prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
# -*- coding: utf-8 -*- """ 2D interpolation. In this program the optimal fraction doses are compueted based on a maximal OAR dose while maximizing tumor BED. single_fraction allows to compute single fraction doses, while whole_plan computes the doses for a whole treatment plan (when all sparing factors are known). whole_plan_print prints the doses in a well-aranged manner. """ import numpy as np from scipy.stats import truncnorm import scipy as sc from scipy.stats import invgamma from scipy.stats import t def data_fit(data): """ This function fits the alpha and beta value for the conjugate prior Parameters ---------- data : array a nxk matrix with n the amount of patints and k the amount of sparing factors per patient. Returns ------- list alpha and beta hyperparameter. """ variances = data.var(axis = 1) alpha,loc,beta = invgamma.fit(variances, floc = 0) return[alpha,beta] def get_truncated_normal(mean=0, sd=1, low=0.01, upp=10): """ produces a truncated normal distribution Parameters ---------- mean : float, optional The default is 0. sd : float, optional The default is 1. low : float, optional The default is 0.01. upp : float, optional The default is 10. Returns ------- scipy.stats._distn_infrastructure.rv_frozen distribution function. """ return truncnorm((low - mean) / sd, (upp - mean) / sd, loc=mean, scale=sd) def std_calc(measured_data,alpha,beta): #this isnt used at this point, but could be applied. In general it gives lower std values. """ calculates the most likely standard deviation for a list of k sparing factors and an inverse-gamma conjugate prior measured_data: list/array with k sparing factors Parameters ---------- measured_data : list/array list/array with k sparing factors alpha : float shape of inverse-gamma distribution beta : float scale of inverse-gamme distrinbution Returns ------- std : float most likely std based on the measured data and inverse-gamma prior """ n = len(measured_data) var_values = np.arange(0.00001,0.4,0.00001) likelihood_values = np.zeros(len(var_values)) for index,value in enumerate(var_values): likelihood_values[index] = value**(-alpha-1)/value**(n/2)*
np.exp(-beta/value)
numpy.exp
from railrl.data_management.simple_replay_pool import SimpleReplayPool from railrl.predictors.dynamics_model import FullyConnectedEncoder, InverseModel, ForwardModel import tensorflow as tf import time import numpy as np from sandbox.rocky.tf.optimizers.penalty_lbfgs_optimizer import PenaltyLbfgsOptimizer from railrl.misc.pyhelper_fns.vis_utils import MyAnimationMulti def planner_info(arm_loss, box_loss, forward_models_outputs): return {'arm_loss':arm_loss, 'box_loss':box_loss, \ 'forward_models_outputs': forward_models_outputs} def gather_cols(params, indices, name=None): """Gather columns of a 2D tensor. Args: params: A 2D tensor. indices: A 1D tensor. Must be one of the following types: ``int32``, ``int64``. name: A name for the operation (optional). Returns: A 2D Tensor. Has the same type as ``params``. """ with tf.op_scope([params, indices], name, "gather_cols") as scope: # Check input params = tf.convert_to_tensor(params, name="params") indices = tf.convert_to_tensor(indices, name="indices") try: params.get_shape().assert_has_rank(2) except ValueError: raise ValueError('\'params\' must be 2D.') try: indices.get_shape().assert_has_rank(1) except ValueError: raise ValueError('\'params\' must be 1D.') # Define op p_shape = tf.shape(params) p_flat = tf.reshape(params, [-1]) i_flat = tf.reshape(tf.reshape(tf.range(0, p_shape[0]) * p_shape[1], [-1, 1]) + indices, [-1]) return tf.reshape(tf.gather(p_flat, i_flat), [p_shape[0], -1]) """ Planner takes two states (S_init and S_goal) and output an action. Fine Tune is out of the scope of Planner """ class Planner(object): def __init__( self, dynamic_model, encoder, sess ): self.encoder = encoder self.dynamic_model = dynamic_model self.sess = sess ##initialize the model..... def get_action(S_init, S_goal): return None """ Inverde_model planner should be easy, just return the action """ class InverseModelPlanner(object): def __init__( self, dynamic_model, env, encoder, sess = None, ): if sess == None: sess =tf.get_default_session() self.sess = sess #re-construct the dynamic model self.S_init_ph = tf.placeholder(tf.float32, list(env.observation_space.shape)) self.S_goal_ph = tf.placeholder(tf.float32, list(env.observation_space.shape)) encoder1 = encoder.get_weight_tied_copy(observation_input=self.S_init_ph) encoder2 = encoder.get_weight_tied_copy(observation_input=self.S_goal_ph) self.inverse_model = dynamic_model.get_weight_tied_copy(feature_input1=encoder1.output, feature_input2=encoder2.output) def get_action(self, S_init, S_goal): action = self.sess.run(self.inverse_model.output, feed_dict = \ {self.S_init_ph:S_init, self.S_goal_ph: S_goal}) return action """ ForwardModel planner, optimize action according to this objective: min_{a} (S_next - S_goal)^2 """ class CEMPlanner_arm_coord(): def __init__( self, dynamic_model, encoder, env, sess = None, max_length = 15, sample_batch_size = 2000, top_k = 200, action_penalty=False, accumulated_loss = False): self.sample_batch_size = sample_batch_size self.top_k = top_k self.env = env if sess == None: sess =tf.get_default_session() self.sess = sess self.max_length = max_length self.action_ph = tf.placeholder(tf.float32, [max_length, None, 4]) self.forward_model_list = [] #build the recurrent model w.t. the max length self.S_init_ph = tf.placeholder(tf.float32, [None, 24]) self.S_goal_ph = tf.placeholder(tf.float32, [None, 24]) #only two feature encoders self.encoder1 = encoder.get_weight_tied_copy(observation_input=self.S_init_ph) self.encoder2 = encoder.get_weight_tied_copy(observation_input=self.S_goal_ph) forward_model = dynamic_model.get_weight_tied_copy(feature_input=self.encoder1.output, action_input=self.action_ph[0]) self.forward_model_list.append(forward_model) self.forward_model_output_list = [forward_model.output] #for debug purpose only for i in range(1,max_length): forward_model = dynamic_model.get_weight_tied_copy(feature_input = forward_model.output,\ action_input = self.action_ph[i]) self.forward_model_list.append(forward_model) self.forward_model_output_list.append(forward_model.output) ## objective def transfer_box_global_tf(obs): arm2box = gather_cols(obs, [4,5])/10.0 return gather_cols(obs, [21,22]) + arm2box self.objective_list = [] self.arm_loss_list = [] self.box_loss_list = [] self.objective_topk_index_list = [] current_objective = 0 #objective for forward_model in self.forward_model_list: if accumulated_loss: current_objective += tf.reduce_sum(tf.square(transfer_box_global_tf(forward_model.output)-\ transfer_box_global_tf(self.encoder2.output)), axis = 1) else: current_objective = tf.reduce_sum(tf.square(transfer_box_global_tf(forward_model.output)-\ transfer_box_global_tf(self.encoder2.output)), axis = 1) self.objective_list.append(current_objective) self.arm_loss_list.append(tf.reduce_sum(tf.square(forward_model.output[0][:4] - self.encoder2.output[0][:4]))) self.box_loss_list.append(tf.reduce_sum(tf.square(transfer_box_global_tf(forward_model.output)-\ transfer_box_global_tf(self.encoder2.output)))*100) if action_penalty: for i in range(len(self.objective_list)): self.objective_list[i] += tf.reduce_sum(tf.square(self.action_ph),axis = [0,2])*0.5 def get_action(self, S_init, S_goal, steps = 1, plot_loss = False, debug = False, stop_variance = 0.2, stop_itr = 3, init_batch_size = 50000): assert(steps <= self.max_length) #fit a multivariable Gaussian mean_list = None cov_matrix = None batch_S_init = np.dot(np.ones([init_batch_size, 1]), S_init.reshape(1,-1)) batch_S_goal = np.dot(np.ones([init_batch_size, 1]), S_goal.reshape(1,-1)) #CEM actions =
np.random.rand(self.max_length, init_batch_size, 4)
numpy.random.rand
# -*- coding: utf-8 -*- """ Module to implement acoustic shadowing along with spherical spreading of sound Created on Mon Jun 17 16:08:50 2019 @author: tbeleyur """ import time import sys sys.path.append('..//bridson//') sys.path.append('..//') import numpy as np import pandas as pd import scipy.spatial as spatial import statsmodels.api as sm def soundprop_w_acoustic_shadowing(start_point, end_point, all_other_points, **kwargs): '''Calculate the received level of a sound emitter at the start point and reaching the end point after potentially passing through other points on the way. Each point sound passes through creates a drop in the intensity because of acoustic shadowing. Parameters ---------- start_point : 1 x 2 array like end_point : 1 x 2 array like all_other_points : Nbats-2 x 2 array like xy coordinates of all points between start and end point in a rectangular area of given width Keyword Arguments ---------------- implement_shadowing : Boolean. If True then shadowing calculations are done, else only simple spherical spreading. R : float. straight line distance between soure and receiver rectangle_width : float >0. width of the rectangle emitted_source_level : dictionary with key 'dBSPL' and 'ref_distance' , indicating source level in dB SPL re 20muPa and reference distance in metres. R : float >0. straight line distance between source and receiver. This is used in case there are no obstacles between them. acoustic_shadowing_model : statsmodel object that allows calculation of how much shadowing will be observed. min_spacing : float> 0. Returns ------- received_level : float. received level of the sound ''' if kwargs.get('implement_shadowing'): all_points_between = get_points_in_between(start_point, end_point, all_other_points, **kwargs) received_level = calc_RL(kwargs['R'],kwargs['emitted_source_level']['dBSPL'], kwargs['emitted_source_level']['ref_distance']) num_obstacles = all_points_between.shape[0] if num_obstacles >= 1: acoustic_shadowing = calculate_acoustic_shadowing(num_obstacles, **kwargs) received_level += acoustic_shadowing else: received_level = calc_RL(kwargs['R'],kwargs['emitted_source_level']['dBSPL'], kwargs['emitted_source_level']['ref_distance']) return(received_level) def get_distances_between_points(xy_between, start, end): ''' ''' all_xy = np.row_stack((start, xy_between, end)) distance_matrix = spatial.distance_matrix(all_xy, all_xy) distance_to_source = np.argsort(distance_matrix[:,0]) points_sorted = all_xy[distance_to_source,:] distances_sorted = spatial.distance_matrix(points_sorted, points_sorted) num_distances = all_xy.shape[0] - 1 point_2_point_distances = np.zeros(num_distances) for i, (point0, point1) in enumerate(zip(range(all_xy.shape[0]-1), range(1,all_xy.shape[0]))): point_2_point_distances[i] = distances_sorted[point0, point1] return(point_2_point_distances) def calculate_acoustic_shadowing(num_obstacles, **kwargs): '''Calculates received level of a call with acoustic shadowing included. The received level of the call with shadowing is calculated with an iterative application of the bistatic sonar equation. The TS used here is the bistatic target strength at emitter-receiver angular separations of 180 degrees. Parameters ---------- num_obstacles : int >1 . Number of obstacles between receiver and emitter. Keyword Arguments ----------------- acoustic_shadowing_model : statsmodel object A statistical model that allows calculation of the amount of acoustic shadowing in dB. For predictions the model accepts a pd.DataFrame which has the following columns (this might depend on the exact model loaded too!) obstacles spacing min_spacing : float>0. Separation between bats/obstacles see the_cocktail_party_nightmare Returns ------- shadowing_reduction : float. Reduction of received level due to shadowing in dB. ''' no_obstacle = pd.DataFrame(data={'obstacles':[0], 'spacing':[kwargs['min_spacing']], }) with_obstacles = pd.DataFrame(data={'obstacles':[num_obstacles], 'spacing':[kwargs['min_spacing']], }) #convert_to_categorical(no_obstacle, 'spacing') #convert_to_categorical(with_obstacles, 'spacing') level_w_obstacles = kwargs['acoustic_shadowing_model'].predict(with_obstacles) level_wo_obstacles = kwargs['acoustic_shadowing_model'].predict(no_obstacle) shadowing_reduction = float(level_w_obstacles - level_wo_obstacles) return(shadowing_reduction) def convert_to_categorical(df, column): ''' ''' df[column] = pd.Categorical(df[column]) return(df) def calc_RL(distance, SL, ref_dist, **kwargs): '''calculates received level only because of spherical spreading. Parameters ----------- distance : float>0. receiver distance from source in metres. SL : float. source level in dB SPL re 20 muPa at the reference distance. ref_dist : float >0. distance at which source level was measured in metres. Typically 1metre by convention. Keyword Arguments ----------------- atmospheric_attenuation : float <= 0. Atmospheric attenuation in dB/m. This has to be negative number. Defaults to no atmospheric attenuations (0 dB/m ) Returns ------- RL : received level in dB SPL re 20muPa. ''' RL = SL - 20*np.log10(float(distance/ref_dist)) RL += kwargs.get('atmospheric_attenuation', 0)*distance return(RL) def get_points_in_between(start_point, end_point, all_other_points, **kwargs): ''' Parameters ---------- start_point : 1x2 array like xy coordinates of starting point end_point : 1x2 array like xy coordinates of end points all_other_points : N x 2 array like xy coordinates of all other points Keyword Arguments ----------------- rectangle_width : float >0. The width of the rectangle between the start and end point. Returns ------- points_between : Mpoints_between x 2 np.array where Mpoints can be >= 0. ''' rectangle_limits, rotation_matrix = make_rectangle_between_2_points(start_point, end_point,**kwargs) points_between = get_points_in_rectangle(rectangle_limits, start_point, all_other_points, rotation_matrix) return(points_between) def get_points_in_between_thecircleversion(start_point, end_point, all_other_points,**kwargs): '''Take 2 at getting perhaps a faster version of the previous get_points_in_between function. It is fast *and* dirty ... and doesn't quite apply when many bats are packed tightly together ... as long as the 'rectangle_width' is decently large -- then it should be okay.. ''' # get line equation from A to B diff_x_y = end_point-start_point vertical, m = calculate_slope(diff_x_y) numpoints = 100 # choose a default density for now points_along_line =
np.zeros((numpoints, 2))
numpy.zeros
import numpy import six.moves import cellprofiler_core.image import cellprofiler_core.measurement import cellprofiler_core.measurement from cellprofiler_core.constants.measurement import ( M_LOCATION_CENTER_X, M_LOCATION_CENTER_Y, FF_COUNT, FF_PARENT, COLTYPE_FLOAT, M_NUMBER_OBJECT_NUMBER, COLTYPE_INTEGER, FF_CHILDREN_COUNT, ) import cellprofiler.modules.splitormergeobjects import cellprofiler_core.object import cellprofiler_core.pipeline import cellprofiler_core.workspace import tests.modules INPUT_OBJECTS_NAME = "inputobjects" OUTPUT_OBJECTS_NAME = "outputobjects" IMAGE_NAME = "image" OUTLINE_NAME = "outlines" def test_load_v5(): file = tests.modules.get_test_resources_directory("splitormergeobjects/v5.pipeline") with open(file, "r") as fd: data = fd.read() pipeline = cellprofiler_core.pipeline.Pipeline() def callback(caller, event): assert not isinstance(event, cellprofiler_core.pipeline.event.LoadException) pipeline.add_listener(callback) pipeline.loadtxt(six.moves.StringIO(data)) module = pipeline.modules()[0] assert module.objects_name.value == "IdentifyPrimaryObjects" assert module.output_objects_name.value == "SplitOrMergeObjects" assert module.relabel_option.value == "Merge" assert module.distance_threshold.value == 0 assert not module.wants_image.value assert module.image_name.value == "None" assert module.minimum_intensity_fraction.value == 0.9 assert module.where_algorithm.value == "Closest point" assert module.merge_option.value == "Distance" assert module.parent_object.value == "None" assert module.merging_method.value == "Disconnected" def test_load_v4(): file = tests.modules.get_test_resources_directory("splitormergeobjects/v4.pipeline") with open(file, "r") as fd: data = fd.read() pipeline = cellprofiler_core.pipeline.Pipeline() def callback(caller, event): assert not isinstance(event, cellprofiler_core.pipeline.event.LoadException) pipeline.add_listener(callback) pipeline.loadtxt(six.moves.StringIO(data)) assert len(pipeline.modules()) == 2 module = pipeline.modules()[0] assert isinstance( module, cellprofiler.modules.splitormergeobjects.SplitOrMergeObjects ) assert module.objects_name == "blobs" assert module.output_objects_name == "RelabeledBlobs" assert ( module.relabel_option == cellprofiler.modules.splitormergeobjects.OPTION_MERGE ) assert module.distance_threshold == 2 assert not module.wants_image assert module.image_name == "Guide" assert module.minimum_intensity_fraction == 0.8 assert ( module.where_algorithm == cellprofiler.modules.splitormergeobjects.CA_CLOSEST_POINT ) assert module.merge_option == cellprofiler.modules.splitormergeobjects.UNIFY_PARENT assert module.parent_object == "Nuclei" assert ( module.merging_method == cellprofiler.modules.splitormergeobjects.UM_CONVEX_HULL ) module = pipeline.modules()[1] assert ( module.relabel_option == cellprofiler.modules.splitormergeobjects.OPTION_SPLIT ) assert module.wants_image assert ( module.where_algorithm == cellprofiler.modules.splitormergeobjects.CA_CENTROIDS ) assert ( module.merge_option == cellprofiler.modules.splitormergeobjects.UNIFY_DISTANCE ) assert ( module.merging_method == cellprofiler.modules.splitormergeobjects.UM_DISCONNECTED ) def rruunn( input_labels, relabel_option, merge_option=cellprofiler.modules.splitormergeobjects.UNIFY_DISTANCE, unify_method=cellprofiler.modules.splitormergeobjects.UM_DISCONNECTED, distance_threshold=5, minimum_intensity_fraction=0.9, where_algorithm=cellprofiler.modules.splitormergeobjects.CA_CLOSEST_POINT, image=None, parent_object="Parent_object", parents_of=None, ): """Run the SplitOrMergeObjects module returns the labels matrix and the workspace. """ module = cellprofiler.modules.splitormergeobjects.SplitOrMergeObjects() module.set_module_num(1) module.objects_name.value = INPUT_OBJECTS_NAME module.output_objects_name.value = OUTPUT_OBJECTS_NAME module.relabel_option.value = relabel_option module.merge_option.value = merge_option module.merging_method.value = unify_method module.parent_object.value = parent_object module.distance_threshold.value = distance_threshold module.minimum_intensity_fraction.value = minimum_intensity_fraction module.wants_image.value = image is not None module.where_algorithm.value = where_algorithm pipeline = cellprofiler_core.pipeline.Pipeline() def callback(caller, event): assert not isinstance(event, cellprofiler_core.pipeline.event.RunException) pipeline.add_listener(callback) pipeline.add_module(module) image_set_list = cellprofiler_core.image.ImageSetList() image_set = image_set_list.get_image_set(0) if image is not None: img = cellprofiler_core.image.Image(image) image_set.add(IMAGE_NAME, img) module.image_name.value = IMAGE_NAME object_set = cellprofiler_core.object.ObjectSet() o = cellprofiler_core.object.Objects() o.segmented = input_labels object_set.add_objects(o, INPUT_OBJECTS_NAME) workspace = cellprofiler_core.workspace.Workspace( pipeline, module, image_set, object_set, cellprofiler_core.measurement.Measurements(), image_set_list, ) if parents_of is not None: m = workspace.measurements ftr = FF_PARENT % parent_object m[INPUT_OBJECTS_NAME, ftr] = parents_of module.run(workspace) output_objects = workspace.object_set.get_objects(OUTPUT_OBJECTS_NAME) return output_objects.segmented, workspace def test_split_zero(): labels, workspace = rruunn( numpy.zeros((10, 20), int), cellprofiler.modules.splitormergeobjects.OPTION_SPLIT, ) assert numpy.all(labels == 0) assert labels.shape[0] == 10 assert labels.shape[1] == 20 assert isinstance(workspace, cellprofiler_core.workspace.Workspace) m = workspace.measurements assert isinstance(m,cellprofiler_core.measurement.Measurements) count = m.get_current_image_measurement(FF_COUNT % OUTPUT_OBJECTS_NAME) assert count == 0 for feature_name in ( M_LOCATION_CENTER_X, M_LOCATION_CENTER_Y, ): values = m.get_current_measurement(OUTPUT_OBJECTS_NAME, feature_name) assert len(values) == 0 module = workspace.module assert isinstance( module, cellprofiler.modules.splitormergeobjects.SplitOrMergeObjects ) columns = module.get_measurement_columns(workspace.pipeline) assert len(columns) == 6 for object_name, feature_name, coltype in ( (OUTPUT_OBJECTS_NAME, M_LOCATION_CENTER_X, COLTYPE_FLOAT,), (OUTPUT_OBJECTS_NAME, M_LOCATION_CENTER_Y, COLTYPE_FLOAT,), (OUTPUT_OBJECTS_NAME, M_NUMBER_OBJECT_NUMBER, COLTYPE_INTEGER,), (INPUT_OBJECTS_NAME, FF_CHILDREN_COUNT % OUTPUT_OBJECTS_NAME, COLTYPE_INTEGER,), (OUTPUT_OBJECTS_NAME, FF_PARENT % INPUT_OBJECTS_NAME, COLTYPE_INTEGER,), ("Image", FF_COUNT % OUTPUT_OBJECTS_NAME, COLTYPE_INTEGER,), ): assert any( [ object_name == c[0] and feature_name == c[1] and coltype == c[2] for c in columns ] ) categories = module.get_categories(workspace.pipeline, "Image") assert len(categories) == 1 assert categories[0] == "Count" categories = module.get_categories(workspace.pipeline, OUTPUT_OBJECTS_NAME) assert len(categories) == 3 assert any(["Location" in categories]) assert any(["Parent" in categories]) assert any(["Number" in categories]) categories = module.get_categories(workspace.pipeline, INPUT_OBJECTS_NAME) assert len(categories) == 1 assert categories[0] == "Children" f = module.get_measurements(workspace.pipeline, "Image", "Count") assert len(f) == 1 assert f[0] == OUTPUT_OBJECTS_NAME f = module.get_measurements(workspace.pipeline, OUTPUT_OBJECTS_NAME, "Location") assert len(f) == 2 assert all([any([x == y for y in f]) for x in ("Center_X", "Center_Y")]) f = module.get_measurements(workspace.pipeline, OUTPUT_OBJECTS_NAME, "Parent") assert len(f) == 1 assert f[0] == INPUT_OBJECTS_NAME f = module.get_measurements(workspace.pipeline, OUTPUT_OBJECTS_NAME, "Number") assert len(f) == 1 assert f[0] == "Object_Number" f = module.get_measurements(workspace.pipeline, INPUT_OBJECTS_NAME, "Children") assert len(f) == 1 assert f[0] == "%s_Count" % OUTPUT_OBJECTS_NAME def test_split_one(): labels = numpy.zeros((10, 20), int) labels[2:5, 3:8] = 1 labels_out, workspace = rruunn( labels, cellprofiler.modules.splitormergeobjects.OPTION_SPLIT ) assert numpy.all(labels == labels_out) assert isinstance(workspace, cellprofiler_core.workspace.Workspace) m = workspace.measurements assert isinstance(m,cellprofiler_core.measurement.Measurements) count = m.get_current_image_measurement(FF_COUNT % OUTPUT_OBJECTS_NAME) assert count == 1 for feature_name, value in ( (M_LOCATION_CENTER_X, 5), (M_LOCATION_CENTER_Y, 3), (FF_PARENT % INPUT_OBJECTS_NAME, 1), ): values = m.get_current_measurement(OUTPUT_OBJECTS_NAME, feature_name) assert len(values) == 1 assert round(abs(values[0] - value), 7) == 0 values = m.get_current_measurement( INPUT_OBJECTS_NAME, FF_CHILDREN_COUNT % OUTPUT_OBJECTS_NAME, ) assert len(values) == 1 assert values[0] == 1 def test_split_one_into_two(): labels = numpy.zeros((10, 20), int) labels[2:5, 3:8] = 1 labels[2:5, 13:18] = 1 labels_out, workspace = rruunn( labels, cellprofiler.modules.splitormergeobjects.OPTION_SPLIT ) index = numpy.array([labels_out[3, 5], labels_out[3, 15]]) assert index[0] != index[1] assert all([x in index for x in (1, 2)]) expected = numpy.zeros((10, 20), int) expected[2:5, 3:8] = index[0] expected[2:5, 13:18] = index[1] assert numpy.all(labels_out == expected) m = workspace.measurements values = m.get_current_measurement( OUTPUT_OBJECTS_NAME, FF_PARENT % INPUT_OBJECTS_NAME, ) assert len(values) == 2 assert numpy.all(values == 1) values = m.get_current_measurement( INPUT_OBJECTS_NAME, FF_CHILDREN_COUNT % OUTPUT_OBJECTS_NAME, ) assert len(values) == 1 assert values[0] == 2 def test_unify_zero(): labels, workspace = rruunn( numpy.zeros((10, 20), int), cellprofiler.modules.splitormergeobjects.OPTION_MERGE, ) assert numpy.all(labels == 0) assert labels.shape[0] == 10 assert labels.shape[1] == 20 def test_unify_one(): labels = numpy.zeros((10, 20), int) labels[2:5, 3:8] = 1 labels_out, workspace = rruunn( labels, cellprofiler.modules.splitormergeobjects.OPTION_MERGE ) assert numpy.all(labels == labels_out) def test_unify_two_to_one(): labels = numpy.zeros((10, 20), int) labels[2:5, 3:8] = 1 labels[2:5, 13:18] = 2 labels_out, workspace = rruunn( labels, cellprofiler.modules.splitormergeobjects.OPTION_MERGE, distance_threshold=6, ) assert numpy.all(labels_out[labels != 0] == 1) assert numpy.all(labels_out[labels == 0] == 0) def test_unify_two_stays_two(): labels = numpy.zeros((10, 20), int) labels[2:5, 3:8] = 1 labels[2:5, 13:18] = 2 labels_out, workspace = rruunn( labels, cellprofiler.modules.splitormergeobjects.OPTION_MERGE, distance_threshold=4, ) assert numpy.all(labels_out == labels) def test_unify_image_centroids(): labels = numpy.zeros((10, 20), int) labels[2:5, 3:8] = 1 labels[2:5, 13:18] = 2 image = numpy.ones((10, 20)) * (labels > 0) * 0.5 image[3, 8:13] = 0.41 image[3, 5] = 0.6 labels_out, workspace = rruunn( labels, cellprofiler.modules.splitormergeobjects.OPTION_MERGE, distance_threshold=6, image=image, minimum_intensity_fraction=0.8, where_algorithm=cellprofiler.modules.splitormergeobjects.CA_CENTROIDS, ) assert numpy.all(labels_out[labels != 0] == 1) assert numpy.all(labels_out[labels == 0] == 0) def test_dont_unify_image_centroids(): labels = numpy.zeros((10, 20), int) labels[2:5, 3:8] = 1 labels[2:5, 13:18] = 2 image = numpy.ones((10, 20)) * labels * 0.5 image[3, 8:12] = 0.41 image[3, 5] = 0.6 image[3, 15] = 0.6 labels_out, workspace = rruunn( labels, cellprofiler.modules.splitormergeobjects.OPTION_MERGE, distance_threshold=6, image=image, minimum_intensity_fraction=0.8, where_algorithm=cellprofiler.modules.splitormergeobjects.CA_CENTROIDS, ) assert numpy.all(labels_out == labels) def test_unify_image_closest_point(): labels = numpy.zeros((10, 20), int) labels[2:5, 3:8] = 1 labels[2:5, 13:18] = 2 image = numpy.ones((10, 20)) * (labels > 0) * 0.6 image[2, 8:13] = 0.41 image[2, 7] = 0.5 image[2, 13] = 0.5 labels_out, workspace = rruunn( labels, cellprofiler.modules.splitormergeobjects.OPTION_MERGE, distance_threshold=6, image=image, minimum_intensity_fraction=0.8, where_algorithm=cellprofiler.modules.splitormergeobjects.CA_CLOSEST_POINT, ) assert numpy.all(labels_out[labels != 0] == 1) assert numpy.all(labels_out[labels == 0] == 0) def test_dont_unify_image_closest_point(): labels = numpy.zeros((10, 20), int) labels[2:5, 3:8] = 1 labels[2:5, 13:18] = 2 image = numpy.ones((10, 20)) * labels * 0.6 image[3, 8:12] = 0.41 image[2, 7] = 0.5 labels_out, workspace = rruunn( labels, cellprofiler.modules.splitormergeobjects.OPTION_MERGE, distance_threshold=6, image=image, minimum_intensity_fraction=0.8, where_algorithm=cellprofiler.modules.splitormergeobjects.CA_CLOSEST_POINT, ) assert numpy.all(labels_out == labels) def test_unify_per_parent(): labels = numpy.zeros((10, 20), int) labels[2:5, 3:8] = 1 labels[2:5, 13:18] = 2 labels_out, workspace = rruunn( labels, cellprofiler.modules.splitormergeobjects.OPTION_MERGE, merge_option=cellprofiler.modules.splitormergeobjects.UNIFY_PARENT, parent_object="Parent_object", parents_of=numpy.array([1, 1]), ) assert numpy.all(labels_out[labels != 0] == 1) def test_unify_convex_hull(): labels = numpy.zeros((10, 20), int) labels[2:5, 3:8] = 1 labels[2:5, 13:18] = 2 expected = numpy.zeros(labels.shape, int) expected[2:5, 3:18] = 1 labels_out, workspace = rruunn( labels, cellprofiler.modules.splitormergeobjects.OPTION_MERGE, merge_option=cellprofiler.modules.splitormergeobjects.UNIFY_PARENT, unify_method=cellprofiler.modules.splitormergeobjects.UM_CONVEX_HULL, parent_object="Parent_object", parents_of=
numpy.array([1, 1])
numpy.array
from __future__ import print_function from six import iteritems import netCDF4 import os import uuid from .. import utils import numpy as np import collections from scipy import interpolate from scipy.signal import decimate class QncException(Exception): pass def to_str(s): if not isinstance(s,str) and isinstance(s,bytes): s=s.decode() # in case py3 and s is bytes return s def sanitize_name(s): """ make s suitable for use as a variable or dimension name """ return to_str(s).replace(' ','_').replace('/','_') def as_tuple(x): if isinstance(x,tuple): return x elif isinstance(x,list): return tuple(x) else: return (x,) def anon_dim_name(size,**kws): """ Name given to on-demand dimensions. kws: unused, but might include the type? """ return 'd%d'%size class QuickVar(object): # wraps netcdf variable # predefine QuickVar attributes for the sake of __setattr__ _nc=None _v=None _transpose=None # _converter=None def __init__(self,nc,v,transpose=None): self.__dict__['_nc']=nc self.__dict__['_v']=v # self.__dict__['_converter']=converter if transpose is None: transpose=range(len(v.dimensions)) self.__dict__['_transpose']=transpose def __getitem__(self,k): """ the options are similar to indexing a record array, but strings refer to dimensions """ # if k is a string or tuple of strings, transpose # and return a new quick var. # if k is a dict, no transposition, but map the values to # slices # otherwise delegate to var. # this makes list arguments and tuple arguments # appear the same, but in the spirit of following # numpy semantics, those should not be the same. if isinstance(k,dict): dims=self.dims slices=[ k.get(d,slice(None)) for d in self.dims ] k=tuple(slices) if not isinstance(k,tuple): k=(k,) k=tuple(to_str(ki) for ki in k) if isinstance(k[0],str): return self._transpose_by_names(k) else: myv=self._v # first, make k explicitly cover all dimensions #try: k=list(k) # make a list so we can modify it #except TypeError: # k just a single slice or index # k=[k] for ki,kk in enumerate(k): if kk is Ellipsis: expand_slc=slice(ki,ki+1) expansion=[slice(None)]*(myv.ndim-(len(k)-1)) k[expand_slc] = expansion break else: while len(k)< myv.ndim: k.append( slice(None) ) # k is still a set of slices on the transposed data untranspose=[ self._transpose.index(i) for i in range(myv.ndim) ] k_untransposed=[k[j] for j in untranspose] # retrieve the data, possibly having netcdf subset it # important to tuplify - different semantics than # a list pulled=self._rich_take(myv,tuple(k_untransposed)) # if none of the slices are a singleton, then we'd just # apply our transpose and be done. # .. say the initial dims were [time,cell,z] # and self._transpose=[1,0,2] # cell,time,z # and k=[0,slice(None),slice(None)] # which means cell=0,all time, all z # then k_transposed=[slice(None),0,slice(None)] # pulled has dimensions of time,z # retranspose=[0,1] # compared to transpose which was [1,0,2] # so of transpose, retranspose=[i for i in self._transpose if (isinstance(k_untransposed[i],slice) or isinstance(k_untransposed[i],collections.Iterable))] # and renumber via cheesy np trick if len(retranspose): retranspose=np.argsort(np.argsort(retranspose)) return pulled.transpose(retranspose) else: return pulled def _rich_take(self,myv,idxs): # allow more relaxed semantics, in particular, grabbing an # out of order or repeated set of indices new_idxs=[] # introduce some mangling post_idxs=[] # then use this to undo mangling for idx in idxs: post=slice(None) if isinstance(idx, collections.Iterable): idx=np.asarray(idx) if ( idx.ndim!=1 or (len(idx)>1 and np.any(np.diff(idx)<=0)) ): post=idx # have numpy do it. idx=slice(None) new_idxs.append(idx) if not np.isscalar(idx): post_idxs.append(post) new_idxs=tuple(new_idxs) post_idxs=tuple(post_idxs) result=myv[new_idxs] if len(post_idxs): result=result[post_idxs] return result def __setitem__(self,k,v): """ limited support here - just nc.varname[slices]=value TODO: allow k to be a bitmask index. TODO: allow k to be dimensions, to transpose on the fly TODO: allow self to already have a transpose """ myv=self._v # for now, no support for assigning into a transposed array if np.all( self._transpose == range(len(myv.dimensions)) ): # when k is a bitmask, this is super slow. if myv.size<1e6: # do it in python, in memory. value=myv[:] value[k]=v myv[:]=value else: myv[k]=v else: raise QncException("Tranpose is set - not ready for that") def __getattr__(self,attr): return getattr(self._v,attr) def __setattr__(self,attr,value): # ony pre-existing attributes are set on this object # all others are passed on to the real variable. if attr in self.__dict__: self.__dict__[attr]=value else: return setattr(self._v,attr,value) def _transpose_by_names(self,k): if isinstance(k,str): k=(k,) new_transpose=[self._v.dimensions.index(kk) for kk in k] return QuickVar(self._nc,self._v,new_transpose) def __len__(self): return len(self._v) @property def dims(self): return self.dimensions @property def dimensions(self): return self._v.dimensions def as_datenum(self): import nc_utils return nc_utils.cf_time_to_datenum(self._v) class QDataset(netCDF4.Dataset): # 'varlen' will try to use variable length arrays to store strings # 'fixed' will add a strNN dimension, and strings are padded out to that size # 'varlen' may not be supported on as wide a range of library versions. # neither is well-tested at this point def __init__(self,*args,**kws): # seems that it has to be done this way, otherwise the setattr/getattr # overrides don't see it. super(QDataset,self).__init__(*args,**kws) self._set_string_mode('varlen') # 'fixed' self.__dict__['_auto_dates']=True def _set_string_mode(self,mode): self.__dict__['_string_mode']=mode def __getattr__(self,attr): # only called when attribute is not found in dict if attr in self.variables: return QuickVar(self,self.variables[attr]) raise AttributeError(attr) class VarProxy(object): """ represents a variable about to be defined, but waiting for dimension names and data, via setattr. """ def __init__(self,dataset,varname): self.dataset=dataset self.varname=to_str(varname) def __setitem__(self,dims,data): """ syntax for creating dimensions and variables at the same time. nc['var_name']['dim1','dim2','dim3']=np.array(...) """ return self.create(dims,data) def create(self,dims,data,**kwargs): if self.varname in self.dataset.variables: print( "Trying to setitem on varname=%s"%(self.varname) ) print( "Existing dataset state:" ) self.dataset._dump() raise QncException("Can't create variable twice: %s"%self.varname) attrs=kwargs.get('attrs',{}) data=np.asarray(data) # create dimensions on-demand: dims=as_tuple(dims) dims=tuple(to_str(di) for di in dims) if len(dims) and dims[-1]==Ellipsis: dims=dims[:-1] #drop the ellipsis # add new dimensions named for their size, according to the # trailing dimensions of data extras=[anon_dim_name(size=n) for n in data.shape[len(dims):]] if extras: dims=dims + tuple(extras) #print "New dimensions: " #print dims # A college try at dereferencing objects if data.dtype==object: if np.all( [isinstance(v,str) or isinstance(v,unicode) for v in data.ravel()] ): data=data.astype('S') # and handle strings by also adding an extra generic dimension dtype_str=data.dtype.str # print "Dtype: ",dtype_str if dtype_str.startswith('|S') or dtype_str.startswith('S'): # print "It's a string!" slen=data.dtype.itemsize if slen>1 and self.dataset._string_mode=='fixed': dims=dims + ("str%d"%slen,) new_shape=data.shape + (slen,) new_data=np.fromstring(data.tostring(),'S1').reshape(new_shape) data=new_data # print "New data dtype: ",data.dtype # get smart about np datetime64 values if self.dataset._auto_dates and (data.dtype.type == np.datetime64): # CF conventions can't deal with nanoseconds... # this will lose sub-second values - could try going with floats # instead?? data=data.astype('M8[s]').astype(np.int64) # Assumes UTC attrs['units']='seconds since 1970-01-01 00:00:00' data_shape=list(data.shape) var_dtype=data.dtype for dim_idx,dim_name in enumerate(dims): self.dataset.add_dimension(dim_name,data.shape[dim_idx]) variable=self.dataset.createVariable(self.varname, var_dtype, dims,**kwargs) variable[:]=data for k,v in iteritems(attrs): setattr(variable,k,v) def add_dimension(self,dim_name,length): """ create dimension if it doesn't exist, otherwise check that the length requested matches what does exist. """ if dim_name in self.dimensions: assert ( self.dimensions[dim_name].isunlimited() or (len(self.dimensions[dim_name]) == length) ) else: self.createDimension(dim_name,length) def __getitem__(self,k): if k in self.variables: return QuickVar(self,self.variables[k]) else: return self.VarProxy(dataset=self,varname=k) def __setitem__(self,k,val): # shorthand for dimensionless variable self[k][()]=val def __contains__(self,k): return k in self.variables def alias(self,**kwargs): """ had been just copying the variables. But why not just update self.variables? This works even if not writing to the file. """ for k,v in iteritems(kwargs): if 0: # deep copy: self[k][self.variables[v].dimensions] = self.variables[v][:] for attr_name in self.variables[v].ncattrs(): setattr(self.variables[k],attr_name, getattr(self.variables[v],attr_name)) else: self.variables[k]=self.variables[v] def interpolate_dimension(self,int_dim,int_var,new_coordinate, max_gap=None,gap_fields=None, int_mode='nearest'): """ return a new dataset as a copy of this one, but with the given dimension interpolated according to varname=values typically this would be done to a list of datasets, after which they could be appended. it can also be used to collapse a 'dependent' coordinate into an independent coordinate - e.g. if depth bins are a function of time, this can be used to interpolate onto a constant depth axis, which will also remove the time dimension from that depth variable. max_gap: jumps in the source variable greater than max_gap are filled with nan (or -99 if int valued). For now this is only supported when int_dim has just one dimension gap_fields: None, or a list of variable names to be masked based on gaps. int_mode: 'nearest' - grab the integer value from the nearest sample may add 'linear' in the future, which would cast to float """ result=empty() int_ncvar=self.variables[int_var] if len(int_ncvar.dimensions)>1: print( "Will collapse %s"%int_var) if max_gap: raise QncException("max_gap not implemented for multi-dimensional variable") else: if max_gap: gapped=np.zeros(new_coordinate.shape,'b1') deltas=np.diff(int_ncvar[:]) gap_idx=np.nonzero(deltas>max_gap)[0] for idx in gap_idx: gap_left=int_ncvar[idx] gap_right=int_ncvar[idx+1] print( "Gap is %f - %f (delta %f)"%(gap_left,gap_right,gap_right-gap_left) ) to_mask=slice(*np.searchsorted( new_coordinate, [gap_left,gap_right] )) gapped[to_mask]=True for varname in self.variables.keys(): dim_names=self.variables[varname].dimensions if int_dim in dim_names: merge_idx=dim_names.index(int_dim) else: merge_idx=None if varname==int_var: # takes care of matching the coordinate variable. # but there will be trouble if there are multiple # coordinate variables and you try to concatenate # use int_dim here instead of dim_names, because we might # be collapsing the interpolant variable. result[varname][int_dim]=new_coordinate elif merge_idx is not None: # it's an array-valued variable, and includes # the dimension over which we want to interpolate int_all_dims=self.variables[int_var].dimensions src_var=self.variables[varname] src_val=src_var[:] # masked values don't work so well with the # interpolation: if isinstance(src_val,np.ma.core.MaskedArray): print( "Filling masked src data" ) if 'int' in src_val.dtype.name: src_val=src_val.filled(-1) else: src_val=src_val.filled(np.nan) if len(int_all_dims)==1: if ('int' in src_val.dtype.name) and (int_mode=='nearest'): def interper(coord): idxs=utils.nearest(self.variables[int_var][:],coord) slices=[slice(None)]*src_val.ndim slices[merge_idx]=idxs return src_val[slices] else: interper=interpolate.interp1d(self.variables[int_var][:], src_val, axis=merge_idx, bounds_error=False, assume_sorted=False) new_val=interper(new_coordinate) if max_gap and ( (gap_fields is None) or (varname in gap_fields)): if 'int' in new_val.dtype.name: new_val[gapped] = -99 else: new_val[gapped] = np.nan result[varname][dim_names]=new_val else: # here's the tricky part when it comes to collapsing # dimensions # self.variables[int_var] - this is multidimensional # basically we want to iterate over elements in # iterate over all other dimensions of the int_var int_values=self.variables[int_var][:] int_dim_idx=self.variables[int_var].dimensions.index(int_dim) # preallocate the result, since we have to fill it in bit-by-bit dest_shape=list(src_var.shape) dest_shape[merge_idx] = len(new_coordinate) dest=np.zeros(dest_shape,dtype=src_val.dtype) # start with a stupid, slow way: # Assume that there is one extra dimension and it's the first one. # int_ncvar has multiple dimensions, i.e. depth ~ bin,time # so there is an assumption here that some variable to be interpolated # like u=u(bin,time) # could there be something that depended on bin, but not time? # there aren't any in the existing adcp data for extra in range(int_ncvar.shape[0]): interper=interpolate.interp1d(int_ncvar[extra,:], src_val[extra,:], axis=merge_idx-1, # account for extra bounds_error=False, assume_sorted=False) dest[extra,:]=interper(new_coordinate) result[varname][dim_names]=dest else: # non-dimensioned attributes here result[varname][dim_names]=self.variables[varname][:] self.copy_ncattrs_to(result) return result def copy(self,skip=[],fn=None,**create_args): """ make a deep copy of self, into a writable, diskless QDataset if fn is given, target is a netCDF file on disk. """ if fn is not None: new=empty(fn,**create_args) else: new=empty() for dimname in self.dimensions.keys(): if dimname not in skip: new.createDimension(dimname,len(self.dimensions[dimname])) for varname in self.variables.keys(): if varname not in skip: ncvar=self.variables[varname] new[varname][ncvar.dimensions] = ncvar[:] self.copy_ncattrs_to(new) return new def copy_ncattrs_to(self,new): for varname in self.variables.keys(): myvar=self.variables[varname] if varname not in new.variables: continue newvar = new.variables[varname] for attr in myvar.ncattrs(): if attr != '_FillValue': # _FillValue can only be set at var creation time # This approach was failing on valid_range, 2017-03-17 # setattr(newvar,attr,getattr(myvar,attr)) newvar.setncattr(attr,getattr(myvar,attr)) def select(self,**kwargs): new=empty() for varname in self.variables.keys(): dim_names=self.variables[varname].dimensions if len(dim_names)==0: newvar=new.createVariable(varname,self.variables[varname].dtype,()) newvar[...]=self.variables[varname][...] else: slices=[slice(None)]*len(dim_names) for slc_dim,slc_sel in iteritems(kwargs): if slc_dim in dim_names: slc_idx=dim_names.index(slc_dim) slices[slc_idx]=slc_sel else: print( "slice dimension %s not in dim_names %s"%(slc_dim,dim_names) ) new[varname][dim_names]=self.variables[varname][slices] self.copy_ncattrs_to(new) return new def within(self,**kwargs): selects={} for slc_varname,slc_range in iteritems(kwargs): slc_var=self.variables[slc_varname] assert( len(slc_var.dimensions)==1 ) selects[slc_var.dimensions[0]]=utils.within(slc_var[:],slc_range,as_slice=True) return self.select(**selects) def _dump(self): print( self._desc() ) def _desc(self): """ returns pretty printed description of dataset similar to output of ncdump """ lines=[ "%s %s {"%( self.file_format.lower(), "unknown_filename" ) ] lines.append( self._desc_dims() ) lines.append( self._desc_vars() ) lines.append( "}" ) return "\n".join(lines) def _desc_dims(self): lines=["dimensions:"] for k,v in iteritems(self.dimensions): lines.append(" %s = %s ;"%(k,len(v) )) return "\n".join(lines) def _desc_vars(self,max_attr_len=20,max_n_attrs=7): lines=["variables:"] for k,v in iteritems(self.variables): try: typ=v.dtype.name except AttributeError: typ=str(v.dtype) lines.append( " %s %s(%s) ;"%( typ, k, ",".join( v.dimensions )) ) for attr_name in v.ncattrs()[:max_n_attrs]: a_val=getattr(v,attr_name) if isinstance(a_val,str) and len(a_val)>max_attr_len: a_val = a_val[:max_attr_len] + "... [%d more bytes]"%(len(a_val)-max_attr_len) a_val = '"' + a_val + '"' lines.append(' %s:%s = %s'%(k,attr_name,a_val)) if len(v.ncattrs()) > max_n_attrs > 0: lines.append(' ... %d more'%(len(v.ncattrs())-max_n_attrs)) return "\n".join(lines) def empty(fn=None,overwrite=False,**kwargs): if fn is None: return QDataset(uuid.uuid1().hex,'w',diskless=True,**kwargs) else: if os.path.exists(fn): if overwrite: os.unlink(fn) else: raise QncException('File %s already exists'%fn) return QDataset(fn,'w',**kwargs) def concatenate(ncs,cat_dim,skip=[],new_dim=None): """ ncs is an ordered list of QDataset objects If a single QDataset is given, it will be copied at the metadata level new_dim: if given, then fields not having cat_dim, but differing between datasets, will be concatenated along new_dim. for convenience, elements of gdms which are None are silently dropped """ ncs=filter(None,ncs) N=len(ncs) if N==1: return ncs[0].copy() if N==0: return empty() result=empty() for varname in ncs[0].variables.keys(): if varname in skip: continue dim_names=ncs[0].variables[varname].dimensions if cat_dim in dim_names: cat_idx=dim_names.index(cat_dim) else: cat_idx=None parts=[nc.variables[varname][:] for nc in ncs] if cat_idx is not None: result[varname][dim_names]=np.concatenate(parts,axis=cat_idx) else: constant=True for n in range(1,N): if np.any(parts[0]!=parts[n]): constant=False break if not constant: if new_dim is None: raise QncException("Non-concatenated variable %s "\ "does not match %s != %s"%(varname, parts[0], parts[n])) else: print( "Variable values of %s will go into new dimension %s"%(varname, new_dim) ) result[varname][ [new_dim]+list(dim_names) ]=np.array(parts) else: result[varname][dim_names]=parts[0] # attrs are copied from first element ncs[0].copy_ncattrs_to(result) return result # Functional manipulations of QDataset: def downsample(ds,dim,stride,lowpass=True): """ Lowpass variables along the given dimension, and resample at the given stride. lowpass=False => decimate, no lowpass lowpass=<float> => lowpass window size is lowpass*stride """ lowpass=float(lowpass) winsize=int(lowpass*stride) new=empty() for var_name in ds.variables: ncvar=ds.variables[var_name] val=ncvar[:] if dim in ncvar.dimensions: dim_idx=ncvar.dimensions.index(dim) # should be possible to use the faster scipy way, # but it is having issues with setting nan's in the # output - maybe something is getting truncated or # reshaped?? if True: # lowpass!=1: # older, slower way: if lowpass: import lp_filter val_lp=lp_filter.lowpass_fir(val,winsize,axis=dim_idx,nan_weight_threshold=0.5) else: val_lp=val slcs=[slice(None)]*len(ncvar.dimensions) slcs[dim_idx]=slice(None,None,stride) val=val_lp[slcs] else: # scipy.signal way: kws=dict(q=stride,ftype='fir',axis=dim_idx) val_valid=decimate(np.isfinite(val).astype('f4'),**kws) val=decimate(val,**kws) val[val_valid<0.1] = np.nan new[var_name+'_msk'][ncvar.dimensions]=val_valid # DBG new[var_name][ncvar.dimensions] = val ds.copy_ncattrs_to(new) return new def mat_to_nc(mat,dim_map={},autosqueeze=True): nc=empty() length_to_dim={} if autosqueeze: sq=np.squeeze else: sq=lambda x: x for k,v in iteritems( dim_map ): if isinstance(v,str): v=[v] if k in mat: x=sq(mat[k]) if x.ndim != len(v): raise QncException("dim_map: field %s - %s doesn't match with %s"%(k,v,x.shape)) for dim_name,size in zip(v,x.shape): length_to_dim[size]=dim_name for k,v in iteritems(mat): if k.startswith('_'): print( "Skipping %s"%k) continue v=sq(v) if not isinstance(v,np.ndarray): print( "Don't know how to deal with variable of type %s"%str(type(v))) continue if v.ndim==0: setattr(nc,k,v.item()) continue if k in dim_map: dims=dim_map[k] else: dims=[] for size in v.shape: if size not in length_to_dim: length_to_dim[size]='d%d'%size dims.append(length_to_dim[size]) # special handling for some datatypes: if v.dtype == np.dtype('O'): # sometimes this is just ragged array # for some reason mat files can have a 3-dimensional variable reported # as an array of 2-d arrays. # TODO print( "%s is not a simple array. Skipping"%k ) continue nc[k][dims]=v return nc def linear_to_orthogonal_nc(nc_src,lin_dim,ortho_dims,nc_dst=None): """ copy a dataset, changing a linear dimension into a pair of orthogonal dimensions """ if isinstance(nc_src,str): nc=qnc.QDataset(nc_src) else: nc=nc_src if nc_dst is None: nc2=qnc.empty() elif isinstance(nc_dst,str): nc2=qnc.empty(fn=nc_dst) else: nc2=nc_dst ortho_coords=[np.unique(nc.variables[d][:]) for d in ortho_dims] ortho_shape =[len(oc) for oc in ortho_coords] map1=np.searchsorted(ortho_coords[0],nc.variables[ortho_dims[0]][:]) map2=np.searchsorted(ortho_coords[1],nc.variables[ortho_dims[1]][:]) for d in ortho_dims: vals=np.unique(nc.variables[d][:]) nc2[d][d]=vals nc2.variables # nc2.set_coords(ortho_dims) for v in nc.variables: print("Processing %s"%v) if v in ortho_dims: continue create_kwargs={} if '_FillValue' in nc.variables[v].ncattrs(): create_kwargs['fill_value']=nc.variables[v]._FillValue if lin_dim in nc.variables[v].dimensions: old_val=nc.variables[v][:] new_dims=[] ; new_shape=[] ; new_slices=[] for d in nc.variables[v].dimensions: if d==lin_dim: new_dims+=ortho_dims new_shape+=ortho_shape new_slices+=[map1,map2] else: new_dims.append(d) new_shape.append(len(nc.variables[d])) new_slices+=[slice(None)] new_val=np.zeros(new_shape,old_val.dtype) new_val[:] = np.nan new_val[tuple(new_slices)] = old_val # dims=[nc2[d] for d in new_dims] nc2[v].create(new_dims,new_val,**create_kwargs) else: #print "COPY",v,nc[v].dims data=nc.variables[v][:] if data.dtype==object: data=data.astype('S') nc2[v].create(nc.variables[v].dimensions,data,**create_kwargs) for att in nc.variables[v].ncattrs(): if att == '_FillValue': # can't be added after the fact continue setattr(nc2.variables[v],att,getattr(nc.variables[v],att)) if isinstance(nc_src,str): nc.close() return nc2 def ortho_to_transect_nc(src_nc,src_x_var,src_y_var,transect_xy,dst_nc=None): """ Extract a transect to a new dataset """ if isinstance(src_nc,str): src_nc=qnc.QDataset(src_nc) close_src=True else: close_src=False if dst_nc is None: dst_nc=qnc.empty() elif isinstance(dst_nc,str): dst_nc=qnc.empty(fn=dst_nc) else: pass src_xy=np.array( [src_nc.variables[src_x_var][:],src_nc.variables[src_y_var][:]] ).T elti_sel=[] for xy in transect_xy: dists=utils.dist(xy,src_xy) elti_sel.append(np.argmin(dists)) elti_sel=
np.array(elti_sel)
numpy.array
import numpy as np import h5py import matplotlib.pyplot as plt import pyfftw from numpy.fft import fftshift # -------------------------------------------------------------------------------------------------------------------- # Loading data: # -------------------------------------------------------------------------------------------------------------------- filename = input('Enter filename of data to open: ') data_file = h5py.File('../../data/{}.hdf5'.format(filename), 'r') # Loading grid array data: x, y = data_file['grid/x'], data_file['grid/y'] X, Y = np.meshgrid(x[:], y[:]) Nx, Ny = x[:].size, y[:].size dx, dy = x[1] - x[0], y[1] - y[0] dkx = 2 * np.pi / (Nx * dx) dky = 2 * np.pi / (Ny * dy) # K-space spacing kxx = np.arange(-Nx // 2, Nx // 2) * dkx kyy = np.arange(-Nx // 2, Nx // 2) * dky Kx, Ky = np.meshgrid(kxx, kyy) # Kx, Ky = np.fft.fftshift(Kx), np.fft.fftshift(Ky) K = np.sqrt(
fftshift(Kx ** 2)
numpy.fft.fftshift
import numpy as np import matplotlib.pyplot as plt import time import skcuda.linalg as linalg import aspire.em_classavg.data_utils as data_utils from aspire.em_classavg.image_denoising.image_denoising.ConverterModel.Converter import Converter class EM: def __init__(self, images, trunc_param=10, beta=0.5, ang_jump=1, max_shift=5, shift_jump=1, n_scales=10, is_remove_outliers=True, outliers_precent_removal=5): self.trunc_param = trunc_param self.beta = beta self.ang_jump = ang_jump self.is_remove_outliers = is_remove_outliers self.outliers_precent_removal = outliers_precent_removal self.em_params = dict() self.em_params['n_scales'] = n_scales self.em_params['max_shift'] = max_shift self.em_params['shift_jump'] = shift_jump self.em_params['thetas'] = np.arange(1, 361, self.ang_jump) self.em_params['shifts'] = np.arange(-1 * self.em_params['max_shift'], self.em_params['max_shift'] + 1, self.em_params['shift_jump']) self.im_size = np.shape(images)[-1] if np.ndim(images) == 3: self.n_images = len(images) else: self.n_images = 1 images, self.mean_bg_ims, self.sd_bg_ims = data_utils.normalize_background(images) snr_est = EM.est_snr(images) est_scale = np.sqrt(snr_est * np.mean(self.sd_bg_ims) ** 2) self.em_params['scales'] = np.linspace(0.8 * est_scale, 1.2 * est_scale, self.em_params['n_scales']) self.converter = Converter(self.im_size, self.trunc_param, self.beta) self.converter.init_direct('full') self.c_ims = self.converter.direct_forward(images) self.const_terms = self.pre_compute_const_terms() self.phases = np.exp(-1j * 2 * np.pi / 360 * np.outer(self.em_params['thetas'], self.converter.get_angular_frequency())) # the expansion coefficients of each image for each possible rotation self.c_ims_rot = self.c_ims[:, np.newaxis, :] * self.phases[np.newaxis, :] def e_step(self, c_avg): print('e-step') n_scales = len(self.em_params['scales']) n_rots = len(self.em_params['thetas']) n_shifts_2d = len(self.em_params['shifts'])**2 n_shifts_1d = len(self.em_params['shifts']) posteriors = np.zeros((self.n_images, n_shifts_2d, n_scales, n_rots)) # posteriors = np.zeros((self.n_images, n_scales, n_rots, n_shifts_2d)) # compute the terms that do not depend on the shifts ann_const = (np.linalg.norm(c_avg) * np.outer(1 / self.sd_bg_ims, self.em_params['scales']))**2 cross_cnn_ann = np.outer(self.mean_bg_ims / (self.sd_bg_ims**2), self.em_params['scales']) * \ 2 * np.real(np.vdot(c_avg, self.const_terms['c_all_ones_im'])) ann_const_cross_cnn_anns = ann_const + cross_cnn_ann const_elms = ann_const_cross_cnn_anns + (self.const_terms['anni'] + self.const_terms['cnn'])[:, np.newaxis] for shift_x in self.em_params['shifts']: for shift_y in self.em_params['shifts']: if shift_y < shift_x: continue A_shift = self.calc_A_shift(shift_x, shift_y) tmp1_shift = np.conj(self.const_terms['c_all_ones_im']).dot(A_shift) tmp2_shift = np.conj(c_avg).dot(A_shift) A_inv_shift = np.conj(np.transpose(A_shift)) tmp1_inv_shift = np.conj(self.const_terms['c_all_ones_im']).dot(A_inv_shift) tmp2_inv_shift = np.conj(c_avg).dot(A_inv_shift) shifts = (np.array([[shift_y, -shift_y], [shift_x, -shift_x]]) + self.em_params['max_shift']) / \ self.em_params['shift_jump'] inds = np.ravel_multi_index(shifts.astype(shift_y), (n_shifts_1d, n_shifts_1d)) for i in np.arange(self.n_images): # calculate the two cross terms cross_anni_cnn = self.mean_bg_ims[i] / self.sd_bg_ims[i] * \ 2 * np.real(tmp1_shift.dot(np.transpose(self.c_ims_rot[i]))) cross_anni_ann = self.em_params['scales'][:, np.newaxis] / self.sd_bg_ims[i] * \ 2 * np.real(tmp2_shift.dot(np.transpose(self.c_ims_rot[i]))) # write down the log likelihood posteriors[i, inds[0]] = cross_anni_ann - (const_elms[i][:, np.newaxis] + cross_anni_cnn) if shift_y != shift_x: cross_anni_cnn_minus = self.mean_bg_ims[i] / self.sd_bg_ims[i] * \ 2 * np.real(tmp1_inv_shift.dot(np.transpose(self.c_ims_rot[i]))) cross_anni_ann_minus = self.em_params['scales'][:, np.newaxis] / self.sd_bg_ims[i] * \ 2 * np.real(tmp2_inv_shift.dot(np.transpose(self.c_ims_rot[i]))) # write down the log likelihood # TODO: avoid elipsis by shifting shift indx to the beginning posteriors[i, inds[1]] = cross_anni_ann_minus - \ (const_elms[i][:, np.newaxis] + cross_anni_cnn_minus) log_lik_per_image = np.zeros(self.n_images) for i in np.arange(self.n_images): omega_i = posteriors[i] max_omega = np.max(omega_i) omega_i = np.exp(omega_i - max_omega) log_lik_per_image[i] = max_omega + np.log(np.sum(omega_i)) posteriors[i] = omega_i / np.sum(omega_i) return posteriors, log_lik_per_image def m_step(self, posteriors): print('m-step') n_images = self.n_images n_shifts_1d = len(self.em_params['shifts']) n_prolates = self.converter.get_num_prolates() W_shifts_marg = np.zeros((n_images, n_prolates)).astype('complex') c_avg = np.zeros(n_prolates).astype('complex') for shift_x in self.em_params['shifts']: for shift_y in self.em_params['shifts']: if shift_y < shift_x: continue shifts = (np.array([[shift_y, -shift_y], [shift_x, -shift_x]]) + self.em_params['max_shift']) / \ self.em_params['shift_jump'] inds = np.ravel_multi_index(shifts.astype(shift_y), (n_shifts_1d, n_shifts_1d)) A_shift = self.calc_A_shift(shift_x, shift_y) A_inv_shift = np.conj(np.transpose(A_shift)) non_neg_freqs = self.converter.get_non_neg_freq_inds() A_shift = A_shift[non_neg_freqs] A_inv_shift = A_inv_shift[non_neg_freqs] W = np.zeros((n_images, self.converter.get_num_prolates())).astype('complex') for i in np.arange(n_images): W[i] = np.sum(np.dot(posteriors[i, inds[0]], self.phases), axis=0) c_avg[non_neg_freqs] += np.sum(A_shift.dot(np.transpose(W * self.c_ims)), axis=1) W_shifts_marg += W if shift_y != shift_x: W_minus = np.zeros((n_images, self.converter.get_num_prolates())).astype('complex') for i in np.arange(n_images): W_minus[i] = np.sum(np.dot(posteriors[i, inds[1]], self.phases), axis=0) c_avg[non_neg_freqs] += np.sum(A_inv_shift.dot(np.transpose(W_minus * self.c_ims)), axis=1) W_shifts_marg += W_minus # update the coeffs using with respect to the additive term c_avg[non_neg_freqs] += np.sum(np.transpose(W_shifts_marg * self.const_terms['c_additive_term']), axis=1)[non_neg_freqs] c_avg[self.converter.get_neg_freq_inds()] = np.conj(c_avg[self.converter.get_pos_freq_inds()]) c = posteriors * self.em_params['scales'][:, np.newaxis] / \ self.sd_bg_ims[:, np.newaxis, np.newaxis, np.newaxis] c = np.sum(c) c_avg = c_avg/c return c_avg def calc_A_shift(self, shift_x, shift_y): psis = self.converter.get_prolates_as_images() n_psis = len(psis) if shift_x == 0 and shift_y == 0: return np.eye(n_psis) A_shift = np.zeros((n_psis, n_psis)).astype('complex') non_neg_freqs = self.converter.get_non_neg_freq_inds() psis_non_neg_shifted = np.roll(np.roll(psis[non_neg_freqs], shift_y, axis=1), shift_x, axis=2) # mask the shifted psis psis_non_neg_shifted = self.converter.mask_points_inside_the_circle(psis_non_neg_shifted) # we need the conjugation by design A_shift[:, non_neg_freqs] = np.tensordot(np.conj(psis), psis_non_neg_shifted, axes=([1, 2], [1, 2])) zero_freq_inds = self.converter.get_zero_freq_inds() pos_freq_inds = self.converter.get_pos_freq_inds() neg_freq_inds = self.converter.get_neg_freq_inds() A_shift[zero_freq_inds, neg_freq_inds] = np.conj(A_shift[zero_freq_inds, pos_freq_inds]) A_shift[pos_freq_inds, neg_freq_inds] = np.conj(A_shift[neg_freq_inds, pos_freq_inds]) A_shift[neg_freq_inds, neg_freq_inds] = np.conj(A_shift[pos_freq_inds, pos_freq_inds]) return A_shift def pre_compute_const_terms(self): const_terms = dict() im_size = self.im_size # we need the all-ones-image in order for the additive term due to normalization const_terms['c_all_ones_im'] = self.converter.direct_forward(np.ones((im_size, im_size))) const_terms['anni'] = np.linalg.norm(self.c_ims, axis=1)**2 const_terms['cnn'] = (self.mean_bg_ims / self.sd_bg_ims * np.linalg.norm(const_terms['c_all_ones_im']))**2 const_terms['c_additive_term'] = np.outer(self.mean_bg_ims / self.sd_bg_ims, const_terms['c_all_ones_im']) return const_terms def compute_opt_latent_vals(self, posteriors): n_images = len(posteriors) n_shifts_1d = len(self.em_params['shifts']) opt_latent = dict() opt_latent['rots'] = np.zeros(n_images) opt_latent['shifts_x'] = np.zeros(n_images) opt_latent['shifts_y'] = np.zeros(n_images) opt_latent['scales'] = np.zeros(n_images) for i in np.arange(n_images): om_i = posteriors[i] opt_scale_ind = np.argmax(np.sum(np.sum(om_i, axis=2), axis=1)) opt_rot_ind = np.argmax(np.sum(np.sum(om_i, axis=2), axis=0)) opt_shift_ind = np.argmax(np.sum(np.sum(om_i, axis=1), axis=0)) opt_latent['scales'][i] = self.em_params['scales'][opt_scale_ind] opt_latent['rots'][i] = self.em_params['thetas'][opt_rot_ind] yy, xx = np.unravel_index(opt_shift_ind, (n_shifts_1d, n_shifts_1d)) opt_latent['shifts_x'][i] = self.em_params['shifts'][xx] opt_latent['shifts_y'][i] = self.em_params['shifts'][yy] return opt_latent @staticmethod def est_snr(images): snr = data_utils.estimate_snr(images)[0] if snr <= 0: snr = 10 ** -4 return snr @staticmethod def plot_images(init_avg_image, im_avg_est_prev, im_avg_est): # plt.figure(1) plt.subplot(131) plt.imshow(init_avg_image, cmap='gray') plt.subplot(132) plt.imshow(np.real(im_avg_est_prev), cmap='gray') plt.subplot(133) plt.imshow(np.real(im_avg_est), cmap='gray') plt.show() def main(): linalg.init() # TODO: where to init this? images = data_utils.mat_to_npy('images') images = np.transpose(images, axes=(2, 0, 1)) # move to python convention is_use_matlab_params = True if is_use_matlab_params: trunc_param = data_utils.mat_to_npy_vec('T')[0] beta = data_utils.mat_to_npy_vec('beta')[0] ang_jump = data_utils.mat_to_npy_vec('ang_jump')[0] max_shift = data_utils.mat_to_npy_vec('max_shift')[0] # max_shift shift_jump = data_utils.mat_to_npy_vec('shift_jump')[0] # shift_jump n_scales = data_utils.mat_to_npy_vec('n_scales')[0] is_remove_outliers = data_utils.mat_to_npy_vec('is_remove_outliers')[0] outliers_precent_removal = data_utils.mat_to_npy_vec('outliers_precent_removal')[0] em = EM(images, trunc_param, beta, ang_jump, max_shift, shift_jump, n_scales, is_remove_outliers, outliers_precent_removal) else: em = EM(images,max_shift=0) init_avg_image = data_utils.mat_to_npy('init_avg_image') init_avg_image = data_utils.mask_decorator(init_avg_image, is_stack=True) c_avg = em.converter.direct_forward(init_avg_image) n_iters = 3 # data_utils.mat_to_npy_vec('nIters')[0] print("#images=%d\t#iterations=%d\tangualr-jump=%d,\tmax shift=%d,\tshift-jump=%d,\t#scales=%d" % (len(images), n_iters, em.ang_jump, em.em_params['max_shift'],em.em_params['shift_jump'], em.em_params['n_scales'])) im_avg_est_prev = init_avg_image log_lik = dict() for round in range(2): round_str = str(round) log_lik[round_str] =
np.zeros((n_iters, em.n_images))
numpy.zeros
import numpy as np import os class Perceptron(object): """docstring for Perceptron. Creates a single perceptron with multiple inputs and a bias. Attributes: inputs: The number of inputs given to the perceptron. Does not include the bias. bias: The bias for each perceptron. Defaults to 1.0. """ def __init__(self, inputs, bias=1.0): """Create a perceptron with a given number of inputs and a bias.""" self.weights = (np.random.rand(inputs + 1) * 2) - 1 self.bias = bias # Are we really adding a bias to the weights? def activate(self, x): """Take the inputs and bias to produce the output of the Perceptron.""" sum = np.dot(np.append(x,self.bias),self.weights) return self.sigmoid(sum) def create_weights(self, init_weights): """"Use this function to assign known weights to the perceptron.""" self.weights = np.array(init_weights) def sigmoid(self, x): """Evaluate the perceptron function for an input, x.""" return 1 / (1 + np.exp(-x)) class Multilayer_Perceptron(object): """docstring for Multilayer_Perceptron. Creates a single perceptron with multiple inputs and a bias. Attributes: layers: A python list detailing the number of elements in each layer. bias: The bias term. The same bias used for all eta: The learning rate of the system. """ def __init__(self, layers, bias=1.0, eta=0.5): self.layers = np.array(layers, dtype=object) # Length is the number of layers, number is the perceptrons per layer self.bias = bias self.eta = eta self.network = [] # The list of neurons self.values = [] # The list of outputs self.d = [] # The list of the error terms (lowercase delta) for i in range(len(self.layers)): self.values.append([]) # Add a blank location for each layer self.d.append([]) # Add a blank location for each layer self.network.append([]) # Add a blank location for each layer self.values[i] = [0.0 for j in range(self.layers[i])] # Create 0 values for each perceptron self.d[i] = [0.0 for j in range(self.layers[i])] # Create 0 values for each perceptron if i > 0: # the first layer is the input layer so it does not have any for j in range(self.layers[i]): # Create an object of the perceptron class for every position in the network self.network[i].append(Perceptron(inputs = self.layers[i-1], bias = self.bias)) # Make an array of the data. self.network = np.array([np.array(x) for x in self.network], dtype=object) self.values = np.array([np.array(x) for x in self.values], dtype=object) self.d = np.array([np.array(x) for x in self.d], dtype=object) def setWeights(self, init_weights): """Set the weights of all perceptrons. init_weights is a list of lists that holds the weights of all but the input layer.""" for i in range(len(init_weights)): for j in range(len(init_weights[i])): # The i+1 is used to not affect the initial input layer. self.network[i+1][j].create_weights(init_weights[i][j]) def printWeights(self): """Print the weights given to each perceptron.""" print() for i in range(1,len(self.network)): for j in range(self.layers[i]): # Print out the weights of each perceptron print("Layer: %d Neuron: %d - " % (i+1, j), self.network[i][j].weights) print() def saveWeights(self, file): with open(file, 'w') as save_weight_file: for i in range(1,len(self.network)): for j in range(self.layers[i]): for k in self.network[i][j].weights: save_weight_file.writelines('%s\n' % k) # save_weight_file.write('\n') def readWeights(self, file): weights_array = [] done = 0 if os.stat(file).st_size == 0: raise ValueError("No Weights Detected") with open(file, 'r') as read_weight_file: data = read_weight_file.readlines() for i in range(1,len(self.network)): # 1 to 2 weights_array.append([]) # Creates an array for each for j in range(self.layers[i]): # 1 to 10 weights_array[i-1].append([]) k = data[:self.layers[i-1]+1] for line in k: weights_array[i-1][j].append(float(line[:-2])) data = data[len(k):] return weights_array def run(self, x): """Feed a sample x into the MultiLayer Perceptron. x is a list of the inputs to the network.""" # Make an array of the data x = np.array(x, dtype=object) # Set the first layer of values to be the inputs, x. self.values[0] = x for i in range(1, len(self.network)): for j in range(self.layers[i]): # Assign the value to be equal to the output of the perceptron activation function self.values[i][j] = self.network[i][j].activate(self.values[i-1]) # Return the output values of the network return self.values[-1] def backpropagation(self, x, y): """Run an (x, y) pair through the backpropagation algorithm""" x =
np.array(x, dtype=object)
numpy.array
import os from functools import partial from typing import Callable, Dict, List, Optional, Tuple, Union import attr import numpy as np import pandas as pd import tabmat as tm from dask_ml.preprocessing import DummyEncoder from git_root import git_root from joblib import Memory from scipy.sparse import csc_matrix from .data import ( generate_housing_dataset, generate_intermediate_insurance_dataset, generate_narrow_insurance_dataset, generate_real_insurance_dataset, generate_wide_insurance_dataset, ) from .util import cache_location, exposure_and_offset_to_weights, get_tweedie_p joblib_memory = Memory(cache_location, verbose=0) @attr.s class Problem: """Store metadata about which problem we should run.""" data_loader = attr.ib(type=Callable) distribution = attr.ib(type=str) regularization_strength = attr.ib(type=float) l1_ratio = attr.ib(type=float) @joblib_memory.cache def load_data( loader_func: Callable[ [Optional[int], Optional[float], Optional[str]], Tuple[pd.DataFrame, np.ndarray, np.ndarray], ], num_rows: int = None, storage: str = "dense", single_precision: bool = False, noise: float = None, distribution: str = "poisson", data_setup: str = "weights", ) -> Dict[str, np.ndarray]: """ Load the data. A note about weights and exposures: Due to the way we have set up this problem, by rescaling the target variable, it is appropriate to pass what is modeled as an 'exposure' as a weight. Everywhere else, exposures will be referred to as weights. """ # TODO: add a weights_and_offset option # Step 1) Load the data. if data_setup not in ["weights", "offset", "no-weights"]: raise NotImplementedError X_in, y, exposure = loader_func(num_rows, noise, distribution) # Step 2) Convert to needed precision level. if single_precision: X_in = X_in.astype(np.float32) y = y.astype(np.float32) if exposure is not None: exposure = exposure.astype(np.float32) # Step 3) One hot encode columns if we are not using CategoricalMatrix def transform_col(i: int, dtype) -> Union[pd.DataFrame, tm.CategoricalMatrix]: if dtype.name == "category": if storage == "cat": return tm.CategoricalMatrix(X_in.iloc[:, i]) return DummyEncoder().fit_transform(X_in.iloc[:, [i]]) return X_in.iloc[:, [i]] mat_parts = [transform_col(i, dtype) for i, dtype in enumerate(X_in.dtypes)] # TODO: add a threshold for the number of categories needed to make a categorical # matrix # Step 4) Convert the matrix to the appopriate storage type. if storage == "auto": dtype = np.float32 if single_precision else np.float64 X = tm.from_pandas(X_in, dtype, sparse_threshold=0.1, cat_threshold=3) elif storage == "cat": cat_indices_in_expanded_arr: List[np.ndarray] = [] dense_indices_in_expanded_arr: List[int] = [] i = 0 for elt in mat_parts: assert elt.ndim == 2 if isinstance(elt, tm.CategoricalMatrix): ncol = elt.shape[1] cat_indices_in_expanded_arr.append(
np.arange(i, i + ncol)
numpy.arange
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for KroneckerFactoredLattice Layer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import tempfile from absl import logging from absl.testing import parameterized import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow_lattice.python import kronecker_factored_lattice_layer as kfll from tensorflow_lattice.python import test_utils class KroneckerFactoredLatticeTest(parameterized.TestCase, tf.test.TestCase): def setUp(self): super(KroneckerFactoredLatticeTest, self).setUp() self.disable_all = False self.disable_ensembles = False self.loss_eps = 0.0001 self.small_eps = 1e-6 self.seed = 42 def _ResetAllBackends(self): keras.backend.clear_session() tf.compat.v1.reset_default_graph() def _ScatterXUniformly(self, num_points, lattice_sizes, input_dims): """Deterministically generates num_point random points within lattice.""" np.random.seed(41) x = [] for _ in range(num_points): point = [ np.random.random() * (lattice_sizes - 1.0) for _ in range(input_dims) ] x.append(np.asarray(point)) if input_dims == 1: x.sort() return x def _ScatterXUniformlyExtendedRange(self, num_points, lattice_sizes, input_dims): """Extends every dimension by 1.0 on both sides and generates points."""
