask]) snlq_revised[drain_mask] = ( snlq_revised[drain_mask] - inputs_after_snow[drain_mask]) if return_type == 'snowmelt': return snowmelt elif return_type == 'snow': return snow_revised elif return_type == 'snlq': return snlq_revised elif return_type == 'pet': return pet_revised else: return inputs_after_snow return _calc_snow_moisture temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for val in ['shwave', 'pet']: temp_val_dict[val] = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict = {} for val in ['tmelt_1', 'tmelt_2', 'fwloss_4']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for ( site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) max_temp_nodata = pygeoprocessing.get_raster_info( max_temp_path)['nodata'][0] min_temp_nodata = pygeoprocessing.get_raster_info( min_temp_path)['nodata'][0] precip_nodata = pygeoprocessing.get_raster_info( precip_path)['nodata'][0] # solar radiation outside the atmosphere _shortwave_radiation(precip_path, current_month, temp_val_dict['shwave']) # pet, reference evapotranspiration modified by fwloss parameter _reference_evapotranspiration( max_temp_path, min_temp_path, temp_val_dict['shwave'], param_val_dict['fwloss_4'], temp_val_dict['pet']) # calculate snowmelt pygeoprocessing.raster_calculator( [(path, 1) for path in [ tave_path, precip_path, prev_snow_path, prev_snlq_path, temp_val_dict['pet'], param_val_dict['tmelt_1'], param_val_dict['tmelt_2'], temp_val_dict['shwave']]], calc_snow_moisture('snowmelt'), snowmelt_path, gdal.GDT_Float32, _TARGET_NODATA) # calculate change in snow pygeoprocessing.raster_calculator( [(path, 1) for path in [ tave_path, precip_path, prev_snow_path, prev_snlq_path, temp_val_dict['pet'], param_val_dict['tmelt_1'], param_val_dict['tmelt_2'], temp_val_dict['shwave']]], calc_snow_moisture("snow"), snow_path, gdal.GDT_Float32, _TARGET_NODATA) # calculate change in liquid in snow pygeoprocessing.raster_calculator( [(path, 1) for path in [ tave_path, precip_path, prev_snow_path, prev_snlq_path, temp_val_dict['pet'], param_val_dict['tmelt_1'], param_val_dict['tmelt_2'], temp_val_dict['shwave']]], calc_snow_moisture("snlq"), snlq_path, gdal.GDT_Float32, _TARGET_NODATA) # calculate change in potential evapotranspiration energy pygeoprocessing.raster_calculator( [(path, 1) for path in [ tave_path, precip_path, prev_snow_path, prev_snlq_path, temp_val_dict['pet'], param_val_dict['tmelt_1'], param_val_dict['tmelt_2'], temp_val_dict['shwave']]], calc_snow_moisture("pet"), pet_rem_path, gdal.GDT_Float32, _TARGET_NODATA) # calculate soil moisture inputs draining from snow after snowmelt pygeoprocessing.raster_calculator( [(path, 1) for path in [ tave_path, precip_path, prev_snow_path, prev_snlq_path, temp_val_dict['pet'], param_val_dict['tmelt_1'], param_val_dict['tmelt_2'], temp_val_dict['shwave']]], calc_snow_moisture("inputs_after_snow"), inputs_after_snow_path, gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _calc_aboveground_live_biomass(sum_aglivc, sum_tgprod): """Calculate aboveground live biomass for purposes of soil water. Live biomass impacts loss of moisture inputs through canopy interception and evapotranspiration. Because soil moisture is computed after potential production, but before actual growth of plants, some of the predicted growth in biomass (i.e., tgprod) is added here to existing standing live biomass (i.e., aglivc * 2.5; line 80, potprod.f, in Century). Parameters: sum_aglivc (numpy.ndarray): the sum of aglivc across plant functional types (pft), weighted by % cover of the pft sum_tgprod (numpy.ndarray): sum of tgprod, potential production limited by soil water, nutrient availability, and grazing, across pfts weighted by % cover of the pft Returns: aliv, aboveground live biomass for soil water submodel """ valid_mask = ( (sum_aglivc != _TARGET_NODATA) & (sum_tgprod != _TARGET_NODATA)) aliv = numpy.empty(sum_aglivc.shape, dtype=numpy.float32) aliv[:] = _TARGET_NODATA aliv[valid_mask] = ( sum_aglivc[valid_mask] * 2.5 + (0.25 * sum_tgprod[valid_mask])) return aliv def _calc_standing_biomass(aliv, sum_stdedc): """Calculate total aboveground standing biomass for soil water. Total standing biomass impacts loss of moisture inputs by increasing total canopy interception and decreasing bare soil evaporation. It is the sum of live and dead standing biomass across plant functional types, bounded to be <= 800 g/m2. Parameters: aliv (numpy.ndarray): aboveground live biomass, calculated from aglivc and tgprod across plant functional types sum_stdedc (numpy.ndarray): aboveground standing dead C summed across plant functional types Returns: sd, total aboveground standing biomass for soil water. """ valid_mask = ( (aliv != _TARGET_NODATA) & (sum_stdedc != _TARGET_NODATA)) sd = numpy.empty(aliv.shape, dtype=numpy.float32) sd[:] = _TARGET_NODATA sd[valid_mask] = numpy.minimum( aliv[valid_mask] + (sum_stdedc[valid_mask] * 2.5), 800.) return sd def subtract_surface_losses(return_type): """Calculate surface losses to runoff and surface evaporation. Calculate the loss of surface moisture to runoff, canopy interception, and bare soil evaporation. Parameters: return_type (string): flag indicating whether soil moisture inputs after surface losses or total surface evaporation should be returned Returns: the function `_subtract_surface_losses` """ def _subtract_surface_losses( inputs_after_snow, fracro, precro, snow, alit, sd, fwloss_1, fwloss_2, pet_rem): """Subtract moisture losses to runoff, interception, and evaporation. Of the surface water inputs from precipitation and snowmelt, some water is lost to runoff (line 113, H2olos.f). After runoff, some water is lost to canopy interception and bare soil evaporation, if there is no snow cover. Loss to canopy interception and bare soil evaporation is a function of live, standing dead, and surface litter biomass. The total loss of moisture to interception and bare soil evaporation is bounded to be less than or equal to 40% of reference evapotranspiration. Parameters: inputs_after_snow (numpy.ndarray): derived, surface water inputs from precipitation and snowmelt, prior to runoff fracro (numpy.ndarray): parameter, fraction of surface water above precro that is lost to runoff precro (numpy.ndarray): parameter, amount of surface water that must be available for runoff to occur snow (numpy.ndarray): derived, current snowpack alit (numpy.ndarray): derived, biomass in surface litter sd (numpy.ndarray): derived, total standing biomass fwloss_1 (numpy.ndarray): parameter, scaling factor for interception and evaporation of precip by vegetation fwloss_2 (numpy.ndarray): parameter, scaling factor for bare soil evaporation of precip pet_rem (numpy.ndarray): derived, potential evaporation remaining after evaporation of snow Returns: inputs_after_surface, surface water inputs to soil after runoff and surface evaporation are subtracted, if return_type is 'inputs_after_surface' absevap, bare soil evaporation, if return_type is 'absevap' evap_losses, total surface evaporation, if return_type is 'evap_losses' """ valid_mask = ( (inputs_after_snow != _TARGET_NODATA) & (fracro != _IC_NODATA) & (precro != _IC_NODATA) & (snow != _TARGET_NODATA) & (alit != _TARGET_NODATA) & (sd != _TARGET_NODATA) & (fwloss_1 != _IC_NODATA) & (fwloss_2 != _IC_NODATA) & (pet_rem != _TARGET_NODATA)) runoff = numpy.empty(inputs_after_snow.shape, dtype=numpy.float32) runoff[:] = _TARGET_NODATA runoff[valid_mask] = numpy.maximum( fracro[valid_mask] * (inputs_after_snow[valid_mask] - precro[valid_mask]), 0.) inputs_after_runoff = numpy.empty( inputs_after_snow.shape, dtype=numpy.float32) inputs_after_runoff[:] = _TARGET_NODATA inputs_after_runoff[valid_mask] = ( inputs_after_snow[valid_mask] - runoff[valid_mask]) evap_mask = (valid_mask & (snow <= 0)) # loss to interception aint = numpy.zeros(inputs_after_snow.shape, dtype=numpy.float32) aint[evap_mask] = ( (0.0003 * alit[evap_mask] + 0.0006 * sd[evap_mask]) * fwloss_1[evap_mask]) # loss to bare soil evaporation absevap = numpy.empty(inputs_after_snow.shape, dtype=numpy.float32) absevap[:] = _TARGET_NODATA absevap[valid_mask] = 0. absevap[evap_mask] = ( 0.5 * numpy.exp((-0.002 * alit[evap_mask]) - (0.004 * sd[evap_mask])) * fwloss_2[evap_mask]) # total losses to interception and evaporation evap_losses = numpy.empty(inputs_after_snow.shape, dtype=numpy.float32) evap_losses[:] = _TARGET_NODATA evap_losses[valid_mask] = 0. evap_losses[evap_mask] = ( numpy.minimum(((absevap[evap_mask] + aint[evap_mask]) * inputs_after_runoff[evap_mask]), (0.4 * pet_rem[evap_mask]))) # remaining inputs after evaporation inputs_after_surface = numpy.empty( inputs_after_snow.shape, dtype=numpy.float32) inputs_after_surface[:] = _TARGET_NODATA inputs_after_surface[valid_mask] = inputs_after_runoff[valid_mask] inputs_after_surface[evap_mask] = ( inputs_after_runoff[evap_mask] - evap_losses[evap_mask]) if return_type == 'inputs_after_surface': return inputs_after_surface elif return_type == 'absevap': return absevap elif return_type == 'evap_losses': return evap_losses return _subtract_surface_losses def calc_potential_transpiration(return_type): """Calculate potential transpiration and evaporation from soil layer 1. Calculate potential transpiration (trap), potential evaporation from soil layer 1 (pevp), and initial transpiration water loss (tran). Remove the initial transpiration water loss from soil moisture inputs at this step. Parameters: return_type (string): flag indicating whether potential transpiration, potential evaporation from soil layer 1, or modified moisture inputs should be returned Returns: the function `_calc_potential_transpiration` """ def _calc_potential_transpiration( pet_rem, evap_losses, tave, aliv, current_moisture_inputs): """Calculate potential water losses to transpiration. Calculate potential transpiration (trap), the total potential transpiration from all soil layers by plants. Calculate potential evaporation from soil layer 1 (pevp); this amount is calculated prior to transpiration but actually removed after water loss to transpiration from all soil layers has been accounted. Calculate actual transpiration (tran). Remove actual transpiration water losses from moisture inputs before distributing water to soil layers. This is necessary for a monthly time step to give plants in wet climates adequate access to water for transpiration. Parameters: pet_rem (numpy.ndarray): derived, potential evapotranspiration remaining after evaporation of snow evap_losses (numpy.ndarray): derived, total surface evaporation tave (numpy.ndarray): derived, average temperature aliv (numpy.ndarray): aboveground live biomass, calculated from aglivc and tgprod across plant functional types current_moisture_inputs (numpy.ndarray): derived, moisture inputs after surface losses Returns: trap if return_type is 'trap' pevp if return_type is 'pevp' modified_moisture_inputs if return_type is 'modified_moisture_inputs' """ valid_mask = ( (pet_rem != _TARGET_NODATA) & (evap_losses != _TARGET_NODATA) & (tave != _IC_NODATA) & (aliv != _TARGET_NODATA) & (current_moisture_inputs != _TARGET_NODATA)) trap = numpy.empty(pet_rem.shape, dtype=numpy.float32) trap[:] = _TARGET_NODATA trap[valid_mask] = pet_rem[valid_mask] - evap_losses[valid_mask] no_transpiration_mask = (valid_mask & (tave < 2)) trap[no_transpiration_mask] = 0. transpiration_mask = (valid_mask & (tave >= 2)) trap[transpiration_mask] = numpy.maximum( numpy.minimum( trap[transpiration_mask], pet_rem[transpiration_mask] * 0.65 * (1 - numpy.exp(-0.02 * aliv[transpiration_mask]))), 0.) trap[valid_mask] = numpy.maximum(trap[valid_mask], 0.01) pevp = numpy.empty(pet_rem.shape, dtype=numpy.float32) pevp[:] = _TARGET_NODATA pevp[valid_mask] = numpy.maximum( pet_rem[valid_mask] - trap[valid_mask] - evap_losses[valid_mask], 0.) tran = numpy.empty(pet_rem.shape, dtype=numpy.float32) tran[:] = _TARGET_NODATA tran[valid_mask] = numpy.minimum( trap[valid_mask] - 0.01, current_moisture_inputs[valid_mask]) trap[valid_mask] = trap[valid_mask] - tran[valid_mask] modified_moisture_inputs = numpy.empty( pet_rem.shape, dtype=numpy.float32) modified_moisture_inputs[:] = _TARGET_NODATA modified_moisture_inputs[valid_mask] = ( current_moisture_inputs[valid_mask] - tran[valid_mask]) if return_type == 'trap': return trap elif return_type == 'pevp': return pevp elif return_type == 'modified_moisture_inputs': return modified_moisture_inputs return _calc_potential_transpiration def distribute_water_to_soil_layer(return_type): """Distribute moisture inputs to one soil layer prior to transpiration. Soil moisture inputs after runoff, evaporation, and initial transpiration are distributed to soil layers sequentially according to the field capacity of the layer. If moisture inputs exceed the field capacity of the layer, the remainder of moisture inputs move down to the next adjacent soil layer. Returns: the function `_distribute_water` """ def _distribute_water(adep, afiel, asmos, current_moisture_inputs): """Revise soil moisture in this soil layer prior to transpiration. Moisture inputs coming into this soil layer are compared to the field capacity of the layer. If the field capacity is exceeded, the excess moisture moves from this layer to the next adjacent layer. Parameters: adep (numpy.ndarray): parameter, depth of this soil layer in cm afiel (numpy.ndarray): derived, field capacity of this layer asmos (numpy.ndarray): state variable, current soil moisture content of this soil layer current_moisture_inputs (numpy.ndarray): derived, moisture inputs added to this soil layer Returns: asmos_revised, revised soil moisture in this layer, if return_type is 'asmos_revised' amov, moisture flowing from this layer into the next, if return_type is 'amov' """ valid_mask = ( (adep != _IC_NODATA) & (afiel != _TARGET_NODATA) & (~numpy.isclose(asmos, _SV_NODATA)) & (current_moisture_inputs != _TARGET_NODATA)) afl = numpy.empty(adep.shape, dtype=numpy.float32) afl[:] = _TARGET_NODATA afl[valid_mask] = adep[valid_mask] * afiel[valid_mask] asmos_interm = numpy.empty(adep.shape, dtype=numpy.float32) asmos_interm[:] = _TARGET_NODATA asmos_interm[valid_mask] = ( asmos[valid_mask] + current_moisture_inputs[valid_mask]) amov = numpy.empty(adep.shape, dtype=numpy.float32) amov[:] = _TARGET_NODATA exceeded_mask = (valid_mask & (asmos_interm > afl)) amov[exceeded_mask] = asmos_interm[exceeded_mask] asmos_revised = numpy.empty(adep.shape, dtype=numpy.float32) asmos_revised[:] = _TARGET_NODATA asmos_revised[valid_mask] = asmos_interm[valid_mask] asmos_revised[exceeded_mask] = afl[exceeded_mask] notexceeded_mask = (valid_mask & (asmos_interm <= afl)) amov[notexceeded_mask] = 0. if return_type == 'asmos_revised': return asmos_revised elif return_type == 'amov': return amov return _distribute_water def calc_available_water_for_transpiration(asmos, awilt, adep): """Calculate water available for transpiration in one soil layer. The water available for transpiration is the amount of water in the soil layer minus the wilting point of the soil layer. Parameters: asmos (numpy.ndarray): derived, interim moisture in the soil layer awilt (numpy.ndarray): derived, wilting point of the soil layer adep (numpy.ndarray): parameter, depth of the soil layer in cm Returns: avw, available water for transpiration """ valid_mask = ( (asmos != _TARGET_NODATA) & (awilt != _TARGET_NODATA) & (adep != _IC_NODATA)) avw = numpy.empty(asmos.shape, dtype=numpy.float32) avw[:] = _TARGET_NODATA avw[valid_mask] = numpy.maximum( asmos[valid_mask] - awilt[valid_mask] * adep[valid_mask], 0.) return avw def revise_potential_transpiration(trap, tot): """Revise potential transpiration according to water available. Total potential transpiration, trap, is revised to be less than or equal to total water available for transpiration, tot. Total water available for transpiration is the sum of available water per soil layer. Line 241, H2olos.f Parameters: trap (numpy.ndarray): derived, potential transpiration water losses tot (numpy.ndarray): derived, total soil water available for transpiration Returns: trap_revised, revised total potential transpiration """ valid_mask = ( (trap != _TARGET_NODATA) & (tot != _TARGET_NODATA)) trap_revised = numpy.empty(trap.shape, dtype=numpy.float32) trap_revised[:] = _TARGET_NODATA trap_revised[valid_mask] = numpy.minimum(trap[valid_mask], tot[valid_mask]) return trap_revised def remove_transpiration(return_type): """Remove water from a soil layer via transpiration by plants. Transpiration from one soil layer is apportioned from total potential transpiration, trap, according to the available water for transpiration in this soil layer. Lines 218-294, H2olos.f Parameters: return_type (string): flag indicating whether avinj (water in this soil layer available to plants for growth) or asmos (total water in this soil layer) should be returned Returns: the function `_remove_transpiration` """ def _remove_transpiration(asmos, awilt, adep, trap, awwt, tot2): """Remove water from a soil layer via transpiration by plants. Parameters: asmos (numpy.ndarray): derived, interim moisture in this soil layer after additions from current month precipitation awilt (numpy.ndarray): derived, wilting point of this soil layer adep (numpy.ndarray): parameter, depth of this soil layer in cm trap (numpy.ndarray): derived, total potential transpiration across all soil layers accessible by plant roots awwt (numpy.ndarray): derived, water available for transpiration in this soil layer weighted by transpiration depth distribution parameter tot2 (numpy.ndarray): derived, the sum of weighted water available for transpiration across soil layers Returns: avinj, water available to plants for growth in this layer after losses to transpiration, if return type is 'avinj' asmos_revised, total water in this layer after losses to transpiration, if return type is 'asmos' """ valid_mask = ( (asmos != _TARGET_NODATA) & (awilt != _TARGET_NODATA) & (adep != _IC_NODATA) & (trap != _TARGET_NODATA) & (awwt != _TARGET_NODATA) & (tot2 != _TARGET_NODATA)) avinj = numpy.empty(asmos.shape, dtype=numpy.float32) avinj[:] = _TARGET_NODATA avinj[valid_mask] = numpy.maximum( asmos[valid_mask] - awilt[valid_mask] * adep[valid_mask], 0.) transpire_mask = (valid_mask & (tot2 > 0)) transpiration_loss = numpy.zeros(asmos.shape, dtype=numpy.float32) transpiration_loss[transpire_mask] = numpy.minimum( (trap[transpire_mask] * awwt[transpire_mask]) / tot2[transpire_mask], avinj[transpire_mask]) avinj[valid_mask] = avinj[valid_mask] - transpiration_loss[valid_mask] asmos_revised = numpy.empty(asmos.shape, dtype=numpy.float32) asmos_revised[:] = _TARGET_NODATA asmos_revised[valid_mask] = ( asmos[valid_mask] - transpiration_loss[valid_mask]) if return_type == 'avinj': return avinj elif return_type == 'asmos': return asmos_revised return _remove_transpiration def calc_relative_water_content_lyr_1(asmos_1, adep_1, awilt_1, afiel_1): """Calculate the relative water content of soil layer 1. The relative water content of soil layer 1, prior to any evaporation losses from soil layer 1, is used to estimate water available for evaporation from soil layer 1. Line 280, H2olos.f Parameters: asmos_1 (numpy.ndarray): derived, interim moisture in soil layer 1 after losses to transpiration adep_1 (numpy.ndarray): parameter, depth of soil layer 1 in cm awilt_1 (numpy.ndarray): derived, wilting point of soil layer 1 afiel_1 (numpy.ndarray): derived, field capacity of soil layer 1 Returns: rwcf_1, relative water content of soil layer 1 """ valid_mask = ( (asmos_1 != _TARGET_NODATA) & (adep_1 != _IC_NODATA) & (awilt_1 != _TARGET_NODATA) & (afiel_1 != _TARGET_NODATA)) rwcf_1 = numpy.empty(asmos_1.shape, dtype=numpy.float32) rwcf_1[valid_mask] = ( (asmos_1[valid_mask] / adep_1[valid_mask] - awilt_1[valid_mask]) / (afiel_1[valid_mask] - awilt_1[valid_mask])) return rwcf_1 def calc_evaporation_loss(rwcf_1, pevp, absevap, asmos_1, awilt_1, adep_1): """Calculate evaporation from soil layer 1. Some moisture is lost from soil layer 1 (i.e., the top soil layer) to evaporation, separate from surface evaporation and transpiration by plants. This amount is calculated from potential soil evaporation, which was calculated from potential evapotranspiration prior to allocation of water to soil layers. It is restricted to be less than or equal to water available in this soil layer. Parameters: rwcf_1 (numpy.ndarray): derived, relative water content of soil layer 1 pevp (numpy.ndarray): derived, potential evaporation from soil layer 1 absevap (numpy.ndarray): derived, bare soil evaporation asmos_1 (numpy.ndarray): derived, interim moisture in soil layer 1 awilt_1 (numpy.ndarray): derived, wilting point of soil layer 1 adep_1 (numpy.ndarray): parameter, depth of soil layer 1 in cm Returns: evlos, moisture evaporated from soil layer 1 """ valid_mask = ( (rwcf_1 != _TARGET_NODATA) & (pevp != _TARGET_NODATA) & (absevap != _TARGET_NODATA) & (asmos_1 != _TARGET_NODATA) & (awilt_1 != _TARGET_NODATA) & (adep_1 != _IC_NODATA)) evmt = numpy.empty(rwcf_1.shape, dtype=numpy.float32) evmt[:] = _TARGET_NODATA evmt[valid_mask] = numpy.maximum( (rwcf_1[valid_mask] - 0.25) / (1 - 0.25), 0.01) evlos = numpy.empty(rwcf_1.shape, dtype=numpy.float32) evlos[:] = _TARGET_NODATA evlos[valid_mask] = numpy.minimum( evmt[valid_mask] * pevp[valid_mask] * absevap[valid_mask] * 0.1, numpy.maximum( asmos_1[valid_mask] - awilt_1[valid_mask] * adep_1[valid_mask], 0.)) return evlos def _soil_water( aligned_inputs, site_param_table, veg_trait_table, current_month, month_index, prev_sv_reg, pp_reg, pft_id_set, month_reg, sv_reg): """Allocate precipitation to runoff, transpiration, and soil moisture. Simulate snowfall and account for evaporation and melting of the snow pack. Allocate the flow of precipitation through interception by plants, runoff and infiltration into the soil, percolation through the soil, and transpiration by plants. Update soil moisture in each soil layer. Estimate avh2o_1 for each PFT (water available to the PFT for growth), avh2o_3 (water in first two soil layers), and amov_<lyr> (saturated flow of water between soil layers, used in decomposition and mineral leaching). Parameters: aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including precipitation, temperature, plant functional type composition, and site spatial index site_param_table (dict): map of site spatial indices to dictionaries containing site parameters veg_trait_table (dict): map of pft id to dictionaries containing plant functional type parameters, including nlaypg, number of soil layers access by plant roots current_month (int): month of the year, such that current_month=1 indicates January month_index (int): month of the simulation, such that month_index=1 indicates month 1 of the simulation prev_sv_reg (dict): map of key, path pairs giving paths to state variables for the previous month pp_reg (dict): map of key, path pairs giving persistent parameters including field capacity of each soil layer pft_id_set (set): set of integers identifying plant functional types month_reg (dict): map of key, path pairs giving paths to intermediate calculated values that are shared between submodels sv_reg (dict): map of key, path pairs giving paths to state variables for the current month Side effects: creates the raster indicated by `sv_reg['snow_path']`, current snowpack creates the raster indicated by `sv_reg['snlq_path']`, current liquid in snow creates the raster indicated by `sv_reg['asmos_<lyr>_path']`, soil moisture content, for each soil layer accessible by roots of any plant functional type creates the rasters indicated by `month_reg['amov_<lyr>']` for each soil layer, saturated flow of water from that soil layer creates the raster indicated by `sv_reg['avh2o_1_<PFT>_path']`, soil moisture available for growth, for each plant functional type (PFT) creates the raster indicated by `sv_reg['avh2o_3_path']`, available water in the top two soil layers Returns: None """ def calc_avg_temp(max_temp, min_temp): """Calculate average temperature from maximum and minimum temp.""" valid_mask = ( (~numpy.isclose(max_temp, max_temp_nodata)) & (~numpy.isclose(min_temp, min_temp_nodata))) tave = numpy.empty(max_temp.shape, dtype=numpy.float32) tave[:] = _IC_NODATA tave[valid_mask] = (max_temp[valid_mask] + min_temp[valid_mask]) / 2. return tave def calc_surface_litter_biomass(strucc_1, metabc_1): """Calculate biomass in surface litter.""" valid_mask = ( (~numpy.isclose(strucc_1, _SV_NODATA)) & (~numpy.isclose(metabc_1, _SV_NODATA))) alit = numpy.empty(strucc_1.shape, dtype=numpy.float32) alit[:] = _TARGET_NODATA alit[valid_mask] = (strucc_1[valid_mask] + metabc_1[valid_mask]) * 2.5 alit = numpy.minimum(alit, 400) return alit max_temp_nodata = pygeoprocessing.get_raster_info( aligned_inputs['max_temp_{}'.format(current_month)])['nodata'][0] min_temp_nodata = pygeoprocessing.get_raster_info( aligned_inputs['min_temp_{}'.format(current_month)])['nodata'][0] # get max number of soil layers accessible by plants nlaypg_max = int(max(val['nlaypg'] for val in veg_trait_table.values())) # max number of soil layers simulated, beyond those accessible by plants nlayer_max = int(max(val['nlayer'] for val in site_param_table.values())) # temporary intermediate rasters for soil water submodel temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for val in [ 'tave', 'current_moisture_inputs', 'modified_moisture_inputs', 'pet_rem', 'alit', 'sum_aglivc', 'sum_stdedc', 'sum_tgprod', 'aliv', 'sd', 'absevap', 'evap_losses', 'trap', 'trap_revised', 'pevp', 'tot', 'tot2', 'rwcf_1', 'evlos', 'avinj_interim_1']: temp_val_dict[val] = os.path.join(temp_dir, '{}.tif'.format(val)) # temporary intermediate values for each layer accessible by plants for val in ['avw', 'awwt', 'avinj']: for lyr in range(1, nlaypg_max + 1): val_lyr = '{}_{}'.format(val, lyr) temp_val_dict[val_lyr] = os.path.join( temp_dir, '{}.tif'.format(val_lyr)) # temporary intermediate value for each layer total for lyr in range(1, nlayer_max + 1): val_lyr = 'asmos_interim_{}'.format(lyr) temp_val_dict[val_lyr] = os.path.join( temp_dir, '{}.tif'.format(val_lyr)) # PFT-level temporary calculated values for pft_i in pft_id_set: for val in ['tgprod_weighted', 'sum_avinj']: temp_val_dict['{}_{}'.format(val, pft_i)] = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) param_val_dict = {} for val in ['fracro', 'precro', 'fwloss_1', 'fwloss_2']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) for lyr in range(1, nlaypg_max + 1): val_lyr = 'awtl_{}'.format(lyr) target_path = os.path.join(temp_dir, '{}.tif'.format(val_lyr)) param_val_dict[val_lyr] = target_path site_to_val = dict( [(site_code, float(table[val_lyr])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) for lyr in range(1, nlayer_max + 1): val_lyr = 'adep_{}'.format(lyr) target_path = os.path.join(temp_dir, '{}.tif'.format(val_lyr)) param_val_dict[val_lyr] = target_path site_to_val = dict( [(site_code, float(table[val_lyr])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) # calculate canopy and litter cover that influence moisture inputs # calculate biomass in surface litter pygeoprocessing.raster_calculator( [(path, 1) for path in [ prev_sv_reg['strucc_1_path'], prev_sv_reg['metabc_1_path']]], calc_surface_litter_biomass, temp_val_dict['alit'], gdal.GDT_Float32, _TARGET_NODATA) # calculate the sum of aglivc (standing live biomass) and stdedc # (standing dead biomass) across PFTs, weighted by % cover of each PFT for sv in ['aglivc', 'stdedc']: weighted_sum_path = temp_val_dict['sum_{}'.format(sv)] weighted_state_variable_sum( sv, prev_sv_reg, aligned_inputs, pft_id_set, weighted_sum_path) # calculate the weighted sum of tgprod, potential production, across PFTs weighted_path_list = [] for pft_i in pft_id_set: do_growth = ( current_month != veg_trait_table[pft_i]['senescence_month'] and str(current_month) in veg_trait_table[pft_i]['growth_months']) if do_growth: target_path = temp_val_dict['tgprod_weighted_{}'.format(pft_i)] pft_nodata = pygeoprocessing.get_raster_info( aligned_inputs['pft_{}'.format(pft_i)])['nodata'][0] raster_multiplication( month_reg['tgprod_{}'.format(pft_i)], _TARGET_NODATA, aligned_inputs['pft_{}'.format(pft_i)], pft_nodata, target_path, _TARGET_NODATA) weighted_path_list.append(target_path) if weighted_path_list: raster_list_sum( weighted_path_list, _TARGET_NODATA, temp_val_dict['sum_tgprod'], _TARGET_NODATA, nodata_remove=True) else: # no potential production occurs this month, so tgprod = 0 pygeoprocessing.new_raster_from_base( temp_val_dict['sum_aglivc'], temp_val_dict['sum_tgprod'], gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0.]) # calculate average temperature pygeoprocessing.raster_calculator( [(path, 1) for path in [ aligned_inputs['max_temp_{}'.format(current_month)], aligned_inputs['min_temp_{}'.format(current_month)]]], calc_avg_temp, temp_val_dict['tave'], gdal.GDT_Float32, _IC_NODATA) # calculate aboveground live biomass pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['sum_aglivc'], temp_val_dict['sum_tgprod']]], _calc_aboveground_live_biomass, temp_val_dict['aliv'], gdal.GDT_Float32, _TARGET_NODATA) # calculate total standing biomass pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aliv'], temp_val_dict['sum_stdedc']]], _calc_standing_biomass, temp_val_dict['sd'], gdal.GDT_Float32, _TARGET_NODATA) # modify standing snow, liquid in snow, return moisture inputs after snow _snow( aligned_inputs['site_index'], site_param_table, aligned_inputs['precip_{}'.format(month_index)], temp_val_dict['tave'], aligned_inputs['max_temp_{}'.format(current_month)], aligned_inputs['min_temp_{}'.format(current_month)], prev_sv_reg['snow_path'], prev_sv_reg['snlq_path'], current_month, month_reg['snowmelt'], sv_reg['snow_path'], sv_reg['snlq_path'], temp_val_dict['modified_moisture_inputs'], temp_val_dict['pet_rem']) # remove runoff and surface evaporation from moisture inputs shutil.copyfile( temp_val_dict['modified_moisture_inputs'], temp_val_dict['current_moisture_inputs']) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['current_moisture_inputs'], param_val_dict['fracro'], param_val_dict['precro'], sv_reg['snow_path'], temp_val_dict['alit'], temp_val_dict['sd'], param_val_dict['fwloss_1'], param_val_dict['fwloss_2'], temp_val_dict['pet_rem']]], subtract_surface_losses('inputs_after_surface'), temp_val_dict['modified_moisture_inputs'], gdal.GDT_Float32, _TARGET_NODATA) # calculate bare soil evaporation pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['current_moisture_inputs'], param_val_dict['fracro'], param_val_dict['precro'], sv_reg['snow_path'], temp_val_dict['alit'], temp_val_dict['sd'], param_val_dict['fwloss_1'], param_val_dict['fwloss_2'], temp_val_dict['pet_rem']]], subtract_surface_losses('absevap'), temp_val_dict['absevap'], gdal.GDT_Float32, _TARGET_NODATA) # calculate total losses to surface evaporation pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['current_moisture_inputs'], param_val_dict['fracro'], param_val_dict['precro'], sv_reg['snow_path'], temp_val_dict['alit'], temp_val_dict['sd'], param_val_dict['fwloss_1'], param_val_dict['fwloss_2'], temp_val_dict['pet_rem']]], subtract_surface_losses('evap_losses'), temp_val_dict['evap_losses'], gdal.GDT_Float32, _TARGET_NODATA) # remove losses due to initial transpiration from water inputs shutil.copyfile( temp_val_dict['modified_moisture_inputs'], temp_val_dict['current_moisture_inputs']) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['pet_rem'], temp_val_dict['evap_losses'], temp_val_dict['tave'], temp_val_dict['aliv'], temp_val_dict['current_moisture_inputs']]], calc_potential_transpiration('modified_moisture_inputs'), temp_val_dict['modified_moisture_inputs'], gdal.GDT_Float32, _TARGET_NODATA) # calculate potential transpiration pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['pet_rem'], temp_val_dict['evap_losses'], temp_val_dict['tave'], temp_val_dict['aliv'], temp_val_dict['current_moisture_inputs']]], calc_potential_transpiration('trap'), temp_val_dict['trap'], gdal.GDT_Float32, _TARGET_NODATA) # calculate potential evaporation from top soil layer pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['pet_rem'], temp_val_dict['evap_losses'], temp_val_dict['tave'], temp_val_dict['aliv'], temp_val_dict['current_moisture_inputs']]], calc_potential_transpiration('pevp'), temp_val_dict['pevp'], gdal.GDT_Float32, _TARGET_NODATA) # distribute water to each layer for lyr in range(1, nlayer_max + 1): shutil.copyfile( temp_val_dict['modified_moisture_inputs'], temp_val_dict['current_moisture_inputs']) # revise moisture content of this soil layer pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['adep_{}'.format(lyr)], pp_reg['afiel_{}_path'.format(lyr)], prev_sv_reg['asmos_{}_path'.format(lyr)], temp_val_dict['current_moisture_inputs']]], distribute_water_to_soil_layer('asmos_revised'), temp_val_dict['asmos_interim_{}'.format(lyr)], gdal.GDT_Float32, _TARGET_NODATA) # calculate soil moisture moving to next layer pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['adep_{}'.format(lyr)], pp_reg['afiel_{}_path'.format(lyr)], prev_sv_reg['asmos_{}_path'.format(lyr)], temp_val_dict['current_moisture_inputs']]], distribute_water_to_soil_layer('amov'), temp_val_dict['modified_moisture_inputs'], gdal.GDT_Float32, _TARGET_NODATA) # amov, water moving to next layer, persists between submodels shutil.copyfile( temp_val_dict['modified_moisture_inputs'], month_reg['amov_{}'.format(lyr)]) # calculate available water for transpiration avw_list = [] for lyr in range(1, nlaypg_max + 1): pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['asmos_interim_{}'.format(lyr)], pp_reg['awilt_{}_path'.format(lyr)], param_val_dict['adep_{}'.format(lyr)]]], calc_available_water_for_transpiration, temp_val_dict['avw_{}'.format(lyr)], gdal.GDT_Float32, _TARGET_NODATA) avw_list.append(temp_val_dict['avw_{}'.format(lyr)]) # total water available for transpiration raster_list_sum( avw_list, _TARGET_NODATA, temp_val_dict['tot'], _TARGET_NODATA) # calculate water available for transpiration weighted by transpiration # depth for that soil layer awwt_list = [] for lyr in range(1, nlaypg_max + 1): raster_multiplication( temp_val_dict['avw_{}'.format(lyr)], _TARGET_NODATA, param_val_dict['awtl_{}'.format(lyr)], _IC_NODATA, temp_val_dict['awwt_{}'.format(lyr)], _TARGET_NODATA) awwt_list.append(temp_val_dict['awwt_{}'.format(lyr)]) # total weighted available water for transpiration raster_list_sum( awwt_list, _TARGET_NODATA, temp_val_dict['tot2'], _TARGET_NODATA) # revise total potential transpiration pygeoprocessing.raster_calculator( [(path, 1) for path in [temp_val_dict['trap'], temp_val_dict['tot']]], revise_potential_transpiration, temp_val_dict['trap_revised'], gdal.GDT_Float32, _TARGET_NODATA) # remove water via transpiration for lyr in range(1, nlaypg_max + 1): pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['asmos_interim_{}'.format(lyr)], pp_reg['awilt_{}_path'.format(lyr)], param_val_dict['adep_{}'.format(lyr)], temp_val_dict['trap_revised'], temp_val_dict['awwt_{}'.format(lyr)], temp_val_dict['tot2']]], remove_transpiration('avinj'), temp_val_dict['avinj_{}'.format(lyr)], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['asmos_interim_{}'.format(lyr)], pp_reg['awilt_{}_path'.format(lyr)], param_val_dict['adep_{}'.format(lyr)], temp_val_dict['trap_revised'], temp_val_dict['awwt_{}'.format(lyr)], temp_val_dict['tot2']]], remove_transpiration('asmos'), sv_reg['asmos_{}_path'.format(lyr)], gdal.GDT_Float32, _TARGET_NODATA) # no transpiration is removed from layers not accessible by plants for lyr in range(nlaypg_max + 1, nlayer_max + 1): shutil.copyfile( temp_val_dict['asmos_interim_{}'.format(lyr)], sv_reg['asmos_{}_path'.format(lyr)]) # relative water content of soil layer 1 pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['asmos_1_path'], param_val_dict['adep_1'], pp_reg['awilt_1_path'], pp_reg['afiel_1_path']]], calc_relative_water_content_lyr_1, temp_val_dict['rwcf_1'], gdal.GDT_Float32, _TARGET_NODATA) # evaporation from soil layer 1 pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['rwcf_1'], temp_val_dict['pevp'], temp_val_dict['absevap'], sv_reg['asmos_1_path'], pp_reg['awilt_1_path'], param_val_dict['adep_1']]], calc_evaporation_loss, temp_val_dict['evlos'], gdal.GDT_Float32, _TARGET_NODATA) # remove evaporation from total moisture in soil layer 1 shutil.copyfile(sv_reg['asmos_1_path'], temp_val_dict['asmos_interim_1']) raster_difference( temp_val_dict['asmos_interim_1'], _TARGET_NODATA, temp_val_dict['evlos'], _TARGET_NODATA, sv_reg['asmos_1_path'], _TARGET_NODATA) # remove evaporation from moisture available to plants in soil layer 1 shutil.copyfile(temp_val_dict['avinj_1'], temp_val_dict['avinj_interim_1']) raster_difference( temp_val_dict['avinj_interim_1'], _TARGET_NODATA, temp_val_dict['evlos'], _TARGET_NODATA, temp_val_dict['avinj_1'], _TARGET_NODATA) # calculate avh2o_1, soil water available for growth, for each PFT for pft_i in pft_id_set: pft_nodata = pygeoprocessing.get_raster_info( aligned_inputs['pft_{}'.format(pft_i)])['nodata'][0] soil_layers_accessible = [ temp_val_dict['avinj_{}'.format(lyr)] for lyr in range(1, int(veg_trait_table[pft_i]['nlaypg']) + 1)] raster_list_sum( soil_layers_accessible, _TARGET_NODATA, temp_val_dict['sum_avinj_{}'.format(pft_i)], _TARGET_NODATA, nodata_remove=True) raster_multiplication( temp_val_dict['sum_avinj_{}'.format(pft_i)], _TARGET_NODATA, aligned_inputs['pft_{}'.format(pft_i)], pft_nodata, sv_reg['avh2o_1_{}_path'.format(pft_i)], _SV_NODATA) # calculate avh2o_3, moisture in top two soil layers soil_layers_to_sum = [ temp_val_dict['avinj_{}'.format(lyr)] for lyr in [1, 2]] raster_list_sum( soil_layers_to_sum, _TARGET_NODATA, sv_reg['avh2o_3_path'], _SV_NODATA, nodata_remove=False) # set correct nodata value for all revised asmos rasters for lyr in range(1, nlayer_max + 1): reclassify_nodata(sv_reg['asmos_{}_path'.format(lyr)], _SV_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def calc_anerb(rprpet, pevap, drain, aneref_1, aneref_2, aneref_3): """Calculate the effect of soil anaerobic conditions on decomposition. The impact of soil anaerobic conditions on decomposition is calculated from soil moisture and reference evapotranspiration. Anerob.f. Parameters: rprpet (numpy.ndarray): derived, ratio of precipitation or snowmelt to reference evapotranspiration pevap (numpy.ndarray): derived, reference evapotranspiration drain (numpy.ndarray): parameter, the fraction of excess water lost by drainage. Indicates whether a soil is sensitive for anaerobiosis (drain = 0) or not (drain = 1) aneref_1 (numpy.ndarray): parameter, value of rprpet below which there is no negative impact of soil anaerobic conditions on decomposition aneref_2 (numpy.ndarray): parameter, value of rprpet above which there is maximum negative impact of soil anaerobic conditions on decomposition aneref_3 (numpy.ndarray): parameter, minimum value of the impact of soil anaerobic conditions on decomposition Returns: anerb, the effect of soil anaerobic conditions on decomposition """ valid_mask = ( (rprpet != _TARGET_NODATA) & (pevap != _TARGET_NODATA) & (drain != _IC_NODATA) & (aneref_1 != _IC_NODATA) & (aneref_2 != _IC_NODATA) & (aneref_3 != _IC_NODATA)) xh2o = numpy.empty(rprpet.shape, dtype=numpy.float32) xh2o[:] = _TARGET_NODATA xh2o[valid_mask] = ( (rprpet[valid_mask] - aneref_1[valid_mask]) * pevap[valid_mask] * (1. - drain[valid_mask])) anerb = numpy.empty(rprpet.shape, dtype=numpy.float32) anerb[:] = _TARGET_NODATA anerb[valid_mask] = 1. high_rprpet_mask = (valid_mask & (rprpet > aneref_1) & (xh2o > 0)) anerb[high_rprpet_mask] = numpy.maximum( 1. + (1. - aneref_3[high_rprpet_mask]) / (aneref_1[high_rprpet_mask] - aneref_2[high_rprpet_mask]) * (aneref_1[high_rprpet_mask] + (xh2o[high_rprpet_mask] / pevap[high_rprpet_mask]) - aneref_1[high_rprpet_mask]), aneref_3[high_rprpet_mask]) return anerb def esched(return_type): """Calculate flow of an element accompanying decomposition of C. Calculate the movement of one element (N or P) as C decomposes from one state variable (the donating stock, or box A) to another state variable (the receiving stock, or box B). Esched.f Parameters: return_type (string): flag indicating whether to return material leaving box A, material arriving in box B, or material flowing into or out of the mineral pool Returns: the function `_esched` """ def _esched(cflow, tca, rcetob, anps, labile): """Calculate the flow of one element (iel) to accompany decomp of C. This is a transcription of Esched.f: "Schedule N, P, or S flow and associated mineralization or immobilization flow for decomposition from Box A to Box B." If there is enough of iel (N or P) in the donating stock to satisfy the required ratio, that material flows from the donating stock to the receiving stock and whatever iel is leftover goes to mineral pool. If there is not enough iel to satisfy the required ratio, iel is drawn from the mineral pool to satisfy the ratio; if there is not enough iel in the mineral pool, the material does not leave the donating stock. Parameters: cflow (numpy.ndarray): derived, total C that is decomposing from box A to box B tca (numpy.ndarray): state variable, C in donating stock, i.e. box A rcetob (numpy.ndarray): derived, required ratio of C/iel in the receiving stock anps (numpy.ndarray): state variable, iel (N or P) in the donating stock labile (numpy.ndarray): state variable, mineral iel (N or P) Returns: material_leaving_a, the amount of material leaving box A, if return_type is 'material_leaving_a' material_arriving_b, the amount of material arriving in box B, if return_type is 'material_arriving_b' mnrflo, flow to or from mineral pool, if return_type is 'mineral_flow' """ valid_mask = ( (cflow != _IC_NODATA) & (~numpy.isclose(tca, _SV_NODATA)) & (tca > 0) & (rcetob != _TARGET_NODATA) & (~numpy.isclose(anps, _SV_NODATA)) & (~numpy.isclose(labile, _SV_NODATA))) outofa = numpy.empty(cflow.shape, dtype=numpy.float32) outofa[:] = _IC_NODATA outofa[valid_mask] = ( anps[valid_mask] * (cflow[valid_mask] / tca[valid_mask])) immobil_ratio = numpy.zeros(cflow.shape) nonzero_mask = ((outofa > 0) & valid_mask) immobil_ratio[nonzero_mask] = ( cflow[nonzero_mask] / outofa[nonzero_mask]) immflo = numpy.zeros(cflow.shape) immflo[valid_mask] = ( cflow[valid_mask] / rcetob[valid_mask] - outofa[valid_mask]) labile_supply = numpy.zeros(cflow.shape) labile_supply[valid_mask] = labile[valid_mask] - immflo[valid_mask] atob = numpy.zeros(cflow.shape) atob[valid_mask] = cflow[valid_mask] / rcetob[valid_mask] # immobilization immobilization_mask = ( (immobil_ratio > rcetob) & (labile_supply > 0) & valid_mask) # mineralization mineralization_mask = ( (immobil_ratio <= rcetob) & valid_mask) # no movement no_movt_mask = ( (immobil_ratio > rcetob) & (labile_supply <= 0) & valid_mask) material_leaving_a = numpy.empty(cflow.shape, dtype=numpy.float32) material_leaving_a[:] = _IC_NODATA material_arriving_b = numpy.empty(cflow.shape, dtype=numpy.float32) material_arriving_b[:] = _IC_NODATA mnrflo = numpy.empty(cflow.shape, dtype=numpy.float32) mnrflo[:] = _IC_NODATA material_leaving_a[immobilization_mask] = ( outofa[immobilization_mask]) material_arriving_b[immobilization_mask] = ( outofa[immobilization_mask] + immflo[immobilization_mask]) mnrflo[immobilization_mask] = -immflo[immobilization_mask] material_leaving_a[mineralization_mask] = outofa[mineralization_mask] material_arriving_b[mineralization_mask] = atob[mineralization_mask] mnrflo[mineralization_mask] = ( outofa[mineralization_mask] - atob[mineralization_mask]) material_leaving_a[no_movt_mask] = 0. material_arriving_b[no_movt_mask] = 0. mnrflo[no_movt_mask] = 0. if return_type == 'material_leaving_a': return material_leaving_a elif return_type == 'material_arriving_b': return material_arriving_b elif return_type == 'mineral_flow': return mnrflo return _esched def fsfunc(minerl_1_2, sorpmx, pslsrb): """Calculate the fraction of mineral P that is in solution. The fraction of P in solution is influenced by two soil properties: the maximum sorption potential of the soil and sorption affinity. Parameters: minerl_1_2 (numpy.ndarray): state variable, mineral P in top layer sorpmx (numpy.ndarray): parameter, maximum P sorption potential pslsrb (numpy.ndarray): parameter, slope term which controls the fraction of mineral P that is labile Returns: fsol, fraction of P in solution """ valid_mask = ( (~numpy.isclose(minerl_1_2, _SV_NODATA)) & (minerl_1_2 > 0) & (sorpmx != _IC_NODATA) & (pslsrb != _IC_NODATA)) c_ar = numpy.zeros(minerl_1_2.shape, dtype=numpy.float32) c_ar[valid_mask] = ( sorpmx[valid_mask] * (2.0 - pslsrb[valid_mask]) / 2.) b_ar = numpy.zeros(minerl_1_2.shape, dtype=numpy.float32) b_ar[valid_mask] = ( sorpmx[valid_mask] - minerl_1_2[valid_mask] + c_ar[valid_mask]) sq_ar = numpy.zeros(minerl_1_2.shape, dtype=numpy.float32) sq_ar[valid_mask] = ( b_ar[valid_mask] * b_ar[valid_mask] + 4. * c_ar[valid_mask] * minerl_1_2[valid_mask]) sqrt_ar = numpy.zeros(minerl_1_2.shape, dtype=numpy.float32) sqrt_ar[valid_mask] = numpy.sqrt(sq_ar[valid_mask]) labile = numpy.zeros(minerl_1_2.shape, dtype=numpy.float32) labile[valid_mask] = (-b_ar[valid_mask] + sqrt_ar[valid_mask]) / 2. fsol = numpy.empty(minerl_1_2.shape, dtype=numpy.float32) fsol[:] = _TARGET_NODATA fsol[valid_mask] = labile[valid_mask] / minerl_1_2[valid_mask] return fsol def calc_surface_som2_ratio( som1c_1, som1e_1_iel, rad1p_1_iel, rad1p_2_iel, rad1p_3_iel, pcemic1_2_iel): """Calculate the required C/iel ratio for material entering surface SOM2. The C/iel ratio of material decomposing from surface SOM1 into surface SOM2 fluctuates with each decomposition time step according to the current C/iel content of SOM1. Parameters: som1c_1 (numpy.ndarray): state variable, C in surface SOM1 som1e_1_iel (numpy.ndarray): state variable, iel in surface SOM1 rad1p_1_iel (numpy.ndarray): parameter, intercept term rad1p_2_iel (numpy.ndarray): parameter, slope term rad1p_3_iel (numpy.ndarray): parameter, minimum allowable C/iel for addition term pcemic1_2_iel (numpy.ndarray): parameter, minimum C/iel ratio Returns: rceto2_surface, required C/iel ratio of material entering surface SOM2 """ valid_mask = ( (~numpy.isclose(som1c_1, _SV_NODATA)) & (~numpy.isclose(som1e_1_iel, _SV_NODATA)) & (som1e_1_iel > 0) & (rad1p_1_iel != _IC_NODATA) & (rad1p_2_iel != _IC_NODATA) & (pcemic1_2_iel != _IC_NODATA) & (rad1p_3_iel != _IC_NODATA)) radds1 = numpy.empty(som1c_1.shape, dtype=numpy.float32) radds1[:] = _TARGET_NODATA radds1[valid_mask] = ( rad1p_1_iel[valid_mask] + rad1p_2_iel[valid_mask] * ((som1c_1[valid_mask] / som1e_1_iel[valid_mask]) - pcemic1_2_iel[valid_mask])) rceto2_surface = numpy.empty(som1c_1.shape, dtype=numpy.float32) rceto2_surface[:] = _TARGET_NODATA rceto2_surface[valid_mask] = numpy.maximum( (som1c_1[valid_mask] / som1e_1_iel[valid_mask] + radds1[valid_mask]), rad1p_3_iel[valid_mask]) return rceto2_surface def calc_tcflow_strucc_1( aminrl_1, aminrl_2, strucc_1, struce_1_1, struce_1_2, rnewas_1_1, rnewas_2_1, strmax_1, defac, dec1_1, pligst_1, strlig_1, pheff_struc): """Calculate total flow out of surface structural C. The total potential flow of C out of surface structural material is calculated according to its lignin content, the decomposition factor, and soil pH. The actual flow is limited by the availability of N and P. N and P may be supplied by the mineral source, or by the element (N or P) in the decomposing stock. Parameters: aminrl_1 (numpy.ndarray): derived, average surface mineral N aminrl_2 (numpy.ndarray): derived, average surface mineral P strucc_1 (numpy.ndarray): state variable, surface structural C struce_1_1 (numpy.ndarray): state variable, surface structural N struce_1_2 (numpy.ndarray): state variable, surface structural P rnewas_1_1 (numpy.ndarray): derived, required C/N ratio for aboveground material decomposing to SOM1 rnewas_2_1 (numpy.ndarray): derived, required C/P ratio for aboveground material decomposing to SOM1 strmax_1 (numpy.ndarray): parameter, maximum decomposition amount defac (numpy.ndarray): derived, decomposition factor dec1_1 (numpy.ndarray): parameter, maximum decomposition rate pligst_1 (numpy.ndarray): parameter, effect of lignin content on decomposition rate strlig_1 (numpy.ndarray): state variable, lignin content of decomposing material pheff_struc (numpy.ndarray): derived, effect of soil pH on decomposition rate Returns: tcflow_strucc_1, total flow of C out of surface structural material """ valid_mask = ( (~numpy.isclose(aminrl_1, _SV_NODATA)) & (~numpy.isclose(aminrl_2, _SV_NODATA)) & (~numpy.isclose(strucc_1, _SV_NODATA)) & (~numpy.isclose(struce_1_1, _SV_NODATA)) & (~numpy.isclose(struce_1_2, _SV_NODATA)) & (rnewas_1_1 != _TARGET_NODATA) & (rnewas_2_1 != _TARGET_NODATA) & (strmax_1 != _IC_NODATA) & (defac != _TARGET_NODATA) & (dec1_1 != _IC_NODATA) & (pligst_1 != _IC_NODATA) & (~numpy.isclose(strlig_1, _SV_NODATA)) & (pheff_struc != _TARGET_NODATA)) potential_flow = numpy.zeros(aminrl_1.shape, dtype=numpy.float32) potential_flow[valid_mask] = ( numpy.minimum(strucc_1[valid_mask], strmax_1[valid_mask]) * defac[valid_mask] * dec1_1[valid_mask] * numpy.exp(-pligst_1[valid_mask] * strlig_1[valid_mask]) * 0.020833 * pheff_struc[valid_mask]) decompose_mask = ( ((aminrl_1 > 0.0000001) | ((strucc_1 / struce_1_1) <= rnewas_1_1)) & ((aminrl_2 > 0.0000001) | ((strucc_1 / struce_1_2) <= rnewas_2_1)) & valid_mask) tcflow_strucc_1 = numpy.empty(aminrl_1.shape, dtype=numpy.float32) tcflow_strucc_1[:] = _IC_NODATA tcflow_strucc_1[valid_mask] = 0. tcflow_strucc_1[decompose_mask] = potential_flow[decompose_mask] return tcflow_strucc_1 def calc_tcflow_strucc_2( aminrl_1, aminrl_2, strucc_2, struce_2_1, struce_2_2, rnewbs_1_1, rnewbs_2_1, strmax_2, defac, dec1_2, pligst_2, strlig_2, pheff_struc, anerb): """Calculate total flow out of soil structural C. The total potential flow of C out of soil structural material is calculated according to its lignin content, the decomposition factor, and soil pH. The actual flow is limited by the availability of N and P. N and P may be supplied by the mineral source, or by the element (N or P) in the decomposing stock. Parameters: aminrl_1 (numpy.ndarray): derived, average soil mineral N aminrl_2 (numpy.ndarray): derived, average soil mineral P strucc_2 (numpy.ndarray): state variable, soil structural C struce_2_1 (numpy.ndarray): state variable, soil structural N struce_2_2 (numpy.ndarray): state variable, soil structural P rnewbs_1_1 (numpy.ndarray): derived, required C/N ratio for belowground material decomposing to SOM1 rnewbs_2_1 (numpy.ndarray): derived, required C/P ratio for belowground material decomposing to SOM1 strmax_2 (numpy.ndarray): parameter, maximum decomposition amount defac (numpy.ndarray): derived, decomposition factor dec1_2 (numpy.ndarray): parameter, maximum decomposition rate pligst_2 (numpy.ndarray): parameter, effect of lignin content on decomposition rate strlig_2 (numpy.ndarray): state variable, lignin content of decomposing material pheff_struc (numpy.ndarray): derived, effect of soil pH on decomposition rate anerb (numpy.ndarray): derived, effect of soil anaerobic conditions on decomposition rate Returns: tcflow_strucc_2, total flow of C out of soil structural material """ valid_mask = ( (~numpy.isclose(aminrl_1, _SV_NODATA)) & (~numpy.isclose(aminrl_2, _SV_NODATA)) & (~numpy.isclose(strucc_2, _SV_NODATA)) & (~numpy.isclose(struce_2_1, _SV_NODATA)) & (~numpy.isclose(struce_2_2, _SV_NODATA)) & (rnewbs_1_1 != _TARGET_NODATA) & (rnewbs_2_1 != _TARGET_NODATA) & (strmax_2 != _IC_NODATA) & (defac != _TARGET_NODATA) & (dec1_2 != _IC_NODATA) & (pligst_2 != _IC_NODATA) & (~numpy.isclose(strlig_2, _SV_NODATA)) & (pheff_struc != _TARGET_NODATA) & (anerb != _TARGET_NODATA)) potential_flow = numpy.zeros(aminrl_1.shape, dtype=numpy.float32) potential_flow[valid_mask] = ( numpy.minimum(strucc_2[valid_mask], strmax_2[valid_mask]) * defac[valid_mask] * dec1_2[valid_mask] * numpy.exp(-pligst_2[valid_mask] * strlig_2[valid_mask]) * 0.020833 * pheff_struc[valid_mask] * anerb[valid_mask]) decompose_mask = ( ((aminrl_1 > 0.0000001) | ((strucc_2 / struce_2_1) <= rnewbs_1_1)) & ((aminrl_2 > 0.0000001) | ((strucc_2 / struce_2_2) <= rnewbs_2_1)) & valid_mask) tcflow_strucc_2 = numpy.empty(aminrl_1.shape, dtype=numpy.float32) tcflow_strucc_2[:] = _IC_NODATA tcflow_strucc_2[valid_mask] = 0. tcflow_strucc_2[decompose_mask] = potential_flow[decompose_mask] return tcflow_strucc_2 def calc_tcflow_surface( aminrl_1, aminrl_2, cstatv, estatv_1, estatv_2, rcetob_1, rcetob_2, defac, dec_param, pheff): """Calculate total flow of C out of a surface pool. The total potential flow of C out of a surface pool is calculated according to the decomposition factor and soil pH. The actual flow is limited by the availability of N and P. N and P may be supplied by the mineral source, or by the element (N or P) in the decomposing stock. Parameters: aminrl_1 (numpy.ndarray): derived, average surface mineral N aminrl_2 (numpy.ndarray): derived, average surface mineral P cstatv (numpy.ndarray): state variable, C in decomposing pool estatv_1 (numpy.ndarray): state variable, N in decomposing pool estatv_2 (numpy.ndarray): state variable, P in decomposing pool rcetob_1 (numpy.ndarray): derived, required C/N ratio for material entering the receiving pool rcetob_2 (numpy.ndarray): derived, required C/P ratio for material entering the receiving pool defac (numpy.ndarray): derived, decomposition factor dec_param (numpy.ndarray): parameter, maximum decomposition rate pheff (numpy.ndarray): derived, effect of soil pH on decomposition rate Returns: tcflow, total flow of C out of the decomposing pool """ valid_mask = ( (~numpy.isclose(aminrl_1, _SV_NODATA)) & (~numpy.isclose(aminrl_2, _SV_NODATA)) & (~numpy.isclose(cstatv, _SV_NODATA)) & (~numpy.isclose(estatv_1, _SV_NODATA)) & (~numpy.isclose(estatv_2, _SV_NODATA)) & (rcetob_1 != _TARGET_NODATA) & (rcetob_2 != _TARGET_NODATA) & (defac != _TARGET_NODATA) & (dec_param != _IC_NODATA) & (pheff != _TARGET_NODATA)) potential_flow = numpy.zeros(aminrl_1.shape, dtype=numpy.float32) potential_flow[valid_mask] = ( numpy.minimum( cstatv[valid_mask] * defac[valid_mask] * dec_param[valid_mask] * 0.020833 * pheff[valid_mask], cstatv[valid_mask])) decompose_mask = ( ((aminrl_1 > 0.0000001) | ((cstatv / estatv_1) <= rcetob_1)) & ((aminrl_2 > 0.0000001) | ((cstatv / estatv_2) <= rcetob_2)) & valid_mask) tcflow = numpy.empty(aminrl_1.shape, dtype=numpy.float32) tcflow[:] = _IC_NODATA tcflow[valid_mask] = 0. tcflow[decompose_mask] = potential_flow[decompose_mask] return tcflow def calc_tcflow_soil( aminrl_1, aminrl_2, cstatv, estatv_1, estatv_2, rcetob_1, rcetob_2, defac, dec_param, pheff, anerb): """Calculate total flow out of soil metabolic C. The total potential flow of C out of soil metabolic material is calculated according to the decomposition factor, soil pH, and soil anaerobic conditions. The actual flow is limited by the availability of N and P. N and P may be supplied by the mineral source, or by the element (N or P) in the decomposing stock. Parameters: aminrl_1 (numpy.ndarray): derived, average soil mineral N aminrl_2 (numpy.ndarray): derived, average soil mineral P cstatv (numpy.ndarray): state variable, C in decomposing stock estatv_1 (numpy.ndarray): state variable, N in decomposing stock estatv_2 (numpy.ndarray): state variable, P in decomposing stock rcetob_1 (numpy.ndarray): derived, required C/N ratio for material entering receiving stock rceto1_2 (numpy.ndarray): derived, required C/P ratio for material entering receiving stock defac (numpy.ndarray): derived, decomposition factor dec_param (numpy.ndarray): parameter, maximum decomposition rate pheff (numpy.ndarray): derived, effect of soil pH on decomposition rate anerb (numpy.ndarray): derived, effect of soil anaerobic conditions on decomposition rate Returns: tcflow_soil, total flow of C out of soil metabolic material """ valid_mask = ( (~numpy.isclose(aminrl_1, _SV_NODATA)) & (~numpy.isclose(aminrl_2, _SV_NODATA)) & (~numpy.isclose(cstatv, _SV_NODATA)) & (~numpy.isclose(estatv_1, _SV_NODATA)) & (~numpy.isclose(estatv_2, _SV_NODATA)) & (rcetob_1 != _TARGET_NODATA) & (rcetob_2 != _TARGET_NODATA) & (defac != _TARGET_NODATA) & (dec_param != _IC_NODATA) & (pheff != _TARGET_NODATA) & (anerb != _TARGET_NODATA)) potential_flow = numpy.zeros(aminrl_1.shape, dtype=numpy.float32) potential_flow[valid_mask] = ( numpy.minimum( cstatv[valid_mask] * defac[valid_mask] * dec_param[valid_mask] * 0.020833 * pheff[valid_mask] * anerb[valid_mask], cstatv[valid_mask])) decompose_mask = ( ((aminrl_1 > 0.0000001) | ((cstatv / estatv_1) <= rcetob_1)) & ((aminrl_2 > 0.0000001) | ((cstatv / estatv_2) <= rcetob_2)) & valid_mask) tcflow_soil = numpy.empty(aminrl_1.shape, dtype=numpy.float32) tcflow_soil[:] = _IC_NODATA tcflow_soil[valid_mask] = 0. tcflow_soil[decompose_mask] = potential_flow[decompose_mask] return tcflow_soil def calc_tcflow_som1c_2( aminrl_1, aminrl_2, som1c_2, som1e_2_1, som1e_2_2, rceto2_1, rceto2_2, defac, dec3_2, eftext, anerb, pheff_metab): """Calculate total flow out of soil SOM1. The total potential flow of C out of soil SOM1 is calculated according to the effect of soil texture, anaerobic conditions, and soil pH. The actual flow is limited by the availability of N and P. N and P may be supplied by the mineral source, or by the element (N or P) in the decomposing stock. Parameters: aminrl_1 (numpy.ndarray): derived, average surface mineral N aminrl_2 (numpy.ndarray): derived, average surface mineral P som1c_2 (numpy.ndarray): state variable, C in soil SOM1 som1e_2_1 (numpy.ndarray): state variable, N in soil SOM1 som1e_2_2 (numpy.ndarray): state variable, P in soil SOM1 rceto2_1 (numpy.ndarray): derived, required C/N ratio for material decomposing to soil SOM2 rceto2_2 (numpy.ndarray): derived, required C/P ratio for material decomposing to soil SOM2 defac (numpy.ndarray): derived, decomposition factor dec3_2 (numpy.ndarray): parameter, maximum decomposition rate eftext (numpy.ndarray): derived, effect of soil texture on decomposition rate anerb (numpy.ndarray): derived, effect of soil anaerobic conditions on decomposition rate pheff_metab (numpy.ndarray): derived, effect of soil pH on decomposition rate Returns: tcflow_som1c_2, total flow of C out of soil SOM1 """ valid_mask = ( (~numpy.isclose(aminrl_1, _SV_NODATA)) & (~numpy.isclose(aminrl_2, _SV_NODATA)) & (~numpy.isclose(som1c_2, _SV_NODATA)) & (~numpy.isclose(som1e_2_1, _SV_NODATA)) & (~numpy.isclose(som1e_2_2, _SV_NODATA)) & (rceto2_1 != _TARGET_NODATA) & (rceto2_2 != _TARGET_NODATA) & (defac != _TARGET_NODATA) & (dec3_2 != _IC_NODATA) & (eftext != _TARGET_NODATA) & (anerb != _TARGET_NODATA) & (pheff_metab != _TARGET_NODATA)) potential_flow = numpy.zeros(aminrl_1.shape, dtype=numpy.float32) potential_flow[valid_mask] = ( som1c_2[valid_mask] * defac[valid_mask] * dec3_2[valid_mask] * eftext[valid_mask] * anerb[valid_mask] * 0.020833 * pheff_metab[valid_mask]) decompose_mask = ( ((aminrl_1 > 0.0000001) | ((som1c_2 / som1e_2_1) <= rceto2_1)) & ((aminrl_2 > 0.0000001) | ((som1c_2 / som1e_2_2) <= rceto2_2)) & valid_mask) tcflow_som1c_2 = numpy.empty(aminrl_1.shape, dtype=numpy.float32) tcflow_som1c_2[:] = _IC_NODATA tcflow_som1c_2[valid_mask] = 0. tcflow_som1c_2[decompose_mask] = potential_flow[decompose_mask] return tcflow_som1c_2 def calc_som3_flow(tcflow, fps, animpt, anerb): """Calculate the C that flows from soil SOM1 or SOM2 to SOM3. The fraction of total flow leaving SOM1 or SOM2 that goes to SOM3 is dependent on soil clay content and soil anaerobic conditions. Parameters: tcflow (numpy.ndarray): derived, total C leaving soil SOM1 or SOM2 fps (numpy.ndarray): derived, effect of soil clay content on decomposition to SOM3 animpt (numpy.ndarray): parameter, slope of relationship between anaerobic conditions and decomposition flow to SOM3 anerb (numpy.ndarray): derived, impact of soil anaerobic conditions on decomposition Returns: tosom3, C flowing to SOM3 """ valid_mask = ( (tcflow != _IC_NODATA) & (fps != _IC_NODATA) & (animpt != _IC_NODATA) & (anerb != _TARGET_NODATA)) tosom3 = numpy.empty(tcflow.shape, dtype=numpy.float32) tosom3[:] = _IC_NODATA tosom3[valid_mask] = ( tcflow[valid_mask] * fps[valid_mask] * (1. + animpt[valid_mask] * (1. - anerb[valid_mask]))) return tosom3 def calc_som2_flow(som2c_1, cmix, defac): """Calculate the C that flows from surface SOM2 to soil SOM2. Some C flows from surface SOM2 to soil SOM2 via mixing. This flow is controlled by the parameter cmix. Parameters: som2c_1 (numpy.ndarray): state variable, C in surface SOM2 cmix (numpy.ndarray): parameter, amount of C flowing via mixing defac (numpy.ndarray): derived, decomposition factor Returns: tcflow, C flowing to soil SOM2 via mixing """ valid_mask = ( (~numpy.isclose(som2c_1, _SV_NODATA)) & (cmix != _IC_NODATA) & (defac != _TARGET_NODATA)) tcflow = numpy.empty(som2c_1.shape, dtype=numpy.float32) tcflow[:] = _IC_NODATA tcflow[valid_mask] = ( som2c_1[valid_mask] * cmix[valid_mask] * defac[valid_mask] * 0.020833) return tcflow def calc_respiration_mineral_flow(cflow, frac_co2, estatv, cstatv): """Calculate mineral flow of one element associated with respiration. As material decomposes from one stock to another, some CO2 is lost to microbial respiration and some nutrient (N or P) moves to the mineral pool. Respir.f Parameters: cflow (numpy.ndarray): derived, C decomposing from one stock to another frac_co2 (numpy.ndarray): parameter, fraction of decomposing C lost as CO2 estatv (numpy.ndarray): state variable, iel (N or P) in the decomposing stock cstatv (numpy.ndarray): state variable, C in the decomposing stock Returns: mineral_flow, flow of iel (N or P) accompanying respiration """ valid_mask = ( (cflow != _IC_NODATA) & (frac_co2 != _IC_NODATA) & (~numpy.isclose(estatv, _SV_NODATA)) & (~numpy.isclose(cstatv, _SV_NODATA))) co2_loss = numpy.zeros(cflow.shape, dtype=numpy.float32) co2_loss[valid_mask] = cflow[valid_mask] * frac_co2[valid_mask] mineral_flow = numpy.empty(cflow.shape, dtype=numpy.float32) mineral_flow[:] = _IC_NODATA mineral_flow[valid_mask] = 0. flow_mask = ((cstatv > 0) & valid_mask) mineral_flow[flow_mask] = ( co2_loss[flow_mask] * estatv[flow_mask] / cstatv[flow_mask]) return mineral_flow def update_gross_mineralization(gross_mineralization, mineral_flow): """Update gross N mineralization with current mineral flow. Gross mineralization of N during decomposition is used to calculate volatilization loss of N after decomposition. It is updated with N mineral flow if mineral flow is positive. Parameters: gross_mineralization (numpy.ndarray): gross N mineralization during decomposition mineral_flow (numpy.ndarray): N mineral flow Returns: gromin_updated, updated gross mineralization """ valid_mask = ( (gross_mineralization != _TARGET_NODATA) & (mineral_flow != _IC_NODATA)) gromin_updated = numpy.empty( gross_mineralization.shape, dtype=numpy.float32) gromin_updated[:] = _TARGET_NODATA gromin_updated[valid_mask] = gross_mineralization[valid_mask] update_mask = ((mineral_flow > 0) & valid_mask) gromin_updated[update_mask] = ( gross_mineralization[update_mask] + mineral_flow[update_mask]) return gromin_updated def calc_net_cflow(cflow, frac_co2): """Calculate net flow of C after loss to CO2. As material decomposes from one stock to another, some C is lost to CO2 through microbial respiration. Calculate the net flow of C after subtracting losses to CO2. Parameters: cflow (numpy.ndarray): derived, C decomposing from one stock to another frac_co2 (numpy.ndarray): parameter, fraction of decomposing C lost as CO2 Returns: net_cflow, amount of decomposing C that flows after accounting for CO2 losses """ valid_mask = ( (cflow != _IC_NODATA) & (frac_co2 != _IC_NODATA)) co2_loss = numpy.zeros(cflow.shape, dtype=numpy.float32) co2_loss[valid_mask] = cflow[valid_mask] * frac_co2[valid_mask] net_cflow = numpy.empty(cflow.shape, dtype=numpy.float32) net_cflow[:] = _IC_NODATA net_cflow[valid_mask] = cflow[valid_mask] - co2_loss[valid_mask] return net_cflow def calc_net_cflow_tosom2(tcflow, frac_co2, tosom3, cleach): """Calculate net flow of C from soil SOM1 to soil SOM2. The C flowing from soil SOM1 to SOM2 is the remainder of total flow from SOM1, after accounting for losses to CO2 through respiration, decomposition to SOM3, and leaching. Parameters: tcflow (numpy.ndarray): derived, total C decomposing from soil SOM1 frac_co2 (numpy.ndarray): parameter, fraction of decomposing C lost as CO2 tosom3 (numpy.ndarray): derived, C flowing from SOM1 to SOM3 cleach (numpy.ndarray): derived, leached organic C Returns: net_tosom2, amount of C that flows from soil SOM1 to soil SOm2 """ valid_mask = ( (tcflow != _IC_NODATA) & (frac_co2 != _IC_NODATA) & (tosom3 != _IC_NODATA) & (cleach != _TARGET_NODATA)) net_tosom2 = numpy.empty(tcflow.shape, dtype=numpy.float32) net_tosom2[:] = _IC_NODATA net_tosom2[valid_mask] = ( tcflow[valid_mask] - (tcflow[valid_mask] * frac_co2[valid_mask]) - tosom3[valid_mask] - cleach[valid_mask]) return net_tosom2 def calc_net_cflow_tosom1(tcflow, frac_co2, tosom3): """Calculate net flow of C from soil SOM2 to soil SOM1. The C flowing from soil SOM2 to SOM1 is the remainder of total flow from SOM2, after accounting for losses to CO2 through respiration and decomposition to SOM3. Parameters: tcflow (numpy.ndarray): derived, total C decomposing from soil SOM1 frac_co2 (numpy.ndarray): parameter, fraction of decomposing C lost as CO2 tosom3 (numpy.ndarray): derived, C flowing from SOM1 to SOM3 Returns: net_tosom1, amount of C that flows from soil SOM2 to soil SOM1 """ valid_mask = ( (tcflow != _IC_NODATA) & (frac_co2 != _IC_NODATA) & (tosom3 != _IC_NODATA)) net_tosom1 = numpy.empty(tcflow.shape, dtype=numpy.float32) net_tosom1[:] = _IC_NODATA net_tosom1[valid_mask] = ( tcflow[valid_mask] - (tcflow[valid_mask] * frac_co2[valid_mask]) - tosom3[valid_mask]) return net_tosom1 def respiration( tcflow_path, frac_co2_path, cstatv_path, estatv_path, delta_estatv_path, delta_minerl_1_iel_path, gromin_1_path=None): """Calculate and apply flow of N or P during respiration. Microbial respiration accompanies decomposition of most stocks. Calculate the flow of one element (N or P) to the mineral pool, which accompanies this respiration. Parameters: tcflow_path (string): path to raster containing flow of C that is accompanied by respiration frac_co2_path (string): path to raster containing fraction of C lost to co2 cstatv_path (string): path to raster containing C state variable of decomposing pool estatv_path (string): path to raster containing iel (N or P) state variable of decomposing pool delta_estatv_path (string): path to raster containing change in the iel state variable of decomposing pool delta_minerl_1_iel_path (string): path to raster containing change in surface mineral iel gromin_1_path (string): path to raster containing gross mineralization of N Side effects: modifies or creates the raster indicated by `delta_estatv_path` modifies or creates the raster indicated by `delta_minerl_1_iel_path` modifies or creates the raster indicated by `gromin_1_path`, if supplied Returns: None """ with tempfile.NamedTemporaryFile( prefix='operand_temp', dir=PROCESSING_DIR) as operand_temp_file: operand_temp_path = operand_temp_file.name with tempfile.NamedTemporaryFile( prefix='d_statv_temp', dir=PROCESSING_DIR) as d_statv_temp_file: d_statv_temp_path = d_statv_temp_file.name pygeoprocessing.raster_calculator( [(path, 1) for path in [ tcflow_path, frac_co2_path, estatv_path, cstatv_path]], calc_respiration_mineral_flow, operand_temp_path, gdal.GDT_Float32, _IC_NODATA) # mineral flow is removed from the decomposing iel state variable shutil.copyfile(delta_estatv_path, d_statv_temp_path) raster_difference( d_statv_temp_path, _IC_NODATA, operand_temp_path, _IC_NODATA, delta_estatv_path, _IC_NODATA) # mineral flow is added to surface mineral iel shutil.copyfile(delta_minerl_1_iel_path, d_statv_temp_path) raster_sum( d_statv_temp_path, _IC_NODATA, operand_temp_path, _IC_NODATA, delta_minerl_1_iel_path, _IC_NODATA) if gromin_1_path: shutil.copyfile(gromin_1_path, d_statv_temp_path) pygeoprocessing.raster_calculator( [(path, 1) for path in [ d_statv_temp_path, operand_temp_path]], update_gross_mineralization, gromin_1_path, gdal.GDT_Float32, _TARGET_NODATA) # clean up os.remove(operand_temp_path) os.remove(d_statv_temp_path) def nutrient_flow( cflow_path, cstatv_donating_path, estatv_donating_path, rcetob_path, minerl_1_path, d_estatv_donating_path, d_estatv_receiving_path, d_minerl_path, gromin_path=None): """Calculate and apply the flow of one nutrient accompanying C. As C decomposes from one compartment to another, nutrients (N and P) also flow from the donating compartment to the receiving compartment. Some N or P may also flow to or from the mineral pool. Calculate and apply the flow of iel (N or P) accompanying the given flow of C. Parameters: cflow_path (string): path to raster containing the flow of C from the donating to the receiving pool cstatv_donating_path (string): path to raster containing the C state variable in the donating pool estatv_donating_path (string): path to raster containing the iel (N or P) in the donating pool rcetob_path (string): path to raster containing required C/iel ratio in the receiving pool minerl_1_path (string): path to raster containing surface mineral iel d_estatv_donating_path (string): path to raster containing change in iel in the donating pool d_estatv_receiving_path (string): path to raster containing change in iel in the receiving pool d_minerl_path (string): path to raster containing change in surface mineral iel gromin_path (string): path to raster containing gross mineralization of N Side effects: modifies or creates the raster indicated by `d_estatv_donating_path` modifies or creates the raster indicated by `d_estatv_receiving_path` modifies or creates the raster indicated by `d_minerl_path` modifies or creates the raster indicated by `gromin_path`, if supplied Returns: None """ with tempfile.NamedTemporaryFile( prefix='operand_temp', dir=PROCESSING_DIR) as operand_temp_file: operand_temp_path = operand_temp_file.name with tempfile.NamedTemporaryFile( prefix='d_statv_temp', dir=PROCESSING_DIR) as d_statv_temp_file: d_statv_temp_path = d_statv_temp_file.name pygeoprocessing.raster_calculator( [(path, 1) for path in [ cflow_path, cstatv_donating_path, rcetob_path, estatv_donating_path, minerl_1_path]], esched('material_leaving_a'), operand_temp_path, gdal.GDT_Float32, _IC_NODATA) shutil.copyfile(d_estatv_donating_path, d_statv_temp_path) raster_difference( d_statv_temp_path, _IC_NODATA, operand_temp_path, _IC_NODATA, d_estatv_donating_path, _IC_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ cflow_path, cstatv_donating_path, rcetob_path, estatv_donating_path, minerl_1_path]], esched('material_arriving_b'), operand_temp_path, gdal.GDT_Float32, _IC_NODATA) shutil.copyfile(d_estatv_receiving_path, d_statv_temp_path) raster_sum( d_statv_temp_path, _IC_NODATA, operand_temp_path, _IC_NODATA, d_estatv_receiving_path, _IC_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ cflow_path, cstatv_donating_path, rcetob_path, estatv_donating_path, minerl_1_path]], esched('mineral_flow'), operand_temp_path, gdal.GDT_Float32, _IC_NODATA) shutil.copyfile(d_minerl_path, d_statv_temp_path) raster_sum( d_statv_temp_path, _IC_NODATA, operand_temp_path, _IC_NODATA, d_minerl_path, _IC_NODATA) if gromin_path: shutil.copyfile(gromin_path, d_statv_temp_path) pygeoprocessing.raster_calculator( [(path, 1) for path in [ d_statv_temp_path, operand_temp_path]], update_gross_mineralization, gromin_path, gdal.GDT_Float32, _TARGET_NODATA) # clean up os.remove(operand_temp_path) os.remove(d_statv_temp_path) def calc_c_leach(amov_2, tcflow, omlech_3, orglch): """Calculate the amount of C leaching from soil SOM1 to stream flow. Some C leaches from soil SOM1 if the water flow out of soil layer 2 is above a critical level. Parameters: amov_2 (numpy.ndarray): derived, moisture flowing out of soil layer 2 tcflow (numpy.ndarray): derived, total flow of C out of soil SOM1 omlech_3 (numpy.ndarray): parameter, threshold value for amov_2 orglch (numpy.ndarray): derived, effect of sand content on leaching rate Returns: cleach, C leaching from soil SOM1 to stream flow """ valid_mask = ( (amov_2 != _TARGET_NODATA) & (tcflow != _IC_NODATA) & (omlech_3 != _IC_NODATA) & (orglch != _IC_NODATA)) cleach = numpy.empty(amov_2.shape, dtype=numpy.float32) cleach[:] = _TARGET_NODATA cleach[valid_mask] = 0 linten = numpy.zeros(amov_2.shape) linten[valid_mask] = numpy.minimum( (1. - (omlech_3[valid_mask] - amov_2[valid_mask]) / omlech_3[valid_mask]), 1.) leach_mask = ((amov_2 > 0) & valid_mask) cleach[leach_mask] = ( tcflow[leach_mask] * orglch[leach_mask] * linten[leach_mask]) return cleach def remove_leached_iel( som1c_2_path, som1e_2_iel_path, cleach_path, d_som1e_2_iel_path, iel): """Remove N or P leached from soil SOM1. As soil SOM1 decomposes into SOM3, some of N and P is lost from SOM1 through leaching. The amount lost is calculated from the amount of C leaching from the soil and the proportion of iel (N or P) in soil SOM1. Parameters: som1c_2_path (string): path to raster containing C in soil SOM1 som1e_2_iel_path (string): path to raster containing iel in soil SOM1 cleach_path (string): path to raster containing C leaching from SOM1 d_som1e_2_iel_path (string): path to raster giving change in som1e_2_iel iel (int): index indicating N (iel == 1) or P (iel == 2)) Side effects: modifies the raster indicated by `d_som1e_2_iel_path` Returns: None """ def calc_leached_N(som1c_2, som1e_2_1, cleach): """Calculate the N leaching from soil SOM1.""" valid_mask = ( (~numpy.isclose(som1c_2, _SV_NODATA)) & (~numpy.isclose(som1e_2_1, _SV_NODATA)) & (som1c_2 > 0) & (som1e_2_1 > 0) & (cleach != _TARGET_NODATA)) rceof1_1 = numpy.zeros(som1c_2.shape) rceof1_1[valid_mask] = som1c_2[valid_mask] / som1e_2_1[valid_mask] * 2. orgflow = numpy.empty(som1c_2.shape, dtype=numpy.float32) orgflow[:] = _IC_NODATA orgflow[valid_mask] = cleach[valid_mask] / rceof1_1[valid_mask] return orgflow def calc_leached_P(som1c_2, som1e_2_2, cleach): """Calculate the P leaching from soil SOM1.""" valid_mask = ( (~numpy.isclose(som1c_2, _SV_NODATA)) & (~numpy.isclose(som1e_2_2, _SV_NODATA)) & (som1c_2 > 0) & (som1e_2_2 > 0) & (cleach != _TARGET_NODATA)) rceof1_2 = numpy.zeros(som1c_2.shape) rceof1_2[valid_mask] = ( som1c_2[valid_mask] / som1e_2_2[valid_mask] * 35.) orgflow = numpy.empty(som1c_2.shape, dtype=numpy.float32) orgflow[:] = _IC_NODATA orgflow[valid_mask] = cleach[valid_mask] / rceof1_2[valid_mask] return orgflow with tempfile.NamedTemporaryFile( prefix='operand_temp', dir=PROCESSING_DIR) as operand_temp_file: operand_temp_path = operand_temp_file.name with tempfile.NamedTemporaryFile( prefix='d_statv_temp', dir=PROCESSING_DIR) as d_statv_temp_file: d_statv_temp_path = d_statv_temp_file.name if iel == 1: pygeoprocessing.raster_calculator( [(path, 1) for path in [ som1c_2_path, som1e_2_iel_path, cleach_path]], calc_leached_N, operand_temp_path, gdal.GDT_Float32, _TARGET_NODATA) else: pygeoprocessing.raster_calculator( [(path, 1) for path in [ som1c_2_path, som1e_2_iel_path, cleach_path]], calc_leached_P, operand_temp_path, gdal.GDT_Float32, _TARGET_NODATA) # remove leached iel from SOM1 shutil.copyfile(d_som1e_2_iel_path, d_statv_temp_path) raster_difference( d_statv_temp_path, _IC_NODATA, operand_temp_path, _IC_NODATA, d_som1e_2_iel_path, _IC_NODATA) # clean up os.remove(operand_temp_path) os.remove(d_statv_temp_path) def calc_pflow(pstatv, rate_param, defac): """Calculate the flow of mineral P flowing from one pool to another. Mineral P contains multiple pools, including parent material, labile P, sorbed and strongly sorbed P, and occluded P. Calculate the flow from one mineral P pool to another. Parameters: pstatv (numpy.ndarray): state variable, P in donating mineral pool rate_param (numpy.ndarray): parameter, base rate of flow defac (numpy.ndarray): derived, decomposition rate Returns: pflow, mineral P flowing from donating to receiving pool """ valid_mask = ( (~numpy.isclose(pstatv, _SV_NODATA)) & (rate_param != _IC_NODATA) & (defac != _TARGET_NODATA)) pflow = numpy.empty(pstatv.shape, dtype=numpy.float64) pflow[:] = _IC_NODATA pflow[valid_mask] = ( pstatv[valid_mask] * rate_param[valid_mask] * defac[valid_mask] * 0.020833) return pflow def calc_pflow_to_secndy(minerl_lyr_2, pmnsec_2, fsol, defac): """Calculate the flow of mineral to secondary P in one soil layer. P flows from the mineral pool of each soil layer into secondary P (strongly sorbed P) according to the amount in the mineral pool and the amount of P in solution. Parameters: minerl_lyr_2 (numpy.ndarray): state variable, mineral P in soil layer lyr pmnsec_2 (numpy.ndarray): parameter, base flow rate fsol (numpy.ndarray): derived, fraction of P in solution defac (numpy.ndarray): derived, decomposition factor Returns: fmnsec, flow of mineral P to secondary in one soil layer """ valid_mask = ( (~numpy.isclose(minerl_lyr_2, _SV_NODATA)) & (pmnsec_2 != _IC_NODATA) & (fsol != _TARGET_NODATA) & (defac != _TARGET_NODATA)) fmnsec = numpy.empty(minerl_lyr_2.shape, dtype=numpy.float64) fmnsec[:] = _IC_NODATA fmnsec[valid_mask] = ( pmnsec_2[valid_mask] * minerl_lyr_2[valid_mask] * (1. - fsol[valid_mask]) * defac[valid_mask] * 0.020833) return fmnsec def update_aminrl( minerl_1_1_path, minerl_1_2_path, fsol_path, aminrl_1_path, aminrl_2_path): """Update aminrl_1 and aminrl_2, average mineral N and P in surface soil. Aminrl_1, average mineral N, and aminrl_2, average mineral P, represent labile N or P available for decomposition. They are kept as a running average of the minerl_1_1 (for N) or minerl_1_2 (for P) state variable across decomposition time steps. Parameters: minerl_1_1_path (string): path to raster giving current mineral N in soil layer 1 minerl_1_2_path (string): path to raster giving current mineral N in soil layer 2 fsol_path (string): path to raster giving fraction of mineral P in solution aminrl_1_path (string): path to raster containing average mineral N aminrl_2_path (string): path to raster containing average mineral P Side effects: modifies or creates the raster indicated by `aminrl_1_path` modifies or creates the raster indicated by `aminrl_2_path Returns: None """ def update_aminrl_1(aminrl_1_prev, minerl_1_1): """Update average mineral N.""" valid_mask = ( (~numpy.isclose(aminrl_1_prev, _SV_NODATA)) & (~numpy.isclose(minerl_1_1, _SV_NODATA))) aminrl_1 = numpy.empty(aminrl_1_prev.shape, dtype=numpy.float32) aminrl_1[:] = _SV_NODATA aminrl_1[valid_mask] = ( aminrl_1_prev[valid_mask] + minerl_1_1[valid_mask] / 2.) return aminrl_1 def update_aminrl_2(aminrl_2_prev, minerl_1_2, fsol): """Update average mineral P. Average mineral P is calculated from the fraction of mineral P in soil layer 1 that is in solution. Parameters: aminrl_2_prev (numpy.ndarray): derived, previous average surface mineral P minerl_1_2 (numpy.ndarray): state variable, current mineral P in soil layer 1 fsol (numpy.ndarray): derived, fraction of labile P in solution Returns: aminrl_2, updated average mineral P """ valid_mask = ( (~numpy.isclose(aminrl_2_prev, _SV_NODATA)) & (~numpy.isclose(minerl_1_2, _SV_NODATA)) & (fsol != _TARGET_NODATA)) aminrl_2 = numpy.empty(aminrl_2_prev.shape, dtype=numpy.float32) aminrl_2[:] = _SV_NODATA aminrl_2[valid_mask] = ( aminrl_2_prev[valid_mask] + (minerl_1_2[valid_mask] * fsol[valid_mask]) / 2.) return aminrl_2 with tempfile.NamedTemporaryFile( prefix='aminrl_prev', dir=PROCESSING_DIR) as aminrl_prev_file: aminrl_prev_path = aminrl_prev_file.name shutil.copyfile(aminrl_1_path, aminrl_prev_path) pygeoprocessing.raster_calculator( [(path, 1) for path in [aminrl_prev_path, minerl_1_1_path]], update_aminrl_1, aminrl_1_path, gdal.GDT_Float32, _SV_NODATA) shutil.copyfile(aminrl_2_path, aminrl_prev_path) pygeoprocessing.raster_calculator( [(path, 1) for path in [ aminrl_prev_path, minerl_1_2_path, fsol_path]], update_aminrl_2, aminrl_2_path, gdal.GDT_Float32, _SV_NODATA) # clean up os.remove(aminrl_prev_path) def sum_biomass( weighted_live_c, weighted_dead_c, strucc_1, metabc_1, elitst): """Calculate total biomass for the purposes of soil shading. Total aboveground biomass for the purposes of soil shading is the sum of live biomass, standing dead biomass, and litter. The impact of litter is modifed by the parameter elitst. Parameters: weighted_live_c (numpy.ndarray): derived, sum of the state variable aglivc across plant functional types weighted_dead_c (numpy.ndarray): derived, sum of the state variable stdedc across plant functional types strucc_1 (numpy.ndarray): state variable, surface structural c metabc_1 (numpy.ndarray): state variable, surface metabolic c elitst (numpy.ndarray): parameter, effect of litter on soil temperature relative to live and standing dead biomass Returns: biomass, total biomass for purposes of soil shading """ valid_mask = ( (weighted_live_c != _TARGET_NODATA) & (weighted_dead_c != _TARGET_NODATA) & (~numpy.isclose(strucc_1, _SV_NODATA)) & (~numpy.isclose(metabc_1, _SV_NODATA)) & (elitst != _IC_NODATA)) biomass = numpy.empty(weighted_live_c.shape, dtype=numpy.float32) biomass[:] = _TARGET_NODATA biomass[valid_mask] = ( (weighted_live_c[valid_mask] + weighted_dead_c[valid_mask]) * 2.5 + (strucc_1[valid_mask] + metabc_1[valid_mask]) * 2.5 * elitst[valid_mask]) return biomass def _decomposition( aligned_inputs, current_month, month_index, pft_id_set, site_param_table, year_reg, month_reg, prev_sv_reg, pp_reg, sv_reg): """Update soil C, N and P after decomposition. C, N and P move from one surface or soil stock to another depending on the availability of N and P in the decomposing stock. This function covers lines 118-323 in Simsom.f, including decomp.f, litdec.f, somdec.f, and pschem.f. Parameters: aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including precipitation, temperature, and site spatial index current_month (int): month of the year, such that current_month=1 indicates January month_index (int): month of the simulation, such that month_index=13 indicates month 13 of the simulation pft_id_set (set): set of integers identifying plant functional types site_param_table (dict): map of site spatial indices to dictionaries containing site parameters year_reg (dict): map of key, path pairs giving paths to annual precipitation and annual N deposition rasters month_reg (dict): map of key, path pairs giving paths to intermediate calculated values that are shared between submodels prev_sv_reg (dict): map of key, path pairs giving paths to state variables for the previous month pp_reg (dict): map of key, path pairs giving persistent parameters including required ratios for decomposition, the effect of soil texture on decomposition rate, and the effect of soil texture on the rate of organic leaching sv_reg (dict): map of key, path pairs giving paths to state variables for the current month Side effects: creates all rasters in sv_reg pertaining to structural, metabolic, som1, som2, and som3 C, N, and P; mineral N and P; and parent, secondary, and occluded mineral P Returns: None """ def calc_N_fixation(precip, annual_precip, baseNdep, epnfs_2): """Calculate monthly atmospheric N fixation. Atmospheric N fixation for the month is calculated from annual N deposition, calculated once per year, according to the ratio of monthly precipitation to annual precipitation. Total N fixed in this month is scheduled to be added to the surface mineral N pool. Lines 193-205, Simsom.f Parameters: precip (numpy.ndarray): input, monthly precipitation annual_precip (numpy.ndarray): derived, annual precipitation baseNdep (numpy.ndarray): derived, annual atmospheric N deposition epnfs_2 (numpy.ndarray): parameter, intercept of regression predicting N deposition from annual precipitation Returns: wdfxm, atmospheric N deposition for the current month """ valid_mask = ( (~numpy.isclose(precip, precip_nodata)) & (annual_precip != _TARGET_NODATA) & (annual_precip > 0) & (baseNdep != _TARGET_NODATA) & (epnfs_2 != _IC_NODATA)) wdfxm = numpy.zeros(precip.shape, dtype=numpy.float32) wdfxm[valid_mask] = ( baseNdep[valid_mask] * (precip[valid_mask] / annual_precip[valid_mask]) + epnfs_2[valid_mask] * numpy.minimum(annual_precip[valid_mask], 100.) * (precip[valid_mask] / annual_precip[valid_mask])) return wdfxm def calc_rprpet(pevap, snowmelt, avh2o_3, precip): """Calculate the ratio of precipitation to ref evapotranspiration. The ratio of precipitation or snowmelt to reference evapotranspiration influences agdefac and bgdefac, the above- and belowground decomposition factors. Parameters: pevap (numpy.ndarray): derived, reference evapotranspiration snowmelt (numpy.ndarray): derived, snowmelt occuring this month avh2o_3 (numpy.ndarray): derived, moisture in top two soil layers precip (numpy.ndarray): input, precipitation for this month Returns: rprpet, the ratio of precipitation or snowmelt to reference evapotranspiration """ valid_mask = ( (pevap != _TARGET_NODATA) & (snowmelt != _TARGET_NODATA) & (avh2o_3 != _TARGET_NODATA) & (~numpy.isclose(precip, precip_nodata))) rprpet = numpy.empty(pevap.shape, dtype=numpy.float32) rprpet[:] = _TARGET_NODATA snowmelt_mask = (valid_mask & (snowmelt > 0) & (pevap > 0)) rprpet[snowmelt_mask] = snowmelt[snowmelt_mask] / pevap[snowmelt_mask] no_melt_mask = (valid_mask & (snowmelt <= 0)) rprpet[no_melt_mask] = ( (avh2o_3[no_melt_mask] + precip[no_melt_mask]) / pevap[no_melt_mask]) return rprpet def calc_bgwfunc(rprpet): """Calculate the impact of belowground water content on decomposition. Bgwfunc reflects the effect of soil moisture on decomposition and is also used to calculate shoot senescence due to water stress. It is calculated from the ratio of soil water in the top two soil layers to reference evapotranspiration. Parameters: rprpet (numpy.ndarray): derived, ratio of precipitation or snowmelt to reference evapotranspiration Returns: bgwfunc, the effect of soil moisture on decomposition """ valid_mask = (rprpet != _TARGET_NODATA) bgwfunc = numpy.empty(rprpet.shape, dtype=numpy.float32) bgwfunc[:] = _TARGET_NODATA bgwfunc[valid_mask] = ( 1. / (1. + 30 * numpy.exp(-8.5 * rprpet[valid_mask]))) bgwfunc[(valid_mask & (rprpet > 9))] = 1 return bgwfunc def calc_stemp( biomass, snow, max_temp, min_temp, daylength, pmntmp, pmxtmp): """Calculate mean soil surface temperature for decomposition. Soil surface temperature is modified from monthly temperature inputs by estimated impacts of shading by aboveground biomass and litter, and estimated daylength. Surftemp.f Parameters: biomass (numpy.ndarray): derived, sum of aboveground biomass and surface litter across plant functional types snow (numpy.ndarray): state variable, current snowpack max_temp (numpy.ndarray): input, maximum temperature this month min_temp (numpy.ndarray): input, minimum temperature this month daylength (numpy.ndarray): derived, estimated hours of daylight pmntmp (numpy.ndarray): parameter, effect of biomass on minimum surface temperature pmxtmp (numpy.ndarray): parameter, effect of biomass on maximum surface temperature Returns: stemp, mean soil surface temperature for decomposition """ valid_mask = ( (biomass != _TARGET_NODATA) & (snow != _SV_NODATA) & (~numpy.isclose(max_temp, max_temp_nodata)) & (~numpy.isclose(min_temp, min_temp_nodata)) & (daylength != _TARGET_NODATA) & (pmntmp != _IC_NODATA) & (pmxtmp != _IC_NODATA)) tmxs = numpy.empty(biomass.shape, dtype=numpy.float32) tmxs[valid_mask] = ( max_temp[valid_mask] + (25.4 / (1. + 18. * numpy.exp( -0.2 * max_temp[valid_mask]))) * (numpy.exp(pmxtmp[valid_mask] * biomass[valid_mask]) - 0.13)) tmns = numpy.empty(biomass.shape, dtype=numpy.float32) tmns[valid_mask] = ( min_temp[valid_mask] + pmntmp[valid_mask] * biomass[valid_mask] - 1.78) shortday_mask = ((daylength < 12.) & valid_mask) snow_mask = ((snow > 0) & valid_mask) tmns_mlt = numpy.empty(biomass.shape, dtype=numpy.float32) tmns_mlt[valid_mask] = ( ((12. - daylength[valid_mask]) * 1.2 + 12.) / 24.) tmns_mlt[shortday_mask] = ( ((12 - daylength[shortday_mask]) * 3. + 12.) / 24.) tmns_mlt[valid_mask] = numpy.clip(tmns_mlt[valid_mask], 0.05, 0.95) stemp = numpy.empty(biomass.shape, dtype=numpy.float32) stemp[:] = _TARGET_NODATA stemp[valid_mask] = ( (1 - tmns_mlt[valid_mask]) * tmxs[valid_mask] + tmns_mlt[valid_mask] * tmns[valid_mask]) stemp[snow_mask] = 0. return stemp def calc_defac(bgwfunc, stemp, teff_1, teff_2, teff_3, teff_4): """Calculate decomposition factor. The decomposition factor influences the rate of surface and soil decomposition and reflects the influence of soil temperature and moisture. Lines 151-200, Cycle.f. Parameters: bgwfunc (numpy.ndarray): derived, effect of soil moisture on decomposition stemp (numpy.ndarray): derived, average soil surface temperature teff_1 (numpy.ndarray): parameter, x location of inflection point for calculating the effect of soil temperature on decomposition factor teff_2 (numpy.ndarray): parameter, y location of inflection point for calculating the effect of soil temperature on decomposition factor teff_3 (numpy.ndarray): parameter, step size for calculating the effect of soil temperature on decomposition factor teff_4 (numpy.ndarray): parameter, slope of the line at the inflection point, for calculating the effect of soil temperature on decomposition factor Returns: defac, aboveground and belowground decomposition factor """ valid_mask = ( (bgwfunc != _TARGET_NODATA) & (teff_1 != _IC_NODATA) & (teff_2 != _IC_NODATA) & (teff_3 != _IC_NODATA) & (teff_4 != _IC_NODATA)) tfunc = numpy.empty(bgwfunc.shape, dtype=numpy.float32) tfunc[:] = _TARGET_NODATA tfunc[valid_mask] = numpy.maximum( 0.01, (teff_2[valid_mask] + (teff_3[valid_mask] / numpy.pi) * numpy.arctan(numpy.pi * teff_4[valid_mask] * (stemp[valid_mask] - teff_1[valid_mask]))) / (teff_2[valid_mask] + (teff_3[valid_mask] / numpy.pi) * numpy.arctan(numpy.pi * teff_4[valid_mask] * (30.0 - teff_1[valid_mask])))) defac = numpy.empty(bgwfunc.shape, dtype=numpy.float32) defac[:] = _TARGET_NODATA defac[valid_mask] = numpy.maximum( 0., tfunc[valid_mask] * bgwfunc[valid_mask]) return defac def calc_pheff_struc(pH): """Calculate the effect of soil pH on decomp of structural material. The effect of soil pH on decomposition rate is a multiplier ranging from 0 to 1. The effect on decomposition of structural material differs from the effect on decomposition of metabolic material in the values of two constants. Parameters: pH (numpy.ndarray): input, soil pH Returns: pheff_struc, the effect of soil pH on decomposition rate of structural material """ valid_mask = (~numpy.isclose(pH, pH_nodata)) pheff_struc = numpy.empty(pH.shape, dtype=numpy.float32) pheff_struc[valid_mask] = numpy.clip( (0.5 + (1.1 / numpy.pi) * numpy.arctan(numpy.pi * 0.7 * (pH[valid_mask] - 4.))), 0, 1) return pheff_struc def calc_pheff_metab(pH): """Calculate the effect of soil pH on decomp of metabolic material. The effect of soil pH on decomposition rate is a multiplier ranging from 0 to 1. The effect on decomposition of structural material differs from the effect on decomposition of metabolic material in the values of two constants. Parameters: pH (numpy.ndarray): input, soil pH Returns: pheff_metab, the effect of soil pH on decomposition rate of metabolic material """ valid_mask = (~numpy.isclose(pH, pH_nodata)) pheff_metab = numpy.empty(pH.shape, dtype=numpy.float32) pheff_metab[valid_mask] = numpy.clip( (0.5 + (1.14 / numpy.pi) * numpy.arctan(numpy.pi * 0.7 * (pH[valid_mask] - 4.8))), 0, 1) return pheff_metab def calc_pheff_som3(pH): """Calculate the effect of soil pH on decomposition of SOM3. The effect of soil pH on decomposition rate is a multiplier ranging from 0 to 1. The effect on decomposition of SOM3 differs from the effect of pH on decomposition of other pools in the value of constants. Parameters: pH (numpy.ndarray): input, soil pH Returns: pheff_som3, the effect of soil pH on decomposition rate of SOM3 """ valid_mask = (~numpy.isclose(pH, pH_nodata)) pheff_metab = numpy.empty(pH.shape, dtype=numpy.float32) pheff_metab[valid_mask] = numpy.clip( (0.5 + (1.1 / numpy.pi) * numpy.arctan(numpy.pi * 0.7 * (pH[valid_mask] - 3.))), 0, 1) return pheff_metab precip_nodata = pygeoprocessing.get_raster_info( aligned_inputs['precip_{}'.format(month_index)])['nodata'][0] min_temp_nodata = pygeoprocessing.get_raster_info( aligned_inputs['min_temp_{}'.format(current_month)])['nodata'][0] max_temp_nodata = pygeoprocessing.get_raster_info( aligned_inputs['max_temp_{}'.format(current_month)])['nodata'][0] pH_nodata = pygeoprocessing.get_raster_info( aligned_inputs['ph_path'])['nodata'][0] temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for val in [ 'd_statv_temp', 'operand_temp', 'shwave', 'pevap', 'rprpet', 'daylength', 'sum_aglivc', 'sum_stdedc', 'biomass', 'stemp', 'defac', 'anerb', 'gromin_1', 'pheff_struc', 'pheff_metab', 'aminrl_1', 'aminrl_2', 'fsol', 'tcflow', 'tosom2', 'net_tosom2', 'tosom1', 'net_tosom1', 'tosom3', 'cleach', 'pheff_som3', 'pflow']: temp_val_dict[val] = os.path.join(temp_dir, '{}.tif'.format(val)) for iel in [1, 2]: for val in ['rceto1', 'rceto2', 'rceto3']: temp_val_dict['{}_{}'.format(val, iel)] = os.path.join( temp_dir, '{}.tif'.format('{}_{}'.format(val, iel))) param_val_dict = {} for val in [ 'fwloss_4', 'elitst', 'pmntmp', 'pmxtmp', 'teff_1', 'teff_2', 'teff_3', 'teff_4', 'drain', 'aneref_1', 'aneref_2', 'aneref_3', 'sorpmx', 'pslsrb', 'strmax_1', 'dec1_1', 'pligst_1', 'strmax_2', 'dec1_2', 'pligst_2', 'rsplig', 'ps1co2_1', 'ps1co2_2', 'dec2_1', 'pcemic1_1_1', 'pcemic1_2_1', 'pcemic1_3_1', 'pcemic1_1_2', 'pcemic1_2_2', 'pcemic1_3_2', 'varat1_1_1', 'varat1_2_1', 'varat1_3_1', 'varat1_1_2', 'varat1_2_2', 'varat1_3_2', 'dec2_2', 'pmco2_1', 'pmco2_2', 'rad1p_1_1', 'rad1p_2_1', 'rad1p_3_1', 'rad1p_1_2', 'rad1p_2_2', 'rad1p_3_2', 'dec3_1', 'p1co2a_1', 'varat22_1_1', 'varat22_2_1', 'varat22_3_1', 'varat22_1_2', 'varat22_2_2', 'varat22_3_2', 'dec3_2', 'animpt', 'varat3_1_1', 'varat3_2_1', 'varat3_3_1', 'varat3_1_2', 'varat3_2_2', 'varat3_3_2', 'omlech_3', 'dec5_2', 'p2co2_2', 'dec5_1', 'p2co2_1', 'dec4', 'p3co2', 'cmix', 'pparmn_2', 'psecmn_2', 'nlayer', 'pmnsec_2', 'psecoc1', 'psecoc2', 'epnfs_2']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) # shwave, shortwave radiation outside the atmosphere _shortwave_radiation( aligned_inputs['site_index'], current_month, temp_val_dict['shwave']) # pet, reference evapotranspiration modified by fwloss parameter _reference_evapotranspiration( aligned_inputs['max_temp_{}'.format(current_month)], aligned_inputs['min_temp_{}'.format(current_month)], temp_val_dict['shwave'], param_val_dict['fwloss_4'], temp_val_dict['pevap']) # rprpet, ratio of precipitation to reference evapotranspiration pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['pevap'], month_reg['snowmelt'], sv_reg['avh2o_3_path'], aligned_inputs['precip_{}'.format(month_index)]]], calc_rprpet, temp_val_dict['rprpet'], gdal.GDT_Float32, _TARGET_NODATA) # bgwfunc, effect of soil moisture on decomposition pygeoprocessing.raster_calculator( [(temp_val_dict['rprpet'], 1)], calc_bgwfunc, month_reg['bgwfunc'], gdal.GDT_Float32, _TARGET_NODATA) # estimated daylength _calc_daylength( aligned_inputs['site_index'], current_month, temp_val_dict['daylength']) # total biomass for purposes of soil shading for sv in ['aglivc', 'stdedc']: weighted_sum_path = temp_val_dict['sum_{}'.format(sv)] weighted_state_variable_sum( sv, prev_sv_reg, aligned_inputs, pft_id_set, weighted_sum_path) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['sum_aglivc'], temp_val_dict['sum_stdedc'], prev_sv_reg['strucc_1_path'], prev_sv_reg['metabc_1_path'], param_val_dict['elitst']]], sum_biomass, temp_val_dict['biomass'], gdal.GDT_Float32, _TARGET_NODATA) # stemp, soil surface temperature for the purposes of decomposition pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['biomass'], sv_reg['snow_path'], aligned_inputs['max_temp_{}'.format(current_month)], aligned_inputs['min_temp_{}'.format(current_month)], temp_val_dict['daylength'], param_val_dict['pmntmp'], param_val_dict['pmxtmp']]], calc_stemp, temp_val_dict['stemp'], gdal.GDT_Float32, _TARGET_NODATA) # defac, decomposition factor calculated from soil temp and moisture pygeoprocessing.raster_calculator( [(path, 1) for path in [ month_reg['bgwfunc'], temp_val_dict['stemp'], param_val_dict['teff_1'], param_val_dict['teff_2'], param_val_dict['teff_3'], param_val_dict['teff_4']]], calc_defac, temp_val_dict['defac'], gdal.GDT_Float32, _TARGET_NODATA) # anerb, impact of soil anaerobic conditions on decomposition pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['rprpet'], temp_val_dict['pevap'], param_val_dict['drain'], param_val_dict['aneref_1'], param_val_dict['aneref_2'], param_val_dict['aneref_3']]], calc_anerb, temp_val_dict['anerb'], gdal.GDT_Float32, _TARGET_NODATA) # initialize gromin_1, gross mineralization of N pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], temp_val_dict['gromin_1'], gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0]) # pH effect on decomposition for structural material pygeoprocessing.raster_calculator( [(aligned_inputs['ph_path'], 1)], calc_pheff_struc, temp_val_dict['pheff_struc'], gdal.GDT_Float32, _TARGET_NODATA) # pH effect on decomposition for metabolic material pygeoprocessing.raster_calculator( [(aligned_inputs['ph_path'], 1)], calc_pheff_metab, temp_val_dict['pheff_metab'], gdal.GDT_Float32, _TARGET_NODATA) # initialize aminrl_1 and aminrl_2 shutil.copyfile(prev_sv_reg['minerl_1_1_path'], temp_val_dict['aminrl_1']) pygeoprocessing.raster_calculator( [(path, 1) for path in [ prev_sv_reg['minerl_1_2_path'], param_val_dict['sorpmx'], param_val_dict['pslsrb']]], fsfunc, temp_val_dict['fsol'], gdal.GDT_Float32, _TARGET_NODATA) raster_multiplication( prev_sv_reg['minerl_1_2_path'], _SV_NODATA, temp_val_dict['fsol'], _TARGET_NODATA, temp_val_dict['aminrl_2'], _SV_NODATA) # initialize current month state variables and delta state variable dict nlayer_max = int(max( val['nlayer'] for val in site_param_table.values())) delta_sv_dict = { 'minerl_1_1': os.path.join(temp_dir, 'minerl_1_1.tif'), 'parent_2': os.path.join(temp_dir, 'parent_2.tif'), 'secndy_2': os.path.join(temp_dir, 'secndy_2.tif'), 'occlud': os.path.join(temp_dir, 'occlud.tif'), } for lyr in range(1, nlayer_max + 1): state_var = 'minerl_{}_2'.format(lyr) shutil.copyfile( prev_sv_reg['{}_path'.format(state_var)], sv_reg['{}_path'.format(state_var)]) delta_sv_dict[state_var] = os.path.join( temp_dir, '{}.tif'.format(state_var)) # initialize mineral N in current sv_reg for lyr in range(1, nlayer_max + 1): state_var = 'minerl_{}_1'.format(lyr) shutil.copyfile( prev_sv_reg['{}_path'.format(state_var)], sv_reg['{}_path'.format(state_var)]) for compartment in ['strlig']: for lyr in [1, 2]: state_var = '{}_{}'.format(compartment, lyr) shutil.copyfile( prev_sv_reg['{}_path'.format(state_var)], sv_reg['{}_path'.format(state_var)]) for compartment in ['som3']: state_var = '{}c'.format(compartment) delta_sv_dict[state_var] = os.path.join( temp_dir, '{}.tif'.format(state_var)) shutil.copyfile( prev_sv_reg['{}_path'.format(state_var)], sv_reg['{}_path'.format(state_var)]) for iel in [1, 2]: state_var = '{}e_{}'.format(compartment, iel) delta_sv_dict[state_var] = os.path.join( temp_dir, '{}.tif'.format(state_var)) shutil.copyfile( prev_sv_reg['{}_path'.format(state_var)], sv_reg['{}_path'.format(state_var)]) for compartment in ['struc', 'metab', 'som1', 'som2']: for lyr in [1, 2]: state_var = '{}c_{}'.format(compartment, lyr) delta_sv_dict[state_var] = os.path.join( temp_dir, '{}.tif'.format(state_var)) shutil.copyfile( prev_sv_reg['{}_path'.format(state_var)], sv_reg['{}_path'.format(state_var)]) for iel in [1, 2]: state_var = '{}e_{}_{}'.format(compartment, lyr, iel) delta_sv_dict[state_var] = os.path.join( temp_dir, '{}.tif'.format(state_var)) shutil.copyfile( prev_sv_reg['{}_path'.format(state_var)], sv_reg['{}_path'.format(state_var)]) for state_var in ['parent_2', 'secndy_2', 'occlud']: shutil.copyfile( prev_sv_reg['{}_path'.format(state_var)], sv_reg['{}_path'.format(state_var)]) for dtm in range(4): # initialize change (delta, d) in state variables for this decomp step for state_var in delta_sv_dict.keys(): pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], delta_sv_dict[state_var], gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[0]) if dtm == 0: # schedule flow of N from atmospheric fixation to surface mineral pygeoprocessing.raster_calculator( [(path, 1) for path in [ aligned_inputs['precip_{}'.format(month_index)], year_reg['annual_precip_path'], year_reg['baseNdep_path'], param_val_dict['epnfs_2']]], calc_N_fixation, delta_sv_dict['minerl_1_1'], gdal.GDT_Float32, _IC_NODATA) # decomposition of structural material in surface and soil for lyr in [1, 2]: if lyr == 1: pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_1'], temp_val_dict['aminrl_2'], sv_reg['strucc_1_path'], sv_reg['struce_1_1_path'], sv_reg['struce_1_2_path'], pp_reg['rnewas_1_1_path'], pp_reg['rnewas_2_1_path'], param_val_dict['strmax_1'], temp_val_dict['defac'], param_val_dict['dec1_1'], param_val_dict['pligst_1'], sv_reg['strlig_1_path'], temp_val_dict['pheff_struc']]], calc_tcflow_strucc_1, temp_val_dict['tcflow'], gdal.GDT_Float32, _IC_NODATA) else: pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_1'], temp_val_dict['aminrl_2'], sv_reg['strucc_2_path'], sv_reg['struce_2_1_path'], sv_reg['struce_2_2_path'], pp_reg['rnewbs_1_1_path'], pp_reg['rnewbs_2_1_path'], param_val_dict['strmax_2'], temp_val_dict['defac'], param_val_dict['dec1_2'], param_val_dict['pligst_2'], sv_reg['strlig_2_path'], temp_val_dict['pheff_struc'], temp_val_dict['anerb']]], calc_tcflow_strucc_2, temp_val_dict['tcflow'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['strucc_{}'.format(lyr)], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tcflow'], _IC_NODATA, delta_sv_dict['strucc_{}'.format(lyr)], _IC_NODATA) # structural material decomposes first to SOM2 raster_multiplication( temp_val_dict['tcflow'], _IC_NODATA, sv_reg['strlig_{}_path'.format(lyr)], _SV_NODATA, temp_val_dict['tosom2'], _IC_NODATA) # microbial respiration with decomposition to SOM2 respiration( temp_val_dict['tosom2'], param_val_dict['rsplig'], sv_reg['strucc_{}_path'.format(lyr)], sv_reg['struce_{}_1_path'.format(lyr)], delta_sv_dict['struce_{}_1'.format(lyr)], delta_sv_dict['minerl_1_1'], gromin_1_path=temp_val_dict['gromin_1']) respiration( temp_val_dict['tosom2'], param_val_dict['rsplig'], sv_reg['strucc_{}_path'.format(lyr)], sv_reg['struce_{}_2_path'.format(lyr)], delta_sv_dict['struce_{}_2'.format(lyr)], delta_sv_dict['minerl_1_2']) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['tosom2'], param_val_dict['rsplig']]], calc_net_cflow, temp_val_dict['net_tosom2'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som2c_{}'.format(lyr)], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['net_tosom2'], _IC_NODATA, delta_sv_dict['som2c_{}'.format(lyr)], _IC_NODATA) if lyr == 1: rcetob = 'rnewas' else: rcetob = 'rnewbs' # N and P flows from STRUC to SOM2 nutrient_flow( temp_val_dict['net_tosom2'], sv_reg['strucc_{}_path'.format(lyr)], sv_reg['struce_{}_1_path'.format(lyr)], pp_reg['{}_1_2_path'.format(rcetob)], sv_reg['minerl_1_1_path'], delta_sv_dict['struce_{}_1'.format(lyr)], delta_sv_dict['som2e_{}_1'.format(lyr)], delta_sv_dict['minerl_1_1'], gromin_path=temp_val_dict['gromin_1']) nutrient_flow( temp_val_dict['net_tosom2'], sv_reg['strucc_{}_path'.format(lyr)], sv_reg['struce_{}_2_path'.format(lyr)], pp_reg['{}_2_2_path'.format(rcetob)], sv_reg['minerl_1_2_path'], delta_sv_dict['struce_{}_2'.format(lyr)], delta_sv_dict['som2e_{}_2'.format(lyr)], delta_sv_dict['minerl_1_2']) # structural material decomposes next to SOM1 raster_difference( temp_val_dict['tcflow'], _IC_NODATA, temp_val_dict['tosom2'], _IC_NODATA, temp_val_dict['tosom1'], _IC_NODATA) # microbial respiration with decomposition to SOM1 respiration( temp_val_dict['tosom1'], param_val_dict['ps1co2_{}'.format(lyr)], sv_reg['strucc_{}_path'.format(lyr)], sv_reg['struce_{}_1_path'.format(lyr)], delta_sv_dict['struce_{}_1'.format(lyr)], delta_sv_dict['minerl_1_1'], gromin_1_path=temp_val_dict['gromin_1']) respiration( temp_val_dict['tosom1'], param_val_dict['ps1co2_{}'.format(lyr)], sv_reg['strucc_{}_path'.format(lyr)], sv_reg['struce_{}_2_path'.format(lyr)], delta_sv_dict['struce_{}_2'.format(lyr)], delta_sv_dict['minerl_1_2']) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['tosom1'], param_val_dict['ps1co2_{}'.format(lyr)]]], calc_net_cflow, temp_val_dict['net_tosom1'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som1c_{}'.format(lyr)], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['net_tosom1'], _IC_NODATA, delta_sv_dict['som1c_{}'.format(lyr)], _IC_NODATA) if lyr == 1: rcetob = 'rnewas' else: rcetob = 'rnewbs' # N and P flows from STRUC to SOM1 nutrient_flow( temp_val_dict['net_tosom1'], sv_reg['strucc_{}_path'.format(lyr)], sv_reg['struce_{}_1_path'.format(lyr)], pp_reg['{}_1_1_path'.format(rcetob)], sv_reg['minerl_1_1_path'], delta_sv_dict['struce_{}_1'.format(lyr)], delta_sv_dict['som1e_{}_1'.format(lyr)], delta_sv_dict['minerl_1_1'], gromin_path=temp_val_dict['gromin_1']) nutrient_flow( temp_val_dict['net_tosom1'], sv_reg['strucc_{}_path'.format(lyr)], sv_reg['struce_{}_2_path'.format(lyr)], pp_reg['{}_2_1_path'.format(rcetob)], sv_reg['minerl_1_2_path'], delta_sv_dict['struce_{}_2'.format(lyr)], delta_sv_dict['som1e_{}_2'.format(lyr)], delta_sv_dict['minerl_1_2']) # decomposition of metabolic material in surface and soil to SOM1 for lyr in [1, 2]: if lyr == 1: for iel in [1, 2]: # required ratio for surface metabolic decomposing to SOM1 pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['metabe_1_{}_path'.format(iel)], sv_reg['metabc_1_path'], param_val_dict['pcemic1_1_{}'.format(iel)], param_val_dict['pcemic1_2_{}'.format(iel)], param_val_dict['pcemic1_3_{}'.format(iel)]]], _aboveground_ratio, temp_val_dict['rceto1_{}'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_1'], temp_val_dict['aminrl_2'], sv_reg['metabc_1_path'], sv_reg['metabe_1_1_path'], sv_reg['metabe_1_2_path'], temp_val_dict['rceto1_1'], temp_val_dict['rceto1_2'], temp_val_dict['defac'], param_val_dict['dec2_1'], temp_val_dict['pheff_metab']]], calc_tcflow_surface, temp_val_dict['tcflow'], gdal.GDT_Float32, _IC_NODATA) else: for iel in [1, 2]: # required ratio for soil metabolic decomposing to SOM1 pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_{}'.format(iel)], param_val_dict['varat1_1_{}'.format(iel)], param_val_dict['varat1_2_{}'.format(iel)], param_val_dict['varat1_3_{}'.format(iel)]]], _belowground_ratio, temp_val_dict['rceto1_{}'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_1'], temp_val_dict['aminrl_2'], sv_reg['metabc_2_path'], sv_reg['metabe_2_1_path'], sv_reg['metabe_2_2_path'], temp_val_dict['rceto1_1'], temp_val_dict['rceto1_2'], temp_val_dict['defac'], param_val_dict['dec2_2'], temp_val_dict['pheff_metab'], temp_val_dict['anerb']]], calc_tcflow_soil, temp_val_dict['tcflow'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['metabc_{}'.format(lyr)], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tcflow'], _IC_NODATA, delta_sv_dict['metabc_{}'.format(lyr)], _IC_NODATA) # microbial respiration with decomposition to SOM1 respiration( temp_val_dict['tcflow'], param_val_dict['pmco2_{}'.format(lyr)], sv_reg['metabc_{}_path'.format(lyr)], sv_reg['metabe_{}_1_path'.format(lyr)], delta_sv_dict['metabe_{}_1'.format(lyr)], delta_sv_dict['minerl_1_1'], gromin_1_path=temp_val_dict['gromin_1']) respiration( temp_val_dict['tcflow'], param_val_dict['pmco2_{}'.format(lyr)], sv_reg['metabc_{}_path'.format(lyr)], sv_reg['metabe_{}_2_path'.format(lyr)], delta_sv_dict['metabe_{}_2'.format(lyr)], delta_sv_dict['minerl_1_2']) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['tcflow'], param_val_dict['pmco2_{}'.format(lyr)]]], calc_net_cflow, temp_val_dict['net_tosom1'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som1c_{}'.format(lyr)], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['net_tosom1'], _IC_NODATA, delta_sv_dict['som1c_{}'.format(lyr)], _IC_NODATA) nutrient_flow( temp_val_dict['net_tosom1'], sv_reg['metabc_{}_path'.format(lyr)], sv_reg['metabe_{}_1_path'.format(lyr)], temp_val_dict['rceto1_1'], sv_reg['minerl_1_1_path'], delta_sv_dict['metabe_{}_1'.format(lyr)], delta_sv_dict['som1e_{}_1'.format(lyr)], delta_sv_dict['minerl_1_1'], gromin_path=temp_val_dict['gromin_1']) nutrient_flow( temp_val_dict['net_tosom1'], sv_reg['metabc_{}_path'.format(lyr)], sv_reg['metabe_{}_2_path'.format(lyr)], temp_val_dict['rceto1_2'], sv_reg['minerl_1_2_path'], delta_sv_dict['metabe_{}_2'.format(lyr)], delta_sv_dict['som1e_{}_2'.format(lyr)], delta_sv_dict['minerl_1_2']) # decomposition of surface SOM1 to surface SOM2: line 63 Somdec.f for iel in [1, 2]: pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['som1c_1_path'], sv_reg['som1e_1_{}_path'.format(iel)], param_val_dict['rad1p_1_{}'.format(iel)], param_val_dict['rad1p_2_{}'.format(iel)], param_val_dict['rad1p_3_{}'.format(iel)], param_val_dict['pcemic1_2_{}'.format(iel)]]], calc_surface_som2_ratio, temp_val_dict['rceto2_{}'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_1'], temp_val_dict['aminrl_2'], sv_reg['som1c_1_path'], sv_reg['som1e_1_1_path'], sv_reg['som1e_1_2_path'], temp_val_dict['rceto2_1'], temp_val_dict['rceto2_2'], temp_val_dict['defac'], param_val_dict['dec3_1'], temp_val_dict['pheff_struc']]], calc_tcflow_surface, temp_val_dict['tcflow'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som1c_1'], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tcflow'], _IC_NODATA, delta_sv_dict['som1c_1'], _IC_NODATA) # microbial respiration with decomposition to SOM2 respiration( temp_val_dict['tcflow'], param_val_dict['p1co2a_1'], sv_reg['som1c_1_path'], sv_reg['som1e_1_1_path'], delta_sv_dict['som1e_1_1'], delta_sv_dict['minerl_1_1'], gromin_1_path=temp_val_dict['gromin_1']) respiration( temp_val_dict['tcflow'], param_val_dict['p1co2a_1'], sv_reg['som1c_1_path'], sv_reg['som1e_1_2_path'], delta_sv_dict['som1e_1_2'], delta_sv_dict['minerl_1_2']) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['tcflow'], param_val_dict['p1co2a_1']]], calc_net_cflow, temp_val_dict['net_tosom2'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som2c_1'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['net_tosom2'], _IC_NODATA, delta_sv_dict['som2c_1'], _IC_NODATA) # N and P flows from som1e_1 to som2e_1, line 123 Somdec.f nutrient_flow( temp_val_dict['net_tosom2'], sv_reg['som1c_1_path'], sv_reg['som1e_1_1_path'], temp_val_dict['rceto2_1'], sv_reg['minerl_1_1_path'], delta_sv_dict['som1e_1_1'], delta_sv_dict['som2e_1_1'], delta_sv_dict['minerl_1_1'], gromin_path=temp_val_dict['gromin_1']) nutrient_flow( temp_val_dict['net_tosom2'], sv_reg['som1c_1_path'], sv_reg['som1e_1_2_path'], temp_val_dict['rceto2_2'], sv_reg['minerl_1_2_path'], delta_sv_dict['som1e_1_2'], delta_sv_dict['som2e_1_2'], delta_sv_dict['minerl_1_2']) # soil SOM1 decomposes to soil SOM3 and SOM2, line 137 Somdec.f for iel in [1, 2]: # required ratio for soil SOM1 decomposing to SOM2 pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_{}'.format(iel)], param_val_dict['varat22_1_{}'.format(iel)], param_val_dict['varat22_2_{}'.format(iel)], param_val_dict['varat22_3_{}'.format(iel)]]], _belowground_ratio, temp_val_dict['rceto2_{}'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_1'], temp_val_dict['aminrl_2'], sv_reg['som1c_2_path'], sv_reg['som1e_2_1_path'], sv_reg['som1e_2_2_path'], temp_val_dict['rceto2_1'], temp_val_dict['rceto2_2'], temp_val_dict['defac'], param_val_dict['dec3_2'], pp_reg['eftext_path'], temp_val_dict['anerb'], temp_val_dict['pheff_metab']]], calc_tcflow_som1c_2, temp_val_dict['tcflow'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som1c_2'], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tcflow'], _IC_NODATA, delta_sv_dict['som1c_2'], _IC_NODATA) # microbial respiration with decomposition to SOM3, line 179 respiration( temp_val_dict['tcflow'], pp_reg['p1co2_2_path'], sv_reg['som1c_2_path'], sv_reg['som1e_2_1_path'], delta_sv_dict['som1e_2_1'], delta_sv_dict['minerl_1_1'], gromin_1_path=temp_val_dict['gromin_1']) respiration( temp_val_dict['tcflow'], pp_reg['p1co2_2_path'], sv_reg['som1c_2_path'], sv_reg['som1e_2_2_path'], delta_sv_dict['som1e_2_2'], delta_sv_dict['minerl_1_2']) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['tcflow'], pp_reg['fps1s3_path'], param_val_dict['animpt'], temp_val_dict['anerb']]], calc_som3_flow, temp_val_dict['tosom3'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile(delta_sv_dict['som3c'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tosom3'], _IC_NODATA, delta_sv_dict['som3c'], _IC_NODATA) for iel in [1, 2]: # required ratio for soil SOM1 decomposing to SOM3, line 198 pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_{}'.format(iel)], param_val_dict['varat3_1_{}'.format(iel)], param_val_dict['varat3_2_{}'.format(iel)], param_val_dict['varat3_3_{}'.format(iel)]]], _belowground_ratio, temp_val_dict['rceto3_{}'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) nutrient_flow( temp_val_dict['tosom3'], sv_reg['som1c_2_path'], sv_reg['som1e_2_1_path'], temp_val_dict['rceto3_1'], sv_reg['minerl_1_1_path'], delta_sv_dict['som1e_2_1'], delta_sv_dict['som3e_1'], delta_sv_dict['minerl_1_1'], gromin_path=temp_val_dict['gromin_1']) nutrient_flow( temp_val_dict['tosom3'], sv_reg['som1c_2_path'], sv_reg['som1e_2_2_path'], temp_val_dict['rceto3_2'], sv_reg['minerl_1_2_path'], delta_sv_dict['som1e_2_2'], delta_sv_dict['som3e_2'], delta_sv_dict['minerl_1_2']) # organic leaching: line 204 Somdec.f pygeoprocessing.raster_calculator( [(path, 1) for path in [ month_reg['amov_2'], temp_val_dict['tcflow'], param_val_dict['omlech_3'], pp_reg['orglch_path']]], calc_c_leach, temp_val_dict['cleach'], gdal.GDT_Float32, _TARGET_NODATA) for iel in [1, 2]: remove_leached_iel( sv_reg['som1c_2_path'], sv_reg['som1e_2_{}_path'.format(iel)], temp_val_dict['cleach'], delta_sv_dict['som1e_2_{}'.format(iel)], iel) # rest of flow from soil SOM1 goes to SOM2 pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['tcflow'], pp_reg['p1co2_2_path'], temp_val_dict['tosom3'], temp_val_dict['cleach']]], calc_net_cflow_tosom2, temp_val_dict['net_tosom2'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som2c_2'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['net_tosom2'], _IC_NODATA, delta_sv_dict['som2c_2'], _IC_NODATA) # N and P flows from soil SOM1 to soil SOM2, line 257 nutrient_flow( temp_val_dict['net_tosom2'], sv_reg['som1c_2_path'], sv_reg['som1e_2_1_path'], temp_val_dict['rceto2_1'], sv_reg['minerl_1_1_path'], delta_sv_dict['som1e_2_1'], delta_sv_dict['som2e_2_1'], delta_sv_dict['minerl_1_1'], gromin_path=temp_val_dict['gromin_1']) nutrient_flow( temp_val_dict['net_tosom2'], sv_reg['som1c_2_path'], sv_reg['som1e_2_2_path'], temp_val_dict['rceto2_2'], sv_reg['minerl_1_2_path'], delta_sv_dict['som1e_2_2'], delta_sv_dict['som2e_2_2'], delta_sv_dict['minerl_1_2']) # soil SOM2 decomposing to soil SOM1 and SOM3, line 269 pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_1'], temp_val_dict['aminrl_2'], sv_reg['som2c_2_path'], sv_reg['som2e_2_1_path'], sv_reg['som2e_2_2_path'], temp_val_dict['rceto1_1'], temp_val_dict['rceto1_2'], temp_val_dict['defac'], param_val_dict['dec5_2'], temp_val_dict['pheff_metab'], temp_val_dict['anerb']]], calc_tcflow_soil, temp_val_dict['tcflow'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som2c_2'], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tcflow'], _IC_NODATA, delta_sv_dict['som2c_2'], _IC_NODATA) respiration( temp_val_dict['tcflow'], param_val_dict['pmco2_2'], sv_reg['som2c_2_path'], sv_reg['som2e_2_1_path'], delta_sv_dict['som2e_2_1'], delta_sv_dict['minerl_1_1'], gromin_1_path=temp_val_dict['gromin_1']) respiration( temp_val_dict['tcflow'], param_val_dict['pmco2_2'], sv_reg['som2c_2_path'], sv_reg['som2e_2_2_path'], delta_sv_dict['som2e_2_2'], delta_sv_dict['minerl_1_2']) # soil SOM2 flows first to SOM3 pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['tcflow'], pp_reg['fps2s3_path'], param_val_dict['animpt'], temp_val_dict['anerb']]], calc_som3_flow, temp_val_dict['tosom3'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile(delta_sv_dict['som3c'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tosom3'], _IC_NODATA, delta_sv_dict['som3c'], _IC_NODATA) nutrient_flow( temp_val_dict['tosom3'], sv_reg['som2c_2_path'], sv_reg['som2e_2_1_path'], temp_val_dict['rceto3_1'], sv_reg['minerl_1_1_path'], delta_sv_dict['som2e_2_1'], delta_sv_dict['som3e_1'], delta_sv_dict['minerl_1_1'], gromin_path=temp_val_dict['gromin_1']) nutrient_flow( temp_val_dict['tosom3'], sv_reg['som2c_2_path'], sv_reg['som2e_2_2_path'], temp_val_dict['rceto3_2'], sv_reg['minerl_1_2_path'], delta_sv_dict['som2e_2_2'], delta_sv_dict['som3e_2'], delta_sv_dict['minerl_1_2']) # rest of flow from soil SOM2 goes to soil SOM1 pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['tcflow'], param_val_dict['p2co2_2'], temp_val_dict['tosom3']]], calc_net_cflow_tosom1, temp_val_dict['net_tosom1'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som1c_2'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['net_tosom1'], _IC_NODATA, delta_sv_dict['som1c_2'], _IC_NODATA) nutrient_flow( temp_val_dict['net_tosom1'], sv_reg['som2c_2_path'], sv_reg['som2e_2_1_path'], temp_val_dict['rceto1_1'], sv_reg['minerl_1_1_path'], delta_sv_dict['som2e_2_1'], delta_sv_dict['som1e_2_1'], delta_sv_dict['minerl_1_1'], gromin_path=temp_val_dict['gromin_1']) nutrient_flow( temp_val_dict['net_tosom1'], sv_reg['som2c_2_path'], sv_reg['som2e_2_2_path'], temp_val_dict['rceto1_2'], sv_reg['minerl_1_2_path'], delta_sv_dict['som2e_2_2'], delta_sv_dict['som1e_2_2'], delta_sv_dict['minerl_1_2']) # surface SOM2 decomposes to surface SOM1 pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_1'], temp_val_dict['aminrl_2'], sv_reg['som2c_1_path'], sv_reg['som2e_1_1_path'], sv_reg['som2e_1_2_path'], temp_val_dict['rceto1_1'], temp_val_dict['rceto1_2'], temp_val_dict['defac'], param_val_dict['dec5_1'], temp_val_dict['pheff_struc']]], calc_tcflow_surface, temp_val_dict['tcflow'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som2c_1'], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tcflow'], _IC_NODATA, delta_sv_dict['som2c_1'], _IC_NODATA) respiration( temp_val_dict['tcflow'], param_val_dict['p2co2_1'], sv_reg['som2c_1_path'], sv_reg['som2e_1_1_path'], delta_sv_dict['som2e_1_1'], delta_sv_dict['minerl_1_1'], gromin_1_path=temp_val_dict['gromin_1']) respiration( temp_val_dict['tcflow'], param_val_dict['p2co2_1'], sv_reg['som2c_1_path'], sv_reg['som2e_1_2_path'], delta_sv_dict['som2e_1_2'], delta_sv_dict['minerl_1_2']) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['tcflow'], param_val_dict['p2co2_1']]], calc_net_cflow, temp_val_dict['tosom1'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som1c_1'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tosom1'], _IC_NODATA, delta_sv_dict['som1c_1'], _IC_NODATA) nutrient_flow( temp_val_dict['tosom1'], sv_reg['som2c_1_path'], sv_reg['som2e_1_1_path'], temp_val_dict['rceto1_1'], sv_reg['minerl_1_1_path'], delta_sv_dict['som2e_1_1'], delta_sv_dict['som1e_1_1'], delta_sv_dict['minerl_1_1'], gromin_path=temp_val_dict['gromin_1']) nutrient_flow( temp_val_dict['tosom1'], sv_reg['som2c_1_path'], sv_reg['som2e_1_2_path'], temp_val_dict['rceto1_2'], sv_reg['minerl_1_2_path'], delta_sv_dict['som2e_1_2'], delta_sv_dict['som1e_1_2'], delta_sv_dict['minerl_1_2']) # SOM3 decomposing to soil SOM1 # pH effect on decomposition of SOM3 pygeoprocessing.raster_calculator( [(aligned_inputs['ph_path'], 1)], calc_pheff_som3, temp_val_dict['pheff_som3'], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['aminrl_1'], temp_val_dict['aminrl_2'], sv_reg['som3c_path'], sv_reg['som3e_1_path'], sv_reg['som3e_2_path'], temp_val_dict['rceto1_1'], temp_val_dict['rceto1_2'], temp_val_dict['defac'], param_val_dict['dec4'], temp_val_dict['pheff_som3'], temp_val_dict['anerb']]], calc_tcflow_soil, temp_val_dict['tcflow'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som3c'], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tcflow'], _IC_NODATA, delta_sv_dict['som3c'], _IC_NODATA) respiration( temp_val_dict['tcflow'], param_val_dict['p3co2'], sv_reg['som3c_path'], sv_reg['som3e_1_path'], delta_sv_dict['som3e_1'], delta_sv_dict['minerl_1_1'], gromin_1_path=temp_val_dict['gromin_1']) respiration( temp_val_dict['tcflow'], param_val_dict['p3co2'], sv_reg['som3c_path'], sv_reg['som3e_2_path'], delta_sv_dict['som3e_2'], delta_sv_dict['minerl_1_2']) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['tcflow'], param_val_dict['p3co2']]], calc_net_cflow, temp_val_dict['tosom1'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som1c_2'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tosom1'], _IC_NODATA, delta_sv_dict['som1c_2'], _IC_NODATA) nutrient_flow( temp_val_dict['tosom1'], sv_reg['som3c_path'], sv_reg['som3e_1_path'], temp_val_dict['rceto1_1'], sv_reg['minerl_1_1_path'], delta_sv_dict['som3e_1'], delta_sv_dict['som1e_2_1'], delta_sv_dict['minerl_1_1'], gromin_path=temp_val_dict['gromin_1']) nutrient_flow( temp_val_dict['tosom1'], sv_reg['som3c_path'], sv_reg['som3e_2_path'], temp_val_dict['rceto1_2'], sv_reg['minerl_1_2_path'], delta_sv_dict['som3e_2'], delta_sv_dict['som1e_2_2'], delta_sv_dict['minerl_1_2']) # Surface SOM2 flows to soil SOM2 via mixing pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['som2c_1_path'], param_val_dict['cmix'], temp_val_dict['defac']]], calc_som2_flow, temp_val_dict['tcflow'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['som2c_1'], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tcflow'], _IC_NODATA, delta_sv_dict['som2c_1'], _IC_NODATA) shutil.copyfile( delta_sv_dict['som2c_2'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['tcflow'], _IC_NODATA, delta_sv_dict['som2c_2'], _IC_NODATA) # ratios for N and P entering soil som2 via mixing raster_division( sv_reg['som2c_1_path'], _SV_NODATA, sv_reg['som2e_1_1_path'], _IC_NODATA, temp_val_dict['rceto2_1'], _IC_NODATA) raster_division( sv_reg['som2c_1_path'], _SV_NODATA, sv_reg['som2e_1_2_path'], _IC_NODATA, temp_val_dict['rceto2_2'], _IC_NODATA) nutrient_flow( temp_val_dict['tcflow'], sv_reg['som2c_1_path'], sv_reg['som2e_1_1_path'], temp_val_dict['rceto2_1'], sv_reg['minerl_1_1_path'], delta_sv_dict['som2e_1_1'], delta_sv_dict['som2e_2_1'], delta_sv_dict['minerl_1_1'], gromin_path=temp_val_dict['gromin_1']) nutrient_flow( temp_val_dict['tcflow'], sv_reg['som2c_1_path'], sv_reg['som2e_1_2_path'], temp_val_dict['rceto2_2'], sv_reg['minerl_1_2_path'], delta_sv_dict['som2e_1_2'], delta_sv_dict['som2e_2_2'], delta_sv_dict['minerl_1_2']) # P flow from parent to mineral: Pschem.f pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['parent_2_path'], param_val_dict['pparmn_2'], temp_val_dict['defac']]], calc_pflow, temp_val_dict['pflow'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( delta_sv_dict['parent_2'], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['pflow'], _IC_NODATA, delta_sv_dict['parent_2'], _IC_NODATA) shutil.copyfile( delta_sv_dict['minerl_1_2'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['pflow'], _IC_NODATA, delta_sv_dict['minerl_1_2'], _IC_NODATA) # P flow from secondary to mineral pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['secndy_2_path'], param_val_dict['psecmn_2'], temp_val_dict['defac']]], calc_pflow, temp_val_dict['pflow'], gdal.GDT_Float64, _IC_NODATA) shutil.copyfile( delta_sv_dict['secndy_2'], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['pflow'], _IC_NODATA, delta_sv_dict['secndy_2'], _IC_NODATA) shutil.copyfile( delta_sv_dict['minerl_1_2'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['pflow'], _IC_NODATA, delta_sv_dict['minerl_1_2'], _IC_NODATA) # P flow from mineral to secondary for lyr in range(1, nlayer_max + 1): pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['minerl_{}_2_path'.format(lyr)], param_val_dict['pmnsec_2'], temp_val_dict['fsol'], temp_val_dict['defac']]], calc_pflow_to_secndy, temp_val_dict['pflow'], gdal.GDT_Float64, _IC_NODATA) shutil.copyfile( delta_sv_dict['minerl_{}_2'.format(lyr)], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['pflow'], _IC_NODATA, delta_sv_dict['minerl_{}_2'.format(lyr)], _IC_NODATA) shutil.copyfile( delta_sv_dict['secndy_2'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['pflow'], _IC_NODATA, delta_sv_dict['secndy_2'], _IC_NODATA) # P flow from secondary to occluded pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['secndy_2_path'], param_val_dict['psecoc1'], temp_val_dict['defac']]], calc_pflow, temp_val_dict['pflow'], gdal.GDT_Float64, _IC_NODATA) shutil.copyfile( delta_sv_dict['secndy_2'], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['pflow'], _IC_NODATA, delta_sv_dict['secndy_2'], _IC_NODATA) shutil.copyfile( delta_sv_dict['occlud'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['pflow'], _IC_NODATA, delta_sv_dict['occlud'], _IC_NODATA) # P flow from occluded to secondary pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['occlud_path'], param_val_dict['psecoc2'], temp_val_dict['defac']]], calc_pflow, temp_val_dict['pflow'], gdal.GDT_Float64, _IC_NODATA) shutil.copyfile( delta_sv_dict['occlud'], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['pflow'], _IC_NODATA, delta_sv_dict['occlud'], _IC_NODATA) shutil.copyfile( delta_sv_dict['secndy_2'], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _IC_NODATA, temp_val_dict['pflow'], _IC_NODATA, delta_sv_dict['secndy_2'], _IC_NODATA) # accumulate flows compartment = 'som3' state_var = '{}c'.format(compartment) shutil.copyfile( sv_reg['{}_path'.format(state_var)], temp_val_dict['operand_temp']) raster_sum( delta_sv_dict[state_var], _IC_NODATA, temp_val_dict['operand_temp'], _SV_NODATA, sv_reg['{}_path'.format(state_var)], _SV_NODATA) for iel in [1, 2]: state_var = '{}e_{}'.format(compartment, iel) shutil.copyfile( sv_reg['{}_path'.format(state_var)], temp_val_dict['operand_temp']) raster_sum( delta_sv_dict[state_var], _IC_NODATA, temp_val_dict['operand_temp'], _SV_NODATA, sv_reg['{}_path'.format(state_var)], _SV_NODATA) for compartment in ['struc', 'metab', 'som1', 'som2']: for lyr in [1, 2]: state_var = '{}c_{}'.format(compartment, lyr) shutil.copyfile( sv_reg['{}_path'.format(state_var)], temp_val_dict['operand_temp']) raster_sum( delta_sv_dict[state_var], _IC_NODATA, temp_val_dict['operand_temp'], _SV_NODATA, sv_reg['{}_path'.format(state_var)], _SV_NODATA) for iel in [1, 2]: state_var = '{}e_{}_{}'.format(compartment, lyr, iel) shutil.copyfile( sv_reg['{}_path'.format(state_var)], temp_val_dict['operand_temp']) raster_sum( delta_sv_dict[state_var], _IC_NODATA, temp_val_dict['operand_temp'], _SV_NODATA, sv_reg['{}_path'.format(state_var)], _SV_NODATA) for iel in [1, 2]: state_var = 'minerl_1_{}'.format(iel) shutil.copyfile( sv_reg['{}_path'.format(state_var)], temp_val_dict['operand_temp']) raster_sum( delta_sv_dict[state_var], _IC_NODATA, temp_val_dict['operand_temp'], _SV_NODATA, sv_reg['{}_path'.format(state_var)], _SV_NODATA) for state_var in ['parent_2', 'secndy_2', 'occlud']: shutil.copyfile( sv_reg['{}_path'.format(state_var)], temp_val_dict['operand_temp']) raster_sum( delta_sv_dict[state_var], _IC_NODATA, temp_val_dict['operand_temp'], _SV_NODATA, sv_reg['{}_path'.format(state_var)], _SV_NODATA) # update aminrl: Simsom.f line 301 pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['minerl_1_2_path'], param_val_dict['sorpmx'], param_val_dict['pslsrb']]], fsfunc, temp_val_dict['fsol'], gdal.GDT_Float32, _TARGET_NODATA) update_aminrl( sv_reg['minerl_1_1_path'], sv_reg['minerl_1_2_path'], temp_val_dict['fsol'], temp_val_dict['aminrl_1'], temp_val_dict['aminrl_2']) # volatilization loss of N: line 323 Simsom.f raster_multiplication( temp_val_dict['gromin_1'], _TARGET_NODATA, pp_reg['vlossg_path'], _IC_NODATA, temp_val_dict['operand_temp'], _TARGET_NODATA) shutil.copyfile( sv_reg['minerl_1_1_path'], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _SV_NODATA, temp_val_dict['operand_temp'], _TARGET_NODATA, sv_reg['minerl_1_1_path'], _SV_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def partit( cpart_path, epart_1_path, epart_2_path, frlign_path, site_index_path, site_param_table, lyr, sv_reg): """Partition incoming material into structural and metabolic pools. When organic material is added to the soil, for example as dead biomass falls and becomes litter, or when organic material is added from animal waste, it is partitioned into structural (STRUCC_lyr) and metabolic (METABC_lyr) material according to the ratio of lignin to N in the residue. As residue is partitioned, some N and P may be directly absorbed from surface mineral N or P into the residue. Parameters: cpart_path (string): path to raster containing C in incoming material that is to be partitioned epart_1_path (string): path to raster containing N in incoming material epart_2_path (string): path to raster containing P in incoming material frlign_path (string): path to raster containing fraction of incoming material that is lignin site_index_path (string): path to site spatial index raster site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters lyr (int): layer which is receiving the incoming material (i.e., 1=surface layer, 2=soil layer) sv_reg (dict): map of key, path pairs giving paths to current state variables Side effects: modifies the rasters indicated by the following paths: sv_reg['minerl_1_1_path'] sv_reg['minerl_1_2_path'] sv_reg['metabc_{}_path'.format(lyr)] sv_reg['strucc_{}_path'.format(lyr)] sv_reg['metabe_{}_1_path'.format(lyr)] sv_reg['metabe_{}_2_path'.format(lyr)] sv_reg['struce_{}_1_path'.format(lyr)] sv_reg['struce_{}_2_path'.format(lyr)] sv_reg['strlig_{}_path'.format(lyr)] Returns: None """ def calc_dirabs( cpart, epart_iel, minerl_1_iel, damr_lyr_iel, pabres, damrmn_iel): """Calculate direct absorption of mineral N or P. When organic material is added to the soil, some mineral N or P may be directly absorbed from the surface mineral layer into the incoming material. the amount transferred depends on the N or P in the incoming material and the required C/N or C/P ratio of receiving material. Parameters: cpart (numpy.ndarray): derived, C in incoming material epart_iel (numpy.ndarray): derived, <iel> in incoming material minerl_1_iel (numpy.ndarray): state variable, surface mineral <iel> damr_lyr_iel (numpy.ndarray): parameter, fraction of iel in lyr absorbed by residue pabres (numpy.ndarray): parameter, amount of residue which will give maximum direct absorption of iel damrmn_iel (numpy.ndarray): parameter, minimum C/iel ratio allowed in residue after direct absorption Returns: dirabs_iel, <iel> (N or P) absorbed from the surface mineral pool """ valid_mask = ( (cpart != _TARGET_NODATA) & (epart_iel != _TARGET_NODATA) & (~numpy.isclose(minerl_1_iel, _SV_NODATA)) & (damr_lyr_iel != _IC_NODATA) & (pabres != _IC_NODATA) & (damrmn_iel != _IC_NODATA)) dirabs_iel = numpy.empty(cpart.shape, dtype=numpy.float32) dirabs_iel[:] = _TARGET_NODATA dirabs_iel[valid_mask] = 0. minerl_mask = ((minerl_1_iel >= 0) & valid_mask) dirabs_iel[minerl_mask] = ( damr_lyr_iel[minerl_mask] * minerl_1_iel[minerl_mask] * numpy.maximum(cpart[minerl_mask] / pabres[minerl_mask], 1.)) # rcetot: C/E ratio of incoming material rcetot = numpy.empty(cpart.shape, dtype=numpy.float32) rcetot[:] = _IC_NODATA e_sufficient_mask = (((epart_iel + dirabs_iel) > 0) & valid_mask) rcetot[valid_mask] = 0 rcetot[e_sufficient_mask] = ( cpart[e_sufficient_mask] / ( epart_iel[e_sufficient_mask] + dirabs_iel[e_sufficient_mask])) dirabs_mod_mask = ((rcetot < damrmn_iel) & valid_mask) dirabs_iel[dirabs_mod_mask] = numpy.maximum( cpart[dirabs_mod_mask] / damrmn_iel[dirabs_mod_mask] - epart_iel[dirabs_mod_mask], 0.) return dirabs_iel def calc_d_metabc_lyr(cpart, epart_1, dirabs_1, frlign, spl_1, spl_2): """Calculate the change in metabolic C after addition of new material. Parameters: cpart (numpy.ndarray): C in incoming material epart_1 (numpy.ndarray): N in incoming material dirabs_1 (numpy.ndarray): derived, direct aborption of mineral N into incoming material frlign (numpy.ndarray): fraction of incoming material which is lignin spl_1 (numpy.ndarray): parameter, intercept of regression predicting fraction of residue going to metabolic spl_2 (numpy.ndarray): parameter, slope of regression predicting fraction of residue going to metabolic Returns: d_metabc_lyr, change in metabc_lyr """ valid_mask = ( (cpart != _TARGET_NODATA) & (epart_1 != _TARGET_NODATA) & (dirabs_1 != _TARGET_NODATA) & (frlign != _TARGET_NODATA) & (spl_1 != _IC_NODATA) & (spl_2 != _IC_NODATA)) movt_mask = ((cpart > 0) & valid_mask) # rlnres: ratio of lignin to N in the incoming material rlnres = numpy.empty(cpart.shape, dtype=numpy.float32) rlnres[:] = _TARGET_NODATA rlnres[valid_mask] = 0. rlnres[movt_mask] = ( frlign[movt_mask] / ( (epart_1[movt_mask] + dirabs_1[movt_mask]) / (cpart[movt_mask] * 2.5))) # frmet: fraction of cpart that goes to metabolic frmet = numpy.empty(cpart.shape, dtype=numpy.float32) frmet[:] = _TARGET_NODATA frmet[valid_mask] = ( spl_1[valid_mask] - spl_2[valid_mask] * rlnres[valid_mask]) lign_exceeded_mask = ((frlign > (1. - frmet)) & valid_mask) frmet[lign_exceeded_mask] = 1. - frlign[lign_exceeded_mask] d_metabc_lyr = numpy.empty(cpart.shape, dtype=numpy.float32) d_metabc_lyr[:] = _TARGET_NODATA d_metabc_lyr[valid_mask] = cpart[valid_mask] * frmet[valid_mask] return d_metabc_lyr def calc_d_strucc_lyr(cpart, d_metabc_lyr): """Calculate change in structural C after addition of new material. Parameters: cpart (numpy.ndarray): derived, C in incoming material d_metabc_lyr (numpy.ndarray) derived, change in metabc_lyr Returns: d_strucc_lyr, change in strucc_lyr """ valid_mask = ( (cpart != _TARGET_NODATA) & (d_metabc_lyr != _TARGET_NODATA)) d_strucc_lyr = numpy.empty(cpart.shape, dtype=numpy.float32) d_strucc_lyr[:] = _TARGET_NODATA d_strucc_lyr[valid_mask] = cpart[valid_mask] - d_metabc_lyr[valid_mask] return d_strucc_lyr def calc_d_struce_lyr_iel(d_strucc_lyr, rcestr_iel): """Calculate the change in N or P in structural material in layer lyr. Parameters: d_strucc_lyr (numpy.ndarray): change in strucc_lyr with addition of incoming material rcestr_iel (numpy.ndarray): parameter, C/<iel> ratio for structural material Returns: d_struce_lyr_iel, change in structural N or P in layer lyr """ valid_mask = ( (d_strucc_lyr != _TARGET_NODATA) & (rcestr_iel != _IC_NODATA)) d_struce_lyr_iel = numpy.empty(d_strucc_lyr.shape, dtype=numpy.float32) d_struce_lyr_iel[valid_mask] = ( d_strucc_lyr[valid_mask] / rcestr_iel[valid_mask]) return d_struce_lyr_iel def calc_d_metabe_lyr_iel(cpart, epart_iel, dirabs_iel, d_struce_lyr_iel): """Calculate the change in N or P in metabolic material in layer lyr. Parameters: cpart (numpy.ndarray): C in incoming material epart_iel (numpy.ndarray): <iel> in incoming material dirabs_iel (numpy.ndarray): <iel> absorbed from the surface mineral pool d_struce_lyr_iel (numpy.ndarray): change in structural N or P in layer lyr Returns: d_metabe_lyr_iel, change in metabolic N or P in layer lyr """ valid_mask = ( (cpart != _TARGET_NODATA) & (epart_iel != _TARGET_NODATA) & (dirabs_iel != _TARGET_NODATA) & (d_struce_lyr_iel != _TARGET_NODATA)) d_metabe_lyr_iel = numpy.empty(cpart.shape, dtype=numpy.float32) d_metabe_lyr_iel[:] = _TARGET_NODATA d_metabe_lyr_iel[valid_mask] = ( epart_iel[valid_mask] + dirabs_iel[valid_mask] - d_struce_lyr_iel[valid_mask]) return d_metabe_lyr_iel def calc_d_strlig_lyr(frlign, d_strucc_lyr, cpart, strlig_lyr, strucc_lyr): """Calculate change in fraction of lignin in structural material. Parameters: frlign (numpy.ndarray): fraction of incoming material which is lignin d_strucc_lyr (numpy.ndarray): change in strucc_lyr with addition of incoming material cpart (numpy.ndarray): C in incoming material strlig_lyr (numpy.ndarray): state variable, lignin in structural material in receiving layer strucc_lyr (numpy.ndarray): state variable, C in structural material in layer lyr Returns: d_strlig_lyr, change in fraction of lignin in structural material in layer lyr """ valid_mask = ( (frlign != _TARGET_NODATA) & (d_strucc_lyr != _TARGET_NODATA) & (cpart != _TARGET_NODATA) & (~numpy.isclose(strlig_lyr, _SV_NODATA)) & (~numpy.isclose(strucc_lyr, _SV_NODATA))) movt_mask = ((cpart > 0) & valid_mask) fligst = numpy.empty(frlign.shape, dtype=numpy.float32) fligst[:] = _TARGET_NODATA fligst[valid_mask] = 1. fligst[movt_mask] = numpy.minimum( frlign[movt_mask] / ( d_strucc_lyr[movt_mask] / cpart[movt_mask]), 1.) strlig_lyr_mod = numpy.empty(frlign.shape, dtype=numpy.float32) strlig_lyr_mod[:] = _TARGET_NODATA strlig_lyr_mod[valid_mask] = ( ((strlig_lyr[valid_mask] * strucc_lyr[valid_mask]) + (fligst[valid_mask] * d_strucc_lyr[valid_mask])) / (strucc_lyr[valid_mask] + d_strucc_lyr[valid_mask])) d_strlig_lyr = numpy.empty(frlign.shape, dtype=numpy.float32) d_strlig_lyr[:] = _IC_NODATA d_strlig_lyr[valid_mask] = ( strlig_lyr_mod[valid_mask] - strlig_lyr[valid_mask]) return d_strlig_lyr temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for val in [ 'dirabs_1', 'dirabs_2', 'd_metabc_lyr', 'd_strucc_lyr', 'd_struce_lyr_iel', 'd_statv_temp', 'operand_temp']: temp_val_dict[val] = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict = {} for val in [ 'damr_{}_1'.format(lyr), 'damr_{}_2'.format(lyr), 'pabres', 'damrmn_1', 'damrmn_2', 'spl_1', 'spl_2', 'rcestr_1', 'rcestr_2']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) # direct absorption of N and P from surface mineral layer for iel in [1, 2]: if iel == 1: epart_path = epart_1_path else: epart_path = epart_2_path pygeoprocessing.raster_calculator( [(path, 1) for path in [ cpart_path, epart_path, sv_reg['minerl_1_{}_path'.format(iel)], param_val_dict['damr_{}_{}'.format(lyr, iel)], param_val_dict['pabres'], param_val_dict['damrmn_{}'.format(iel)]]], calc_dirabs, temp_val_dict['dirabs_{}'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) # remove direct absorption from surface mineral layer shutil.copyfile( sv_reg['minerl_1_{}_path'.format(iel)], temp_val_dict['d_statv_temp']) raster_difference( temp_val_dict['d_statv_temp'], _SV_NODATA, temp_val_dict['dirabs_{}'.format(iel)], _TARGET_NODATA, sv_reg['minerl_1_{}_path'.format(iel)], _SV_NODATA) # partition C into structural and metabolic pygeoprocessing.raster_calculator( [(path, 1) for path in [ cpart_path, epart_1_path, temp_val_dict['dirabs_1'], frlign_path, param_val_dict['spl_1'], param_val_dict['spl_2']]], calc_d_metabc_lyr, temp_val_dict['d_metabc_lyr'], gdal.GDT_Float32, _TARGET_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ cpart_path, temp_val_dict['d_metabc_lyr']]], calc_d_strucc_lyr, temp_val_dict['d_strucc_lyr'], gdal.GDT_Float32, _TARGET_NODATA) shutil.copyfile( sv_reg['metabc_{}_path'.format(lyr)], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _SV_NODATA, temp_val_dict['d_metabc_lyr'], _TARGET_NODATA, sv_reg['metabc_{}_path'.format(lyr)], _SV_NODATA) shutil.copyfile( sv_reg['strucc_{}_path'.format(lyr)], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _SV_NODATA, temp_val_dict['d_strucc_lyr'], _TARGET_NODATA, sv_reg['strucc_{}_path'.format(lyr)], _SV_NODATA) # partition N and P into structural and metabolic for iel in [1, 2]: if iel == 1: epart_path = epart_1_path else: epart_path = epart_2_path pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['d_strucc_lyr'], param_val_dict['rcestr_{}'.format(iel)]]], calc_d_struce_lyr_iel, temp_val_dict['d_struce_lyr_iel'], gdal.GDT_Float32, _TARGET_NODATA) shutil.copyfile( sv_reg['struce_{}_{}_path'.format(lyr, iel)], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _SV_NODATA, temp_val_dict['d_struce_lyr_iel'], _TARGET_NODATA, sv_reg['struce_{}_{}_path'.format(lyr, iel)], _SV_NODATA) pygeoprocessing.raster_calculator( [(path, 1) for path in [ cpart_path, epart_path, temp_val_dict['dirabs_{}'.format(iel)], temp_val_dict['d_struce_lyr_iel']]], calc_d_metabe_lyr_iel, temp_val_dict['operand_temp'], gdal.GDT_Float32, _TARGET_NODATA) shutil.copyfile( sv_reg['metabe_{}_{}_path'.format(lyr, iel)], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _SV_NODATA, temp_val_dict['operand_temp'], _TARGET_NODATA, sv_reg['metabe_{}_{}_path'.format(lyr, iel)], _SV_NODATA) # adjust fraction of lignin in receiving structural pool pygeoprocessing.raster_calculator( [(path, 1) for path in [ frlign_path, temp_val_dict['d_strucc_lyr'], cpart_path, sv_reg['strlig_{}_path'.format(lyr)], sv_reg['strucc_{}_path'.format(lyr)]]], calc_d_strlig_lyr, temp_val_dict['operand_temp'], gdal.GDT_Float32, _IC_NODATA) shutil.copyfile( sv_reg['strlig_{}_path'.format(lyr)], temp_val_dict['d_statv_temp']) raster_sum( temp_val_dict['d_statv_temp'], _SV_NODATA, temp_val_dict['operand_temp'], _IC_NODATA, sv_reg['strlig_{}_path'.format(lyr)], _SV_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def calc_fall_standing_dead(stdedc, fallrt): """Calculate delta C with fall of standing dead. Material falls from standing dead biomass into surface litter according to a constant monthly fall rate. Parameters: stdedc (numpy.ndarray): state variable, C in standing dead material fallrt (numpy.ndarray): parameter, fraction of standing dead material that falls each month Returns: delta_c_standing_dead, change in C in standing dead """ valid_mask = ( (~numpy.isclose(stdedc, _SV_NODATA)) & (fallrt != _IC_NODATA)) delta_c_standing_dead = numpy.empty(stdedc.shape, dtype=numpy.float32) delta_c_standing_dead[:] = _TARGET_NODATA delta_c_standing_dead[valid_mask] = stdedc[valid_mask] * fallrt[valid_mask] return delta_c_standing_dead def calc_root_death( average_temperature, rtdtmp, rdr, avh2o_1, deck5, bglivc): """Calculate delta C with death of roots. Material flows from roots into soil organic matter pools due to root death. Root death rate is limited by average temperature and influenced by available soil moisture. Change in C is calculated by multiplying the root death rate by bglivc, C in live roots. Parameters: average_temperature (numpy.ndarray): derived, average temperature for the current month rtdtmp (numpy.ndarray): parameter, temperature below which root death does not occur rdr (numpy.ndarray): parameter, maximum root death rate at very dry soil conditions avh2o_1 (numpy.ndarray): state variable, water available to the current plant functional type for growth deck5 (numpy.ndarray): parameter, level of available soil water at which root death rate is half maximum bglivc (numpy.ndarray): state variable, C in belowground live roots Returns: delta_c_root_death, change in C during root death """ valid_mask = ( (average_temperature != _IC_NODATA) & (rdr != _IC_NODATA) & (~numpy.isclose(avh2o_1, _SV_NODATA)) & (deck5 != _IC_NODATA) & (~numpy.isclose(bglivc, _SV_NODATA))) root_death_rate = numpy.empty(bglivc.shape, dtype=numpy.float32) root_death_rate[:] = _TARGET_NODATA root_death_rate[valid_mask] = 0. temp_sufficient_mask = ((average_temperature >= rtdtmp) & valid_mask) root_death_rate[temp_sufficient_mask] = numpy.minimum( rdr[temp_sufficient_mask] * (1.0 - avh2o_1[temp_sufficient_mask] / ( deck5[temp_sufficient_mask] + avh2o_1[temp_sufficient_mask])), 0.95) delta_c_root_death = numpy.empty(bglivc.shape, dtype=numpy.float32) delta_c_root_death[:] = _TARGET_NODATA delta_c_root_death[valid_mask] = ( root_death_rate[valid_mask] * bglivc[valid_mask]) return delta_c_root_death def calc_delta_iel(c_state_variable, iel_state_variable, delta_c): """Calculate the change in N or P accompanying change in C. As C flows out of standing dead biomass or roots, the amount of iel (N or P) flowing out of the same pool is calculated from the change in C according to the ratio of C to iel in the pool. Parameters: c_state_variable (numpy.ndarray): state variable, C in the pool that is losing material iel_state_variable (numpy.ndarray): state variable, N or P in the pool that is losing material delta_c (numpy.ndarray): derived, change in C. Change in N or P is proportional to this amount. Returns: delta_iel, change in N or P accompanying the change in C """ valid_mask = ( (~numpy.isclose(c_state_variable, _SV_NODATA)) & (~numpy.isclose(iel_state_variable, _SV_NODATA)) & (c_state_variable > 0) & (delta_c != _TARGET_NODATA)) delta_iel = numpy.empty(c_state_variable.shape, dtype=numpy.float32) delta_iel[:] = _TARGET_NODATA delta_iel[valid_mask] = ( (iel_state_variable[valid_mask] / c_state_variable[valid_mask]) * delta_c[valid_mask]) return delta_iel def _death_and_partition( state_variable, aligned_inputs, site_param_table, current_month, year_reg, pft_id_set, veg_trait_table, prev_sv_reg, sv_reg): """Track movement of C, N and P from a pft-level state variable into soil. Calculate C, N and P leaving the specified state variable and entering surface or soil organic matter pools. Subtract the change in C, N and P from the state variable tracked for each pft, sum up the amounts across pfts, and distribute the sum of the material flowing from the state variable to surface or soil structural and metabolic pools. Parameters: state_variable (string): string identifying the state variable that is flowing into organic matter. Must be one of "stded" (for fall of standing dead) or "bgliv" (for death of roots). If the state variable is stded, material flowing from stded enters surface structural and metabolic pools. If the state variable is bgliv, material flowing from bgliv enters soil structural and metabolic pools. aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including temperature, plant functional type composition, and site spatial index site_param_table (dict): map of site spatial indices to dictionaries containing site parameters current_month (int): month of the year, such that current_month=1 indicates January pft_id_set (set): set of integers identifying plant functional types veg_trait_table (dict): map of pft id to dictionaries containing plant functional type parameters prev_sv_reg (dict): map of key, path pairs giving paths to state variables for the previous month sv_reg (dict): map of key, path pairs giving paths to state variables for the current month Side effects: creates the rasters indicated by sv_reg['<state_variable>c_<pft>_path'] for each pft sv_reg['<state_variable>e_1_<pft>_path'] for each pft sv_reg['<state_variable>e_2_<pft>_path'] for each pft modifies the rasters indicated by sv_reg['minerl_1_1_path'] sv_reg['minerl_1_2_path'] sv_reg['metabc_<lyr>_path'] sv_reg['strucc_<lyr>_path'] sv_reg['metabe_<lyr>_1_path'] sv_reg['metabe_<lyr>_2_path'] sv_reg['struce_<lyr>_1_path'] sv_reg['struce_<lyr>_2_path'] sv_reg['strlig_<lyr>_path'] where lyr=1 if `state_variable` == 'stded' lyr=2 if `state_variable` == 'bgliv' Returns: None """ def calc_avg_temp(max_temp, min_temp): """Calculate average temperature from maximum and minimum temp.""" valid_mask = ( (~numpy.isclose(max_temp, max_temp_nodata)) & (~numpy.isclose(min_temp, min_temp_nodata))) tave = numpy.empty(max_temp.shape, dtype=numpy.float32) tave[:] = _IC_NODATA tave[valid_mask] = (max_temp[valid_mask] + min_temp[valid_mask]) / 2. return tave temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for val in [ 'tave', 'delta_c', 'delta_iel', 'delta_sv_weighted', 'operand_temp', 'sum_weighted_delta_C', 'sum_weighted_delta_N', 'sum_weighted_delta_P', 'weighted_lignin', 'sum_lignin', 'fraction_lignin']: temp_val_dict[val] = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict = {} # site-level parameters val = 'deck5' target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) # pft-level parameters for val in['fallrt', 'rtdtmp', 'rdr']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path # sum of material across pfts to be partitioned to organic matter pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], temp_val_dict['sum_weighted_delta_C'], gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0]) pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], temp_val_dict['sum_weighted_delta_N'], gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0]) pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], temp_val_dict['sum_weighted_delta_P'], gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0]) pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], temp_val_dict['sum_lignin'], gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0]) max_temp_nodata = pygeoprocessing.get_raster_info( aligned_inputs['max_temp_{}'.format(current_month)])['nodata'][0] min_temp_nodata = pygeoprocessing.get_raster_info( aligned_inputs['min_temp_{}'.format(current_month)])['nodata'][0] pygeoprocessing.raster_calculator( [(path, 1) for path in [ aligned_inputs['max_temp_{}'.format(current_month)], aligned_inputs['min_temp_{}'.format(current_month)]]], calc_avg_temp, temp_val_dict['tave'], gdal.GDT_Float32, _IC_NODATA) for pft_i in pft_id_set: pft_nodata = pygeoprocessing.get_raster_info( aligned_inputs['pft_{}'.format(pft_i)])['nodata'][0] # calculate change in C leaving the given state variable if state_variable == 'stded': fill_val = veg_trait_table[pft_i]['fallrt'] pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], param_val_dict['fallrt'], gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[fill_val]) pygeoprocessing.raster_calculator( [(path, 1) for path in [ prev_sv_reg['stdedc_{}_path'.format(pft_i)], param_val_dict['fallrt']]], calc_fall_standing_dead, temp_val_dict['delta_c'], gdal.GDT_Float32, _TARGET_NODATA) else: for val in ['rtdtmp', 'rdr']: fill_val = veg_trait_table[pft_i][val] pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], param_val_dict[val], gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[fill_val]) pygeoprocessing.raster_calculator( [(path, 1) for path in [ temp_val_dict['tave'], param_val_dict['rtdtmp'], param_val_dict['rdr'], sv_reg['avh2o_1_{}_path'.format(pft_i)], param_val_dict['deck5'], prev_sv_reg['bglivc_{}_path'.format(pft_i)]]], calc_root_death, temp_val_dict['delta_c'], gdal.GDT_Float32, _TARGET_NODATA) # subtract delta_c from the pft-level state variable raster_difference( prev_sv_reg['{}c_{}_path'.format(state_variable, pft_i)], _SV_NODATA, temp_val_dict['delta_c'], _TARGET_NODATA, sv_reg['{}c_{}_path'.format(state_variable, pft_i)], _SV_NODATA) # calculate delta C weighted by % cover of this pft raster_multiplication( temp_val_dict['delta_c'], _TARGET_NODATA, aligned_inputs['pft_{}'.format(pft_i)], pft_nodata, temp_val_dict['delta_sv_weighted'], _TARGET_NODATA) shutil.copyfile( temp_val_dict['sum_weighted_delta_C'], temp_val_dict['operand_temp']) raster_sum( temp_val_dict['delta_sv_weighted'], _TARGET_NODATA, temp_val_dict['operand_temp'], _TARGET_NODATA, temp_val_dict['sum_weighted_delta_C'], _TARGET_NODATA) # calculate weighted fraction of flowing C which is lignin if state_variable == 'stded': frlign_path = year_reg['pltlig_above_{}'.format(pft_i)] else: frlign_path = year_reg['pltlig_below_{}'.format(pft_i)] raster_multiplication( temp_val_dict['delta_sv_weighted'], _TARGET_NODATA, frlign_path, _TARGET_NODATA, temp_val_dict['weighted_lignin'], _TARGET_NODATA) shutil.copyfile( temp_val_dict['sum_lignin'], temp_val_dict['operand_temp']) raster_sum( temp_val_dict['weighted_lignin'], _TARGET_NODATA, temp_val_dict['operand_temp'], _TARGET_NODATA, temp_val_dict['sum_lignin'], _TARGET_NODATA) for iel in [1, 2]: # calculate N or P flowing out of the pft-level state variable pygeoprocessing.raster_calculator( [(path, 1) for path in [ prev_sv_reg['{}c_{}_path'.format(state_variable, pft_i)], prev_sv_reg['{}e_{}_{}_path'.format( state_variable, iel, pft_i)], temp_val_dict['delta_c']]], calc_delta_iel, temp_val_dict['delta_iel'], gdal.GDT_Float32, _TARGET_NODATA) # subtract delta_iel from the pft-level state variable raster_difference( prev_sv_reg['{}e_{}_{}_path'.format( state_variable, iel, pft_i)], _SV_NODATA, temp_val_dict['delta_iel'], _TARGET_NODATA, sv_reg['{}e_{}_{}_path'.format(state_variable, iel, pft_i)], _SV_NODATA) # calculate delta iel weighted by % cover of this pft raster_multiplication( temp_val_dict['delta_iel'], _TARGET_NODATA, aligned_inputs['pft_{}'.format(pft_i)], pft_nodata, temp_val_dict['delta_sv_weighted'], _TARGET_NODATA) if iel == 1: shutil.copyfile( temp_val_dict['sum_weighted_delta_N'], temp_val_dict['operand_temp']) raster_sum( temp_val_dict['delta_sv_weighted'], _TARGET_NODATA, temp_val_dict['operand_temp'], _TARGET_NODATA, temp_val_dict['sum_weighted_delta_N'], _TARGET_NODATA) else: shutil.copyfile( temp_val_dict['sum_weighted_delta_P'], temp_val_dict['operand_temp']) raster_sum( temp_val_dict['delta_sv_weighted'], _TARGET_NODATA, temp_val_dict['operand_temp'], _TARGET_NODATA, temp_val_dict['sum_weighted_delta_P'], _TARGET_NODATA) # partition sum of C, N and P into structural and metabolic pools if state_variable == 'stded': lyr = 1 else: lyr = 2 raster_division( temp_val_dict['sum_lignin'], _TARGET_NODATA, temp_val_dict['sum_weighted_delta_C'], _TARGET_NODATA, temp_val_dict['fraction_lignin'], _TARGET_NODATA) partit( temp_val_dict['sum_weighted_delta_C'], temp_val_dict['sum_weighted_delta_N'], temp_val_dict['sum_weighted_delta_P'], temp_val_dict['fraction_lignin'], aligned_inputs['site_index'], site_param_table, lyr, sv_reg) # clean up temporary files shutil.rmtree(temp_dir) def calc_senescence_water_shading( aglivc, bgwfunc, fsdeth_1, fsdeth_3, fsdeth_4): """Calculate shoot death due to water stress and shading. In months where senescence is not scheduled to occur, some shoot death may still occur due to water stress and shading. Parameters: aglivc (numpy.ndarray): state variable, carbon in aboveground live biomass bgwfunc (numpy.ndarray): derived, effect of soil moisture on decomposition and shoot senescence fsdeth_1 (numpy.ndarray): parameter, maximum shoot death rate at very dry soil conditions fsdeth_3 (numpy.ndarray): parameter, additional fraction of shoots which die when aglivc is greater than fsdeth_4 fsdeth_4 (numpy.ndarray): parameter, threshold value for aglivc above which shading increases senescence Returns: fdeth, fraction of aboveground live biomass that is converted to standing dead """ valid_mask = ( (~numpy.isclose(aglivc, _SV_NODATA)) & (bgwfunc != _TARGET_NODATA) & (fsdeth_1 != _IC_NODATA) & (fsdeth_3 != _IC_NODATA) & (fsdeth_4 != _IC_NODATA)) fdeth = numpy.empty(aglivc.shape, dtype=numpy.float32) fdeth[:] = _TARGET_NODATA fdeth[valid_mask] = fsdeth_1[valid_mask] * (1. - bgwfunc[valid_mask]) shading_mask = ((aglivc > fsdeth_4) & valid_mask) fdeth[shading_mask] = fdeth[shading_mask] + fsdeth_3[shading_mask] fdeth[valid_mask] = numpy.minimum(fdeth[valid_mask], 1.) return fdeth def _shoot_senescence( pft_id_set, veg_trait_table, prev_sv_reg, month_reg, current_month, sv_reg): """Senescence of live material to standing dead. Live aboveground biomass is converted to standing dead according to senescence, which is specified for each pft to occur in one or more months of the year. In other months, some senescence may occur because of water stress or shading. During senescence, C, N and P move from agliv to stded state variables. Parameters: pft_id_set (set): set of integers identifying plant functional types veg_trait_table (dict): map of pft id to dictionaries containing plant functional type parameters prev_sv_reg (dict): map of key, path pairs giving paths to state variables for the previous month month_reg (dict): map of key, path pairs giving paths to intermediate calculated values that are shared between submodels current_month (int): month of the year, such that current_month=1 indicates January sv_reg (dict): map of key, path pairs giving paths to state variables for the current month Side effects: creates the rasters indicated by sv_reg['aglivc_<pft>_path'] for each pft sv_reg['aglive_1_<pft>_path'] for each pft sv_reg['aglive_2_<pft>_path'] for each pft sv_reg['crpstg_1_<pft>_path'] for each pft sv_reg['crpstg_2_<pft>_path'] for each pft modifies the rasters indicated by sv_reg['stdedc_<pft>_path'] for each pft sv_reg['stdede_1_<pft>_path'] for each pft sv_reg['stdede_2_<pft>_path'] for each pft Returns: None """ temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for val in [ 'operand_temp', 'fdeth', 'delta_c', 'delta_iel', 'vol_loss', 'to_storage', 'to_stdede']: temp_val_dict[val] = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict = {} for val in[ 'fsdeth_1', 'fsdeth_2', 'fsdeth_3', 'fsdeth_4', 'vlossp', 'crprtf_1', 'crprtf_2']: for pft_i in pft_id_set: target_path = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) param_val_dict['{}_{}'.format(val, pft_i)] = target_path fill_val = veg_trait_table[pft_i][val] pygeoprocessing.new_raster_from_base( prev_sv_reg['aglivc_{}_path'.format(pft_i)], target_path, gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[fill_val]) for pft_i in pft_id_set: if current_month == veg_trait_table[pft_i]['senescence_month']: temp_val_dict['fdeth'] = param_val_dict[ 'fsdeth_2_{}'.format(pft_i)] else: pygeoprocessing.raster_calculator( [(path, 1) for path in [ prev_sv_reg['aglivc_{}_path'.format(pft_i)], month_reg['bgwfunc'], param_val_dict['fsdeth_1_{}'.format(pft_i)], param_val_dict['fsdeth_3_{}'.format(pft_i)], param_val_dict['fsdeth_4_{}'.format(pft_i)]]], calc_senescence_water_shading, temp_val_dict['fdeth'], gdal.GDT_Float32, _TARGET_NODATA) # change in C flowing from aboveground live biomass to standing dead raster_multiplication( temp_val_dict['fdeth'], _TARGET_NODATA, prev_sv_reg['aglivc_{}_path'.format(pft_i)], _SV_NODATA, temp_val_dict['delta_c'], _TARGET_NODATA) raster_difference( prev_sv_reg['aglivc_{}_path'.format(pft_i)], _SV_NODATA, temp_val_dict['delta_c'], _TARGET_NODATA, sv_reg['aglivc_{}_path'.format(pft_i)], _SV_NODATA) shutil.copyfile( sv_reg['stdedc_{}_path'.format(pft_i)], temp_val_dict['operand_temp']) raster_sum( temp_val_dict['operand_temp'], _SV_NODATA, temp_val_dict['delta_c'], _TARGET_NODATA, sv_reg['stdedc_{}_path'.format(pft_i)], _SV_NODATA) for iel in [1, 2]: # change in N or P flowing from aboveground live biomass to dead raster_multiplication( temp_val_dict['fdeth'], _TARGET_NODATA, prev_sv_reg['aglive_{}_{}_path'.format(iel, pft_i)], _SV_NODATA, temp_val_dict['delta_iel'], _TARGET_NODATA) raster_difference( prev_sv_reg['aglive_{}_{}_path'.format(iel, pft_i)], _SV_NODATA, temp_val_dict['delta_iel'], _TARGET_NODATA, sv_reg['aglive_{}_{}_path'.format(iel, pft_i)], _SV_NODATA) if iel == 1: # volatilization loss of N raster_multiplication( temp_val_dict['delta_iel'], _TARGET_NODATA, param_val_dict['vlossp_{}'.format(pft_i)], _IC_NODATA, temp_val_dict['vol_loss'], _TARGET_NODATA) shutil.copyfile( temp_val_dict['delta_iel'], temp_val_dict['operand_temp']) raster_difference( temp_val_dict['operand_temp'], _TARGET_NODATA, temp_val_dict['vol_loss'], _TARGET_NODATA, temp_val_dict['delta_iel'], _TARGET_NODATA) # a fraction of N and P goes to crop storage raster_multiplication( temp_val_dict['delta_iel'], _TARGET_NODATA, param_val_dict['crprtf_{}_{}'.format(iel, pft_i)], _IC_NODATA, temp_val_dict['to_storage'], _TARGET_NODATA) raster_sum( prev_sv_reg['crpstg_{}_{}_path'.format(iel, pft_i)], _SV_NODATA, temp_val_dict['to_storage'], _TARGET_NODATA, sv_reg['crpstg_{}_{}_path'.format(iel, pft_i)], _SV_NODATA) # the rest goes to standing dead biomass raster_difference( temp_val_dict['delta_iel'], _TARGET_NODATA, temp_val_dict['to_storage'], _TARGET_NODATA, temp_val_dict['to_stdede'], _TARGET_NODATA) shutil.copyfile( sv_reg['stdede_{}_{}_path'.format(iel, pft_i)], temp_val_dict['operand_temp']) raster_sum( temp_val_dict['operand_temp'], _SV_NODATA, temp_val_dict['to_stdede'], _TARGET_NODATA, sv_reg['stdede_{}_{}_path'.format(iel, pft_i)], _SV_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def convert_biomass_to_C(biomass_path, c_path): """Convert from grams of biomass to grams of carbon. The root:shoot submodel calculates potential growth in units of grams of biomass, but the growth submodel calculates actual growth from that potential growth in units of grams of carbon. Convert biomass to carbon using a conversion factor of 2.5. Parameters: biomass_path (string): path to raster containing grams of biomass c_path (string): path to raster that should contain the equivalent grams of carbon Side effects: modifies or creates the raster indicated by `c_path` Returns: None """ def convert_op(biomass): """Convert grams of biomass to grams of carbon.""" valid_mask = (biomass != _TARGET_NODATA) carbon = numpy.empty(biomass.shape, dtype=numpy.float32) carbon[:] = _TARGET_NODATA carbon[valid_mask] = biomass[valid_mask] / 2.5 return carbon pygeoprocessing.raster_calculator( [(biomass_path, 1)], convert_op, c_path, gdal.GDT_Float32, _TARGET_NODATA) def restrict_potential_growth(potenc, availm_1, availm_2, snfxmx_1): """Restrict potential growth according to mineral nutrients. Limit potential growth by the availability of mineral N and P. Growth only occurs if there is some availability of both mineral elements. Line 63 Restrp.f Parameters: potenc (numpy.ndarray): potential C production (g C) availm_1 (numpy.ndarray): derived, total mineral N available to this pft availm_2 (numpy.ndarray): derived, total mineral P available to this pft snfxmx_1 (numpy.ndarray): parameter, maximum symbiotic N fixation rate Returns: potenc_lim_minerl, potential C production limited by availability of mineral nutrients """ valid_mask = ( (potenc != _TARGET_NODATA) & (availm_1 != _TARGET_NODATA) & (availm_2 != _TARGET_NODATA) & (snfxmx_1 != _IC_NODATA)) potenc_lim_minerl = numpy.empty(potenc.shape, dtype=numpy.float32) potenc_lim_minerl[:] = _TARGET_NODATA potenc_lim_minerl[valid_mask] = 0 growth_mask = ( ((availm_1 > 0) | (snfxmx_1 > 0)) & (availm_2 > 0) & valid_mask) potenc_lim_minerl[growth_mask] = potenc[growth_mask] return potenc_lim_minerl def c_uptake_aboveground(cprodl, rtsh): """Calculate uptake of C from atmosphere to aboveground live biomass. Given total C predicted to flow into new growth and the root:shoot ratio of new growth, calculate the flow of C from the atmosphere into aboveground live biomass. Lines 137-146 Growth.f Parameters: cprodl (numpy.ndarray): derived, c production limited by nutrient availability rtsh (numpy.ndarray): derived, root/shoot ratio of new production Returns: delta_aglivc, change in C in aboveground live biomass """ valid_mask = ( (cprodl != _TARGET_NODATA) & (rtsh != _TARGET_NODATA)) delta_aglivc = numpy.empty(cprodl.shape, dtype=numpy.float32) delta_aglivc[:] = _TARGET_NODATA delta_aglivc[valid_mask] = ( cprodl[valid_mask] * (1. - rtsh[valid_mask] / (rtsh[valid_mask] + 1.))) return delta_aglivc def c_uptake_belowground(bglivc, cprodl, rtsh): """Do uptake of C from atmosphere to belowground live biomass. Given total C predicted to flow into new growth and the root:shoot ratio of new growth, perform the flow of C from the atmosphere into belowground live biomass. Lines 148-156 Growth.f Parameters: bglivc (numpy.ndarray): state variable, existing C in belowground live biomass cprodl (numpy.ndarray): derived, c production limited by nutrient availability rtsh (numpy.ndarray): derived, root/shoot ratio of new production Returns: modified_bglivc, modified C in belowground live biomass """ valid_mask = ( (~numpy.isclose(bglivc, _SV_NODATA)) & (cprodl != _TARGET_NODATA) & (rtsh != _TARGET_NODATA)) c_prod_belowground = numpy.empty(bglivc.shape, dtype=numpy.float32) c_prod_belowground[:] = _TARGET_NODATA c_prod_belowground[valid_mask] = ( cprodl[valid_mask] * (rtsh[valid_mask] / (rtsh[valid_mask] + 1.))) modified_bglivc = numpy.empty(bglivc.shape, dtype=numpy.float32) modified_bglivc[:] = _SV_NODATA modified_bglivc[valid_mask] = ( bglivc[valid_mask] + c_prod_belowground[valid_mask]) return modified_bglivc def calc_uptake_source(return_type): """Calculate uptake of nutrient from available sources.""" def _uptake( eavail_iel, eup_above_iel, eup_below_iel, plantNfix, storage_iel, iel): """Calculate N or P taken up from one source. Given the N or P predicted to flow into new above- and belowground production, calculate how much of that nutrient will be taken from the crop storage pool and how much will be taken from soil. For N, some of the necessary uptake maybe also come from symbiotic N fixation. Parameters: eavail_iel (numpy.ndarray): derived, total iel available to this plant functional type eup_above_iel (numpy.ndarray): derived, iel in new aboveground production eup_below_iel (numpy.ndarray): derived, iel in new belowground production plantNfix (numpy.ndarray): derived, symbiotic N fixed by this plant functional type storage_iel (numpy.ndarray): state variable, iel in crop storage pool iel (integer): index identifying N or P Returns: uptake_storage, uptake from crop storage pool, if return_type is 'uptake_storage' uptake_soil, uptake from mineral content of soil layers accessible by the plant function type, if return_type is 'uptake_soil' uptake_Nfix, uptake from symbiotically fixed nitrogen, if return_type is 'uptake_Nfix' """ valid_mask = ( (eup_above_iel != _TARGET_NODATA) & (eup_below_iel != _TARGET_NODATA) & (plantNfix != _TARGET_NODATA) & (~numpy.isclose(storage_iel, _SV_NODATA))) eprodl_iel = numpy.empty(eup_above_iel.shape, dtype=numpy.float32) eprodl_iel[:] = _TARGET_NODATA eprodl_iel[valid_mask] = ( eup_above_iel[valid_mask] + eup_below_iel[valid_mask]) uptake_storage =
numpy.empty(eup_above_iel.shape, dtype=numpy.float32)
numpy.empty
""" Analyze spike shapes - pulled out of IVCurve 2/6/2016 pbm. Allows routine to be used to analyze spike trains independent of acq4's data models. Create instance, then call setup to define the "Clamps" object and the spike threshold. The Clamps object must have the following variables defined: commandLevels (current injection levels, list) time_base (np.array of times corresponding to traces) data_mode (string, indicating current or voltgae clamp) tstart (time for start of looking at spikes; ms) tend (time to stop looking at spikes; ms) trace (the data trace itself, numpy array records x points) sample_interval (time between samples, sec) values (command waveforms; why it is called this in acq4 is a mystery) Note that most of the results from this module are accessed either as class variables, or through the class variable analysis_summary, a dictionary with key analysis results. IVCurve uses the analysis_summary to post results to an sql database. <NAME>, Ph.D. 2016-2019 for Acq4 (and beyond) """ from collections import OrderedDict import os import os.path from pathlib import Path import inspect import sys import itertools import functools import numpy as np import scipy from . import Utility # pbm's utilities... from . import Fitting # pbm's fitting stuff... import pprint import time this_source_file = 'ephysanalysis.SpikeAnalysisrc' class SpikeAnalysis(): def __init__(self): pass self.threshold = 0. self.Clamps = None self.analysis_summary = {} self.verbose = False self.FIGrowth = 1 # use function FIGrowth1 (can use simpler version FIGrowth 2 also) self.analysis_summary['FI_Growth'] = [] # permit analysis of multiple growth functions. self.detector = 'argrelmax' def setup(self, clamps=None, threshold=None, refractory:float=0.0007, peakwidth:float=0.001, verify=False, interpolate=True, verbose=False, mode='peak', min_halfwidth=0.010, data_time_units:str = 's', data_volt_units:str='V'): """ configure the inputs to the SpikeAnalysis class Parameters --------- clamps : class (default: None) PatchEphys clamp data holding/accessing all ephys data for this analysis threshold : float (default: None) Voltage threshold for spike detection refractory : float (default 0.0007) Minimum time between detected spikes, in seconds (or units of the clamp time base) peakwidth : float (default: 0.001) When using "peak" as method in findspikes, this is the peak width maximum in sec min_halfwidth : float (default: 0.010) minimum spike half width in seconds. Default value is deliberately large... verify : boolean (default: False) interpolate : boolean (default: True) Use interpolation to get spike threshold time and half-widths mode : string (default: 'peak') if using detector "peak", this is mode passed to findspikes verbose : boolean (default: False) Set true to get lots of print out while running - used mostly for debugging. """ if clamps is None or threshold is None: raise ValueError("Spike Analysis requires defined clamps and threshold") self.Clamps = clamps assert data_time_units in ['s', 'ms'] assert data_volt_units in ['V', 'mV'] self.time_units = data_time_units self.volt_units = data_volt_units # needed by spike detector for data conversion self.threshold = threshold self.refractory = refractory self.interpolate = interpolate # use interpolation on spike thresholds... self.peakwidth = peakwidth self.min_halfwidth = min_halfwidth self.verify = verify self.verbose = verbose self.mode = mode self.ar_window = 0.1 self.ar_lastspike = 0.075 self.min_peaktotrough = 0.010 # change in V on falling phase to be considered a spike self.max_spike_look = 0.010 # msec over which to measure spike widths def set_detector(self, detector:str='argrelmax'): assert detector in ['argrelmax', 'threshold', 'Kalluri'] self.detector = detector def analyzeSpikes(self, reset=True): """ analyzeSpikes: Using the threshold set in the control panel, count the number of spikes in the stimulation window (self.Clamps.tstart, self.Clamps.tend) Updates the spike plot(s). The following class variables are modified upon successful analysis and return: self.spikecount: a 1-D numpy array of spike counts, aligned with the current (command) self.adapt_ratio: the adaptation ratio of the spike train self.fsl: a numpy array of first spike latency for each command level self.fisi: a numpy array of first interspike intervals for each command level self.nospk: the indices of command levels where no spike was detected self.spk: the indices of command levels were at least one spike was detected self.analysis_summary : Dictionary of results. Parameters ---------- None Returns ------- Nothing, but see the list of class variables that are modified """ if reset: self.analysis_summary['FI_Growth'] = [] # permit analysis of multiple growth functions. twin = self.Clamps.tend - self.Clamps.tstart # measurements window in seconds maxspkrate = 50 # max rate to count in adaptation is 50 spikes/second minspk = 4 maxspk = int(maxspkrate*twin) # scale max dount by range of spike counts #print('max spike rate: ', maxspk) ntr = len(self.Clamps.traces) self.spikecount = np.zeros(ntr) self.fsl = np.zeros(ntr) self.fisi = np.zeros(ntr) ar = np.zeros(ntr) self.allisi = [] self.spikes = [[] for i in range(ntr)] self.spikeIndices = [[] for i in range(ntr)] #print 'clamp start/end: ', self.Clamps.tstart, self.Clamps.tend lastspikecount = 0 U = Utility.Utility() for i in range(ntr): # this is where we should parallelize the analysis for spikes spikes = U.findspikes(self.Clamps.time_base, np.array(self.Clamps.traces[i]), self.threshold, t0=self.Clamps.tstart, t1=self.Clamps.tend, dt=self.Clamps.sample_interval, mode=self.mode, # mode to use for finding spikes interpolate=self.interpolate, detector=self.detector, mindip = 1e-2, refract=self.refractory, peakwidth=self.peakwidth, data_time_units=self.time_units, data_volt_units=self.volt_units, verify=self.verify, debug=False) # print (ntr, i, self.Clamps.values[i], len(spikes)) if len(spikes) == 0: # print ('no spikes found') continue spikes = np.array(spikes) self.spikes[i] = spikes # print 'found %d spikes in trace %d' % (len(spikes), i) self.spikeIndices[i] = [np.argmin(np.fabs(self.Clamps.time_base-t)) for t in spikes] self.spikecount[i] = len(spikes) self.fsl[i] = (spikes[0] - self.Clamps.tstart)*1e3 if len(spikes) > 1: self.fisi[i] = (spikes[1] - spikes[0])*1e3 # first ISI self.allisi.append(np.diff(spikes)*1e3) # for Adaptation ratio analysis: limit spike rate, and also only on monotonic increase in rate # 8/2018: # AR needs to be tethered to time into stimulus # Here we return a standardized ar measured during the first 100 msec # (standard ar) if (minspk <= len(spikes)) and (self.spikecount[i] > lastspikecount): spx = spikes[np.where(spikes-self.Clamps.tstart < self.ar_window)] # default is 100 msec if len(spx) >= 4: # at least 4 spikes if spx[-1] > self.ar_lastspike+self.Clamps.tstart: # default 75 msec misi = np.mean(np.diff(spx[-2:]))*1e3 # last ISIs in the interval ar[i] = misi / self.fisi[i] lastspikecount = self.spikecount[i] # update rate (sets max rate) iAR = np.where(ar > 0) # valid AR and monotonically rising self.adapt_ratio = np.nan if len(ar[iAR]) > 0: self.adapt_ratio = np.mean(ar[iAR]) # only where we made the measurement self.ar = ar # stores all the ar values self.analysis_summary['AdaptRatio'] = self.adapt_ratio # only the valid values self.nospk = np.where(self.spikecount == 0) self.spk = np.where(self.spikecount > 0)[0] self.analysis_summary['FI_Curve'] = np.array([self.Clamps.values, self.spikecount]) self.analysis_summary['FiringRate'] = np.max(self.spikecount)/(self.Clamps.tend - self.Clamps.tstart) self.spikes_counted = True # self.update_SpikePlots() def analyzeSpikes_brief(self, mode='baseline'): """ analyzeSpikes_brief: Using the threshold set in the control panel, count the number of spikes in a window and fill out ana analysis summary dict with the spike latencies in that window (from 0 time) Parameters ---------- mode: str (default : baseline) baseline: from 0 to self.Clamps.tstart poststimulus : from self.Clamps.tend to end of trace evoked : from self.Clamps.start to self.Clamps.end Returns: ------- Nothing, but see the list of class variables that are modified Class variable modified is the self.analysis_summary : Dictionary of spike times. Key is 'spikes_baseline' 'spikes_poststimulus' 'spikes_evoked' according to the mode in the call """ if mode == 'baseline': twin = [0., self.Clamps.tstart] elif mode == 'evoked': twin = [self.Clamps.tstart,self.Clamps.tend] elif mode == 'poststimulus': twin = [self.Clamps.tend, np.max(self.Clamps.time_base)] else: raise ValueError(f'{thissourcefile:s}:: analyzeSpikes_brief requires mode to be "baseline", "evoked", or "poststimulus"') ntr = len(self.Clamps.traces) allspikes = [[] for i in range(ntr)] spikeIndices = [[] for i in range(ntr)] U = Utility.Utility() for i in range(ntr): spikes = U.findspikes(self.Clamps.time_base, np.array(self.Clamps.traces[i]), self.threshold, t0=twin[0], t1=twin[1], dt=self.Clamps.sample_interval, mode=self.mode, # mode to use for finding spikes interpolate=self.interpolate, detector=self.detector, refract=self.refractory, peakwidth=self.peakwidth, verify=self.verify, debug=False) if len(spikes) == 0: #print 'no spikes found' continue allspikes[i] = spikes self.analysis_summary[mode+'_spikes'] = allspikes def _timeindex(self, t): """ Find the index into the time_base of the Clamps structure that corresponds to the time closest to t Parameters ---------- t : float (time, no default) Returns ------- index : int (index to the closest time) """ return np.argmin(self.Clamps.time_base-t) def _initialize_summarymeasures(self): self.analysis_summary['AP1_Latency'] = np.inf self.analysis_summary['AP1_HalfWidth'] = np.inf self.analysis_summary['AP1_HalfWidth_interpolated'] = np.inf self.analysis_summary['AP2_Latency'] = np.inf self.analysis_summary['AP2_HalfWidth'] = np.inf self.analysis_summary['AP2_HalfWidth_interpolated'] = np.inf self.analysis_summary['FiringRate_1p5T'] = np.inf self.analysis_summary['AHP_Depth'] = np.inf # convert to mV def analyzeSpikeShape(self, printSpikeInfo=False, begin_dV=12.0): """analyze the spike shape. Does analysis of ONE protocol, all traces. Based on the analysis from Druckman et al. Cerebral Cortex, 2013 The results of the analysis are stored in the SpikeAnalysis object as SpikeAnalysis.analysis_summary, a dictionary with specific keys. Also available are the raw spike measures, in the 'spikes' dictionary of the analysis_summary (spike shape dict, with keys by trace number, each trace with a dict of values) Every spike is measured, and a number of points on the waveform are defined for each spike, including the peak, the half-width on the rising phase, half-width on the falling phase, the peak of the AHP, the peak-trough time (AP peak to AHP peak), and a beginning, based on the slope (set in begin_dV) Parameters ---------- printSpikeInfo : Boolean (default: Fase) Flag; when set prints arrays, etc, for debugging purposes begin_dV : float (default: 12 mV/ms) Slope used to define onset of the spike. The default value is from Druckmann et al; change this at your own peril! Returns ------- Nothing (but see doc notes above) """ self._initialize_summarymeasures() self.madeplot = False ntr = len(self.Clamps.traces) # print 'analyzespikeshape, self.spk: ', self.spk self.spikeShape = OrderedDict() rmps = np.zeros(ntr) self.iHold_i = np.zeros(ntr) U = Utility.Utility() for i in range(ntr): # print('rec nspk: ', i, len(self.spikes[i])) if len(self.spikes[i]) == 0: continue if printSpikeInfo: print(f'{this_source_file:s}:: spikes: ', self.spikes[i]) print((np.array(self.Clamps.values))) print((len(self.Clamps.traces))) (rmps[i], r2) = U.measure('mean', self.Clamps.time_base, self.Clamps.traces[i], 0.0, self.Clamps.tstart) (self.iHold_i[i], r2) = U.measure('mean', self.Clamps.time_base, self.Clamps.cmd_wave[i], 0.0, self.Clamps.tstart) trspikes = OrderedDict() for j in range(len(self.spikes[i])): # print('i,j,etc: ', i, j, begin_dV) thisspike = self.analyze_one_spike(i, j, begin_dV) if thisspike is not None: trspikes[j] = thisspike self.spikeShape[i] = trspikes self.iHold = np.mean(self.iHold_i) self.analysis_summary['spikes'] = self.spikeShape # save in the summary dictionary too self.analysis_summary['iHold'] = self.iHold self.analysis_summary['pulseDuration'] = self.Clamps.tend - self.Clamps.tstart if len(self.spikeShape.keys()) > 0: # only try to classify if there are spikes self.getClassifyingInfo() # build analysis summary here as well. if printSpikeInfo: pp = pprint.PrettyPrinter(indent=4) for m in sorted(self.spikeShape.keys()): print(('----\nTrace: %d has %d APs' % (m, len(list(self.spikeShape[m].keys()))))) for n in sorted(self.spikeShape[m].keys()): pp.pprint(self.spikeShape[m][n]) def analyze_one_spike(self, i, j, begin_dV): thisspike = {'trace': i, 'AP_number': j, 'AP_beginIndex': None, 'AP_endIndex': None, 'AP_peakIndex': None, 'peak_T': None, 'peak_V': None, 'AP_Latency': None, 'AP_beginV': None, 'halfwidth': None, 'halfwidth_interpolated': None, 'trough_T': None, 'trough_V': None, 'peaktotrough': None, 'current': None, 'iHold': None, 'pulseDuration': None, 'tstart': self.Clamps.tstart} # initialize the structure thisspike['current'] = self.Clamps.values[i] - self.iHold_i[i] thisspike['iHold'] = self.iHold_i[i] thisspike['pulseDuration'] = self.Clamps.tend - self.Clamps.tstart # in seconds thisspike['AP_peakIndex'] = self.spikeIndices[i][j] thisspike['peak_T'] = self.Clamps.time_base[thisspike['AP_peakIndex']] thisspike['peak_V'] = self.Clamps.traces[i][thisspike['AP_peakIndex']] # max voltage of spike thisspike['tstart'] = self.Clamps.tstart # find the minimum going forward - that is AHP min dt = (self.Clamps.time_base[1]-self.Clamps.time_base[0]) dv = np.diff(self.Clamps.traces[i])/dt # find end of spike (either top of next spike, or end of trace) k = self.spikeIndices[i][j] + 1 # point to next spike if j < self.spikecount[i] - 1: # kend = self.spikeIndices[i][j+1] else: kend = int(self.spikeIndices[i][j]+self.max_spike_look/dt) if kend >= dv.shape[0]: return(thisspike) # end of spike would be past end of trace else: if kend < k: kend = k + 1 km = np.argmin(dv[k:kend]) + k # Find trough after spike and calculate peak to trough kmin = np.argmin(self.Clamps.traces[i][km:kend])+km thisspike['AP_endIndex'] = kmin thisspike['trough_T'] = self.Clamps.time_base[thisspike['AP_endIndex']] thisspike['trough_V'] = self.Clamps.traces[i][kmin] if thisspike['AP_endIndex'] is not None: thisspike['peaktotrough'] = thisspike['trough_T'] - thisspike['peak_T'] # find points on spike waveform # because index is to peak, we look for previous spike k = self.spikeIndices[i][j] # print('i, j, spikeindices: ', i, j, self.spikeIndices[i][j]) # print('k: dt: ', k, dt) if j > 0: kbegin = self.spikeIndices[i][j-1] # index to previous spike start else: kbegin = k - int(0.002/dt) # for first spike - 2 msec prior only if k <= kbegin: k = kbegin + 2 if k > len(dv): # end of block of data, so can not measure return(thisspike) # print('kbegin, k: ', kbegin, k) try: km = np.argmax(dv[kbegin:k]) + kbegin except: print(f'{this_source_file:s}:: kbdgin, k: ', kbegin, k) print(len(dv)) raise if ((km - kbegin) < 1): km = kbegin + int((k - kbegin)/2.) + 1 kthresh = np.argmin(np.fabs(dv[kbegin:km] - begin_dV)) + kbegin # point where slope is closest to begin # print('kthresh, kbegin: ', kthresh, kbegin) # save values in dict here thisspike['AP_beginIndex'] = kthresh thisspike['AP_Latency'] = self.Clamps.time_base[kthresh] thisspike['AP_beginV'] = self.Clamps.traces[i][thisspike['AP_beginIndex']] # if successful in defining spike start/end, calculate half widths in two ways: # closest points in raw data, and by interpolation if ( (thisspike['AP_beginIndex'] is not None) and (thisspike['AP_beginIndex'] > 0) and (thisspike['AP_endIndex'] is not None) and (thisspike['AP_beginIndex'] < thisspike['AP_peakIndex']) and (thisspike['AP_peakIndex'] < thisspike['AP_endIndex']) ): halfv = 0.5*(thisspike['peak_V'] + thisspike['AP_beginV']) tr = np.array(self.Clamps.traces[i]) xr = self.Clamps.time_base kup = np.argmin(np.fabs(tr[thisspike['AP_beginIndex']:thisspike['AP_peakIndex']] - halfv)) kup += thisspike['AP_beginIndex'] kdown = np.argmin(np.fabs(tr[thisspike['AP_peakIndex']:thisspike['AP_endIndex']] - halfv)) kdown += thisspike['AP_peakIndex'] if kup is not None and kdown is not None: thisspike['halfwidth'] = xr[kdown] - xr[kup] thisspike['hw_up'] = xr[kup] - xr[thisspike['AP_peakIndex']] thisspike['hw_down'] = xr[thisspike['AP_peakIndex']] - xr[kdown] thisspike['hw_v'] = halfv # interpolated spike hwup, down and width pkt = xr[thisspike['AP_peakIndex']] if tr[kup] <= halfv: vi = tr[kup-1:kup+1] xi = xr[kup-1:kup+1] else: vi = tr[kup:kup+2] xi = xr[kup:kup+2] m1 = (vi[1]-vi[0])/(xi[1]-xi[0]) b1 = vi[1] - m1*xi[1] if m1 == 0.0 or np.std(tr) == 0.0: # print('a: ', vi[1], vi[0], kup, tr[kup:kup+2], tr[kup-1:kup+1], tr[kup], halfv) return(thisspike) t_hwup = (halfv-b1)/m1 if tr[kdown] <= halfv: vi = tr[kdown:kdown+2] xi = xr[kdown:kdown+2] u='a' else: vi = tr[kdown-1:kdown+1] xi = xr[kdown-1:kdown+1] u='b' m2 = (vi[1]-vi[0])/(xi[1]-xi[0]) b2 = vi[1] - m2*xi[1] if m2 == 0.0 or np.std(tr) == 0.0: # print('b: ', vi[1], vi[0], kup , tr[kdown-1:kdown+1], tr[kdown:kdown+2], tr[kdown], halfv) return(thisspike) t_hwdown = (halfv-b2)/m2 thisspike['halfwidth'] = t_hwdown-t_hwup # import matplotlib.pyplot as mpl # fig, ax = mpl.subplots(1,1) # ax.plot(xr[kup-10:kdown+10], tr[kup-10:kdown+10]) # ax.plot(t_hwdown, halfv, 'ro') # ax.plot(t_hwup, halfv, 'bx') # mpl.show() if thisspike['halfwidth'] > self.min_halfwidth: # too broad to be acceptable if self.verbose: print(f'{this_source_file:s}::\n spikes > min half width', thisspike['halfwidth']) print(' halfv: ', halfv, thisspike['peak_V'], thisspike['AP_beginV']) thisspike['halfwidth'] = None thisspike['halfwidth_interpolated'] = None else: thisspike['halfwidth_interpolated'] = t_hwdown - t_hwup pkvI = tr[thisspike['AP_peakIndex']] pkvM = np.max(tr[thisspike['AP_beginIndex']:thisspike['AP_endIndex']]) pkvMa = np.argmax(tr[thisspike['AP_beginIndex']:thisspike['AP_endIndex']]) if pkvI != pkvM: pktrap = True return(thisspike) def getIVCurrentThresholds(self): """ figure out "threshold" for spike, get 150% and 300% points. Parameters ---------- None Returns ------- tuple: (int, int) The tuple contains the index to command threshold for spikes, and 150% of that threshold The indices are computed to be as close to the command step values that are actually used (so, the threshold is absolute; the 150% value will be the closest estimate given the step sizes used to collect the data) """ icmd = [] # list of command currents that resulted in spikes. for m in sorted(self.spikeShape.keys()): n = len(list(self.spikeShape[m].keys())) # number of spikes in the trace for n in list(self.spikeShape[m].keys()): icmd.append(self.spikeShape[m][n]['current']) icmd = np.array(icmd) try: iamin = np.argmin(icmd) except: print(f'{this_source_file:s}: Problem with command: ') print('self.spikeShape.keys(): ', self.spikeShape.keys()) print(' m = ', m) print(' n = ', n) print(' current? ', self.spikeShape[m][n]['current']) raise ValueError(f'{this_source_file:s}:getIVCurrentThresholds - icmd seems to be ? : ', icmd) imin = np.min(icmd) ia150 = np.argmin(np.abs(1.5*imin-icmd)) iacmdthr = np.argmin(np.abs(imin-self.Clamps.values)) ia150cmdthr = np.argmin(np.abs(icmd[ia150] - self.Clamps.values)) return (iacmdthr, ia150cmdthr) # return threshold indices into self.Clamps.values array at threshold and 150% point def getClassifyingInfo(self): """ Adds the classifying information according to Druckmann et al., Cerebral Cortex, 2013 to the analysis summary Parameters ---------- None Returns ------- Nothing Modifies the class analysis_summary dictionary to contain a number of results regarding the AP train, including the first and second spike latency, the first and second spike halfwidths, the firing rate at 150% of threshold, and the depth of the AHP """ (jthr, j150) = self.getIVCurrentThresholds() # get the indices for the traces we need to pull data from jthr = int(jthr) j150 = int(j150) if j150 not in list(self.spikeShape.keys()): return if jthr == j150 and self.verbose: #print '\n%s:' % self.filename print('Threshold current T and 1.5T the same: using next up value for j150') print('jthr, j150, len(spikeShape): ', jthr, j150, len(self.spikeShape)) print('1 ', self.spikeShape[jthr][0]['current']*1e12) print('2 ', self.spikeShape[j150+1][0]['current']*1e12) print(' >> Threshold current: %8.3f 1.5T current: %8.3f, next up: %8.3f' % (self.spikeShape[jthr][0]['current']*1e12, self.spikeShape[j150][0]['current']*1e12, self.spikeShape[j150+1][0]['current']*1e12)) j150 = jthr + 1 spikesfound = False if len(self.spikeShape[j150]) >= 1 and (0 in list(self.spikeShape[j150].keys())) and self.spikeShape[j150][0]['halfwidth'] is not None: self.analysis_summary['AP1_Latency'] = (self.spikeShape[j150][0]['AP_Latency'] - self.spikeShape[j150][0]['tstart'])*1e3 self.analysis_summary['AP1_HalfWidth'] = self.spikeShape[j150][0]['halfwidth']*1e3 if self.spikeShape[j150][0]['halfwidth_interpolated'] is not None: self.analysis_summary['AP1_HalfWidth_interpolated'] = self.spikeShape[j150][0]['halfwidth_interpolated']*1e3 else: self.analysis_summary['AP1_HalfWidth_interpolated'] = np.nan spikesfound = True if len(self.spikeShape[j150]) >= 2 and (1 in list(self.spikeShape[j150].keys())) and self.spikeShape[j150][1]['halfwidth'] is not None: self.analysis_summary['AP2_Latency'] = (self.spikeShape[j150][1]['AP_Latency'] - self.spikeShape[j150][1]['tstart'])*1e3 self.analysis_summary['AP2_HalfWidth'] = self.spikeShape[j150][1]['halfwidth']*1e3 if self.spikeShape[j150][1]['halfwidth_interpolated'] is not None: self.analysis_summary['AP2_HalfWidth_interpolated'] = self.spikeShape[j150][1]['halfwidth_interpolated']*1e3 else: self.analysis_summary['AP2_HalfWidth_interpolated'] = np.nan if spikesfound: rate = len(self.spikeShape[j150])/self.spikeShape[j150][0]['pulseDuration'] # spikes per second, normalized for pulse duration AHPDepth = self.spikeShape[j150][0]['AP_beginV'] - self.spikeShape[j150][0]['trough_V'] # from first spike # first AHP depth print(f"AHP: Begin = {self.spikeShape[j150][0]['AP_beginV']*1e3:.2f} mV") print(f" Trough = {self.spikeShape[j150][0]['trough_V']*1e3:.2f} mV") print(f" Depth = {AHPDepth*1e3:.2f} mV") self.analysis_summary['FiringRate_1p5T'] = rate self.analysis_summary['AHP_Depth'] = AHPDepth*1e3 # convert to mV def fitOne(self, x=None, yd=None, info='', function=None, fixNonMonotonic=True, excludeNonMonotonic=False): """Fit the FI plot to an equation that is piecewise linear up to the threshold called Ibreak, then (1-exp(F/Frate)) for higher currents Parameters ---------- x : numpy array (no default) The x data to fit (typically an array of current levels) yd : numpy array (no default) The y data to fit (typically an array of spike counts) if x and yd are none, we extrace from the 'FI_Curve' for this cell. info : string (default: '') information to add to a fitted plot fixNonMonotonic : Boolean (default: True) If True, only use data up to the maximal firing rate, discarding the remainder of the steps under the assumption that the cell is entering depolarization block. excludeNonMonotonic : Boolean (default: False) if True, does not even try to fit, and returns None Returns ------- None if there is no fitting to be done (excluding non-monotonic or no spikes) tuple of (fpar, xf, yf, names, error, f, func) These are the fit parameters """ # print('fitone called') if function is not None: self.FIGrowth = function if x is None: # use class data x = self.analysis_summary['FI_Curve'][0]*1e9 yd = self.analysis_summary['FI_Curve'][1]/self.analysis_summary['pulseDuration'] # convert to rate in spikes/second if self.FIGrowth == 'fitOneOriginal': ymax = np.max(yd) ymax_a = 0.8*ymax if ymax <= 0.: return(None) nonmono = 0 if fixNonMonotonic: # clip at max firing rate ydiff =
np.gradient(yd, x)
numpy.gradient
# Copyright 2019 The Johns Hopkins University Applied Physics Laboratory # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/env python import argparse import configparser import os import sys import tempfile import math import boto3 from intern.remote.boss import BossRemote from intern.resource.boss.resource import * import numpy as np from requests import HTTPError def _generate_config(token, args): boss_host = os.getenv("BOSSDB_HOST", args.host) print(boss_host) cfg = configparser.ConfigParser() cfg["Project Service"] = {} cfg["Metadata Service"] = {} cfg["Volume Service"] = {} project = cfg["Project Service"] project["protocol"] = "https" project["host"] = boss_host project["token"] = token metadata = cfg["Metadata Service"] metadata["protocol"] = "https" metadata["host"] = boss_host metadata["token"] = token volume = cfg["Volume Service"] volume["protocol"] = "https" volume["host"] = boss_host volume["token"] = token return cfg def boss_pull_cutout(args): if args.config: rmt = BossRemote(args.config) else: cfg = _generate_config(args.token, args) with open("intern.cfg", "w") as f: cfg.write(f) rmt = BossRemote("intern.cfg") COLL_NAME = args.coll EXP_NAME = args.exp CHAN_NAME = args.chan # Create or get a channel to write to chan_setup = ChannelResource( CHAN_NAME, COLL_NAME, EXP_NAME, type=args.itype, datatype=args.dtype ) try: chan_actual = rmt.get_project(chan_setup) except HTTPError: chan_actual = rmt.create_project(chan_setup) # get coordinate frame to determine padding bounds cfr = CoordinateFrameResource(args.coord) cfr_actual = rmt.get_project(cfr) x_min_bound = cfr_actual.x_start x_max_bound = cfr_actual.x_stop y_min_bound = cfr_actual.y_start y_max_bound = cfr_actual.y_stop z_min_bound = cfr_actual.z_start z_max_bound = cfr_actual.z_stop print("Data model setup.") xmin = np.max([x_min_bound, args.xmin - args.padding]) xmax = np.min([x_max_bound, args.xmax + args.padding]) x_rng = [xmin, xmax] ymin = np.max([y_min_bound, args.ymin - args.padding]) ymax = np.min([y_max_bound, args.ymax + args.padding]) y_rng = [ymin, ymax] zmin = np.max([z_min_bound, args.zmin - args.padding]) zmax = np.min([z_max_bound, args.zmax + args.padding]) z_rng = [zmin, zmax] # Verify that the cutout uploaded correctly. attempts = 0 while attempts < 3: try: cutout_data = rmt.get_cutout(chan_actual, args.res, x_rng, y_rng, z_rng) break except HTTPError as e: if attempts < 3: attempts += 1 print("Obtained HTTP error from server. Trial {}".format(attempts)) else: print("Failed 3 times: {}".format(e)) # Data will be in Z,Y,X format # Change to X,Y,Z for pipeline cutout_data = np.transpose(cutout_data, (2, 1, 0)) def _upload(f): print("Uploading to s3:/{}/{}".format(args.bucket, args.output)) s3 = boto3.resource("s3") f.seek(0, 0) s3.Object(args.bucket, args.output).put(Body=f) # Clean up. if args.bucket and args.s3_only: with tempfile.TemporaryFile() as f: np.save(f, cutout_data) _upload(f) else: with open(args.output, "w+b") as f: np.save(f, cutout_data) if args.bucket: _upload(f) # here we push a subset of padded data back to BOSS def boss_push_cutout(args): if args.config: rmt = BossRemote(args.config) else: cfg = _generate_config(args.token, args) with open("intern.cfg", "w") as f: cfg.write(f) rmt = BossRemote("intern.cfg") # data is desired range if args.bucket: s3 = boto3.resource("s3") with tempfile.TemporaryFile() as f: s3.Bucket(args.bucket).download_fileobj(args.input, f) f.seek(0, 0) data = np.load(f) else: data = np.load(args.input) numpyType = np.uint8 if args.dtype == "uint32": numpyType = np.uint32 elif args.dtype == "uint64": numpyType = np.uint64 if data.dtype != args.dtype: data = data.astype(numpyType) sources = [] if args.source: sources.append(args.source) COLL_NAME = args.coll EXP_NAME = args.exp CHAN_NAME = args.chan # Create or get a channel to write to chan_setup = ChannelResource( CHAN_NAME, COLL_NAME, EXP_NAME, type=args.itype, datatype=args.dtype, sources=sources, ) try: chan_actual = rmt.get_project(chan_setup) except HTTPError: chan_actual = rmt.create_project(chan_setup) # get coordinate frame to determine padding bounds cfr = CoordinateFrameResource(args.coord) cfr_actual = rmt.get_project(cfr) x_min_bound = cfr_actual.x_start x_max_bound = cfr_actual.x_stop y_min_bound = cfr_actual.y_start y_max_bound = cfr_actual.y_stop z_min_bound = cfr_actual.z_start z_max_bound = cfr_actual.z_stop print("Data model setup.") # Ranges use the Python convention where the number after the : is the stop # value. Thus, x_rng specifies x values where: 0 <= x < 8. data_shape = data.shape # with padding, will be bigger than needed # find data cutoffs to get rid of padding # if nmin = 0, this means that the data wasn't padded on there to begin with xstart = args.padding if args.xmin != 0 else 0 ystart = args.padding if args.ymin != 0 else 0 zstart = args.padding if args.zmin != 0 else 0 xend = data_shape[0] - args.padding yend = data_shape[1] - args.padding zend = data_shape[2] - args.padding # xstart = np.min([args.padding,args.xmin-x_min_bound]) # xend = np.max([data.shape[0]-args.padding,data.shape[0]-(x_max_bound-args.xmax)]) # ystart = np.min([args.padding,args.ymin-y_min_bound]) # yend = np.max([data.shape[1]-args.padding,data.shape[1]-(y_max_bound-args.ymax)]) # zstart = np.min([args.padding,args.zmin-z_min_bound]) # zend = np.max([data.shape[2]-args.padding,data.shape[2]-(z_max_bound-args.zmax)]) # get range which will be uploaded x_rng = [args.xmin, args.xmax] y_rng = [args.ymin, args.ymax] z_rng = [args.zmin, args.zmax] # Pipeline Data will be in X,Y,Z format # Change to Z,Y,X for upload data = np.transpose(data, (2, 1, 0)) data = data[zstart:zend, ystart:yend, xstart:xend] data = data.copy(order="C") # Verify that the cutout uploaded correctly. attempts = 0 while attempts < 3: try: rmt.create_cutout(chan_actual, args.res, x_rng, y_rng, z_rng, data) break except HTTPError as e: if attempts < 3: attempts += 1 print("These are the dimensions: ") print(data.shape) print("This is the data type:") print(data.dtype) print("Specified data type was:") print(args.dtype) print("Specified image type") print(args.itype) print("Obtained HTTP error from server. Trial {}".format(attempts)) print("The error: {}".format(e)) else: raise Exception("Failed 3 times: {}".format(e)) # Clean up. """boss_merge_xbrain Here we push a subset of padded data back to BOSS, merging with existing data in BOSS in padded region Merging here is for XBrain only, will need to work more on EM Here we are pushing a block of data into a channel which has other blocks of data, possibly already in it The blocks are padded to detect objects at the edges This requires merging of the blocks Not that currently, it is assumed that all cells are detected using templatesize- as a single value. Overlapping cells should already be handled by cell_detect, where the dilation dictionary zeros out around a detected cell Inputs: xmin: integer index of start of data block, before padding (in coordinate frame of raw data channel) xmax: integer index of end of data block, before padding (in coordinate frame of raw data channel) ymin: integer index of start of data block, before padding (in coordinate frame of raw data channel) ymax: integer index of end of data block, before padding (in coordinate frame of raw data channel) zmin: integer index of start of data block, before padding (in coordinate frame of raw data channel) zmax: integer index of end of data block, before padding (in coordinate frame of raw data channel) Padding: integer amount of padding added to each side of block (if valid given the channel boundaries) One sided: int, if 1, only merge on the max edge of block. This prevents duplicates in the padding zone. If zero, merge all edges, risking duplicates templatesize: integer value giving initial diameter of cell detection templates. Padding should be at least templatesize+1 input: dense cell detection output from cell detection step centroids: centroid location output from cell detections step (coordinates are referenced to the ) Output: output: centroid output, with any cells on border removed, and coordinates shifted into frame of raw data Side effect: Data is uploaded to the BOSS channel, covering [xmin:xmax,ymin:ymax,zmin:zmax]. Any padded regions around this block are also merged """ def boss_merge_xbrain(args): # Verify that the cutout uploaded correctly. def pull_margin_cutout(chan_actual, x_rng, y_rng, z_rng): attempts = 0 while attempts < 3: try: cutout_data = rmt.get_cutout(chan_actual, 0, x_rng, y_rng, z_rng) break except HTTPError as e: if attempts < 3: attempts += 1 print("Obtained HTTP error from server. Trial {}".format(attempts)) else: print("Failed 3 times: {}".format(e)) # Data will be in Z,Y,X format # Change to X,Y,Z for pipeline cutout_data = np.transpose(cutout_data, (2, 1, 0)) return cutout_data templatesize = args.templatesize if args.config: rmt = BossRemote(args.config) else: cfg = _generate_config(args.token, args) with open("intern.cfg", "w") as f: cfg.write(f) rmt = BossRemote("intern.cfg") # data is desired range if args.bucket: s3 = boto3.resource("s3") with tempfile.TemporaryFile() as f: s3.Bucket(args.bucket).download_fileobj(args.input, f) f.seek(0, 0) data = np.load(f) with tempfile.TemporaryFile() as f: s3.Bucket(args.bucket).download_fileobj(args.centroids, f) f.seek(0, 0) centroids = np.load(f) else: data = np.load(args.input) centroids = np.load(args.centroids) COLL_NAME = args.coll EXP_NAME = args.exp CHAN_NAME = args.chan # Create or get a channel to write to chan_setup = ChannelResource( CHAN_NAME, COLL_NAME, EXP_NAME, type=args.itype, datatype=args.dtype ) try: chan_actual = rmt.get_project(chan_setup) except HTTPError: chan_actual = rmt.create_project(chan_setup) # get coordinate frame to determine padding bounds cfr = CoordinateFrameResource(args.coord) cfr_actual = rmt.get_project(cfr) x_min_bound = cfr_actual.x_start x_max_bound = cfr_actual.x_stop y_min_bound = cfr_actual.y_start y_max_bound = cfr_actual.y_stop z_min_bound = cfr_actual.z_start z_max_bound = cfr_actual.z_stop # coordinates of data block in original coordinate frame, before padding x_block = [args.xmin, args.xmax] y_block = [args.ymin, args.ymax] z_block = [args.zmin, args.zmax] # Coordinates of data block with padding in original coordinate frame x_block_pad = [ np.amax([args.xmin - args.padding, x_min_bound]), np.amin([args.xmax + args.padding, x_max_bound]), ] y_block_pad = [ np.amax([args.ymin - args.padding, y_min_bound]), np.amin([args.ymax + args.padding, y_max_bound]), ] z_block_pad = [ np.amax([args.zmin - args.padding, z_min_bound]),
np.amin([args.zmax + args.padding, z_max_bound])