np.random.seed(41)
numpy.random.seed
#!/usr/bin/env python3 import argparse import sys import matplotlib.pyplot as plt import numpy as np from scipy.special import softmax import sklearn.datasets import sklearn.metrics import sklearn.model_selection from sklearn.metrics import log_loss if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--batch_size", default=10, type=int, help="Batch size") parser.add_argument( "--classes", default=10, type=int, help="Number of classes to use" ) parser.add_argument( "--hidden_layer", default=20, type=int, help="Hidden layer size" ) parser.add_argument( "--iterations", default=50, type=int, help="Number of iterations over the data" ) parser.add_argument( "--learning_rate", default=0.01, type=float, help="Learning rate" ) parser.add_argument("--seed", default=42, type=int, help="Random seed") parser.add_argument("--test_size", default=797, type=int, help="Test set size") args = parser.parse_args() # Set random seed np.random.seed(args.seed) # Use the digits dataset data, target = sklearn.datasets.load_digits(n_class=args.classes, return_X_y=True) # Append a constant feature with value 1 to the end of every input data data = np.pad(data, ((0, 0), (0, 1)), constant_values=1) # Split the data randomly to train and test using `sklearn.model_selection.train_test_split`, # with `test_size=args.test_size` and `random_state=args.seed`. train_data, test_data, train_target, test_target = sklearn.model_selection.train_test_split( data, target, stratify=target, test_size=args.test_size, random_state=args.seed ) # Generate initial model weights weights = [ np.random.uniform( size=[train_data.shape[1], args.hidden_layer], low=-0.1, high=0.1 ), np.random.uniform(size=[args.hidden_layer, args.classes], low=-0.1, high=0.1), ] relu = lambda x:
np.maximum(x, 0)
numpy.maximum
# standard libraries from datetime import datetime import threading, collections, queue, os, os.path, json import time, logging # third-party libraries import editdistance as ed import matplotlib.pyplot as plt import numpy as np import pyaudio from scipy import signal import torch import wave # project libraries import speech from speech.loader import log_spectrogram_from_data, log_spectrogram_from_file from speech.models.ctc_decoder import decode as ctc_decode from speech.models.ctc_model import CTC from speech.utils.compat import normalize from speech.utils.convert import to_numpy from speech.utils.io import get_names, load_config, load_state_dict, read_pickle from speech.utils.stream_utils import make_full_window from speech.utils.wave import wav_duration, array_from_wave set_linewidth=160 np.set_printoptions(linewidth=set_linewidth) torch.set_printoptions(linewidth=set_linewidth) log_filename = "logs_probs-hiddencell_2020-05-20.log" # log levels: CRITICAL, ERROR, WARNING, INFO, DEBUG, NOTSET log_level = "WARNING" logging.basicConfig(filename=None, filemode='w', level=log_level) log_sample_len = 50 # number of data samples outputed to the log def main(ARGS): print('Initializing model...') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_path, preproc_path, config_path = get_names(ARGS.model_dir, tag=ARGS.tag, get_config=True, model_name=ARGS.model_name) print("model_path: ", model_path) print("preproc_path: ", preproc_path) print("config_path: ", config_path) # load and update preproc preproc = read_pickle(preproc_path) preproc.update() # if feature_norm is True, the streaming vs list_chunk and full_audio won't agree # you can manually turn it off to make them agree, but then the predictions aren't very good. # preproc.use_feature_normalize = False # load and assign config config = load_config(config_path) model_cfg = config['model'] # create model model = CTC(preproc.input_dim, preproc.vocab_size, model_cfg) # load the state-dict state_dict = load_state_dict(model_path, device=device) model.load_state_dict(state_dict) # setting model to eval model model.eval() #initial states for LSTM layers hidden_size = model_cfg['encoder']['rnn']['dim'] hidden_in = torch.zeros((5, 1, hidden_size), dtype=torch.float32) cell_in = torch.zeros((5, 1, hidden_size), dtype=torch.float32) lstm_states = (hidden_in, cell_in) PARAMS = { "chunk_size": 46, # number of log_spec timesteps fed into the model "half_context": 15, # half-size of the convolutional layers "feature_window": 512, # number of audio frames into log_spec "feature_step": 256, # number of audio frames in log_spec step "feature_size": 257, # frequency dimension of log_spec "initial_padding": 15, # padding of feature_buffer "final_padding": 13, # final padding of feature_buffer 'fill_chunk_padding': 1, #TODO hard-coded value that is calculated as fill_chunk_padding "blank_idx": model.blank } # stride of chunks across the log_spec output/ model input PARAMS['stride'] = PARAMS['chunk_size'] - 2 * PARAMS['half_context'] logging.warning(f"PARAMS dict: {PARAMS}") stream_probs, stream_preds, st_model_inputs = stream_infer(model, preproc, lstm_states, PARAMS, ARGS) lc_probs, lc_preds, lc_model_inputs = list_chunk_infer_full_chunks(model, preproc, lstm_states, PARAMS, ARGS) fa_probs, fa_preds, fa_model_inputs = full_audio_infer(model, preproc, lstm_states, PARAMS, ARGS) print(f"Stream MODEL INPUTS shape: {st_model_inputs.shape}") print(f"List chunk MODEL INPUTS shape: {lc_model_inputs.shape}") print(f"Full audio MODEL INPUTS shape: {fa_model_inputs.shape}") # saving the inputs to debugging in ipython #np.save("./test_data/lc_input_2020-09-29_test.npy", lc_model_inputs) #np.save("./test_data/st_input_2020-09-29_test.npy", st_model_inputs) logging.warning(f"stream probs shape: {stream_probs.shape}") logging.warning(f"list chunk probs shape: {lc_probs.shape}") logging.warning(f"full audio probs shape: {fa_probs.shape}") # checks to see that the inputs to each implementation are the same. np.testing.assert_allclose(fa_model_inputs, lc_model_inputs, rtol=1e-03, atol=1e-05) np.testing.assert_allclose(st_model_inputs, lc_model_inputs, rtol=1e-03, atol=1e-05) np.testing.assert_allclose(st_model_inputs, fa_model_inputs, rtol=1e-03, atol=1e-05) np.testing.assert_allclose(stream_probs, lc_probs, rtol=1e-03, atol=1e-05) np.testing.assert_allclose(stream_probs, fa_probs, rtol=1e-03, atol=1e-05) np.testing.assert_allclose(lc_probs, fa_probs, rtol=1e-03, atol=1e-05) assert ed.eval(stream_preds, lc_preds)==0, "stream and list-chunk predictions are not the same" assert ed.eval(stream_preds, fa_preds)==0, "stream and full-audio predictions are not the same" assert ed.eval(lc_preds, fa_preds)==0, "list-chunk and full-audio predictions are not the same" logging.warning(f"all probabilities and predictions are the same") def stream_infer(model, preproc, lstm_states, PARAMS:dict, ARGS)->tuple: """ Performs streaming inference of an input wav file (if provided in ARGS) or from the micropohone. Inference is performed by the model and the preproc preprocessing object performs normalization. """ begin_time = time.time() # Start audio with VAD audio = Audio(device=ARGS.device, input_rate=ARGS.rate, file=ARGS.file) frames = audio.frame_generator() print("Listening (ctrl-C to exit)...") logging.warning(f"--- starting stream_infer ---") hidden_in, cell_in = lstm_states wav_data = bytearray() stride_counter = 0 # used to stride the feature_buffer # audio buffer contains audio signal that is few into the log_spec audio_buffer_size = 2 # two 16 ms steps in the features window audio_ring_buffer = collections.deque(maxlen=audio_buffer_size) # feature buffer contains log_spec output and is fed into the model features_buffer_size = PARAMS['chunk_size'] features_ring_buffer = collections.deque(maxlen=features_buffer_size) #saved_model_input = np.empty((1, PARAMS['chunk_size'], PARAMS['feature_size'])) # add `half_context` zero frames as padding to the feature buffer ## zero_frame is a single feature timestep with dims (1, feature_size) zero_frame = np.zeros((1, PARAMS['feature_size']), dtype=np.float32) for _ in range(PARAMS['half_context']): features_ring_buffer.append(zero_frame) predictions = list() probs_list = list() # TODO(dustin) why is the "* 2" at the end of frames_per_block? frames_per_block = round( audio.RATE_PROCESS/ audio.BLOCKS_PER_SECOND * 2) time_attributes = [ "audio_buffer", "numpy_buffer", "features", "normalize", "features_buffer", "numpy_conversion", "model_infer", "output_assign", "decoder_time", "total_time" ] # -------time evaluation variables----------- audio_buffer_time, audio_buffer_count = 0.0, 0 numpy_buffer_time, numpy_buffer_count = 0.0, 0 features_time, features_count = 0.0, 0 normalize_time, normalize_count = 0.0, 0 features_buffer_time, features_buffer_count = 0.0, 0 numpy_conv_time, numpy_conv_count = 0.0, 0 model_infer_time, model_infer_count = 0.0, 0 output_assign_time, output_assign_count = 0.0, 0 decoder_time, decoder_count = 0.0, 0 total_time, total_count = 0.0, 0 # ------------------------------------------- # ------------ logging ---------------------- logging.warning(ARGS) logging.warning(model) logging.warning(preproc) logging.warning(f"audio_ring_buffer size: {audio_buffer_size}") logging.warning(f"feature_ring_buffer size: {features_buffer_size}") # ------------------------------------------- try: total_time_start = time.time() for count, frame in enumerate(frames): logging.debug(f"----------iteration {count}------------") # exit the loop if there are no more full input frames if len(frame) < frames_per_block: logging.warning(f"final sample length {len(frame)}") final_sample = frame break # ------------ logging --------------- logging.info(f"sample length: {len(frame)}") logging.info(f"audio_buffer length: {len(audio_ring_buffer)}") #logging.debug(f"iter {count}: first {log_sample_len} raw audio buffer values added to audio_ring_buffer: {frame[:log_sample_len]}") # ------------ logging --------------- # fill up the audio_ring_buffer and then feed into the model if len(audio_ring_buffer) < audio_buffer_size-1: # note: appending new frame to right of the buffer audio_buffer_time_start = time.time() audio_ring_buffer.append(frame) audio_buffer_time += time.time() - audio_buffer_time_start audio_buffer_count += 1 else: #audio_buffer_time_start = time.time() audio_ring_buffer.append(frame) #numpy_buffer_time_start = time.time() #buffer_list = list(audio_ring_buffer) # convert the audio buffer to numpy array # a single audio frame has dims: (512,) which is reduced to (256,) in the numpy buffer # The dimension of numpy buffer is reduced by half because integers in the audio_ring_buffer # are encoded as two hexidecimal entries, which are reduced to a single integer in the numpy buffer # two numpy buffers are then concatenated making the final `numpy_buffer` have dims: (512,) numpy_buffer = np.concatenate( (np.frombuffer(audio_ring_buffer[0], np.int16), np.frombuffer(audio_ring_buffer[1], np.int16) ) ) #features_time_start = time.time() # calculate the features with dim: (1, 257) features_step = log_spectrogram_from_data(numpy_buffer, samp_rate=16000) # normalize_time_start = time.time() # normalize the features norm_features = normalize(preproc, features_step) # ------------ logging --------------- logging.info(f"audio integers shape: {numpy_buffer.shape}") #logging.debug(f"iter {count}: first {log_sample_len} input audio samples {numpy_buffer.shape}: \n {numpy_buffer[:log_sample_len]}") logging.info(f"features_step shape: {features_step.shape}") #logging.debug(f"iter {count}: log_spec frame (all 257 values) {features_step.shape}:\n {features_step}") logging.info(f"features_buffer length: {len(features_ring_buffer)}") #logging.debug(f"iter {count}: normalized log_spec (all 257 values) {norm_features.shape}:\n {norm_features[0,:log_sample_len]}") logging.info(f"stride modulus: {stride_counter % PARAMS['stride']}") # ------------ logging --------------- # fill up the feature_buffer and then feed into the model if len(features_ring_buffer) < features_buffer_size-1: #features_buffer_time_start = time.time() features_ring_buffer.append(norm_features) else: # if stride_counter is an even multiple of the stride value run inference # on the buffer. Otherwise, append values to the buffer. if stride_counter % PARAMS['stride'] != 0: features_ring_buffer.append(norm_features) stride_counter += 1 # run inference on the full feature_buffer else: stride_counter += 1 #features_buffer_time_start = time.time() features_ring_buffer.append(norm_features) #numpy_conv_time_start = time.time() # conv_context dim: (31, 257) conv_context = np.concatenate(list(features_ring_buffer), axis=0) # addding batch dimension: (1, 31, 257) conv_context = np.expand_dims(conv_context, axis=0) # saved_model_input saves the inputs to the model if stride_counter == 1: print(f"~~~~~~~ stride counter: {stride_counter} ~~~~~~~~~") saved_model_input = conv_context else: saved_model_input = np.concatenate((saved_model_input, conv_context), axis=0) #model_infer_time_start = time.time() if stride_counter == 1: logging.debug(f"iter {count}: first {log_sample_len} of input: {conv_context.shape}\n {conv_context[0, 0, :log_sample_len]}") logging.debug(f"iter {count}: first {log_sample_len} of hidden_in first layer: {hidden_in.shape}\n {hidden_in[0, :, :log_sample_len]}") logging.debug(f"iter {count}: first {log_sample_len} of cell_in first layer: {cell_in.shape}\n {cell_in[0, :, :log_sample_len]}") model_out = model(torch.from_numpy(conv_context), (hidden_in, cell_in)) #output_assign_time_start = time.time() probs, (hidden_out, cell_out) = model_out if stride_counter == 1: logging.debug(f"iter {count}: first {log_sample_len} of prob output {probs.shape}:\n {probs[0, 0, :log_sample_len]}") logging.debug(f"iter {count}: first {log_sample_len} of hidden_out first layer {hidden_out.shape}:\n {hidden_out[0, :, :log_sample_len]}") logging.debug(f"iter {count}: first {log_sample_len} of cell_out first layer {cell_out.shape}:\n {cell_out[0, :, :log_sample_len]}") # probs dim: (1, 1, 40) probs = to_numpy(probs) probs_list.append(probs) hidden_in, cell_in = hidden_out, cell_out # ------------ logging --------------- logging.info(f"conv_context shape: {conv_context.shape}") logging.info(f"probs shape: {probs.shape}") logging.info(f"probs_list len: {len(probs_list)}") #logging.info(f"probs value: {probs}") # ------------ logging --------------- # decoding every 20 time-steps #if count%20 ==0 and count!=0: #decoder_time_start = time.time() # probs_steps = np.concatenate(probs_list, axis=1)[0] tokenized_labels = max_decode(probs_steps, blank=PARAMS['blank_idx']) # int_labels, likelihood = ctc_decode(probs[0], beam_size=50, blank=PARAMS['blank_idx']) predictions = preproc.decode(tokenized_labels) # ------------ logging --------------- logging.warning(f"predictions: {predictions}") # ------------ logging --------------- total_count += 1 if ARGS.savewav: wav_data.extend(frame) except KeyboardInterrupt: pass finally: # IN THE FINALLY BLOCK # if frames is empty if not next(frames): logging.info(f"---------- processing final sample in audio buffer ------------") zero_byte = b'\x00' num_missing_bytes = PARAMS['feature_step']*2 - len(final_sample) final_sample += zero_byte * num_missing_bytes audio_ring_buffer.append(final_sample) buffer_list = list(audio_ring_buffer) numpy_buffer = np.concatenate( (np.frombuffer(buffer_list[0], np.int16), np.frombuffer(buffer_list[1], np.int16))) features_step = log_spectrogram_from_data(numpy_buffer, samp_rate=16000) norm_features = normalize(preproc, features_step) # --------logging ------------ # logging.warning(f"final sample length 2: {len(final_sample)}") logging.warning(f"numpy_buffer shape: {len(numpy_buffer)}") # logging.warning(f"audio_buffer 1 length: {len(buffer_list[0])}") # logging.warning(f"audio_buffer 2 length: {len(buffer_list[1])}") #logging.debug(f"iter {count}: first {log_sample_len} input audio samples {numpy_buffer.shape}: \n {numpy_buffer[:log_sample_len]}") logging.warning(f"features_step shape: {features_step.shape}") #logging.debug(f"iter {count}: log_spec frame (all 257 values) {features_step.shape}:\n {features_step}") #logging.debug(f"iter {count}: normalized log_spec (all 257 values) {norm_features.shape}:\n {norm_features[0,:log_sample_len]}") logging.warning(f"features_buffer length: {len(features_ring_buffer)}") logging.warning(f"stride modulus: {stride_counter % PARAMS['stride']}") # --------logging ------------ if stride_counter % PARAMS['stride'] !=0: features_ring_buffer.append(norm_features) stride_counter += 1 else: features_ring_buffer.append(norm_features) stride_counter += 1 conv_context = np.concatenate(list(features_ring_buffer), axis=0) # addding batch dimension: (1, 31, 257) conv_context = np.expand_dims(conv_context, axis=0) # saved_model_input saves the inputs to the model for comparison with list_chunk and full_audio inputs saved_model_input = np.concatenate((saved_model_input, conv_context), axis=0) model_out = model(torch.from_numpy(conv_context), (hidden_in, cell_in)) probs, (hidden_out, cell_out) = model_out logging.debug(f"iter {count}: first {log_sample_len} of prob output {probs.shape}:\n {probs[0, 0, :log_sample_len]}") logging.debug(f"iter {count}: first {log_sample_len} of hidden_out first layer {hidden_out.shape}:\n {hidden_out[0, :, :log_sample_len]}") logging.debug(f"iter {count}: first {log_sample_len} of cell_out first layer {cell_out.shape}:\n {cell_out[0, :, :log_sample_len]}") probs = to_numpy(probs) probs_list.append(probs) padding_iterations = PARAMS["final_padding"] + PARAMS['fill_chunk_padding'] + PARAMS['stride'] for count, frame in enumerate(range(padding_iterations)): logging.debug(f"---------- adding zeros at the end of audio sample ------------") # -------------logging ---------------- logging.info(f"stride modulus: {stride_counter % PARAMS['stride']}") # -------------logging ---------------- if stride_counter % PARAMS['stride'] !=0: # zero_frame is (1, 257) numpy array of zeros features_ring_buffer.append(zero_frame) stride_counter += 1 else: stride_counter += 1 features_buffer_time_start = time.time() features_ring_buffer.append(zero_frame) features_buffer_time += time.time() - features_buffer_time_start features_buffer_count += 1 numpy_conv_time_start = time.time() # conv_context dim: (31, 257) conv_context = np.concatenate(list(features_ring_buffer), axis=0) # addding batch dimension: (1, 31, 257) conv_context = np.expand_dims(conv_context, axis=0) numpy_conv_time += time.time() - numpy_conv_time_start numpy_conv_count += 1 # saved_model_input saves the inputs to the model for comparison with list_chunk and full_audio inputs saved_model_input = np.concatenate((saved_model_input, conv_context), axis=0) model_infer_time_start = time.time() model_out = model(torch.from_numpy(conv_context), (hidden_in, cell_in)) model_infer_time += time.time() - model_infer_time_start model_infer_count += 1 output_assign_time_start = time.time() probs, (hidden_out, cell_out) = model_out # probs dim: (1, 1, 40) probs = to_numpy(probs) probs_list.append(probs) hidden_in, cell_in = hidden_out, cell_out output_assign_time += time.time() - output_assign_time_start output_assign_count += 1 # ------------ logging --------------- logging.info(f"conv_context shape: {conv_context.shape}") logging.info(f"probs shape: {probs.shape}") logging.info(f"probs_list len: {len(probs_list)}") #logging.info(f"probs value: {probs}") # ------------ logging --------------- # decoding every 20 time-steps if count%20 ==0: decoder_time_start = time.time() probs_steps = np.concatenate(probs_list, axis=1) int_labels = max_decode(probs_steps[0], blank=PARAMS['blank_idx']) # int_labels, likelihood = ctc_decode(probs[0], beam_size=50, blank=PARAMS['blank_idx']) predictions = preproc.decode(int_labels) decoder_time += time.time() - decoder_time_start decoder_count += 1 # ------------ logging --------------- logging.warning(f"predictions: {predictions}") # ------------ logging --------------- total_count += 1 if ARGS.savewav: wav_data.extend(frame) # process the final frames #logging.warning(f"length of final_frames: {len(final_sample)}") decoder_time_start = time.time() probs_steps = np.concatenate(probs_list, axis=1) int_labels = max_decode(probs_steps[0], blank=PARAMS['blank_idx']) # int_labels, likelihood = ctc_decode(probs[0], beam_size=50, blank=PARAMS['blank_idx']) predictions = preproc.decode(int_labels) decoder_time += time.time() - decoder_time_start decoder_count += 1 logging.warning(f"final predictions: {predictions}") audio.destroy() total_time = time.time() - total_time_start acc = 3 duration = wav_duration(ARGS.file) logging.warning(f"-------------- streaming_infer --------------") logging.warning(f"audio_buffer time (s), count: {round(audio_buffer_time, acc)}, {audio_buffer_count}") logging.warning(f"numpy_buffer time (s), count: {round(numpy_buffer_time, acc)}, {numpy_buffer_count}") logging.warning(f"features_operation time (s), count: {round(features_time, acc)}, {features_count}") logging.warning(f"normalize time (s), count: {round(normalize_time, acc)}, {normalize_count}") logging.warning(f"features_buffer time (s), count: {round(features_buffer_time, acc)}, {features_buffer_count}") logging.warning(f"numpy_conv time (s), count: {round(numpy_conv_time, acc)}, {numpy_conv_count}") logging.warning(f"model_infer time (s), count: {round(model_infer_time, acc)}, {model_infer_count}") logging.warning(f"output_assign time (s), count: {round(output_assign_time, acc)}, {output_assign_count}") logging.warning(f"decoder time (s), count: {round(decoder_time, acc)}, {decoder_count}") logging.warning(f"total time (s), count: {round(total_time, acc)}, {total_count}") logging.warning(f"Multiples faster than realtime : {round(duration/total_time, acc)}x") if ARGS.savewav: audio.write_wav(os.path.join(ARGS.savewav, datetime.now().strftime("savewav_%Y-%m-%d_%H-%M-%S_%f.wav")), wav_data) all_audio = np.frombuffer(wav_data, np.int16) plt.plot(all_audio) plt.show() probs = np.concatenate(probs_list, axis=1) saved_model_input = remove_input_duplicates(saved_model_input, PARAMS['stride']) return probs, predictions, saved_model_input def remove_input_duplicates(model_inputs:np.ndarray, stride:int)->np.ndarray: """this function removes the duplicates from the input. Args: model_inputs (np.ndarray): feature inputs to the model with dims (#_inputs, chunk_size, feature_size) stride (int): number of feature inputs to stride over before feeding to the model """ # iterating over the numpy array will return arrays for size (chunk_size, feature_size) as `inp` for i, inp in enumerate(model_inputs): # take the entirety of the initial input if i == 0: dedup_inputs = inp else: # for all other inputs, only use the last `stride` number of inputs # concatenate this last segment along the `chunk_size` dimension dedup_inputs = np.concatenate((dedup_inputs, inp[-stride:, :]), axis=0) assert dedup_inputs.shape[1] == 257, "second dedup_inputs dimension is not 257" return dedup_inputs def process_pad_audio(audio_file, preproc, PARAMS): """ """ audio_data, samp_rate = array_from_wave(audio_file) # pads the audio data so that the data will be evenly divisble by the feature_step audio_data = make_full_window(audio_data, PARAMS['feature_window'], PARAMS['feature_step']) features_time = time.time() features = log_spectrogram_from_data(audio_data, samp_rate) features_time = time.time() - features_time normalize_time = time.time() norm_features = normalize(preproc, features) normalize_time = time.time() - normalize_time convert_pad_time = time.time() # adds the batch dimension (1, time, 257) norm_features =
np.expand_dims(norm_features, axis=0)
numpy.expand_dims
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Feb 18 13:12:28 2020 @author: henry """ import os import Analysis import numpy as np import PyGnuplot as gp from joblib import Parallel, delayed from scipy.stats import linregress def plotStringSingleFile(size, dat_name, formatting, title): plot_string = 'plot' for i in range(size): plot_string = plot_string\ + ' "%s" u 1:%d %s %s,' % (dat_name, i+2, formatting, title[i]) return plot_string def plotStringMultiFile(size, dat_name, formatting, title): plot_string = 'plot' for i in range(size): plot_string = plot_string\ + ' "%s" %s %s,' % (dat_name[i], formatting, title[i]) return plot_string def plotStringMultiFileWithFit(size, dat_name, formatting, title, grad, grad_title): plot_string = 'plot' for i in range(size): plot_string = plot_string\ + ' "%s" %s lc %d %s,' % (dat_name[i], formatting, i, title[i]) plot_string = plot_string\ + ' %e*x lc %d title "%s",' % (grad[i], i, grad_title[i]) return plot_string # %% class Graphing: def __init__(self, bacteria, graph_dir, plot_dir, threads): self.bacteria = bacteria self.graph_dir = graph_dir self.plot_dir = plot_dir self.threads = threads for entry in os.scandir(plot_dir): os.remove(entry.path) def BacteriaPaths(self): gp.c("reset") gp.c("set ticslevel 0") gp.c("set view equal xyz") gp.c("set terminal pngcairo enhanced size 1600,1200 font 'ariel, 14'") for key in self.bacteria.bacterium.keys(): output = os.path.join(self.graph_dir, key+'_path.png') gp.c('set output "'+output+'"') plot_string = 'splot' for bact in self.bacteria.bacterium[key].keys(): temp_out = self.bacteria.bacterium[ key][bact].total_displacement graph_out = np.swapaxes(temp_out, 0, 1) dat_name = os.path.join(self.plot_dir, str(key)+str(bact)+'path.dat') gp.s(graph_out, dat_name) plot_string = plot_string + ' "' + dat_name\ + '" u 1:2:3 with lines,' gp.c(plot_string) def BacteriaHeading(self): gp.c("reset") gp.c("set ticslevel 0") gp.c("set view equal xyz") gp.c("set terminal pngcairo enhanced size 1600,1200 font 'ariel, 14'") for key in self.bacteria.bacterium.keys(): output = os.path.join(self.graph_dir, key+'_heading.png') gp.c('set output "'+output+'"') plot_string = 'splot' for bact in self.bacteria.bacterium[key].keys(): temp_out = self.bacteria.bacterium[key][bact].vectors_cartesian graph_out = np.swapaxes(temp_out, 0, 1) dat_name = os.path.join(self.plot_dir, str(key)+str(bact)+'heading.dat') gp.s(graph_out, dat_name) plot_string = plot_string + ' "' + dat_name\ + '" u 1:2:3 with lines,' gp.c(plot_string) def DiffusionConstants(self): with Parallel(n_jobs=self.threads) as parallel: self.LDValues = {} for key in self.bacteria.bacterium.keys(): self.LDValues[key] = Analysis.LDValues(self.bacteria.config[key]) # %% Linear - LogLog fullscale gp.c('reset') gp.c('set logscale xy 10') gp.c('set xlabel "{/Symbol t} (s)"') gp.c('set ylabel "MSD (m^2)"') gp.c('set key top left') gp.c("set terminal pngcairo enhanced" + " size 1600,1200 font 'ariel, 14'") amalg_dat_name = [] amalg_titles = [] for key in self.bacteria.bacterium.keys(): key_title = self.bacteria.config[key].name print('Started: %s \t Linear Analysis' % (key_title)) output = os.path.join(self.graph_dir, '%s_linear.png' % (key)) gp.c('set output "%s"' % (output)) g_title = 'Analysis of Linear Mean Squared Displacement - %s'\ % (key_title) gp.c('set title "%s"' % (g_title)) tau = Analysis.TauCalc(self.bacteria.config[key]) gp.c('set xrange [%f:%f]' % (tau.min()*0.75, tau.max()*1.25)) results_array = parallel(delayed( Analysis.Linear)(self.bacteria.bacterium[key][bact], self.bacteria.config[key]) for bact in self.bacteria.bacterium[key].keys()) size = len(results_array) dat_name = os.path.join(self.plot_dir, '%s_msd_lin.dat' % (key)) graph_out = np.vstack((tau, results_array)) gp.s(graph_out, dat_name) title = ['notitle' for i in range(size)] plot_string = plotStringSingleFile(size, dat_name, 'with points', title) gp.c(plot_string) output = os.path.join(self.graph_dir, '%s_linear_mean.png' % (key)) gp.c('set output "%s"' % (output)) mean_results = np.mean(results_array, axis=0) std_dev = np.std(results_array, axis=0) std_error = std_dev/np.sqrt(size) current_results = np.vstack( (tau, mean_results, std_error)) dat_name = os.path.join(self.plot_dir, '%s_msd_lin_mean.dat' % (key)) gp.s(current_results, dat_name) plot_string = 'plot "%s" u 1:2:3 with yerrorbars' % (dat_name) plot_string = plot_string + ' title "Mean Linear MSD"' gp.c(plot_string) amalg_dat_name.append(dat_name) amalg_titles.append('title "%s"' % (key_title)) print('Completed %s \t Linear Analysis' % (key)) amalg_formatting = 'u 1:2:3 with yerrorlines' amalg_plot_string = plotStringMultiFile(len(amalg_dat_name), amalg_dat_name, amalg_formatting, amalg_titles) output = os.path.join(self.graph_dir, 'linear_mean_amalg.png') gp.c('set output "%s"' % (output)) g_title = 'Analysis of Linear Mean Squared Displacement' gp.c('set title "%s"' % (g_title)) gp.c('set xrange [*:*]') gp.c(amalg_plot_string) # %% Linear - High Range (>1 sec) gp.c('reset') gp.c('set xlabel "{/Symbol t} (s)"') gp.c('set ylabel "MSD (m^2)"') gp.c('set key top left') gp.c("set terminal pngcairo enhanced" + " size 1600,1200 font 'ariel, 14'") amalg_dat_name = [] amalg_titles = [] amalg_grad = [] amalg_grad_titles = [] for key in self.bacteria.bacterium.keys(): line_colour = 1 key_title = self.bacteria.config[key].name print('Started: %s \t Linear Analysis High Range' % (key_title)) output = os.path.join(self.graph_dir, '%s_linear_hr.png' % (key)) gp.c('set output "%s"' % (output)) g_title = 'Analysis of Linear Mean Squared Displacement %s'\ % (key_title) gp.c('set title "%s"' % (g_title)) tau = Analysis.TauCalcHR(self.bacteria.config[key]) gp.c('set xrange [%f:%f]' % (tau.min()-5, tau.max()+5)) results_array = parallel(delayed( Analysis.LinearHighRange) (self.bacteria.bacterium[key][bact], self.bacteria.config[key]) for bact in self.bacteria.bacterium[key].keys()) size = len(results_array) dat_name = os.path.join(self.plot_dir, '%s_msd_lin_hr.dat' % (key)) graph_out = np.vstack((tau, results_array)) gp.s(graph_out, dat_name) title = ['notitle' for i in range(size)] plot_string = plotStringSingleFile(size, dat_name, 'with points', title) gp.c(plot_string) output = os.path.join(self.graph_dir, '%s_linear_mean_hr.png' % (key)) gp.c('set output "%s"' % (output)) mean_results = np.mean(results_array, axis=0) std_dev = np.std(results_array, axis=0) std_error = std_dev/
np.sqrt(size)
numpy.sqrt
# %% import library import pathlib import sys from glob import glob import numpy as np import pandas as pd # import residual_node2vec as rv import utils_link_pred from scipy import sparse from sklearn.metrics import roc_auc_score from tqdm import tqdm # Helper Functions def get_params(filename): params = pathlib.Path(filename).stem.split("_") retval = {"filename": filename} for p in params: if "=" not in p: continue kv = p.split("=") retval[kv[0]] = kv[1] return retval # Loading if "snakemake" in sys.modules: net_files = snakemake.input["net_files"] emb_files = snakemake.input["emb_files"] edge_files = snakemake.input["edge_files"] output_file = snakemake.output["output_file"] else: net_files = [f for f in glob("../data/link-prediction/networks/net=*")] emb_files = [f for f in glob("../data/link-prediction/embeddings/*")] edge_files = [ f for f in glob("../data/link-prediction/networks/test_edgelist_*.csv") ] output_file = "../data/link-prediction/results/auc_score.csv" # %% # Loading # emb_file_table = pd.DataFrame([get_params(r) for r in emb_files]) net_file_table = pd.DataFrame([get_params(r) for r in net_files]) edge_file_table = pd.DataFrame([get_params(r) for r in edge_files]) # %% # Merging # emb_file_table = emb_file_table.rename(columns={"filename": "emb_file"}) edge_file_table = edge_file_table.rename(columns={"filename": "edge_file"}) net_file_table = net_file_table.rename(columns={"filename": "net_file"}) cols = list(set(emb_file_table.columns).intersection(set(edge_file_table.columns))) file_table = pd.merge(emb_file_table, edge_file_table, on=cols) cols = list(set(file_table.columns).intersection(set(net_file_table.columns))) file_table = pd.merge(file_table, net_file_table, on=cols) # %% # Calculate the AUC # def calc_modeled_prob(emb, net, src, trg, model_name, membership, offset): dotsim =
np.sum(emb[src, :] * emb[trg, :], axis=1)
numpy.sum
# Copyright (C) 2016-2018 Alibaba Group Holding Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import xdl import unittest import numpy as np from xdl.python.lib.datatype import * idx = np.array([2,1,3,0,1,4,0,3,5,2], dtype=np.int32) values = np.array([1,2,3,4,5,6,7,8,9,10],dtype=np.float) segs = np.array([3,4,6,6,10],dtype=np.int32) grps = np.array([],dtype=np.int32) embeds = np.array([[0.1],[0.2],[0.3],[0.4],[0.5],[0.6]],dtype=np.float) grads = np.array([[0.1,0.2,0.3],[0.4,0.5,0.6],[0.7,0.8,0.9], [1.0,1.1,1.2],[1.3,1.4,1.5]],dtype=np.float) length = 3 class TestTileGrad(unittest.TestCase): def test_cpu_tile_empty_value(self): empty_values = np.array([], dtype=np.float) res = xdl.tile_grad(embeds, idx, empty_values, segs, grps, grads, length=length, reverse=False) res = xdl.execute(res) res_grad = np.array([[1.7],[0.9],[0.1],[1.7],[0.8],[1.5]],dtype=np.float) self.assertTrue(np.allclose(res, res_grad)) def test_cpu_tile_empty_value_reverse(self): empty_values = np.array([], dtype=np.float) res = xdl.tile_grad(embeds, idx, empty_values, segs, grps, grads, length=length, reverse=True) res = xdl.execute(res) res_grad =
np.array([[0.4],[1.0],[1.6],[1.6],[0.7],[1.4]],dtype=np.float)
numpy.array
# coding: utf-8 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Dataset for 3D object detection on SUN RGB-D (with support of vote supervision). A sunrgbd oriented bounding box is parameterized by (cx,cy,cz), (l,w,h) -- (dx,dy,dz) in upright depth coord (Z is up, Y is forward, X is right ward), heading angle (from +X rotating to -Y) and semantic class Point clouds are in **upright_depth coordinate (X right, Y forward, Z upward)** Return heading class, heading residual, size class and size residual for 3D bounding boxes. Oriented bounding box is parameterized by (cx,cy,cz), (l,w,h), heading_angle and semantic class label. (cx,cy,cz) is in upright depth coordinate (l,h,w) are length of the object sizes The heading angle is a rotation rad from +X rotating towards -Y. (+X is 0, -Y is pi/2) Author: <NAME> Date: 2019 """ import os import sys import numpy as np from torch.utils.data import Dataset BASE_DIR = os.path.dirname(os.path.abspath(__file__)) ROOT_DIR = os.path.dirname(BASE_DIR) sys.path.append(BASE_DIR) sys.path.append(os.path.join(ROOT_DIR, 'utils')) import pc_util import sunrgbd_utils from sunrgbd_utils import extract_pc_in_box3d from model_util_sunrgbd import SunrgbdDatasetConfig DC = SunrgbdDatasetConfig() # dataset specific config MAX_NUM_OBJ = 64 # maximum number of objects allowed per scene MEAN_COLOR_RGB = np.array([0.5,0.5,0.5]) # sunrgbd color is in 0~1 DIST_THRESH = 0.1#0.2 VAR_THRESH = 5e-3 CENTER_THRESH = 0.1 LOWER_THRESH = 1e-6 NUM_POINT = 50 NUM_POINT_LINE = 10 LINE_THRESH = 0.1#0.2 MIND_THRESH = 0.1 NUM_POINT_SEM_THRESHOLD = 1 def check_upright(para_points): return (para_points[0][-1] == para_points[1][-1]) and (para_points[1][-1] == para_points[2][-1]) and (para_points[2][-1] == para_points[3][-1]) def check_z(plane_equ, para_points): return np.sum(para_points[:,2] + plane_equ[-1]) / 4.0 < LOWER_THRESH def clockwise2counter(angle): ''' @Args: angle: clockwise from x axis, from 0 to 2*pi, @Returns: theta: counter clockwise, -pi / 2 ~ pi / 2, +x~+y: (0, pi/2), +x~-y: (0, -pi/2) ''' return -((angle + np.pi / 2) % np.pi) + np.pi / 2; def point2line_dist(points, a, b): ''' @Args: points: (N, 3) a / b: (3,) @Returns: distance: (N,) ''' x = b - a t = np.dot(points - a, x) / np.dot(x, x) c = a + t[:, None] * np.tile(x, (t.shape[0], 1)) return np.linalg.norm(points - c, axis=1) def get_linesel(points, corners, direction): ''' corners: [[xmin, ymin, zmin], [xmin, ymin, zmax], [xmin, ymax, zmin], [xmin, ymax, zmax], [xmax, ymin, zmin], [xmax, ymin, zmax], [xmax, ymax, zmin], [xmax, ymax, zmax]] ''' if direction == 'lower': sel1 = point2line_dist(points, corners[0], corners[2]) < LINE_THRESH sel2 = point2line_dist(points, corners[4], corners[6]) < LINE_THRESH sel3 = point2line_dist(points, corners[0], corners[4]) < LINE_THRESH sel4 = point2line_dist(points, corners[2], corners[6]) < LINE_THRESH return sel1, sel2, sel3, sel4 elif direction == 'upper': sel1 = point2line_dist(points, corners[1], corners[3]) < LINE_THRESH sel2 = point2line_dist(points, corners[5], corners[7]) < LINE_THRESH sel3 = point2line_dist(points, corners[1], corners[5]) < LINE_THRESH sel4 = point2line_dist(points, corners[3], corners[7]) < LINE_THRESH return sel1, sel2, sel3, sel4 elif direction == 'left': sel1 = point2line_dist(points, corners[0], corners[1]) < LINE_THRESH sel2 = point2line_dist(points, corners[2], corners[3]) < LINE_THRESH return sel1, sel2 elif direction == 'right': sel1 = point2line_dist(points, corners[4], corners[5]) < LINE_THRESH sel2 = point2line_dist(points, corners[6], corners[7]) < LINE_THRESH return sel1, sel2 else: AssertionError('direction = lower / upper / left') def get_linesel2(points, ymin, ymax, zmin, zmax, axis=0): #sel3 = sweep(points, axis, ymax, 2, zmin, zmax) #sel4 = sweep(points, axis, ymax, 2, zmin, zmax) sel3 = np.abs(points[:,axis] - ymin) < LINE_THRESH sel4 = np.abs(points[:,axis] - ymax) < LINE_THRESH return sel3, sel4 ''' ATTENTION: SUNRGBD, size_label is only half the actual size ''' def params2bbox(center, size, angle): ''' from bbox_center, angle and size to bbox @Args: center: (3,) size: (3,) angle: -pi ~ pi, +x~+y: (0, pi/2), +x~-y: (0, -pi/2) @Returns: bbox: 8 x 3, order: [[xmin, ymin, zmin], [xmin, ymin, zmax], [xmin, ymax, zmin], [xmin, ymax, zmax], [xmax, ymin, zmin], [xmax, ymin, zmax], [xmax, ymax, zmin], [xmax, ymax, zmax]] ''' xsize = size[0] ysize = size[1] zsize = size[2] vx = np.array([np.cos(angle), np.sin(angle), 0]) vy = np.array([-np.sin(angle), np.cos(angle), 0]) vx = vx * np.abs(xsize) / 2 vy = vy * np.abs(ysize) / 2 vz = np.array([0, 0, np.abs(zsize) / 2]) bbox = np.array([\ center - vx - vy - vz, center - vx - vy + vz, center - vx + vy - vz, center - vx + vy + vz, center + vx - vy - vz, center + vx - vy + vz, center + vx + vy - vz, center + vx + vy + vz]) return bbox class SunrgbdDetectionVotesDataset(Dataset): def __init__(self, data_path=None, split_set='train', num_points=20000, use_color=False, use_height=False, use_v1=False, augment=False, scan_idx_list=None): assert(num_points<=50000) self.use_v1 = use_v1 if use_v1: self.data_path = os.path.join(data_path, 'sunrgbd_pc_bbox_votes_50k_v1_' + split_set) # self.data_path = os.path.join('/scratch/cluster/yanght/Dataset/sunrgbd/sunrgbd_pc_bbox_votes_50k_v1_' + split_set) else: AssertionError("v2 data is not prepared") self.raw_data_path = os.path.join(ROOT_DIR, 'sunrgbd/sunrgbd_trainval') self.scan_names = sorted(list(set([os.path.basename(x)[0:6] \ for x in os.listdir(self.data_path)]))) if scan_idx_list is not None: self.scan_names = [self.scan_names[i] for i in scan_idx_list] self.num_points = num_points self.augment = augment self.use_color = use_color self.use_height = use_height def __len__(self): return len(self.scan_names) def __getitem__(self, idx): """ Returns a dict with following keys: point_clouds: (N,3+C) center_label: (MAX_NUM_OBJ,3) for GT box center XYZ heading_class_label: (MAX_NUM_OBJ,) with int values in 0,...,NUM_HEADING_BIN-1 heading_residual_label: (MAX_NUM_OBJ,) size_classe_label: (MAX_NUM_OBJ,) with int values in 0,...,NUM_SIZE_CLUSTER size_residual_label: (MAX_NUM_OBJ,3) sem_cls_label: (MAX_NUM_OBJ,) semantic class index box_label_mask: (MAX_NUM_OBJ) as 0/1 with 1 indicating a unique box vote_label: (N,9) with votes XYZ (3 votes: X1Y1Z1, X2Y2Z2, X3Y3Z3) if there is only one vote than X1==X2==X3 etc. vote_label_mask: (N,) with 0/1 with 1 indicating the point is in one of the object's OBB. scan_idx: int scan index in scan_names list max_gt_bboxes: unused """ scan_name = self.scan_names[idx] point_color_sem = np.load(os.path.join(self.data_path, scan_name)+'_pc.npz')['pc'] # Nx6 bboxes = np.load(os.path.join(self.data_path, scan_name)+'_bbox.npy') # K,8 point_votes = np.load(os.path.join(self.data_path, scan_name)+'_votes.npz')['point_votes'] # Nx10 semantics37 = point_color_sem[:, 6] semantics10 = np.array([DC.class37_2_class10[k] for k in semantics37]) semantics10_multi = [DC.class37_2_class10_multi[k] for k in semantics37] if not self.use_color: point_cloud = point_color_sem[:, 0:3] else: point_cloud = point_color_sem[:,0:6] point_cloud[:,3:6] = (point_color_sem[:,3:6]-MEAN_COLOR_RGB) if self.use_height: floor_height = np.percentile(point_cloud[:,2],0.99) height = point_cloud[:,2] - floor_height point_cloud = np.concatenate([point_cloud, np.expand_dims(height, 1)],1) # (N,4) or (N,7) # ------------------------------- DATA AUGMENTATION ------------------------------ if self.augment: if np.random.random() > 0.5: # Flipping along the YZ plane point_cloud[:,0] = -1 * point_cloud[:,0] bboxes[:,0] = -1 * bboxes[:,0] bboxes[:,6] = np.pi - bboxes[:,6] point_votes[:,[1,4,7]] = -1 * point_votes[:,[1,4,7]] # Rotation along up-axis/Z-axis rot_angle = (np.random.random()*np.pi/3) - np.pi/6 # -30 ~ +30 degree rot_mat = sunrgbd_utils.rotz(rot_angle) point_votes_end = np.zeros_like(point_votes) point_votes_end[:,1:4] = np.dot(point_cloud[:,0:3] + point_votes[:,1:4], np.transpose(rot_mat)) point_votes_end[:,4:7] = np.dot(point_cloud[:,0:3] + point_votes[:,4:7], np.transpose(rot_mat)) point_votes_end[:,7:10] = np.dot(point_cloud[:,0:3] + point_votes[:,7:10], np.transpose(rot_mat)) point_cloud[:,0:3] = np.dot(point_cloud[:,0:3], np.transpose(rot_mat)) bboxes[:,0:3] = np.dot(bboxes[:,0:3], np.transpose(rot_mat)) bboxes[:,6] -= rot_angle point_votes[:,1:4] = point_votes_end[:,1:4] - point_cloud[:,0:3] point_votes[:,4:7] = point_votes_end[:,4:7] - point_cloud[:,0:3] point_votes[:,7:10] = point_votes_end[:,7:10] - point_cloud[:,0:3] # Augment RGB color if self.use_color: rgb_color = point_cloud[:,3:6] + MEAN_COLOR_RGB rgb_color *= (1+0.4*np.random.random(3)-0.2) # brightness change for each channel rgb_color += (0.1*np.random.random(3)-0.05) # color shift for each channel rgb_color += np.expand_dims((0.05*np.random.random(point_cloud.shape[0])-0.025), -1) # jittering on each pixel rgb_color = np.clip(rgb_color, 0, 1) # randomly drop out 30% of the points' colors rgb_color *= np.expand_dims(np.random.random(point_cloud.shape[0])>0.3,-1) point_cloud[:,3:6] = rgb_color - MEAN_COLOR_RGB # Augment point cloud scale: 0.85x-1.15x scale_ratio = np.random.random()*0.3+0.85 scale_ratio = np.expand_dims(np.tile(scale_ratio,3),0) point_cloud[:,0:3] *= scale_ratio bboxes[:,0:3] *= scale_ratio bboxes[:,3:6] *= scale_ratio point_votes[:,1:4] *= scale_ratio point_votes[:,4:7] *= scale_ratio point_votes[:,7:10] *= scale_ratio if self.use_height: point_cloud[:,-1] *= scale_ratio[0,0] # ------------------------------- LABELS ------------------------------ box3d_centers = np.zeros((MAX_NUM_OBJ, 3)) box3d_sizes = np.zeros((MAX_NUM_OBJ, 3)) angle_classes = np.zeros((MAX_NUM_OBJ,)) angle_residuals = np.zeros((MAX_NUM_OBJ,)) size_classes = np.zeros((MAX_NUM_OBJ,)) size_residuals = np.zeros((MAX_NUM_OBJ, 3)) label_mask = np.zeros((MAX_NUM_OBJ)) label_mask[0:bboxes.shape[0]] = 1 max_bboxes = np.zeros((MAX_NUM_OBJ, 8)) max_bboxes[0:bboxes.shape[0],:] = bboxes # new items box3d_angles = np.zeros((MAX_NUM_OBJ,)) point_boundary_mask_z = np.zeros(self.num_points) point_boundary_mask_xy = np.zeros(self.num_points) point_boundary_offset_z = np.zeros([self.num_points, 3]) point_boundary_offset_xy = np.zeros([self.num_points, 3]) point_boundary_sem_z = np.zeros([self.num_points, 3+2+1]) point_boundary_sem_xy = np.zeros([self.num_points, 3+1+1]) point_line_mask = np.zeros(self.num_points) point_line_offset = np.zeros([self.num_points, 3]) point_line_sem = np.zeros([self.num_points, 3+1]) for i in range(bboxes.shape[0]): bbox = bboxes[i] semantic_class = bbox[7] box3d_center = bbox[0:3] angle_class, angle_residual = DC.angle2class(bbox[6]) # NOTE: The mean size stored in size2class is of full length of box edges, # while in sunrgbd_data.py data dumping we dumped *half* length l,w,h.. so have to time it by 2 here box3d_size = bbox[3:6]*2 size_class, size_residual = DC.size2class(box3d_size, DC.class2type[semantic_class]) box3d_centers[i,:] = box3d_center angle_classes[i] = angle_class angle_residuals[i] = angle_residual size_classes[i] = size_class size_residuals[i] = size_residual box3d_sizes[i,:] = box3d_size box3d_angles[i] = bbox[6] target_bboxes_mask = label_mask target_bboxes = np.zeros((MAX_NUM_OBJ, 6)) for i in range(bboxes.shape[0]): bbox = bboxes[i] corners_3d = sunrgbd_utils.my_compute_box_3d(bbox[0:3], bbox[3:6], bbox[6]) # compute axis aligned box xmin = np.min(corners_3d[:,0]) ymin = np.min(corners_3d[:,1]) zmin = np.min(corners_3d[:,2]) xmax = np.max(corners_3d[:,0]) ymax = np.max(corners_3d[:,1]) zmax = np.max(corners_3d[:,2]) target_bbox = np.array([(xmin+xmax)/2, (ymin+ymax)/2, (zmin+zmax)/2, xmax-xmin, ymax-ymin, zmax-zmin]) target_bboxes[i,:] = target_bbox point_cloud, choices = pc_util.random_sampling(point_cloud, self.num_points, return_choices=True) semantics37 = semantics37[choices] semantics10 = semantics10[choices] semantics10_multi = [semantics10_multi[i] for i in choices] point_votes_mask = point_votes[choices,0] point_votes = point_votes[choices,1:] # box angle is -pi to pi for i in range(bboxes.shape[0]): bbox = bboxes[i] corners = params2bbox(bbox[:3], 2 * bbox[3:6], clockwise2counter(bbox[6])) # corners_votenet = sunrgbd_utils.my_compute_box_3d(bbox[:3], bbox[3:6], bbox[6]) try: x_all_cls, ind_all_cls = extract_pc_in_box3d(point_cloud, corners) except: continue ind_all_cls = np.where(ind_all_cls)[0] # T/F to index # find point with same semantic as bbox, note semantics is 37 cls in sunrgbd # ind = ind_all_cls[np.where(semantics10[ind_all_cls] == bbox[7])[0]] ind = [] for j in ind_all_cls: if bbox[7] in semantics10_multi[j]: ind.append(j) ind = np.array(ind) if ind.shape[0] < NUM_POINT_SEM_THRESHOLD: pass else: x = point_cloud[ind, :3] ###Get bb planes and boundary points plane_lower_temp = np.array([0,0,1,-corners[6,-1]]) para_points = np.array([corners[1], corners[3], corners[5], corners[7]]) newd = np.sum(para_points * plane_lower_temp[:3], 1) if check_upright(para_points) and plane_lower_temp[0]+plane_lower_temp[1] < LOWER_THRESH: plane_lower = np.array([0,0,1,plane_lower_temp[-1]]) plane_upper = np.array([0,0,1,-np.mean(newd)]) else: import pdb;pdb.set_trace() print ("error with upright") if check_z(plane_upper, para_points) == False: import pdb;pdb.set_trace() ### Get the boundary points here #alldist = np.abs(np.sum(point_cloud[:,:3]*plane_lower[:3], 1) + plane_lower[-1]) alldist = np.abs(np.sum(x*plane_lower[:3], 1) + plane_lower[-1]) mind = np.min(alldist) #[count, val] = np.histogram(alldist, bins=20) #mind = val[np.argmax(count)] sel = np.abs(alldist - mind) < DIST_THRESH #sel = (np.abs(alldist - mind) < DIST_THRESH) & (point_cloud[:,0] >= xmin) & (point_cloud[:,0] <= xmax) & (point_cloud[:,1] >= ymin) & (point_cloud[:,1] <= ymax) ## Get lower four lines line_sel1, line_sel2, line_sel3, line_sel4 = get_linesel(x[sel], corners, 'lower') if np.sum(line_sel1) > NUM_POINT_LINE: point_line_mask[ind[sel][line_sel1]] = 1.0 linecenter = (corners[0] + corners[2]) / 2.0 point_line_offset[ind[sel][line_sel1]] = linecenter - x[sel][line_sel1] point_line_sem[ind[sel][line_sel1]] = np.array([linecenter[0], linecenter[1], linecenter[2], bbox[7]]) if np.sum(line_sel2) > NUM_POINT_LINE: point_line_mask[ind[sel][line_sel2]] = 1.0 linecenter = (corners[4] + corners[6]) / 2.0 point_line_offset[ind[sel][line_sel2]] = linecenter - x[sel][line_sel2] point_line_sem[ind[sel][line_sel2]] = np.array([linecenter[0], linecenter[1], linecenter[2], bbox[7]]) if np.sum(line_sel3) > NUM_POINT_LINE: point_line_mask[ind[sel][line_sel3]] = 1.0 linecenter = (corners[0] + corners[4]) / 2.0 point_line_offset[ind[sel][line_sel3]] = linecenter - x[sel][line_sel3] point_line_sem[ind[sel][line_sel3]] = np.array([linecenter[0], linecenter[1], linecenter[2], bbox[7]]) if np.sum(line_sel4) > NUM_POINT_LINE: point_line_mask[ind[sel][line_sel4]] = 1.0 linecenter = (corners[2] + corners[6]) / 2.0 point_line_offset[ind[sel][line_sel4]] = linecenter - x[sel][line_sel4] point_line_sem[ind[sel][line_sel4]] = np.array([linecenter[0], linecenter[1], linecenter[2], bbox[7]]) if np.sum(sel) > NUM_POINT and np.var(alldist[sel]) < VAR_THRESH: # center = np.array([(xmin+xmax)/2.0, (ymin+ymax)/2.0, np.mean(x[sel][:,2])]) center = (corners[0] + corners[6]) / 2.0 center[2] = np.mean(x[sel][:,2]) sel_global = ind[sel] point_boundary_mask_z[sel_global] = 1.0 point_boundary_sem_z[sel_global] = np.array([center[0], center[1], center[2], np.linalg.norm(corners[4] - corners[0]),
np.linalg.norm(corners[2] - corners[0])
numpy.linalg.norm
#!/usr/bin/python # todo -- simplify the total energy read in, the kinetic energy read-in, temperature read-in #========================================================= #IMPORTS #========================================================= from __future__ import print_function import sys import numpy import pymbar # for MBAR analysis from pymbar import timeseries # for timeseries analysis import os import os.path import optparse from optparse import OptionParser #=================================================================================================== # INPUT PARAMETERS #=================================================================================================== parser = OptionParser() parser.add_option("-d", "--directory", dest="simulation", default = "energydata", help="the directory of the energies we care about") parser.add_option("-b", "--nbootstraps", dest="nBoots",type = int, default=0, help="Number of bootstrap samples taken") parser.add_option("-s", "--spacing", dest="NumIntermediates",type = "int", default = 200, help="Number of intermediate simulations used to calculate finite differences (default 200)") parser.add_option("-f", "--finitedifftype", dest="dertype", default="temperature", help="the type of finite difference energy, choice is \"temperature\" or \"beta\" [default = %default]") parser.add_option("-r", "--randomseed", dest="rseed", type=int, default=None, help="random seed for bootstraping [default = %default]") (options, args) = parser.parse_args() simulation = options.simulation nBoots = options.nBoots NumIntermediates = options.NumIntermediates dertype = options.dertype rseed = options.rseed #======================================================== # CONSTANTS #======================================================== kB = 0.008314462 #Boltzmann constant (Gas constant) in kJ/(mol*K) TE_COL_NUM = 11 #The column number of the total energy in ener_box#.output NumTemps = 16 # Last TEMP # + 1 (start counting at 1) NumIterations = 1000 # The number of energies to be taken and analyzed, starting from the last # Extra data will be ignored if (dertype == 'temperature'): # if the temperatures are equally spaced types = ['var','dT','ddT'] elif (dertype == 'beta'): # if the inverse temperatures are equally spaced. types = ['var','dbeta','ddbeta'] else: print('type of finite difference not recognized must be \'beta\' or \'temperature\'') quit() ntypes = len(types) numpy.random.seed(rseed) # seed the random numbers ########################################################### # For Cv vs T # _____ # Cv / \ <-- what we expect the graph to look like # ____________/ \____________ # T ############################################################ #========================================================= # SUBROUTINES #========================================================= def read_total_energies(pathname,colnum): """Reads in the TEMP#/ener_box#.output file and parses it, returning an array of energies ARGUMENTS filename (string) - the path to the folder of the simulation colnum (integer) column the energy is found in """ print("--Reading total energies from %s/..." % pathname) # Initialize Return variables E_kn = numpy.zeros([NumTemps, NumIterations], numpy.float64) #Read files for k in range(NumTemps): #Construct each TEMP#/ener_box#.output name and read in the file filename = os.path.join(pathname,'TEMP' + str(k), 'ener_box'+ str(k) + '.output') infile = open(filename, 'r') lines = infile.readlines() infile.close() numLines = len(lines) #Initialize arrays for E E_from_file = numpy.zeros(NumIterations, numpy.float64) #Parse lines in each file for n in range(NumIterations): m = numLines - 2 - n #Count down (the 2 is for index purposes(1) and to not use the double-counted last line (1)) elements = lines[m].split() E_from_file[n] = float(elements[colnum]) #Add in the E's for each timestep (n) at this temperature (k) E_kn[k] = E_from_file; return E_kn def read_simulation_temps(pathname,NumTemps): """Reads in the various temperatures from each TEMP#/simul.output file by knowing beforehand the total number of temperatures (parameter at top) """ print("--Reading temperatures from %s/..." % pathname) # Initialize return variable temps_from_file = numpy.zeros(NumTemps, numpy.float64) for k in range(NumTemps): infile = open(os.path.join(pathname,'TEMP'+ str(k), 'simul'+str(k)+'.output'), 'r') lines = infile.readlines() infile.close() for line in lines: if (line[0:11] == 'Temperature'): vals = line.split(':') break temps_from_file[k] = float(vals[1]) return temps_from_file def PrintResults(string,E,dE,Cv,dCv,types): print(string) print("Temperature dA <E> +/- d<E> ", end=' ') for t in types: print(" Cv +/- dCv (%s)" % (t), end=' ') print("") print("------------------------------------------------------------------------------------------------------") for k in range(originalK,K): print("%8.3f %8.3f %9.3f +/- %5.3f" % (Temp_k[k],mbar.f_k[k]/beta_k[k],E[k],dE[k]), end=' ') for i in range(len(types)): if Cv[k,i,0] < -100000.0: print(" N/A ", end=' ') else: print(" %7.4f +/- %6.4f" % (Cv[k,i,0],dCv[k,i]), end=' ') print("") #======================================================================== # MAIN #======================================================================== #------------------------------------------------------------------------ # Read Data From File #------------------------------------------------------------------------ print("") print("Preparing data:") T_from_file = read_simulation_temps(simulation,NumTemps) E_from_file = read_total_energies(simulation,TE_COL_NUM) K = len(T_from_file) N_k = numpy.zeros(K,numpy.int32) g = numpy.zeros(K,numpy.float64) for k in range(K): # subsample the energies g[k] = timeseries.statisticalInefficiency(E_from_file[k]) indices = numpy.array(timeseries.subsampleCorrelatedData(E_from_file[k],g=g[k])) # indices of uncorrelated samples N_k[k] = len(indices) # number of uncorrelated samples E_from_file[k,0:N_k[k]] = E_from_file[k,indices] #------------------------------------------------------------------------ # Insert Intermediate T's and corresponding blank U's and E's #------------------------------------------------------------------------ Temp_k = T_from_file minT = T_from_file[0] maxT = T_from_file[len(T_from_file) - 1] #beta = 1/(k*BT) #T = 1/(kB*beta) if dertype == 'temperature': minv = minT maxv = maxT elif dertype == 'beta': # actually going in the opposite direction as beta for logistical reasons minv = 1/(kB*minT) maxv = 1/(kB*maxT) delta = (maxv-minv)/(NumIntermediates-1) originalK = len(Temp_k) print("--Adding intermediate temperatures...") val_k = [] currentv = minv if dertype == 'temperature': # Loop, inserting equally spaced T's at which we are interested in the properties while (currentv <= maxv): val_k = numpy.append(val_k, currentv) currentv = currentv + delta Temp_k = numpy.concatenate((Temp_k,numpy.array(val_k))) elif dertype == 'beta': # Loop, inserting equally spaced T's at which we are interested in the properties while (currentv >= maxv): val_k = numpy.append(val_k, currentv) currentv = currentv + delta Temp_k = numpy.concatenate((Temp_k,(1/(kB*numpy.array(val_k))))) # Update number of states K = len(Temp_k) # Loop, inserting E's into blank matrix (leaving blanks only where new Ts are inserted) Nall_k = numpy.zeros([K], numpy.int32) # Number of samples (n) for each state (k) = number of iterations/energies E_kn = numpy.zeros([K, NumIterations], numpy.float64) for k in range(originalK): E_kn[k,0:N_k[k]] = E_from_file[k,0:N_k[k]] Nall_k[k] = N_k[k] #------------------------------------------------------------------------ # Compute inverse temperatures #------------------------------------------------------------------------ beta_k = 1 / (kB * Temp_k) #------------------------------------------------------------------------ # Compute reduced potential energies #------------------------------------------------------------------------ print("--Computing reduced energies...") u_kln = numpy.zeros([K,K,NumIterations], numpy.float64) # u_kln is reduced pot. ener. of segment n of temp k evaluated at temp l E_kn_samp = numpy.zeros([K,NumIterations], numpy.float64) # u_kln is reduced pot. ener. of segment n of temp k evaluated at temp l nBoots_work = nBoots + 1 # we add +1 to the bootstrap number, as the zeroth bootstrap sample is the original allCv_expect = numpy.zeros([K,ntypes,nBoots_work], numpy.float64) dCv_expect = numpy.zeros([K,ntypes],numpy.float64) allE_expect = numpy.zeros([K,nBoots_work], numpy.float64) allE2_expect = numpy.zeros([K,nBoots_work], numpy.float64) dE_expect = numpy.zeros([K],numpy.float64) for n in range(nBoots_work): if (n > 0): print("Bootstrap: %d/%d" % (n,nBoots)) for k in range(K): # resample the results: if Nall_k[k] > 0: if (n == 0): # don't randomize the first one booti = numpy.array(range(N_k[k])) else: booti=numpy.random.randint(Nall_k[k],size=Nall_k[k]) E_kn_samp[k,0:Nall_k[k]] = E_kn[k,booti] for k in range(K): for l in range(K): u_kln[k,l,0:Nall_k[k]] = beta_k[l] * E_kn_samp[k,0:Nall_k[k]] #------------------------------------------------------------------------ # Initialize MBAR #------------------------------------------------------------------------ # Initialize MBAR with Newton-Raphson if (n==0): # only print this information the first time print("") print("Initializing MBAR:") print("--K = number of Temperatures with data = %d" % (originalK)) print("--L = number of total Temperatures = %d" % (K)) print("--N = number of Energies per Temperature = %d" % (numpy.max(Nall_k))) if (n==0): initial_f_k = None # start from zero else: initial_f_k = mbar.f_k # start from the previous final free energies to speed convergence mbar = pymbar.MBAR(u_kln, Nall_k, verbose=False, relative_tolerance=1e-12, initial_f_k=initial_f_k) #------------------------------------------------------------------------ # Compute Expectations for E_kt and E2_kt as E_expect and E2_expect #------------------------------------------------------------------------ print("") print("Computing Expectations for E...") E_kln = u_kln # not a copy, we are going to write over it, but we don't need it any more. for k in range(K): E_kln[:,k,:]*=beta_k[k]**(-1) # get the 'unreduced' potential -- we can't take differences of reduced potentials because the beta is different; math is much more confusing with derivatives of the reduced potentials. results = mbar.computeExpectations(E_kln, state_dependent = True, return_dict=True) E_expect = results['mu'] dE_expect = results['sigma'] allE_expect[:,n] = E_expect[:] # expectations for the differences, which we need for numerical derivatives results = mbar.computeExpectations(E_kln,output='differences', state_dependent = True, return_dict=True) DeltaE_expect = results['mu'] dDeltaE_expect = results['sigma'] print("Computing Expectations for E^2...") results = mbar.computeExpectations(E_kln**2, state_dependent = True, return_dict=True) E2_expect = results['mu'] dE2_expect = results['sigma'] allE2_expect[:,n] = E2_expect[:] results = mbar.getFreeEnergyDifferences(return_dict=True) df_ij = results['Delta_f'] ddf_ij = results['dDelta_f'] #------------------------------------------------------------------------ # Compute Cv for NVT simulations as <E^2> - <E>^2 / (RT^2) #------------------------------------------------------------------------ if (n==0): print("") print("Computing Heat Capacity as ( <E^2> - <E>^2 ) / ( R*T^2 ) and as d<E>/dT") # Problem is that we don't have a good uncertainty estimate for the variance. # Try a silly trick: but it doesn't work super well. # An estimator of the variance of the standard estimator of th evariance is # var(sigma^2) = (sigma^4)*[2/(n-1)+kurt/n]. If we assume the kurtosis is low # (which it will be for sufficiently many samples), then we can say that # d(sigma^2) = sigma^2 sqrt[2/(n-1)]. # However, dE_expect**2 is already an estimator of sigma^2/(n-1) # Cv = sigma^2/kT^2, so d(Cv) = d(sigma^2)/kT^2 = sigma^2*[sqrt(2/(n-1)]/kT^2 # we just need an estimate of n-1, but we can try to get that by var(dE)/dE_expect**2 # it's within 50% or so, but that's not good enough. allCv_expect[:,0,n] = (E2_expect - (E_expect*E_expect)) / ( kB * Temp_k**2) #################################### # C_v by fluctuation formula #################################### #Cv = (A - B^2) / (kT^2) # d2(Cv) = [1/(kT^2)]^2 [(dCv/dA)^2*d2A + 2*dCv*(dCv/dA)*(dCv/dB)*dAdB + (dCv/dB)^2*d2B] # = [1/(kT^2)]^2 [d2A - 4*B*dAdB + 4*B^2*d2B] # But this formula is not working for uncertainies! if (n==0): N_eff = (E2_expect - (E_expect*E_expect))/dE_expect**2 # sigma^2 / (sigma^2/n) = effective number of samples dCv_expect[:,0] = allCv_expect[:,0,n]*numpy.sqrt(2/N_eff) # only loop over the points that will be plotted, not the ones that for i in range(originalK, K): # Now, calculae heat capacity by T-differences im = i-1 ip = i+1 if (i==originalK): im = originalK if (i==K-1): ip = i #################################### # C_v by first derivative of energy #################################### if (dertype == 'temperature'): # temperature derivative # C_v = d<E>/dT allCv_expect[i,1,n] = (DeltaE_expect[im,ip])/(Temp_k[ip]-Temp_k[im]) if (n==0): dCv_expect[i,1] = (dDeltaE_expect[im,ip])/(Temp_k[ip]-Temp_k[im]) elif (dertype == 'beta'): # beta derivative #Cv = d<E>/dT = dbeta/dT d<E>/beta = - kB*T(-2) d<E>/dbeta = - kB beta^2 d<E>/dbeta allCv_expect[i,1,n] = kB * beta_k[i]**2 * (DeltaE_expect[ip,im])/(beta_k[ip]-beta_k[im]) if (n==0): dCv_expect[i,1] = -kB * beta_k[i]**2 *(dDeltaE_expect[ip,im])/(beta_k[ip]-beta_k[im]) #################################### # C_v by second derivative of free energy #################################### if (dertype == 'temperature'): # C_v = d<E>/dT = d/dT k_B T^2 df/dT = 2*T*df/dT + T^2*d^2f/dT^2 if (i==originalK) or (i==K-1): # We can't calculate this, set a number that will be printed as NAN allCv_expect[i,2,n] = -10000000.0 else: allCv_expect[i,2,n] = kB*Temp_k[i]*(2*df_ij[ip,im]/(Temp_k[ip]-Temp_k[im]) + Temp_k[i]*(df_ij[ip,i]-df_ij[i,im])/ ((Temp_k[ip]-Temp_k[im])/(ip-im))**2) if (n==0): # Previous work to calculate the uncertainty commented out, should be cleaned up eventually # all_Cv_expect[i,2,n] = kB*Temp_k[i]*(2*df_ij[ip,i]+df_ij[i,im]/(Temp_k[ip]-Temp_k[im]) + Temp_k[i]*(df_ij[ip,i]-df_ij[i,im])/(Temp_k[ip]-Temp_k[i])**2) #all_Cv_expect[i,2,n] = kB*([2*Temp_k[i]/(Temp_k[ip]-Temp_k[im]) + Temp_k[i]**2/(Temp_k[ip]-Temp_k[i])**2]*df_ij[ip,i] + [2*Temp_k[i]/(Temp_k[ip]-Temp_k[im]) - Temp_k[i]**2/(Temp_k[ip]-Temp_k[i])**2]) df_ij[i,im] #all_Cv_expect[i,2,n] = kB*(A df_ij[ip,i] + B df_ij[i,im] A = 2*Temp_k[i]/(Temp_k[ip]-Temp_k[im]) + 4*Temp_k[i]**2/(Temp_k[ip]-Temp_k[im])**2 B = 2*Temp_k[i]/(Temp_k[ip]-Temp_k[im]) + 4*Temp_k[i]**2/(Temp_k[ip]-Temp_k[im])**2 #dCv_expect[i,2,n] = kB* [(A ddf_ij[ip,i])**2 + (B sdf_ij[i,im])**2 + 2*A*B*cov(df_ij[ip,i],df_ij[i,im]) # This isn't it either: need to figure out that last term. dCv_expect[i,2] = kB*((A*ddf_ij[ip,i])**2 + (B*ddf_ij[i,im])**2) # Would need to add function computing covariance of DDG, (A-B)-(C-D) elif (dertype == 'beta'): # if beta is evenly spaced, rather than t, we can do 2nd derivative in beta # C_v = d<E>/dT = d/dT (df/dbeta) = dbeta/dT d/dbeta (df/dbeta) = -k_b beta^2 df^2/d^2beta if (i==originalK) or (i==K-1): #Flag as N/A -- we don't try to compute at the endpoints for now allCv_expect[i,2,n] = -10000000.0 else: allCv_expect[i,2,n] = kB * beta_k[i]**2 *(df_ij[ip,i]-df_ij[i,im])/((beta_k[ip]-beta_k[im])/(ip-im))**2 if (n==0): dCv_expect[i,2] = kB*(beta_k[i])**2 * (ddf_ij[ip,i]-ddf_ij[i,im])/((beta_k[ip]-beta_k[im])/(ip-im))**2 # also wrong, need to be fixed. if (n==0): print('WARNING: only the first derivative (dT) analytic error estimates can currently be trusted.') print('They are the only ones reasonably close to bootstrap, within 10-15% at all T.') print('') PrintResults("Analytic Error Estimates",E_expect,dE_expect,allCv_expect,dCv_expect,types) if nBoots > 0: Cv_boot = numpy.zeros([K,ntypes],float) dCv_boot = numpy.zeros([K,ntypes],float) dE_boot =
numpy.zeros([K])
numpy.zeros