numpy.amin
from unittest import TestCase import rasterio import numpy as np import niche_vlaanderen import pytest from niche_vlaanderen.exception import NicheException def raster_to_numpy(filename): """Read a GDAL grid as numpy array Notes ------ No-data values are -99 for integer types and np.nan for real types. """ with rasterio.open(filename) as ds: data = ds.read(1) nodata = ds.nodatavals[0] print(nodata) # create a mask for no-data values, taking into account the data-types if data.dtype == 'float32': data[np.isclose(data, nodata)] = np.nan else: data[np.isclose(data, nodata)] = -99 return data class testAcidity(TestCase): def test_get_soil_mlw(self): mlw = np.array([50, 66]) soil_code = np.array([14, 7]) a = niche_vlaanderen.Acidity() result = a._calculate_soil_mlw(soil_code, mlw) np.testing.assert_equal(np.array([1, 9]), result) def test_get_soil_mlw_borders(self): mlw = np.array([79, 80, 100, 110, 111]) soil_code = np.array([14, 14, 14, 14, 14]) a = niche_vlaanderen.Acidity() result = a._calculate_soil_mlw(soil_code, mlw) expected = np.array([1, 1, 2, 2, 3]) np.testing.assert_equal(expected, result) def test_acidity_partial(self): rainwater = np.array([0]) minerality = np.array([1]) inundation = np.array([1]) seepage = np.array([1]) soil_mlw = np.array([1]) a = niche_vlaanderen.Acidity() result = a._get_acidity(rainwater, minerality, inundation, seepage, soil_mlw) np.testing.assert_equal(np.array([3]), result) def test_seepage_code(self): seepage = np.array([5, 0.3, 0.05, -0.04, -0.2, -5]) a = niche_vlaanderen.Acidity() result = a._get_seepage(seepage) expected = np.array([1, 1, 1, 1, 2, 3]) np.testing.assert_equal(expected, result) def test_acidity(self): rainwater = np.array([0]) minerality = np.array([0]) soilcode = np.array([14]) inundation = np.array([1]) seepage = np.array([20]) mlw = np.array([50]) a = niche_vlaanderen.Acidity() result = a.calculate(soilcode, mlw, inundation, seepage, minerality, rainwater) np.testing.assert_equal(3, result) def test_acidity_testcase(self): a = niche_vlaanderen.Acidity() inputdir = "testcase/zwarte_beek/input/" soil_code = raster_to_numpy(inputdir + "soil_code.asc") soil_code_r = soil_code soil_code_r[soil_code > 0] = np.round(soil_code / 10000)[soil_code > 0] mlw = raster_to_numpy(inputdir + "mlw.asc") inundation = \ raster_to_numpy(inputdir + "inundation.asc") rainwater = raster_to_numpy(inputdir + "nullgrid.asc") seepage = raster_to_numpy(inputdir + "seepage.asc") minerality = raster_to_numpy(inputdir + "minerality.asc") acidity = raster_to_numpy("testcase/zwarte_beek/abiotic/acidity.asc") acidity[np.isnan(acidity)] = 255 acidity[acidity == -99] = 255 result = a.calculate(soil_code_r, mlw, inundation, seepage, minerality, rainwater) np.testing.assert_equal(acidity, result) def test_acidity_invalidsoil(self): a = niche_vlaanderen.Acidity() rainwater = np.array([0]) minerality = np.array([0]) soilcode = np.array([-1]) inundation = np.array([1]) seepage = np.array([20]) mlw = np.array([50]) a = niche_vlaanderen.Acidity() with pytest.raises(NicheException): a.calculate(soilcode, mlw, inundation, seepage, minerality, rainwater) def test_acidity_invalidminerality(self): a = niche_vlaanderen.Acidity() rainwater =
np.array([0])
numpy.array
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for models.""" import functools import pathlib import gin import jax.numpy as jnp import jax.random as jrandom import numpy as np import tensorflow.compat.v1 as tf from protein_lm import data from protein_lm import domains from protein_lm import evaluation from protein_lm import models from protein_lm import modules tf.enable_eager_execution() lm_cfg = dict( batch_size=4, num_layers=1, num_heads=2, emb_dim=8, mlp_dim=8, qkv_dim=8) lm_cls = functools.partial(models.FlaxLM, **lm_cfg) def _test_domain(): return domains.FixedLengthDiscreteDomain(length=3, vocab_size=4) class FlaxRegressionTest(tf.test.TestCase): def setUp(self): cls = functools.partial( models.FlaxModel, pmap=False, with_bos=True, output_head=('logits', 'regression'), **lm_cfg) self._domain = domains.FixedLengthDiscreteDomain(length=6, vocab_size=4) lm = cls(domain=self._domain) self.lm = lm super().setUp() def test_fit(self): bos = self.lm.bos_token xs = np.array([ [bos, 0, 1, 0, 1, 0, 1], [bos, 1, 0, 1, 0, 1, 0], ]) inputs = xs[:, :-1] targets = xs[:, 1:] reg_targets = np.cumsum(targets, axis=-1)[:, :-1] reg_targets = jnp.pad( reg_targets, [[0, 0], [1, 0]], mode='constant', constant_values=jnp.asarray(0, dtype=jnp.float32)) batch = dict( inputs=inputs, targets=dict(classification=targets, regression=reg_targets), weights=dict( classification=np.ones_like(targets), regression=np.ones_like(reg_targets))) outputs = self.lm.preprocess(batch, mode=models.Mode.train, rng=None) print(outputs) metrics = self.lm.fit_batch(batch) print(metrics) metrics = self.lm.fit_batch(batch) print(metrics) class FlaxModelTaggingTest(tf.test.TestCase): def test_tag_attention(self): # TODO(ddohan): Consider making decorator which tracks tensor distributions. def tagging_dot_product_attention(query, key, value, **kwargs): modules.Tag(jnp.mean(query), name='mean_query') modules.Tag(jnp.mean(query), name='mean_key') modules.Tag(jnp.mean(query), name='mean_value') return modules.nn.attention.dot_product_attention(query, key, value, **kwargs) domain = _test_domain() lm = models.FlaxModel( domain=domain, attention_fn=tagging_dot_product_attention, **lm_cfg) xs = domain.sample_uniformly(4) metrics = [] for _ in range(2): step_metrics = lm.fit_batch((xs, xs)) metrics.append(step_metrics) combined_metrics = evaluation.combine_metrics(metrics) # Confirm metrics are included. self.assertIn('nn/1/1/mean_query', combined_metrics) self.assertIn('nn/1/1/mean_key', combined_metrics) self.assertIn('nn/1/1/mean_value', combined_metrics) # Check they are averaged rather than normalized by denominator. # key = 'nn/1/1/mean_value' # avg = (metrics[0][key] + metrics[1][key]) / 2.0 # self.assertAlmostEqual(avg, combined_metrics[key]) class FlaxModelBaseTest(tf.test.TestCase): def setUp(self): cls = functools.partial(models.FlaxModel, **lm_cfg) self._domain = _test_domain() lm = cls(domain=self._domain) self.lm = lm self.xs = np.array([ [1, 1, 0], [1, 1, 1], ]) super().setUp() def test_fit(self): self.lm.fit((self.xs, self.xs), epochs=4, batch_size=2) def test_score(self): scores = self.lm.score(self.xs) self.assertEqual((2, 3, self._domain.vocab_size), scores.shape) def test_evaluate(self): metrics = self.lm.evaluate_batch((self.xs, self.xs)) self.assertIn('accuracy', metrics) self.assertEqual(jnp.sum(jnp.ones_like(self.xs)), metrics['denominator']) metrics = self.lm.evaluate_batch( (self.xs, self.xs, jnp.zeros_like(self.xs))) self.assertEqual(0, metrics['denominator']) class BERTTest(tf.test.TestCase): def setUp(self): cls = functools.partial(models.FlaxBERT, **lm_cfg) self._domain = domains.VariableLengthDiscreteDomain( vocab=domains.ProteinVocab( include_anomalous_amino_acids=True, include_bos=True, include_eos=True, include_pad=True, include_mask=True), length=3) lm = cls(domain=self._domain, grad_clip=1.0) self.lm = lm self.xs = np.array([ [1, 1, 0], ]) super().setUp() def test_fit(self): self.lm.fit(self.xs, epochs=4, batch_size=2) def test_score(self): scores = self.lm.score(self.xs) self.assertEqual((1, 3, self._domain.vocab_size), scores.shape) def test_sample(self): mask = self._domain.vocab.mask xs = np.array([ [mask, 1, 0], [1, mask, 1], [1, 1, mask], ]) rng = jrandom.PRNGKey(0) samples = self.lm.sample(xs, rng=rng) self.assertAllEqual(xs.shape, samples.shape) # Check masked positions are filled in. self.assertNotEqual(samples[0, 0], mask) self.assertNotEqual(samples[1, 1], mask) self.assertNotEqual(samples[2, 2], mask) unmasked = xs != mask # Unmasked positions are the same. self.assertAllEqual(xs[unmasked], samples[unmasked]) def test_evaluate(self): metrics = self.lm.evaluate_batch(self.xs) self.assertIn('accuracy', metrics) class BERTMaskingTest(tf.test.TestCase): def setUp(self): self._domain = data.protein_domain v = data.protein_domain.vocab pad = v.pad print(v.pad) self._xs = jnp.array([[0, 0, 0, 0, 0, 0, pad, pad], [0, 0, 0, 0, 0, pad, pad, pad]]) super().setUp() def test_all_mask(self): """Test masking with MASK values.""" xs = self._xs v = self._domain.vocab masker = models.BertMasker( self._domain, mask_rate=1.0, mask_token_proportion=1.0, random_token_proportion=0.0) for k in range(10): rng = jrandom.PRNGKey(k) inputs, outputs, weights = masker(xs, rng=rng, mode=models.Mode.train) self.assertAllEqual((xs == v.pad), (inputs == v.pad)) self.assertAllEqual((xs != v.pad), (inputs == v.mask)) self.assertAllEqual(xs != v.pad, weights) self.assertAllEqual(xs, outputs) def test_all_normal(self): """Test masking with random values.""" xs = self._xs v = self._domain.vocab # Check masker = models.BertMasker( self._domain, mask_rate=1.0, mask_token_proportion=0.0, random_token_proportion=1.0) for k in range(10): rng = jrandom.PRNGKey(k) inputs, outputs, weights = masker(xs, rng=rng, mode=models.Mode.train) is_normal = np.isin(inputs, masker._normal_tokens) self.assertAllEqual((xs == v.pad), (inputs == v.pad)) self.assertAllEqual((xs != v.pad), is_normal) self.assertAllEqual(xs != v.pad, weights) self.assertAllEqual(xs, outputs) def test_all_identity(self): """Test no-mask case (maintaining original values).""" xs = self._xs v = self._domain.vocab masker = models.BertMasker( self._domain, mask_rate=1.0, mask_token_proportion=0.0, random_token_proportion=0.0) for k in range(10): rng = jrandom.PRNGKey(k) inputs, outputs, weights = masker(xs, rng=rng, mode=models.Mode.train) self.assertAllEqual(xs, inputs) self.assertAllEqual(xs != v.pad, weights) self.assertAllEqual(xs, outputs) class UtilTest(tf.test.TestCase): def test_lr_schedule(self): """Test passing learning rate function as learning_rate.""" cls = functools.partial(models.FlaxLM, **lm_cfg) lm = cls( domain=_test_domain(), learning_rate=models.utils.create_learning_rate_scheduler(), grad_clip=1.0) xs = np.array([ [1, 1, 0], ]) lm.fit(xs, epochs=4, batch_size=2) class LMTest(tf.test.TestCase): def setUp(self): cls = functools.partial(models.FlaxLM, **lm_cfg) lm = cls(domain=_test_domain(), grad_clip=1.0) self.lm = lm self.xs = np.array([ [1, 1, 0], ]) super().setUp() def test_fit(self): self.lm.fit(self.xs, epochs=4, batch_size=2) def test_sample(self): samples = self.lm.sample(2) self.assertEqual((2, 3), samples.shape) def test_score(self): scores = self.lm.score(self.xs) self.assertEqual((1, 3, 5), scores.shape) def test_evaluate(self): metrics = self.lm.evaluate_batch(self.xs) self.assertIn('accuracy', metrics) def test_overfit(self): domain = domains.VariableLengthDiscreteDomain( vocab=domains.Vocabulary( tokens=['a', 'b', 'c'], include_bos=True, include_eos=True), length=9) seqs = [ list('abcabcab'), list('bbbbbb'), list('cbacbacb'), ] enc = domain.encode(seqs, pad=True) self.assertAllEqual( [[0, 1, 2, 0, 1, 2, 0, 1, 4], [1, 1, 1, 1, 1, 1, 4, 4, 4], [2, 1, 0, 2, 1, 0, 2, 1, 4] ], enc) enc = np.array(enc) model = lm_cls( domain=domain, learning_rate=0.01, dropout_rate=0.0, attention_dropout_rate=0.0) for _ in range(100): metrics = model.fit_batch(enc) # 2 less than perfect because the first token is unpredictable given just # <BOS>, and there are 3 total examples. denom = metrics['denominator'][0] correct = metrics['accuracy'][0] self.assertEqual((denom - 2)/denom, correct / denom) def test_bos_does_not_appear_in_fixed_len_output(self): """Tests that BOS is overridden in fixed length domain samples.""" domain = domains.FixedLengthDiscreteDomain(vocab_size=2, length=10) lm = lm_cls(domain=domain) samples = lm.sample(10) for sample in samples: self.assertNotIn(lm.bos_token, sample) def test_bos_does_not_appear_in_var_len_output(self): """Tests that BOS is not used for padding in var-len domain samples.""" domain = domains.VariableLengthDiscreteDomain( vocab=domains.Vocabulary(tokens=[0, 1], include_eos=True), length=10, ) lm = lm_cls(domain=domain) samples = lm.sample(10) for sample in samples: self.assertNotIn(lm.bos_token, sample) def test_only_eos_after_eos(self): """Tests that the characters found after EOS are all equal to EOS.""" domain = domains.VariableLengthDiscreteDomain( vocab=domains.Vocabulary(tokens=[0, 1], include_eos=True), length=10, ) lm = lm_cls(domain=domain) samples = lm.sample(10) for sample in samples: if lm.eos_token in sample: start_eos =
np.argwhere(sample == lm.eos_token)
numpy.argwhere
import unittest import qteasy as qt import pandas as pd from pandas import Timestamp import numpy as np import math from numpy import int64 import itertools import datetime from qteasy.utilfuncs import list_to_str_format, regulate_date_format, time_str_format, str_to_list from qteasy.utilfuncs import maybe_trade_day, is_market_trade_day, prev_trade_day, next_trade_day from qteasy.utilfuncs import next_market_trade_day, unify, mask_to_signal, list_or_slice, labels_to_dict from qteasy.utilfuncs import weekday_name, prev_market_trade_day, is_number_like, list_truncate, input_to_list from qteasy.space import Space, Axis, space_around_centre, ResultPool from qteasy.core import apply_loop from qteasy.built_in import SelectingFinanceIndicator, TimingDMA, TimingMACD, TimingCDL, TimingTRIX from qteasy.tsfuncs import income, indicators, name_change, get_bar from qteasy.tsfuncs import stock_basic, trade_calendar, new_share, get_index from qteasy.tsfuncs import balance, cashflow, top_list, index_indicators, composite from qteasy.tsfuncs import future_basic, future_daily, options_basic, options_daily from qteasy.tsfuncs import fund_basic, fund_net_value, index_basic, stock_company from qteasy.evaluate import eval_alpha, eval_benchmark, eval_beta, eval_fv from qteasy.evaluate import eval_info_ratio, eval_max_drawdown, eval_sharp from qteasy.evaluate import eval_volatility from qteasy.tafuncs import bbands, dema, ema, ht, kama, ma, mama, mavp, mid_point from qteasy.tafuncs import mid_price, sar, sarext, sma, t3, tema, trima, wma, adx, adxr from qteasy.tafuncs import apo, bop, cci, cmo, dx, macd, macdext, aroon, aroonosc from qteasy.tafuncs import macdfix, mfi, minus_di, minus_dm, mom, plus_di, plus_dm from qteasy.tafuncs import ppo, roc, rocp, rocr, rocr100, rsi, stoch, stochf, stochrsi from qteasy.tafuncs import trix, ultosc, willr, ad, adosc, obv, atr, natr, trange from qteasy.tafuncs import avgprice, medprice, typprice, wclprice, ht_dcperiod from qteasy.tafuncs import ht_dcphase, ht_phasor, ht_sine, ht_trendmode, cdl2crows from qteasy.tafuncs import cdl3blackcrows, cdl3inside, cdl3linestrike, cdl3outside from qteasy.tafuncs import cdl3starsinsouth, cdl3whitesoldiers, cdlabandonedbaby from qteasy.tafuncs import cdladvanceblock, cdlbelthold, cdlbreakaway, cdlclosingmarubozu from qteasy.tafuncs import cdlconcealbabyswall, cdlcounterattack, cdldarkcloudcover from qteasy.tafuncs import cdldoji, cdldojistar, cdldragonflydoji, cdlengulfing from qteasy.tafuncs import cdleveningdojistar, cdleveningstar, cdlgapsidesidewhite from qteasy.tafuncs import cdlgravestonedoji, cdlhammer, cdlhangingman, cdlharami from qteasy.tafuncs import cdlharamicross, cdlhighwave, cdlhikkake, cdlhikkakemod from qteasy.tafuncs import cdlhomingpigeon, cdlidentical3crows, cdlinneck from qteasy.tafuncs import cdlinvertedhammer, cdlkicking, cdlkickingbylength from qteasy.tafuncs import cdlladderbottom, cdllongleggeddoji, cdllongline, cdlmarubozu from qteasy.tafuncs import cdlmatchinglow, cdlmathold, cdlmorningdojistar, cdlmorningstar from qteasy.tafuncs import cdlonneck, cdlpiercing, cdlrickshawman, cdlrisefall3methods from qteasy.tafuncs import cdlseparatinglines, cdlshootingstar, cdlshortline, cdlspinningtop from qteasy.tafuncs import cdlstalledpattern, cdlsticksandwich, cdltakuri, cdltasukigap from qteasy.tafuncs import cdlthrusting, cdltristar, cdlunique3river, cdlupsidegap2crows from qteasy.tafuncs import cdlxsidegap3methods, beta, correl, linearreg, linearreg_angle from qteasy.tafuncs import linearreg_intercept, linearreg_slope, stddev, tsf, var, acos from qteasy.tafuncs import asin, atan, ceil, cos, cosh, exp, floor, ln, log10, sin, sinh from qteasy.tafuncs import sqrt, tan, tanh, add, div, max, maxindex, min, minindex, minmax from qteasy.tafuncs import minmaxindex, mult, sub, sum from qteasy.history import get_financial_report_type_raw_data, get_price_type_raw_data from qteasy.history import stack_dataframes, dataframe_to_hp, HistoryPanel from qteasy.database import DataSource from qteasy.strategy import Strategy, SimpleTiming, RollingTiming, SimpleSelecting, FactoralSelecting from qteasy._arg_validators import _parse_string_kwargs, _valid_qt_kwargs from qteasy.blender import _exp_to_token, blender_parser, signal_blend class TestCost(unittest.TestCase): def setUp(self): self.amounts = np.array([10000., 20000., 10000.]) self.op = np.array([0., 1., -0.33333333]) self.amounts_to_sell = np.array([0., 0., -3333.3333]) self.cash_to_spend = np.array([0., 20000., 0.]) self.prices = np.array([10., 20., 10.]) self.r = qt.Cost(0.0) def test_rate_creation(self): """测试对象生成""" print('testing rates objects\n') self.assertIsInstance(self.r, qt.Cost, 'Type should be Rate') self.assertEqual(self.r.buy_fix, 0) self.assertEqual(self.r.sell_fix, 0) def test_rate_operations(self): """测试交易费率对象""" self.assertEqual(self.r['buy_fix'], 0.0, 'Item got is incorrect') self.assertEqual(self.r['sell_fix'], 0.0, 'Item got is wrong') self.assertEqual(self.r['buy_rate'], 0.003, 'Item got is incorrect') self.assertEqual(self.r['sell_rate'], 0.001, 'Item got is incorrect') self.assertEqual(self.r['buy_min'], 5., 'Item got is incorrect') self.assertEqual(self.r['sell_min'], 0.0, 'Item got is incorrect') self.assertEqual(self.r['slipage'], 0.0, 'Item got is incorrect') self.assertEqual(np.allclose(self.r.calculate(self.amounts), [0.003, 0.003, 0.003]), True, 'fee calculation wrong') def test_rate_fee(self): """测试买卖交易费率""" self.r.buy_rate = 0.003 self.r.sell_rate = 0.001 self.r.buy_fix = 0. self.r.sell_fix = 0. self.r.buy_min = 0. self.r.sell_min = 0. self.r.slipage = 0. print('\nSell result with fixed rate = 0.001 and moq = 0:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell)) test_rate_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 0., -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], 33299.999667, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 33.333332999999996, msg='result incorrect') print('\nSell result with fixed rate = 0.001 and moq = 1:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 1.)) test_rate_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 1) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 0., -3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], 33296.67, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 33.33, msg='result incorrect') print('\nSell result with fixed rate = 0.001 and moq = 100:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 100)) test_rate_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 100) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 0., -3300]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], 32967.0, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 33, msg='result incorrect') print('\nPurchase result with fixed rate = 0.003 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)) test_rate_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 997.00897308, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 59.82053838484547, msg='result incorrect') print('\nPurchase result with fixed rate = 0.003 and moq = 1:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 1)) test_rate_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 1) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 997., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], -19999.82, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 59.82, msg='result incorrect') print('\nPurchase result with fixed rate = 0.003 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)) test_rate_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 900., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], -18054., msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 54.0, msg='result incorrect') def test_min_fee(self): """测试最低交易费用""" self.r.buy_rate = 0. self.r.sell_rate = 0. self.r.buy_fix = 0. self.r.sell_fix = 0. self.r.buy_min = 300 self.r.sell_min = 300 self.r.slipage = 0. print('\npurchase result with fixed cost rate with min fee = 300 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)) test_min_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0) self.assertIs(np.allclose(test_min_fee_result[0], [0., 985, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_min_fee_result[2], 300.0, msg='result incorrect') print('\npurchase result with fixed cost rate with min fee = 300 and moq = 10:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 10)) test_min_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 10) self.assertIs(np.allclose(test_min_fee_result[0], [0., 980, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], -19900.0, msg='result incorrect') self.assertAlmostEqual(test_min_fee_result[2], 300.0, msg='result incorrect') print('\npurchase result with fixed cost rate with min fee = 300 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)) test_min_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100) self.assertIs(np.allclose(test_min_fee_result[0], [0., 900, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], -18300.0, msg='result incorrect') self.assertAlmostEqual(test_min_fee_result[2], 300.0, msg='result incorrect') print('\nselling result with fixed cost rate with min fee = 300 and moq = 0:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell)) test_min_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell) self.assertIs(np.allclose(test_min_fee_result[0], [0, 0, -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], 33033.333) self.assertAlmostEqual(test_min_fee_result[2], 300.0) print('\nselling result with fixed cost rate with min fee = 300 and moq = 1:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 1)) test_min_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 1) self.assertIs(np.allclose(test_min_fee_result[0], [0, 0, -3333]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], 33030) self.assertAlmostEqual(test_min_fee_result[2], 300.0) print('\nselling result with fixed cost rate with min fee = 300 and moq = 100:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 100)) test_min_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 100) self.assertIs(np.allclose(test_min_fee_result[0], [0, 0, -3300]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], 32700) self.assertAlmostEqual(test_min_fee_result[2], 300.0) def test_rate_with_min(self): """测试最低交易费用对其他交易费率参数的影响""" self.r.buy_rate = 0.0153 self.r.sell_rate = 0.01 self.r.buy_fix = 0. self.r.sell_fix = 0. self.r.buy_min = 300 self.r.sell_min = 333 self.r.slipage = 0. print('\npurchase result with fixed cost rate with buy_rate = 0.0153, min fee = 300 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)) test_rate_with_min_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0) self.assertIs(np.allclose(test_rate_with_min_result[0], [0., 984.9305624, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_rate_with_min_result[2], 301.3887520929774, msg='result incorrect') print('\npurchase result with fixed cost rate with buy_rate = 0.0153, min fee = 300 and moq = 10:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 10)) test_rate_with_min_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 10) self.assertIs(np.allclose(test_rate_with_min_result[0], [0., 980, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], -19900.0, msg='result incorrect') self.assertAlmostEqual(test_rate_with_min_result[2], 300.0, msg='result incorrect') print('\npurchase result with fixed cost rate with buy_rate = 0.0153, min fee = 300 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)) test_rate_with_min_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100) self.assertIs(np.allclose(test_rate_with_min_result[0], [0., 900, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], -18300.0, msg='result incorrect') self.assertAlmostEqual(test_rate_with_min_result[2], 300.0, msg='result incorrect') print('\nselling result with fixed cost rate with sell_rate = 0.01, min fee = 333 and moq = 0:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell)) test_rate_with_min_result = self.r.get_selling_result(self.prices, self.amounts_to_sell) self.assertIs(np.allclose(test_rate_with_min_result[0], [0, 0, -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], 32999.99967) self.assertAlmostEqual(test_rate_with_min_result[2], 333.33333) print('\nselling result with fixed cost rate with sell_rate = 0.01, min fee = 333 and moq = 1:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 1)) test_rate_with_min_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 1) self.assertIs(np.allclose(test_rate_with_min_result[0], [0, 0, -3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], 32996.7) self.assertAlmostEqual(test_rate_with_min_result[2], 333.3) print('\nselling result with fixed cost rate with sell_rate = 0.01, min fee = 333 and moq = 100:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 100)) test_rate_with_min_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 100) self.assertIs(np.allclose(test_rate_with_min_result[0], [0, 0, -3300]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], 32667.0) self.assertAlmostEqual(test_rate_with_min_result[2], 333.0) def test_fixed_fee(self): """测试固定交易费用""" self.r.buy_rate = 0. self.r.sell_rate = 0. self.r.buy_fix = 200 self.r.sell_fix = 150 self.r.buy_min = 0 self.r.sell_min = 0 self.r.slipage = 0 print('\nselling result of fixed cost with fixed fee = 150 and moq=0:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 0)) test_fixed_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell) self.assertIs(np.allclose(test_fixed_fee_result[0], [0, 0, -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], 33183.333, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 150.0, msg='result incorrect') print('\nselling result of fixed cost with fixed fee = 150 and moq=100:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 100)) test_fixed_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 100) self.assertIs(np.allclose(test_fixed_fee_result[0], [0, 0, -3300.]), True, f'result incorrect, {test_fixed_fee_result[0]} does not equal to [0,0,-3400]') self.assertAlmostEqual(test_fixed_fee_result[1], 32850., msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 150., msg='result incorrect') print('\npurchase result of fixed cost with fixed fee = 200:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)) test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 990., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 200.0, msg='result incorrect') print('\npurchase result of fixed cost with fixed fee = 200:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)) test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 900., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -18200.0, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 200.0, msg='result incorrect') def test_slipage(self): """测试交易滑点""" self.r.buy_fix = 0 self.r.sell_fix = 0 self.r.buy_min = 0 self.r.sell_min = 0 self.r.buy_rate = 0.003 self.r.sell_rate = 0.001 self.r.slipage = 1E-9 print('\npurchase result of fixed rate = 0.003 and slipage = 1E-10 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)) print('\npurchase result of fixed rate = 0.003 and slipage = 1E-10 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)) print('\nselling result with fixed rate = 0.001 and slipage = 1E-10:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell)) test_fixed_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell) self.assertIs(np.allclose(test_fixed_fee_result[0], [0, 0, -3333.3333]), True, f'{test_fixed_fee_result[0]} does not equal to [0, 0, -10000]') self.assertAlmostEqual(test_fixed_fee_result[1], 33298.88855591, msg=f'{test_fixed_fee_result[1]} does not equal to 99890.') self.assertAlmostEqual(test_fixed_fee_result[2], 34.44444409, msg=f'{test_fixed_fee_result[2]} does not equal to -36.666663.') test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 996.98909294, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 60.21814121353513, msg='result incorrect') test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 900., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -18054.36, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 54.36, msg='result incorrect') class TestSpace(unittest.TestCase): def test_creation(self): """ test if creation of space object is fine """ # first group of inputs, output Space with two discr axis from [0,10] print('testing space objects\n') # pars_list = [[(0, 10), (0, 10)], # [[0, 10], [0, 10]]] # # types_list = ['discr', # ['discr', 'discr']] # # input_pars = itertools.product(pars_list, types_list) # for p in input_pars: # # print(p) # s = qt.Space(*p) # b = s.boes # t = s.types # # print(s, t) # self.assertIsInstance(s, qt.Space) # self.assertEqual(b, [(0, 10), (0, 10)], 'boes incorrect!') # self.assertEqual(t, ['discr', 'discr'], 'types incorrect') # pars_list = [[(0, 10), (0, 10)], [[0, 10], [0, 10]]] types_list = ['foo, bar', ['foo', 'bar']] input_pars = itertools.product(pars_list, types_list) for p in input_pars: # print(p) s = Space(*p) b = s.boes t = s.types # print(s, t) self.assertEqual(b, [(0, 10), (0, 10)], 'boes incorrect!') self.assertEqual(t, ['enum', 'enum'], 'types incorrect') pars_list = [[(0, 10), (0, 10)], [[0, 10], [0, 10]]] types_list = [['discr', 'foobar']] input_pars = itertools.product(pars_list, types_list) for p in input_pars: # print(p) s = Space(*p) b = s.boes t = s.types # print(s, t) self.assertEqual(b, [(0, 10), (0, 10)], 'boes incorrect!') self.assertEqual(t, ['discr', 'enum'], 'types incorrect') pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types=None) self.assertEqual(s.types, ['conti', 'discr']) self.assertEqual(s.dim, 2) self.assertEqual(s.size, (10.0, 11)) self.assertEqual(s.shape, (np.inf, 11)) self.assertEqual(s.count, np.inf) self.assertEqual(s.boes, [(0., 10), (0, 10)]) pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types='conti, enum') self.assertEqual(s.types, ['conti', 'enum']) self.assertEqual(s.dim, 2) self.assertEqual(s.size, (10.0, 2)) self.assertEqual(s.shape, (np.inf, 2)) self.assertEqual(s.count, np.inf) self.assertEqual(s.boes, [(0., 10), (0, 10)]) pars_list = [(1, 2), (2, 3), (3, 4)] s = Space(pars=pars_list) self.assertEqual(s.types, ['discr', 'discr', 'discr']) self.assertEqual(s.dim, 3) self.assertEqual(s.size, (2, 2, 2)) self.assertEqual(s.shape, (2, 2, 2)) self.assertEqual(s.count, 8) self.assertEqual(s.boes, [(1, 2), (2, 3), (3, 4)]) pars_list = [(1, 2, 3), (2, 3, 4), (3, 4, 5)] s = Space(pars=pars_list) self.assertEqual(s.types, ['enum', 'enum', 'enum']) self.assertEqual(s.dim, 3) self.assertEqual(s.size, (3, 3, 3)) self.assertEqual(s.shape, (3, 3, 3)) self.assertEqual(s.count, 27) self.assertEqual(s.boes, [(1, 2, 3), (2, 3, 4), (3, 4, 5)]) pars_list = [((1, 2, 3), (2, 3, 4), (3, 4, 5))] s = Space(pars=pars_list) self.assertEqual(s.types, ['enum']) self.assertEqual(s.dim, 1) self.assertEqual(s.size, (3,)) self.assertEqual(s.shape, (3,)) self.assertEqual(s.count, 3) pars_list = ((1, 2, 3), (2, 3, 4), (3, 4, 5)) s = Space(pars=pars_list) self.assertEqual(s.types, ['enum', 'enum', 'enum']) self.assertEqual(s.dim, 3) self.assertEqual(s.size, (3, 3, 3)) self.assertEqual(s.shape, (3, 3, 3)) self.assertEqual(s.count, 27) self.assertEqual(s.boes, [(1, 2, 3), (2, 3, 4), (3, 4, 5)]) def test_extract(self): """ :return: """ pars_list = [(0, 10), (0, 10)] types_list = ['discr', 'discr'] s = Space(pars=pars_list, par_types=types_list) extracted_int, count = s.extract(3, 'interval') extracted_int_list = list(extracted_int) print('extracted int\n', extracted_int_list) self.assertEqual(count, 16, 'extraction count wrong!') self.assertEqual(extracted_int_list, [(0, 0), (0, 3), (0, 6), (0, 9), (3, 0), (3, 3), (3, 6), (3, 9), (6, 0), (6, 3), (6, 6), (6, 9), (9, 0), (9, 3), (9, 6), (9, 9)], 'space extraction wrong!') extracted_rand, count = s.extract(10, 'rand') extracted_rand_list = list(extracted_rand) self.assertEqual(count, 10, 'extraction count wrong!') print('extracted rand\n', extracted_rand_list) for point in list(extracted_rand_list): self.assertEqual(len(point), 2) self.assertLessEqual(point[0], 10) self.assertGreaterEqual(point[0], 0) self.assertLessEqual(point[1], 10) self.assertGreaterEqual(point[1], 0) pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types=None) extracted_int2, count = s.extract(3, 'interval') self.assertEqual(count, 16, 'extraction count wrong!') extracted_int_list2 = list(extracted_int2) self.assertEqual(extracted_int_list2, [(0, 0), (0, 3), (0, 6), (0, 9), (3, 0), (3, 3), (3, 6), (3, 9), (6, 0), (6, 3), (6, 6), (6, 9), (9, 0), (9, 3), (9, 6), (9, 9)], 'space extraction wrong!') print('extracted int list 2\n', extracted_int_list2) self.assertIsInstance(extracted_int_list2[0][0], float) self.assertIsInstance(extracted_int_list2[0][1], (int, int64)) extracted_rand2, count = s.extract(10, 'rand') self.assertEqual(count, 10, 'extraction count wrong!') extracted_rand_list2 = list(extracted_rand2) print('extracted rand list 2:\n', extracted_rand_list2) for point in extracted_rand_list2: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], float) self.assertLessEqual(point[0], 10) self.assertGreaterEqual(point[0], 0) self.assertIsInstance(point[1], (int, int64)) self.assertLessEqual(point[1], 10) self.assertGreaterEqual(point[1], 0) pars_list = [(0., 10), ('a', 'b')] s = Space(pars=pars_list, par_types='enum, enum') extracted_int3, count = s.extract(1, 'interval') self.assertEqual(count, 4, 'extraction count wrong!') extracted_int_list3 = list(extracted_int3) self.assertEqual(extracted_int_list3, [(0., 'a'), (0., 'b'), (10, 'a'), (10, 'b')], 'space extraction wrong!') print('extracted int list 3\n', extracted_int_list3) self.assertIsInstance(extracted_int_list3[0][0], float) self.assertIsInstance(extracted_int_list3[0][1], str) extracted_rand3, count = s.extract(3, 'rand') self.assertEqual(count, 3, 'extraction count wrong!') extracted_rand_list3 = list(extracted_rand3) print('extracted rand list 3:\n', extracted_rand_list3) for point in extracted_rand_list3: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], (float, int)) self.assertLessEqual(point[0], 10) self.assertGreaterEqual(point[0], 0) self.assertIsInstance(point[1], str) self.assertIn(point[1], ['a', 'b']) pars_list = [((0, 10), (1, 'c'), ('a', 'b'), (1, 14))] s = Space(pars=pars_list, par_types='enum') extracted_int4, count = s.extract(1, 'interval') self.assertEqual(count, 4, 'extraction count wrong!') extracted_int_list4 = list(extracted_int4) it = zip(extracted_int_list4, [(0, 10), (1, 'c'), (0, 'b'), (1, 14)]) for item, item2 in it: print(item, item2) self.assertTrue(all([tuple(ext_item) == item for ext_item, item in it])) print('extracted int list 4\n', extracted_int_list4) self.assertIsInstance(extracted_int_list4[0], tuple) extracted_rand4, count = s.extract(3, 'rand') self.assertEqual(count, 3, 'extraction count wrong!') extracted_rand_list4 = list(extracted_rand4) print('extracted rand list 4:\n', extracted_rand_list4) for point in extracted_rand_list4: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], (int, str)) self.assertIn(point[0], [0, 1, 'a']) self.assertIsInstance(point[1], (int, str)) self.assertIn(point[1], [10, 14, 'b', 'c']) self.assertIn(point, [(0., 10), (1, 'c'), ('a', 'b'), (1, 14)]) pars_list = [((0, 10), (1, 'c'), ('a', 'b'), (1, 14)), (1, 4)] s = Space(pars=pars_list, par_types='enum, discr') extracted_int5, count = s.extract(1, 'interval') self.assertEqual(count, 16, 'extraction count wrong!') extracted_int_list5 = list(extracted_int5) for item, item2 in extracted_int_list5: print(item, item2) self.assertTrue(all([tuple(ext_item) == item for ext_item, item in it])) print('extracted int list 5\n', extracted_int_list5) self.assertIsInstance(extracted_int_list5[0], tuple) extracted_rand5, count = s.extract(5, 'rand') self.assertEqual(count, 5, 'extraction count wrong!') extracted_rand_list5 = list(extracted_rand5) print('extracted rand list 5:\n', extracted_rand_list5) for point in extracted_rand_list5: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], tuple) print(f'type of point[1] is {type(point[1])}') self.assertIsInstance(point[1], (int, np.int64)) self.assertIn(point[0], [(0., 10), (1, 'c'), ('a', 'b'), (1, 14)]) print(f'test incremental extraction') pars_list = [(10., 250), (10., 250), (10., 250), (10., 250), (10., 250), (10., 250)] s = Space(pars_list) ext, count = s.extract(64, 'interval') self.assertEqual(count, 4096) points = list(ext) # 已经取出所有的点,围绕其中10个点生成十个subspaces # 检查是否每个subspace都为Space,是否都在s范围内,使用32生成点集,检查生成数量是否正确 for point in points[1000:1010]: subspace = s.from_point(point, 64) self.assertIsInstance(subspace, Space) self.assertTrue(subspace in s) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.types, ['conti', 'conti', 'conti', 'conti', 'conti', 'conti']) ext, count = subspace.extract(32) points = list(ext) self.assertGreaterEqual(count, 512) self.assertLessEqual(count, 4096) print(f'\n---------------------------------' f'\nthe space created around point <{point}> is' f'\n{subspace.boes}' f'\nand extracted {count} points, the first 5 are:' f'\n{points[:5]}') def test_axis_extract(self): # test axis object with conti type axis = Axis((0., 5)) self.assertIsInstance(axis, Axis) self.assertEqual(axis.axis_type, 'conti') self.assertEqual(axis.axis_boe, (0., 5.)) self.assertEqual(axis.count, np.inf) self.assertEqual(axis.size, 5.0) self.assertTrue(np.allclose(axis.extract(1, 'int'), [0., 1., 2., 3., 4.])) self.assertTrue(np.allclose(axis.extract(0.5, 'int'), [0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5])) extracted = axis.extract(8, 'rand') self.assertEqual(len(extracted), 8) self.assertTrue(all([(0 <= item <= 5) for item in extracted])) # test axis object with discrete type axis = Axis((1, 5)) self.assertIsInstance(axis, Axis) self.assertEqual(axis.axis_type, 'discr') self.assertEqual(axis.axis_boe, (1, 5)) self.assertEqual(axis.count, 5) self.assertEqual(axis.size, 5) self.assertTrue(np.allclose(axis.extract(1, 'int'), [1, 2, 3, 4, 5])) self.assertRaises(ValueError, axis.extract, 0.5, 'int') extracted = axis.extract(8, 'rand') self.assertEqual(len(extracted), 8) self.assertTrue(all([(item in [1, 2, 3, 4, 5]) for item in extracted])) # test axis object with enumerate type axis = Axis((1, 5, 7, 10, 'A', 'F')) self.assertIsInstance(axis, Axis) self.assertEqual(axis.axis_type, 'enum') self.assertEqual(axis.axis_boe, (1, 5, 7, 10, 'A', 'F')) self.assertEqual(axis.count, 6) self.assertEqual(axis.size, 6) self.assertEqual(axis.extract(1, 'int'), [1, 5, 7, 10, 'A', 'F']) self.assertRaises(ValueError, axis.extract, 0.5, 'int') extracted = axis.extract(8, 'rand') self.assertEqual(len(extracted), 8) self.assertTrue(all([(item in [1, 5, 7, 10, 'A', 'F']) for item in extracted])) def test_from_point(self): """测试从一个点生成一个space""" # 生成一个space,指定space中的一个点以及distance,生成一个sub-space pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types=None) self.assertEqual(s.types, ['conti', 'discr']) self.assertEqual(s.dim, 2) self.assertEqual(s.size, (10., 11)) self.assertEqual(s.shape, (np.inf, 11)) self.assertEqual(s.count, np.inf) self.assertEqual(s.boes, [(0., 10), (0, 10)]) print('create subspace from a point in space') p = (3, 3) distance = 2 subspace = s.from_point(p, distance) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['conti', 'discr']) self.assertEqual(subspace.dim, 2) self.assertEqual(subspace.size, (4.0, 5)) self.assertEqual(subspace.shape, (np.inf, 5)) self.assertEqual(subspace.count, np.inf) self.assertEqual(subspace.boes, [(1, 5), (1, 5)]) print('create subspace from a 6 dimensional discrete space') s = Space(pars=[(10, 250), (10, 250), (10, 250), (10, 250), (10, 250), (10, 250)]) p = (15, 200, 150, 150, 150, 150) d = 10 subspace = s.from_point(p, d) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['discr', 'discr', 'discr', 'discr', 'discr', 'discr']) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.volume, 65345616) self.assertEqual(subspace.size, (16, 21, 21, 21, 21, 21)) self.assertEqual(subspace.shape, (16, 21, 21, 21, 21, 21)) self.assertEqual(subspace.count, 65345616) self.assertEqual(subspace.boes, [(10, 25), (190, 210), (140, 160), (140, 160), (140, 160), (140, 160)]) print('create subspace from a 6 dimensional continuous space') s = Space(pars=[(10., 250), (10., 250), (10., 250), (10., 250), (10., 250), (10., 250)]) p = (15, 200, 150, 150, 150, 150) d = 10 subspace = s.from_point(p, d) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['conti', 'conti', 'conti', 'conti', 'conti', 'conti']) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.volume, 48000000) self.assertEqual(subspace.size, (15.0, 20.0, 20.0, 20.0, 20.0, 20.0)) self.assertEqual(subspace.shape, (np.inf, np.inf, np.inf, np.inf, np.inf, np.inf)) self.assertEqual(subspace.count, np.inf) self.assertEqual(subspace.boes, [(10, 25), (190, 210), (140, 160), (140, 160), (140, 160), (140, 160)]) print('create subspace with different distances on each dimension') s = Space(pars=[(10., 250), (10., 250), (10., 250), (10., 250), (10., 250), (10., 250)]) p = (15, 200, 150, 150, 150, 150) d = [10, 5, 5, 10, 10, 5] subspace = s.from_point(p, d) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['conti', 'conti', 'conti', 'conti', 'conti', 'conti']) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.volume, 6000000) self.assertEqual(subspace.size, (15.0, 10.0, 10.0, 20.0, 20.0, 10.0)) self.assertEqual(subspace.shape, (np.inf, np.inf, np.inf, np.inf, np.inf, np.inf)) self.assertEqual(subspace.count, np.inf) self.assertEqual(subspace.boes, [(10, 25), (195, 205), (145, 155), (140, 160), (140, 160), (145, 155)]) class TestCashPlan(unittest.TestCase): def setUp(self): self.cp1 = qt.CashPlan(['2012-01-01', '2010-01-01'], [10000, 20000], 0.1) self.cp1.info() self.cp2 = qt.CashPlan(['20100501'], 10000) self.cp2.info() self.cp3 = qt.CashPlan(pd.date_range(start='2019-01-01', freq='Y', periods=12), [i * 1000 + 10000 for i in range(12)], 0.035) self.cp3.info() def test_creation(self): self.assertIsInstance(self.cp1, qt.CashPlan, 'CashPlan object creation wrong') self.assertIsInstance(self.cp2, qt.CashPlan, 'CashPlan object creation wrong') self.assertIsInstance(self.cp3, qt.CashPlan, 'CashPlan object creation wrong') # test __repr__() print(self.cp1) print(self.cp2) print(self.cp3) # test __str__() self.cp1.info() self.cp2.info() self.cp3.info() # test assersion errors self.assertRaises(AssertionError, qt.CashPlan, '2016-01-01', [10000, 10000]) self.assertRaises(KeyError, qt.CashPlan, '2020-20-20', 10000) def test_properties(self): self.assertEqual(self.cp1.amounts, [20000, 10000], 'property wrong') self.assertEqual(self.cp1.first_day, Timestamp('2010-01-01')) self.assertEqual(self.cp1.last_day, Timestamp('2012-01-01')) self.assertEqual(self.cp1.investment_count, 2) self.assertEqual(self.cp1.period, 730) self.assertEqual(self.cp1.dates, [Timestamp('2010-01-01'), Timestamp('2012-01-01')]) self.assertEqual(self.cp1.ir, 0.1) self.assertAlmostEqual(self.cp1.closing_value, 34200) self.assertAlmostEqual(self.cp2.closing_value, 10000) self.assertAlmostEqual(self.cp3.closing_value, 220385.3483685) self.assertIsInstance(self.cp1.plan, pd.DataFrame) self.assertIsInstance(self.cp2.plan, pd.DataFrame) self.assertIsInstance(self.cp3.plan, pd.DataFrame) def test_operation(self): cp_self_add = self.cp1 + self.cp1 cp_add = self.cp1 + self.cp2 cp_add_int = self.cp1 + 10000 cp_mul_int = self.cp1 * 2 cp_mul_float = self.cp2 * 1.5 cp_mul_time = 3 * self.cp2 cp_mul_time2 = 2 * self.cp1 cp_mul_time3 = 2 * self.cp3 cp_mul_float2 = 2. * self.cp3 self.assertIsInstance(cp_self_add, qt.CashPlan) self.assertEqual(cp_self_add.amounts, [40000, 20000]) self.assertEqual(cp_add.amounts, [20000, 10000, 10000]) self.assertEqual(cp_add_int.amounts, [30000, 20000]) self.assertEqual(cp_mul_int.amounts, [40000, 20000]) self.assertEqual(cp_mul_float.amounts, [15000]) self.assertEqual(cp_mul_float.dates, [Timestamp('2010-05-01')]) self.assertEqual(cp_mul_time.amounts, [10000, 10000, 10000]) self.assertEqual(cp_mul_time.dates, [Timestamp('2010-05-01'), Timestamp('2011-05-01'), Timestamp('2012-04-30')]) self.assertEqual(cp_mul_time2.amounts, [20000, 10000, 20000, 10000]) self.assertEqual(cp_mul_time2.dates, [Timestamp('2010-01-01'), Timestamp('2012-01-01'), Timestamp('2014-01-01'), Timestamp('2016-01-01')]) self.assertEqual(cp_mul_time3.dates, [Timestamp('2019-12-31'), Timestamp('2020-12-31'), Timestamp('2021-12-31'), Timestamp('2022-12-31'), Timestamp('2023-12-31'), Timestamp('2024-12-31'), Timestamp('2025-12-31'), Timestamp('2026-12-31'), Timestamp('2027-12-31'), Timestamp('2028-12-31'), Timestamp('2029-12-31'), Timestamp('2030-12-31'), Timestamp('2031-12-29'), Timestamp('2032-12-29'), Timestamp('2033-12-29'), Timestamp('2034-12-29'), Timestamp('2035-12-29'), Timestamp('2036-12-29'), Timestamp('2037-12-29'), Timestamp('2038-12-29'), Timestamp('2039-12-29'), Timestamp('2040-12-29'), Timestamp('2041-12-29'), Timestamp('2042-12-29')]) self.assertEqual(cp_mul_float2.dates, [Timestamp('2019-12-31'), Timestamp('2020-12-31'), Timestamp('2021-12-31'), Timestamp('2022-12-31'), Timestamp('2023-12-31'), Timestamp('2024-12-31'), Timestamp('2025-12-31'), Timestamp('2026-12-31'), Timestamp('2027-12-31'), Timestamp('2028-12-31'), Timestamp('2029-12-31'), Timestamp('2030-12-31')]) self.assertEqual(cp_mul_float2.amounts, [20000.0, 22000.0, 24000.0, 26000.0, 28000.0, 30000.0, 32000.0, 34000.0, 36000.0, 38000.0, 40000.0, 42000.0]) class TestPool(unittest.TestCase): def setUp(self): self.p = ResultPool(5) self.items = ['first', 'second', (1, 2, 3), 'this', 24] self.perfs = [1, 2, 3, 4, 5] self.additional_result1 = ('abc', 12) self.additional_result2 = ([1, 2], -1) self.additional_result3 = (12, 5) def test_create(self): self.assertIsInstance(self.p, ResultPool) def test_operation(self): self.p.in_pool(self.additional_result1[0], self.additional_result1[1]) self.p.cut() self.assertEqual(self.p.item_count, 1) self.assertEqual(self.p.items, ['abc']) for item, perf in zip(self.items, self.perfs): self.p.in_pool(item, perf) self.assertEqual(self.p.item_count, 6) self.assertEqual(self.p.items, ['abc', 'first', 'second', (1, 2, 3), 'this', 24]) self.p.cut() self.assertEqual(self.p.items, ['second', (1, 2, 3), 'this', 24, 'abc']) self.assertEqual(self.p.perfs, [2, 3, 4, 5, 12]) self.p.in_pool(self.additional_result2[0], self.additional_result2[1]) self.p.in_pool(self.additional_result3[0], self.additional_result3[1]) self.assertEqual(self.p.item_count, 7) self.p.cut(keep_largest=False) self.assertEqual(self.p.items, [[1, 2], 'second', (1, 2, 3), 'this', 24]) self.assertEqual(self.p.perfs, [-1, 2, 3, 4, 5]) class TestCoreSubFuncs(unittest.TestCase): """Test all functions in core.py""" def setUp(self): pass def test_input_to_list(self): print('Testing input_to_list() function') input_str = 'first' self.assertEqual(qt.utilfuncs.input_to_list(input_str, 3), ['first', 'first', 'first']) self.assertEqual(qt.utilfuncs.input_to_list(input_str, 4), ['first', 'first', 'first', 'first']) self.assertEqual(qt.utilfuncs.input_to_list(input_str, 2, None), ['first', 'first']) input_list = ['first', 'second'] self.assertEqual(qt.utilfuncs.input_to_list(input_list, 3), ['first', 'second', None]) self.assertEqual(qt.utilfuncs.input_to_list(input_list, 4, 'padder'), ['first', 'second', 'padder', 'padder']) self.assertEqual(qt.utilfuncs.input_to_list(input_list, 1), ['first', 'second']) self.assertEqual(qt.utilfuncs.input_to_list(input_list, -5), ['first', 'second']) def test_point_in_space(self): sp = Space([(0., 10.), (0., 10.), (0., 10.)]) p1 = (5.5, 3.2, 7) p2 = (-1, 3, 10) self.assertTrue(p1 in sp) print(f'point {p1} is in space {sp}') self.assertFalse(p2 in sp) print(f'point {p2} is not in space {sp}') sp = Space([(0., 10.), (0., 10.), range(40, 3, -2)], 'conti, conti, enum') p1 = (5.5, 3.2, 8) self.assertTrue(p1 in sp) print(f'point {p1} is in space {sp}') def test_space_in_space(self): print('test if a space is in another space') sp = Space([(0., 10.), (0., 10.), (0., 10.)]) sp2 = Space([(0., 10.), (0., 10.), (0., 10.)]) self.assertTrue(sp2 in sp) self.assertTrue(sp in sp2) print(f'space {sp2} is in space {sp}\n' f'and space {sp} is in space {sp2}\n' f'they are equal to each other\n') sp2 = Space([(0, 5.), (2, 7.), (3., 9.)]) self.assertTrue(sp2 in sp) self.assertFalse(sp in sp2) print(f'space {sp2} is in space {sp}\n' f'and space {sp} is not in space {sp2}\n' f'{sp2} is a sub space of {sp}\n') sp2 = Space([(0, 5), (2, 7), (3., 9)]) self.assertFalse(sp2 in sp) self.assertFalse(sp in sp2) print(f'space {sp2} is not in space {sp}\n' f'and space {sp} is not in space {sp2}\n' f'they have different types of axes\n') sp = Space([(0., 10.), (0., 10.), range(40, 3, -2)]) self.assertFalse(sp in sp2) self.assertFalse(sp2 in sp) print(f'space {sp2} is not in space {sp}\n' f'and space {sp} is not in space {sp2}\n' f'they have different types of axes\n') def test_space_around_centre(self): sp = Space([(0., 10.), (0., 10.), (0., 10.)]) p1 = (5.5, 3.2, 7) ssp = space_around_centre(space=sp, centre=p1, radius=1.2) print(ssp.boes) print('\ntest multiple diameters:') self.assertEqual(ssp.boes, [(4.3, 6.7), (2.0, 4.4), (5.8, 8.2)]) ssp = space_around_centre(space=sp, centre=p1, radius=[1, 2, 1]) print(ssp.boes) self.assertEqual(ssp.boes, [(4.5, 6.5), (1.2000000000000002, 5.2), (6.0, 8.0)]) print('\ntest points on edge:') p2 = (5.5, 3.2, 10) ssp = space_around_centre(space=sp, centre=p1, radius=3.9) print(ssp.boes) self.assertEqual(ssp.boes, [(1.6, 9.4), (0.0, 7.1), (3.1, 10.0)]) print('\ntest enum spaces') sp = Space([(0, 100), range(40, 3, -2)], 'discr, enum') p1 = [34, 12] ssp = space_around_centre(space=sp, centre=p1, radius=5, ignore_enums=False) self.assertEqual(ssp.boes, [(29, 39), (22, 20, 18, 16, 14, 12, 10, 8, 6, 4)]) print(ssp.boes) print('\ntest enum space and ignore enum axis') ssp = space_around_centre(space=sp, centre=p1, radius=5) self.assertEqual(ssp.boes, [(29, 39), (40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4)]) print(sp.boes) def test_get_stock_pool(self): print(f'start test building stock pool function\n') share_basics = stock_basic(fields='ts_code,symbol,name,area,industry,market,list_date,exchange') print(f'\nselect all stocks by area') stock_pool = qt.get_stock_pool(area='上海') print(f'{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock areas are "上海"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].eq('上海').all()) print(f'\nselect all stocks by multiple areas') stock_pool = qt.get_stock_pool(area='贵州,北京,天津') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock areas are in list of ["贵州", "北京", "天津"]\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].isin(['贵州', '北京', '天津']).all()) print(f'\nselect all stocks by area and industry') stock_pool = qt.get_stock_pool(area='四川', industry='银行, 金融') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock areas are "四川", and industry in ["银行", "金融"]\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['industry'].isin(['银行', '金融']).all()) self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].isin(['四川']).all()) print(f'\nselect all stocks by industry') stock_pool = qt.get_stock_pool(industry='银行, 金融') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stocks industry in ["银行", "金融"]\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['industry'].isin(['银行', '金融']).all()) print(f'\nselect all stocks by market') stock_pool = qt.get_stock_pool(market='主板') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock market is "主板"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['market'].isin(['主板']).all()) print(f'\nselect all stocks by market and list date') stock_pool = qt.get_stock_pool(date='2000-01-01', market='主板') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock market is "主板", and list date after "2000-01-01"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['market'].isin(['主板']).all()) self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['list_date'].le('2000-01-01').all()) print(f'\nselect all stocks by list date') stock_pool = qt.get_stock_pool(date='1997-01-01') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all list date after "1997-01-01"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['list_date'].le('1997-01-01').all()) print(f'\nselect all stocks by exchange') stock_pool = qt.get_stock_pool(exchange='SSE') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all exchanges are "SSE"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['exchange'].eq('SSE').all()) print(f'\nselect all stocks by industry, area and list date') industry_list = ['银行', '全国地产', '互联网', '环境保护', '区域地产', '酒店餐饮', '运输设备', '综合类', '建筑工程', '玻璃', '家用电器', '文教休闲', '其他商业', '元器件', 'IT设备', '其他建材', '汽车服务', '火力发电', '医药商业', '汽车配件', '广告包装', '轻工机械', '新型电力', '多元金融', '饲料'] area_list = ['深圳', '北京', '吉林', '江苏', '辽宁', '广东', '安徽', '四川', '浙江', '湖南', '河北', '新疆', '山东', '河南', '山西', '江西', '青海', '湖北', '内蒙', '海南', '重庆', '陕西', '福建', '广西', '上海'] stock_pool = qt.get_stock_pool(date='19980101', industry=industry_list, area=area_list) print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all exchanges are "SSE"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['list_date'].le('1998-01-01').all()) self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['industry'].isin(industry_list).all()) self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].isin(area_list).all()) self.assertRaises(KeyError, qt.get_stock_pool, industry=25) self.assertRaises(KeyError, qt.get_stock_pool, share_name='000300.SH') self.assertRaises(KeyError, qt.get_stock_pool, markets='SSE') class TestEvaluations(unittest.TestCase): """Test all evaluation functions in core.py""" # 以下手动计算结果在Excel文件中 def setUp(self): """用np.random生成测试用数据,使用cumsum()模拟股票走势""" self.test_data1 = pd.DataFrame([5.34892759, 5.65768696, 5.79227076, 5.56266871, 5.88189632, 6.24795001, 5.92755558, 6.38748165, 6.31331899, 5.86001665, 5.61048472, 5.30696736, 5.40406792, 5.03180571, 5.37886353, 5.78608307, 6.26540339, 6.59348026, 6.90943801, 6.70911677, 6.33015954, 6.06697417, 5.9752499, 6.45786408, 6.95273763, 6.7691991, 6.70355481, 6.28048969, 6.61344541, 6.24620003, 6.47409983, 6.4522311, 6.8773094, 6.99727832, 6.59262674, 6.59014938, 6.63758237, 6.38331869, 6.09902105, 6.35390109, 6.51993567, 6.87244592, 6.83963485, 7.08797815, 6.88003144, 6.83657323, 6.97819483, 7.01600276, 7.12554256, 7.58941523, 7.61014457, 7.21224091, 7.48174399, 7.66490854, 7.51371968, 7.11586198, 6.97147399, 6.67453301, 6.2042138, 6.33967015, 6.22187938, 5.98426993, 6.37096079, 6.55897161, 6.26422645, 6.69363762, 7.12668015, 6.83232926, 7.30524081, 7.4262041, 7.54031383, 7.17545919, 7.20659257, 7.44886016, 7.37094393, 6.88011022, 7.08142491, 6.74992833, 6.5967097, 6.21336693, 6.35565105, 6.82347596, 6.44773408, 6.84538053, 6.47966466, 6.09699528, 5.63927014, 6.01081024, 6.20585303, 6.60528206, 7.01594726, 7.03684251, 6.76574977, 7.08740846, 6.65336462, 7.07126686, 6.80058956, 6.79241977, 6.47843472, 6.39245474], columns=['value']) self.test_data2 = pd.DataFrame([5.09276527, 4.83828592, 4.6000911, 4.63170487, 4.63566451, 4.50546921, 4.96390044, 4.64557907, 4.25787855, 3.76585551, 3.38826334, 3.76243422, 4.06365426, 3.87084726, 3.91400935, 4.13438822, 4.27064542, 4.56776104, 5.03800296, 5.31070529, 5.39902276, 5.21186286, 5.05683114, 4.68842046, 5.11895168, 5.27151571, 5.72294993, 6.09961056, 6.26569635, 6.48806151, 6.16058885, 6.2582459, 6.38934791, 6.57831057, 6.19508831, 5.70155153, 5.20435735, 5.36538825, 5.40450056, 5.2227697, 5.37828693, 5.53058991, 6.02996797, 5.76802181, 5.66166713, 6.07988994, 5.61794367, 5.63218151, 6.10728013, 6.0324168, 6.27164431, 6.27551239, 6.52329665, 7.00470007, 7.34163113, 7.33699083, 7.67661334, 8.09395749, 7.68086668, 7.58341161, 7.46219819, 7.58671899, 7.19348298, 7.40088323, 7.47562005, 7.93342043, 8.2286081, 8.3521632, 8.43590025, 8.34977395, 8.57563095, 8.81586328, 9.08738649, 9.01542031, 8.8653815, 9.21763111, 9.04233017, 8.59533999, 8.47590075, 8.70857222, 8.78890756, 8.92697606, 9.35743773, 9.68280866, 10.15622021, 10.55908549, 10.6337894, 10.55197128, 10.65435176, 10.54611045, 10.19432562, 10.48320884, 10.36176768, 10.03186854, 10.23656092, 10.0062843, 10.13669686, 10.30758958, 9.87904176, 10.05126375], columns=['value']) self.test_data3 = pd.DataFrame([5.02851874, 5.20700348, 5.02410709, 5.49836387, 5.06834371, 5.10956737, 5.15314979, 5.02256472, 5.09746382, 5.23909247, 4.93410336, 4.96316186, 5.40026682, 5.7353255, 5.53438319, 5.79092139, 5.67528173, 5.89840855, 5.75379463, 6.10855386, 5.77322365, 5.84538021, 5.6103973, 5.7518655, 5.49729695, 5.13610628, 5.30524121, 5.68093462, 5.73251319, 6.04420783, 6.26929843, 6.59610234, 6.09872345, 6.25475121, 6.72927396, 6.91395783, 7.00693283, 7.36217783, 7.71516676, 7.67580263, 7.62477511, 7.73600568, 7.53457914, 7.46170277, 7.83658014, 8.11481319, 8.03705544, 7.64948845, 7.52043731, 7.67247943, 7.46511982, 7.43541798, 7.58856517, 7.9392717, 8.25406287, 7.77031632, 8.03223447, 7.86799055, 7.57630999, 7.33230519, 7.22378732, 6.85972264, 7.17548456, 7.5387846, 7.2392632, 6.8455644, 6.59557185, 6.6496796, 6.73685623, 7.18598015, 7.13619128, 6.88060157, 7.1399681, 7.30308077, 6.94942434, 7.0247815, 7.37567798, 7.50080197, 7.59719284, 7.14520561, 7.29913484, 7.79551341, 8.15497781, 8.40456095, 8.86516528, 8.53042688, 8.94268762, 8.52048006, 8.80036284, 8.91602364, 9.19953385, 8.70828953, 8.24613093, 8.18770453, 7.79548389, 7.68627967, 7.23205036, 6.98302636, 7.06515819, 6.95068113], columns=['value']) self.test_data4 = pd.DataFrame([4.97926539, 5.44016005, 5.45122915, 5.74485615, 5.45600553, 5.44858945, 5.2435413, 5.47315161, 5.58464303, 5.36179749, 5.38236326, 5.29614981, 5.76523508, 5.75102892, 6.15316618, 6.03852528, 6.01442228, 5.70510182, 5.22748133, 5.46762379, 5.78926267, 5.8221362, 5.61236849, 5.30615725, 5.24200611, 5.41042642, 5.59940342, 5.28306781, 4.99451932, 5.08799266, 5.38865647, 5.58229139, 5.33492845, 5.48206276, 5.09721379, 5.39190493, 5.29965087, 5.0374415, 5.50798022, 5.43107577, 5.22759507, 4.991809, 5.43153084, 5.39966868, 5.59916352, 5.66412137, 6.00611838, 5.63564902, 5.66723484, 5.29863863, 4.91115153, 5.3749929, 5.75082334, 6.08308148, 6.58091182, 6.77848803, 7.19588758, 7.64862286, 7.99818347, 7.91824794, 8.30341071, 8.45984973, 7.98700002, 8.18924931, 8.60755649, 8.66233396, 8.91018407, 9.0782739, 9.33515448, 8.95870245, 8.98426422, 8.50340317, 8.64916085, 8.93592407, 8.63145745, 8.65322862, 8.39543204, 8.37969997, 8.23394504, 8.04062872, 7.91259763, 7.57252171, 7.72670114, 7.74486117, 8.06908188, 7.99166889, 7.92155906, 8.39956136, 8.80181323, 8.47464091, 8.06557064, 7.87145573, 8.0237959, 8.39481998, 8.68525692, 8.81185461, 8.98632237, 9.0989835, 8.89787405, 8.86508591], columns=['value']) self.test_data5 = pd.DataFrame([4.50258923, 4.35142568, 4.07459514, 3.87791297, 3.73715985, 3.98455684, 4.07587908, 4.00042472, 4.28276612, 4.01362051, 4.13713565, 4.49312372, 4.48633159, 4.4641207, 4.13444605, 3.79107217, 4.22941629, 4.56548511, 4.92472163, 5.27723158, 5.67409193, 6.00176917, 5.88889928, 5.55256103, 5.39308314, 5.2610492, 5.30738908, 5.22222408, 4.90332238, 4.57499908, 4.96097146, 4.81531011, 4.39115442, 4.63200662, 5.04588813, 4.67866025, 5.01705123, 4.83562258, 4.60381702, 4.66187576, 4.41292828, 4.86604507, 4.42280124, 4.07517294, 4.16317319, 4.10316596, 4.42913598, 4.06609666, 3.96725913, 4.15965746, 4.12379564, 4.04054068, 3.84342851, 3.45902867, 3.17649855, 3.09773586, 3.5502119, 3.66396995, 3.66306483, 3.29131401, 2.79558533, 2.88319542, 3.03671098, 3.44645857, 3.88167161, 3.57961874, 3.60180276, 3.96702102, 4.05429995, 4.40056979, 4.05653231, 3.59600456, 3.60792477, 4.09989922, 3.73503663, 4.01892626, 3.94597242, 3.81466605, 3.71417992, 3.93767156, 4.42806557, 4.06988106, 4.03713636, 4.34408673, 4.79810156, 5.18115011, 4.89798406, 5.3960077, 5.72504875, 5.61894017, 5.1958197, 4.85275896, 5.17550207, 4.71548987, 4.62408567, 4.55488535, 4.36532649, 4.26031979, 4.25225607, 4.58627048], columns=['value']) self.test_data6 = pd.DataFrame([5.08639513, 5.05761083, 4.76160923, 4.62166504, 4.62923183, 4.25070173, 4.13447513, 3.90890013, 3.76687608, 3.43342482, 3.67648224, 3.6274775, 3.9385404, 4.39771627, 4.03199346, 3.93265288, 3.50059789, 3.3851961, 3.29743973, 3.2544872, 2.93692949, 2.70893003, 2.55461976, 2.20922332, 2.29054475, 2.2144714, 2.03726827, 2.39007617, 2.29866155, 2.40607111, 2.40440444, 2.79374649, 2.66541922, 2.27018079, 2.08505127, 2.55478864, 2.22415625, 2.58517923, 2.58802256, 2.94870959, 2.69301739, 2.19991535, 2.69473146, 2.64704637, 2.62753542, 2.14240825, 2.38565154, 1.94592117, 2.32243877, 2.69337246, 2.51283854, 2.62484451, 2.15559054, 2.35410875, 2.31219177, 1.96018265, 2.34711266, 2.58083322, 2.40290041, 2.20439791, 2.31472425, 2.16228248, 2.16439749, 2.20080737, 1.73293206, 1.9264407, 2.25089861, 2.69269101, 2.59296687, 2.1420998, 1.67819153, 1.98419023, 2.14479494, 1.89055376, 1.96720648, 1.9916694, 2.37227761, 2.14446036, 2.34573903, 1.86162546, 2.1410721, 2.39204939, 2.52529064, 2.47079939, 2.9299031, 3.09452923, 2.93276708, 3.21731309, 3.06248964, 2.90413406, 2.67844632, 2.45621213, 2.41463398, 2.7373913, 3.14917045, 3.4033949, 3.82283446, 4.02285451, 3.7619638, 4.10346795], columns=['value']) self.test_data7 = pd.DataFrame([4.75233583, 4.47668283, 4.55894263, 4.61765848, 4.622892, 4.58941116, 4.32535872, 3.88112797, 3.47237806, 3.50898953, 3.82530406, 3.6718017, 3.78918195, 4.1800752, 4.01818557, 4.40822582, 4.65474654, 4.89287256, 4.40879274, 4.65505126, 4.36876403, 4.58418934, 4.75687172, 4.3689799, 4.16126498, 4.0203982, 3.77148242, 3.38198096, 3.07261764, 2.9014741, 2.5049543, 2.756105, 2.28779058, 2.16986991, 1.8415962, 1.83319008, 2.20898291, 2.00128981, 1.75747025, 1.26676663, 1.40316876, 1.11126484, 1.60376367, 1.22523829, 1.58816681, 1.49705679, 1.80244138, 1.55128293, 1.35339409, 1.50985759, 1.0808451, 1.05892796, 1.43414812, 1.43039101, 1.73631655, 1.43940867, 1.82864425, 1.71088265, 2.12015154, 2.45417128, 2.84777618, 2.7925612, 2.90975121, 3.25920745, 3.13801182, 3.52733677, 3.65468491, 3.69395211, 3.49862035, 3.24786017, 3.64463138, 4.00331929, 3.62509565, 3.78013949, 3.4174012, 3.76312271, 3.62054004, 3.67206716, 3.60596058, 3.38636199, 3.42580676, 3.32921095, 3.02976759, 3.28258676, 3.45760838, 3.24917528, 2.94618304, 2.86980011, 2.63191259, 2.39566759, 2.53159917, 2.96273967, 3.25626185, 2.97425402, 3.16412191, 3.58280763, 3.23257727, 3.62353556, 3.12806399, 2.92532313], columns=['value']) # 建立一个长度为 500 个数据点的测试数据, 用于测试数据点多于250个的情况下的评价过程 self.long_data = pd.DataFrame([9.879, 9.916, 10.109, 10.214, 10.361, 10.768, 10.594, 10.288, 10.082, 9.994, 10.125, 10.126, 10.384, 10.734, 10.4, 10.87, 11.338, 11.061, 11.415, 11.724, 12.077, 12.196, 12.064, 12.423, 12.19, 11.729, 11.677, 11.448, 11.485, 10.989, 11.242, 11.239, 11.113, 11.075, 11.471, 11.745, 11.754, 11.782, 12.079, 11.97, 12.178, 11.95, 12.438, 12.612, 12.804, 12.952, 12.612, 12.867, 12.832, 12.832, 13.015, 13.315, 13.249, 12.904, 12.776, 12.64, 12.543, 12.287, 12.225, 11.844, 11.985, 11.945, 11.542, 11.871, 12.245, 12.228, 12.362, 11.899, 11.962, 12.374, 12.816, 12.649, 12.252, 12.579, 12.3, 11.988, 12.177, 12.312, 12.744, 12.599, 12.524, 12.82, 12.67, 12.876, 12.986, 13.271, 13.606, 13.82, 14.161, 13.833, 13.831, 14.137, 13.705, 13.414, 13.037, 12.759, 12.642, 12.948, 13.297, 13.483, 13.836, 14.179, 13.709, 13.655, 13.198, 13.508, 13.953, 14.387, 14.043, 13.987, 13.561, 13.391, 12.923, 12.555, 12.503, 12.292, 11.877, 12.34, 12.141, 11.687, 11.992, 12.458, 12.131, 11.75, 11.739, 11.263, 11.762, 11.976, 11.578, 11.854, 12.136, 12.422, 12.311, 12.56, 12.879, 12.861, 12.973, 13.235, 13.53, 13.531, 13.137, 13.166, 13.31, 13.103, 13.007, 12.643, 12.69, 12.216, 12.385, 12.046, 12.321, 11.9, 11.772, 11.816, 11.871, 11.59, 11.518, 11.94, 11.803, 11.924, 12.183, 12.136, 12.361, 12.406, 11.932, 11.684, 11.292, 11.388, 11.874, 12.184, 12.002, 12.16, 11.741, 11.26, 11.123, 11.534, 11.777, 11.407, 11.275, 11.679, 11.62, 11.218, 11.235, 11.352, 11.366, 11.061, 10.661, 10.582, 10.899, 11.352, 11.792, 11.475, 11.263, 11.538, 11.183, 10.936, 11.399, 11.171, 11.214, 10.89, 10.728, 11.191, 11.646, 11.62, 11.195, 11.178, 11.18, 10.956, 11.205, 10.87, 11.098, 10.639, 10.487, 10.507, 10.92, 10.558, 10.119, 9.882, 9.573, 9.515, 9.845, 9.852, 9.495, 9.726, 10.116, 10.452, 10.77, 11.225, 10.92, 10.824, 11.096, 11.542, 11.06, 10.568, 10.585, 10.884, 10.401, 10.068, 9.964, 10.285, 10.239, 10.036, 10.417, 10.132, 9.839, 9.556, 9.084, 9.239, 9.304, 9.067, 8.587, 8.471, 8.007, 8.321, 8.55, 9.008, 9.138, 9.088, 9.434, 9.156, 9.65, 9.431, 9.654, 10.079, 10.411, 10.865, 10.51, 10.205, 10.519, 10.367, 10.855, 10.642, 10.298, 10.622, 10.173, 9.792, 9.995, 9.904, 9.771, 9.597, 9.506, 9.212, 9.688, 10.032, 9.723, 9.839, 9.918, 10.332, 10.236, 9.989, 10.192, 10.685, 10.908, 11.275, 11.72, 12.158, 12.045, 12.244, 12.333, 12.246, 12.552, 12.958, 13.11, 13.53, 13.123, 13.138, 13.57, 13.389, 13.511, 13.759, 13.698, 13.744, 13.467, 13.795, 13.665, 13.377, 13.423, 13.772, 13.295, 13.073, 12.718, 12.388, 12.399, 12.185, 11.941, 11.818, 11.465, 11.811, 12.163, 11.86, 11.935, 11.809, 12.145, 12.624, 12.768, 12.321, 12.277, 11.889, 12.11, 12.606, 12.943, 12.945, 13.112, 13.199, 13.664, 14.051, 14.189, 14.339, 14.611, 14.656, 15.112, 15.086, 15.263, 15.021, 15.346, 15.572, 15.607, 15.983, 16.151, 16.215, 16.096, 16.089, 16.32, 16.59, 16.657, 16.752, 16.583, 16.743, 16.373, 16.662, 16.243, 16.163, 16.491, 16.958, 16.977, 17.225, 17.637, 17.344, 17.684, 17.892, 18.036, 18.182, 17.803, 17.588, 17.101, 17.538, 17.124, 16.787, 17.167, 17.138, 16.955, 17.148, 17.135, 17.635, 17.718, 17.675, 17.622, 17.358, 17.754, 17.729, 17.576, 17.772, 18.239, 18.441, 18.729, 18.319, 18.608, 18.493, 18.069, 18.122, 18.314, 18.423, 18.709, 18.548, 18.384, 18.391, 17.988, 17.986, 17.653, 17.249, 17.298, 17.06, 17.36, 17.108, 17.348, 17.596, 17.46, 17.635, 17.275, 17.291, 16.933, 17.337, 17.231, 17.146, 17.148, 16.751, 16.891, 17.038, 16.735, 16.64, 16.231, 15.957, 15.977, 16.077, 16.054, 15.797, 15.67, 15.911, 16.077, 16.17, 15.722, 15.258, 14.877, 15.138, 15., 14.811, 14.698, 14.407, 14.583, 14.704, 15.153, 15.436, 15.634, 15.453, 15.877, 15.696, 15.563, 15.927, 16.255, 16.696, 16.266, 16.698, 16.365, 16.493, 16.973, 16.71, 16.327, 16.605, 16.486, 16.846, 16.935, 17.21, 17.389, 17.546, 17.773, 17.641, 17.485, 17.794, 17.354, 16.904, 16.675, 16.43, 16.898, 16.819, 16.921, 17.201, 17.617, 17.368, 17.864, 17.484], columns=['value']) self.long_bench = pd.DataFrame([9.7, 10.179, 10.321, 9.855, 9.936, 10.096, 10.331, 10.662, 10.59, 11.031, 11.154, 10.945, 10.625, 10.233, 10.284, 10.252, 10.221, 10.352, 10.444, 10.773, 10.904, 11.104, 10.797, 10.55, 10.943, 11.352, 11.641, 11.983, 11.696, 12.138, 12.365, 12.379, 11.969, 12.454, 12.947, 13.119, 13.013, 12.763, 12.632, 13.034, 12.681, 12.561, 12.938, 12.867, 13.202, 13.132, 13.539, 13.91, 13.456, 13.692, 13.771, 13.904, 14.069, 13.728, 13.97, 14.228, 13.84, 14.041, 13.963, 13.689, 13.543, 13.858, 14.118, 13.987, 13.611, 14.028, 14.229, 14.41, 14.74, 15.03, 14.915, 15.207, 15.354, 15.665, 15.877, 15.682, 15.625, 15.175, 15.105, 14.893, 14.86, 15.097, 15.178, 15.293, 15.238, 15., 15.283, 14.994, 14.907, 14.664, 14.888, 15.297, 15.313, 15.368, 14.956, 14.802, 14.506, 14.257, 14.619, 15.019, 15.049, 14.625, 14.894, 14.978, 15.434, 15.578, 16.038, 16.107, 16.277, 16.365, 16.204, 16.465, 16.401, 16.895, 17.057, 16.621, 16.225, 16.075, 15.863, 16.292, 16.551, 16.724, 16.817, 16.81, 17.192, 16.86, 16.745, 16.707, 16.552, 16.133, 16.301, 16.08, 15.81, 15.75, 15.909, 16.127, 16.457, 16.204, 16.329, 16.748, 16.624, 17.011, 16.548, 16.831, 16.653, 16.791, 16.57, 16.778, 16.928, 16.932, 17.22, 16.876, 17.301, 17.422, 17.689, 17.316, 17.547, 17.534, 17.409, 17.669, 17.416, 17.859, 17.477, 17.307, 17.245, 17.352, 17.851, 17.412, 17.144, 17.138, 17.085, 16.926, 16.674, 16.854, 17.064, 16.95, 16.609, 16.957, 16.498, 16.552, 16.175, 15.858, 15.697, 15.781, 15.583, 15.36, 15.558, 16.046, 15.968, 15.905, 16.358, 16.783, 17.048, 16.762, 17.224, 17.363, 17.246, 16.79, 16.608, 16.423, 15.991, 15.527, 15.147, 14.759, 14.792, 15.206, 15.148, 15.046, 15.429, 14.999, 15.407, 15.124, 14.72, 14.713, 15.022, 15.092, 14.982, 15.001, 14.734, 14.713, 14.841, 14.562, 15.005, 15.483, 15.472, 15.277, 15.503, 15.116, 15.12, 15.442, 15.476, 15.789, 15.36, 15.764, 16.218, 16.493, 16.642, 17.088, 16.816, 16.645, 16.336, 16.511, 16.2, 15.994, 15.86, 15.929, 16.316, 16.416, 16.746, 17.173, 17.531, 17.627, 17.407, 17.49, 17.768, 17.509, 17.795, 18.147, 18.63, 18.945, 19.021, 19.518, 19.6, 19.744, 19.63, 19.32, 18.933, 19.297, 19.598, 19.446, 19.236, 19.198, 19.144, 19.159, 19.065, 19.032, 18.586, 18.272, 18.119, 18.3, 17.894, 17.744, 17.5, 17.083, 17.092, 16.864, 16.453, 16.31, 16.681, 16.342, 16.447, 16.715, 17.068, 17.067, 16.822, 16.673, 16.675, 16.592, 16.686, 16.397, 15.902, 15.597, 15.357, 15.162, 15.348, 15.603, 15.283, 15.257, 15.082, 14.621, 14.366, 14.039, 13.957, 14.141, 13.854, 14.243, 14.414, 14.033, 13.93, 14.104, 14.461, 14.249, 14.053, 14.165, 14.035, 14.408, 14.501, 14.019, 14.265, 14.67, 14.797, 14.42, 14.681, 15.16, 14.715, 14.292, 14.411, 14.656, 15.094, 15.366, 15.055, 15.198, 14.762, 14.294, 13.854, 13.811, 13.549, 13.927, 13.897, 13.421, 13.037, 13.32, 13.721, 13.511, 13.999, 13.529, 13.418, 13.881, 14.326, 14.362, 13.987, 14.015, 13.599, 13.343, 13.307, 13.689, 13.851, 13.404, 13.577, 13.395, 13.619, 13.195, 12.904, 12.553, 12.294, 12.649, 12.425, 11.967, 12.062, 11.71, 11.645, 12.058, 12.136, 11.749, 11.953, 12.401, 12.044, 11.901, 11.631, 11.396, 11.036, 11.244, 10.864, 11.207, 11.135, 11.39, 11.723, 12.084, 11.8, 11.471, 11.33, 11.504, 11.295, 11.3, 10.901, 10.494, 10.825, 11.054, 10.866, 10.713, 10.875, 10.846, 10.947, 11.422, 11.158, 10.94, 10.521, 10.36, 10.411, 10.792, 10.472, 10.305, 10.525, 10.853, 10.556, 10.72, 10.54, 10.583, 10.299, 10.061, 10.004, 9.903, 9.796, 9.472, 9.246, 9.54, 9.456, 9.177, 9.484, 9.557, 9.493, 9.968, 9.536, 9.39, 8.922, 8.423, 8.518, 8.686, 8.771, 9.098, 9.281, 8.858, 9.027, 8.553, 8.784, 8.996, 9.379, 9.846, 9.855, 9.502, 9.608, 9.761, 9.409, 9.4, 9.332, 9.34, 9.284, 8.844, 8.722, 8.376, 8.775, 8.293, 8.144, 8.63, 8.831, 8.957, 9.18, 9.601, 9.695, 10.018, 9.841, 9.743, 9.292, 8.85, 9.316, 9.288, 9.519, 9.738, 9.289, 9.785, 9.804, 10.06, 10.188, 10.095, 9.739, 9.881, 9.7, 9.991, 10.391, 10.002], columns=['value']) def test_performance_stats(self): """test the function performance_statistics() """ pass def test_fv(self): print(f'test with test data and empty DataFrame') self.assertAlmostEqual(eval_fv(self.test_data1), 6.39245474) self.assertAlmostEqual(eval_fv(self.test_data2), 10.05126375) self.assertAlmostEqual(eval_fv(self.test_data3), 6.95068113) self.assertAlmostEqual(eval_fv(self.test_data4), 8.86508591) self.assertAlmostEqual(eval_fv(self.test_data5), 4.58627048) self.assertAlmostEqual(eval_fv(self.test_data6), 4.10346795) self.assertAlmostEqual(eval_fv(self.test_data7), 2.92532313) self.assertAlmostEqual(eval_fv(pd.DataFrame()), -np.inf) print(f'Error testing') self.assertRaises(AssertionError, eval_fv, 15) self.assertRaises(KeyError, eval_fv, pd.DataFrame([1, 2, 3], columns=['non_value'])) def test_max_drawdown(self): print(f'test with test data and empty DataFrame') self.assertAlmostEqual(eval_max_drawdown(self.test_data1)[0], 0.264274308) self.assertEqual(eval_max_drawdown(self.test_data1)[1], 53) self.assertEqual(eval_max_drawdown(self.test_data1)[2], 86) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data1)[3])) self.assertAlmostEqual(eval_max_drawdown(self.test_data2)[0], 0.334690849) self.assertEqual(eval_max_drawdown(self.test_data2)[1], 0) self.assertEqual(eval_max_drawdown(self.test_data2)[2], 10) self.assertEqual(eval_max_drawdown(self.test_data2)[3], 19) self.assertAlmostEqual(eval_max_drawdown(self.test_data3)[0], 0.244452899) self.assertEqual(eval_max_drawdown(self.test_data3)[1], 90) self.assertEqual(eval_max_drawdown(self.test_data3)[2], 99) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data3)[3])) self.assertAlmostEqual(eval_max_drawdown(self.test_data4)[0], 0.201849684) self.assertEqual(eval_max_drawdown(self.test_data4)[1], 14) self.assertEqual(eval_max_drawdown(self.test_data4)[2], 50) self.assertEqual(eval_max_drawdown(self.test_data4)[3], 54) self.assertAlmostEqual(eval_max_drawdown(self.test_data5)[0], 0.534206456) self.assertEqual(eval_max_drawdown(self.test_data5)[1], 21) self.assertEqual(eval_max_drawdown(self.test_data5)[2], 60) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data5)[3])) self.assertAlmostEqual(eval_max_drawdown(self.test_data6)[0], 0.670062689) self.assertEqual(eval_max_drawdown(self.test_data6)[1], 0) self.assertEqual(eval_max_drawdown(self.test_data6)[2], 70) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data6)[3])) self.assertAlmostEqual(eval_max_drawdown(self.test_data7)[0], 0.783577449) self.assertEqual(eval_max_drawdown(self.test_data7)[1], 17) self.assertEqual(eval_max_drawdown(self.test_data7)[2], 51) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data7)[3])) self.assertEqual(eval_max_drawdown(pd.DataFrame()), -np.inf) print(f'Error testing') self.assertRaises(AssertionError, eval_fv, 15) self.assertRaises(KeyError, eval_fv, pd.DataFrame([1, 2, 3], columns=['non_value'])) # test max drawdown == 0: # TODO: investigate: how does divide by zero change? self.assertAlmostEqual(eval_max_drawdown(self.test_data4 - 5)[0], 1.0770474121951792) self.assertEqual(eval_max_drawdown(self.test_data4 - 5)[1], 14) self.assertEqual(eval_max_drawdown(self.test_data4 - 5)[2], 50) def test_info_ratio(self): reference = self.test_data1 self.assertAlmostEqual(eval_info_ratio(self.test_data2, reference, 'value'), 0.075553316) self.assertAlmostEqual(eval_info_ratio(self.test_data3, reference, 'value'), 0.018949457) self.assertAlmostEqual(eval_info_ratio(self.test_data4, reference, 'value'), 0.056328143) self.assertAlmostEqual(eval_info_ratio(self.test_data5, reference, 'value'), -0.004270068) self.assertAlmostEqual(eval_info_ratio(self.test_data6, reference, 'value'), 0.009198027) self.assertAlmostEqual(eval_info_ratio(self.test_data7, reference, 'value'), -0.000890283) def test_volatility(self): self.assertAlmostEqual(eval_volatility(self.test_data1), 0.748646166) self.assertAlmostEqual(eval_volatility(self.test_data2), 0.75527442) self.assertAlmostEqual(eval_volatility(self.test_data3), 0.654188853) self.assertAlmostEqual(eval_volatility(self.test_data4), 0.688375814) self.assertAlmostEqual(eval_volatility(self.test_data5), 1.089989522) self.assertAlmostEqual(eval_volatility(self.test_data6), 1.775419308) self.assertAlmostEqual(eval_volatility(self.test_data7), 1.962758406) self.assertAlmostEqual(eval_volatility(self.test_data1, logarithm=False), 0.750993311) self.assertAlmostEqual(eval_volatility(self.test_data2, logarithm=False), 0.75571473) self.assertAlmostEqual(eval_volatility(self.test_data3, logarithm=False), 0.655331424) self.assertAlmostEqual(eval_volatility(self.test_data4, logarithm=False), 0.692683021) self.assertAlmostEqual(eval_volatility(self.test_data5, logarithm=False), 1.09602969) self.assertAlmostEqual(eval_volatility(self.test_data6, logarithm=False), 1.774789504) self.assertAlmostEqual(eval_volatility(self.test_data7, logarithm=False), 2.003329156) self.assertEqual(eval_volatility(pd.DataFrame()), -np.inf) self.assertRaises(AssertionError, eval_volatility, [1, 2, 3]) # 测试长数据的Volatility计算 expected_volatility = np.array([np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 0.39955371, 0.39974258, 0.40309866, 0.40486593, 0.4055514, 0.40710639, 0.40708157, 0.40609006, 0.4073625, 0.40835305, 0.41155304, 0.41218193, 0.41207489, 0.41300276, 0.41308415, 0.41292392, 0.41207645, 0.41238397, 0.41229291, 0.41164056, 0.41316317, 0.41348842, 0.41462249, 0.41474574, 0.41652625, 0.41649176, 0.41701556, 0.4166593, 0.41684221, 0.41491689, 0.41435209, 0.41549087, 0.41849338, 0.41998049, 0.41959106, 0.41907311, 0.41916103, 0.42120773, 0.42052391, 0.42111225, 0.42124589, 0.42356445, 0.42214672, 0.42324022, 0.42476639, 0.42621689, 0.42549439, 0.42533678, 0.42539414, 0.42545038, 0.42593637, 0.42652095, 0.42665489, 0.42699563, 0.42798159, 0.42784512, 0.42898006, 0.42868781, 0.42874188, 0.42789631, 0.4277768, 0.42776827, 0.42685216, 0.42660989, 0.42563155, 0.42618281, 0.42606281, 0.42505222, 0.42653242, 0.42555378, 0.42500842, 0.42561939, 0.42442059, 0.42395414, 0.42384356, 0.42319135, 0.42397497, 0.42488579, 0.42449729, 0.42508766, 0.42509878, 0.42456616, 0.42535577, 0.42681884, 0.42688552, 0.42779918, 0.42706058, 0.42792887, 0.42762114, 0.42894045, 0.42977398, 0.42919859, 0.42829041, 0.42780946, 0.42825318, 0.42858952, 0.42858315, 0.42805601, 0.42764751, 0.42744107, 0.42775518, 0.42707283, 0.4258592, 0.42615335, 0.42526286, 0.4248906, 0.42368986, 0.4232565, 0.42265079, 0.42263954, 0.42153046, 0.42132051, 0.41995353, 0.41916605, 0.41914271, 0.41876945, 0.41740175, 0.41583884, 0.41614026, 0.41457908, 0.41472411, 0.41310876, 0.41261041, 0.41212369, 0.41211677, 0.4100645, 0.40852504, 0.40860297, 0.40745338, 0.40698661, 0.40644546, 0.40591375, 0.40640744, 0.40620663, 0.40656649, 0.40727154, 0.40797605, 0.40807137, 0.40808913, 0.40809676, 0.40711767, 0.40724628, 0.40713077, 0.40772698, 0.40765157, 0.40658297, 0.4065991, 0.405011, 0.40537645, 0.40432626, 0.40390177, 0.40237701, 0.40291623, 0.40301797, 0.40324145, 0.40312864, 0.40328316, 0.40190955, 0.40246506, 0.40237663, 0.40198407, 0.401969, 0.40185623, 0.40198313, 0.40005643, 0.39940743, 0.39850438, 0.39845398, 0.39695093, 0.39697295, 0.39663201, 0.39675444, 0.39538699, 0.39331959, 0.39326074, 0.39193287, 0.39157266, 0.39021327, 0.39062591, 0.38917591, 0.38976991, 0.38864187, 0.38872158, 0.38868096, 0.38868377, 0.38842057, 0.38654784, 0.38649517, 0.38600464, 0.38408115, 0.38323049, 0.38260215, 0.38207663, 0.38142669, 0.38003262, 0.37969367, 0.37768092, 0.37732108, 0.37741991, 0.37617779, 0.37698504, 0.37606784, 0.37499276, 0.37533731, 0.37350437, 0.37375172, 0.37385382, 0.37384003, 0.37338938, 0.37212288, 0.37273075, 0.370559, 0.37038506, 0.37062153, 0.36964661, 0.36818564, 0.3656634, 0.36539259, 0.36428672, 0.36502487, 0.3647148, 0.36551435, 0.36409919, 0.36348181, 0.36254383, 0.36166601, 0.36142665, 0.35954942, 0.35846915, 0.35886759, 0.35813867, 0.35642888, 0.35375231, 0.35061783, 0.35078463, 0.34995508, 0.34688918, 0.34548257, 0.34633158, 0.34622833, 0.34652111, 0.34622774, 0.34540951, 0.34418809, 0.34276593, 0.34160916, 0.33811193, 0.33822709, 0.3391685, 0.33883381]) test_volatility = eval_volatility(self.long_data) test_volatility_roll = self.long_data['volatility'].values self.assertAlmostEqual(test_volatility, np.nanmean(expected_volatility)) self.assertTrue(np.allclose(expected_volatility, test_volatility_roll, equal_nan=True)) def test_sharp(self): self.assertAlmostEqual(eval_sharp(self.test_data1, 5, 0), 0.06135557) self.assertAlmostEqual(eval_sharp(self.test_data2, 5, 0), 0.167858667) self.assertAlmostEqual(eval_sharp(self.test_data3, 5, 0), 0.09950547) self.assertAlmostEqual(eval_sharp(self.test_data4, 5, 0), 0.154928241) self.assertAlmostEqual(eval_sharp(self.test_data5, 5, 0.002), 0.007868673) self.assertAlmostEqual(eval_sharp(self.test_data6, 5, 0.002), 0.018306537) self.assertAlmostEqual(eval_sharp(self.test_data7, 5, 0.002), 0.006259971) # 测试长数据的sharp率计算 expected_sharp = np.array([np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, -0.02346815, -0.02618783, -0.03763912, -0.03296276, -0.03085698, -0.02851101, -0.02375842, -0.02016746, -0.01107885, -0.01426613, -0.00787204, -0.01135784, -0.01164232, -0.01003481, -0.00022512, -0.00046792, -0.01209378, -0.01278892, -0.01298135, -0.01938214, -0.01671044, -0.02120509, -0.0244281, -0.02416067, -0.02763238, -0.027579, -0.02372774, -0.02215294, -0.02467094, -0.02091266, -0.02590194, -0.03049876, -0.02077131, -0.01483653, -0.02488144, -0.02671638, -0.02561547, -0.01957986, -0.02479803, -0.02703162, -0.02658087, -0.01641755, -0.01946472, -0.01647757, -0.01280889, -0.00893643, -0.00643275, -0.00698457, -0.00549962, -0.00654677, -0.00494757, -0.0035633, -0.00109037, 0.00750654, 0.00451208, 0.00625502, 0.01221367, 0.01326454, 0.01535037, 0.02269538, 0.02028715, 0.02127712, 0.02333264, 0.02273159, 0.01670643, 0.01376513, 0.01265342, 0.02211647, 0.01612449, 0.00856706, -0.00077147, -0.00268848, 0.00210993, -0.00443934, -0.00411912, -0.0018756, -0.00867461, -0.00581601, -0.00660835, -0.00861137, -0.00678614, -0.01188408, -0.00589617, -0.00244323, -0.00201891, -0.01042846, -0.01471016, -0.02167034, -0.02258554, -0.01306809, -0.00909086, -0.01233746, -0.00595166, -0.00184208, 0.00750497, 0.01481886, 0.01761972, 0.01562886, 0.01446414, 0.01285826, 0.01357719, 0.00967613, 0.01636272, 0.01458437, 0.02280183, 0.02151903, 0.01700276, 0.01597368, 0.02114336, 0.02233297, 0.02585631, 0.02768459, 0.03519235, 0.04204535, 0.04328161, 0.04672855, 0.05046191, 0.04619848, 0.04525853, 0.05381529, 0.04598861, 0.03947394, 0.04665006, 0.05586077, 0.05617728, 0.06495018, 0.06205172, 0.05665466, 0.06500615, 0.0632062, 0.06084328, 0.05851466, 0.05659229, 0.05159347, 0.0432977, 0.0474047, 0.04231723, 0.03613176, 0.03618391, 0.03591012, 0.03885674, 0.0402686, 0.03846423, 0.04534014, 0.04721458, 0.05130912, 0.05026281, 0.05394312, 0.05529349, 0.05949243, 0.05463304, 0.06195165, 0.06767606, 0.06880985, 0.07048996, 0.07078815, 0.07420767, 0.06773439, 0.0658441, 0.06470875, 0.06302349, 0.06456876, 0.06411282, 0.06216669, 0.067094, 0.07055075, 0.07254976, 0.07119253, 0.06173308, 0.05393352, 0.05681246, 0.05250643, 0.06099845, 0.0655544, 0.06977334, 0.06636514, 0.06177949, 0.06869908, 0.06719767, 0.06178738, 0.05915714, 0.06882277, 0.06756821, 0.06507994, 0.06489791, 0.06553941, 0.073123, 0.07576757, 0.06805446, 0.06063571, 0.05033801, 0.05206971, 0.05540306, 0.05249118, 0.05755587, 0.0586174, 0.05051288, 0.0564852, 0.05757284, 0.06358355, 0.06130082, 0.04925482, 0.03834472, 0.04163981, 0.04648316, 0.04457858, 0.04324626, 0.04328791, 0.04156207, 0.04818652, 0.04972634, 0.06024123, 0.06489556, 0.06255485, 0.06069815, 0.06466389, 0.07081163, 0.07895358, 0.0881782, 0.09374151, 0.08336506, 0.08764795, 0.09080174, 0.08808926, 0.08641158, 0.07811943, 0.06885318, 0.06479503, 0.06851185, 0.07382819, 0.07047903, 0.06658251, 0.07638379, 0.08667974, 0.08867918, 0.08245323, 0.08961866, 0.09905298, 0.0961908, 0.08562706, 0.0839014, 0.0849072, 0.08338395, 0.08783487, 0.09463609, 0.10332336, 0.11806497, 0.11220297, 0.11589097, 0.11678405]) test_sharp = eval_sharp(self.long_data, 5, 0.00035) self.assertAlmostEqual(np.nanmean(expected_sharp), test_sharp) self.assertTrue(np.allclose(self.long_data['sharp'].values, expected_sharp, equal_nan=True)) def test_beta(self): reference = self.test_data1 self.assertAlmostEqual(eval_beta(self.test_data2, reference, 'value'), -0.017148939) self.assertAlmostEqual(eval_beta(self.test_data3, reference, 'value'), -0.042204233) self.assertAlmostEqual(eval_beta(self.test_data4, reference, 'value'), -0.15652986) self.assertAlmostEqual(eval_beta(self.test_data5, reference, 'value'), -0.049195532) self.assertAlmostEqual(eval_beta(self.test_data6, reference, 'value'), -0.026995082) self.assertAlmostEqual(eval_beta(self.test_data7, reference, 'value'), -0.01147809) self.assertRaises(TypeError, eval_beta, [1, 2, 3], reference, 'value') self.assertRaises(TypeError, eval_beta, self.test_data3, [1, 2, 3], 'value') self.assertRaises(KeyError, eval_beta, self.test_data3, reference, 'not_found_value') # 测试长数据的beta计算 expected_beta = np.array([np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, -0.04988841, -0.05127618, -0.04692104, -0.04272652, -0.04080598, -0.0493347, -0.0460858, -0.0416761, -0.03691527, -0.03724924, -0.03678865, -0.03987324, -0.03488321, -0.02567672, -0.02690303, -0.03010128, -0.02437967, -0.02571932, -0.02455681, -0.02839811, -0.03358653, -0.03396697, -0.03466321, -0.03050966, -0.0247583, -0.01629325, -0.01880895, -0.01480403, -0.01348783, -0.00544294, -0.00648176, -0.00467036, -0.01135331, -0.0156841, -0.02340763, -0.02615705, -0.02730771, -0.02906174, -0.02860664, -0.02412914, -0.02066416, -0.01744816, -0.02185133, -0.02145285, -0.02681765, -0.02827694, -0.02394581, -0.02744096, -0.02778825, -0.02703065, -0.03160023, -0.03615371, -0.03681072, -0.04265126, -0.04344738, -0.04232421, -0.04705272, -0.04533344, -0.04605934, -0.05272737, -0.05156463, -0.05134196, -0.04730733, -0.04425352, -0.03869831, -0.04159571, -0.04223998, -0.04346747, -0.04229844, -0.04740093, -0.04992507, -0.04621232, -0.04477644, -0.0486915, -0.04598224, -0.04943463, -0.05006391, -0.05362256, -0.04994067, -0.05464769, -0.05443275, -0.05513493, -0.05173594, -0.04500994, -0.04662891, -0.03903505, -0.0419592, -0.04307773, -0.03925718, -0.03711574, -0.03992631, -0.0433058, -0.04533641, -0.0461183, -0.05600344, -0.05758377, -0.05959874, -0.05605942, -0.06002859, -0.06253002, -0.06747014, -0.06427915, -0.05931947, -0.05769974, -0.04791515, -0.05175088, -0.05748039, -0.05385232, -0.05072975, -0.05052637, -0.05125567, -0.05005785, -0.05325104, -0.04977727, -0.04947867, -0.05148544, -0.05739156, -0.05742069, -0.06047279, -0.0558414, -0.06086126, -0.06265151, -0.06411129, -0.06828052, -0.06781762, -0.07083409, -0.07211207, -0.06799162, -0.06913295, -0.06775162, -0.0696265, -0.06678248, -0.06867502, -0.06581961, -0.07055823, -0.06448184, -0.06097973, -0.05795587, -0.0618383, -0.06130145, -0.06050652, -0.05936661, -0.05749424, -0.0499, -0.05050495, -0.04962687, -0.05033439, -0.05070116, -0.05422009, -0.05369759, -0.05548943, -0.05907353, -0.05933035, -0.05927918, -0.06227663, -0.06011455, -0.05650432, -0.05828134, -0.05620949, -0.05715323, -0.05482478, -0.05387113, -0.05095559, -0.05377999, -0.05334267, -0.05220438, -0.04001521, -0.03892434, -0.03660782, -0.04282708, -0.04324623, -0.04127048, -0.04227559, -0.04275226, -0.04347049, -0.04125853, -0.03806295, -0.0330632, -0.03155531, -0.03277152, -0.03304518, -0.03878731, -0.03830672, -0.03727434, -0.0370571, -0.04509224, -0.04207632, -0.04116198, -0.04545179, -0.04584584, -0.05287341, -0.05417433, -0.05175836, -0.05005509, -0.04268674, -0.03442321, -0.03457309, -0.03613426, -0.03524391, -0.03629479, -0.04361312, -0.02626705, -0.02406115, -0.03046384, -0.03181044, -0.03375164, -0.03661673, -0.04520779, -0.04926951, -0.05726738, -0.0584486, -0.06220608, -0.06800563, -0.06797431, -0.07562211, -0.07481996, -0.07731229, -0.08413381, -0.09031826, -0.09691925, -0.11018071, -0.11952675, -0.10826026, -0.11173895, -0.10756359, -0.10775916, -0.11664559, -0.10505051, -0.10606547, -0.09855355, -0.10004159, -0.10857084, -0.12209301, -0.11605758, -0.11105113, -0.1155195, -0.11569505, -0.10513348, -0.09611072, -0.10719791, -0.10843965, -0.11025856, -0.10247839, -0.10554044, -0.10927647, -0.10645088, -0.09982498, -0.10542734, -0.09631372, -0.08229695]) test_beta_mean = eval_beta(self.long_data, self.long_bench, 'value') test_beta_roll = self.long_data['beta'].values self.assertAlmostEqual(test_beta_mean, np.nanmean(expected_beta)) self.assertTrue(np.allclose(test_beta_roll, expected_beta, equal_nan=True)) def test_alpha(self): reference = self.test_data1 self.assertAlmostEqual(eval_alpha(self.test_data2, 5, reference, 'value', 0.5), 11.63072977) self.assertAlmostEqual(eval_alpha(self.test_data3, 5, reference, 'value', 0.5), 1.886590071) self.assertAlmostEqual(eval_alpha(self.test_data4, 5, reference, 'value', 0.5), 6.827021872) self.assertAlmostEqual(eval_alpha(self.test_data5, 5, reference, 'value', 0.92), -1.192265168) self.assertAlmostEqual(eval_alpha(self.test_data6, 5, reference, 'value', 0.92), -1.437142359) self.assertAlmostEqual(eval_alpha(self.test_data7, 5, reference, 'value', 0.92), -1.781311545) # 测试长数据的alpha计算 expected_alpha = np.array([np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, -0.09418119, -0.11188463, -0.17938358, -0.15588172, -0.1462678, -0.13089586, -0.10780125, -0.09102891, -0.03987585, -0.06075686, -0.02459503, -0.04104284, -0.0444565, -0.04074585, 0.02191275, 0.02255955, -0.05583375, -0.05875539, -0.06055551, -0.09648245, -0.07913737, -0.10627829, -0.12320965, -0.12368335, -0.1506743, -0.15768033, -0.13638829, -0.13065298, -0.14537834, -0.127428, -0.15504529, -0.18184636, -0.12652146, -0.09190138, -0.14847221, -0.15840648, -0.1525789, -0.11859418, -0.14700954, -0.16295761, -0.16051645, -0.10364859, -0.11961134, -0.10258267, -0.08090148, -0.05727746, -0.0429945, -0.04672356, -0.03581408, -0.0439215, -0.03429495, -0.0260362, -0.01075022, 0.04931808, 0.02779388, 0.03984083, 0.08311951, 0.08995566, 0.10522428, 0.16159058, 0.14238174, 0.14759783, 0.16257712, 0.158908, 0.11302115, 0.0909566, 0.08272888, 0.15261884, 0.10546376, 0.04990313, -0.01284111, -0.02720704, 0.00454725, -0.03965491, -0.03818265, -0.02186992, -0.06574751, -0.04846454, -0.05204211, -0.06316498, -0.05095099, -0.08502656, -0.04681162, -0.02362027, -0.02205091, -0.07706374, -0.10371841, -0.14434688, -0.14797935, -0.09055402, -0.06739549, -0.08824959, -0.04855888, -0.02291244, 0.04027138, 0.09370505, 0.11472939, 0.10243593, 0.0921445, 0.07662648, 0.07946651, 0.05450718, 0.10497677, 0.09068334, 0.15462924, 0.14231034, 0.10544952, 0.09980256, 0.14035223, 0.14942974, 0.17624102, 0.19035477, 0.2500807, 0.30724652, 0.31768915, 0.35007521, 0.38412975, 0.34356521, 0.33614463, 0.41206165, 0.33999177, 0.28045963, 0.34076789, 0.42220356, 0.42314636, 0.50790423, 0.47713348, 0.42520169, 0.50488411, 0.48705211, 0.46252601, 0.44325578, 0.42640573, 0.37986783, 0.30652822, 0.34503393, 0.2999069, 0.24928617, 0.24730218, 0.24326897, 0.26657905, 0.27861168, 0.26392824, 0.32552649, 0.34177792, 0.37837011, 0.37025267, 0.4030612, 0.41339361, 0.45076809, 0.40383354, 0.47093422, 0.52505036, 0.53614256, 0.5500943, 0.55319293, 0.59021451, 0.52358459, 0.50605947, 0.49359168, 0.47895956, 0.49320243, 0.4908336, 0.47310767, 0.51821564, 0.55105932, 0.57291504, 0.5599809, 0.46868842, 0.39620087, 0.42086934, 0.38317217, 0.45934108, 0.50048866, 0.53941991, 0.50676751, 0.46500915, 0.52993663, 0.51668366, 0.46405428, 0.44100603, 0.52726147, 0.51565458, 0.49186248, 0.49001081, 0.49367648, 0.56422294, 0.58882785, 0.51334664, 0.44386256, 0.35056709, 0.36490029, 0.39205071, 0.3677061, 0.41134736, 0.42315067, 0.35356394, 0.40324562, 0.41340007, 0.46503322, 0.44355762, 0.34854314, 0.26412842, 0.28633753, 0.32335224, 0.30761141, 0.29709569, 0.29570487, 0.28000063, 0.32802547, 0.33967726, 0.42511212, 0.46252357, 0.44244974, 0.42152907, 0.45436727, 0.50482359, 0.57339198, 0.6573356, 0.70912003, 0.60328917, 0.6395092, 0.67015805, 0.64241557, 0.62779142, 0.55028063, 0.46448736, 0.43709245, 0.46777983, 0.51789439, 0.48594916, 0.4456216, 0.52008189, 0.60548684, 0.62792473, 0.56645031, 0.62766439, 0.71829315, 0.69481356, 0.59550329, 0.58133754, 0.59014148, 0.58026655, 0.61719273, 0.67373203, 0.75573056, 0.89501633, 0.8347253, 0.87964685, 0.89015835]) test_alpha_mean = eval_alpha(self.long_data, 100, self.long_bench, 'value') test_alpha_roll = self.long_data['alpha'].values self.assertAlmostEqual(test_alpha_mean, np.nanmean(expected_alpha)) self.assertTrue(np.allclose(test_alpha_roll, expected_alpha, equal_nan=True)) def test_calmar(self): """test evaluate function eval_calmar()""" pass def test_benchmark(self): reference = self.test_data1 tr, yr = eval_benchmark(self.test_data2, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data3, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data4, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data5, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data6, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data7, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) def test_evaluate(self): pass class TestLoop(unittest.TestCase): """通过一个假设但精心设计的例子来测试loop_step以及loop方法的正确性""" def setUp(self): # 精心设计的模拟股票名称、交易日期、以及股票价格 self.shares = ['share1', 'share2', 'share3', 'share4', 'share5', 'share6', 'share7'] self.dates = ['2016/07/01', '2016/07/04', '2016/07/05', '2016/07/06', '2016/07/07', '2016/07/08', '2016/07/11', '2016/07/12', '2016/07/13', '2016/07/14', '2016/07/15', '2016/07/18', '2016/07/19', '2016/07/20', '2016/07/21', '2016/07/22', '2016/07/25', '2016/07/26', '2016/07/27', '2016/07/28', '2016/07/29', '2016/08/01', '2016/08/02', '2016/08/03', '2016/08/04', '2016/08/05', '2016/08/08', '2016/08/09', '2016/08/10', '2016/08/11', '2016/08/12', '2016/08/15', '2016/08/16', '2016/08/17', '2016/08/18', '2016/08/19', '2016/08/22', '2016/08/23', '2016/08/24', '2016/08/25', '2016/08/26', '2016/08/29', '2016/08/30', '2016/08/31', '2016/09/01', '2016/09/02', '2016/09/05', '2016/09/06', '2016/09/07', '2016/09/08', '2016/09/09', '2016/09/12', '2016/09/13', '2016/09/14', '2016/09/15', '2016/09/16', '2016/09/19', '2016/09/20', '2016/09/21', '2016/09/22', '2016/09/23', '2016/09/26', '2016/09/27', '2016/09/28', '2016/09/29', '2016/09/30', '2016/10/10', '2016/10/11', '2016/10/12', '2016/10/13', '2016/10/14', '2016/10/17', '2016/10/18', '2016/10/19', '2016/10/20', '2016/10/21', '2016/10/23', '2016/10/24', '2016/10/25', '2016/10/26', '2016/10/27', '2016/10/29', '2016/10/30', '2016/10/31', '2016/11/01', '2016/11/02', '2016/11/05', '2016/11/06', '2016/11/07', '2016/11/08', '2016/11/09', '2016/11/12', '2016/11/13', '2016/11/14', '2016/11/15', '2016/11/16', '2016/11/19', '2016/11/20', '2016/11/21', '2016/11/22'] self.dates = [pd.Timestamp(date_text) for date_text in self.dates] self.prices = np.array([[5.35, 5.09, 5.03, 4.98, 4.50, 5.09, 4.75], [5.66, 4.84, 5.21, 5.44, 4.35, 5.06, 4.48], [5.79, 4.60, 5.02, 5.45, 4.07, 4.76, 4.56], [5.56, 4.63, 5.50, 5.74, 3.88, 4.62, 4.62], [5.88, 4.64, 5.07, 5.46, 3.74, 4.63, 4.62], [6.25, 4.51, 5.11, 5.45, 3.98, 4.25, 4.59], [5.93, 4.96, 5.15, 5.24, 4.08, 4.13, 4.33], [6.39, 4.65, 5.02, 5.47, 4.00, 3.91, 3.88], [6.31, 4.26, 5.10, 5.58, 4.28, 3.77, 3.47], [5.86, 3.77, 5.24, 5.36, 4.01, 3.43, 3.51], [5.61, 3.39, 4.93, 5.38, 4.14, 3.68, 3.83], [5.31, 3.76, 4.96, 5.30, 4.49, 3.63, 3.67], [5.40, 4.06, 5.40, 5.77, 4.49, 3.94, 3.79], [5.03, 3.87, 5.74, 5.75, 4.46, 4.40, 4.18], [5.38, 3.91, 5.53, 6.15, 4.13, 4.03, 4.02], [5.79, 4.13, 5.79, 6.04, 3.79, 3.93, 4.41], [6.27, 4.27, 5.68, 6.01, 4.23, 3.50, 4.65], [6.59, 4.57, 5.90, 5.71, 4.57, 3.39, 4.89], [6.91, 5.04, 5.75, 5.23, 4.92, 3.30, 4.41], [6.71, 5.31, 6.11, 5.47, 5.28, 3.25, 4.66], [6.33, 5.40, 5.77, 5.79, 5.67, 2.94, 4.37], [6.07, 5.21, 5.85, 5.82, 6.00, 2.71, 4.58], [5.98, 5.06, 5.61, 5.61, 5.89, 2.55, 4.76], [6.46, 4.69, 5.75, 5.31, 5.55, 2.21, 4.37], [6.95, 5.12, 5.50, 5.24, 5.39, 2.29, 4.16], [6.77, 5.27, 5.14, 5.41, 5.26, 2.21, 4.02], [6.70, 5.72, 5.31, 5.60, 5.31, 2.04, 3.77], [6.28, 6.10, 5.68, 5.28, 5.22, 2.39, 3.38], [6.61, 6.27, 5.73, 4.99, 4.90, 2.30, 3.07], [6.25, 6.49, 6.04, 5.09, 4.57, 2.41, 2.90], [6.47, 6.16, 6.27, 5.39, 4.96, 2.40, 2.50], [6.45, 6.26, 6.60, 5.58, 4.82, 2.79, 2.76], [6.88, 6.39, 6.10, 5.33, 4.39, 2.67, 2.29], [7.00, 6.58, 6.25, 5.48, 4.63, 2.27, 2.17], [6.59, 6.20, 6.73, 5.10, 5.05, 2.09, 1.84], [6.59, 5.70, 6.91, 5.39, 4.68, 2.55, 1.83], [6.64, 5.20, 7.01, 5.30, 5.02, 2.22, 2.21], [6.38, 5.37, 7.36, 5.04, 4.84, 2.59, 2.00], [6.10, 5.40, 7.72, 5.51, 4.60, 2.59, 1.76], [6.35, 5.22, 7.68, 5.43, 4.66, 2.95, 1.27], [6.52, 5.38, 7.62, 5.23, 4.41, 2.69, 1.40], [6.87, 5.53, 7.74, 4.99, 4.87, 2.20, 1.11], [6.84, 6.03, 7.53, 5.43, 4.42, 2.69, 1.60], [7.09, 5.77, 7.46, 5.40, 4.08, 2.65, 1.23], [6.88, 5.66, 7.84, 5.60, 4.16, 2.63, 1.59], [6.84, 6.08, 8.11, 5.66, 4.10, 2.14, 1.50], [6.98, 5.62, 8.04, 6.01, 4.43, 2.39, 1.80], [7.02, 5.63, 7.65, 5.64, 4.07, 1.95, 1.55], [7.13, 6.11, 7.52, 5.67, 3.97, 2.32, 1.35], [7.59, 6.03, 7.67, 5.30, 4.16, 2.69, 1.51], [7.61, 6.27, 7.47, 4.91, 4.12, 2.51, 1.08], [7.21, 6.28, 7.44, 5.37, 4.04, 2.62, 1.06], [7.48, 6.52, 7.59, 5.75, 3.84, 2.16, 1.43], [7.66, 7.00, 7.94, 6.08, 3.46, 2.35, 1.43], [7.51, 7.34, 8.25, 6.58, 3.18, 2.31, 1.74], [7.12, 7.34, 7.77, 6.78, 3.10, 1.96, 1.44], [6.97, 7.68, 8.03, 7.20, 3.55, 2.35, 1.83], [6.67, 8.09, 7.87, 7.65, 3.66, 2.58, 1.71], [6.20, 7.68, 7.58, 8.00, 3.66, 2.40, 2.12], [6.34, 7.58, 7.33, 7.92, 3.29, 2.20, 2.45], [6.22, 7.46, 7.22, 8.30, 2.80, 2.31, 2.85], [5.98, 7.59, 6.86, 8.46, 2.88, 2.16, 2.79], [6.37, 7.19, 7.18, 7.99, 3.04, 2.16, 2.91], [6.56, 7.40, 7.54, 8.19, 3.45, 2.20, 3.26], [6.26, 7.48, 7.24, 8.61, 3.88, 1.73, 3.14], [6.69, 7.93, 6.85, 8.66, 3.58, 1.93, 3.53], [7.13, 8.23, 6.60, 8.91, 3.60, 2.25, 3.65], [6.83, 8.35, 6.65, 9.08, 3.97, 2.69, 3.69], [7.31, 8.44, 6.74, 9.34, 4.05, 2.59, 3.50], [7.43, 8.35, 7.19, 8.96, 4.40, 2.14, 3.25], [7.54, 8.58, 7.14, 8.98, 4.06, 1.68, 3.64], [7.18, 8.82, 6.88, 8.50, 3.60, 1.98, 4.00], [7.21, 9.09, 7.14, 8.65, 3.61, 2.14, 3.63], [7.45, 9.02, 7.30, 8.94, 4.10, 1.89, 3.78], [7.37, 8.87, 6.95, 8.63, 3.74, 1.97, 3.42], [6.88, 9.22, 7.02, 8.65, 4.02, 1.99, 3.76], [7.08, 9.04, 7.38, 8.40, 3.95, 2.37, 3.62], [6.75, 8.60, 7.50, 8.38, 3.81, 2.14, 3.67], [6.60, 8.48, 7.60, 8.23, 3.71, 2.35, 3.61], [6.21, 8.71, 7.15, 8.04, 3.94, 1.86, 3.39], [6.36, 8.79, 7.30, 7.91, 4.43, 2.14, 3.43], [6.82, 8.93, 7.80, 7.57, 4.07, 2.39, 3.33], [6.45, 9.36, 8.15, 7.73, 4.04, 2.53, 3.03], [6.85, 9.68, 8.40, 7.74, 4.34, 2.47, 3.28], [6.48, 10.16, 8.87, 8.07, 4.80, 2.93, 3.46], [6.10, 10.56, 8.53, 7.99, 5.18, 3.09, 3.25], [5.64, 10.63, 8.94, 7.92, 4.90, 2.93, 2.95], [6.01, 10.55, 8.52, 8.40, 5.40, 3.22, 2.87], [6.21, 10.65, 8.80, 8.80, 5.73, 3.06, 2.63], [6.61, 10.55, 8.92, 8.47, 5.62, 2.90, 2.40], [7.02, 10.19, 9.20, 8.07, 5.20, 2.68, 2.53], [7.04, 10.48, 8.71, 7.87, 4.85, 2.46, 2.96], [6.77, 10.36, 8.25, 8.02, 5.18, 2.41, 3.26], [7.09, 10.03, 8.19, 8.39, 4.72, 2.74, 2.97], [6.65, 10.24, 7.80, 8.69, 4.62, 3.15, 3.16], [7.07, 10.01, 7.69, 8.81, 4.55, 3.40, 3.58], [6.80, 10.14, 7.23, 8.99, 4.37, 3.82, 3.23], [6.79, 10.31, 6.98, 9.10, 4.26, 4.02, 3.62], [6.48, 9.88, 7.07, 8.90, 4.25, 3.76, 3.13], [6.39, 10.05, 6.95, 8.87, 4.59, 4.10, 2.93]]) # 精心设计的模拟PT持股仓位目标信号: self.pt_signals = np.array([[0.000, 0.000, 0.000, 0.000, 0.250, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.250, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.250, 0.100, 0.150], [0.200, 0.200, 0.000, 0.000, 0.250, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.250, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.050, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.050, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.050, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.050, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.050, 0.000, 0.062, 0.100, 0.000], [0.133, 0.200, 0.050, 0.000, 0.262, 0.100, 0.000], [0.133, 0.200, 0.050, 0.000, 0.262, 0.100, 0.000], [0.133, 0.200, 0.050, 0.000, 0.262, 0.100, 0.000], [0.066, 0.200, 0.050, 0.150, 0.262, 0.100, 0.000], [0.066, 0.200, 0.050, 0.150, 0.262, 0.100, 0.000], [0.066, 0.200, 0.050, 0.150, 0.262, 0.100, 0.000], [0.066, 0.200, 0.050, 0.150, 0.262, 0.100, 0.000], [0.066, 0.200, 0.050, 0.150, 0.262, 0.100, 0.000], [0.066, 0.200, 0.250, 0.150, 0.000, 0.300, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.460, 0.119, 0.149, 0.089, 0.000, 0.179, 0.000], [0.460, 0.119, 0.149, 0.089, 0.000, 0.179, 0.000], [0.460, 0.119, 0.149, 0.089, 0.000, 0.179, 0.000], [0.446, 0.116, 0.145, 0.087, 0.000, 0.087, 0.116], [0.446, 0.116, 0.145, 0.087, 0.000, 0.087, 0.116], [0.446, 0.116, 0.145, 0.087, 0.000, 0.087, 0.116], [0.446, 0.116, 0.145, 0.087, 0.000, 0.087, 0.116], [0.446, 0.116, 0.145, 0.087, 0.000, 0.087, 0.116], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.370, 0.193, 0.120, 0.072, 0.072, 0.072, 0.096], [0.000, 0.222, 0.138, 0.222, 0.083, 0.222, 0.111], [0.000, 0.222, 0.138, 0.222, 0.083, 0.222, 0.111], [0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097], [0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097], [0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097], [0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097], [0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097], [0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097], [0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097], [0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097], [0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160], [0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160], [0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160], [0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160], [0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160], [0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160], [0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160], [0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160], [0.047, 0.380, 0.238, 0.000, 0.142, 0.000, 0.190], [0.047, 0.380, 0.238, 0.000, 0.142, 0.000, 0.190], [0.043, 0.434, 0.217, 0.000, 0.130, 0.000, 0.173], [0.043, 0.434, 0.217, 0.000, 0.130, 0.000, 0.173], [0.043, 0.434, 0.217, 0.000, 0.130, 0.000, 0.173], [0.043, 0.434, 0.217, 0.000, 0.130, 0.000, 0.173], [0.043, 0.434, 0.217, 0.000, 0.130, 0.000, 0.173], [0.043, 0.434, 0.217, 0.000, 0.130, 0.000, 0.173], [0.045, 0.454, 0.227, 0.000, 0.000, 0.000, 0.272], [0.045, 0.454, 0.227, 0.000, 0.000, 0.000, 0.272], [0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300], [0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300], [0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300], [0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300], [0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300], [0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300], [0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300], [0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300], [0.000, 0.000, 0.400, 0.000, 0.000, 0.000, 0.300], [0.000, 0.000, 0.400, 0.000, 0.000, 0.000, 0.300], [0.000, 0.000, 0.400, 0.000, 0.000, 0.000, 0.300]]) # 精心设计的模拟PS比例交易信号,与模拟PT信号高度相似 self.ps_signals = np.array([[0.000, 0.000, 0.000, 0.000, 0.250, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.100, 0.150], [0.200, 0.200, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.100, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, -0.750, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [-0.333, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, -0.500, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, -1.000], [0.000, 0.000, 0.000, 0.000, 0.200, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [-0.500, 0.000, 0.000, 0.150, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.200, 0.000, -1.000, 0.200, 0.000], [0.500, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.200, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, -0.500, 0.200], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.200, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.150, 0.000, 0.000], [-1.000, 0.000, 0.000, 0.250, 0.000, 0.250, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.250, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, -1.000, 0.000, -1.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [-0.800, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.100, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, -1.000, 0.000, 0.100], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, -1.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [-1.000, 0.000, 0.150, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000]]) # 精心设计的模拟VS股票交易信号,与模拟PS信号类似 self.vs_signals = np.array([[000, 000, 000, 000, 500, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 300, 300], [400, 400, 000, 000, 000, 000, 000], [000, 000, 250, 000, 000, 000, 000], [000, 000, 000, 000, -400, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [-200, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, -200, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, -300], [000, 000, 000, 000, 500, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [-200, 000, 000, 300, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 400, 000, -300, 600, 000], [500, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [600, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, -400, 600], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 500, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 300, 000, 000], [-500, 000, 000, 500, 000, 200, 000], [000, 000, 000, 000, 000, 000, 000], [500, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, -700, 000, -600, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [-400, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 300, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, -600, 000, 300], [000, 000, 000, 000, 000, 000, 000], [000, -300, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [-200, 000, 700, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000]]) # 精心设计的模拟多价格交易信号,模拟50个交易日对三只股票的操作 self.multi_shares = ['000010', '000030', '000039'] self.multi_dates = ['2016/07/01', '2016/07/04', '2016/07/05', '2016/07/06', '2016/07/07', '2016/07/08', '2016/07/11', '2016/07/12', '2016/07/13', '2016/07/14', '2016/07/15', '2016/07/18', '2016/07/19', '2016/07/20', '2016/07/21', '2016/07/22', '2016/07/25', '2016/07/26', '2016/07/27', '2016/07/28', '2016/07/29', '2016/08/01', '2016/08/02', '2016/08/03', '2016/08/04', '2016/08/05', '2016/08/08', '2016/08/09', '2016/08/10', '2016/08/11', '2016/08/12', '2016/08/15', '2016/08/16', '2016/08/17', '2016/08/18', '2016/08/19', '2016/08/22', '2016/08/23', '2016/08/24', '2016/08/25', '2016/08/26', '2016/08/29', '2016/08/30', '2016/08/31', '2016/09/01', '2016/09/02', '2016/09/05', '2016/09/06', '2016/09/07', '2016/09/08'] self.multi_dates = [pd.Timestamp(date_text) for date_text in self.multi_dates] # 操作的交易价格包括开盘价、最高价和收盘价 self.multi_prices_open = np.array([[10.02, 9.88, 7.26], [10.00, 9.88, 7.00], [9.98, 9.89, 6.88], [9.97, 9.75, 6.91], [9.99, 9.74, np.nan], [10.01, 9.80, 6.81], [10.04, 9.62, 6.63], [10.06, 9.65, 6.45], [10.06, 9.58, 6.16], [10.11, 9.67, 6.24], [10.11, 9.81, 5.96], [10.07, 9.80, 5.97], [10.06, 10.00, 5.96], [10.09, 9.95, 6.20], [10.03, 10.10, 6.35], [10.02, 10.06, 6.11], [10.06, 10.14, 6.37], [10.08, 9.90, 5.58], [9.99, 10.20, 5.65], [10.00, 10.29, 5.65], [10.03, 9.86, 5.19], [10.02, 9.48, 5.42], [10.06, 10.01, 6.30], [10.03, 10.24, 6.15], [9.97, 10.26, 6.05], [9.94, 10.24, 5.89], [9.83, 10.12, 5.22], [9.78, 10.65, 5.20], [9.77, 10.64, 5.07], [9.91, 10.56, 6.04], [9.92, 10.42, 6.12], [9.97, 10.43, 5.85], [9.91, 10.29, 5.67], [9.90, 10.30, 6.02], [9.88, 10.44, 6.04], [9.91, 10.60, 7.07], [9.63, 10.67, 7.64], [9.64, 10.46, 7.99], [9.57, 10.39, 7.59], [9.55, 10.90, 8.73], [9.58, 11.01, 8.72], [9.61, 11.01, 8.97], [9.62, np.nan, 8.58], [9.55, np.nan, 8.71], [9.57, 10.82, 8.77], [9.61, 11.02, 8.40], [9.63, 10.96, 7.95], [9.64, 11.55, 7.76], [9.61, 11.74, 8.25], [9.56, 11.80, 7.51]]) self.multi_prices_high = np.array([[10.07, 9.91, 7.41], [10.00, 10.04, 7.31], [10.00, 9.93, 7.14], [10.00, 10.04, 7.00], [10.03, 9.84, np.nan], [10.03, 9.88, 6.82], [10.04, 9.99, 6.96], [10.09, 9.70, 6.85], [10.10, 9.67, 6.50], [10.14, 9.71, 6.34], [10.11, 9.85, 6.04], [10.10, 9.90, 6.02], [10.09, 10.00, 6.12], [10.09, 10.20, 6.38], [10.10, 10.11, 6.43], [10.05, 10.18, 6.46], [10.07, 10.21, 6.43], [10.09, 10.26, 6.27], [10.10, 10.38, 5.77], [10.00, 10.47, 6.01], [10.04, 10.42, 5.67], [10.04, 10.07, 5.67], [10.06, 10.24, 6.35], [10.09, 10.27, 6.32], [10.05, 10.38, 6.43], [9.97, 10.43, 6.36], [9.96, 10.39, 5.79], [9.86, 10.65, 5.47], [9.77, 10.84, 5.65], [9.92, 10.65, 6.04], [9.94, 10.73, 6.14], [9.97, 10.63, 6.23], [9.97, 10.51, 5.83], [9.92, 10.35, 6.25], [9.92, 10.46, 6.27], [9.92, 10.63, 7.12], [9.93, 10.74, 7.82], [9.64, 10.76, 8.14], [9.58, 10.54, 8.27], [9.60, 11.02, 8.92], [9.58, 11.12, 8.76], [9.62, 11.17, 9.15], [9.62, np.nan, 8.90], [9.64, np.nan, 9.01], [9.59, 10.92, 9.16], [9.62, 11.15, 9.00], [9.63, 11.11, 8.27], [9.70, 11.55, 7.99], [9.66, 11.95, 8.33], [9.64, 11.93, 8.25]]) self.multi_prices_close = np.array([[10.04, 9.68, 6.64], [10.00, 9.87, 7.26], [10.00, 9.86, 7.03], [9.99, 9.87, 6.87], [9.97, 9.79, np.nan], [9.99, 9.82, 6.64], [10.03, 9.80, 6.85], [10.03, 9.66, 6.70], [10.06, 9.62, 6.39], [10.06, 9.58, 6.22], [10.11, 9.69, 5.92], [10.09, 9.78, 5.91], [10.07, 9.75, 6.11], [10.06, 9.96, 5.91], [10.09, 9.90, 6.23], [10.03, 10.04, 6.28], [10.03, 10.06, 6.28], [10.06, 10.08, 6.27], [10.08, 10.24, 5.70], [10.00, 10.24, 5.56], [9.99, 10.24, 5.67], [10.03, 9.86, 5.16], [10.03, 10.13, 5.69], [10.06, 10.12, 6.32], [10.03, 10.10, 6.14], [9.97, 10.25, 6.25], [9.94, 10.24, 5.79], [9.83, 10.22, 5.26], [9.77, 10.75, 5.05], [9.84, 10.64, 5.45], [9.91, 10.56, 6.06], [9.93, 10.60, 6.21], [9.96, 10.42, 5.69], [9.91, 10.25, 5.46], [9.91, 10.24, 6.02], [9.88, 10.49, 6.69], [9.91, 10.57, 7.43], [9.64, 10.63, 7.72], [9.56, 10.48, 8.16], [9.57, 10.37, 7.83], [9.55, 10.96, 8.70], [9.57, 11.02, 8.71], [9.61, np.nan, 8.88], [9.61, np.nan, 8.54], [9.55, 10.88, 8.87], [9.57, 10.87, 8.87], [9.63, 11.01, 8.18], [9.64, 11.01, 7.80], [9.65, 11.58, 7.97], [9.62, 11.80, 8.25]]) # 交易信号包括三组,分别作用与开盘价、最高价和收盘价 # 此时的关键是股票交割期的处理,交割期不为0时,以交易日为单位交割 self.multi_signals = [] # multisignal的第一组信号为开盘价信号 self.multi_signals.append( pd.DataFrame(np.array([[0.000, 0.000, 0.000], [0.000, -0.500, 0.000], [0.000, -0.500, 0.000], [0.000, 0.000, 0.000], [0.150, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.300, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.300], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.350, 0.250], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.100, 0.000, 0.350], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.200, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.050, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000]]), columns=self.multi_shares, index=self.multi_dates ) ) # 第二组信号为最高价信号 self.multi_signals.append( pd.DataFrame(np.array([[0.000, 0.150, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, -0.200, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.200], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000]]), columns=self.multi_shares, index=self.multi_dates ) ) # 第三组信号为收盘价信号 self.multi_signals.append( pd.DataFrame(np.array([[0.000, 0.200, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [-0.500, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, -0.800], [0.000, 0.000, 0.000], [0.000, -1.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [-0.750, 0.000, 0.000], [0.000, 0.000, -0.850], [0.000, 0.000, 0.000], [0.000, -0.700, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, -1.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [-1.000, 0.000, 0.000], [0.000, -1.000, 0.000], [0.000, 0.000, 0.000]]), columns=self.multi_shares, index=self.multi_dates ) ) # 交易回测所需的价格也有三组,分别是开盘价、最高价和收盘价 self.multi_histories = [] # multisignal的第一组信号为开盘价信号 self.multi_histories.append( pd.DataFrame(self.multi_prices_open, columns=self.multi_shares, index=self.multi_dates ) ) # 第二组信号为最高价信号 self.multi_histories.append( pd.DataFrame(self.multi_prices_high, columns=self.multi_shares, index=self.multi_dates ) ) # 第三组信号为收盘价信号 self.multi_histories.append( pd.DataFrame(self.multi_prices_close, columns=self.multi_shares, index=self.multi_dates ) ) # 设置回测参数 self.cash = qt.CashPlan(['2016/07/01', '2016/08/12', '2016/09/23'], [10000, 10000, 10000]) self.rate = qt.Cost(buy_fix=0, sell_fix=0, buy_rate=0, sell_rate=0, buy_min=0, sell_min=0, slipage=0) self.rate2 = qt.Cost(buy_fix=0, sell_fix=0, buy_rate=0, sell_rate=0, buy_min=10, sell_min=5, slipage=0) self.pt_signal_hp = dataframe_to_hp( pd.DataFrame(self.pt_signals, index=self.dates, columns=self.shares), htypes='close' ) self.ps_signal_hp = dataframe_to_hp( pd.DataFrame(self.ps_signals, index=self.dates, columns=self.shares), htypes='close' ) self.vs_signal_hp = dataframe_to_hp( pd.DataFrame(self.vs_signals, index=self.dates, columns=self.shares), htypes='close' ) self.multi_signal_hp = stack_dataframes( self.multi_signals, stack_along='htypes', htypes='open, high, close' ) self.history_list = dataframe_to_hp( pd.DataFrame(self.prices, index=self.dates, columns=self.shares), htypes='close' ) self.multi_history_list = stack_dataframes( self.multi_histories, stack_along='htypes', htypes='open, high, close' ) # 模拟PT信号回测结果 # PT信号,先卖后买,交割期为0 self.pt_res_sb00 = np.array( [[0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 10000.0000], [0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 9916.6667], [0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 321.0892, 6035.8333, 0.0000, 9761.1111], [348.0151, 417.9188, 0.0000, 0.0000, 555.5556, 0.0000, 321.0892, 2165.9050, 0.0000, 9674.8209], [348.0151, 417.9188, 0.0000, 0.0000, 555.5556, 0.0000, 321.0892, 2165.9050, 0.0000, 9712.5872], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9910.7240], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9919.3782], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9793.0692], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9513.8217], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9123.5935], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9000.5995], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9053.4865], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9248.7142], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9161.1372], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9197.3369], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9504.6981], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9875.2461], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10241.5400], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10449.2398], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10628.3269], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10500.7893], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 0.0000, 5233.1396, 0.0000, 10449.2776], [348.0151, 417.9188, 0.0000, 0.0000, 459.8694, 0.0000, 0.0000, 3433.8551, 0.0000, 10338.2857], [348.0151, 417.9188, 0.0000, 0.0000, 459.8694, 0.0000, 0.0000, 3433.8551, 0.0000, 10194.3474], [348.0151, 417.9188, 0.0000, 0.0000, 459.8694, 0.0000, 0.0000, 3433.8551, 0.0000, 10471.0008], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10411.2629], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10670.0618], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10652.4799], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10526.1488], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10458.6614], [101.4983, 417.9188, 821.7315, 288.6672, 0.0000, 2576.1284, 0.0000, 4487.0722, 0.0000, 20609.0270], [1216.3282, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21979.4972], [1216.3282, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21880.9628], [1216.3282, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21630.0454], [1216.3282, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 20968.0007], [1216.3282, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21729.9339], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 21107.6400], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 21561.1745], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 21553.0916], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 22316.9366], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 22084.2862], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 21777.3543], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 22756.8225], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 22843.4697], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 22762.1766], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 1448.0262, 0.0000, 0.0000, 22257.0973], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 1448.0262, 0.0000, 0.0000, 23136.5259], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 1448.0262, 0.0000, 0.0000, 21813.7852], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 1448.0262, 0.0000, 0.0000, 22395.3204], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 1448.0262, 0.0000, 0.0000, 23717.6858], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 1448.0262, 0.0000, 0.0000, 22715.4263], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 22498.3254], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 23341.1733], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 24162.3941], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 24847.1508], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 23515.9755], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 24555.8997], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 24390.6372], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 24073.3309], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 24394.6500], [2076.3314, 903.0334, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 3487.5655, 0.0000, 34904.8150], [0.0000, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 4608.8037, 0.0000, 34198.4475], [0.0000, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 4608.8037, 0.0000, 33753.0190], [644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 34953.8178], [644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 33230.2498], [644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 35026.7819], [644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 36976.2649], [644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 38673.8147], [644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 38717.3429], [644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 36659.0854], [644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 35877.9607], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 36874.4840], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 37010.2695], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 38062.3510], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 36471.1357], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 37534.9927], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 37520.2569], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 36747.7952], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 36387.9409], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 35925.9715], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 36950.7028], [644.7274, 1657.3981, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 0.0000, 0.0000, 37383.2463], [644.7274, 1657.3981, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 0.0000, 0.0000, 37761.2724], [644.7274, 1657.3981, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 0.0000, 0.0000, 39548.2653], [644.7274, 1657.3981, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 0.0000, 0.0000, 41435.1291], [644.7274, 1657.3981, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 0.0000, 0.0000, 41651.6261], [644.7274, 1657.3981, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 0.0000, 0.0000, 41131.9920], [644.7274, 1657.3981, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 0.0000, 0.0000, 41286.4702], [644.7274, 1657.3981, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 0.0000, 0.0000, 40978.7259], [644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 40334.5453], [644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 41387.9172], [644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 42492.6707], [644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 42953.7188], [644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 42005.1092], [644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 42017.9106], [644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 43750.2824], [644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 41766.8679], [0.0000, 0.0000, 2461.8404, 0.0000, 0.0000, 0.0000, 3760.7116, 12161.6930, 0.0000, 42959.1150], [0.0000, 0.0000, 2461.8404, 0.0000, 0.0000, 0.0000, 3760.7116, 12161.6930, 0.0000, 41337.9320], [0.0000, 0.0000, 2461.8404, 0.0000, 0.0000, 0.0000, 3760.7116, 12161.6930, 0.0000, 40290.3688]]) # PT信号,先买后卖,交割期为0 self.pt_res_bs00 = np.array( [[0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 10000.0000], [0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 9916.6667], [0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 321.0892, 6035.8333, 0.0000, 9761.1111], [348.0151, 417.9188, 0.0000, 0.0000, 555.5556, 0.0000, 321.0892, 2165.9050, 0.0000, 9674.8209], [348.0151, 417.9188, 0.0000, 0.0000, 555.5556, 0.0000, 321.0892, 2165.9050, 0.0000, 9712.5872], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9910.7240], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9919.3782], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9793.0692], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9513.8217], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9123.5935], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9000.5995], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9053.4865], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9248.7142], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9161.1372], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9197.3369], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9504.6981], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9875.2461], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10241.5400], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10449.2398], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10628.3269], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10500.7893], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 0.0000, 5233.1396, 0.0000, 10449.2776], [348.0151, 417.9188, 0.0000, 0.0000, 459.8694, 0.0000, 0.0000, 3433.8551, 0.0000, 10338.2857], [348.0151, 417.9188, 0.0000, 0.0000, 459.8694, 0.0000, 0.0000, 3433.8551, 0.0000, 10194.3474], [348.0151, 417.9188, 0.0000, 0.0000, 459.8694, 0.0000, 0.0000, 3433.8551, 0.0000, 10471.0008], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10411.2629], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10670.0618], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10652.4799], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10526.1488], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10458.6614], [101.4983, 417.9188, 821.7315, 288.6672, 0.0000, 2576.1284, 0.0000, 4487.0722, 0.0000, 20609.0270], [797.1684, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 2703.5808, 0.0000, 21979.4972], [1190.1307, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21700.7241], [1190.1307, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21446.6630], [1190.1307, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 20795.3593], [1190.1307, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21557.2924], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 20933.6887], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 21392.5581], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 21390.2918], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 22147.7562], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 21910.9053], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 21594.2980], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 22575.4380], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 22655.8312], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 22578.4365], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 1467.7407, 0.0000, 0.0000, 22073.2661], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 1467.7407, 0.0000, 0.0000, 22955.2367], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 1467.7407, 0.0000, 0.0000, 21628.1647], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 1467.7407, 0.0000, 0.0000, 22203.4237], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 1467.7407, 0.0000, 0.0000, 23516.2598], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 22505.8428], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 22199.1042], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 23027.9302], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 23848.5806], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 24540.8871], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 23205.6838], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 24267.6685], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 24115.3796], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 23814.3667], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 24133.6611], [2061.6837, 896.6628, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 3285.8830, 0.0000, 34658.5742], [0.0000, 896.6628, 507.6643, 466.6033, 0.0000, 1523.7106, 1467.7407, 12328.8684, 0.0000, 33950.7917], [0.0000, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 4380.3797, 0.0000, 33711.4045], [644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 34922.0959], [644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 33237.1081], [644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 35031.8071], [644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 36976.3376], [644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 38658.5245], [644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 38712.2854], [644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 36655.3125], [644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 35904.3692], [644.1423, 902.2617, 514.8253, 0.0000, 15.5990, 0.0000, 1467.7407, 14821.9004, 0.0000, 36873.9080], [644.1423, 902.2617, 514.8253, 0.0000, 1220.8683, 0.0000, 1467.7407, 10470.8781, 0.0000, 36727.7895], [644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 37719.9840], [644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 36138.1277], [644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 37204.0760], [644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 37173.1201], [644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 36398.2298], [644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 36034.2178], [644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 35583.6399], [644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 36599.2645], [644.1423, 1646.4805, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 0.0000, 0.0000, 37013.3408], [644.1423, 1646.4805, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 0.0000, 0.0000, 37367.7449], [644.1423, 1646.4805, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 0.0000, 0.0000, 39143.8273], [644.1423, 1646.4805, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 0.0000, 0.0000, 41007.3074], [644.1423, 1646.4805, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 0.0000, 0.0000, 41225.4657], [644.1423, 1646.4805, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 0.0000, 0.0000, 40685.9525], [644.1423, 1646.4805, 1033.4242, 0.0000, 0.0000, 0.0000, 1467.7407, 6592.6891, 0.0000, 40851.5435], [644.1423, 1646.4805, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 0.0000, 0.0000, 41082.1210], [644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 40385.0135], [644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 41455.1513], [644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 42670.6769], [644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 43213.7233], [644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 42205.2480], [644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 42273.9386], [644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 44100.0777], [644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 42059.7208], [0.0000, 0.0000, 2483.9522, 0.0000, 0.0000, 0.0000, 3974.4666, 11619.4102, 0.0000, 43344.9653], [0.0000, 0.0000, 2483.9522, 0.0000, 0.0000, 0.0000, 3974.4666, 11619.4102, 0.0000, 41621.0324], [0.0000, 0.0000, 2483.9522, 0.0000, 0.0000, 0.0000, 3974.4666, 11619.4102, 0.0000, 40528.0648]]) # PT信号,先卖后买,交割期为2天(股票)0天(现金)以便利用先卖的现金继续买入 self.pt_res_sb20 = np.array( [[0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 10000.000], [0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 9916.667], [0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 321.089, 6035.833, 0.000, 9761.111], [348.015, 417.919, 0.000, 0.000, 555.556, 0.000, 321.089, 2165.905, 0.000, 9674.821], [348.015, 417.919, 0.000, 0.000, 555.556, 0.000, 321.089, 2165.905, 0.000, 9712.587], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9910.724], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9919.378], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9793.069], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9513.822], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9123.593], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9000.600], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9053.487], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9248.714], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9161.137], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9197.337], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9504.698], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9875.246], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10241.540], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10449.240], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10628.327], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10500.789], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 0.000, 5233.140, 0.000, 10449.278], [348.015, 417.919, 0.000, 0.000, 459.869, 0.000, 0.000, 3433.855, 0.000, 10338.286], [348.015, 417.919, 0.000, 0.000, 459.869, 0.000, 0.000, 3433.855, 0.000, 10194.347], [348.015, 417.919, 0.000, 0.000, 459.869, 0.000, 0.000, 3433.855, 0.000, 10471.001], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10411.263], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10670.062], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10652.480], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10526.149], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10458.661], [101.498, 417.919, 821.732, 288.667, 0.000, 2576.128, 0.000, 4487.072, 0.000, 20609.027], [797.168, 417.919, 821.732, 288.667, 0.000, 2576.128, 0.000, 0.000, 0.000, 21979.497], [1156.912, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21584.441], [1156.912, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21309.576], [1156.912, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 20664.323], [1156.912, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21445.597], [1156.912, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 2223.240, 0.000, 20806.458], [1156.912, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 2223.240, 0.000, 21288.441], [1156.912, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 2223.240, 0.000, 21294.365], [1156.912, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 2223.240, 0.000, 22058.784], [1156.912, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 2223.240, 0.000, 21805.540], [1156.912, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 2223.240, 0.000, 21456.333], [1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22459.720], [1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22611.602], [1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22470.912], [1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21932.634], [1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22425.864], [1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21460.103], [1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22376.968], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 23604.295], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 22704.826], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 22286.293], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 23204.755], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 24089.017], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 24768.185], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 23265.196], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 24350.540], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 24112.706], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 23709.076], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 24093.545], [2060.275, 896.050, 504.579, 288.667, 0.000, 763.410, 1577.904, 2835.944, 0.000, 34634.888], [578.327, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 732.036, 0.000, 33912.261], [0.000, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 4415.981, 0.000, 33711.951], [644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 34951.433], [644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 33224.596], [644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 35065.209], [644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 37018.699], [644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 38706.035], [644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 38724.569], [644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 36647.268], [644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 35928.930], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 36967.229], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 37056.598], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 38129.862], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 36489.333], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 37599.602], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 37566.823], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 36799.280], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 36431.196], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 35940.942], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 36973.050], [644.683, 1606.361, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 0.000, 0.000, 37393.292], [644.683, 1606.361, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 0.000, 0.000, 37711.276], [644.683, 1606.361, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 0.000, 0.000, 39515.991], [644.683, 1606.361, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 0.000, 0.000, 41404.440], [644.683, 1606.361, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 0.000, 0.000, 41573.523], [644.683, 1606.361, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 0.000, 0.000, 41011.613], [644.683, 1606.361, 1074.629, 0.000, 0.000, 0.000, 3896.406, 0.000, 0.000, 41160.181], [644.683, 1606.361, 1074.629, 0.000, 0.000, 0.000, 3896.406, 0.000, 0.000, 40815.512], [644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 40145.531], [644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 41217.281], [644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 42379.061], [644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 42879.589], [644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 41891.452], [644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 41929.003], [644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 43718.052], [644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 41685.916], [0.000, 0.000, 2460.195, 0.000, 0.000, 0.000, 3896.406, 11653.255, 0.000, 42930.410], [0.000, 0.000, 2460.195, 0.000, 0.000, 0.000, 3896.406, 11653.255, 0.000, 41242.589], [0.000, 0.000, 2460.195, 0.000, 0.000, 0.000, 3896.406, 11653.255, 0.000, 40168.084]]) # PT信号,先买后卖,交割期为2天(股票)1天(现金) self.pt_res_bs21 = np.array([ [0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 10000.000], [0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 9916.667], [0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 321.089, 6035.833, 0.000, 9761.111], [348.015, 417.919, 0.000, 0.000, 555.556, 0.000, 321.089, 2165.905, 0.000, 9674.821], [348.015, 417.919, 0.000, 0.000, 555.556, 0.000, 321.089, 2165.905, 0.000, 9712.587], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9910.724], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9919.378], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9793.069], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9513.822], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9123.593], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9000.600], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9053.487], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9248.714], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9161.137], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9197.337], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9504.698], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9875.246], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10241.540], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10449.240], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10628.327], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10500.789], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 0.000, 5233.140, 0.000, 10449.278], [348.015, 417.919, 0.000, 0.000, 459.869, 0.000, 0.000, 3433.855, 0.000, 10338.286], [348.015, 417.919, 0.000, 0.000, 459.869, 0.000, 0.000, 3433.855, 0.000, 10194.347], [348.015, 417.919, 0.000, 0.000, 459.869, 0.000, 0.000, 3433.855, 0.000, 10471.001], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10411.263], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10670.062], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10652.480], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10526.149], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10458.661], [101.498, 417.919, 821.732, 288.667, 0.000, 2576.128, 0.000, 4487.072, 0.000, 20609.027], [797.168, 417.919, 821.732, 288.667, 0.000, 2576.128, 0.000, 0.000, 0.000, 21979.497], [797.168, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 2475.037, 0.000, 21584.441], [1150.745, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21266.406], [1150.745, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 20623.683], [1150.745, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21404.957], [1150.745, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 2230.202, 0.000, 20765.509], [1150.745, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 2230.202, 0.000, 21248.748], [1150.745, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 2230.202, 0.000, 21256.041], [1150.745, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 2230.202, 0.000, 22018.958], [1150.745, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 2230.202, 0.000, 21764.725], [1150.745, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 2230.202, 0.000, 21413.241], [1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22417.021], [1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22567.685], [1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22427.699], [1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21889.359], [1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22381.938], [1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21416.358], [1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22332.786], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 0.000, 2386.698, 0.000, 23557.595], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 23336.992], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 22907.742], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 24059.201], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 24941.902], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 25817.514], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 24127.939], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 25459.688], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 25147.370], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 25005.842], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 1086.639, 2752.004, 0.000, 25598.700], [2138.154, 929.921, 503.586, 288.667, 0.000, 761.900, 1086.639, 4818.835, 0.000, 35944.098], [661.356, 929.921, 503.586, 553.843, 0.000, 1954.237, 1086.639, 8831.252, 0.000, 35237.243], [0.000, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 9460.955, 0.000, 35154.442], [667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 36166.632], [667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 34293.883], [667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 35976.901], [667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 37848.552], [667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 39512.574], [667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 39538.024], [667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 37652.984], [667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 36687.909], [667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 37749.277], [667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 37865.518], [667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 38481.190], [667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 37425.087], [667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 38051.341], [667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 38065.478], [667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 37429.495], [667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 37154.479], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 36692.717], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 37327.055], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 37937.630], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 38298.645], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 39689.369], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 40992.397], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 41092.265], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 40733.622], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 3726.579, 0.000, 0.000, 40708.515], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 3726.579, 0.000, 0.000, 40485.321], [667.098, 0.000, 745.260, 0.000, 512.148, 0.000, 3726.579, 16888.760, 0.000, 39768.059], [667.098, 0.000, 745.260, 0.000, 512.148, 0.000, 3726.579, 16888.760, 0.000, 40519.595], [667.098, 0.000, 745.260, 0.000, 512.148, 0.000, 3726.579, 16888.760, 0.000, 41590.937], [667.098, 0.000, 1283.484, 0.000, 512.148, 0.000, 3726.579, 12448.413, 0.000, 42354.983], [667.098, 0.000, 1283.484, 0.000, 512.148, 0.000, 3726.579, 12448.413, 0.000, 41175.149], [667.098, 0.000, 1283.484, 0.000, 512.148, 0.000, 3726.579, 12448.413, 0.000, 41037.902], [667.098, 0.000, 1283.484, 0.000, 512.148, 0.000, 3726.579, 12448.413, 0.000, 42706.213], [667.098, 0.000, 1283.484, 0.000, 512.148, 0.000, 3726.579, 12448.413, 0.000, 40539.205], [0.000, 0.000, 2384.452, 0.000, 512.148, 0.000, 3726.579, 9293.252, 0.000, 41608.692], [0.000, 0.000, 2384.452, 0.000, 512.148, 0.000, 3726.579, 9293.252, 0.000, 39992.148], [0.000, 0.000, 2384.452, 0.000, 512.148, 0.000, 3726.579, 9293.252, 0.000, 39134.828]]) # 模拟PS信号回测结果 # PS信号,先卖后买,交割期为0 self.ps_res_sb00 = np.array( [[0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 10000.0000], [0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 9916.6667], [0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 205.0654, 321.0892, 5059.7222, 0.0000, 9761.1111], [346.9824, 416.6787, 0.0000, 0.0000, 555.5556, 205.0654, 321.0892, 1201.2775, 0.0000, 9646.1118], [346.9824, 416.6787, 191.0372, 0.0000, 555.5556, 205.0654, 321.0892, 232.7189, 0.0000, 9685.5858], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9813.2184], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9803.1288], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9608.0198], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9311.5727], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 8883.6246], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 8751.3900], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 8794.1811], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9136.5704], [231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9209.3588], [231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9093.8294], [231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9387.5537], [231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9585.9589], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 9928.7771], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 10060.3806], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 10281.0021], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 10095.5613], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 0.0000, 4506.3926, 0.0000, 10029.9571], [231.4373, 416.6787, 95.5186, 0.0000, 474.2238, 205.0654, 0.0000, 2531.2699, 0.0000, 9875.6133], [231.4373, 416.6787, 95.5186, 0.0000, 474.2238, 205.0654, 0.0000, 2531.2699, 0.0000, 9614.9463], [231.4373, 416.6787, 95.5186, 0.0000, 474.2238, 205.0654, 0.0000, 2531.2699, 0.0000, 9824.1722], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9732.5743], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9968.3391], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 10056.1579], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9921.4925], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9894.1621], [115.7186, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 6179.7742, 0.0000, 20067.9370], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21133.5080], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20988.8485], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20596.7429], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 19910.7730], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20776.7070], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20051.7969], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20725.3884], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20828.8795], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21647.1811], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21310.1687], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20852.0993], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21912.3952], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21937.8282], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21962.4576], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 21389.4018], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 22027.4535], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 20939.9992], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 21250.0636], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 22282.7812], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 21407.0658], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 21160.2373], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 21826.7682], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 22744.9403], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 23466.1185], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 22017.8821], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 23191.4662], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 23099.0822], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 22684.7671], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 22842.1346], [1073.8232, 416.6787, 735.6442, 269.8496, 1785.2055, 938.6967, 1339.2073, 5001.4246, 0.0000, 33323.8359], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 32820.2901], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 32891.2308], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 34776.5296], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 33909.0325], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 34560.1906], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 36080.4552], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 38618.4454], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 38497.9230], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 37110.0991], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 35455.2467], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 35646.1860], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 35472.3020], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 36636.4694], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 35191.7035], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 36344.2242], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 36221.6005], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 35943.5708], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 35708.2608], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 35589.0286], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 36661.0285], [0.0000, 823.2923, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 11495.2197, 0.0000, 36310.5909], [0.0000, 823.2923, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 11495.2197, 0.0000, 36466.7637], [0.0000, 823.2923, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 11495.2197, 0.0000, 37784.4918], [0.0000, 823.2923, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 11495.2197, 0.0000, 39587.6766], [0.0000, 823.2923, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 11495.2197, 0.0000, 40064.0191], [0.0000, 823.2923, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 11495.2197, 0.0000, 39521.6439], [0.0000, 823.2923, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 17142.1018, 0.0000, 39932.2761], [0.0000, 823.2923, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 17142.1018, 0.0000, 39565.2475], [0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 38943.1632], [0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 39504.1184], [0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 40317.8004], [0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 40798.5768], [0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 39962.5711], [0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 40194.4793], [0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 41260.4003], [0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 39966.3024], [0.0000, 0.0000, 1613.4518, 0.0000, 0.0000, 0.0000, 2730.5758, 19700.7377, 0.0000, 40847.3160], [0.0000, 0.0000, 1613.4518, 0.0000, 0.0000, 0.0000, 2730.5758, 19700.7377, 0.0000, 39654.5445], [0.0000, 0.0000, 1613.4518, 0.0000, 0.0000, 0.0000, 2730.5758, 19700.7377, 0.0000, 38914.8151]]) # PS信号,先买后卖,交割期为0 self.ps_res_bs00 = np.array( [[0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 10000.0000], [0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 9916.6667], [0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 205.0654, 321.0892, 5059.7222, 0.0000, 9761.1111], [346.9824, 416.6787, 0.0000, 0.0000, 555.5556, 205.0654, 321.0892, 1201.2775, 0.0000, 9646.1118], [346.9824, 416.6787, 191.0372, 0.0000, 555.5556, 205.0654, 321.0892, 232.7189, 0.0000, 9685.5858], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9813.2184], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9803.1288], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9608.0198], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9311.5727], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 8883.6246], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 8751.3900], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 8794.1811], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9136.5704], [231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9209.3588], [231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9093.8294], [231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9387.5537], [231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9585.9589], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 9928.7771], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 10060.3806], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 10281.0021], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 10095.5613], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 0.0000, 4506.3926, 0.0000, 10029.9571], [231.4373, 416.6787, 95.5186, 0.0000, 474.2238, 205.0654, 0.0000, 2531.2699, 0.0000, 9875.6133], [231.4373, 416.6787, 95.5186, 0.0000, 474.2238, 205.0654, 0.0000, 2531.2699, 0.0000, 9614.9463], [231.4373, 416.6787, 95.5186, 0.0000, 474.2238, 205.0654, 0.0000, 2531.2699, 0.0000, 9824.1722], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9732.5743], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9968.3391], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 10056.1579], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9921.4925], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9894.1621], [115.7186, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 6179.7742, 0.0000, 20067.9370], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21133.5080], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20988.8485], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20596.7429], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 19910.7730], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20776.7070], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20051.7969], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20725.3884], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20828.8795], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21647.1811], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21310.1687], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20852.0993], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21912.3952], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21937.8282], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21962.4576], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 2008.8110, 0.0000, 21389.4018], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 2008.8110, 0.0000, 21625.6913], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 2008.8110, 0.0000, 20873.0389], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 2008.8110, 0.0000, 21450.9447], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 2008.8110, 0.0000, 22269.3892], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 21969.5329], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 21752.6924], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 22000.6088], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 23072.5655], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 23487.5201], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 22441.0460], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 23201.2700], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 23400.9485], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 22306.2008], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 21989.5913], [1073.8232, 737.0632, 735.6442, 269.8496, 1708.7766, 938.6967, 0.0000, 5215.4255, 0.0000, 31897.1636], [0.0000, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 6421.4626, 0.0000, 31509.5059], [0.0000, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 6421.4626, 0.0000, 31451.7888], [978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 32773.4592], [978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 32287.0318], [978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 32698.1938], [978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 34031.5183], [978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 35537.8336], [978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 36212.6487], [978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 36007.5294], [978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 34691.3797], [978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 33904.8810], [978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 34341.6098], [978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 35479.9505], [978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 34418.4455], [978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 34726.7182], [978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 34935.0407], [978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 34136.7505], [978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 33804.1575], [195.7763, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 14025.8697, 0.0000, 33653.8970], [195.7763, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 14025.8697, 0.0000, 34689.8757], [195.7763, 1124.9219, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 10562.2913, 0.0000, 34635.7841], [195.7763, 1124.9219, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 10562.2913, 0.0000, 35253.2755], [195.7763, 1124.9219, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 10562.2913, 0.0000, 36388.1051], [195.7763, 1124.9219, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 10562.2913, 0.0000, 37987.4204], [195.7763, 1124.9219, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 10562.2913, 0.0000, 38762.2103], [195.7763, 1124.9219, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 10562.2913, 0.0000, 38574.0544], [195.7763, 1124.9219, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 15879.4935, 0.0000, 39101.9156], [195.7763, 1124.9219, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 15879.4935, 0.0000, 39132.5587], [195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 38873.2941], [195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 39336.6594], [195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 39565.9568], [195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 39583.4317], [195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 39206.8350], [195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 39092.6551], [195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 39666.1834], [195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 38798.0749], [0.0000, 0.0000, 1576.8381, 0.0000, 0.0000, 0.0000, 1362.4361, 23205.2077, 0.0000, 39143.5561], [0.0000, 0.0000, 1576.8381, 0.0000, 0.0000, 0.0000, 1362.4361, 23205.2077, 0.0000, 38617.8779], [0.0000, 0.0000, 1576.8381, 0.0000, 0.0000, 0.0000, 1362.4361, 23205.2077, 0.0000, 38156.1701]]) # PS信号,先卖后买,交割期为2天(股票)1天(现金) self.ps_res_sb20 = np.array( [[0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 10000.000], [0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 9916.667], [0.000, 0.000, 0.000, 0.000, 555.556, 205.065, 321.089, 5059.722, 0.000, 9761.111], [346.982, 416.679, 0.000, 0.000, 555.556, 205.065, 321.089, 1201.278, 0.000, 9646.112], [346.982, 416.679, 191.037, 0.000, 555.556, 205.065, 321.089, 232.719, 0.000, 9685.586], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9813.218], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9803.129], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9608.020], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9311.573], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 8883.625], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 8751.390], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 8794.181], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9136.570], [231.437, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 2472.244, 0.000, 9209.359], [231.437, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 2472.244, 0.000, 9093.829], [231.437, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 2472.244, 0.000, 9387.554], [231.437, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 2472.244, 0.000, 9585.959], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 321.089, 3035.804, 0.000, 9928.777], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 321.089, 3035.804, 0.000, 10060.381], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 321.089, 3035.804, 0.000, 10281.002], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 321.089, 3035.804, 0.000, 10095.561], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 0.000, 4506.393, 0.000, 10029.957], [231.437, 416.679, 95.519, 0.000, 474.224, 205.065, 0.000, 2531.270, 0.000, 9875.613], [231.437, 416.679, 95.519, 0.000, 474.224, 205.065, 0.000, 2531.270, 0.000, 9614.946], [231.437, 416.679, 95.519, 0.000, 474.224, 205.065, 0.000, 2531.270, 0.000, 9824.172], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 9732.574], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 9968.339], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 10056.158], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 9921.492], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 9894.162], [115.719, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 6179.774, 0.000, 20067.937], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21133.508], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20988.848], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20596.743], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 19910.773], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20776.707], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20051.797], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20725.388], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20828.880], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21647.181], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21310.169], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20852.099], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21912.395], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21937.828], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21962.458], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21389.402], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22027.453], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 20939.999], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21250.064], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22282.781], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21407.066], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21160.237], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21826.768], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22744.940], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 23466.118], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22017.882], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 23191.466], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 23099.082], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22684.767], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22842.135], [1073.823, 416.679, 735.644, 269.850, 1785.205, 938.697, 1339.207, 5001.425, 0.000, 33323.836], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 32820.290], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 32891.231], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 34776.530], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 33909.032], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 34560.191], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 36080.455], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 38618.445], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 38497.923], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 37110.099], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 35455.247], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 35646.186], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 35472.302], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 36636.469], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 35191.704], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 36344.224], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 36221.601], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 35943.571], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 35708.261], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 35589.029], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 36661.029], [0.000, 823.292, 735.644, 0.000, 1785.205, 0.000, 1339.207, 11495.220, 0.000, 36310.591], [0.000, 823.292, 735.644, 0.000, 1785.205, 0.000, 1339.207, 11495.220, 0.000, 36466.764], [0.000, 823.292, 735.644, 0.000, 1785.205, 0.000, 1339.207, 11495.220, 0.000, 37784.492], [0.000, 823.292, 735.644, 0.000, 1785.205, 0.000, 1339.207, 11495.220, 0.000, 39587.677], [0.000, 823.292, 735.644, 0.000, 1785.205, 0.000, 1339.207, 11495.220, 0.000, 40064.019], [0.000, 823.292, 735.644, 0.000, 1785.205, 0.000, 1339.207, 11495.220, 0.000, 39521.644], [0.000, 823.292, 735.644, 0.000, 0.000, 0.000, 2730.576, 17142.102, 0.000, 39932.276], [0.000, 823.292, 735.644, 0.000, 0.000, 0.000, 2730.576, 17142.102, 0.000, 39565.248], [0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 38943.163], [0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 39504.118], [0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 40317.800], [0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 40798.577], [0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 39962.571], [0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 40194.479], [0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 41260.400], [0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 39966.302], [0.000, 0.000, 1613.452, 0.000, 0.000, 0.000, 2730.576, 19700.738, 0.000, 40847.316], [0.000, 0.000, 1613.452, 0.000, 0.000, 0.000, 2730.576, 19700.738, 0.000, 39654.544], [0.000, 0.000, 1613.452, 0.000, 0.000, 0.000, 2730.576, 19700.738, 0.000, 38914.815]]) # PS信号,先买后卖,交割期为2天(股票)1天(现金) self.ps_res_bs21 = np.array( [[0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 10000.000], [0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 9916.667], [0.000, 0.000, 0.000, 0.000, 555.556, 208.333, 326.206, 5020.833, 0.000, 9761.111], [351.119, 421.646, 0.000, 0.000, 555.556, 208.333, 326.206, 1116.389, 0.000, 9645.961], [351.119, 421.646, 190.256, 0.000, 555.556, 208.333, 326.206, 151.793, 0.000, 9686.841], [351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 9813.932], [351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 9803.000], [351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 9605.334], [351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 9304.001], [351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 8870.741], [351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 8738.282], [351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 8780.664], [351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 9126.199], [234.196, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 2398.247, 0.000, 9199.746], [234.196, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 2398.247, 0.000, 9083.518], [234.196, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 2398.247, 0.000, 9380.932], [234.196, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 2398.247, 0.000, 9581.266], [234.196, 421.646, 95.128, 0.000, 138.889, 208.333, 326.206, 2959.501, 0.000, 9927.154], [234.196, 421.646, 95.128, 0.000, 138.889, 208.333, 326.206, 2959.501, 0.000, 10059.283], [234.196, 421.646, 95.128, 0.000, 138.889, 208.333, 326.206, 2959.501, 0.000, 10281.669], [234.196, 421.646, 95.128, 0.000, 138.889, 208.333, 326.206, 2959.501, 0.000, 10093.263], [234.196, 421.646, 95.128, 0.000, 138.889, 208.333, 0.000, 4453.525, 0.000, 10026.289], [234.196, 421.646, 95.128, 0.000, 479.340, 208.333, 0.000, 2448.268, 0.000, 9870.523], [234.196, 421.646, 95.128, 0.000, 479.340, 208.333, 0.000, 2448.268, 0.000, 9606.437], [234.196, 421.646, 95.128, 0.000, 479.340, 208.333, 0.000, 2448.268, 0.000, 9818.691], [117.098, 421.646, 95.128, 272.237, 479.340, 208.333, 0.000, 1768.219, 0.000, 9726.556], [117.098, 421.646, 95.128, 272.237, 479.340, 208.333, 0.000, 1768.219, 0.000, 9964.547], [117.098, 421.646, 95.128, 272.237, 479.340, 208.333, 0.000, 1768.219, 0.000, 10053.449], [117.098, 421.646, 95.128, 272.237, 479.340, 208.333, 0.000, 1768.219, 0.000, 9917.440], [117.098, 421.646, 95.128, 272.237, 479.340, 208.333, 0.000, 1768.219, 0.000, 9889.495], [117.098, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 6189.948, 0.000, 20064.523], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 21124.484], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 20827.077], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 20396.124], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 19856.445], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 20714.156], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 19971.485], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 20733.948], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 20938.903], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 21660.772], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 21265.298], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 20684.378], [1055.763, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 0.000, 0.000, 21754.770], [1055.763, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 0.000, 0.000, 21775.215], [1055.763, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 0.000, 0.000, 21801.488], [1055.763, 421.646, 729.561, 272.237, 0.000, 932.896, 0.000, 1996.397, 0.000, 21235.427], [1055.763, 421.646, 729.561, 272.237, 0.000, 932.896, 0.000, 1996.397, 0.000, 21466.714], [1055.763, 421.646, 729.561, 272.237, 0.000, 932.896, 0.000, 1996.397, 0.000, 20717.431], [1055.763, 421.646, 729.561, 272.237, 0.000, 932.896, 0.000, 1996.397, 0.000, 21294.450], [1055.763, 421.646, 729.561, 272.237, 0.000, 932.896, 0.000, 1996.397, 0.000, 22100.247], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 21802.552], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 21593.608], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 21840.028], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 22907.725], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 23325.945], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 22291.942], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 23053.050], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 23260.084], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 22176.244], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 21859.297], [1055.763, 740.051, 729.561, 272.237, 1706.748, 932.896, 0.000, 5221.105, 0.000, 31769.617], [0.000, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 6313.462, 0.000, 31389.961], [0.000, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 6313.462, 0.000, 31327.498], [962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 32647.140], [962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 32170.095], [962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 32577.742], [962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 33905.444], [962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 35414.492], [962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 36082.120], [962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 35872.293], [962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 34558.132], [962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 33778.138], [962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 34213.578], [962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 35345.791], [962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 34288.014], [962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 34604.406], [962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 34806.850], [962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 34012.232], [962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 33681.345], [192.484, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 13958.345, 0.000, 33540.463], [192.484, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 13958.345, 0.000, 34574.280], [192.484, 1127.221, 729.561, 0.000, 1706.748, 0.000, 0.000, 10500.917, 0.000, 34516.781], [192.484, 1127.221, 729.561, 0.000, 1706.748, 0.000, 0.000, 10500.917, 0.000, 35134.412], [192.484, 1127.221, 729.561, 0.000, 1706.748, 0.000, 0.000, 10500.917, 0.000, 36266.530], [192.484, 1127.221, 729.561, 0.000, 1706.748, 0.000, 0.000, 10500.917, 0.000, 37864.376], [192.484, 1127.221, 729.561, 0.000, 1706.748, 0.000, 0.000, 10500.917, 0.000, 38642.633], [192.484, 1127.221, 729.561, 0.000, 1706.748, 0.000, 0.000, 10500.917, 0.000, 38454.227], [192.484, 1127.221, 729.561, 0.000, 0.000, 0.000, 1339.869, 15871.934, 0.000, 38982.227], [192.484, 1127.221, 729.561, 0.000, 0.000, 0.000, 1339.869, 15871.934, 0.000, 39016.154], [192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 38759.803], [192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 39217.182], [192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 39439.690], [192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 39454.081], [192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 39083.341], [192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 38968.694], [192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 39532.030], [192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 38675.507], [0.000, 0.000, 1560.697, 0.000, 0.000, 0.000, 1339.869, 23269.751, 0.000, 39013.741], [0.000, 0.000, 1560.697, 0.000, 0.000, 0.000, 1339.869, 23269.751, 0.000, 38497.668], [0.000, 0.000, 1560.697, 0.000, 0.000, 0.000, 1339.869, 23269.751, 0.000, 38042.410]]) # 模拟VS信号回测结果 # VS信号,先卖后买,交割期为0 self.vs_res_sb00 = np.array( [[0.0000, 0.0000, 0.0000, 0.0000, 500.0000, 0.0000, 0.0000, 7750.0000, 0.0000, 10000.0000], [0.0000, 0.0000, 0.0000, 0.0000, 500.0000, 0.0000, 0.0000, 7750.0000, 0.0000, 9925.0000], [0.0000, 0.0000, 0.0000, 0.0000, 500.0000, 300.0000, 300.0000, 4954.0000, 0.0000, 9785.0000], [400.0000, 400.0000, 0.0000, 0.0000, 500.0000, 300.0000, 300.0000, 878.0000, 0.0000, 9666.0000], [400.0000, 400.0000, 173.1755, 0.0000, 500.0000, 300.0000, 300.0000, 0.0000, 0.0000, 9731.0000], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 9830.9270], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 9785.8540], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 9614.3412], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 9303.1953], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 8834.4398], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 8712.7554], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 8717.9507], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 9079.1479], [200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598.0000, 0.0000, 9166.0276], [200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598.0000, 0.0000, 9023.6607], [200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598.0000, 0.0000, 9291.6864], [200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598.0000, 0.0000, 9411.6371], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9706.7357], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9822.7357], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9986.7357], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9805.7357], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 0.0000, 4993.7357, 0.0000, 9704.7357], [200.0000, 400.0000, 0.0000, 0.0000, 600.0000, 300.0000, 0.0000, 2048.7357, 0.0000, 9567.7357], [200.0000, 400.0000, 0.0000, 0.0000, 600.0000, 300.0000, 0.0000, 2048.7357, 0.0000, 9209.7357], [200.0000, 400.0000, 0.0000, 0.0000, 600.0000, 300.0000, 0.0000, 2048.7357, 0.0000, 9407.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9329.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9545.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9652.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9414.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9367.7357], [0.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 9319.7357, 0.0000, 19556.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 20094.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19849.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19802.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19487.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19749.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19392.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19671.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19756.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 20111.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19867.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19775.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 1990.7357, 0.0000, 20314.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 1990.7357, 0.0000, 20310.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 1990.7357, 0.0000, 20253.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20044.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20495.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 19798.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20103.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20864.7357], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 20425.7357], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 20137.8405], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 20711.3567], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 21470.3891], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 21902.9538], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 20962.9538], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 21833.5184], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 21941.8169], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 21278.5184], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 21224.4700], [1100.0000, 710.4842, 400.0000, 300.0000, 600.0000, 500.0000, 600.0000, 9160.0000, 0.0000, 31225.2119], [600.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 7488.0000, 0.0000, 30894.5748], [600.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 7488.0000, 0.0000, 30764.3811], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 31815.5828], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 31615.4215], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 32486.1394], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 33591.2847], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 34056.5428], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 34756.4863], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 34445.5428], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 34433.9541], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000, 33870.4703], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000, 34014.3010], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000, 34680.5671], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000, 33890.9945], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000, 34004.6640], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000, 34127.7768], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000, 33421.1638], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000, 33120.9057], [700.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 13830.0000, 0.0000, 32613.3171], [700.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 13830.0000, 0.0000, 33168.1558], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151.0000, 0.0000, 33504.6236], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151.0000, 0.0000, 33652.1318], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151.0000, 0.0000, 34680.4867], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151.0000, 0.0000, 35557.5191], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151.0000, 0.0000, 35669.7128], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151.0000, 0.0000, 35211.4466], [700.0000, 1010.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13530.0000, 0.0000, 35550.6079], [700.0000, 1010.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13530.0000, 0.0000, 35711.6563], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 35682.6079], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 35880.8336], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 36249.8740], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 36071.6159], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 35846.1562], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 35773.3578], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 36274.9465], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 35739.3094], [500.0000, 710.4842, 1100.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13167.0000, 0.0000, 36135.0917], [500.0000, 710.4842, 1100.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13167.0000, 0.0000, 35286.5835], [500.0000, 710.4842, 1100.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13167.0000, 0.0000, 35081.3658]]) # VS信号,先买后卖,交割期为0 self.vs_res_bs00 = np.array( [[0.0000, 0.0000, 0.0000, 0.0000, 500.0000, 0.0000, 0.0000, 7750, 0.0000, 10000], [0.0000, 0.0000, 0.0000, 0.0000, 500.0000, 0.0000, 0.0000, 7750, 0.0000, 9925], [0.0000, 0.0000, 0.0000, 0.0000, 500.0000, 300.0000, 300.0000, 4954, 0.0000, 9785], [400.0000, 400.0000, 0.0000, 0.0000, 500.0000, 300.0000, 300.0000, 878, 0.0000, 9666], [400.0000, 400.0000, 173.1755, 0.0000, 500.0000, 300.0000, 300.0000, 0, 0.0000, 9731], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 9830.927022], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 9785.854043], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 9614.341223], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 9303.195266], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 8834.439842], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 8712.755424], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 8717.95069], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 9079.147929], [200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598, 0.0000, 9166.027613], [200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598, 0.0000, 9023.66075], [200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598, 0.0000, 9291.686391], [200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598, 0.0000, 9411.637081], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9706.7357], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9822.7357], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9986.7357], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9805.7357], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 0.0000, 4993.7357, 0.0000, 9704.7357], [200.0000, 400.0000, 0.0000, 0.0000, 600.0000, 300.0000, 0.0000, 2048.7357, 0.0000, 9567.7357], [200.0000, 400.0000, 0.0000, 0.0000, 600.0000, 300.0000, 0.0000, 2048.7357, 0.0000, 9209.7357], [200.0000, 400.0000, 0.0000, 0.0000, 600.0000, 300.0000, 0.0000, 2048.7357, 0.0000, 9407.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9329.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9545.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9652.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9414.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9367.7357], [0.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 9319.7357, 0.0000, 19556.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 20094.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19849.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19802.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19487.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19749.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19392.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19671.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19756.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 20111.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19867.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19775.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 1990.7357, 0.0000, 20314.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 1990.7357, 0.0000, 20310.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 1990.7357, 0.0000, 20253.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20044.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20495.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 19798.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20103.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20864.7357], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 20425.7357], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 20137.84054], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 20711.35674], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 21470.38914], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 21902.95375], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 20962.95375], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 21833.51837], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 21941.81688], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 21278.51837], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 21224.46995], [1100.0000, 710.4842, 400.0000, 300.0000, 600.0000, 500.0000, 600.0000, 9160, 0.0000, 31225.21185], [600.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 7488, 0.0000, 30894.57479], [600.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 7488, 0.0000, 30764.38113], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 31815.5828], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 31615.42154], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 32486.13941], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 33591.28466], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 34056.54276], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 34756.48633], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 34445.54276], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 34433.95412], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 33870.47032], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 34014.30104], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 34680.56715], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 33890.99452], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 34004.66398], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 34127.77683], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 33421.1638], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 33120.9057], [700.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 13830, 0.0000, 32613.31706], [700.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 13830, 0.0000, 33168.15579], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151, 0.0000, 33504.62357], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151, 0.0000, 33652.13176], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151, 0.0000, 34680.4867], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151, 0.0000, 35557.51909], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151, 0.0000, 35669.71276], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151, 0.0000, 35211.44665], [700.0000, 1010.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13530, 0.0000, 35550.60792], [700.0000, 1010.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13530, 0.0000, 35711.65633], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 35682.60792], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 35880.83362], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 36249.87403], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 36071.61593], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 35846.15615], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 35773.35783], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 36274.94647], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 35739.30941], [500.0000, 710.4842, 1100.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13167, 0.0000, 36135.09172], [500.0000, 710.4842, 1100.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13167, 0.0000, 35286.58353], [500.0000, 710.4842, 1100.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13167, 0.0000, 35081.36584]]) # VS信号,先卖后买,交割期为2天(股票)1天(现金) self.vs_res_sb20 = np.array( [[0.000, 0.000, 0.000, 0.000, 500.000, 0.000, 0.000, 7750.000, 0.000, 10000.000], [0.000, 0.000, 0.000, 0.000, 500.000, 0.000, 0.000, 7750.000, 0.000, 9925.000], [0.000, 0.000, 0.000, 0.000, 500.000, 300.000, 300.000, 4954.000, 0.000, 9785.000], [400.000, 400.000, 0.000, 0.000, 500.000, 300.000, 300.000, 878.000, 0.000, 9666.000], [400.000, 400.000, 173.176, 0.000, 500.000, 300.000, 300.000, 0.000, 0.000, 9731.000], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9830.927], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9785.854], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9614.341], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9303.195], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 8834.440], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 8712.755], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 8717.951], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9079.148], [200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9166.028], [200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9023.661], [200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9291.686], [200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9411.637], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9706.736], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9822.736], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9986.736], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9805.736], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 0.000, 4993.736, 0.000, 9704.736], [200.000, 400.000, 0.000, 0.000, 600.000, 300.000, 0.000, 2048.736, 0.000, 9567.736], [200.000, 400.000, 0.000, 0.000, 600.000, 300.000, 0.000, 2048.736, 0.000, 9209.736], [200.000, 400.000, 0.000, 0.000, 600.000, 300.000, 0.000, 2048.736, 0.000, 9407.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9329.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9545.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9652.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9414.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9367.736], [0.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 9319.736, 0.000, 19556.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 20094.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19849.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19802.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19487.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19749.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19392.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19671.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19756.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 20111.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19867.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19775.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 1990.736, 0.000, 20314.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 1990.736, 0.000, 20310.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 1990.736, 0.000, 20253.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20044.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20495.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 19798.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20103.