#coding=utf-8 ''' infer module ''' import sys caffe_path = '../caffe/python/' #caffe_path = '/root/caffe/python/' sys.path.insert(0, caffe_path) import caffe caffe.set_device(0) caffe.set_mode_gpu() from caffe.proto import caffe_pb2 from google.protobuf import text_format import numpy as np #import cv2 ''' prepare caffemodel proto labelmap etc. ''' root_googlenet = '../model/' deploy_googlenet = root_googlenet + 'deploy-googlenet.prototxt' #labels_filename = root_googlenet + 'labels.txt' caffe_model_googlenet = root_googlenet + 'googlenet.caffemodel' googlenet = caffe.Net(deploy_googlenet, caffe_model_googlenet, caffe.TEST) # labels = np.loadtxt(labels_filename, str, delimiter='\t') root_alexnet = root_googlenet #deploy_alexnet = root_alexnet + 'deploy-alex.prototxt' labels_filename = root_alexnet + 'labels.txt' #caffe_model_alexnet = root_alexnet + 'snapshot_iter_992.caffemodel' #alexnet = caffe.Net(deploy_alexnet, caffe_model_alexnet, caffe.TEST) ''' define infer function with alexnet, googlenet and senet output parm is prob(score) and class_label respectively ''' def infer_img(googlenet, url): transformer = caffe.io.Transformer({'data': googlenet.blobs['data'].data.shape}) transformer.set_transpose('data', (2, 0, 1)) transformer.set_raw_scale('data', 255) transformer.set_channel_swap('data', (2,1,0)) labels = np.loadtxt(labels_filename, str, delimiter='\t') # googlenet.blobs['data'].data[...] = transformer.preprocess('data', tmp) # googlenet.forward() # prob_googlenet = googlenet.blobs['softmax'].data[0].flatten() # order_googlenet = prob_googlenet.argsort()[-1] # score_googlenet = np.max(prob_googlenet) # labels_googlenet = labels[order_googlenet] image = caffe.io.load_image(url) googlenet.blobs['data'].data[...] = transformer.preprocess('data', image) googlenet.forward() prob_googlenet = googlenet.blobs['softmax'].data[0].flatten() order_googlenet = prob_googlenet.argsort()[-1] score_googlenet =
np.max(prob_googlenet)
numpy.max
import argparse from absl import flags, app from absl.flags import FLAGS import cv2 import os import shutil import numpy as np import tensorflow as tf import core.utils as utils from ciou import nmsDiou from core.config import cfg from core.yolov4 import YOLOv4, YOLOv3, YOLOv3_tiny, decode from os.path import join import os os.environ['KMP_DUPLICATE_LIB_OK']='True' #--weights "prova" \ -m "iou" flags.DEFINE_string('annotation_path', cfg.TEST.ANNOT_PATH, 'annotation path') flags.DEFINE_string('write_image_path', "./data/detection/", 'write image path') flags.DEFINE_string('intersectionMethod', "iou", 'write image path') flags.DEFINE_string('weights', "iou", 'write image path') flags.DEFINE_string('size','608', 'write image path') flags.DEFINE_string('model', 'yolov4', 'yolov4, yolov3 or yolov3-tiny') flags.DEFINE_boolean('tiny', False, 'yolo or yolo-tiny') flags.DEFINE_string('framework', 'tf', '(tf, tflite') #flags.DEFINE_float('thresh', 0.0, 'write image path') one_class=cfg.TEST.Oneclass print_image=cfg.TEST.PrintImage """ parser = argparse.ArgumentParser() parser.add_argument('-w', '--weights', default="none",type=str,help="weights path") parser.add_argument('-m','--intersectionMethod', default="none",type=str, help="diou or iou") args, unknown = parser.parse_known_args() """ def main(_argv): #cfg.TEST.SCORE_THRESHOLD=FLAGS.thresh print(cfg.TEST.SCORE_THRESHOLD.__str__()) INPUT_SIZE = int(FLAGS.size) #cfg.TEST.IntersectionMethod=args.method if FLAGS.tiny: STRIDES = np.array(cfg.YOLO.STRIDES_TINY) ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny) else: STRIDES = np.array(cfg.YOLO.STRIDES) ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny) NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES)) CLASSES = utils.read_class_names(cfg.YOLO.CLASSES) predicted_dir_path = './mAP/predicted' ground_truth_dir_path = './mAP/ground-truth' images_dir_path = './mAP/images' if os.path.exists(predicted_dir_path): shutil.rmtree(predicted_dir_path) if os.path.exists(ground_truth_dir_path): shutil.rmtree(ground_truth_dir_path) #if os.path.exists(cfg.TEST.DECTECTED_IMAGE_PATH): shutil.rmtree(cfg.TEST.DECTECTED_IMAGE_PATH) #if os.path.exists(cfg.TEST.GT_IMAGE_PATH): shutil.rmtree(cfg.TEST.GT_IMAGE_PATH) if os.path.exists(images_dir_path): shutil.rmtree(images_dir_path) os.makedirs(predicted_dir_path) os.makedirs(ground_truth_dir_path) #cfg.TEST.DECTECTED_IMAGE_PATH=cfg.TEST.DECTECTED_IMAGE_PATH + cfg.TEST.SCORE_THRESHOLD.__str__() #cfg.TEST.GT_IMAGE_PATH=cfg.TEST.GT_IMAGE_PATH + cfg.TEST.SCORE_THRESHOLD.__str__() if not os.path.exists(cfg.TEST.DECTECTED_IMAGE_PATH): os.mkdir(cfg.TEST.DECTECTED_IMAGE_PATH) if not os.path.exists(cfg.TEST.GT_IMAGE_PATH): os.mkdir(cfg.TEST.GT_IMAGE_PATH) os.mkdir(images_dir_path) # Build Model if FLAGS.framework == 'tf': input_layer = tf.keras.layers.Input([int(INPUT_SIZE), int(INPUT_SIZE), 3]) if FLAGS.tiny: feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_tiny(model, FLAGS.weights) else: if FLAGS.model == 'yolov3': feature_maps = YOLOv3(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_v3(model, FLAGS.weights) elif FLAGS.model == 'yolov4': feature_maps = YOLOv4(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights(model, FLAGS.weights) else: # Load TFLite model and allocate tensors. interpreter = tf.lite.Interpreter(model_path=FLAGS.weights) interpreter.allocate_tensors() # Get input and output tensors. input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() print(input_details) print(output_details) num_lines = sum(1 for line in open(FLAGS.annotation_path)) with open(cfg.TEST.ANNOT_PATH, 'r') as annotation_file: for num, line in enumerate(annotation_file): #annotation = line.strip().split() annotation=get_bb_list(line) image_path = line.replace("\n","") image_name = image_path.split('/')[-1] shutil.copy(image_path, join(images_dir_path,image_name)) image = cv2.imread(image_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) bbox_data_gt = np.array([list(map(int, box.split(','))) for box in annotation]) if len(bbox_data_gt) == 0: bboxes_gt = [] classes_gt = [] else: bboxes_gt, classes_gt = bbox_data_gt[:, :4], bbox_data_gt[:, 4] ground_truth_path = os.path.join(ground_truth_dir_path, str(image_name.split(".")[-2]) + '.txt') #print('=> ground truth of %s:' % image_name) num_bbox_gt = len(bboxes_gt) with open(ground_truth_path, 'w') as f: for i in range(num_bbox_gt): class_name = CLASSES[classes_gt[i]] xmin, ymin, xmax, ymax = list(map(str, bboxes_gt[i])) bbox_mess = ' '.join([class_name, xmin, ymin, xmax, ymax]) + '\n' f.write(bbox_mess) #print('\t' + str(bbox_mess).strip()) #print('=> predict result of %s:' % image_name) predict_result_path = os.path.join(predicted_dir_path, str(image_name.split(".")[-2]) + '.txt') # Predict Process image_size = image.shape[:2] image_data = utils.image_preporcess(np.copy(image), [INPUT_SIZE, INPUT_SIZE]) image_data = image_data[np.newaxis, ...].astype(np.float32) if FLAGS.framework == "tf": pred_bbox = model.predict(image_data) else: interpreter.set_tensor(input_details[0]['index'], image_data) interpreter.invoke() pred_bbox = [interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details))] if FLAGS.model == 'yolov3': pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES) elif FLAGS.model == 'yolov4': XYSCALE = cfg.YOLO.XYSCALE pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES, XYSCALE=XYSCALE) pred_bbox = tf.concat(pred_bbox, axis=0) bboxes = utils.postprocess_boxes(pred_bbox, image_size, INPUT_SIZE, cfg.TEST.SCORE_THRESHOLD) if cfg.TEST.IntersectionMethod=="diou": bboxes = nmsDiou(bboxes, cfg.TEST.DIOU_NMS_THRESHOLD, method=cfg.TEST.IntersectionMethod) else: bboxes = utils.nms(bboxes, cfg.TEST.IOU_NMS_THRESHOLD, method="nms") if cfg.TEST.DECTECTED_IMAGE_PATH is not None: image2 = utils.draw_bbox(
np.copy(image)
numpy.copy
import random from os import path as osp import glob import numpy as np import dataops.common as util from dataops.common import fix_img_channels, get_image_paths, read_img, np2tensor from dataops.debug import * from dataops.imresize import resize as imresize # resize # imresize_np from dataops.augmennt.augmennt.common import wrap_cv2_function, wrap_pil_function, _cv2_interpolation2str from torch.utils.data.dataset import Dataset # TODO TMP, move NoisePatches to a separate dataloader try: from PIL import Image pil_available = True except ImportError: pil_available = False # pass try: import cv2 cv2_available = True except ImportError: cv2_available = False def set_transforms(loader_type=None): if not hasattr(set_transforms, 'loader_type') or set_transforms.loader_type != loader_type: global transforms if loader_type == 'pil' and pil_available: import torchvision.transforms as transforms elif cv2_available: import dataops.augmennt.augmennt as transforms else: Exception("No suitable image loader available. Need either PIL or OpenCV.") set_transforms.loader_type = loader_type transforms = None set_transforms() custom_ktypes = { 794:'blackman5', 793:'blackman4', 792:'blackman3', 791:'blackman2', 790:'sinc5', 789:'sinc4', 788:'sinc3', 787:'sinc2', 786:'gaussian', 785:'hamming', 784:'hanning', 783:'catrom', 782:'bell', 781:'lanczos5', 780:'lanczos4', 779:'hermite', 778:'mitchell', 777:'cubic', 776:'lanczos3', 775:'lanczos2', 774:'box', 773:'linear',} def adj_scale_config(scale=None, resize_type:int=None, res_config:dict=None): or_scale = False if res_config.get('ada_scale'): or_scale = scale if resize_type == 999: ds_algo = [777, 773, cv2.INTER_AREA] resize_type = get_weighted_choice(ds_algo)[0] scale = -(-scale//2) or_scale = False elif resize_type in [0, 774, 997]: scale = -(-scale//2) or_scale = False if resize_type == 998: # down_up scale = random.uniform(-(-scale//2), scale) du_algos = res_config['down_up_types'] du_min = res_config['down_up_min'] resize_type = get_weighted_choice(du_algos)[0] a_scale = random.uniform(du_min, scale) scale = scale / a_scale elif resize_type in [0, 774, 997]: # nearest scale = random.choice([-(-scale//2), scale]) elif resize_type != 999: prob = res_config.get('resize_prob') # sc_dir = None # if prob: # sc_dir = get_weighted_choice(prob)[0] sc_dir = get_weighted_choice(prob)[0] if prob else 'down' if sc_dir: sc_range = None if sc_dir == 'up': sc_range = res_config.get('resize_range_up') elif sc_dir == 'down': # sc_range = res_config.get('resize_range_down') sc_range = res_config.get( 'resize_range_down', [1/scale, 2/scale]) else: scale = 1 if sc_range: sc_fact = random.uniform(*sc_range) scale = 1 / sc_fact if or_scale and scale > 1: # scale /= or_scale scale = max(1, scale/or_scale) return scale, resize_type class Scale_class: def __init__(self, size=None, scale=None, algo=None, ds_kernel=None, resize_type=None, img_type=None, res_config=None): if res_config: # and scale !=1: algo = None scale, resize_type = adj_scale_config( scale, resize_type, res_config) if ((isinstance(algo, list) and 998 in algo) or (isinstance(algo, int) and algo == 998)) and not res_config: algo = [777, 773, cv2.INTER_AREA] self.scale = scale self.size = size self.resize_fn, self.resize_type = get_resize( size=size, scale=scale, ds_algo=algo, ds_kernel=ds_kernel, resize_type=resize_type, img_type=img_type) def get_resize_type(self): return self.resize_type def __call__(self, img): return self.resize_fn(img) def get_scale(self): return self.scale def get_size(self): return self.size def __repr__(self): return (self.__class__.__name__ + f'(type={self.resize_type}, ' f'scale={self.scale}, ' f'size={self.size})') def Scale(img=None, scale=None, algo=None, ds_kernel=None, resize_type=None, img_type=None): """ Simple temporary interface to maintain existing functionality using the new Scale_class. Will be deprecated in the future. """ sc = Scale_class(scale=scale, algo=algo, ds_kernel=ds_kernel, resize_type=resize_type, img_type=img_type) return sc(img), sc.get_resize_type() class MLResize: """Abstraction interface for resizing images to the given scale using the transforms backend or the Matlab-like imresize algorithms. (warning: the latter is ~an order of magnitude slower than OpenCV). Args: scale: Desired amount to scale the image. (>1 is downscale) size: To use if setting a specific size to resize to. antialiasing: Whether to apply an antialiasing (only on 'ml'). interpolation: Desired interpolation. Default is "cubic" interpolation, other options are: "lanczos2", "lanczos3", "box", "linear", "mitchell", etc. kind: use the 'transforms' backend or 'ml' matlab-like imresize. """ def __init__(self, scale, size=None, antialiasing:bool=True, interpolation:str='cubic', kind:str='ml'): self.scale = scale self.out_shape = size # (h, w) self.interpolation = interpolation self.antialiasing = antialiasing self.kind = kind def __call__(self, img:np.ndarray) -> np.ndarray: """ Args: img: Image to be scaled. Returns: Rescaled image. """ if self.scale == 1: return img if self.out_shape: ow, oh = image_size(img) if ow == self.out_shape[1] and oh == self.out_shape[0]: return img if len(self.out_shape) < 3: self.out_shape = self.out_shape + (image_channels(img),) if self.kind == 'transforms': if self.out_shape: return resize( np.copy(img), w=self.out_shape[1], h=self.out_shape[0], method=self.interpolation) return scale_( np.copy(img), self.scale, method=self.interpolation) scale = None if self.out_shape else 1/self.scale # return imresize_np( # np.copy(img), scale=scale, antialiasing=self.antialiasing, interpolation=self.interpolation) return imresize( np.copy(img), scale, out_shape=self.out_shape, antialiasing=self.antialiasing, interpolation=self.interpolation) def get_resize(size=None, scale=None, ds_algo=None, ds_kernel=None, resize_type=None, img_type=None): resize_fn = None if not resize_type: if not ds_algo: # scaling interpolation options # ds_algo = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, # cv2.INTER_AREA, cv2.INTER_LANCZOS4, cv2.INTER_LINEAR_EXACT] ds_algo = [777, 773, cv2.INTER_AREA] if isinstance(ds_algo, int): resize_type = ds_algo else: # resize_type = random.choice(ds_algo) resize_type = get_weighted_choice(ds_algo)[0] # else(!isinstance(resize_types, list)): # Error, unexpected type if img_type == 'pil': # override # TODO: pil images will only use default method, not 'algo' yet resize_type = -1 if resize_type in set(custom_ktypes.keys()): # use custom scaling methods resize_fn = MLResize( size=size, scale=scale, interpolation=custom_ktypes[resize_type]) elif resize_type == 997: # use nearest_aligned downscale resize_fn = transforms.AlignedDownsample(p=1, scale=scale) elif resize_type == 999: # use realistic downscale kernels if ds_kernel: resize_fn = ds_kernel else: # use the provided OpenCV2 or default PIL methods if img_type == 'pil': interpolation = get_default_imethod('pil') else: interpolation=_cv2_interpolation2str.get(resize_type, 'BICUBIC') resize_fn = MLResize( size=size, scale=scale, interpolation=interpolation, kind='transforms') return resize_fn, resize_type def get_blur(blur_types, blur_config): blur = None blur_type = get_weighted_choice(blur_types)[0] if blur_type: if blur_type == 'average': blur = transforms.RandomAverageBlur(**blur_config) elif blur_type == 'box': blur = transforms.RandomBoxBlur(**blur_config) elif blur_type == 'gaussian': blur = transforms.RandomGaussianBlur(**blur_config) elif blur_type == 'median': blur = transforms.RandomMedianBlur(**blur_config) elif blur_type == 'bilateral': blur = transforms.RandomBilateralBlur(**blur_config) elif blur_type == 'motion': blur = transforms.RandomMotionBlur(**blur_config) elif blur_type == 'complexmotion': blur = transforms.RandomComplexMotionBlur(**blur_config) elif blur_type == 'iso': blur = transforms.RandomAnIsoBlur(**blur_config) elif blur_type == 'aniso': blur = transforms.RandomAnIsoBlur(**blur_config) elif blur_type == 'sinc': blur = transforms.RandomSincBlur(**blur_config) # elif blur_type == 'clean': return blur def get_noise(noise_types: list, noise_patches=None, noise_config=None): noise = None if noise_types: noise_type = get_weighted_choice(noise_types)[0] if 'dither' in noise_type: if ('fs' in noise_type and 'bw' not in noise_type) or noise_type == 'dither': noise = transforms.FSDitherNoise(**noise_config) elif 'bayer' in noise_type and 'bw' not in noise_type: noise = transforms.BayerDitherNoise(**noise_config) elif 'fs_bw' in noise_type: noise = transforms.FSBWDitherNoise(**noise_config) elif 'avg_bw' in noise_type: noise = transforms.AverageBWDitherNoise(**noise_config) elif 'bayer_bw' in noise_type: noise = transforms.BayerBWDitherNoise(**noise_config) elif 'bin_bw' in noise_type: noise = transforms.BinBWDitherNoise(**noise_config) elif 'rnd_bw' in noise_type: noise = transforms.RandomBWDitherNoise(**noise_config) elif noise_type in ('simplequantize', 'simple_quantize'): noise = transforms.SimpleQuantize(**noise_config) elif noise_type in ('quantize', 'som_quantize'): noise = transforms.RandomQuantizeSOM(**noise_config) elif noise_type == 'km_quantize': noise = transforms.RandomQuantize(**noise_config) elif noise_type == 'gaussian': noise = transforms.RandomGaussianNoise(**noise_config) elif noise_type.lower() == 'jpeg': noise = transforms.RandomCompression( **noise_config, compression_type='.jpeg') elif noise_type.lower() == 'webp': noise = transforms.RandomCompression( **noise_config, compression_type='.webp') elif noise_type == 'poisson': noise = transforms.RandomPoissonNoise(**noise_config) elif noise_type == 's&p': noise = transforms.RandomSPNoise(**noise_config) elif noise_type == 'speckle': noise = transforms.RandomSpeckleNoise(**noise_config) elif noise_type == 'maxrgb': noise = transforms.FilterMaxRGB(**noise_config) # elif noise_type == 'canny': # noise = transforms.FilterCanny(**noise_config) elif noise_type == 'patches' and noise_patches: noise = RandomNoisePatches(noise_patches, **noise_config) elif noise_type == 'clahe': noise = transforms.CLAHE(**noise_config) elif noise_type == 'camera': noise = transforms.RandomCameraNoise(**noise_config) elif noise_type == 'superpixels': noise = transforms.Superpixels(**noise_config) # elif noise_type == 'clean': return noise def get_pad(img, size: int, fill = 0, padding_mode: str ='constant'): w, h = image_size(img) if fill == 'random': fill_list = [] for _ in range(len(img.shape)): fill_list.append(random.randint(0, 255)) fill = tuple(fill_list) top = (size - h) // 2 if h < size else 0 bottom = top + h % 2 if h < size else 0 left = (size - w) // 2 if w < size else 0 right = left + w % 2 if w < size else 0 pad = transforms.Pad(padding=(top, bottom, left, right), padding_mode=padding_mode, fill=fill) #reflect return pad, fill class NoisePatches(Dataset): """ Load the patches previously extracted from real images to apply noise to the LR images. Ref: https://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Image_Blind_Denoising_CVPR_2018_paper.pdf https://openaccess.thecvf.com/content_ICCV_2019/papers/Zhou_Kernel_Modeling_Super-Resolution_on_Real_Low-Resolution_Images_ICCV_2019_paper.pdf """ def __init__(self, dataset=None, size=32, permute=True, grayscale=False): super(NoisePatches, self).__init__() assert osp.exists(dataset) self.grayscale = grayscale self.noise_imgs = sorted(glob.glob(dataset + '*.png')) if permute: np.random.shuffle(self.noise_imgs) self.pre_process = transforms.Compose([transforms.RandomCrop(size), transforms.RandomHorizontalFlip(p=0.5), transforms.RandomVerticalFlip(p=0.5), ]) def __getitem__(self, index, out_nc=3): noise = self.pre_process(util.read_img(None, self.noise_imgs[index], out_nc)) # describe_numpy(noise, all=True) # tmp_vis(noise, False) norm_noise = (noise - np.mean(noise, axis=(0, 1), keepdims=True, dtype=np.float32)) # tmp_vis(np.mean(noise, axis=(0, 1), keepdims=True), False) # describe_numpy(np.mean(noise, axis=(0, 1), keepdims=True), all=True) # describe_numpy(norm_noise, all=True) # TODO: test adding noise to single channel images if self.grayscale: norm_noise = util.bgr2ycbcr(norm_noise, only_y=True) return norm_noise # .astype('uint8') def __len__(self): return len(self.noise_imgs) class RandomNoisePatches(): def __init__(self, noise_patches, noise_amp:float=1.0, p:float=1.0): self.noise_patches = noise_patches self.noise_amp = noise_amp self.p = p def __call__(self, img): if random.random() > self.p: return img # add noise from patches noise = self.noise_patches[np.random.randint(0, len(self.noise_patches))] # tmp_vis(noise, False) # img = torch.clamp(img + noise, 0, 1) # describe_numpy(img, all=True) h, w = img.shape[0:2] n_h, n_w = noise.shape[0:2] if n_h < h or n_w < w: # pad noise patch to image size if smaller i = random.randint(0, h - n_h) j = random.randint(0, w - n_w) # top, bottom, left, right borders noise = transforms.Pad( padding=(i, h-(i+n_h), j, w-(j+n_w)), padding_mode='reflect')(noise) elif n_h > h or n_w > w: # crop noise patch to image size if larger noise = transforms.RandomCrop(size=(w,h))(noise) img = np.clip((img.astype('float32') + self.noise_amp*noise), 0, 255).astype('uint8') # describe_numpy(img, all=True) ## tmp_vis(img, False) return img def __repr__(self): return self.__class__.__name__ + '(p={})'.format(self.p) ############# transformations # TODO: adapt for video dataloaders, apply same transform to multiple frames def get_params(opt, size): w, h = size new_h = h new_w = w load_size = opt.get('load_size') if isinstance(load_size, list): load_size = random.choice(load_size) crop_size = opt.get('crop_size') center_crop_size = opt.get('center_crop_size') preprocess_mode = opt.get('preprocess', 'none') if 'resize_and_crop' in preprocess_mode: # assert load_size, "load_size not defined" new_h = new_w = load_size elif 'scale_width_and_crop' in preprocess_mode: # assert load_size, "load_size not defined" new_w = load_size new_h = load_size * h // w elif 'scale_height_and_crop' in preprocess_mode: # assert load_size, "load_size not defined" new_w = load_size * w // h new_h = load_size elif 'scale_shortside_and_crop' in preprocess_mode: # assert load_size, "load_size not defined" ss, ls = min(w, h), max(w, h) # shortside and longside width_is_shorter = w == ss ls = int(load_size * ls / ss) new_w, new_h = (ss, ls) if width_is_shorter else (ls, ss) elif 'center_crop' in preprocess_mode: # assert center_crop_size, "center_crop_size not defined" new_w = center_crop_size new_h = center_crop_size # elif 'fixed' in preprocess_mode: # aspect_ratio = opt.get('aspect_ratio') # assert aspect_ratio, "aspect_ratio not defined" x = random.randint(0, np.maximum(0, new_w - crop_size)) y = random.randint(0, np.maximum(0, new_h - crop_size)) flip = random.random() > 0.5 rot = random.random() > 0.5 vflip = random.random() > 0.5 hrrot = random.random() > 0.5 angle = int(random.uniform(-90, 90)) return {'load_size': load_size, 'crop_pos': (x, y), 'flip': flip, 'rot': rot, 'vflip': vflip, 'hrrot': hrrot, 'angle': angle,} # TODO: could use the hasattr to set a value for all future calls # TODO: need something similar to use the other PIL interpolation methods def get_default_imethod(img_type='cv2'): if img_type == 'pil': return Image.BICUBIC else: return "BICUBIC" def get_transform(opt, params=None, grayscale=False, method=None, preprocess_mode=None): """ Base paired transformations: crop, scale, flip, rotate. There are different modes to load images by specifying 'preprocess_mode' along with 'load_size', 'crop_size' and 'center_crop_size'. Can use options such as: - 'resize': resizes the images into square images of side length 'load_size'. - 'crop': randomly crops images to 'crop_size'. - 'resize_and_crop': resizes the images into square images of side length 'load_size' and randomly crops to 'crop_size'. - scale_shortside_and_crop: scales the image to have a short side of length 'load_size' and crops to 'crop_size' x 'crop_size' square. - center_crop: can be used to do an initial center crop of the images of size 'center_crop_size' x 'center_crop_size' before other pre-processing steps. .... more TBD Rotations: Horizontal flips and rotations (0, 90, 180, 270 degrees). Note: Vertical flip and transpose are used for rotation implementation. """ transform_list = [] load_size = params['load_size'] if params else opt.get('load_size') crop_size = opt.get('crop_size') center_crop_size = opt.get('center_crop_size') default_none = opt.get('default_none', 'power2') img_type = opt.get('img_loader', 'cv2') if not method: # TODO: important: if the method does not matches the image type, the error is not # helpful to debug, get the image type from opt dict and assert it's not None method = get_default_imethod(img_type) preprocess_mode = opt.get('preprocess') if preprocess_mode is None else preprocess_mode preprocess_mode = 'none' if not preprocess_mode else preprocess_mode # preprocess if 'center_crop' in preprocess_mode: transform_list.append(transforms.CenterCrop(center_crop_size)) if grayscale: transform_list.append(transforms.Grayscale(1)) # TODO: # elif params and params('color'): # # other colorspace changes, deal with CV2 and PIL if 'resize' in preprocess_mode: if isinstance(load_size, list): transform_list.append( transforms.RandomChoice([ transforms.Resize([osize, osize], method) for osize in load_size ])) elif isinstance(load_size, int): osize = [load_size, load_size] transform_list.append(transforms.Resize(osize, method)) elif 'scale_width' in preprocess_mode: transform_list.append(transforms.Lambda( lambda img: scale_width(img, load_size, crop_size, method))) elif 'scale_height' in preprocess_mode: transform_list.append(transforms.Lambda( lambda img: scale_height(img, load_size, crop_size, method))) elif 'scale_shortside' in preprocess_mode: transform_list.append(transforms.Lambda( lambda img: scale_shortside(img, load_size, method))) # if 'crop' in preprocess_mode and preprocess_mode != 'center_crop': if preprocess_mode == 'crop' or 'and_crop' in preprocess_mode: if params is None: transform_list.append(transforms.RandomCrop(crop_size)) else: transform_list.append(transforms.Lambda( lambda img: crop(img, params['crop_pos'], size=crop_size, img_type=img_type))) if preprocess_mode == 'fixed': w = crop_size h = round(crop_size / opt.get('aspect_ratio')) transform_list.append(transforms.Lambda( lambda img: resize(img, w, h, method))) if preprocess_mode == 'none': # no preprocessing, fix dimensions if needed if default_none == 'power2': # only make sure image has dims of power 2 base = 4 # 32 transform_list.append(transforms.Lambda( lambda img: make_power_2(img, base=base, method=method))) elif default_none == 'modcrop': # only modcrop size according to scale transform_list.append(transforms.Lambda( lambda img: modcrop( img, scale=opt.get('scale'), img_type=img_type))) elif default_none == 'padbase': # only pad dims to base base = 4 # 32 transform_list.append(transforms.Lambda( lambda img: padbase(img, base=base, img_type=img_type))) # paired augmentations if opt.get('use_flip'): if params is None: transform_list.append(transforms.RandomHorizontalFlip()) elif params['flip']: transform_list.append(transforms.Lambda( lambda img: flip(img, params['flip'], img_type=img_type))) # hrrot and regular rotation are mutually exclusive if opt.get('use_hrrot') and params.get('hrrot'): if params['angle']: if preprocess_mode == 'crop' or 'and_crop' in preprocess_mode: cs = crop_size else: cs = None transform_list.append(transforms.Lambda( lambda img: rotateHR( img, crop_size=cs, rescale=1/4, angle=params['angle'], img_type=img_type, method=method))) elif opt.get('use_rot'): if params is None: if random.random() < 0.5: transform_list.append( transforms.RandomRotation(degrees=(90,90))) elif params['rot']: transform_list.append(transforms.Lambda( lambda img: rotate90( img, params['rot'], params['vflip'], img_type=img_type))) return transforms.Compose(transform_list) def resize(img, w, h, method=None): if not method: method = get_default_imethod(image_type(img)) return transforms.Resize((h,w), interpolation=method)(img) def scale_(img, scale, mul=False, method=None): """ Returns a rescaled image by a specific factor given in parameter. Works with :py:class:`~PIL.Image.Image` or :py:class:`~np.ndarray` objects. :param scale: The scale factor, as a float. :param mul: If true, a scale factor greater than 1 expands the image, between 0 and 1 contracts the image, else it's inverted. :param method: An optional resampling filter. Same values possible as in the PIL.Image.resize function or CV2 equivalents. :returns: the scaled image. """ if scale <= 0: raise ValueError("the scale factor must be greater than 0") if not method: method = get_default_imethod(image_type(img)) ow, oh = image_size(img) if mul: h = int(round(scale * oh)) w = int(round(scale * ow)) else: h = int(-(-oh//scale)) w = int(-(-ow//scale)) if h == oh and w == ow: return img return resize(img, w, h, method) def make_power_2(img, base, method=None): ow, oh = image_size(img) h = int(round(oh / base) * base) w = int(round(ow / base) * base) if h == oh and w == ow: return img if not method: method = get_default_imethod(image_type(img)) print_size_warning(ow, oh, w, h, base) return resize(img, w, h, method) def modcrop(img, scale, img_type=None): """Modulo crop images, removing the remainder of dividing each dimension by a scale factor. Args: img (ndarray or Image.Image): Input image. scale (int): Scale factor. img_type (str): 'pil' or 'cv2' Returns: Mod cropped image. """ if not img_type: img_type = image_type(img) ow, oh = image_size(img) # get the remainder in each dim h, w = oh % scale, ow % scale if h == oh and w == ow: return img print_size_warning(ow, oh, ow-w, oh-h, scale) if img_type == 'pil': return img.crop((0, 0, ow-w, oh-h)) else: return img[0:oh-h, 0:ow-w, ...] def padbase(img, base, img_type=None): if not img_type: img_type = image_type(img) ow, oh = image_size(img) ph = ((oh - 1) // base + 1) * base pw = ((ow - 1) // base + 1) * base if ph == oh and pw == ow: return img print_size_warning(ow, oh, pw, ph, base) if img_type == 'pil': # Note: with PIL if crop sizes > sizes, it adds black padding return img.crop((0, 0, pw, ph)) else: # TODO: test if correct-> # padding = (0, pw - ow, 0, ph - oh) return transforms.Pad(padding=(0, ph-oh, 0, pw-ow))(img) def scale_width(img, target_size, crop_size, method=None): ow, oh = image_size(img) if ow == target_size and oh >= crop_size: return img if not method: method = get_default_imethod(image_type(img)) w = target_size h = int(max(target_size * oh / ow, crop_size)) return resize(img, w, h, method) def scale_height(img, target_size, crop_size, method=None): ow, oh = image_size(img) if oh == target_size and ow >= crop_size: return img if not method: method = get_default_imethod(image_type(img)) h = target_size w = int(max(target_size * ow / oh, crop_size)) return resize(img, w, h, method) def scale_shortside(img, target_width, method=None): ow, oh = image_size(img) ss, ls = min(ow, oh), max(ow, oh) # shortside and longside width_is_shorter = ow == ss if (ss == target_width): return img if not method: method = get_default_imethod(image_type(img)) ls = int(target_width * ls / ss) nw, nh = (ss, ls) if width_is_shorter else (ls, ss) return resize(img, nw, nh, method) def crop(img, pos, size, img_type=None): if not img_type: img_type = image_type(img) ow, oh = image_size(img) x1, y1 = pos tw = th = size if (ow > tw or oh > th): if img_type == 'pil': return img.crop((x1, y1, x1 + tw, y1 + th)) else: return img[y1:y1 + th, x1:x1 + tw, ...] return img def flip(img, flip, img_type=None): if not img_type: img_type = image_type(img) if flip: if img_type == 'pil': return img.transpose(Image.FLIP_LEFT_RIGHT) else: return
np.flip(img, axis=1)
numpy.flip
# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import scipy.sparse as sps import time RM_train = pd.read_csv('./input/data_train.csv') R_test = pd.read_csv('./input/data_target_users_test.csv') URM = pd.read_csv('./input/data_train.csv') ICM = pd.read_csv('./input/data_ICM_title_abstract.csv') ##### URM URM_tuples = [tuple(x) for x in URM.to_numpy()] userList, itemList, ratingList = zip(*URM_tuples) userList = list(userList) userList = np.array(userList, dtype=np.int64) itemList = list(itemList) itemList = np.array(itemList, dtype=np.int64) ratingList = list(ratingList) # not needed ratingList = np.array(ratingList, dtype=np.float) # not needed URM_all = sps.coo_matrix((ratingList, (userList, itemList))) URM_all = URM_all.tocsr() #### ICM ICM_tuples = [tuple(x) for x in ICM.to_numpy()] itemList_icm, featureList_icm, scoreList_icm = zip(*ICM_tuples) itemList_icm = list(itemList_icm) itemList_icm = np.array(itemList_icm, dtype=np.int64) featureList_icm = list(featureList_icm) featureList_icm = np.array(featureList_icm, dtype=np.int64) scoreList_icm = list(scoreList_icm) scoreList_icm = np.array(scoreList_icm, dtype=np.float64) ICM_all = sps.coo_matrix((scoreList_icm, (itemList_icm, featureList_icm))) #### Test userTestList = [x for x in R_test.to_numpy()] userTestList = zip(*userTestList) userTestList = [list(a) for a in userTestList][0] #### make validation and test from Base.Evaluation.Evaluator import EvaluatorHoldout from Data_manager.split_functions.split_train_validation_random_holdout import \ split_train_in_two_percentage_global_sample URM_train, URM_test = split_train_in_two_percentage_global_sample(URM_all, train_percentage=0.80) URM_train, URM_validation = split_train_in_two_percentage_global_sample(URM_train, train_percentage=0.80) evaluator_validation = EvaluatorHoldout(URM_validation, cutoff_list=[10]) evaluator_test = EvaluatorHoldout(URM_test, cutoff_list=[10]) ### ralph3 0.032 # from GraphBased import P3alphaRecommender # recommender = P3alphaRecommender.P3alphaRecommender(URM_train) # recommender.fit(normalize_similarity=True, topK=250) # print(evaluator_test.evaluateRecommender(recommender)[0][10]['MAP']) ### PURE SVD 0.023 # from MatrixFactorization import PureSVDRecommender # recommender = PureSVDRecommender.PureSVDRecommender(URM_train) # recommender.fit(num_factors=400) ### SLIM ELASTIC NET not yet # from SLIM_ElasticNet.SLIMElasticNetRecommender import MultiThreadSLIM_ElasticNet # recommender = MultiThreadSLIM_ElasticNet(URM_train.tocsr()) # recommender.fit(topK=400) ### RP3beta 0.0329 # from GraphBased.RP3betaRecommender import RP3betaRecommender # recommender = RP3betaRecommender(URM_train) # recommender.fit(beta=-0.1,alpha=1.,topK=200) ### SLIM BPR 0.0375 # from SLIM_BPR.Cython.SLIM_BPR_Cython import SLIM_BPR_Cython # recommender = SLIM_BPR_Cython(URM_train, recompile_cython=False) # recommender.fit(epochs=50, batch_size=100, sgd_mode='sgd', learning_rate=1e-2, positive_threshold_BPR=1) # recommender.get_S_incremental_and_set_W() ### CBF KNN ### Usinng TF IDF # from KNN.ItemKNNCBFRecommender import ItemKNNCBFRecommender # recommender = ItemKNNCBFRecommender(URM_train, ICM_idf) # # recommender.fit(shrink=10, topK=800) # from SLIM_ElasticNet.SLIMElasticNetRecommender import SLIMElasticNetRecommender # recommender = SLIMElasticNetRecommender(URM_train) ############## # from MatrixFactorization.IALSRecommender import IALSRecommender # recommender = IALSRecommender(URM_train) ### Hybrid ##top pop item_popularity = np.ediff1d(URM_all.tocsc().indptr) popular_items = np.argsort(item_popularity) popular_items = np.flip(popular_items, axis=0) popular_items = popular_items[0:10] # ## TF_DF ICM_all = ICM_all.tocsr() num_tot_items = ICM_all.shape[0] # let's count how many items have a certain feature items_per_feature = np.ediff1d(ICM_all.indptr) + 1 # print(items_per_feature) IDF = np.array(
np.log(num_tot_items / items_per_feature)
numpy.log
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context from mindspore.common.tensor import Tensor from mindspore import nn from mindspore.ops.operations import _quant_ops as Q context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU', device_id=0) class Net(nn.Cell): def __init__(self, num_bits=8, symmetric=False, narrow_range=False, channel_axis=1): super(Net, self).__init__() self.op = Q.FakeQuantPerChannel(num_bits=num_bits, symmetric=symmetric, narrow_range=narrow_range, channel_axis=channel_axis) def construct(self, x, minq, maxq): return self.op(x, minq, maxq) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant_perchannel1(): # WithVarsPerChannel_ZeroMinAndMax x = np.array([0.0, 0.0, 0.0, 0.0]).astype(np.float32) min_val = np.array([0.0, 0.0, 0.0, 0.0]).astype(np.float32) max_val = np.array([0.0, 0.0, 0.0, 0.0]).astype(np.float32) expect = np.array([0.0, 0.0, 0.0, 0.0]).astype(np.float32) net = Net(num_bits=8, narrow_range=False, channel_axis=0) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant_perchannel2(): # WithVarsPerChannelDim1NudgedDown_RegularRange # scale 1/4, zp 0.4, nudge 0. nudged ranges [0.0, 63.75] x = np.array([-0.1, 0.0, 63.75, 63.8]).astype(np.float32) min_val = np.array([-0.1, -0.1, -0.1, -0.1]).astype(np.float32) max_val = np.array([63.65, 63.65, 63.65, 63.65]).astype(np.float32) expect = np.array([0.0, 0.0, 63.75, 63.75]).astype(np.float32) net = Net(num_bits=8, narrow_range=False, channel_axis=0) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant_perchannel3(): # WithVarsPerChannelDim1NudgedDown_NarrowRange # scale 1/4, zp 1.4, nudge 1. nudged ranges[0.0, 63.5] x = np.array([-0.1, 0.0, 63.5, 63.6]).astype(np.float32) min_val = np.array([-0.1, -0.1, -0.1, -0.1]).astype(np.float32) max_val = np.array([63.4, 63.4, 63.4, 63.4]).astype(np.float32) expect = np.array([0.0, 0.0, 63.5, 63.5]).astype(np.float32) net = Net(num_bits=8, narrow_range=True, channel_axis=0) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant_perchannel4(): # WithVarsPerChannelDim1NudgedUp_RegularRange # [-0.125, 63.625] # scale 1/4, zp: 0.5, nudge 0. nudged range [-0.25, 63.5] x = np.array([-0.26, -0.25, -0.24, 63.6]).astype(np.float32) expect = np.array([-0.25, -0.25, -0.25, 63.5]).astype(np.float32) min_val = np.array([-0.125, -0.125, -0.125, -0.125]).astype(np.float32) max_val = np.array([63.625, 63.625, 63.625, 63.625]).astype(np.float32) net = Net(num_bits=8, narrow_range=False, channel_axis=0) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant_perchannel5(): # WithVarsPerChannelDim1NudgedUp_NarrowRange # scale 1/4, zp: 1.5, nudge 2. nudged range [-0.25, 63.25] x = np.array([-0.26, -0.25, -0.24, 63.3]).astype(np.float32) expect = np.array([-0.25, -0.25, -0.25, 63.25]).astype(np.float32) min_val = np.array([-0.125, -0.125, -0.125, -0.125]).astype(np.float32) max_val = np.array([63.375, 63.375, 63.375, 63.375]).astype(np.float32) net = Net(num_bits=8, narrow_range=True, channel_axis=0) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant_perchannel6(): # WithVarsPerChannelDim2NudgedDown_RegularRange # scale 1/4, zp: 0.4, nudge 0. nudged range [-0.25, 63.75] x = np.array([-0.1, 0.0, 0.1, 0.25, 63.75, 63.80] ).reshape(2, 3).astype(np.float32) expect = np.array([-0.0, 0.0, 0.0, 0.25, 63.75, 63.75]).astype(np.float32) min_val = np.array([-0.1, -0.1, -0.1]).reshape(3).astype(np.float32) max_val = np.array([63.65, 63.65, 63.65]).reshape(3).astype(np.float32) net = Net(num_bits=8, narrow_range=False, channel_axis=1) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy().flatten() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant_perchannel7(): # WithVarsPerChannelDim2NudgedDown_NarrowRange # scale 1/4, zp: 1.4, nudge 1. nudged range [-0.25, 63.5] x = np.array([-0.1, 0.0, 0.1, 0.25, 63.5, 63.6] ).reshape(2, 3).astype(np.float32) expect = np.array([0.0, 0.0, 0.0, 0.25, 63.5, 63.5]).astype(np.float32) min_val = np.array([-0.1, -0.1, -0.1]).reshape(3).astype(np.float32) max_val = np.array([63.4, 63.4, 63.4]).reshape(3).astype(np.float32) net = Net(num_bits=8, narrow_range=True, channel_axis=1) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy().flatten() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant_perchannel8(): # WithVarsPerChannelDim2NudgedUp_RegularRange # scale 1/4, zp: 0.5, nudge 1. nudged range [-0.25, 63.5] x = np.array([-0.26, -0.25, -0.24, 0.0, 63.5, 63.6] ).reshape(2, 3).astype(np.float32) expect = np.array([-0.25, -0.25, -0.25, 0.0, 63.5, 63.5] ).astype(np.float32) min_val = np.array([-0.125, -0.125, -0.125]).reshape(3).astype(np.float32) max_val = np.array([63.625, 63.625, 63.625]).reshape(3).astype(np.float32) net = Net(num_bits=8, narrow_range=False, channel_axis=1) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy().flatten() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant_perchannel9(): # WithVarsPerChannelDim2NudgedUp_NarrowRange # scale 1/4, zp: 0.5, nudge 2. nudged range [-0.25, 63.25] x = np.array([-0.26, -0.25, -0.24, 0.0, 63.25, 63.3] ).reshape(2, 3).astype(np.float32) expect = np.array( [-0.25, -0.25, -0.25, 0.0, 63.25, 63.25]).astype(np.float32) min_val = np.array([-0.125, -0.125, -0.125]).reshape(3).astype(np.float32) max_val = np.array([63.375, 63.375, 63.375]).reshape(3).astype(np.float32) net = Net(num_bits=8, narrow_range=True, channel_axis=1) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy().flatten() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant_perchannel10(): # WithVarsPerChannelDim4NudgedDown_RegularRange # scale 1/4, zp: 0.4, nudge 0. nudged range [-0.25, 63.25] x = np.array([-0.1, 0.0, 0.1, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 63.0, 63.25, 63.5, 63.7, 63.75, 63.8, 63.9, 100.0, 100.0, 100.0, 100.0, 1000.0]).reshape((1, 4, 2, 3)).astype(np.float32) expect = np.array([0.0, 0.0, 0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 63.0, 63.25, 63.5, 63.75, 63.75, 63.75, 63.75, 63.75, 63.75, 63.75, 63.75, 63.75]).astype(np.float32) min_val = np.array([-0.1, -0.1, -0.1, -0.1]).reshape(4).astype(np.float32) max_val = np.array([63.65, 63.65, 63.65, 63.65] ).reshape(4).astype(np.float32) net = Net(num_bits=8, narrow_range=False, channel_axis=1) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy().flatten() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant_perchannel11(): # WithVarsPerChannelDim4NudgedDown_NarrowRange # scale 1/4, zp: 1.4, nudge 1. nudged range [0.0, 63.25] x = np.array([-0.1, 0.0, 0.1, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 63.0, 63.25, 63.3, 63.4, 63.5, 63.6, 63.7, 100.0, 100.0, 100.0, 100.0, 1000.0]).reshape((1, 4, 2, 3)).astype(np.float32) expect = np.array([0.0, 0.0, 0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 63.0, 63.25, 63.25, 63.5, 63.5, 63.5, 63.5, 63.5, 63.5, 63.5, 63.5, 63.5]).astype(np.float32) min_val = np.array([-0.1, -0.1, -0.1, -0.1]).reshape(4).astype(np.float32) max_val = np.array([63.4, 63.4, 63.4, 63.4]).reshape(4).astype(np.float32) net = Net(num_bits=8, narrow_range=True, channel_axis=1) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy().flatten() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant_perchannel12(): # WithVarsPerChannelDim4NudgedUp_RegularRange # scale 1/4, zp: 0.5, nudge 2. nudged range [-0.25, 63.25] x = np.array([-0.3, -0.25, -0.2, 0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 63.0, 63.25, 63.4, 63.5, 63.6, 63.7, 100.0, 100.0, 100.0, 100.0, 100.0, 1000.0]).reshape((1, 4, 2, 3)).astype(np.float32) expect = np.array([-0.25, -0.25, -0.25, 0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 63.0, 63.25, 63.5, 63.5, 63.5, 63.5, 63.5, 63.5, 63.5, 63.5, 63.5, 63.5]).astype(np.float32) min_val = np.array([-0.125, -0.125, -0.125, -0.125] ).reshape(4).astype(np.float32) max_val = np.array([63.625, 63.625, 63.625, 63.625] ).reshape(4).astype(np.float32) net = Net(num_bits=8, narrow_range=False, channel_axis=1) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy().flatten() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant_perchannel13(): # WithVarsPerChannelDim4NudgedUp_NarrowRange # scale 1/4, zp: 0.5, nudge 2. nudged range [-0.25, 63.25] x = np.array([-0.3, -0.25, -0.2, 0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 63.0, 63.2, 63.25, 63.3, 63.4, 63.5, 100.0, 100.0, 100.0, 100.0, 100.0, 1000.0]).reshape((1, 4, 2, 3)).astype(np.float32) expect = np.array([-0.25, -0.25, -0.25, 0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 63.0, 63.25, 63.25, 63.25, 63.25, 63.25, 63.25, 63.25, 63.25, 63.25, 63.25, 63.25]).astype(np.float32) min_val = np.array([-0.125, -0.125, -0.125, -0.125] ).reshape(4).astype(np.float32) max_val = np.array([63.375, 63.375, 63.375, 63.375] ).reshape(4).astype(np.float32) net = Net(num_bits=8, narrow_range=True, channel_axis=1) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy().flatten() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant_perchannel14(): # WithVarsPerChannelDim1NudgedDown_4Bits_RegularRange # scale 1/4, zp: 0.5, nudge 2. nudged range [-0.25, 63.25] x = np.array([-0.1, 0.0, 7.5, 7.6]).reshape(4).astype(np.float32) expect = np.array([0.0, 0.0, 7.5, 7.5]).astype(np.float32) min_val = np.array([-0.1, -0.1, -0.1, -0.1]).reshape(4).astype(np.float32) max_val = np.array([7.4, 7.4, 7.4, 7.4]).reshape(4).astype(np.float32) net = Net(num_bits=4, narrow_range=False, channel_axis=0) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy().flatten() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant_perchannel15(): # WithVarsPerChannelDim1NudgedDown_4Bits_NarrowRange # scale 1/4, zp: 0.5, nudge 2. nudged range [-0.25, 63.25] x = np.array([-0.1, 0.0, 7.0, 7.1]).reshape(4).astype(np.float32) expect = np.array([0.0, 0.0, 7.0, 7.0]).astype(np.float32) min_val = np.array([-0.1, -0.1, -0.1, -0.1]).reshape(4).astype(np.float32) max_val = np.array([6.9, 6.9, 6.9, 6.9]).reshape(4).astype(np.float32) net = Net(num_bits=4, narrow_range=True, channel_axis=0) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant_perchannel16(): # WithVarsPerChannelDim1NudgedUp_4Bits_RegularRange # scale 1/4, zp: 0.5, nudge 2. nudged range [-0.25, 63.25] x = np.array([-0.6, -0.5, 7.0, 7.1]).reshape(4).astype(np.float32) expect = np.array([-0.5, -0.5, 7.0, 7.0]).astype(np.float32) min_val = np.array([-0.4, -0.4, -0.4, -0.4]).reshape(4).astype(np.float32) max_val = np.array([7.1, 7.1, 7.1, 7.1]).reshape(4).astype(np.float32) net = Net(num_bits=4, narrow_range=False, channel_axis=0) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant_perchannel17(): # WithVarsPerChannelDim1NudgedUp_4Bits_NarrowRange # scale 1/4, zp: 0.5, nudge 2. nudged range [-0.25, 63.25] x = np.array([-0.6, -0.5, 6.5, 6.6]).reshape(4).astype(np.float32) expect = np.array([-0.5, -0.5, 6.5, 6.5]).astype(np.float32) min_val = np.array([-0.4, -0.4, -0.4, -0.4]).reshape(4).astype(np.float32) max_val = np.array([6.6, 6.6, 6.6, 6.6]).reshape(4).astype(np.float32) net = Net(num_bits=4, narrow_range=True, channel_axis=0) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant_perchannel18(): # WithVarsPerChannelDim2NudgedDown_4Bits_RegularRange # scale 1/4, zp: 0.5, nudge 2. nudged range [-0.25, 63.25] x = np.array([-0.1, 0.0, 0.1, 0.5, 7.5, 7.6] ).reshape(2, 3).astype(np.float32) expect = np.array([0.0, 0.0, 0.0, 0.5, 7.5, 7.5]).astype(np.float32) min_val = np.array([-0.1, -0.1, -0.1]).reshape(3).astype(np.float32) max_val = np.array([7.4, 7.4, 7.4]).reshape(3).astype(np.float32) net = Net(num_bits=4, narrow_range=False, channel_axis=1) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy().flatten() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant_perchannel19(): # WithVarsPerChannelDim2NudgedDown_4Bits_NarrowRange # scale 1/4, zp: 0.5, nudge 2. nudged range [-0.25, 63.25] x = np.array([-0.1, 0.0, 0.1, 0.5, 7.0, 7.1] ).reshape(2, 3).astype(np.float32) expect = np.array([0.0, 0.0, 0.0, 0.5, 7.0, 7.0]).astype(np.float32) min_val = np.array([-0.1, -0.1, -0.1]).reshape(3).astype(np.float32) max_val = np.array([6.9, 6.9, 6.9]).reshape(3).astype(np.float32) net = Net(num_bits=4, narrow_range=True, channel_axis=1) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy().flatten() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant_perchannel20(): # WithVarsPerChannelDim2NudgedUp_4Bits_RegularRange # scale 1/4, zp: 0.5, nudge 2. nudged range [-0.25, 63.25] x = np.array([-0.51, -0.5, -0.24, 0.0, 7.0, 7.1] ).reshape(2, 3).astype(np.float32) expect = np.array([-0.5, -0.5, 0.0, 0.0, 7.0, 7.0]).astype(np.float32) min_val = np.array([-0.4, -0.4, -0.4]).reshape(3).astype(np.float32) max_val = np.array([7.1, 7.1, 7.1]).reshape(3).astype(np.float32) net = Net(num_bits=4, narrow_range=False, channel_axis=1) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy().flatten() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant_perchannel21(): # WithVarsPerChannelDim2NudgedUp_4Bits_NarrowRange # scale 1/4, zp: 0.5, nudge 2. nudged range [-0.25, 63.25] x = np.array([-0.6, -0.5, -0.24, 0.0, 6.5, 6.6] ).reshape(2, 3).astype(np.float32) expect = np.array([-0.5, -0.5, 0.0, 0.0, 6.5, 6.5]).astype(np.float32) min_val = np.array([-0.4, -0.4, -0.4]).reshape(3).astype(np.float32) max_val = np.array([6.6, 6.6, 6.6]).reshape(3).astype(np.float32) net = Net(num_bits=4, narrow_range=True, channel_axis=1) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy().flatten() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant_perchannel22(): # WithVarsPerChannelDim4NudgedDown_4Bits_RegularRange # scale 1/4, zp: 0.5, nudge 2. nudged range [-0.25, 63.25] x = np.array([-0.1, 0.0, 0.1, 0.5, 1.0, 1.5, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 6.0, 6.5, 7.0, 7.4, 7.5, 7.7, 7.8, 100.0, 100.0, 100.0, 100.0, 1000.0]).reshape((1, 4, 2, 3)).astype(np.float32) expect = np.array([0.0, 0.0, 0.0, 0.5, 1.0, 1.5, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 6.0, 6.5, 7.0, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5]).astype(np.float32) min_val = np.array([-0.1, -0.1, -0.1, -0.1]).reshape(4).astype(np.float32) max_val = np.array([7.4, 7.4, 7.4, 7.4]).reshape(4).astype(np.float32) net = Net(num_bits=4, narrow_range=False, channel_axis=1) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy().flatten() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant_perchannel23(): # WithVarsPerChannelDim4NudgedDown_4Bits_NarrowRange # scale 1/4, zp: 0.5, nudge 2. nudged range [-0.25, 63.25] x = np.array([-0.1, 0.0, 0.1, 0.5, 1.0, 1.5, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 6.0, 6.5, 6.8, 6.9, 7.0, 7.1, 7.2, 100.0, 100.0, 100.0, 100.0, 1000.0]).reshape((1, 4, 2, 3)).astype(np.float32) expect = np.array([0.0, 0.0, 0.0, 0.5, 1.0, 1.5, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 6.0, 6.5, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0]).astype(np.float32) min_val = np.array([-0.1, -0.1, -0.1, -0.1]).reshape(4).astype(np.float32) max_val = np.array([6.9, 6.9, 6.9, 6.9]).reshape(4).astype(np.float32) net = Net(num_bits=4, narrow_range=True, channel_axis=1) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy().flatten() - expect print("output: ", output) print("expect: ", expect) assert np.all(np.abs(diff) < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_fake_quant_perchannel24(): # WithVarsPerChannelDim4NudgedUp_4Bits_RegularRange # scale 1/4, zp: 0.5, nudge 2. nudged range [-0.25, 63.25] x = np.array([-0.6, -0.5, -0.4, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 6.0, 6.5, 6.9, 7.0, 7.1, 7.7, 100.0, 100.0, 100.0, 100.0, 100.0, 1000.0]).reshape((1, 4, 2, 3)).astype(np.float32) expect = np.array([-0.5, -0.5, -0.5, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 6.0, 6.5, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0]).astype(np.float32) min_val = np.array([-0.4, -0.4, -0.4, -0.4]).reshape(4).astype(np.float32) max_val = np.array([7.1, 7.1, 7.1, 7.1]).reshape(4).astype(np.float32) net = Net(num_bits=4, narrow_range=False, channel_axis=1) output = net(Tensor(x), Tensor(min_val), Tensor(max_val)) error = np.ones(shape=expect.shape) * 1.0e-5 diff = output.asnumpy().flatten() - expect print("output: ", output) print("expect: ", expect) assert np.all(
np.abs(diff)
numpy.abs
import numpy as np import pandas as pd from tqdm import tqdm import numpy.ma as ma from scipy.special import gammaln from pykalman import KalmanFilter from pynowcasting.pycsminwel import csminwel class BVARGLP(object): def __init__(self, data, lags, hz=8, vc=10e6, stationary_prior=None, crit=1e-16, hyperpriors=True, mnpsi=True, mnalpha=False, sur=True, noc=True, fcast=False, mcmc=False, ndraws=20000, ndrawsdiscard=None, mcmcconst=1, mcmcfcast=True, mcmcstorecoef=True, verbose=False): """ This class implements the Bayesian VAR from Giannone, Lenza and Primiceri (2012), hence the name GLP. The main idea of the models is to use multiple priors, each with their own hyperprior, in order to generate a shrinkage behaviour. This class only accepts data with a quarterly frequency and with no missign data. @param hyperpriors: False = no priors on hyperparameters True = reference priors on hyperparameters (default) [NOTE: hyperpriors on psi calibrated for data expressed in 4 x logs, such as 4 x log(GDP). Thus if interest rate is in percentage, divide by 100] @param vc: prior variance in the MN prior for the coefficients multiplying the contant term (Default: vc=10e6) @param stationary_prior: names of the variables that enter the VAR in first differences and for which one might want to set the prior mean on the coefficient on the first own lag in the MN prior and the prior mean of the sum-of-coefficients prior to 0 (instead of the typical 1) @param mnpsi: False = diagonal elements of the scale matrix of the IW prior on the covariance of the residuals NOT treated as hyperparameters (set to the residual variance of an AR(1)) True = diagonal elements of the scale matrix of the IW prior on the covariance of the residuals treated as hyperparameters (default) @param mnalpha: False = Lag-decaying parameter of the MN prior set to 2 and NOT treated as hyperparameter (default) True = Lag-decaying parameter of the MN prior treated as hyperparameter @param sur: False = single-unit-root prior is OFF True = single-unit-root prior is ON and its std is treated as an hyperparameter (default) @param noc: False = no-cointegration (sum-of coefficients) prior is OFF True = no-cointegration (sum-of coefficients) is ON and its std is treated as an hyperparameter (default) @param fcast: False = does not generate forecasts at the posterior mode True = generates forecasts at the posterior mode (default) @param hz: number of quarters for which it generates forecasts (default: hz=8) @param mcmc: False = does not run the MCMC (default) True = runs the MCMC after the maximization @param ndraws: number of draws in the MCMC (default: Ndraws=20000) @param ndrawsdiscard: number of draws initially discarded to allow convergence in the in the MCMC (default=Ndraws/2) @param mcmcconst: scaling constant for the MCMC (should be calibrated to achieve an acceptance rate of approx 25%) (default: MCMCconst=1) @param mcmcfcast: False = does not generate forecasts when running the MCMC True = generates forecasts while running the MCMC (for each draw of the hyperparameters the code takes a draw of the VAR coefficients and shocks, and generates forecasts at horizons hz) (default). @param mcmcstorecoef: False = does not store the MCMC draws of the VAR coefficients and residual covariance matrix True = stores the MCMC draws of the VAR coefficients and residual covariance matrix (default) @param verbose: Prints relevant information during the estimation. @param crit: value for convergence criteria """ assert data.index.inferred_freq == 'Q', "input 'data' must be quarterly and recognized by pandas." self.data = data self.lags = lags self.hyperpriors = hyperpriors self.vc = vc self.stationary_prior = stationary_prior if stationary_prior is None: self.pos = None else: self.pos = [self.data.columns.get_loc(var) for var in stationary_prior] self.mnalpha = mnalpha self.mnpsi = mnpsi self.sur = sur self.noc = noc self.fcast = fcast self.hz = hz self.mcmc = mcmc self.ndraws = ndraws self.ndrwasdiscard = int(ndraws/2) if ndrawsdiscard is None else ndrawsdiscard self.mcmccosnt = mcmcconst self.mcmcfcast = mcmcfcast self.mcmcstorecoef = mcmcstorecoef self.verbose = verbose self.crit = crit self.TT = data.shape[0] # Time-series sample size without lags self.n = data.shape[1] # Number of variables in the VAR self.k = self.n * self.lags + 1 # Number of coefficients on each equation self._set_priors() self._regressor_matrix_ols() self._minimization() if self.fcast: self._forecasts() if self.mcmc: self._mcmc() def _set_priors(self): # Sets up the default choices for the priors of the BVAR of Giannone, Lenza and Primiceri (2012) if self.hyperpriors: # hyperprior mode mode_lambda = 0.2 mode_miu = 1 mode_theta = 1 # hyperprior sds sd_lambda = 0.4 sd_miu = 1 sd_theta = 1 # scale and shape of the IG on psi/(d-n-1) scalePSI = 0.02 ** 2 priorcoef = pd.DataFrame(index=['lambda', 'miu', 'theta', 'alpha', 'beta'], columns=['r_k', 'r_theta', 'PSI']) priorcoef.loc['lambda', 'r_k'], priorcoef.loc['lambda', 'r_theta'] = \ self._gamma_coef(mode_lambda, sd_lambda) priorcoef.loc['miu', 'r_k'], priorcoef.loc['miu', 'r_theta'] = self._gamma_coef(mode_miu, sd_miu) priorcoef.loc['theta', 'r_k'], priorcoef.loc['theta', 'r_theta'] = self._gamma_coef(mode_theta, sd_theta) priorcoef.loc['alpha', 'PSI'] = scalePSI priorcoef.loc['beta', 'PSI'] = scalePSI self.priorcoef = priorcoef else: self.priorcoef = None def _regressor_matrix_ols(self): # purpose is to construct the SS matrix # Constructs the matrix of regressors n = self.n lags = self.lags data = self.data x = np.zeros((self.TT, self.k)) x[:, 0] = 1 for i in range(1, self.lags + 1): x[:, 1 + (i - 1) * n: i * n + 1] = data.shift(i).values self.y0 = data.iloc[:lags, :].mean().values self.x = x[lags:, :] self.y = data.values[lags:, :] self.T = self.y.shape[0] # Sample size after lags # OLS for AR(1) residual variance of each equation SS = np.zeros(self.n) for i in range(self.n): y_reg = self.y[1:, i] x_reg = np.hstack((np.ones((self.T - 1, 1)), self.y[:-1, i].reshape((-1, 1)))) ar1 = OLS1(y_reg, x_reg) SS[i] = ar1.sig2hatols self.SS = SS def _minimization(self): # Starting values for the minimization self.lambda0 = 0.2 # std of MN prior self.theta0 = 1 # std of SUR prior self.miu0 = 1 # std NOC prior self.alpha0 = 2 # lag-decaying parameter of the MN prior self.psi0 = self.SS # Bounds for the minimization step self.lambda_min = 0.0001 self.lambda_max = 5 self.alpha_min = 0.1 self.alpha_max = 5 self.theta_min = 0.0001 self.theta_max = 50 self.miu_min = 0.0001 self.miu_max = 50 self.psi_min = self.SS / 100 self.psi_max = self.SS * 100 # Transforming inputs to unbounded and builds the initial guess x0 = np.array([-np.log((self.lambda_max - self.lambda0) / (self.lambda0 - self.lambda_min))]) if self.mnpsi: inpsi = -np.log((self.psi_max - self.psi0) / (self.psi0 - self.psi_min)) x0 = np.concatenate((x0, inpsi)) if self.sur: intheta = np.array([-np.log((self.theta_max - self.theta0) / (self.theta0 - self.theta_min))]) x0 = np.concatenate((x0, intheta)) if self.noc: inmiu = np.array([-np.log((self.miu_max - self.miu0) / (self.miu0 - self.miu_min))]) x0 = np.concatenate((x0, inmiu)) if self.mnalpha: inalpha = np.array([-np.log((self.alpha_max - self.alpha0) / (self.alpha0 - self.alpha_min))]) x0 = np.concatenate((x0, inalpha)) # initial guess for the inverse Hessian H0 = 10 * np.eye(len(x0)) # Minimization of the negative of the posterior of the hyperparameters def myfun(xxx): logML, _, _ = self._logmlvar_formin(xxx) return -logML # Optimization fh, xh, gh, h, itct, fcount, retcodeh = csminwel(fcn=myfun, x0=x0, h0=H0, grad=None, crit=self.crit, nit=1000, verbose=self.verbose) self.itct = itct self.xh = xh self.h = h self.log_post, self.betahat, self.sigmahat = self._logmlvar_formin(xh) self.lamb = self.lambda_min + (self.lambda_max - self.lambda_min) / (1 + np.exp(-xh[0])) self.theta = self.theta_max self.miu = self.miu_max if self.mnpsi: # diagonal elements of the scale matrix of the IW prior on the residual variance self.psi = self.psi_min + (self.psi_max - self.psi_min) / (1 + np.exp(-xh[1:self.n + 1])) if self.sur: # std of sur prior at the peak self.theta = self.theta_min + (self.theta_max - self.theta_min) / (1 + np.exp(-xh[self.n + 1])) if self.noc: # std of noc prior at the peak self.miu = self.miu_min + (self.miu_max - self.miu_min) / (1 + np.exp(-xh[self.n + 2])) else: # self.sur == 0 if self.noc: # std of noc prior at the peak self.miu = self.miu_min + (self.miu_max - self.miu_min) / (1 + np.exp(-xh[self.n + 1])) else: # self.mnpsi == 0 self.psi = self.SS if self.sur: # std of sur prior at the peak self.theta = self.theta_min + (self.theta_max - self.theta_min) / (1 + np.exp(-xh[1])) if self.noc: # std of noc prior at the peak self.miu = self.miu_min + (self.miu_max - self.miu_min) / (1 + np.exp(-xh[2])) else: if self.noc: # std of noc prior at the peak self.miu = self.miu_min + (self.miu_max - self.miu_min) / (1 + np.exp(-xh[1])) if not self.mnalpha: self.alpha = 2 else: # Lag-decaying parameter of the MN prior self.alpha = self.alpha_min + (self.alpha_max - self.alpha_min) / (1 + np.exp(-xh[-1])) def _forecasts(self): # Forecasts ate the posterior mode Y = np.vstack([self.y, np.zeros((self.hz, self.n))]) for tau in range(self.hz): indexes = list(range(self.T + tau - 1, self.T + tau - self.lags - 1, -1)) xT = np.vstack([1, Y[indexes].T.reshape((self.k - 1, 1), order="F")]).T Y[self.T + tau, :] = xT @ self.betahat self.forecast = Y[-self.hz:, :] def _mcmc(self): # Jacobian of the transformation of the hyperparameters that has been # used for the constrained maximization JJ = np.exp(self.xh) / ((1 + np.exp(self.xh)) ** 2) JJ[0] = (self.lambda_max - self.lambda_min) * JJ[0] if self.mnpsi: JJ[1: self.n + 1] = (self.psi_max - self.psi_min) * JJ[1: self.n + 1] if self.sur: JJ[self.n + 1] = (self.theta_max - self.theta_min) * JJ[self.n + 1] if self.noc: JJ[self.n + 2] = (self.miu_max - self.miu_min) * JJ[self.n + 2] else: if self.noc: JJ[self.n + 1] = (self.miu_max - self.miu_min) * JJ[self.n + 1] else: if self.sur: JJ[1] = (self.theta_max - self.theta_min) * JJ[1] if self.noc: JJ[2] = (self.miu_max - self.miu_min) * JJ[2] else: if self.noc: JJ[1] = (self.miu_max - self.miu_min) * JJ[1] if self.mnalpha: JJ[-1] = (self.alpha_max - self.alpha_min) * JJ[-1] JJ = np.diag(JJ) HH = JJ @ self.h @ JJ # Regularization to assure that HH is positive-definite eigval, eigvec = np.linalg.eig(HH) HH = eigvec @ np.diag(np.abs(eigval)) @ eigvec.T # recovering the posterior mode postmode = np.array([self.lamb]) if self.mnpsi: modepsi = np.array(self.psi) postmode = np.concatenate((postmode, modepsi)) if self.sur: modetheta = np.array([self.theta]) postmode = np.concatenate((postmode, modetheta)) if self.noc: modemiu = np.array([self.miu]) postmode = np.concatenate((postmode, modemiu)) if self.mnalpha: modealpha = np.array([self.alpha]) postmode = np.concatenate((postmode, modealpha)) # starting value of the Metropolis algorithm P = np.zeros((self.ndraws, self.xh.shape[0])) logMLold = -10e15 while logMLold == -10e15: P[0, :] = np.random.multivariate_normal(mean=postmode, cov=(self.mcmccosnt ** 2) * HH) logMLold, betadrawold, sigmadrawold = self._logmlvar_formcmc(P[0]) # matrix to store the draws of the VAR coefficients if MCMCstorecoeff is on if self.mcmcstorecoef: mcmc_beta = np.zeros((self.k, self.n, self.ndraws - self.ndrwasdiscard)) mcmc_sigma = np.zeros((self.n, self.n, self.ndraws - self.ndrwasdiscard)) else: mcmc_beta = None mcmc_sigma = None # matrix to store the forecasts if MCMCfcast is on if self.mcmcfcast: mcmc_Dforecast = np.zeros((self.hz, self.n, self.ndraws - self.ndrwasdiscard)) else: mcmc_Dforecast = None # Metropolis iterations count = 0 for i in tqdm(range(1, self.ndraws), 'MCMC Iterations', disable=not self.verbose): # draw candidate value P[i, :] = np.random.multivariate_normal(mean=P[i - 1, :], cov=(self.mcmccosnt ** 2) * HH) logMLnew, betadrawnew, sigmadrawnew = self._logmlvar_formcmc(P[i, :]) if logMLnew > logMLold: # if there is an improvement, accept it logMLold = logMLnew count = count + 1 else: # If there is no improvement, there is a chance to accept the draw if np.random.rand() < np.exp(logMLnew - logMLold): # If accetpted logMLold = logMLnew count = count + 1 else: # If not accepted, overwrite the draw with the last value P[i, :] = P[i - 1, :] # if MCMCfcast is on, take a new draw of the VAR coefficients with # the old hyperparameters if have rejected the new ones if self.mcmcfcast or self.mcmcstorecoef: _, betadrawnew, sigmadrawnew = self._logmlvar_formcmc(P[i, :]) # stores draws of VAR coefficients if MCMCstorecoeff is on if (i >= self.ndrwasdiscard) and self.mcmcstorecoef: mcmc_beta[:, :, i - self.ndrwasdiscard] = betadrawnew mcmc_sigma[:, :, i - self.ndrwasdiscard] = sigmadrawnew # produce and store the forecasts if MCMCfcast is on if (i >= self.ndrwasdiscard) and self.mcmcfcast: Y = np.vstack([self.y, np.zeros((self.hz, self.n))]) for tau in range(self.hz): indexes = list(range(self.T + tau - 1, self.T + tau - self.lags - 1, -1)) xT = np.vstack([1, Y[indexes].T.reshape((self.k - 1, 1), order="F")]).T Y[self.T + tau, :] = xT @ betadrawnew + np.random.multivariate_normal(mean=np.zeros(self.n), cov=sigmadrawnew) mcmc_Dforecast[:, :, i - self.ndrwasdiscard] = Y[-self.hz:, :] # store the draws of the hyperparameters mcmc_lambda = P[self.ndrwasdiscard:, 0] # Standard Minesota Prior mcmc_psi = None mcmc_theta = None mcmc_miu = None if self.mnpsi: # diagonal elements of the scale matrix of the IW prior on the residual variance mcmc_psi = P[self.ndrwasdiscard:, 1:self.n+2] if self.sur: # std of sur prior mcmc_theta = P[self.ndrwasdiscard:, self.n + 1] if self.noc: # std of noc prior mcmc_miu = P[self.ndrwasdiscard:, self.n + 2] else: # self.sur == 0 if self.noc: # std of noc prior mcmc_miu = P[self.ndrwasdiscard:, self.n + 1] else: # self.mnpsi == 0 if self.sur: # std of sur prior mcmc_theta = P[self.ndrwasdiscard:, 1] if self.noc: # std of noc prior mcmc_miu = P[self.ndrwasdiscard:, 2] else: # self.sur == 0 if self.noc: # std of noc prior mcmc_miu = P[self.ndrwasdiscard:, 1] if self.mnalpha: # Lag-decaying parameter of the MN prior mcmc_alpha = P[self.ndrwasdiscard:, -1] self.mcmc_alpha = mcmc_alpha mcmc_accrate = np.mean((mcmc_lambda[1:] != mcmc_lambda[:-1])) # Save the chains as attributes self.mcmc_beta = mcmc_beta self.mcmc_sigma = mcmc_sigma self.mcmc_dforecast = mcmc_Dforecast self.mcmc_lambda = mcmc_lambda self.mcmc_psi = mcmc_psi self.mcmc_theta = mcmc_theta self.mcmc_miu = mcmc_miu self.mcmc_accrate = mcmc_accrate def _logmlvar_formin(self, par): """ This function computes the log-posterior (or the logML if hyperpriors=0), the posterior mode of the coefficients and the covariance matrix of the residuals of the BVAR of Giannone, Lenza and Primiceri (2012) """ # The following avoids the warning "referenced before assignment" theta = None miu = None # hyperparameters lambda_ = self.lambda_min + (self.lambda_max - self.lambda_min) / (1 + np.exp(-par[0])) d = self.n + 2 if not self.mnpsi: psi = self.SS * (d - self.n - 1) if self.sur: theta = self.theta_min + (self.theta_max - self.theta_min) / (1 + np.exp(-par[1])) if self.noc: miu = self.miu_min + (self.miu_max - self.miu_min) / (1 + np.exp(-par[2])) else: if self.noc: miu = self.miu_min + (self.miu_max - self.miu_min) / (1 + np.exp(-par[1])) else: psi = self.psi_min + (self.psi_max - self.psi_min) / (1 + np.exp(-par[1:self.n + 1])) if self.sur: theta = self.theta_min + (self.theta_max - self.theta_min) / (1 + np.exp(-par[self.n + 1])) if self.noc: miu = self.miu_min + (self.miu_max - self.miu_min) / (1 + np.exp(-par[self.n + 2])) else: if self.noc: miu = self.miu_min + (self.miu_max - self.miu_min) / (1 + np.exp(-par[self.n + 1])) if not self.mnalpha: alpha = 2 else: # self.mnalpha == 1 alpha = self.alpha_min + (self.alpha_max - self.alpha_min) / (1 + np.exp(-par[-1])) # Setting up the priors omega = np.zeros(self.k) omega[0] = self.vc for i in range(1, self.lags + 1): omega[1 + (i - 1) * self.n: 1 + i * self.n] = \ (d - self.n - 1) * (lambda_ ** 2) * (1 / (i ** alpha)) / psi # Prior scale matrix for the covariance of the shocks PSI = np.diag(psi) # dummy observations if sur and / or noc = 1 Td = 0 xdsur = np.array([]).reshape((0, self.k)) ydsur = np.array([]).reshape((0, self.n)) xdnoc = np.array([]).reshape((0, self.k)) ydnoc = np.array([]).reshape((0, self.n)) y = self.y.copy() x = self.x.copy() T = self.T if self.sur: xdsur = (1 / theta) * np.tile(self.y0, (1, self.lags)) xdsur = np.hstack((np.array([[1 / theta]]), xdsur)) ydsur = (1 / theta) * self.y0 y = np.vstack((y, ydsur)) x = np.vstack((x, xdsur)) Td = Td + 1 if self.noc: ydnoc = (1 / miu) * np.diag(self.y0) # Set to zero the prior mean on the first own lag for variables selected in the vector pos if self.pos is not None: ydnoc[self.pos, self.pos] = 0 xdnoc = (1 / miu) * np.tile(np.diag(self.y0), (1, self.lags)) xdnoc = np.hstack((np.zeros((self.n, 1)), xdnoc)) y = np.vstack((y, ydnoc)) x = np.vstack((x, xdnoc)) Td = Td + self.n T = T + Td # ===== OUTPUT ===== # # Minnesota prior mean b = np.zeros((self.k, self.n)) diagb = np.ones(self.n) # Set to zero the prior mean on the first own lag for variables selected in the vector pos if self.pos is not None: diagb[self.pos] = 0 b[1:self.n + 1, :] = np.diag(diagb) # posterior mode of the VAR coefficients matA = x.T @ x + np.diag(1 / omega) matB = x.T @ y + np.diag(1 / omega) @ b betahat = np.linalg.solve(matA, matB) # np.solve runs more efficiently that inverting a gigantic matrix # VAR residuals epshat = y - x @ betahat # Posterior mode of the covariance matrix sigmahat = (epshat.T @ epshat + PSI + (betahat - b).T @ np.diag(1 / omega) @ (betahat - b)) sigmahat = sigmahat / (T + d + self.n + 1) # logML aaa = np.diag(np.sqrt(omega)) @ x.T @ x @ np.diag(np.sqrt(omega)) bbb = np.diag(1 / np.sqrt(psi)) @ (epshat.T @ epshat + (betahat - b).T @ np.diag(1/omega) @ (betahat-b)) @ np.diag(1 / np.sqrt(psi)) eigaaa = np.linalg.eig(aaa)[0].real eigaaa[eigaaa < 1e-12] = 0 eigaaa = eigaaa + 1 eigbbb = np.linalg.eig(bbb)[0].real eigbbb[eigbbb < 1e-12] = 0 eigbbb = eigbbb + 1 logML = - self.n * T * np.log(np.pi) / 2 logML = logML + sum(gammaln((T + d - np.arange(self.n)) / 2) - gammaln((d - np.arange(self.n)) / 2)) logML = logML - T * sum(np.log(psi)) / 2 logML = logML - self.n * sum(np.log(eigaaa)) / 2 logML = logML - (T + d) * sum(np.log(eigbbb)) / 2 if self.sur or self.noc: yd = np.vstack((ydsur, ydnoc)) xd = np.vstack((xdsur, xdnoc)) # prior mode of the VAR coefficients betahatd = b # VAR residuals at the prior mode epshatd = yd - xd @ betahatd aaa = np.diag(np.sqrt(omega)) @ xd.T @ xd @ np.diag(np.sqrt(omega)) bbb = np.diag(1 / np.sqrt(psi)) @ (epshatd.T @ epshatd + (betahatd - b).T @ np.diag(1 / omega) @ (betahatd - b)) @ np.diag(1 / np.sqrt(psi)) eigaaa = np.linalg.eig(aaa)[0].real eigaaa[eigaaa < 1e-12] = 0 eigaaa = eigaaa + 1 eigbbb = np.linalg.eig(bbb)[0].real eigbbb[eigbbb < 1e-12] = 0 eigbbb = eigbbb + 1 # normalizing constant norm = - self.n * Td * np.log(np.pi) / 2 norm = norm + sum(gammaln((Td + d - np.arange(self.n)) / 2) - gammaln((d - np.arange(self.n)) / 2)) norm = norm - Td * sum(np.log(psi)) / 2 norm = norm - self.n * sum(np.log(eigaaa)) / 2 norm = norm - (T + d) * sum(np.log(eigbbb)) / 2 logML = logML - norm if self.hyperpriors: logML = logML + self._log_gammma_pdf(x=lambda_, k=self.priorcoef.loc['lambda', 'r_k'], theta=self.priorcoef.loc['lambda', 'r_theta']) if self.sur: logML = logML + self._log_gammma_pdf(x=theta, k=self.priorcoef.loc['theta', 'r_k'], theta=self.priorcoef.loc['theta', 'r_theta']) if self.noc: logML = logML + self._log_gammma_pdf(x=miu, k=self.priorcoef.loc['miu', 'r_k'], theta=self.priorcoef.loc['miu', 'r_theta']) if self.mnpsi: toadd = self._log_invgammma_to_pdf(x=psi / (d - self.n - 1), alpha=self.priorcoef.loc['alpha', 'PSI'], beta=self.priorcoef.loc['beta', 'PSI']) logML = logML + sum(toadd) return logML, betahat, sigmahat def _logmlvar_formcmc(self, par): """ This function computes the log-posterior (or the logML if hyperpriors=0), and draws from the posterior distribution of the coefficients and of the covariance matrix of the residuals of the BVAR of Giannone, Lenza and Primiceri (2012) """ # hyperparameters lambda_ = par[0] d = self.n + 2 theta = self.theta_min miu = self.miu_min if not self.mnpsi: psi = self.SS * (d - self.n - 1) if self.sur: theta = par[1] if self.noc: miu = par[2] else: # if self.sur == 0 if self.noc: miu = par[1] else: psi = par[1:self.n + 1] if self.sur: theta = par[self.n + 1] if self.noc: miu = par[self.n + 2] else: if self.noc: miu = par[self.n + 1] if not self.mnalpha: alpha = 2 else: alpha = par[-1] # Check if parameters are outside of parameter space and, if so, return a very low value of the posterior cond_lower_bound = np.any([lambda_ < self.lambda_min, np.any(psi < self.psi_min), theta < self.theta_min, miu < self.miu_min, alpha < self.alpha_min]) cond_upper_bound = np.any([lambda_ > self.lambda_max, np.any(psi > self.psi_max), theta > self.theta_max, miu > self.miu_max]) if cond_lower_bound or cond_upper_bound: logML = -10e15 betadraw = None drawSIGMA = None return logML, betadraw, drawSIGMA else: # Priors omega = np.zeros(self.k) omega[0] = self.vc for i in range(1, self.lags + 1): omega[1 + (i - 1) * self.n: 1 + i * self.n] = \ ((d - self.n - 1) * (lambda_ ** 2) * (1 / (i ** alpha))) / psi # Prior scale matrix for the covariance of the shocks PSI = np.diag(psi) Td = 0 xdsur = np.array([]).reshape((0, self.k)) ydsur = np.array([]).reshape((0, self.n)) xdnoc = np.array([]).reshape((0, self.k)) ydnoc = np.array([]).reshape((0, self.n)) # dummy observations if sur and / or noc = 1 y = self.y.copy() x = self.x.copy() T = self.T if self.sur: xdsur = (1 / theta) * np.tile(self.y0, (1, self.lags)) xdsur = np.hstack((np.array([[1 / theta]]), xdsur)) ydsur = (1 / theta) * self.y0 y = np.vstack((y, ydsur)) x = np.vstack((x, xdsur)) Td = Td + 1 if self.noc: ydnoc = (1 / miu) * np.diag(self.y0) # Set to zero the prior mean on the first own lag for variables selected in the vector pos ydnoc[self.pos, self.pos] = 0 xdnoc = (1 / miu) * np.tile(np.diag(self.y0), (1, self.lags)) xdnoc = np.hstack((np.zeros((self.n, 1)), xdnoc)) y = np.vstack((y, ydnoc)) x = np.vstack((x, xdnoc)) Td = Td + self.n # ===== Output ===== # minesota prior mean b = np.zeros((self.k, self.n)) diagb = np.ones(self.n) # Set to zero the prior mean on the first own lag for variables selected in the vector pos diagb[self.pos] = 0 b[1:self.n + 1, :] = np.diag(diagb) # self.b = b # posterior mode of the VAR coefficients matA = x.T @ x + np.diag(1 / omega) matB = x.T @ y + np.diag(1 / omega) @ b betahat = np.linalg.solve(matA, matB) # np.solve runs more efficiently that inverting a gigantic matrix # VAR residuals epshat = y - x @ betahat # logMl T = T + Td aaa = np.diag(np.sqrt(omega)) @ x.T @ x @ np.diag(np.sqrt(omega)) bbb = np.diag(1 / np.sqrt(psi)) @ (epshat.T @ epshat + (betahat - b).T @ np.diag(1 / omega) @ (betahat - b)) @ np.diag(1 / np.sqrt(psi)) eigaaa = np.linalg.eig(aaa)[0].real eigaaa[eigaaa < 1e-12] = 0 eigaaa = eigaaa + 1 eigbbb = np.linalg.eig(bbb)[0].real eigbbb[eigbbb < 1e-12] = 0 eigbbb = eigbbb + 1 logML = - self.n * T * np.log(np.pi) / 2 logML = logML + sum(gammaln((T + d - np.arange(self.n)) / 2) - gammaln((d - np.arange(self.n)) / 2)) logML = logML - T * sum(np.log(psi)) / 2 logML = logML - self.n * sum(np.log(eigaaa)) / 2 logML = logML - (T + d) * sum(np.log(eigbbb)) / 2 # More terms for logML in case of more priors if self.sur or self.noc: yd = np.vstack((ydsur, ydnoc)) xd = np.vstack((xdsur, xdnoc)) # prior mode of the VAR coefficients betahatd = b # VAR residuals at the prior mode epshatd = yd - xd @ betahatd aaa = np.diag(np.sqrt(omega)) @ xd.T @ xd @ np.diag(np.sqrt(omega)) bbb = np.diag(1 / np.sqrt(psi)) @ (epshatd.T @ epshatd + (betahatd - b).T @ np.diag(1 / omega) @ (betahatd - b)) @ np.diag(1 / np.sqrt(psi)) eigaaa = np.linalg.eig(aaa)[0].real eigaaa[eigaaa < 1e-12] = 0 eigaaa = eigaaa + 1 eigbbb = np.linalg.eig(bbb)[0].real eigbbb[eigbbb < 1e-12] = 0 eigbbb = eigbbb + 1 # normalizing constant norm = - self.n * Td * np.log(np.pi) / 2 norm = norm + sum(gammaln((Td + d - np.arange(self.n)) / 2) - gammaln((d - np.arange(self.n)) / 2)) norm = norm - Td * sum(np.log(psi)) / 2 norm = norm - self.n * sum(np.log(eigaaa)) / 2 norm = norm - (T + d) * sum(np.log(eigbbb)) / 2 logML = logML - norm if self.hyperpriors: logML = logML + self._log_gammma_pdf(x=lambda_, k=self.priorcoef.loc['lambda', 'r_k'], theta=self.priorcoef.loc['lambda', 'r_theta']) if self.sur: logML = logML + self._log_gammma_pdf(x=theta, k=self.priorcoef.loc['theta', 'r_k'], theta=self.priorcoef.loc['theta', 'r_theta']) if self.noc: logML = logML + self._log_gammma_pdf(x=miu, k=self.priorcoef.loc['miu', 'r_k'], theta=self.priorcoef.loc['miu', 'r_theta']) if self.mnpsi: toadd = self._log_invgammma_to_pdf(x=psi / (d - self.n - 1), alpha=self.priorcoef.loc['alpha', 'PSI'], beta=self.priorcoef.loc['beta', 'PSI']) logML = logML + sum(toadd) # takes a draw from the posterior of SIGMA and beta, if draw is on draw = self.mcmcfcast or self.mcmcstorecoef if not draw: betadraw = None drawSIGMA = None else: S = PSI + epshat.T @ epshat + (betahat - b).T @ np.diag(1 / omega) @ (betahat - b) E, V = np.linalg.eig(S) Sinv = V @ np.diag(1 / np.abs(E)) @ V.T eta = np.random.multivariate_normal(mean=np.zeros(self.n), cov=Sinv, size=T+d) drawSIGMA = np.linalg.solve(eta.T @ eta, np.eye(self.n)) cholSIGMA = self._cholred((drawSIGMA + drawSIGMA.T) / 2) cholZZinv = self._cholred(np.linalg.solve(x.T @ x + np.diag(1 / omega), np.eye(self.k))) betadraw = betahat + cholZZinv.T @ np.random.normal(size=betahat.shape) @ cholSIGMA return logML, betadraw, drawSIGMA @staticmethod def _gamma_coef(mode, sd): k = (2 + mode ** 2 / sd ** 2 + np.sqrt((4 + mode ** 2 / sd ** 2) * mode ** 2 / sd ** 2)) / 2 theta = np.sqrt(sd ** 2 / k) return k, theta @staticmethod def _log_gammma_pdf(x, k, theta): r = (k - 1) * np.log(x) - x / theta - k * np.log(theta) - gammaln(k) return r @staticmethod def _log_invgammma_to_pdf(x, alpha, beta): r = alpha * np.log(beta) - (alpha + 1) * np.log(x) - beta * (1 / x) - gammaln(alpha) return r @staticmethod def _cholred(s): d, v = np.linalg.eig((s + s.T) / 2) d = d.real scale = np.diag(s).mean() * 1e-12 J = d > scale C = np.zeros(s.shape) C[J, :] = (v[:, J] @ np.diag(d[J] ** 0.5)).T return C class OLS1(object): """ This is a simple OLS regression, but with a more leaner and simple layout """ def __init__(self, y, x): self.x = x self.y = y nobsy = y.shape[0] nobs, nvar = x.shape assert nobsy == nobs, 'x and y must have the same number of lines' self.nobs = nobs self.nvar = nvar self.XX = x.T @ x self.invXX = np.linalg.inv(self.XX) self.bhatols = self.invXX @ (x.T @ y) self.yhatols = x @ self.bhatols self.resols = y - self.yhatols self.sig2hatols = (self.resols.T @ self.resols) / (nobs - nvar) self.sigbhatols = self.sig2hatols * self.invXX self.r2 = np.var(self.yhatols) / np.var(y) class CRBVAR(object): def __init__(self, data, lags, hz=24, vc=10e6, stationary_prior=None, crit=1e-16, hyperpriors=True, mnpsi=True, mnalpha=False, sur=True, noc=True, fcast=False, mcmc=False, ndraws=20000, ndrawsdiscard=None, mcmcconst=1, mcmcfcast=True, mcmcstorecoef=True, verbose=False, resample_method='full'): """ This class implements the "Cube-Root" Bayesian VAR from Climadomo, Giannone, Lenza, Monti and Sokol (2020). The main idea of the models is to use the BVARGLP class to estimate a quarterly VAR and "monthlize" it for a state-space model capable of dealing with missing data and mixed frequancy data. This class only accepts data with at leaset one monthly time series. Quarterly variable are allowed but must be in the same pandas.DataFrame with a monthly index. @param hyperpriors: False = no priors on hyperparameters True = reference priors on hyperparameters (default) [NOTE: hyperpriors on psi calibrated for data expressed in 4 x logs, such as 4 x log(GDP). Thus if interest rate is in percentage, divide by 100] @param vc: prior variance in the MN prior for the coefficients multiplying the contant term (Default: vc=10e6) @param stationary_prior: names of the variables that enter the VAR in first differences and for which one might want to set the prior mean on the coefficient on the first own lag in the MN prior and the prior mean of the sum-of-coefficients prior to 0 (instead of the typical 1) @param mnpsi: False = diagonal elements of the scale matrix of the IW prior on the covariance of the residuals NOT treated as hyperparameters (set to the residual variance of an AR(1)) True = diagonal elements of the scale matrix of the IW prior on the covariance of the residuals treated as hyperparameters (default) @param mnalpha: False = Lag-decaying parameter of the MN prior set to 2 and NOT treated as hyperparameter (default) True = Lag-decaying parameter of the MN prior treated as hyperparameter @param sur: False = single-unit-root prior is OFF True = single-unit-root prior is ON and its std is treated as an hyperparameter (default) @param noc: False = no-cointegration (sum-of coefficients) prior is OFF True = no-cointegration (sum-of coefficients) is ON and its std is treated as an hyperparameter (default) @param fcast: False = does not generate forecasts at the posterior mode True = generates forecasts at the posterior mode (default) @param hz: number of quarters for which it generates forecasts (default: hz=8) @param mcmc: False = does not run the MCMC (default) True = runs the MCMC after the maximization @param ndraws: number of draws in the MCMC (default: Ndraws=20000) @param ndrawsdiscard: number of draws initially discarded to allow convergence in the in the MCMC (default=Ndraws/2) @param mcmcconst: scaling constant for the MCMC (should be calibrated to achieve an acceptance rate of approx 25%) (default: MCMCconst=1) @param mcmcfcast: False = does not generate forecasts when running the MCMC True = generates forecasts while running the MCMC (for each draw of the hyperparameters the code takes a draw of the VAR coefficients and shocks, and generates forecasts at horizons hz) (default). @param mcmcstorecoef: False = does not store the MCMC draws of the VAR coefficients and residual covariance matrix True = stores the MCMC draws of the VAR coefficients and residual covariance matrix (default) @param verbose: Prints relevant information during the estimation. @param crit: precision for convergence criteria. @param resample_method: 'full' only includes quarters that have all of its data available. 'last' uses the last observation available for each quarter. """ assert data.index.inferred_freq == 'M', "input 'data' must be monthly and recognized by pandas." self.data = data if resample_method == 'full': self.data_quarterly = self._get_quarterly_df() elif resample_method == 'last': self.data_quarterly = data.resample('Q').last().dropna() else: raise NotImplementedError('resample method not implemented') self.lags = lags self.hyperpriors = hyperpriors self.vc = vc self.stationary_prior = stationary_prior self.mnalpha = mnalpha self.mnpsi = mnpsi self.sur = sur self.noc = noc self.fcast = fcast self.hz = hz self.mcmc = mcmc self.ndraws = ndraws self.ndrwasdiscard = int(ndraws/2) if ndrawsdiscard is None else ndrawsdiscard self.mcmccosnt = mcmcconst self.mcmcfcast = mcmcfcast self.mcmcstorecoef = mcmcstorecoef self.verbose = verbose self.crit = crit self.bvar_quarterly = BVARGLP(data=self.data_quarterly, lags=lags, hyperpriors=hyperpriors, vc=vc, stationary_prior=stationary_prior, mnpsi=mnpsi, mnalpha=mnalpha, sur=sur, noc=noc, fcast=fcast, hz=hz, mcmc=mcmc, ndraws=ndraws, ndrawsdiscard=ndrawsdiscard, mcmcconst=mcmcconst, mcmcfcast=mcmcfcast, mcmcstorecoef=mcmcstorecoef, verbose=verbose, crit=crit) betahat = self.bvar_quarterly.betahat sigmahat = self.bvar_quarterly.sigmahat k, n = betahat.shape _, _, _, aa, _, qq, c2, c1, CC, _, _, _ = self._build_monthly_ss(betahat, sigmahat) qqKF = np.zeros((n * lags, n * lags)) qqKF[:n, :n] = qq.real # Next line is just a weird reshaping of the starting state initX = np.flip(self.data_quarterly.iloc[:lags].values, axis=0).T.reshape(-1, 1, order='F').reshape(-1) initV =
np.eye(initX.shape[0])
numpy.eye
from __future__ import print_function import tensorflow as tf # Deep Learning library import numpy as np # Handle matrices import random # Handling random number generation import time import skimage as skimage from skimage import transform, color, exposure from skimage.transform import rotate from skimage.viewer import ImageViewer import sys tf.compat.v1.disable_eager_execution() sys.path.append("game/") from Memory import Memory from SumTree import SumTree import wrapped_flappy_bird as gamer from collections import deque# Ordered collection with ends import matplotlib.pyplot as plt # Display graphs import warnings # This ignore all the warning messages that are normally printed during the training because of skiimage warnings.filterwarnings('ignore') ''' 1. Convert image to grayscale 2. Resize image to 80x80 3. Stack last 4 frames to produce an 80x80x4 input array for network ''' def preprocess_frame(frame): # Crop the screen (remove part that contains no information) # [Up: Down, Left: right] frame = skimage.color.rgb2gray(frame) frame = skimage.transform.resize(frame,(80,80)) frame = skimage.exposure.rescale_intensity(frame,out_range=(0,255)) frame = frame / 255.0 return frame # 80x80x1 frame stack_size = 4 # We stack 4 frames stacked_frames = deque([np.zeros((80,80), dtype=np.int) for i in range(stack_size)], maxlen=4) def stack_frames(stacked_frames, state, is_new_episode): frame = preprocess_frame(state) if is_new_episode: stacked_frames = deque([np.zeros((80,80), dtype=np.int) for i in range(stack_size)], maxlen=4) stacked_frames.append(frame) stacked_frames.append(frame) stacked_frames.append(frame) stacked_frames.append(frame) stacked_state = np.stack(stacked_frames, axis=2) else: stacked_frames.append(frame) stacked_state = np.stack(stacked_frames, axis=2) return stacked_state, stacked_frames #MODEL HYPERPARAMETERS state_size = [80,80,4] #(width, height, channels) action_size = 2 #2 possible actions learning_rate = 0.00025 #TRAINING HYPERPARAMETERS total_episodes = 5000 max_steps = 5000 batch_size = 64 #FIXED Q TARGET HYPERPARAMTERS max_tau = 10000 #Exploration parameters for epsilon greedy strategy explore_start = 1.0 explore_stop = 0.01 decay_rate = 0.00005 #exponential decay rate for exploration prob #Q Learning hyperparameters gamma = 0.95 #discounting rate #MEMORY HAPERPARAMETERS pretrain_length = 100000#number of expeiences stoed in the Memory when initialized for the first time memory_size = 100000 #ADJUSTABLE training = False episode_render = False FRAME_PER_ACTION = 1 class DDDQNetwork: def __init__(self, state_size, action_size, learning_rate, name): self.state_size = state_size self.action_size = action_size self.learning_rate = learning_rate self.name = name with tf.compat.v1.variable_scope(self.name): #create placeholder self.inputs_ = tf.compat.v1.placeholder(tf.float32, [None, *state_size], name="inputs_") self.ISWeights_ = tf.compat.v1.placeholder(tf.float32, [None, 1], name="ISWeights_") self.actions_ = tf.compat.v1.placeholder(tf.float32, [None, action_size], name="actions_") #target_Q is the R(s,a) + ymax Qhat(s', a') self.target_Q = tf.compat.v1.placeholder(tf.float32, [None], name='target') #Input is 80*80*4 self.conv1 = tf.compat.v1.layers.conv2d(inputs = self.inputs_, filters = 32, kernel_size = [8,8], strides = [4,4], padding = "VALID", kernel_initializer = tf.compat.v1.keras.initializers.VarianceScaling(scale=1.0, mode="fan_avg", distribution="uniform"), name = "conv1") self.conv1_out = tf.nn.elu(self.conv1, name="conv1_out") ## --> [20, 20, 32] self.conv2 = tf.compat.v1.layers.conv2d(inputs = self.conv1_out, filters = 64, kernel_size = [4,4], strides = [2,2], padding = "VALID", kernel_initializer = tf.compat.v1.keras.initializers.VarianceScaling(scale=1.0, mode="fan_avg", distribution="uniform"), name = "conv2") self.conv2_out = tf.nn.elu(self.conv2, name="conv2_out") self.conv3 = tf.compat.v1.layers.conv2d(inputs = self.conv2_out, filters = 64, kernel_size = [3,3], strides = [1,1], padding = "VALID", kernel_initializer = tf.compat.v1.keras.initializers.VarianceScaling(scale=1.0, mode="fan_avg", distribution="uniform"), name = "conv3") self.conv3_out = tf.nn.elu(self.conv3, name="conv3_out") self.flatten = tf.compat.v1.layers.flatten(self.conv3_out) ## Here we separate into two streams #The one that calculate V(s) self.value_fc = tf.compat.v1.layers.dense(inputs = self.flatten, units = 256, activation = tf.nn.elu, kernel_initializer = tf.compat.v1.keras.initializers.VarianceScaling(scale=1.0, mode="fan_avg", distribution="uniform"), name = "value_fc") self.value = tf.compat.v1.layers.dense(inputs = self.value_fc, kernel_initializer = tf.compat.v1.keras.initializers.VarianceScaling(scale=1.0, mode="fan_avg", distribution="uniform"), units = 1, activation = None, name = "value") #The one that calculate A(s,a) self.advantage_fc = tf.compat.v1.layers.dense(inputs = self.flatten, units = 256, activation = tf.nn.elu, kernel_initializer = tf.compat.v1.keras.initializers.VarianceScaling(scale=1.0, mode="fan_avg", distribution="uniform"), name = "advantage_fc") self.advantage = tf.compat.v1.layers.dense(inputs = self.advantage_fc, kernel_initializer = tf.compat.v1.keras.initializers.VarianceScaling(scale=1.0, mode="fan_avg", distribution="uniform"), units = self.action_size, activation = None, name = "advantage") #Agregating layer #Q(s,a) = V(s) +(A(s,a) - 1/|A| * sum A(s,a')) self.output = self.value + tf.subtract(self.advantage, tf.reduce_mean(input_tensor=self.advantage, axis=1, keepdims=True)) #Q is our predicted Q value self.Q = tf.reduce_sum(input_tensor=tf.multiply(self.output, self.actions_), axis=1) #The loss is modified because of PER self.absolute_errors = tf.abs(self.target_Q - self.Q) self.loss = tf.reduce_mean(input_tensor=self.ISWeights_ * tf.math.squared_difference(self.target_Q, self.Q)) self.optimizer = tf.compat.v1.train.RMSPropOptimizer(self.learning_rate).minimize(self.loss) # Reset the graph tf.compat.v1.reset_default_graph() #Instantiate the DQNetwork DQNetwork = DDDQNetwork(state_size, action_size, learning_rate, name="DQNetwork") #Instantiate the target network TargetNetwork = DDDQNetwork(state_size, action_size, learning_rate, name="TargetNetwork") #deal with the empty memory problem bu pre-populating our emory by taking random actions memory = Memory(memory_size) # Render the environment game_state = gamer.GameState() nothing = [1, 0] up = [0, 1] possible_actions = [nothing, up] if training == True: for i in range(pretrain_length): # If it's the first step if i == 0: # First we need a state do_nothing = [1, 0] state, reward, done = game_state.frame_step(do_nothing) state, stacked_frames = stack_frames(stacked_frames, state, True) # Random action index = random.randrange(10); if (index<9): action = [1,0] else: action = [0,1] # Get the rewards next_state, reward, done = game_state.frame_step(action) # If we're dead if done: # We finished the episode next_state = np.zeros(state.shape) # Add experience to memory #experience = np.hstack((state, [action, reward], next_state, done)) experience = state, action, reward, next_state, done memory.store(experience) # Start a new episode game_state = gamer.GameState() # First we need a state do_nothing = [1, 0] state, reward, done = game_state.frame_step(do_nothing) state, stacked_frames = stack_frames(stacked_frames, state, True) else: # Get the next state next_state, stacked_frames = stack_frames(stacked_frames, next_state, False) # Add experience to memory experience = state, action, reward, next_state, done memory.store(experience) # Our state is now the next_state state = next_state #Setup TensorBoard Writer writer = tf.compat.v1.summary.FileWriter("/tensorboard/dddqn/1") ##Losses tf.compat.v1.summary.scalar("Loss", DQNetwork.loss) write_op = tf.compat.v1.summary.merge_all() ''' Train the Agent ''' def predict_action(explore_start, explore_stop, decay_rate, decay_step, state, actions): #EPSILON GREEDY STRATEGY exp_exp_tradeoff = np.random.rand() #improved EG explore_probability = explore_stop + (explore_start - explore_stop) * np.exp(-decay_rate*decay_step) if (explore_probability > exp_exp_tradeoff): #print("----------Random Action----------") index = random.randrange(10); if (index<9): action = [1,0] else: action = [0,1] #print(action) else: Qs = sess.run(DQNetwork.output, feed_dict = {DQNetwork.inputs_: state.reshape((1, *state.shape))}) choice = np.argmax(Qs) action = possible_actions[int(choice)] return action, explore_probability #This function helps us to copy one set of variables to another def update_target_graph(): # Get the parameters of our DQNNetwork from_vars = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES, "DQNetwork") # Get the parameters of our Target_network to_vars = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES, "TargetNetwork") op_holder = [] # Update our target_network parameters with DQNNetwork parameters for from_var,to_var in zip(from_vars,to_vars): op_holder.append(to_var.assign(from_var)) return op_holder # Saver will help us to save our model saver = tf.compat.v1.train.Saver() if training == True: with tf.compat.v1.Session() as sess: # Initialize the variables sess.run(tf.compat.v1.global_variables_initializer()) decay_step = 0 tau = 0 # Update the parameters of our TargetNetwork with DQN_weights update_target = update_target_graph() sess.run(update_target) for episode in range(total_episodes): step = 0 episode_rewards = [] # Make a new episode and observe the first state game_state = gamer.GameState() do_nothing = [1, 0] state, reward, done = game_state.frame_step(do_nothing) # Remember that stack frame function also call our preprocess function. state, stacked_frames = stack_frames(stacked_frames, state, True) while step < max_steps: step += 1 tau += 1 decay_step +=1 action, explore_probability = predict_action(explore_start, explore_stop, decay_rate, decay_step, state, possible_actions) # Do the action next_state, reward, done = game_state.frame_step(action) # Add the reward to total reward episode_rewards.append(reward) # If the game is finished if done: # the episode ends so no next state next_state = np.zeros((120,140), dtype=np.int) next_state, stacked_frames = stack_frames(stacked_frames, next_state, False) # Set step = max_steps to end the episode step = max_steps # Get the total reward of the episode total_reward = np.sum(episode_rewards) print('Episode: {}'.format(episode), 'Total reward: {}'.format(total_reward), 'Training loss: {:.4f}'.format(loss), 'Explore P: {:.4f}'.format(explore_probability)) # Add experience to memory experience = state, action, reward, next_state, done memory.store(experience) else: # Stack the frame of the next_state next_state, stacked_frames = stack_frames(stacked_frames, next_state, False) # Add experience to memory experience = state, action, reward, next_state, done memory.store(experience) # st+1 is now our current state state = next_state ### LEARNING PART # Obtain random mini-batch from memory tree_idx, batch, ISWeights_mb = memory.sample(batch_size) states_mb = np.array([each[0][0] for each in batch], ndmin=3) actions_mb =
np.array([each[0][1] for each in batch])
numpy.array
#from __future__ import division import numpy as np import matplotlib.pyplot as plt import astropy.io.fits as pf import matplotlib.cm as cm import warnings import multiprocess as mtp from numpy import linalg as LA from scipy import signal as scp import scipy.ndimage.filters as med from SLIT import Lens from SLIT import tools warnings.simplefilter("ignore") ##SLIT: Sparse Lens Inversion Technique def SLIT(Y, Fkappa, kmax, niter, size, PSF, PSFconj, S0 = [0], levels = [0], scheme = 'FB', mask = [0], lvl = 0, weightS = 1, noise = 'gaussian', tau = 0, verbosity = 0, nweights = 1): ##DESCRIPTION: ## Function that estimates the source light profile from an image of a lensed source given the mass density profile. ## ##INPUTS: ## -img: a 2-D image of a lensed source given as n1xn2 numpy array. ## -Fkappa: an array giving the mapping between lens and source. This array is calculated from the lens mass density ## using tools from SLIT.Lens ## -kmax: the detection threshold in units of noise levels. We usualy set this value to 5 to get a 5 sigma ## detection threshold. ## -niter: maximal number of iterations of the algorithm. ## -size: resoluution factor between lens and source grids such thathe size of the output source ## will be n1sizexn2size ## -PSF: the point spread function of the observation provided as a 2D array. ## -PSFconj: The conjugate of the PSF. Usually computed via np.real(np.fft.ifft2(np.conjugate(np.fft.fft2(PSF0[:-1,:-1])))) ## butthe user has to make sure that the conjugate is well centered. ## ##OPTIONS: ## -levels: an array that contains the noise levels at each band of the wavelet decomposition of the source. ## If not provided, the routine will compute the levels and save them in a fits file 'Noise_levels.fits' ## so that they can be used at a later time. This option allows to save time when running the same ## experiment several times. ## -mask: an array of zeros and one with size ns1xns2. The zeros will stand for masked data. ## ##OUTPUTS: ## -S: the source light profile. ## -FS: the lensed version of the estimated source light profile ## ##EXAMPLE: ## S,FS = SLIT(img, Fkappa, 5, 100, 1, PSF, PSFconj) n1,n2 = np.shape(Y) PSFconj = PSF.T #Size of the source ns1,ns2 = int(n1*size), int(n2*size) #Number of starlet scales in source plane if lvl ==0: lvl = np.int(np.log2(ns2)) else: lvl = np.min([lvl,np.int(np.log2(ns2))]) lvlg = np.int(np.log2(n2)) #Masking if required if np.sum(mask) == 0: mask = np.ones((n1,n2)) #Noise in image plane if noise == 'gaussian': print('noise statistic is gaussain') sigma0 = tools.MAD(Y) print('sigma: ', sigma0) if noise == 'poisson': print('noise statistic is poisson') sigma0 = tools.MAD_poisson(Y,tau) if (noise == 'G+P') or (noise == 'P+G'): print('noise statistic is poisson and gaussain mixture') sigma0 = np.sqrt(tools.MAD_poisson(Y,tau, lvlg)**2+tools.MAD(Y)**2) plt.imshow(sigma0); plt.colorbar(); plt.show() #Mapping of an all-at-one image to source plane lensed = lens_one(Fkappa, n1,n2, size) #estimation of the frame of the image in source plane supp = np.zeros((lvl,lensed.shape[0],lensed.shape[1])) supp[:, lensed/lensed==1] = 1 #Useful functions def Finv_apply(I): return Lens.image_to_source(I, size, Fkappa, lensed = lensed) def Lens_op2(I): return Lens.image_to_source(I, size, Fkappa, lensed = lensed, square = 1) def F_apply(Si): return Lens.source_to_image(Si, n1, n2,Fkappa) def PSF_apply(i): return scp.fftconvolve(i,PSF,mode = 'same') def PSFT_apply(ii): return scp.fftconvolve(ii,PSFconj,mode = 'same') def transform(x): coeffs, _ = tools.wave_transform(x, lvl, newwave=1) return coeffs def inverse(x): return tools.iuwt(x, newwave=1) #Forward operator def F_op(X): return PSF_apply(F_apply(X)) #Inverse operator def I_op(X): return Finv_apply(PSFT_apply(X)) #Forward operator def FW_op(X): return PSF_apply(F_apply(inverse(X))) #Inverse operator def IW_op(X): return transform(Finv_apply(PSFT_apply(X))) #Regularisation (Backward term) def reg0(X): return tools.Hard(X, levels, (ks), supp=supp) def reg00(X): return tools.Hard_Threshold(X, transform, inverse,levels, (ks), M = [0], supp=supp) def reg1(X): return tools.Soft(X, levels*weightS, kmax, supp=supp, Kill = 0) def reg_plus(X): Xreg = np.copy(X) Xreg[X<0] = 0 return Xreg def reg_supp(X): X[X < 0] = 0 return X*supp def reg_filter(X): return tools.mr_filter(X,levels,ks,10,transform, inverse, I_op(sigma0*np.ones((n1,n2))), lvl = lvl, supp = supp) #Noise simulations to estimate noise levels in source plane if np.sum(levels)==0: print('Calculating noise levels') #levels = simulate_noise(n1,n2, sigma0, size, I_op, transform, lvl) levels = level_source(n1,n2,sigma0,size,PSFconj, Lens_op2, lensed, lvl) #Saves levels hdus = pf.PrimaryHDU(levels) lists = pf.HDUList([hdus]) lists.writeto('Noise_levels.fits', clobber=True) def mk_levels(sigma): return level_source(n1,n2,sigma0,size,PSFconj, Lens_op2, lensed, lvl) ##Compute spectral norms opwave_norm = spectralNorm(n1,n2,20,1e-10,IW_op,FW_op) op_norm = spectralNorm(ns1, ns2, 20, 1e-10, F_op, I_op) wave_norm = spectralNorm(ns1,ns2,20,1e-10,transform,inverse) if scheme == 'Vu': mu = 1. tau = 1./(mu*wave_norm**2+0.5*op_norm) if verbosity == 1: print(mu,tau) else: mu = .5/(opwave_norm) if verbosity == 1: print(mu) #Initialisation niter0 = np.copy(niter) Res1= [] for jr in range(nweights): if jr!= nweights-1: niter = niter0/2 else: niter = niter0 trans = (transform(I_op(Y))/levels)*supp #trans[:,lensed==0] = 0 trans[levels==0] =0 ks0 = np.max(trans)*0.9 print(ks0) ks=np.copy(ks0) steps = (ks0-kmax)/(niter-10.) karg = np.log(kmax/ks0)/(niter-10.) i = 0 ts = 1 csi = 0 M = [0] Res1= [] Res2 = [] if np.sum(S0) == 0: S = np.random.randn(ns1, ns2) * np.median(sigma0)*0 else: S = S0 Snew = S alpha =transform(S) alphaY = transform(I_op(Y)) alphanew = np.copy(alpha) points = 0 while i < niter: if scheme == 'FB': print('FB ', i) ks = ks0*np.exp(i*karg) ks = np.max([ks, kmax]) S = np.copy(Snew) Snew = tools.Forward_Backward(Y, S, F_op, I_op, transform, inverse, mu, reg1, pos = 1) S[S<0] = 0 FS = F_op(Snew)*mask if (noise == 'G+P') or (noise == 'P+G') and (i<10): sigma = (tools.MAD(Y)+np.sqrt(FS/tau)) levels = mk_levels(sigma) elif scheme == 'FISTA': print('FISTA ', i) #S = np.copy(Snew) alphanew = np.copy(alpha) alpha, csi, ts = tools.FISTA(Y, alphanew, F_op, I_op, mu, ts, csi, reg1, transform, inverse, mask = mask) #Snew = inverse(alpha) #FS = F_op(Snew) elif scheme == 'Vu': print('Vu ', i) S = np.copy(Snew) Snew,alpha = tools.Vu_Primal_dual(Y, S, alpha, mu, tau, F_op, I_op, transform, inverse, reg1, reg_plus) # FS = F_op(Snew) # plt.imshow(S) # plt.show() SDR = tools.SDR(alpha, alphanew) # Res = tools.Res(Y,FS,sigma0) #Convergence condition # Res1.append(Res) Res2.append(SDR) # ks = ks-steps if i>5: add = Criteria(i, SDR, Res2) if add == 0: points = np.max([0,points-1]) else: points+=add if points >= 5: print('BREAK: algorithm converged at iteration: ', i) break i = i+1 if i == niter: print('BREAK: Maximum number of iterations reached.') # alpha = transform(S) weightS = 2./(1.+np.exp(-10.*(levels*kmax-alpha))) # plt.show() Snew = inverse(alpha) FS = F_op(Snew) #Final reconstruction of the source if np.size(np.shape(sigma0))>2: sigma0[sigma0==0]=np.mean(sigma0) if verbosity == 1: plt.imshow((Y-FS)/(sigma0)); plt.colorbar(); plt.show() # plt.plot(Res1, 'b'); plt.show() plt.plot(Res2, 'r'); plt.show() if noise == 'poisson': plt.subplot(211) plt.title('S') plt.imshow(S); plt.colorbar() plt.show() return Snew, FS #############################SLIT MCA for blended lenses############################ def SLIT_MCA(Y, Fkappa, kmax, niter, riter, size,PSF, PSFconj, lvlg = 0, lvls = 0, noise = 'gaussian', scheme = 'FISTA', decrease = 0, tau =0, levels = [0], WS = 1, WG = 1, mask = [0,0], Sinit = 0, Ginit=0, Kills = 0, Killg = 0, verbosity = 0, nweight = 5, original_fista=False, noise_levels_file='Noise_levels_MCA.fits'): ##DESCRIPTION: ## Function that estimates the source and lens light profiles from an image of a ## strong lens system ## ##INPUTS: ## -img: a 2-D image of a lensed source given as n1xn2 numpy array. ## -Fkappa: an array giving the mapping between lens and source. This array is calculated from the lens mass density ## using tools from SLIT.Lens ## -kmax: the detection threshold in units of noise levels. We usualy set this value to 5 to get a 5 sigma ## detection threshold. ## -niter: maximal number of iterations in the main loop over G. ## -riter: maximal number of iterations in the inner loop over S. ## -size: resoluution factor between lens and source grids such thathe size of the output source ## will be n1sizexn2size ## -PSF: the point spread function of the observation provided as a 2D array. ## -PSFconj: The conjugate of the PSF. Usually computed via np.real(np.fft.ifft2(np.conjugate(np.fft.fft2(PSF0[:-1,:-1])))) ## butthe user has to make sure that the conjugate is well centered. ## ##OPTIONS: ## -levels: an array that contains the noise levels at each band of the wavelet decomposition of the source. ## If not provided, the routine will compute the levels and save them in a fits file 'Noise_levels.fits' ## so that they can be used at a later time. This option allows to save time when running the same ## experiment several times. ## -mask: an array of zeros and one with size ns1xns2. The zeros will stand for masked data. ## -Ginit: Educated guedd for the lens galaxy light profile. if set to a 2D numpy array, the array will be used as ## as an initialisation for G. ## ##OUTPUTS: ## -S: the source light profile. ## -G: the convolved lens light profile ## -FS: the lensed version of the estimated source light profile ## ##EXAMPLE: ## S,FS = SLIT(img, Fkappa, 5, 100, 1, PSF, PSFconj) niter = max([6, niter]) #Shape of the image n1,n2 = np.shape(Y) #Initialisation of the source ns1 = int(n1*size) ns2 = int(n2*size) PSFconj = PSF.T #Number of starlet scales in source and image planes if lvlg ==0: lvlg = np.int(np.log2(n2)) else: lvlg = np.min([lvlg,np.int(np.log2(n2))]) lvls = lvlg if lvls >np.int(np.log2(ns2)): print('Error, too many wavelet levels for the source. Choose a smaller value for lvl') exit #Masking if required if np.sum(mask) == 0: mask = np.ones((n1,n2)) # Y = Y*mask # instead we put noise where pixels are masked #Noise standard deviation in image plane if noise == 'gaussian': sigma0 = tools.MAD(Y) print('noise statistic is gaussian (sigma = {:.5e})'.format(sigma0)) if noise == 'poisson': sigma0 = tools.MAD_poisson(Y,tau) print('noise statistic is poisson (sigma = {:.5e})'.format(sigma0)) if (noise == 'G+P') or (noise == 'P+G'): sigma0 = np.sqrt(tools.MAD_poisson(Y,tau, lvlg)**2+tools.MAD(Y)**2) print('noise statistic is gaussian-poisson mixture (sigma = {:.3f})'.format(sigma0)) # replace masked pixels with gaussian noise (fix k computation) masked_pixels = np.where(mask == 0) gaussian_noise_map = sigma0 * np.random.randn(n1, n2) Y[masked_pixels] = gaussian_noise_map[masked_pixels] #Mapping of an all-at-one image lensed = lens_one(Fkappa, n1,n2, size) supp = np.zeros((lvls,lensed.shape[0],lensed.shape[1])) supp[:,lensed/lensed ==1] =1 #Limits of the image plane in source plane bound = mk_bound(Fkappa, n1,n2, size) #Useful functions def Finv_apply(I): return Lens.image_to_source(I, size, Fkappa, lensed = lensed) def Lens_op2(I): return Lens.image_to_source(I, size, Fkappa, lensed = lensed, square = 1) def F_apply(Si): return Lens.source_to_image(Si, n1, n2,Fkappa) def PSF_apply(i): return scp.fftconvolve(i,PSF,mode = 'same') def PSFT_apply(ii): return scp.fftconvolve(ii,PSFconj,mode = 'same') def transform(x): coeffs, _ = tools.wave_transform(x, lvlg, newwave=1) return coeffs def inverse(x): return tools.iuwt(x, newwave=1) def FWS_op(X): return PSF_apply(F_apply(inverse(X))) #Inverse operator def IWS_op(X): return transform(Finv_apply(PSFT_apply(X))) def FWG_op(X): return PSF_apply(inverse(X)) #Inverse operator def IWG_op(X): return transform(PSFT_apply(X)) #Forward Source operator def FS_op(X): return PSF_apply(F_apply(X)) #Inverse Source operator def IS_op(X): return Finv_apply(PSFT_apply(X)) #Forward Lens operator def FG_op(X): return X#(PSF_apply(X)) #Inverse Lens operator def IG_op(X): return X#(PSFT_apply(X)) #Regularisation (Backward term) def regG0(X): return tools.Hard_Threshold(X, transform, inverse, levelg*kG) def regS0(X): return tools.Hard_Threshold(X, transform, inverse, levels*kS) def regG1(X): return tools.Soft(X, levelg*weightG, k, supp=1, Kill = Killg) def regS1(X): return tools.Soft(X, levels*weightS, k , supp=supp, Kill = Kills) def reg_plus(X): X[X<0] = 0 return X def reg_filter(X): return tools.mr_filter(X,levels,kmax,20,transform, inverse, I_op(sigma0*np.ones((n1,n2))), lvl = lvl, supp = supp) # Noise levels in image plane in starlet space levelg = tools.level(n1, n2, lvlg) * sigma0 #Noise simulations to estimate noise levels in source plane if not np.any(levels): print('Calculating noise levels') levels = level_source(n1, n2, sigma0, size, PSFconj, Lens_op2, lensed, lvls) #levels[:,lensed ==0] = np.max(levels*10) #Saves levels hdus = pf.PrimaryHDU(levels) lists = pf.HDUList([hdus]) lists.writeto(noise_levels_file, clobber=True) #Computationt of spectral norms FS_norm = spectralNorm(ns1,ns2,20,1e-10,FS_op,IS_op) FG_norm = spectralNorm(ns1, ns2, 20, 1e-10, FG_op, IG_op) wave_norm_im = spectralNorm(n1,n2,20,1e-10,transform,inverse) wave_norm_s = spectralNorm(ns1,ns2,20,1e-10,transform,inverse) opwaveS_norm = spectralNorm(n1, n2, 20, 1e-10, IWS_op, FWS_op) opwaveG_norm = spectralNorm(n1, n2, 20, 1e-10, IWG_op, FWG_op) if scheme == 'Vu': mu = 1. tauG = 0.5/(mu*wave_norm_im**2+0.5*FG_norm) tauS = 0.5 / (mu * wave_norm_s ** 2 + 0.5 * FS_norm) if verbosity == 1: print(tauS, tauG) else: muG = 1. / (opwaveG_norm) muS = 1. / (opwaveS_norm) if verbosity == 1: print(muS, muG) weightS = WS weightG = WG niter0 = np.copy(niter) riter0 = np.copy(riter) #Reweighting loop # k = tools.MOM(transform(Y), transform(Y), levelg, levelg) # original code k = tools.MOM(transform(Y), transform(Y), levels, levelg) k0 = np.copy(k) karg = np.log(kmax / k0) / (niter - 10.) if np.sum(Ginit) == 0: G = np.random.randn(n1, n2) * sigma0 else: G = Ginit if np.sum(Sinit) == 0: S = np.random.randn(ns1, ns2) * sigma0 else: S = Sinit # FS = FG_op(G) # original code # FG = FS_op(S) # original code FS = 0 FG = 0 Gnew = np.copy(G) Snew = np.copy(S) alphaSnew = transform(S) csiS = np.copy(alphaSnew) alphaGnew = transform(G) csiG = np.copy(alphaGnew) for it in range(nweight): #Initialisations if it<np.max(range(nweight)): niter = niter0#/2 riter = riter0#/2 else: niter = niter0 riter = riter0 i = 0 tg = 1 ts = 1 if decrease == 1: # k = tools.MOM(transform(Y), transform(Y), levelg, levelg) # original code k = tools.MOM(transform(Y), transform(Y), levels, levelg) else: k = kmax k0 = np.copy(k) karg = np.log(kmax / k0) / (niter - 10.) print(k) step = (k-kmax)/(niter-5) Res1 = [] Res2 = [] DS = np.copy(Y) DG = np.copy(Y) #Beginning of main loop points = 0 Res1G = [1, 2] Res1S= [1,2] while i < niter: k = k-step#k0 * np.exp(i * karg)# # kMOM = tools.MOM(transform(DS), transform(DG), levelg, levelg) # original code kMOM = tools.MOM(transform(DS), transform(DG), levels, levelg) if kMOM<k: k = np.copy(kMOM) print('MOMs threshold: ', k) step = (k-kmax)/(niter-i-5) k = np.max([kmax, k]) print('main loop: ', i, k, kMOM) DS = Y - FG ts = 1 pointS = 0 Res1S = [] Res2S = [] pointS = 0 for j in range(riter): if scheme == 'FISTA': alphaS = np.copy(alphaSnew) alphaSnew, csiS, ts = tools.FISTA(DS, alphaS, FS_op, IS_op, muS, ts, csiS, regS1, transform, inverse, pos=0, original_fista=original_fista) if scheme == 'Vu': alphaS = np.copy(alphaSnew) S = np.copy(Snew) Snew, alphaSnew = tools.Vu_Primal_dual(DS, S, alphaS, mu, tauS, FS_op, IS_op, transform, inverse, regS1, reg_plus) Res2S.append(tools.SDR(alphaS, alphaSnew)) if j > 5: pointS = Criteria(j, Res1S, Res2S) if pointS >= 5: if verbosity == 1: print('Convergence on S in:', j, ' iterations.') break if scheme == 'FISTA': Snew = inverse(alphaSnew) Snew[Snew<0] = 0 FS = FS_op(Snew) DG = Y - FS tg = 1 pointG = 0 Res1G = [] Res2G = [] G = np.copy(Gnew) pointG = 0 for j2 in range(1): if scheme == 'FISTA': alphaG = np.copy(alphaGnew) alphaGnew, csiG, tg = tools.FISTA(DG, alphaG, FG_op, IG_op, muG, tg, csiG, regG1, transform, inverse, pos = 0, original_fista=original_fista) if scheme == 'Vu': alphaG = np.copy(alphaGnew) G = np.copy(Gnew) Gnew, alphaGnew = tools.Vu_Primal_dual(DG, G, alphaG, mu, tauG, FG_op, IG_op, transform, inverse, regG1, reg_plus) Res2G.append(tools.SDR(alphaG, alphaGnew)) if j2>5: pointG = Criteria(j2, Res1G, Res2G) if pointG >=5: if verbosity == 1: print('Convergence on S in:', j2, ' iterations.') break if scheme == 'FISTA': Gnew = inverse(alphaGnew) Gnew[Gnew<0] = 0 FG = FG_op(Gnew) Res1.append(tools.Res(Y, FS+FG, sigma0)) Res2.append((tools.SDR(Gnew, G)+tools.SDR(Snew, S))/2.) if i>5: points = Criteria(i, Res2, Res1) if points >= 5: if verbosity ==1: print('BREAK: algorithm converged at iteration: ', i) break if verbosity ==1: plt.figure(0) plt.subplot(221) plt.title('S') plt.imshow(Snew) plt.subplot(222) plt.title('FS') plt.imshow(FS) plt.subplot(223) plt.title('FG') plt.imshow(FG) plt.subplot(224) plt.title('Residuals') plt.imshow(Y-FS-FG) plt.savefig('Res'+str(i)+'.png') i +=1 #Weighting weightS = 2./(1.+np.exp(-10.*(levels*kmax-alphaSnew))) weightG = 2./(1.+np.exp(-10.*(levelg*kmax-alphaGnew))) # Snew, FS = SLIT(Y-FG, Fkappa, kmax, niter, size, PSF, PSFconj, levels = [0], scheme = 'FISTA', mask = mask, lvl = lvls) #Final reconstructions if verbosity == 2: plt.show() plt.figure(1) plt.subplot(211) plt.plot(Res1) plt.subplot(212) plt.plot(Res2) return Snew, FS,Gnew, FG, Res1, Res2 def SLIT_MCA_HR(Y, Fkappa, kmax, niter, riter, size, PSF, lvlg=0, lvls=0, noise='gaussian', scheme='FISTA', tau=0, levels=[0], WS=1, WG=1, mask=[0, 0], Ginit=0, Kills=0, Killg=0, verbosity=0, nweight=5): ##DESCRIPTION: ## Function that estimates the source and lens light profiles from an image of a ## strong lens system ## ##INPUTS: ## -img: a 2-D image of a lensed source given as n1xn2 numpy array. ## -Fkappa: an array giving the mapping between lens and source. This array is calculated from the lens mass density ## using tools from SLIT.Lens ## -kmax: the detection threshold in units of noise levels. We usualy set this value to 5 to get a 5 sigma ## detection threshold. ## -niter: maximal number of iterations in the main loop over G. ## -riter: maximal number of iterations in the inner loop over S. ## -size: resoluution factor between lens and source grids such thathe size of the output source ## will be n1sizexn2size ## -PSF: the point spread function of the observation provided as a 2D array. ## -PSFconj: The conjugate of the PSF. Usually computed via np.real(np.fft.ifft2(np.conjugate(np.fft.fft2(PSF0[:-1,:-1])))) ## butthe user has to make sure that the conjugate is well centered. ## ##OPTIONS: ## -levels: an array that contains the noise levels at each band of the wavelet decomposition of the source. ## If not provided, the routine will compute the levels and save them in a fits file 'Noise_levels.fits' ## so that they can be used at a later time. This option allows to save time when running the same ## experiment several times. ## -mask: an array of zeros and one with size ns1xns2. The zeros will stand for masked data. ## -Ginit: Educated guedd for the lens galaxy light profile. if set to a 2D numpy array, the array will be used as ## as an initialisation for G. ## ##OUTPUTS: ## -S: the source light profile. ## -G: the convolved lens light profile ## -FS: the lensed version of the estimated source light profile ## ##EXAMPLE: ## S,FS = SLIT(img, Fkappa, 5, 100, 1, PSF, PSFconj) niter = max([6, niter]) # Shape of the image n1, n2 = np.shape(Y) # Initialisation of the source ns1 = n1 * size ns2 = n2 * size PSFconj = PSF.T # Number of starlet scales in source and image planes if lvlg == 0: lvlg = np.int(np.log2(n2)) else: lvlg = np.min([lvlg, np.int(np.log2(n2))]) lvls = lvlg if lvls > np.int(np.log2(ns2)): print('Error, too many wavelet levels for the source. Choose a smaller value for lvl') exit # Masking if required if np.sum(mask) == 0: mask = np.ones((n1, n2)) Y = Y * mask # Noise standard deviation in image plane if noise == 'gaussian': print('noise statistic is gaussain') sigma0 = tools.MAD(Y) if noise == 'poisson': print('noise statistic is poisson') sigma0 = tools.MAD_poisson(Y, tau) if (noise == 'G+P') or (noise == 'P+G'): print('noise statistic is poisson and gaussain mixture') sigma0 = np.sqrt(tools.MAD_poisson(Y, tau, lvlg) ** 2 + tools.MAD(Y) ** 2) # Mapping of an all-at-one image lensed = lens_one(Fkappa, ns1, ns2, 1) supp = np.zeros((lvls, lensed.shape[0], lensed.shape[1])) supp[:, lensed / lensed == 1] = 1 # Limits of the image plane in source plane bound = mk_bound(Fkappa, ns1, ns2, 1) # Useful functions def Down(I): return tools.Downsample(I, size) def Up(I): return tools.Upsample(I, size) def Finv_apply(I): return Lens.image_to_source(I, 1, Fkappa, lensed=lensed) def Lens_op2(I): return Lens.image_to_source(I, 1, Fkappa, lensed=lensed, square=1) def F_apply(Si): return Lens.source_to_image(Si, ns1, ns2, Fkappa) def PSF_apply(i): return scp.fftconvolve(i, PSF, mode='same') def PSFT_apply(ii): return scp.fftconvolve(ii, PSFconj, mode='same') def transform(x): coeffs, _ = tools.wave_transform(x, lvlg, newwave=1) return coeffs def inverse(x): return tools.iuwt(x, newwave=1) def FWS_op(X): return Down(PSF_apply(F_apply(inverse(X)))) # Inverse operator def IWS_op(X): return transform(Finv_apply(PSFT_apply(Up(X)))) def FWG_op(X): return inverse(X) # Inverse operator def IWG_op(X): return transform(X) # Forward Source operator def FS_op(X): return Down(PSF_apply(F_apply(X))) # Inverse Source operator def IS_op(X): return Finv_apply(PSFT_apply(Up(X))) # Forward Lens operator def FG_op(X): return X # (PSF_apply(X)) # Inverse Lens operator def IG_op(X): return X # (PSFT_apply(X)) # Regularisation (Backward term) def regG0(X): return tools.Hard_Threshold(X, transform, inverse, levelg * kG) def regS0(X): return tools.Hard_Threshold(X, transform, inverse, levels * kS) def regG1(X): return tools.Soft(X, levelg * weightG, k, supp=1, Kill=Killg) def regS1(X): return tools.Soft(X, levels * weightS, k, supp=supp, Kill=Kills) def reg_plus(X): X[X < 0] = 0 return X def reg_filter(X): return tools.mr_filter(X, levels, kmax, 20, transform, inverse, I_op(sigma0 * np.ones((n1, n2))), lvl=lvl, supp=supp) # Noise levels in image plane in starlet space levelg = tools.level(n1, n2, lvlg) * sigma0 # Noise simulations to estimate noise levels in source plane if np.sum(levels) == 0: print('Calculating noise levels') levels = level_source_HR(n1, n2, size, sigma0, PSFconj, Lens_op2, Up, lvls) # levels[:,lensed ==0] = np.max(levels*10) # Saves levels hdus = pf.PrimaryHDU(levels) lists = pf.HDUList([hdus]) lists.writeto('Noise_levels_MCA.fits', clobber=True) # Computationt of spectral norms FS_norm = spectralNorm(ns1, ns2, 20, 1e-10, FS_op, IS_op) FG_norm = spectralNorm(ns1, ns2, 20, 1e-10, FG_op, IG_op) wave_norm_im = spectralNorm(ns1, ns2, 20, 1e-10, transform, inverse) wave_norm_s = spectralNorm(ns1, ns2, 20, 1e-10, transform, inverse) opwaveS_norm = spectralNorm(n1, n2, 20, 1e-10, IWS_op, FWS_op) opwaveG_norm = spectralNorm(n1, n2, 20, 1e-10, IWG_op, FWG_op) if scheme == 'Vu': mu = 1. tauG = 0.5 / (mu * wave_norm_im ** 2 + 0.5 * FG_norm) tauS = 0.5 / (mu * wave_norm_s ** 2 + 0.5 * FS_norm) if verbosity == 1: print(tauS, tauG) else: muG = 1. / (opwaveG_norm) muS = 1. / (opwaveS_norm) if verbosity == 1: print(muS, muG) weightS = WS weightG = WG niter0 = np.copy(niter) riter0 = np.copy(riter) # Reweighting loop for it in range(nweight): # Initialisations if it < np.max(range(nweight)): niter = niter0 # /2 riter = riter0 # /2 else: niter = niter0 riter = riter0 i = 0 tg = 1 ts = 1 FS = 0 FG = 0 G = np.random.randn(n1, n2) * sigma0 S = np.random.randn(ns1, ns2) * sigma0 Gnew = np.copy(G) Snew = np.copy(S) alphaSnew = transform(S) csiS = np.copy(alphaSnew) alphaGnew = transform(G) csiG = np.copy(alphaGnew) k = tools.MOM(transform(Y), transform(Y), levels, levelg) / 100. k0 = np.copy(k) karg = np.log(kmax / k0) / (niter - 5.) print(k) step = (k - kmax) / (niter - 5) Res1 = [] Res2 = [] DS = np.copy(Y) DG = np.copy(Y) # Beginning of main loop points = 0 Res1G = [1, 2] Res1S = [1, 2] while i < niter: k = k0 * np.exp(i * karg) kMOM = tools.MOM(transform(DS), transform(DG), levels, levelg) if kMOM < k: k = np.copy(kMOM) print('MOMs threshold: ', k) step = (k - kmax) / (niter - i - 5) k = np.max([kmax, k]) print('main loop: ', i, k, kMOM) DG = Y - FS tg = 1 pointG = 0 Res1G = [] Res2G = [] G = np.copy(Gnew) pointG = 0 for j2 in range(1): if scheme == 'FISTA': alphaG = np.copy(alphaGnew) alphaGnew, csiG, tg = tools.FISTA(DG, alphaG, FG_op, IG_op, muG, tg, csiG, regG1, transform, inverse, pos=0) if scheme == 'Vu': alphaG = np.copy(alphaGnew) G = np.copy(Gnew) Gnew, alphaGnew = tools.Vu_Primal_dual(DG, G, alphaG, mu, tauG, FG_op, IG_op, transform, inverse, regG1, reg_plus) Res2G.append(tools.SDR(alphaG, alphaGnew)) if j2 > 5: pointG = Criteria(j2, Res1G, Res2G) if pointG >= 5: if verbosity == 1: print('Convergence on S in:', j2, ' iterations.') break if scheme == 'FISTA': Gnew = inverse(alphaGnew) Gnew[Gnew < 0] = 0 FG = FG_op(Gnew) DS = Y - FG ts = 1 pointS = 0 Res1S = [] Res2S = [] pointS = 0 for j in range(riter): if scheme == 'FISTA': alphaS = np.copy(alphaSnew) alphaSnew, csiS, ts = tools.FISTA(DS, alphaS, FS_op, IS_op, muS, ts, csiS, regS1, transform, inverse, pos=0) if scheme == 'Vu': alphaS =
np.copy(alphaSnew)
numpy.copy
import pytest import numpy as np from cascade import kappa from cascade import group_offsets from cascade import Cascade from cascade import ScoreType from cascade import IndicatorType import factories import fixtures np.random.seed(42) def test_kappa_with_empy_qid(): qid = np.array([]) cutoff = 5 assert [] == kappa([], cutoff, qid) def _make_query_data(num_queries=1, depth=5, random_depth=False): queries = np.random.choice(list(range(num_queries)), num_queries, replace=False) scores = np.random.uniform(low=0., high=10., size=num_queries * depth) qid = [] for x in queries: qid += [x] * depth return scores, np.array(qid) def test_kappa_when_query_equals_cutoff(): cutoff = 5 query_depth = 5 scores, qid = _make_query_data(depth=query_depth) topk = sorted(scores, reverse=True) res = kappa(scores, cutoff, qid) np.testing.assert_almost_equal(res, np.full_like(res, topk[cutoff - 1])) def test_kappa_score_when_query_shorter_than_cutoff(): cutoff = 10 query_depth = 5 scores, qid = _make_query_data(depth=query_depth) topk = sorted(scores, reverse=True) res = kappa(scores, cutoff, qid) np.testing.assert_almost_equal(res, np.full_like(res, topk[query_depth - 1])) def test_kappa_score_when_query_longer_than_cutoff(): cutoff = 5 query_depth = 10 scores, qid = _make_query_data(depth=query_depth) topk = sorted(scores, reverse=True) res = kappa(scores, cutoff, qid) np.testing.assert_almost_equal(res, np.full_like(res, topk[cutoff - 1])) def test_single_stage_cascade_resets_predict_attributes(): cascade = factories.dummy_cascade() cascade.predict_reset() for ranker in cascade: assert None == ranker.predict assert None == ranker.kappa assert None == ranker.mask assert None == ranker.estimate def test_cascade_first_stage_has_no_score_mask(): X, _, qid = fixtures.train_data() cascade = factories.cascade(num_stages=1, cutoffs=[5]) ranker = cascade.rankers[0] cascade.predict(X, qid) assert Cascade.SCORE_MASK not in ranker.predict def test_cascade_first_stage_applies_cutoff(): X, _, qid = fixtures.train_data() cascade = factories.cascade(num_stages=1, cutoffs=[2]) ranker = cascade.rankers[0] ranker.booster.update() offsets = group_offsets(qid) a, b = next(offsets) cascade.predict(X, qid) expected = (b - a) * [0.01948363] np.testing.assert_almost_equal(ranker.kappa[a:b], expected) def test_cascade_first_stage_applies_mask(): X, _, qid = fixtures.train_data() cascade = factories.cascade(num_stages=1, cutoffs=[2]) ranker = cascade.rankers[0] ranker.booster.update() offsets = group_offsets(qid) a, b = next(offsets) cascade.predict(X, qid) expected = [0, 0, 1, 1, 0] np.testing.assert_almost_equal(ranker.mask[a:b], expected) def test_cascade_second_stage_applies_cutoff(): X, _, qid = fixtures.train_data() cascade = factories.cascade(num_stages=2, cutoffs=[4, 2]) cascade.update() ranker_two = cascade.rankers[1] offsets = group_offsets(qid) a, b = next(offsets) cascade.predict(X, qid) topk = sorted(ranker_two.predict[a:b], reverse=True) expected = (b - a) * [topk[1]] np.testing.assert_almost_equal(ranker_two.kappa[a:b], expected) def test_cascade_second_stage_applies_mask(): X, _, qid = fixtures.train_data() cascade = factories.cascade(num_stages=2, cutoffs=[4, 2]) cascade.update() ranker_one = cascade.rankers[0] ranker_two = cascade.rankers[1] offsets = group_offsets(qid) a, b = next(offsets) cascade.predict(X, qid) expected = [1, 0, 1, 1, 1] np.testing.assert_almost_equal(ranker_one.mask[a:b], expected) expected = [0, 0, 1, 1, 0] np.testing.assert_almost_equal(ranker_two.mask[a:b], expected) def test_cascade_score_mask_does_not_appear_in_first_stage(): X, _, qid = fixtures.train_data() cascade = factories.cascade(num_stages=2, cutoffs=[4, 2]) cascade.update() ranker_one = cascade.rankers[0] ranker_two = cascade.rankers[1] offsets = group_offsets(qid) a, b = next(offsets) cascade.predict(X, qid, is_train=True) assert Cascade.SCORE_MASK not in ranker_one.predict def test_cascade_uses_score_mask(): """As per previous implementation, always use the SCORE_MASK during predict regardless of whether we are doing training or inference. """ X, _, qid = fixtures.train_data() cascade = factories.cascade(num_stages=2, cutoffs=[4, 2]) cascade.update() ranker_one = cascade.rankers[0] ranker_two = cascade.rankers[1] offsets = group_offsets(qid) a, b = next(offsets) for is_train in [True, False]: cascade.predict(X, qid, is_train=is_train) assert Cascade.SCORE_MASK in ranker_two.predict def test_cascade_computed_kappa_when_training(): qid = np.array([1, 1, 1, 1, 1]) offsets = group_offsets(qid) a, b = next(offsets) cascade = factories.dummy_cascade() ranker = factories.ranker() ranker.cutoff = 2 prev_mask = [1, 1, 0, 1, 1] scores = np.array([0.1, 1.0, -0.03, 0.5, 0.25]) ranker.predict = np.copy(scores) # according to previous mask ranker.predict[2] = Cascade.SCORE_MASK scores = cascade.ranker_apply_cutoff(ranker, scores, prev_mask, qid, is_train=True) expected = [0.5] * 5 np.testing.assert_almost_equal(ranker.kappa[a:b], expected) assert scores is not ranker.predict def test_cascade_computed_kappa_when_inference(): qid = np.array([1, 1, 1, 1, 1]) offsets = group_offsets(qid) a, b = next(offsets) cascade = factories.dummy_cascade() ranker = factories.ranker() ranker.cutoff = 2 prev_mask = [1, 1, 0, 1, 1] # put 10. to test if SCORE_MASK is used in `ranker_apply_cutoff` scores = np.array([0.1, 1.0, 10., 0.5, 0.25]) ranker.predict = np.copy(scores) # according to previous mask ranker.predict[2] = Cascade.SCORE_MASK scores = cascade.ranker_apply_cutoff(ranker, scores, prev_mask, qid, is_train=False) expected = [0.5] * 5 np.testing.assert_almost_equal(ranker.kappa[a:b], expected) assert scores is ranker.predict def test_cascade_first_stage_score_any_type(): cascade = factories.cascade(num_stages=1, cutoffs=[4]) for name, member in ScoreType.__members__.items(): if member.name != name: # skip alias names continue cascade.set_score_type(name) ranker_one = cascade.rankers[0] cascade.ranker_score(ranker_one) assert ranker_one.predict is ranker_one.estimate def test_cascade_second_stage_score_independent_type(): cascade = factories.cascade(num_stages=2, cutoffs=[4, 2]) cascade.set_score_type('independent') ranker_one = cascade.rankers[0] ranker_one.mask = np.array([1, 1, 1, 1, 0]) ranker_one.estimate = np.array([4., 3., 2., 1., 0.]) ranker_two = cascade.rankers[1] ranker_two.predict = np.array([5., 5., 5., 5., 5.]) prev_ranker = ranker_one cascade.ranker_score(ranker_two, prev_ranker) assert ranker_two.predict is not ranker_two.estimate np.testing.assert_almost_equal(ranker_two.estimate, np.array([5., 5., 5., 5., 0.])) def test_cascade_second_stage_score_full_type(): cascade = factories.cascade(num_stages=2, cutoffs=[4, 2]) cascade.set_score_type('full') ranker_one = cascade.rankers[0] ranker_one.mask = np.array([1, 1, 1, 1, 0]) ranker_one.estimate = np.array([4., 3., 2., 1., 0.]) ranker_two = cascade.rankers[1] ranker_two.predict = np.array([5., 5., 5., 5., 5.]) prev_ranker = ranker_one cascade.ranker_score(ranker_two, prev_ranker) assert ranker_two.predict is not ranker_two.estimate np.testing.assert_almost_equal(ranker_two.estimate, np.array([9., 8., 7., 6., 0.])) def test_cascade_second_stage_score_weak_type(): cascade = factories.cascade(num_stages=2, cutoffs=[4, 2]) cascade.set_score_type('weak') ranker_one = cascade.rankers[0] ranker_one.mask = np.array([1, 1, 1, 1, 0]) ranker_one.estimate = np.array([4., 3., 2., 1., 0.]) ranker_two = cascade.rankers[1] ranker_two.predict = np.array([3., 5., 1., 5., 5.]) prev_ranker = ranker_one cascade.ranker_score(ranker_two, prev_ranker) assert ranker_two.predict is not ranker_two.estimate np.testing.assert_almost_equal(ranker_two.estimate, np.array([4., 5., 2., 5., 0.])) def test_cascade_second_stage_score_unkown_type(): cascade = factories.cascade(num_stages=2, cutoffs=[2, 4]) ranker_one = cascade.rankers[0] ranker_two = cascade.rankers[1] with pytest.raises(RuntimeError): cascade.score_type = 'unkown-foo-bar-baz' prev_ranker = ranker_one cascade.ranker_score(ranker_two, prev_ranker) def test_cascade_set_unkown_score_type(): cascade = factories.cascade(num_stages=1, cutoffs=[4]) with pytest.raises(KeyError): cascade.set_score_type('unkown-foo-bar-baz') def test_ranker_set_unkown_indicator_type(): ranker = factories.ranker() with pytest.raises(KeyError): ranker.set_indicator_type('unkown-foo') def test_ranker_indicator_function_logistic(): ranker = factories.ranker() ranker.set_indicator_type('logistic') ranker.sigma = 0.1 ranker.cutoff = 5 ranker.predict = np.array( [-1., -0.75, -0.5, -0.25, 0., 0.25, 0.5, 0.75, 1.]) ranker.kappa = np.array([0., 0., 0., 0., 0., 0., 0., 0., 0.]) ranker.indicator_func() # indicator score expected = [ 4.5397869e-05, 5.5277864e-04, 6.6928509e-03, 7.5858180e-02, 5.0000000e-01, 9.2414182e-01, 9.9330715e-01, 9.9944722e-01, 9.9995460e-01 ] np.testing.assert_almost_equal(expected, ranker.indicator_score) # indicator derivative expected = [ 4.5395808e-04, 5.5247307e-03, 6.6480567e-02, 7.0103717e-01, 2.5000000e+00, 7.0103717e-01, 6.6480567e-02, 5.5247307e-03, 4.5395808e-04 ] np.testing.assert_almost_equal(expected, ranker.indicator_derivative) def test_ranker_indicator_function_relu(): ranker = factories.ranker() ranker.set_indicator_type('relu') ranker.delta = 0.1 ranker.cutoff = 3 ranker.predict = np.array( [-1., -0.75, -0.5, -0.25, 0., 0.25, 0.5, 0.75, 1.]) ranker.kappa = np.array([0., 0., 0., 0., 0., 0., 0., 0., 0.]) ranker.indicator_func() # indicator score expected = [0., 0., 0., 0., 0.5, 1., 1., 1., 1.] np.testing.assert_almost_equal(expected, ranker.indicator_score) # indicator derivative expected = [0., 0., 0., 0., 5., 0., 0., 0., 0.] np.testing.assert_almost_equal(expected, ranker.indicator_derivative) def test_cascade_last_ranker_indicator_is_zero(): cascade = factories.cascade(num_stages=1, cutoffs=[1]) ranker = cascade.last() ranker.predict = np.array([1., 2., 3.]) ranker.kappa = np.array([1., 1., 1.]) cascade.ranker_indicator() assert 0. == ranker.indicator_score.all() assert 0. == ranker.indicator_derivative.all() def test_cascade_collect_weights_independent_scoring(): cascade = factories.cascade(num_stages=2, cutoffs=[4, 2]) cascade.set_score_type('independent') ranker_one = cascade.rankers[0] ranker_one.weights = np.array([1., 2., 3.]) ranker_two = cascade.rankers[1] ranker_two.weights = np.array([3., 2., 1.]) result = cascade.collect_weights(0, ranker_one) expected = [1., 2., 3.]