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20864.736], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20425.736], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20137.841], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20711.357], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21470.389], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21902.954], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20962.954], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21833.518], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21941.817], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21278.518], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21224.470], [1100.000, 710.484, 400.000, 300.000, 600.000, 500.000, 600.000, 9160.000, 0.000, 31225.212], [600.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 7488.000, 0.000, 30894.575], [600.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 7488.000, 0.000, 30764.381], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 31815.583], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 31615.422], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 32486.139], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 33591.285], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34056.543], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34756.486], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34445.543], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34433.954], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33870.470], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34014.301], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34680.567], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33890.995], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34004.664], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34127.777], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33421.164], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33120.906], [700.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 13830.000, 0.000, 32613.317], [700.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 13830.000, 0.000, 33168.156], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 33504.624], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 33652.132], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 34680.487], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 35557.519], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 35669.713], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 35211.447], [700.000, 1010.484, 400.000, 100.000, 0.000, 100.000, 900.000, 13530.000, 0.000, 35550.608], [700.000, 1010.484, 400.000, 100.000, 0.000, 100.000, 900.000, 13530.000, 0.000, 35711.656], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35682.608], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35880.834], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 36249.874], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 36071.616], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35846.156], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35773.358], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 36274.946], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35739.309], [500.000, 710.484, 1100.000, 100.000, 0.000, 100.000, 900.000, 13167.000, 0.000, 36135.092], [500.000, 710.484, 1100.000, 100.000, 0.000, 100.000, 900.000, 13167.000, 0.000, 35286.584], [500.000, 710.484, 1100.000, 100.000, 0.000, 100.000, 900.000, 13167.000, 0.000, 35081.366]]) # VS信号,先买后卖,交割期为2天(股票)1天(现金) self.vs_res_bs21 = np.array( [[0.000, 0.000, 0.000, 0.000, 500.000, 0.000, 0.000, 7750.000, 0.000, 10000.000], [0.000, 0.000, 0.000, 0.000, 500.000, 0.000, 0.000, 7750.000, 0.000, 9925.000], [0.000, 0.000, 0.000, 0.000, 500.000, 300.000, 300.000, 4954.000, 0.000, 9785.000], [400.000, 400.000, 0.000, 0.000, 500.000, 300.000, 300.000, 878.000, 0.000, 9666.000], [400.000, 400.000, 173.176, 0.000, 500.000, 300.000, 300.000, 0.000, 0.000, 9731.000], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9830.927], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9785.854], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9614.341], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9303.195], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 8834.440], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 8712.755], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 8717.951], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9079.148], [200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9166.028], [200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9023.661], [200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9291.686], [200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9411.637], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9706.736], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9822.736], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9986.736], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9805.736], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 0.000, 4993.736, 0.000, 9704.736], [200.000, 400.000, 0.000, 0.000, 600.000, 300.000, 0.000, 2048.736, 0.000, 9567.736], [200.000, 400.000, 0.000, 0.000, 600.000, 300.000, 0.000, 2048.736, 0.000, 9209.736], [200.000, 400.000, 0.000, 0.000, 600.000, 300.000, 0.000, 2048.736, 0.000, 9407.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9329.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9545.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9652.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9414.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9367.736], [0.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 9319.736, 0.000, 19556.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 20094.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19849.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19802.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19487.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19749.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19392.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19671.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19756.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 20111.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19867.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19775.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 1990.736, 0.000, 20314.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 1990.736, 0.000, 20310.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 1990.736, 0.000, 20253.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20044.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20495.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 19798.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20103.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20864.736], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20425.736], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20137.841], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20711.357], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21470.389], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21902.954], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20962.954], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21833.518], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21941.817], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21278.518], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21224.470], [1100.000, 710.484, 400.000, 300.000, 600.000, 500.000, 600.000, 9160.000, 0.000, 31225.212], [600.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 7488.000, 0.000, 30894.575], [600.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 7488.000, 0.000, 30764.381], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 31815.583], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 31615.422], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 32486.139], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 33591.285], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34056.543], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34756.486], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34445.543], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34433.954], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33870.470], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34014.301], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34680.567], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33890.995], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34004.664], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34127.777], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33421.164], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33120.906], [700.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 13830.000, 0.000, 32613.317], [700.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 13830.000, 0.000, 33168.156], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 33504.624], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 33652.132], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 34680.487], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 35557.519], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 35669.713], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 35211.447], [700.000, 1010.484, 400.000, 100.000, 0.000, 100.000, 900.000, 13530.000, 0.000, 35550.608], [700.000, 1010.484, 400.000, 100.000, 0.000, 100.000, 900.000, 13530.000, 0.000, 35711.656], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35682.608], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35880.834], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 36249.874], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 36071.616], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35846.156], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35773.358], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 36274.946], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35739.309], [500.000, 710.484, 1100.000, 100.000, 0.000, 100.000, 900.000, 13167.000, 0.000, 36135.092], [500.000, 710.484, 1100.000, 100.000, 0.000, 100.000, 900.000, 13167.000, 0.000, 35286.584], [500.000, 710.484, 1100.000, 100.000, 0.000, 100.000, 900.000, 13167.000, 0.000, 35081.366]]) # Multi信号处理结果,先卖后买,使用卖出的现金买进,交割期为2天(股票)0天(现金) self.multi_res = np.array( [[0.0000, 357.2545, 0.0000, 6506.9627, 0.0000, 9965.1867], [0.0000, 357.2545, 0.0000, 6506.9627, 0.0000, 10033.0650], [0.0000, 178.6273, 0.0000, 8273.5864, 0.0000, 10034.8513], [0.0000, 178.6273, 0.0000, 8273.5864, 0.0000, 10036.6376], [150.3516, 178.6273, 0.0000, 6771.5740, 0.0000, 10019.3404], [150.3516, 178.6273, 0.0000, 6771.5740, 0.0000, 10027.7062], [150.3516, 178.6273, 0.0000, 6771.5740, 0.0000, 10030.1477], [150.3516, 178.6273, 0.0000, 6771.5740, 0.0000, 10005.1399], [150.3516, 178.6273, 0.0000, 6771.5740, 0.0000, 10002.5054], [150.3516, 489.4532, 0.0000, 3765.8877, 0.0000, 9967.3860], [75.1758, 391.5625, 0.0000, 5490.1377, 0.0000, 10044.4059], [75.1758, 391.5625, 0.0000, 5490.1377, 0.0000, 10078.1430], [75.1758, 391.5625, 846.3525, 392.3025, 0.0000, 10138.2709], [75.1758, 391.5625, 846.3525, 392.3025, 0.0000, 10050.4768], [75.1758, 391.5625, 846.3525, 392.3025, 0.0000, 10300.0711], [75.1758, 391.5625, 846.3525, 392.3025, 0.0000, 10392.6970], [75.1758, 391.5625, 169.2705, 4644.3773, 0.0000, 10400.5282], [75.1758, 391.5625, 169.2705, 4644.3773, 0.0000, 10408.9220], [75.1758, 0.0000, 169.2705, 8653.9776, 0.0000, 10376.5914], [75.1758, 0.0000, 169.2705, 8653.9776, 0.0000, 10346.8794], [75.1758, 0.0000, 169.2705, 8653.9776, 0.0000, 10364.7474], [75.1758, 381.1856, 645.5014, 2459.1665, 0.0000, 10302.4570], [18.7939, 381.1856, 645.5014, 3024.6764, 0.0000, 10747.4929], [18.7939, 381.1856, 96.8252, 6492.3097, 0.0000, 11150.9107], [18.7939, 381.1856, 96.8252, 6492.3097, 0.0000, 11125.2946], [18.7939, 114.3557, 96.8252, 9227.3166, 0.0000, 11191.9956], [18.7939, 114.3557, 96.8252, 9227.3166, 0.0000, 11145.7486], [18.7939, 114.3557, 96.8252, 9227.3166, 0.0000, 11090.0768], [132.5972, 114.3557, 864.3802, 4223.9548, 0.0000, 11113.8733], [132.5972, 114.3557, 864.3802, 4223.9548, 0.0000, 11456.3281], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 21983.7333], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 22120.6165], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 21654.5327], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 21429.6550], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 21912.5643], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 22516.3100], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 23169.0777], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 23390.8080], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 23743.3742], [132.5972, 559.9112, 864.3802, 9367.3999, 0.0000, 23210.7311], [132.5972, 559.9112, 864.3802, 9367.3999, 0.0000, 24290.4375], [132.5972, 559.9112, 864.3802, 9367.3999, 0.0000, 24335.3279], [132.5972, 559.9112, 864.3802, 9367.3999, 0.0000, 18317.3553], [132.5972, 559.9112, 864.3802, 9367.3999, 0.0000, 18023.4660], [259.4270, 559.9112, 0.0000, 15820.6915, 0.0000, 24390.0527], [259.4270, 559.9112, 0.0000, 15820.6915, 0.0000, 24389.6421], [259.4270, 559.9112, 0.0000, 15820.6915, 0.0000, 24483.5953], [0.0000, 559.9112, 0.0000, 18321.5674, 0.0000, 24486.1895], [0.0000, 0.0000, 0.0000, 24805.3389, 0.0000, 24805.3389], [0.0000, 0.0000, 0.0000, 24805.3389, 0.0000, 24805.3389]]) def test_loop_step_pt_sb00(self): """ test loop step PT-signal, sell first""" c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=10000, own_amounts=np.zeros(7, dtype='float'), available_cash=10000, available_amounts=np.zeros(7, dtype='float'), op=self.pt_signals[0], prices=self.prices[0], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 1 result in complete looping: \n' f'cash_change: +{c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = 10000 + c_g + c_s amounts = np.zeros(7, dtype='float') + a_p + a_s self.assertAlmostEqual(cash, 7500) self.assertTrue(np.allclose(amounts, np.array([0, 0, 0, 0, 555.5555556, 0, 0]))) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=self.pt_res_sb00[2][7], own_amounts=self.pt_res_sb00[2][0:7], available_cash=self.pt_res_sb00[2][7], available_amounts=self.pt_res_sb00[2][0:7], op=self.pt_signals[3], prices=self.prices[3], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 4 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.pt_res_sb00[2][7] + c_g + c_s amounts = self.pt_res_sb00[2][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_sb00[3][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_sb00[3][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=self.pt_res_sb00[30][7], own_amounts=self.pt_res_sb00[30][0:7], available_cash=self.pt_res_sb00[30][7], available_amounts=self.pt_res_sb00[30][0:7], op=self.pt_signals[31], prices=self.prices[31], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 32 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.pt_res_sb00[30][7] + c_g + c_s amounts = self.pt_res_sb00[30][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_sb00[31][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_sb00[31][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=self.pt_res_sb00[59][7] + 10000, own_amounts=self.pt_res_sb00[59][0:7], available_cash=self.pt_res_sb00[59][7] + 10000, available_amounts=self.pt_res_sb00[59][0:7], op=self.pt_signals[60], prices=self.prices[60], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 61 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.pt_res_sb00[59][7] + c_g + c_s + 10000 amounts = self.pt_res_sb00[59][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_sb00[60][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_sb00[60][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.pt_signals[61], prices=self.prices[61], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 62 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_sb00[61][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_sb00[61][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=self.pt_res_sb00[95][7], own_amounts=self.pt_res_sb00[95][0:7], available_cash=self.pt_res_sb00[95][7], available_amounts=self.pt_res_sb00[95][0:7], op=self.pt_signals[96], prices=self.prices[96], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 97 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.pt_res_sb00[96][7] + c_g + c_s amounts = self.pt_res_sb00[96][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_sb00[96][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_sb00[96][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.pt_signals[97], prices=self.prices[97], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 98 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_sb00[97][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_sb00[97][0:7])) def test_loop_step_pt_bs00(self): """ test loop step PT-signal, buy first""" c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=10000, own_amounts=np.zeros(7, dtype='float'), available_cash=10000, available_amounts=np.zeros(7, dtype='float'), op=self.pt_signals[0], prices=self.prices[0], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 1 result in complete looping: \n' f'cash_change: +{c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = 10000 + c_g + c_s amounts = np.zeros(7, dtype='float') + a_p + a_s self.assertAlmostEqual(cash, 7500) self.assertTrue(np.allclose(amounts, np.array([0, 0, 0, 0, 555.5555556, 0, 0]))) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=self.pt_res_bs00[2][7], own_amounts=self.pt_res_bs00[2][0:7], available_cash=self.pt_res_bs00[2][7], available_amounts=self.pt_res_bs00[2][0:7], op=self.pt_signals[3], prices=self.prices[3], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 4 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.pt_res_bs00[2][7] + c_g + c_s amounts = self.pt_res_bs00[2][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_bs00[3][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_bs00[3][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=self.pt_res_bs00[30][7], own_amounts=self.pt_res_bs00[30][0:7], available_cash=self.pt_res_bs00[30][7], available_amounts=self.pt_res_bs00[30][0:7], op=self.pt_signals[31], prices=self.prices[31], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 32 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.pt_res_bs00[30][7] + c_g + c_s amounts = self.pt_res_bs00[30][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_bs00[31][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_bs00[31][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=self.pt_res_bs00[59][7] + 10000, own_amounts=self.pt_res_bs00[59][0:7], available_cash=self.pt_res_bs00[59][7] + 10000, available_amounts=self.pt_res_bs00[59][0:7], op=self.pt_signals[60], prices=self.prices[60], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 61 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.pt_res_bs00[59][7] + c_g + c_s + 10000 amounts = self.pt_res_bs00[59][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_bs00[60][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_bs00[60][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.pt_signals[61], prices=self.prices[61], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 62 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_bs00[61][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_bs00[61][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=self.pt_res_bs00[95][7], own_amounts=self.pt_res_bs00[95][0:7], available_cash=self.pt_res_bs00[95][7], available_amounts=self.pt_res_bs00[95][0:7], op=self.pt_signals[96], prices=self.prices[96], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 97 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.pt_res_bs00[96][7] + c_g + c_s amounts = self.pt_res_bs00[96][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_bs00[96][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_bs00[96][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.pt_signals[97], prices=self.prices[97], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 98 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_bs00[97][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_bs00[97][0:7])) def test_loop_step_ps_sb00(self): """ test loop step PS-signal, sell first""" c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=10000, own_amounts=np.zeros(7, dtype='float'), available_cash=10000, available_amounts=np.zeros(7, dtype='float'), op=self.ps_signals[0], prices=self.prices[0], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 1 result in complete looping: \n' f'cash_change: +{c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = 10000 + c_g + c_s amounts = np.zeros(7, dtype='float') + a_p + a_s self.assertAlmostEqual(cash, 7500) self.assertTrue(np.allclose(amounts, np.array([0, 0, 0, 0, 555.5555556, 0, 0]))) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=self.ps_res_sb00[2][7], own_amounts=self.ps_res_sb00[2][0:7], available_cash=self.ps_res_sb00[2][7], available_amounts=self.ps_res_sb00[2][0:7], op=self.ps_signals[3], prices=self.prices[3], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 4 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.ps_res_sb00[2][7] + c_g + c_s amounts = self.ps_res_sb00[2][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_sb00[3][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_sb00[3][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=self.ps_res_sb00[30][7], own_amounts=self.ps_res_sb00[30][0:7], available_cash=self.ps_res_sb00[30][7], available_amounts=self.ps_res_sb00[30][0:7], op=self.ps_signals[31], prices=self.prices[31], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 32 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.ps_res_sb00[30][7] + c_g + c_s amounts = self.ps_res_sb00[30][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_sb00[31][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_sb00[31][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=self.ps_res_sb00[59][7] + 10000, own_amounts=self.ps_res_sb00[59][0:7], available_cash=self.ps_res_sb00[59][7] + 10000, available_amounts=self.ps_res_sb00[59][0:7], op=self.ps_signals[60], prices=self.prices[60], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 61 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.ps_res_sb00[59][7] + c_g + c_s + 10000 amounts = self.ps_res_sb00[59][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_sb00[60][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_sb00[60][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.ps_signals[61], prices=self.prices[61], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 62 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_sb00[61][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_sb00[61][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=self.ps_res_sb00[95][7], own_amounts=self.ps_res_sb00[95][0:7], available_cash=self.ps_res_sb00[95][7], available_amounts=self.ps_res_sb00[95][0:7], op=self.ps_signals[96], prices=self.prices[96], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 97 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.ps_res_sb00[96][7] + c_g + c_s amounts = self.ps_res_sb00[96][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_sb00[96][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_sb00[96][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.ps_signals[97], prices=self.prices[97], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 98 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_sb00[97][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_sb00[97][0:7])) def test_loop_step_ps_bs00(self): """ test loop step PS-signal, buy first""" c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=10000, own_amounts=np.zeros(7, dtype='float'), available_cash=10000, available_amounts=np.zeros(7, dtype='float'), op=self.ps_signals[0], prices=self.prices[0], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 1 result in complete looping: \n' f'cash_change: +{c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = 10000 + c_g + c_s amounts = np.zeros(7, dtype='float') + a_p + a_s self.assertAlmostEqual(cash, 7500) self.assertTrue(np.allclose(amounts, np.array([0, 0, 0, 0, 555.5555556, 0, 0]))) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=self.ps_res_bs00[2][7], own_amounts=self.ps_res_sb00[2][0:7], available_cash=self.ps_res_bs00[2][7], available_amounts=self.ps_res_bs00[2][0:7], op=self.ps_signals[3], prices=self.prices[3], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 4 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.ps_res_bs00[2][7] + c_g + c_s amounts = self.ps_res_bs00[2][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_bs00[3][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_bs00[3][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=self.ps_res_bs00[30][7], own_amounts=self.ps_res_sb00[30][0:7], available_cash=self.ps_res_bs00[30][7], available_amounts=self.ps_res_bs00[30][0:7], op=self.ps_signals[31], prices=self.prices[31], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 32 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.ps_res_bs00[30][7] + c_g + c_s amounts = self.ps_res_bs00[30][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_bs00[31][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_bs00[31][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=self.ps_res_bs00[59][7] + 10000, own_amounts=self.ps_res_bs00[59][0:7], available_cash=self.ps_res_bs00[59][7] + 10000, available_amounts=self.ps_res_bs00[59][0:7], op=self.ps_signals[60], prices=self.prices[60], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 61 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.ps_res_bs00[59][7] + c_g + c_s + 10000 amounts = self.ps_res_bs00[59][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_bs00[60][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_bs00[60][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.ps_signals[61], prices=self.prices[61], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 62 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_bs00[61][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_bs00[61][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=self.ps_res_bs00[95][7], own_amounts=self.ps_res_bs00[95][0:7], available_cash=self.ps_res_bs00[95][7], available_amounts=self.ps_res_bs00[95][0:7], op=self.ps_signals[96], prices=self.prices[96], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 97 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.ps_res_bs00[96][7] + c_g + c_s amounts = self.ps_res_bs00[96][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_bs00[96][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_bs00[96][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.ps_signals[97], prices=self.prices[97], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 98 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_bs00[97][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_bs00[97][0:7])) def test_loop_step_vs_sb00(self): """test loop step of Volume Signal type of signals""" c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=10000, own_amounts=np.zeros(7, dtype='float'), available_cash=10000, available_amounts=np.zeros(7, dtype='float'), op=self.vs_signals[0], prices=self.prices[0], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 1 result in complete looping: \n' f'cash_change: +{c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = 10000 + c_g + c_s amounts = np.zeros(7, dtype='float') + a_p + a_s self.assertAlmostEqual(cash, 7750) self.assertTrue(np.allclose(amounts, np.array([0, 0, 0, 0, 500., 0, 0]))) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=self.vs_res_sb00[2][7], own_amounts=self.vs_res_sb00[2][0:7], available_cash=self.vs_res_sb00[2][7], available_amounts=self.vs_res_sb00[2][0:7], op=self.vs_signals[3], prices=self.prices[3], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 4 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.vs_res_sb00[2][7] + c_g + c_s amounts = self.vs_res_sb00[2][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_sb00[3][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_sb00[3][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=self.vs_res_sb00[30][7], own_amounts=self.vs_res_sb00[30][0:7], available_cash=self.vs_res_sb00[30][7], available_amounts=self.vs_res_sb00[30][0:7], op=self.vs_signals[31], prices=self.prices[31], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 32 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.vs_res_sb00[30][7] + c_g + c_s amounts = self.vs_res_sb00[30][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_sb00[31][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_sb00[31][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=self.vs_res_sb00[59][7] + 10000, own_amounts=self.vs_res_sb00[59][0:7], available_cash=self.vs_res_sb00[59][7] + 10000, available_amounts=self.vs_res_sb00[59][0:7], op=self.vs_signals[60], prices=self.prices[60], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 61 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.vs_res_sb00[59][7] + c_g + c_s + 10000 amounts = self.vs_res_sb00[59][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_sb00[60][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_sb00[60][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.vs_signals[61], prices=self.prices[61], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 62 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_sb00[61][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_sb00[61][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=self.vs_res_sb00[95][7], own_amounts=self.vs_res_sb00[95][0:7], available_cash=self.vs_res_sb00[95][7], available_amounts=self.vs_res_sb00[95][0:7], op=self.vs_signals[96], prices=self.prices[96], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 97 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.vs_res_sb00[96][7] + c_g + c_s amounts = self.vs_res_sb00[96][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_sb00[96][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_sb00[96][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.vs_signals[97], prices=self.prices[97], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 98 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_sb00[97][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_sb00[97][0:7])) def test_loop_step_vs_bs00(self): """test loop step of Volume Signal type of signals""" c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=10000, own_amounts=np.zeros(7, dtype='float'), available_cash=10000, available_amounts=np.zeros(7, dtype='float'), op=self.vs_signals[0], prices=self.prices[0], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 1 result in complete looping: \n' f'cash_change: +{c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = 10000 + c_g + c_s amounts = np.zeros(7, dtype='float') + a_p + a_s self.assertAlmostEqual(cash, 7750) self.assertTrue(np.allclose(amounts, np.array([0, 0, 0, 0, 500., 0, 0]))) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=self.vs_res_bs00[2][7], own_amounts=self.vs_res_bs00[2][0:7], available_cash=self.vs_res_bs00[2][7], available_amounts=self.vs_res_bs00[2][0:7], op=self.vs_signals[3], prices=self.prices[3], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 4 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.vs_res_bs00[2][7] + c_g + c_s amounts = self.vs_res_bs00[2][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_bs00[3][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_bs00[3][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=self.vs_res_bs00[30][7], own_amounts=self.vs_res_bs00[30][0:7], available_cash=self.vs_res_bs00[30][7], available_amounts=self.vs_res_bs00[30][0:7], op=self.vs_signals[31], prices=self.prices[31], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 32 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.vs_res_bs00[30][7] + c_g + c_s amounts = self.vs_res_bs00[30][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_bs00[31][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_bs00[31][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=self.vs_res_bs00[59][7] + 10000, own_amounts=self.vs_res_bs00[59][0:7], available_cash=self.vs_res_bs00[59][7] + 10000, available_amounts=self.vs_res_bs00[59][0:7], op=self.vs_signals[60], prices=self.prices[60], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 61 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.vs_res_bs00[59][7] + c_g + c_s + 10000 amounts = self.vs_res_bs00[59][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_bs00[60][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_bs00[60][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.vs_signals[61], prices=self.prices[61], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 62 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_bs00[61][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_bs00[61][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=self.vs_res_bs00[95][7], own_amounts=self.vs_res_bs00[95][0:7], available_cash=self.vs_res_bs00[95][7], available_amounts=self.vs_res_bs00[95][0:7], op=self.vs_signals[96], prices=self.prices[96], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 97 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.vs_res_bs00[96][7] + c_g + c_s amounts = self.vs_res_bs00[96][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_bs00[96][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_bs00[96][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.vs_signals[97], prices=self.prices[97], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 98 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_bs00[97][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_bs00[97][0:7])) def test_loop_pt(self): """ Test looping of PT proportion target signals, with stock delivery delay = 0 days cash delivery delay = 0 day buy-sell sequence = sell first """ print('Test looping of PT proportion target signals, with:\n' 'stock delivery delay = 0 days \n' 'cash delivery delay = 0 day \n' 'buy-sell sequence = sell first') res = apply_loop(op_type=0, op_list=self.pt_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) # print(f'in test_loop:\nresult of loop test is \n{res}') self.assertTrue(np.allclose(res, self.pt_res_bs00, 2)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop(op_type=0, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) # print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_pt_with_delay(self): """ Test looping of PT proportion target signals, with: stock delivery delay = 2 days cash delivery delay = 1 day use_sell_cash = False """ print('Test looping of PT proportion target signals, with:\n' 'stock delivery delay = 2 days \n' 'cash delivery delay = 1 day \n' 'maximize_cash = False (buy and sell at the same time)') res = apply_loop( op_type=0, op_list=self.pt_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, inflation_rate=0, cash_delivery_period=1, stock_delivery_period=2, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}\n' f'result comparison line by line:') for i in range(len(res)): print(np.around(res.values[i])) print(np.around(self.pt_res_bs21[i])) print() self.assertTrue(np.allclose(res, self.pt_res_bs21, 3)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop( op_type=1, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_pt_with_delay_use_cash(self): """ Test looping of PT proportion target signals, with: stock delivery delay = 2 days cash delivery delay = 0 day use sell cash = True (sell stock first to use cash when possible (not possible when cash delivery period != 0)) """ print('Test looping of PT proportion target signals, with:\n' 'stock delivery delay = 2 days \n' 'cash delivery delay = 1 day \n' 'maximize cash usage = True \n' 'but not applicable because cash delivery period == 1') res = apply_loop( op_type=0, op_list=self.pt_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, cash_delivery_period=0, stock_delivery_period=2, inflation_rate=0, max_cash_usage=True, print_log=True) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}\n' f'result comparison line by line:') for i in range(len(res)): print(np.around(res.values[i])) print(np.around(self.pt_res_sb20[i])) print() self.assertTrue(np.allclose(res, self.pt_res_sb20, 3)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop( op_type=1, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, cash_delivery_period=1, stock_delivery_period=2, inflation_rate=0, print_log=True) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_ps(self): """ Test looping of PS Proportion Signal type of signals """ res = apply_loop(op_type=1, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') self.assertTrue(np.allclose(res, self.ps_res_bs00, 5)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop(op_type=1, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_ps_with_delay(self): """ Test looping of PT proportion target signals, with: stock delivery delay = 2 days cash delivery delay = 1 day use_sell_cash = False """ print('Test looping of PT proportion target signals, with:\n' 'stock delivery delay = 2 days \n' 'cash delivery delay = 1 day \n' 'maximize_cash = False (buy and sell at the same time)') res = apply_loop( op_type=1, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, inflation_rate=0, cash_delivery_period=1, stock_delivery_period=2, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}\n' f'result comparison line by line:') for i in range(len(res)): print(np.around(res.values[i])) print(np.around(self.ps_res_bs21[i])) print() self.assertTrue(np.allclose(res, self.ps_res_bs21, 3)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop( op_type=1, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_ps_with_delay_use_cash(self): """ Test looping of PT proportion target signals, with: stock delivery delay = 2 days cash delivery delay = 0 day use sell cash = True (sell stock first to use cash when possible (not possible when cash delivery period != 0)) """ print('Test looping of PT proportion target signals, with:\n' 'stock delivery delay = 2 days \n' 'cash delivery delay = 1 day \n' 'maximize cash usage = True \n' 'but not applicable because cash delivery period == 1') res = apply_loop( op_type=1, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, cash_delivery_period=0, stock_delivery_period=2, inflation_rate=0, max_cash_usage=True, print_log=True) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}\n' f'result comparison line by line:') for i in range(len(res)): print(np.around(res.values[i])) print(np.around(self.ps_res_sb20[i])) print() self.assertTrue(np.allclose(res, self.ps_res_sb20, 3)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop( op_type=1, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, cash_delivery_period=1, stock_delivery_period=2, inflation_rate=0, print_log=True) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_vs(self): """ Test looping of VS Volume Signal type of signals """ res = apply_loop(op_type=2, op_list=self.vs_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') self.assertTrue(np.allclose(res, self.vs_res_bs00, 5)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop(op_type=2, op_list=self.vs_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_vs_with_delay(self): """ Test looping of PT proportion target signals, with: stock delivery delay = 2 days cash delivery delay = 1 day use_sell_cash = False """ print('Test looping of PT proportion target signals, with:\n' 'stock delivery delay = 2 days \n' 'cash delivery delay = 1 day \n' 'maximize_cash = False (buy and sell at the same time)') res = apply_loop( op_type=2, op_list=self.vs_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, inflation_rate=0, cash_delivery_period=1, stock_delivery_period=2, print_log=True) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}\n' f'result comparison line by line:') for i in range(len(res)): print(np.around(res.values[i])) print(np.around(self.vs_res_bs21[i])) print() self.assertTrue(np.allclose(res, self.vs_res_bs21, 3)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.vs_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.vs_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop( op_type=1, op_list=self.vs_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_vs_with_delay_use_cash(self): """ Test looping of PT proportion target signals, with: stock delivery delay = 2 days cash delivery delay = 0 day use sell cash = True (sell stock first to use cash when possible (not possible when cash delivery period != 0)) """ print('Test looping of PT proportion target signals, with:\n' 'stock delivery delay = 2 days \n' 'cash delivery delay = 1 day \n' 'maximize cash usage = True \n' 'but not applicable because cash delivery period == 1') res = apply_loop( op_type=2, op_list=self.vs_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, cash_delivery_period=0, stock_delivery_period=2, inflation_rate=0, max_cash_usage=True, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}\n' f'result comparison line by line:') for i in range(len(res)): print(np.around(res.values[i])) print(np.around(self.vs_res_sb20[i])) print() self.assertTrue(np.allclose(res, self.vs_res_sb20, 3)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.vs_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.vs_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop( op_type=1, op_list=self.vs_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, cash_delivery_period=1, stock_delivery_period=2, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_multiple_signal(self): """ Test looping of PS Proportion Signal type of signals """ res = apply_loop(op_type=1, op_list=self.multi_signal_hp, history_list=self.multi_history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, cash_delivery_period=0, stock_delivery_period=2, max_cash_usage=True, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}\n' f'result comparison line by line:') for i in range(len(res)): print(np.around(res.values[i])) print(np.around(self.multi_res[i])) print() self.assertTrue(np.allclose(res, self.multi_res, 5)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop(op_type=1, op_list=self.multi_signal_hp, history_list=self.multi_history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, cash_delivery_period=0, stock_delivery_period=2, max_cash_usage=False, inflation_rate=0, print_log=True) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') class TestStrategy(unittest.TestCase): """ test all properties and methods of strategy base class""" def setUp(self) -> None: pass class TestLSStrategy(RollingTiming): """用于test测试的简单多空蒙板生成策略。基于RollingTiming滚动择时方法生成 该策略有两个参数,N与Price N用于计算OHLC价格平均值的N日简单移动平均,判断,当移动平均值大于等于Price时,状态为看多,否则为看空 """ def __init__(self): super().__init__(stg_name='test_LS', stg_text='test long/short strategy', par_count=2, par_types='discr, conti', par_bounds_or_enums=([1, 5], [2, 10]), data_types='close, open, high, low', data_freq='d', window_length=5) pass def _realize(self, hist_data: np.ndarray, params: tuple): n, price = params h = hist_data.T avg = (h[0] + h[1] + h[2] + h[3]) / 4 ma = sma(avg, n) if ma[-1] < price: return 0 else: return 1 class TestSelStrategy(SimpleSelecting): """用于Test测试的简单选股策略,基于Selecting策略生成 策略没有参数,选股周期为5D 在每个选股周期内,从股票池的三只股票中选出今日变化率 = (今收-昨收)/平均股价(OHLC平均股价)最高的两支,放入中选池,否则落选。 选股比例为平均分配 """ def __init__(self): super().__init__(stg_name='test_SEL', stg_text='test portfolio selection strategy', par_count=0, par_types='', par_bounds_or_enums=(), data_types='high, low, close', data_freq='d', sample_freq='10d', window_length=5) pass def _realize(self, hist_data: np.ndarray, params: tuple): avg = np.nanmean(hist_data, axis=(1, 2)) dif = (hist_data[:, :, 2] - np.roll(hist_data[:, :, 2], 1, 1)) dif_no_nan = np.array([arr[~np.isnan(arr)][-1] for arr in dif]) difper = dif_no_nan / avg large2 = difper.argsort()[1:] chosen = np.zeros_like(avg) chosen[large2] = 0.5 return chosen class TestSelStrategyDiffTime(SimpleSelecting): """用于Test测试的简单选股策略,基于Selecting策略生成 策略没有参数,选股周期为5D 在每个选股周期内,从股票池的三只股票中选出今日变化率 = (今收-昨收)/平均股价(OHLC平均股价)最高的两支,放入中选池,否则落选。 选股比例为平均分配 """ # TODO: This strategy is not working, find out why and improve def __init__(self): super().__init__(stg_name='test_SEL', stg_text='test portfolio selection strategy', par_count=0, par_types='', par_bounds_or_enums=(), data_types='close, low, open', data_freq='d', sample_freq='w', window_length=2) pass def _realize(self, hist_data: np.ndarray, params: tuple): avg = hist_data.mean(axis=1).squeeze() difper = (hist_data[:, :, 0] - np.roll(hist_data[:, :, 0], 1))[:, -1] / avg large2 = difper.argsort()[0:2] chosen = np.zeros_like(avg) chosen[large2] = 0.5 return chosen class TestSigStrategy(SimpleTiming): """用于Test测试的简单信号生成策略,基于SimpleTiming策略生成 策略有三个参数,第一个参数为ratio,另外两个参数为price1以及price2 ratio是k线形状比例的阈值,定义为abs((C-O)/(H-L))。当这个比值小于ratio阈值时,判断该K线为十字交叉(其实还有丁字等多种情形,但这里做了 简化处理。 信号生成的规则如下: 1,当某个K线出现十字交叉,且昨收与今收之差大于price1时,买入信号 2,当某个K线出现十字交叉,且昨收与今收之差小于price2时,卖出信号 """ def __init__(self): super().__init__(stg_name='test_SIG', stg_text='test signal creation strategy', par_count=3, par_types='conti, conti, conti', par_bounds_or_enums=([2, 10], [0, 3], [0, 3]), data_types='close, open, high, low', window_length=2) pass def _realize(self, hist_data: np.ndarray, params: tuple): r, price1, price2 = params h = hist_data.T ratio = np.abs((h[0] - h[1]) / (h[3] - h[2])) diff = h[0] - np.roll(h[0], 1) sig = np.where((ratio < r) & (diff > price1), 1, np.where((ratio < r) & (diff < price2), -1, 0)) return sig class MyStg(qt.RollingTiming): """自定义双均线择时策略策略""" def __init__(self): """这个均线择时策略只有三个参数: - SMA 慢速均线,所选择的股票 - FMA 快速均线 - M 边界值 策略的其他说明 """ """ 必须初始化的关键策略参数清单: """ super().__init__( pars=(20, 100, 0.01), par_count=3, par_types=['discr', 'discr', 'conti'], par_bounds_or_enums=[(10, 250), (10, 250), (0.0, 0.5)], stg_name='CUSTOM ROLLING TIMING STRATEGY', stg_text='Customized Rolling Timing Strategy for Testing', data_types='close', window_length=100, ) print(f'=====================\n====================\n' f'custom strategy initialized, \npars: {self.pars}\npar_count:{self.par_count}\npar_types:' f'{self.par_types}\n' f'{self.info()}') # 策略的具体实现代码写在策略的_realize()函数中 # 这个函数固定接受两个参数: hist_price代表特定组合的历史数据, params代表具体的策略参数 def _realize(self, hist_price, params): """策略的具体实现代码: s:短均线计算日期;l:长均线计算日期;m:均线边界宽度;hesitate:均线跨越类型""" f, s, m = params # 临时处理措施,在策略实现层对传入的数据切片,后续应该在策略实现层以外事先对数据切片,保证传入的数据符合data_types参数即可 h = hist_price.T # 计算长短均线的当前值 s_ma = qt.sma(h[0], s)[-1] f_ma = qt.sma(h[0], f)[-1] # 计算慢均线的停止边界,当快均线在停止边界范围内时,平仓,不发出买卖信号 s_ma_u = s_ma * (1 + m) s_ma_l = s_ma * (1 - m) # 根据观望模式在不同的点位产生Long/short/empty标记 if f_ma > s_ma_u: # 当快均线在慢均线停止范围以上时,持有多头头寸 return 1 elif s_ma_l < f_ma < s_ma_u: # 当均线在停止边界以内时,平仓 return 0 else: # f_ma < s_ma_l 当快均线在慢均线停止范围以下时,持有空头头寸 return -1 class TestOperator(unittest.TestCase): """全面测试Operator对象的所有功能。包括: 1, Strategy 参数的设置 2, 历史数据的获取与分配提取 3, 策略优化参数的批量设置和优化空间的获取 4, 策略输出值的正确性验证 5, 策略结果的混合结果确认 """ def setUp(self): """prepare data for Operator test""" print('start testing HistoryPanel object\n') # build up test data: a 4-type, 3-share, 50-day matrix of prices that contains nan values in some days # for some share_pool # for share1: data_rows = 50 share1_close = [10.04, 10, 10, 9.99, 9.97, 9.99, 10.03, 10.03, 10.06, 10.06, 10.11, 10.09, 10.07, 10.06, 10.09, 10.03, 10.03, 10.06, 10.08, 10, 9.99, 10.03, 10.03, 10.06, 10.03, 9.97, 9.94, 9.83, 9.77, 9.84, 9.91, 9.93, 9.96, 9.91, 9.91, 9.88, 9.91, 9.64, 9.56, 9.57, 9.55, 9.57, 9.61, 9.61, 9.55, 9.57, 9.63, 9.64, 9.65, 9.62] share1_open = [10.02, 10, 9.98, 9.97, 9.99, 10.01, 10.04, 10.06, 10.06, 10.11, 10.11, 10.07, 10.06, 10.09, 10.03, 10.02, 10.06, 10.08, 9.99, 10, 10.03, 10.02, 10.06, 10.03, 9.97, 9.94, 9.83, 9.78, 9.77, 9.91, 9.92, 9.97, 9.91, 9.9, 9.88, 9.91, 9.63, 9.64, 9.57, 9.55, 9.58, 9.61, 9.62, 9.55, 9.57, 9.61, 9.63, 9.64, 9.61, 9.56] share1_high = [10.07, 10, 10, 10, 10.03, 10.03, 10.04, 10.09, 10.1, 10.14, 10.11, 10.1, 10.09, 10.09, 10.1, 10.05, 10.07, 10.09, 10.1, 10, 10.04, 10.04, 10.06, 10.09, 10.05, 9.97, 9.96, 9.86, 9.77, 9.92, 9.94, 9.97, 9.97, 9.92, 9.92, 9.92, 9.93, 9.64, 9.58, 9.6, 9.58, 9.62, 9.62, 9.64, 9.59, 9.62, 9.63, 9.7, 9.66, 9.64] share1_low = [9.99, 10, 9.97, 9.97, 9.97, 9.98, 9.99, 10.03, 10.03, 10.04, 10.11, 10.07, 10.05, 10.03, 10.03, 10.01, 9.99, 10.03, 9.95, 10, 9.95, 10, 10.01, 9.99, 9.96, 9.89, 9.83, 9.77, 9.77, 9.8, 9.9, 9.91, 9.89, 9.89, 9.87, 9.85, 9.6, 9.64, 9.53, 9.55, 9.54, 9.55, 9.58, 9.54, 9.53, 9.53, 9.63, 9.64, 9.59, 9.56] # for share2: share2_close = [9.68, 9.87, 9.86, 9.87, 9.79, 9.82, 9.8, 9.66, 9.62, 9.58, 9.69, 9.78, 9.75, 9.96, 9.9, 10.04, 10.06, 10.08, 10.24, 10.24, 10.24, 9.86, 10.13, 10.12, 10.1, 10.25, 10.24, 10.22, 10.75, 10.64, 10.56, 10.6, 10.42, 10.25, 10.24, 10.49, 10.57, 10.63, 10.48, 10.37, 10.96, 11.02, np.nan, np.nan, 10.88, 10.87, 11.01, 11.01, 11.58, 11.8] share2_open = [9.88, 9.88, 9.89, 9.75, 9.74, 9.8, 9.62, 9.65, 9.58, 9.67, 9.81, 9.8, 10, 9.95, 10.1, 10.06, 10.14, 9.9, 10.2, 10.29, 9.86, 9.48, 10.01, 10.24, 10.26, 10.24, 10.12, 10.65, 10.64, 10.56, 10.42, 10.43, 10.29, 10.3, 10.44, 10.6, 10.67, 10.46, 10.39, 10.9, 11.01, 11.01, np.nan, np.nan, 10.82, 11.02, 10.96, 11.55, 11.74, 11.8] share2_high = [9.91, 10.04, 9.93, 10.04, 9.84, 9.88, 9.99, 9.7, 9.67, 9.71, 9.85, 9.9, 10, 10.2, 10.11, 10.18, 10.21, 10.26, 10.38, 10.47, 10.42, 10.07, 10.24, 10.27, 10.38, 10.43, 10.39, 10.65, 10.84, 10.65, 10.73, 10.63, 10.51, 10.35, 10.46, 10.63, 10.74, 10.76, 10.54, 11.02, 11.12, 11.17, np.nan, np.nan, 10.92, 11.15, 11.11, 11.55, 11.95, 11.93] share2_low = [9.63, 9.84, 9.81, 9.74, 9.67, 9.72, 9.57, 9.54, 9.51, 9.47, 9.68, 9.63, 9.75, 9.65, 9.9, 9.93, 10.03, 9.8, 10.14, 10.09, 9.78, 9.21, 9.11, 9.68, 10.05, 10.12, 9.89, 9.89, 10.59, 10.43, 10.34, 10.32, 10.21, 10.2, 10.18, 10.36, 10.51, 10.41, 10.32, 10.37, 10.87, 10.95, np.nan, np.nan, 10.65, 10.71, 10.75, 10.91, 11.31, 11.58] # for share3: share3_close = [6.64, 7.26, 7.03, 6.87, np.nan, 6.64, 6.85, 6.7, 6.39, 6.22, 5.92, 5.91, 6.11, 5.91, 6.23, 6.28, 6.28, 6.27, np.nan, 5.56, 5.67, 5.16, 5.69, 6.32, 6.14, 6.25, 5.79, 5.26, 5.05, 5.45, 6.06, 6.21, 5.69, 5.46, 6.02, 6.69, 7.43, 7.72, 8.16, 7.83, 8.7, 8.71, 8.88, 8.54, 8.87, 8.87, 8.18, 7.8, 7.97, 8.25] share3_open = [7.26, 7, 6.88, 6.91, np.nan, 6.81, 6.63, 6.45, 6.16, 6.24, 5.96, 5.97, 5.96, 6.2, 6.35, 6.11, 6.37, 5.58, np.nan, 5.65, 5.19, 5.42, 6.3, 6.15, 6.05, 5.89, 5.22, 5.2, 5.07, 6.04, 6.12, 5.85, 5.67, 6.02, 6.04, 7.07, 7.64, 7.99, 7.59, 8.73, 8.72, 8.97, 8.58, 8.71, 8.77, 8.4, 7.95, 7.76, 8.25, 7.51] share3_high = [7.41, 7.31, 7.14, 7, np.nan, 6.82, 6.96, 6.85, 6.5, 6.34, 6.04, 6.02, 6.12, 6.38, 6.43, 6.46, 6.43, 6.27, np.nan, 6.01, 5.67, 5.67, 6.35, 6.32, 6.43, 6.36, 5.79, 5.47, 5.65, 6.04, 6.14, 6.23, 5.83, 6.25, 6.27, 7.12, 7.82, 8.14, 8.27, 8.92, 8.76, 9.15, 8.9, 9.01, 9.16, 9, 8.27, 7.99, 8.33, 8.25] share3_low = [6.53, 6.87, 6.83, 6.7, np.nan, 6.63, 6.57, 6.41, 6.15, 6.07, 5.89, 5.82, 5.73, 5.81, 6.1, 6.06, 6.16, 5.57, np.nan, 5.51, 5.19, 5.12, 5.69, 6.01, 5.97, 5.86, 5.18, 5.19, 4.96, 5.45, 5.84, 5.85, 5.28, 5.42, 6.02, 6.69, 7.28, 7.64, 7.25, 7.83, 8.41, 8.66, 8.53, 8.54, 8.73, 8.27, 7.95, 7.67, 7.8, 7.51] # for sel_finance test shares_eps = np.array([[np.nan, np.nan, np.nan], [0.1, np.nan, np.nan], [np.nan, 0.2, np.nan], [np.nan, np.nan, 0.3], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 0.2], [0.1, np.nan, np.nan], [np.nan, 0.3, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [0.3, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, 0.3, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 0.3], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, 0, 0.2], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [0.1, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 0.2], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [0.15, np.nan, np.nan], [np.nan, 0.1, np.nan], [np.nan, np.nan, np.nan], [0.1, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 0.3], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [0.2, np.nan, np.nan], [np.nan, 0.5, np.nan], [0.4, np.nan, 0.3], [np.nan, np.nan, np.nan], [np.nan, 0.3, np.nan], [0.9, np.nan, np.nan], [np.nan, np.nan, 0.1]]) self.date_indices = ['2016-07-01', '2016-07-04', '2016-07-05', '2016-07-06', '2016-07-07', '2016-07-08', '2016-07-11', '2016-07-12', '2016-07-13', '2016-07-14', '2016-07-15', '2016-07-18', '2016-07-19', '2016-07-20', '2016-07-21', '2016-07-22', '2016-07-25', '2016-07-26', '2016-07-27', '2016-07-28', '2016-07-29', '2016-08-01', '2016-08-02', '2016-08-03', '2016-08-04', '2016-08-05', '2016-08-08', '2016-08-09', '2016-08-10', '2016-08-11', '2016-08-12', '2016-08-15', '2016-08-16', '2016-08-17', '2016-08-18', '2016-08-19', '2016-08-22', '2016-08-23', '2016-08-24', '2016-08-25', '2016-08-26', '2016-08-29', '2016-08-30', '2016-08-31', '2016-09-01', '2016-09-02', '2016-09-05', '2016-09-06', '2016-09-07', '2016-09-08'] self.shares = ['000010', '000030', '000039'] self.types = ['close', 'open', 'high', 'low'] self.sel_finance_tyeps = ['eps'] self.test_data_3D = np.zeros((3, data_rows, 4)) self.test_data_2D = np.zeros((data_rows, 3)) self.test_data_2D2 = np.zeros((data_rows, 4)) self.test_data_sel_finance = np.empty((3, data_rows, 1)) # Build up 3D data self.test_data_3D[0, :, 0] = share1_close self.test_data_3D[0, :, 1] = share1_open self.test_data_3D[0, :, 2] = share1_high self.test_data_3D[0, :, 3] = share1_low self.test_data_3D[1, :, 0] = share2_close self.test_data_3D[1, :, 1] = share2_open self.test_data_3D[1, :, 2] = share2_high self.test_data_3D[1, :, 3] = share2_low self.test_data_3D[2, :, 0] = share3_close self.test_data_3D[2, :, 1] = share3_open self.test_data_3D[2, :, 2] = share3_high self.test_data_3D[2, :, 3] = share3_low self.test_data_sel_finance[:, :, 0] = shares_eps.T self.hp1 = qt.HistoryPanel(values=self.test_data_3D, levels=self.shares, columns=self.types, rows=self.date_indices) print(f'in test Operator, history panel is created for timing test') self.hp1.info() self.hp2 = qt.HistoryPanel(values=self.test_data_sel_finance, levels=self.shares, columns=self.sel_finance_tyeps, rows=self.date_indices) print(f'in test_Operator, history panel is created for selection finance test:') self.hp2.info() self.op = qt.Operator(strategies='dma', signal_type='PS') self.op2 = qt.Operator(strategies='dma, macd, trix') def test_init(self): """ test initialization of Operator class""" op = qt.Operator() self.assertIsInstance(op, qt.Operator) self.assertEqual(op.signal_type, 'pt') self.assertIsInstance(op.strategies, list) self.assertEqual(len(op.strategies), 0) op = qt.Operator('dma') self.assertIsInstance(op, qt.Operator) self.assertIsInstance(op.strategies, list) self.assertIsInstance(op.strategies[0], TimingDMA) op = qt.Operator('dma, macd') self.assertIsInstance(op, qt.Operator) op = qt.Operator(['dma', 'macd']) self.assertIsInstance(op, qt.Operator) def test_repr(self): """ test basic representation of Opeartor class""" op = qt.Operator() self.assertEqual(op.__repr__(), 'Operator()') op = qt.Operator('macd, dma, trix, random, avg_low') self.assertEqual(op.__repr__(), 'Operator(macd, dma, trix, random, avg_low)') self.assertEqual(op['dma'].__repr__(), 'Q-TIMING(DMA)') self.assertEqual(op['macd'].__repr__(), 'R-TIMING(MACD)') self.assertEqual(op['trix'].__repr__(), 'R-TIMING(TRIX)') self.assertEqual(op['random'].__repr__(), 'SELECT(RANDOM)') self.assertEqual(op['avg_low'].__repr__(), 'FACTOR(AVG LOW)') def test_info(self): """Test information output of Operator""" print(f'test printing information of operator object') self.op.info() def test_get_strategy_by_id(self): """ test get_strategy_by_id()""" op = qt.Operator() self.assertIsInstance(op, qt.Operator) self.assertEqual(op.strategy_count, 0) self.assertEqual(op.strategy_ids, []) op = qt.Operator('macd, dma, trix') self.assertEqual(op.strategy_ids, ['macd', 'dma', 'trix']) self.assertIs(op.get_strategy_by_id('macd'), op.strategies[0]) self.assertIs(op.get_strategy_by_id(1), op.strategies[1]) self.assertIs(op.get_strategy_by_id('trix'), op.strategies[2]) def test_get_items(self): """ test method __getitem__(), it should be the same as geting strategies by id""" op = qt.Operator() self.assertIsInstance(op, qt.Operator) self.assertEqual(op.strategy_count, 0) self.assertEqual(op.strategy_ids, []) op = qt.Operator('macd, dma, trix') self.assertEqual(op.strategy_ids, ['macd', 'dma', 'trix']) self.assertIs(op['macd'], op.strategies[0]) self.assertIs(op['trix'], op.strategies[2]) self.assertIs(op[1], op.strategies[1]) self.assertIs(op[3], op.strategies[2]) def test_get_strategies_by_price_type(self): """ test get_strategies_by_price_type""" op = qt.Operator() self.assertIsInstance(op, qt.Operator) self.assertEqual(op.strategy_count, 0) self.assertEqual(op.strategy_ids, []) op = qt.Operator('macd, dma, trix') op.set_parameter('macd', price_type='open') op.set_parameter('dma', price_type='close') op.set_parameter('trix', price_type='open') stg_close = op.get_strategies_by_price_type('close') stg_open = op.get_strategies_by_price_type('open') stg_high = op.get_strategies_by_price_type('high') self.assertIsInstance(stg_close, list) self.assertIsInstance(stg_open, list) self.assertIsInstance(stg_high, list) self.assertEqual(stg_close, [op.strategies[1]]) self.assertEqual(stg_open, [op.strategies[0], op.strategies[2]]) self.assertEqual(stg_high, []) stg_wrong = op.get_strategies_by_price_type(123) self.assertIsInstance(stg_wrong, list) self.assertEqual(stg_wrong, []) def test_get_strategy_count_by_price_type(self): """ test get_strategy_count_by_price_type""" op = qt.Operator() self.assertIsInstance(op, qt.Operator) self.assertEqual(op.strategy_count, 0) self.assertEqual(op.strategy_ids, []) op = qt.Operator('macd, dma, trix') op.set_parameter('macd', price_type='open') op.set_parameter('dma', price_type='close') op.set_parameter('trix', price_type='open') stg_close = op.get_strategy_count_by_price_type('close') stg_open = op.get_strategy_count_by_price_type('open') stg_high = op.get_strategy_count_by_price_type('high') self.assertIsInstance(stg_close, int) self.assertIsInstance(stg_open, int) self.assertIsInstance(stg_high, int) self.assertEqual(stg_close, 1) self.assertEqual(stg_open, 2) self.assertEqual(stg_high, 0) stg_wrong = op.get_strategy_count_by_price_type(123) self.assertIsInstance(stg_wrong, int) self.assertEqual(stg_wrong, 0) def test_get_strategy_names_by_price_type(self): """ test get_strategy_names_by_price_type""" op = qt.Operator() self.assertIsInstance(op, qt.Operator) self.assertEqual(op.strategy_count, 0) self.assertEqual(op.strategy_ids, []) op = qt.Operator('macd, dma, trix') op.set_parameter('macd', price_type='open') op.set_parameter('dma', price_type='close') op.set_parameter('trix', price_type='open') stg_close = op.get_strategy_names_by_price_type('close') stg_open = op.get_strategy_names_by_price_type('open') stg_high = op.get_strategy_names_by_price_type('high') self.assertIsInstance(stg_close, list) self.assertIsInstance(stg_open, list) self.assertIsInstance(stg_high, list) self.assertEqual(stg_close, ['DMA']) self.assertEqual(stg_open, ['MACD', 'TRIX']) self.assertEqual(stg_high, []) stg_wrong = op.get_strategy_names_by_price_type(123) self.assertIsInstance(stg_wrong, list) self.assertEqual(stg_wrong, []) def test_get_strategy_id_by_price_type(self): """ test get_strategy_IDs_by_price_type""" print('-----Test get strategy IDs by price type------\n') op = qt.Operator() self.assertIsInstance(op, qt.Operator) self.assertEqual(op.strategy_count, 0) self.assertEqual(op.strategy_ids, []) op = qt.Operator('macd, dma, trix') op.set_parameter('macd', price_type='open') op.set_parameter('dma', price_type='close') op.set_parameter('trix', price_type='open') stg_close = op.get_strategy_id_by_price_type('close') stg_open = op.get_strategy_id_by_price_type('open') stg_high = op.get_strategy_id_by_price_type('high') self.assertIsInstance(stg_close, list) self.assertIsInstance(stg_open, list) self.assertIsInstance(stg_high, list) self.assertEqual(stg_close, ['dma']) self.assertEqual(stg_open, ['macd', 'trix']) self.assertEqual(stg_high, []) op.add_strategies('dma, macd') op.set_parameter('dma_1', price_type='open') op.set_parameter('macd', price_type='open') op.set_parameter('macd_1', price_type='high') op.set_parameter('trix', price_type='close') print(f'Operator strategy id:\n' f'{op.strategies} on memory pos:\n' f'{[id(stg) for stg in op.strategies]}') stg_close = op.get_strategy_id_by_price_type('close') stg_open = op.get_strategy_id_by_price_type('open') stg_high = op.get_strategy_id_by_price_type('high') stg_all = op.get_strategy_id_by_price_type() print(f'All IDs of strategies:\n' f'{stg_all}\n' f'All price types of strategies:\n' f'{[stg.price_type for stg in op.strategies]}') self.assertEqual(stg_close, ['dma', 'trix']) self.assertEqual(stg_open, ['macd', 'dma_1']) self.assertEqual(stg_high, ['macd_1']) stg_wrong = op.get_strategy_id_by_price_type(123) self.assertIsInstance(stg_wrong, list) self.assertEqual(stg_wrong, []) def test_property_strategies(self): """ test property strategies""" print(f'created a new simple Operator with only one strategy: DMA') op = qt.Operator('dma') strategies = op.strategies self.assertIsInstance(strategies, list) op.info() print(f'created the second simple Operator with three strategies') self.assertIsInstance(strategies[0], TimingDMA) op = qt.Operator('dma, macd, cdl') strategies = op.strategies op.info() self.assertIsInstance(strategies, list) self.assertIsInstance(strategies[0], TimingDMA) self.assertIsInstance(strategies[1], TimingMACD) self.assertIsInstance(strategies[2], TimingCDL) def test_property_strategy_count(self): """ test Property strategy_count, and the method get_strategy_count_by_price_type()""" self.assertEqual(self.op.strategy_count, 1) self.assertEqual(self.op2.strategy_count, 3) self.assertEqual(self.op.get_strategy_count_by_price_type(), 1) self.assertEqual(self.op2.get_strategy_count_by_price_type(), 3) self.assertEqual(self.op.get_strategy_count_by_price_type('close'), 1) self.assertEqual(self.op.get_strategy_count_by_price_type('high'), 0) self.assertEqual(self.op2.get_strategy_count_by_price_type('close'), 3) self.assertEqual(self.op2.get_strategy_count_by_price_type('open'), 0) def test_property_strategy_names(self): """ test property strategy_ids""" op = qt.Operator('dma') self.assertIsInstance(op.strategy_ids, list) names = op.strategy_ids[0] print(f'names are {names}') self.assertEqual(names, 'dma') op = qt.Operator('dma, macd, trix, cdl') self.assertIsInstance(op.strategy_ids, list) self.assertEqual(op.strategy_ids[0], 'dma') self.assertEqual(op.strategy_ids[1], 'macd') self.assertEqual(op.strategy_ids[2], 'trix') self.assertEqual(op.strategy_ids[3], 'cdl') op = qt.Operator('dma, macd, trix, dma, dma') self.assertIsInstance(op.strategy_ids, list) self.assertEqual(op.strategy_ids[0], 'dma') self.assertEqual(op.strategy_ids[1], 'macd') self.assertEqual(op.strategy_ids[2], 'trix') self.assertEqual(op.strategy_ids[3], 'dma_1') self.assertEqual(op.strategy_ids[4], 'dma_2') def test_property_strategy_blenders(self): """ test property strategy blenders including property setter, and test the method get_blender()""" print(f'------- Test property strategy blenders ---------') op = qt.Operator() self.assertIsInstance(op.strategy_blenders, dict) self.assertIsInstance(op.signal_type, str) self.assertEqual(op.strategy_blenders, {}) self.assertEqual(op.signal_type, 'pt') # test adding blender to empty operator op.strategy_blenders = '1 + 2' op.signal_type = 'proportion signal' self.assertEqual(op.strategy_blenders, {}) self.assertEqual(op.signal_type, 'ps') op.add_strategy('dma') op.strategy_blenders = '1+2' self.assertEqual(op.strategy_blenders, {'close': ['+', '2', '1']}) op.clear_strategies() self.assertEqual(op.strategy_blenders, {}) op.add_strategies('dma, trix, macd, dma') op.set_parameter('dma', price_type='open') op.set_parameter('trix', price_type='high') op.set_blender('open', '1+2') blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(blender_open, ['+', '2', '1']) self.assertEqual(blender_close, None) self.assertEqual(blender_high, None) op.set_blender('open', '1+2+3') op.set_blender('abc', '1+2+3') blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') blender_abc = op.get_blender('abc') self.assertEqual(op.strategy_blenders, {'open': ['+', '3', '+', '2', '1']}) self.assertEqual(blender_open, ['+', '3', '+', '2', '1']) self.assertEqual(blender_close, None) self.assertEqual(blender_high, None) self.assertEqual(blender_abc, None) op.set_blender('open', 123) blender_open = op.get_blender('open') self.assertEqual(blender_open, []) op.set_blender(None, '1+1') blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(op.bt_price_types, ['close', 'high', 'open']) self.assertEqual(op.get_blender(), {'close': ['+', '1', '1'], 'open': ['+', '1', '1'], 'high': ['+', '1', '1']}) self.assertEqual(blender_open, ['+', '1', '1']) self.assertEqual(blender_close, ['+', '1', '1']) self.assertEqual(blender_high, ['+', '1', '1']) op.set_blender(None, ['1+1', '3+4']) blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(blender_open, ['+', '4', '3']) self.assertEqual(blender_close, ['+', '1', '1']) self.assertEqual(blender_high, ['+', '4', '3']) self.assertEqual(op.view_blender('open'), '3+4') self.assertEqual(op.view_blender('close'), '1+1') self.assertEqual(op.view_blender('high'), '3+4') op.strategy_blenders = (['1+2', '2*3', '1+4']) blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(blender_open, ['+', '4', '1']) self.assertEqual(blender_close, ['+', '2', '1']) self.assertEqual(blender_high, ['*', '3', '2']) self.assertEqual(op.view_blender('open'), '1+4') self.assertEqual(op.view_blender('close'), '1+2') self.assertEqual(op.view_blender('high'), '2*3') # test error inputs: # wrong type of price_type self.assertRaises(TypeError, op.set_blender, 1, '1+3') # price_type not found, no change is made op.set_blender('volume', '1+3') blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(blender_open, ['+', '4', '1']) self.assertEqual(blender_close, ['+', '2', '1']) self.assertEqual(blender_high, ['*', '3', '2']) # price_type not valid, no change is made op.set_blender('closee', '1+2') blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(blender_open, ['+', '4', '1']) self.assertEqual(blender_close, ['+', '2', '1']) self.assertEqual(blender_high, ['*', '3', '2']) # wrong type of blender, set to empty list op.set_blender('open', 55) blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(blender_open, []) self.assertEqual(blender_close, ['+', '2', '1']) self.assertEqual(blender_high, ['*', '3', '2']) # wrong type of blender, set to empty list op.set_blender('close', ['1+2']) blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(blender_open, []) self.assertEqual(blender_close, []) self.assertEqual(blender_high, ['*', '3', '2']) # can't parse blender, set to empty list op.set_blender('high', 'a+bc') blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(blender_open, []) self.assertEqual(blender_close, []) self.assertEqual(blender_high, []) def test_property_singal_type(self): """ test property signal_type""" op = qt.Operator() self.assertIsInstance(op.signal_type, str) self.assertEqual(op.signal_type, 'pt') op = qt.Operator(signal_type='ps') self.assertIsInstance(op.signal_type, str) self.assertEqual(op.signal_type, 'ps') op = qt.Operator(signal_type='PS') self.assertEqual(op.signal_type, 'ps') op = qt.Operator(signal_type='proportion signal') self.assertEqual(op.signal_type, 'ps') print(f'"pt" will be the default type if wrong value is given') op = qt.Operator(signal_type='wrong value') self.assertEqual(op.signal_type, 'pt') print(f'test signal_type.setter') op.signal_type = 'ps' self.assertEqual(op.signal_type, 'ps') print(f'test error raising') self.assertRaises(TypeError, setattr, op, 'signal_type', 123) self.assertRaises(ValueError, setattr, op, 'signal_type', 'wrong value') def test_property_op_data_types(self): """ test property op_data_types""" op = qt.Operator() self.assertIsInstance(op.op_data_types, list) self.assertEqual(op.op_data_types, []) op = qt.Operator('macd, dma, trix') dt = op.op_data_types self.assertEqual(dt[0], 'close') op = qt.Operator('macd, cdl') dt = op.op_data_types self.assertEqual(dt[0], 'close') self.assertEqual(dt[1], 'high') self.assertEqual(dt[2], 'low') self.assertEqual(dt[3], 'open') self.assertEqual(dt, ['close', 'high', 'low', 'open']) op.add_strategy('dma') dt = op.op_data_types self.assertEqual(dt[0], 'close') self.assertEqual(dt[1], 'high') self.assertEqual(dt[2], 'low') self.assertEqual(dt[3], 'open') self.assertEqual(dt, ['close', 'high', 'low', 'open']) def test_property_op_data_type_count(self): """ test property op_data_type_count""" op = qt.Operator() self.assertIsInstance(op.op_data_type_count, int) self.assertEqual(op.op_data_type_count, 0) op = qt.Operator('macd, dma, trix') dtn = op.op_data_type_count self.assertEqual(dtn, 1) op = qt.Operator('macd, cdl') dtn = op.op_data_type_count self.assertEqual(dtn, 4) op.add_strategy('dma') dtn = op.op_data_type_count self.assertEqual(dtn, 4) def test_property_op_data_freq(self): """ test property op_data_freq""" op = qt.Operator() self.assertIsInstance(op.op_data_freq, str) self.assertEqual(len(op.op_data_freq), 0) self.assertEqual(op.op_data_freq, '') op = qt.Operator('macd, dma, trix') dtf = op.op_data_freq self.assertIsInstance(dtf, str) self.assertEqual(dtf[0], 'd') op.set_parameter('macd', data_freq='m') dtf = op.op_data_freq self.assertIsInstance(dtf, list) self.assertEqual(len(dtf), 2) self.assertEqual(dtf[0], 'd') self.assertEqual(dtf[1], 'm') def test_property_bt_price_types(self): """ test property bt_price_types""" print('------test property bt_price_tyeps-------') op = qt.Operator() self.assertIsInstance(op.bt_price_types, list) self.assertEqual(len(op.bt_price_types), 0) self.assertEqual(op.bt_price_types, []) op = qt.Operator('macd, dma, trix') btp = op.bt_price_types self.assertIsInstance(btp, list) self.assertEqual(btp[0], 'close') op.set_parameter('macd', price_type='open') btp = op.bt_price_types btpc = op.bt_price_type_count print(f'price_types are \n{btp}') self.assertIsInstance(btp, list) self.assertEqual(len(btp), 2) self.assertEqual(btp[0], 'close') self.assertEqual(btp[1], 'open') self.assertEqual(btpc, 2) op.add_strategies(['dma', 'macd']) op.set_parameter('dma_1', price_type='high') btp = op.bt_price_types btpc = op.bt_price_type_count self.assertEqual(btp[0], 'close') self.assertEqual(btp[1], 'high') self.assertEqual(btp[2], 'open') self.assertEqual(btpc, 3) op.remove_strategy('dma_1') btp = op.bt_price_types btpc = op.bt_price_type_count self.assertEqual(btp[0], 'close') self.assertEqual(btp[1], 'open') self.assertEqual(btpc, 2) op.remove_strategy('macd_1') btp = op.bt_price_types btpc = op.bt_price_type_count self.assertEqual(btp[0], 'close') self.assertEqual(btp[1], 'open') self.assertEqual(btpc, 2) def test_property_op_data_type_list(self): """ test property op_data_type_list""" op = qt.Operator() self.assertIsInstance(op.op_data_type_list, list) self.assertEqual(len(op.op_data_type_list), 0) self.assertEqual(op.op_data_type_list, []) op = qt.Operator('macd, dma, trix, cdl') ohd = op.op_data_type_list print(f'ohd is {ohd}') self.assertIsInstance(ohd, list) self.assertEqual(ohd[0], ['close']) op.set_parameter('macd', data_types='open, close') ohd = op.op_data_type_list print(f'ohd is {ohd}') self.assertIsInstance(ohd, list) self.assertEqual(len(ohd), 4) self.assertEqual(ohd[0], ['open', 'close']) self.assertEqual(ohd[1], ['close']) self.assertEqual(ohd[2], ['close']) self.assertEqual(ohd[3], ['open', 'high', 'low', 'close']) def test_property_op_history_data(self): """ Test this important function to get operation history data that shall be used in signal generation these data are stored in list of nd-arrays, each ndarray represents the data that is needed for each and every strategy """ print(f'------- Test getting operation history data ---------') op = qt.Operator() self.assertIsInstance(op.strategy_blenders, dict) self.assertIsInstance(op.signal_type, str) self.assertEqual(op.strategy_blenders, {}) self.assertEqual(op.op_history_data, {}) self.assertEqual(op.signal_type, 'pt') def test_property_opt_space_par(self): """ test property opt_space_par""" print(f'-----test property opt_space_par--------:\n') op = qt.Operator() self.assertIsInstance(op.opt_space_par, tuple) self.assertIsInstance(op.opt_space_par[0], list) self.assertIsInstance(op.opt_space_par[1], list) self.assertEqual(len(op.opt_space_par), 2) self.assertEqual(op.opt_space_par, ([], [])) op = qt.Operator('macd, dma, trix, cdl') osp = op.opt_space_par print(f'before setting opt_tags opt_space_par is empty:\n' f'osp is {osp}\n') self.assertIsInstance(osp, tuple) self.assertEqual(osp[0], []) self.assertEqual(osp[1], []) op.set_parameter('macd', opt_tag=1) op.set_parameter('dma', opt_tag=1) osp = op.opt_space_par print(f'after setting opt_tags opt_space_par is not empty:\n' f'osp is {osp}\n') self.assertIsInstance(osp, tuple) self.assertEqual(len(osp), 2) self.assertIsInstance(osp[0], list) self.assertIsInstance(osp[1], list) self.assertEqual(len(osp[0]), 6) self.assertEqual(len(osp[1]), 6) self.assertEqual(osp[0], [(10, 250), (10, 250), (10, 250), (10, 250), (10, 250), (10, 250)]) self.assertEqual(osp[1], ['discr', 'discr', 'discr', 'discr', 'discr', 'discr']) def test_property_opt_types(self): """ test property opt_tags""" print(f'-----test property opt_tags--------:\n') op = qt.Operator() self.assertIsInstance(op.opt_tags, list) self.assertEqual(len(op.opt_tags), 0) self.assertEqual(op.opt_tags, []) op = qt.Operator('macd, dma, trix, cdl') otp = op.opt_tags print(f'before setting opt_tags opt_space_par is empty:\n' f'otp is {otp}\n') self.assertIsInstance(otp, list) self.assertEqual(otp, [0, 0, 0, 0]) op.set_parameter('macd', opt_tag=1) op.set_parameter('dma', opt_tag=1) otp = op.opt_tags print(f'after setting opt_tags opt_space_par is not empty:\n' f'otp is {otp}\n') self.assertIsInstance(otp, list) self.assertEqual(len(otp), 4) self.assertEqual(otp, [1, 1, 0, 0]) def test_property_max_window_length(self): """ test property max_window_length""" print(f'-----test property max window length--------:\n') op = qt.Operator() self.assertIsInstance(op.max_window_length, int) self.assertEqual(op.max_window_length, 0) op = qt.Operator('macd, dma, trix, cdl') mwl = op.max_window_length print(f'before setting window_length the value is 270:\n' f'mwl is {mwl}\n') self.assertIsInstance(mwl, int) self.assertEqual(mwl, 270) op.set_parameter('macd', window_length=300) op.set_parameter('dma', window_length=350) mwl = op.max_window_length print(f'after setting window_length the value is new set value:\n' f'mwl is {mwl}\n') self.assertIsInstance(mwl, int) self.assertEqual(mwl, 350) def test_property_bt_price_type_count(self): """ test property bt_price_type_count""" print(f'-----test property bt_price_type_count--------:\n') op = qt.Operator() self.assertIsInstance(op.bt_price_type_count, int) self.assertEqual(op.bt_price_type_count, 0) op = qt.Operator('macd, dma, trix, cdl') otp = op.bt_price_type_count print(f'before setting price_type the price count is 1:\n' f'otp is {otp}\n') self.assertIsInstance(otp, int) self.assertEqual(otp, 1) op.set_parameter('macd', price_type='open') op.set_parameter('dma', price_type='open') otp = op.bt_price_type_count print(f'after setting price_type the price type count is 2:\n' f'otp is {otp}\n') self.assertIsInstance(otp, int) self.assertEqual(otp, 2) def test_property_set(self): """ test all property setters: setting following properties: - strategy_blenders - signal_type other properties can not be set""" print(f'------- Test setting properties ---------') op = qt.Operator() self.assertIsInstance(op.strategy_blenders, dict) self.assertIsInstance(op.signal_type, str) self.assertEqual(op.strategy_blenders, {}) self.assertEqual(op.signal_type, 'pt') op.strategy_blenders = '1 + 2' op.signal_type = 'proportion signal' self.assertEqual(op.strategy_blenders, {}) self.assertEqual(op.signal_type, 'ps') op = qt.Operator('macd, dma, trix, cdl') # TODO: 修改set_parameter(),使下面的用法成立 # a_to_sell.set_parameter('dma, cdl', price_type='open') op.set_parameter('dma', price_type='open') op.set_parameter('cdl', price_type='open') sb = op.strategy_blenders st = op.signal_type self.assertIsInstance(sb, dict) print(f'before setting: strategy_blenders={sb}') self.assertEqual(sb, {}) op.strategy_blenders = '1+2 * 3' sb = op.strategy_blenders print(f'after setting strategy_blender={sb}') self.assertEqual(sb, {'close': ['+', '*', '3', '2', '1'], 'open': ['+', '*', '3', '2', '1']}) op.strategy_blenders = ['1+2', '3-4'] sb = op.strategy_blenders print(f'after setting strategy_blender={sb}') self.assertEqual(sb, {'close': ['+', '2', '1'], 'open': ['-', '4', '3']}) def test_operator_ready(self): """test the method ready of Operator""" op = qt.Operator() print(f'operator is ready? "{op.ready}"') def test_operator_add_strategy(self): """test adding strategies to Operator""" op = qt.Operator('dma, all, urgent') self.assertIsInstance(op, qt.Operator) self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[1], qt.SelectingAll) self.assertIsInstance(op.strategies[2], qt.RiconUrgent) self.assertIsInstance(op[0], qt.TimingDMA) self.assertIsInstance(op[1], qt.SelectingAll) self.assertIsInstance(op[2], qt.RiconUrgent) self.assertIsInstance(op['dma'], qt.TimingDMA) self.assertIsInstance(op['all'], qt.SelectingAll) self.assertIsInstance(op['urgent'], qt.RiconUrgent) self.assertEqual(op.strategy_count, 3) print(f'test adding strategies into existing op') print('test adding strategy by string') op.add_strategy('macd') self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[3], qt.TimingMACD) self.assertEqual(op.strategy_count, 4) op.add_strategy('random') self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[4], qt.SelectingRandom) self.assertEqual(op.strategy_count, 5) test_ls = TestLSStrategy() op.add_strategy(test_ls) self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[5], TestLSStrategy) self.assertEqual(op.strategy_count, 6) print(f'Test different instance of objects are added to operator') op.add_strategy('dma') self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[6], qt.TimingDMA) self.assertIsNot(op.strategies[0], op.strategies[6]) def test_operator_add_strategies(self): """ etst adding multiple strategies to Operator""" op = qt.Operator('dma, all, urgent') self.assertEqual(op.strategy_count, 3) print('test adding multiple strategies -- adding strategy by list of strings') op.add_strategies(['dma', 'macd']) self.assertEqual(op.strategy_count, 5) self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[3], qt.TimingDMA) self.assertIsInstance(op.strategies[4], qt.TimingMACD) print('test adding multiple strategies -- adding strategy by comma separated strings') op.add_strategies('dma, macd') self.assertEqual(op.strategy_count, 7) self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[5], qt.TimingDMA) self.assertIsInstance(op.strategies[6], qt.TimingMACD) print('test adding multiple strategies -- adding strategy by list of strategies') op.add_strategies([qt.TimingDMA(), qt.TimingMACD()]) self.assertEqual(op.strategy_count, 9) self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[7], qt.TimingDMA) self.assertIsInstance(op.strategies[8], qt.TimingMACD) print('test adding multiple strategies -- adding strategy by list of strategy and str') op.add_strategies(['DMA', qt.TimingMACD()]) self.assertEqual(op.strategy_count, 11) self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[9], qt.TimingDMA) self.assertIsInstance(op.strategies[10], qt.TimingMACD) self.assertIsNot(op.strategies[0], op.strategies[9]) self.assertIs(type(op.strategies[0]), type(op.strategies[9])) print('test adding fault data') self.assertRaises(AssertionError, op.add_strategies, 123) self.assertRaises(AssertionError, op.add_strategies, None) def test_opeartor_remove_strategy(self): """ test method remove strategy""" op = qt.Operator('dma, all, urgent') op.add_strategies(['dma', 'macd']) op.add_strategies(['DMA', TestLSStrategy()]) self.assertEqual(op.strategy_count, 7) print('test removing strategies from Operator') op.remove_strategy('dma') self.assertEqual(op.strategy_count, 6) self.assertEqual(op.strategy_ids, ['all', 'urgent', 'dma_1', 'macd', 'dma_2', 'custom']) self.assertEqual(op.strategies[0], op['all']) self.assertEqual(op.strategies[1], op['urgent']) self.assertEqual(op.strategies[2], op['dma_1']) self.assertEqual(op.strategies[3], op['macd']) self.assertEqual(op.strategies[4], op['dma_2']) self.assertEqual(op.strategies[5], op['custom']) op.remove_strategy('dma_1') self.assertEqual(op.strategy_count, 5) self.assertEqual(op.strategy_ids, ['all', 'urgent', 'macd', 'dma_2', 'custom']) self.assertEqual(op.strategies[0], op['all']) self.assertEqual(op.strategies[1], op['urgent']) self.assertEqual(op.strategies[2], op['macd']) self.assertEqual(op.strategies[3], op['dma_2']) self.assertEqual(op.strategies[4], op['custom']) def test_opeartor_clear_strategies(self): """ test operator clear strategies""" op = qt.Operator('dma, all, urgent') op.add_strategies(['dma', 'macd']) op.add_strategies(['DMA', TestLSStrategy()]) self.assertEqual(op.strategy_count, 7) print('test removing strategies from Operator') op.clear_strategies() self.assertEqual(op.strategy_count, 0) self.assertEqual(op.strategy_ids, []) op.add_strategy('dma', pars=(12, 123, 25)) self.assertEqual(op.strategy_count, 1) self.assertEqual(op.strategy_ids, ['dma']) self.assertEqual(type(op.strategies[0]), TimingDMA) self.assertEqual(op.strategies[0].pars, (12, 123, 25)) op.clear_strategies() self.assertEqual(op.strategy_count, 0) self.assertEqual(op.strategy_ids, []) def test_operator_prepare_data(self): """test processes that related to prepare data""" test_ls = TestLSStrategy() test_sel = TestSelStrategy() test_sig = TestSigStrategy() self.op = qt.Operator(strategies=[test_ls, test_sel, test_sig]) too_early_cash = qt.CashPlan(dates='2016-01-01', amounts=10000) early_cash = qt.CashPlan(dates='2016-07-01', amounts=10000) on_spot_cash = qt.CashPlan(dates='2016-07-08', amounts=10000) no_trade_cash = qt.CashPlan(dates='2016-07-08, 2016-07-30, 2016-08-11, 2016-09-03', amounts=[10000, 10000, 10000, 10000]) # 在所有策略的参数都设置好之前调用prepare_data会发生assertion Error self.assertRaises(AssertionError, self.op.prepare_data, hist_data=self.hp1, cash_plan=qt.CashPlan(dates='2016-07-08', amounts=10000)) late_cash = qt.CashPlan(dates='2016-12-31', amounts=10000) multi_cash = qt.CashPlan(dates='2016-07-08, 2016-08-08', amounts=[10000, 10000]) self.op.set_parameter(stg_id='custom', pars={'000300': (5, 10.), '000400': (5, 10.), '000500': (5, 6.)}) self.assertEqual(self.op.strategies[0].pars, {'000300': (5, 10.), '000400': (5, 10.), '000500': (5, 6.)}) self.op.set_parameter(stg_id='custom_1', pars=()) self.assertEqual(self.op.strategies[1].pars, ()), self.op.set_parameter(stg_id='custom_2', pars=(0.2, 0.02, -0.02)) self.assertEqual(self.op.strategies[2].pars, (0.2, 0.02, -0.02)), self.op.prepare_data(hist_data=self.hp1, cash_plan=on_spot_cash) self.assertIsInstance(self.op._op_history_data, dict) self.assertEqual(len(self.op._op_history_data), 3) # test if automatic strategy blenders are set self.assertEqual(self.op.strategy_blenders, {'close': ['+', '2', '+', '1', '0']}) tim_hist_data = self.op._op_history_data['custom'] sel_hist_data = self.op._op_history_data['custom_1'] ric_hist_data = self.op._op_history_data['custom_2'] print(f'in test_prepare_data in TestOperator:') print('selecting history data:\n', sel_hist_data) print('originally passed data in correct sequence:\n', self.test_data_3D[:, 3:, [2, 3, 0]]) print('difference is \n', sel_hist_data - self.test_data_3D[:, :, [2, 3, 0]]) self.assertTrue(np.allclose(sel_hist_data, self.test_data_3D[:, :, [2, 3, 0]], equal_nan=True)) self.assertTrue(np.allclose(tim_hist_data, self.test_data_3D, equal_nan=True)) self.assertTrue(np.allclose(ric_hist_data, self.test_data_3D[:, 3:, :], equal_nan=True)) # raises Value Error if empty history panel is given empty_hp = qt.HistoryPanel() correct_hp = qt.HistoryPanel(values=np.random.randint(10, size=(3, 50, 4)), columns=self.types, levels=self.shares, rows=self.date_indices) too_many_shares = qt.HistoryPanel(values=np.random.randint(10, size=(5, 50, 4))) too_many_types = qt.HistoryPanel(values=np.random.randint(10, size=(3, 50, 5))) # raises Error when history panel is empty self.assertRaises(ValueError, self.op.prepare_data, empty_hp, on_spot_cash) # raises Error when first investment date is too early self.assertRaises(AssertionError, self.op.prepare_data, correct_hp, early_cash) # raises Error when last investment date is too late self.assertRaises(AssertionError, self.op.prepare_data, correct_hp, late_cash) # raises Error when some of the investment dates are on no-trade-days self.assertRaises(ValueError, self.op.prepare_data, correct_hp, no_trade_cash) # raises Error when number of shares in history data does not fit self.assertRaises(AssertionError, self.op.prepare_data, too_many_shares, on_spot_cash) # raises Error when too early cash investment date self.assertRaises(AssertionError, self.op.prepare_data, correct_hp, too_early_cash) # raises Error when number of d_types in history data does not fit self.assertRaises(AssertionError, self.op.prepare_data, too_many_types, on_spot_cash) # test the effect of data type sequence in strategy definition def test_operator_generate(self): """ Test signal generation process of operator objects :return: """ # 使用test模块的自定义策略生成三种交易策略 test_ls = TestLSStrategy() test_sel = TestSelStrategy() test_sel2 = TestSelStrategyDiffTime() test_sig = TestSigStrategy() print('--Test PT type signal generation--') # 测试PT类型的信号生成: # 创建一个Operator对象,信号类型为PT(比例目标信号) # 这个Operator对象包含两个策略,分别为LS-Strategy以及Sel-Strategy,代表择时和选股策略 # 两个策略分别生成PT信号后混合成一个信号输出 self.op = qt.Operator(strategies=[test_ls, test_sel]) self.op.set_parameter(stg_id='custom', pars={'000010': (5, 10.), '000030': (5, 10.), '000039': (5, 6.)}) self.op.set_parameter(stg_id=1, pars=()) # self.a_to_sell.set_blender(blender='0+1+2') self.op.prepare_data(hist_data=self.hp1, cash_plan=qt.CashPlan(dates='2016-07-08', amounts=10000)) print('--test operator information in normal mode--') self.op.info() self.assertEqual(self.op.strategy_blenders, {'close': ['+', '1', '0']}) self.op.set_blender(None, '0*1') self.assertEqual(self.op.strategy_blenders, {'close': ['*', '1', '0']}) print('--test operation signal created in Proportional Target (PT) Mode--') op_list = self.op.create_signal(hist_data=self.hp1) self.assertTrue(isinstance(op_list, HistoryPanel)) backtest_price_types = op_list.htypes self.assertEqual(backtest_price_types[0], 'close') self.assertEqual(op_list.shape, (3, 45, 1)) reduced_op_list = op_list.values.squeeze().T print(f'op_list created, it is a 3 share/45 days/1 htype array, to make comparison happen, \n' f'it will be squeezed to a 2-d array to compare on share-wise:\n' f'{reduced_op_list}') target_op_values = np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0]]) self.assertTrue(np.allclose(target_op_values, reduced_op_list, equal_nan=True)) print('--Test two separate signal generation for different price types--') # 测试两组PT类型的信号生成: # 在Operator对象中增加两个SigStrategy策略,策略类型相同但是策略的参数不同,回测价格类型为"OPEN" # Opeartor应该生成两组交易信号,分别用于"close"和"open"两中不同的价格类型 # 这里需要重新生成两个新的交易策略对象,否则在op的strategies列表中产生重复的对象引用,从而引起错误 test_ls = TestLSStrategy() test_sel = TestSelStrategy() self.op.add_strategies([test_ls, test_sel]) self.op.set_parameter(stg_id='custom_2', price_type='open') self.op.set_parameter(stg_id='custom_3', price_type='open') self.assertEqual(self.op['custom'].price_type, 'close') self.assertEqual(self.op['custom_2'].price_type, 'open') self.op.set_parameter(stg_id='custom_2', pars={'000010': (5, 10.), '000030': (5, 10.), '000039': (5, 6.)}) self.op.set_parameter(stg_id='custom_3', pars=()) self.op.set_blender(blender='0 or 1', price_type='open') self.op.prepare_data(hist_data=self.hp1, cash_plan=qt.CashPlan(dates='2016-07-08', amounts=10000)) print('--test how operator information is printed out--') self.op.info() self.assertEqual(self.op.strategy_blenders, {'close': ['*', '1', '0'], 'open': ['or', '1', '0']}) print('--test opeartion signal created in Proportional Target (PT) Mode--') op_list = self.op.create_signal(hist_data=self.hp1) self.assertTrue(isinstance(op_list, HistoryPanel)) signal_close = op_list['close'].squeeze().T signal_open = op_list['open'].squeeze().T self.assertEqual(signal_close.shape, (45, 3)) self.assertEqual(signal_open.shape, (45, 3)) target_op_close = np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0]]) target_op_open = np.array([[0.5, 0.5, 1.0], [0.5, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 0.0], [1.0, 1.0, 0.0], [1.0, 1.0, 0.0], [1.0, 0.5, 0.0], [1.0, 0.5, 0.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.5], [0.0, 1.0, 0.5], [0.0, 1.0, 0.5], [0.0, 1.0, 0.5], [0.0, 1.0, 0.5], [0.0, 1.0, 0.5], [0.0, 1.0, 0.5], [0.5, 1.0, 0.0], [0.5, 1.0, 0.0], [0.5, 1.0, 1.0], [0.5, 1.0, 1.0], [0.5, 1.0, 1.0], [0.5, 1.0, 1.0], [0.5, 1.0, 1.0], [0.5, 1.0, 1.0], [0.0, 1.0, 1.0], [0.0, 1.0, 1.0], [0.0, 1.0, 1.0], [0.0, 1.0, 1.0], [0.0, 1.0, 1.0], [0.0, 1.0, 1.0], [0.5, 1.0, 1.0], [0.5, 1.0, 1.0], [0.5, 1.0, 1.0]]) signal_pairs = [[list(sig1), list(sig2), sig1 == sig2] for sig1, sig2 in zip(list(target_op_close), list(signal_close))] print(f'signals side by side:\n' f'{signal_pairs}') self.assertTrue(np.allclose(target_op_close, signal_close, equal_nan=True)) signal_pairs = [[list(sig1), list(sig2), sig1 == sig2] for sig1, sig2 in zip(list(target_op_open), list(signal_open))] print(f'signals side by side:\n' f'{signal_pairs}') self.assertTrue(np.allclose(target_op_open, signal_open, equal_nan=True)) print('--Test two separate signal generation for different price types--') # 更多测试集合 def test_stg_parameter_setting(self): """ test setting parameters of strategies test the method set_parameters :return: """ op = qt.Operator(strategies='dma, all, urgent') print(op.strategies, '\n', [qt.TimingDMA, qt.SelectingAll, qt.RiconUrgent]) print(f'info of Timing strategy in new op: \n{op.strategies[0].info()}') # TODO: allow set_parameters to a list of strategies or str-listed strategies # TODO: allow set_parameters to all strategies of specific bt price type print(f'Set up strategy parameters by strategy id') op.set_parameter('dma', pars=(5, 10, 5), opt_tag=1, par_boes=((5, 10), (5, 15), (10, 15)), window_length=10, data_types=['close', 'open', 'high']) op.set_parameter('all', window_length=20) op.set_parameter('all', price_type='high') print(f'Can also set up strategy parameters by strategy index') op.set_parameter(2, price_type='open') op.set_parameter(2, opt_tag=1, pars=(9, -0.09), window_length=10) self.assertEqual(op.strategies[0].pars, (5, 10, 5)) self.assertEqual(op.strategies[0].par_boes, ((5, 10), (5, 15), (10, 15))) self.assertEqual(op.strategies[2].pars, (9, -0.09)) self.assertEqual(op.op_data_freq, 'd') self.assertEqual(op.op_data_types, ['close', 'high', 'open']) self.assertEqual(op.opt_space_par, ([(5, 10), (5, 15), (10, 15), (1, 40), (-0.5, 0.5)], ['discr', 'discr', 'discr', 'discr', 'conti'])) self.assertEqual(op.max_window_length, 20) print(f'KeyError will be raised if wrong strategy id is given') self.assertRaises(KeyError, op.set_parameter, stg_id='t-1', pars=(1, 2)) self.assertRaises(KeyError, op.set_parameter, stg_id='wrong_input', pars=(1, 2)) print(f'ValueError will be raised if parameter can be set') self.assertRaises(ValueError, op.set_parameter, stg_id=0, pars=('wrong input', 'wrong input')) # test blenders of different price types # test setting blenders to different price types # TODO: to allow operands like "and", "or", "not", "xor" # a_to_sell.set_blender('close', '0 and 1 or 2') # self.assertEqual(a_to_sell.get_blender('close'), 'str-1.2') self.assertEqual(op.bt_price_types, ['close', 'high', 'open']) op.set_blender('open', '0 & 1 | 2') self.assertEqual(op.get_blender('open'), ['|', '2', '&', '1', '0']) op.set_blender('high', '(0|1) & 2') self.assertEqual(op.get_blender('high'), ['&', '2', '|', '1', '0']) op.set_blender('close', '0 & 1 | 2') self.assertEqual(op.get_blender(), {'close': ['|', '2', '&', '1', '0'], 'high': ['&', '2', '|', '1', '0'], 'open': ['|', '2', '&', '1', '0']}) self.assertEqual(op.opt_space_par, ([(5, 10), (5, 15), (10, 15), (1, 40), (-0.5, 0.5)], ['discr', 'discr', 'discr', 'discr', 'conti'])) self.assertEqual(op.opt_tags, [1, 0, 1]) def test_signal_blend(self): self.assertEqual(blender_parser('0 & 1'), ['&', '1', '0']) self.assertEqual(blender_parser('0 or 1'), ['or', '1', '0']) self.assertEqual(blender_parser('0 & 1 | 2'), ['|', '2', '&', '1', '0']) blender = blender_parser('0 & 1 | 2') self.assertEqual(signal_blend([1, 1, 1], blender), 1) self.assertEqual(signal_blend([1, 0, 1], blender), 1) self.assertEqual(signal_blend([1, 1, 0], blender), 1) self.assertEqual(signal_blend([0, 1, 1], blender), 1) self.assertEqual(signal_blend([0, 0, 1], blender), 1) self.assertEqual(signal_blend([1, 0, 0], blender), 0) self.assertEqual(signal_blend([0, 1, 0], blender), 0) self.assertEqual(signal_blend([0, 0, 0], blender), 0) # parse: '0 & ( 1 | 2 )' self.assertEqual(blender_parser('0 & ( 1 | 2 )'), ['&', '|', '2', '1', '0']) blender = blender_parser('0 & ( 1 | 2 )') self.assertEqual(signal_blend([1, 1, 1], blender), 1) self.assertEqual(signal_blend([1, 0, 1], blender), 1) self.assertEqual(signal_blend([1, 1, 0], blender), 1) self.assertEqual(signal_blend([0, 1, 1], blender), 0) self.assertEqual(signal_blend([0, 0, 1], blender), 0) self.assertEqual(signal_blend([1, 0, 0], blender), 0) self.assertEqual(signal_blend([0, 1, 0], blender), 0) self.assertEqual(signal_blend([0, 0, 0], blender), 0) # parse: '(1-2)/3 + 0' self.assertEqual(blender_parser('(1-2)/3 + 0'), ['+', '0', '/', '3', '-', '2', '1']) blender = blender_parser('(1-2)/3 + 0') self.assertEqual(signal_blend([5, 9, 1, 4], blender), 7) # pars: '(0*1/2*(3+4))+5*(6+7)-8' self.assertEqual(blender_parser('(0*1/2*(3+4))+5*(6+7)-8'), ['-', '8', '+', '*', '+', '7', '6', '5', '*', '+', '4', '3', '/', '2', '*', '1', '0']) blender = blender_parser('(0*1/2*(3+4))+5*(6+7)-8') self.assertEqual(signal_blend([1, 1, 1, 1, 1, 1, 1, 1, 1], blender), 3) self.assertEqual(signal_blend([2, 1, 4, 3, 5, 5, 2, 2, 10], blender), 14) # parse: '0/max(2,1,3 + 5)+4' self.assertEqual(blender_parser('0/max(2,1,3 + 5)+4'), ['+', '4', '/', 'max(3)', '+', '5', '3', '1', '2', '0']) blender = blender_parser('0/max(2,1,3 + 5)+4') self.assertEqual(signal_blend([8.0, 4, 3, 5.0, 0.125, 5], blender), 0.925) self.assertEqual(signal_blend([2, 1, 4, 3, 5, 5, 2, 2, 10], blender), 5.25) print('speed test') import time st = time.time() blender = blender_parser('0+max(1,2,(3+4)*5, max(6, (7+8)*9), 10-11) * (12+13)') res = [] for i in range(10000): res = signal_blend([1, 1, 2, 3, 4, 5, 3, 4, 5, 6, 7, 8, 2, 3], blender) et = time.time() print(f'total time for RPN processing: {et - st}, got result: {res}') blender = blender_parser("0 + 1 * 2") self.assertEqual(signal_blend([1, 2, 3], blender), 7) blender = blender_parser("(0 + 1) * 2") self.assertEqual(signal_blend([1, 2, 3], blender), 9) blender = blender_parser("(0+1) * 2") self.assertEqual(signal_blend([1, 2, 3], blender), 9) blender = blender_parser("(0 + 1) * 2") self.assertEqual(signal_blend([1, 2, 3], blender), 9) # TODO: 目前对于-(1+2)这样的表达式还无法处理 # self.a_to_sell.set_blender('selecting', "-(0 + 1) * 2") # self.assertEqual(self.a_to_sell.signal_blend([1, 2, 3]), -9) blender = blender_parser("(0-1)/2 + 3") print(f'RPN of notation: "(0-1)/2 + 3" is:\n' f'{" ".join(blender[::-1])}') self.assertAlmostEqual(signal_blend([1, 2, 3, 0.0], blender), -0.33333333) blender = blender_parser("0 + 1 / 2") print(f'RPN of notation: "0 + 1 / 2" is:\n' f'{" ".join(blender[::-1])}') self.assertAlmostEqual(signal_blend([1, math.pi, 4], blender), 1.78539816) blender = blender_parser("(0 + 1) / 2") print(f'RPN of notation: "(0 + 1) / 2" is:\n' f'{" ".join(blender[::-1])}') self.assertEqual(signal_blend([1, 2, 3], blender), 1) blender = blender_parser("(0 + 1 * 2) / 3") print(f'RPN of notation: "(0 + 1 * 2) / 3" is:\n' f'{" ".join(blender[::-1])}') self.assertAlmostEqual(signal_blend([3, math.e, 10, 10], blender), 3.0182818284590454) blender = blender_parser("0 / 1 * 2") print(f'RPN of notation: "0 / 1 * 2" is:\n' f'{" ".join(blender[::-1])}') self.assertEqual(signal_blend([1, 3, 6], blender), 2) blender = blender_parser("(0 - 1 + 2) * 4") print(f'RPN of notation: "(0 - 1 + 2) * 4" is:\n' f'{" ".join(blender[::-1])}') self.assertAlmostEqual(signal_blend([1, 1, -1, np.nan, math.pi], blender), -3.141592653589793) blender = blender_parser("0 * 1") print(f'RPN of notation: "0 * 1" is:\n' f'{" ".join(blender[::-1])}') self.assertAlmostEqual(signal_blend([math.pi, math.e], blender), 8.539734222673566) blender = blender_parser('abs(3-sqrt(2) / cos(1))') print(f'RPN of notation: "abs(3-sqrt(2) / cos(1))" is:\n' f'{" ".join(blender[::-1])}') self.assertEqual(blender, ['abs(1)', '-', '/', 'cos(1)', '1', 'sqrt(1)', '2', '3']) blender = blender_parser('0/max(2,1,3 + 5)+4') print(f'RPN of notation: "0/max(2,1,3 + 5)+4" is:\n' f'{" ".join(blender[::-1])}') self.assertEqual(blender, ['+', '4', '/', 'max(3)', '+', '5', '3', '1', '2', '0']) blender = blender_parser('1 + sum(1,2,3+3, sum(1, 2) + 3) *5') print(f'RPN of notation: "1 + sum(1,2,3+3, sum(1, 2) + 3) *5" is:\n' f'{" ".join(blender[::-1])}') self.assertEqual(blender, ['+', '*', '5', 'sum(4)', '+', '3', 'sum(2)', '2', '1', '+', '3', '3', '2', '1', '1']) blender = blender_parser('1+sum(1,2,(3+5)*4, sum(3, (4+5)*6), 7-8) * (2+3)') print(f'RPN of notation: "1+sum(1,2,(3+5)*4, sum(3, (4+5)*6), 7-8) * (2+3)" is:\n' f'{" ".join(blender[::-1])}') self.assertEqual(blender, ['+', '*', '+', '3', '2', 'sum(5)', '-', '8', '7', 'sum(2)', '*', '6', '+', '5', '4', '3', '*', '4', '+', '5', '3', '2', '1', '1']) # TODO: ndarray type of signals to be tested: def test_set_opt_par(self): """ test setting opt pars in batch""" print(f'--------- Testing setting Opt Pars: set_opt_par -------') op = qt.Operator('dma, random, crossline') op.set_parameter('dma', pars=(5, 10, 5), opt_tag=1, par_boes=((5, 10), (5, 15), (10, 15)), window_length=10, data_types=['close', 'open', 'high']) self.assertEqual(op.strategies[0].pars, (5, 10, 5)) self.assertEqual(op.strategies[1].pars, (0.5,)) self.assertEqual(op.strategies[2].pars, (35, 120, 10, 'buy')) self.assertEqual(op.opt_tags, [1, 0, 0]) op.set_opt_par((5, 12, 9)) self.assertEqual(op.strategies[0].pars, (5, 12, 9)) self.assertEqual(op.strategies[1].pars, (0.5,)) self.assertEqual(op.strategies[2].pars, (35, 120, 10, 'buy')) op.set_parameter('crossline', pars=(5, 10, 5, 'sell'), opt_tag=1, par_boes=((5, 10), (5, 15), (10, 15), ('buy', 'sell', 'none')), window_length=10, data_types=['close', 'open', 'high']) self.assertEqual(op.opt_tags, [1, 0, 1]) op.set_opt_par((5, 12, 9, 8, 26, 9, 'buy')) self.assertEqual(op.strategies[0].pars, (5, 12, 9)) self.assertEqual(op.strategies[1].pars, (0.5,)) self.assertEqual(op.strategies[2].pars, (8, 26, 9, 'buy')) op.set_opt_par((9, 200, 155, 8, 26, 9, 'buy', 5, 12, 9)) self.assertEqual(op.strategies[0].pars, (9, 200, 155)) self.assertEqual(op.strategies[1].pars, (0.5,)) self.assertEqual(op.strategies[2].pars, (8, 26, 9, 'buy')) # test set_opt_par when opt_tag is set to be 2 (enumerate type of parameters) op.set_parameter('crossline', pars=(5, 10, 5, 'sell'), opt_tag=2, par_boes=((5, 10), (5, 15), (10, 15), ('buy', 'sell', 'none')), window_length=10, data_types=['close', 'open', 'high']) self.assertEqual(op.opt_tags, [1, 0, 2]) self.assertEqual(op.strategies[0].pars, (9, 200, 155)) self.assertEqual(op.strategies[1].pars, (0.5,)) self.assertEqual(op.strategies[2].pars, (5, 10, 5, 'sell')) op.set_opt_par((5, 12, 9, (8, 26, 9, 'buy'))) self.assertEqual(op.strategies[0].pars, (5, 12, 9)) self.assertEqual(op.strategies[1].pars, (0.5,)) self.assertEqual(op.strategies[2].pars, (8, 26, 9, 'buy')) # Test Errors # Not enough values for parameter op.set_parameter('crossline', opt_tag=1) self.assertRaises(ValueError, op.set_opt_par, (5, 12, 9, 8)) # wrong type of input self.assertRaises(AssertionError, op.set_opt_par, [5, 12, 9, 7, 15, 12, 'sell']) def test_stg_attribute_get_and_set(self): self.stg = qt.TimingCrossline() self.stg_type = 'R-TIMING' self.stg_name = "CROSSLINE" self.stg_text = 'Moving average crossline strategy, determine long/short position according to the cross ' \ 'point' \ ' of long and short term moving average prices ' self.pars = (35, 120, 10, 'buy') self.par_boes = [(10, 250), (10, 250), (1, 100), ('buy', 'sell', 'none')] self.par_count = 4 self.par_types = ['discr', 'discr', 'conti', 'enum'] self.opt_tag = 0 self.data_types = ['close'] self.data_freq = 'd' self.sample_freq = 'd' self.window_length = 270 self.assertEqual(self.stg.stg_type, self.stg_type) self.assertEqual(self.stg.stg_name, self.stg_name) self.assertEqual(self.stg.stg_text, self.stg_text) self.assertEqual(self.stg.pars, self.pars) self.assertEqual(self.stg.par_types, self.par_types) self.assertEqual(self.stg.par_boes, self.par_boes) self.assertEqual(self.stg.par_count, self.par_count) self.assertEqual(self.stg.opt_tag, self.opt_tag) self.assertEqual(self.stg.data_freq, self.data_freq) self.assertEqual(self.stg.sample_freq, self.sample_freq) self.assertEqual(self.stg.data_types, self.data_types) self.assertEqual(self.stg.window_length, self.window_length) self.stg.stg_name = 'NEW NAME' self.stg.stg_text = 'NEW TEXT' self.assertEqual(self.stg.stg_name, 'NEW NAME') self.assertEqual(self.stg.stg_text, 'NEW TEXT') self.stg.pars = (1, 2, 3, 4) self.assertEqual(self.stg.pars, (1, 2, 3, 4)) self.stg.par_count = 3 self.assertEqual(self.stg.par_count, 3) self.stg.par_boes = [(1, 10), (1, 10), (1, 10), (1, 10)] self.assertEqual(self.stg.par_boes, [(1, 10), (1, 10), (1, 10), (1, 10)]) self.stg.par_types = ['conti', 'conti', 'discr', 'enum'] self.assertEqual(self.stg.par_types, ['conti', 'conti', 'discr', 'enum']) self.stg.par_types = 'conti, conti, discr, conti' self.assertEqual(self.stg.par_types, ['conti', 'conti', 'discr', 'conti']) self.stg.data_types = 'close, open' self.assertEqual(self.stg.data_types, ['close', 'open']) self.stg.data_types = ['close', 'high', 'low'] self.assertEqual(self.stg.data_types, ['close', 'high', 'low']) self.stg.data_freq = 'w' self.assertEqual(self.stg.data_freq, 'w') self.stg.window_length = 300 self.assertEqual(self.stg.window_length, 300) def test_rolling_timing(self): stg = TestLSStrategy() stg_pars = {'000100': (5, 10), '000200': (5, 10), '000300': (5, 6)} stg.set_pars(stg_pars) history_data = self.hp1.values output = stg.generate(hist_data=history_data) self.assertIsInstance(output, np.ndarray) self.assertEqual(output.shape, (45, 3)) lsmask = np.array([[0., 0., 1.], [0., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 0.], [1., 1., 0.], [1., 1., 0.], [1., 0., 0.], [1., 0., 0.], [1., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.]]) # TODO: Issue to be solved: the np.nan value are converted to 0 in the lsmask,这样做可能会有意想不到的后果 # TODO: 需要解决nan值的问题 self.assertEqual(output.shape, lsmask.shape) self.assertTrue(np.allclose(output, lsmask, equal_nan=True)) def test_sel_timing(self): stg = TestSelStrategy() stg_pars = () stg.set_pars(stg_pars) history_data = self.hp1['high, low, close', :, :] seg_pos, seg_length, seg_count = stg._seg_periods(dates=self.hp1.hdates, freq=stg.sample_freq) self.assertEqual(list(seg_pos), [0, 5, 11, 19, 26, 33, 41, 47, 49]) self.assertEqual(list(seg_length), [5, 6, 8, 7, 7, 8, 6, 2]) self.assertEqual(seg_count, 8) output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) self.assertIsInstance(output, np.ndarray) self.assertEqual(output.shape, (45, 3)) selmask = np.array([[0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask)) def test_simple_timing(self): stg = TestSigStrategy() stg_pars = (0.2, 0.02, -0.02) stg.set_pars(stg_pars) history_data = self.hp1['close, open, high, low', :, 3:50] output = stg.generate(hist_data=history_data, shares=self.shares, dates=self.date_indices) self.assertIsInstance(output, np.ndarray) self.assertEqual(output.shape, (45, 3)) sigmatrix = np.array([[0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, -1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [-1.