np.testing.assert_almost_equal(expected, result)
numpy.testing.assert_almost_equal
# Copyright 2019 Baidu Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Provides a class that represents an adversarial example.""" import numpy as np import numbers from abc import ABC from perceptron.utils.distances import MSE from perceptron.utils.distances import Distance class StopAttack(Exception): """Exception thrown to request early stopping of an attack if a given (optional!) threshold is reached. """ pass class Adversarial(ABC): """Defines the base class of an adversarial that should be found and stores the result. The :class:`Adversarial` class represents a single adversarial example for a given model, criterion and reference image. It can be passed to an adversarial attack to find the actual adversarial. Parameters ---------- model : a :class:`Model` instance The model that should be evaluated against the adversarial. criterion : a :class:`Criterion` instance The criterion that determines which images are adversarial. original_image : a :class:`numpy.ndarray` The original image to which the adversarial image should be as close as possible. original_pred : int(ClsAdversarial) or dict(DetAdversarial) The ground-truth predictions of the original image. distance : a :class:`Distance` class The measure used to quantify similarity between images. threshold : float or :class:`Distance` If not None, the attack will stop as soon as the adversarial perturbation has a size smaller than this threshold. Can be an instance of the :class:`Distance` class passed to the distance argument, or a float assumed to have the same unit as the the given distance. If None, the attack will simply minimize the distance as good as possible. Note that the threshold only influences early stopping of the attack; the returned adversarial does not necessarily have smaller perturbation size than this threshold; the `reached_threshold()` method can be used to check if the threshold has been reached. """ def __init__( self, model, criterion, original_image, original_pred=None, threshold=None, distance=MSE, verbose=False): self._model = model self._criterion = criterion self._original_image = original_image self._original_image_for_distance = original_image self._original_pred = original_pred self._distance = distance if threshold is not None and not isinstance(threshold, Distance): threshold = distance(value=threshold) self._threshold = threshold self.verbose = verbose self._best_adversarial = None self._best_distance = distance(value=np.inf) self._best_adversarial_output = None self._total_prediction_calls = 0 self._total_gradient_calls = 0 self._best_prediction_calls = 0 self._best_gradient_calls = 0 # used for attacks that can provide a verifiable bound self._verifiable_bounds = (0., 0.) # check if the original image is already adversarial try: self.predictions(original_image) except StopAttack: # if a threshold is specified and the original input is # misclassified, this can already cause a StopAttack # exception assert self._distance.value == 0. def _reset(self): self._best_adversarial = None self._best_distance = self._distance(value=np.inf) self._best_adversarial_output = None self._best_prediction_calls = 0 self._best_gradient_calls = 0 self.predictions(self._original_image) @property def verifiable_bounds(self): """The verifiable bounds obtained so far.""" return self._verifiable_bounds @verifiable_bounds.setter def verifiable_bounds(self, bounds): """The setter of verifiable bounds""" self._verifiable_bounds = bounds @property def image(self): """The best adversarial found so far.""" return self._best_adversarial @property def output(self): """The model predictions for the best adversarial found so far. None if no adversarial has been found. """ return self._best_adversarial_output @property def distance(self): """The distance of the adversarial input to the original input.""" return self._best_distance @property def original_image(self): """The original input.""" return self._original_image @property def original_pred(self): """The original label.""" return self._original_pred def set_distance_dtype(self, dtype): """Set the dtype of Distance.""" assert dtype >= self._original_image.dtype self._original_image_for_distance = self._original_image.astype( dtype, copy=False) def reset_distance_dtype(self): """Reset the dtype of Distance.""" self._original_image_for_distance = self._original_image def normalized_distance(self, image): """Calculates the distance of a given image to the original image. Parameters ---------- image : `numpy.ndarray` The image that should be compared to the original image. Returns ------- :class:`Distance` The distance between the given image and the original image. """ return self._distance( self._original_image_for_distance, image, bounds=self.bounds()) def reached_threshold(self): """Returns True if a threshold is given and the currently best adversarial distance is smaller than the threshold.""" return self._threshold is not None \ and self._best_distance <= self._threshold def target_class(self): """Interface to criterion.target_class for attacks. """ try: target_class = self._criterion.target_class() except AttributeError: target_class = None return target_class def num_classes(self): """Return number of classes.""" n = self._model.num_classes() assert isinstance(n, numbers.Number) return n def bounds(self): """Return bounds of model.""" min_, max_ = self._model.bounds() assert isinstance(min_, numbers.Number) assert isinstance(max_, numbers.Number) assert min_ < max_ return min_, max_ def in_bounds(self, input_): """Check if input is in bounds.""" min_, max_ = self.bounds() return min_ <= input_.min() and input_.max() <= max_ def channel_axis(self, batch): """ Interface to model.channel_axis for attacks. Parameters ---------- batch : bool Controls whether the index of the axis for a batch of images (4 dimensions) or a single image (3 dimensions) should be returned. """ axis = self._model.channel_axis() if not batch: axis = axis - 1 return axis def has_gradient(self): """ Returns true if _backward and _forward_backward can be called by an attack, False otherwise. """ try: self._model.gradient self._model.predictions_and_gradient except AttributeError: return False else: return True def _new_adversarial(self, image, predictions, in_bounds): image = image.copy() # to prevent accidental inplace changes distance = self.normalized_distance(image) if in_bounds and self._best_distance > distance: # new best adversarial if self.verbose: print('new best adversarial: {}'.format(distance)) self._best_adversarial = image self._best_distance = distance self._best_adversarial_output = predictions self._best_prediction_calls = self._total_prediction_calls self._best_gradient_calls = self._total_gradient_calls if self.reached_threshold(): raise StopAttack return True, distance return False, distance def _is_adversarial(self, image, predictions, in_bounds): """Interface to `criterion.is_adversary()` that calls _new_adversarial if necessary. Parameters ---------- image : `numpy.ndarray` Image with shape (height, width, channels). predictions : :class:`numpy.ndarray` A vector with the predictions for some image. label : int The label of the unperturbed reference image. """ is_adversarial = self._criterion.is_adversarial( predictions, self._original_pred) assert isinstance(is_adversarial, bool) or \ isinstance(is_adversarial, np.bool_) if is_adversarial: is_best, distance = self._new_adversarial( image, predictions, in_bounds) else: is_best = False distance = None return is_adversarial, is_best, distance def predictions(self, image, strict=True, return_details=False): """Interface to model.predictions for attacks. Parameters ---------- image : `numpy.ndarray` Image with shape (height, width, channels). strict : bool Controls if the bounds for the pixel values should be checked. """ in_bounds = self.in_bounds(image) assert not strict or in_bounds self._total_prediction_calls += 1 predictions = self._model.predictions(image) is_adversarial, is_best, distance = self._is_adversarial( image, predictions, in_bounds) if return_details: return predictions, is_adversarial, is_best, distance else: return predictions, is_adversarial def batch_predictions( self, images, greedy=False, strict=True, return_details=False): """Interface to model.batch_predictions for attacks. Parameters ---------- images : `numpy.ndarray` Batch of images with shape (batch, height, width, channels). greedy : bool Whether the first adversarial should be returned. strict : bool Controls if the bounds for the pixel values should be checked. """ if strict: in_bounds = self.in_bounds(images) assert in_bounds self._total_prediction_calls += len(images) predictions = self._model.batch_predictions(images) assert predictions.ndim == 2 assert predictions.shape[0] == images.shape[0] if return_details: assert greedy adversarials = [] for i in range(len(predictions)): if strict: in_bounds_i = True else: in_bounds_i = self.in_bounds(images[i]) is_adversarial, is_best, distance = self._is_adversarial( images[i], predictions[i], in_bounds_i) if is_adversarial and greedy: if return_details: return predictions, is_adversarial, i, is_best, distance else: return predictions, is_adversarial, i adversarials.append(is_adversarial) if greedy: # pragma: no cover # no adversarial found if return_details: return predictions, False, None, False, None else: return predictions, False, None is_adversarial =
np.array(adversarials)
numpy.array
import torch import numpy as np from maml.datasets.metadataset import Task def generate_sinusoid_batch(amp_range, phase_range, input_range, num_samples, batch_size, oracle, bias=0): amp = np.random.uniform(amp_range[0], amp_range[1], [batch_size]) phase = np.random.uniform(phase_range[0], phase_range[1], [batch_size]) outputs =
np.zeros([batch_size, num_samples, 1])
numpy.zeros
""" Utility function module for the Bayesian Neural Network. """ import numpy as np import scipy.optimize as spo import theano import theano.tensor as T def load_reg_data(X_tr_reg, y_tr_reg, X_te_reg, y_te_reg): def shared_reg_dataset(data_xy, borrow=True): data_x, data_y = data_xy shared_x = theano.shared(np.asarray(data_x, dtype=theano.config.floatX), borrow=borrow) shared_y = theano.shared(np.asarray(data_y, dtype=theano.config.floatX), borrow=borrow) return shared_x, T.cast(shared_y, 'float32') mean_y_tr_reg = 0 * np.mean(y_tr_reg, 0) std_y_tr_reg = 1.0 + 0 *
np.std(y_tr_reg, 0)
numpy.std
# -*- coding: utf-8 -*- # built-in import time import warnings # common import numpy as np import scipy.integrate as scpinteg import matplotlib.pyplot as plt # DB # specific from . import _utils from . import _class_checks _SCIPY_URL_BASE = 'https://docs.scipy.org/doc/scipy/reference/generated/' _SCIPY_URL = ( _SCIPY_URL_BASE + 'scipy.integrate.solve_ivp.html#scipy.integrate.solve_ivp' ) _DSOLVERS = { 'eRK4-homemade': { 'type': 'explicit', 'step': 'fixed', 'com': 'Runge_Kutta order 4', 'source': __file__, }, 'eRK1-homemade': { 'type': 'explicit', 'step': 'fixed', 'com': 'Runge_Kutta order 1', 'source': __file__, }, 'eRK2-scipy': { 'scipy': 'RK23', 'type': 'explicit', 'step': 'variable', 'com': 'Runge_Kutta order 2', 'source': _SCIPY_URL, }, 'eRK4-scipy': { 'scipy': 'RK45', 'type': 'explicit', 'step': 'variable', 'com': 'Runge_Kutta order 4', 'source': _SCIPY_URL, }, 'eRK8-scipy': { 'scipy': 'DOP853', 'type': 'explicit', 'step': 'variable', 'com': 'Runge_Kutta order 8', 'source': _SCIPY_URL, }, } _SOLVER = 'eRK4-homemade' # ############################################################################# # ############################################################################# # user-interface to display solvers # ############################################################################# def get_available_solvers(returnas=None, verb=None): # ---------------- # check inputs if returnas is None: returnas = False lreturnok = [False, list, dict] if returnas not in lreturnok: msg = ( f"Arg returnas must be in {lreturnok}\n" f"Provided: {returnas}" ) if verb is None: verb = returnas is False # ---------------- # print or return if verb is True: def make_source(k0, dsolvers=_DSOLVERS): if 'scipy' in k0: method = dsolvers[k0]['scipy'] source = f"scipy.integrate.solve_ivp(method='{method}')" else: source = dsolvers[k0]['source'] return source col = ['key', 'type', 'step', 'comments', 'source'] ar = [ [ f"'{k0}'", v0['type'], v0['step'], v0['com'], make_source(k0), ] for k0, v0 in _DSOLVERS.items() ] return _utils._get_summary( lar=[ar], lcol=[col], verb=verb, returnas=False, ) elif returnas is dict: return {k0: dict(v0) for k0, v0 in _DSOLVERS.items()} else: return list(_DSOLVERS.keys()) # ############################################################################# # ############################################################################# # check # ############################################################################# def _check_solver(solver): if solver is None: solver = _SOLVER c0 = ( isinstance(solver, str) and solver in _DSOLVERS.keys() ) if not c0: msg = ( "Arg solver must be among the avaible solver keys:\n" + get_available_solvers(verb=False, returnas=str) + f"\n\nProvided: '{solver}'" ) raise Exception(msg) return solver # ############################################################################# # ############################################################################# # Main entry point # ############################################################################# def solve( solver=None, dparam=None, dmulti=None, lode=None, lstate=None, dargs=None, nt=None, rtol=None, atol=None, max_time_step=None, dverb=None, ): # ----------- # check input solver = _check_solver(solver) # ----------- # Define the function that takes/returns all functions y0, dydt_func, lode_solve, dargs_temp, vectorized = get_func_dydt( dparam=dparam, dargs=dargs, lode=lode, lstate=lstate, solver=solver, dmulti=dmulti, ) # ------------- # dispatch to relevant solver to solve ode using dydt_func if solver == 'eRK4-homemade': _eRK4_homemade( y0=y0, dydt_func=dydt_func, dparam=dparam, lode=lode_solve, lstate=lstate, nt=nt, dverb=dverb, ) elif solver == 'eRK1-homemade': _eRK1_homemade( y0=y0, dydt_func=dydt_func, dparam=dparam, lode=lode_solve, lstate=lstate, nt=nt, dverb=dverb, ) else: # scipy takes one-dimensional y only _solver_scipy( y0=y0, dydt_func=dydt_func, dparam=dparam, dargs_temp=dargs_temp, lode=lode_solve, lstate=lstate, atol=atol, rtol=rtol, max_time_step=max_time_step, solver=solver, dverb=dverb, dmulti=dmulti, vectorized=vectorized, ) # ---------------------- # Post-treatment # compute statevar functions, in good order for k0 in lstate: dparam[k0]['value'][...] = dparam[k0]['func'](**dargs[k0]) return solver # ############################################################################# # ############################################################################# # Common utility: define dydt = f(y, t) # ############################################################################# def get_func_dydt( dparam=None, dargs=None, lode=None, lstate=None, solver=None, dmulti=None, ): # for implicit solver => vectorize vectorized = False if 'scipy' in solver: if not solver.startswith('e'): vectorized = True # --------------- # Get list of ode except time if 'scipy' in solver and vectorized is True: msg = "Vectorized version for implicit solvers not implemented yet" raise NotImplementedError(msg) if 'scipy' in solver: lode_solve = [k0 for k0 in lode if k0 != 'time'] shapey = (len(lode_solve),) shapebuf = (1,) else: lode_solve = lode shapey = tuple(np.r_[len(lode_solve), dmulti['shape']]) shapebuf = tuple(dmulti['shape']) # --------------------- # initialize y y0 = np.array([dparam[k0]['value'][0, ...] for k0 in lode_solve]) # --------------------- # prepare array to be used as buffer # (to avoid a new array creation everytime the function is called) # array of dydt dydt = np.full(shapey, np.nan) # dict of values dbuffer = { k0: np.full(shapebuf, np.nan) for k0 in lode_solve + lstate } # dict of args, takes values in dbuffer by reference dargs_temp = { k0: { k1: dbuffer['lambda' if k1 == 'lamb' else k1] for k1 in dargs[k0].keys() } for k0 in dargs.keys() } # ----------------- # get func if 'scipy' in solver and False: pass else: def func( t, y, dargs_temp=dargs_temp, dydt=dydt, dparam=dparam, lode_solve=lode_solve, lstate=lstate, dbuffer=dbuffer, ): """ dydt = f(t, y) Where y is a (n,) array y[0] = fisrt ode y[1] = second ode ... y[n] = last ode All intermediate values ae stored in dparam[k0]['value'][-1, 0] """ # ------------ # update cache => also updates dargs and dargs_temp by reference # used by dargs_temp (by reference) for ii, k0 in enumerate(lode_solve): dbuffer[k0][...] = y[ii, ...] # ------------ # First update intermediary functions based on provided y # The last time step is used as temporary buffer # used by dargs_temp (by reference) for ii, k0 in enumerate(lstate): dbuffer[k0][...] = dparam[k0]['func'](**dargs_temp[k0]) # ------------ # Then compute derivative dydt (ode) for ii, k0 in enumerate(lode_solve): if 'itself' in dparam[k0]['kargs']: dydt[ii, ...] = dparam[k0]['func']( itself=y[ii, ...], **dargs_temp[k0], ) else: dydt[ii, ...] = dparam[k0]['func'](**dargs_temp[k0]) return np.copy(dydt) return y0, func, lode_solve, dargs_temp, vectorized # ############################################################################# # ############################################################################# # Home-made # ############################################################################# def _eRK4_homemade( y0=None, dydt_func=None, dparam=None, lode=None, lstate=None, nt=None, dverb=None, ): """ Structure of the homemade rk4 solver, with time loop, intermediaries... """ # initialize y y = np.copy(y0) # start loop on time t0 = time.time() for ii in range(1, nt): # print of wait if dverb['verb'] > 0: t0 = _class_checks._print_or_wait(ii=ii, nt=nt, t0=t0, **dverb) # Estimate dt (for future variable time step versions) # dt = # compute ode variables from ii-1, using solver y += _rk4( dydt_func=dydt_func, dt=dparam['dt']['value'], y=y, t=np.nan, # no model with explicit time dependence (for now) ) # dispatch to store result of ode for jj, k0 in enumerate(lode): dparam[k0]['value'][ii, ...] = y[jj, ...] def _rk4(dydt_func=None, dt=None, y=None, t=None): """ a traditional RK4 scheme, with: - y = array of all variables (all ode) - dt = fixed time step """ dy1_on_dt = dydt_func(t, y) dy2_on_dt = dydt_func(t + dt/2., y + dy1_on_dt * dt/2.) dy3_on_dt = dydt_func(t + dt/2., y + dy2_on_dt * dt/2.) dy4_on_dt = dydt_func(t + dt, y + dy3_on_dt * dt) return (dy1_on_dt + 2*dy2_on_dt + 2*dy3_on_dt + dy4_on_dt) * dt/6. # ########################################### # eRK1 # ########################################### def _eRK1_homemade( y0=None, dydt_func=None, dparam=None, lode=None, lstate=None, nt=None, dverb=None, ): """ Structure of the homemade rk1 solver, with time loop, intermediaries... Coded as debugging for the rk1 """ # initialize y y = np.copy(y0) # start loop on time t0 = time.time() for ii in range(1, nt): # print of wait if dverb['verb'] > 0: t0 = _class_checks._print_or_wait(ii=ii, nt=nt, t0=t0, **dverb) # Estimate dt (for future variable time step versions) # dt = # compute ode variables from ii-1, using solver y += _rk1( dydt_func=dydt_func, dt=dparam['dt']['value'], y=y, t=np.nan, ) # dispatch to store result of ode for jj, k0 in enumerate(lode): dparam[k0]['value'][ii, ...] = y[jj, ...] def _rk1(dydt_func=None, dt=None, y=None, t=None): """ a traditional euler scheme, with: - y = array of all variables (all ode) - dt = fixed time step """ dy1_on_dt = dydt_func(t, y) return (dy1_on_dt) * dt # ############################################################################# # ############################################################################# # scipy # ############################################################################# def _solver_scipy( y0=None, dydt_func=None, dparam=None, dargs_temp=None, lode=None, lstate=None, atol=None, rtol=None, dverb=None, max_time_step=None, solver=None, dmulti=None, vectorized=None, ): """ scipy.RK45 solver, for cross-checking First try: with a unique system (nx = 1) issue: how do we update intermediary functions? alogorithm only seems to allow ode... Beware: here variable time steps are possible and should be handled """ # ----------------- # check inputs if rtol is None: rtol = 1.e-3 if atol is None: atol = 1.e-6 if max_time_step is None: max_time_step = 10. * dparam['dt']['value'] # ----------------- # define t_span, t_eval t_span = [dparam['time']['initial'], dparam['Tmax']['value']] t_eval =
np.linspace(t_span[0], t_span[1], dparam['nt']['value'])
numpy.linspace
#!python # cython: language_level=3 # This script contains classes that define all the parameters for # a radar system # This script requires that 'numpy' be installed within the Python # environment you are running this script in. # This file can be imported as a module and contains the following # class: # * Transmitter - A class defines parameters of a radar transmitter # * Receiver - A class defines parameters of a radar receiver # * Radar - A class defines basic parameters of a radar system # ---------- # RadarSimPy - A Radar Simulator Built with Python # Copyright (C) 2018 - 2020 <NAME> # E-mail: <EMAIL> # Website: https://zpeng.me # ` ` # -:. -#: # -//:. -###: # -////:. -#####: # -/:.://:. -###++##: # .. `://:- -###+. :##: # `:/+####+. :##: # .::::::::/+###. :##: # .////-----+##: `:###: # `-//:. :##: `:###/. # `-//:. :##:`:###/. # `-//:+######/. # `-/+####/. # `+##+. # :##: # :##: # :##: # :##: # :##: # .+: import numpy as np def cal_phase_noise(signal, fs, freq, power, seed=None, validation=False): """ Oscillator Phase Noise Model :param numpy.2darray signal: Input signal :param float fs: Sampling frequency :param numpy.1darray freq: Frequency of the phase noise :param numpy.1darray power: Power of the phase noise :param int seed: Seed for noise generator :param boolean validation: Validate phase noise :return: Signal with phase noise :rtype: numpy.2darray **NOTES** - The presented model is a simple VCO phase noise model based on the following consideration: If the output of an oscillator is given as V(t) = V0 * cos( w0*t + phi(t) ), then phi(t) is defined as the phase noise. In cases of small noise sources (a valid assumption in any usable system), a narrowband modulatio approximation can be used to express the oscillator output as: V(t) = V0 * cos( w0*t + phi(t) ) = V0 * [cos(w0*t)*cos(phi(t)) - signal(w0*t)*signal(phi(t)) ] ~ V0 * [cos(w0*t) - signal(w0*t)*phi(t)] This shows that phase noise will be mixed with the carrier to produce sidebands around the carrier. - In other words, exp(j*x) ~ (1+j*x) for small x - Phase noise = 0 dBc/Hz at freq. offset of 0 Hz - The lowest phase noise level is defined by the input SSB phase noise power at the maximal freq. offset from DC. (IT DOES NOT BECOME EQUAL TO ZERO ) The generation process is as follows: First of all we interpolate (in log-scale) SSB phase noise power spectrum in M equally spaced points (on the interval [0 fs/2] including bounds ). After that we calculate required frequency shape of the phase noise by X(m) = sqrt(P(m)*dF(m)) and after that complement it by the symmetrical negative part of the spectrum. After that we generate AWGN of power 1 in the freq domain and multiply it sample-by-sample to the calculated shape Finally we perform 2*M-2 points IFFT to such generated noise :: | 0 dBc/Hz | \\ / | \\ / | \\ / | \\P dBc/Hz / | .\\ / | . \\ / | . \\ / | . \\______________________________________/ <- This level | . is defined by the power at the maximal freq | |__| _|__|__|__|__|__|__|__|__|__|__|__|__|__|__|__|__|__ (N) | 0 dF fs/2 fs | DC | """ if seed is None: rng = np.random.default_rng() else: rng = np.random.default_rng(seed) signal = signal.astype(complex) # Sort freq and power sort_idx = np.argsort(freq) freq = freq[sort_idx] power = power[sort_idx] cut_idx = np.where(freq < fs/2) freq = freq[cut_idx] power = power[cut_idx] # Add 0 dBc/Hz @ DC if not np.any(np.isin(freq, 0)): freq = np.concatenate(([0], freq)) power = np.concatenate(([0], power)) # Calculate input length [row, N] = np.shape(signal) # Define M number of points (frequency resolution) in the # positive spectrum (M equally spaced points on the interval # [0 fs/2] including bounds), then the number of points in the # negative spectrum will be M-2 ( interval (fs/2, fs) not # including bounds ) # # The total number of points in the frequency domain will be # 2*M-2, and if we want to get the same length as the input # signal, then # 2*M-2 = N # M-1 = N/2 # M = N/2 + 1 # # So, if N is even then M = N/2 + 1, and if N is odd we will take # M = (N+1)/2 + 1 # if np.remainder(N, 2): M = int((N+1)/2 + 1) else: M = int(N/2 + 1) # Equally spaced partitioning of the half spectrum F = np.linspace(0, fs/2, int(M)) # Freq. Grid dF = np.concatenate((np.diff(F), [F[-1]-F[-2]])) # Delta F realmin = np.finfo(np.float64).tiny # realmin = 1e-30 # Perform interpolation of power in log-scale intrvlNum = len(freq) logP = np.zeros(int(M)) # for intrvlIndex = 1 : intrvlNum, for intrvlIndex in range(0, intrvlNum): leftBound = freq[intrvlIndex] t1 = power[intrvlIndex] if intrvlIndex == intrvlNum-1: rightBound = fs/2 t2 = power[-1] inside = np.where(np.logical_and( F >= leftBound, F <= rightBound)) else: rightBound = freq[intrvlIndex+1] t2 = power[intrvlIndex+1] inside = np.where(np.logical_and( F >= leftBound, F < rightBound)) logP[inside] = t1 + (np.log10(F[inside] + realmin) - np.log10(leftBound + realmin)) / \ (np.log10(rightBound + 2*realmin) - np.log10(leftBound + realmin)) * (t2-t1) # Interpolated P ( half spectrum [0 fs/2] ) [ dBc/Hz ] P = 10**(np.real(logP)/10) # Now we will generate AWGN of power 1 in frequency domain and shape # it by the desired shape as follows: # # At the frequency offset F(m) from DC we want to get power Ptag(m) # such that P(m) = Ptag/dF(m), that is we have to choose # X(m) = sqrt( P(m)*dF(m) ); # # Due to the normalization factors of FFT and IFFT defined as follows: # For length K input vector x, the DFT is a length K vector X, # with elements # K # X(k) = sum x(n)*exp(-j*2*pi*(k-1)*(n-1)/K), 1 <= k <= K. # n=1 # The inverse DFT (computed by IFFT) is given by # K # x(n) = (1/K) sum X(k)*exp( j*2*pi*(k-1)*(n-1)/K), 1 <= n <= K. # k=1 # # we have to compensate normalization factor (1/K) multiplying X(k) # by K. In our case K = 2*M-2. # Generate AWGN of power 1 if validation: awgn_P1 = (np.sqrt(0.5)*(
np.ones((row, M))
numpy.ones
""" Sparse model downloaded from https://s3-us-west-1.amazonaws.com/nndistiller/agp-pruning/mobilenet/checkpoint.pth.tar python profiling/profile_sparse_mobilenet.py -a mobilenet -d imagenet --dataset-dir $NAS_HOME/datasets/ILSVRC2012 --resume $ICCV19/sparse/mobilenet_distiller """ import os import sys import argparse import copy import time import shutil import json import logging import functools logging.getLogger().setLevel(logging.DEBUG) import pandas as pd import numpy as np import torch import torch.sparse import torch.nn as nn import torch.nn.functional as F import torch.nn.parallel import torch.backends.cudnn as cudnn from gumi import model_utils from gumi.ops import * from gumi.model_runner.model_runner import ModelRunner from gumi.model_runner.parser import create_cli_parser parser = create_cli_parser(prog="CLI tool for profiling GConv models.") parser.add_argument( "--iters", type=int, default=10000, help="Number of profiling iterations" ) parser.add_argument( "--use-cuda", action="store_true", default=False, help="Whether to use GPU" ) args = parser.parse_args() # CUDA os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id cudnn.benchmark = True class SparsityCalculator(object): @staticmethod def get_model_sparsity(model, threshold=1e-5, level=None): """ Compute the total sparsity of a model """ sum_nnz = 0 sum_total = 0 # total elements for name, mod in model.named_modules(): if not isinstance(mod, nn.Conv2d): continue nnz, total = SparsityCalculator.get_sparsity( mod, threshold=threshold, level=level ) sum_nnz += nnz sum_total += total return float(sum_nnz) / sum_total @staticmethod def get_sparsity(mod, threshold=1e-5, level=None): """ Compute the sparsity of a module. """ assert isinstance(mod, nn.Conv2d) W = mod.weight.cpu().detach().numpy() if level is None or level == "elem": nz = (
np.abs(W)
numpy.abs
import argparse import os import json import faiss import numpy as np import pandas as pd from data import create_multi_splits from validate import L2norm from validate import retrieve, KNN, score # Training settings parser = argparse.ArgumentParser(description='PyTorch SBIR') parser.add_argument('--dir-path', type=str, default='exp', metavar='ED', help='directory with domainnet models') parser.add_argument('--new-data-path', type=str, default='', metavar='ED', help='overwrite data path') parser.add_argument('--eval', type=str, required=True, metavar='ED', help='many2any|any2many') args = parser.parse_args() GROUPS = 500 SEED = 1234 def get_config(): # iterate over folders in the directory configs = {} for path in os.listdir(args.dir_path): fname = os.path.join(args.dir_path, path, 'config.json') if os.path.isfile(fname): with open(fname) as f: tmp = json.load(f) if tmp['mode'] == 'im': configs[tmp['domain']] = tmp configs[tmp['domain']]['working_path'] = os.path.join( args.dir_path, path) if not args.new_data_path == '': configs[tmp['domain']]['data_dir'] = args.new_data_path else: configs['quickdraw'] = tmp configs['quickdraw']['working_path'] = os.path.join( args.dir_path, path) if not args.new_data_path == '': configs['quickdraw']['data_dir'] = args.new_data_path return configs def get_splits(configs): keys = configs.keys() keys.sort() fpaths = [] domains = [] y = [] for key in keys: # get data splits df_dir = os.path.join('aux', 'data', configs[key]['dataset']) splits = create_multi_splits(df_dir, configs[key]['domain']) if key == 'quickdraw': fpaths.extend(splits['sk']['test'].index.values) domains.extend(splits['sk']['test']['domain'].values) y.extend(splits['sk']['test']['cat'].values) else: fpaths.extend(splits['im']['test'].index.values) domains.extend(splits['im']['test']['domain'].values) y.extend(splits['im']['test']['cat'].values) df = pd.DataFrame({'domain': domains, 'cat': y}, index=fpaths) return df def read_data(fpath): data = np.load(fpath) return data['features'], data['labels'] def mix_queries(base, complement, alpha=0.5): idx = sample_complement(base['y'], complement['y']) mixture = alpha * base['x'] + (1-alpha) * complement['x'][idx, :] return mixture, idx def sample_complement(y_base, y_complement): np.random.seed(SEED) idx = [] for y in y_base: cond_idx = np.argwhere(y_complement == y).squeeze() idx.append(np.random.choice(cond_idx)) return idx def many2any_retrieval(configs, sources=['quickdraw', 'real']): keys = configs.keys() keys.sort() source_data = {} for domain in sources: dirname = configs[domain]['working_path'] fpath = os.path.join(dirname, 'features.npz') x, y = read_data(fpath) source_data[domain] = {} source_data[domain]['x'] = x source_data[domain]['y'] = y # save images that have been mixed, such that they don't get retrived x_src, idx = mix_queries(source_data[sources[0]], source_data[sources[1]]) y_src = source_data[sources[0]]['y'] np.save('plop.npy', idx) res = {} for domain in keys: dirname = configs[domain]['working_path'] fpath = os.path.join(dirname, 'features.npz') x_tgt, y_tgt = read_data(fpath) if sources[0] == domain and sources[1] == domain: pass else: print('\nRetrieval from %s+%s to %s' % (sources[0], sources[1], domain)) if domain == sources[1]: do_mixture = True else: do_mixture = False tmp = cross_domain_retrieval( x_src, y_src, x_tgt, y_tgt, zeroshot=configs[domain]['overwrite'], mixture=do_mixture) res[domain] = tmp os.remove('plop.npy') def get_data(configs): keys = configs.keys() keys.sort() feats = [] labels = [] domains = [] for i, key in enumerate(keys): dirname = configs[key]['working_path'] fpath = os.path.join(dirname, 'features.npz') data = np.load(fpath) nsamples = len(data['labels']) feats.extend(data['features']) labels.extend(data['labels']) domains.extend([key] * nsamples) return feats, labels, domains def one2many_retrieve_intent_aware(feats, labels, domains, splits, source='quickdraw', zeroshot=False): cond = np.asarray(domains) == source x_src = np.asarray(feats)[cond, :] y_src = np.asarray(labels)[cond] x_tgt = np.asarray(feats)[~cond, :] y_tgt = np.asarray(labels)[~cond] d_tgt = np.asarray(domains)[~cond] # KNN g_src_x = KNN(x_src, x_tgt, K=1, mode='ones') if zeroshot: alpha = 0.7 else: alpha = 0.4 x_src = slerp(alpha, L2norm(x_src), L2norm(g_src_x)) idx = myretrieve(x_src, x_tgt, topK=100) yd_tgt = np.char.add(y_tgt.astype(d_tgt.dtype), d_tgt) domains = np.unique(d_tgt) categories = np.unique(y_tgt) # compute occurrences of every category per domain occ = [] for d in domains: occ_inner = [] for c in categories: cond = np.logical_and(d_tgt == d, y_tgt == c) occ_inner.append(np.sum(cond)) occ.append(occ_inner) occ = np.asarray(occ, dtype=np.float) # normalize occurences occ /= np.sum(occ, axis=0) import multiprocessing as mp from metrics import average_precision # compute intent-aware mAP per domain mAP_ia = [] for d in domains: yd_src = np.char.add(y_src.astype(d_tgt.dtype), d) res = np.char.equal(yd_tgt[idx], yd_src[:, None]) pool = mp.Pool(processes=10) results = [pool.apply_async(average_precision, args=(r,)) for r in res] mAP = np.asarray([p.get() for p in results]) pool.close() mAP_ia.append(mAP) print('%s: %.3f' % (d, np.mean(mAP))) mAP_ia =
np.asarray(mAP_ia)
numpy.asarray
import numpy as np def plot_kde_density_1d(x, bw_method=None, n_steps=200, alpha_fill=0.25, rug=False, overshoot=0.1, ax=None, kernel_size=None, **kwargs): """ Plot a 1D kernel density estimate function of the data. """ import matplotlib.pyplot as plt from scipy.stats import gaussian_kde if ax is None: ax = plt.gca() kernel = scipy.stats.gaussian_kde(x, bw_method) if not kernel_size is None: kernel.inv_cov /= kernel_size x_min, x_max = np.min(x), np.max(x) x_range = x_max - x_min x_eval = np.linspace(x_min - overshoot * x_range, x_max + overshoot * x_range, n_steps) y_eval = kernel(x_eval) res = ax.plot(x_eval, y_eval, **kwargs) if alpha_fill != 0: ax.fill_between(x_eval, y_eval, color=res[0].get_color(), alpha=alpha_fill) if rug: plot_rug(x, color=res[0].get_color(), ax=ax) return res def plot_kde_density_2d(x, y, bw_method=None, n_steps=200, ax=None, overshoot=0.1, kernel_size=None, **kwargs): """ Plot a 2D kernel density estimate function of the data. """ import matplotlib.pyplot as plt from scipy.stats import gaussian_kde if ax is None: ax = plt.gca() xy = np.vstack((x, y)) kernel = gaussian_kde(xy, bw_method) if not kernel_size is None: kernel.inv_cov /= kernel_size x_min, x_max, y_min, y_max = np.min(x), np.max(x), np.min(y), np.max(y) x_range, y_range = x_max - x_min, y_max - y_min x_eval = np.linspace(x_min - overshoot * x_range, x_max + overshoot * x_range, n_steps) y_eval = np.linspace(y_min - overshoot * y_range, y_max + overshoot * y_range, n_steps) X, Y = np.meshgrid(x_eval, y_eval) z_eval = kernel(np.vstack((X.flatten(), Y.flatten()))).reshape(X.shape) return plt.imshow(np.rot90(z_eval), extent=[np.min(x),
np.max(x)
numpy.max
#============================================================================ # Copyright (c) 2018 <NAME>. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #============================================================================ # Author: <NAME> # E-mail: <EMAIL> # Description: Improvements of stripe artifact removal methods: # [1] <NAME>, <NAME>, and <NAME>, "Superior techniques # for eliminating ring artifacts in X-ray micro-tomography," Optics # Express 26, 28396-28412 (2018). https://doi.org/10.1364/OE.26.028396. # [2] <NAME>, <NAME>, and <NAME>,"Preprocessing techniques # for removing artifacts in synchrotron-based tomographic images," # Proc. SPIE 11113, Developments in X-Ray Tomography XII. # https://doi.org/10.1117/12.2530324. # Publication date: 09th October 2019 #============================================================================ """ Module for stripe removal methods proposed in: https://doi.org/10.1117/12.2530324 """ import numpy as np from scipy import interpolate from scipy.signal.windows import gaussian from scipy.ndimage import median_filter from scipy.ndimage import binary_dilation # import scipy.fftpack as fft import pyfftw.interfaces.scipy_fftpack as fft from sarepy.prep.stripe_removal_original import remove_stripe_based_sorting from sarepy.prep.stripe_removal_original import remove_stripe_based_fitting from sarepy.prep.stripe_removal_original import apply_gaussian_filter from sarepy.prep.stripe_removal_original import detect_stripe def remove_stripe_based_filtering_sorting(sinogram, sigma, size, dim=1): """ Removing stripes using the filtering and sorting technique, combination of algorithm 2 and algorithm 3 in Ref.[1]. Angular direction is along the axis 0. Parameters ---------- sinogram : array_like 2D array. Sinogram image. sigma : int Sigma of the Gaussian window used to separate the low-pass and high-pass components of the intensity profile of each column. size : int Window size of the median filter. dim : {1, 2}, optional Dimension of the window. Returns ------- ndarray 2D array. Stripe-removed sinogram. References ---------- .. [1] https://doi.org/10.1364/OE.26.028396 """ pad = min(150, int(0.1 * sinogram.shape[0])) sinogram = np.transpose(sinogram) sino_pad = np.pad(sinogram, ((0, 0), (pad, pad)), mode='reflect') (_, ncol) = sino_pad.shape window = gaussian(ncol, std=sigma) list_sign = np.power(-1.0, np.arange(ncol)) sino_smooth = np.copy(sinogram) for i, sino_1d in enumerate(sino_pad): sino_smooth[i] = np.real( fft.ifft(fft.fft(sino_1d * list_sign) * window) * list_sign)[pad:ncol - pad] sino_sharp = sinogram - sino_smooth sino_smooth_cor = np.transpose( remove_stripe_based_sorting(np.transpose(sino_smooth), size, dim)) return
np.transpose(sino_smooth_cor + sino_sharp)
numpy.transpose
import copy import inspect import logging import math import os import pprint import time from typing import Union import networkx as nx import numpy as np import pandas as pd from autogluon.common.utils.log_utils import set_logger_verbosity from autogluon.common.utils.pandas_utils import get_approximate_df_mem_usage from autogluon.common.utils.utils import setup_outputdir from autogluon.core.calibrate.temperature_scaling import tune_temperature_scaling from autogluon.core.calibrate.conformity_score import compute_conformity_score from autogluon.core.constants import BINARY, MULTICLASS, REGRESSION, QUANTILE, AUTO_WEIGHT, BALANCE_WEIGHT, PSEUDO_MODEL_SUFFIX, PROBLEM_TYPES_CLASSIFICATION from autogluon.core.data.label_cleaner import LabelCleanerMulticlassToBinary from autogluon.core.dataset import TabularDataset from autogluon.core.pseudolabeling.pseudolabeling import filter_pseudo, filter_ensemble_pseudo from autogluon.core.scheduler.scheduler_factory import scheduler_factory from autogluon.core.trainer import AbstractTrainer from autogluon.core.utils import get_pred_from_proba_df from autogluon.core.utils import plot_performance_vs_trials, plot_summary_of_models, plot_tabular_models from autogluon.core.utils.decorators import apply_presets from autogluon.core.utils.loaders import load_pkl, load_str from autogluon.core.utils.savers import save_pkl, save_str from autogluon.core.utils.utils import default_holdout_frac from ..configs.feature_generator_presets import get_default_feature_generator from ..configs.hyperparameter_configs import get_hyperparameter_config from ..configs.presets_configs import tabular_presets_dict from ..learner import AbstractLearner, DefaultLearner logger = logging.getLogger(__name__) # return autogluon root logger # TODO: num_bag_sets -> ag_args # Extra TODOs (Stretch): Can occur post v0.1 # TODO: make core_kwargs a kwargs argument to predictor.fit # TODO: add aux_kwargs to predictor.fit # TODO: add pip freeze + python version output after fit + log file, validate that same pip freeze on load as cached # TODO: predictor.clone() # TODO: Add logging comments that models are serialized on disk after fit # TODO: consider adding kwarg option for data which has already been preprocessed by feature generator to skip feature generation. # TODO: Resolve raw text feature usage in default feature generator # Done for Tabular # TODO: Remove all `time_limits` in project, replace with `time_limit` class TabularPredictor: """ AutoGluon TabularPredictor predicts values in a column of a tabular dataset (classification or regression). Parameters ---------- label : str Name of the column that contains the target variable to predict. problem_type : str, default = None Type of prediction problem, i.e. is this a binary/multiclass classification or regression problem (options: 'binary', 'multiclass', 'regression', 'quantile'). If `problem_type = None`, the prediction problem type is inferred based on the label-values in provided dataset. eval_metric : function or str, default = None Metric by which predictions will be ultimately evaluated on test data. AutoGluon tunes factors such as hyperparameters, early-stopping, ensemble-weights, etc. in order to improve this metric on validation data. If `eval_metric = None`, it is automatically chosen based on `problem_type`. Defaults to 'accuracy' for binary and multiclass classification, 'root_mean_squared_error' for regression, and 'pinball_loss' for quantile. Otherwise, options for classification: ['accuracy', 'balanced_accuracy', 'f1', 'f1_macro', 'f1_micro', 'f1_weighted', 'roc_auc', 'roc_auc_ovo_macro', 'average_precision', 'precision', 'precision_macro', 'precision_micro', 'precision_weighted', 'recall', 'recall_macro', 'recall_micro', 'recall_weighted', 'log_loss', 'pac_score'] Options for regression: ['root_mean_squared_error', 'mean_squared_error', 'mean_absolute_error', 'median_absolute_error', 'r2'] For more information on these options, see `sklearn.metrics`: https://scikit-learn.org/stable/modules/classes.html#sklearn-metrics-metrics You can also pass your own evaluation function here as long as it follows formatting of the functions defined in folder `autogluon.core.metrics`. path : str, default = None Path to directory where models and intermediate outputs should be saved. If unspecified, a time-stamped folder called "AutogluonModels/ag-[TIMESTAMP]" will be created in the working directory to store all models. Note: To call `fit()` twice and save all results of each fit, you must specify different `path` locations or don't specify `path` at all. Otherwise files from first `fit()` will be overwritten by second `fit()`. verbosity : int, default = 2 Verbosity levels range from 0 to 4 and control how much information is printed. Higher levels correspond to more detailed print statements (you can set verbosity = 0 to suppress warnings). If using logging, you can alternatively control amount of information printed via `logger.setLevel(L)`, where `L` ranges from 0 to 50 (Note: higher values of `L` correspond to fewer print statements, opposite of verbosity levels). sample_weight : str, default = None If specified, this column-name indicates which column of the data should be treated as sample weights. This column will NOT be considered as a predictive feature. Sample weights should be non-negative (and cannot be nan), with larger values indicating which rows are more important than others. If you want your usage of sample weights to match results obtained outside of this Predictor, then ensure sample weights for your training (or tuning) data sum to the number of rows in the training (or tuning) data. You may also specify two special strings: 'auto_weight' (automatically choose a weighting strategy based on the data) or 'balance_weight' (equally weight classes in classification, no effect in regression). If specifying your own sample_weight column, make sure its name does not match these special strings. weight_evaluation : bool, default = False Only considered when `sample_weight` column is not None. Determines whether sample weights should be taken into account when computing evaluation metrics on validation/test data. If True, then weighted metrics will be reported based on the sample weights provided in the specified `sample_weight` (in which case `sample_weight` column must also be present in test data). In this case, the 'best' model used by default for prediction will also be decided based on a weighted version of evaluation metric. Note: we do not recommend specifying `weight_evaluation` when `sample_weight` is 'auto_weight' or 'balance_weight', instead specify appropriate `eval_metric`. groups : str, default = None [Experimental] If specified, AutoGluon will use the column named the value of groups in `train_data` during `.fit` as the data splitting indices for the purposes of bagging. This column will not be used as a feature during model training. This parameter is ignored if bagging is not enabled. To instead specify a custom validation set with bagging disabled, specify `tuning_data` in `.fit`. The data will be split via `sklearn.model_selection.LeaveOneGroupOut`. Use this option to control the exact split indices AutoGluon uses. It is not recommended to use this option unless it is required for very specific situations. Bugs may arise from edge cases if the provided groups are not valid to properly train models, such as if not all classes are present during training in multiclass classification. It is up to the user to sanitize their groups. As an example, if you want your data folds to preserve adjacent rows in the table without shuffling, then for 3 fold bagging with 6 rows of data, the groups column values should be [0, 0, 1, 1, 2, 2]. **kwargs : learner_type : AbstractLearner, default = DefaultLearner A class which inherits from `AbstractLearner`. This dictates the inner logic of predictor. If you don't know what this is, keep it as the default. learner_kwargs : dict, default = None Kwargs to send to the learner. Options include: positive_class : str or int, default = None Used to determine the positive class in binary classification. This is used for certain metrics such as 'f1' which produce different scores depending on which class is considered the positive class. If not set, will be inferred as the second element of the existing unique classes after sorting them. If classes are [0, 1], then 1 will be selected as the positive class. If classes are ['def', 'abc'], then 'def' will be selected as the positive class. If classes are [True, False], then True will be selected as the positive class. ignored_columns : list, default = None Banned subset of column names that predictor may not use as predictive features (e.g. unique identifier to a row or user-ID). These columns are ignored during `fit()`. label_count_threshold : int, default = 10 For multi-class classification problems, this is the minimum number of times a label must appear in dataset in order to be considered an output class. AutoGluon will ignore any classes whose labels do not appear at least this many times in the dataset (i.e. will never predict them). cache_data : bool, default = True When enabled, the training and validation data are saved to disk for future reuse. Enables advanced functionality in predictor such as `fit_extra()` and feature importance calculation on the original data. trainer_type : AbstractTrainer, default = AutoTrainer A class inheriting from `AbstractTrainer` that controls training/ensembling of many models. If you don't know what this is, keep it as the default. Attributes ---------- path : str Path to directory where all models used by this Predictor are stored. problem_type : str What type of prediction problem this Predictor has been trained for. eval_metric : function or str What metric is used to evaluate predictive performance. label : str Name of table column that contains data from the variable to predict (often referred to as: labels, response variable, target variable, dependent variable, Y, etc). feature_metadata : :class:`autogluon.common.features.feature_metadata.FeatureMetadata` Inferred data type of each predictive variable after preprocessing transformation (i.e. column of training data table used to predict `label`). Contains both raw dtype and special dtype information. Each feature has exactly 1 raw dtype (such as 'int', 'float', 'category') and zero to many special dtypes (such as 'datetime_as_int', 'text', 'text_ngram'). Special dtypes are AutoGluon specific feature types that are used to identify features with meaning beyond what the raw dtype can convey. `feature_metadata.type_map_raw`: Dictionary of feature name -> raw dtype mappings. `feature_metadata.type_group_map_special`: Dictionary of lists of special feature names, grouped by special feature dtype. positive_class : str or int Returns the positive class name in binary classification. Useful for computing metrics such as F1 which require a positive and negative class. In binary classification, :meth:`TabularPredictor.predict_proba` returns the estimated probability that each row belongs to the positive class. Will print a warning and return None if called when `predictor.problem_type != 'binary'`. class_labels : list For multiclass problems, this list contains the class labels in sorted order of `predict_proba()` output. For binary problems, this list contains the class labels in sorted order of `predict_proba(as_multiclass=True)` output. `class_labels[0]` corresponds to internal label = 0 (negative class), `class_labels[1]` corresponds to internal label = 1 (positive class). This is relevant for certain metrics such as F1 where True and False labels impact the metric score differently. For other problem types, will equal None. For example if `pred = predict_proba(x, as_multiclass=True)`, then ith index of `pred` provides predicted probability that `x` belongs to class given by `class_labels[i]`. class_labels_internal : list For multiclass problems, this list contains the internal class labels in sorted order of internal `predict_proba()` output. For binary problems, this list contains the internal class labels in sorted order of internal `predict_proba(as_multiclass=True)` output. The value will always be `class_labels_internal=[0, 1]` for binary problems, with 0 as the negative class, and 1 as the positive class. For other problem types, will equal None. class_labels_internal_map : dict For binary and multiclass classification problems, this dictionary contains the mapping of the original labels to the internal labels. For example, in binary classification, label values of 'True' and 'False' will be mapped to the internal representation `1` and `0`. Therefore, class_labels_internal_map would equal {'True': 1, 'False': 0} For other problem types, will equal None. For multiclass, it is possible for not all of the label values to have a mapping. This indicates that the internal models will never predict those missing labels, and training rows associated with the missing labels were dropped. """ Dataset = TabularDataset predictor_file_name = 'predictor.pkl' _predictor_version_file_name = '__version__' def __init__( self, label, problem_type=None, eval_metric=None, path=None, verbosity=2, sample_weight=None, weight_evaluation=False, groups=None, **kwargs ): self.verbosity = verbosity set_logger_verbosity(self.verbosity) if sample_weight == AUTO_WEIGHT: # TODO: update auto_weight strategy and make it the default sample_weight = None logger.log(15, f"{AUTO_WEIGHT} currently does not use any sample weights.") self.sample_weight = sample_weight self.weight_evaluation = weight_evaluation # TODO: sample_weight and weight_evaluation can both be properties that link to self._learner.sample_weight, self._learner.weight_evaluation if self.sample_weight in [AUTO_WEIGHT, BALANCE_WEIGHT] and self.weight_evaluation: logger.warning( f"We do not recommend specifying weight_evaluation when sample_weight='{self.sample_weight}', instead specify appropriate eval_metric.") self._validate_init_kwargs(kwargs) path = setup_outputdir(path) learner_type = kwargs.pop('learner_type', DefaultLearner) learner_kwargs = kwargs.pop('learner_kwargs', dict()) quantile_levels = kwargs.get('quantile_levels', None) self._learner: AbstractLearner = learner_type(path_context=path, label=label, feature_generator=None, eval_metric=eval_metric, problem_type=problem_type, quantile_levels=quantile_levels, sample_weight=self.sample_weight, weight_evaluation=self.weight_evaluation, groups=groups, **learner_kwargs) self._learner_type = type(self._learner) self._trainer = None @property def class_labels(self): return self._learner.class_labels @property def class_labels_internal(self): return self._learner.label_cleaner.ordered_class_labels_transformed @property def class_labels_internal_map(self): return self._learner.label_cleaner.inv_map @property def quantile_levels(self): return self._learner.quantile_levels @property def eval_metric(self): return self._learner.eval_metric @property def problem_type(self): return self._learner.problem_type def features(self, feature_stage: str = 'original'): """ Returns a list of feature names dependent on the value of feature_stage. Parameters ---------- feature_stage : str, default = 'original' If 'original', returns the list of features specified in the original training data. This feature set is required in input data when making predictions. If 'transformed', returns the list of features after pre-processing by the feature generator. Returns ------- Returns a list of feature names """ if feature_stage == 'original': return self.feature_metadata_in.get_features() elif feature_stage == 'transformed': return self.feature_metadata.get_features() else: raise ValueError(f"Unknown feature_stage: '{feature_stage}'. Must be one of {['original', 'transformed']}") @property def feature_metadata(self): return self._trainer.feature_metadata @property def feature_metadata_in(self): return self._learner.feature_generator.feature_metadata_in @property def label(self): return self._learner.label @property def path(self): return self._learner.path @apply_presets(tabular_presets_dict) def fit(self, train_data, tuning_data=None, time_limit=None, presets=None, hyperparameters=None, feature_metadata='infer', **kwargs): """ Fit models to predict a column of a data table (label) based on the other columns (features). Parameters ---------- train_data : str or :class:`TabularDataset` or :class:`pd.DataFrame` Table of the training data, which is similar to a pandas DataFrame. If str is passed, `train_data` will be loaded using the str value as the file path. tuning_data : str or :class:`TabularDataset` or :class:`pd.DataFrame`, default = None Another dataset containing validation data reserved for tuning processes such as early stopping and hyperparameter tuning. This dataset should be in the same format as `train_data`. If str is passed, `tuning_data` will be loaded using the str value as the file path. Note: final model returned may be fit on `tuning_data` as well as `train_data`. Do not provide your evaluation test data here! In particular, when `num_bag_folds` > 0 or `num_stack_levels` > 0, models will be trained on both `tuning_data` and `train_data`. If `tuning_data = None`, `fit()` will automatically hold out some random validation examples from `train_data`. time_limit : int, default = None Approximately how long `fit()` should run for (wallclock time in seconds). If not specified, `fit()` will run until all models have completed training, but will not repeatedly bag models unless `num_bag_sets` is specified. presets : list or str or dict, default = ['medium_quality_faster_train'] List of preset configurations for various arguments in `fit()`. Can significantly impact predictive accuracy, memory-footprint, and inference latency of trained models, and various other properties of the returned `predictor`. It is recommended to specify presets and avoid specifying most other `fit()` arguments or model hyperparameters prior to becoming familiar with AutoGluon. As an example, to get the most accurate overall predictor (regardless of its efficiency), set `presets='best_quality'`. To get good quality with minimal disk usage, set `presets=['good_quality_faster_inference_only_refit', 'optimize_for_deployment']` Any user-specified arguments in `fit()` will override the values used by presets. If specifying a list of presets, later presets will override earlier presets if they alter the same argument. For precise definitions of the provided presets, see file: `autogluon/tabular/configs/presets_configs.py`. Users can specify custom presets by passing in a dictionary of argument values as an element to the list. Available Presets: ['best_quality', 'high_quality_fast_inference_only_refit', 'good_quality_faster_inference_only_refit', 'medium_quality_faster_train', 'optimize_for_deployment', 'ignore_text'] It is recommended to only use one `quality` based preset in a given call to `fit()` as they alter many of the same arguments and are not compatible with each-other. In-depth Preset Info: best_quality={'auto_stack': True} Best predictive accuracy with little consideration to inference time or disk usage. Achieve even better results by specifying a large time_limit value. Recommended for applications that benefit from the best possible model accuracy. high_quality_fast_inference_only_refit={'auto_stack': True, 'refit_full': True, 'set_best_to_refit_full': True, '_save_bag_folds': False} High predictive accuracy with fast inference. ~10x-200x faster inference and ~10x-200x lower disk usage than `best_quality`. Recommended for applications that require reasonable inference speed and/or model size. good_quality_faster_inference_only_refit={'auto_stack': True, 'refit_full': True, 'set_best_to_refit_full': True, '_save_bag_folds': False, 'hyperparameters': 'light'} Good predictive accuracy with very fast inference. ~4x faster inference and ~4x lower disk usage than `high_quality_fast_inference_only_refit`. Recommended for applications that require fast inference speed. medium_quality_faster_train={'auto_stack': False} Medium predictive accuracy with very fast inference and very fast training time. ~20x faster training than `good_quality_faster_inference_only_refit`. This is the default preset in AutoGluon, but should generally only be used for quick prototyping, as `good_quality_faster_inference_only_refit` results in significantly better predictive accuracy and faster inference time. optimize_for_deployment={'keep_only_best': True, 'save_space': True} Optimizes result immediately for deployment by deleting unused models and removing training artifacts. Often can reduce disk usage by ~2-4x with no negatives to model accuracy or inference speed. This will disable numerous advanced functionality, but has no impact on inference. This will make certain functionality less informative, such as `predictor.leaderboard()` and `predictor.fit_summary()`. Because unused models will be deleted under this preset, methods like `predictor.leaderboard()` and `predictor.fit_summary()` will no longer show the full set of models that were trained during `fit()`. Recommended for applications where the inner details of AutoGluon's training is not important and there is no intention of manually choosing between the final models. This preset pairs well with the other presets such as `good_quality_faster_inference_only_refit` to make a very compact final model. Identical to calling `predictor.delete_models(models_to_keep='best', dry_run=False)` and `predictor.save_space()` directly after `fit()`. ignore_text={'_feature_generator_kwargs': {'enable_text_ngram_features': False, 'enable_text_special_features': False, 'enable_raw_text_features': False}} Disables automated feature generation when text features are detected. This is useful to determine how beneficial text features are to the end result, as well as to ensure features are not mistaken for text when they are not. Ignored if `feature_generator` was also specified. hyperparameters : str or dict, default = 'default' Determines the hyperparameters used by the models. If `str` is passed, will use a preset hyperparameter configuration. Valid `str` options: ['default', 'light', 'very_light', 'toy', 'multimodal'] 'default': Default AutoGluon hyperparameters intended to maximize accuracy without significant regard to inference time or disk usage. 'light': Results in smaller models. Generally will make inference speed much faster and disk usage much lower, but with worse accuracy. 'very_light': Results in much smaller models. Behaves similarly to 'light', but in many cases with over 10x less disk usage and a further reduction in accuracy. 'toy': Results in extremely small models. Only use this when prototyping, as the model quality will be severely reduced. 'multimodal': [EXPERIMENTAL] Trains a multimodal transformer model alongside tabular models. Requires that some text columns appear in the data, a GPU, and CUDA-enabled MXNet. When combined with 'best_quality' `presets` option, this can achieve extremely strong results in multimodal data tables that contain columns with text in addition to numeric/categorical columns. Reference `autogluon/tabular/configs/hyperparameter_configs.py` for information on the hyperparameters associated with each preset. Keys are strings that indicate which model types to train. Stable model options include: 'GBM' (LightGBM) 'CAT' (CatBoost) 'XGB' (XGBoost) 'RF' (random forest) 'XT' (extremely randomized trees) 'KNN' (k-nearest neighbors) 'LR' (linear regression) 'NN' (neural network with MXNet backend) 'FASTAI' (neural network with FastAI backend) Experimental model options include: 'FASTTEXT' (FastText) 'AG_TEXT_NN' (Multimodal Text+Tabular model, GPU is required) 'TRANSF' (Tabular Transformer, GPU is recommended) If a certain key is missing from hyperparameters, then `fit()` will not train any models of that type. Omitting a model key from hyperparameters is equivalent to including this model key in `excluded_model_types`. For example, set `hyperparameters = { 'NN':{...} }` if say you only want to train neural networks and no other types of models. Values = dict of hyperparameter settings for each model type, or list of dicts. Each hyperparameter can either be a single fixed value or a search space containing many possible values. Unspecified hyperparameters will be set to default values (or default search spaces if `hyperparameter_tune = True`). Caution: Any provided search spaces will be overridden by fixed defaults if `hyperparameter_tune = False`. To train multiple models of a given type, set the value to a list of hyperparameter dictionaries. For example, `hyperparameters = {'RF': [{'criterion': 'gini'}, {'criterion': 'entropy'}]}` will result in 2 random forest models being trained with separate hyperparameters. Advanced functionality: Custom models `hyperparameters` can also take special string values instead of a dictionary of model parameters which maps to a pre-configured model configuration (currently supported options = ['GBMLarge']). These additional models will be trained using custom pre-specified hyperparameter settings that are known to work well. Advanced functionality: Custom stack levels By default, AutoGluon re-uses the same models and model hyperparameters at each level during stack ensembling. To customize this behaviour, create a hyperparameters dictionary separately for each stack level, and then add them as values to a new dictionary, with keys equal to the stack level. Example: `hyperparameters = {1: {'RF': rf_params1}, 2: {'CAT': [cat_params1, cat_params2], 'NN': {}}}` This will result in a stack ensemble that has one custom random forest in level 1 followed by two CatBoost models with custom hyperparameters and a default neural network in level 2, for a total of 4 models. If a level is not specified in `hyperparameters`, it will default to using the highest specified level to train models. This can also be explicitly controlled by adding a 'default' key. Default: hyperparameters = { 'NN': {}, 'GBM': [ {'extra_trees': True, 'ag_args': {'name_suffix': 'XT'}}, {}, 'GBMLarge', ], 'CAT': {}, 'XGB': {}, 'FASTAI': {}, 'RF': [ {'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy', 'ag_args': {'name_suffix': 'Entr', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'mse', 'ag_args': {'name_suffix': 'MSE', 'problem_types': ['regression']}}, ], 'XT': [ {'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy', 'ag_args': {'name_suffix': 'Entr', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'mse', 'ag_args': {'name_suffix': 'MSE', 'problem_types': ['regression']}}, ], 'KNN': [ {'weights': 'uniform', 'ag_args': {'name_suffix': 'Unif'}}, {'weights': 'distance', 'ag_args': {'name_suffix': 'Dist'}}, ], } Details regarding the hyperparameters you can specify for each model are provided in the following files: NN: `autogluon.tabular.models.tabular_nn.hyperparameters.parameters` Note: certain hyperparameter settings may cause these neural networks to train much slower. GBM: `autogluon.tabular.models.lgb.hyperparameters.parameters` See also the lightGBM docs: https://lightgbm.readthedocs.io/en/latest/Parameters.html CAT: `autogluon.tabular.models.catboost.hyperparameters.parameters` See also the CatBoost docs: https://catboost.ai/docs/concepts/parameter-tuning.html XGB: `autogluon.tabular.models.xgboost.hyperparameters.parameters` See also the XGBoost docs: https://xgboost.readthedocs.io/en/latest/parameter.html FASTAI: `autogluon.tabular.models.fastainn.hyperparameters.parameters` See also the FastAI docs: https://docs.fast.ai/tabular.models.html RF: See sklearn documentation: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html Note: Hyperparameter tuning is disabled for this model. XT: See sklearn documentation: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html Note: Hyperparameter tuning is disabled for this model. KNN: See sklearn documentation: https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html Note: Hyperparameter tuning is disabled for this model. LR: `autogluon.tabular.models.lr.hyperparameters.parameters` Note: Hyperparameter tuning is disabled for this model. Note: 'penalty' parameter can be used for regression to specify regularization method: 'L1' and 'L2' values are supported. Advanced functionality: Custom AutoGluon model arguments These arguments are optional and can be specified in any model's hyperparameters. Example: `hyperparameters = {'RF': {..., 'ag_args': {'name_suffix': 'CustomModelSuffix', 'disable_in_hpo': True}}` ag_args: Dictionary of customization options related to meta properties of the model such as its name, the order it is trained, the problem types it is valid for, and the type of HPO it utilizes. Valid keys: name: (str) The name of the model. This overrides AutoGluon's naming logic and all other name arguments if present. name_main: (str) The main name of the model. Example: 'RandomForest'. name_prefix: (str) Add a custom prefix to the model name. Unused by default. name_suffix: (str) Add a custom suffix to the model name. Unused by default. priority: (int) Determines the order in which the model is trained. Larger values result in the model being trained earlier. Default values range from 100 (KNN) to 0 (custom), dictated by model type. If you want this model to be trained first, set priority = 999. problem_types: (list) List of valid problem types for the model. `problem_types=['binary']` will result in the model only being trained if `problem_type` is 'binary'. disable_in_hpo: (bool) If True, the model will only be trained if `hyperparameter_tune_kwargs=None`. valid_stacker: (bool) If False, the model will not be trained as a level 2 or higher stacker model. valid_base: (bool) If False, the model will not be trained as a level 1 (base) model. hyperparameter_tune_kwargs: (dict) Refer to :meth:`TabularPredictor.fit` hyperparameter_tune_kwargs argument. If specified here, will override global HPO settings for this model. Reference the default hyperparameters for example usage of these options. ag_args_fit: Dictionary of model fit customization options related to how and with what constraints the model is trained. These parameters affect stacker fold models, but not stacker models themselves. Clarification: `time_limit` is the internal time in seconds given to a particular model to train, which is dictated in part by the `time_limit` argument given during `predictor.fit()` but is not the same. Valid keys: stopping_metric: (str or :class:`autogluon.core.metrics.Scorer`, default=None) The metric to use for early stopping of the model. If None, model will decide. max_memory_usage_ratio: (float, default=1.0) The ratio of memory usage relative to the default to allow before early stopping or killing the model. Values greater than 1.0 will be increasingly prone to out-of-memory errors. max_time_limit_ratio: (float, default=1.0) The ratio of the provided time_limit to use during model `fit()`. If `time_limit=10` and `max_time_limit_ratio=0.3`, time_limit would be changed to 3. Does not alter max_time_limit or min_time_limit values. max_time_limit: (float, default=None) Maximum amount of time to allow this model to train for (in sec). If the provided time_limit is greater than this value, it will be replaced by max_time_limit. min_time_limit: (float, default=0) Allow this model to train for at least this long (in sec), regardless of the time limit it would otherwise be granted. If `min_time_limit >= max_time_limit`, time_limit will be set to min_time_limit. If `min_time_limit=None`, time_limit will be set to None and the model will have no training time restriction. num_cpus : (int or str, default='auto') How many CPUs to use during model fit. If 'auto', model will decide. num_gpus : (int or str, default='auto') How many GPUs to use during model fit. If 'auto', model will decide. Some models can use GPUs but don't by default due to differences in model quality. Set to 0 to disable usage of GPUs. ag_args_ensemble: Dictionary of hyperparameters shared by all models that control how they are ensembled, if bag mode is enabled. Valid keys: use_orig_features: (bool) Whether a stack model will use the original features along with the stack features to train (akin to skip-connections). If the model has no stack features (no base models), this value is ignored and the stack model will use the original features. max_base_models: (int, default=25) Maximum number of base models whose predictions form the features input to this stacker model. If more than `max_base_models` base models are available, only the top `max_base_models` models with highest validation score are used. max_base_models_per_type: (int, default=5) Similar to `max_base_models`. If more than `max_base_models_per_type` of any particular model type are available, only the top `max_base_models_per_type` of that type are used. This occurs before the `max_base_models` filter. save_bag_folds: (bool, default=True) If True, bagged models will save their fold models (the models from each individual fold of bagging). This is required to use bagged models for prediction. If False, bagged models will not save their fold models. This means that bagged models will not be valid models during inference. This should only be set to False when planning to call `predictor.refit_full()` or when `refit_full` is set and `set_best_to_refit_full=True`. Particularly useful if disk usage is a concern. By not saving the fold models, bagged models will use only very small amounts of disk space during training. In many training runs, this will reduce peak disk usage by >10x. fold_fitting_strategy: (AbstractFoldFittingStrategy default=auto) Whether to fit folds in parallel or in sequential order. If parallel_local, folds will be trained in parallel with evenly distributed computing resources. This could bring 2-4x speedup compared to SequentialLocalFoldFittingStrategy, but could consume much more memory. If sequential_local, folds will be trained in sequential. If auto, strategy will be determined by OS and whether ray is installed or not. MacOS support for parallel_local is unstable, and may crash if enabled. num_folds_parallel: (int or str, default='auto') Number of folds to be trained in parallel if using ParallelLocalFoldFittingStrategy. Consider lowering this value if you encounter either out of memory issue or CUDA out of memory issue(when trained on gpu). if 'auto', will try to train all folds in parallel. feature_metadata : :class:`autogluon.tabular.FeatureMetadata` or str, default = 'infer' The feature metadata used in various inner logic in feature preprocessing. If 'infer', will automatically construct a FeatureMetadata object based on the properties of `train_data`. In this case, `train_data` is input into :meth:`autogluon.tabular.FeatureMetadata.from_df` to infer `feature_metadata`. If 'infer' incorrectly assumes the dtypes of features, consider explicitly specifying `feature_metadata`. **kwargs : auto_stack : bool, default = False Whether AutoGluon should automatically utilize bagging and multi-layer stack ensembling to boost predictive accuracy. Set this = True if you are willing to tolerate longer training times in order to maximize predictive accuracy! Automatically sets `num_bag_folds` and `num_stack_levels` arguments based on dataset properties. Note: Setting `num_bag_folds` and `num_stack_levels` arguments will override `auto_stack`. Note: This can increase training time (and inference time) by up to 20x, but can greatly improve predictive performance. num_bag_folds : int, default = None Number of folds used for bagging of models. When `num_bag_folds = k`, training time is roughly increased by a factor of `k` (set = 0 to disable bagging). Disabled by default (0), but we recommend values between 5-10 to maximize predictive performance. Increasing num_bag_folds will result in models with lower bias but that are more prone to overfitting. `num_bag_folds = 1` is an invalid value, and will raise a ValueError. Values > 10 may produce diminishing returns, and can even harm overall results due to overfitting. To further improve predictions, avoid increasing `num_bag_folds` much beyond 10 and instead increase `num_bag_sets`. num_bag_sets : int, default = None Number of repeats of kfold bagging to perform (values must be >= 1). Total number of models trained during bagging = `num_bag_folds * num_bag_sets`. Defaults to 1 if `time_limit` is not specified, otherwise 20 (always disabled if `num_bag_folds` is not specified). Values greater than 1 will result in superior predictive performance, especially on smaller problems and with stacking enabled (reduces overall variance). num_stack_levels : int, default = None Number of stacking levels to use in stack ensemble. Roughly increases model training time by factor of `num_stack_levels+1` (set = 0 to disable stack ensembling). Disabled by default (0), but we recommend values between 1-3 to maximize predictive performance. To prevent overfitting, `num_bag_folds >= 2` must also be set or else a ValueError will be raised. holdout_frac : float, default = None Fraction of train_data to holdout as tuning data for optimizing hyperparameters (ignored unless `tuning_data = None`, ignored if `num_bag_folds != 0` unless `use_bag_holdout == True`). Default value (if None) is selected based on the number of rows in the training data. Default values range from 0.2 at 2,500 rows to 0.01 at 250,000 rows. Default value is doubled if `hyperparameter_tune_kwargs` is set, up to a maximum of 0.2. Disabled if `num_bag_folds >= 2` unless `use_bag_holdout == True`. use_bag_holdout : bool, default = False If True, a `holdout_frac` portion of the data is held-out from model bagging. This held-out data is only used to score models and determine weighted ensemble weights. Enable this if there is a large gap between score_val and score_test in stack models. Note: If `tuning_data` was specified, `tuning_data` is used as the holdout data. Disabled if not bagging. hyperparameter_tune_kwargs : str or dict, default = None Hyperparameter tuning strategy and kwargs (for example, how many HPO trials to run). If None, then hyperparameter tuning will not be performed. Valid preset values: 'auto': Uses the 'bayesopt' preset. 'random': Performs HPO via random search using local scheduler. 