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 1.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0]]) side_by_side_array = np.array([[i, out_line, sig_line] for i, out_line, sig_line in zip(range(len(output)), output, sigmatrix)]) print(f'output and signal matrix lined up side by side is \n' f'{side_by_side_array}') self.assertEqual(sigmatrix.shape, output.shape) self.assertTrue(np.allclose(output, sigmatrix)) def test_sel_finance(self): """Test selecting_finance strategy, test all built-in strategy parameters""" stg = SelectingFinanceIndicator() stg_pars = (False, 'even', 'greater', 0, 0, 0.67) stg.set_pars(stg_pars) stg.window_length = 5 stg.data_freq = 'd' stg.sample_freq = '10d' stg.sort_ascending = False stg.condition = 'greater' stg.lbound = 0 stg.ubound = 0 stg._poq = 0.67 history_data = self.hp2.values print(f'Start to test financial selection parameter {stg_pars}') seg_pos, seg_length, seg_count = stg._seg_periods(dates=self.hp1.hdates, freq=stg.sample_freq) self.assertEqual(list(seg_pos), [0, 5, 11, 19, 26, 33, 41, 47, 49]) self.assertEqual(list(seg_length), [5, 6, 8, 7, 7, 8, 6, 2]) self.assertEqual(seg_count, 8) output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) self.assertIsInstance(output, np.ndarray) self.assertEqual(output.shape, (45, 3)) selmask = np.array([[0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask)) # test single factor, get mininum factor stg_pars = (True, 'even', 'less', 1, 1, 0.67) stg.sort_ascending = True stg.condition = 'less' stg.lbound = 1 stg.ubound = 1 stg.set_pars(stg_pars) print(f'Start to test financial selection parameter {stg_pars}') output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) selmask = np.array([[0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask)) # test single factor, get max factor in linear weight stg_pars = (False, 'linear', 'greater', 0, 0, 0.67) stg.sort_ascending = False stg.weighting = 'linear' stg.condition = 'greater' stg.lbound = 0 stg.ubound = 0 stg.set_pars(stg_pars) print(f'Start to test financial selection parameter {stg_pars}') output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) selmask = np.array([[0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.66667, 0.00000], [0.33333, 0.66667, 0.00000], [0.33333, 0.66667, 0.00000]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask)) # test single factor, get max factor in linear weight stg_pars = (False, 'proportion', 'greater', 0, 0, 0.67) stg.sort_ascending = False stg.weighting = 'proportion' stg.condition = 'greater' stg.lbound = 0 stg.ubound = 0 stg.set_pars(stg_pars) print(f'Start to test financial selection parameter {stg_pars}') output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) selmask = np.array([[0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.91667, 0.00000], [0.08333, 0.91667, 0.00000], [0.08333, 0.91667, 0.00000]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask, 0.001)) # test single factor, get max factor in linear weight, threshold 0.2 stg_pars = (False, 'even', 'greater', 0.2, 0.2, 0.67) stg.sort_ascending = False stg.weighting = 'even' stg.condition = 'greater' stg.lbound = 0.2 stg.ubound = 0.2 stg.set_pars(stg_pars) print(f'Start to test financial selection parameter {stg_pars}') output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) selmask = np.array([[0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask, 0.001)) def test_tokenizer(self): self.assertListEqual(_exp_to_token('1+1'), ['1', '+', '1']) print(_exp_to_token('1+1')) self.assertListEqual(_exp_to_token('1 & 1'), ['1', '&', '1']) print(_exp_to_token('1&1')) self.assertListEqual(_exp_to_token('1 and 1'), ['1', 'and', '1']) print(_exp_to_token('1 and 1')) self.assertListEqual(_exp_to_token('1 or 1'), ['1', 'or', '1']) print(_exp_to_token('1 or 1')) self.assertListEqual(_exp_to_token('(1 - 1 + -1) * pi'), ['(', '1', '-', '1', '+', '-1', ')', '*', 'pi']) print(_exp_to_token('(1 - 1 + -1) * pi')) self.assertListEqual(_exp_to_token('abs(5-sqrt(2) / cos(pi))'), ['abs(', '5', '-', 'sqrt(', '2', ')', '/', 'cos(', 'pi', ')', ')']) print(_exp_to_token('abs(5-sqrt(2) / cos(pi))')) self.assertListEqual(_exp_to_token('sin(pi) + 2.14'), ['sin(', 'pi', ')', '+', '2.14']) print(_exp_to_token('sin(pi) + 2.14')) self.assertListEqual(_exp_to_token('(1-2)/3.0 + 0.0000'), ['(', '1', '-', '2', ')', '/', '3.0', '+', '0.0000']) print(_exp_to_token('(1-2)/3.0 + 0.0000')) self.assertListEqual(_exp_to_token('-(1. + .2) * max(1, 3, 5)'), ['-', '(', '1.', '+', '.2', ')', '*', 'max(', '1', ',', '3', ',', '5', ')']) print(_exp_to_token('-(1. + .2) * max(1, 3, 5)')) self.assertListEqual(_exp_to_token('(x + e * 10) / 10'), ['(', 'x', '+', 'e', '*', '10', ')', '/', '10']) print(_exp_to_token('(x + e * 10) / 10')) self.assertListEqual(_exp_to_token('8.2/((-.1+abs3(3,4,5))*0.12)'), ['8.2', '/', '(', '(', '-.1', '+', 'abs3(', '3', ',', '4', ',', '5', ')', ')', '*', '0.12', ')']) print(_exp_to_token('8.2/((-.1+abs3(3,4,5))*0.12)')) self.assertListEqual(_exp_to_token('8.2/abs3(3,4,25.34 + 5)*0.12'), ['8.2', '/', 'abs3(', '3', ',', '4', ',', '25.34', '+', '5', ')', '*', '0.12']) print(_exp_to_token('8.2/abs3(3,4,25.34 + 5)*0.12')) class TestLog(unittest.TestCase): def test_init(self): pass class TestConfig(unittest.TestCase): """测试Config对象以及QT_CONFIG变量的设置和获取值""" def test_init(self): pass def test_invest(self): pass def test_pars_string_to_type(self): _parse_string_kwargs('000300', 'asset_pool', _valid_qt_kwargs()) class TestHistoryPanel(unittest.TestCase): def setUp(self): print('start testing HistoryPanel object\n') self.data = np.random.randint(10, size=(5, 10, 4)) self.index = pd.date_range(start='20200101', freq='d', periods=10) self.index2 = ['2016-07-01', '2016-07-04', '2016-07-05', '2016-07-06', '2016-07-07', '2016-07-08', '2016-07-11', '2016-07-12', '2016-07-13', '2016-07-14'] self.index3 = '2016-07-01, 2016-07-04, 2016-07-05, 2016-07-06, 2016-07-07, ' \ '2016-07-08, 2016-07-11, 2016-07-12, 2016-07-13, 2016-07-14' self.shares = '000100,000101,000102,000103,000104' self.htypes = 'close,open,high,low' self.data2 = np.random.randint(10, size=(10, 5)) self.data3 = np.random.randint(10, size=(10, 4)) self.data4 = np.random.randint(10, size=(10)) self.hp = qt.HistoryPanel(values=self.data, levels=self.shares, columns=self.htypes, rows=self.index) self.hp2 = qt.HistoryPanel(values=self.data2, levels=self.shares, columns='close', rows=self.index) self.hp3 = qt.HistoryPanel(values=self.data3, levels='000100', columns=self.htypes, rows=self.index2) self.hp4 = qt.HistoryPanel(values=self.data4, levels='000100', columns='close', rows=self.index3) self.hp5 = qt.HistoryPanel(values=self.data) self.hp6 = qt.HistoryPanel(values=self.data, levels=self.shares, rows=self.index3) def test_properties(self): """ test all properties of HistoryPanel """ self.assertFalse(self.hp.is_empty) self.assertEqual(self.hp.row_count, 10) self.assertEqual(self.hp.column_count, 4) self.assertEqual(self.hp.level_count, 5) self.assertEqual(self.hp.shape, (5, 10, 4)) self.assertSequenceEqual(self.hp.htypes, ['close', 'open', 'high', 'low']) self.assertSequenceEqual(self.hp.shares, ['000100', '000101', '000102', '000103', '000104']) self.assertSequenceEqual(list(self.hp.hdates), list(self.index)) self.assertDictEqual(self.hp.columns, {'close': 0, 'open': 1, 'high': 2, 'low': 3}) self.assertDictEqual(self.hp.levels, {'000100': 0, '000101': 1, '000102': 2, '000103': 3, '000104': 4}) row_dict = {Timestamp('2020-01-01 00:00:00', freq='D'): 0, Timestamp('2020-01-02 00:00:00', freq='D'): 1, Timestamp('2020-01-03 00:00:00', freq='D'): 2, Timestamp('2020-01-04 00:00:00', freq='D'): 3, Timestamp('2020-01-05 00:00:00', freq='D'): 4, Timestamp('2020-01-06 00:00:00', freq='D'): 5, Timestamp('2020-01-07 00:00:00', freq='D'): 6, Timestamp('2020-01-08 00:00:00', freq='D'): 7, Timestamp('2020-01-09 00:00:00', freq='D'): 8, Timestamp('2020-01-10 00:00:00', freq='D'): 9} self.assertDictEqual(self.hp.rows, row_dict) def test_len(self): """ test the function len(HistoryPanel) :return: """ self.assertEqual(len(self.hp), 10) def test_empty_history_panel(self): """测试空HP或者特殊HP如维度标签为纯数字的HP""" test_hp = qt.HistoryPanel(self.data) self.assertFalse(test_hp.is_empty) self.assertIsInstance(test_hp, qt.HistoryPanel) self.assertEqual(test_hp.shape[0], 5) self.assertEqual(test_hp.shape[1], 10) self.assertEqual(test_hp.shape[2], 4) self.assertEqual(test_hp.level_count, 5) self.assertEqual(test_hp.row_count, 10) self.assertEqual(test_hp.column_count, 4) self.assertEqual(test_hp.shares, list(range(5))) self.assertEqual(test_hp.hdates, list(pd.date_range(start='20200730', periods=10, freq='d'))) self.assertEqual(test_hp.htypes, list(range(4))) self.assertTrue(np.allclose(test_hp.values, self.data)) print(f'shares: {test_hp.shares}\nhtypes: {test_hp.htypes}') print(test_hp) # HistoryPanel should be empty if no value is given empty_hp = qt.HistoryPanel() self.assertTrue(empty_hp.is_empty) self.assertIsInstance(empty_hp, qt.HistoryPanel) self.assertEqual(empty_hp.shape[0], 0) self.assertEqual(empty_hp.shape[1], 0) self.assertEqual(empty_hp.shape[2], 0) self.assertEqual(empty_hp.level_count, 0) self.assertEqual(empty_hp.row_count, 0) self.assertEqual(empty_hp.column_count, 0) # HistoryPanel should also be empty if empty value (np.array([])) is given empty_hp = qt.HistoryPanel(np.empty((5, 0, 4)), levels=self.shares, columns=self.htypes) self.assertTrue(empty_hp.is_empty) self.assertIsInstance(empty_hp, qt.HistoryPanel) self.assertEqual(empty_hp.shape[0], 0) self.assertEqual(empty_hp.shape[1], 0) self.assertEqual(empty_hp.shape[2], 0) self.assertEqual(empty_hp.level_count, 0) self.assertEqual(empty_hp.row_count, 0) self.assertEqual(empty_hp.column_count, 0) def test_create_history_panel(self): """ test the creation of a HistoryPanel object by passing all data explicitly """ self.assertIsInstance(self.hp, qt.HistoryPanel) self.assertEqual(self.hp.shape[0], 5) self.assertEqual(self.hp.shape[1], 10) self.assertEqual(self.hp.shape[2], 4) self.assertEqual(self.hp.level_count, 5) self.assertEqual(self.hp.row_count, 10) self.assertEqual(self.hp.column_count, 4) self.assertEqual(list(self.hp.levels.keys()), self.shares.split(',')) self.assertEqual(list(self.hp.columns.keys()), self.htypes.split(',')) self.assertEqual(list(self.hp.rows.keys())[0], pd.Timestamp('20200101')) self.assertIsInstance(self.hp2, qt.HistoryPanel) self.assertEqual(self.hp2.shape[0], 5) self.assertEqual(self.hp2.shape[1], 10) self.assertEqual(self.hp2.shape[2], 1) self.assertEqual(self.hp2.level_count, 5) self.assertEqual(self.hp2.row_count, 10) self.assertEqual(self.hp2.column_count, 1) self.assertEqual(list(self.hp2.levels.keys()), self.shares.split(',')) self.assertEqual(list(self.hp2.columns.keys()), ['close']) self.assertEqual(list(self.hp2.rows.keys())[0], pd.Timestamp('20200101')) self.assertIsInstance(self.hp3, qt.HistoryPanel) self.assertEqual(self.hp3.shape[0], 1) self.assertEqual(self.hp3.shape[1], 10) self.assertEqual(self.hp3.shape[2], 4) self.assertEqual(self.hp3.level_count, 1) self.assertEqual(self.hp3.row_count, 10) self.assertEqual(self.hp3.column_count, 4) self.assertEqual(list(self.hp3.levels.keys()), ['000100']) self.assertEqual(list(self.hp3.columns.keys()), self.htypes.split(',')) self.assertEqual(list(self.hp3.rows.keys())[0], pd.Timestamp('2016-07-01')) self.assertIsInstance(self.hp4, qt.HistoryPanel) self.assertEqual(self.hp4.shape[0], 1) self.assertEqual(self.hp4.shape[1], 10) self.assertEqual(self.hp4.shape[2], 1) self.assertEqual(self.hp4.level_count, 1) self.assertEqual(self.hp4.row_count, 10) self.assertEqual(self.hp4.column_count, 1) self.assertEqual(list(self.hp4.levels.keys()), ['000100']) self.assertEqual(list(self.hp4.columns.keys()), ['close']) self.assertEqual(list(self.hp4.rows.keys())[0], pd.Timestamp('2016-07-01')) self.hp5.info() self.assertIsInstance(self.hp5, qt.HistoryPanel) self.assertTrue(np.allclose(self.hp5.values, self.data)) self.assertEqual(self.hp5.shape[0], 5) self.assertEqual(self.hp5.shape[1], 10) self.assertEqual(self.hp5.shape[2], 4) self.assertEqual(self.hp5.level_count, 5) self.assertEqual(self.hp5.row_count, 10) self.assertEqual(self.hp5.column_count, 4) self.assertEqual(list(self.hp5.levels.keys()), [0, 1, 2, 3, 4]) self.assertEqual(list(self.hp5.columns.keys()), [0, 1, 2, 3]) self.assertEqual(list(self.hp5.rows.keys())[0], pd.Timestamp('2020-07-30')) self.hp6.info() self.assertIsInstance(self.hp6, qt.HistoryPanel) self.assertTrue(np.allclose(self.hp6.values, self.data)) self.assertEqual(self.hp6.shape[0], 5) self.assertEqual(self.hp6.shape[1], 10) self.assertEqual(self.hp6.shape[2], 4) self.assertEqual(self.hp6.level_count, 5) self.assertEqual(self.hp6.row_count, 10) self.assertEqual(self.hp6.column_count, 4) self.assertEqual(list(self.hp6.levels.keys()), ['000100', '000101', '000102', '000103', '000104']) self.assertEqual(list(self.hp6.columns.keys()), [0, 1, 2, 3]) self.assertEqual(list(self.hp6.rows.keys())[0], pd.Timestamp('2016-07-01')) print('test creating HistoryPanel with very limited data') print('test creating HistoryPanel with 2D data') temp_data = np.random.randint(10, size=(7, 3)).astype('float') temp_hp = qt.HistoryPanel(temp_data) # Error testing during HistoryPanel creating # shape does not match self.assertRaises(AssertionError, qt.HistoryPanel, self.data, levels=self.shares, columns='close', rows=self.index) # valus is not np.ndarray self.assertRaises(TypeError, qt.HistoryPanel, list(self.data)) # dimension/shape does not match self.assertRaises(AssertionError, qt.HistoryPanel, self.data2, levels='000100', columns=self.htypes, rows=self.index) # value dimension over 3 self.assertRaises(AssertionError, qt.HistoryPanel, np.random.randint(10, size=(5, 10, 4, 2))) # lebel value not valid self.assertRaises(ValueError, qt.HistoryPanel, self.data2, levels=self.shares, columns='close', rows='a,b,c,d,e,f,g,h,i,j') def test_history_panel_slicing(self): """测试HistoryPanel的各种切片方法 包括通过标签名称切片,通过数字切片,通过逗号分隔的标签名称切片,通过冒号分隔的标签名称切片等切片方式""" self.assertTrue(np.allclose(self.hp['close'], self.data[:, :, 0:1])) self.assertTrue(np.allclose(self.hp['close,open'], self.data[:, :, 0:2])) self.assertTrue(np.allclose(self.hp[['close', 'open']], self.data[:, :, 0:2])) self.assertTrue(np.allclose(self.hp['close:high'], self.data[:, :, 0:3])) self.assertTrue(np.allclose(self.hp['close,high'], self.data[:, :, [0, 2]])) self.assertTrue(np.allclose(self.hp[:, '000100'], self.data[0:1, :, ])) self.assertTrue(np.allclose(self.hp[:, '000100,000101'], self.data[0:2, :])) self.assertTrue(np.allclose(self.hp[:, ['000100', '000101']], self.data[0:2, :])) self.assertTrue(np.allclose(self.hp[:, '000100:000102'], self.data[0:3, :])) self.assertTrue(np.allclose(self.hp[:, '000100,000102'], self.data[[0, 2], :])) self.assertTrue(np.allclose(self.hp['close,open', '000100,000102'], self.data[[0, 2], :, 0:2])) print('start testing HistoryPanel') data = np.random.randint(10, size=(10, 5)) # index = pd.date_range(start='20200101', freq='d', periods=10) shares = '000100,000101,000102,000103,000104' dtypes = 'close' df = pd.DataFrame(data) print('=========================\nTesting HistoryPanel creation from DataFrame') hp = qt.dataframe_to_hp(df=df, shares=shares, htypes=dtypes) hp.info() hp = qt.dataframe_to_hp(df=df, shares='000100', htypes='close, open, high, low, middle', column_type='htypes') hp.info() print('=========================\nTesting HistoryPanel creation from initialization') data = np.random.randint(10, size=(5, 10, 4)).astype('float') index = pd.date_range(start='20200101', freq='d', periods=10) dtypes = 'close, open, high,low' data[0, [5, 6, 9], [0, 1, 3]] = np.nan data[1:4, [4, 7, 6, 2], [1, 1, 3, 0]] = np.nan data[4:5, [2, 9, 1, 2], [0, 3, 2, 1]] = np.nan hp = qt.HistoryPanel(data, levels=shares, columns=dtypes, rows=index) hp.info() print('==========================\n输出close类型的所有历史数据\n') self.assertTrue(np.allclose(hp['close', :, :], data[:, :, 0:1], equal_nan=True)) print(f'==========================\n输出close和open类型的所有历史数据\n') self.assertTrue(np.allclose(hp[[0, 1], :, :], data[:, :, 0:2], equal_nan=True)) print(f'==========================\n输出第一只股票的所有类型历史数据\n') self.assertTrue(np.allclose(hp[:, [0], :], data[0:1, :, :], equal_nan=True)) print('==========================\n输出第0、1、2个htype对应的所有股票全部历史数据\n') self.assertTrue(np.allclose(hp[[0, 1, 2]], data[:, :, 0:3], equal_nan=True)) print('==========================\n输出close、high两个类型的所有历史数据\n') self.assertTrue(np.allclose(hp[['close', 'high']], data[:, :, [0, 2]], equal_nan=True)) print('==========================\n输出0、1两个htype的所有历史数据\n') self.assertTrue(np.allclose(hp[[0, 1]], data[:, :, 0:2], equal_nan=True)) print('==========================\n输出close、high两个类型的所有历史数据\n') self.assertTrue(np.allclose(hp['close,high'], data[:, :, [0, 2]], equal_nan=True)) print('==========================\n输出close起到high止的三个类型的所有历史数据\n') self.assertTrue(np.allclose(hp['close:high'], data[:, :, 0:3], equal_nan=True)) print('==========================\n输出0、1、3三个股票的全部历史数据\n') self.assertTrue(np.allclose(hp[:, [0, 1, 3]], data[[0, 1, 3], :, :], equal_nan=True)) print('==========================\n输出000100、000102两只股票的所有历史数据\n') self.assertTrue(np.allclose(hp[:, ['000100', '000102']], data[[0, 2], :, :], equal_nan=True)) print('==========================\n输出0、1、2三个股票的历史数据\n', hp[:, 0: 3]) self.assertTrue(np.allclose(hp[:, 0: 3], data[0:3, :, :], equal_nan=True)) print('==========================\n输出000100、000102两只股票的所有历史数据\n') self.assertTrue(np.allclose(hp[:, '000100, 000102'], data[[0, 2], :, :], equal_nan=True)) print('==========================\n输出所有股票的0-7日历史数据\n') self.assertTrue(np.allclose(hp[:, :, 0:8], data[:, 0:8, :], equal_nan=True)) print('==========================\n输出000100股票的0-7日历史数据\n') self.assertTrue(np.allclose(hp[:, '000100', 0:8], data[0, 0:8, :], equal_nan=True)) print('==========================\nstart testing multy axis slicing of HistoryPanel object') print('==========================\n输出000100、000120两只股票的close、open两组历史数据\n', hp['close,open', ['000100', '000102']]) print('==========================\n输出000100、000120两只股票的close到open三组历史数据\n', hp['close,open', '000100, 000102']) print(f'historyPanel: hp:\n{hp}') print(f'data is:\n{data}') hp.htypes = 'open,high,low,close' hp.info() hp.shares = ['000300', '600227', '600222', '000123', '000129'] hp.info() def test_segment(self): """测试历史数据片段的获取""" test_hp = qt.HistoryPanel(self.data, levels=self.shares, columns=self.htypes, rows=self.index2) self.assertFalse(test_hp.is_empty) self.assertIsInstance(test_hp, qt.HistoryPanel) self.assertEqual(test_hp.shape[0], 5) self.assertEqual(test_hp.shape[1], 10) self.assertEqual(test_hp.shape[2], 4) print(f'Test segment with None parameters') seg1 = test_hp.segment() seg2 = test_hp.segment('20150202') seg3 = test_hp.segment(end_date='20201010') self.assertIsInstance(seg1, qt.HistoryPanel) self.assertIsInstance(seg2, qt.HistoryPanel) self.assertIsInstance(seg3, qt.HistoryPanel) # check values self.assertTrue(np.allclose( seg1.values, test_hp.values )) self.assertTrue(np.allclose( seg2.values, test_hp.values )) self.assertTrue(np.allclose( seg3.values, test_hp.values )) # check that htypes and shares should be same self.assertEqual(seg1.htypes, test_hp.htypes) self.assertEqual(seg1.shares, test_hp.shares) self.assertEqual(seg2.htypes, test_hp.htypes) self.assertEqual(seg2.shares, test_hp.shares) self.assertEqual(seg3.htypes, test_hp.htypes) self.assertEqual(seg3.shares, test_hp.shares) # check that hdates are the same self.assertEqual(seg1.hdates, test_hp.hdates) self.assertEqual(seg2.hdates, test_hp.hdates) self.assertEqual(seg3.hdates, test_hp.hdates) print(f'Test segment with proper dates') seg1 = test_hp.segment() seg2 = test_hp.segment('20160704') seg3 = test_hp.segment(start_date='2016-07-05', end_date='20160708') self.assertIsInstance(seg1, qt.HistoryPanel) self.assertIsInstance(seg2, qt.HistoryPanel) self.assertIsInstance(seg3, qt.HistoryPanel) # check values self.assertTrue(np.allclose( seg1.values, test_hp[:, :, :] )) self.assertTrue(np.allclose( seg2.values, test_hp[:, :, 1:10] )) self.assertTrue(np.allclose( seg3.values, test_hp[:, :, 2:6] )) # check that htypes and shares should be same self.assertEqual(seg1.htypes, test_hp.htypes) self.assertEqual(seg1.shares, test_hp.shares) self.assertEqual(seg2.htypes, test_hp.htypes) self.assertEqual(seg2.shares, test_hp.shares) self.assertEqual(seg3.htypes, test_hp.htypes) self.assertEqual(seg3.shares, test_hp.shares) # check that hdates are the same self.assertEqual(seg1.hdates, test_hp.hdates) self.assertEqual(seg2.hdates, test_hp.hdates[1:10]) self.assertEqual(seg3.hdates, test_hp.hdates[2:6]) print(f'Test segment with non-existing but in range dates') seg1 = test_hp.segment() seg2 = test_hp.segment('20160703') seg3 = test_hp.segment(start_date='2016-07-03', end_date='20160710') self.assertIsInstance(seg1, qt.HistoryPanel) self.assertIsInstance(seg2, qt.HistoryPanel) self.assertIsInstance(seg3, qt.HistoryPanel) # check values self.assertTrue(np.allclose( seg1.values, test_hp[:, :, :] )) self.assertTrue(np.allclose( seg2.values, test_hp[:, :, 1:10] )) self.assertTrue(np.allclose( seg3.values, test_hp[:, :, 1:6] )) # check that htypes and shares should be same self.assertEqual(seg1.htypes, test_hp.htypes) self.assertEqual(seg1.shares, test_hp.shares) self.assertEqual(seg2.htypes, test_hp.htypes) self.assertEqual(seg2.shares, test_hp.shares) self.assertEqual(seg3.htypes, test_hp.htypes) self.assertEqual(seg3.shares, test_hp.shares) # check that hdates are the same self.assertEqual(seg1.hdates, test_hp.hdates) self.assertEqual(seg2.hdates, test_hp.hdates[1:10]) self.assertEqual(seg3.hdates, test_hp.hdates[1:6]) print(f'Test segment with out-of-range dates') seg1 = test_hp.segment(start_date='2016-05-03', end_date='20160910') self.assertIsInstance(seg1, qt.HistoryPanel) # check values self.assertTrue(np.allclose( seg1.values, test_hp[:, :, :] )) # check that htypes and shares should be same self.assertEqual(seg1.htypes, test_hp.htypes) self.assertEqual(seg1.shares, test_hp.shares) # check that hdates are the same self.assertEqual(seg1.hdates, test_hp.hdates) def test_slice(self): """测试历史数据切片的获取""" test_hp = qt.HistoryPanel(self.data, levels=self.shares, columns=self.htypes, rows=self.index2) self.assertFalse(test_hp.is_empty) self.assertIsInstance(test_hp, qt.HistoryPanel) self.assertEqual(test_hp.shape[0], 5) self.assertEqual(test_hp.shape[1], 10) self.assertEqual(test_hp.shape[2], 4) print(f'Test slice with shares') share = '000101' slc = test_hp.slice(shares=share) self.assertIsInstance(slc, qt.HistoryPanel) self.assertEqual(slc.shares, ['000101']) self.assertEqual(slc.htypes, test_hp.htypes) self.assertEqual(slc.hdates, test_hp.hdates) self.assertTrue(np.allclose(slc.values, test_hp[:, '000101'])) share = '000101, 000103' slc = test_hp.slice(shares=share) self.assertIsInstance(slc, qt.HistoryPanel) self.assertEqual(slc.shares, ['000101', '000103']) self.assertEqual(slc.htypes, test_hp.htypes) self.assertEqual(slc.hdates, test_hp.hdates) self.assertTrue(np.allclose(slc.values, test_hp[:, '000101, 000103'])) print(f'Test slice with htypes') htype = 'open' slc = test_hp.slice(htypes=htype) self.assertIsInstance(slc, qt.HistoryPanel) self.assertEqual(slc.shares, test_hp.shares) self.assertEqual(slc.htypes, ['open']) self.assertEqual(slc.hdates, test_hp.hdates) self.assertTrue(np.allclose(slc.values, test_hp['open'])) htype = 'open, close' slc = test_hp.slice(htypes=htype) self.assertIsInstance(slc, qt.HistoryPanel) self.assertEqual(slc.shares, test_hp.shares) self.assertEqual(slc.htypes, ['open', 'close']) self.assertEqual(slc.hdates, test_hp.hdates) self.assertTrue(np.allclose(slc.values, test_hp['open, close'])) # test that slicing of "open, close" does NOT equal to "close, open" self.assertFalse(np.allclose(slc.values, test_hp['close, open'])) print(f'Test slicing with both htypes and shares') share = '000103, 000101' htype = 'high, low, close' slc = test_hp.slice(shares=share, htypes=htype) self.assertIsInstance(slc, qt.HistoryPanel) self.assertEqual(slc.shares, ['000103', '000101']) self.assertEqual(slc.htypes, ['high', 'low', 'close']) self.assertEqual(slc.hdates, test_hp.hdates) self.assertTrue(np.allclose(slc.values, test_hp['high, low, close', '000103, 000101'])) print(f'Test Error cases') # duplicated input htype = 'open, close, open' self.assertRaises(AssertionError, test_hp.slice, htypes=htype) def test_relabel(self): new_shares_list = ['000001', '000002', '000003', '000004', '000005'] new_shares_str = '000001, 000002, 000003, 000004, 000005' new_htypes_list = ['close', 'volume', 'value', 'exchange'] new_htypes_str = 'close, volume, value, exchange' temp_hp = self.hp.copy() temp_hp.re_label(shares=new_shares_list) print(temp_hp.info()) print(temp_hp.htypes) self.assertTrue(
np.allclose(self.hp.values, temp_hp.values)
numpy.allclose
import numpy as np from sklearn.preprocessing import QuantileTransformer # PyTest testing infrastructure import pytest # Local testing infrastructure from wrap import deploy_pickle ################################################################################ ## Test preparation @pytest.fixture def scaler_uniform(): scaler_ = QuantileTransformer() X = np.random.uniform (20,30,(1000, 10)) scaler_.fit (X) return scaler_ @pytest.fixture def scaler_normal(): scaler_ = QuantileTransformer(output_distribution='normal', n_quantiles=100) X = np.random.uniform (20,30,(1000, 10)) scaler_.fit (X) return scaler_ @pytest.fixture def scaler_bool_uniform(): scaler_ = QuantileTransformer(output_distribution='uniform') X = np.random.choice ([22.,27.], (1000, 10), (0.8, 0.2)) scaler_.fit (X) return scaler_ @pytest.fixture def scaler_bool_normal(): scaler_ = QuantileTransformer(output_distribution='normal') X =
np.random.choice ([22.,27.], (1000, 10), (0.8, 0.2))
numpy.random.choice
#!/usr/bin/env python import numpy as np from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error from scipy.stats import pearsonr, spearmanr #=============================================================================== #=============================================================================== class Metrics: @staticmethod def r2(true, pred): return r2_score(true, pred) @staticmethod def rmse(true, pred): return np.sqrt(mean_squared_error(true, pred)) @staticmethod def mae(true, pred): return mean_absolute_error(true, pred) @staticmethod def pearson(true, pred): if true.shape[-1] == 1: true, pred = np.squeeze(true), np.squeeze(pred) pearson_coeff, p_value = pearsonr(true, pred) return pearson_coeff else: pearsons = [] for dim in range(true.shape[-1]): pearson_coeff, p_value = pearsonr(true[:, dim], pred[:, dim]) pearsons.append(pearson_coeff) return pearsons @staticmethod def spearman(true, pred): if true.shape[-1] == 1: true, pred = np.squeeze(true), np.squeeze(pred) spearman_coeff, p_value = spearmanr(true, pred) return spearman_coeff else: spearmans = [] for dim in range(true.shape[-1]): spearman_coeff, p_value = spearmanr(true[:, dim], pred[:, dim]) spearmans.append(spearman_coeff) return spearmans # @staticmethod # def correlation_matrix(true, pred): # for ix in range(true.shape[0]): def __call__(self, true, pred, kinds): metrics = {} for kind in kinds: try: fn = getattr(self, kind) except NameError as e: print(e) error = fn(true, pred) metrics[kind] = error return metrics @staticmethod def get_best_metric(kind, metric_list): ''' retrieve the dictionary for which the metric is the best ''' if kind == 'r2': r2s = [d['r2'] for d in metric_list] max_ix = np.argmax(r2s) return metric_list[max_ix] elif kind == 'rmse': rmses = [d['rmse'] for d in metric_list] min_ix = np.argmin(rmses) return metric_list[min_ix] elif kind == 'mae': maes = [d['mae'] for d in metric_list] min_ix = np.argmin(maes) return metric_list[min_ix] elif kind == 'pearson': pearsons = [d['pearson'] for d in metric_list] max_ix =
np.argmax(pearsons)
numpy.argmax
r""" Module containing SharpClaw solvers for PyClaw/PetClaw # File: sharpclaw.py # Created: 2010-03-20 # Author: <NAME> """ # Solver superclass from __future__ import absolute_import from clawpack.pyclaw.solver import Solver from clawpack.pyclaw.util import add_parent_doc from six.moves import range # Reconstructor try: # load c-based WENO reconstructor (PyWENO) from clawpack.pyclaw.limiters import reconstruct as recon except ImportError: # load old WENO5 reconstructor from clawpack.pyclaw.limiters import recon def default_tfluct(self): r"""This is a dummy routine and should never be called, check Euler1D to learn how to pass tfluct functions to the sharpclaw solver """ if self.tfluct_solver: raise Exception("You set solver.tfluct_solver=True, but solver.tfluct has not been set.") pass class SharpClawSolver(Solver): r""" Superclass for all SharpClawND solvers. Implements Runge-Kutta time stepping and the basic form of a semi-discrete step (the dq() function). If another method-of-lines solver is implemented in the future, it should be based on this class, which then ought to be renamed to something like "MOLSolver". .. attribute:: lim_type Limiter(s) to be used. - 0: No limiting. - 1: TVD reconstruction. - 2: WENO reconstruction. ``Default = 2`` .. attribute:: weno_order Order of the WENO reconstruction. From 1st to 17th order (PyWENO) ``Default = 5`` .. attribute:: time_integrator Time integrator to be used. Currently implemented methods: - 'Euler' : 1st-order Forward Euler integration - 'SSP33' : 3rd-order strong stability preserving method of Shu & Osher - 'SSP104' : 4th-order strong stability preserving method Ketcheson - 'SSPLMM32': 2nd-order strong stability preserving 3-step linear multistep method, using Euler for starting values - 'SSPLMM43': 3rd-order strong stability preserving 4-step linear multistep method using SSPRK22 for starting values - 'RK' : Arbitrary Runge-Kutta method, specified by setting `solver.a` and `solver.b` to the Butcher arrays of the method. - 'LMM' : Arbitrary linear multistep method, specified by setting the coefficient arrays `solver.alpha` and `solver.beta`. ``Default = 'SSP104'`` .. attribute:: char_decomp Type of WENO reconstruction. 0: conservative variables WENO reconstruction (standard). 1: Wave-slope reconstruction. 2: characteristic-wise WENO reconstruction. 3: transmission-based WENO reconstruction. ``Default = 0`` .. attribute:: tfluct_solver Whether a total fluctuation solver have to be used. If True the function that calculates the total fluctuation must be provided. ``Default = False`` .. attribute:: tfluct Pointer to Fortran routine to calculate total fluctuation ``Default = default_tfluct (None)`` .. attribute:: aux_time_dep Whether the auxiliary array is time dependent. ``Default = False`` .. attribute:: kernel_language Specifies whether to use wrapped Fortran routines ('Fortran') or pure Python ('Python'). ``Default = 'Fortran'``. .. attribute:: num_ghost Number of ghost cells. ``Default = 3`` .. attribute:: fwave Whether to split the flux jump (rather than the jump in Q) into waves; requires that the Riemann solver performs the splitting. ``Default = False`` .. attribute:: cfl_desired Desired CFL number. ``Default = 2.45`` .. attribute:: cfl_max Maximum CFL number. ``Default = 2.50`` .. attribute:: dq_src Whether a source term is present. If it is present the function that computes its contribution must be provided. ``Default = None`` .. attribute:: call_before_step_each_stage Whether to call the method `self.before_step` before each RK stage. ``Default = False`` """ _sspcoeff = { 'Euler' : 1.0, 'SSP22': 1.0, 'SSP33': 1.0, 'SSP104': 6.0, 'SSPLMM32': 0.5, 'SSPLMM43': 1./3., 'SSPLMM53': 0.5, 'RK': None, 'LMM': None } _cfl_default = { 'SSP104': [2.45, 2.5], 'SSPLMM32': [0.24, 0.25], 'SSPLMM43': [0.15, 1./6.], 'SSPLMM53': [0.24, 0.25] } # ======================================================================== # Initialization routines # ======================================================================== def __init__(self,riemann_solver=None,claw_package=None): r""" Set default options for SharpClawSolvers and call the super's __init__(). """ self.limiters = [1] self.lim_type = 2 self.weno_order = 5 self.time_integrator = 'SSP104' self.char_decomp = 0 self.tfluct_solver = False self.tfluct = default_tfluct self.aux_time_dep = False self.kernel_language = 'Fortran' self.num_ghost = 3 self.fwave = False self.cfl_desired = None self.cfl_max = None self.dq_src = None self.call_before_step_each_stage = False self._mthlim = self.limiters self._method = None self._registers = None self.dq_dt = None self.dt_old = None # Used only if time integrator is 'RK' self.a = None self.b = None self.c = None # Used only if time integrator is a multistep method self.sspcoeff0 = None self.alpha = None self.beta = None self.lmm_steps = 4 self.sspcoeff = None self.prev_dq_dt_values = [] self.prev_dt_values = [] self.prev_dtFE_values = [] self.check_lmm_cond = False self.lmm_cond = True # Call general initialization function super(SharpClawSolver,self).__init__(riemann_solver,claw_package) def setup(self,solution): """ Allocate RK stage arrays or previous step solutions and fortran routine work arrays. """ if self.lim_type == 2: self.num_ghost = (self.weno_order+1)//2 if self.lim_type == 2 and self.weno_order != 5 and self.kernel_language == 'Python': raise Exception('Only 5th-order WENO reconstruction is implemented in Python kernels. \ Use Fortran for higher-order WENO.') # This is a hack to deal with the fact that petsc4py # doesn't allow us to change the stencil_width (num_ghost) state = solution.state state.set_num_ghost(self.num_ghost) # End hack if self.time_integrator == 'LMM': assert self.dt_variable == False, \ 'Must set solver.dt_variable=False for LMM integrator.' try: if 'SSPLMM' in self.time_integrator: if self.time_integrator == 'SSPLMMk2': assert 3 <= self.lmm_steps, \ 'Must set solver.lmm_steps greater than 2 for 2nd order SSPLMM integrator.' self.sspcoeff = (self.lmm_steps - 2.)/(self.lmm_steps - 1.) # The choice of cfl_desired and cfl_max is intended for LMM with many steps (up to 20). # If more steps are chosen the solution may not be accurate enough. # For a smaller number of steps, higher values of cfl_desired and cfl_max can be used. if self.cfl_max is None: self.cfl_desired = 0.14*self.sspcoeff self.cfl_max = 0.15*self.sspcoeff elif self.time_integrator == 'SSPLMMk3': assert 4 <= self.lmm_steps <= 5, \ 'Must set solver.lmm_steps equal to 4 or 5 for 3rd order SSPLMM integrator.' self.sspcoeff = (self.lmm_steps - 3.)/(self.lmm_steps - 1.) if self.cfl_max is None: self.cfl_desired = 0.48*self.sspcoeff self.cfl_max = 0.5*self.sspcoeff else: if self.cfl_max is None: self.cfl_desired = self._cfl_default[self.time_integrator][0] self.cfl_max = self._cfl_default[self.time_integrator][1] if self.cfl_desired is None: self.cfl_desired = 0.9*self.cfl_max except KeyError: raise KeyError('Maximum CFL number is not provided.') self._allocate_registers(solution) self._set_mthlim() state = solution.states[0] if self.kernel_language=='Fortran': if self.fmod is None: so_name = 'clawpack.pyclaw.sharpclaw.sharpclaw'+str(self.num_dim) self.fmod = __import__(so_name,fromlist=['clawpack.pyclaw.sharpclaw']) state.set_cparam(self.fmod) state.set_cparam(self.rp) state.set_cparam(self.tfluct) self._set_fortran_parameters(state,self.fmod.clawparams,self.fmod.workspace,self.fmod.reconstruct) self._allocate_bc_arrays(state) super(SharpClawSolver,self).setup(solution) def __del__(self): r""" Deallocate F90 module arrays. Also delete Fortran objects, which otherwise tend to persist in Python sessions. """ if self.kernel_language=='Fortran': self.fmod.clawparams.dealloc_clawparams() self.fmod.workspace.dealloc_workspace(self.char_decomp) self.fmod.reconstruct.dealloc_recon_workspace(self.fmod.clawparams.lim_type,self.fmod.clawparams.char_decomp) del self.fmod super(SharpClawSolver,self).__del__() # ========== Time stepping routines ====================================== def step(self,solution,take_one_step,tstart,tend): """Evolve q over one time step. Take one step with a Runge-Kutta or multistep method as specified by `solver.time_integrator`. """ state = solution.states[0] step_index = self.status['numsteps'] + 1 if self.accept_step == True: self.cfl.set_global_max(0.) self.dq_dt = self.dq(state) / self.dt if 'LMM' in self.time_integrator: step_index = self.update_saved_values(state,step_index) self.get_dt(solution.t,tstart,tend,take_one_step) # Recompute cfl number based on current step-size cfl = self.cfl.get_cached_max() self.cfl.set_global_max(self.dt / self.dt_old * cfl) self.dt_old = self.dt ### Runge-Kutta methods ### if self.time_integrator == 'Euler': state.q += self.dt*self.dq_dt elif self.time_integrator == 'SSP22': self.ssp22(state) elif self.time_integrator == 'SSP33': self._registers[0].q = state.q + self.dt*self.dq_dt self._registers[0].t = state.t + self.dt if self.call_before_step_each_stage: self.before_step(self,self._registers[0]) self._registers[0].q = 0.75*state.q + 0.25*(self._registers[0].q + self.dq(self._registers[0])) self._registers[0].t = state.t + 0.5*self.dt if self.call_before_step_each_stage: self.before_step(self,self._registers[0]) state.q = 1./3.*state.q + 2./3.*(self._registers[0].q + self.dq(self._registers[0])) elif self.time_integrator == 'SSP104': self.ssp104(state) elif self.time_integrator == 'RK': # General explicit RK with specified coefficients # This is pulled out of the loop in order to use dq_dt self._registers[0].q = self.dt*self.dq_dt self._registers[0].t = state.t num_stages = len(self.b) for i in range(1,num_stages): self._registers[i].q[:] = state.q for j in range(i): self._registers[i].q += self.a[i,j]*self._registers[j].q self._registers[i].t = state.t + self.dt*self.c[i] # self._registers[i].q eventually stores dt*f(y_i) after stage solution y_i is computed self._registers[i].q = self.dq(self._registers[i]) for j in range(num_stages): state.q += self.b[j]*self._registers[j].q ### Linear multistep methods ### elif self.time_integrator in ['SSPLMMk2', 'SSPLMMk3']: num_steps = self.lmm_steps if step_index < num_steps: # Use SSP22 Runge-Kutta method for starting values self.ssp22(state) else: if self.time_integrator == 'SSPLMMk2': omega_k_minus_1 = sum(self.prev_dt_values[1:])/self.dt r = (omega_k_minus_1-1.)/omega_k_minus_1 # SSP coefficient delta = 1./omega_k_minus_1**2 beta = (omega_k_minus_1+1.)/omega_k_minus_1 state.q = beta*(r*state.q + self.dt*self.dq_dt) + delta*self._registers[-num_steps].q else: omega_k_minus_1 = sum(self.prev_dt_values[1:])/self.dt omega_k = omega_k_minus_1 + 1. r = (omega_k_minus_1-2.)/omega_k_minus_1 # SSP coefficient delta0 = (4*omega_k - omega_k_minus_1**2)/omega_k_minus_1**3 beta0 = omega_k/omega_k_minus_1**2 beta_k_minus_1 = omega_k**2/omega_k_minus_1**2 state.q = beta_k_minus_1*(r*state.q + self.dt*self.prev_dq_dt_values[-1]) + \ (r*beta0 + delta0)*self._registers[-num_steps].q + \ beta0*self.dt*self.prev_dq_dt_values[-num_steps] elif self.time_integrator == 'LMM': if step_index < len(self._registers): self.ssp104(state) # Use SSP104 for starting values else: # Update solution: alpha[-1] and beta[-1] correspond to solution at the previous step state.q = self.alpha[-1]*self._registers[-1].q + self.beta[-1]*self.dt*self.prev_dq_dt_values[-1] for i in range(self.lmm_steps-1): state.q += self.alpha[i]*self._registers[i].q + self.beta[i]*self.dt*self.prev_dq_dt_values[i] else: raise Exception('Unrecognized time integrator') return False def ssp22(self,state): self._registers[0].q = state.q + self.dt*self.dq_dt self._registers[0].t = state.t + self.dt if self.call_before_step_each_stage: self.before_step(self,self._registers[0]) state.q = 0.5*(state.q + self._registers[0].q + self.dq(self._registers[0])) def ssp104(self,state): if self.time_integrator == 'SSP104': s1 = self._registers[0] s1.q[:] = state.q elif self.time_integrator == 'LMM': # Okay to copy state objects here since this only happens a few times import copy s1 = copy.deepcopy(state) s1.q = state.q + self.dt*self.dq_dt/6. s1.t = state.t + self.dt/6. for i in range(4): if self.call_before_step_each_stage: self.before_step(self,s1) s1.q = s1.q + self.dq(s1)/6. s1.t = s1.t + self.dt/6. state.q = state.q/25. + 0.36 * s1.q s1.q = 15. * state.q - 5. * s1.q s1.t = state.t + self.dt/3. for i in range(4): if self.call_before_step_each_stage: self.before_step(self,s1) s1.q = s1.q + self.dq(s1)/6. s1.t = s1.t + self.dt/6. if self.call_before_step_each_stage: self.before_step(self,s1) state.q += 0.6 * s1.q + 0.1 * self.dq(s1) def update_saved_values(self,state,step_index): r""" Updates lists of saved function evaluations, solution values, dt and dtFE for LMMs. For 3rd-order SSPLMM additional conditions are checked if self.check_lmm_cond is set to True. If these conditions are violated, the step is rejected. """ if (self.prev_dt_values == []): # This only happens at the very beginning of the computation self._registers[-1].q[:] = state.q self._registers[-1].t = state.t self.prev_dq_dt_values.append(self.dq_dt) self.prev_dt_values.append(0.) # Not used if 'SSPLMM' in self.time_integrator: cfl = self.cfl.get_cached_max() dtFE = self.dt / cfl * self.cfl_max / self.sspcoeff self.prev_dtFE_values.append(dtFE) self.sspcoeff0 = self._sspcoeff['SSP22'] elif self.accept_step == True: # Previous step was accepted if 'SSPLMM' in self.time_integrator: cfl = self.cfl.get_cached_max() dtFE = self.dt / cfl * self.cfl_max / self.sspcoeff if self.time_integrator == 'SSPLMMk3' and self.check_lmm_cond: self.lmm_cond = self.check_3rd_ord_cond(state,step_index,dtFE) if not self.lmm_cond: self.accept_step = False state.q[:] = self._registers[-1].q self.dq_dt = self.prev_dq_dt_values[-1] state.t = self._registers[-1].t self.status['numsteps'] -= 1 return self.status['numsteps'] + 1 if step_index <= len(self._registers): # Startup if self.time_integrator == 'SSPLMMk3': self.prev_dq_dt_values.append(self.dq_dt) self.prev_dt_values.append(self.dt_old) self.prev_dtFE_values.append(dtFE) else: if self.time_integrator == 'SSPLMMk3': self.prev_dq_dt_values = self.prev_dq_dt_values[1:] + self.prev_dq_dt_values[:1] self.prev_dq_dt_values[-1] = self.dq_dt # Roll and update prev_dt_values and prev_dtFE_values lists self.prev_dt_values = self.prev_dt_values[1:] + self.prev_dt_values[:1] self.prev_dt_values[-1] = self.dt_old self.prev_dtFE_values = self.prev_dtFE_values[1:] + self.prev_dtFE_values[:1] self.prev_dtFE_values[-1] = dtFE elif self.time_integrator == 'LMM': if step_index <= len(self._registers): self.prev_dq_dt_values.append(self.dq_dt) else: self.prev_dq_dt_values = self.prev_dq_dt_values[1:] + self.prev_dq_dt_values[:1] self.prev_dq_dt_values[-1] = self.dq_dt # Roll and update saved solution self._registers = self._registers[1:] + self._registers[:1] self._registers[-1].q[:] = state.q self._registers[-1].t = state.t return step_index def check_3rd_ord_cond(self,state,step_index,dtFE): r""" This routine checks the additional conditions for the 3rd-order SSPLMMs. This is a posteriori check after a step is accepted. In particular, there is a condition on the step size for the starting values and a condition on the ratio of forward Euler step sizes at very step. If the conditions are violated we muct retrieve the previous solution and discard that step; otherwise the step is accepted. """ lmm_cond = True if step_index <= len(self._registers): rho = 0.6 if len(self._registers) == 4 else 0.57 if self.dt > rho * dtFE: lmm_cond = False rhoFE = 0.9 if len(self._registers) == 4 else 0.962 dtFEm1 = self.prev_dtFE_values[-1] if rhoFE * dtFEm1 > dtFE or dtFE > dtFEm1 / rhoFE: lmm_cond = False return lmm_cond def _set_mthlim(self): self._mthlim = self.limiters if not isinstance(self.limiters,list): self._mthlim=[self._mthlim] if len(self._mthlim)==1: self._mthlim = self._mthlim * self.num_waves if len(self._mthlim)!=self.num_waves: raise Exception('Length of solver.limiters is not equal to 1 or to solver.num_waves') def dq(self,state): """ Evaluate dq/dt * (delta t) """ deltaq = self.dq_hyperbolic(state) if self.dq_src is not None: deltaq+=self.dq_src(self,state,self.dt) return deltaq def dq_hyperbolic(self,state): raise NotImplementedError('You must subclass SharpClawSolver.') def dqdt(self,state): """ Evaluate dq/dt. This routine is used for implicit time stepping. """ self.dt = 1 dq_dt = self.dq_hyperbolic(state) if self.dq_src is not None: dq_dt += self.dq_src(self,state,self.dt) return dq_dt.flatten('f') def _set_fortran_parameters(self,state,clawparams,workspace,reconstruct): """ Set parameters for Fortran modules used by SharpClaw. The modules should be imported and passed as arguments to this function. """ grid = state.grid clawparams.num_dim = grid.num_dim clawparams.lim_type = self.lim_type clawparams.weno_order = self.weno_order clawparams.char_decomp = self.char_decomp clawparams.tfluct_solver = self.tfluct_solver clawparams.fwave = self.fwave clawparams.index_capa = state.index_capa+1 clawparams.num_waves = self.num_waves clawparams.alloc_clawparams() for idim in range(grid.num_dim): clawparams.xlower[idim]=grid.dimensions[idim].lower clawparams.xupper[idim]=grid.dimensions[idim].upper clawparams.dx =grid.delta clawparams.mthlim =self._mthlim maxnx = max(grid.num_cells)+2*self.num_ghost workspace.alloc_workspace(maxnx,self.num_ghost,state.num_eqn,self.num_waves,self.char_decomp) reconstruct.alloc_recon_workspace(maxnx,self.num_ghost,state.num_eqn,self.num_waves, clawparams.lim_type,clawparams.char_decomp) def _allocate_registers(self,solution): r""" Instantiate State objects for Runge--Kutta stages and Linear Multistep method steps. This routine is only used by method-of-lines solvers (SharpClaw), not by the Classic solvers. It allocates additional State objects to store the intermediate stages used by Runge--Kutta and Multistep time integrators. If we create a MethodOfLinesSolver subclass, this should be moved there. """ # Generally the number of registers for the starting method should be at most # equal to the number of registers of the LMM if self.time_integrator == 'Euler': nregisters=0 elif self.time_integrator == 'SSP33': nregisters=1 elif self.time_integrator == 'SSP104': nregisters=1 elif self.time_integrator == 'RK': nregisters=len(self.b)+1 elif self.time_integrator == 'SSPLMMk2': nregisters=self.lmm_steps elif self.time_integrator == 'SSPLMMk3': nregisters=self.lmm_steps elif self.time_integrator == 'LMM': nregisters=len(self.alpha) else: raise Exception('Unrecognized time integrator: '+self.time_integrator) state = solution.states[0] # Use the same class constructor as the solution for the Runge Kutta stages self._registers = [] for i in range(nregisters): import copy self._registers.append(copy.deepcopy(state)) def accept_reject_step(self,state): r""" Decide whether to accept or not the current step. For Runge-Kutta methods the step is accepted if cfl <= cfl_max. For SSPLMM32 the choice of step-size guarantees the cfl condition is satisfied for the steps the LMM is used. Hence, we need to check the cfl condition only for the starting steps. """ accept_step = True cfl = self.cfl.get_cached_max() if 'LMM' in self.time_integrator: step_index = self.status['numsteps'] + 1 # Condition for starting RK methods if step_index < len(self._registers): if self.time_integrator == 'LMM': sspcoeff_ratio = 1. else: sspcoeff_ratio = self.sspcoeff0/self.sspcoeff if cfl > sspcoeff_ratio * self.cfl_max: accept_step = False # Check cfl condition for Runge-Kutta methods else: if cfl > self.cfl_max: accept_step = False return accept_step def get_dt_new(self): r""" Set size of next step depending on the time integrator and whether or not the current step was accepted. """ self.dt_old = self.dt cfl = self.cfl.get_cached_max() if 'SSPLMM' in self.time_integrator: step_index = self.status['numsteps'] + 1 if step_index < len(self._registers): # Step-size update of starting methods sspcoeff_ratio = self.sspcoeff0/self.sspcoeff self.dt = sspcoeff_ratio * self.dt * self.cfl_desired / cfl if self.time_integrator == 'SSPLMMk3' and self.check_lmm_cond and not self.lmm_cond: rho = 0.6 if len(self._registers)== 4 else 0.57 self.dt = rho * self.dt else: # Step size selection guarantees CFL condition is satified. # Only need to check 3rd-order LMM's condition if self.accept_step: s = len(self._registers) p = int(self.time_integrator[-1]) mu = min([self.prev_dtFE_values[i] for i in range(s)]) H = sum(self.prev_dt_values[1:]) self.dt = H * mu / (H + (p-1)*mu) elif self.time_integrator == 'SSPLMMk3' and self.check_lmm_cond: self.dt = 0.5 * self.dt # Step-size update for RK methods else: self.dt = self.dt * self.cfl_desired / cfl # ======================================================================== class SharpClawSolver1D(SharpClawSolver): # ======================================================================== """ SharpClaw solver for one-dimensional problems. Used to solve 1D hyperbolic systems using the SharpClaw algorithms, which are based on WENO reconstruction and Runge-Kutta time stepping. """ __doc__ += add_parent_doc(SharpClawSolver) def __init__(self,riemann_solver=None,claw_package=None): r""" See :class:`SharpClawSolver1D` for more info. """ self.num_dim = 1 self.reflect_index = [1] super(SharpClawSolver1D,self).__init__(riemann_solver,claw_package) def dq_hyperbolic(self,state): r""" Compute dq/dt * (delta t) for the hyperbolic hyperbolic system. Note that the capa array, if present, should be located in the aux variable. Indexing works like this (here num_ghost=2 as an example):: 0 1 2 3 4 mx+num_ghost-2 mx+num_ghost mx+num_ghost+2 | mx+num_ghost-1 | mx+num_ghost+1 | | | | | ... | | | | | 0 1 | 2 3 mx+num_ghost-2 |mx+num_ghost mx+num_ghost-1 mx+num_ghost+1 The top indices represent the values that are located on the grid cell boundaries such as waves, s and other Riemann problem values, the bottom for the cell centered values such as q. In particular the ith grid cell boundary has the following related information:: i-1 i i+1 | | | | i-1 | i | | | | Again, grid cell boundary quantities are at the top, cell centered values are in the cell. """ import numpy as np self._apply_bcs(state) q = self.qbc aux = self.auxbc grid = state.grid mx = grid.num_cells[0] ixy=1 if self.kernel_language=='Fortran': rp1 = self.rp.rp1._cpointer if self.tfluct_solver: tfluct1 = self.tfluct.tfluct1._cpointer else: tfluct1 = self.tfluct dq,cfl=self.fmod.flux1(q,self.auxbc,self.dt,state.t,ixy,mx,self.num_ghost,mx,rp1,tfluct1) elif self.kernel_language=='Python': dtdx = np.zeros( (mx+2*self.num_ghost) ,order='F') dq = np.zeros( (state.num_eqn,mx+2*self.num_ghost) ,order='F') # Find local value for dt/dx if state.index_capa>=0: dtdx = self.dt / (grid.delta[0] * aux[state.index_capa,:]) else: dtdx += self.dt/grid.delta[0] if aux.shape[0]>0: aux_l=aux[:,:-1] aux_r=aux[:,1: ] else: aux_l = None aux_r = None #Reconstruct (wave reconstruction uses a Riemann solve) if self.lim_type==-1: #1st-order Godunov ql=q; qr=q elif self.lim_type==0: #Unlimited reconstruction raise NotImplementedError('Unlimited reconstruction not implemented') elif self.lim_type==1: #TVD Reconstruction raise NotImplementedError('TVD reconstruction not implemented') elif self.lim_type==2: #WENO Reconstruction if self.char_decomp==0: #No characteristic decomposition ql,qr=recon.weno(5,q) elif self.char_decomp==1: #Wave-based reconstruction q_l=q[:,:-1] q_r=q[:,1: ] wave,s,amdq,apdq = self.rp(q_l,q_r,aux_l,aux_r,state.problem_data) ql,qr=recon.weno5_wave(q,wave,s) elif self.char_decomp==2: #Characteristic-wise reconstruction raise NotImplementedError # Solve Riemann problem at each interface q_l=qr[:,:-1] q_r=ql[:,1: ] wave,s,amdq,apdq = self.rp(q_l,q_r,aux_l,aux_r,state.problem_data) # Loop limits for local portion of grid # THIS WON'T WORK IN PARALLEL! LL = self.num_ghost - 1 UL = grid.num_cells[0] + self.num_ghost + 1 # Compute maximum wave speed cfl = 0.0 for mw in range(self.num_waves): smax1 = np.max( dtdx[LL :UL] *s[mw,LL-1:UL-1]) smax2 =
np.max(-dtdx[LL-1:UL-1]*s[mw,LL-1:UL-1])
numpy.max
# -*- coding: utf-8 -*- """ Created on Mon Jun 19 10:09:38 2017 @author: tih """ import os import gdal import osr import scipy import numpy as np import pandas as pd Startdate ="2017-01-01" Enddate ="2017-21-21" Temp_folder = r"K:\Weather_Data\Model\GLDAS\three_hourly\tair_f_inst\Tair_GLDAS-NOAH_C_3hour_{yyyy}.{mm:02d}.{dd:02d}_4.tif" Pres_folder = r"K:\Weather_Data\Model\GLDAS\three_hourly\psurf_f_inst\P_GLDAS-NOAH_kpa_3hour_{yyyy}.{mm:02d}.{dd:02d}_4.tif" Hum_folder = r"K:\Weather_Data\Model\GLDAS\three_hourly\qair_f_inst\Hum_GLDAS-NOAH_kg-kg_3hour_{yyyy}.{mm:02d}.{dd:02d}_4.tif" out_folder = r"K:\Weather_Data\Model\GLDAS\three_hourly\relative_humidity_inst\Humidity_GLDAS-NOAH_Percentage_3hour_{yyyy}.{mm:02d}.{dd:02d}_4.tif" folder_dir_out = os.path.dirname(out_folder) if not os.path.exists(folder_dir_out): os.makedirs(folder_dir_out) Dates = pd.date_range(Startdate, Enddate, freq = "D") def Open_array_info(filename=''): """ Opening a tiff info, for example size of array, projection and transform matrix. Keyword Arguments: filename -- 'C:/file/to/path/file.tif' or a gdal file (gdal.Open(filename)) string that defines the input tiff file or gdal file """ try: if filename.split('.')[-1] == 'tif': f = gdal.Open(r"%s" %filename) else: f = filename except: f = filename try: geo_out = f.GetGeoTransform() proj = f.GetProjection() size_X = f.RasterXSize size_Y = f.RasterYSize f = None except: print('%s does not exists' %filename) return(geo_out, proj, size_X, size_Y) def Save_as_tiff(name='', data='', geo='', projection=''): """ This function save the array as a geotiff Keyword arguments: name -- string, directory name data -- [array], dataset of the geotiff geo -- [minimum lon, pixelsize, rotation, maximum lat, rotation, pixelsize], (geospatial dataset) projection -- integer, the EPSG code """ dir_name = os.path.dirname(name) if not os.path.exists(dir_name): os.makedirs(dir_name) # save as a geotiff driver = gdal.GetDriverByName("GTiff") dst_ds = driver.Create(name, int(data.shape[1]), int(data.shape[0]), 1, gdal.GDT_Float32, ['COMPRESS=LZW']) srse = osr.SpatialReference() if projection == '': srse.SetWellKnownGeogCS("WGS84") else: try: if not srse.SetWellKnownGeogCS(projection) == 6: srse.SetWellKnownGeogCS(projection) else: try: srse.ImportFromEPSG(int(projection)) except: srse.ImportFromWkt(projection) except: try: srse.ImportFromEPSG(int(projection)) except: srse.ImportFromWkt(projection) dst_ds.SetProjection(srse.ExportToWkt()) dst_ds.GetRasterBand(1).SetNoDataValue(-9999) dst_ds.SetGeoTransform(geo) dst_ds.GetRasterBand(1).WriteArray(data) dst_ds = None return() def gap_filling(dataset, NoDataValue, method = 1): """ This function fills the no data gaps in a numpy array Keyword arguments: dataset -- 'C:/' path to the source data (dataset that must be filled) NoDataValue -- Value that must be filled """ import watertools.General.data_conversions as DC try: if dataset.split('.')[-1] == 'tif': # Open the numpy array data = Open_tiff_array(dataset) Save_as_tiff = 1 else: data = dataset Save_as_tiff = 0 except: data = dataset Save_as_tiff = 0 # fill the no data values if NoDataValue is np.nan: mask = ~(np.isnan(data)) else: mask = ~(data==NoDataValue) xx, yy = np.meshgrid(np.arange(data.shape[1]), np.arange(data.shape[0])) xym = np.vstack( (np.ravel(xx[mask]), np.ravel(yy[mask])) ).T data0 = np.ravel( data[:,:][mask] ) if method == 1: interp0 = scipy.interpolate.NearestNDInterpolator( xym, data0 ) data_end = interp0(
np.ravel(xx)
numpy.ravel
import numpy from sklearn import preprocessing def linear(intrinsic_process): assert intrinsic_process.shape[0] == 2 observed_process = numpy.empty((3, intrinsic_process.shape[1]), dtype=numpy.float64) observed_process[0] = intrinsic_process[0] observed_process[1] = intrinsic_process[1] observed_process[2] = 0 return observed_process def s_curve(intrinsic_process, k=1): assert intrinsic_process.shape[0] == 2 intrinsic_process_temp = numpy.copy(intrinsic_process) intrinsic_process_temp = (intrinsic_process_temp.T-0).T/2 observed_process = numpy.empty((3, intrinsic_process_temp.shape[1]), dtype=numpy.float64) t = 3 * numpy.pi * k * intrinsic_process_temp[0] observed_process[0] = numpy.sin(t) observed_process[1] = intrinsic_process[1]*1 observed_process[2] = numpy.sign(t) * (numpy.cos(t) - 1) return observed_process def severed_sphere(intrinsic_process, k1=5.5, k2=2): assert intrinsic_process.shape[0] == 2 intrinsic_process_temp = numpy.copy(intrinsic_process) #intrinsic_process_temp = (intrinsic_process_temp.T-numpy.mean(intrinsic_process_temp, axis=1).T).T observed_process = numpy.empty((3, intrinsic_process_temp.shape[1]), dtype=numpy.float64) observed_process[0] = numpy.sin(intrinsic_process_temp[0]*k1)*numpy.cos(intrinsic_process_temp[1]*k2) observed_process[1] = numpy.cos(intrinsic_process_temp[0]*k1)*numpy.cos(intrinsic_process_temp[1]*k2) observed_process[2] = numpy.sin(intrinsic_process_temp[1]*k2) return observed_process def twin_peaks(intrinsic_process, k=1): assert intrinsic_process.shape[0] == 2 intrinsic_process_temp = numpy.copy(intrinsic_process) intrinsic_process_temp = (intrinsic_process_temp.T-0).T/2 observed_process = numpy.empty((3, intrinsic_process_temp.shape[1]), dtype=numpy.float64) observed_process[0] = intrinsic_process_temp[0] observed_process[1] = intrinsic_process_temp[1] observed_process[2] = numpy.sin(k*intrinsic_process_temp[0])*numpy.sin(k*intrinsic_process_temp[1])/3 return observed_process def parabola2d2d(intrinsic_process, k=2): assert intrinsic_process.shape[0] == 2 scale_x = numpy.max(intrinsic_process[0]) - numpy.min(intrinsic_process[0]) scale_y = numpy.max(intrinsic_process[1]) - numpy.min(intrinsic_process[1]) scale = max(scale_x, scale_y) origin = numpy.mean(intrinsic_process, axis=1) intrinsic_process_temp = (intrinsic_process.T-origin.T).T/scale observed_process = numpy.empty((2, intrinsic_process.shape[1]), dtype=numpy.float64) observed_process[0, :] = intrinsic_process_temp[0, :] observed_process[1, :] = intrinsic_process_temp[1, :] - k * intrinsic_process_temp[0, :] ** 2 return observed_process def parabola2d3d(intrinsic_process, k=3): assert intrinsic_process.shape[0] == 2 observed_process = numpy.empty((3, intrinsic_process.shape[1]), dtype=numpy.float64) intrinsic_process = intrinsic_process - 0.5 observed_process[0, :] = intrinsic_process[0, :] observed_process[1, :] = intrinsic_process[1, :] observed_process[2, :] = k * numpy.sum(intrinsic_process ** 2, axis=0) return observed_process def singers_mushroom(intrinsic_process): assert intrinsic_process.shape[0] == 2 intrinsic_process_temp = numpy.copy(intrinsic_process) intrinsic_process_temp = (intrinsic_process_temp.T-numpy.min(intrinsic_process_temp, axis=1).T).T observed_process = numpy.empty((2, intrinsic_process_temp.shape[1]), dtype=numpy.float64) observed_process[0] = intrinsic_process_temp[0]+numpy.power(intrinsic_process_temp[1], 3) observed_process[1] = intrinsic_process_temp[1]-numpy.power(intrinsic_process_temp[0], 3) return observed_process def singers_sphere(intrinsic_process): assert intrinsic_process.shape[0] == 2 intrinsic_process_temp = intrinsic_process observed_process = numpy.empty((3, intrinsic_process_temp.shape[1]), dtype=numpy.float64) radius = numpy.sqrt(intrinsic_process_temp[0]**2+intrinsic_process_temp[1]**2+1) observed_process[0] = intrinsic_process_temp[0]/radius observed_process[1] = intrinsic_process_temp[1]/radius observed_process[2] = 1/radius return observed_process def whole_sphere(intrinsic_process, k=0.5): assert intrinsic_process.shape[0] == 2 intrinsic_process_temp = numpy.copy(intrinsic_process) intrinsic_process_temp = (intrinsic_process_temp.T-numpy.mean(intrinsic_process_temp, axis=1).T).T observed_process = numpy.empty((3, intrinsic_process_temp.shape[1]), dtype=numpy.float64) radius = numpy.sqrt(intrinsic_process_temp[0]**2+intrinsic_process_temp[1]**2) theta = numpy.arctan(intrinsic_process[1, :] / intrinsic_process[0, :]) theta[numpy.where(intrinsic_process[0, :] < 0)] = theta[numpy.where(intrinsic_process[0, :] < 0)]+numpy.pi observed_process[0] = numpy.sin(k*radius)*numpy.sin(theta) observed_process[1] = numpy.sin(k*radius)*numpy.cos(theta) observed_process[2] = -numpy.cos(k*radius) return observed_process def photo_dist(intrinsic_process, k=1.5): assert intrinsic_process.shape[0] == 2 observed_process = numpy.empty((2, intrinsic_process.shape[1]), dtype=numpy.float64) intrinsic_process = intrinsic_process - 0.5 r = numpy.sqrt(intrinsic_process[0, :] ** 2 + intrinsic_process[1, :] ** 2) observed_process[0, :] = intrinsic_process[0, :]*(1 + k * r ** 2) observed_process[1, :] = intrinsic_process[1, :]*(1 + k * r ** 2) observed_process = observed_process + 0.5 return observed_process def twirl(intrinsic_process, k=6): assert intrinsic_process.shape[0] == 2 observed_process = numpy.empty((2, intrinsic_process.shape[1]), dtype=numpy.float64) temp_mean = numpy.mean(intrinsic_process, 1) intrinsic_process = (intrinsic_process.T - temp_mean.T).T r = numpy.sqrt(intrinsic_process[0, :]**2 + intrinsic_process[1, :]**2) theta = numpy.arctan(intrinsic_process[1, :] / intrinsic_process[0, :]) theta[numpy.where(intrinsic_process[0, :] < 0)] = theta[intrinsic_process[0, :] < 0]+numpy.pi newr = r newtheta = theta + newr * k newtheta = -newtheta observed_process[0, :] = newr * numpy.cos(newtheta) observed_process[1, :] = newr * numpy.sin(newtheta) observed_process = (observed_process.T + temp_mean.T).T return observed_process def bend(intrinsic_process, k=45): assert intrinsic_process.shape[0] == 2 deg = 2*numpy.pi*(k/360) observed_process = numpy.empty((3, intrinsic_process.shape[1]), dtype=numpy.float64) for x in range(0, intrinsic_process.shape[1]): if intrinsic_process[0, x] < 0.5: observed_process[0, x] = intrinsic_process[0, x] observed_process[1, x] = intrinsic_process[1, x] observed_process[2, x] = 0 else: observed_process[0, x] = 0.5 + numpy.cos(deg)*(intrinsic_process[0, x] - 0.5) observed_process[1, x] = intrinsic_process[1, x] observed_process[2, x] = numpy.sin(deg) * (intrinsic_process[0, x] - 0.5) return observed_process def swissroll(intrinsic_process, k_r=8, k_twist=8): assert intrinsic_process.shape[0] == 2 intrinsic_process_temp = numpy.copy(intrinsic_process) intrinsic_process_temp = (intrinsic_process_temp.T-numpy.min(intrinsic_process_temp, axis=1).T).T observed_process = numpy.empty((3, intrinsic_process_temp.shape[1]), dtype=numpy.float64) observed_process[0] = k_r*intrinsic_process_temp[0] * numpy.cos(k_twist * intrinsic_process_temp[0]) observed_process[1] = intrinsic_process_temp[1]*2 observed_process[2] = k_r*intrinsic_process_temp[0] * numpy.sin(k_twist * intrinsic_process_temp[0]) return observed_process def tube(intrinsic_process, k=160): assert intrinsic_process.shape[0] == 2 scale = numpy.max(intrinsic_process[0]) - numpy.min(intrinsic_process[0]) radius = (360/k)/(2*numpy.pi) observed_process = numpy.empty((3, intrinsic_process.shape[1]), dtype=numpy.float64) observed_process[0] = radius * numpy.cos(2*numpy.pi*(k/360) * (intrinsic_process[0]/scale)) observed_process[1] = intrinsic_process[1] observed_process[2] = radius * numpy.sin(2*numpy.pi*(k/360) * (intrinsic_process[0]/scale)) min_max_scaler = preprocessing.MinMaxScaler(feature_range=(0, 1)) observed_process = min_max_scaler.fit_transform(observed_process.T).T return observed_process def helix(intrinsic_process, k=2): assert intrinsic_process.shape[0] == 2 observed_process = numpy.empty((3, intrinsic_process.shape[1]), dtype=numpy.float64) intrinsic_process = intrinsic_process - 0.5 observed_process[0, :] = intrinsic_process[0, :] observed_process[1, :] = intrinsic_process[1, :] * numpy.cos(k * numpy.pi * (intrinsic_process[0, :])) observed_process[2, :] = intrinsic_process[1, :] * numpy.sin(k * numpy.pi * (intrinsic_process[0, :])) observed_process = observed_process + 0.5 return observed_process def papillon(intrinsic_process, k=8): assert intrinsic_process.shape[0] == 2 observed_process = numpy.empty((2, intrinsic_process.shape[1]), dtype=numpy.float64) intrinsic_process = intrinsic_process - 0.5 observed_process[0, :] = intrinsic_process[0, :] + 0.5 observed_process[1, :] = intrinsic_process[1, :] + k * intrinsic_process[1, :] * intrinsic_process[0, :] ** 2 + 0.5 return observed_process def twist(intrinsic_process, k=6): assert intrinsic_process.shape[0] == 3 intrinsic_process = intrinsic_process - 0.5 r = numpy.sqrt(intrinsic_process[0, :]**2 + intrinsic_process[1, :]**2) theta = numpy.arctan(intrinsic_process[1, :] / intrinsic_process[0, :]) theta[numpy.where(intrinsic_process[0, :] < 0)] = theta[numpy.where(intrinsic_process[0, :] < 0)]+numpy.pi observed_process = numpy.empty([3, intrinsic_process.shape[1]]) observed_process[0, :] = r*numpy.cos(theta + intrinsic_process[2, :]*k) observed_process[1, :] = r*numpy.sin(theta + intrinsic_process[2, :]*k) observed_process[2, :] = intrinsic_process[2, :] observed_process = observed_process + 0.5 return observed_process def antenna(intrinsic_process, centers, amplitudes, width, angles, range_factor, reg_fact): n_antenas = centers.shape[1] observed_process =
numpy.zeros([n_antenas, intrinsic_process.shape[1]])
numpy.zeros
""" This module is the perturbation to matrix. """ import numpy as np from scipy.linalg import eigh class Pert(): def __init__(self, H0=None, evals=None, evecs=None): if evals is not None and evecs is not None: self.evals, self.evecs = evals, evecs elif H0 is not None: self.evals, self.evecs = eigh(self.H0) else: raise ValueError("at least H0| evals, evecs should be given") self.n = len(self.evals) self.evals, self.evecs = eigh(self.H0) self.dHH = None def evals1(self, dH): return self.Epert1(self.evecs, dH) def evecs1(self, dH): return self.Vpert1(self.evals, self.evecs, dH, self.n) def evals2(self, dH): return self.Epert2(self.evals, self.evecs, dH, self.n) @staticmethod def Epert1(evecs, dH): return np.diag(evecs.T.conj().dot(dH).dot(evecs)) @staticmethod def Vpert1(evals, evecs, dH, n): dV = np.zeros((n, n), dtype='complex') dHH = evecs.T.conj() @ dH @ evecs for i in range(n): for k in range(n): if abs(evals[k] - evals[i]) > 0.000001: dV[:, i] += dHH[k, i] / (evals[i] - evals[k]) * evecs[:, k] return dV @staticmethod def Epert2(evals, evecs, dH, n): d2E = np.zeros(n, dtype='complex') dHH = evecs.T.conj() @ dH @ evecs for i in range(n): for k in range(n): if abs(evals[k] - evals[i]) > 1e-10: d2E[i] += dHH[i, k] * dHH[k, i] / (evals[i] - evals[k]) return d2E def unit2(x=0.3): return np.array([[np.cos(x), np.sin(x)],[-np.sin(x), np.cos(x)]]) def test_pert_degenerate_2d(x=0.01): H0=np.array([[2,0],[0,2]]) evals0, evecs0=np.linalg.eigh(H0) H1=np.array([[1,2],[3,4]]) H1+=H1.T print(evals0) H=H0+H1*x evals, evecs=eigh(H) print("Fdiff of eval: ",(evals-evals0)/x) print("Fdiff of evec: ", (evecs-evecs0)) m=evecs0.T.conj().dot(H1).dot(evecs0) E1, c=eigh(m) print("Pert of eval: ", E1) c=c-np.eye(2) V10=np.dot( c[:,0], evecs0,) V11=np.dot(evecs0, c[:,1]) print(V10) print(V11) #test_pert_degenerate_2d() def test_pert(x, n=4): H0 = np.random.random([n, n]) H0 = H0 + H0.T evals0, evecs0 = eigh(H0) dH = np.random.random([n, n]) dH = (dH + dH.T.conj()) H = H0 + dH * x evals, evecs = eigh(H) # eigen value perturbation (1st order) dE = Pert.Epert1(evecs0, dH) dE2 = Pert.Epert2(evals0, evecs0, dH, n) print(evals) print(evals0) print(evals0 + x * dE) print(evals0 + x * dE + x * x * dE2) print(np.linalg.norm(evals0 - evals)) print(np.linalg.norm(evals0 + x * dE - evals)) print(np.linalg.norm(evals0 + x * dE + x * x * dE2 - evals)) # eigen value perturbation (2nd order) # eigen vector perturbation dV = (Pert.Vpert1(evals0, evecs0, dH, n)) print("dV:", dV) print("dV_fD:", (evecs - evecs0) / x) def gen_degerate_mat(n): H0 = np.random.random([n, n]) H0 = H0 + H0.T evals1, evecs = eigh(H0) evals = evals1 evals[0] = evals[1] H0 = evecs.dot(
np.diag(evals)
numpy.diag
# -*- coding: utf-8 -*- """ The :mod:`parsimony.utils.utils` module includes common functions and constants. Please add anything useful or that you need throughout the whole package to this module. Created on Thu Feb 8 09:22:00 2013 Copyright (c) 2013-2014, CEA/DSV/I2BM/Neurospin. All rights reserved. @author: <NAME> @email: <EMAIL> @license: BSD 3-clause. """ import warnings # from functools import wraps from time import time try: from time import clock except ImportError: from time import process_time as clock # import collections import functools import inspect import numpy as np try: from . import consts except (ValueError, SystemError): from parsimony.utils import consts # TODO: This depends on the OS. We should try to be clever here ... time_cpu = clock # UNIX-based system measures CPU time used. time_wall = time # UNIX-based system measures time in seconds since the epoch. time = time_cpu # TODO: Make it so that this can be changed by settings. __all__ = ["time_cpu", "time_wall", "time", "numpy_datatype", "deprecated", "corr", "project", "optimal_shrinkage", "AnonymousClass", "is_windows", "version", "list_op"] # _DEBUG = True def numpy_datatype(dtype): # TODO: Keep up-to-date! """Convert input type representation to a numpy data type. Parameters ---------- dtype : data-type or str The data type representation. Likely a numpy representation, or a string representation. """ # For built-in types, let numpy handle it! if isinstance(dtype, (bool, int, float, complex)): _ = np.zeros((1,), dtype=dtype) dtype = _.dtype # For special numpy types, let numpy handle it! if isinstance(dtype, (np.bool_, np.int_, np.intc, np.intp, np.float_, np.complex_)): _ = np.zeros((1,), dtype=dtype) dtype = _.dtype # If no type given, use default type (float64) if (dtype is None): dtype = consts.DATA_TYPE if hasattr(dtype, "base_dtype"): # For tensorflow inputs. dtype = dtype.base_dtype # Check for possible known types: if (dtype == "float16") or (dtype == np.float16): dtype = np.float16 elif (dtype == "float32") or (dtype == np.float32): dtype = np.float32 elif (dtype == "float64") or (dtype == np.float64): dtype = np.float64 elif (dtype == "int8") or (dtype == np.int8): dtype = np.int8 elif (dtype == "int16") or (dtype == np.int16): dtype = np.int16 elif (dtype == "int32") or (dtype == np.int32): dtype = np.int32 elif (dtype == "int64") or (dtype == np.int64): dtype = np.int64 elif (dtype == "uint8") or (dtype == np.uint8): dtype = np.uint8 elif (dtype == "uint16") or (dtype == np.uint16): dtype = np.uint16 elif (dtype == "string"): dtype = np.string elif (dtype == "bool") or (dtype == np.bool): dtype = np.bool elif (dtype == "complex64") or (dtype == np.complex64): dtype = np.complex64 elif (dtype == "complex128") or (dtype == np.complex128): dtype = np.complex128 elif (dtype == "qint8"): dtype = np.qint8 elif (dtype == "qint32"): dtype = np.qint32 elif (dtype == "quint8"): dtype = np.quint8 else: raise ValueError("Data-type not supported (%s)!" % (dtype,)) return dtype class deprecated(object): """Decorator for marking classes, functions and class functions deprecated. Adapted from: https://stackoverflow.com/questions/2536307/decorators-in-the-python-standard-lib-deprecated-specifically Parameters ---------- replaced_by : str The name of the new class or function that replaces this class or function. Examples -------- >>> import warnings >>> from parsimony.utils import deprecated >>> >>> @deprecated("other_function", filter_off=False) ... def function1(): ... return 3.14159 >>> >>> @deprecated(filter_off=False) ... def function2(): ... return 3.14159 >>> >>> class Class1(object): ... @deprecated("other_function", filter_off=False) ... def method(self): ... return 2.71828 >>> >>> @deprecated("other_function", filter_off=False) ... class Class2(object): ... pass >>> >>> with warnings.catch_warnings(): ... warnings.filterwarnings("error") # Make warnings raise exceptions ... try: ... v = function1() ... except DeprecationWarning as warning: ... print(warning) # doctest: +ELLIPSIS Function or method "..." is deprecated (use "..." instead). >>> with warnings.catch_warnings(): ... warnings.filterwarnings("error") # Make warnings raise exceptions ... try: ... v = function2() ... except DeprecationWarning as warning: ... print(warning) # doctest: +ELLIPSIS Function or method "..." is deprecated. >>> with warnings.catch_warnings(): ... warnings.filterwarnings("error") # Make warnings raise exceptions ... try: ... v = Class1().method() ... except DeprecationWarning as warning: ... print(warning) # doctest: +ELLIPSIS Function or method "..." is deprecated (use "..." instead). >>> with warnings.catch_warnings(): ... warnings.filterwarnings("error") # Make warnings raise exceptions ... try: ... v = Class2() ... except DeprecationWarning as warning: ... print(warning) # doctest: +ELLIPSIS Class "..." is deprecated (use "..." instead). """ def __init__(self, replaced_by=None, filter_off=True): if inspect.isclass(replaced_by) or inspect.isfunction(replaced_by): raise TypeError("Reason for deprecation must be supplied") self.replaced_by = replaced_by self.filter_off = bool(filter_off) def __call__(self, cls_or_func): if inspect.isfunction(cls_or_func): if hasattr(cls_or_func, 'func_code'): _code = cls_or_func.func_code else: _code = cls_or_func.__code__ if self.replaced_by is None: fmt = 'Function or method "{name}" is deprecated.' else: fmt = 'Function or method "{name}" is deprecated ' + \ '(use "{replaced_by}" instead).' filename = _code.co_filename lineno = _code.co_firstlineno + 1 elif inspect.isclass(cls_or_func): if self.replaced_by is None: fmt = 'Class "{name}" is deprecated.' else: fmt = 'Class "{name}" is deprecated (use "{replaced_by}" instead).' filename = cls_or_func.__module__ lineno = 1 else: raise TypeError(type(cls_or_func)) if self.replaced_by is None: msg = fmt.format(name=cls_or_func.__name__) else: msg = fmt.format(name=cls_or_func.__name__, replaced_by=self.replaced_by) @functools.wraps(cls_or_func) def new_func(*args, **kwargs): if self.filter_off: warnings.simplefilter("always", DeprecationWarning) # Turn off filter # warnings.warn_explicit(msg, category=DeprecationWarning, # filename=filename, lineno=lineno) warnings.warn(msg, category=DeprecationWarning, stacklevel=2) # Prints function call site instead of function definition site. if self.filter_off: warnings.simplefilter("default", DeprecationWarning) # Reset filter return cls_or_func(*args, **kwargs) return new_func #def deprecated(*replaced_by): # """This decorator can be used to mark functions as deprecated. # # Useful when phasing out old API functions. # # Parameters # ---------- # replaced_by : String. The name of the function that should be used instead. # """ # arg = True # if len(replaced_by) == 1 and isinstance(replaced_by[0], collections.Callable): # func = replaced_by[0] # replaced_by = None # arg = False # else: # replaced_by = replaced_by[0] # # def outer(func): # @wraps(func) # def with_warning(*args, **kwargs): # string = "" # if replaced_by is not None: # string = " Use %s instead." % replaced_by # # warnings.warn("Function " + str(func.__name__) + # " is deprecated." + string, # category=DeprecationWarning, # stacklevel=2) # return func(*args, **kwargs) # # with_warning.__name__ = func.__name__ # with_warning.__doc__ = func.__doc__ # with_warning.__dict__.update(func.__dict__) # # return with_warning # # if not arg: # return outer(func) # else: # return outer #@deprecated("functions.properties.Gradient.approx_grad") #def approx_grad(f, x, eps=1e-4): # p = x.shape[0] # grad = np.zeros(x.shape) # for i in xrange(p): # x[i, 0] -= eps # loss1 = f(x) # x[i, 0] += 2.0 * eps # loss2 = f(x) # x[i, 0] -= eps # grad[i, 0] = (loss2 - loss1) / (2.0 * eps) # # return grad #def make_list(a, n, default=None): # # If a list, but empty # if isinstance(a, (tuple, list)) and len(a) == 0: # a = None # # If only one value supplied, create a list with that value # if a != None: # if not isinstance(a, (tuple, list)): ## a = [a for i in xrange(n)] # a = [a] * n # else: # None or empty list supplied, create a list with the default value ## a = [default for i in xrange(n)] # a = [default] * n # return a def corr(a, b): ma = np.mean(a) mb = np.mean(b) a_ = a - ma b_ = b - mb norma = np.sqrt(np.sum(a_ ** 2, axis=0)) normb = np.sqrt(np.sum(b_ ** 2, axis=0)) norma[norma < consts.TOLERANCE] = 1.0 normb[normb < consts.TOLERANCE] = 1.0 a_ /= norma b_ /= normb ip = np.dot(a_.T, b_) if ip.shape == (1, 1): return ip[0, 0] else: return ip def project(v, u): """ Project v onto u. Examples -------- >>> import numpy as np >>> import parsimony.utils.utils as utils >>> np.random.seed(42) >>> a = np.random.rand(10, 1) >>> b = np.random.rand(10, 1) >>> utils.corr(a, b) # doctest: +ELLIPSIS 0.704... >>> c = utils.project(a, b) >>> abs(utils.corr(c, b) - 1.0) < 5e-16 True """ return (np.dot(v.T, u) /
np.dot(u.T, u)
numpy.dot
# coding: utf-8 # In[1]: import tensorflow as tf import numpy as np # In[2]: class Detector: '''识别多组图片''' def __init__(self,net_factory,data_size,batch_size,model_path): graph=tf.Graph() with graph.as_default(): self.image_op=tf.placeholder(tf.float32,[None,data_size,data_size,3]) self.cls_prob, self.bbox_pred, self.landmark_pred = net_factory(self.image_op, training=False) self.sess = tf.Session() #重载模型 saver=tf.train.Saver() model_file=tf.train.latest_checkpoint(model_path) saver.restore(self.sess,model_file) self.data_size=data_size self.batch_size=batch_size def predict(self,databatch): scores=[] batch_size=self.batch_size minibatch=[] cur=0 #所有数据总数 n=databatch.shape[0] #将数据整理成固定batch while cur<n: minibatch.append(databatch[cur:min(cur+batch_size,n),:,:,:]) cur+=batch_size cls_prob_list=[] bbox_pred_list=[] landmark_pred_list=[] for idx,data in enumerate(minibatch): m=data.shape[0] real_size=self.batch_size #最后一组数据不够一个batch的处理 if m<batch_size: keep_inds=np.arange(m) gap=self.batch_size-m while gap>=len(keep_inds): gap-=len(keep_inds) keep_inds=np.concatenate((keep_inds,keep_inds)) if gap!=0: keep_inds=np.concatenate((keep_inds,keep_inds[:gap])) data=data[keep_inds] real_size=m cls_prob,bbox_pred,landmark_pred=self.sess.run([self.cls_prob, self.bbox_pred,self.landmark_pred], feed_dict={self.image_op: data}) cls_prob_list.append(cls_prob[:real_size]) bbox_pred_list.append(bbox_pred[:real_size]) landmark_pred_list.append(landmark_pred[:real_size]) return np.concatenate(cls_prob_list, axis=0),
np.concatenate(bbox_pred_list, axis=0)
numpy.concatenate
# SPDX-FileCopyrightText: 2014-2020 <NAME> # # SPDX-License-Identifier: MIT # -*- coding: utf-8 -*- from __future__ import division, print_function import pytest import sys import numpy as np from symfit import ( Fit, Parameter, Variable, Model, GradientModel ) from symfit.core.minimizers import BFGS, DifferentialEvolution from symfit.distributions import Gaussian if sys.version_info >= (3, 0): import inspect as inspect_sig else: import funcsigs as inspect_sig class TestGlobalOptGaussian: @classmethod def setup_class(cls): np.random.seed(0) mean = (0.4, 0.4) # x, y mean 0.6, 0.4 cov = [[0.01**2, 0], [0, 0.01**2]] # TODO: evaluate gaussian at 200x200 points (?!) and add appropriate noise data =
np.random.multivariate_normal(mean, cov, 2500000)
numpy.random.multivariate_normal
import seaborn as sns import numpy as np import os import copy import scipy.io import pandas as pd import pkg_resources import nibabel as nib import numpy.linalg as npl import math import nilearn.plotting import brainsmash.mapgen.base import brainsmash.mapgen.stats from scipy.stats import pearsonr def vol2fslr(volume,out,roi=False): resource_package = 'pennlinckit' resource_path = 'Q1-Q6_R440.HEMI.SURFACE.32k_fs_LR.surf.gii' file = pkg_resources.resource_filename(resource_package, resource_path) lh_inflated = file.replace('HEMI','L').replace('SURFACE','inflated') rh_inflated = file.replace('HEMI','R').replace('SURFACE','inflated') lh_pial = file.replace('HEMI','L').replace('SURFACE','pial') rh_pial = file.replace('HEMI','R').replace('SURFACE','pial') lh_white = file.replace('HEMI','L').replace('SURFACE','white') rh_white = file.replace('HEMI','R').replace('SURFACE','white') if roi == True: right_command = "wb_command -volume-to-surface-mapping %s %s \ %s.R.func.gii \ -ribbon-constrained %s %s \ -volume-roi %s" %(volume,rh_inflated,out,rh_white,rh_pial,volume) left_command = "wb_command -volume-to-surface-mapping %s %s \ %s.L.func.gii \ -ribbon-constrained %s %s \ -volume-roi %s"%(volume,lh_inflated,out,lh_white,lh_pial,volume) if roi == False: right_command = "wb_command -volume-to-surface-mapping %s %s \ %s.R.func.gii \ -ribbon-constrained %s %s" %(volume,rh_inflated,out,rh_white,rh_pial) left_command = "wb_command -volume-to-surface-mapping %s %s \ %s.L.func.gii \ -ribbon-constrained %s %s" %(volume,lh_inflated,out,lh_white,lh_pial) os.system(left_command) os.system(right_command) def view_surf(surf,hemi='left'): resource_package = 'pennlinckit' resource_path = 'Q1-Q6_R440.HEMI.SURFACE.32k_fs_LR.surf.gii' file = pkg_resources.resource_filename(resource_package, resource_path) if hemi == 'left': inflated = file.replace('HEMI','L').replace('SURFACE','inflated') if hemi == 'right': inflated = file.replace('HEMI','R').replace('SURFACE','inflated') nilearn.plotting.view_surf(inflated,surf) def view_nifti(path): nifti = nib.load(path) nifti_data = nifti.get_fdata() nib.viewers.OrthoSlicer3D(nifti_data,nifti.affine) def yeo_partition(n_networks=17,parcels='Schaefer400'): if parcels=='Schaefer400': resource_path = 'Schaefer2018_400Parcels_17Networks_order_info.txt' resource_package = 'pennlinckit' yeo_file = pkg_resources.resource_stream(resource_package, resource_path).name full_dict_17 = {'VisCent':0,'VisPeri':1,'SomMotA':2,'SomMotB':3,'DorsAttnA':4,'DorsAttnB':5,'SalVentAttnA':6, 'SalVentAttnB':7,'LimbicA':8, 'LimbicB':9,'ContA':10,'ContB':11,'ContC':12,'DefaultA':13,'DefaultB':14,'DefaultC':15,'TempPar':16} full_dict_7 = {'VisCent':0,'VisPeri':0,'SomMotA':1,'SomMotB':1,'DorsAttnA':2,'DorsAttnB':2,'SalVentAttnA':3, 'SalVentAttnB':3,'LimbicA':4, 'LimbicB':4,'ContA':5,'ContB':5,'ContC':5,'DefaultA':6,'DefaultB':6,'DefaultC':6,'TempPar':6} name_dict = {0:'Visual',1:'Sensory\nMotor',2:'Dorsal\nAttention',3:'Ventral\nAttention',4:'Limbic',5:'Control',6:'Default'} membership = np.zeros((400)).astype(str) membership_ints = np.zeros((400)).astype(int) yeo_df = pd.read_csv(yeo_file,sep='\t',header=None,names=['name','R','G','B','0'])['name'] for i,n in enumerate(yeo_df[::2]): if n_networks == 17: membership[i] = n.split('_')[2] membership_ints[i] = int(full_dict_17[membership[i]]) if n_networks == 7: membership_ints[i] = int(full_dict_7[n.split('_')[2]]) membership[i] = name_dict[membership_ints[i]] if n_networks == 17: names = ['VisCent','VisPeri','SomMotA','SomMotB','DorsAttnA','DorsAttnB','SalVentAttnA','SalVentAttnB','LimbicA','LimbicB,''ContA','ContB','ContC','DefaultA','DefaultB','DefaultC','TempPar'] if n_networks == 7: names = ['Visual','Sensory Motor','Dorsal Attention','Ventral Attention', 'Limbic','Control','Default'] return membership,membership_ints,names def spin_test(map1,map2,parcels='Schaefer400',n=1000): if parcels == 'Schaefer400': split = 200 #where the right hemi starts resource_package = 'pennlinckit' resource_path = '%s_ROIwise_geodesic_distance_midthickness.mat'%(parcels) mat_file = scipy.io.loadmat(pkg_resources.resource_stream(resource_package, resource_path)) lh_gen = brainsmash.mapgen.base.Base(map2[:split], D= mat_file['lh_dist']) lh_maps = lh_gen(n=n) rh_gen = brainsmash.mapgen.base.Base(map2[split:], D= mat_file['rh_dist']) rh_maps = rh_gen(n=n) maps = np.append(lh_maps,rh_maps,axis=1) assert (lh_maps[0] == maps[0,:200]).all() return brainsmash.mapgen.stats.pearsonr(map1,maps)[0] def spin_stat(map1,map2,spincorrs): real_r = pearsonr(map1,map2)[0] if real_r >= 0.0: smash_p = len(spincorrs[spincorrs>real_r])/float(len(spincorrs)) else: smash_p = len(spincorrs[spincorrs<real_r])/float(len(spincorrs)) return smash_p def cut_data(data,min_cut=1.5,max_cut=1.5): """ remove outlier so your colorscale is not driven by one or two large values Parameters ---------- data: the data you want to cut min_cut: std cutoff for low values max_cut: std cutoff for high values Returns ------- out : cut data """ d = data.copy() max_v = np.mean(d) + np.std(d)*max_cut min_v = np.mean(d) - np.std(d)*min_cut d[d>max_v] = max_v d[d<min_v] = min_v return d def make_heatmap(data,cmap='stock'): """ Generate an RGB value for each value in "data" Parameters ---------- data: the data you want to colormap cmap: nicegreen, nicepurp, stock, Reds, or send your own seaborn color_palette / cubehelix_palette object Returns ------- out : RGB values """ if cmap == 'nicegreen': orig_colors = sns.cubehelix_palette(1001, rot=-.5, dark=.3) elif cmap == 'nicepurp': orig_colors = sns.cubehelix_palette(1001, rot=.5, dark=.3) elif cmap == 'stock': orig_colors = sns.color_palette("RdBu_r",n_colors=1001) elif cmap == 'Reds': orig_colors = sns.color_palette("Reds",n_colors=1001) else: orig_colors = cmap norm_data = copy.copy(data) if np.nanmin(data) < 0.0: norm_data = norm_data + (np.nanmin(norm_data)*-1) elif np.nanmin(data) > 0.0: norm_data = norm_data - (np.nanmin(norm_data)) norm_data = norm_data / float(
np.nanmax(norm_data)
numpy.nanmax
# -*- coding: utf-8 -*- __all__ = ["QuadPotentialDenseAdapt", "get_dense_nuts_step", "sample"] import numpy as np import pymc3 as pm import theano from pymc3.model import all_continuous, modelcontext from pymc3.step_methods.hmc.quadpotential import QuadPotential from pymc3.step_methods.step_sizes import DualAverageAdaptation from scipy.linalg import LinAlgError, cholesky, solve_triangular from .utils import logger class QuadPotentialDenseAdapt(QuadPotential): """Adapt a dense mass matrix from the sample covariances.""" def __init__( self, n, initial_mean=None, initial_cov=None, initial_weight=0, adaptation_window=101, doubling=True, update_steps=None, dtype="float64", ): if initial_mean is None: initial_mean = np.zeros(n, dtype=dtype) if initial_cov is None: initial_cov = np.eye(n, dtype=dtype) initial_weight = 1 if initial_cov is not None and initial_cov.ndim != 2: raise ValueError("Initial covariance must be two-dimensional.") if initial_mean is not None and initial_mean.ndim != 1: raise ValueError("Initial mean must be one-dimensional.") if initial_cov is not None and initial_cov.shape != (n, n): raise ValueError( "Wrong shape for initial_cov: expected %s got %s" % (n, initial_cov.shape) ) if len(initial_mean) != n: raise ValueError( "Wrong shape for initial_mean: expected %s got %s" % (n, len(initial_mean)) ) self.dtype = dtype self._n = n self._cov = np.array(initial_cov, dtype=self.dtype, copy=True) self._cov_theano = theano.shared(self._cov) self._chol = cholesky(self._cov, lower=True) self._chol_error = None self._foreground_cov = _WeightedCovariance( self._n, initial_mean, initial_cov, initial_weight, self.dtype ) self._background_cov = _WeightedCovariance(self._n, dtype=self.dtype) self._n_samples = 0 # For backwards compatibility self._doubling = doubling self._adaptation_window = int(adaptation_window) self._previous_update = 0 # New interface if update_steps is None: self._update_steps = None else: self._update_steps = np.atleast_1d(update_steps).astype(int) def velocity(self, x, out=None): return
np.dot(self._cov, x, out=out)
numpy.dot