'bayesopt': Performs HPO via bayesian optimization using local scheduler. For valid dictionary keys, refer to :class:`autogluon.core.scheduler.FIFOScheduler` documentation. The 'searcher' key is required when providing a dict. feature_prune_kwargs: dict, default = None Performs layer-wise feature pruning via recursive feature elimination with permutation feature importance. This fits all models in a stack layer once, discovers a pruned set of features, fits all models in the stack layer again with the pruned set of features, and updates input feature lists for models whose validation score improved. If None, do not perform feature pruning. If empty dictionary, perform feature pruning with default configurations. For valid dictionary keys, refer to :class:`autogluon.core.utils.feature_selection.FeatureSelector` and `autogluon.core.trainer.abstract_trainer.AbstractTrainer._proxy_model_feature_prune` documentation. To force all models to work with the pruned set of features, set force_prune=True in the dictionary. ag_args : dict, default = None Keyword arguments to pass to all models (i.e. common hyperparameters shared by all AutoGluon models). See the `ag_args` argument from "Advanced functionality: Custom AutoGluon model arguments" in the `hyperparameters` argument documentation for valid values. Identical to specifying `ag_args` parameter for all models in `hyperparameters`. If a key in `ag_args` is already specified for a model in `hyperparameters`, it will not be altered through this argument. ag_args_fit : dict, default = None Keyword arguments to pass to all models. See the `ag_args_fit` argument from "Advanced functionality: Custom AutoGluon model arguments" in the `hyperparameters` argument documentation for valid values. Identical to specifying `ag_args_fit` parameter for all models in `hyperparameters`. If a key in `ag_args_fit` is already specified for a model in `hyperparameters`, it will not be altered through this argument. ag_args_ensemble : dict, default = None Keyword arguments to pass to all models. See the `ag_args_ensemble` argument from "Advanced functionality: Custom AutoGluon model arguments" in the `hyperparameters` argument documentation for valid values. Identical to specifying `ag_args_ensemble` parameter for all models in `hyperparameters`. If a key in `ag_args_ensemble` is already specified for a model in `hyperparameters`, it will not be altered through this argument. excluded_model_types : list, default = None Banned subset of model types to avoid training during `fit()`, even if present in `hyperparameters`. Reference `hyperparameters` documentation for what models correspond to each value. Useful when a particular model type such as 'KNN' or 'custom' is not desired but altering the `hyperparameters` dictionary is difficult or time-consuming. Example: To exclude both 'KNN' and 'custom' models, specify `excluded_model_types=['KNN', 'custom']`. refit_full : bool or str, default = False Whether to retrain all models on all of the data (training + validation) after the normal training procedure. This is equivalent to calling `predictor.refit_full(model=refit_full)` after fit. If `refit_full=True`, it will be treated as `refit_full='all'`. If `refit_full=False`, refitting will not occur. Valid str values: `all`: refits all models. `best`: refits only the best model (and its ancestors if it is a stacker model). `{model_name}`: refits only the specified model (and its ancestors if it is a stacker model). For bagged models: Reduces a model's inference time by collapsing bagged ensembles into a single model fit on all of the training data. This process will typically result in a slight accuracy reduction and a large inference speedup. The inference speedup will generally be between 10-200x faster than the original bagged ensemble model. The inference speedup factor is equivalent to (k * n), where k is the number of folds (`num_bag_folds`) and n is the number of finished repeats (`num_bag_sets`) in the bagged ensemble. The runtime is generally 10% or less of the original fit runtime. The runtime can be roughly estimated as 1 / (k * n) of the original fit runtime, with k and n defined above. For non-bagged models: Optimizes a model's accuracy by retraining on 100% of the data without using a validation set. Will typically result in a slight accuracy increase and no change to inference time. The runtime will be approximately equal to the original fit runtime. This process does not alter the original models, but instead adds additional models. If stacker models are refit by this process, they will use the refit_full versions of the ancestor models during inference. Models produced by this process will not have validation scores, as they use all of the data for training. Therefore, it is up to the user to determine if the models are of sufficient quality by including test data in `predictor.leaderboard(test_data)`. If the user does not have additional test data, they should reference the original model's score for an estimate of the performance of the refit_full model. Warning: Be aware that utilizing refit_full models without separately verifying on test data means that the model is untested, and has no guarantee of being consistent with the original model. The time taken by this process is not enforced by `time_limit`. set_best_to_refit_full : bool, default = False If True, will change the default model that Predictor uses for prediction when model is not specified to the refit_full version of the model that exhibited the highest validation score. Only valid if `refit_full` is set. keep_only_best : bool, default = False If True, only the best model and its ancestor models are saved in the outputted `predictor`. All other models are deleted. If you only care about deploying the most accurate predictor with the smallest file-size and no longer need any of the other trained models or functionality beyond prediction on new data, then set: `keep_only_best=True`, `save_space=True`. This is equivalent to calling `predictor.delete_models(models_to_keep='best', dry_run=False)` directly after `fit()`. If used with `refit_full` and `set_best_to_refit_full`, the best model will be the refit_full model, and the original bagged best model will be deleted. `refit_full` will be automatically set to 'best' in this case to avoid training models which will be later deleted. save_space : bool, default = False If True, reduces the memory and disk size of predictor by deleting auxiliary model files that aren't needed for prediction on new data. This is equivalent to calling `predictor.save_space()` directly after `fit()`. This has NO impact on inference accuracy. It is recommended if the only goal is to use the trained model for prediction. Certain advanced functionality may no longer be available if `save_space=True`. Refer to `predictor.save_space()` documentation for more details. feature_generator : :class:`autogluon.features.generators.AbstractFeatureGenerator`, default = :class:`autogluon.features.generators.AutoMLPipelineFeatureGenerator` The feature generator used by AutoGluon to process the input data to the form sent to the models. This often includes automated feature generation and data cleaning. It is generally recommended to keep the default feature generator unless handling an advanced use-case. To control aspects of the default feature generation process, you can pass in an :class:`AutoMLPipelineFeatureGenerator` object constructed using some of these kwargs: enable_numeric_features : bool, default True Whether to keep features of 'int' and 'float' raw types. These features are passed without alteration to the models. Appends IdentityFeatureGenerator(infer_features_in_args=dict(valid_raw_types=['int', 'float']))) to the generator group. enable_categorical_features : bool, default True Whether to keep features of 'object' and 'category' raw types. These features are processed into memory optimized 'category' features. Appends CategoryFeatureGenerator() to the generator group. enable_datetime_features : bool, default True Whether to keep features of 'datetime' raw type and 'object' features identified as 'datetime_as_object' features. These features will be converted to 'int' features representing milliseconds since epoch. Appends DatetimeFeatureGenerator() to the generator group. enable_text_special_features : bool, default True Whether to use 'object' features identified as 'text' features to generate 'text_special' features such as word count, capital letter ratio, and symbol counts. Appends TextSpecialFeatureGenerator() to the generator group. enable_text_ngram_features : bool, default True Whether to use 'object' features identified as 'text' features to generate 'text_ngram' features. Appends TextNgramFeatureGenerator(vectorizer=vectorizer) to the generator group. enable_raw_text_features : bool, default False Whether to keep the raw text features. Appends IdentityFeatureGenerator(infer_features_in_args=dict(required_special_types=['text'])) to the generator group. vectorizer : CountVectorizer, default CountVectorizer(min_df=30, ngram_range=(1, 3), max_features=10000, dtype=np.uint8) sklearn CountVectorizer object to use in TextNgramFeatureGenerator. Only used if `enable_text_ngram_features=True`. unlabeled_data : pd.DataFrame, default = None [Experimental Parameter] Collection of data without labels that we can use to pretrain on. This is the same schema as train_data, except without the labels. Currently, unlabeled_data is only used for pretraining a TabTransformer model. If you do not specify 'TRANSF' with unlabeled_data, then no pretraining will occur and unlabeled_data will be ignored! After the pretraining step, we will finetune using the TabTransformer model as well. If TabTransformer is ensembled with other models, like in typical AutoGluon fashion, then the output of this "pretrain/finetune" will be ensembled with other models, which will not used the unlabeled_data. The "pretrain/finetune flow" is also known as semi-supervised learning. The typical use case for unlabeled_data is to add signal to your model where you may not have sufficient training data. e.g. 500 hand-labeled samples (perhaps a hard human task), whole data set (unlabeled) is thousands/millions. However, this isn't the only use case. Given enough unlabeled data(millions of rows), you may see improvements to any amount of labeled data. verbosity : int If specified, overrides the existing `predictor.verbosity` value. calibrate: bool, default = False If True and the problem_type is classification, temperature scaling will be used to calibrate the Predictor's estimated class probabilities (which may improve metrics like log_loss) and will train a scalar parameter on the validation set. If True and the problem_type is quantile regression, conformalization will be used to calibrate the Predictor's estimated quantiles (which may improve the prediction interval coverage, and bagging could futher improve it) and will compute a set of scalar parameters on the validation set. Returns ------- :class:`TabularPredictor` object. Returns self. Examples -------- >>> from autogluon.tabular import TabularDataset, TabularPredictor >>> train_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv') >>> label = 'class' >>> predictor = TabularPredictor(label=label).fit(train_data) >>> test_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv') >>> leaderboard = predictor.leaderboard(test_data) >>> y_test = test_data[label] >>> test_data = test_data.drop(columns=[label]) >>> y_pred = predictor.predict(test_data) >>> perf = predictor.evaluate_predictions(y_true=y_test, y_pred=y_pred) To maximize predictive performance, use the following: >>> eval_metric = 'roc_auc' # set this to the metric you ultimately care about >>> time_limit = 3600 # set as long as you are willing to wait (in sec) >>> predictor = TabularPredictor(label=label, eval_metric=eval_metric).fit(train_data, presets=['best_quality'], time_limit=time_limit) """ if self._learner.is_fit: raise AssertionError( 'Predictor is already fit! To fit additional models, refer to `predictor.fit_extra`, or create a new `Predictor`.') kwargs_orig = kwargs.copy() kwargs = self._validate_fit_kwargs(kwargs) verbosity = kwargs.get('verbosity', self.verbosity) set_logger_verbosity(verbosity) if presets: if not isinstance(presets, list): presets = [presets] logger.log(20, f'Presets specified: {presets}') if verbosity >= 3: logger.log(20, '============ fit kwarg info ============') logger.log(20, 'User Specified kwargs:') logger.log(20, f'{pprint.pformat(kwargs_orig)}') logger.log(20, 'Full kwargs:') logger.log(20, f'{pprint.pformat(kwargs)}') logger.log(20, '========================================') holdout_frac = kwargs['holdout_frac'] num_bag_folds = kwargs['num_bag_folds'] num_bag_sets = kwargs['num_bag_sets'] num_stack_levels = kwargs['num_stack_levels'] auto_stack = kwargs['auto_stack'] feature_generator = kwargs['feature_generator'] unlabeled_data = kwargs['unlabeled_data'] ag_args = kwargs['ag_args'] ag_args_fit = kwargs['ag_args_fit'] ag_args_ensemble = kwargs['ag_args_ensemble'] excluded_model_types = kwargs['excluded_model_types'] use_bag_holdout = kwargs['use_bag_holdout'] if ag_args is None: ag_args = {} ag_args = self._set_hyperparameter_tune_kwargs_in_ag_args(kwargs['hyperparameter_tune_kwargs'], ag_args, time_limit=time_limit) feature_generator_init_kwargs = kwargs['_feature_generator_kwargs'] if feature_generator_init_kwargs is None: feature_generator_init_kwargs = dict() train_data, tuning_data, unlabeled_data = self._validate_fit_data(train_data=train_data, tuning_data=tuning_data, unlabeled_data=unlabeled_data) if hyperparameters is None: hyperparameters = 'default' if isinstance(hyperparameters, str): hyperparameters = get_hyperparameter_config(hyperparameters) # TODO: Hyperparam could have non-serializble objects. Save as pkl and loaded on demand # in case the hyperprams are large in memory self.fit_hyperparameters_ = hyperparameters ################################### # FIXME: v0.1 This section is a hack if 'enable_raw_text_features' not in feature_generator_init_kwargs: if 'AG_TEXT_NN' in hyperparameters: feature_generator_init_kwargs['enable_raw_text_features'] = True else: for key in hyperparameters: if isinstance(key, int) or key == 'default': if 'AG_TEXT_NN' in hyperparameters[key]: feature_generator_init_kwargs['enable_raw_text_features'] = True break ################################### if feature_metadata is not None and isinstance(feature_metadata, str) and feature_metadata == 'infer': feature_metadata = None self._set_feature_generator(feature_generator=feature_generator, feature_metadata=feature_metadata, init_kwargs=feature_generator_init_kwargs) num_bag_folds, num_bag_sets, num_stack_levels = self._sanitize_stack_args( num_bag_folds=num_bag_folds, num_bag_sets=num_bag_sets, num_stack_levels=num_stack_levels, time_limit=time_limit, auto_stack=auto_stack, num_train_rows=len(train_data), ) if holdout_frac is None: holdout_frac = default_holdout_frac(len(train_data), ag_args.get('hyperparameter_tune_kwargs', None) is not None) if kwargs['_save_bag_folds'] is not None: if use_bag_holdout and not kwargs['_save_bag_folds']: logger.log(30, f'WARNING: Attempted to disable saving of bagged fold models when `use_bag_holdout=True`. Forcing `save_bag_folds=True` to avoid errors.') else: if ag_args_ensemble is None: ag_args_ensemble = {} ag_args_ensemble['save_bag_folds'] = kwargs['_save_bag_folds'] if time_limit is None: mb_mem_usage_train_data = get_approximate_df_mem_usage(train_data, sample_ratio=0.2).sum() / 1e6 num_rows_train = len(train_data) if mb_mem_usage_train_data >= 50 or num_rows_train >= 100000: logger.log(20, f'Warning: Training may take a very long time because `time_limit` was not specified and `train_data` is large ({num_rows_train} samples, {round(mb_mem_usage_train_data, 2)} MB).') logger.log(20, f'\tConsider setting `time_limit` to ensure training finishes within an expected duration or experiment with a small portion of `train_data` to identify an ideal `presets` and `hyperparameters` configuration.') core_kwargs = { 'ag_args': ag_args, 'ag_args_ensemble': ag_args_ensemble, 'ag_args_fit': ag_args_fit, 'excluded_model_types': excluded_model_types, 'feature_prune_kwargs': kwargs.get('feature_prune_kwargs', None) } self.save(silent=True) # Save predictor to disk to enable prediction and training after interrupt self._learner.fit(X=train_data, X_val=tuning_data, X_unlabeled=unlabeled_data, holdout_frac=holdout_frac, num_bag_folds=num_bag_folds, num_bag_sets=num_bag_sets, num_stack_levels=num_stack_levels, hyperparameters=hyperparameters, core_kwargs=core_kwargs, time_limit=time_limit, verbosity=verbosity, use_bag_holdout=use_bag_holdout) self._set_post_fit_vars() self._post_fit( keep_only_best=kwargs['keep_only_best'], refit_full=kwargs['refit_full'], set_best_to_refit_full=kwargs['set_best_to_refit_full'], save_space=kwargs['save_space'], calibrate=kwargs['calibrate'] ) self.save() return self def _post_fit(self, keep_only_best=False, refit_full=False, set_best_to_refit_full=False, save_space=False, calibrate=False): if refit_full is True: if keep_only_best is True: if set_best_to_refit_full is True: refit_full = 'best' else: logger.warning( f'refit_full was set to {refit_full}, but keep_only_best=True and set_best_to_refit_full=False. Disabling refit_full to avoid training models which would be automatically deleted.') refit_full = False else: refit_full = 'all' if refit_full is not False: trainer_model_best = self._trainer.get_model_best() self.refit_full(model=refit_full) if set_best_to_refit_full: if trainer_model_best in self._trainer.model_full_dict.keys(): self._trainer.model_best = self._trainer.model_full_dict[trainer_model_best] # Note: model_best will be overwritten if additional training is done with new models, since model_best will have validation score of None and any new model will have a better validation score. # This has the side-effect of having the possibility of model_best being overwritten by a worse model than the original model_best. self._trainer.save() else: logger.warning( f'Best model ({trainer_model_best}) is not present in refit_full dictionary. Training may have failed on the refit model. AutoGluon will default to using {trainer_model_best} for predictions.') if keep_only_best: self.delete_models(models_to_keep='best', dry_run=False) if calibrate: if self.problem_type in PROBLEM_TYPES_CLASSIFICATION + [QUANTILE]: self._calibrate_model() else: logger.log(30, 'WARNING: calibrate is only applicable to classification or quantile regression problems') if save_space: self.save_space() def _calibrate_model(self, model_name: str = None, lr: float = 0.01, max_iter: int = 1000, init_val: float = 1.0): """ Applies temperature scaling to the AutoGluon model. Applies inverse softmax to predicted probs then trains temperature scalar on validation data to maximize negative log likelihood. Inversed softmaxes are divided by temperature scalar then softmaxed to return predicted probs. Parameters: ----------- model_name: str: default=None model name to tune temperature scaling on. If set to None then will tune best model only. Best model chosen by validation score lr: float: default=0.01 The learning rate for temperature scaling algorithm max_iter: int: default=1000 Number of iterations optimizer should take for tuning temperature scaler init_val: float: default=1.0 The initial value for temperature scalar term """ # TODO: Note that temperature scaling is known to worsen calibration in the face of shifted test data. if model_name is None: model_name = self._trainer.get_model_best() if self._trainer.bagged_mode: y_val_probs = self.get_oof_pred_proba(model_name).to_numpy() y_val = self._trainer.load_y().to_numpy() else: X_val = self._trainer.load_X_val() y_val_probs = self._trainer.predict_proba(X_val, model_name) y_val = self._trainer.load_y_val().to_numpy() if self.problem_type == BINARY: y_val_probs = LabelCleanerMulticlassToBinary.convert_binary_proba_to_multiclass_proba(y_val_probs) model = self._trainer.load_model(model_name=model_name) if self.problem_type == QUANTILE: logger.log(15, f'Conformity scores being computed to calibrate model: {model_name}') conformalize = compute_conformity_score(y_val_pred=y_val_probs, y_val=y_val, quantile_levels=self.quantile_levels) model.conformalize = conformalize else: logger.log(15, f'Temperature scaling term being tuned for model: {model_name}') temp_scalar = tune_temperature_scaling(y_val_probs=y_val_probs, y_val=y_val, init_val=init_val, max_iter=max_iter, lr=lr) logger.log(15, f'Temperature term found is: {temp_scalar}') model.temperature_scalar = temp_scalar model.save() def fit_extra(self, hyperparameters, time_limit=None, base_model_names=None, **kwargs): """ Fits additional models after the original :meth:`TabularPredictor.fit` call. The original train_data and tuning_data will be used to train the models. Parameters ---------- hyperparameters : str or dict Refer to argument documentation in :meth:`TabularPredictor.fit`. If `base_model_names` is specified and hyperparameters is using the level-based key notation, the key of the level which directly uses the base models should be 1. The level in the hyperparameters dictionary is relative, not absolute. time_limit : int, default = None Refer to argument documentation in :meth:`TabularPredictor.fit`. base_model_names : list, default = None The names of the models to use as base models for this fit call. Base models will provide their out-of-fold predictions as additional features to the models in `hyperparameters`. If specified, all models trained will be stack ensembles. If None, models will be trained as if they were specified in :meth:`TabularPredictor.fit`, without depending on existing models. Only valid if bagging is enabled. **kwargs : Refer to kwargs documentation in :meth:`TabularPredictor.fit`. Note that the following kwargs are not available in `fit_extra` as they cannot be changed from their values set in `fit()`: [`holdout_frac`, `num_bag_folds`, `auto_stack`, `feature_generator`, `unlabeled_data`] pseudo_data : pd.DataFrame, default = None Data that has been self labeled by Autogluon model and will be incorporated into training during 'fit_extra' """ self._assert_is_fit('fit_extra') time_start = time.time() kwargs_orig = kwargs.copy() kwargs = self._validate_fit_extra_kwargs(kwargs) verbosity = kwargs.get('verbosity', self.verbosity) set_logger_verbosity(verbosity) if verbosity >= 3: logger.log(20, '============ fit kwarg info ============') logger.log(20, 'User Specified kwargs:') logger.log(20, f'{pprint.pformat(kwargs_orig)}') logger.log(20, 'Full kwargs:') logger.log(20, f'{pprint.pformat(kwargs)}') logger.log(20, '========================================') # TODO: Allow disable aux (default to disabled) # TODO: num_bag_sets # num_bag_sets = kwargs['num_bag_sets'] num_stack_levels = kwargs['num_stack_levels'] # save_bag_folds = kwargs['save_bag_folds'] # TODO: Enable ag_args = kwargs['ag_args'] ag_args_fit = kwargs['ag_args_fit'] ag_args_ensemble = kwargs['ag_args_ensemble'] excluded_model_types = kwargs['excluded_model_types'] pseudo_data = kwargs.get('pseudo_data', None) # TODO: Since data preprocessor is fitted on original train_data it cannot account for if # labeled pseudo data has new labels unseen in the original train. Probably need to refit # data preprocessor if this is the case. if pseudo_data is not None: if self.label not in pseudo_data.columns: raise ValueError('\'pseudo_data\' does not contain the labeled column.') if self.sample_weight is not None: raise ValueError('Applying \'sample_weight\' while calling \'fit_pseudolabel\' is not supported') X_pseudo = pseudo_data.drop(columns=[self.label]) y_pseudo_og = pseudo_data[self.label] X_pseudo = self._learner.transform_features(X_pseudo) y_pseudo = self._learner.label_cleaner.transform(y_pseudo_og) if np.isnan(y_pseudo.unique()).any(): raise Exception('NaN was found in the label column for pseudo labeled data.' 'Please ensure no NaN values in target column') else: X_pseudo = None y_pseudo = None if ag_args is None: ag_args = {} ag_args = self._set_hyperparameter_tune_kwargs_in_ag_args(kwargs['hyperparameter_tune_kwargs'], ag_args, time_limit=time_limit) fit_new_weighted_ensemble = False # TODO: Add as option aux_kwargs = None # TODO: Add as option if isinstance(hyperparameters, str): hyperparameters = get_hyperparameter_config(hyperparameters) if num_stack_levels is None: hyperparameter_keys = list(hyperparameters.keys()) highest_level = 1 for key in hyperparameter_keys: if isinstance(key, int): highest_level = max(key, highest_level) num_stack_levels = highest_level # TODO: make core_kwargs a kwargs argument to predictor.fit, add aux_kwargs to predictor.fit core_kwargs = {'ag_args': ag_args, 'ag_args_ensemble': ag_args_ensemble, 'ag_args_fit': ag_args_fit, 'excluded_model_types': excluded_model_types} if X_pseudo is not None and y_pseudo is not None: core_kwargs['X_pseudo'] = X_pseudo core_kwargs['y_pseudo'] = y_pseudo # TODO: Add special error message if called and training/val data was not cached. X, y, X_val, y_val = self._trainer.load_data() if y_pseudo is not None and self.problem_type in PROBLEM_TYPES_CLASSIFICATION: y_og = self._learner.label_cleaner.inverse_transform(y) y_og_classes = y_og.unique() y_pseudo_classes = y_pseudo_og.unique() matching_classes = np.in1d(y_pseudo_classes, y_og_classes) if not matching_classes.all(): raise Exception(f'Pseudo training data contains classes not in original train data: {y_pseudo_classes[~matching_classes]}') name_suffix = kwargs.get('name_suffix', '') fit_models = self._trainer.train_multi_levels( X=X, y=y, hyperparameters=hyperparameters, X_val=X_val, y_val=y_val, base_model_names=base_model_names, time_limit=time_limit, relative_stack=True, level_end=num_stack_levels, core_kwargs=core_kwargs, aux_kwargs=aux_kwargs, name_suffix=name_suffix ) if time_limit is not None: time_limit = time_limit - (time.time() - time_start) if fit_new_weighted_ensemble: if time_limit is not None: time_limit_weighted = max(time_limit, 60) else: time_limit_weighted = None fit_models += self.fit_weighted_ensemble(time_limit=time_limit_weighted) self._post_fit( keep_only_best=kwargs['keep_only_best'], refit_full=kwargs['refit_full'], set_best_to_refit_full=kwargs['set_best_to_refit_full'], save_space=kwargs['save_space'], calibrate=kwargs['calibrate'] ) self.save() return self def _get_all_fit_extra_args(self): ret = list(self._fit_extra_kwargs_dict().keys()) + list(inspect.signature(self.fit_extra).parameters.keys()) ret.remove('kwargs') return ret def _fit_weighted_ensemble_pseudo(self): """ Fits weighted ensemble on top models trained with pseudo labeling, then if new weighted ensemble model is best model then sets `model_best` in trainer to weighted ensemble model. """ logger.log(15, 'Fitting weighted ensemble using top models') weighted_ensemble_model_name = self.fit_weighted_ensemble()[0] # TODO: This is a hack! self.predict_prob does not update to use weighted ensemble # if it's the best model. # TODO: There should also be PL added to weighted ensemble model name to notify # users it is a model trained with PL models if they are indeed ensembled model_best_name = self._trainer.leaderboard().iloc[0]['model'] if model_best_name == weighted_ensemble_model_name: self._trainer.model_best = model_best_name self._trainer.save() logger.log(15, 'Weighted ensemble was the best model for current iteration of pseudo labeling') else: logger.log(15, 'Weighted ensemble was not the best model for current iteration of pseudo labeling') def _run_pseudolabeling(self, unlabeled_data: pd.DataFrame, max_iter: int, return_pred_prob: bool = False, use_ensemble: bool = False, fit_ensemble: bool = False, fit_ensemble_every_iter: bool = False, **kwargs): """ Runs pseudolabeling algorithm using the same hyperparameters and model and fit settings used in original model unless specified by the user. This is an internal function that iteratively self labels unlabeled test data then incorporates all self labeled data above a threshold into training. Will keep incorporating self labeled data into training until validation score does not improve Parameters: ----------- unlabeled_data: Extra unlabeled data (could be the test data) to assign pseudolabels to and incorporate as extra training data. max_iter: int, default = 5 Maximum allowed number of iterations, where in each iteration, the data are pseudolabeled by the current predictor and the predictor is refit including the pseudolabled data in its training set. return_pred_proba: bool, default = False Transductive learning setting, will return predictive probabiliteis of unlabeled_data use_ensemble: bool, default = False If True will use ensemble pseudo labeling algorithm if False will use best model pseudo labeling method fit_ensemble: bool, default = False If True will fit weighted ensemble on final best models. Fitting weighted ensemble will be done after fitting of models is completed unless otherwise specified. If False will not fit weighted ensemble on final best models. fit_ensemble_every_iter: bool, default = False If True will fit weighted ensemble model using combination of best models for every iteration of pseudo label algorithm. If False and fit_ensemble is True, will just do it at the very end of training pseudo labeled models. Returns: -------- self: TabularPredictor """ previous_score = self.info()['best_model_score_val'] y_pseudo_og = pd.Series() if return_pred_prob: if self.problem_type is REGRESSION: y_pred_proba_og = pd.Series() else: y_pred_proba_og = pd.DataFrame() X_test = unlabeled_data.copy() for i in range(max_iter): if len(X_test) == 0: logger.log(20, f'No more unlabeled data to pseudolabel. Done with pseudolabeling...') break iter_print = str(i + 1) logger.log(20, f'Beginning iteration {iter_print} of pseudolabeling out of max: {max_iter}') if use_ensemble: if self.problem_type in PROBLEM_TYPES_CLASSIFICATION: test_pseudo_idxes_true, y_pred_proba, y_pred = filter_ensemble_pseudo(predictor=self, unlabeled_data=X_test) else: test_pseudo_idxes_true, y_pred = filter_ensemble_pseudo(predictor=self, unlabeled_data=X_test) y_pred_proba = y_pred.copy() else: y_pred_proba = self.predict_proba(data=X_test, as_multiclass=True) y_pred = get_pred_from_proba_df(y_pred_proba, problem_type=self.problem_type) test_pseudo_idxes_true = filter_pseudo(y_pred_proba_og=y_pred_proba, problem_type=self.problem_type) if return_pred_prob: if i == 0: y_pred_proba_og = y_pred_proba else: y_pred_proba_og.loc[test_pseudo_idxes_true.index] = y_pred_proba.loc[test_pseudo_idxes_true.index] if len(test_pseudo_idxes_true) < 1: logger.log(20, f'Could not confidently assign pseudolabels for any of the provided rows in iteration: {iter_print}. Done with pseudolabeling...') break else: logger.log(20, f'Pseudolabeling algorithm confidently assigned pseudolabels to: {len(test_pseudo_idxes_true)} rows of data' f'on iteration: {iter_print}. Adding to train data') test_pseudo_idxes = pd.Series(data=False, index=y_pred_proba.index) test_pseudo_idxes[test_pseudo_idxes_true.index] = True y_pseudo_og = y_pseudo_og.append(y_pred.loc[test_pseudo_idxes_true.index], verify_integrity=True) pseudo_data = unlabeled_data.loc[y_pseudo_og.index] pseudo_data[self.label] = y_pseudo_og self.fit_extra(pseudo_data=pseudo_data, name_suffix=PSEUDO_MODEL_SUFFIX.format(iter=(i + 1)), **kwargs) if fit_ensemble and fit_ensemble_every_iter: self._fit_weighted_ensemble_pseudo() current_score = self.info()['best_model_score_val'] logger.log(20, f'Pseudolabeling algorithm changed validation score from: {previous_score}, to: {current_score}' f' using evaluation metric: {self.eval_metric.name}') if previous_score >= current_score: break else: # Cut down X_test to not include pseudo labeled data X_test = X_test.loc[test_pseudo_idxes[~test_pseudo_idxes].index] previous_score = current_score if fit_ensemble and not fit_ensemble_every_iter: self._fit_weighted_ensemble_pseudo() y_pred_proba_og = self.predict_proba(unlabeled_data) if return_pred_prob: return self, y_pred_proba_og else: return self def fit_pseudolabel(self, pseudo_data: pd.DataFrame, max_iter: int = 5, return_pred_prob: bool = False, use_ensemble: bool = False, fit_ensemble: bool = False, fit_ensemble_every_iter: bool = False, **kwargs): """ If 'pseudo_data' is labeled then incorporates all test_data into train_data for newly fit models. If 'pseudo_data' is unlabeled then 'fit_pseudolabel' will self label the data and will augment the original training data by adding all the self labeled data that meets a criteria (For example all rows with predictive prob above 95%). If predictor is fit then will call fit_extra with added training data, if predictor is not fit then will fit model on train_data then run. Parameters ---------- pseudo_data : str or :class:`TabularDataset` or :class:`pd.DataFrame` Extra data to incorporate into training. Pre-labeled test data allowed. If no labels then pseudolabeling algorithm will predict and filter out which rows to incorporate into training max_iter: int, default = 5 Maximum iterations of pseudolabeling allowed return_pred_prob: bool, default = False Returns held-out predictive probabilities from pseudo-labeling. If test_data is labeled then returns model's predictive probabilities. use_ensemble: bool, default = False If True will use ensemble pseudo labeling algorithm. If False will just use best model for pseudo labeling algorithm. fit_ensemble: bool, default = False If True with fit weighted ensemble model using combination of best models. Fitting weighted ensemble will be done after fitting has being completed unless otherwise specified. If False will not fit weighted ensemble over models trained with pseudo labeling and models trained without it. fit_ensemble_every_iter: bool, default = False If True fits weighted ensemble model for every iteration of pseudo labeling algorithm. If False and fit_ensemble is True will fit after all pseudo labeling training is done. kwargs: dict If predictor is not already fit, then kwargs are for the functions 'fit' and 'fit_extra': Refer to parameters documentation in :meth:`TabularPredictor.fit`. Refer to parameters documentation in :meth:`TabularPredictor.fit_extra`. If predictor is fit kwargs are for 'fit_extra': Refer to parameters documentation in :meth:`TabularPredictor.fit_extra`. Returns ------- self : TabularPredictor Returns self, which is a Python class of TabularPredictor """ if len(pseudo_data) < 1: raise Exception('No pseudo data given') if not self._learner.is_fit: if 'train_data' not in kwargs.keys(): Exception('Autogluon is required to be fit or given \'train_data\' in order to run \'fit_pseudolabel\'.' ' Autogluon is not fit and \'train_data\' was not given') logger.log(20, f'Predictor not fit prior to pseudolabeling. Fitting now...') self.fit(**kwargs) if self.problem_type is MULTICLASS and self.eval_metric.name != 'accuracy': logger.warning('AutoGluon has detected the problem type as \'multiclass\' and ' f'eval_metric is {self.eval_metric.name}, we recommend using' f'fit_pseudolabeling when eval metric is \'accuracy\'') is_labeled = self.label in pseudo_data.columns hyperparameters = kwargs.get('hyperparameters', None) if hyperparameters is None: if self._learner.is_fit: hyperparameters = self.fit_hyperparameters_ elif isinstance(hyperparameters, str): hyperparameters = get_hyperparameter_config(hyperparameters) kwargs['hyperparameters'] = hyperparameters fit_extra_args = self._get_all_fit_extra_args() fit_extra_kwargs = {key: value for key, value in kwargs.items() if key in fit_extra_args} if is_labeled: logger.log(20, "Fitting predictor using the provided pseudolabeled examples as extra training data...") self.fit_extra(pseudo_data=pseudo_data, name_suffix=PSEUDO_MODEL_SUFFIX.format(iter='')[:-1], **fit_extra_kwargs) if fit_ensemble: logger.log(15, 'Fitting weighted ensemble model using best models') self.fit_weighted_ensemble() if return_pred_prob: y_pred_proba = self.predict_proba(pseudo_data) return self, y_pred_proba else: return self else: logger.log(20, 'Given test_data for pseudo labeling did not contain labels. ' 'AutoGluon will assign pseudo labels to data and use it for extra training data...') return self._run_pseudolabeling(unlabeled_data=pseudo_data, max_iter=max_iter, return_pred_prob=return_pred_prob, use_ensemble=use_ensemble, fit_ensemble=fit_ensemble, fit_ensemble_every_iter=fit_ensemble_every_iter, **fit_extra_kwargs) def predict(self, data, model=None, as_pandas=True): """ Use trained models to produce predictions of `label` column values for new data. Parameters ---------- data : str or :class:`TabularDataset` or :class:`pd.DataFrame` The data to make predictions for. Should contain same column names as training Dataset and follow same format (may contain extra columns that won't be used by Predictor, including the label-column itself). If str is passed, `data` will be loaded using the str value as the file path. model : str (optional) The name of the model to get predictions from. Defaults to None, which uses the highest scoring model on the validation set. Valid models are listed in this `predictor` by calling `predictor.get_model_names()` as_pandas : bool, default = True Whether to return the output as a :class:`pd.Series` (True) or :class:`np.ndarray` (False). Returns ------- Array of predictions, one corresponding to each row in given dataset. Either :class:`np.ndarray` or :class:`pd.Series` depending on `as_pandas` argument. """ self._assert_is_fit('predict') data = self.__get_dataset(data) return self._learner.predict(X=data, model=model, as_pandas=as_pandas) def predict_proba(self, data, model=None, as_pandas=True, as_multiclass=True): """ Use trained models to produce predicted class probabilities rather than class-labels (if task is classification). If `predictor.problem_type` is regression, this functions identically to `predict`, returning the same output. Parameters ---------- data : str or :class:`TabularDataset` or :class:`pd.DataFrame` The data to make predictions for. Should contain same column names as training dataset and follow same format (may contain extra columns that won't be used by Predictor, including the label-column itself). If str is passed, `data` will be loaded using the str value as the file path. model : str (optional) The name of the model to get prediction probabilities from. Defaults to None, which uses the highest scoring model on the validation set. Valid models are listed in this `predictor` by calling `predictor.get_model_names()`. as_pandas : bool, default = True Whether to return the output as a pandas object (True) or numpy array (False). Pandas object is a DataFrame if this is a multiclass problem or `as_multiclass=True`, otherwise it is a Series. If the output is a DataFrame, the column order will be equivalent to `predictor.class_labels`. as_multiclass : bool, default = True Whether to return binary classification probabilities as if they were for multiclass classification. Output will contain two columns, and if `as_pandas=True`, the column names will correspond to the binary class labels. The columns will be the same order as `predictor.class_labels`. If False, output will contain only 1 column for the positive class (get positive_class name via `predictor.positive_class`). Only impacts output for binary classification problems. Returns ------- Array of predicted class-probabilities, corresponding to each row in the given data. May be a :class:`np.ndarray` or :class:`pd.DataFrame` / :class:`pd.Series` depending on `as_pandas` and `as_multiclass` arguments and the type of prediction problem. For binary classification problems, the output contains for each datapoint the predicted probabilities of the negative and positive classes, unless you specify `as_multiclass=False`. """ self._assert_is_fit('predict_proba') data = self.__get_dataset(data) return self._learner.predict_proba(X=data, model=model, as_pandas=as_pandas, as_multiclass=as_multiclass) def evaluate(self, data, model=None, silent=False, auxiliary_metrics=True, detailed_report=False) -> dict: """ Report the predictive performance evaluated over a given dataset. This is basically a shortcut for: `pred_proba = predict_proba(data); evaluate_predictions(data[label], pred_proba)`. Parameters ---------- data : str or :class:`TabularDataset` or :class:`pd.DataFrame` This dataset must also contain the `label` with the same column-name as previously specified. If str is passed, `data` will be loaded using the str value as the file path. model : str (optional) The name of the model to get prediction probabilities from. Defaults to None, which uses the highest scoring model on the validation set. Valid models are listed in this `predictor` by calling `predictor.get_model_names()`. silent : bool, default = False If False, performance results are printed. auxiliary_metrics: bool, default = True Should we compute other (`problem_type` specific) metrics in addition to the default metric? detailed_report : bool, default = False Should we computed more detailed versions of the `auxiliary_metrics`? (requires `auxiliary_metrics = True`) Returns ------- Returns dict where keys = metrics, values = performance along each metric. To get the `eval_metric` score, do `output[predictor.eval_metric.name]` NOTE: Metrics scores always show in higher is better form. This means that metrics such as log_loss and root_mean_squared_error will have their signs FLIPPED, and values will be negative. """ self._assert_is_fit('evaluate') data = self.__get_dataset(data) y_pred_proba = self.predict_proba(data=data, model=model) return self.evaluate_predictions(y_true=data[self.label], y_pred=y_pred_proba, silent=silent, auxiliary_metrics=auxiliary_metrics, detailed_report=detailed_report) def evaluate_predictions(self, y_true, y_pred, silent=False, auxiliary_metrics=True, detailed_report=False) -> dict: """ Evaluate the provided prediction probabilities against ground truth labels. Evaluation is based on the `eval_metric` previously specified in init, or default metrics if none was specified. Parameters ---------- y_true : :class:`np.array` or :class:`pd.Series` The ordered collection of ground-truth labels. y_pred : :class:`pd.Series` or :class:`pd.DataFrame` The ordered collection of prediction probabilities or predictions. Obtainable via the output of `predictor.predict_proba`. Caution: For certain types of `eval_metric` (such as 'roc_auc'), `y_pred` must be predicted-probabilities rather than predicted labels. silent : bool, default = False If False, performance results are printed. auxiliary_metrics: bool, default = True Should we compute other (`problem_type` specific) metrics in addition to the default metric? detailed_report : bool, default = False Should we computed more detailed versions of the `auxiliary_metrics`? (requires `auxiliary_metrics = True`) Returns ------- Returns dict where keys = metrics, values = performance along each metric. NOTE: Metrics scores always show in higher is better form. This means that metrics such as log_loss and root_mean_squared_error will have their signs FLIPPED, and values will be negative. """ return self._learner.evaluate_predictions(y_true=y_true, y_pred=y_pred, silent=silent, auxiliary_metrics=auxiliary_metrics, detailed_report=detailed_report) def leaderboard(self, data=None, extra_info=False, extra_metrics=None, only_pareto_frontier=False, silent=False): """ Output summary of information about models produced during `fit()` as a :class:`pd.DataFrame`. Includes information on test and validation scores for all models, model training times, inference times, and stack levels. Output DataFrame columns include: 'model': The name of the model. 'score_val': The validation score of the model on the 'eval_metric'. NOTE: Metrics scores always show in higher is better form. This means that metrics such as log_loss and root_mean_squared_error will have their signs FLIPPED, and values will be negative. This is necessary to avoid the user needing to know the metric to understand if higher is better when looking at leaderboard. 'pred_time_val': The inference time required to compute predictions on the validation data end-to-end. Equivalent to the sum of all 'pred_time_val_marginal' values for the model and all of its base models. 'fit_time': The fit time required to train the model end-to-end (Including base models if the model is a stack ensemble). Equivalent to the sum of all 'fit_time_marginal' values for the model and all of its base models. 'pred_time_val_marginal': The inference time required to compute predictions on the validation data (Ignoring inference times for base models). Note that this ignores the time required to load the model into memory when bagging is disabled. 'fit_time_marginal': The fit time required to train the model (Ignoring base models). 'stack_level': The stack level of the model. A model with stack level N can take any set of models with stack level less than N as input, with stack level 1 models having no model inputs. 'can_infer': If model is able to perform inference on new data. If False, then the model either was not saved, was deleted, or an ancestor of the model cannot infer. `can_infer` is often False when `save_bag_folds=False` was specified in initial `fit()`. 'fit_order': The order in which models were fit. The first model fit has `fit_order=1`, and the Nth model fit has `fit_order=N`. The order corresponds to the first child model fit in the case of bagged ensembles. Parameters ---------- data : str or :class:`TabularDataset` or :class:`pd.DataFrame` (optional) This Dataset must also contain the label-column with the same column-name as specified during fit(). If specified, then the leaderboard returned will contain additional columns 'score_test', 'pred_time_test', and 'pred_time_test_marginal'. 'score_test': The score of the model on the 'eval_metric' for the data provided. NOTE: Metrics scores always show in higher is better form. This means that metrics such as log_loss and root_mean_squared_error will have their signs FLIPPED, and values will be negative. This is necessary to avoid the user needing to know the metric to understand if higher is better when looking at leaderboard. 'pred_time_test': The true end-to-end wall-clock inference time of the model for the data provided. Equivalent to the sum of all 'pred_time_test_marginal' values for the model and all of its base models. 'pred_time_test_marginal': The inference time of the model for the data provided, minus the inference time for the model's base models, if it has any. Note that this ignores the time required to load the model into memory when bagging is disabled. If str is passed, `data` will be loaded using the str value as the file path. extra_info : bool, default = False If `True`, will return extra columns with advanced info. This requires additional computation as advanced info data is calculated on demand. Additional output columns when `extra_info=True` include: 'num_features': Number of input features used by the model. Some models may ignore certain features in the preprocessed data. 'num_models': Number of models that actually make up this "model" object. For non-bagged models, this is 1. For bagged models, this is equal to the number of child models (models trained on bagged folds) the bagged ensemble contains. 'num_models_w_ancestors': Equivalent to the sum of 'num_models' values for the model and its' ancestors (see below). 'memory_size': The amount of memory in bytes the model requires when persisted in memory. This is not equivalent to the amount of memory the model may use during inference. For bagged models, this is the sum of the 'memory_size' of all child models. 'memory_size_w_ancestors': Equivalent to the sum of 'memory_size' values for the model and its' ancestors. This is the amount of memory required to avoid loading any models in-between inference calls to get predictions from this model. For online-inference, this is critical. It is important that the machine performing online inference has memory more than twice this value to avoid loading models for every call to inference by persisting models in memory. 'memory_size_min': The amount of memory in bytes the model minimally requires to perform inference. For non-bagged models, this is equivalent to 'memory_size'. For bagged models, this is equivalent to the largest child model's 'memory_size_min'. To minimize memory usage, child models can be loaded and un-persisted one by one to infer. This is the default behavior if a bagged model was not already persisted in memory prior to inference. 'memory_size_min_w_ancestors': Equivalent to the max of the 'memory_size_min' values for the model and its' ancestors. This is the minimum required memory to infer with the model by only loading one model at a time, as each of its ancestors will also have to be loaded into memory. For offline-inference where latency is not a concern, this should be used to determine the required memory for a machine if 'memory_size_w_ancestors' is too large. 'num_ancestors': Number of ancestor models for the given model. 'num_descendants': Number of descendant models for the given model. 'model_type': The type of the given model. If the model is an ensemble type, 'child_model_type' will indicate the inner model type. A stack ensemble of bagged LightGBM models would have 'StackerEnsembleModel' as its model type. 'child_model_type': The child model type. None if the model is not an ensemble. A stack ensemble of bagged LightGBM models would have 'LGBModel' as its child type. child models are models which are used as a group to generate a given bagged ensemble model's predictions. These are the models trained on each fold of a bagged ensemble. For 10-fold bagging, the bagged ensemble model would have 10 child models. For 10-fold bagging with 3 repeats, the bagged ensemble model would have 30 child models. Note that child models are distinct from ancestors and descendants. 'hyperparameters': The hyperparameter values specified for the model. All hyperparameters that do not appear in this dict remained at their default values. 'hyperparameters_fit': The hyperparameters set by the model during fit. This overrides the 'hyperparameters' value for a particular key if present in 'hyperparameters_fit' to determine the fit model's final hyperparameters. This is most commonly set for hyperparameters that indicate model training iterations or epochs, as early stopping can find a different value from what 'hyperparameters' indicated. In these cases, the provided hyperparameter in 'hyperparameters' is used as a maximum for the model, but the model is still able to early stop at a smaller value during training to achieve a better validation score or to satisfy time constraints. For example, if a NN model was given `epochs=500` as a hyperparameter, but found during training that `epochs=60` resulted in optimal validation score, it would use `epoch=60` and `hyperparameters_fit={'epoch': 60}` would be set. 'ag_args_fit': Special AutoGluon arguments that influence model fit. See the documentation of the `hyperparameters` argument in `TabularPredictor.fit()` for more information. 'features': List of feature names used by the model. 'child_hyperparameters': Equivalent to 'hyperparameters', but for the model's children. 'child_hyperparameters_fit': Equivalent to 'hyperparameters_fit', but for the model's children. 'child_ag_args_fit': Equivalent to 'ag_args_fit', but for the model's children. 'ancestors': The model's ancestors. Ancestor models are the models which are required to make predictions during the construction of the model's input features. If A is an ancestor of B, then B is a descendant of A. If a model's ancestor is deleted, the model is no longer able to infer on new data, and its 'can_infer' value will be False. A model can only have ancestor models whose 'stack_level' are lower than itself. 'stack_level'=1 models have no ancestors. 'descendants': The model's descendants. Descendant models are the models which require this model to make predictions during the construction of their input features. If A is a descendant of B, then B is an ancestor of A. If this model is deleted, then all descendant models will no longer be able to infer on new data, and their 'can_infer' values will be False. A model can only have descendant models whose 'stack_level' are higher than itself. extra_metrics : list, default = None A list of metrics to calculate scores for and include in the output DataFrame. Only valid when `data` is specified. The scores refer to the scores on `data` (same data as used to calculate the `score_test` column). This list can contain any values which would also be valid for `eval_metric` in predictor init. For example, `extra_metrics=['accuracy', 'roc_auc', 'log_loss']` would be valid in binary classification. This example would return 3 additional columns in the output DataFrame, whose column names match the names of the metrics. Passing `extra_metrics=[predictor.eval_metric]` would return an extra column in the name of the eval metric that has identical values to `score_test`. This also works with custom metrics. If passing an object instead of a string, the column name will be equal to the `.name` attribute of the object. NOTE: Metrics scores always show in higher is better form. This means that metrics such as log_loss and root_mean_squared_error will have their signs FLIPPED, and values will be negative. This is necessary to avoid the user needing to know the metric to understand if higher is better when looking at leaderboard. only_pareto_frontier : bool, default = False If `True`, only return model information of models in the Pareto frontier of the accuracy/latency trade-off (models which achieve the highest score within their end-to-end inference time). At minimum this will include the model with the highest score and the model with the lowest inference time. This is useful when deciding which model to use during inference if inference time is a consideration. Models filtered out by this process would never be optimal choices for a user that only cares about model inference time and score. silent : bool, default = False Should leaderboard DataFrame be printed? Returns ------- :class:`pd.DataFrame` of model performance summary information. """ self._assert_is_fit('leaderboard') data = self.__get_dataset(data) if data is not None else data return self._learner.leaderboard(X=data, extra_info=extra_info, extra_metrics=extra_metrics, only_pareto_frontier=only_pareto_frontier, silent=silent) def fit_summary(self, verbosity=3, show_plot=False): """ Output summary of information about models produced during `fit()`. May create various generated summary plots and store them in folder: `predictor.path`. Parameters ---------- verbosity : int, default = 3 Controls how detailed of a summary to output. Set <= 0 for no output printing, 1 to print just high-level summary, 2 to print summary and create plots, >= 3 to print all information produced during `fit()`. show_plot : bool, default = False If True, shows the model summary plot in browser when verbosity > 1. Returns ------- Dict containing various detailed information. We do not recommend directly printing this dict as it may be very large. """ self._assert_is_fit('fit_summary') # hpo_used = len(self._trainer.hpo_results) > 0 hpo_used = False # Disabled until a more memory efficient hpo_results object is implemented. model_types = self._trainer.get_models_attribute_dict(attribute='type') model_inner_types = self._trainer.get_models_attribute_dict(attribute='type_inner') model_typenames = {key: model_types[key].__name__ for key in model_types} model_innertypenames = {key: model_inner_types[key].__name__ for key in model_types if key in model_inner_types} MODEL_STR = 'Model' ENSEMBLE_STR = 'Ensemble' for model in model_typenames: if (model in model_innertypenames) and (ENSEMBLE_STR not in model_innertypenames[model]) and ( ENSEMBLE_STR in model_typenames[model]): new_model_typename = model_typenames[model] + "_" + model_innertypenames[model] if new_model_typename.endswith(MODEL_STR): new_model_typename = new_model_typename[:-len(MODEL_STR)] model_typenames[model] = new_model_typename unique_model_types = set(model_typenames.values()) # no more class info # all fit() information that is returned: results = { 'model_types': model_typenames, # dict with key = model-name, value = type of model (class-name) 'model_performance': self._trainer.get_models_attribute_dict('val_score'), # dict with key = model-name, value = validation performance 'model_best': self._trainer.model_best, # the name of the best model (on validation data) 'model_paths': self._trainer.get_models_attribute_dict('path'), # dict with key = model-name, value = path to model file 'model_fit_times': self._trainer.get_models_attribute_dict('fit_time'), 'model_pred_times': self._trainer.get_models_attribute_dict('predict_time'), 'num_bag_folds': self._trainer.k_fold, 'max_stack_level': self._trainer.get_max_level(), } if self.problem_type == QUANTILE: results['num_quantiles'] = len(self.quantile_levels) elif self.problem_type != REGRESSION: results['num_classes'] = self._trainer.num_classes # if hpo_used: # results['hpo_results'] = self._trainer.hpo_results # get dict mapping model name to final hyperparameter values for each model: model_hyperparams = {} for model_name in self._trainer.get_model_names(): model_obj = self._trainer.load_model(model_name) model_hyperparams[model_name] = model_obj.params results['model_hyperparams'] = model_hyperparams if verbosity > 0: # print stuff print("*** Summary of fit() ***") print("Estimated performance of each model:") results['leaderboard'] = self._learner.leaderboard(silent=False) # self._summarize('model_performance', 'Validation performance of individual models', results) # self._summarize('model_best', 'Best model (based on validation performance)', results) # self._summarize('hyperparameter_tune', 'Hyperparameter-tuning used', results) print("Number of models trained: %s" % len(results['model_performance'])) print("Types of models trained:") print(unique_model_types) num_fold_str = "" bagging_used = results['num_bag_folds'] > 0 if bagging_used: num_fold_str = f" (with {results['num_bag_folds']} folds)" print("Bagging used: %s %s" % (bagging_used, num_fold_str)) num_stack_str = "" stacking_used = results['max_stack_level'] > 2 if stacking_used: num_stack_str = f" (with {results['max_stack_level']} levels)" print("Multi-layer stack-ensembling used: %s %s" % (stacking_used, num_stack_str)) hpo_str = "" # if hpo_used and verbosity <= 2: # hpo_str = " (call fit_summary() with verbosity >= 3 to see detailed HPO info)" # print("Hyperparameter-tuning used: %s %s" % (hpo_used, hpo_str)) # TODO: uncomment once feature_prune is functional: self._summarize('feature_prune', 'feature-selection used', results) print("Feature Metadata (Processed):") print("(raw dtype, special dtypes):") print(self.feature_metadata) if verbosity > 1: # create plots plot_tabular_models(results, output_directory=self.path, save_file="SummaryOfModels.html", plot_title="Models produced during fit()", show_plot=show_plot) if hpo_used: for model_type in results['hpo_results']: if 'trial_info' in results['hpo_results'][model_type]: plot_summary_of_models( results['hpo_results'][model_type], output_directory=self.path, save_file=model_type + "_HPOmodelsummary.html", plot_title=f"Models produced during {model_type} HPO", show_plot=show_plot) plot_performance_vs_trials( results['hpo_results'][model_type], output_directory=self.path, save_file=model_type + "_HPOperformanceVStrials.png", plot_title=f"HPO trials for {model_type} models", show_plot=show_plot) if verbosity > 2: # print detailed information if hpo_used: hpo_results = results['hpo_results'] print("*** Details of Hyperparameter optimization ***") for model_type in hpo_results: hpo_model = hpo_results[model_type] if 'trial_info' in hpo_model: print( f"HPO for {model_type} model: Num. configurations tried = {len(hpo_model['trial_info'])}, Time spent = {hpo_model['total_time']}s, Search strategy = {hpo_model['search_strategy']}") print( f"Best hyperparameter-configuration (validation-performance: {self.eval_metric} = {hpo_model['validation_performance']}):") print(hpo_model['best_config']) """ if bagging_used: pass # TODO: print detailed bagging info if stacking_used: pass # TODO: print detailed stacking info, like how much it improves validation performance if results['feature_prune']: pass # TODO: print detailed feature-selection info once feature-selection is functional. """ if verbosity > 0: print("*** End of fit() summary ***") return results def transform_features(self, data=None, model=None, base_models=None, return_original_features=True): """ Transforms data features through the AutoGluon feature generator. This is useful to gain an understanding of how AutoGluon interprets the data features. The output of this function can be used to train further models, even outside of AutoGluon. This can be useful for training your own models on the same data representation as AutoGluon. Individual AutoGluon models like the neural network may apply additional feature transformations that are not reflected in this method. This method only applies universal transforms employed by all AutoGluon models. When `data=None`, `base_models=[{best_model}], and bagging was enabled during fit(): This returns the out-of-fold predictions of the best model, which can be used as training input to a custom user stacker model. Parameters ---------- data : str or :class:`TabularDataset` or :class:`pd.DataFrame` (optional) The data to apply feature transformation to. This data does not require the label column. If str is passed, `data` will be loaded using the str value as the file path. If not specified, the original data used during fit() will be used if fit() was previously called with `cache_data=True`. Otherwise, an exception will be raised. For non-bagged mode predictors: The data used when not specified is the validation set. This can either be an automatically generated validation set or the user-defined `tuning_data` if passed during fit(). If all parameters are unspecified, then the output is equivalent to `predictor.load_data_internal(data='val', return_X=True, return_y=False)[0]`. To get the label values of the output, call `predictor.load_data_internal(data='val', return_X=False, return_y=True)[1]`. If the original training set is desired, it can be passed in through `data`. Warning: Do not pass the original training set if `model` or `base_models` are set. This will result in overfit feature transformation. For bagged mode predictors: The data used when not specified is the full training set. If all parameters are unspecified, then the output is equivalent to `predictor.load_data_internal(data='train', return_X=True, return_y=False)[0]`. To get the label values of the output, call `predictor.load_data_internal(data='train', return_X=False, return_y=True)[1]`. `base_model` features generated in this instance will be from out-of-fold predictions. Note that the training set may differ from the training set originally passed during fit(), as AutoGluon may choose to drop or duplicate rows during training. Warning: Do not pass the original training set through `data` if `model` or `base_models` are set. This will result in overfit feature transformation. Instead set `data=None`. model : str, default = None Model to generate input features for. The output data will be equivalent to the input data that would be sent into `model.predict_proba(data)`. Note: This only applies to cases where `data` is not the training data. If `None`, then only return generically preprocessed features prior to any model fitting. Valid models are listed in this `predictor` by calling `predictor.get_model_names()`. Specifying a `refit_full` model will cause an exception if `data=None`. `base_models=None` is a requirement when specifying `model`. base_models : list, default = None List of model names to use as base_models for a hypothetical stacker model when generating input features. If `None`, then only return generically preprocessed features prior to any model fitting. Valid models are listed in this `predictor` by calling `predictor.get_model_names()`. If a stacker model S exists with `base_models=M`, then setting `base_models=M` is equivalent to setting `model=S`. `model=None` is a requirement when specifying `base_models`. return_original_features : bool, default = True Whether to return the original features. If False, only returns the additional output columns from specifying `model` or `base_models`. This is useful to set to False if the intent is to use the output as input to further stacker models without the original features. Returns ------- :class:`pd.DataFrame` of the provided `data` after feature transformation has been applied. This output does not include the label column, and will remove it if present in the supplied `data`. If a transformed label column is desired, use `predictor.transform_labels`. Examples -------- >>> from autogluon.tabular import TabularPredictor >>> predictor = TabularPredictor(label='class').fit('train.csv', label='class', auto_stack=True) # predictor is in bagged mode. >>> model = 'WeightedEnsemble_L2' >>> train_data_transformed = predictor.transform_features(model=model) # Internal training DataFrame used as input to `model.fit()` for each model trained in predictor.fit()` >>> test_data_transformed = predictor.transform_features('test.csv', model=model) # Internal test DataFrame used as input to `model.predict_proba()` during `predictor.predict_proba(test_data, model=model)` """ self._assert_is_fit('transform_features') data = self.__get_dataset(data) if data is not None else data return self._learner.get_inputs_to_stacker(dataset=data, model=model, base_models=base_models, use_orig_features=return_original_features) def transform_labels(self, labels, inverse=False, proba=False): """ Transforms data labels to the internal label representation. This can be useful for training your own models on the same data label representation as AutoGluon. Regression problems do not differ between original and internal representation, and thus this method will return the provided labels. Warning: When `inverse=False`, it is possible for the output to contain NaN label values in multiclass problems if the provided label was dropped during training. Parameters ---------- labels : :class:`np.ndarray` or :class:`pd.Series` Labels to transform. If `proba=False`, an example input would be the output of `predictor.predict(test_data)`. If `proba=True`, an example input would be the output of `predictor.predict_proba(test_data, as_multiclass=False)`. inverse : boolean, default = False When `True`, the input labels are treated as being in the internal representation and the original representation is outputted. proba : boolean, default = False When `True`, the input labels are treated as probabilities and the output will be the internal representation of probabilities. In this case, it is expected that `labels` be a :class:`pd.DataFrame` or :class:`np.ndarray`. If the `problem_type` is multiclass: The input column order must be equal to `predictor.class_labels`. The output column order will be equal to `predictor.class_labels_internal`. if `inverse=True`, the same logic applies, but with input and output columns interchanged. When `False`, the input labels are treated as actual labels and the output will be the internal representation of the labels. In this case, it is expected that `labels` be a :class:`pd.Series` or :class:`np.ndarray`. Returns ------- :class:`pd.Series` of labels if `proba=False` or :class:`pd.DataFrame` of label probabilities if `proba=True`. """ self._assert_is_fit('transform_labels') if inverse: if proba: labels_transformed = self._learner.label_cleaner.inverse_transform_proba(y=labels, as_pandas=True) else: labels_transformed = self._learner.label_cleaner.inverse_transform(y=labels) else: if proba: labels_transformed = self._learner.label_cleaner.transform_proba(y=labels, as_pandas=True) else: labels_transformed = self._learner.label_cleaner.transform(y=labels) return labels_transformed def feature_importance(self, data=None, model=None, features=None, feature_stage='original', subsample_size=1000, time_limit=None, num_shuffle_sets=None, include_confidence_band=True, confidence_level=0.99, silent=False): """ Calculates feature importance scores for the given model via permutation importance. Refer to https://explained.ai/rf-importance/ for an explanation of permutation importance. A feature's importance score represents the performance drop that results when the model makes predictions on a perturbed copy of the data where this feature's values have been randomly shuffled across rows. A feature score of 0.01 would indicate that the predictive performance dropped by 0.01 when the feature was randomly shuffled. The higher the score a feature has, the more important it is to the model's performance. If a feature has a negative score, this means that the feature is likely harmful to the final model, and a model trained with the feature removed would be expected to achieve a better predictive performance. Note that calculating feature importance can be a very computationally expensive process, particularly if the model uses hundreds or thousands of features. In many cases, this can take longer than the original model training. To estimate how long `feature_importance(model, data, features)` will take, it is roughly the time taken by `predict_proba(data, model)` multiplied by the number of features. Note: For highly accurate importance and p_value estimates, it is recommend to set `subsample_size` to at least 5,000 if possible and `num_shuffle_sets` to at least 10. Parameters ---------- data : str or :class:`TabularDataset` or :class:`pd.DataFrame` (optional) This data must also contain the label-column with the same column-name as specified during `fit()`. If specified, then the data is used to calculate the feature importance scores. If str is passed, `data` will be loaded using the str value as the file path. If not specified, the original data used during `fit()` will be used if `cache_data=True`. Otherwise, an exception will be raised. Do not pass the training data through this argument, as the feature importance scores calculated will be biased due to overfitting. More accurate feature importances will be obtained from new data that was held-out during `fit()`. model : str, default = None Model to get feature importances for, if None the best model is chosen. Valid models are listed in this `predictor` by calling `predictor.get_model_names()` features : list, default = None List of str feature names that feature importances are calculated for and returned, specify None to get all feature importances. If you only want to compute feature importances for some of the features, you can pass their names in as a list of str. Valid feature names change depending on the `feature_stage`. To get the list of feature names for `feature_stage='original'`, call `predictor.feature_metadata_in.get_features()`. To get the list of feature names for `feature_stage='transformed'`, call `list(predictor.transform_features().columns)`. To get the list of feature names for `feature_stage=`transformed_model`, call `list(predictor.transform_features(model={model_name}).columns)`. [Advanced] Can also contain tuples as elements of (feature_name, feature_list) form. feature_name can be any string so long as it is unique with all other feature names / features in the list. feature_list can be any list of valid features in the data. This will compute importance of the combination of features in feature_list, naming the set of features in the returned DataFrame feature_name. This importance will differ from adding the individual importances of each feature in feature_list, and will be more accurate to the overall group importance. Example: ['featA', 'featB', 'featC', ('featBC', ['featB', 'featC'])] In this example, the importance of 'featBC' will be calculated by jointly permuting 'featB' and 'featC' together as if they were a single two-dimensional feature. feature_stage : str, default = 'original' What stage of feature-processing should importances be computed for. Options: 'original': Compute importances of the original features. Warning: `data` must be specified with this option, otherwise an exception will be raised. 'transformed': Compute importances of the post-internal-transformation features (after automated feature engineering). These features may be missing some original features, or add new features entirely. An example of new features would be ngram features generated from a text column. Warning: For bagged models, feature importance calculation is not yet supported with this option when `data=None`. Doing so will raise an exception. 'transformed_model': Compute importances of the post-model-transformation features. These features are the internal features used by the requested model. They may differ greatly from the original features. If the model is a stack ensemble, this will include stack ensemble features such as the prediction probability features of the stack ensemble's base (ancestor) models. subsample_size : int, default = 1000 The number of rows to sample from `data` when computing feature importance. If `subsample_size=None` or `data` contains fewer than `subsample_size` rows, all rows will be used during computation. Larger values increase the accuracy of the feature importance scores. Runtime linearly scales with `subsample_size`. time_limit : float, default = None Time in seconds to limit the calculation of feature importance. If None, feature importance will calculate without early stopping. A minimum of 1 full shuffle set will always be evaluated. If a shuffle set evaluation takes longer than `time_limit`, the method will take the length of a shuffle set evaluation to return regardless of the `time_limit`. num_shuffle_sets : int, default = None The number of different permutation shuffles of the data that are evaluated. Larger values will increase the quality of the importance evaluation. It is generally recommended to increase `subsample_size` before increasing `num_shuffle_sets`. Defaults to 3 if `time_limit` is None or 10 if `time_limit` is specified. Runtime linearly scales with `num_shuffle_sets`. include_confidence_band: bool, default = True If True, returned DataFrame will include two additional columns specifying confidence interval for the true underlying importance value of each feature. Increasing `subsample_size` and `num_shuffle_sets` will tighten the confidence interval. confidence_level: float, default = 0.99 This argument is only considered when `include_confidence_band` is True, and can be used to specify the confidence level used for constructing confidence intervals. For example, if `confidence_level` is set to 0.99, then the returned DataFrame will include columns 'p99_high' and 'p99_low' which indicates that the true feature importance will be between 'p99_high' and 'p99_low' 99% of the time (99% confidence interval). More generally, if `confidence_level` = 0.XX, then the columns containing the XX% confidence interval will be named 'pXX_high' and 'pXX_low'. silent : bool, default = False Whether to suppress logging output. Returns ------- :class:`pd.DataFrame` of feature importance scores with 6 columns: index: The feature name. 'importance': The estimated feature importance score. 'stddev': The standard deviation of the feature importance score. If NaN, then not enough num_shuffle_sets were used to calculate a variance. 'p_value': P-value for a statistical t-test of the null hypothesis: importance = 0, vs the (one-sided) alternative: importance > 0. Features with low p-value appear confidently useful to the predictor, while the other features may be useless to the predictor (or even harmful to include in its training data). A p-value of 0.01 indicates that there is a 1% chance that the feature is useless or harmful, and a 99% chance that the feature is useful. A p-value of 0.99 indicates that there is a 99% chance that the feature is useless or harmful, and a 1% chance that the feature is useful. 'n': The number of shuffles performed to estimate importance score (corresponds to sample-size used to determine confidence interval for true score). 'pXX_high': Upper end of XX% confidence interval for true feature importance score (where XX=99 by default). 'pXX_low': Lower end of XX% confidence interval for true feature importance score. """ self._assert_is_fit('feature_importance') data = self.