import numpy as np from scipy.optimize import root from scipy.special import gammaln from scipy.linalg import cho_factor, cho_solve import scipy.stats from mogp_emulator.GPParams import CovTransform, CorrTransform, GPParams import warnings class GPPriors(object): """ Class representing prior distributions on GP Hyperparameters This class combines together the prior distributions over the hyperparameters for a GP. These are separated out into ``mean`` (which is a separate ``MeanPriors`` object), ``corr`` (a list of distributions for the correlation length parameters), ``cov`` for the covariance, and ``nugget`` for the nugget. These can be specified when initializing a new object using the appropriate kwargs, or can be set once a ``GPPriors`` object has already been created. In addition to kwargs for the distributions, an additional kwarg ``n_corr`` can be used to specify the number of correlation lengths (in the event that ``corr`` is not provided). If ``corr`` is specified, then this will override ``n_corr`` in determining the number of correlation lengths, so if both are provided then ``corr`` is used preferrentially. If neither ``corr`` or ``n_corr`` is provided, an exception will be raised. Finally, the nugget type is required to be specified when initializing a new object. :param mean: Priors on mean, must be a ``MeanPriors`` object. Optional, default is ``None`` (indicating weak prior information). :type mean: MeanPriors :param corr: Priors on correlation lengths, must be a list of prior distributions (objects derived from ``WeakPriors``). Optional, default is ``None`` (indicating weak prior information, which will automatically create an appropriate list of ``WeakPriors`` objects of the length specified by ``n_corr``). :type corr: list :param cov: Priors on covariance. Must be a ``WeakPriors`` derived object. Optional, default is ``None`` (indicating weak prior information). :type cov: WeakPriors :param nugget: Priors on nugget. Only valid if the nugget is fit. Must be a ``WeakPriors`` derived object. Optional, default is ``None`` (indicating weak prior information). :type nugget: WeakPriors :param n_corr: Integer specifying number of correlation lengths. Only used if ``corr`` is not specified. Optional, default is ``None`` to indicate number of correlation lengths is specified by ``corr``. :type n_corr: int :param nugget_type: String indicating nugget type. Must be ``"fixed"``, ``"adaptive"``, ``"fit"``, or ``"pivot"``. Optional, default is ``"fit"`` :type nugget_type: str """ def __init__(self, mean=None, corr=None, cov=None, nugget=None, n_corr=None, nugget_type="fit"): """Create new ``GPPriors`` object. """ if corr is None and n_corr is None: raise ValueError("Must provide an argument for either corr or n_corr in GPPriors") self.mean = mean self._n_corr = n_corr self.corr = corr self.cov = cov assert nugget_type in ["fit", "adaptive", "fixed", "pivot"], "Bad value for nugget type in GPPriors" self._nugget_type = nugget_type self.nugget = nugget @classmethod def default_priors(cls, inputs, n_corr, nugget_type="fit", dist="invgamma"): """ Class Method to create a ``GPPriors`` object with default values Class method that creates priors with defaults for correlation length priors and nugget. For the correlation lengths, the values of the inputs are used to infer a distribution that puts 99% of the mass between the minimum and maximum grid spacing. For the nugget (if fit), a default is used that preferrentially uses a small nugget. The mean and covariance priors are kept as weak prior information. :param inputs: Input values on which the GP will be fit. Must be a 2D numpy array with the same restrictions as the inputs to the GP class. :type inputs: ndarray :param n_corr: Number of correlation lengths. Because some kernels only use a single correlation length, this parameter specifies how to treat the inputs to derive the default correlation length priors. Must be a positive integer. :type n_corr: int :param nugget_type: String indicating nugget type. Must be ``"fixed"``, ``"adaptive"``, ``"fit"``, or ``"pivot"``. Optional, default is ``"fit"`` :type nugget_type: str :param dist: Distribution to fit to the correlation lengths. Must be either a class derived from ``WeakPriors`` with a ``default_prior`` class method, or ``"lognormal"``, ``"gamma"``, or ``"invgamma"``. Default is ``"invgamma"``. :type dist: str or WeakPriors derived class : """ assert nugget_type in ["fit", "adaptive", "fixed", "pivot"], "Bad value for nugget type in GPPriors" if dist.lower() == "lognormal": dist_obj = LogNormalPrior elif dist.lower() == "gamma": dist_obj = GammaPrior elif dist.lower() == "invgamma": dist_obj = InvGammaPrior else: if not isinstance(dist, (LogNormalPrior, GammaPrior, InvGammaPrior)): raise TypeError("dist must be a prior distribution to contstruct default priors") dist_obj = dist if inputs.shape[1] == n_corr: modified_inputs = np.transpose(inputs) elif n_corr == 1: modified_inputs = np.reshape(inputs, (1, -1)) else: raise ValueError("Number of correlation lengths not compatible with input array") priors = [dist_obj.default_prior_corr(param) for param in modified_inputs] priors_updated = [p if isinstance(p, dist_obj) else InvGammaPrior.default_prior_corr_mode(param) for (p, param) in zip(priors, modified_inputs)] if nugget_type == "fit": nugget = InvGammaPrior.default_prior_nugget() else: nugget = None return cls(mean=None, corr=priors_updated, cov=None, nugget=nugget, nugget_type=nugget_type) @property def mean(self): """ Mean Prior information The mean prior information is held in a ``MeanPriors`` object. Can be set using a ``MeanPriors`` object or ``None`` """ return self._mean @mean.setter def mean(self, newmean): "Setter method for mean" if newmean is None: self._mean = MeanPriors() elif isinstance(newmean, MeanPriors): self._mean = newmean else: try: self._mean = MeanPriors(*newmean) except TypeError: raise ValueError("Bad value for defining a MeanPriors object in GPPriors, " + "argument must be an iterable containing the mean " + "vector and the covariance as a float/vector/matrix") @property def n_mean(self): """ Number of mean parameters :returns: Number of parameters for the ``MeanPrior`` object. If the mean prior is weak or there is no mean function, returns ``None``. :rtype: int or None """ return self.mean.n_params @property def corr(self): """ Correlation Length Priors Must be a list of distributions/None. When class object is initialized, must either set number of correlation parameters explicitly or pass a list of prior objects. If only number of parameters, will generate a list of NoneTypes of that length (assumes weak prior information). If list provided, will use that and override the value of number of correlation parameters. Can change the length by setting this attribute. n_corr will automatically update. """ return self._corr @corr.setter def corr(self, newcorr): "setter method for corr" if newcorr is None: newcorr = [WeakPrior()]*self.n_corr try: list(newcorr) except TypeError: raise TypeError("Correlation priors must be a list of WeakPrior derived objects") assert len(newcorr) > 0, "Correlation priors must be a list of nonzero length" for d in newcorr: if not issubclass(type(d), WeakPrior): raise TypeError("Correlation priors must be a list of WeakPrior derived objects") self._corr = list(newcorr) if not self.n_corr is None and not self.n_corr == len(self._corr): print("Length of corr argument differs from specified value of n_corr. " + "Defaulting to the value given by the corr argument.") self._n_corr = len(self._corr) @property def n_corr(self): """ Number of correlation length parameters """ return self._n_corr @property def cov(self): """Covariance Scale Priors Prior distribution on Covariance Scale. Can be set using a ``WeakPriors`` derived object. """ return self._cov @cov.setter def cov(self, newcov): "Setter method for cov" if newcov is None: newcov = WeakPrior() if not issubclass(type(newcov), WeakPrior): raise TypeError("Covariance prior must be a WeakPrior derived object") self._cov = newcov @property def nugget_type(self): """ Nugget fitting method for the parent GP. """ return self._nugget_type @property def nugget(self): """ Nugget prior distribution If a nugget is fit, this determines the prior used. If the nugget is not fit, will automatically set this to ``None``. """ return self._nugget @nugget.setter def nugget(self, newnugget): "Setter method for nugget" if self.nugget_type in ["pivot", "adaptive", "fixed"] and not newnugget is None: print("Nugget type does not support prior distribution, setting to None") newnugget = None if newnugget is None and self.nugget_type == "fit": newnugget = WeakPrior() if not (newnugget is None or issubclass(type(newnugget), WeakPrior)): raise TypeError("Nugget prior must be a WeakPrior derived object or None") self._nugget = newnugget def _check_theta(self, theta): """ Perform checks on a ``GPParams`` object to ensure it matches this ``GPPriors`` object. """ if not isinstance(theta, GPParams): raise TypeError("theta must be a GPParams object when computing priors in GPPriors") assert self.n_corr == theta.n_corr, "Provided GPParams object does not have the correct number of parameters" assert self.nugget_type == theta.nugget_type, "Provided GPParams object does not have the correct nugget type" assert not theta.get_data() is None, "Provided GPParams object does not have its data set" def logp(self, theta): """ Compute log probability given a ``GPParams`` object Takes a ``GPParams`` object, this method computes the sum of the log probability of all of the sub-distributions. Returns a float. :param theta: Hyperparameter values at which the log prior is to be computed. Must be a ``GPParams`` object whose attributes match this ``GPPriors`` object. :type theta: GPParams :returns: Sum of the log probability of all prior distributions :rtype: float """ self._check_theta(theta) logposterior = 0. for dist, val in zip(self._corr, theta.corr): logposterior += dist.logp(val) logposterior += self._cov.logp(theta.cov) if self.nugget_type == "fit": logposterior += self._nugget.logp(theta.nugget) return logposterior def dlogpdtheta(self, theta): """ Compute derivative of the log probability given a ``GPParams`` object Takes a ``GPParams`` object, this method computes the derivative of the log probability of all of the sub-distributions with respect to the raw hyperparameter values. Returns a numpy array of length ``n_params`` (the number of fitting parameters in the ``GPParams`` object). :param theta: Hyperparameter values at which the log prior derivative is to be computed. Must be a ``GPParams`` object whose attributes match this ``GPPriors`` object. :type theta: GPParams :returns: Gradient of the log probability. Length will be the value of ``n_params`` of the ``GPParams`` object. :rtype: ndarray """ self._check_theta(theta) partials = [] for dist, val in zip(self._corr, theta.corr): partials.append(dist.dlogpdtheta(val, CorrTransform)) partials.append(self._cov.dlogpdtheta(theta.cov, CovTransform)) if self.nugget_type == "fit": partials.append(self._nugget.dlogpdtheta(theta.nugget, CovTransform)) return np.array(partials) def d2logpdtheta2(self, theta): """ Compute the second derivative of the log probability given a ``GPParams`` object Takes a ``GPParams`` object, this method computes the second derivative of the log probability of all of the sub-distributions with respect to the raw hyperparameter values. Returns a numpy array of length ``n_params`` (the number of fitting parameters in the ``GPParams`` object). :param theta: Hyperparameter values at which the log prior second derivative is to be computed. Must be a ``GPParams`` object whose attributes match this ``GPPriors`` object. :type theta: GPParams :returns: Hessian of the log probability. Length will be the value of ``n_params`` of the ``GPParams`` object. (Note that since all mixed partials are zero, this returns the diagonal of the Hessian as an array) :rtype: ndarray """ self._check_theta(theta) hessian = [] for dist, val in zip(self._corr, theta.corr): hessian.append(dist.d2logpdtheta2(val, CorrTransform)) hessian.append(self._cov.d2logpdtheta2(theta.cov, CovTransform)) if self.nugget_type == "fit": hessian.append(self._nugget.d2logpdtheta2(theta.nugget, CovTransform)) return np.array(hessian) def sample(self): """ Draw a set of samples from the prior distributions Draws a set of samples from the prior distributions associated with this GPPriors object. Used in fitting to initialize the minimization algorithm. :returns: Random draw from each distribution, transformed to the raw hyperparameter values. Will be a numpy array with length ``n_params`` of the associated ``GPParams`` object. """ sample_pt = [] for dist in self._corr: sample_pt.append(dist.sample(CorrTransform)) sample_pt.append(self._cov.sample(CovTransform)) if self.nugget_type == "fit": sample_pt.append(self._nugget.sample(CovTransform)) return np.array(sample_pt) def __str__(self): return str(self._priors) class MeanPriors(object): """ Object holding mean priors (mean vector and covariance float/vector/matrix assuming a multivariate normal distribution). Includes methods for computing the inverse and determinant of the covariance and the inverse of the covariance multiplied by the mean. Note that if weak prior information is provided, or if there is no mean function, the methods here will still work correctly given the desired calling context. :param mean: Mean vector of the multivariate normal prior distribution :type mean: ndarray :param cov: Scalar variance, vector variance, or covariance matrix of the covariance of the prior distribution. Must be a float or 1D or 2D numpy array. :type cov: float or ndarray """ def __init__(self, mean=None, cov=None): if mean is None: self.mean = None if not cov is None: warnings.warn("Both mean and cov need to be set to form a valid nontrivial " + "MeanPriors object. mean is not provided, so ignoring the " + "provided cov.") self.cov = None self.Lb = None else: self.mean = np.reshape(np.array(mean), (-1,)) if cov is None: raise ValueError("Both mean and cov need to be set to form a valid MeanPriors object") self.cov = np.array(cov) self.Lb = None if self.cov.ndim == 0: assert self.cov > 0., "covariance term must be greater than zero in MeanPriors" elif self.cov.ndim == 1: assert len(self.cov) == len(self.mean), "mean and variances must have the same length in MeanPriors" assert np.all(self.cov > 0.), "all variances must be greater than zero in MeanPriors" elif self.cov.ndim == 2: assert self.cov.shape[0] == len(self.mean), "mean and covariances must have the same shape in MeanPriors" assert self.cov.shape[1] == len(self.mean), "mean and covariances must have the same shape in MeanPriors" assert np.all(np.diag(self.cov) > 0.), "all covariances must be greater than zero in MeanPriors" self.Lb = cho_factor(self.cov) else: raise ValueError("Bad shape for the covariance in MeanPriors") @property def n_params(self): r""" Number of parameters associated with the mean :returns: number of mean parameters (or zero if prior information is weak) :rtype: int """ if self.mean is None: return 0 else: return len(self.mean) @property def has_weak_priors(self): r""" Property indicating if the Mean has weak prior information :returns: Boolean indicating if prior information is weak :rtype: bool """ return self.mean is None def dm_dot_b(self, dm): r""" Take dot product of mean with a design matrix Returns the dot product of a design matrix with the prior distribution mean vector. If prior information is weak or there is no mean function, returns zeros of the appropriate shape. :param dm: Design matrix, array with shape ``(n, n_mean)`` :type dm: ndarray or patsy.DesignMatrix :returns: dot product of design matrix with prior distribution mean vector. :rtype: ndarray """ if self.mean is None: return np.zeros(dm.shape[0]) else: return np.dot(dm, self.mean) def inv_cov(self): r""" Compute the inverse of the covariance matrix Returns the inverse covariance matrix or zero if prior information is weak. Returns a float or a 2D numpy array with shape ``(n_mean, n_mean)``. :returns: Inverse of the covariance matrix or zero if prior information is weak. If the inverse is returned, it will be a numpy array of shape ``(n_mean, n_mean)``. :rtype: ndarray or float """ if self.cov is None: return 0. elif self.cov.ndim < 2: inv_cov = np.zeros((len(self.mean), len(self.mean))) np.fill_diagonal(inv_cov, np.broadcast_to(1./self.cov, (len(self.mean),))) return inv_cov else: return cho_solve(self.Lb, np.eye(len(self.mean))) def inv_cov_b(self): r""" Compute the inverse of the covariance matrix times the mean vector In the log posterior computations, the inverse of the covariance matrix multiplied by the mean is required. This method correctly returns zero in the event mean prior information is weak. :returns: Inverse covariance matrix multiplied by the mean of the prior distribution. Returns an array with length of the number of mean parameters or a float (in the event of weak prior information) :rtype: ndarray or float """ if self.cov is None: return 0. elif self.cov.ndim < 2: return self.mean/self.cov else: return cho_solve(self.Lb, self.mean) def logdet_cov(self): r""" Compute the log of the determinant of the covariance Computes the log determininant of the mean prior covariance. Correctly returns zero if the prior information on the mean is weak. :returns: Log determinant of the covariance matrix :rtype: float """ if self.cov is None: return 0. elif self.cov.ndim < 2: return np.sum(np.log(np.broadcast_to(self.cov, (len(self.mean),)))) else: return 2.*np.sum(np.log(np.diag(self.Lb[0]))) def __str__(self): return "MeanPriors with mean = {} and cov = {}".format(self.mean, self.cov) class WeakPrior(object): r""" Base Prior class implementing weak prior information This was implemented to avoid using ``None`` to signify weak prior information, which required many different conditionals that made the code clunky. In this implementation, all parameters have a prior distribution to simplify implementation and clarify the methods for computing the log probabilities. """ def logp(self, x): r""" Computes log probability at a given value :param x: Value of (transformed) variable :type x: float :returns: Log probability :rtype: float """ return 0. def dlogpdx(self, x): r""" Computes derivative of log probability with respect to the transformed variable at a given value :param x: Value of (transformed) variable :type x: float :returns: Derivative of Log probability :rtype: float """ return 0. def dlogpdtheta(self, x, transform): r""" Computes derivative of log probability with respect to the raw variable at a given value. Requires passing the transform to apply to the variable to correctly compute the derivative. :param x: Value of (transformed) variable :type x: float :param transform: Transform to apply to the derivative to use the chain rule to compute the derivative. Must be one of ``CorrTransform`` or ``CovTransform``. :type transform: CorrTransform or CovTransform :returns: Derivative of Log probability :rtype: float """ return float(self.dlogpdx(x)*transform.dscaled_draw(x)) def d2logpdx2(self, x): r""" Computes second derivative of log probability with respect to the transformed variable at a given value :param x: Value of (transformed) variable :type x: float :returns: Second derivative of Log probability :rtype: float """ return 0. def d2logpdtheta2(self, x, transform): r""" Computes second derivative of log probability with respect to the raw variable at a given value. Requires passing the transform to apply to the variable to correctly compute the derivative. :param x: Value of (transformed) variable :type x: float :param transform: Transform to apply to the derivative to use the chain rule to compute the derivative. Must be one of ``CorrTransform`` or ``CovTransform``. :type transform: CorrTransform or CovTransform :returns: Derivative of Log probability :rtype: float """ return float(self.d2logpdx2(x)*transform.dscaled_draw(x)**2 + self.dlogpdx(x)*transform.d2scaled_draw2(x)) def sample(self, transform=None): r""" Draws a random sample from the distribution and transform to the raw parameter values :param transform: Transform to apply to the sample. Must be one of ``CorrTransform`` or ``CovTransform``. Note that for a ``WeakPrior`` object this argument is optional as it is ignored, though derived classes require this argument. :type transform: CorrTransform or CovTransform :returns: Raw random sample from the distribution :rtype: float """ return float(5.*(np.random.rand() - 0.5)) class PriorDist(WeakPrior): r""" Generic Prior Distribution Object This implements the generic methods for all non-weak prior distributions such as default priors and sampling methods. Requires a derived method to implement ``logp``, ``dlogpdx``, ``d2logpdx2``, and ``sample_x``. """ @classmethod def default_prior(cls, min_val, max_val): r""" Computes default priors given a min and max val between which 99% of the mass should be found. Both min and max must be positive as the supported distributions are defined over :math:`[0, +\inf]` This stabilizes the solution, as it prevents the algorithm from getting stuck outside these ranges as the likelihood tends to be flat on those areas. Optionally, can change the distribution to be a lognormal or gamma distribution by specifying the ``dist`` argument. Note that the function assumes only a single input dimension is provided. Thus, any input array will be flattened before processing. If the root-finding algorithm fails, then the function will return ``None`` to revert to a flat prior. :param min_val: Minimum value of the input spacing :type min_val: float :param max_val: Maximum value of the input spacing :type max_val: float :returns: Distribution with fit parameters :rtype: Type derived from ``PriorDist`` """ if cls == InvGammaPrior: dist_obj = scipy.stats.invgamma elif cls == GammaPrior: dist_obj = scipy.stats.gamma elif cls == LogNormalPrior: dist_obj = scipy.stats.lognorm else: raise ValueError("Default prior must be invgamma, gamma, or lognormal") assert min_val > 0., "min_val must be positive for InvGamma, Gamma, or LogNormal distributions" assert max_val > 0., "max_val must be positive for InvGamma, Gamma, or LogNormal distributions" assert min_val < max_val, "min_val must be less than max_val" def f(x): assert len(x) == 2 cdf = dist_obj(np.exp(x[0]), scale=np.exp(x[1])).cdf return np.array([cdf(min_val) - 0.005, cdf(max_val) - 0.995]) result = root(f, np.zeros(2)) if not result["success"]: print("Prior solver failed to converge") return WeakPrior() else: return cls(np.exp(result["x"][0]), np.exp(result["x"][1])) @classmethod def default_prior_corr(cls, inputs): r""" Compute default priors on a set of inputs for the correlation length Takes a set of inputs and computes the min and max spacing before calling the ``default_prior`` method of the class in question to generate a distribution. Used in computing the correlation length default prior. :param inputs: Input values on which the distribution will be fit. Must be a 1D numpy array (note that 2D arrays will be flattened). :type inputs: ndarray :returns: Prior distribution with fit parameters :rtype: PriorDist derived object """ min_val = min_spacing(inputs) max_val = max_spacing(inputs) if min_val == 0. or max_val == 0.: print("Too few unique inputs; defaulting to flat priors") return WeakPrior() return cls.default_prior(min_val, max_val) def sample_x(self): r""" Draws a random sample from the distribution :returns: Transformed random sample from the distribution :rtype: float """ raise NotImplementedError("PriorDist does not implement a sampler") def sample(self, transform): r""" Draws a random sample from the distribution and transform to the raw parameter values :param transform: Transform to apply to the sample. Must be one of ``CorrTransform`` or ``CovTransform``. :type transform: CorrTransform or CovTransform :returns: Raw random sample from the distribution :rtype: float """ return transform.inv_transform(self.sample_x()) class NormalPrior(PriorDist): r""" Normal Distribution Prior object Admits input values from -inf/+inf. Take two parameters: mean and std. Mean can take any numeric value, while std must be positive. """ def __init__(self, mean, std): self.mean = mean assert std > 0., "std parameter must be positive" self.std = std def logp(self, x): r""" Computes log probability at a given value :param x: Value of (transformed) variable :type x: float :returns: Log probability :rtype: float """ return -0.5*((x - self.mean)/self.std)**2 - np.log(self.std) - 0.5*np.log(2.*np.pi) def dlogpdx(self, x): r""" Computes derivative of log probability with respect to the transformed variable at a given value :param x: Value of (transformed) variable :type x: float :returns: Derivative of Log probability :rtype: float """ return -(x - self.mean)/self.std**2 def d2logpdx2(self, x): r""" Computes second derivative of log probability with respect to the transformed variable at a given value :param x: Value of (transformed) variable :type x: float :returns: Second derivative of Log probability :rtype: float """ return -self.std**(-2) def sample_x(self): r""" Draws a random sample from the distribution :returns: Transformed random sample from the distribution :rtype: float """ return float(scipy.stats.norm.rvs(size=1, loc=self.mean, scale=self.std)) class LogNormalPrior(PriorDist): r""" Normal Distribution Prior object Admits input values from 0/+inf. Take two parameters: shape and scale, both of which must be positive """ def __init__(self, shape, scale): assert shape > 0., "shape must be greater than zero" assert scale > 0., "scale must be greater than zero" self.shape = shape self.scale = scale def logp(self, x): r""" Computes log probability at a given value :param x: Value of (transformed) variable :type x: float :returns: Log probability :rtype: float """ assert x > 0 return (-0.5*(np.log(x/self.scale)/self.shape)**2 - 0.5*
np.log(2.*np.pi)
numpy.log
# Copyright (C) 2020-2022 <NAME>, <NAME>, and others # SPDX-License-Identifier: MIT from typing import Tuple import numpy as np from warnings import warn from . import kernel as _kernel from . import poly from . import sve class AbstractBasis: """Abstract base class for intermediate representation bases.""" @property def u(self): """Basis functions on the (reduced) imaginary time axis. Set of IR basis functions on the imaginary time (`tau`) or reduced imaginary time (`x`) axis. To obtain the value of all basis functions at a point or a array of points `x`, you can call the function ``u(x)``. To obtain a single basis function, a slice or a subset `l`, you can use ``u[l]``. """ raise NotImplementedError() @property def uhat(self): """Basis functions on the reduced Matsubara frequency (`wn`) axis. To obtain the value of all basis functions at a Matsubara frequency or a array of points `wn`, you can call the function ``uhat(wn)``. Note that we expect reduced frequencies, which are simply even/odd numbers for bosonic/fermionic objects. To obtain a single basis function, a slice or a subset `l`, you can use ``uhat[l]``. """ raise NotImplementedError() @property def s(self): """Vector of singular values of the continuation kernel""" raise NotImplementedError() @property def v(self): """Basis functions on the (reduced) real frequency axis. Set of IR basis functions on the real frequency (`omega`) or reduced real-frequency (`y`) axis. To obtain the value of all basis functions at a point or a array of points `y`, you can call the function ``v(y)``. To obtain a single basis function, a slice or a subset `l`, you can use ``v[l]``. """ raise NotImplementedError() @property def statistics(self): """Quantum statistic (`"F"` for fermionic, `"B"` for bosonic)""" raise NotImplementedError() @property def accuracy(self): """Accuracy of singular value cutoff""" return self.s[-1] / self.s[0] def __getitem__(self, index): """Return basis functions/singular values for given index/indices. This can be used to truncate the basis to the n most significant singular values: `basis[:3]`. """ raise NotImplementedError() @property def size(self): """Number of basis functions / singular values""" return self.s.size @property def shape(self): """Shape of the basis function set""" return self.s.shape @property def kernel(self): """Kernel of which this is the singular value expansion""" raise NotImplementedError() @property def sve_result(self): raise NotImplementedError() @property def lambda_(self): """Basis cutoff parameter Λ = β * ωmax""" return self.kernel.lambda_ @property def beta(self): """Inverse temperature or `None` because unscaled basis""" raise NotImplementedError() @property def wmax(self): """Real frequency cutoff (this is `None` because unscaled basis)""" raise NotImplementedError() def default_tau_sampling_points(self): """Default sampling points on the imaginary time/x axis""" return _default_sampling_points(self.u) def default_omega_sampling_points(self): """Default sampling points on the real frequency axis""" return self.v[-1].deriv().roots() def default_matsubara_sampling_points(self, *, mitigate=True): """Default sampling points on the imaginary frequency axis""" return _default_matsubara_sampling_points(self.uhat, mitigate) @property def is_well_conditioned(self): """Returns True if the sampling is expected to be well-conditioned""" return True class DimensionlessBasis(AbstractBasis): """Intermediate representation (IR) basis in reduced variables. For a continuation kernel from real frequencies, ω ∈ [-ωmax, ωmax], to imaginary time, τ ∈ [0, β], this class stores the truncated singular value expansion or IR basis:: K(x, y) ≈ sum(u[l](x) * s[l] * v[l](y) for l in range(L)) The functions are given in reduced variables, ``x = 2*τ/β - 1`` and ``y = ω/ωmax``, which scales both sides to the interval ``[-1, 1]``. The kernel then only depends on a cutoff parameter ``Λ = β * ωmax``. Example: The following example code assumes the spectral function is a single pole at x = 0.2:: # Compute IR basis suitable for fermions and β*W <= 42 import sparse_ir basis = sparse_ir.DimensionlessBasis(statistics='F', lambda_=42) # Assume spectrum is a single pole at x = 0.2, compute G(iw) # on the first few Matsubara frequencies gl = basis.s * basis.v(0.2) giw = gl @ basis.uhat([1, 3, 5, 7]) See also: :class:`FiniteTempBasis` for a basis directly in time/frequency. """ def __init__(self, statistics, lambda_, eps=None, *, kernel=None, sve_result=None): if not (lambda_ >= 0): raise ValueError("kernel cutoff lambda must be non-negative") if eps is None and sve_result is None and not sve.HAVE_XPREC: warn("xprec package is not available:\n" "expect single precision (1.5e-8) only as both cutoff and\n" "accuracy of the basis functions") # Calculate basis functions from truncated singular value expansion self._kernel = _get_kernel(statistics, lambda_, kernel) if sve_result is None: sve_result = sve.compute(self._kernel, eps) u, s, v = sve_result else: u, s, v = sve_result if u.shape != s.shape or s.shape != v.shape: raise ValueError("mismatched shapes in SVE") self._statistics = statistics # The radius of convergence of the asymptotic expansion is Lambda/2, # so for significantly larger frequencies we use the asymptotics, # since it has lower relative error. even_odd = {'F': 'odd', 'B': 'even'}[statistics] self._u = u self._uhat = u.hat(even_odd, n_asymp=self._kernel.conv_radius) self._s = s self._v = v def __getitem__(self, index): u, s, v = self.sve_result sve_result = u[index], s[index], v[index] return DimensionlessBasis(self._statistics, self._kernel.lambda_, kernel=self._kernel, sve_result=sve_result) @property def statistics(self): return self._statistics @property def u(self) -> poly.PiecewiseLegendrePoly: return self._u @property def uhat(self) -> poly.PiecewiseLegendreFT: return self._uhat @property def s(self) -> np.ndarray: return self._s @property def v(self) -> poly.PiecewiseLegendrePoly: return self._v @property def kernel(self): return self._kernel @property def beta(self): return None @property def wmax(self): return None @property def sve_result(self): return self._u, self._s, self._v class FiniteTempBasis(AbstractBasis): """Intermediate representation (IR) basis for given temperature. For a continuation kernel from real frequencies, ω ∈ [-ωmax, ωmax], to imaginary time, τ ∈ [0, beta], this class stores the truncated singular value expansion or IR basis:: K(τ, ω) ≈ sum(u[l](τ) * s[l] * v[l](ω) for l in range(L)) This basis is inferred from a reduced form by appropriate scaling of the variables. Example: The following example code assumes the spectral function is a single pole at ω = 2.5:: # Compute IR basis for fermions and β = 10, W <= 4.2 import sparse_ir basis = sparse_ir.FiniteTempBasis(statistics='F', beta=10, wmax=4.2) # Assume spectrum is a single pole at ω = 2.5, compute G(iw) # on the first few Matsubara frequencies gl = basis.s * basis.v(2.5) giw = gl @ basis.uhat([1, 3, 5, 7]) """ def __init__(self, statistics, beta, wmax, eps=None, *, kernel=None, sve_result=None): if not (beta > 0): raise ValueError("inverse temperature beta must be positive") if not (wmax >= 0): raise ValueError("frequency cutoff must be non-negative") if eps is None and sve_result is None and not sve.HAVE_XPREC: warn("xprec package is not available:\n" "expect single precision (1.5e-8) only as both cutoff and\n" "accuracy of the basis functions") # Calculate basis functions from truncated singular value expansion self._kernel = _get_kernel(statistics, beta * wmax, kernel) if sve_result is None: sve_result = sve.compute(self._kernel, eps) u, s, v = sve_result else: u, s, v = sve_result if u.shape != s.shape or s.shape != v.shape: raise ValueError("mismatched shapes in SVE") if u.xmin != -1 or u.xmax != 1: raise RuntimeError("u must be defined in the reduced variable.") self._sve_result = sve_result self._statistics = statistics self._beta = beta self._wmax = wmax self._accuracy = s[-1] / s[0] # The polynomials are scaled to the new variables by transforming the # knots according to: tau = beta/2 * (x + 1), w = wmax * y. Scaling # the data is not necessary as the normalization is inferred. self._u = u.__class__(u.data, beta/2 * (u.knots + 1), beta/2 * u.dx, u.symm) self._v = v.__class__(v.data, wmax * v.knots, wmax * v.dx, v.symm) # The singular values are scaled to match the change of variables, with # the additional complexity that the kernel may have an additional # power of w. self._s = np.sqrt(beta/2 * wmax) * (wmax**(-self.kernel.ypower)) * s # HACK: as we don't yet support Fourier transforms on anything but the # unit interval, we need to scale the underlying data. This breaks # the correspondence between U.hat and Uhat though. uhat_base = u.__class__(np.sqrt(beta) * u.data, u, symm=u.symm) conv_radius = 40 * self.kernel.lambda_ _even_odd = {'F': 'odd', 'B': 'even'}[statistics] self._uhat = uhat_base.hat(_even_odd, conv_radius) def __getitem__(self, index): u, s, v = self.sve_result sve_result = u[index], s[index], v[index] return FiniteTempBasis(self._statistics, self._beta, self._wmax, kernel=self._kernel, sve_result=sve_result) @property def statistics(self): return self._statistics @property def beta(self): return self._beta @property def wmax(self): return self._wmax @property def u(self) -> poly.PiecewiseLegendrePoly: return self._u @property def uhat(self) -> poly.PiecewiseLegendreFT: return self._uhat @property def s(self) -> np.ndarray: return self._s @property def v(self) -> poly.PiecewiseLegendrePoly: return self._v @property def kernel(self): return self._kernel @property def sve_result(self): return self._sve_result def finite_temp_bases( beta: float, wmax: float, eps: float = None, sve_result: tuple = None )-> Tuple[FiniteTempBasis, FiniteTempBasis]: """Construct FiniteTempBasis objects for fermion and bosons Construct FiniteTempBasis objects for fermion and bosons using the same LogisticKernel instance. """ if sve_result is None: sve_result = sve.compute(_kernel.LogisticKernel(beta*wmax), eps) basis_f = FiniteTempBasis("F", beta, wmax, eps, sve_result=sve_result) basis_b = FiniteTempBasis("B", beta, wmax, eps, sve_result=sve_result) return basis_f, basis_b def _default_sampling_points(u): poly = u[-1] maxima = poly.deriv().roots() left = .5 * (maxima[:1] + poly.xmin) right = .5 * (maxima[-1:] + poly.xmax) return np.concatenate([left, maxima, right]) def _default_matsubara_sampling_points(uhat, mitigate=True): # Use the (discrete) extrema of the corresponding highest-order basis # function in Matsubara. This turns out to be close to optimal with # respect to conditioning for this size (within a few percent). polyhat = uhat[-1] wn = polyhat.extrema() # While the condition number for sparse sampling in tau saturates at a # modest level, the conditioning in Matsubara steadily deteriorates due # to the fact that we are not free to set sampling points continuously. # At double precision, tau sampling is better conditioned than iwn # by a factor of ~4 (still OK). To battle this, we fence the largest # frequency with two carefully chosen oversampling points, which brings # the two sampling problems within a factor of 2. if mitigate: wn_outer = wn[[0, -1]] wn_diff = 2 * np.round(0.025 * wn_outer).astype(int) if wn.size >= 20: wn = np.hstack([wn, wn_outer - wn_diff]) if wn.size >= 42: wn = np.hstack([wn, wn_outer + wn_diff]) wn = np.unique(wn) # For boson, include "0". if wn[0] % 2 == 0: wn = np.unique(
np.hstack((0, wn))
numpy.hstack
# coding: utf-8 import numpy as np def aryfmt(i): if float("%.3f" % abs(i)) == 0: return "%.3f" % abs(i) return "%.3f" % i def print_array(data): print(" ".join(list([aryfmt(i) for i in data]))) x = np.arange(-5.0, 5.0, 0.1) print(len(x)) print_array(list(x)) """ maximum """ y =
np.maximum(0, x)
numpy.maximum
"""Multi-dimentional Gaussian copula mutual information estimation.""" import numpy as np from scipy.special import psi from itertools import product from frites.core.copnorm import copnorm_nd ############################################################################### ############################################################################### # N-D TOOLS ############################################################################### ############################################################################### def nd_reshape(x, mvaxis=None, traxis=-1): """Multi-dimentional reshaping. This function is used to be sure that an nd array has a correct shape of (..., mvaxis, traxis). Parameters ---------- x : array_like Multi-dimentional array mvaxis : int | None Spatial location of the axis to consider if multi-variate analysis is needed traxis : int | -1 Spatial location of the trial axis. By default the last axis is considered Returns ------- x_rsh : array_like The reshaped multi-dimentional array of shape (..., mvaxis, traxis) """ assert isinstance(traxis, int) traxis = np.arange(x.ndim)[traxis] # Create an empty mvaxis axis if not isinstance(mvaxis, int): x = x[..., np.newaxis] mvaxis = -1 assert isinstance(mvaxis, int) mvaxis = np.arange(x.ndim)[mvaxis] # move the multi-variate and trial axis x = np.moveaxis(x, (mvaxis, traxis), (-2, -1)) return x def nd_shape_checking(x, y, mvaxis, traxis): """Check that the shape between two ndarray is consitent. x.shape = (nx_1, ..., n_xn, x_mvaxis, traxis) y.shape = (nx_1, ..., n_xn, y_mvaxis, traxis) """ assert x.ndim == y.ndim dims = np.delete(np.arange(x.ndim), -2) assert all([x.shape[k] == y.shape[k] for k in dims]) ############################################################################### ############################################################################### # MUTUAL INFORMATION ############################################################################### ############################################################################### def mi_nd_gg(x, y, mvaxis=None, traxis=-1, biascorrect=True, demeaned=False, shape_checking=True): """Multi-dimentional MI between two Gaussian variables in bits. Parameters ---------- x, y : array_like Arrays to consider for computing the Mutual Information. The two input variables x and y should have the same shape except on the mvaxis (if needed). mvaxis : int | None Spatial location of the axis to consider if multi-variate analysis is needed traxis : int | -1 Spatial location of the trial axis. By default the last axis is considered biascorrect : bool | True Specifies whether bias correction should be applied to the estimated MI demeaned : bool | False Specifies whether the input data already has zero mean (true if it has been copula-normalized) shape_checking : bool | True Perform a reshape and check that x and y shapes are consistents. For high performances and to avoid extensive memory usage, it's better to already have x and y with a shape of (..., mvaxis, traxis) and to set this parameter to False Returns ------- mi : array_like The mutual information with the same shape as x and y, without the mvaxis and traxis """ # Multi-dimentional shape checking if shape_checking: x = nd_reshape(x, mvaxis=mvaxis, traxis=traxis) y = nd_reshape(y, mvaxis=mvaxis, traxis=traxis) nd_shape_checking(x, y, mvaxis, traxis) # x.shape (..., x_mvaxis, traxis) # y.shape (..., y_mvaxis, traxis) ntrl = x.shape[-1] nvarx, nvary = x.shape[-2], y.shape[-2] nvarxy = nvarx + nvary # joint variable along the mvaxis xy = np.concatenate((x, y), axis=-2) if not demeaned: xy -= xy.mean(axis=-1, keepdims=True) cxy = np.einsum('...ij, ...kj->...ik', xy, xy) cxy /= float(ntrl - 1.) # submatrices of joint covariance cx = cxy[..., :nvarx, :nvarx] cy = cxy[..., nvarx:, nvarx:] # Cholesky decomposition chcxy = np.linalg.cholesky(cxy) chcx = np.linalg.cholesky(cx) chcy = np.linalg.cholesky(cy) # entropies in nats # normalizations cancel for mutual information hx = np.log(np.einsum('...ii->...i', chcx)).sum(-1) hy = np.log(np.einsum('...ii->...i', chcy)).sum(-1) hxy = np.log(np.einsum('...ii->...i', chcxy)).sum(-1) ln2 = np.log(2) if biascorrect: vec = np.arange(1, nvarxy + 1) psiterms = psi((ntrl - vec).astype(float) / 2.0) / 2.0 dterm = (ln2 - np.log(ntrl - 1.0)) / 2.0 hx = hx - nvarx * dterm - psiterms[:nvarx].sum() hy = hy - nvary * dterm - psiterms[:nvary].sum() hxy = hxy - nvarxy * dterm - psiterms[:nvarxy].sum() # MI in bits i = (hx + hy - hxy) / ln2 return i def mi_model_nd_gd(x, y, mvaxis=None, traxis=-1, biascorrect=True, demeaned=False, shape_checking=True): """Multi-dimentional MI between a Gaussian and a discret variables in bits. This function is based on ANOVA style model comparison. Parameters ---------- x, y : array_like Arrays to consider for computing the Mutual Information. The two input variables x and y should have the same shape except on the mvaxis (if needed). mvaxis : int | None Spatial location of the axis to consider if multi-variate analysis is needed traxis : int | -1 Spatial location of the trial axis. By default the last axis is considered biascorrect : bool | True Specifies whether bias correction should be applied to the estimated MI demeaned : bool | False Specifies whether the input data already has zero mean (true if it has been copula-normalized) shape_checking : bool | True Perform a reshape and check that x and y shapes are consistents. For high performances and to avoid extensive memory usage, it's better to already have x and y with a shape of (..., mvaxis, traxis) and to set this parameter to False Returns ------- mi : array_like The mutual information with the same shape as x and y, without the mvaxis and traxis """ # Multi-dimentional shape checking if shape_checking: x = nd_reshape(x, mvaxis=mvaxis, traxis=traxis) assert isinstance(y, np.ndarray) and (y.ndim == 1) assert x.shape[-1] == len(y) # x.shape (..., x_mvaxis, traxis) nvarx, ntrl = x.shape[-2], x.shape[-1] u_y = np.unique(y) sh = x.shape[:-2] zm_shape = list(sh) + [len(u_y)] # joint variable along the mvaxis if not demeaned: x = x - x.mean(axis=-1, keepdims=True) # class-conditional entropies ntrl_y = np.zeros((len(u_y),), dtype=int) hcond = np.zeros(zm_shape, dtype=float) # c = .5 * (np.log(2. * np.pi) + 1) for num, yi in enumerate(u_y): idx = y == yi xm = x[..., idx] ntrl_y[num] = idx.sum() xm = xm - xm.mean(axis=-1, keepdims=True) cm = np.einsum('...ij, ...kj->...ik', xm, xm) / float(ntrl_y[num] - 1.) chcm = np.linalg.cholesky(cm) hcond[..., num] = np.log(np.einsum('...ii->...i', chcm)).sum(-1) # class weights w = ntrl_y / float(ntrl) # unconditional entropy from unconditional Gaussian fit cx = np.einsum('...ij, ...kj->...ik', x, x) / float(ntrl - 1.) chc = np.linalg.cholesky(cx) hunc = np.log(np.einsum('...ii->...i', chc)).sum(-1) ln2 = np.log(2) if biascorrect: vars = np.arange(1, nvarx + 1) psiterms = psi((ntrl - vars).astype(float) / 2.) / 2. dterm = (ln2 - np.log(float(ntrl - 1))) / 2. hunc = hunc - nvarx * dterm - psiterms.sum() dterm = (ln2 - np.log((ntrl_y - 1).astype(float))) / 2. psiterms = np.zeros_like(ntrl_y, dtype=float) for vi in vars: idx = ntrl_y - vi psiterms = psiterms + psi(idx.astype(float) / 2.) hcond = hcond - nvarx * dterm - (psiterms / 2.) # MI in bits i = (hunc - np.einsum('i, ...i', w, hcond)) / ln2 return i def cmi_nd_ggg(x, y, z, mvaxis=None, traxis=-1, biascorrect=True, demeaned=False, shape_checking=True): """Multi-dimentional MI between three Gaussian variables in bits. This function is based on ANOVA style model comparison. Parameters ---------- x, y, z : array_like Arrays to consider for computing the Mutual Information. The three input variables x, y and z should have the same shape except on the mvaxis (if needed). mvaxis : int | None Spatial location of the axis to consider if multi-variate analysis is needed traxis : int | -1 Spatial location of the trial axis. By default the last axis is considered biascorrect : bool | True Specifies whether bias correction should be applied to the estimated MI demeaned : bool | False Specifies whether the input data already has zero mean (true if it has been copula-normalized) shape_checking : bool | True Perform a reshape and check that x and y shapes are consistents. For high performances and to avoid extensive memory usage, it's better to already have x and y with a shape of (..., mvaxis, traxis) and to set this parameter to False Returns ------- mi : array_like The mutual information with the same shape as x, y and z without the mvaxis and traxis """ # Multi-dimentional shape checking if shape_checking: x = nd_reshape(x, mvaxis=mvaxis, traxis=traxis) y = nd_reshape(y, mvaxis=mvaxis, traxis=traxis) z = nd_reshape(z, mvaxis=mvaxis, traxis=traxis) nd_shape_checking(x, y, mvaxis, traxis) nd_shape_checking(x, z, mvaxis, traxis) # x.shape == y.shape == z.shape (..., x_mvaxis, traxis) ntrl = x.shape[-1] nvarx, nvary, nvarz = x.shape[-2], y.shape[-2], z.shape[-2] nvarxy = nvarx + nvary nvaryz = nvary + nvarz nvarxy = nvarx + nvary nvarxz = nvarx + nvarz nvarxyz = nvarx + nvaryz # joint variable along the mvaxis xyz = np.concatenate((x, y, z), axis=-2) if not demeaned: xyz -= xyz.mean(axis=-1, keepdims=True) cxyz = np.einsum('...ij, ...kj->...ik', xyz, xyz) cxyz /= float(ntrl - 1.) # submatrices of joint covariance cz = cxyz[..., nvarxy:, nvarxy:] cyz = cxyz[..., nvarx:, nvarx:] sh = list(cxyz.shape) sh[-1], sh[-2] = nvarxz, nvarxz cxz = np.zeros(tuple(sh), dtype=float) cxz[..., :nvarx, :nvarx] = cxyz[..., :nvarx, :nvarx] cxz[..., :nvarx, nvarx:] = cxyz[..., :nvarx, nvarxy:] cxz[..., nvarx:, :nvarx] = cxyz[..., nvarxy:, :nvarx] cxz[..., nvarx:, nvarx:] = cxyz[..., nvarxy:, nvarxy:] # Cholesky decomposition chcz = np.linalg.cholesky(cz) chcxz = np.linalg.cholesky(cxz) chcyz = np.linalg.cholesky(cyz) chcxyz = np.linalg.cholesky(cxyz) # entropies in nats # normalizations cancel for mutual information hz = np.log(np.einsum('...ii->...i', chcz)).sum(-1) hxz = np.log(np.einsum('...ii->...i', chcxz)).sum(-1) hyz = np.log(np.einsum('...ii->...i', chcyz)).sum(-1) hxyz = np.log(np.einsum('...ii->...i', chcxyz)).sum(-1) ln2 = np.log(2) if biascorrect: vec = np.arange(1, nvarxyz + 1) psiterms = psi((ntrl - vec).astype(float) / 2.0) / 2.0 dterm = (ln2 - np.log(ntrl - 1.0)) / 2.0 hz = hz - nvarz * dterm - psiterms[:nvarz].sum() hxz = hxz - nvarxz * dterm - psiterms[:nvarxz].sum() hyz = hyz - nvaryz * dterm - psiterms[:nvaryz].sum() hxyz = hxyz - nvarxyz * dterm - psiterms[:nvarxyz].sum() # MI in bits i = (hxz + hyz - hxyz - hz) / ln2 return i ############################################################################### ############################################################################### # GAUSSIAN COPULA MUTUAL INFORMATION ############################################################################### ############################################################################### def gcmi_nd_cc(x, y, mvaxis=None, traxis=-1, shape_checking=True, gcrn=True): """GCMI between two continuous variables. The only difference with `mi_gg` is that a normalization is performed for each continuous variable. Parameters ---------- x, y : array_like Continuous variables mvaxis : int | None Spatial location of the axis to consider if multi-variate analysis is needed traxis : int | -1 Spatial location of the trial axis. By default the last axis is considered shape_checking : bool | True Perform a reshape and check that x and y shapes are consistents. For high performances and to avoid extensive memory usage, it's better to already have x and y with a shape of (..., mvaxis, traxis) and to set this parameter to False gcrn : bool | True Apply a Gaussian Copula rank normalization. This operation is relatively slow for big arrays. Returns ------- mi : array_like The mutual information with the same shape as x and y, without the mvaxis and traxis """ # Multi-dimentional shape checking if shape_checking: x = nd_reshape(x, mvaxis=mvaxis, traxis=traxis) y = nd_reshape(y, mvaxis=mvaxis, traxis=traxis) nd_shape_checking(x, y, mvaxis, traxis) # x.shape (..., x_mvaxis, traxis) # y.shape (..., y_mvaxis, traxis) if gcrn: cx, cy = copnorm_nd(x, axis=-1), copnorm_nd(y, axis=-1) else: cx, cy = x, y return mi_nd_gg(cx, cy, mvaxis=-2, traxis=-1, biascorrect=True, demeaned=True, shape_checking=False) def gcmi_model_nd_cd(x, y, mvaxis=None, traxis=-1, shape_checking=True, gcrn=True): """GCMI between a continuous and discret variables. The only difference with `mi_gg` is that a normalization is performed for each continuous variable. Parameters ---------- x : array_like Continuous variable y : array_like Discret variable of shape (n_trials,) mvaxis : int | None Spatial location of the axis to consider if multi-variate analysis is needed traxis : int | -1 Spatial location of the trial axis. By default the last axis is considered shape_checking : bool | True Perform a reshape and check that x is consistents. For high performances and to avoid extensive memory usage, it's better to already have x with a shape of (..., mvaxis, traxis) and to set this parameter to False gcrn : bool | True Apply a Gaussian Copula rank normalization. This operation is relatively slow for big arrays. Returns ------- mi : array_like The mutual information with the same shape as x, without the mvaxis and traxis """ # Multi-dimentional shape checking if shape_checking: x = nd_reshape(x, mvaxis=mvaxis, traxis=traxis) # x.shape (..., x_mvaxis, traxis) # y.shape (traxis) cx = copnorm_nd(x, axis=-1) if gcrn else x return mi_model_nd_gd(cx, y, mvaxis=-2, traxis=-1, biascorrect=True, demeaned=True, shape_checking=False) ############################################################################### ############################################################################### # GAUSSIAN COPULA CONTIONAL MUTUAL INFORMATION ############################################################################### ############################################################################### def gccmi_nd_ccnd(x, y, *z, mvaxis=None, traxis=-1, gcrn=True, shape_checking=True, biascorrect=True, demeaned=True): """Conditional GCMI between two continuous variables. This function performs a GC-CMI between 2 continuous variables conditioned with multiple discrete variables. Parameters ---------- x, y : array_like Arrays to consider for computing the Mutual Information. The two input variables x and y should have the same shape except on the mvaxis (if needed). z : list | array_like Array that describes the conditions across the trial axis. Should be a list of arrays of shape (n_trials,) of integers (e.g. [0, 0, ..., 1, 1, 2, 2]) mvaxis : int | None Spatial location of the axis to consider if multi-variate analysis is needed traxis : int | -1 Spatial location of the trial axis. By default the last axis is considered gcrn : bool | True Apply a Gaussian Copula rank normalization. This operation is relatively slow for big arrays. shape_checking : bool | True Perform a reshape and check that x and y shapes are consistents. For high performances and to avoid extensive memory usage, it's better to already have x and y with a shape of (..., mvaxis, traxis) and to set this parameter to False Returns ------- cmi : array_like Conditional mutual-information with the same shape as x and y without the mvaxis and traxis """ # Multi-dimentional shape checking if shape_checking: x = nd_reshape(x, mvaxis=mvaxis, traxis=traxis) y = nd_reshape(y, mvaxis=mvaxis, traxis=traxis) nd_shape_checking(x, y, mvaxis, traxis) ntrl = x.shape[-1] # Find unique values of each discret array prod_idx = discret_to_index(*z) # sh = x.shape[:-3] if isinstance(mvaxis, int) else x.shape[:-2] sh = x.shape[:-2] zm_shape = list(sh) + [len(prod_idx)] # calculate gcmi for each z value pz = np.zeros((len(prod_idx),), dtype=float) icond = np.zeros(zm_shape, dtype=float) for num, idx in enumerate(prod_idx): pz[num] = idx.sum() if gcrn: thsx = copnorm_nd(x[..., idx], axis=-1) thsy = copnorm_nd(y[..., idx], axis=-1) else: thsx = x[..., idx] thsy = y[..., idx] icond[..., num] = mi_nd_gg(thsx, thsy, mvaxis=-2, traxis=-1, biascorrect=biascorrect, demeaned=demeaned, shape_checking=False) pz /= ntrl # conditional mutual information cmi = np.sum(pz * icond, axis=-1) return cmi def cmi_nd_ggd(x, y, z, mvaxis=None, traxis=-1, shape_checking=True, biascorrect=True, demeaned=False): """Conditional MI between a continuous and a discret variable. This function performs a CMI between a continuous and a discret variable conditioned with multiple discrete variables. Parameters ---------- x : array_like Continuous variable y : array_like Discret variable z : list | array_like Array that describes the conditions across the trial axis of shape (n_trials,) mvaxis : int | None Spatial location of the axis to consider if multi-variate analysis is needed traxis : int | -1 Spatial location of the trial axis. By default the last axis is considered shape_checking : bool | True Perform a reshape and check that x and y shapes are consistents. For high performances and to avoid extensive memory usage, it's better to already have x and y with a shape of (..., mvaxis, traxis) and to set this parameter to False demeaned : bool | False Specifies whether the input data already has zero mean (true if it has been copula-normalized) Returns ------- cmi : array_like Conditional mutual-information with the same shape as x and y without the mvaxis and traxis """ # Multi-dimentional shape checking if shape_checking: x = nd_reshape(x, mvaxis=mvaxis, traxis=traxis) y = nd_reshape(y, mvaxis=mvaxis, traxis=traxis) nd_shape_checking(x, y, mvaxis, traxis) ntrl = x.shape[-1] assert (z.ndim == 1) and (len(z) == ntrl) ntrl = x.shape[-1] # sh = x.shape[:-3] if isinstance(mvaxis, int) else x.shape[:-2] u_z = np.unique(z) sh = x.shape[:-2] zm_shape = list(sh) + [len(u_z)] # calculate gcmi for each z value pz = np.zeros((len(u_z),), dtype=float) icond = np.zeros(zm_shape, dtype=float) for n_z, zi in enumerate(u_z): idx = z == zi pz[n_z] = idx.sum() thsx, thsy = x[..., idx], y[..., idx] icond[..., n_z] = mi_nd_gg(thsx, thsy, mvaxis=-2, traxis=-1, biascorrect=biascorrect, demeaned=demeaned, shape_checking=False) pz /= ntrl # conditional mutual information cmi = np.sum(np.multiply(pz, icond), axis=-1) return cmi def gccmi_model_nd_cdnd(x, y, *z, mvaxis=None, traxis=-1, gcrn=True, shape_checking=True): """Conditional GCMI between a continuous and a discret variable. This function performs a GC-CMI between a continuous and a discret variable conditioned with multiple discrete variables. Parameters ---------- x : array_like Continuous variable y : array_like Discret variable z : list | array_like Array that describes the conditions across the trial axis. Should be a list of arrays of shape (n_trials,) of integers (e.g. [0, 0, ..., 1, 1, 2, 2]) mvaxis : int | None Spatial location of the axis to consider if multi-variate analysis is needed traxis : int | -1 Spatial location of the trial axis. By default the last axis is considered gcrn : bool | True Apply a Gaussian Copula rank normalization. This operation is relatively slow for big arrays. shape_checking : bool | True Perform a reshape and check that x and y shapes are consistents. For high performances and to avoid extensive memory usage, it's better to already have x and y with a shape of (..., mvaxis, traxis) and to set this parameter to False Returns ------- cmi : array_like Conditional mutual-information with the same shape as x and y without the mvaxis and traxis """ # Multi-dimentional shape checking if shape_checking: x = nd_reshape(x, mvaxis=mvaxis, traxis=traxis) assert isinstance(y, np.ndarray) and (y.ndim == 1) assert x.shape[-1] == len(y) ntrl = x.shape[-1] # Find unique values of each discret array prod_idx = discret_to_index(*z) # sh = x.shape[:-3] if isinstance(mvaxis, int) else x.shape[:-2] sh = x.shape[:-2] zm_shape = list(sh) + [len(prod_idx)] # calculate gcmi for each z value pz = np.zeros((len(prod_idx),), dtype=float) icond = np.zeros(zm_shape, dtype=float) for num, idx in enumerate(prod_idx): pz[num] = idx.sum() if gcrn: thsx = copnorm_nd(x[..., idx], axis=-1) else: thsx = x[..., idx] thsy = y[idx] icond[..., num] = mi_model_nd_gd(thsx, thsy, mvaxis=-2, traxis=-1, biascorrect=True, demeaned=True, shape_checking=False) pz /= ntrl # conditional mutual information cmi = np.sum(pz * icond, axis=-1) return cmi def discret_to_index(*z): """Convert a list of discret variables into boolean indices. Parameters ---------- z : tuple | list List of discret variables Returns ------- idx : list List of boolean arrays. Each array specify the condition to use """ if isinstance(z, np.ndarray) and (z.ndim == 1): return [z == k for k in
np.unique(z)
numpy.unique
import networkx import numpy import scipy from .base_plotable_model import BasePlotableModel class SEIRSNetworkModel(BasePlotableModel): """ A class to simulate the SEIRS Stochastic Network Model ====================================================== Params: G Network adjacency matrix (numpy array) or Networkx graph object. beta Rate of transmission (global interactions) beta_local Rate(s) of transmission between adjacent individuals (optional) sigma Rate of progression to infectious state (inverse of latent period) gamma Rate of recovery (inverse of symptomatic infectious period) mu_I Rate of infection-related death xi Rate of re-susceptibility (upon recovery) mu_0 Rate of baseline death nu Rate of baseline birth p Probability of individuals interacting with global population G_Q Quarantine adjacency matrix (numpy array) or Networkx graph object. beta_Q Rate of transmission for isolated individuals (global interactions) beta_Q_local Rate(s) of transmission (exposure) for adjacent isolated individuals (optional) sigma_Q Rate of progression to infectious state for isolated individuals gamma_Q Rate of recovery for isolated individuals mu_Q Rate of infection-related death for isolated individuals q Probability of isolated individuals interacting with global population isolation_time Time to remain in isolation upon positive test, self-isolation, etc. theta_E Rate of random testing for exposed individuals theta_I Rate of random testing for infectious individuals phi_E Rate of testing when a close contact has tested positive for exposed individuals phi_I Rate of testing when a close contact has tested positive for infectious individuals psi_E Probability of positive test for exposed individuals psi_I Probability of positive test for infectious individuals initE Initial number of exposed individuals initI Initial number of infectious individuals initR Initial number of recovered individuals initF Initial number of infection-related fatalities initQ_S Initial number of isolated susceptible individuals initQ_E Initial number of isolated exposed individuals initQ_I Initial number of isolated infectious individuals initQ_R Initial number of isolated recovered individuals (all remaining nodes initialized susceptible) """ plotting_number_property = "numNodes" """Property to access the number to base plotting on.""" def __init__( self, G, beta, sigma, gamma, mu_I=0, alpha=1.0, xi=0, mu_0=0, nu=0, f=0, p=0, beta_local=None, beta_pairwise_mode="infected", delta=None, delta_pairwise_mode=None, G_Q=None, beta_Q=None, beta_Q_local=None, sigma_Q=None, gamma_Q=None, mu_Q=None, alpha_Q=None, delta_Q=None, theta_E=0, theta_I=0, phi_E=0, phi_I=0, psi_E=1, psi_I=1, q=0, isolation_time=14, initE=0, initI=0, initR=0, initF=0, initQ_E=0, initQ_I=0, transition_mode="exponential_rates", node_groups=None, store_Xseries=False, seed=None, ): if seed is not None: numpy.random.seed(seed) self.seed = seed # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Model Parameters: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.parameters = { "G": G, "G_Q": G_Q, "beta": beta, "sigma": sigma, "gamma": gamma, "mu_I": mu_I, "xi": xi, "mu_0": mu_0, "nu": nu, "f": f, "p": p, "beta_local": beta_local, "beta_pairwise_mode": beta_pairwise_mode, "alpha": alpha, "delta": delta, "delta_pairwise_mode": delta_pairwise_mode, "beta_Q": beta_Q, "beta_Q_local": beta_Q_local, "sigma_Q": sigma_Q, "gamma_Q": gamma_Q, "mu_Q": mu_Q, "alpha_Q": alpha_Q, "delta_Q": delta_Q, "theta_E": theta_E, "theta_I": theta_I, "phi_E": phi_E, "phi_I": phi_I, "psi_E": psi_E, "psi_I": psi_I, "q": q, "isolation_time": isolation_time, "initE": initE, "initI": initI, "initR": initR, "initF": initF, "initQ_E": initQ_E, "initQ_I": initQ_I, } self.update_parameters() # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Each node can undergo 4-6 transitions (sans vitality/re-susceptibility returns to S state), # so there are ~numNodes*6 events/timesteps expected; initialize numNodes*6 timestep slots to start # (will be expanded during run if needed for some reason) self.tseries = numpy.zeros(6 * self.numNodes) self.numS = numpy.zeros(6 * self.numNodes) self.numE = numpy.zeros(6 * self.numNodes) self.numI = numpy.zeros(6 * self.numNodes) self.numR = numpy.zeros(6 * self.numNodes) self.numF = numpy.zeros(6 * self.numNodes) self.numQ_E = numpy.zeros(6 * self.numNodes) self.numQ_I = numpy.zeros(6 * self.numNodes) self.N = numpy.zeros(6 * self.numNodes) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize Timekeeping: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.t = 0 self.tmax = 0 # will be set when run() is called self.tidx = 0 self.tseries[0] = 0 # Vectors holding the time that each node has been in a given state or in isolation: self.timer_state = numpy.zeros((self.numNodes, 1)) self.timer_isolation = numpy.zeros(self.numNodes) self.isolationTime = isolation_time # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize Counts of individuals with each state: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.numE[0] = int(initE) self.numI[0] = int(initI) self.numR[0] = int(initR) self.numF[0] = int(initF) self.numQ_E[0] = int(initQ_E) self.numQ_I[0] = int(initQ_I) self.numS[0] = ( self.numNodes - self.numE[0] - self.numI[0] - self.numR[0] - self.numQ_E[0] - self.numQ_I[0] - self.numF[0] ) self.N[0] = self.numNodes - self.numF[0] # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Node states: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.S = 1 self.E = 2 self.I = 3 self.R = 4 self.F = 5 self.Q_E = 6 self.Q_I = 7 self.X = numpy.array( [self.S] * int(self.numS[0]) + [self.E] * int(self.numE[0]) + [self.I] * int(self.numI[0]) + [self.R] * int(self.numR[0]) + [self.F] * int(self.numF[0]) + [self.Q_E] * int(self.numQ_E[0]) + [self.Q_I] * int(self.numQ_I[0]) ).reshape((self.numNodes, 1)) numpy.random.shuffle(self.X) self.store_Xseries = store_Xseries if store_Xseries: self.Xseries = numpy.zeros( shape=(6 * self.numNodes, self.numNodes), dtype="uint8" ) self.Xseries[0, :] = self.X.T self.transitions = { "StoE": {"currentState": self.S, "newState": self.E}, "EtoI": {"currentState": self.E, "newState": self.I}, "ItoR": {"currentState": self.I, "newState": self.R}, "ItoF": {"currentState": self.I, "newState": self.F}, "RtoS": {"currentState": self.R, "newState": self.S}, "EtoQE": {"currentState": self.E, "newState": self.Q_E}, "ItoQI": {"currentState": self.I, "newState": self.Q_I}, "QEtoQI": {"currentState": self.Q_E, "newState": self.Q_I}, "QItoR": {"currentState": self.Q_I, "newState": self.R}, "QItoF": {"currentState": self.Q_I, "newState": self.F}, "_toS": {"currentState": True, "newState": self.S}, } self.transition_mode = transition_mode # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize other node metadata: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.tested = numpy.array([False] * self.numNodes).reshape((self.numNodes, 1)) self.positive = numpy.array([False] * self.numNodes).reshape((self.numNodes, 1)) self.numTested = numpy.zeros(6 * self.numNodes) self.numPositive = numpy.zeros(6 * self.numNodes) self.testedInCurrentState = numpy.array([False] * self.numNodes).reshape( (self.numNodes, 1) ) self.infectionsLog = [] # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize node subgroup data series: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.nodeGroupData = None if node_groups: self.nodeGroupData = {} for groupName, nodeList in node_groups.items(): self.nodeGroupData[groupName] = { "nodes": numpy.array(nodeList), "mask": numpy.isin(range(self.numNodes), nodeList).reshape( (self.numNodes, 1) ), } self.nodeGroupData[groupName]["numS"] = numpy.zeros(6 * self.numNodes) self.nodeGroupData[groupName]["numE"] = numpy.zeros(6 * self.numNodes) self.nodeGroupData[groupName]["numI"] = numpy.zeros(6 * self.numNodes) self.nodeGroupData[groupName]["numR"] = numpy.zeros(6 * self.numNodes) self.nodeGroupData[groupName]["numF"] = numpy.zeros(6 * self.numNodes) self.nodeGroupData[groupName]["numQ_E"] = numpy.zeros(6 * self.numNodes) self.nodeGroupData[groupName]["numQ_I"] = numpy.zeros(6 * self.numNodes) self.nodeGroupData[groupName]["N"] = numpy.zeros(6 * self.numNodes) self.nodeGroupData[groupName]["numPositive"] = numpy.zeros( 6 * self.numNodes ) self.nodeGroupData[groupName]["numTested"] = numpy.zeros( 6 * self.numNodes ) self.nodeGroupData[groupName]["numS"][0] = numpy.count_nonzero( self.nodeGroupData[groupName]["mask"] * self.X == self.S ) self.nodeGroupData[groupName]["numE"][0] = numpy.count_nonzero( self.nodeGroupData[groupName]["mask"] * self.X == self.E ) self.nodeGroupData[groupName]["numI"][0] = numpy.count_nonzero( self.nodeGroupData[groupName]["mask"] * self.X == self.I ) self.nodeGroupData[groupName]["numR"][0] = numpy.count_nonzero( self.nodeGroupData[groupName]["mask"] * self.X == self.R ) self.nodeGroupData[groupName]["numF"][0] = numpy.count_nonzero( self.nodeGroupData[groupName]["mask"] * self.X == self.F ) self.nodeGroupData[groupName]["numQ_E"][0] = numpy.count_nonzero( self.nodeGroupData[groupName]["mask"] * self.X == self.Q_E ) self.nodeGroupData[groupName]["numQ_I"][0] = numpy.count_nonzero( self.nodeGroupData[groupName]["mask"] * self.X == self.Q_I ) self.nodeGroupData[groupName]["N"][0] = self.numNodes - self.numF[0] def update_parameters(self): # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Model graphs: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.G = self.parameters["G"] # Adjacency matrix: if type(self.G) == numpy.ndarray: self.A = scipy.sparse.csr_matrix(self.G) elif type(self.G) == networkx.classes.graph.Graph: self.A = networkx.adj_matrix( self.G ) # adj_matrix gives scipy.sparse csr_matrix else: raise BaseException("Input an adjacency matrix or networkx object only.") self.numNodes = int(self.A.shape[1]) self.degree = numpy.asarray(self.node_degrees(self.A)).astype(float) # ---------------------------------------- if self.parameters["G_Q"] is None: self.G_Q = self.G # If no Q graph is provided, use G in its place else: self.G_Q = self.parameters["G_Q"] # Quarantine Adjacency matrix: if type(self.G_Q) == numpy.ndarray: self.A_Q = scipy.sparse.csr_matrix(self.G_Q) elif type(self.G_Q) == networkx.classes.graph.Graph: self.A_Q = networkx.adj_matrix( self.G_Q ) # adj_matrix gives scipy.sparse csr_matrix else: raise BaseException("Input an adjacency matrix or networkx object only.") self.numNodes_Q = int(self.A_Q.shape[1]) self.degree_Q = numpy.asarray(self.node_degrees(self.A_Q)).astype(float) # ---------------------------------------- assert ( self.numNodes == self.numNodes_Q ), "The normal and quarantine adjacency graphs must be of the same size." # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Model parameters: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.beta = ( numpy.array(self.parameters["beta"]).reshape((self.numNodes, 1)) if isinstance(self.parameters["beta"], (list, numpy.ndarray)) else numpy.full( fill_value=self.parameters["beta"], shape=(self.numNodes, 1) ) ) self.sigma = ( numpy.array(self.parameters["sigma"]).reshape((self.numNodes, 1)) if isinstance(self.parameters["sigma"], (list, numpy.ndarray)) else numpy.full( fill_value=self.parameters["sigma"], shape=(self.numNodes, 1) ) ) self.gamma = ( numpy.array(self.parameters["gamma"]).reshape((self.numNodes, 1)) if isinstance(self.parameters["gamma"], (list, numpy.ndarray)) else numpy.full( fill_value=self.parameters["gamma"], shape=(self.numNodes, 1) ) ) self.mu_I = ( numpy.array(self.parameters["mu_I"]).reshape((self.numNodes, 1)) if isinstance(self.parameters["mu_I"], (list, numpy.ndarray)) else numpy.full( fill_value=self.parameters["mu_I"], shape=(self.numNodes, 1) ) ) self.alpha = ( numpy.array(self.parameters["alpha"]).reshape((self.numNodes, 1)) if isinstance(self.parameters["alpha"], (list, numpy.ndarray)) else numpy.full( fill_value=self.parameters["alpha"], shape=(self.numNodes, 1) ) ) self.xi = ( numpy.array(self.parameters["xi"]).reshape((self.numNodes, 1)) if isinstance(self.parameters["xi"], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters["xi"], shape=(self.numNodes, 1)) ) self.mu_0 = ( numpy.array(self.parameters["mu_0"]).reshape((self.numNodes, 1)) if isinstance(self.parameters["mu_0"], (list, numpy.ndarray)) else numpy.full( fill_value=self.parameters["mu_0"], shape=(self.numNodes, 1) ) ) self.nu = ( numpy.array(self.parameters["nu"]).reshape((self.numNodes, 1)) if isinstance(self.parameters["nu"], (list, numpy.ndarray)) else numpy.full(fill_value=self.parameters["nu"], shape=(self.numNodes, 1)) ) self.f = (
numpy.array(self.parameters["f"])
numpy.array
##~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~## ## ## ## This file forms part of the Badlands surface processes modelling application. ## ## ## ## For full license and copyright information, please refer to the LICENSE.md file ## ## located at the project root, or contact the authors. ## ## ## ##~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~#~## """ This file defines the functions used to build **badlands** meshes and surface grids. """ import os import time import numpy as np from scipy.interpolate import griddata if 'READTHEDOCS' not in os.environ: from badlands import (partitionTIN, FVmethod, elevationTIN, raster2TIN, waveSed, eroMesh, strataMesh, isoFlex, stratiWedge, carbMesh, forceSim) def construct_mesh(input, filename, verbose=False): """ The following function is taking parsed values from the XML to: * build model grids & meshes, * initialise Finite Volume discretisation, * define the partitioning when parallelisation is enable. Args: input: class containing XML input file parameters. filename: (str) this is a string containing the path to the regular grid file. verbose : (bool) when :code:`True`, output additional debug information (default: :code:`False`). Returns ------- recGrid class describing the regular grid characteristics. FVmesh class describing the finite volume mesh. force class describing the forcing parameters. tMesh class describing the TIN mesh. lGIDs numpy 1D array containing the node indices. fixIDs numpy 1D array containing the fixed node indices. inGIDs numpy 1D array containing the node indices inside the mesh. totPts total number of points in the mesh. elevation numpy array containing the elevations for the domain. cumdiff cumulative total erosion/deposition changes cumhill cumulative hillslope erosion/deposition changes cumfail cumulative failure induced erosion/deposition changes cumflex cumlative changes induced by flexural isostasy strata stratigraphic class parameters mapero underlying erodibility map characteristics tinFlex class describing the flexural TIN mesh. flex class describing the flexural isostasy functions. wave class describing the wave functions. straTIN class describing the stratigraphic TIN mesh. carbTIN class describing the carbonate TIN mesh. """ cumflex = None flex = None wave = None tinFlex = None strata = None mapero = None # Get DEM regular grid and create Badlands TIN. recGrid = raster2TIN.raster2TIN(filename, areaDelFactor=input.Afactor) fixIDs = recGrid.boundsPt + recGrid.edgesPt force = forceSim.forceSim(input.seafile, input.seapos, input.rainMap, input.rainTime, input.rainVal, input.orographic, input.orographiclin, input.rbgd, input.rmin, input.rmax, input.rzmax, input.windx, input.windy, input.tauc, input.tauf, input.nm, input.cw, input.hw, input.ortime, input.tectFile, input.tectTime, recGrid.regX, recGrid.regY, input.riverPos, input.riverTime, input.riverQws, input.riverRck, input.riverNb, input.rockNb, input.tDisplay, input.carbValSp1, input.carbValSp2, input.carbTime) if input.disp3d: force.time3d = input.time3d if input.merge3d == 0. or input.merge3d > recGrid.resEdges: force.merge3d = input.Afactor * recGrid.resEdges * 0.5 else: force.merge3d = input.merge3d # Partition the TIN walltime = time.clock() FVmesh = FVmethod.FVmethod(recGrid.tinMesh['vertices'], recGrid.tinMesh['triangles'], recGrid.tinMesh['edges']) # Perform partitioning by equivalent domain splitting partitionIDs, RowProc, ColProc = partitionTIN.simple(recGrid.tinMesh['vertices'][:, 0], recGrid.tinMesh['vertices'][:, 1]) FVmesh.partIDs = partitionIDs # Get each partition global node ID inGIDs = np.where(partitionIDs == 0)[0] # Build Finite Volume discretisation # Define overlapping partitions lGIDs, localTIN = partitionTIN.overlap(recGrid.tinMesh['vertices'][:, 0], recGrid.tinMesh['vertices'][:, 1], RowProc, ColProc, 2*recGrid.resEdges, verbose) # Set parameters of the finite volume mesh tMesh = FVmethod.FVmethod(localTIN['vertices'], localTIN['triangles'], localTIN['edges']) # Define Finite Volume parameters walltime = time.clock() totPts = len(recGrid.tinMesh['vertices'][:, 0]) FVmesh.neighbours = np.zeros((totPts, 20), dtype=np.int32, order='F') FVmesh.neighbours.fill(-2) FVmesh.edge_length = np.zeros((totPts, 20), dtype=np.float, order='F') FVmesh.vor_edges = np.zeros((totPts, 20), dtype=np.float, order='F') FVmesh.control_volumes = np.zeros(totPts, dtype=np.float) # Compute Finite Volume parameters tGIDs, tNgbh, tEdgs, tVors, tVols = tMesh.construct_FV(inGIDs, lGIDs, totPts, recGrid.resEdges*input.Afactor, verbose) FVmesh.neighbours[tGIDs,:tMesh.maxNgbh] = tNgbh FVmesh.edge_length[tGIDs,:tMesh.maxNgbh] = tEdgs FVmesh.vor_edges[tGIDs,:tMesh.maxNgbh] = tVors FVmesh.control_volumes[tGIDs] = tVols if verbose: print(" - FV mesh ", time.clock() - walltime) # Define TIN parameters if input.flexure: elevation, cumdiff, cumhill, cumfail, cumflex, inIDs, parentIDs = _define_TINparams(totPts, input, FVmesh, recGrid, verbose) else: elevation, cumdiff, cumhill, cumfail, inIDs, parentIDs = _define_TINparams(totPts, input, FVmesh, recGrid, verbose) # Build stratigraphic and erodibility meshes if ((input.laytime and input.laytime > 0) and (input.erolays and input.erolays >= 0)): strata, mapero = _build_strateroMesh(input, FVmesh, recGrid, cumdiff, verbose) elif (input.laytime and input.laytime > 0): strata = _build_strateroMesh(input, FVmesh, recGrid, cumdiff, verbose) elif (input.erolays and input.erolays >= 0): mapero = _build_strateroMesh(input, FVmesh, recGrid, cumdiff, verbose) # Set default to no rain force.update_force_TIN(FVmesh.node_coords[:,:2]) # Flexural isostasy initialisation if input.flexure: flex, tinFlex, cumflex = _init_flexure(FVmesh, input, recGrid, force, elevation, cumdiff, cumflex, totPts, verbose) # Wavesed grid initialisation if input.waveSed: ref_elev = get_reference_elevation(input,recGrid,elevation) wave = _init_wavesed(input,ref_elev, recGrid, force, verbose) wave.build_tree(FVmesh.node_coords[:,:2]) # Stratigraphic TIN initialisation if input.rockNb > 0: layNb = int((input.tEnd - input.tStart)/input.laytime)+2 bPts = recGrid.boundsPt ePts = recGrid.edgesPt if input.restart: straTIN = stratiWedge.stratiWedge(layNb, input.initlayers, FVmesh.node_coords[:, :2], bPts, ePts, input.layersData, input.actlay, input.outDir, input.strath5file, input.rockNb, recGrid.regX, recGrid.regY, elevation, input.rockCk, cumdiff, input.rfolder, input.rstep) else: straTIN = stratiWedge.stratiWedge(layNb, input.initlayers, FVmesh.node_coords[:, :2], bPts, ePts, input.layersData, input.actlay, input.outDir, input.strath5file, input.rockNb, recGrid.regX, recGrid.regY, elevation, input.rockCk) else: straTIN = None # Stratigraphic grid in case of carbonate and/or pelagic growth functions if input.carbonate: layNb = int((input.tEnd - input.tStart)/input.tDisplay)+2 bPts = recGrid.boundsPt ePts = recGrid.edgesPt if input.carbonate2: nbSed = 3 else: nbSed = 2 if input.restart: carbTIN = carbMesh.carbMesh(layNb, input.initlayers, FVmesh.node_coords[:, :2], bPts, ePts, input.layersData, input.outDir, input.strath5file, input.baseMap, nbSed, recGrid.regX, recGrid.regY, elevation, input.rfolder, input.rstep) else: carbTIN = carbMesh.carbMesh(layNb, input.initlayers, FVmesh.node_coords[:, :2], bPts, ePts, input.layersData, input.outDir, input.strath5file, input.baseMap, nbSed, recGrid.regX, recGrid.regY, elevation) else: carbTIN = None return recGrid, FVmesh, force, tMesh, lGIDs, fixIDs, \ inIDs, parentIDs, inGIDs, totPts, elevation, cumdiff, \ cumhill, cumfail, cumflex, strata, mapero, tinFlex, flex, wave, \ straTIN, carbTIN def reconstruct_mesh(recGrid, input, verbose=False): """ The following function is used after 3D displacements to: * rebuild model grids & meshes, * reinitialise Finite Volume discretisation, * redefine the partitioning when parallelisation is enable. Args: recGrid: class describing the regular grid characteristics. input: class containing XML input file parameters. verbose : (bool) when :code:`True`, output additional debug information (default: :code:`False`). Returns ------- FVmesh class describing the finite volume mesh. tMesh class describing the TIN mesh. lGIDs numpy 1D array containing the node indices. inIDs numpy 1D array containing the local node indices inside the mesh. inGIDs numpy 1D array containing the node indices inside the mesh. totPts total number of points in the mesh. """ walltime = time.clock() FVmesh = FVmethod.FVmethod(recGrid.tinMesh['vertices'], recGrid.tinMesh['triangles'], recGrid.tinMesh['edges']) # Perform partitioning by equivalent domain splitting partitionIDs, RowProc, ColProc = partitionTIN.simple(recGrid.tinMesh['vertices'][:, 0], recGrid.tinMesh['vertices'][:, 1]) FVmesh.partIDs = partitionIDs # Get each partition global node ID inGIDs = np.where(partitionIDs == 0)[0] if verbose: print(" - partition TIN amongst processors ", time.clock() - walltime) # Define overlapping partitions walltime = time.clock() lGIDs, localTIN = partitionTIN.overlap(recGrid.tinMesh['vertices'][:, 0], recGrid.tinMesh['vertices'][:, 1], RowProc, ColProc, 2*recGrid.resEdges, verbose) # Set parameters of the finite volume mesh tMesh = FVmethod.FVmethod(localTIN['vertices'], localTIN['triangles'], localTIN['edges']) # Define Finite Volume parameters totPts = len(recGrid.tinMesh['vertices'][:, 0]) FVmesh.neighbours = np.zeros((totPts, 20), dtype=np.int32, order='F') FVmesh.neighbours.fill(-2) FVmesh.edge_length = np.zeros((totPts, 20), dtype=np.float, order='F') FVmesh.vor_edges = np.zeros((totPts, 20), dtype=np.float, order='F') FVmesh.control_volumes = np.zeros(totPts, dtype=np.float) # Compute Finite Volume parameters tGIDs, tNgbh, tEdgs, tVors, tVols = tMesh.construct_FV(inGIDs, lGIDs, totPts, recGrid.resEdges*input.Afactor, verbose) FVmesh.neighbours[tGIDs,:tMesh.maxNgbh] = tNgbh FVmesh.edge_length[tGIDs,:tMesh.maxNgbh] = tEdgs FVmesh.vor_edges[tGIDs,:tMesh.maxNgbh] = tVors FVmesh.control_volumes[tGIDs] = tVols if verbose: print(" - reconstructed FV mesh ", time.clock() - walltime) inIDs = np.where(FVmesh.partIDs[recGrid.boundsPt:] == 0)[0] inIDs += recGrid.boundsPt elevationTIN.assign_parameter_pit(FVmesh.neighbours, FVmesh.control_volumes, input.diffnb, input.diffprop, input.propa, input.propb, recGrid.boundsPt, input.fillmax) return FVmesh, tMesh, lGIDs, inIDs, inGIDs, totPts def _define_TINparams(totPts, input, FVmesh, recGrid, verbose=False): """ This function is defining the main values declared on the TIN. """ walltime = time.clock() inIDs = np.where(FVmesh.partIDs[recGrid.boundsPt:] == 0)[0] inIDs += recGrid.boundsPt local_elev = np.zeros(totPts) local_elev.fill(-1.e6) # In case of a restart read values from HDF5 files if input.restart: local_cum =
np.zeros(totPts)
numpy.zeros
# -*- coding: utf-8 -*- """ Created on Mon Feb 18 10:53:12 2019 @author: ivan """ """ Signature: mesh.ray.intersects_location(ray_origins, ray_directions, multiple_hits=True) Docstring: Return the location of where a ray hits a surface. Parameters ---------- ray_origins: (n,3) float, origins of rays ray_directions: (n,3) float, direction (vector) of rays Returns --------- locations: (n) sequence of (m,3) intersection points index_ray: (n,) int, list of ray index index_tri: (n,) int, list of triangle (face) indexes """ import numpy as np import pandas as pd import trimesh import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import math def rotation_matrix(axis, theta): """ Return the rotation matrix associated with counterclockwise rotation about the given axis by theta radians. """ axis =
np.asarray(axis)
numpy.asarray
import argparse import pickle import torch import numpy as np from pathlib import Path from torch.utils.data import DataLoader from transformers.modeling_bert import BertConfig from transformers.tokenization_bert import BertTokenizer from model.net import BertClassifier from model.data import Corpus from model.utils import PreProcessor, PadSequence from model.uncertainty import get_mcb_score from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report from tqdm import tqdm from utils import Config, CheckpointManager, SummaryManager parser = argparse.ArgumentParser() parser.add_argument("--ind", default="trec", help="directory of in distribution is not sub-directory") parser.add_argument("--ood", default="cr", help="directory of out of distribution is sub-directory from directory of in distribution") parser.add_argument("--type", default="bert-base-uncased", help="pretrained weights of bert") parser.add_argument('--topk', default=1, type=int) parser.add_argument("--nh", default=14, type=int, help="using hidden states of model from the pooled output") if __name__ == '__main__': args = parser.parse_args() par_dir = Path(args.ind) sub_dir = par_dir / args.ood backbone_dir = Path('experiments') / args.ind detector_dir = backbone_dir / args.ood ptr_dir = Path("pretrained") par_config = Config(par_dir / "config.json") sub_config = Config(sub_dir / "config.json") model_config = Config(backbone_dir / "config.json") # tokenizer ptr_tokenizer = BertTokenizer.from_pretrained( args.type, do_lower_case="uncased" in args.type ) vocab_filepath = ptr_dir / "{}-vocab.pkl".format(args.type) with open(vocab_filepath, mode="rb") as io: vocab = pickle.load(io) pad_sequence = PadSequence( length=model_config.length, pad_val=vocab.to_indices(vocab.padding_token) ) preprocessor = PreProcessor( vocab=vocab, split_fn=ptr_tokenizer.tokenize, pad_fn=pad_sequence ) # model (restore) checkpoint_manager = CheckpointManager(backbone_dir) checkpoint = checkpoint_manager.load_checkpoint("best.tar") config_filepath = ptr_dir / "{}-config.json".format(args.type) if args.nh == 1: config = BertConfig.from_pretrained(config_filepath, output_hidden_states=False) else: config = BertConfig.from_pretrained(config_filepath, output_hidden_states=True) model = BertClassifier( config, num_classes=model_config.num_classes, vocab=preprocessor.vocab ) model.load_state_dict(checkpoint["model_state_dict"]) device = torch.device('cuda') if torch.cuda.is_available else torch.device('cpu') model.eval() model.to(device) # train detector dev_ind_ds = Corpus(par_config.dev, preprocessor.preprocess) dev_ind_dl = DataLoader(dev_ind_ds, batch_size=model_config.batch_size * 4, num_workers=4) dev_ood_ds = Corpus(sub_config.dev, preprocessor.preprocess) dev_ood_dl = DataLoader(dev_ood_ds, batch_size=model_config.batch_size * 4, num_workers=4) with open(backbone_dir / 'feature_params_{}.pkl'.format(args.nh), mode='rb') as io: feature_params = pickle.load(io) ops_indices = list(range(len(feature_params['mean'].keys()))) ind_features = [] for ops_idx in tqdm(ops_indices, total=len(ops_indices)): if args.nh == 1: layer_mean = torch.tensor(list(feature_params['mean'].values())).to(device) layer_precision = torch.tensor(list(feature_params['precision'].values())).to(device) else: layer_mean = torch.tensor(list(feature_params['mean'][ops_idx].values())).to(device) layer_precision = torch.tensor(list(feature_params['precision'][ops_idx].values())).to(device) mb_features = [] for mb in tqdm(dev_ind_dl, total=len(dev_ind_dl)): x_mb, _ = map(lambda elm: elm.to(device), mb) with torch.no_grad(): _, encoded_layers = model(x_mb) if args.nh == 1: mb_features.extend(get_mcb_score(encoded_layers, layer_mean, layer_precision, topk=args.topk).cpu().numpy().tolist()) else: mb_features.extend(get_mcb_score(encoded_layers[ops_idx], layer_mean, layer_precision, topk=args.topk).cpu().numpy().tolist()) else: ind_features.append(mb_features) else: ind_features = np.concatenate(ind_features, axis=1) ind_label = np.zeros(ind_features.shape[0]) ood_features = [] for ops_idx in tqdm(ops_indices, total=len(ops_indices)): if args.nh == 1: layer_mean = torch.tensor(list(feature_params['mean'].values())).to(device) layer_precision = torch.tensor(list(feature_params['precision'].values())).to(device) else: layer_mean = torch.tensor(list(feature_params['mean'][ops_idx].values())).to(device) layer_precision = torch.tensor(list(feature_params['precision'][ops_idx].values())).to(device) mb_features = [] for mb in tqdm(dev_ood_dl, total=len(dev_ood_dl)): x_mb, _ = map(lambda elm: elm.to(device), mb) with torch.no_grad(): _, encoded_layers = model(x_mb) if args.nh == 1: mb_features.extend(get_mcb_score(encoded_layers, layer_mean, layer_precision, topk=args.topk).cpu().numpy().tolist()) else: mb_features.extend(get_mcb_score(encoded_layers[ops_idx], layer_mean, layer_precision, topk=args.topk).cpu().numpy().tolist()) else: ood_features.append(mb_features) else: ood_features = np.concatenate(ood_features, axis=1) ood_label =
np.ones(ood_features.shape[0])
numpy.ones
import numpy as np from matplotlib import rc ## for Palatino and other serif fonts use: rc('font',**{'family':'serif','serif':['Computer Modern Roman']}) rc('text', usetex=True) import matplotlib.pyplot as plt import time #NLL plotting def nll_plot(nll_mean_list1,nll_var_list1,nll_mean_list2,nll_var_list2,nll_mean_list3,nll_var_list3,N_test,legend=False,last_legend_label=r'GPR'): legend_label = [] if nll_mean_list1 is not None: plt.gca().set_prop_cycle(None) conf_list1 = [1.96*np.sqrt(s)/np.sqrt(N_test) for s in nll_var_list1] upper1 = [y + c for y,c in zip(nll_mean_list1,conf_list1)] lower1 = [y - c for y,c in zip(nll_mean_list1,conf_list1)] plt.fill_between(range(0,len(nll_mean_list1)), upper1, lower1, alpha=.2) plt.plot(range(0,len(nll_mean_list1)),nll_mean_list1) legend_label.append(r'ALPaCA') plt.ylabel('Negative Log Likelihood') if nll_mean_list2 is not None: conf_list2 = [1.96*np.sqrt(s)/np.sqrt(N_test) for s in nll_var_list2] upper2 = [y + c for y,c in zip(nll_mean_list2,conf_list2)] lower2 = [y - c for y,c in zip(nll_mean_list2,conf_list2)] plt.fill_between(range(0,len(nll_mean_list2)), upper2, lower2, alpha=.2) plt.plot(range(0,len(nll_mean_list2)),nll_mean_list2) legend_label.append(r'ALPaCA (no meta)') if nll_mean_list3 is not None: conf_list3 = [1.96*np.sqrt(s)/np.sqrt(N_test) for s in nll_var_list3] upper3 = [y + c for y,c in zip(nll_mean_list3,conf_list3)] lower3 = [y - c for y,c in zip(nll_mean_list3,conf_list3)] plt.fill_between(range(0,len(nll_mean_list3)), upper3, lower3, alpha=.2) plt.plot(range(0,len(nll_mean_list3)),nll_mean_list3) legend_label.append(last_legend_label) if legend==True: plt.legend(legend_label) plt.xlabel('Timesteps') def mse_plot(nll_mean_list1,nll_var_list1,nll_mean_list2,nll_var_list2,nll_mean_list3,nll_var_list3,N_test,legend=False): legend_label = [] if nll_mean_list1 is not None: plt.gca().set_prop_cycle(None) conf_list1 = [1.96*np.sqrt(s)/np.sqrt(N_test) for s in nll_var_list1] upper1 = [y + c for y,c in zip(nll_mean_list1,conf_list1)] lower1 = [y - c for y,c in zip(nll_mean_list1,conf_list1)] plt.fill_between(range(0,len(nll_mean_list1)), upper1, lower1, alpha=.2) l1 = plt.plot(range(0,len(nll_mean_list1)),nll_mean_list1,label=r'ALPaCA') legend_label.append(r'ALPaCA') plt.ylabel('MSE') if nll_mean_list2 is not None: conf_list2 = [1.96*np.sqrt(s)/np.sqrt(N_test) for s in nll_var_list2] upper2 = [y + c for y,c in zip(nll_mean_list2,conf_list2)] lower2 = [y - c for y,c in zip(nll_mean_list2,conf_list2)] plt.fill_between(range(0,len(nll_mean_list2)), upper2, lower2, alpha=.2) l2 = plt.plot(range(0,len(nll_mean_list2)),nll_mean_list2, label=r'MAML (1 step)') legend_label.append(r'MAML (1 step)') if nll_mean_list3 is not None: conf_list3 = [1.96*np.sqrt(s)/np.sqrt(N_test) for s in nll_var_list3] upper3 = [y + c for y,c in zip(nll_mean_list3,conf_list3)] lower3 = [y - c for y,c in zip(nll_mean_list3,conf_list3)] plt.fill_between(range(0,len(nll_mean_list3)), upper3, lower3, alpha=.2) plt.plot(range(0,len(nll_mean_list3)),nll_mean_list3, label=r'MAML (5 step)') legend_label.append(r'GPR') if legend==True: plt.legend() plt.xlabel('Timesteps') def time_plot(nll_mean_list1,nll_var_list1,nll_mean_list2,nll_var_list2,nll_mean_list3,nll_var_list3,N_test,legend=False): #same arguments cause I'm lazy legend_label = [] if nll_mean_list1 is not None: plt.gca().set_prop_cycle(None) conf_list1 = [1.96*np.sqrt(s)/np.sqrt(N_test) for s in nll_var_list1] upper1 = [y + c for y,c in zip(nll_mean_list1,conf_list1)] lower1 = [y - c for y,c in zip(nll_mean_list1,conf_list1)] plt.fill_between(range(0,len(nll_mean_list1)), upper1, lower1, alpha=.2) plt.plot(range(0,len(nll_mean_list1)),nll_mean_list1) legend_label.append(r'ALPaCA') plt.ylabel(r'Time (s)') if nll_mean_list2 is not None: conf_list2 = [1.96*np.sqrt(s)/np.sqrt(N_test) for s in nll_var_list2] upper2 = [y + c for y,c in zip(nll_mean_list2,conf_list2)] lower2 = [y - c for y,c in zip(nll_mean_list2,conf_list2)] plt.fill_between(range(0,len(nll_mean_list2)), upper2, lower2, alpha=.2) plt.plot(range(0,len(nll_mean_list2)),nll_mean_list2) legend_label.append(r'ALPaCA (no meta)') if nll_mean_list3 is not None: conf_list3 = [1.96*np.sqrt(s)/np.sqrt(N_test) for s in nll_var_list3] upper3 = [y + c for y,c in zip(nll_mean_list3,conf_list3)] lower3 = [y - c for y,c in zip(nll_mean_list3,conf_list3)] plt.fill_between(range(0,len(nll_mean_list3)), upper3, lower3, alpha=.2) plt.plot(range(0,len(nll_mean_list3)),nll_mean_list3) legend_label.append(r'GPR') if legend==True: plt.legend(legend_label) plt.xlabel('Timesteps') def sinusoid_plot(freq,phase,amp,x_list,sigma_list,y_list,X_update, Y_update,sampling_density=101,legend_labels=['Ours', 'True']): """ x,y,sigma should be lists """ #plot given data conf_list = [1.96*np.sqrt(s) for s in sigma_list] upper = [y + c for y,c in zip(y_list,conf_list)] lower = [y - c for y,c in zip(y_list,conf_list)] plt.fill_between(x_list, upper, lower, alpha=.5) plt.plot(x_list,y_list) #plot true sinusoid yr_list = [amp*np.sin(freq*x + phase) for x in x_list] plt.plot(x_list,yr_list,color='r') # plot update points plt.plot(X_update[0,:,0],Y_update[0,:,0],'+',color='k',markersize=10) plt.xlim([np.min(x_list), np.max(x_list)]) #legend if legend_labels: plt.legend(legend_labels + ['sampled points']) def gen_sin_fig(agent, X,Y,freq,phase,amp,upper_x=5,lower_x=-5,point_every=0.1, label=None): y_list = [] x_list = [] s_list = [] for p in np.arange(lower_x,upper_x,0.1): y, s = agent.test(X, Y, [[[p]]]) y_list.append(y[0,0,0]) x_list.append(p) if s: s_list.append(s[0,0,0,0]) else: s_list.append(0) legend_labels = None if label: legend_labels = [label, 'True'] sinusoid_plot(freq,phase,amp,x_list,s_list,y_list,X,Y, legend_labels=legend_labels) def gen_sin_gp_fig(agent, X,Y,freq,phase,amp,upper_x=5,lower_x=-5,point_every=0.1, label=None): x_test = np.reshape( np.arange(lower_x,upper_x,0.1), [1,-1,1] ) y,s = agent.test(X,Y,x_test) y = y[0,:,0] s = s[0,:]**2 legend_labels = None if label: legend_labels = [label, 'True'] sinusoid_plot(freq,phase,amp,x_test[0,:,0],s,y,X,Y,legend_labels=legend_labels) def plot_bases(x,y,indices): x = x[0,:,0] y = y[0,:,:] for i in indices: plt.figure() plt.plot(x,y[:,i]) plt.legend([r"$\phi_{"+ str(i) +r"}(x)$"]) plt.show() def gen_sin_bases_fig(agent, sess, x, n_bases): phi = sess.run( agent.phi, {agent.x: x} ) plot_bases(x, phi, np.random.choice(agent.config['nn_layers'][-1],n_bases)) def plot_sample_fns(x,phi,K,L,SigEps,n_samples): x = x[0,:,0] phi = phi[0,:,:] mean = np.reshape(K, [-1]) cov = np.kron(SigEps, np.linalg.inv(L)) K_vec = np.random.multivariate_normal(mean,cov,n_samples) plt.figure() for i in range(n_samples): K = np.reshape(K_vec[i,:], K.shape) y = np.squeeze(phi @ K) plt.plot(x,y) plt.show() # STEP FUNCTIONS def step_plot(x_jump,x_list,sigma_list,y_list,X_update, Y_update,sampling_density=101,legend_labels=['Ours', 'True']): """ x,y,sigma should be lists """ #plot given data conf_list = [1.96*np.sqrt(s) for s in sigma_list] upper = [y + c for y,c in zip(y_list,conf_list)] lower = [y - c for y,c in zip(y_list,conf_list)] plt.fill_between(x_list, upper, lower, alpha=.5) plt.plot(x_list,y_list) #plot true step yr_list = [0.5 + 0.5*np.sign(x-x_jump) for x in x_list] plt.plot(x_list,yr_list,color='r') # plot update points plt.plot(X_update[0,:,0],Y_update[0,:,0],'+',color='k',markersize=10) plt.xlim([np.min(x_list), np.max(x_list)]) plt.ylim([-1,2]) #legend if legend_labels: plt.legend(legend_labels + ['sampled points']) def multistep_plot(pt_list,x_list,sigma_list,y_list,X_update, Y_update,sampling_density=101,legend_labels=['Ours', 'True']): """ x,y,sigma should be lists """ #plot given data conf_list = [1.96*np.sqrt(s) for s in sigma_list] upper = [y + c for y,c in zip(y_list,conf_list)] lower = [y - c for y,c in zip(y_list,conf_list)] plt.fill_between(x_list, upper, lower, alpha=.5) plt.plot(x_list,y_list) #plot true step #yr_list = [] x = np.reshape(x_list,[1,-1]) step_pts = np.reshape(pt_list,[-1,1]) y = 2.*np.logical_xor.reduce( x > step_pts, axis=0) - 1. yr_list = y # for x in x_list: # for i in range(len(pt_list)): # if x<pt_list[0]: # yr_list.append(((i)%2)*2-1.0) # break # if i==(len(pt_list)-1) and x>pt_list[-1]: # # print('ok') # yr_list.append(((i+1)%2)*2-1.0) # break # if x>pt_list[i] and x<pt_list[i+1]: # yr_list.append(((i+1)%2)*2-1.0) # break plt.plot(x_list,yr_list,color='r') # plot update points plt.plot(X_update[0,:,0],Y_update[0,:,0],'+',color='k',markersize=10) plt.xlim([np.min(x_list), np.max(x_list)]) plt.ylim([-2,2]) #legend if legend_labels: plt.legend(legend_labels + ['sampled points']) #do plotting def gen_step_fig(agent,X,Y,x_jump,upper_x=5,lower_x=-5,point_every=0.1, label=None): y_list = [] x_list = [] s_list = [] for p in np.arange(lower_x,upper_x,0.1): y, s = agent.test(X, Y, [[[p]]]) y_list.append(y[0,0,0]) x_list.append(p) if s: s_list.append(s[0,0,0,0]) else: s_list.append(0) legend_labels = None if label: legend_labels = [label, 'True'] step_plot(x_jump,x_list,s_list,y_list,X,Y, legend_labels=legend_labels) def gen_step_gp_fig(agent, X, Y, x_jump, upper_x=5,lower_x=-5,point_every=0.1, label=None): x_test = np.reshape(
np.arange(lower_x,upper_x,0.1)
numpy.arange
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2019 <NAME> <<EMAIL>> # # Distributed under terms of the GNU-License license. """ """ import uqra import numpy as np, os, sys import scipy.stats as stats from tqdm import tqdm import itertools, copy, math, collections import multiprocessing as mp import random # warnings.filterwarnings(action="ignore", module="scipy", message="^internal gelsd") sys.stdout = uqra.utilities.classes.Logger() def observation_error(y, mu=0, cov=0.03, random_state=100): e = stats.norm(0, cov * abs(y)).rvs(size=len(y), random_state=random_state) return e def list_union(ls1, ls2): """ append ls2 to ls1 and check if there exist duplicates return the union of two lists and remove duplicates """ if ls1 is None: ls1 = [] if ls2 is None: ls2 = [] ls = list(copy.deepcopy(ls1)) + list(copy.deepcopy(ls2)) if len(ls) != len(set(ls1).union(set(ls2))): print('[WARNING]: list_union: duplicate elements found in list when append to each other') ls = list(set(ls)) return ls def isOverfitting(cv_err): if len(cv_err) < 3 : return False if cv_err[-1] > cv_err[-2] and cv_err[-2] > cv_err[0]: print('WARNING: Overfitting') return False def threshold_converge(y, threshold=0.95): y = np.array(y) status = True if y[-1]> threshold else False return status, threshold def relative_converge(y, err=0.05): """ check if y is converge in relative error return: (status, error) status: Boolean for convergeing or not error: absolute error """ y = np.array(y) if len(y) < 2: res = (False, np.nan) else: error = abs((y[-2]-y[-1])/ y[-1]) res = (error < err, error) return res def absolute_converge(y, err=1e-4): """ check if y is converge in absolute error return: (status, error) status: Boolean for convergeing or not error: absolute error """ y = np.array(y) if len(y) < 2: res = (False, np.nan) else: error = abs(y[-2]-y[-1]) res = (error < err, error) return res def main(model_params, doe_params, solver, r=0, random_state=None): random.seed(random_state) ndim_deg_cases = np.array(list(itertools.product([model_params.ndim,], model_params.degs))) main_res = [] # data_train = uqra.Data() # data_train.xi = np.empty((model_params.ndim, 0)) # data_train.x = np.empty((model_params.ndim, 0)) # data_train.y = np.empty((0,)) xi_train= np.empty((solver.ndim, 0)) x_train =
np.empty((solver.ndim, 0))
numpy.empty
import numpy as np import pytest from topfarm.tests import npt from topfarm.constraint_components.boundary import PolygonBoundaryComp @pytest.mark.parametrize('boundary', [ [(0, 0), (1, 1), (2, 0), (2, 2), (0, 2)], [(0, 0), (1, 1), (2, 0), (2, 2), (0, 2), (0, 0)], # StartEqEnd [(0, 0), (0, 2), (2, 2), (2, 0), (1, 1)], # Clockwise [(0, 0), (0, 2), (2, 2), (2, 0), (1, 1), (0, 0)] # StartEqEndClockwise ]) def testPolygon(boundary): pbc = PolygonBoundaryComp(1, boundary) np.testing.assert_array_equal(pbc.xy_boundary, [[0, 0], [1, 1], [2, 0], [2, 2], [0, 2], [0, 0]]) def check(boundary, points, distances): pbc = PolygonBoundaryComp(1, boundary) d, dx, dy = pbc.calc_distance_and_gradients(points[:, 0], points[:, 1]) np.testing.assert_array_almost_equal(d, distances) eps = 1e-7 d1, _, _ = pbc.calc_distance_and_gradients(points[:, 0] + eps, points[:, 1]) np.testing.assert_array_almost_equal((d1 - d) / eps, dx) d2, _, _ = pbc.calc_distance_and_gradients(points[:, 0], points[:, 1] + eps) np.testing.assert_array_almost_equal((d2 - d) / eps, dy) def test_calc_distance_edge(): boundary = np.array([(0, 0), (1, 0), (2, 1), (0, 2), (0, 0)]) points = np.array([(0.5, .2), (1, .5), (.5, 1.5), (.2, 1)]) check(boundary, points, [0.2, np.sqrt(2 * .25**2), .5 * np.sin(np.arctan(.5)), 0.2]) def test_calc_distance_edge_outside(): boundary = np.array([(0, 0), (1, 0), (2, 1), (0, 2), (0, 0)]) points = np.array([(0.5, -.2), (1.5, 0), (.5, 2), (-.2, 1)]) check(boundary, points, [-0.2, -np.sqrt(2 * .25**2), -.5 * np.sin(np.arctan(.5)), -0.2]) def test_calc_distance_point_vertical(): boundary = np.array([(0, 0), (1, 1), (2, 0), (2, 2), (0, 2), (0, 0)]) points = np.array([(.8, 1), (.8, 1.2), (1, 1.2), (1.1, 1.2), (1.2, 1.2), (1.2, 1)]) check(boundary, points, [np.sqrt(.2**2 / 2), np.sqrt(2 * .2**2), .2, np.sqrt(.1**2 + .2**2), np.sqrt(2 * .2**2), np.sqrt(.2**2 / 2)]) def test_calc_distance_point_vertical_outside(): boundary = np.array([(0, 0), (1, 1), (2, 0), (0, 0)]) points = np.array([(.8, 1), (.8, 1.2), (1, 1.2), (1.1, 1.2), (1.2, 1.2), (1.2, 1)]) check(boundary, points, [-np.sqrt(.2**2 / 2), -np.sqrt(2 * .2**2), -.2, -np.sqrt(.1**2 + .2**2), -np.sqrt(2 * .2**2), -np.sqrt(.2**2 / 2)]) def test_calc_distance_point_horizontal(): boundary = np.array([(0, 0), (2, 0), (1, 1), (2, 2), (0, 2), (0, 0)]) points = np.array([(1, .8), (.8, .8), (.8, 1), (.8, 1.1), (.8, 1.2), (1, 1.2)]) check(boundary, points, [np.sqrt(.2**2 / 2), np.sqrt(2 * .2**2), .2, np.sqrt(.1**2 + .2**2), np.sqrt(2 * .2**2), np.sqrt(.2**2 / 2)]) def testPolygon_Line(): boundary = [(0, 0), (0, 2)] with pytest.raises(AssertionError, match="Area must be non-zero"): PolygonBoundaryComp(1, boundary) def test_calc_distance_U_shape(): boundary =