__get_dataset(data) if data is not None else data if (data is None) and (not self._trainer.is_data_saved): raise AssertionError( 'No data was provided and there is no cached data to load for feature importance calculation. `cache_data=True` must be set in the `TabularPredictor` init `learner_kwargs` argument call to enable this functionality when data is not specified.') if data is not None: # Avoid crash when indices are duplicated data = data.reset_index(drop=True) if num_shuffle_sets is None: num_shuffle_sets = 10 if time_limit else 3 fi_df = self._learner.get_feature_importance(model=model, X=data, features=features, feature_stage=feature_stage, subsample_size=subsample_size, time_limit=time_limit, num_shuffle_sets=num_shuffle_sets, silent=silent) if include_confidence_band: if confidence_level <= 0.5 or confidence_level >= 1.0: raise ValueError("confidence_level must lie between 0.5 and 1.0") ci_str = "{:0.0f}".format(confidence_level * 100) import scipy.stats num_features = len(fi_df) ci_low_dict = dict() ci_high_dict = dict() for i in range(num_features): fi = fi_df.iloc[i] mean = fi['importance'] stddev = fi['stddev'] n = fi['n'] if stddev == np.nan or n == np.nan or mean == np.nan or n == 1: ci_high = np.nan ci_low = np.nan else: t_val = scipy.stats.t.ppf(1 - (1 - confidence_level) / 2, n - 1) ci_high = mean + t_val * stddev / math.sqrt(n) ci_low = mean - t_val * stddev / math.sqrt(n) ci_high_dict[fi.name] = ci_high ci_low_dict[fi.name] = ci_low high_str = 'p' + ci_str + '_high' low_str = 'p' + ci_str + '_low' fi_df[high_str] = pd.Series(ci_high_dict) fi_df[low_str] = pd.Series(ci_low_dict) return fi_df def persist_models(self, models='best', with_ancestors=True, max_memory=0.1) -> list: """ Persist models in memory for reduced inference latency. This is particularly important if the models are being used for online-inference where low latency is critical. If models are not persisted in memory, they are loaded from disk every time they are asked to make predictions. Parameters ---------- models : list of str or str, default = 'best' Model names of models to persist. If 'best' then the model with the highest validation score is persisted (this is the model used for prediction by default). If 'all' then all models are persisted. Valid models are listed in this `predictor` by calling `predictor.get_model_names()`. with_ancestors : bool, default = True If True, all ancestor models of the provided models will also be persisted. If False, stacker models will not have the models they depend on persisted unless those models were specified in `models`. This will slow down inference as the ancestor models will still need to be loaded from disk for each predict call. Only relevant for stacker models. max_memory : float, default = 0.1 Proportion of total available memory to allow for the persisted models to use. If the models' summed memory usage requires a larger proportion of memory than max_memory, they are not persisted. In this case, the output will be an empty list. If None, then models are persisted regardless of estimated memory usage. This can cause out-of-memory errors. Returns ------- List of persisted model names. """ self._assert_is_fit('persist_models') return self._learner.persist_trainer(low_memory=False, models=models, with_ancestors=with_ancestors, max_memory=max_memory) def unpersist_models(self, models='all') -> list: """ Unpersist models in memory for reduced memory usage. If models are not persisted in memory, they are loaded from disk every time they are asked to make predictions. Note: Another way to reset the predictor and unpersist models is to reload the predictor from disk via `predictor = TabularPredictor.load(predictor.path)`. Parameters ---------- models : list of str or str, default = 'all' Model names of models to unpersist. If 'all' then all models are unpersisted. Valid models are listed in this `predictor` by calling `predictor.get_model_names_persisted()`. Returns ------- List of unpersisted model names. """ self._assert_is_fit('unpersist_models') return self._learner.load_trainer().unpersist_models(model_names=models) def refit_full(self, model='all'): """ Retrain model on all of the data (training + validation). For bagged models: Optimizes a model's inference time by collapsing bagged ensembles into a single model fit on all of the training data. This process will typically result in a slight accuracy reduction and a large inference speedup. The inference speedup will generally be between 10-200x faster than the original bagged ensemble model. The inference speedup factor is equivalent to (k * n), where k is the number of folds (`num_bag_folds`) and n is the number of finished repeats (`num_bag_sets`) in the bagged ensemble. The runtime is generally 10% or less of the original fit runtime. The runtime can be roughly estimated as 1 / (k * n) of the original fit runtime, with k and n defined above. For non-bagged models: Optimizes a model's accuracy by retraining on 100% of the data without using a validation set. Will typically result in a slight accuracy increase and no change to inference time. The runtime will be approximately equal to the original fit runtime. This process does not alter the original models, but instead adds additional models. If stacker models are refit by this process, they will use the refit_full versions of the ancestor models during inference. Models produced by this process will not have validation scores, as they use all of the data for training. Therefore, it is up to the user to determine if the models are of sufficient quality by including test data in `predictor.leaderboard(test_data)`. If the user does not have additional test data, they should reference the original model's score for an estimate of the performance of the refit_full model. Warning: Be aware that utilizing refit_full models without separately verifying on test data means that the model is untested, and has no guarantee of being consistent with the original model. `cache_data` must have been set to `True` during the original training to enable this functionality. Parameters ---------- model : str, default = 'all' Model name of model to refit. If 'all' then all models are refitted. If 'best' then the model with the highest validation score is refit. All ancestor models will also be refit in the case that the selected model is a weighted or stacker ensemble. Valid models are listed in this `predictor` by calling `predictor.get_model_names()`. Returns ------- Dictionary of original model names -> refit_full model names. """ self._assert_is_fit('refit_full') refit_full_dict = self._learner.refit_ensemble_full(model=model) return refit_full_dict def get_model_best(self): """ Returns the string model name of the best model by validation score. This is typically the same model used during inference when `predictor.predict` is called without specifying a model. Returns ------- String model name of the best model """ self._assert_is_fit('get_model_best') return self._trainer.get_model_best(can_infer=True) def get_model_full_dict(self): """ Returns a dictionary of original model name -> refit full model name. Empty unless `refit_full=True` was set during fit or `predictor.refit_full()` was called. This can be useful when determining the best model based off of `predictor.leaderboard()`, then getting the _FULL version of the model by passing its name as the key to this dictionary. Returns ------- Dictionary of original model name -> refit full model name. """ self._assert_is_fit('get_model_full_dict') return copy.deepcopy(self._trainer.model_full_dict) def info(self): """ [EXPERIMENTAL] Returns a dictionary of `predictor` metadata. Warning: This functionality is currently in preview mode. The metadata information returned may change in structure in future versions without warning. The definitions of various metadata values are not yet documented. The output of this function should not be used for programmatic decisions. Contains information such as row count, column count, model training time, validation scores, hyperparameters, and much more. Returns ------- Dictionary of `predictor` metadata. """ self._assert_is_fit('info') return self._learner.get_info(include_model_info=True) # TODO: Add data argument # TODO: Add option to disable OOF generation of newly fitted models # TODO: Move code logic to learner/trainer # TODO: Add fit() arg to perform this automatically at end of training # TODO: Consider adding cutoff arguments such as top-k models def fit_weighted_ensemble(self, base_models: list = None, name_suffix='Best', expand_pareto_frontier=False, time_limit=None): """ Fits new weighted ensemble models to combine predictions of previously-trained models. `cache_data` must have been set to `True` during the original training to enable this functionality. Parameters ---------- base_models : list, default = None List of model names the weighted ensemble can consider as candidates. If None, all previously trained models are considered except for weighted ensemble models. As an example, to train a weighted ensemble that can only have weights assigned to the models 'model_a' and 'model_b', set `base_models=['model_a', 'model_b']` name_suffix : str, default = 'Best' Name suffix to add to the name of the newly fitted ensemble model. expand_pareto_frontier : bool, default = False If True, will train N-1 weighted ensemble models instead of 1, where `N=len(base_models)`. The final model trained when True is equivalent to the model trained when False. These weighted ensemble models will attempt to expand the pareto frontier. This will create many different weighted ensembles which have different accuracy/memory/inference-speed trade-offs. This is particularly useful when inference speed is an important consideration. time_limit : int, default = None Time in seconds each weighted ensemble model is allowed to train for. If `expand_pareto_frontier=True`, the `time_limit` value is applied to each model. If None, the ensemble models train without time restriction. Returns ------- List of newly trained weighted ensemble model names. If an exception is encountered while training an ensemble model, that model's name will be absent from the list. """ self._assert_is_fit('fit_weighted_ensemble') trainer = self._learner.load_trainer() if trainer.bagged_mode: X = trainer.load_X() y = trainer.load_y() fit = True else: X = trainer.load_X_val() y = trainer.load_y_val() fit = False stack_name = 'aux1' if base_models is None: base_models = trainer.get_model_names(stack_name='core') X_stack_preds = trainer.get_inputs_to_stacker(X=X, base_models=base_models, fit=fit, use_orig_features=False) models = [] if expand_pareto_frontier: leaderboard = self.leaderboard(silent=True) leaderboard = leaderboard[leaderboard['model'].isin(base_models)] leaderboard = leaderboard.sort_values(by='pred_time_val') models_to_check = leaderboard['model'].tolist() for i in range(1, len(models_to_check) - 1): models_to_check_now = models_to_check[:i + 1] max_base_model_level = max([trainer.get_model_level(base_model) for base_model in models_to_check_now]) weighted_ensemble_level = max_base_model_level + 1 models += trainer.generate_weighted_ensemble(X=X_stack_preds, y=y, level=weighted_ensemble_level, stack_name=stack_name, base_model_names=models_to_check_now, name_suffix=name_suffix + '_Pareto' + str(i), time_limit=time_limit) max_base_model_level = max([trainer.get_model_level(base_model) for base_model in base_models]) weighted_ensemble_level = max_base_model_level + 1 models += trainer.generate_weighted_ensemble(X=X_stack_preds, y=y, level=weighted_ensemble_level, stack_name=stack_name, base_model_names=base_models, name_suffix=name_suffix, time_limit=time_limit) return models def get_oof_pred(self, model: str = None, transformed=False, train_data=None, internal_oof=False) -> pd.Series: """ Note: This is advanced functionality not intended for normal usage. Returns the out-of-fold (OOF) predictions for every row in the training data. For more information, refer to `get_oof_pred_proba()` documentation. Parameters ---------- model : str (optional) Refer to `get_oof_pred_proba()` documentation. transformed : bool, default = False Refer to `get_oof_pred_proba()` documentation. train_data : pd.DataFrame, default = None Refer to `get_oof_pred_proba()` documentation. internal_oof : bool, default = False Refer to `get_oof_pred_proba()` documentation. Returns ------- :class:`pd.Series` object of the out-of-fold training predictions of the model. """ self._assert_is_fit('get_oof_pred') y_pred_proba_oof = self.get_oof_pred_proba(model=model, transformed=transformed, as_multiclass=True, train_data=train_data, internal_oof=internal_oof) return get_pred_from_proba_df(y_pred_proba_oof, problem_type=self.problem_type) # TODO: Improve error messages when trying to get oof from refit_full and distilled models. # TODO: v0.1 add tutorial related to this method, as it is very powerful. # TODO: Remove train_data argument once we start caching the raw original data: Can just load that instead. def get_oof_pred_proba(self, model: str = None, transformed=False, as_multiclass=True, train_data=None, internal_oof=False) -> Union[pd.DataFrame, pd.Series]: """ Note: This is advanced functionality not intended for normal usage. Returns the out-of-fold (OOF) predicted class probabilities for every row in the training data. OOF prediction probabilities may provide unbiased estimates of generalization accuracy (reflecting how predictions will behave on new data) Predictions for each row are only made using models that were fit to a subset of data where this row was held-out. Warning: This method will raise an exception if called on a model that is not a bagged ensemble. Only bagged models (such a stacker models) can produce OOF predictions. This also means that refit_full models and distilled models will raise an exception. Warning: If intending to join the output of this method with the original training data, be aware that a rare edge-case issue exists: Multiclass problems with rare classes combined with the use of the 'log_loss' eval_metric may have forced AutoGluon to duplicate rows in the training data to satisfy minimum class counts in the data. If this has occurred, then the indices and row counts of the returned :class:`pd.Series` in this method may not align with the training data. In this case, consider fetching the processed training data using `predictor.load_data_internal()` instead of using the original training data. A more benign version of this issue occurs when 'log_loss' wasn't specified as the eval_metric but rare classes were dropped by AutoGluon. In this case, not all of the original training data rows will have an OOF prediction. It is recommended to either drop these rows during the join or to get direct predictions on the missing rows via :meth:`TabularPredictor.predict_proba`. Parameters ---------- model : str (optional) The name of the model to get out-of-fold predictions from. Defaults to None, which uses the highest scoring model on the validation set. Valid models are listed in this `predictor` by calling `predictor.get_model_names()` transformed : bool, default = False Whether the output values should be of the original label representation (False) or the internal label representation (True). The internal representation for binary and multiclass classification are integers numbering the k possible classes from 0 to k-1, while the original representation is identical to the label classes provided during fit. Generally, most users will want the original representation and keep `transformed=False`. as_multiclass : bool, default = True Whether to return binary classification probabilities as if they were for multiclass classification. Output will contain two columns, and if `transformed=False`, the column names will correspond to the binary class labels. The columns will be the same order as `predictor.class_labels`. If False, output will contain only 1 column for the positive class (get positive_class name via `predictor.positive_class`). Only impacts output for binary classification problems. train_data : pd.DataFrame, default = None Specify the original `train_data` to ensure that any training rows that were originally dropped internally are properly handled. If None, then output will not contain all rows if training rows were dropped internally during fit. internal_oof : bool, default = False [Advanced Option] Return the internal OOF preds rather than the externally facing OOF preds. Internal OOF preds may have more/fewer rows than was provided in train_data, and are incompatible with external data. If you don't know what this does, keep it as False. Returns ------- :class:`pd.Series` or :class:`pd.DataFrame` object of the out-of-fold training prediction probabilities of the model. """ self._assert_is_fit('get_oof_pred_proba') if model is None: model = self.get_model_best() if not self._trainer.bagged_mode: raise AssertionError('Predictor must be in bagged mode to get out-of-fold predictions.') if model in self._trainer._model_full_dict_val_score: # FIXME: This is a hack, add refit tag in a nicer way than via the _model_full_dict_val_score # TODO: bagged-with-holdout refit to bagged-no-holdout should still be able to return out-of-fold predictions raise AssertionError('_FULL models do not have out-of-fold predictions.') if self._trainer.get_model_attribute_full(model=model, attribute='val_in_fit', func=max): raise AssertionError( f'Model {model} does not have out-of-fold predictions because it used a validation set during training.') y_pred_proba_oof_transformed = self.transform_features(base_models=[model], return_original_features=False) if not internal_oof: is_duplicate_index = y_pred_proba_oof_transformed.index.duplicated(keep='first') if is_duplicate_index.any(): logger.log(20, 'Detected duplicate indices... This means that data rows may have been duplicated during training. ' 'Removing all duplicates except for the first instance.') y_pred_proba_oof_transformed = y_pred_proba_oof_transformed[is_duplicate_index == False] if self._learner._pre_X_rows is not None and len(y_pred_proba_oof_transformed) < self._learner._pre_X_rows: len_diff = self._learner._pre_X_rows - len(y_pred_proba_oof_transformed) if train_data is None: logger.warning(f'WARNING: {len_diff} rows of training data were dropped internally during fit. ' f'The output will not contain all original training rows.\n' f'If attempting to get `oof_pred_proba`, DO NOT pass `train_data` into `predictor.predict_proba` or `predictor.transform_features`!\n' f'Instead this can be done by the following ' f'(Ensure `train_data` is identical to when it was used in fit):\n' f'oof_pred_proba = predictor.get_oof_pred_proba(train_data=train_data)\n' f'oof_pred = predictor.get_oof_pred(train_data=train_data)\n') else: missing_idx = list(train_data.index.difference(y_pred_proba_oof_transformed.index)) if len(missing_idx) > 0: missing_idx_data = train_data.loc[missing_idx] missing_pred_proba = self.transform_features(data=missing_idx_data, base_models=[model], return_original_features=False) y_pred_proba_oof_transformed = pd.concat([y_pred_proba_oof_transformed, missing_pred_proba]) y_pred_proba_oof_transformed = y_pred_proba_oof_transformed.reindex(list(train_data.index)) if self.problem_type == MULTICLASS and self._learner.label_cleaner.problem_type_transform == MULTICLASS: y_pred_proba_oof_transformed.columns = copy.deepcopy( self._learner.label_cleaner.ordered_class_labels_transformed) elif self.problem_type == QUANTILE: y_pred_proba_oof_transformed.columns = self.quantile_levels else: y_pred_proba_oof_transformed.columns = [self.label] y_pred_proba_oof_transformed = y_pred_proba_oof_transformed[self.label] if as_multiclass and self.problem_type == BINARY: y_pred_proba_oof_transformed = LabelCleanerMulticlassToBinary.convert_binary_proba_to_multiclass_proba( y_pred_proba_oof_transformed, as_pandas=True) elif self.problem_type == MULTICLASS: if transformed: y_pred_proba_oof_transformed = LabelCleanerMulticlassToBinary.convert_binary_proba_to_multiclass_proba( y_pred_proba_oof_transformed, as_pandas=True) y_pred_proba_oof_transformed.columns = copy.deepcopy( self._learner.label_cleaner.ordered_class_labels_transformed) if transformed: return y_pred_proba_oof_transformed else: return self.transform_labels(labels=y_pred_proba_oof_transformed, inverse=True, proba=True) @property def positive_class(self): """ Returns the positive class name in binary classification. Useful for computing metrics such as F1 which require a positive and negative class. In binary classification, :class:`TabularPredictor.predict_proba(as_multiclass=False)` returns the estimated probability that each row belongs to the positive class. Will print a warning and return None if called when `predictor.problem_type != 'binary'`. Returns ------- The positive class name in binary classification or None if the problem is not binary classification. """ return self._learner.positive_class def load_data_internal(self, data='train', return_X=True, return_y=True): """ Loads the internal data representation used during model training. Individual AutoGluon models like the neural network may apply additional feature transformations that are not reflected in this method. This method only applies universal transforms employed by all AutoGluon models. Warning, the internal representation may: Have different features compared to the original data. Have different row counts compared to the original data. Have indices which do not align with the original data. Have label values which differ from those in the original data. Internal data representations should NOT be combined with the original data, in most cases this is not possible. Parameters ---------- data : str, default = 'train' The data to load. Valid values are: 'train': Load the training data used during model training. This is a transformed and augmented version of the `train_data` passed in `fit()`. 'val': Load the validation data used during model training. This is a transformed and augmented version of the `tuning_data` passed in `fit()`. If `tuning_data=None` was set in `fit()`, then `tuning_data` is an automatically generated validation set created by splitting `train_data`. Warning: Will raise an exception if called by a bagged predictor, as bagged predictors have no validation data. return_X : bool, default = True Whether to return the internal data features If set to `False`, then the first element in the returned tuple will be None. return_y : bool, default = True Whether to return the internal data labels If set to `False`, then the second element in the returned tuple will be None. Returns ------- Tuple of (:class:`pd.DataFrame`, :class:`pd.Series`) corresponding to the internal data features and internal data labels, respectively. """ self._assert_is_fit('load_data_internal') if data == 'train': load_X = self._trainer.load_X load_y = self._trainer.load_y elif data == 'val': load_X = self._trainer.load_X_val load_y = self._trainer.load_y_val else: raise ValueError(f'data must be one of: [\'train\', \'val\'], but was \'{data}\'.') X = load_X() if return_X else None y = load_y() if return_y else None return X, y def save_space(self, remove_data=True, remove_fit_stack=True, requires_save=True, reduce_children=False): """ Reduces the memory and disk size of predictor by deleting auxiliary model files that aren't needed for prediction on new data. This function has NO impact on inference accuracy. It is recommended to invoke this method if the only goal is to use the trained model for prediction. However, certain advanced functionality may no longer be available after `save_space()` has been called. Parameters ---------- remove_data : bool, default = True Whether to remove cached files of the original training and validation data. Only reduces disk usage, it has no impact on memory usage. This is especially useful when the original data was large. This is equivalent to setting `cache_data=False` during the original `fit()`. Will disable all advanced functionality that requires `cache_data=True`. remove_fit_stack : bool, default = True Whether to remove information required to fit new stacking models and continue fitting bagged models with new folds. Only reduces disk usage, it has no impact on memory usage. This includes: out-of-fold (OOF) predictions This is useful for multiclass problems with many classes, as OOF predictions can become very large on disk. (1 GB per model in extreme cases) This disables `predictor.refit_full()` for stacker models. requires_save : bool, default = True Whether to remove information that requires the model to be saved again to disk. Typically this only includes flag variables that don't have significant impact on memory or disk usage, but should technically be updated due to the removal of more important information. An example is the `is_data_saved` boolean variable in `trainer`, which should be updated to `False` if `remove_data=True` was set. reduce_children : bool, default = False Whether to apply the reduction rules to bagged ensemble children models. These are the models trained for each fold of the bagged ensemble. This should generally be kept as `False` since the most important memory and disk reduction techniques are automatically applied to these models during the original `fit()` call. """ self._assert_is_fit('save_space') self._trainer.reduce_memory_size(remove_data=remove_data, remove_fit_stack=remove_fit_stack, remove_fit=True, remove_info=False, requires_save=requires_save, reduce_children=reduce_children) def delete_models(self, models_to_keep=None, models_to_delete=None, allow_delete_cascade=False, delete_from_disk=True, dry_run=True): """ Deletes models from `predictor`. This can be helpful to minimize memory usage and disk usage, particularly for model deployment. This will remove all references to the models in `predictor`. For example, removed models will not appear in `predictor.leaderboard()`. WARNING: If `delete_from_disk=True`, this will DELETE ALL FILES in the deleted model directories, regardless if they were created by AutoGluon or not. DO NOT STORE FILES INSIDE OF THE MODEL DIRECTORY THAT ARE UNRELATED TO AUTOGLUON. Parameters ---------- models_to_keep : str or list, default = None Name of model or models to not delete. All models that are not specified and are also not required as a dependency of any model in `models_to_keep` will be deleted. Specify `models_to_keep='best'` to keep only the best model and its model dependencies. `models_to_delete` must be None if `models_to_keep` is set. To see the list of possible model names, use: `predictor.get_model_names()` or `predictor.leaderboard()`. models_to_delete : str or list, default = None Name of model or models to delete. All models that are not specified but depend on a model in `models_to_delete` will also be deleted. `models_to_keep` must be None if `models_to_delete` is set. allow_delete_cascade : bool, default = False If `False`, if unspecified dependent models of models in `models_to_delete` exist an exception will be raised instead of deletion occurring. An example of a dependent model is m1 if m2 is a stacker model and takes predictions from m1 as inputs. In this case, m1 would be a dependent model of m2. If `True`, all dependent models of models in `models_to_delete` will be deleted. Has no effect if `models_to_delete=None`. delete_from_disk : bool, default = True If `True`, deletes the models from disk if they were persisted. WARNING: This deletes the entire directory for the deleted models, and ALL FILES located there. It is highly recommended to first run with `dry_run=True` to understand which directories will be deleted. dry_run : bool, default = True If `True`, then deletions don't occur, and logging statements are printed describing what would have occurred. Set `dry_run=False` to perform the deletions. """ self._assert_is_fit('delete_models') if models_to_keep == 'best': models_to_keep = self._trainer.model_best if models_to_keep is None: models_to_keep = self._trainer.get_model_best() self._trainer.delete_models(models_to_keep=models_to_keep, models_to_delete=models_to_delete, allow_delete_cascade=allow_delete_cascade, delete_from_disk=delete_from_disk, dry_run=dry_run) # TODO: v0.1 add documentation for arguments def get_model_names(self, stack_name=None, level=None, can_infer: bool = None, models: list = None) -> list: """Returns the list of model names trained in this `predictor` object.""" self._assert_is_fit('get_model_names') return self._trainer.get_model_names(stack_name=stack_name, level=level, can_infer=can_infer, models=models) def get_model_names_persisted(self) -> list: """Returns the list of model names which are persisted in memory.""" self._assert_is_fit('get_model_names_persisted') return list(self._learner.load_trainer().models.keys()) def distill(self, train_data=None, tuning_data=None, augmentation_data=None, time_limit=None, hyperparameters=None, holdout_frac=None, teacher_preds='soft', augment_method='spunge', augment_args={'size_factor': 5, 'max_size': int(1e5)}, models_name_suffix=None, verbosity=None): """ Distill AutoGluon's most accurate ensemble-predictor into single models which are simpler/faster and require less memory/compute. Distillation can produce a model that is more accurate than the same model fit directly on the original training data. After calling `distill()`, there will be more models available in this Predictor, which can be evaluated using `predictor.leaderboard(test_data)` and deployed with: `predictor.predict(test_data, model=MODEL_NAME)`. This will raise an exception if `cache_data=False` was previously set in `fit()`. NOTE: Until catboost v0.24 is released, `distill()` with CatBoost students in multiclass classification requires you to first install catboost-dev: `pip install catboost-dev` Parameters ---------- train_data : str or :class:`TabularDataset` or :class:`pd.DataFrame`, default = None Same as `train_data` argument of `fit()`. If None, the same training data will be loaded from `fit()` call used to produce this Predictor. tuning_data : str or :class:`TabularDataset` or :class:`pd.DataFrame`, default = None Same as `tuning_data` argument of `fit()`. If `tuning_data = None` and `train_data = None`: the same training/validation splits will be loaded from `fit()` call used to produce this Predictor, unless bagging/stacking was previously used in which case a new training/validation split is performed. augmentation_data : :class:`TabularDataset` or :class:`pd.DataFrame`, default = None An optional extra dataset of unlabeled rows that can be used for augmenting the dataset used to fit student models during distillation (ignored if None). time_limit : int, default = None Approximately how long (in seconds) the distillation process should run for. If None, no time-constraint will be enforced allowing the distilled models to fully train. hyperparameters : dict or str, default = None Specifies which models to use as students and what hyperparameter-values to use for them. Same as `hyperparameters` argument of `fit()`. If = None, then student models will use the same hyperparameters from `fit()` used to produce this Predictor. Note: distillation is currently only supported for ['GBM','NN','RF','CAT'] student models, other models and their hyperparameters are ignored here. holdout_frac : float Same as `holdout_frac` argument of :meth:`TabularPredictor.fit`. teacher_preds : str, default = 'soft' What form of teacher predictions to distill from (teacher refers to the most accurate AutoGluon ensemble-predictor). If None, we only train with original labels (no data augmentation). If 'hard', labels are hard teacher predictions given by: `teacher.predict()` If 'soft', labels are soft teacher predictions given by: `teacher.predict_proba()` Note: 'hard' and 'soft' are equivalent for regression problems. If `augment_method` is not None, teacher predictions are only used to label augmented data (training data keeps original labels). To apply label-smoothing: `teacher_preds='onehot'` will use original training data labels converted to one-hot vectors for multiclass problems (no data augmentation). augment_method : str, default='spunge' Specifies method to use for generating augmented data for distilling student models. Options include: None : no data augmentation performed. 'munge' : The MUNGE algorithm (https://www.cs.cornell.edu/~caruana/compression.kdd06.pdf). 'spunge' : A simpler, more efficient variant of the MUNGE algorithm. augment_args : dict, default = {'size_factor':5, 'max_size': int(1e5)} Contains the following kwargs that control the chosen `augment_method` (these are ignored if `augment_method=None`): 'num_augmented_samples': int, number of augmented datapoints used during distillation. Overrides 'size_factor', 'max_size' if specified. 'max_size': float, the maximum number of augmented datapoints to add (ignored if 'num_augmented_samples' specified). 'size_factor': float, if n = training data sample-size, we add int(n * size_factor) augmented datapoints, up to 'max_size'. Larger values in `augment_args` will slow down the runtime of distill(), and may produce worse results if provided time_limit are too small. You can also pass in kwargs for the `spunge_augment`, `munge_augment` functions in `autogluon.tabular.augmentation.distill_utils`. models_name_suffix : str, default = None Optional suffix that can be appended at the end of all distilled student models' names. Note: all distilled models will contain '_DSTL' substring in their name by default. verbosity : int, default = None Controls amount of printed output during distillation (4 = highest, 0 = lowest). Same as `verbosity` parameter of :class:`TabularPredictor`. If None, the same `verbosity` used in previous fit is employed again. Returns ------- List of names (str) corresponding to the distilled models. Examples -------- >>> from autogluon.tabular import TabularDataset, TabularPredictor >>> train_data = TabularDataset('train.csv') >>> predictor = TabularPredictor(label='class').fit(train_data, auto_stack=True) >>> distilled_model_names = predictor.distill() >>> test_data = TabularDataset('test.csv') >>> ldr = predictor.leaderboard(test_data) >>> model_to_deploy = distilled_model_names[0] >>> predictor.predict(test_data, model=model_to_deploy) """ self._assert_is_fit('distill') if isinstance(hyperparameters, str): hyperparameters = get_hyperparameter_config(hyperparameters) return self._learner.distill(X=train_data, X_val=tuning_data, time_limit=time_limit, hyperparameters=hyperparameters, holdout_frac=holdout_frac, verbosity=verbosity, models_name_suffix=models_name_suffix, teacher_preds=teacher_preds, augmentation_data=augmentation_data, augment_method=augment_method, augment_args=augment_args) def plot_ensemble_model(self, prune_unused_nodes=True) -> str: """ Output the visualized stack ensemble architecture of a model trained by `fit()`. The plot is stored to a file, `ensemble_model.png` in folder `predictor.path` This function requires `graphviz` and `pygraphviz` to be installed because this visualization depends on those package. Unless this function will raise `ImportError` without being able to generate the visual of the ensemble model. To install the required package, run the below commands (for Ubuntu linux): $ sudo apt-get install graphviz $ pip install graphviz For other platforms, refer to https://graphviz.org/ for Graphviz install, and https://pygraphviz.github.io/documentation.html for PyGraphviz. Parameters ---------- Returns ------- The file name with the full path to the saved graphic """ self._assert_is_fit('plot_ensemble_model') try: import pygraphviz except: raise ImportError('Visualizing ensemble network architecture requires pygraphviz library') G = self._trainer.model_graph.copy() if prune_unused_nodes == True: nodes_without_outedge = [node for node, degree in dict(G.degree()).items() if degree < 1] else: nodes_without_outedge = [] nodes_no_val_score = [node for node in G if G.nodes[node]['val_score'] == None] G.remove_nodes_from(nodes_without_outedge) G.remove_nodes_from(nodes_no_val_score) root_node = [n for n, d in G.out_degree() if d == 0] best_model_node = self.get_model_best() A = nx.nx_agraph.to_agraph(G) A.graph_attr.update(rankdir='BT') A.node_attr.update(fontsize=10) A.node_attr.update(shape='rectangle') for node in A.iternodes(): node.attr['label'] = f"{node.name}\nVal score: {float(node.attr['val_score']):.4f}" if node.name == best_model_node: node.attr['style'] = 'filled' node.attr['fillcolor'] = '#ff9900' node.attr['shape'] = 'box3d' elif nx.has_path(G, node.name, best_model_node): node.attr['style'] = 'filled' node.attr['fillcolor'] = '#ffcc00' model_image_fname = os.path.join(self.path, 'ensemble_model.png') A.draw(model_image_fname, format='png', prog='dot') return model_image_fname @staticmethod def _summarize(key, msg, results): if key in results: print(msg + ": " + str(results[key])) @staticmethod def __get_dataset(data): if isinstance(data, TabularDataset): return data elif isinstance(data, pd.DataFrame): return TabularDataset(data) elif isinstance(data, str): return TabularDataset(data) elif isinstance(data, pd.Series): raise TypeError("data must be TabularDataset or pandas.DataFrame, not pandas.Series. \ To predict on just single example (ith row of table), use data.iloc[[i]] rather than data.iloc[i]") else: raise TypeError("data must be TabularDataset or pandas.DataFrame or str file path to data") def _validate_hyperparameter_tune_kwargs(self, hyperparameter_tune_kwargs, time_limit=None): """ Returns True if hyperparameter_tune_kwargs is None or can construct a valid scheduler. Returns False if hyperparameter_tune_kwargs results in an invalid scheduler. """ if hyperparameter_tune_kwargs is None: return True scheduler_cls, scheduler_params = scheduler_factory(hyperparameter_tune_kwargs=hyperparameter_tune_kwargs, time_out=time_limit, nthreads_per_trial='auto', ngpus_per_trial='auto') assert scheduler_params[ 'searcher'] != 'bayesopt_hyperband', "searcher == 'bayesopt_hyperband' not yet supported" if scheduler_params.get('dist_ip_addrs', None): logger.warning( 'Warning: dist_ip_addrs does not currently work for Tabular. Distributed instances will not be utilized.') if scheduler_params['num_trials'] == 1: logger.warning( 'Warning: Specified num_trials == 1 for hyperparameter tuning, disabling HPO. This can occur if time_limit was not specified in `fit()`.') return False scheduler_ngpus = scheduler_params['resource'].get('num_gpus', 0) if scheduler_ngpus is not None and isinstance(scheduler_ngpus, int) and scheduler_ngpus > 1: logger.warning( f"Warning: TabularPredictor currently doesn't use >1 GPU per training run. Detected {scheduler_ngpus} GPUs.") return True def _set_hyperparameter_tune_kwargs_in_ag_args(self, hyperparameter_tune_kwargs, ag_args, time_limit): if hyperparameter_tune_kwargs is not None and 'hyperparameter_tune_kwargs' not in ag_args: if 'hyperparameter_tune_kwargs' in ag_args: AssertionError( 'hyperparameter_tune_kwargs was specified in both ag_args and in kwargs. Please only specify once.') else: ag_args['hyperparameter_tune_kwargs'] = hyperparameter_tune_kwargs if not self._validate_hyperparameter_tune_kwargs(ag_args.get('hyperparameter_tune_kwargs', None), time_limit): ag_args.pop('hyperparameter_tune_kwargs', None) if ag_args.get('hyperparameter_tune_kwargs', None) is not None: logger.log(30, 'Warning: hyperparameter tuning is currently experimental and may cause the process to hang.') return ag_args def _set_post_fit_vars(self, learner: AbstractLearner = None): if learner is not None: self._learner: AbstractLearner = learner self._learner_type = type(self._learner) if self._learner.trainer_path is not None: self._learner.persist_trainer(low_memory=True) self._trainer: AbstractTrainer = self._learner.load_trainer() # Trainer object @classmethod def _load_version_file(cls, path) -> str: version_file_path = path + cls._predictor_version_file_name version = load_str.load(path=version_file_path) return version def _save_version_file(self, silent=False): from ..version import __version__ version_file_contents = f'{__version__}' version_file_path = self.path + self._predictor_version_file_name save_str.save(path=version_file_path, data=version_file_contents, verbose=not silent) def save(self, silent=False): """ Save this Predictor to file in directory specified by this Predictor's `path`. Note that :meth:`TabularPredictor.fit` already saves the predictor object automatically (we do not recommend modifying the Predictor object yourself as it tracks many trained models). Parameters ---------- silent : bool, default = False Whether to save without logging a message. """ path = self.path tmp_learner = self._learner tmp_trainer = self._trainer self._learner.save() self._learner = None self._trainer = None save_pkl.save(path=path + self.predictor_file_name, object=self) self._learner = tmp_learner self._trainer = tmp_trainer self._save_version_file(silent=silent) if not silent: logger.log(20, f'TabularPredictor saved. To load, use: predictor = TabularPredictor.load("{self.path}")') @classmethod def _load(cls, path: str): """ Inner load method, called in `load`. """ predictor: TabularPredictor = load_pkl.load(path=path + cls.predictor_file_name) learner = predictor._learner_type.load(path) predictor._set_post_fit_vars(learner=learner) return predictor @classmethod def load(cls, path: str, verbosity: int = None, require_version_match: bool = True): """ Load a TabularPredictor object previously produced by `fit()` from file and returns this object. It is highly recommended the predictor be loaded with the exact AutoGluon version it was fit with. Parameters ---------- path : str The path to directory in which this Predictor was previously saved. verbosity : int, default = None Sets the verbosity level of this Predictor after it is loaded. Valid values range from 0 (least verbose) to 4 (most verbose). If None, logging verbosity is not changed from existing values. Specify larger values to see more information printed when using Predictor during inference, smaller values to see less information. Refer to TabularPredictor init for more information. require_version_match : bool, default = True If True, will raise an AssertionError if the `autogluon.tabular` version of the loaded predictor does not match the installed version of `autogluon.tabular`. If False, will allow loading of models trained on incompatible versions, but is NOT recommended. Users may run into numerous issues if attempting this. """ if verbosity is not None: set_logger_verbosity(verbosity) # Reset logging after load (may be in new Python session) if path is None: raise ValueError("path cannot be None in load()") try: from ..version import __version__ version_load = __version__ except: version_load = None path = setup_outputdir(path, warn_if_exist=False) # replace ~ with absolute path if it exists try: version_init = cls._load_version_file(path=path) except: logger.warning(f'WARNING: Could not find version file at "{path + cls._predictor_version_file_name}".\n' f'This means that the predictor was fit in a version `<=0.3.1`.') version_init = None if version_init is None: predictor = cls._load(path=path) try: version_init = predictor._learner.version except: version_init = None else: predictor = None if version_init is None: version_init = 'Unknown (Likely <=0.0.11)' if version_load != version_init: logger.warning('') logger.warning('############################## WARNING ##############################') logger.warning('WARNING: AutoGluon version differs from the version used to create the predictor! ' 'This may lead to instability and it is highly recommended the predictor be loaded ' 'with the exact AutoGluon version it was created with.') logger.warning(f'\tPredictor Version: {version_init}') logger.warning(f'\tCurrent Version: {version_load}') logger.warning('############################## WARNING ##############################') logger.warning('') if require_version_match: raise AssertionError( f'Predictor was created on version {version_init} but is being loaded with version {version_load}. ' f'Please ensure the versions match to avoid instability. While it is NOT recommended, ' f'this error can be bypassed by specifying `require_version_match=False`.') if predictor is None: predictor = cls._load(path=path) return predictor @staticmethod def _validate_init_kwargs(kwargs): valid_kwargs = { 'learner_type', 'learner_kwargs', 'quantile_levels', } invalid_keys = [] for key in kwargs: if key not in valid_kwargs: invalid_keys.append(key) if invalid_keys: raise ValueError(f'Invalid kwargs passed: {invalid_keys}\nValid kwargs: {list(valid_kwargs)}') def _validate_fit_kwargs(self, kwargs): # TODO: # Valid core_kwargs values: # ag_args, ag_args_fit, ag_args_ensemble, stack_name, ensemble_type, name_suffix, time_limit # Valid aux_kwargs values: # name_suffix, time_limit, stack_name, aux_hyperparameters, ag_args, ag_args_ensemble # TODO: Remove features from models option for fit_extra # TODO: Constructor? fit_kwargs_default = dict( # data split / ensemble architecture kwargs -> Don't nest but have nested documentation -> Actually do nesting holdout_frac=None, # TODO: Potentially error if num_bag_folds is also specified num_bag_folds=None, # TODO: Potentially move to fit_extra, raise exception if value too large / invalid in fit_extra. auto_stack=False, use_bag_holdout=False, # other feature_generator='auto', unlabeled_data=None, _feature_generator_kwargs=None, ) kwargs = self._validate_fit_extra_kwargs(kwargs, extra_valid_keys=list(fit_kwargs_default.keys())) kwargs_sanitized = fit_kwargs_default.copy() kwargs_sanitized.update(kwargs) return kwargs_sanitized def _fit_extra_kwargs_dict(self): """ Returns: -------- dict of fit_extra args: verbosity: Which levels of logger should be printed pseudo_data: pseudo labeled data to be incorporated into train but not used in validation name_suffix: A suffix string to be added to the individual model names """ return dict( # data split / ensemble architecture kwargs -> Don't nest but have nested documentation -> Actually do nesting num_bag_sets=None, num_stack_levels=None, hyperparameter_tune_kwargs=None, # core_kwargs -> +1 nest ag_args=None, ag_args_fit=None, ag_args_ensemble=None, excluded_model_types=None, # aux_kwargs -> +1 nest # post_fit_kwargs -> +1 nest set_best_to_refit_full=False, keep_only_best=False, save_space=False, refit_full=False, # other verbosity=self.verbosity, feature_prune_kwargs=None, # private _save_bag_folds=None, # quantile levels quantile_levels=None, calibrate=False, # pseudo label pseudo_data=None, name_suffix=None ) def _validate_fit_extra_kwargs(self, kwargs, extra_valid_keys=None): fit_extra_kwargs_default = self._fit_extra_kwargs_dict() allowed_kwarg_names = list(fit_extra_kwargs_default.keys()) if extra_valid_keys is not None: allowed_kwarg_names += extra_valid_keys for kwarg_name in kwargs.keys(): if kwarg_name not in allowed_kwarg_names: public_kwarg_options = [kwarg for kwarg in allowed_kwarg_names if kwarg[0] != '_'] public_kwarg_options.sort() raise ValueError( f"Unknown keyword argument specified: {kwarg_name}\nValid kwargs: {public_kwarg_options}") kwargs_sanitized = fit_extra_kwargs_default.copy() kwargs_sanitized.update(kwargs) # Deepcopy args to avoid altering outer context deepcopy_args = ['ag_args', 'ag_args_fit', 'ag_args_ensemble', 'excluded_model_types'] for deepcopy_arg in deepcopy_args: kwargs_sanitized[deepcopy_arg] = copy.deepcopy(kwargs_sanitized[deepcopy_arg]) refit_full = kwargs_sanitized['refit_full'] set_best_to_refit_full = kwargs_sanitized['set_best_to_refit_full'] if refit_full and not self._learner.cache_data: raise ValueError( '`refit_full=True` is only available when `cache_data=True`. Set `cache_data=True` to utilize `refit_full`.') if set_best_to_refit_full and not refit_full: raise ValueError( '`set_best_to_refit_full=True` is only available when `refit_full=True`. Set `refit_full=True` to utilize `set_best_to_refit_full`.') return kwargs_sanitized def _prune_data_features(self, train_features: pd.DataFrame, other_features: pd.DataFrame, is_labeled: bool): """ Removes certain columns from the provided datasets that do not contain predictive features. Parameters ---------- train_features : pd.DataFrame The features/columns for the incoming training data other_features : pd.DataFrame Features of other auxiliary data that contains the same covariates as the training data. Examples of this could be: tuning data, pseudo data is_labeled: bool Is other_features dataframe labeled or not """ if self.sample_weight is not None: if self.sample_weight in train_features: train_features.remove(self.sample_weight) if self.sample_weight in other_features: other_features.remove(self.sample_weight) if self._learner.groups is not None and is_labeled: train_features.remove(self._learner.groups) return train_features, other_features def _validate_fit_data(self, train_data, tuning_data=None, unlabeled_data=None): if isinstance(train_data, str): train_data = TabularDataset(train_data) if tuning_data is not None and isinstance(tuning_data, str): tuning_data = TabularDataset(tuning_data) if unlabeled_data is not None and isinstance(unlabeled_data, str): unlabeled_data = TabularDataset(unlabeled_data) if not isinstance(train_data, pd.DataFrame): raise AssertionError( f'train_data is required to be a pandas DataFrame, but was instead: {type(train_data)}') if len(set(train_data.columns)) < len(train_data.columns): raise ValueError( "Column names are not unique, please change duplicated column names (in pandas: train_data.rename(columns={'current_name':'new_name'})") self._validate_unique_indices(data=train_data, name='train_data') if tuning_data is not None: if not isinstance(tuning_data, pd.DataFrame): raise AssertionError( f'tuning_data is required to be a pandas DataFrame, but was instead: {type(tuning_data)}') self._validate_unique_indices(data=tuning_data, name='tuning_data') train_features = [column for column in train_data.columns if column != self.label] tuning_features = [column for column in tuning_data.columns if column != self.label] train_features, tuning_features = self._prune_data_features(train_features=train_features, other_features=tuning_features, is_labeled=True) train_features = np.array(train_features) tuning_features = np.array(tuning_features) if
np.any(train_features != tuning_features)
numpy.any
import re import pandas as pd import numpy as np import pathlib from collections import OrderedDict from pyutil import read_table, intersection BASE_PAIR = { 'A': 'T', 'T': 'A', 'G': 'C', 'C': 'G' } def check_flip(a1, a2, b1, b2): res = [] for _a1, _a2, _b1, _b2 in zip(a1, a2, b1, b2): res.append(_check_flip(_a1, _a2, _b1, _b2)) return np.array(res) def _check_flip(a0, a1, b0, b1): ''' check if (a0, a1) and (b0, b1) are of the same direction. If there is nan or they don't match at all or ambiguious return nan Else if they are in the same direction, return 1 Else return -1 ''' if a0 is np.nan or a1 is np.nan or b0 is np.nan or b1 is np.nan: return np.nan # remove ambiguious first. if a0 == BASE_PAIR[a1] or b0 == BASE_PAIR[b1]: return np.nan # exact match if a0 == b0 and a1 == b1: return 1 # flip if a0 == b1 and a1 == b0: return -1 # compliment match if a0 == BASE_PAIR[b0] and a1 == BASE_PAIR[b1]: return 1 # compliment flip if a0 == BASE_PAIR[b1] and a1 == BASE_PAIR[b0]: return -1 # if all above does not return, it has to be invalid. return np.nan def rearrage_df_by_target(df, target, df_value_cols): df_res = target[['snpid', 'chr', 'effect_allele', 'non_effect_allele']] df_res = pd.merge( df_res, df, on=['snpid', 'chr'], suffixes=['_res', '_df'], how='left' ) flip_factor = check_flip( a1=df_res.effect_allele_res, a2=df_res.non_effect_allele_res, b1=df_res.effect_allele_df, b2=df_res.non_effect_allele_df ) # we need to carry the missingness when we move on with
np.errstate(invalid='ignore')
numpy.errstate
# Copyright (c) 2020. <NAME>, Ghent University import math import operator from functools import reduce import numpy as np import rasterio from geographiclib.geodesic import Geodesic from scipy.interpolate import interp1d def read_file(file=None, header=0): """Reads space separated dat file""" with open(file, "r") as fr: op = np.array([list(map(float, i.split())) for i in fr.readlines()[header:]]) return op def order_vertices(vertices): """ Paraview expects vertices in a particular order for Quad object, with the origin at the bottom left corner. :param vertices: (x, y) coordinates of the quad vertices :return: Sorted vertices """ # Compute center of vertices center = tuple( map( operator.truediv, reduce(lambda x, y: map(operator.add, x, y), vertices), [len(vertices)] * 2, ) ) # Sort vertices according to angle so = sorted( vertices, key=lambda coord: ( math.degrees(math.atan2(*tuple(map(operator.sub, coord, center))[::-1])) ), ) return np.array(so) class Transformation: def __init__( self, blocks_: str = None, bounds: list = None, dem: str = None, origin: list = None, name: str = None, ): """ :param blocks_: Results file containing block coordinates and associated values :param bounds: tuple: ((lat1, lon1), (lat2, lon2)) :param dem: Digital Elevation Model file :param origin: Coordinates of the origin of the map (lat, lon) :param name: str: Name of the output file """ self.block_data = blocks_ if bounds is not None: self.bounds = np.array(bounds) self.elevation_file = dem self.origin = origin if name is None: self.name = "anonymous" else: self.name = name def conversion(self): if type(self.block_data) is str: blocks = read_file(self.block_data) # Raw mesh info # TODO: Optimize parse - implement for several output (res, ip..) blocks2d_flat = blocks[:, 1:9] # Flat list of polygon vertices else: blocks = self.block_data blocks2d_flat = blocks[:, 1:9] rho = blocks[:, 9:] # Values associated to each block # Load profile bounds, must be in the correct format: # [[ lat1, lon1], [lat2, lon2]] # Elevation data tif = 0 if self.elevation_file is not None: if ".tif" in self.elevation_file.lower(): # If tif file tif = 1 # Load tif file z = rasterio.open(self.elevation_file) # Elevation data: r = z.read(1) def elevation(lat_, lon_): """ Gets the elevation from a raster file given a pair of latitude/longitude coordinates :param lat_: latitude WGS84 in decimal degrees :param lon_: longitude WGS84 in decimal degrees :return: Elevation (m) """ idx = z.index(lon_, lat_) return r[idx] else: # If 2D x - z data z = read_file(self.elevation_file) # Interpolating function to fill missing values fi = interp1d(z[:, 0], z[:, 1], fill_value="extrapolate") def elevation(x_): """ :return: Elevation (m) """ return fi(x_) else: def elevation(*args): return 0 blocks2d = blocks2d_flat.reshape(-1, 4, 2) # Reshape in (n, 4, 2) # %% Order vertices in each block to correspond to VTK requirements # Blocks' vertices are now correctly ordered blocks2d_vo = np.array([order_vertices(vs) for vs in blocks2d]) # %% Add a new axis to make coordinates 3-D # We have now the axis along the profile line and the depth. shp = blocks2d_vo.shape # Create 3D empty array blocks3d = np.zeros((shp[0], shp[1], 3)) # Insert 0 value for each vertices for i in range(len(blocks2d_vo)): for j in range(shp[1]): blocks3d[i, j] = np.insert(blocks2d_vo[i, j], 1, 0) # Flatten blocks3d = blocks3d.reshape(-1, 3) # Set the maximum elevation at 0 blocks3d[:, 2] -= np.min( (np.abs(blocks3d[:, 2].min()), np.abs(blocks3d[:, 2].max())) ) # %% Coordinates conversion geod = Geodesic.WGS84 # define the WGS84 ellipsoid # Create an 'InverseLine' bounded by the profile endpoints. profile = geod.InverseLine( self.bounds[0, 0], self.bounds[0, 1], self.bounds[1, 0], self.bounds[1, 1] ) def lat_lon(distance): """ Returns the WGS coordinates given a distance along the axis of the profile. :param distance: Distance along the profile from its origin (m) :return: latitude WGS84 in decimal degrees, longitude WGS84 in decimal degrees """ g = profile.Position(distance, Geodesic.STANDARD | Geodesic.LONG_UNROLL) return g["lat2"], g["lon2"] blocks_wgs = np.copy(blocks3d) # %% Insert elevation # Convert distance along axis to lat/lon and add elevation if tif: for i in range(len(blocks_wgs)): lat, lon = lat_lon(blocks_wgs[i, 0]) blocks_wgs[i, 0] = lat blocks_wgs[i, 1] = lon altitude = elevation(lat, lon) - np.abs(blocks_wgs[i, 2]) blocks_wgs[i, 2] = altitude else: for i in range(len(blocks_wgs)): altitude = elevation(blocks_wgs[i, 0]) - np.abs(blocks_wgs[i, 2]) lat, lon = lat_lon(blocks_wgs[i, 0]) blocks_wgs[i, 0] = lat blocks_wgs[i, 1] = lon blocks_wgs[i, 2] = altitude # %% Set in local coordinate system lat_origin, long_origin = self.origin # Arbitrary origin def local_system(lat_p, lon_p): """ Given an origin, converts the WGS84 coordinates into meters around that point. :param lat_p: latitude (decimal degree wgs84) :param lon_p: longitude (decimal degree wgs84) :return: """ line = geod.InverseLine(lat_origin, long_origin, lat_p, lon_p) azi = line.azi1 dis = line.s13 return dis * math.sin(math.radians(azi)), dis * math.cos(math.radians(azi)) blocks_local = np.copy(blocks_wgs) # Update coordinates for i in range(len(blocks_wgs)): x, y = local_system(blocks_local[i, 0], blocks_local[i, 1]) blocks_local[i, 0], blocks_local[i, 1] = x, y return blocks_local, rho def dem(self, dem_file, bounding_box, n_x=100, n_y=100): """ :param dem_file: Path to dem file :param bounding_box: tuple: Bounding box (rectangle) of the DEM ((lat1, long1), (lat2, long2)) :param n_x: int: Number of cells in x direction (longitude) :param n_y: int: Number of cells in y direction (latitude) :return: """ # TODO: add more DEM files input options if ".tif" in dem_file.lower(): # Load tif file dataset = rasterio.open(dem_file) # Elevation data: r = dataset.read(1) def elevation(lat_, lon_): idx = dataset.index(lon_, lat_) return r[idx] else: # Expects (lat, lon, elev) data file dataset = read_file(dem_file) points = dataset[:, :2] values = dataset[:, -1] def elevation(lat_, lon_): """Inverse Square Distance""" d = np.sqrt((lon_ - points[:, 1]) ** 2 + (lat_ - points[:, 0]) ** 2) if d.min() > 0: v = np.sum(values * (1 / d ** 2) /
np.sum(1 / d ** 2)
numpy.sum
# # Copyright (c) 2021 The Markovflow Contributors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Module containing the unit tests for the `BlockTriDiagonal` class.""" from typing import Optional, Tuple import numpy as np import pytest import tensorflow as tf from markovflow.block_tri_diag import LowerTriangularBlockTriDiagonal, SymmetricBlockTriDiagonal INNER_DIMS = [1, 3] OUTER_DIMS = [1, 4] @pytest.mark.parametrize("inner_dim", INNER_DIMS) @pytest.mark.parametrize("outer_dim", [2, 4]) def test_block_sub_diag(with_tf_random_seed, batch_shape, inner_dim, outer_dim): """Test that the `block_sub_diagonal` method works.""" diag = np.random.normal(size=batch_shape + (outer_dim, inner_dim, inner_dim)) sub_diag_np = np.random.normal(size=batch_shape + (outer_dim - 1, inner_dim, inner_dim)) block_tri_diag = LowerTriangularBlockTriDiagonal(tf.constant(diag), tf.constant(sub_diag_np)) sub_diag_tf = block_tri_diag.block_sub_diagonal np.testing.assert_allclose(sub_diag_np, sub_diag_tf) @pytest.mark.parametrize("has_sub_diag", [True, False]) @pytest.mark.parametrize("inner_dim", INNER_DIMS) @pytest.mark.parametrize("outer_dim", OUTER_DIMS) def test_dense(with_tf_random_seed, batch_shape, has_sub_diag, inner_dim, outer_dim): """Test that the `to_dense` method works.""" if has_sub_diag and outer_dim == 1: return dense_np, block_tri_diag = _generate_random_tri_diag( batch_shape, outer_dim, inner_dim, has_sub_diag ) dense = block_tri_diag.to_dense() np.testing.assert_allclose(dense, dense_np) @pytest.mark.parametrize("has_sub_diag_1", [True, False]) @pytest.mark.parametrize("has_sub_diag_2", [True, False]) @pytest.mark.parametrize("inner_dim", INNER_DIMS) @pytest.mark.parametrize("outer_dim", OUTER_DIMS) def test_add( with_tf_random_seed, batch_shape, has_sub_diag_1, has_sub_diag_2, inner_dim, outer_dim ): """Test that the addition of two `SymmetricBlockTriDiagonal` matrices works.""" if (has_sub_diag_1 or has_sub_diag_2) and outer_dim == 1: return dense_np_1, block_tri_diag_1 = _generate_random_pos_def_tri_diag( batch_shape, outer_dim, inner_dim, has_sub_diag_1 ) dense_np_2, block_tri_diag_2 = _generate_random_pos_def_tri_diag( batch_shape, outer_dim, inner_dim, has_sub_diag_2 ) added = (block_tri_diag_1 + block_tri_diag_2).to_dense() np.testing.assert_allclose(added, dense_np_1 + dense_np_2) @pytest.mark.parametrize("has_sub_diag", [True, False]) @pytest.mark.parametrize("inner_dim", INNER_DIMS) @pytest.mark.parametrize("outer_dim", OUTER_DIMS) def test_abs_log_det(with_tf_random_seed, batch_shape, has_sub_diag, inner_dim, outer_dim): """Test that the `abs_log_det` method works.""" if has_sub_diag and outer_dim == 1: return dense_np, block_tri_diag = _generate_random_tri_diag( batch_shape, outer_dim, inner_dim, has_sub_diag ) _, log_det_np = np.linalg.slogdet(dense_np) log_det = block_tri_diag.abs_log_det() np.testing.assert_allclose(log_det, log_det_np) @pytest.mark.parametrize("has_sub_diag", [True, False]) @pytest.mark.parametrize("inner_dim", INNER_DIMS) @pytest.mark.parametrize("outer_dim", OUTER_DIMS) def test_cholesky(with_tf_random_seed, batch_shape, has_sub_diag, inner_dim, outer_dim): """Test that the `cholesky` method works.""" if has_sub_diag and outer_dim == 1: return dense_np, block_tri_diag = _generate_random_pos_def_tri_diag( batch_shape, outer_dim, inner_dim, has_sub_diag ) chol_np = np.linalg.cholesky(dense_np) chol = block_tri_diag.cholesky.to_dense() np.testing.assert_allclose(chol, chol_np, rtol=1e-3) @pytest.mark.parametrize("has_sub_diag", [True, False]) @pytest.mark.parametrize("inner_dim", INNER_DIMS) @pytest.mark.parametrize("transpose_left", [True, False]) @pytest.mark.parametrize("outer_dim", OUTER_DIMS) def test_solve( with_tf_random_seed, batch_shape, has_sub_diag, inner_dim, transpose_left, outer_dim ): """Test that the `solve` method works.""" if has_sub_diag and outer_dim == 1: return dense_np, block_tri_diag = _generate_random_tri_diag( batch_shape, outer_dim, inner_dim, has_sub_diag ) right = np.random.normal(size=batch_shape + (outer_dim, inner_dim)) solve = block_tri_diag.solve(tf.constant(right), transpose_left=transpose_left) if transpose_left: einsum_string = "...ji,...j->...i" else: einsum_string = "...ij,...j->...i" solve_np = np.einsum( einsum_string, np.linalg.inv(dense_np), right.reshape(batch_shape + (outer_dim * inner_dim,)), ) np.testing.assert_allclose(solve, solve_np.reshape(batch_shape + (outer_dim, inner_dim))) @pytest.mark.parametrize("has_sub_diag", [True, False]) @pytest.mark.parametrize("inner_dim", INNER_DIMS) @pytest.mark.parametrize("outer_dim", OUTER_DIMS) @pytest.mark.parametrize("symmetrise", [True, False]) @pytest.mark.parametrize("transpose_left", [True, False]) def test_dense_mult( with_tf_random_seed, batch_shape, has_sub_diag, inner_dim, transpose_left, symmetrise, outer_dim, ): """Test that the `dense_mult` method works.""" if has_sub_diag and outer_dim == 1: return if transpose_left and symmetrise: # can't symmetrise and transpose at the same time return if symmetrise: dense_np, block_tri_diag = _generate_random_pos_def_tri_diag( batch_shape, outer_dim, inner_dim, has_sub_diag ) else: dense_np, block_tri_diag = _generate_random_tri_diag( batch_shape, outer_dim, inner_dim, has_sub_diag ) right = np.random.normal(size=batch_shape + (outer_dim, inner_dim)) mult = block_tri_diag.dense_mult(tf.constant(right), transpose_left=transpose_left) if transpose_left: einsum_string = "...ji,...j->...i" else: einsum_string = "...ij,...j->...i" mult_np = np.einsum( einsum_string, dense_np, right.reshape(batch_shape + (outer_dim * inner_dim,)) ) np.testing.assert_allclose(mult, mult_np.reshape(batch_shape + (outer_dim, inner_dim))) @pytest.mark.parametrize("has_sub_diag", [True, False]) @pytest.mark.parametrize("inner_dim", INNER_DIMS) @pytest.mark.parametrize("outer_dim", OUTER_DIMS) def test_diagonal_of_inverse(with_tf_random_seed, batch_shape, has_sub_diag, inner_dim, outer_dim): """Test that the `block_diagonal_of_inverse` method works.""" if has_sub_diag and outer_dim == 1: return dense_np, _ = _generate_random_pos_def_tri_diag(batch_shape, outer_dim, inner_dim, has_sub_diag) chol_np = np.linalg.cholesky(dense_np) diag, sub_diag = _blocktridiag_from_dense(chol_np, inner_dim, has_sub_diag) if has_sub_diag: sub_diag = tf.constant(sub_diag) block_tri_diag = LowerTriangularBlockTriDiagonal(tf.constant(diag), sub_diag) diag_of_inv = block_tri_diag.block_diagonal_of_inverse() diag_of_inv_np, _ = _blocktridiag_from_dense(np.linalg.inv(dense_np), inner_dim, False) np.testing.assert_allclose(diag_of_inv_np, diag_of_inv, rtol=1e-3) @pytest.mark.parametrize("inner_dim", INNER_DIMS) @pytest.mark.parametrize("outer_dim", [3, 5]) def test_upper_diagonal_lower(with_tf_random_seed, batch_shape, inner_dim, outer_dim): """Test that the `upper_diagonal_lower` method works.""" dense_np, block_tri_diag = _generate_random_pos_def_tri_diag( batch_shape, outer_dim, inner_dim, True ) lower_tf, diag_tf = block_tri_diag.upper_diagonal_lower() lower, diag = lower_tf.to_dense(), diag_tf.to_dense() chol_d_u = np.swapaxes(diag, -1, -2) @ lower # make sure the lower triangular matrix is actually lower np.testing.assert_allclose(lower, np.tril(lower)) # ensure the block diagonal matrix is actually block diagonal assert diag_tf.block_sub_diagonal is None # verify that recombining results in the original matrix np.testing.assert_allclose(dense_np, np.swapaxes(chol_d_u, -1, -2) @ chol_d_u, rtol=1e-6) def _to_dense(diag: np.ndarray, sub_diag: Optional[np.ndarray]) -> np.ndarray: """ Convert a diagonal and sub-diagonal to a dense matrix. """ *batch_shape, outer_dim, inner_dim, _ = diag.shape dense = np.zeros(batch_shape + [outer_dim * inner_dim, outer_dim * inner_dim]) for i in range(outer_dim): block_start = i * inner_dim for j in range(inner_dim): for k in range(j + 1): # only want the lower half of the diagonal matrices dense[..., block_start + j, block_start + k] = diag[..., i, j, k] if sub_diag is not None: for i in range(outer_dim - 1): block_start_k = i * inner_dim block_start_j = block_start_k + inner_dim for j in range(inner_dim): for k in range(inner_dim): dense[..., block_start_j + j, block_start_k + k] = sub_diag[..., i, j, k] return dense def _blocktridiag_from_dense( array: np.ndarray, inner_dim: int, has_sub_diag: bool ) -> Tuple[np.ndarray, Optional[np.ndarray]]: """Extract the diagonal and sub-diagonal from a dense matrix.""" *batch_shape, outer_inner, _ = array.shape outer_dim = outer_inner // inner_dim diag = np.zeros(batch_shape + [outer_dim, inner_dim, inner_dim]) for i in range(outer_dim): block_start = i * inner_dim for j in range(inner_dim): for k in range(inner_dim): diag[..., i, j, k] = array[..., block_start + j, block_start + k] sub_diag = None if has_sub_diag: sub_diag = np.zeros(batch_shape + [outer_dim - 1, inner_dim, inner_dim]) for i in range(outer_dim - 1): block_start_k = i * inner_dim block_start_j = block_start_k + inner_dim for j in range(inner_dim): for k in range(inner_dim): sub_diag[..., i, j, k] = array[..., block_start_j + j, block_start_k + k] return diag, sub_diag def _generate_random_pos_def_tri_diag( batch_shape: Tuple, outer_dim: int, inner_dim: int, has_sub_diag: bool ) -> Tuple[np.ndarray, SymmetricBlockTriDiagonal]: """ Create a random tri-diagonal symmetric positive definite matrix. This works by creating a lower triangular tri-diagonal matrix and multiplying it by its transpose to make a symmetric positive definite tri diagonal. """ diag = np.tril(np.random.normal(loc=1.0, size=batch_shape + (outer_dim, inner_dim, inner_dim))) sub_diag_np = None if has_sub_diag: sub_diag_np = np.random.normal(size=batch_shape + (outer_dim - 1, inner_dim, inner_dim)) dense_np = _to_dense(diag, sub_diag_np) dense_np = np.einsum("...ij,...kj->...ik", dense_np, dense_np) diag, sub_diag = _blocktridiag_from_dense(dense_np, inner_dim, has_sub_diag) if has_sub_diag: sub_diag = tf.constant(sub_diag) return dense_np, SymmetricBlockTriDiagonal(tf.constant(diag), sub_diag) def _generate_random_tri_diag( batch_shape: Tuple, outer_dim: int, inner_dim: int, has_sub_diag: bool ) -> Tuple[np.ndarray, LowerTriangularBlockTriDiagonal]: diag = np.tril(np.random.normal(size=batch_shape + (outer_dim, inner_dim, inner_dim))) sub_diag = None sub_diag_np = None if has_sub_diag: sub_diag_np =
np.random.normal(size=batch_shape + (outer_dim - 1, inner_dim, inner_dim))
numpy.random.normal
import numpy as np import os import pytest import warnings from threeML.io.package_data import get_path_of_data_file from threeML.utils.OGIP.response import ( InstrumentResponseSet, InstrumentResponse, OGIPResponse, ) from threeML.utils.time_interval import TimeInterval def get_matrix_elements(): # In[5]: np.diagflat([1, 2, 3, 4])[:3, :] matrix = np.diagflat([1.0, 2.0, 3.0, 4.0])[:3, :] # Now matrix is: # array([[1, 0, 0, 0], # [0, 2, 0, 0], # [0, 0, 3, 0]]) mc_energies = [1.0, 2.0, 3.0, 4.0, 5.0] ebounds = [1.0, 2.5, 4.5, 5.0] return matrix, mc_energies, ebounds def get_matrix_set_elements(): matrix, mc_energies, ebounds = get_matrix_elements() rsp_a = InstrumentResponse(matrix, ebounds, mc_energies) # Make another matrix with the same matrix but divided by 2 other_matrix = matrix / 2.0 rsp_b = InstrumentResponse(other_matrix, ebounds, mc_energies) # Remember: the second matrix is like the first one divided by two, and it covers twice as much time. # They cover 0-10 s the first one, and 10-30 the second one. # Fake an exposure getter by using a fixed 10% deadtime livetime_fraction = 0.9 exposure_getter = lambda t1, t2: livetime_fraction * (t2 - t1) # Fake a count getter law = lambda x: 1.23 * x # The counts getter is the integral of the law counts_getter = (lambda t1, t2: 1.23 * 0.5 * (t2**2.0 - t1**2.0) * livetime_fraction) return [rsp_a, rsp_b], exposure_getter, counts_getter def get_matrix_set_elements_with_coverage(reference_time=0.0): [rsp_a, rsp_b], exposure_getter, counts_getter = get_matrix_set_elements() # By making the coverage interval twice for the second matrix we restore parity with the first one, # so that the weighting by exposure should simply return the first matrix rsp_a._coverage_interval = TimeInterval(0.0, 10.0) + reference_time rsp_b._coverage_interval = TimeInterval(10.0, 30.0) + reference_time return [rsp_a, rsp_b], exposure_getter, counts_getter def test_instrument_response_constructor(): # Make a fake test matrix matrix, mc_energies, ebounds = get_matrix_elements() rsp = InstrumentResponse(matrix, ebounds, mc_energies) assert np.all(rsp.matrix == matrix) assert np.all(rsp.ebounds == ebounds) assert np.all(rsp.monte_carlo_energies == mc_energies) # Now with coverage interval with pytest.raises(RuntimeError): _ = InstrumentResponse(matrix, ebounds, mc_energies, "10-20") rsp = InstrumentResponse(matrix, ebounds, mc_energies, TimeInterval(10.0, 20.0)) assert rsp.rsp_filename is None assert rsp.arf_filename is None assert rsp.coverage_interval == TimeInterval(10.0, 20.0) # Check that we do not accept nans in the matrix matrix[2, 2] = np.nan with pytest.raises(RuntimeError): _ = InstrumentResponse(matrix, ebounds, mc_energies, "10-20") def test_instrument_response_replace_matrix(): matrix, mc_energies, ebounds = get_matrix_elements() rsp = InstrumentResponse(matrix, ebounds, mc_energies) new_matrix = matrix / 2.0 rsp.replace_matrix(new_matrix) assert np.all(rsp.matrix == new_matrix) with pytest.raises(RuntimeError): rsp.replace_matrix(np.random.uniform(0, 1, 100).reshape(10, 10)) def test_instrument_response_set_function_and_convolve(): # A very basic test. More tests will be made against XSpec later matrix, mc_energies, ebounds = get_matrix_elements() rsp = InstrumentResponse(matrix, ebounds, mc_energies) # Integral of a constant, so we know easily what the output should be #integral_function = lambda e1, e2: e2 - e1 def integral_function(): return np.array(mc_energies)[1:] - np.array(mc_energies)[:-1] rsp.set_function(integral_function) folded_counts = rsp.convolve() assert np.all(folded_counts == [1.0, 2.0, 3.0]) def test__instrument_response_energy_to_channel(): matrix, mc_energies, ebounds = get_matrix_elements() rsp = InstrumentResponse(matrix, ebounds, mc_energies) assert rsp.energy_to_channel(1.5) == 0 assert rsp.energy_to_channel(2.6) == 1 assert rsp.energy_to_channel(4.75) == 2 assert rsp.energy_to_channel(100.0) == 3 def test_instrument_response_plot_response(): matrix, mc_energies, ebounds = get_matrix_elements() rsp = InstrumentResponse(matrix, ebounds, mc_energies) rsp.plot_matrix() def test_OGIP_response_first_channel(): # Get path of response file rsp_file = get_path_of_data_file("ogip_test_gbm_n6.rsp") rsp = OGIPResponse(rsp_file) assert rsp.first_channel == 1 def test_OGIP_response_arf_rsp_accessors(): # Then load rsp and arf in XSpec rsp_file = get_path_of_data_file("ogip_test_xmm_pn.rmf") arf_file = get_path_of_data_file("ogip_test_xmm_pn.arf") rsp = OGIPResponse(rsp_file, arf_file=arf_file) assert rsp.arf_filename == arf_file assert rsp.rsp_filename == rsp_file def test_response_write_to_fits1(): matrix, mc_energies, ebounds = get_matrix_elements() rsp = InstrumentResponse(matrix, ebounds, mc_energies) temp_file = "__test.rsp" rsp.to_fits(temp_file, "TEST", "TEST", overwrite=True) # Now check that reloading gives back the same matrix rsp_reloaded = OGIPResponse(temp_file) assert np.allclose(rsp_reloaded.matrix, rsp.matrix) assert np.allclose(rsp_reloaded.ebounds, rsp.ebounds) assert np.allclose(rsp_reloaded.monte_carlo_energies, rsp.monte_carlo_energies) os.remove(temp_file) def test_response_write_to_fits2(): # Now do the same for a response read from a file rsp_file = get_path_of_data_file("ogip_test_gbm_n6.rsp") rsp = OGIPResponse(rsp_file) temp_file = "__test.rsp" rsp.to_fits(temp_file, "TEST", "TEST", overwrite=True) rsp_reloaded = OGIPResponse(temp_file) assert np.allclose(rsp_reloaded.matrix, rsp.matrix) assert np.allclose(rsp_reloaded.ebounds, rsp.ebounds) assert np.allclose(rsp_reloaded.monte_carlo_energies, rsp.monte_carlo_energies) os.remove(temp_file) def test_response_write_to_fits3(): # Now do the same for a file with a ARF rsp_file = get_path_of_data_file("ogip_test_xmm_pn.rmf") arf_file = get_path_of_data_file("ogip_test_xmm_pn.arf") rsp = OGIPResponse(rsp_file, arf_file=arf_file) temp_file = "__test.rsp" rsp.to_fits(temp_file, "TEST", "TEST", overwrite=True) rsp_reloaded = OGIPResponse(temp_file) assert np.allclose(rsp_reloaded.matrix, rsp.matrix) assert np.allclose(rsp_reloaded.ebounds, rsp.ebounds) assert np.allclose(rsp_reloaded.monte_carlo_energies, rsp.monte_carlo_energies) os.remove(temp_file) def test_response_set_constructor(): [rsp_aw, rsp_bw], exposure_getter, counts_getter = get_matrix_set_elements() with pytest.raises(RuntimeError): # This should raise because there is no time information for the matrices _ = InstrumentResponseSet([rsp_aw, rsp_bw], exposure_getter, counts_getter) # Add the time information ( [rsp_a, rsp_b], exposure_getter, counts_getter, ) = get_matrix_set_elements_with_coverage() # This should work now rsp_set = InstrumentResponseSet([rsp_a, rsp_b], exposure_getter, counts_getter) assert rsp_set[0] == rsp_a assert rsp_set[1] == rsp_b # Check that the constructor order the matrices by time when needed # This should work now rsp_set = InstrumentResponseSet([rsp_b, rsp_a], exposure_getter, counts_getter) assert rsp_set[0] == rsp_a assert rsp_set[1] == rsp_b # Now test construction from the .from_rsp2 method rsp2_file = get_path_of_data_file("ogip_test_gbm_b0.rsp2") with warnings.catch_warnings(): warnings.simplefilter("error", np.VisibleDeprecationWarning) rsp_set = InstrumentResponseSet.from_rsp2_file( rsp2_file, exposure_getter, counts_getter ) assert len(rsp_set) == 3 # Now test that we cannot initialize a response set with matrices which have non-contiguous coverage intervals matrix, mc_energies, ebounds = get_matrix_elements() rsp_c = InstrumentResponse(matrix, ebounds, mc_energies, TimeInterval(0.0, 10.0)) rsp_d = InstrumentResponse(matrix, ebounds, mc_energies, TimeInterval(20.0, 30.0)) with pytest.raises(RuntimeError): _ = InstrumentResponseSet([rsp_c, rsp_d], exposure_getter, counts_getter) def test_response_set_weighting(): ( [rsp_a, rsp_b], exposure_getter, counts_getter, ) = get_matrix_set_elements_with_coverage() rsp_set = InstrumentResponseSet([rsp_a, rsp_b], exposure_getter, counts_getter) # here we are waiting by exposure. We have: # weight1 = (0.9 * 5.0) = 4.5 # weight2 = (0.9 * 15.0) = 13.5 # sum = weight1 + weight2 = 18.0 # new_matrix = rsp_a * weight1/sum + rsp_b * weight2 / sum # but rsp_b = rsp_a / 2.0, so: # new_matrix = rsp_a * weight1 / sum + rsp_a / 2.0 * weight2 / sum = 1 / sum * rsp_a * (weight1 + weight2 / 2.0) # so in the end: # new_matrix = 0.625 * rsp_a weighted_matrix = rsp_set.weight_by_exposure("5.0 - 25.0") assert np.allclose(weighted_matrix.matrix, 0.625 * rsp_a.matrix) # here we are waiting by exposure. We have: # weight1 = 55.35 # weight2 = 442.8 # so: # new_matrix = 1 / sum * rsp_a * (weight1 + weight2 / 2.0) = 0.5555555555555555 * rsp_a weighted_matrix = rsp_set.weight_by_counts("0.0 - 30.0") assert np.allclose(weighted_matrix.matrix, 0.5555555555555555 * rsp_a.matrix) # Here we weight by counts in the interval 5.0 - 25.0 # With the same math as before: weighted_matrix = rsp_set.weight_by_counts("5.0 - 25.0") assert np.allclose(weighted_matrix.matrix, 0.5625000000000001 * rsp_a.matrix) def test_response_set_weighting_with_reference_time(): # Now repeat the same tests but using a reference time ref_time = 123.456 ( [rsp_a, rsp_b], exposure_getter, counts_getter, ) = get_matrix_set_elements_with_coverage(reference_time=ref_time) rsp_set = InstrumentResponseSet( [rsp_a, rsp_b], exposure_getter, counts_getter, reference_time=ref_time ) assert rsp_set.reference_time == ref_time weighted_matrix = rsp_set.weight_by_exposure("5.0 - 25.0") assert np.allclose(weighted_matrix.matrix, 0.625 * rsp_a.matrix) weighted_matrix = rsp_set.weight_by_counts("0.0 - 30.0") assert np.allclose(weighted_matrix.matrix, 0.5555555555555555 * rsp_a.matrix) weighted_matrix = rsp_set.weight_by_counts("5.0 - 25.0") assert
np.allclose(weighted_matrix.matrix, 0.5625000000000001 * rsp_a.matrix)
numpy.allclose
#!/usr/bin/env python # Copyright (c) 2019, IRIS-HEP # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import struct import unittest import numpy from awkward import * class Test(unittest.TestCase): def runTest(self): pass def test_object_nbytes(self): class Point(object): def __init__(self, array): self.x, self.y, self.z = array def __repr__(self): return "<Point {0} {1} {2}>".format(self.x, self.y, self.z) def __eq__(self, other): return isinstance(other, Point) and self.x == other.x and self.y == other.y and self.z == other.z assert isinstance(ObjectArray([[1.1, 2.2, 3.3], [4.4, 5.5, 6.6], [7.7, 8.8, 9.9]], Point).nbytes, int) def test_object_floats(self): class Point(object): def __init__(self, array): self.x, self.y, self.z = array def __repr__(self): return "<Point {0} {1} {2}>".format(self.x, self.y, self.z) def __eq__(self, other): return isinstance(other, Point) and self.x == other.x and self.y == other.y and self.z == other.z a = ObjectArray([[1.1, 2.2, 3.3], [4.4, 5.5, 6.6], [7.7, 8.8, 9.9]], Point) assert a[0] == Point([1.1, 2.2, 3.3]) assert a[1] == Point([4.4, 5.5, 6.6]) assert a[2] == Point([7.7, 8.8, 9.9]) assert a[:].tolist() == [Point([1.1, 2.2, 3.3]), Point([4.4, 5.5, 6.6]), Point([7.7, 8.8, 9.9])] assert a[::2].tolist() == [Point([1.1, 2.2, 3.3]), Point([7.7, 8.8, 9.9])] assert a[[True, False, True]].tolist() == [Point([1.1, 2.2, 3.3]), Point([7.7, 8.8, 9.9])] assert a[[2, 0]].tolist() == [Point([7.7, 8.8, 9.9]), Point([1.1, 2.2, 3.3])] def test_object_bytes(self): class Point(object): def __init__(self, bytes): self.x, self.y, self.z = struct.unpack("ddd", bytes) def __repr__(self): return "<Point {0} {1} {2}>".format(self.x, self.y, self.z) def __eq__(self, other): return isinstance(other, Point) and self.x == other.x and self.y == other.y and self.z == other.z a = ObjectArray(
numpy.array([1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9])
numpy.array
import numpy as np from sklearn.metrics import accuracy_score import multiprocessing as mp import sys, os sys.path.append(os.getcwd()) try: from quadboost.weak_learner import _WeakLearnerBase from quadboost.utils import split_int, timed, ComparableMixin from quadboost.utils.multiprocessing_utils import PicklableExceptionWrapper, SafeQueue, parallel_processes except ModuleNotFoundError: from weak_learner import _WeakLearnerBase from utils import split_int, timed, ComparableMixin from utils.multiprocessing_utils import PicklableExceptionWrapper, SafeQueue, parallel_processes class MulticlassDecisionStump(_WeakLearnerBase): """ Decision stump classifier with innate multiclass algorithm. It finds a stump to partition examples into 2 parts which minimizes the quadratic multiclass risk. It assigns a confidence rates (scalar) for each class for each partition. Parallelization is implemented for the 'fit' method. """ def fit(self, X, Y, W=None, n_jobs=1, sorted_X=None, sorted_X_idx=None): """ Fits the model by finding the best decision stump using the algorithm implemented in the StumpFinder class. Args: X (Array of shape (n_examples, ...)): Examples Y (Array of shape (n_examples,) or (n_examples, n_classes)): Labels for the examples. If an encoder was provided at construction, Y should be a vector to be encoded. W (Array of shape (n_examples, n_classes)): Weights of each examples according to their class. Should be None if Y is not encoded. n_jobs (int, optional, default=1): Number of processes to execute in parallel to find the stump. sorted_X (Array of shape (n_examples, ...), optional, default=None): Sorted examples along axis 0. If None, 'X' will be sorted, else it will not. sorted_X_idx (Array of shape (n_examples, ...), optional, default=None): Indices of the sorted examples along axis 0 (corresponds to argsort). If None, 'X' will be argsorted, else it will not. Returns self """ if self.encoder is not None: Y, W = self.encoder.encode_labels(Y) if sorted_X is None or sorted_X_idx is None: sorted_X, sorted_X_idx = self.sort_data(X) stump = self.find_stump(sorted_X, sorted_X_idx, Y, W, n_jobs) for attr in ['feature', 'confidence_rates', 'stump', 'stump_idx', 'risks', 'risk']: setattr(self, attr, getattr(stump, attr)) return self def find_stump(self, sorted_X, sorted_X_idx, Y, W, n_jobs): stump_finder = StumpFinder(sorted_X, sorted_X_idx, Y, W) stumps_queue = SafeQueue() if n_jobs > 1: # Need parallelization n_features = sorted_X.shape[1] args_iter = ((stumps_queue, sub_idx) for sub_idx in split_int(n_features, n_jobs)) parallel_processes(stump_finder.safe_find_stump, args_iter) else: # No parallelization stump_finder.find_stump(stumps_queue) return min(stump for stump in stumps_queue) def predict(self, X): n_partitions, n_classes = self.confidence_rates.shape n_examples = X.shape[0] Y_pred = np.zeros((n_examples, n_classes)) for i, partition in enumerate(self.partition_generator(X)): Y_pred[i] = self.confidence_rates[partition] return Y_pred def partition_generator(self, X): """ Partition examples into 2 sets denoted by 0 and 1 in an lazy iterator fashion. """ n_examples = X.shape[0] for x in X.reshape((n_examples, -1)): yield int(x[self.feature] > self.stump) def partition(self, X, dtype=bool): return np.array([p for p in self.partition_generator(X)], dtype=dtype) @staticmethod def sort_data(X): """ Necessary sorting operations on the data to find the optimal stump. It is useful to sort the data prior to boost to speed up the algorithm, since the sorting step will not be made at each round. 'sorted_X' and 'sorted_X_idx' should be passed as keyword arguments to the 'fit' method to speed up the algorithm. """ X = X.reshape((X.shape[0],-1)) n_examples, n_features = X.shape sorted_X_idx = np.argsort(X, axis=0) sorted_X = X[sorted_X_idx, range(n_features)] return sorted_X, sorted_X_idx class StumpFinder: """ Implements the algorithm to find the stump. It is separated from the class MulticlassDecisionStump so that it can be pickled when parallelized with 'multiprocessing' (which uses pickle). """ def __init__(self, sorted_X, sorted_X_idx, Y, W): # multiprocessing Arrays are shared between processed to alleviate pickling self.sorted_X = np.ctypeslib.as_array(mp.RawArray('d', sorted_X.size)).reshape(sorted_X.shape) self.sorted_X[:] = sorted_X self.sorted_X_idx = np.ctypeslib.as_array(mp.RawArray('i', sorted_X_idx.size)).reshape(sorted_X_idx.shape) self.sorted_X_idx[:] = sorted_X_idx self.zeroth_moments = np.ctypeslib.as_array(mp.RawArray('d', W.size)).reshape(W.shape) self.zeroth_moments[:] = W self.first_moments = np.ctypeslib.as_array(mp.RawArray('d', W.size)).reshape(W.shape) self.first_moments[:] = W*Y self.second_moments = np.ctypeslib.as_array(mp.RawArray('d', W.size)).reshape(W.shape) self.second_moments[:] = self.first_moments*Y # # multiprocessing Arrays are shared between processed to alleviate pickling # self.X_shape = sorted_X.shape # self.X_idx_shape = sorted_X_idx.shape # self.moments_shape = W.shape # self.sorted_X = mp.Array('d', sorted_X.reshape(-1)) # self.sorted_X_idx = mp.Array('i', sorted_X_idx.reshape(-1)) # self.zeroth_moments = mp.Array('d', W.reshape(-1)) # self.first_moments = mp.Array('d', (W*Y).reshape(-1)) # self.second_moments = mp.Array('d', (W*Y*Y).reshape(-1)) def safe_find_stump(self, stumps_queue, sub_idx=(None,)): """ Handles exception raised in a subprocess so the script will not hang indefinitely. This is basically a decorator for find_stump, but parallelizing requires pickling, and decorators cannot be pickled. """ with stumps_queue: # Context manager handles exceptions self.find_stump(stumps_queue, sub_idx) def find_stump(self, stumps_queue, sub_idx=(None,)): """ Algorithm to the best stump within the sub array of X specified by the bounds 'sub_idx'. """ X = self.sorted_X[:,slice(*sub_idx)] X_idx = self.sorted_X_idx[:,slice(*sub_idx)] _, n_classes = self.zeroth_moments.shape n_examples, n_features = X.shape n_partitions = 2 n_moments = 3 moments = np.zeros((n_moments, n_partitions, n_features, n_classes)) # At first, all examples are in partition 1 # Moments are not normalized so they can be computed cumulatively moments[0,1] = np.sum(self.zeroth_moments[X_idx[:,0]], axis=0) moments[1,1] = np.sum(self.first_moments[X_idx[:,0]], axis=0) moments[2,1] = np.sum(self.second_moments[X_idx[:,0]], axis=0) risks = self.compute_risks(moments) # Shape (n_partitions, n_features) best_stump = Stump(risks, moments) for i, row in enumerate(X_idx[:-1]): self.update_moments(moments, row) possible_stumps = ~np.isclose(X[i+1] - X[i], 0) if possible_stumps.any(): risk = self.compute_risks(moments[:,:,possible_stumps,:]) best_stump.update(risk, moments, possible_stumps, stump_idx=i+1) best_stump.compute_stump_value(X) best_stump.feature += sub_idx[0] if sub_idx[0] is not None else 0 stumps_queue.append(best_stump) def update_moments(self, moments, row_idx): moments_update = np.array([self.zeroth_moments[row_idx], self.first_moments[row_idx], self.second_moments[row_idx]]) moments[:,0] += moments_update moments[:,1] -= moments_update def compute_risks(self, moments): """ Computes the risks for each partitions for every features. """ moments[np.isclose(moments,0)] = 0 with np.errstate(divide='ignore', invalid='ignore'): # We could use # np.divide(moments[1]**2, moments[0], where=~np.isclose(moments[0])) # However, the buffer size is not big enough for several examples and the resulting division is not done correctly normalized_m1 =
np.nan_to_num(moments[1]**2/moments[0])
numpy.nan_to_num