np.array([(0, 0), (3, 0), (3, 2), (2, 2), (2, 1), (1, 1), (1, 2), (0, 2)])
numpy.array
# -*- coding: utf-8 -*- """ Multi-lib backend for POT The goal is to write backend-agnostic code. Whether you're using Numpy, PyTorch, or Jax, POT code should work nonetheless. To achieve that, POT provides backend classes which implements functions in their respective backend imitating Numpy API. As a convention, we use nx instead of np to refer to the backend. Examples -------- >>> from ot.utils import list_to_array >>> from ot.backend import get_backend >>> def f(a, b): # the function does not know which backend to use ... a, b = list_to_array(a, b) # if a list in given, make it an array ... nx = get_backend(a, b) # infer the backend from the arguments ... c = nx.dot(a, b) # now use the backend to do any calculation ... return c """ # Author: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # # License: MIT License import numpy as np import scipy.special as scipy from scipy.sparse import issparse, coo_matrix, csr_matrix try: import torch torch_type = torch.Tensor except ImportError: torch = False torch_type = float try: import jax import jax.numpy as jnp import jax.scipy.special as jscipy jax_type = jax.numpy.ndarray except ImportError: jax = False jax_type = float str_type_error = "All array should be from the same type/backend. Current types are : {}" def get_backend_list(): """Returns the list of available backends""" lst = [NumpyBackend(), ] if torch: lst.append(TorchBackend()) if jax: lst.append(JaxBackend()) return lst def get_backend(*args): """Returns the proper backend for a list of input arrays Also raises TypeError if all arrays are not from the same backend """ # check that some arrays given if not len(args) > 0: raise ValueError(" The function takes at least one parameter") # check all same type if not len(set(type(a) for a in args)) == 1: raise ValueError(str_type_error.format([type(a) for a in args])) if isinstance(args[0], np.ndarray): return NumpyBackend() elif isinstance(args[0], torch_type): return TorchBackend() elif isinstance(args[0], jax_type): return JaxBackend() else: raise ValueError("Unknown type of non implemented backend.") def to_numpy(*args): """Returns numpy arrays from any compatible backend""" if len(args) == 1: return get_backend(args[0]).to_numpy(args[0]) else: return [get_backend(a).to_numpy(a) for a in args] class Backend(): """ Backend abstract class. Implementations: :py:class:`JaxBackend`, :py:class:`NumpyBackend`, :py:class:`TorchBackend` - The `__name__` class attribute refers to the name of the backend. - The `__type__` class attribute refers to the data structure used by the backend. """ __name__ = None __type__ = None __type_list__ = None rng_ = None def __str__(self): return self.__name__ # convert to numpy def to_numpy(self, a): """Returns the numpy version of a tensor""" raise NotImplementedError() # convert from numpy def from_numpy(self, a, type_as=None): """Creates a tensor cloning a numpy array, with the given precision (defaulting to input's precision) and the given device (in case of GPUs)""" raise NotImplementedError() def set_gradients(self, val, inputs, grads): """Define the gradients for the value val wrt the inputs """ raise NotImplementedError() def zeros(self, shape, type_as=None): r""" Creates a tensor full of zeros. This function follows the api from :any:`numpy.zeros` See: https://numpy.org/doc/stable/reference/generated/numpy.zeros.html """ raise NotImplementedError() def ones(self, shape, type_as=None): r""" Creates a tensor full of ones. This function follows the api from :any:`numpy.ones` See: https://numpy.org/doc/stable/reference/generated/numpy.ones.html """ raise NotImplementedError() def arange(self, stop, start=0, step=1, type_as=None): r""" Returns evenly spaced values within a given interval. This function follows the api from :any:`numpy.arange` See: https://numpy.org/doc/stable/reference/generated/numpy.arange.html """ raise NotImplementedError() def full(self, shape, fill_value, type_as=None): r""" Creates a tensor with given shape, filled with given value. This function follows the api from :any:`numpy.full` See: https://numpy.org/doc/stable/reference/generated/numpy.full.html """ raise NotImplementedError() def eye(self, N, M=None, type_as=None): r""" Creates the identity matrix of given size. This function follows the api from :any:`numpy.eye` See: https://numpy.org/doc/stable/reference/generated/numpy.eye.html """ raise NotImplementedError() def sum(self, a, axis=None, keepdims=False): r""" Sums tensor elements over given dimensions. This function follows the api from :any:`numpy.sum` See: https://numpy.org/doc/stable/reference/generated/numpy.sum.html """ raise NotImplementedError() def cumsum(self, a, axis=None): r""" Returns the cumulative sum of tensor elements over given dimensions. This function follows the api from :any:`numpy.cumsum` See: https://numpy.org/doc/stable/reference/generated/numpy.cumsum.html """ raise NotImplementedError() def max(self, a, axis=None, keepdims=False): r""" Returns the maximum of an array or maximum along given dimensions. This function follows the api from :any:`numpy.amax` See: https://numpy.org/doc/stable/reference/generated/numpy.amax.html """ raise NotImplementedError() def min(self, a, axis=None, keepdims=False): r""" Returns the maximum of an array or maximum along given dimensions. This function follows the api from :any:`numpy.amin` See: https://numpy.org/doc/stable/reference/generated/numpy.amin.html """ raise NotImplementedError() def maximum(self, a, b): r""" Returns element-wise maximum of array elements. This function follows the api from :any:`numpy.maximum` See: https://numpy.org/doc/stable/reference/generated/numpy.maximum.html """ raise NotImplementedError() def minimum(self, a, b): r""" Returns element-wise minimum of array elements. This function follows the api from :any:`numpy.minimum` See: https://numpy.org/doc/stable/reference/generated/numpy.minimum.html """ raise NotImplementedError() def dot(self, a, b): r""" Returns the dot product of two tensors. This function follows the api from :any:`numpy.dot` See: https://numpy.org/doc/stable/reference/generated/numpy.dot.html """ raise NotImplementedError() def abs(self, a): r""" Computes the absolute value element-wise. This function follows the api from :any:`numpy.absolute` See: https://numpy.org/doc/stable/reference/generated/numpy.absolute.html """ raise NotImplementedError() def exp(self, a): r""" Computes the exponential value element-wise. This function follows the api from :any:`numpy.exp` See: https://numpy.org/doc/stable/reference/generated/numpy.exp.html """ raise NotImplementedError() def log(self, a): r""" Computes the natural logarithm, element-wise. This function follows the api from :any:`numpy.log` See: https://numpy.org/doc/stable/reference/generated/numpy.log.html """ raise NotImplementedError() def sqrt(self, a): r""" Returns the non-ngeative square root of a tensor, element-wise. This function follows the api from :any:`numpy.sqrt` See: https://numpy.org/doc/stable/reference/generated/numpy.sqrt.html """ raise NotImplementedError() def power(self, a, exponents): r""" First tensor elements raised to powers from second tensor, element-wise. This function follows the api from :any:`numpy.power` See: https://numpy.org/doc/stable/reference/generated/numpy.power.html """ raise NotImplementedError() def norm(self, a): r""" Computes the matrix frobenius norm. This function follows the api from :any:`numpy.linalg.norm` See: https://numpy.org/doc/stable/reference/generated/numpy.linalg.norm.html """ raise NotImplementedError() def any(self, a): r""" Tests whether any tensor element along given dimensions evaluates to True. This function follows the api from :any:`numpy.any` See: https://numpy.org/doc/stable/reference/generated/numpy.any.html """ raise NotImplementedError() def isnan(self, a): r""" Tests element-wise for NaN and returns result as a boolean tensor. This function follows the api from :any:`numpy.isnan` See: https://numpy.org/doc/stable/reference/generated/numpy.isnan.html """ raise NotImplementedError() def isinf(self, a): r""" Tests element-wise for positive or negative infinity and returns result as a boolean tensor. This function follows the api from :any:`numpy.isinf` See: https://numpy.org/doc/stable/reference/generated/numpy.isinf.html """ raise NotImplementedError() def einsum(self, subscripts, *operands): r""" Evaluates the Einstein summation convention on the operands. This function follows the api from :any:`numpy.einsum` See: https://numpy.org/doc/stable/reference/generated/numpy.einsum.html """ raise NotImplementedError() def sort(self, a, axis=-1): r""" Returns a sorted copy of a tensor. This function follows the api from :any:`numpy.sort` See: https://numpy.org/doc/stable/reference/generated/numpy.sort.html """ raise NotImplementedError() def argsort(self, a, axis=None): r""" Returns the indices that would sort a tensor. This function follows the api from :any:`numpy.argsort` See: https://numpy.org/doc/stable/reference/generated/numpy.argsort.html """ raise NotImplementedError() def searchsorted(self, a, v, side='left'): r""" Finds indices where elements should be inserted to maintain order in given tensor. This function follows the api from :any:`numpy.searchsorted` See: https://numpy.org/doc/stable/reference/generated/numpy.searchsorted.html """ raise NotImplementedError() def flip(self, a, axis=None): r""" Reverses the order of elements in a tensor along given dimensions. This function follows the api from :any:`numpy.flip` See: https://numpy.org/doc/stable/reference/generated/numpy.flip.html """ raise NotImplementedError() def clip(self, a, a_min, a_max): """ Limits the values in a tensor. This function follows the api from :any:`numpy.clip` See: https://numpy.org/doc/stable/reference/generated/numpy.clip.html """ raise NotImplementedError() def repeat(self, a, repeats, axis=None): r""" Repeats elements of a tensor. This function follows the api from :any:`numpy.repeat` See: https://numpy.org/doc/stable/reference/generated/numpy.repeat.html """ raise NotImplementedError() def take_along_axis(self, arr, indices, axis): r""" Gathers elements of a tensor along given dimensions. This function follows the api from :any:`numpy.take_along_axis` See: https://numpy.org/doc/stable/reference/generated/numpy.take_along_axis.html """ raise NotImplementedError() def concatenate(self, arrays, axis=0): r""" Joins a sequence of tensors along an existing dimension. This function follows the api from :any:`numpy.concatenate` See: https://numpy.org/doc/stable/reference/generated/numpy.concatenate.html """ raise NotImplementedError() def zero_pad(self, a, pad_width): r""" Pads a tensor. This function follows the api from :any:`numpy.pad` See: https://numpy.org/doc/stable/reference/generated/numpy.pad.html """ raise NotImplementedError() def argmax(self, a, axis=None): r""" Returns the indices of the maximum values of a tensor along given dimensions. This function follows the api from :any:`numpy.argmax` See: https://numpy.org/doc/stable/reference/generated/numpy.argmax.html """ raise NotImplementedError() def mean(self, a, axis=None): r""" Computes the arithmetic mean of a tensor along given dimensions. This function follows the api from :any:`numpy.mean` See: https://numpy.org/doc/stable/reference/generated/numpy.mean.html """ raise NotImplementedError() def std(self, a, axis=None): r""" Computes the standard deviation of a tensor along given dimensions. This function follows the api from :any:`numpy.std` See: https://numpy.org/doc/stable/reference/generated/numpy.std.html """ raise NotImplementedError() def linspace(self, start, stop, num): r""" Returns a specified number of evenly spaced values over a given interval. This function follows the api from :any:`numpy.linspace` See: https://numpy.org/doc/stable/reference/generated/numpy.linspace.html """ raise NotImplementedError() def meshgrid(self, a, b): r""" Returns coordinate matrices from coordinate vectors (Numpy convention). This function follows the api from :any:`numpy.meshgrid` See: https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html """ raise NotImplementedError() def diag(self, a, k=0): r""" Extracts or constructs a diagonal tensor. This function follows the api from :any:`numpy.diag` See: https://numpy.org/doc/stable/reference/generated/numpy.diag.html """ raise NotImplementedError() def unique(self, a): r""" Finds unique elements of given tensor. This function follows the api from :any:`numpy.unique` See: https://numpy.org/doc/stable/reference/generated/numpy.unique.html """ raise NotImplementedError() def logsumexp(self, a, axis=None): r""" Computes the log of the sum of exponentials of input elements. This function follows the api from :any:`scipy.special.logsumexp` See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.logsumexp.html """ raise NotImplementedError() def stack(self, arrays, axis=0): r""" Joins a sequence of tensors along a new dimension. This function follows the api from :any:`numpy.stack` See: https://numpy.org/doc/stable/reference/generated/numpy.stack.html """ raise NotImplementedError() def outer(self, a, b): r""" Computes the outer product between two vectors. This function follows the api from :any:`numpy.outer` See: https://numpy.org/doc/stable/reference/generated/numpy.outer.html """ raise NotImplementedError() def reshape(self, a, shape): r""" Gives a new shape to a tensor without changing its data. This function follows the api from :any:`numpy.reshape` See: https://numpy.org/doc/stable/reference/generated/numpy.reshape.html """ raise NotImplementedError() def seed(self, seed=None): r""" Sets the seed for the random generator. This function follows the api from :any:`numpy.random.seed` See: https://numpy.org/doc/stable/reference/generated/numpy.random.seed.html """ raise NotImplementedError() def rand(self, *size, type_as=None): r""" Generate uniform random numbers. This function follows the api from :any:`numpy.random.rand` See: https://numpy.org/doc/stable/reference/generated/numpy.random.rand.html """ raise NotImplementedError() def randn(self, *size, type_as=None): r""" Generate normal Gaussian random numbers. This function follows the api from :any:`numpy.random.rand` See: https://numpy.org/doc/stable/reference/generated/numpy.random.rand.html """ raise NotImplementedError() def coo_matrix(self, data, rows, cols, shape=None, type_as=None): r""" Creates a sparse tensor in COOrdinate format. This function follows the api from :any:`scipy.sparse.coo_matrix` See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.html """ raise NotImplementedError() def issparse(self, a): r""" Checks whether or not the input tensor is a sparse tensor. This function follows the api from :any:`scipy.sparse.issparse` See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.issparse.html """ raise NotImplementedError() def tocsr(self, a): r""" Converts this matrix to Compressed Sparse Row format. This function follows the api from :any:`scipy.sparse.coo_matrix.tocsr` See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.tocsr.html """ raise NotImplementedError() def eliminate_zeros(self, a, threshold=0.): r""" Removes entries smaller than the given threshold from the sparse tensor. This function follows the api from :any:`scipy.sparse.csr_matrix.eliminate_zeros` See: https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.sparse.csr_matrix.eliminate_zeros.html """ raise NotImplementedError() def todense(self, a): r""" Converts a sparse tensor to a dense tensor. This function follows the api from :any:`scipy.sparse.csr_matrix.toarray` See: https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.toarray.html """ raise NotImplementedError() def where(self, condition, x, y): r""" Returns elements chosen from x or y depending on condition. This function follows the api from :any:`numpy.where` See: https://numpy.org/doc/stable/reference/generated/numpy.where.html """ raise NotImplementedError() def copy(self, a): r""" Returns a copy of the given tensor. This function follows the api from :any:`numpy.copy` See: https://numpy.org/doc/stable/reference/generated/numpy.copy.html """ raise NotImplementedError() def allclose(self, a, b, rtol=1e-05, atol=1e-08, equal_nan=False): r""" Returns True if two arrays are element-wise equal within a tolerance. This function follows the api from :any:`numpy.allclose` See: https://numpy.org/doc/stable/reference/generated/numpy.allclose.html """ raise NotImplementedError() def dtype_device(self, a): r""" Returns the dtype and the device of the given tensor. """ raise NotImplementedError() def assert_same_dtype_device(self, a, b): r""" Checks whether or not the two given inputs have the same dtype as well as the same device """ raise NotImplementedError() class NumpyBackend(Backend): """ NumPy implementation of the backend - `__name__` is "numpy" - `__type__` is np.ndarray """ __name__ = 'numpy' __type__ = np.ndarray __type_list__ = [np.array(1, dtype=np.float32), np.array(1, dtype=np.float64)] rng_ = np.random.RandomState() def to_numpy(self, a): return a def from_numpy(self, a, type_as=None): if type_as is None: return a elif isinstance(a, float): return a else: return a.astype(type_as.dtype) def set_gradients(self, val, inputs, grads): # No gradients for numpy return val def zeros(self, shape, type_as=None): if type_as is None: return np.zeros(shape) else: return np.zeros(shape, dtype=type_as.dtype) def ones(self, shape, type_as=None): if type_as is None: return np.ones(shape) else: return np.ones(shape, dtype=type_as.dtype) def arange(self, stop, start=0, step=1, type_as=None): return np.arange(start, stop, step) def full(self, shape, fill_value, type_as=None): if type_as is None: return np.full(shape, fill_value) else: return np.full(shape, fill_value, dtype=type_as.dtype) def eye(self, N, M=None, type_as=None): if type_as is None: return np.eye(N, M) else: return np.eye(N, M, dtype=type_as.dtype) def sum(self, a, axis=None, keepdims=False): return np.sum(a, axis, keepdims=keepdims) def cumsum(self, a, axis=None): return np.cumsum(a, axis) def max(self, a, axis=None, keepdims=False): return np.max(a, axis, keepdims=keepdims) def min(self, a, axis=None, keepdims=False): return np.min(a, axis, keepdims=keepdims) def maximum(self, a, b): return np.maximum(a, b) def minimum(self, a, b): return np.minimum(a, b) def dot(self, a, b): return np.dot(a, b) def abs(self, a): return np.abs(a) def exp(self, a): return np.exp(a) def log(self, a): return np.log(a) def sqrt(self, a): return np.sqrt(a) def power(self, a, exponents): return np.power(a, exponents) def norm(self, a): return np.sqrt(np.sum(np.square(a))) def any(self, a): return np.any(a) def isnan(self, a): return np.isnan(a) def isinf(self, a): return np.isinf(a) def einsum(self, subscripts, *operands): return np.einsum(subscripts, *operands) def sort(self, a, axis=-1): return np.sort(a, axis) def argsort(self, a, axis=-1): return np.argsort(a, axis) def searchsorted(self, a, v, side='left'): if a.ndim == 1: return np.searchsorted(a, v, side) else: # this is a not very efficient way to make numpy # searchsorted work on 2d arrays ret = np.empty(v.shape, dtype=int) for i in range(a.shape[0]): ret[i, :] = np.searchsorted(a[i, :], v[i, :], side) return ret def flip(self, a, axis=None): return np.flip(a, axis) def outer(self, a, b): return np.outer(a, b) def clip(self, a, a_min, a_max): return np.clip(a, a_min, a_max) def repeat(self, a, repeats, axis=None): return np.repeat(a, repeats, axis) def take_along_axis(self, arr, indices, axis): return np.take_along_axis(arr, indices, axis) def concatenate(self, arrays, axis=0): return np.concatenate(arrays, axis) def zero_pad(self, a, pad_width): return np.pad(a, pad_width) def argmax(self, a, axis=None): return np.argmax(a, axis=axis) def mean(self, a, axis=None): return np.mean(a, axis=axis) def std(self, a, axis=None): return np.std(a, axis=axis) def linspace(self, start, stop, num): return np.linspace(start, stop, num) def meshgrid(self, a, b): return np.meshgrid(a, b) def diag(self, a, k=0): return np.diag(a, k) def unique(self, a): return
np.unique(a)
numpy.unique
# -*- coding: utf-8 -*- """ Created on Wed Jan 4 12:22:44 2017 @author: a.sancho.asensio """ import argparse import base64 import json import re, sys import os import glob import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mpimg import cv2 import math import pandas as pd import socketio import eventlet import eventlet.wsgi import time from PIL import Image from PIL import ImageOps from flask import Flask, render_template from io import BytesIO from keras.models import model_from_json from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array from keras.utils import np_utils from keras.optimizers import SGD, Adam, RMSprop from keras.models import Model, Sequential from keras.layers.core import Dense, Dropout, Activation, Flatten, Lambda from keras.layers.convolutional import Convolution2D from keras.layers.pooling import AveragePooling2D, MaxPooling2D, GlobalAveragePooling2D from keras.layers import Input, merge, ZeroPadding2D from keras.layers.normalization import BatchNormalization from keras.layers.advanced_activations import LeakyReLU, ELU import keras.backend as K # Fix error with Keras and TensorFlow import tensorflow as tf tf.python.control_flow_ops = tf if os.name == 'nt': # We're on the Windows machine. print(" > Loading paths for the Windows machine") PATH = "C:/Users/a.sancho.asensio/Documents/PaperWork/nanodegree/git/simulator-windows-64/" else: # Linux/MAC machine. print(" > Loading paths for the Linux machine") PATH = "/home/andreu/nanodegree/simulator-linux/" g_steering = np.zeros(10, dtype="float32") # Global array containing the last steering angles. sio = socketio.Server() app = Flask(__name__) model = None prev_image_array = None @sio.on('telemetry') def telemetry(sid, data): # The current steering angle of the car #old_angle = float(data["steering_angle"]) / 25.0 # We need to normalize! # The current throttle of the car #throttle = data["throttle"] # The current speed of the car #speed = float(data["speed"]) # The current image from the center camera of the car imgString = data["image"] image = Image.open(BytesIO(base64.b64decode(imgString))) image_array = np.asarray(image, dtype="uint8") # This model currently assumes that the features of the model are just the images. Feel free to change this. image_array = image_array[16:144, :, :] # Crop the image removing useless areas... image_array = cv2.resize(image_array, (160, 64), interpolation=cv2.INTER_AREA) transformed_image_array = image_array[None, :, :, :] prediction = float(model.predict(transformed_image_array, batch_size=1)) # The driving model currently just outputs a constant throttle. Feel free to edit this. throttle = 1.0 # Filter the data. global g_steering final_steering = 0.9 * prediction + 0.1 * np.mean(g_steering) g_steering =
np.roll(g_steering, 1)
numpy.roll
# coding: utf-8 # /*########################################################################## # Copyright (C) 2016 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ############################################################################*/ """ Nominal tests of the HistogramndLut function. """ import unittest import numpy as np from silx.math import HistogramndLut def _get_bin_edges(histo_range, n_bins, n_dims): edges = [] for i_dim in range(n_dims): edges.append(histo_range[i_dim, 0] + np.arange(n_bins[i_dim] + 1) * (histo_range[i_dim, 1] - histo_range[i_dim, 0]) / n_bins[i_dim]) return tuple(edges) # ============================================================== # ============================================================== # ============================================================== class _TestHistogramndLut_nominal(unittest.TestCase): """ Unit tests of the HistogramndLut class. """ ndims = None def setUp(self): ndims = self.ndims self.tested_dim = ndims-1 if ndims is None: raise ValueError('ndims class member not set.') sample = np.array([5.5, -3.3, 0., -0.5, 3.3, 8.8, -7.7, 6.0, -4.0]) weights = np.array([500.5, -300.3, 0.01, -0.5, 300.3, 800.8, -700.7, 600.6, -400.4]) n_elems = len(sample) if ndims == 1: shape = (n_elems,) else: shape = (n_elems, ndims) self.sample = np.zeros(shape=shape, dtype=sample.dtype) if ndims == 1: self.sample = sample else: self.sample[..., ndims-1] = sample self.weights = weights # the tests are performed along one dimension, # all the other bins indices along the other dimensions # are expected to be 2 # (e.g : when testing a 2D sample : [0, x] will go into # bin [2, y] because of the bin ranges [-2, 2] and n_bins = 4 # for the first dimension) self.other_axes_index = 2 self.histo_range = np.repeat([[-2., 2.]], ndims, axis=0) self.histo_range[ndims-1] = [-4., 6.] self.n_bins = np.array([4]*ndims) self.n_bins[ndims-1] = 5 if ndims == 1: def fill_histo(h, v, dim, op=None): if op: h[:] = op(h[:], v) else: h[:] = v self.fill_histo = fill_histo else: def fill_histo(h, v, dim, op=None): idx = [self.other_axes_index]*len(h.shape) idx[dim] = slice(0, None) if op: h[idx] = op(h[idx], v) else: h[idx] = v self.fill_histo = fill_histo def test_nominal_bin_edges(self): instance = HistogramndLut(self.sample, self.histo_range, self.n_bins) bin_edges = instance.bins_edges expected_edges = _get_bin_edges(self.histo_range, self.n_bins, self.ndims) for i_edges, edges in enumerate(expected_edges): self.assertTrue(np.array_equal(bin_edges[i_edges], expected_edges[i_edges]), msg='Testing bin_edges for dim {0}' ''.format(i_edges+1)) def test_nominal_histo_range(self): instance = HistogramndLut(self.sample, self.histo_range, self.n_bins) histo_range = instance.histo_range self.assertTrue(np.array_equal(histo_range, self.histo_range)) def test_nominal_last_bin_closed(self): instance = HistogramndLut(self.sample, self.histo_range, self.n_bins) last_bin_closed = instance.last_bin_closed self.assertEqual(last_bin_closed, False) instance = HistogramndLut(self.sample, self.histo_range, self.n_bins, last_bin_closed=True) last_bin_closed = instance.last_bin_closed self.assertEqual(last_bin_closed, True) instance = HistogramndLut(self.sample, self.histo_range, self.n_bins, last_bin_closed=False) last_bin_closed = instance.last_bin_closed self.assertEqual(last_bin_closed, False) def test_nominal_n_bins_array(self): test_n_bins = np.arange(self.ndims) + 10 instance = HistogramndLut(self.sample, self.histo_range, test_n_bins) n_bins = instance.n_bins self.assertTrue(np.array_equal(test_n_bins, n_bins)) def test_nominal_n_bins_scalar(self): test_n_bins = 10 expected_n_bins = np.array([test_n_bins] * self.ndims) instance = HistogramndLut(self.sample, self.histo_range, test_n_bins) n_bins = instance.n_bins self.assertTrue(np.array_equal(expected_n_bins, n_bins)) def test_nominal_histo_ref(self): """ """ expected_h_tpl = np.array([2, 1, 1, 1, 1]) expected_c_tpl = np.array([-700.7, -0.5, 0.01, 300.3, 500.5]) expected_h = np.zeros(shape=self.n_bins, dtype=np.double) expected_c = np.zeros(shape=self.n_bins, dtype=np.double) self.fill_histo(expected_h, expected_h_tpl, self.ndims-1) self.fill_histo(expected_c, expected_c_tpl, self.ndims-1) instance = HistogramndLut(self.sample, self.histo_range, self.n_bins) instance.accumulate(self.weights) histo = instance.histo() w_histo = instance.weighted_histo() histo_ref = instance.histo(copy=False) w_histo_ref = instance.weighted_histo(copy=False) self.assertTrue(np.array_equal(histo, expected_h)) self.assertTrue(np.array_equal(w_histo, expected_c)) self.assertTrue(np.array_equal(histo_ref, expected_h)) self.assertTrue(np.array_equal(w_histo_ref, expected_c)) histo_ref[0, ...] = histo_ref[0, ...] + 10 w_histo_ref[0, ...] = w_histo_ref[0, ...] + 20 self.assertTrue(np.array_equal(histo, expected_h)) self.assertTrue(np.array_equal(w_histo, expected_c)) self.assertFalse(np.array_equal(histo_ref, expected_h)) self.assertFalse(np.array_equal(w_histo_ref, expected_c)) histo_2 = instance.histo() w_histo_2 = instance.weighted_histo() self.assertFalse(np.array_equal(histo_2, expected_h)) self.assertFalse(np.array_equal(w_histo_2, expected_c)) self.assertTrue(np.array_equal(histo_2, histo_ref)) self.assertTrue(np.array_equal(w_histo_2, w_histo_ref)) def test_nominal_accumulate_once(self): """ """ expected_h_tpl = np.array([2, 1, 1, 1, 1]) expected_c_tpl = np.array([-700.7, -0.5, 0.01, 300.3, 500.5]) expected_h = np.zeros(shape=self.n_bins, dtype=np.double) expected_c = np.zeros(shape=self.n_bins, dtype=np.double) self.fill_histo(expected_h, expected_h_tpl, self.ndims-1) self.fill_histo(expected_c, expected_c_tpl, self.ndims-1) instance = HistogramndLut(self.sample, self.histo_range, self.n_bins) instance.accumulate(self.weights) histo = instance.histo() w_histo = instance.weighted_histo() self.assertEqual(w_histo.dtype, np.float64) self.assertEqual(histo.dtype, np.uint32) self.assertTrue(np.array_equal(histo, expected_h)) self.assertTrue(np.array_equal(w_histo, expected_c)) self.assertTrue(np.array_equal(instance.histo(), expected_h)) self.assertTrue(np.array_equal(instance.weighted_histo(), expected_c)) def test_nominal_accumulate_twice(self): """ """ expected_h_tpl = np.array([2, 1, 1, 1, 1]) expected_c_tpl = np.array([-700.7, -0.5, 0.01, 300.3, 500.5]) expected_h = np.zeros(shape=self.n_bins, dtype=np.double) expected_c = np.zeros(shape=self.n_bins, dtype=np.double) self.fill_histo(expected_h, expected_h_tpl, self.ndims-1) self.fill_histo(expected_c, expected_c_tpl, self.ndims-1) # calling accumulate twice expected_h *= 2 expected_c *= 2 instance = HistogramndLut(self.sample, self.histo_range, self.n_bins) instance.accumulate(self.weights) instance.accumulate(self.weights) histo = instance.histo() w_histo = instance.weighted_histo() self.assertEqual(w_histo.dtype, np.float64) self.assertEqual(histo.dtype, np.uint32) self.assertTrue(np.array_equal(histo, expected_h)) self.assertTrue(np.array_equal(w_histo, expected_c)) self.assertTrue(np.array_equal(instance.histo(), expected_h)) self.assertTrue(np.array_equal(instance.weighted_histo(), expected_c)) def test_nominal_apply_lut_once(self): """ """ expected_h_tpl = np.array([2, 1, 1, 1, 1]) expected_c_tpl =
np.array([-700.7, -0.5, 0.01, 300.3, 500.5])
numpy.array
##%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ## Numpy Basics ## %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # create a 2D array import numpy as np arr2D = np.array([[1,4,6],[2,5,7]]) # getting information about arr2D print(arr2D.size) # returns 6, the no. of items print(arr2D.ndim) # returns 2, the no. of dimensions print(arr2D.shape) # returns tuple(2,3) corresponding to 2 rows & 3 columns # create a 1D array arr1D = np.array([1,4,6]) # getting information about arr1D print(arr1D.size) # returns 3, the no. of items print(arr1D.ndim) # returns 1, the no. of dimensions print(arr1D.shape) # returns tuple(3,) corresponding to 3 items #%% creating numpy arrays # creating sequence of numbers arr1 = np.arange(3, 6) # same as Python range function; results in array([3,4,5]) arr2 = np.arange(3, 9, 2) # the 3rd argument defines the step size; results in array([3,5,7]) arr3 = np.linspace(1,7,3) # creates evenly spaced 3 values from 1 to 9; results in array([1,4,7]) # creating special arrays arr4 = np.ones((2,1)) # array of shape (2,1) with all items as 1 arr5 = np.zeros((2,2)) # all items as zero; often used as placeholder array at beginning of script arr6 = np.eye(2) # diagonal items as 1 # adding axis to existing arrays (e.g., converting 1D array to 2D array) print(arr1[:, np.newaxis]) arr7 = arr1[:, None] # same as above # combining / stacking arrays print(np.hstack((arr1, arr2))) # horizontally stacks passed arrays print(np.vstack((arr1, arr2))) # vertically stacks passed arrays print(np.hstack((arr5,arr4))) # array 4 added as a column into arr5 print(np.vstack((arr5,arr6))) # rows of array 6 added onto arr5 #%% basic numpy functions print(arr2D.sum(axis=0)) print(arr2D.sum(axis=1)) #%% indexing arrays # accessing individual items print(arr2D[1,2]) # returns 7 # slicing arr8 = np.arange(10).reshape((2,5)) # rearrange the 1D array into shape (2,5) print((arr8[0:1,1:3])) print((arr8[0,1:3])) # note that a 1D array is returned here instead of the 2D array above # accessing entire row or column print(arr8[1]) # returns 2nd row as array([5,6,7,8,9]); same as arr8[1,:] print(arr8[:, 4]) # returns items of 3rd column as a 1D array # extract a subarray from arr8 and modify it arr8_sub = arr8[:, :2] # columns 0 and 1 from all rows arr8_sub[1, 1] = 1000 print(arr8) # arr8 gets modified as well!! # use copy method for a separate copy arr8 = np.arange(10).reshape((2,5)) arr8_sub2 = arr8[:, :2].copy() arr8_sub2[1, 1] = 100 print(arr8) # Fancy indexing # combination of simple and fancy indexing arr8_sub3 = arr8[:, [0, 1]] # note how columns are indexed via a list arr8_sub3[1, 1] = 100 # arr8_sub3 becomes same as arr8_sub2 but arr8 is not modified here print(arr8) # use boolean mask to select subarray arr8_sub4 = arr8[arr8 > 5] # returns array([6,7,8,9]), i.e., all values > 5 arr8_sub4[0] = 0 # again, arr8 is not affected print(arr8) #%% vectorized operations vec1 = np.array([1,2,3,4]) vec2 =
np.array([5,6,7,8])
numpy.array
import logging import os from dataclasses import dataclass from string import Template import numpy as np import tables import pyinotify from phd.thunderstorm.convert_to_hdf5 import CylinderProtoSet from phd.utils.hdf5_tools import ProtoSetReader from phd.utils.run_tools import G4CinServer, CinServerParameters from tables import Filters, Table, Group import matplotlib.pyplot as plt ROOT_PATH = os.path.dirname(__file__) INPUT_TEMPLATE = """/npm/geometry/type gdml /npm/geometry/gdml critical_energy.gdml /npm/thunderstorm/physics ${physics} /npm/thunderstorm/minimal_energy ${energy} MeV /npm/thunderstorm/stepping/type critical_energy /npm/thunderstorm/stacking/electron false /npm/thunderstorm/stacking/positron false /npm/thunderstorm/stacking/gamma false /npm/thunderstorm/stacking/save_gamma false /npm/thunderstorm/stacking/save_electron true /npm/thunderstorm/stacking/save_electron_cut ${energy} MeV separator """ MESSEGE = """/gps/particle e- /gps/number 1 /gps/direction 0 0 -1 /gps/ene/mono ${energy} MeV /gps/position 0.0 0.0 0.0 m /run/beamOn ${number} separator """ class Processor: def init_messege(self) -> str: return "" def process(self, event): return None def accept(self, event): pass def create_gdml(template_file, values: dict): with open(template_file) as fin: gdml_template = fin.read() gdml_template = Template(gdml_template) with open("critical_energy.gdml", 'w') as fout: fout.write(gdml_template.substitute(values)) return 0 class CriticalEnergyProcessor(Processor): def __init__(self, meta): self.reader = ProtoSetReader("stacking_simple.bin", CylinderProtoSet) filters = Filters(complevel=3, fletcher32=True) self.reader.set_filters(filters) self.path_hdf5 = "result.hdf5" self.counter = 0 self.mess_templte = Template(MESSEGE) self.meta = meta self.step = 0.001 def init_messege(self) -> str: return self.mess_templte.substitute(self.meta) def process(self, event): group_path = self.convert(event.pathname) os.remove(event.pathname) with tables.open_file(self.path_hdf5) as h5file: table: Table = h5file.get_node(group_path, "stacking_simple") n_electron = table.nrows n_primary = table.attrs["number"] gamma = n_electron / n_primary if gamma > 1: return None else: self.meta["energy"] = self.meta["energy"] + self.step return self.init_messege() def accept(self, event): return event.name == "stacking_simple.bin" def convert(self, path): with tables.open_file(self.path_hdf5, mode="a") as h5file: group = h5file.create_group(h5file.root, "sim{}".format(str(self.counter).rjust(4, '0'))) self.reader(path, h5file, group) for table in h5file.iter_nodes(group): if (isinstance(table, Group)): continue for key, value in self.meta.items(): table.attrs[key] = value self.counter += 1 return group._v_pathname class G4CinServerHandler(pyinotify.ProcessEvent): def my_init(self, server: G4CinServer, processor: Processor): self.server = server self.processor = processor self.server.send(processor.init_messege()) def process_IN_CREATE(self, event): logging.root.info(str(event)) def process_IN_CLOSE_WRITE(self, event): if self.processor.accept(event): result = self.processor.process(event) if result is not None: self.server.send(result) else: raise KeyboardInterrupt import star import numpy as np from phd.thunderstorm import atmosphere from scipy.optimize import root_scalar def get_critical_energy(height = 0, field = 0): """ :param height: meters :param field:kV/cm :return: """ material = star.electron.PredefinedMaterials.AIR_DRY_NEAR_SEA_LEVEL density = atmosphere.ISACalculator.density(height) # kg/m3 def critical_energy_equation(energy): data = star.electron.calculate_stopping_power(material, np.asarray([energy])) stopPower = data["stopping_power_total"][0] return field - stopPower*density try: critical_energy_root = root_scalar( critical_energy_equation, bracket=(0.001, 2.0), ) except ValueError as err: print(err) return None return critical_energy_root from scipy.linalg import lstsq # def calculate_secondary_production_rate(path): # bins = np.arange(-500.0, 501, 1) # x = bins[:-1] # M = x[:, np.newaxis] ** [0, 1] # # dtype = np.dtype( # [ # ("field", "d"), # ("height", "d"), # ("energy", "d"), # ("k", "d"), # ("b", "d") # ] # ) # # with tables.open_file(path) as h5file: # result = [] # for group in h5file.root: # table = h5file.get_node(group, "stacking_simple") # data = table.read() # field = table.attrs["values_gdml_field"][0] # height = table.attrs["values_gdml_height"][0] # energy = table.attrs["values_macros_energy"] # number = table.attrs["values_macros_number"] # temp, _ = np.histogram(data["z"], bins=bins) # temp = np.cumsum(temp) # y = temp / number # p, res, rnk, s = lstsq(M, y) # result.append((field, height, energy, p[1], p[0])) # return np.array(result, dtype=dtype) @dataclass(eq=True, frozen=True) class FieldHeigth: field: float height : float def get_group(path): with tables.open_file(path) as h5file: result = {} for group in h5file.root: table = h5file.get_node(group, "stacking_simple") field = table.attrs["values_gdml_field"][0] height = table.attrs["values_gdml_height"][0] energy = table.attrs["values_macros_energy"] key = FieldHeigth(field, height) if key in result.keys(): result[key].append((energy, group._v_name)) else: result[key] = [(energy, group._v_name)] for value in result.values(): value.sort(key=lambda x: x[0]) return result def plot_secondary_production_rate(path, output="plot"): if not os.path.exists(output): os.mkdir(output) groups = get_group(path) bins = np.arange(-500.0, 501, 1) x = bins[:-1] result = [] dtype = np.dtype( [ ("field", "d"), ("height", "d"), ("energy", "d"), ("k", "d"), ("b", "d") ] ) with tables.open_file(path) as h5file: for key, value in groups.items(): energy_cut = value[0][0] plt.clf() for energy, group_name in value: table: tables.Table = h5file.get_node("/{}".format(group_name), "stacking_simple") data = table.read() data = data[data["energy"] > energy_cut] number = table.attrs["values_macros_number"] temp, _ = np.histogram(data["z"], bins=bins) temp = np.cumsum(temp[::-1]) y = temp / number plt.plot(x, y) path = os.path.join(output, "{}m_{}kV_m.png".format(key.height, key.field*1e4)) plt.xlabel("Height, meters") plt.ylabel("Cumulative number of electron") plt.tight_layout() plt.savefig(path, format="png", transparent=True, dpi = 600) return 0 def calculate_secondary_production_rate(path, rate_cut = 0.001, method="simple"): if method not in ["simple", "rate-cut"]: logging.root.warning("Bad method for {}".format(calculate_secondary_production_rate.__name__)) groups = get_group(path) bins = np.arange(-500.0, 501, 1) x = bins[:-1] M = x[:, np.newaxis] ** [0, 1] result = [] dtype = np.dtype( [ ("field", "d"), ("height", "d"), ("energy", "d"), ("k", "d"), ("b", "d"), ("chi2", "d") ] ) with tables.open_file(path) as h5file: for key, value in groups.items(): energy_cut = value[0][0] for energy, group_name in value: table: tables.Table = h5file.get_node("/{}".format(group_name), "stacking_simple") data = table.read() data = data[data["energy"] > energy_cut] number = table.attrs["values_macros_number"] temp, _ =
np.histogram(data["z"], bins=bins)
numpy.histogram
""" Based on https://github.com/dsadigh/driving-preferences and https://github.com/Stanford-ILIAD/easy-active-learning/ """ import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import gym import matplotlib.pyplot as plt import numpy as np import scipy.optimize as opt from gym import spaces from gym.utils import seeding from matplotlib.image import AxesImage, BboxImage from matplotlib.patches import PathPatch from matplotlib.path import Path from scipy.ndimage import rotate, zoom from active_reward_learning.common.constants import ( KEY_DOWN, KEY_LEFT, KEY_RIGHT, KEY_UP, ) from active_reward_learning.common.policy import FixedPolicy IMG_FOLDER = os.path.join(os.path.dirname(__file__), "..", "..", "img", "highway") GRASS = np.tile(plt.imread(os.path.join(IMG_FOLDER, "grass.png")), (5, 5, 1)) CAR = { color: zoom( np.array( plt.imread(os.path.join(IMG_FOLDER, "car-{}.png".format(color))) * 255.0, dtype=np.uint8, # zoom requires uint8 format ), [0.3, 0.3, 1.0], ) for color in ["gray", "orange", "purple", "red", "white", "yellow"] } COLOR_AGENT = "orange" COLOR_ROBOT = "white" CAR_AGENT = CAR[COLOR_AGENT] CAR_ROBOT = CAR[COLOR_ROBOT] CAR_SCALE = 0.15 / max(list(CAR.values())[0].shape[:2]) LANE_SCALE = 10.0 LANE_COLOR = (0.4, 0.4, 0.4) # 'gray' LANE_BCOLOR = "white" STEPS = 100 def set_image( obj: AxesImage, data: np.ndarray, scale: float = CAR_SCALE, x: List[float] = [0.0, 0.0, 0.0, 0.0], ): ox = x[0] oy = x[1] angle = x[2] img = rotate(data, np.rad2deg(angle)) h, w = img.shape[0], img.shape[1] obj.set_data(img) obj.set_extent( [ ox - scale * w * 0.5, ox + scale * w * 0.5, oy - scale * h * 0.5, oy + scale * h * 0.5, ] ) class Car: def __init__( self, initial_state: Union[List[float], np.ndarray], actions: List[Union[Tuple[float, float], np.ndarray]], ): self.initial_state = initial_state self.state = self.initial_state self.actions = actions self.action_i = 0 def reset(self): self.state = self.initial_state self.action_i = 0 def update( self, update_fct: Callable[[List[float], float, float], List[float]] ) -> None: u1, u2 = self.actions[self.action_i % len(self.actions)] self.state = update_fct(self.state, u1, u2) self.action_i += 1 def gaussian( self, x: List[float], height: float = 0.07, width: float = 0.03 ) -> float: car_pos = np.asarray([self.state[0], self.state[1]]) car_theta = self.state[2] car_heading = (np.cos(car_theta), np.sin(car_theta)) pos = np.asarray([x[0], x[1]]) d = car_pos - pos dh = np.dot(d, car_heading) dw = np.cross(d, car_heading) return np.exp(-0.5 * ((dh / height) ** 2 + (dw / width) ** 2)) class Lane: def __init__( self, start_pos: Union[List[float], np.ndarray], end_pos: Union[List[float], np.ndarray], width: float, ): self.start_pos = np.asarray(start_pos) self.end_pos = np.asarray(end_pos) self.width = width d = self.end_pos - self.start_pos self.dir = d / np.linalg.norm(d) self.perp = np.asarray([-self.dir[1], self.dir[0]]) def gaussian(self, state: List[float], sigma: float = 0.5) -> float: pos = np.asarray([state[0], state[1]]) dist_perp = np.dot(pos - self.start_pos, self.perp) return np.exp(-0.5 * (dist_perp / (sigma * self.width / 2.0)) ** 2) def direction(self, x: List[float]): return np.cos(x[2]) * self.dir[0] + np.sin(x[2]) * self.dir[1] def shifted(self, m: int) -> "Lane": return Lane( self.start_pos + self.perp * self.width * m, self.end_pos + self.perp * self.width * m, self.width, ) class HighwayDriving(gym.Env): metadata = {"render.modes": ["human", "rgb_array"], "video.frames_per_second": 1} def __init__( self, cars: List[Car], reward_weights: Optional[np.ndarray] = None, ): self.initial_state = [0, -0.3, np.pi / 2, 0.4] self.state = self.initial_state self.episode_length = 50 self.dt = 0.1 self.friction = 1 self.vmax = 1 self.xlim = (-1, 1) # self.ylim = (-0.2, 0.8) self.ylim = (-0.4, 2.5) print("state0", self.state) lane = Lane([0.0, -1.0], [0.0, 1.0], 0.17) road = Lane([0.0, -1.0], [0.0, 1.0], 0.17 * 3) self.lanes = [lane.shifted(0), lane.shifted(-1), lane.shifted(1)] self.fences = [lane.shifted(2), lane.shifted(-2)] self.roads = [road] self.cars = cars n_features = len(self.get_features()) if reward_weights is not None: assert reward_weights.shape == (n_features,) self.reward_w = np.array(reward_weights) else: self.reward_w = np.random.normal(size=n_features) self.reward_w[-1] = 0 self.reward_w /= np.linalg.norm(self.reward_w) self.reward_w /= 2 self.reward_w[-1] = 0.5 self.action_space = spaces.Box(np.array([-1, -1]), np.array([1, 1])) self.observation_space = spaces.Box( np.array([-np.inf, -np.inf, 0, -np.inf]), np.array([np.inf, np.inf, 2 * np.pi, np.inf]), dtype=np.float32, ) self.Ndim_repr = n_features self.time = 0 self.history: List[ Tuple[List[float], List[Tuple[float, float, float, float]]] ] = [] self._update_history() self.seed() def _update_history(self) -> None: self.history.append((np.array(self.state), self._get_car_states())) def _get_car_states(self) -> List[np.ndarray]: return [np.array(car.state) for car in self.cars] def _update_state(self, state: List[float], u1: float, u2: float) -> List[float]: x, y, theta, v = state dx = v * np.cos(theta) dy = v * np.sin(theta) dtheta = v * u1 dv = u2 - self.friction * v new_v = max(min(v + dv * self.dt, self.vmax), -self.vmax) return [x + dx * self.dt, y + dy * self.dt, theta + dtheta * self.dt, new_v] def _get_reward_for_state(self, state: Optional[List[float]] = None) -> float: if state is None: state = self.state return np.dot(self.reward_w, self.get_features(state)) def seed(self, seed: Optional[float] = None) -> List[float]: self.np_random, seed = seeding.np_random(seed) assert seed is not None return [seed] def step( self, action: Tuple[float, float] ) -> Tuple[np.ndarray, float, bool, Dict[str, Any]]: action =
np.array(action)
numpy.array
# Simplest case, no bells or whistles, just hard-code integrators and test system import numpy as np import matplotlib from numba import jit from time import time matplotlib.use('agg') import matplotlib.pyplot as plt from scipy.stats import entropy from benchmark import DATA_PATH import os # define system np.random.seed(0) figure_directory = "figures/" # relative to script figure_format = ".pdf" # Define system beta = 1.0 # inverse temperature dim = 1 # system dimension @jit def quartic_potential(x): return x**4 @jit def quartic_force(x): return - 4.0 * x**3 @jit def eggcrate_potential(x): return x**2 + np.sin(10 * x) @jit def eggcrate_force(x): return - ( 2 * ( x + 5 * np.cos(10 * x)) ) system = "quartic" if system == "quartic": potential = quartic_potential force = quartic_force elif system == "eggcrate": potential = eggcrate_potential force = eggcrate_force @jit def reduced_potential(x): return potential(x) * beta @jit def log_q(x): return - reduced_potential(x) @jit def q(x): return np.exp(log_q(x)) # normalized density x = np.linspace(-3, 3, 1000) x_ = np.linspace(-10,10,10000) Z = np.trapz(q(x_)) log_Z = np.log(Z) def p(x): return q(x) / Z def log_p(x): return log_q(x) - log_Z # example initial conditions x_0, v_0 = np.random.randn(), np.random.randn() m = 10.0 # mass velocity_scale = np.sqrt(1.0 / (beta * m)) sigma2 = velocity_scale**2 timestep = 1.0 gamma = 100.0 # implement ovrvo def simulate_vvvr(x0, v0, n_steps, gamma, dt, thinning_factor=1): """Simulate n_steps of VVVR, accumulating heat :param x0: :param v0: :param n_steps: :param gamma: :param dt: :return: """ Q = 0 W_shads = np.zeros(n_steps / thinning_factor) x, v = x0, v0 xs, vs = np.zeros(n_steps / thinning_factor), np.zeros(n_steps / thinning_factor) xs[0] = x0 vs[0] = v0 E_old = potential(x) + 0.5 * m * v**2 a =
np.exp(-gamma * (dt / 2.0))
numpy.exp
import os import tempfile from os import path as osp import mmcv import numpy as np import torch from mmcv.utils import print_log from mmdet.datasets import DATASETS from mmdet3d.core.bbox import Box3DMode, points_cam2img, CameraInstance3DBoxes from mmdet3d.datasets.kitti_dataset import KittiDataset @DATASETS.register_module() class WaymoMultiViewDataset(KittiDataset): """ Waymo Multi-View Dataset by <NAME> Need to prepare multi-view info.pkl first This class serves as the API for experiments on the Waymo Dataset. Please refer to `<https://waymo.com/open/download/>`_for data downloading. It is recommended to symlink the dataset root to $MMDETECTION3D/data and organize them as the doc shows. Args: data_root (str): Path of dataset root. ann_file (str): Path of annotation file. split (str): Split of input data. pts_prefix (str, optional): Prefix of points files. Defaults to 'velodyne'. pipeline (list[dict], optional): Pipeline used for data processing. Defaults to None. classes (tuple[str], optional): Classes used in the dataset. Defaults to None. modality (dict, optional): Modality to specify the sensor data used as input. Defaults to None. box_type_3d (str, optional): Type of 3D box of this dataset. Based on the `box_type_3d`, the dataset will encapsulate the box to its original format then converted them to `box_type_3d`. Defaults to 'LiDAR' in this dataset. Available options includes - 'LiDAR': box in LiDAR coordinates - 'Depth': box in depth coordinates, usually for indoor dataset - 'Camera': box in camera coordinates filter_empty_gt (bool, optional): Whether to filter empty GT. Defaults to True. test_mode (bool, optional): Whether the dataset is in test mode. Defaults to False. pcd_limit_range (list(float), optional): The range of point cloud used to filter invalid predicted boxes. Default: [-85, -85, -5, 85, 85, 5]. """ CLASSES = ('Car', 'Cyclist', 'Pedestrian') def __init__(self, data_root, ann_file, split, pts_prefix='velodyne', pipeline=None, classes=None, modality=None, cams=('CAM_FRONT', 'CAM_FRONT_LEFT', 'CAM_FRONT_RIGHT'), box_type_3d='LiDAR', filter_empty_gt=True, test_mode=False, load_interval=1, pcd_limit_range=[-85, -85, -5, 85, 85, 5]): super().__init__( data_root=data_root, ann_file=ann_file, split=split, pts_prefix=pts_prefix, pipeline=pipeline, classes=classes, modality=modality, box_type_3d=box_type_3d, filter_empty_gt=filter_empty_gt, test_mode=test_mode, pcd_limit_range=pcd_limit_range) # to load a subset, just set the load_interval in the dataset config self.data_infos = self.data_infos[::load_interval] if hasattr(self, 'flag'): self.flag = self.flag[::load_interval] self.cams = cams def _get_pts_filename(self, idx): pts_filename = osp.join(self.root_split, self.pts_prefix, f'{idx:07d}.bin') return pts_filename def get_data_info(self, index): """Get data info according to the given index. Args: index (int): Index of the sample data to get. Returns: dict: Standard input_dict consists of the data information. - sample_idx (str): sample index - pts_filename (str): filename of point clouds - img_prefix (str): prefix of image files - img_info (dict): image info - lidar2img (list[np.ndarray], optional): transformations from lidar to different cameras - ann_info (dict): annotation info """ info = self.data_infos[index] sample_idx = info['cams']['CAM_FRONT']['image_idx'] pts_filename = self._get_pts_filename(sample_idx) image_paths = [] lidar2img_rts = [] for cam_name in self.cams: cam_info = info['cams'][cam_name] # img_path img_path = os.path.join(self.data_root, cam_info['image_path']) image_paths.append(img_path) # lidar2img cam_id = cam_info['cam_id'] lidar2cam = info['calib'][f'Tr_velo_to_cam_{cam_id}'].astype(np.float32) intrinsic = info['calib'][f'P{cam_id}'].astype(np.float32) lidar2img = intrinsic @ lidar2cam lidar2img_rts.append(lidar2img) input_dict = dict( sample_idx=sample_idx, pts_filename=pts_filename, # sweeps=info['sweeps'], timestamp=info['timestamp'] / 1e6, img_filename=image_paths, lidar2img=lidar2img_rts, ) # if not self.test_mode: # load gt_bbox in test_mode for visualization annos = self.get_ann_info(index) input_dict['ann_info'] = annos return input_dict def get_ann_info(self, index): """Get annotation info according to the given index. Args: index (int): Index of the annotation data to get. Returns: dict: annotation information consists of the following keys: - gt_bboxes_3d (:obj:`LiDARInstance3DBoxes`): 3D ground truth bboxes. - gt_labels_3d (np.ndarray): Labels of ground truths. - gt_bboxes (np.ndarray): 2D ground truth bboxes. - gt_labels (np.ndarray): Labels of ground truths. - gt_names (list[str]): Class names of ground truths. - difficulty (int): Difficulty defined by KITTI. 0, 1, 2 represent xxxxx respectively. """ # Use index to get the annos, thus the evalhook could also use this api info = self.data_infos[index] annos = info['annos'] # we need other objects to avoid collision when sample annos = self.remove_dontcare(annos) # already removed 'DontCare' loc = annos['location'] dims = annos['dimensions'] rots = annos['rotation_y'] gt_names = annos['name'] gt_bboxes_3d = np.concatenate([loc, dims, rots[..., np.newaxis]], axis=1).astype(np.float32) # TODO: check dims # convert gt_bboxes_3d from CAM_FRONT to velodyne coordinates Trv2c = info['calib']['Tr_velo_to_cam_0'].astype(np.float32) gt_bboxes_3d = CameraInstance3DBoxes(gt_bboxes_3d).convert_to( self.box_mode_3d, np.linalg.inv(Trv2c)) gt_labels_3d = [] for cat in gt_names: if cat in self.CLASSES: gt_labels_3d.append(self.CLASSES.index(cat)) else: gt_labels_3d.append(-1) gt_labels_3d = np.array(gt_labels_3d).astype(np.int64) anns_results = dict( gt_bboxes_3d=gt_bboxes_3d, # LiDAR frame: LiDARInstance3DBoxes gt_labels_3d=gt_labels_3d, gt_names=gt_names, ) return anns_results def format_results(self, outputs, pklfile_prefix=None, submission_prefix=None, data_format='waymo'): """Format the results to pkl file. Args: outputs (list[dict]): Testing results of the dataset. pklfile_prefix (str): The prefix of pkl files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. submission_prefix (str): The prefix of submitted files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. data_format (str, optional): Output data format. Default: 'waymo'. Another supported choice is 'kitti'. Returns: tuple: (result_files, tmp_dir), result_files is a dict containing the json filepaths, tmp_dir is the temporal directory created for saving json files when jsonfile_prefix is not specified. """ if pklfile_prefix is None: tmp_dir = tempfile.TemporaryDirectory() pklfile_prefix = osp.join(tmp_dir.name, 'results') else: tmp_dir = None assert ('waymo' in data_format or 'kitti' in data_format), \ f'invalid data_format {data_format}' if (not isinstance(outputs[0], dict)) or 'img_bbox' in outputs[0]: raise TypeError('Not supported type for reformat results.') elif 'pts_bbox' in outputs[0]: result_files = dict() for name in outputs[0]: results_ = [out[name] for out in outputs] pklfile_prefix_ = pklfile_prefix + name if submission_prefix is not None: submission_prefix_ = f'{submission_prefix}_{name}' else: submission_prefix_ = None result_files_ = self.bbox2result_kitti(results_, self.CLASSES, pklfile_prefix_, submission_prefix_) result_files[name] = result_files_ else: result_files = self.bbox2result_kitti(outputs, self.CLASSES, pklfile_prefix, submission_prefix) if 'waymo' in data_format: from mmdet3d.core.evaluation.waymo_utils.prediction_kitti_to_waymo import \ KITTI2Waymo # noqa waymo_root = osp.join( self.data_root.split('kitti_format')[0], 'waymo_format') if self.split == 'training': waymo_tfrecords_dir = osp.join(waymo_root, 'validation') prefix = '1' elif self.split == 'testing': waymo_tfrecords_dir = osp.join(waymo_root, 'testing') prefix = '2' else: raise ValueError('Not supported split value.') save_tmp_dir = tempfile.TemporaryDirectory() waymo_results_save_dir = save_tmp_dir.name waymo_results_final_path = f'{pklfile_prefix}.bin' if 'pts_bbox' in result_files: converter = KITTI2Waymo(result_files['pts_bbox'], waymo_tfrecords_dir, waymo_results_save_dir, waymo_results_final_path, prefix) else: converter = KITTI2Waymo(result_files, waymo_tfrecords_dir, waymo_results_save_dir, waymo_results_final_path, prefix) converter.convert() save_tmp_dir.cleanup() return result_files, tmp_dir def evaluate(self, results, metric='waymo', logger=None, pklfile_prefix=None, submission_prefix=None, show=False, out_dir=None, pipeline=None): """Evaluation in KITTI protocol. Args: results (list[dict]): Testing results of the dataset. metric (str | list[str], optional): Metrics to be evaluated. Default: 'waymo'. Another supported metric is 'kitti'. logger (logging.Logger | str, optional): Logger used for printing related information during evaluation. Default: None. pklfile_prefix (str, optional): The prefix of pkl files including the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. submission_prefix (str, optional): The prefix of submission data. If not specified, the submission data will not be generated. show (bool, optional): Whether to visualize. Default: False. out_dir (str, optional): Path to save the visualization results. Default: None. pipeline (list[dict], optional): raw data loading for showing. Default: None. Returns: dict[str: float]: results of each evaluation metric """ assert ('waymo' in metric or 'kitti' in metric), \ f'invalid metric {metric}' if 'kitti' in metric: result_files, tmp_dir = self.format_results( results, pklfile_prefix, submission_prefix, data_format='kitti') from mmdet3d.core.evaluation import kitti_eval gt_annos = [info['annos'] for info in self.data_infos] if isinstance(result_files, dict): ap_dict = dict() for name, result_files_ in result_files.items(): eval_types = ['bev', '3d'] ap_result_str, ap_dict_ = kitti_eval( gt_annos, result_files_, self.CLASSES, eval_types=eval_types) for ap_type, ap in ap_dict_.items(): ap_dict[f'{name}/{ap_type}'] = float( '{:.4f}'.format(ap)) print_log( f'Results of {name}:\n' + ap_result_str, logger=logger) else: ap_result_str, ap_dict = kitti_eval( gt_annos, result_files, self.CLASSES, eval_types=['bev', '3d']) print_log('\n' + ap_result_str, logger=logger) if 'waymo' in metric: waymo_root = osp.join( self.data_root.split('kitti_format')[0], 'waymo_format') if pklfile_prefix is None: eval_tmp_dir = tempfile.TemporaryDirectory() pklfile_prefix = osp.join(eval_tmp_dir.name, 'results') else: eval_tmp_dir = None result_files, tmp_dir = self.format_results( results, pklfile_prefix, submission_prefix, data_format='waymo') import subprocess ret_bytes = subprocess.check_output( 'mmdet3d/core/evaluation/waymo_utils/' + f'compute_detection_metrics_main {pklfile_prefix}.bin ' + f'{waymo_root}/gt.bin', shell=True) ret_texts = ret_bytes.decode('utf-8') print_log(ret_texts) # parse the text to get ap_dict ap_dict = { 'Vehicle/L1 mAP': 0, 'Vehicle/L1 mAPH': 0, 'Vehicle/L2 mAP': 0, 'Vehicle/L2 mAPH': 0, 'Pedestrian/L1 mAP': 0, 'Pedestrian/L1 mAPH': 0, 'Pedestrian/L2 mAP': 0, 'Pedestrian/L2 mAPH': 0, 'Sign/L1 mAP': 0, 'Sign/L1 mAPH': 0, 'Sign/L2 mAP': 0, 'Sign/L2 mAPH': 0, 'Cyclist/L1 mAP': 0, 'Cyclist/L1 mAPH': 0, 'Cyclist/L2 mAP': 0, 'Cyclist/L2 mAPH': 0, 'Overall/L1 mAP': 0, 'Overall/L1 mAPH': 0, 'Overall/L2 mAP': 0, 'Overall/L2 mAPH': 0 } mAP_splits = ret_texts.split('mAP ') mAPH_splits = ret_texts.split('mAPH ') for idx, key in enumerate(ap_dict.keys()): split_idx = int(idx / 2) + 1 if idx % 2 == 0: # mAP ap_dict[key] = float(mAP_splits[split_idx].split(']')[0]) else: # mAPH ap_dict[key] = float(mAPH_splits[split_idx].split(']')[0]) ap_dict['Overall/L1 mAP'] = \ (ap_dict['Vehicle/L1 mAP'] + ap_dict['Pedestrian/L1 mAP'] + ap_dict['Cyclist/L1 mAP']) / 3 ap_dict['Overall/L1 mAPH'] = \ (ap_dict['Vehicle/L1 mAPH'] + ap_dict['Pedestrian/L1 mAPH'] + ap_dict['Cyclist/L1 mAPH']) / 3 ap_dict['Overall/L2 mAP'] = \ (ap_dict['Vehicle/L2 mAP'] + ap_dict['Pedestrian/L2 mAP'] + ap_dict['Cyclist/L2 mAP']) / 3 ap_dict['Overall/L2 mAPH'] = \ (ap_dict['Vehicle/L2 mAPH'] + ap_dict['Pedestrian/L2 mAPH'] + ap_dict['Cyclist/L2 mAPH']) / 3 if eval_tmp_dir is not None: eval_tmp_dir.cleanup() if tmp_dir is not None: tmp_dir.cleanup() if show or out_dir: self.show(results, out_dir, show=show, pipeline=pipeline) return ap_dict def bbox2result_kitti(self, net_outputs, class_names, pklfile_prefix=None, submission_prefix=None): """Convert results to kitti format for evaluation and test submission. Args: net_outputs (List[np.ndarray]): list of array storing the bbox and score class_nanes (List[String]): A list of class names pklfile_prefix (str): The prefix of pkl file. submission_prefix (str): The prefix of submission file. Returns: List[dict]: A list of dict have the kitti 3d format """ assert len(net_outputs) == len(self.data_infos), \ 'invalid list length of network outputs' if submission_prefix is not None: mmcv.mkdir_or_exist(submission_prefix) det_annos = [] print('\nConverting prediction to KITTI format') for idx, pred_dicts in enumerate( mmcv.track_iter_progress(net_outputs)): annos = [] info = self.data_infos[idx] cam_info = info['cams'][self.cams[0]] sample_idx = cam_info['image_idx'] image_shape = cam_info['image_shape'][:2] box_dict = self.convert_valid_bboxes(pred_dicts, info) if len(box_dict['bbox']) > 0: box_2d_preds = box_dict['bbox'] box_preds = box_dict['box3d_camera'] scores = box_dict['scores'] box_preds_lidar = box_dict['box3d_lidar'] label_preds = box_dict['label_preds'] anno = { 'name': [], 'truncated': [], 'occluded': [], 'alpha': [], 'bbox': [], 'dimensions': [], 'location': [], 'rotation_y': [], 'score': [] } for box, box_lidar, bbox, score, label in zip( box_preds, box_preds_lidar, box_2d_preds, scores, label_preds): bbox[2:] =
np.minimum(bbox[2:], image_shape[::-1])
numpy.minimum
# This file contains the implementation of all the one-dimensional Least Squares algorithms. import numpy as np import scipy as sp from scipy.optimize import root #Least Squares fitting in R: def least_squares_R(points, values, m): temp = lambda x : [x ** i for i in range(m + 1)] pi_t = lambda x : np.array([temp(x)]) pi = lambda x : np.transpose(pi_t(x)) k = len(temp(0)) leftsum = np.zeros((k,k)) rightsum = np.zeros((k, 1)) for i in range(len(points)): leftsum += np.matmul(pi(points[i]), pi_t(points[i])) rightsum += pi(points[i])*values[i] cmin = np.matmul(np.linalg.inv(leftsum), rightsum) return np.vectorize(lambda x : np.dot(pi(x).flatten(), cmin.flatten())) #Weighted Least Squares fitting in R: def weighted_least_squares_R(points, values, m, theta): temp = lambda x : [x ** i for i in range(m + 1)] k = len(temp(0)) pi_t = lambda x : np.array([temp(x)]) pi = lambda x : np.transpose(pi_t(x)) relative_theta = lambda x, j : theta(np.abs(x - points[j])) relative_theta_sum = lambda x : sum([relative_theta(x, j) for j in range(len(points))]) def cmin(x): leftsum =
np.zeros((k,k))
numpy.zeros
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from PIL import Image import pickle # /////////////// Corruption Helpers /////////////// import skimage as sk from skimage.filters import gaussian from skimage import transform, feature from io import BytesIO from wand.image import Image as WandImage from wand.api import library as wandlibrary import wand.color as WandColor import ctypes from PIL import Image as PILImage from PIL import ImageDraw as draw import cv2 from scipy.ndimage import zoom as scizoom from scipy.ndimage.interpolation import map_coordinates import warnings import os from pkg_resources import resource_filename warnings.simplefilter("ignore", UserWarning) CORRUPTIONS = ['identity', 'shot_noise', 'impulse_noise', 'glass_blur', 'motion_blur', 'shear', 'scale', 'rotate', 'brightness', 'translate', 'stripe', 'fog', 'spatter', 'dotted_line', 'zigzag', 'canny_edges',] ALL_CORRUPTIONS = ['identity', 'gaussian_noise', 'shot_noise', 'impulse_noise', 'speckle_noise', 'pessimal_noise', 'gaussian_blur', 'glass_blur', 'defocus_blur', 'motion_blur', 'zoom_blur', 'fog', 'frost', 'snow', 'spatter', 'contrast', 'brightness', 'saturate', 'jpeg_compression', 'pixelate', 'elastic_transform', 'quantize', 'shear', 'rotate', 'scale', 'translate', 'line', 'dotted_line', 'zigzag', 'inverse', 'stripe', 'canny_edges',] with open("pessimal_noise_matrix", "rb") as f: pessimal_noise_matrix = pickle.load(f) def disk(radius, alias_blur=0.1, dtype=np.float32): if radius <= 8: L = np.arange(-8, 8 + 1) ksize = (3, 3) else: L = np.arange(-radius, radius + 1) ksize = (5, 5) X, Y = np.meshgrid(L, L) aliased_disk = np.array((X ** 2 + Y ** 2) <= radius ** 2, dtype=dtype) aliased_disk /= np.sum(aliased_disk) # supersample disk to antialias return cv2.GaussianBlur(aliased_disk, ksize=ksize, sigmaX=alias_blur) # Tell Python about the C method wandlibrary.MagickMotionBlurImage.argtypes = (ctypes.c_void_p, # wand ctypes.c_double, # radius ctypes.c_double, # sigma ctypes.c_double) # angle # Extend wand.image.Image class to include method signature class MotionImage(WandImage): def motion_blur(self, radius=0.0, sigma=0.0, angle=0.0): wandlibrary.MagickMotionBlurImage(self.wand, radius, sigma, angle) # modification of https://github.com/FLHerne/mapgen/blob/master/diamondsquare.py def plasma_fractal(mapsize=256, wibbledecay=3): """ Generate a heightmap using diamond-square algorithm. Return square 2d array, side length 'mapsize', of floats in range 0-255. 'mapsize' must be a power of two. """ assert (mapsize & (mapsize - 1) == 0) maparray = np.empty((mapsize, mapsize), dtype=np.float_) maparray[0, 0] = 0 stepsize = mapsize wibble = 100 def wibbledmean(array): return array / 4 + wibble * np.random.uniform(-wibble, wibble, array.shape) def fillsquares(): """For each square of points stepsize apart, calculate middle value as mean of points + wibble""" cornerref = maparray[0:mapsize:stepsize, 0:mapsize:stepsize] squareaccum = cornerref + np.roll(cornerref, shift=-1, axis=0) squareaccum += np.roll(squareaccum, shift=-1, axis=1) maparray[stepsize // 2:mapsize:stepsize, stepsize // 2:mapsize:stepsize] = wibbledmean(squareaccum) def filldiamonds(): """For each diamond of points stepsize apart, calculate middle value as mean of points + wibble""" mapsize = maparray.shape[0] drgrid = maparray[stepsize // 2:mapsize:stepsize, stepsize // 2:mapsize:stepsize] ulgrid = maparray[0:mapsize:stepsize, 0:mapsize:stepsize] ldrsum = drgrid + np.roll(drgrid, 1, axis=0) lulsum = ulgrid + np.roll(ulgrid, -1, axis=1) ltsum = ldrsum + lulsum maparray[0:mapsize:stepsize, stepsize // 2:mapsize:stepsize] = wibbledmean(ltsum) tdrsum = drgrid + np.roll(drgrid, 1, axis=1) tulsum = ulgrid + np.roll(ulgrid, -1, axis=0) ttsum = tdrsum + tulsum maparray[stepsize // 2:mapsize:stepsize, 0:mapsize:stepsize] = wibbledmean(ttsum) while stepsize >= 2: fillsquares() filldiamonds() stepsize //= 2 wibble /= wibbledecay maparray -= maparray.min() return maparray / maparray.max() def clipped_zoom(img, zoom_factor): h = img.shape[0] # ceil crop height(= crop width) ch = int(np.ceil(h / float(zoom_factor))) top = (h - ch) // 2 img = scizoom(img[top:top + ch, top:top + ch], (zoom_factor, zoom_factor), order=1) # trim off any extra pixels trim_top = (img.shape[0] - h) // 2 return img[trim_top:trim_top + h, trim_top:trim_top + h] def line_from_points(c0, r0, c1, r1): if c1 == c0: return np.zeros((28, 28)) # Decay function defined as log(1 - d/2) + 1 cc, rr = np.meshgrid(np.linspace(0, 27, 28), np.linspace(0, 27, 28), sparse=True) m = (r1 - r0) / (c1 - c0) f = lambda c: m * (c - c0) + r0 dist = np.clip(np.abs(rr - f(cc)), 0, 2.3 - 1e-10) corruption = np.log(1 - dist / 2.3) + 1 corruption = np.clip(corruption, 0, 1) l = np.int(np.floor(c0)) r = np.int(np.ceil(c1)) corruption[:,:l] = 0 corruption[:,r:] = 0 return np.clip(corruption, 0, 1) # /////////////// End Corruption Helpers /////////////// # /////////////// Corruptions /////////////// def identity(x): return np.array(x, dtype=np.float32) def gaussian_noise(x, severity=5): c = [.08, .12, 0.18, 0.26, 0.38][severity - 1] x = np.array(x) / 255. x = np.clip(x + np.random.normal(size=x.shape, scale=c), 0, 1) * 255 return x.astype(np.float32) def shot_noise(x, severity=5): c = [60, 25, 12, 5, 3][severity - 1] x = np.array(x) / 255. x = np.clip(np.random.poisson(x * c) / float(c), 0, 1) * 255 return x.astype(np.float32) def impulse_noise(x, severity=4): c = [.03, .06, .09, 0.17, 0.27][severity - 1] x = sk.util.random_noise(np.array(x) / 255., mode='s&p', amount=c) x = np.clip(x, 0, 1) * 255 return x.astype(np.float32) def speckle_noise(x, severity=5): c = [.15, .2, 0.35, 0.45, 0.6][severity - 1] x =
np.array(x)
numpy.array
""" Copyright (c) 2019, <NAME> """ import weakref import numpy as np from functools import lru_cache from .element import transformation_matrix __all__ = [ 'load_distances', 'force_local_reactions', 'moment_local_reactions', 'local_reactions', 'clear_element_load_cache', 'ElementLoad', ] def load_distances(dx, dy, dz, ix, delx): """ Returns the load distances to where an element load is applied. Parameters ---------- dx, dy, dz : float The element distance vector. ix, : float The distance from the i node of the element to where the beginning of the loads are applied. dx : float The distance from the ix position toward the j node over which the loads are applied. """ l = (dx**2 + dy**2 + dz**2)**0.5 l1 = l * abs(ix) if ix < 0 else ix l2 = l * abs(delx) if delx < 0 else delx l2 = l - l1 - l2 if l1 > l or l1 < 0 or l2 > l or l2 < 0: raise ValueError('Load applied beyond element bounds.') return l, l1, l2 def force_local_reactions(fx, fy, fz, dx, dy, dz, roll, ix, delx): """ Returns the local force reaction vector for an element. Parameters ---------- fx, fy, fz : float The force vector. dx, dy, dz : float The element distance vector. roll : float The roll of the element. ix, : float The distance from the i node of the element to where the beginning of the loads are applied. dx : float The distance from the ix position toward the j node over which the loads are applied. """ l, l1, l2 = load_distances(dx, dy, dz, ix, delx) t = transformation_matrix(dx, dy, dz, roll) if delx == 0: # Point load fsi = (l2**2 / l**3) * (3*l1 + l2) fmi = l1*l2**2 / l**2 fsj = (l1**2 / l**3) * (l1 + 3*l2) fmj = -fmi fti = ftj = 0 fai = l2 / l faj = l1 / l else: # Uniform load fsi = (l / 2) * (1 - (2*l**3 - 2*l1**2*l + l1**3)*l1/l**4 - (2*l - l2)*l2**3/l**4) fmi = (l**2 / 12) * (1 - (6*l**2 - 8*l1*l + 3*l1**2)*l1**2/l**4 - (4*l - 3*l2)*l2**3/l**4) fsj = (l / 2) * (1 - (2*l - l1)*l1**3/l**4 - (2*l**3 - 2*l2**2*l + l2**3)*l2/l**4) fmj = -(l**2 / 12) * (1 - (4*l - 3*l1)*l1**3/l**4 - (6*l**2 - 8*l2*l + 3*l2**2)*l2**2/l**4) fti = ftj = 0 fai = (l / 2) * (l - l1 - l2) * (l - l1 + l2) faj = -fai fx, fy, fz = t[:3,:3].dot([fx, fy, fz]) r = [-fx*fai, -fy*fsi, -fz*fsi, -fti, -fz*fmi, -fy*fmi, -fx*faj, -fy*fsj, -fz*fsj, -ftj, -fz*fmj, -fy*fmj] return np.array(r, dtype='float') def moment_local_reactions(mx, my, mz, dx, dy, dz, roll, ix, delx): """ Returns the local moment reaction vector for an element. Parameters ---------- mx, my, mz : float The moment vector. dx, dy, dz : float The element distance vector. roll : float The roll of the element. ix, : float The distance from the i node of the element to where the beginning of the loads are applied. dx : float The distance from the ix position toward the j node over which the loads are applied. """ l, l1, l2 = load_distances(dx, dy, dz, ix, delx) t = transformation_matrix(dx, dy, dz, roll) if delx == 0: # Point load fsi = -6*l1*l2 / l**3 fmi = (l2 / l**2) * (l2 - 2*l1) fsj = -fsi fmj = (l1 / l**2) * (l1 - 2*l2) fti = l2 / l ftj = l1 / l fai = faj = 0 else: # Uniform load fsi = 2*((l-l2)**3 - l1**3)/l**3 - 3*((l-l2)**2 - l1**2)/l**2 fmi = ((l-l2) - l1) - 2*((l-l2)**2 - l1**2)/l + ((l-l2)**3 - l1**3)/l**2 fsj = -fsi fmj = ((l-l2)**3 - l1**3)/l**2 - ((l-l2)**2 - l1**2)/l fti = ((l-l2) - l1) - ((l-l2)**2 - l1**2)/(2*l) ftj = ((l-l2)**2 - l1**2)/(2*l) fai = faj = 0 mx, my, mz = t[:3,:3].dot([mx, my, mz]) r = [-fai, -my*fsi, -mx*fsi, -mx*fti, -my*fmi, -mz*fmi, -faj, -my*fsj, -mx*fsj, -mx*ftj, -my*fmj, -mz*fmj] return np.array(r, dtype='float') @lru_cache(maxsize=1000) def local_reactions(fx, fy, fz, mx, my, mz, dx, dy, dz, roll, ix, delx, imx_free, imy_free, imz_free, jmx_free, jmy_free, jmz_free): """ Returns the local reaction vector for an element. Parameters ---------- fx, fy, fz : float The force vector. mx, my, mz : float The moment vector. dx, dy, dz : float The element distance vector. roll : float The roll of the element. ix, : float The distance from the i node of the element to where the beginning of the loads are applied. dx : float The distance from the ix position toward the j node over which the loads are applied. imx_free, imy_free, imz_free : bool The fixities at the i end of the element. jmx_free, jmy_free, jmz_free : bool The fixities at the j end of the element. """ r = force_local_reactions(fx, fy, fz, dx, dy, dz, roll, ix, delx) r += moment_local_reactions(mx, my, mz, dx, dy, dz, roll, ix, delx) # Adjust reactions for element end fixities if imz_free: if not jmz_free: # Free-Fixed r[9] += r[3] r[3] = 0 else: # Free-Free r[3] = r[9] = 0 elif jmz_free: # Fixed-Free r[3] += r[9] r[9] = 0 if imx_free: if not jmx_free: # Free-Fixed r[1] -= 1.5 * r[5] / l r[7] += 1.5 * r[5] / l r[11] -= 0.5 * r[5] r[5] = 0 else: # Free-Free r[1] -= (r[5] + r[11]) / l r[7] += (r[5] + r[11]) / l r[5] = r[11] = 0 elif jmx_free: # Fixed-Free r[1] -= 1.5 * r[11] / l r[5] -= 0.5 * r[11] r[7] += 1.5 * r[11] / l r[11] = 0 if imy_free: if not jmy_free: # Free-Fixed r[2] += 1.5 * r[4] / l r[8] -= 1.5 * r[4] / l r[10] -= 0.5 * r[4] / l r[4] = 0 else: # Free-Free r[2] += (r[4] + r[10]) / l r[8] -= (r[4] + r[10]) / l r[4] = r[10] = 0 elif jmy_free: # Fixed-Free r[2] += 1.5 * r[10] / l r[4] -= 0.5 * r[10] r[8] -= 1.5 * r[10] / l r[10] = 0 return r def clear_element_load_cache(): """Clears the element load function cache.""" local_reactions.cache_clear() class ElementLoad(np.ndarray): """ A class representing an element load. Parameters ---------- element : str The name of the element to which the loads are applied. fx, fy, fz : float The global forces applied to the element. mx, my, mz : float The global moments applied to the element. ix, : float The distance from the i node at where the loads are applied. dx : float The distance from the ix position toward the j node over which the loads are applied. """ def __new__(cls, element, fx=0, fy=0, fz=0, mx=0, my=0, mz=0, ix=0, dx=-1): obj =
np.array([fx, fy, fz, mx, my, mz], dtype='float')
numpy.array
''' Functions in this Library: do_pca(n_components, data) lineplot(absicca, ord_1, ord_2) pca_results(full_dataset, pca) plot_component(pca, comp) plot_components(X, y) scree_plot(pca) ''' # Standard Library Imports import warnings warnings.filterwarnings("ignore", category = UserWarning, module = "matplotlib") import pandas as pd import numpy as np from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix, accuracy_score import matplotlib.image as mpimg import matplotlib.pyplot as plt import matplotlib.cm as cm import seaborn as sns # Functions def do_pca(n_components, data): ''' Transforms data using PCA to create n_components, and provides back the results of the transformation. INPUT: n_components - int - the number of principal components to create data - the data you would like to transform OUTPUT: pca - the pca object created after fitting the data X_pca - the transformed X matrix with new number of components ''' X = StandardScaler().fit_transform(data) pca = PCA(n_components) X_pca = pca.fit_transform(X) return pca, X_pca def lineplot(absicca, ord_1, ord_2): fig, ax = plt.subplots(figsize=(18,10)) ax.set_title('ACTUAL vs PREDICTED VALUE', fontsize =30) ax.set_xlabel('TEST CASE', fontsize =20) ax.set_ylabel('$ VALUE', fontsize =20) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.set_ylim(0,4500000) ax.set_xlim(250,350) line1, = ax.plot(x, y1, label='actual') line1.set_dashes([2, 2, 10, 2]) # 2pt line, 2pt break, 10pt line, 2pt break line2, = ax.plot(x, y2, dashes=[6, 2], label='predicted') ax.legend(loc=1, prop={'size':20}) return def pca_results(full_dataset, pca): ''' Create a DataFrame of the PCA results Includes dimension feature weights and explained variance Visualizes the PCA results ''' # Dimension indexing dimensions = dimensions = ['Dimension {}'.format(i) for i in range(1,len(pca.components_)+1)] # PCA components components = pd.DataFrame(np.round(pca.components_, 4), columns = full_dataset.keys()) components.index = dimensions # PCA explained variance ratios = pca.explained_variance_ratio_.reshape(len(pca.components_), 1) variance_ratios = pd.DataFrame(np.round(ratios, 4), columns = ['Explained Variance']) variance_ratios.index = dimensions # Create a bar plot visualization fig, ax = plt.subplots(figsize = (14,8)) # Plot the feature weights as a function of the components components.plot(ax = ax, kind = 'bar'); ax.set_ylabel("Feature Weights") ax.set_xticklabels(dimensions, rotation=0) # Display the explained variance ratios for i, ev in enumerate(pca.explained_variance_ratio_): ax.text(i-0.40, ax.get_ylim()[1] + 0.05, "Explained Variance\n %.4f"%(ev)) # Return a concatenated DataFrame return pd.concat([variance_ratios, components], axis = 1) def plot_component(pca, comp): ''' Plots an image associated with each component to understand how the weighting of the components INPUT: pca - pca object created from PCA in sklearn comp - int - the component you want to see starting at 0 OUTPUT None ''' if comp <= len(pca.components_): mat_data = np.asmatrix(pca.components_[comp]).reshape(28,28) #reshape images plt.imshow(mat_data); #plot the data plt.xticks([]) #removes numbered labels on x-axis plt.yticks([]) #removes numbered labels on y-axis else: print('That is not the right input, please read the docstring before continuing.') def plot_components(X, y): ''' plots the data in a 2 dimensional space to view separation INPUT: X - the x-matrix of input features y - the response column OUTPUT: none ''' x_min, x_max = np.min(X, 0),
np.max(X, 0)
numpy.max
import scipy.io as scio import h5py import numpy as np import time from SoundSourceLocalization.lib.utils import standard_normalizaion, wise_standard_normalizaion, shuffle_data, \ split_data from scipy.signal import resample def mi_load(data_path, s_id, is_processed=None): """ load MI dataset lubin processed """ data_temp = scio.loadmat(data_path + '/A0' + str(s_id + 1) + '.mat') data = np.transpose(data_temp['x'], (2, 0, 1)) labels = np.asarray(data_temp['y']).squeeze() if is_processed == 'cov': data = cov_process(data) data = np.reshape(data, [len(data), -1]) elif is_processed == 'csp': data = csp_process([data, labels], filter) data = np.reshape(data, [len(data), -1]) else: data = np.reshape(data, [data.shape[0], 1, data.shape[1], data.shape[2]]) data = standard_normalizaion(data) s = s_id * np.ones(shape=[len(labels)]) return data, labels, s def one_hot_encoder(y, num_classes=None, dtype='float32'): """ copied from tf.keras.utils.to_categorical""" y = np.array(y, dtype='int') input_shape = y.shape if input_shape and input_shape[-1] == 1 and len(input_shape) > 1: input_shape = tuple(input_shape[:-1]) y = y.ravel() if not num_classes: num_classes = np.max(y) + 1 n = y.shape[0] categorical = np.zeros((n, num_classes), dtype=dtype) categorical[np.arange(n), y] = 1 output_shape = input_shape + (num_classes,) categorical = np.reshape(categorical, output_shape) return categorical def load_hole_dataset(sbj_idx, ds_path, shuffle=True, normalization=None, split=None, one_hot=False): ds = np.load(ds_path, allow_pickle=True) x = ds['x'] y = ds['y'] del ds x = np.concatenate(x[sbj_idx], axis=0) x = np.expand_dims(x, axis=1) y = np.concatenate(y[sbj_idx], axis=0)[:, -1] // 45 if one_hot: y = one_hot_encoder(y) if normalization is not None: for i in range(len(x)): x[i] = wise_standard_normalizaion(x[i], normalization) if shuffle: x, y = shuffle_data([x, y]) if split is not None: split_idx = int(len(y) * split) return x[:split_idx], y[:split_idx], x[split_idx:], y[split_idx:] return x, y def cov_process(data): """ Covariance matrix """ cov_data = [] data_size = len(data) for i in range(data_size): data_temp = np.dot(data[i], np.transpose(data[i])) # / np.trace(np.dot(data[i], np.transpose(data[i]))) data_temp =
np.reshape(data_temp, [-1])
numpy.reshape
import numpy as np from pythreejs import * from ipywidgets import Layout import ipywidgets as widgets import math from ..utils import ColorMap class Viewer: def __init__(self, mesh, UI = True, mesh_color=None, width=700, height=700): self.mesh = mesh self.scene = None self.__UI = UI self.width = widt self.height = height if 'Skeleton' in str(type(mesh)): self.skel = mesh self.center = list(self.skel.nodes.mean(axis=0)) if hasattr(self.skel, 'associated_mesh'): self.mesh = self.skel.associated_mesh if 'Skeleton' not in str(type(self.mesh)): if mesh_color is None: self.mesh_color = np.array([[1, 212, 180],[1, 212, 180],[1, 212, 180]], dtype=np.float) / 255 else: self.mesh_color = np.array([mesh_color,mesh_color,mesh_color]) if 'Hexmesh' in str(type(self.mesh)) or 'Quadmesh' in str(type(self.mesh)): self.mesh_color = np.repeat(self.mesh_color, self.mesh.num_faces*2, axis=0) else: self.mesh_color = np.repeat(self.mesh_color, self.mesh.num_faces, axis=0) self.center = list(self.mesh.vertices[self.mesh.boundary()[0].flatten()].mean(axis = 0)) self.flip_x_value = False self.flip_y_value = False self.flip_z_value = False if UI: self.__create_UI() def __create_UI(self): """Creates user interface """ # ----------------------- M E N U S L I C E ----------------------------- #style = {width: '50px'} #titax = widgets.Label(value='Slice from axes', layout=widgets.Layout(padding='1px 1px 1px 1px', margin='1px 1px 1px 1px')) row_layout = {'width':'100px', 'padding':'1px 1px 1px 1px', 'margin':'1px 1px 1px 1px'} wireframe_layout = {'width':'100px','padding':'1px 1px 1px 1px', 'margin':'1px 1px 1px 1px'} self.invisibleLayout = {'display':'none'} self.visibleLayout = {'display':''} self.label_layout = {'display':'block', 'max_width' : '80px'} self.flip_x = widgets.ToggleButton( value=False, description='Flip x', disabled=False, button_style='info', # 'success', 'info', 'warning', 'danger' or '' tooltip='Flip the visualization range on x axis', icon='check', layout=row_layout ) self.flip_y = widgets.ToggleButton( value=False, description='Flip y', disabled=False, button_style='info', # 'success', 'info', 'warning', 'danger' or '' tooltip='IFlip the visualization range on y axis', icon='check', layout=row_layout ) self.flip_z = widgets.ToggleButton( value=False, description='Flip z', disabled=False, button_style='info', # 'success', 'info', 'warning', 'danger' or '' tooltip='Flip the visualization range on z axis', icon='check', layout=row_layout ) self.clipping_slider_x = widgets.FloatRangeSlider( value=[self.round_down(self.mesh.cut['min_x'],3)-0.001, self.round_up(self.mesh.cut['max_x'],3)+0.001], min=self.round_down(self.mesh.cut['min_x'],3)-0.001, max=self.round_up(self.mesh.cut['max_x'],3)+0.001, step=0.001, description='X:', disabled=False, continuous_update=True, orientation='horizontal', readout=True, readout_format=".3f", layout=widgets.Layout(width='30%') ) self.clipping_slider_y = widgets.FloatRangeSlider( value=[self.round_down(self.mesh.cut['min_y'],3)-0.001, self.round_up(self.mesh.cut['max_y'],3)+0.001], min=self.round_down(self.mesh.cut['min_y'],3)-0.001, max=self.round_up(self.mesh.cut['max_y'],3)+0.001, step=0.001, description='Y:', disabled=False, continuous_update=True, orientation='horizontal', readout=True, readout_format=".3f", layout=widgets.Layout(width='30%') ) self.clipping_slider_z = widgets.FloatRangeSlider( value=[self.round_down(self.mesh.cut['min_z'],3)-0.001,self.round_up(self.mesh.cut['max_z'],3)+0.001], min=self.round_down(self.mesh.cut['min_z'],3)-0.001, max=self.round_up(self.mesh.cut['max_z'],3)+0.001, step=0.001, description='Z:', disabled=False, continuous_update=True, orientation='horizontal', readout=True, readout_format=".3f", layout=widgets.Layout(width='30%') ) self.external_color = widgets.ColorPicker( concise=True, description='Pick a color', value='blue', disabled=False ) hbox1 = widgets.HBox([self.percXp,self.flip_x]) hbox2 = widgets.HBox([self.percYp,self.flip_y]) hbox3 = widgets.HBox([self.percZp,self.flip_z]) vbox=widgets.VBox([hbox1,hbox2,hbox3], layout=widgets.Layout(width='100%')) self.wireframe_thickness_slider = widgets.FloatSlider( value=0.2, min=0., max=1., step=0.1, continuous_update=True, readout_format=".1f", layout=widgets.Layout(width='30%'), description = 'Wireframe', disable = False, ) self.wireframe_color_picker = widgets.ColorPicker( concise=True, description='Color', value='#686868', disabled=False, ) self.color_map = widgets.Dropdown( options=[(i, idx) for idx, i in enumerate(ColorMap.color_maps.keys())], value=0, description='Color-Map:', layout=self.invisibleLayout ) self.coloring_type_menu = widgets.Dropdown( options=[('Default', 0), ('Simplex Quality', 1), ('Label',2)], value=0, description='Type Color:', ) self.metric_menu = widgets.Dropdown( options= [(i, idx) for idx, i in enumerate(self.mesh.simplex_metrics.keys())], value=0, description='Metric:', layout=self.invisibleLayout ) self.color_internal = widgets.ColorPicker( concise=True, description='Color inside', value='#FF9C00', disabled=False, ) self.color_label_pickers = [widgets.ColorPicker( concise=True, description='Label ' + str(i), value= self.listColor(int(i)), disabled=False, layout= self.invisibleLayout ) for i in range(len(np.unique(self.mesh.labels)))] self.flip_x.observe(self.__slicing, names='value') self.percXp.observe(self.__slicing, names='value') self.flip_y.observe(self.__slicing, names='value') self.percYp.observe(self.__slicing, names='value') self.flip_z.observe(self.__slicing, names='value') self.percZp.observe(self.__slicing, names='value') self.wireSlider.observe(self.__set_wireframe_width, names='value') self.colorWireframe.observe(self.__set_wireframe_color, names='value') self.colorMap.observe(self.change_color_map, names='value') self.colorSurface.observe(self.change_color_surface, names='value') self.colorInside.observe(self.change_color_inside, names='value') self.chosen_metric.observe(self.change_color_map, names='value') [i.observe(self.change_color_label,names='value') for i in self.itemsColorsLabel] self.typeColorSurface.observe(self.change_type_color, names='value') #menu slice vvbox=widgets.VBox([vbox], layout={'height': '100px'}) #menu rendering box_rendering = widgets.HBox([self.wireSlider,self.colorWireframe], layout={'height': '100px'}) box_rendering01 = widgets.HBox([self.colorSurface], layout={'height': '100px'}) if 'Hexmesh' in str(type(self.mesh)) or 'Tetmesh' in str(type(self.mesh)): box_rendering01 = widgets.HBox([self.typeColorSurface,self.colorMap, self.chosen_metric, self.colorSurface, self.colorInside] + self.itemsColorsLabel, layout={'height': '130px'}) else: box_rendering01 = widgets.HBox([self.typeColorSurface,self.colorMap, self.chosen_metric, self.colorSurface] + self.itemsColorsLabel, layout={'height': '100px'}) #boxRendering02 = widgets.HBox(self.itemsColorsLabel) #boxRendering1 = widgets.HBox([boxRendering01,boxRendering02]) vertical_rendering = widgets.VBox([box_rendering, box_rendering01], layout={'height': '130px'}) self.accordion = widgets.Accordion(children=[vvbox, vertical_rendering]) self.accordion.set_title(0,"Slice from axes") self.accordion.set_title(1,"Rendering") display(self.accordion) def __set_wireframe_color(self, change=None): self.line_.material.color = self.colorWireframe.value def __set_wireframe_width(self, change=None): self.line_.material.opacity = self.wireSlider.value def listColor(self,n): if n == 0: color = '#ff0000' elif n == 1: color = '#ffff00' elif n == 2: color = '#00ffff' elif n == 3: color = '#ff00ff' elif n == 4: color = '#0000ff' elif n == 5: color = '#af0fa0' elif n == 6: color = '#f0a0f0' else: color = '#ffffff' return color def round_up(self,n, decimals=0): multiplier = 10 ** decimals return math.ceil(n * multiplier) / multiplier def round_down(self,n, decimals=0): multiplier = 10 ** decimals return math.floor(n * multiplier) / multiplier def change_color_label(self, change=None): if self.mesh_color.shape[0] != self.mesh.labels.shape[0]: self.mesh_color = np.zeros((self.mesh.labels.shape[0], 3)) for idx, color in enumerate(self.itemsColorsLabel): self.mesh_color[self.mesh.labels == idx] = [int(color.value[1:3],16)/255,int(color.value[3:5],16)/255,int(color.value[5:7],16)/255] if 'Hexmesh' in str(type(self.mesh)): self.mesh_color = np.repeat(self.mesh_color, 6*2*3, axis=0) elif 'Quadmesh' in str(type(self.mesh)): self.mesh_color = np.repeat(self.mesh_color, 2*3, axis=0) elif 'Tetmesh' in str(type(self.mesh)): self.mesh_color = np.repeat(self.mesh_color, 4*3, axis=0) else: self.mesh_color = np.repeat(self.mesh_color, 3, axis=0) self.__update_draw() def change_color_surface(self, change=None): faces_per_poly = 0 faces_in_face = 2 if 'Tetmesh' in str(type(self.mesh)): faces_per_poly = 4 faces_in_face = 1 elif 'Hexmesh' in str(type(self.mesh)): faces_per_poly = 6 elif 'Quadmesh' in str(type(self.mesh)): faces_per_poly = 1 elif 'Trimesh' in str(type(self.mesh)): faces_per_poly = 1 faces_in_face = 1 mesh_color = [int(self.colorSurface.value[1:3],16)/255,int(self.colorSurface.value[3:5],16)/255,int(self.colorSurface.value[5:7],16)/255] if 'Trimesh' in str(type(self.mesh)) or 'Quadmesh' in str(type(self.mesh)): indices = np.repeat(self.mesh.boundary()[1], faces_per_poly*faces_in_face*3) else: indices = np.logical_not(np.repeat(self.mesh.internals, faces_per_poly*faces_in_face*3)) self.mesh_color[indices] = np.array(mesh_color) self.__update_draw() def change_color_inside(self, change=None): faces_per_poly = 0 faces_in_face = 2 if 'Tetmesh' in str(type(self.mesh)): faces_per_poly = 4 faces_in_face = 1 elif 'Hexmesh' in str(type(self.mesh)): faces_per_poly = 6 mesh_color = [int(self.colorInside.value[1:3],16)/255,int(self.colorInside.value[3:5],16)/255,int(self.colorInside.value[5:7],16)/255] indices = np.repeat(self.mesh.internals, faces_per_poly*faces_in_face*3) self.mesh_color[indices] = np.array(mesh_color) self.__update_draw() def change_side_view(self,change=None): if change.new == 'Front': self.view_fromt_side() elif change.new == 'Back': self.view_back_side() elif change.new == 'Double': self.view_double_side() def change_color_map(self, change=None): metric_keys = list(self.mesh.simplex_metrics.keys()) metric_idx = metric_keys[self.chosen_metric.value] metric = self.mesh.simplex_metrics[metric_idx][1] color_map_keys = list(ColorMap.color_maps.keys()) color_map_idx = color_map_keys[self.colorMap.value] color_map = ColorMap.color_maps[color_map_idx] min_range = self.mesh.simplex_metrics[metric_idx][0][0] max_range = self.mesh.simplex_metrics[metric_idx][0][1] if ( min_range is None or max_range is None): min_range =
np.min(metric)
numpy.min
print('Importing packages...') import pandas as pd import matplotlib.pyplot as plt import datetime as dt import seaborn as sns import numpy as np import matplotlib.dates as mdates import datetime #sns.set(color_codes=True) import matplotlib as mpl mpl.rcParams['pdf.fonttype'] = 42 import statistics as st sns.set_style('whitegrid', {'axes.linewidth' : 0.5}) from statsmodels.distributions.empirical_distribution import ECDF import scipy import gc column_list = ['scen_num', 'reopening_multiplier_4'] for ems_region in range(1,12): column_list.append('hosp_det_EMS-' + str(ems_region)) column_list.append('hosp_det_cumul_EMS-' + str(ems_region)) column_list.append('detected_cumul_EMS-' + str(ems_region)) #Specify paths to trajectories. For this run, all trajectories were temporarily stored in the same folder. print('Reading trajectories...') sub1 = pd.read_csv('trajectoriesDat_1.csv', usecols=column_list) #0.08 - 0.09 print('Trajectory 1 read.') sub2 = pd.read_csv('trajectoriesDat_2.csv', usecols=column_list) #0.10 - 0.115 print('Trajectory 2 read.') sub3 = pd.read_csv('trajectoriesDat_3.csv', usecols=column_list) #0.087 - 0.10 print('Trajectory 3 read.') sub4 = pd.read_csv('trajectoriesDat_08.csv', usecols=column_list) # 0.08 - 0.10 sub4['scen_num'] = sub4['scen_num'].values + 1000 print('Trajectory 4 read.') sub5 = pd.read_csv('trajectoriesDat_300.csv', usecols=column_list) #0.1 - 0.11 sub5['scen_num'] = sub5['scen_num'].values + 2000 print('Trajectory 5 read.') sub6 = pd.read_csv('trajectoriesDat_600.csv', usecols=column_list) #0.115 - 0.13 sub6['scen_num'] = sub6['scen_num'].values + 2000 print('Trajectory 6 read.') sub7 = pd.read_csv('trajectoriesDat_1000.csv', usecols=column_list) #0.13 - 0.15 sub7['scen_num'] = sub7['scen_num'].values + 2000 print('Trajectory 7 read.') sub8 = pd.read_csv('trajectoriesDat_15.csv', usecols=column_list) #0.13 - 0.15 sub8['scen_num'] = sub8['scen_num'].values + 3000 print('Trajectory 8 read.') ###loop here for region in ['NE', 'NC', 'CE', 'SO']: for capacity in ['high', 'low']: for metric in ['det', 'hosp']: #current implementation only allows tracking new_detected and new_hosp. boink = [] ### Region #hospital_capacity = 1907 #NE 4919 8609 12299 #NC 1089 1907 2724 #CE 856 1498 2140 #SO 640 1121 1601 ### Metric to assess: if metric == 'det': notif = 'new_det_' + region if metric == 'hosp': notif = 'new_hosp_det_' + region ### Simulation Dates to Examine lower_limit = 145 upper_limit = 225 grain = 1 prob_over_array = [] range_1 = np.arange(0, 25, 0.01) ### Capacity ### Which trajectories to use for each capacity were determined by hand. if region == 'NE': if capacity == 'low': hospital_capacity = 4919 trajectories = pd.concat([sub1, sub3, sub4]).reset_index() elif capacity == 'high': hospital_capacity = 8609 trajectories = pd.concat([sub1, sub2, sub3]).reset_index() elif region == 'NC': if capacity == 'low': hospital_capacity = 1089 trajectories = pd.concat([sub4, sub5, sub6, sub7]).reset_index() elif capacity == 'high': hospital_capacity = 1907 trajectories = pd.concat([sub5, sub6, sub7]).reset_index() elif region == 'CE': if capacity == 'low': hospital_capacity = 856 trajectories = pd.concat([sub5, sub6, sub7]).reset_index() elif capacity == 'high': hospital_capacity = 1498 trajectories = sub8 #pd.concat([sub5, sub6, sub7, sub8]).reset_index() ##need new elif region == 'SO': if capacity == 'low': hospital_capacity = 640 trajectories = pd.concat([sub1, sub2, sub3]).reset_index() elif capacity == 'high': hospital_capacity = 1121 trajectories = pd.concat([sub5, sub6, sub7]).reset_index() #NE Region trajectories['hosp_det_NE'] = trajectories['hosp_det_EMS-11'] + \ trajectories['hosp_det_EMS-10'] + \ trajectories['hosp_det_EMS-9'] + \ trajectories['hosp_det_EMS-8'] + \ trajectories['hosp_det_EMS-7'] trajectories['hosp_det_cumul_NE'] = trajectories['hosp_det_cumul_EMS-11'] + \ trajectories['hosp_det_cumul_EMS-10'] + \ trajectories['hosp_det_cumul_EMS-9'] + \ trajectories['hosp_det_cumul_EMS-8'] + \ trajectories['hosp_det_cumul_EMS-7'] trajectories['detected_cumul_NE'] = trajectories['detected_cumul_EMS-11'] + \ trajectories['detected_cumul_EMS-10'] + \ trajectories['detected_cumul_EMS-9'] + \ trajectories['detected_cumul_EMS-8'] + \ trajectories['detected_cumul_EMS-7'] #NC Region trajectories['hosp_det_NC'] = trajectories['hosp_det_EMS-1'] + trajectories['hosp_det_EMS-2'] trajectories['hosp_det_cumul_NC'] = trajectories['hosp_det_cumul_EMS-1'] + trajectories['hosp_det_cumul_EMS-2'] trajectories['detected_cumul_NC'] = trajectories['detected_cumul_EMS-1'] + trajectories['detected_cumul_EMS-2'] #CE Region trajectories['hosp_det_CE'] = trajectories['hosp_det_EMS-3'] + trajectories['hosp_det_EMS-6'] trajectories['hosp_det_cumul_CE'] = trajectories['hosp_det_cumul_EMS-3'] + trajectories['hosp_det_cumul_EMS-6'] trajectories['detected_cumul_CE'] = trajectories['detected_cumul_EMS-3'] + trajectories['detected_cumul_EMS-6'] #SO Region trajectories['hosp_det_SO'] = trajectories['hosp_det_EMS-4'] + trajectories['hosp_det_EMS-5'] trajectories['hosp_det_cumul_SO'] = trajectories['hosp_det_cumul_EMS-4'] + trajectories['hosp_det_cumul_EMS-5'] trajectories['detected_cumul_SO'] = trajectories['detected_cumul_EMS-4'] + trajectories['detected_cumul_EMS-5'] print('Region: ' + region) print('Capacity: ' + str(capacity)) print('Metric: ' + str(notif)) thresh = [] p_array = [] dates_array = [] over_array = [] no_array = [] days_array = np.arange(lower_limit,upper_limit, grain) for notif_period in days_array: trajectories_new = trajectories unique_scen = np.array(list(set(trajectories_new['scen_num'].values))) overflow_date = [] max_date = [] #notif = 'new_detected' overflow_traj = [] traj = [] non_overflow_traj = [] overflow_scens = [] non_overflow_scens = [] non_overflow_crit_day = [] overflow_crit_day = [] overflow_week = [] overflow_prior_week = [] non_overflow_week = [] non_overflow_prior_week = [] crit_day = [] week = [] week_prior = [] crit = notif_period for scen in unique_scen: new = trajectories_new[(trajectories_new['scen_num'] == scen)].reset_index() new['new_hosp_det_NE'] = np.append(np.array([0.0]), np.diff(new['hosp_det_cumul_NE'].values)) new['new_det_NE'] = np.append(np.array([0.0]), np.diff(new['detected_cumul_NE'].values)) new['new_hosp_det_NC'] = np.append(np.array([0.0]), np.diff(new['hosp_det_cumul_NC'].values)) new['new_det_NC'] = np.append(np.array([0.0]), np.diff(new['detected_cumul_NC'].values)) new['new_hosp_det_CE'] = np.append(np.array([0.0]), np.diff(new['hosp_det_cumul_CE'].values)) new['new_det_CE'] = np.append(
np.array([0.0])
numpy.array