# Copyright (c) 2021-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import logging from typing import Dict, List, Tuple import gym import numpy as np import torch as th from torch import nn from bisk import BiskSingleRobotEnv from bisk.features import make_featurizer from hucc.envs.goal_spaces import g_goal_spaces, g_delta_feats log = logging.getLogger(__name__) class CtrlgsPreTrainingEnv(BiskSingleRobotEnv): ''' A multi-task, goal-based pre-training environment. The environment is "empty" except for a single robot that can be controlled. The "tasks" consider the control of one or more observed features -- those will be sampled according to `feature_dist` (which can also be changed after constructing the environment). For each task (combination of features), a goal space is constructed using `psi` and `offset`, and goals are sampled in this goal space in [-1,1]. A continual version of this environment can be obtained with a `hard_reset_interval` of > 1. This parameter specifices the frequency at which the simulation is reset to its initial state. Other resets will simply result in a new goal to be sampled. ''' def __init__( self, robot: str, features: str, feature_dist: Dict[str, float], task_map: Dict[str, int], precision: float = 0.1, idle_steps: int = 0, max_steps: int = 20, backproject_goal: bool = True, reward: str = 'potential', hard_reset_interval: int = 1, reset_p: float = 0.0, resample_features: str = 'hard', full_episodes: bool = False, allow_fallover: bool = False, fallover_penalty: float = -1.0, implicit_soft_resets: bool = False, goal_sampling: str = 'random', ctrl_cost: float = 0.0, normalize_gs_observation: bool = False, zero_twist_goals: bool = False, relative_frame_of_reference: bool = False, ): # XXX hack to have DMC robots operate with their "native" sensor input super().__init__( robot=robot, features='joints' if features not in ('sensorsnoc', 'native') else features, allow_fallover=allow_fallover, ) self.goal_featurizer = make_featurizer( features, self.p, self.robot, 'robot' ) gsdim = self.goal_featurizer.observation_space.shape[0] self.goal_space = g_goal_spaces[features][robot] # Construct goal space self.psi, self.offset = self.abstraction_matrix(robot, features, gsdim) self.psi_1 = np.linalg.inv(self.psi) self.offset_1 = -np.matmul(self.offset, self.psi_1) assert len(self.observation_space.shape) == 1 assert self.psi.shape == (gsdim, gsdim) assert self.offset.shape == (gsdim,) self.precision = precision self.idle_steps = idle_steps self.max_steps = max_steps self.backproject_goal = backproject_goal self.reward = reward self.hard_reset_interval = hard_reset_interval self.reset_p = reset_p self.resample_features = resample_features self.full_episodes = full_episodes self.fallover_penalty = fallover_penalty self.ctrl_cost = ctrl_cost self.implicit_soft_resets = implicit_soft_resets self.goal_sampling = goal_sampling self.normalize_gs_observation = normalize_gs_observation self.zero_twist_goals = zero_twist_goals self.relative_frame_of_reference = relative_frame_of_reference self.task_idx = [0] * len(task_map) for k, v in task_map.items(): self.task_idx[v] = int(k) if len(self.goal_space['twist_feats']) > 0: negpi = self.proj( -np.pi * np.ones(gsdim), self.goal_space['twist_feats'] ) pospi = self.proj( np.pi * np.ones(gsdim), self.goal_space['twist_feats'] ) if not np.allclose(-negpi, pospi): # This could be supported by more elobarte delta computation # logic in step() raise ValueError('Twist feature ranges not symmetric') self.proj_pi = pospi if backproject_goal: all_feats = list(range(gsdim)) gmin_back = self.backproj(-np.ones(gsdim), all_feats) gmax_back = self.backproj(np.ones(gsdim), all_feats) goal_space = gym.spaces.Box(gmin_back, gmax_back) else: max_features = max( ( len(f.replace('+', ',').split(',')) for f in feature_dist.keys() ) ) goal_space = gym.spaces.Box( low=-2, high=2, shape=(max_features,), dtype=np.float32 ) self.task_map = {int(k): v for k, v in task_map.items()} # Hide position-related invariant features from the observation, i.e. # X/Y or ant X for cheetah delta_feats = g_delta_feats[robot] self.obs_mask = list(range(self.observation_space.shape[0])) for d in delta_feats: self.obs_mask.remove(d) self.observation_space = gym.spaces.Dict( { 'observation': gym.spaces.Box( low=-np.inf, high=np.inf, shape=(len(self.obs_mask),), dtype=np.float32, ), 'desired_goal': goal_space, 'task': gym.spaces.Box( low=0, high=1, shape=(len(self.task_map),), dtype=np.float32 ), 'gs_observation': self.goal_featurizer.observation_space, } ) self._do_hard_reset = True self._reset_counter = 0 self.set_feature_dist(feature_dist) # Current features self._features: List[int] = [] self._features_s = '' self._feature_mask = np.zeros(len(self.task_map)) self.model = None self.gamma = 1.0 def set_goal_dims(self, dims): self.set_feature_dist(dims) def set_model(self, model: nn.Module, gamma: float): self.model = model self.gamma = gamma def set_feature_dist(self, feature_dist: Dict[str, float]): # Deduplicate features from combinations fdist: Dict[str, float] = {} self._feature_strings = {} for fs, p in feature_dist.items(): ufeats = [] for f in fs.replace('+', ',').split(','): if not f in ufeats: ufeats.append(f) fdist[','.join(ufeats)] = p self._feature_strings[','.join(ufeats)] = fs.replace('+', ',') if not self.backproject_goal: # Check that maximum number of features doesn't change max_features = max((len(fs.split(',')) for fs in fdist.keys())) assert ( self.observation_space['desired_goal'].shape[0] == max_features ) for fs in fdist.keys(): for fi in map(int, fs.split(',')): assert fi in self.task_map self._feature_dist_v = [k for k, v in fdist.items()] s = sum([v for k, v in fdist.items()]) self._feature_dist_p = [v / s for k, v in fdist.items()] def proj(self, obs: np.ndarray, feats: List[int]) -> np.ndarray: return np.matmul(obs, self.psi[feats].T) + self.offset[feats] def backproj(self, obs_w: np.ndarray, feats: List[int]) -> np.ndarray: s_p = np.matmul(obs_w, self.psi_1[feats]) + self.offset_1 return s_p[self.task_idx] def seed(self, seed=None): self._do_hard_reset = True return super().seed(seed) def get_observation(self): obs = super().get_observation()[self.obs_mask] gs_obs = self.goal_featurizer() if self.backproject_goal: s = gs_obs[self.task_idx] bpg = self.backproj(self.goal, self._features) g = bpg - s if len(self.goal_space['twist_feats']) > 0: twf = [self.task_map[f] for f in self.goal_space['twist_feats']] g[twf] = ( np.remainder((bpg[twf] - s[twf]) + np.pi, 2 * np.pi) - np.pi ) g *= self._feature_mask else: if len(self.goal_space['twist_feats']) > 0: raise NotImplementedError() gs = self.proj(gs_obs, self._features) g = np.zeros(self.observation_space['desired_goal'].shape) g[0 : len(self.goal)] = self.goal - gs if self.normalize_gs_observation: # XXX if the goal space is defined for fewer features than # gs_observation, this will be yield bogus values for undefined # ones. gs_obs = self.proj(gs_obs, np.arange(0, len(gs_obs))) return { 'observation': obs, 'desired_goal': g, 'task': self._feature_mask, 'gs_observation': gs_obs, } def hard_reset(self): # Disable contacts during reset to prevent potentially large contact # forces that can be applied during initial positioning of bodies in # reset_state(). with self.p.model.disable('contact'): self.p.reset() self.reset_state() for _ in range(self.idle_steps): self.p.set_control(np.zeros_like(self.p.data.ctrl)) self.step_simulation() if self.idle_steps <= 0: self.step_simulation() def sample_features(self) -> List[int]: fs = self.np_random.choice( self._feature_dist_v, 1, p=self._feature_dist_p )[0] return list(map(int, fs.split(','))) def sample_goals_random(self, N: int = 1) -> np.ndarray: gstate = self.proj(self.goal_featurizer(), self._features) goal = self.np_random.uniform( low=-1.0, high=1.0, size=(N, len(self._features)) ) # For delta features we offset the goal by the current state to get # meaningful deltas afterwards for i, f in enumerate(self._features): if f in self.goal_space['delta_feats']: goal[:, i] += gstate[i] if self.zero_twist_goals and f in self.goal_space['twist_feats']: goal[:, i] = 0 return goal def sample_goal_using_r(self) -> np.ndarray: N = 128 cand = self.sample_goals_random(N=N) if self.backproject_goal: s = self.goal_featurizer()[self.task_idx] gb = (np.matmul(cand, self.psi_1[self._features]) + self.offset_1)[ :, self.task_idx ] g = gb - s g *= self._feature_mask else: gs = self.proj(self.goal_featurizer(), self._features) g = np.zeros((N, self.observation_space['desired_goal'].shape[0])) g[:, 0 : len(self._features)] = cand - gs obs = super().get_observation()[self.obs_mask] inp = { 'observation': th.tensor(obs, dtype=th.float32) .unsqueeze(0) .expand(N, obs.shape[0]), 'desired_goal': th.tensor(g, dtype=th.float32), 'task': th.tensor(self._feature_mask, dtype=th.float32) .unsqueeze(0) .expand(N, self._feature_mask.shape[0]), } with th.no_grad(): action = self.model.pi(inp).mean inp['action'] = action with th.no_grad(): r = self.model.reachability(inp).clamp(0, 1) if self.goal_sampling in {'r2', 'reachability2'}: # Favor samples reachable with 50% probability dist = th.tanh(2 * (1 - th.abs(r * 2 - 1) + 1e-1)) else: # Favor unreachable samples dist = 1 / (r.view(-1) + 0.1) return cand[th.multinomial(dist, 1).item()] def sample_goal_using_q(self, obs: np.ndarray) -> np.ndarray: N = 128 cand = self.sample_goals_random(N=N) if self.backproject_goal: s = self.goal_featurizer()[self.task_idx] gb = (np.matmul(cand, self.psi_1[self._features]) + self.offset_1)[ :, self.task_idx ] g = gb - s g *= self._feature_mask else: gs = self.proj(self.goal_featurizer(), self._features) g = np.zeros((N, self.observation_space['desired_goal'].shape[0])) g[:, 0 : len(self._features)] = cand - gs obs = super().get_observation()[self.obs_mask] inp = { 'observation': th.tensor(obs, dtype=th.float32) .unsqueeze(0) .expand(N, obs.shape[0]), 'desired_goal': th.tensor(g, dtype=th.float32), 'task': th.tensor(self._feature_mask, dtype=th.float32) .unsqueeze(0) .expand(N, self._feature_mask.shape[0]), } with th.no_grad(): action = self.model.pi(inp).mean inp['action'] = action with th.no_grad(): q = th.min(self.model.q(inp), dim=-1).values ctrl_cost = ( self.max_steps * self.ctrl_cost * (0.25 * self.action_space.shape[0]) ) wobs = self.proj(obs, self._features) dist = np.linalg.norm(cand - wobs, ord=2, axis=1) min_ret = (dist - ctrl_cost) * self.gamma ** self.max_steps slack = q - min_ret dist = 1 / (slack - slack.min() + 1) return cand[th.multinomial(dist, 1).item()] def reset(self): need_hard_reset = self._do_hard_reset or ( self.hard_reset_interval > 0 and self._reset_counter % self.hard_reset_interval == 0 ) # Reset if need_hard_reset: self.hard_reset() self._reset_counter = 0 if self.relative_frame_of_reference: self.goal_featurizer.set_frame_of_reference() # Sample features and goal resample_features = False if need_hard_reset: resample_features = True if self.resample_features == 'soft': resample_features = True elif self.resample_features.startswith('soft'): freq = int(self.resample_features[4:]) resample_features = self._reset_counter % freq == 0 if resample_features: self._features = self.sample_features() self._features_s = self._feature_strings[ ','.join(map(str, self._features)) ] self._feature_mask *= 0 for f in self._features: self._feature_mask[self.task_map[f]] = 1.0 self.goal = self.sample_goals_random()[0] if self.goal_sampling in {'q', 'q_value'}: if self.model: self.goal = self.sample_goal_using_q() elif self.goal_sampling in {'r', 'reachability', 'r2', 'reachability2'}: if self.model: self.goal = self.sample_goal_using_r() elif self.goal_sampling not in {'random', 'uniform'}: raise ValueError( f'Unknown goal sampling method "{self.goal_sampling}"' ) def distance_to_goal(): gs = self.proj(self.goal_featurizer(), self._features) d = self.goal - gs for i, f in enumerate(self._features): if f in self.goal_space['twist_feats']: # Wrap around projected pi/-pi for distance d[i] = ( np.remainder( (self.goal[i] - gs[i]) + self.proj_pi, 2 * self.proj_pi, ) - self.proj_pi ) return np.linalg.norm(d, ord=2) self._d_initial = distance_to_goal() self._do_hard_reset = False self._reset_counter += 1 self._step = 0 return self.get_observation() def step(self, action): def distance_to_goal(): gs = self.proj(self.goal_featurizer(), self._features) d = self.goal - gs for i, f in enumerate(self._features): if f in self.goal_space['twist_feats']: # Wrap around projected pi/-pi for distance d[i] = ( np.remainder( (self.goal[i] - gs[i]) + self.proj_pi, 2 * self.proj_pi, ) - self.proj_pi ) return np.linalg.norm(d, ord=2) d_prev = distance_to_goal() next_obs, reward, done, info = super().step(action) d_new = distance_to_goal() info['potential'] = d_prev - d_new info['distance'] = d_new info['reached_goal'] = info['distance'] < self.precision if self.reward == 'potential': reward = info['potential'] elif self.reward == 'potential2': reward = d_prev - self.gamma * d_new elif self.reward == 'potential3': reward = 1.0 if info['reached_goal'] else 0.0 reward += d_prev - self.gamma * d_new elif self.reward == 'potential4': reward = (d_prev - d_new) / self._d_initial elif self.reward == 'distance': reward = -info['distance'] elif self.reward == 'sparse': reward = 1.0 if info['reached_goal'] else 0.0 else: raise ValueError(f'Unknown reward: {self.reward}') reward -= self.ctrl_cost * np.square(action).sum() info['EpisodeContinues'] = True if info['reached_goal'] == True and not self.full_episodes: done = True info['time'] = self._step self._step += 1 if self._step >= self.max_steps: done = True elif ( not info['reached_goal'] and self.np_random.random() < self.reset_p ): info['RandomReset'] = True done = True if not self.allow_fallover and self.fell_over(): reward = self.fallover_penalty done = True self._do_hard_reset = True info['reached_goal'] = False info['fell_over'] = True if done and ( self._do_hard_reset or (self._reset_counter % self.hard_reset_interval == 0) ): del info['EpisodeContinues'] if done: info['LastStepOfTask'] = True if done and 'EpisodeContinues' in info and self.implicit_soft_resets: need_hard_reset = self._do_hard_reset or ( self.hard_reset_interval > 0 and self._reset_counter % self.hard_reset_interval == 0 ) if not need_hard_reset: # Do implicit resets, let episode continue next_obs = self.reset() done = False del info['EpisodeContinues'] info['SoftReset'] = True info['features'] = self._features_s return next_obs, reward, done, info @staticmethod def feature_controllable(robot: str, features: str, dim: int) -> bool: if not features in g_goal_spaces: raise ValueError(f'Unsupported feature space: {robot}') if not robot in g_goal_spaces[features]: raise ValueError(f'Unsupported robot: {robot}') gs = g_goal_spaces[features][robot] if dim < 0: raise ValueError(f'Feature {dim} out of range') if dim >= len(gs['min']): return False # Return whether feature is controllable, i.e. range is non-zero return gs['min'][dim] != gs['max'][dim] @staticmethod def abstraction_matrix( robot: str, features: str, sdim: int ) -> Tuple[np.array, np.array]: if not features in g_goal_spaces: raise ValueError(f'Unsupported feature space: {robot}') if not robot in g_goal_spaces[features]: raise ValueError(f'Unsupported robot: {robot}') gs = g_goal_spaces[features][robot] gmin =
np.array(gs['min'])
numpy.array
# Generate order book # Orders are generated randomly each month of the year to reflect seasonality # For training, the orders will keep the same probability distribution for # each training episode, but be stochastically regenerated for each new # episode. This will keep the statistics of each product consistent. import numpy as np import calendar import string import datetime from .demand_utils import softmax from argparse import ArgumentTypeError def str2bool(argument): if argument.lower() in ('yes', 'true', 't', 'y', '1'): return True elif argument.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise ArgumentTypeError('Boolean value expected.') def get_default_seasonal_demand_settings(settings): ''' Inputs ========================================================================= settings: dictionary of experimental settings Outputs ========================================================================= settings: dictionary of experimental settings which includes demand model ''' lead_time = 7 # Days std_lead_time = 2 # Days vsm_mean = 40 # Dollars vsm_std = 2 # Dollars load_level = 1 # Sets ratio between total demand and total theoretical supply defaults = { 'ORDER_SIZE': 25, # MT 'MEAN_LEAD_TIME': lead_time*24 if settings['BASE_TIME_INTERVAL']=='HOUR' else lead_time, 'STD_LEAD_TIME': std_lead_time*24 if settings['BASE_TIME_INTERVAL']=='HOUR' else std_lead_time, 'VAR_STD_MARGIN_MEAN': vsm_mean, 'VAR_STD_MARGIN_STD': vsm_std, 'LOAD_LEVEL': 1, 'FORECAST': 'UNIFORM', 'FORECAST_ACCURACY': 3 } for key in defaults.keys(): if key not in settings.keys(): settings[key] = defaults[key] # elif key == 'FORECAST': # settings[key] = str2bool(str(settings[key])) elif defaults[key] is not None: settings[key] = type(defaults[key])(settings[key]) return settings def generate_seasonal_orders(env): # Stochastically generate order book # Check to see if order statistics already exist, if not # generate them if env.order_statistics is None: # Average daily production avg_daily_prod = env.product_data[ :,env.product_data_cols.index('min_run_time')].astype(float).mean() * env.product_data[ :,env.product_data_cols.index('run_rate')].astype(float).mean() # Average yearly production avg_yearly_prod = avg_daily_prod * env.n_days # Adjust to order load level to account for higher demand years or lower yearly_demand_volume = env.settings['LOAD_LEVEL'] * avg_yearly_prod # Generate volume shares for each product using softmax # on standard normal draws x = np.random.standard_normal(env.n_products) prod_volume_shares = softmax(x) # Add some seasonality to each product seasonality_offset = np.random.standard_normal(1) # Take absolute value to ensure that products follow a similar # demand pattern amplitude = np.abs(np.random.standard_normal(env.n_products)) months = np.linspace(0, 2 * np.pi, 12)[:env.n_months] demand = np.sin(months + seasonality_offset).reshape(-1, 1) * amplitude monthly_prod_volume_shares = (1 + demand) * prod_volume_shares # Normalize everything so that each month sums to 1 # total_monthly_demand determines how much total volume is to be shipped # in that month monthly_demand_share = softmax(monthly_prod_volume_shares.sum(axis=1)) total_monthly_demand = monthly_demand_share * yearly_demand_volume # monthly_product_prob determines the probability that an order will be # shipped for a given product in a given month monthly_product_prob = softmax(demand, axis=1).T # Generate orders for each month num_orders_per_month = np.round(total_monthly_demand / env.settings['ORDER_SIZE'], 0).astype(int) env.order_statistics = [monthly_product_prob, num_orders_per_month] # Build order book # doc_num = 0 reserved for forecasted orders doc_num = 1 gen_order_placeholder = np.zeros((1, 8), dtype="int32") start_date = env.start_time year = str(start_date.year) start_date_np = np.datetime64(start_date, "D") products = env.product_data[:,2].astype(int) # Loop through each month to generate orders # TODO: this model relies on specific order statistic size. # e.g. if the sim starts in Feb, we'll get a key error because # the month number doesn't match the order_statistics index. for i in range(env.order_statistics[0].shape[0]): # Number of orders per month n_orders = env.order_statistics[1][i] if n_orders != 0: # Get the month month = i + 1 # Convert the month to a string if month < 10: month_str = "0" + str(int(month)) else: month_str = str(int(month)) # Get the first of the month month_start = np.datetime64(year + "-" + month_str + "-01", "D") # Generate order numbers doc_nums = np.array([num for num in range(doc_num, int(doc_num + n_orders))]) # Calculate doc creation dates and planned gi dates # TODO: KeyError arises during implementation runs. Calling continue because # the demand generated here should not matter as we'll be loading demand from # a demand file. May cause other issues, however. try: ship_dates = np.array(env.shipping_dict[month]) except KeyError: if env.settings['TRAIN']: raise KeyError("month {} not found in env.shipping_dict".format(month)) else: continue # Sample over available shipment dates for the full month to avoid # large bunches of orders for partial months if min(ship_dates) > 4 or max(ship_dates) < 26: last_day = calendar.monthrange(int(year), month)[1] ship_dates = np.arange(1, last_day + 1) for d in ship_dates: sim_day = (d+month_start-start_date_np).astype(int) if sim_day not in env.sim_day_to_date: env.sim_day_to_date[sim_day] = [month, d] if env.settings['WEEKEND_SHIPMENTS'] == False: # Filter weekends weekends = [i[5:7] for i in calendar.monthcalendar(int(year), month)] weekends = np.array([i for k in weekends for i in k]) ship_dates = ship_dates[np.in1d(ship_dates, weekends, invert=True)] - 1 planned_gi_dates = np.random.choice(ship_dates - 1, size=n_orders, replace=True).astype("int") # Add 1 to ensure no lead times = 0 days lead_times = np.abs(np.random.normal( env.settings['MEAN_LEAD_TIME'] - 1, env.settings['STD_LEAD_TIME'], size=n_orders)).round(0).astype("int") + 1 # Back calculate the doc create dates based on the lead times doc_create_dates = planned_gi_dates - lead_times # Get dates in the year planned_gi_dates = np.array([(j + month_start) for j in planned_gi_dates]) doc_create_dates =
np.array([(j + month_start) for j in doc_create_dates])
numpy.array
from __future__ import print_function import ecos import numpy as np from scipy import * import scipy.sparse as sp c = np.array([-1., -1.]) h = np.array([ 4., 12., 0. , 0.]) bool_idx = [1] G = sp.csc_matrix( (array([2.0, 3.0, -1.0, 1.0, 4.0, -1.0]), array([0, 1, 2, 0, 1, 3]), array([0, 3, 6])) ) dims = dict() dims['l'] = 4 sol = ecos.solve(c, G, h, dims, verbose=False, mi_verbose=False, int_vars_idx=bool_idx) print(sol['x']) c = np.array([-1., -1.]) h = np.array([ 4., 12., 0. , 0.]) bool_idx = [] G = sp.csc_matrix( (array([2.0, 3.0, -1.0, 1.0, 4.0, -1.0]), array([0, 1, 2, 0, 1, 3]), array([0, 3, 6])) ) dims = dict() dims['l'] = 4 sol = ecos.solve(c, G, h, dims, verbose=False, mi_verbose=False, int_vars_idx=bool_idx) print(sol['x']) c =
np.array([-1., -1.1])
numpy.array
#%% import pytest from numpy.testing import assert_allclose import numpy as np import natural_bm.backend.theano_backend as BTH import natural_bm.backend.numpy_backend as BNP from natural_bm.backend.common import floatx, set_floatx #%% Define checks def check_dtype(var, dtype): assert var.dtype == dtype def check_single_tensor_operation(function_name, input_shape, **kwargs): val = np.random.random(input_shape) - 0.5 xth = BTH.variable(val) xnp = BNP.variable(val) _zth = getattr(BTH, function_name)(xth, **kwargs) zth = BTH.eval(_zth) znp = BNP.eval(getattr(BNP, function_name)(xnp, **kwargs)) assert zth.shape == znp.shape assert_allclose(zth, znp, atol=1e-05) def check_two_tensor_operation(function_name, x_input_shape, y_input_shape, **kwargs): xval = np.random.random(x_input_shape) - 0.5 xth = BTH.variable(xval) xnp = BNP.variable(xval) yval = np.random.random(y_input_shape) - 0.5 yth = BTH.variable(yval) ynp = BNP.variable(yval) _zth = getattr(BTH, function_name)(xth, yth, **kwargs) zth = BTH.eval(_zth) znp = BNP.eval(getattr(BNP, function_name)(xnp, ynp, **kwargs)) assert zth.shape == znp.shape assert_allclose(zth, znp, atol=1e-05) def check_composed_tensor_operations(first_function_name, first_function_args, second_function_name, second_function_args, input_shape): ''' Creates a random tensor t0 with shape input_shape and compute t1 = first_function_name(t0, **first_function_args) t2 = second_function_name(t1, **second_function_args) with both Theano and TensorFlow backends and ensures the answers match. ''' val = np.random.random(input_shape) - 0.5 xth = BTH.variable(val) xnp = BNP.variable(val) yth = getattr(BTH, first_function_name)(xth, **first_function_args) ynp = getattr(BNP, first_function_name)(xnp, **first_function_args) zth = BTH.eval(getattr(BTH, second_function_name)(yth, **second_function_args)) znp = BNP.eval(getattr(BNP, second_function_name)(ynp, **second_function_args)) assert zth.shape == znp.shape
assert_allclose(zth, znp, atol=1e-05)
numpy.testing.assert_allclose
# + import argparse import os import pickle import sys sys.path.append("..") import numpy as np import torchvision import torchvision.transforms as T import torch.utils.data as torch_data from tqdm import tqdm from models.classifiers import EvalCompoundResNet # - def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('-F', '--function', type=str, required=True, choices=['max_index', 'count_data']) parser.add_argument('-O', '--output_path', type=str, required=True) parser.add_argument('--num_attr', type=str, default=8) parser.add_argument('--sample_per_category', type=int, default=1e5) parser.add_argument('--weight_path', type=str, default='/home/u5397696/interpolation/celebA-hq-classifier/') parser.add_argument('--data_root', type=str, default='/home/u5397696/interpolation/interfacegan/data/tmp') return parser.parse_args() def max_index(args): if not os.path.exists(args.output_path): raise ValueError(f"{args.output_path} doesn't exist.") with open(args.output_path, 'rb') as f: data_index = pickle.load(f) print(f'#attributes: {len(data_index)}') max_val = -1e9 for i in range(len(data_index)): max_p = np.max(data_index[i][0]) max_n =
np.max(data_index[i][1])
numpy.max
# -*- coding: utf-8 -*- """Siamese Network for performing training of a Deep Convolutional Network for Face Verification on the Olivetti and LFW Faces datasets. Dependencies: python 3.4+, numpy>=1.10.4, sklearn>=0.17, scipy>=0.17.0, theano>=0.7.0, lasagne>=0.1, cv2, dlib>=18.18 (only required if using the 'trees' crop mode). Part of the package siamese_net: siamese_net/ siamese_net/faces.py siamese_net/datasets.py siamese_net/normalization.py siamese_net/siamese_net.py Copyright 2016 Kadenze, Inc. Kadenze(R) and Kannu(R) are Registered Trademarks of Kadenze, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ """ import sys import pickle import os # base_compiledir = os.path.expandvars("$HOME/.theano/slot-%d" % (os.getpid())) # os.environ['THEANO_FLAGS'] = "base_compiledir=%s" % base_compiledir import matplotlib.pyplot as plt import numpy as np import theano import theano.tensor as T import time import lasagne # For training the final output network from sklearn import cross_validation from sklearn import metrics from sklearn.linear_model import LogisticRegression # Custom code for parsing datasets and normalizing images from datasets import Datasets from normalization import LCN, ZCA # plt.style.use('ggplot') theano.config.floatX = 'float32' def montage(x): if x.shape[1] == 1 or x.shape[1] == 3: num_img = x.shape[0] num_img_per_dim = np.ceil(np.sqrt(num_img)).astype(int) montage_img = np.zeros(( num_img_per_dim * x.shape[3], num_img_per_dim * x.shape[2], x.shape[1])) else: num_img_per_dim = np.ceil(np.sqrt(x.shape[1])).astype(int) montage_img = np.zeros(( num_img_per_dim * x.shape[3], num_img_per_dim * x.shape[2])) num_img = x.shape[1] for img_i in range(num_img_per_dim): for img_j in range(num_img_per_dim): if img_i * num_img_per_dim + img_j < num_img: if x.shape[0] == 1: montage_img[ img_i * x.shape[3]: (img_i + 1) * x.shape[2], img_j * x.shape[3]: (img_j + 1) * x.shape[2] ] = np.squeeze(np.squeeze( x[0, img_i * num_img_per_dim + img_j, ...] ) / (np.max(x[0, img_i * num_img_per_dim + img_j, ...] ) + 1e-15)) else: montage_img[ img_i * x.shape[3]: (img_i + 1) * x.shape[2], img_j * x.shape[3]: (img_j + 1) * x.shape[2], : ] = np.swapaxes(np.squeeze( x[img_i * num_img_per_dim + img_j, ...] ) / (np.max(x[img_i * num_img_per_dim + img_j, ...] ) + 1e-15), 0, 2) return montage_img def get_image_manifold(images, features, res=64, n_neighbors=5): '''Creates a montage of the images based on a TSNE manifold of the associated image features. ''' from sklearn import manifold mapper = manifold.SpectralEmbedding() transform = mapper.fit_transform(features) nx = int(np.ceil(np.sqrt(len(transform)))) ny = int(np.ceil(np.sqrt(len(transform)))) montage_img = np.zeros((res * nx, res * ny, 3)) from sklearn.neighbors import NearestNeighbors nn = NearestNeighbors() nn.fit(transform) min_x = np.mean(transform[:, 0]) - np.std(transform[:, 0]) * 3.0 max_x = np.mean(transform[:, 0]) + np.std(transform[:, 0]) * 3.0 min_y = np.mean(transform[:, 1]) - np.std(transform[:, 1]) * 3.0 max_y = np.mean(transform[:, 1]) + np.std(transform[:, 1]) * 3.0 for n_i in range(nx): for n_j in range(ny): x = min_x + (max_x - min_x) / nx * n_i y = min_y + (max_y - min_y) / ny * n_j idx = nn.kneighbors([x, y], n_neighbors=n_neighbors)[1][0][:] for neighbor_i in idx: montage_img[ n_i * res: (n_i + 1) * res, n_j * res: (n_j + 1) * res, :] += images[neighbor_i] montage_img[ n_i * res: (n_i + 1) * res, n_j * res: (n_j + 1) * res, :] /= float(len(idx)) montage_img = montage_img / np.max(montage_img) return montage_img def make_image_pairs(X, y, unique_labels): '''For each person in unique_labels (P people): 1. combine all matched pairs the images of that person (N images): N_matched = (P choose 2) * (N choose 2) 2. combine all imposter pairs. N_unmatched = (P choose 2) * (N * N) Returns an array of matched and unmatched images and their targets ------------------------------------------------------------------ X_matched, y_matched, X_unmatched, y_unmatched where the dimensions of the Xs are (with 2 being each image in the pair): [(N_matched + N_unmatched) x 2 x W x H] and ys are ---------- [(N_matched + N_unmatched),] Args ---- X : TYPE Description y : TYPE Description unique_labels : TYPE Description Deleted Parameters ------------------ X (TYPE) : Description y (TYPE) : Description unique_labels (TYPE) : Description ''' from itertools import combinations X_pairs_matched = list() y_pairs_matched = list() # Iterate over all actual pairs # 32 choose 2 = 496 people pairs. 496 * (10 images choose 2) = 496 * 45 = # 1440 for person in unique_labels: # Find images of those people im_idx = np.where(person == y)[0] for el in combinations(im_idx, 2): X_pairs_matched.append( np.concatenate((X[el[0], ...], X[el[1], ...]), axis=0)[np.newaxis, ...]) y_pairs_matched.append(1) X_pairs_unmatched = list() y_pairs_unmatched = list() # Iterate over all imposter pairs of people # (32 choose 2 = 496 people pairs. 496 * 10 * 10 image pairs = # 49600 imposter pairs) # (157 * 0.4 = 63), 63 choose 2 = 1953, 1953 * 100 = 195300 for pair in combinations(unique_labels, 2): # Find images of those people im1_idx = np.where(pair[0] == y)[0] im2_idx = np.where(pair[1] == y)[0] for im1_idx_it in im1_idx: for im2_idx_it in im2_idx: X_pairs_unmatched.append(np.concatenate( (X[im1_idx_it, ...], X[im2_idx_it, ...]), axis=0)[np.newaxis, ...]) y_pairs_unmatched.append(0) return (np.concatenate(X_pairs_matched), np.array(y_pairs_matched), np.concatenate(X_pairs_unmatched), np.array(y_pairs_unmatched)) def make_image_pair_idxs(y, unique_labels): '''For each person in unique_labels (P people): 1. combine all matched pairs the images of that person (N images): N_matched = (P choose 2) * (N choose 2) 2. combine all imposter pairs. N_unmatched = (P choose 2) * (N * N) Returns an array of matched and unmatched images and their targets ------------------------------------------------------------------ X_matched, y_matched, X_unmatched, y_unmatched where the dimensions of the Xs are [(N_matched + N_unmatched) x 2] (with 2 being the index into X defining the image in the pair), and ys are [(N_matched + N_unmatched),] Args ---- y : TYPE Description unique_labels : TYPE Description Deleted Parameters ------------------ y (TYPE) : Description unique_labels (TYPE) : Description ''' from itertools import combinations X_pairs_matched = list() y_pairs_matched = list() # Iterate over all actual pairs # 32 choose 2 = 496 people pairs. 496 * (10 images choose 2) = 496 * 45 = # 1440 for person in unique_labels: # Find images of those people im_idx = np.where(person == y)[0] for el in combinations(im_idx, 2): X_pairs_matched.append(np.array([el[0], el[1]])[np.newaxis, ...]) y_pairs_matched.append(1) X_pairs_unmatched = list() y_pairs_unmatched = list() # Iterate over all imposter pairs of people # (32 choose 2 = 496 people pairs. 496 * 10 * 10 image pairs = 49600 imposter pairs) # (157 * 0.4 = 63), 63 choose 2 = 1953, 1953 * 100 = 195300 for pair_i, pair in enumerate(combinations(unique_labels, 2)): # Find images of those people im1_idx = np.where(pair[0] == y)[0] im2_idx = np.where(pair[1] == y)[0] for im1_idx_it in im1_idx: for im2_idx_it in im2_idx: X_pairs_unmatched.append( np.array([im1_idx_it, im2_idx_it])[np.newaxis, ...]) y_pairs_unmatched.append(0) return (np.concatenate(X_pairs_matched), np.array(y_pairs_matched), np.concatenate(X_pairs_unmatched), np.array(y_pairs_unmatched)) def draw_image_pair(X, y, idx=None): '''Given X of N x 2 x W x H, and the associated label matrix, plot a random pair, or a given idx. Keyword arguments ----------------- idx -- Integer - Which pair to show. If none is given, then a idx -- Integer - Which pair to show. If none is given, then a random one is picked. [None] Args ---- X : TYPE Description y : TYPE Description idx : TYPE, optional Description Deleted Parameters ------------------ X (TYPE) : Description y (TYPE) : Description idx (TYPE, optional) : Description ''' if idx is None: idx = np.random.randint(len(X) - 2) if X.shape[1] == 1: idx = idx + (idx % 2) fig, [ax1, ax2] = plt.subplots(1, 2, figsize=(10, 8)) if X.shape[1] == 2: ax1.imshow(np.squeeze(X[idx, 0, ...]), cmap='gray') ax2.imshow(np.squeeze(X[idx, 1, ...]), cmap='gray') else: ax1.imshow(np.squeeze(X[idx, ...]), cmap='gray') ax2.imshow(np.squeeze(X[idx + 1, ...]), cmap='gray') ax1.grid(False) ax2.grid(False) if y[idx] == 0: fig.suptitle('Unmatched: %d' % idx, fontsize=30) else: fig.suptitle('Matched: %d' % idx, fontsize=30) def load_pairs( dataset='lfw', normalization='LCN', split=(0.8, 0.1, 0.1), resolution=(128, 128), crop_style='none', crop_factor=1.2, n_files_per_person=5, path_to_data=None, b_load_idxs_only=True, b_convert_to_grayscale=True): ''' Given a dataset name, generate the training, validation, and testing data of matched and unmatched pairs, optionally applying normalization to each image. Note this method only returns the idxs of the original dataset. Parameters ---------- dataset -- string The name of the dataset to load, 'olivetti', ['lfw']. normalization -- string The type of normalization to apply, if any of ['LCN'], 'LCN-', 'ZCA', or '-1:1'. split -- tuple The (train, valid, test) split fractions [(0.6, 0.2, 0.2)]. num_files -- int Number of files to load for each person. ''' ds = None if dataset == 'olivetti': from sklearn.datasets import fetch_olivetti_faces ds = fetch_olivetti_faces() # TODO: Apply processing options to olivetti elif dataset == 'lfw': ds = Datasets( crop_style=crop_style, crop_factor=crop_factor, resolution=resolution, n_files_per_person=n_files_per_person, n_min_files_per_person=(n_files_per_person / 2), b_convert_to_grayscale=b_convert_to_grayscale ) ds = ds.get_parsed_dataset(dataset=dataset, path_to_data=path_to_data) elif dataset.__class__ is dict and 'target' in dataset.keys() and 'images' in dataset.keys(): ds = dataset else: raise ValueError( 'Dataset should be either olivetti, lfw, or a dict defining images and target from get_parsed_dataset') # Split up the dataset into unique targets for train/test, # making sure not to repeat any subjects between train/test # Should get 32 subjects train, 8 test, with a 0.8 split y = ds['target'] total = len(np.unique(y)) train_split = int(total * split[0]) valid_split = train_split + int(total * split[1]) test_split = total - int(total * split[2]) unique_train_labels = np.unique(y)[:train_split] unique_valid_labels = np.unique(y)[train_split:valid_split] unique_test_labels = np.unique(y)[-test_split:] # X = (400, 1, 64, 64); y = (400,), 40 subjects w/ 10 examples each of 64 # x 64 pixels if b_convert_to_grayscale: X = np.concatenate([img[np.newaxis, np.newaxis, ...] for img in ds['images']], axis=0) else: X = np.concatenate([img[np.newaxis, ...] for img in ds['images']], axis=0) print(X.shape) if normalization == 'LCN': lcn = LCN(sigma=round(0.0625 * X.shape[2]), subtractive=False) lcn.fit(X[:len(y) * split[0], ...]) X = lcn.transform(X) elif normalization == 'LCN-': lcn = LCN(sigma=round(0.0625 * X.shape[2]), subtractive=True) lcn.fit(X[:len(y) * split[0], ...]) X = lcn.transform(X) elif normalization == 'ZCA': zca = ZCA(bias=0.1) zca.fit(X[:len(y) * split[0], ...]) X = zca.transform(X) elif normalization == '-1:1': for idx in range(len(X)): X[idx, ...] = (X[idx, ...] - np.min(X[idx, ...])) / \ (np.max(X[idx, ...]) - np.min(X[idx, ...])) * 2.0 - 1.0 if b_load_idxs_only: # Make pairs of actual and imposter faces, returning the indexes to # create them print('train') X_train_matched, y_train_matched, X_train_unmatched, y_train_unmatched = make_image_pair_idxs( y, unique_train_labels) print('valid') X_valid_matched, y_valid_matched, X_valid_unmatched, y_valid_unmatched = make_image_pair_idxs( y, unique_valid_labels) print('test') X_test_matched, y_test_matched, X_test_unmatched, y_test_unmatched = make_image_pair_idxs( y, unique_test_labels) return { 'X': lasagne.utils.floatX(X), 'y': y.astype(np.int32), 'X_train_matched_idxs': X_train_matched.astype(np.int32), 'y_train_matched_idxs': y_train_matched.astype(np.int32), 'X_train_unmatched_idxs': X_train_unmatched.astype(np.int32), 'y_train_unmatched_idxs': y_train_unmatched.astype(np.int32), 'X_valid_matched_idxs': X_valid_matched.astype(np.int32), 'y_valid_matched_idxs': y_valid_matched.astype(np.int32), 'X_valid_unmatched_idxs': X_valid_unmatched.astype(np.int32), 'y_valid_unmatched_idxs': y_valid_unmatched.astype(np.int32), 'X_test_matched_idxs': X_test_matched.astype(np.int32), 'y_test_matched_idxs': y_test_matched.astype(np.int32), 'X_test_unmatched_idxs': X_test_unmatched.astype(np.int32), 'y_test_unmatched_idxs': y_test_unmatched.astype(np.int32) } else: # Make pairs of actual and imposter faces X_train_matched, y_train_matched, X_train_unmatched, y_train_unmatched = make_image_pairs( X, y, unique_train_labels) X_valid_matched, y_valid_matched, X_valid_unmatched, y_valid_unmatched = make_image_pairs( X, y, unique_valid_labels) X_test_matched, y_test_matched, X_test_unmatched, y_test_unmatched = make_image_pairs( X, y, unique_test_labels) return { 'X_train_matched': lasagne.utils.floatX(X_train_matched), 'y_train_matched': y_train_matched.astype(np.int32), 'X_train_unmatched': lasagne.utils.floatX(X_train_unmatched), 'y_train_unmatched': y_train_unmatched.astype(np.int32), 'X_valid_matched': lasagne.utils.floatX(X_valid_matched), 'y_valid_matched': y_valid_matched.astype(np.int32), 'X_valid_unmatched': lasagne.utils.floatX(X_valid_unmatched), 'y_valid_unmatched': y_valid_unmatched.astype(np.int32), 'X_test_matched': lasagne.utils.floatX(X_test_matched), 'y_test_matched': y_test_matched.astype(np.int32), 'X_test_unmatched': lasagne.utils.floatX(X_test_unmatched), 'y_test_unmatched': y_test_unmatched.astype(np.int32) } def interleave_dataset(X_split, y_split): '''Take paired observations in the channel dimension and convert them to alternating batches ---------------------- N x 2 x W x H --> 2*N x 1 x W x H Args ---- X_split : TYPE Description y_split : TYPE Description Deleted Parameters ------------------ X_split (TYPE) : Description y_split (TYPE) : Description ''' # TODO: account for color images n_batch, n_channels, n_height, n_width = X_split.shape n_obs = n_batch * n_channels n_feats = n_height * n_width X_interleaved = np.empty((n_obs, n_feats), dtype=theano.config.floatX) y_interleaved = np.empty((n_obs,), dtype=np.int32) X_interleaved[0::2] = X_split[:, 0, ...].reshape(n_batch, n_feats) X_interleaved[1::2] = X_split[:, 1, ...].reshape(n_batch, n_feats) y_interleaved[0::2] = y_split.copy() y_interleaved[1::2] = y_split.copy() return X_interleaved.reshape(n_obs, 1, n_height, n_width), y_interleaved def shuffle_dataset(X, y): '''Randomly permute the order of the observations and their associated labels Parameters ---------- X : TYPE Description y : TYPE Description ''' indices = np.random.permutation(len(y)) return X[indices, ...], y[indices, ...] def get_balanced_shuffled_dataset(X_matched, y_matched, X_unmatched, y_unmatched): '''Shuffles dataset, producing training data with similar number of matched and unmatched observations. There are often much more unmatched observations, so this method is used to sample from the larger set of unmatched observations, while using as many matched observations as there are, but randomly permuting their order. Parameters ---------- X_matched : TYPE Description y_matched : TYPE Description X_unmatched : TYPE Description y_unmatched : TYPE Description ''' npairs = X_matched.shape[0] # Shuffle order X_matched, y_matched = shuffle_dataset(X_matched, y_matched) X_unmatched, y_unmatched = shuffle_dataset(X_unmatched, y_unmatched) # Sample same number of unmatched data X_train = np.concatenate((X_matched, X_unmatched[:npairs])) y_train = np.concatenate((y_matched, y_unmatched[:npairs])) # Shuffle again so that batches aren't all matched/unmatched X_train, y_train = shuffle_dataset(X_train, y_train) return X_train, y_train def make_shared(X, dtype): '''Convert `X` to a theano shared variable with the given type. Parameters ---------- X : TYPE Description dtype : TYPE Description ''' return theano.shared(np.asarray(X, dtype=dtype), borrow=True) def generate_new_dataset_batch(X_matched, y_matched, X_unmatched, y_unmatched, batch_size): '''Generator which loops through a randomly permuted ordering of the dataset. This method requires the generated pairs of the data, which is a much higher number of observations than the original dataset. If you cannot fit the entire dataset into memory, use the slower method: `generate_new_dataset_batch_from_idxs` Returns X_train, y_train Parameters ---------- X_matched : TYPE Description y_matched : TYPE Description X_unmatched : TYPE Description y_unmatched : TYPE Description batch_size : TYPE Description ''' # Generate a new shuffled, balanced dataset X_train, y_train = get_balanced_shuffled_dataset( X_matched, y_matched, X_unmatched, y_unmatched) # Interleave pairs into sequential batches which will be used in the # distance/loss functions appropriately X_train, y_train = interleave_dataset(X_train, y_train) nobs = len(X_train) # Make sure it is even batch_size = batch_size + (batch_size % 2) # Loop until we're out of observations batch_start = 0 batch_end = batch_size while batch_start < np.min((nobs, (nobs - batch_size))): yield X_train[batch_start:batch_end, ...], y_train[batch_start:batch_end, ...] batch_start = batch_end batch_end = batch_start + batch_size def generate_new_dataset_batch_from_idxs( X, y, X_matched_idxs, y_matched_idxs, X_unmatched_idxs, y_unmatched_idxs, batch_size): '''Generator which loops through a randomly permuted ordering of the dataset. This method requires the generated pairs of the data as indexes. Returns X_train, y_train Parameters ---------- X : TYPE Description y : TYPE Description X_matched_idxs : TYPE Description y_matched_idxs : TYPE Description X_unmatched_idxs : TYPE Description y_unmatched_idxs : TYPE Description batch_size : TYPE Description ''' # Generate a new shuffled, balanced dataset X_train, y_train = get_balanced_shuffled_dataset( X_matched_idxs, y_matched_idxs, X_unmatched_idxs, y_unmatched_idxs) # Interleave pairs into sequential batches which will be used in the distance/loss functions appropriately # TODO: account for color images X_train, y_train = interleave_dataset( X_train[..., np.newaxis, np.newaxis], y_train) X_train = np.squeeze(X_train).astype(np.int32) y_train = np.squeeze(y_train).astype(np.int32) nobs = len(X_train) # Make sure it is even batch_size = batch_size + (batch_size % 2) # Loop until we're out of observations batch_start = 0 batch_end = batch_size while batch_start < np.min((nobs, (nobs - batch_size))): yield X[X_train[batch_start:batch_end, ...], ...], y_train[batch_start:batch_end, ...] batch_start = batch_end batch_end = batch_start + batch_size class SiameseNetPredictor(object): '''Loads a pre-trained Deep Net for Face Verification which uses a Siamese Net distance function + LogisticRegression on the final feature layer. Requires the pretrained model in the directory results Attributes ---------- clf : TYPE Description fn : TYPE Description lcn : TYPE Description result : TYPE Description ''' def __init__(self, images, filename='./lfw.pkl'): """Summary""" # Load the pretrained model self.result = pickle.load(open(filename, 'rb')) print(self.result['params']) self.grayscale = self.result['params']['b_convert_to_grayscale'] self.normalization = self.result['params']['normalization'] self.net = ConvSiameseNet( input_channels=(1 if self.grayscale else 3), input_width=self.result['params']['resolution'][0], input_height=self.result['params']['resolution'][1], n_out=self.result['params']['n_features'], distance_fn=self.result['params']['distance_fn'], nonlinearity=self.result['params']['nonlinearity']) if self.result['params']['model_type'] == 'custom': self.net.use_custom_model() elif self.result['params']['model_type'] == 'hani': self.net.use_hani_model() elif self.result['params']['model_type'] == 'chopra': self.net.use_chopra_model() else: print('Unrecognized model!') self.net.set_from_parameters( pickle.loads(self.result['model_parameters'])) pred = lasagne.layers.get_output(self.net.model, self.net.x, deterministic=True) # Compile self.fn = theano.function([self.net.x], [pred]) # We'll hash functions for every layer if/when user asks for them self.fns = {} # Train final regressor on entire dataset # (cheating, but...¯\_(ツ)_/¯) Xs = self.result['prediction']['X'] ys = self.result['prediction']['y'] Xs_L1 = np.abs(Xs[:, :self.net.n_out] - Xs[:, self.net.n_out:]) self.clf = LogisticRegression() self.clf.fit(Xs_L1, ys) # Load normalization kernel # (previously created using LCN on the training set) # self.lcn = pickle.loads(self.result['LCN']) if self.grayscale: X = np.concatenate([img[np.newaxis, np.newaxis, ...] for img in images], axis=0) else: X = np.concatenate([img[np.newaxis, ...] for img in images], axis=0) print(X.shape) if self.normalization == 'LCN': lcn = LCN( sigma=round(0.0625 * self.result['params']['resolution'][0]), subtractive=False) lcn.fit(X) self.norm = lcn elif self.normalization == 'LCN-': lcn = LCN( sigma=round(0.0625 * self.result['params']['resolution'][0]), subtractive=True) lcn.fit(X) self.norm = lcn elif self.normalization == 'ZCA': zca = ZCA(bias=0.1) zca.fit(X) self.norm = zca elif self.normalization == '-1:1': self.norm = lambda x: ((x - np.min(x)) / (np.max(x) - np.min(x)) * 2.0 - 1.0) def preprocess(self, X): '''Take an image in X, and transform it with local contrast normalization. Parameters ---------- X : numpy.ndarray image to perform local contrast normalization on Returns ------- img : numpy.ndarray Local contrast normalized image ''' res = None try: res = self.norm.transform(X) except: res = self.norm(X) pass return res def features_for_layer(self, X, layer_num): if layer_num in self.fns.keys(): fn = self.fns[layer_num] else: layer_output = lasagne.layers.get_output( lasagne.layers.get_all_layers( self.net.model)[layer_num], self.net.x, deterministic=True) fn = theano.function([self.net.x], [layer_output]) self.fns[layer_num] = fn out = fn(lasagne.utils.floatX(X)) return out def features(self, X): '''Get siamese net features for the images in X. Parameters ---------- X : numpy.ndarray N x C x W x H tensor defining the N images of W x H. For colorscale, C = 3, while for grayscale, C = 1. Returns ------- features : numpy.ndarray N x M array of features ''' return self.fn(X) def predict(self, X): '''Predict whether images contain the same face or not. Parameters ---------- X : numpy.ndarray 2*N x C x W x H tensor defining the N sequence of image pairs W x H. For colorscale, C = 3, while for grayscale, C = 1. Returns ------- predictions : numpy.ndarray N x 1 vector of True/False predictions of whether the image pairs contain the same face or not. ''' features = self.fn(X) Xs_L1 = np.abs(features[0][0::2] - features[0][1::2]) final = self.clf.predict(Xs_L1) return final def get_normalization(self): '''Return the normalization type of the pre-trained network. Returns ------- normalization_type : string 'LCN', 'LCN-', '-1:1', 'ZCA' ''' return self.result['params']['normalization'] def get_crop(self): '''Return the crop type of the pre-trained network.''' return self.result['params']['crop'] def get_resolution(self): '''Return the resolution of the images required by the pre-trained network. Returns ------- (%d, %d) : tuple Resolution of the image ''' return self.result['params']['resolution'] def get_colorscale(self): '''Return the colorscale of the images required by the pre-trained network Returns ------- is_grayscale : bool True if grayscale, else, False for RGB color. ''' return self.result['params']['b_convert_to_grayscale'] class ConvSiameseNet: """Builds an object used for training a siamese net with different types of models and options. Attributes ---------- batch_size : TYPE Description batch_slice : TYPE Description distance_fn : TYPE Description hyperparameter_margin : TYPE Description hyperparameter_threshold : TYPE Description index : TYPE Description input_channels : TYPE Description input_height : TYPE Description input_width : TYPE Description l_in : TYPE Description learning_rate : TYPE Description loss_fn : TYPE Description model : TYPE Description n_out : TYPE Description nonlinearity : TYPE Description srng : TYPE Description test_x : TYPE Description train_x : TYPE Description update : TYPE Description validation_x : TYPE Description weight_init : TYPE Description x : TYPE Description y : TYPE Description """ def __init__(self, input_channels, input_width, input_height, n_out, batch_size=None, distance_fn='l1', nonlinearity='scaled_tanh'): """Builds a ConvSiameseNet for training. Parameters ---------- input_channels : TYPE Description input_width : TYPE Description input_height : TYPE Description n_out : TYPE Description batch_size : TYPE, optional Description distance_fn : str, optional Description nonlinearity : str, optional Description Raises ------ ValueError Description """ self.input_channels = input_channels self.input_width = input_width self.input_height = input_height self.n_out = n_out self.batch_size = batch_size self.l_in = lasagne.layers.InputLayer( shape=(None, input_channels, input_width, input_height)) self.n_out = n_out self.srng = theano.sandbox.rng_mrg.MRG_RandomStreams() self.loss_fn = contrastive_loss if distance_fn.lower() == 'cosine': self.distance_fn = distance_cosine elif distance_fn.lower() == 'l1': self.distance_fn = distance_L1 elif distance_fn.lower() == 'l2': self.distance_fn = distance_L2 else: raise ValueError( 'Must specify distance as either "cosine", "l1", or "l2".') self.x = T.tensor4('x') self.y = T.ivector('y') if nonlinearity == 'scaled_tanh': self.nonlinearity = lasagne.nonlinearities.ScaledTanH( scale_in=2. / 3, scale_out=1.7159) elif nonlinearity == 'rectify': self.nonlinearity = lasagne.nonlinearities.rectify else: raise ValueError( 'Must specify nonlinearity as either "scaled_tanh" or "rectify".') self.weight_init = lasagne.init.Normal(std=0.05, mean=0.0) def use_hani_model(self, dropout_pct=0.0, b_spatial=False): """Summary Parameters ---------- dropout_pct : float, optional Description b_spatial : bool, optional Description Returns ------- name : TYPE Description """ self.model = self.get_hani_2014_net( self.l_in, dropout_pct=dropout_pct, b_spatial=b_spatial) def use_custom_model(self, b_spatial=False): """Summary Parameters ---------- b_spatial : bool, optional Description Returns ------- name : TYPE Description """ self.model = self.get_custom_net(self.l_in, b_spatial=b_spatial) def use_chopra_model(self, dropout_pct=0.0, b_spatial=False): """Summary Parameters ---------- dropout_pct : float, optional Description b_spatial : bool, optional Description Returns ------- name : TYPE Description """ self.model = self.get_chopra_net( self.l_in, dropout_pct=dropout_pct, b_spatial=b_spatial) def use_deepid_model(self, b_spatial=False): """Summary Parameters ---------- b_spatial : bool, optional Description Returns ------- name : TYPE Description """ self.model = self.get_deep_id_net(self.l_in, b_spatial=b_spatial) def get_spatial_transform_net(self, input_layer): """Summary Parameters ---------- input_layer : TYPE Description Returns ------- name : TYPE Description """ # http://lasagne.readthedocs.org/en/latest/modules/layers/special.html?highlight=trainable#lasagne.layers.TransformerLayer # Localization network # Spatial Transformer Networks <NAME>, <NAME>, <NAME>, <NAME> Submitted on 5 Jun 2015 # Here we set up the layer to initially do the identity transform, # similarly to [R34]. Note that you will want to use a localization # with linear output. If the output from the localization networks # is [t1, t2, t3, t4, t5, t6] then t1 and t5 determines zoom, t2 # and t4 determines skewness, and t3 and t6 move the center # position. b = np.zeros((2, 3), dtype=theano.config.floatX) b[0, 0] = 1 b[1, 1] = 1 b = b.flatten() loc_l1 = lasagne.layers.MaxPool2DLayer(input_layer, pool_size=(2, 2)) loc_l2 = lasagne.layers.Conv2DLayer( loc_l1, num_filters=20, filter_size=(5, 5), W=self.weight_init ) loc_l3 = lasagne.layers.MaxPool2DLayer(loc_l2, pool_size=(2, 2)) loc_l4 = lasagne.layers.Conv2DLayer( loc_l3, num_filters=20, filter_size=(5, 5), W=self.weight_init ) loc_l5 = lasagne.layers.DenseLayer( loc_l4, num_units=50, W=self.weight_init ) loc_out = lasagne.layers.DenseLayer( loc_l5, num_units=6, b=b, W=self.weight_init, nonlinearity=lasagne.nonlinearities.identity ) # Transformer network transformed_input_layer = lasagne.layers.TransformerLayer( input_layer, loc_out, downsample_factor=2.0) print('Transformed Input Shape: ', transformed_input_layer.output_shape) return transformed_input_layer def get_chopra_net(self, input_layer, dropout_pct=0.0, b_spatial=False): '''Return a lasagne network defining the siamese network <NAME>., <NAME>., & <NAME>. (2005). Learning a similiarty metric discriminatively, with application to face verification. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 349–356. Modifications ------------- dropout_pct -- Instead of a fixed connection layer, use dropout with this much percentage [0.5] b_spatial -- Prepend a spatial transformer network which applies an affine transformation and a 2x crop [False] Args ---- input_layer : TYPE Description dropout_pct : float, optional Description b_spatial : bool, optional Description Deleted Parameters ------------------ input_layer (TYPE) : Description dropout_pct (float : Description optional), b_spatial (bool : Description ''' l_conv1 = None if b_spatial: # returns a 15x40x40 l_conv1 = lasagne.layers.Conv2DLayer( self.get_spatial_transform_net(input_layer), num_filters=15, filter_size=(7, 7), nonlinearity=self.nonlinearity, W=self.weight_init ) else: # returns a 15x40x40 l_conv1 = lasagne.layers.Conv2DLayer( input_layer, num_filters=15, filter_size=(7, 7), nonlinearity=self.nonlinearity, W=self.weight_init ) # returns a 15x20x20 l_pool1 = lasagne.layers.MaxPool2DLayer(l_conv1, pool_size=(2, 2)) # returns a 45x15x15 l_conv2 = lasagne.layers.Conv2DLayer( l_pool1, num_filters=45, filter_size=(6, 6), nonlinearity=self.nonlinearity, W=self.weight_init ) # returns a 45x5x5 l_pool2 = lasagne.layers.MaxPool2DLayer(l_conv2, pool_size=(3, 3)) l_pool2_dropout = lasagne.layers.DropoutLayer(l_pool2, p=dropout_pct) # returns a 250x1x1 l_conv3 = lasagne.layers.Conv2DLayer( l_pool2_dropout, num_filters=250, filter_size=(5, 5), nonlinearity=self.nonlinearity, W=self.weight_init ) l_hidden = lasagne.layers.DenseLayer( l_conv3, num_units=self.n_out, nonlinearity=self.nonlinearity, W=self.weight_init ) model = lasagne.layers.DenseLayer( l_hidden, num_units=self.n_out, nonlinearity=self.nonlinearity, W=self.weight_init ) return model def get_custom_net(self, input_layer, b_spatial=False): '''Return a lasagne network defining a custom siamese network Modifications ------------- dropout_pct -- Instead of a fixed connection layer, use dropout with this much percentage [0.5] b_spatial -- Prepend a spatial transformer network which applies an affine transformation and a 2x crop [False] Args ---- input_layer : TYPE Description b_spatial : bool, optional Description Deleted Parameters ------------------ input_layer (TYPE) : Description b_spatial (bool, optional) : Description ''' l_conv1a = None if b_spatial: l_conv1a = lasagne.layers.Conv2DLayer( self.get_spatial_transform_net(input_layer), num_filters=16, filter_size=(3, 3), nonlinearity=self.relu, W=self.weight_init ) else: l_conv1a = lasagne.layers.Conv2DLayer( input_layer, num_filters=16, filter_size=(3, 3), nonlinearity=self.nonlinearity, W=self.weight_init ) l_conv1b = lasagne.layers.Conv2DLayer( l_conv1a, num_filters=32, filter_size=(3, 3), nonlinearity=self.nonlinearity, W=self.weight_init ) l_pool1 = lasagne.layers.MaxPool2DLayer(l_conv1b, pool_size=(2, 2)) l_conv2a = lasagne.layers.Conv2DLayer( l_pool1, num_filters=32, filter_size=(3, 3), nonlinearity=self.nonlinearity, W=self.weight_init ) l_conv2b = lasagne.layers.Conv2DLayer( l_conv2a, num_filters=64, filter_size=(3, 3), nonlinearity=self.nonlinearity, W=self.weight_init ) l_pool2 = lasagne.layers.MaxPool2DLayer(l_conv2b, pool_size=(2, 2)) l_conv3a = lasagne.layers.Conv2DLayer( l_pool2, num_filters=64, filter_size=(3, 3), nonlinearity=self.nonlinearity, W=self.weight_init ) l_conv3b = lasagne.layers.Conv2DLayer( l_conv3a, num_filters=128, filter_size=(3, 3), nonlinearity=self.nonlinearity, W=self.weight_init ) l_pool3 = lasagne.layers.MaxPool2DLayer(l_conv3b, pool_size=(2, 2)) l_full4 = lasagne.layers.DenseLayer( l_pool3, num_units=self.n_out, nonlinearity=self.nonlinearity, W=self.weight_init ) model = lasagne.layers.DenseLayer( l_full4, num_units=self.n_out, nonlinearity=self.nonlinearity, W=self.weight_init ) return model # this model actually requires a different training procedure, of # recognition then verification def get_deep_id_net(self, input_layer, b_spatial=False): """Summary Parameters ---------- input_layer : TYPE Description b_spatial : bool, optional Description Returns ------- name : TYPE Description """ l_conv1 = None # flip = False # returns a 20x52x44 if b_spatial: l_conv1 = lasagne.layers.Conv2DLayer( self.get_spatial_transform_net(input_layer), num_filters=20, filter_size=(4, 4), stride=(1, 1), nonlinearity=self.nonlinearity, W=self.weight_init ) else: l_conv1 = lasagne.layers.Conv2DLayer( input_layer, num_filters=20, filter_size=(4, 4), stride=(1, 1), nonlinearity=self.nonlinearity, W=self.weight_init ) l_pool1 = lasagne.layers.MaxPool2DLayer(l_conv1, pool_size=(3, 3)) l_conv2 = lasagne.layers.Conv2DLayer( l_pool1, num_filters=40, filter_size=(3, 3), stride=(1, 1), nonlinearity=self.nonlinearity, W=self.weight_init ) l_pool2 = lasagne.layers.MaxPool2DLayer(l_conv2, pool_size=(3, 3)) l_conv3 = lasagne.layers.Conv2DLayer( l_pool2, num_filters=60, filter_size=(3, 3), stride=(1, 1), nonlinearity=self.nonlinearity, W=self.weight_init ) l_pool3 = lasagne.layers.MaxPool2DLayer(l_conv3, pool_size=(3, 3)) l_conv4 = lasagne.layers.Conv2DLayer( l_pool3, num_filters=80, filter_size=(2, 2), stride=(1, 1), nonlinearity=self.nonlinearity, W=self.weight_init ) model = lasagne.layers.DenseLayer( l_conv4, num_units=self.n_out, nonlinearity=self.nonlinearity, W=self.weight_init ) return model def get_deep_id2_plus_net(self, input_layer, b_spatial=False): """Summary Parameters ---------- input_layer : TYPE Description b_spatial : bool, optional Description Returns ------- name : TYPE Description """ l_conv1 = None # flip = False # returns a 20x52x44 if b_spatial: l_conv1 = lasagne.layers.Conv2DLayer( self.get_spatial_transform_net(input_layer), num_filters=128, filter_size=(3, 4, 4), stride=(1, 1), nonlinearity=self.nonlinearity, W=self.weight_init ) else: l_conv1 = lasagne.layers.Conv2DLayer( input_layer, num_filters=128, filter_size=(3, 4, 4), stride=(1, 1), nonlinearity=self.nonlinearity, W=self.weight_init ) l_pool1 = lasagne.layers.MaxPool2DLayer(l_conv1, pool_size=(3, 3)) l_conv2 = lasagne.layers.Conv2DLayer( l_pool1, num_filters=128, filter_size=(3, 3), stride=(1, 1), nonlinearity=self.nonlinearity, W=self.weight_init ) l_pool2 = lasagne.layers.MaxPool2DLayer(l_conv2, pool_size=(3, 3)) l_conv3 = lasagne.layers.Conv2DLayer( l_pool2, num_filters=128, filter_size=(3, 3), stride=(1, 1), nonlinearity=self.nonlinearity, W=self.weight_init ) l_pool3 = lasagne.layers.MaxPool2DLayer(l_conv3, pool_size=(3, 3)) l_conv4 = lasagne.layers.Conv2DLayer( l_pool3, num_filters=128, filter_size=(2, 2), stride=(1, 1), nonlinearity=self.nonlinearity, W=self.weight_init ) model = lasagne.layers.DenseLayer( l_conv4, num_units=self.n_out, nonlinearity=self.nonlinearity, W=self.weight_init ) return model def get_hani_2014_net(self, input_layer, dropout_pct=0.5, b_spatial=False): ''' Return a lasagne network defining the siamese network in -------------------------------------------------------- <NAME>., & <NAME>. (2014). A convolutional neural network approach for face verification. High Performance Computing & Simulation (HPCS), 2014 International Conference on, (3), 707–714. doi:10.1109/HPCSim.2014.6903759 Modifications ------------- dropout_pct -- Instead of a fixed connection layer, use dropout with this much percentage [0.5] b_spatial -- Prepend a spatial transformer network which applies an affine transformation and a 2x crop [False] Args ---- input_layer : TYPE Description dropout_pct : float, optional Description b_spatial : bool, optional Description Deleted Parameters ------------------ input_layer (TYPE) : Description dropout_pct (float : Description optional), b_spatial (bool : Description ''' # from lasagne.layers.corrmm import Conv2DMMLayer l_conv1 = None # flip = False if b_spatial: # returns a 5x21x21 l_conv1 = lasagne.layers.Conv2DLayer( self.get_spatial_transform_net(input_layer), num_filters=5, filter_size=(6, 6), stride=(2, 2), nonlinearity=self.nonlinearity, # flip_filters=flip, W=self.weight_init ) else: # returns a 5x21x21 l_conv1 = lasagne.layers.Conv2DLayer( input_layer, num_filters=5, filter_size=(6, 6), stride=(2, 2), nonlinearity=self.nonlinearity, # flip_filters=flip, W=self.weight_init ) # returns a 14x6x6 l_conv2 = lasagne.layers.Conv2DLayer( l_conv1, num_filters=14, filter_size=(6, 6), stride=(2, 2), nonlinearity=self.nonlinearity, # flip_filters=flip, W=self.weight_init ) l_dropout2 = lasagne.layers.DropoutLayer(l_conv2, p=dropout_pct) # returns a 60x1x1 l_conv3 = lasagne.layers.Conv2DLayer( l_dropout2, num_filters=60, filter_size=(6, 6), nonlinearity=self.nonlinearity, # flip_filters=flip, W=self.weight_init ) l_hidden = lasagne.layers.DenseLayer( l_conv3, num_units=self.n_out, nonlinearity=self.nonlinearity, W=self.weight_init ) model = lasagne.layers.DenseLayer( l_hidden, num_units=self.n_out, nonlinearity=lasagne.nonlinearities.identity, W=lasagne.init.Uniform() ) return model def build_model(self, X_train, y_train, X_valid, y_valid, X_test, y_test, update=lasagne.updates.adam, hyperparameter_margin=2.0, hyperparameter_threshold=5.0, learning_rate=0.0001): '''Given data for train, valid, and test, apply update with the given hyperparameters and learning rates, returning the models for train, valid, and test. Parameters ---------- X_train : numpy.ndarray Example input data used to set network shape y_train : numpy.ndarray Example labels used to set network shape X_valid : numpy.ndarray Example input data used to set network shape y_valid : TYPE Example labels used to set network shape X_test : TYPE Example input data used to set network shape y_test : TYPE Example labels used to set network shape update : Attribute, optional Lasagne update rule to apply hyperparameter_margin : float, optional Total energy expected in the contrastive loss function hyperparameter_threshold : float, optional Simple thresholding of the final loss used for approximating the label learning_rate : float, optional How much to move in the gradient ''' self.learning_rate = theano.shared(lasagne.utils.floatX(learning_rate)) self.hyperparameter_threshold = lasagne.utils.floatX( hyperparameter_threshold) self.hyperparameter_margin = lasagne.utils.floatX( hyperparameter_margin) self.train_x = X_train self.validation_x = X_valid self.test_x = X_test self.update = update self.index = T.iscalar('index') self.batch_slice = slice( self.index * self.batch_size, (self.index + 1) * self.batch_size) # Training Loss y_pred = lasagne.layers.get_output( self.model, self.x, deterministic=False) avg_loss = self.loss_fn(y_pred, self.y, self.hyperparameter_margin) loss = avg_loss / self.batch_size # Validation Loss y_pred_eval = lasagne.layers.get_output( self.model, self.x, deterministic=True) avg_loss = self.loss_fn( y_pred_eval, self.y, self.hyperparameter_margin) loss_eval = avg_loss / self.batch_size # loss_eval = loss_eval.mean() # Validation Accuracy pred = self.distance_fn(y_pred_eval) accuracy = T.mean(T.eq(T.lt(pred, self.hyperparameter_threshold), self.y[ 0::2]), dtype=theano.config.floatX) # Find weight params to update during backprop, and use adam updater all_params = lasagne.layers.get_all_params(self.model, trainable=True) updates = lasagne.updates.adam( loss, all_params, learning_rate=self.learning_rate) # Setup each model and return train_model = theano.function( [self.x, self.y], [loss, y_pred], updates=updates) validate_model = theano.function( [self.x, self.y], [loss_eval, accuracy, y_pred_eval]) test_model = theano.function( [self.x, self.y], [loss_eval, accuracy, y_pred_eval]) return train_model, validate_model, test_model def get_evaluation_model(self): """Return a theano function allowing you to directly compute the siamese net features. Returns ------- fn : theano.function The theano function which expects the input layer and returns the siamese net features. Does not require pairs (e.g. N can = 1). """ y_pred = lasagne.layers.get_output( self.model, self.x, deterministic=True) fn = theano.function([self.x], [y_pred]) return fn def retrieve_parameters(self): """Get stored parameters from the theano model. This function can be used in conjunction with set_from_parameters to save and restore model parameters. Returns ------- model_parameters : list of numpy.array A list of numpy arrays representing the parameter values. """ return lasagne.layers.get_all_param_values(self.model) def set_from_parameters(self, parameters): """Set the stored parameters of the internal theano model. This function can be used in conjunction with retrieve_parameters to save and restore model parameters. Parameters ---------- parameters : list of numpy.array A list of numpy arrays representing the parameter values, must match the number of parameters. Every parameter's shape must match the shape of its new value. """ lasagne.layers.set_all_param_values(self.model, parameters) def load_model(self, filename='model.pkl'): """Set the stored parameters of the internal theano model. This function can be used in conjunction with save_model to save and restore model parameters. Parameters ---------- filename : str, optional Location of pickle file containing the model parameters. """ params = pickle.load(open(filename, 'rb')) lasagne.layers.set_all_param_values(self.model, params) def save_model(self, filename='model.pkl'): """Get stored parameters from the theano model and store in the given filename. This function can be used in conjunction with load_model to save and restore model parameters. Parameters ---------- filename : str, optional Location of pickle file containing the model parameters. """ params = lasagne.layers.get_all_param_values(self.model) pickle.dump(params, open(filename, 'wb')) def get_learning_rate(self): return self.learning_rate.get_value() def set_learning_rate(self, lr): self.learning_rate.set_value(lasagne.utils.floatX(lr)) def distance_L2(x): """L2 distance for the Siamese architecture. Batches should be fed in pairs of images which the loss helps to optimize the distance of. This is the siamese part of the architecture which fakes having two networks and just uses the batch's dimension to help define the parallel networks. Parameters ---------- x : theano.tensor Tensor with pairs of batches Returns ------- l2_dist : theano.tensor L2 Distance between pairs """ x_a = x[0::2] x_b = x[1::2] return T.sum((x_a - x_b)**2, axis=1) def distance_L1(x): """L1 distance for the Siamese architecture. Batches should be fed in pairs of images which the loss helps to optimize the distance of. This is the siamese part of the architecture which fakes having two networks and just uses the batch's dimension to help define the parallel networks. Parameters ---------- x : theano.tensor Tensor with pairs of batches Returns ------- l1_dist : theano.tensor L1 Distance between pairs """ x_a = x[0::2] x_b = x[1::2] return T.sum(T.abs_(x_a - x_b), axis=1) def l2norm(x): """L2 norm. Parameters ---------- x : theano.tensor Vector to take norm of. Returns ------- l2_norm : theano.tensor L2 norm of vector in x """ return T.sqrt(T.sum(T.sqr(x), axis=1)) def distance_cosine(x, e=1e-6): """Cosine distance for the Siamese architecture. Batches should be fed in pairs of images which the loss helps to optimize the distance of. This is the siamese part of the architecture which fakes having two networks and just uses the batch's dimension to help define the parallel networks. Parameters ---------- x : theano.tensor Description e : float, optional Epsilon to prevent divide by zero Returns ------- distance : theano.tensor Cosine distance between pairs """ x_a = x[0::2] x_b = x[1::2] return T.sum(x_a * x_b, axis=1) / T.maximum(l2norm(x_a) * l2norm(x_b), e) # def contrastive_loss(y_pred, y_true, Q=20.0): # eq. 8 # E_w = distance_L1(y_pred) # y = y_true[0::2] # eq 9 # Decrease energy for matched pair: (0 = unmatched, 1 = matched) # L_G = (1.0 - y) * (2.0 / Q) * (E_w ** 2) # L_I = (y) * 2.0 * Q * T.exp((-2.7726 * E_w) / Q) # L = L_G + L_I # avg_loss = T.mean(L) # return avg_loss def contrastive_loss(y_pred, y_true, margin=20.0): """Contrastive loss for the Siamese Architecture. Batches should be fed in pairs of images which the loss helps to optimize the distance of. This is the siamese part of the architecture which fakes having two networks and just uses the batch's dimension to help define the parallel networks. Parameters ---------- y_pred : theano.tensor Predicted features (n_batch x n_features) y_true : theano.tensor Actual features (n_batch x n_features) margin : float, optional Hyperparameter defining total free energy Returns ------- loss : theano.tensor Mean loss """ x1 = y_pred[0::2] x2 = y_pred[1::2] d = T.sum((x1 - x2)**2, axis=1) y = y_true[0::2] return T.mean(y * d + (1.0 - y) * T.maximum(margin - d, 0.0)) def continue_siamese_net_training(filename): '''Continues the training of the siamese network with parameters defined in the given filename. Parameters ---------- filename : string The path to the file defining the trained siamese network in progress. ''' results_file = pickle.load(open(filename, 'rb')) params = results_file['params'] print(params) run_siamese_net_training( dataset=params['dataset'], spatial=params['spatial_transform'], batch_size=params['batch_size'], n_out=params['n_features'], model_type=params['model_type'], n_epochs=params['n_epochs'], num_files=params['n_files'], learning_rate=params['learning_rate'], normalization=params['normalization'], crop_factor=params['crop'], resolution=params['resolution'][0], hyperparameter_margin=params['hyperparameter_margin'], hyperparameter_threshold=params['hyperparameter_threshold'], dropout_pct=params['dropout_pct'], nonlinearity=params['nonlinearity'], distance_fn=params['distance_fn'], b_convert_to_grayscale=params['b_convert_to_grayscale'], filename=filename + 'continued.pkl' ) def run_siamese_net_training(dataset, spatial, batch_size, learning_rate, model_type, n_epochs, n_out, num_files, normalization, resolution, crop_factor, hyperparameter_margin, hyperparameter_threshold, nonlinearity, distance_fn, b_convert_to_grayscale, filename=None, path_to_data=None, b_load_idxs_only=True): '''Run training of a siamese net for the given parameters, saving results to a pickle file defined by the given parameters: Parameters ---------- dataset : string Name of the dataset to use: 'lfw', 'olivetti' spatial : bool Whether to prepent a spatial transformer network or not batch_size : int Number of observations in a batch learning_rate : float Learning Rate model_type : string Which model to use: 'hani', 'chopra', or 'custom' n_epochs : Integer Number of epochs to train for. n_out : int Number of neurons in the final output layer of the Siamese Network num_files : int Number of files to load for each person normalization : string Method of normalization to apply: '-1:1', 'LCN', 'LCN-', 'ZCA' resolution : int Image resolution to scale to (square pixels only) crop_factor : float Factor to scale bounds of the detected face. 1.0 means the face is tightly cropped, < 1.0, the face is cropped even tighter > 1.0, more of the outside of the face is included. hyperparameter_margin : float Total free energy of the contrastive loss equation hyperparameter_threshold : float Threshold to apply to L1 norm of final output layers defining whether faces match or not nonlinearity : string "rectify" or "scaled_tanh" distance_fn : string "L1", "L2", or "Cosine" b_convert_to_grayscale : bool Color images are automatically converted to grayscale (C = 1) filename : str, optional Where to store results path_to_data : string Where to find the dataset (defaults to current working directory) b_load_idxs_only : bool If False, the entire dataset's pairs are loaded into memory Advised to load idxs only for lfw as it requires > 60 GB. Deleted Parameters ------------------ bCropToHaarBBox : bool Crop images to frontal face cascade ''' if filename is None: filename = str('dataset_%s' % dataset + '_transform_%d' % int(spatial) + '_batch_%d' % batch_size + '_lr_%f' % learning_rate + '_model_%s' % model_type + '_epochs_%d' % n_epochs + '_normalization_%s' % normalization + '_cropfactor_%0.02f' % crop_factor + '_nout_%d' % n_out + '_resolution_%d' % resolution + '_numfiles_%d' % num_files + '_q_%2.02f' % hyperparameter_margin + '_t_%2.02f' % hyperparameter_threshold + '_nonlinearity_%s' % nonlinearity + '_distancefn_%s' % distance_fn + '_grayscale_%d.pkl' % b_convert_to_grayscale) filename = os.path.join('results', filename) results = None model = None if os.path.isfile(filename): try: results = pickle.load(open(filename, 'rb')) if 'epochs' in results.keys(): if len(results['epochs']) >= n_epochs: print('Already process(ing/ed); exiting.') return # else: # continue where it left off # if 'model' in results.keys(): # model = pickle.loads(results['model']) # model.set_from_parameters(pickle.loads(results['model_parameters'])) except: pass print("""Dataset: %s \rSpatial: %d \rBatch Size: %d \rNum Features: %d \rModel Type: %s \rNum Epochs: %d \rNum Files: %d \rLearning Rate: %f \rNormalization: %s \rCrop Factor: %f \rResolution: %d \rHyperparameter Margin: %f \rHyperparameter Threshold: %f \rNon-Linearity: %s \rGrayscale: %d \rDistance Function: %s\n \rWriting results to: %s\n""" % (dataset, int(spatial), batch_size, n_out, model_type, n_epochs, num_files, learning_rate, normalization, crop_factor, resolution, hyperparameter_margin, hyperparameter_threshold, nonlinearity, int(b_convert_to_grayscale), distance_fn, filename)) if model_type == 'deepid': b_convert_to_grayscale = False if b_convert_to_grayscale: input_channels = 1 else: input_channels = 3 # TODO: if continuing a result from a left off epoch, the dataset will # have been generated differently. how should I handle this? store the # pairs, too big a file? store the rng, what about parameters? print('Loading dataset...') data = load_pairs( dataset=dataset, normalization=normalization, resolution=(resolution, resolution), split=(0.8, 0.2, 0.2), crop_factor=1.2, n_files_per_person=num_files, path_to_data=path_to_data, b_load_idxs_only=b_load_idxs_only, b_convert_to_grayscale=b_convert_to_grayscale) print('Initializing Siamese Network...') print(data['X'].shape) X_train = np.zeros(np.hstack((batch_size, data['X'].shape[1:]))) y_train = np.zeros(np.hstack((batch_size, data['y'].shape[1:]))) if model is None: model = ConvSiameseNet(input_channels=input_channels, input_width=X_train.shape[2], input_height=X_train.shape[3], n_out=n_out, batch_size=batch_size, nonlinearity=nonlinearity, distance_fn=distance_fn) if model_type == 'hani': model.use_hani_model(dropout_pct=0.0, b_spatial=spatial) elif model_type == 'custom': model.use_custom_model(b_spatial=spatial) elif model_type == 'chopra': model.use_chopra_model( dropout_pct=0.0, b_spatial=spatial) elif model_type == 'deepid': model.use_deepid_model(b_spatial=spatial) else: print( 'Unrecognized model type! Choose between \'hani\', \'chopra\', or \'custom\'') sys.exit(2) train_model, validate_model, test_model = model.build_model( X_train, y_train, X_train, y_train, X_train, y_train, hyperparameter_margin=hyperparameter_margin, hyperparameter_threshold=hyperparameter_threshold, learning_rate=learning_rate ) if results is None: results = { 'params': { 'dataset': dataset, 'spatial_transform': spatial, 'batch_size': batch_size, 'n_features': n_out, 'model_type': model_type, 'n_epochs': n_epochs, 'n_files': num_files, 'learning_rate': learning_rate, 'normalization': normalization, 'crop': crop_factor, 'resolution': (resolution, resolution), 'hyperparameter_margin': hyperparameter_margin, 'hyperparameter_threshold': hyperparameter_threshold, 'nonlinearity': nonlinearity, 'distance_fn': distance_fn, 'b_convert_to_grayscale': b_convert_to_grayscale }, 'epochs': [], 'prediction': { 'X': None, 'y': None, 'imgs': None, 'auc': [], 'F1': [], 'log_loss': [], 'W': [] }, 'model': None, 'model_parameters': None } delta_loss = 1.0 epoch = len(results['epochs']) prev_loss = 0 while delta_loss > 1e-6 and epoch < n_epochs: # Training clf = LogisticRegression() X_train, y_train =
np.zeros((0, n_out * 2))
numpy.zeros
import numpy as np from scipy.stats import norm, truncnorm def _em_step_body_(args): """ Does a step of the EM algorithm, needed to dereference args to support parallelism """ return _em_step_body(*args) def _em_step_body(Z, r_lower, r_upper, sigma, num_ord_updates=1): """ Iterate the rows over provided matrix """ num, p = Z.shape Z_imp = np.copy(Z) C = np.zeros((p,p)) for i in range(num): try: c, z_imp, z = _em_step_body_row(Z[i,:], r_lower[i,:], r_upper[i,:], sigma) except: np.savetxt("Z.txt", Z) print(Z) Z_imp[i,:] = z_imp Z[i,:] = z C += c return C, Z_imp, Z def _em_step_body_row(Z_row, r_lower_row, r_upper_row, sigma, num_ord_updates=1): """ The body of the em algorithm for each row Returns a new latent row, latent imputed row and C matrix, which, when added to the empirical covariance gives the expected covariance Args: Z_row (array): (potentially missing) latent entries for one data point r_lower_row (array): (potentially missing) lower range of ordinal entries for one data point r_upper_row (array): (potentially missing) upper range of ordinal entries for one data point sigma (matrix): estimate of covariance num_ord (int): the number of ordinal columns Returns: C (matrix): results in the updated covariance when added to the empircal covariance Z_imp_row (array): Z_row with latent ordinals updated and missing entries imputed Z_row (array): inpute Z_row with latent ordinals updated """ Z_imp_row = np.copy(Z_row) p = Z_imp_row.shape[0] num_ord = r_upper_row.shape[0] C = np.zeros((p,p)) obs_indices = np.where(~np.isnan(Z_row))[0] missing_indices = np.setdiff1d(np.arange(p), obs_indices) ord_in_obs = np.where(obs_indices < num_ord)[0] ord_obs_indices = obs_indices[ord_in_obs] # obtain correlation sub-matrices # obtain submatrices by indexing a "cartesian-product" of index arrays sigma_obs_obs = sigma[np.ix_(obs_indices,obs_indices)] sigma_obs_missing = sigma[np.ix_(obs_indices, missing_indices)] sigma_missing_missing = sigma[np.ix_(missing_indices, missing_indices)] if len(missing_indices) > 0: tot_matrix = np.concatenate((np.identity(len(sigma_obs_obs)), sigma_obs_missing), axis=1) intermed_matrix =
np.linalg.solve(sigma_obs_obs, tot_matrix)
numpy.linalg.solve
from detectron2.data.datasets import register_coco_instances from dafne.utils.sort_corners import sort_quadrilateral from detectron2.utils.colormap import colormap from detectron2.data.datasets.coco import load_coco_json from detectron2.data import ( DatasetCatalog, MetadataCatalog, DatasetMapper, transforms as T, ) import xml.etree.ElementTree as ET from detectron2.structures import BoxMode, PolygonMasks, RotatedBoxes from detectron2.data import detection_utils as utils import copy import torch import contextlib import datetime import io import json import logging import numpy as np import os import pycocotools.mask as mask_util from fvcore.common.file_io import PathManager, file_lock from fvcore.common.timer import Timer from PIL import Image import matplotlib.pyplot as plt import seaborn as sns import os logger = logging.getLogger(__name__) def xywha2xy4(xywha): # a represents the angle(degree), clockwise, a=0 along the X axis x, y, w, h, a = xywha corner = np.array([[-w / 2, -h / 2], [w / 2, -h / 2], [w / 2, h / 2], [-w / 2, h / 2]]) # a = np.deg2rad(a) transform = np.array([[np.cos(a), -
np.sin(a)
numpy.sin
import numpy as np from core.polymer_chain import Polymer from core.polymer_chain import RandomChargePolymer from pymatgen import Molecule from utils import dihedral_tools import unittest __author__ = "<NAME>" class TestPolymer(unittest.TestCase): @classmethod def setUpClass(cls): # setup for polymer class cls.monomer_num = 25 cls.monomer_len = 1.5 cls.link_len = 0.5 cls.link_angle = 15.0 cls.sample_num = 1000 cls.prob_angle = np.array([[0.0, -180.0], [0.2, -90.0], [0.3, -45.0], [0.4, 0.0], [0.5, 45.0], [0.6, 90.0], [0.8, 180.0]]) # create polymer cls.polymer = Polymer(cls.monomer_num, cls.monomer_len, cls.link_len, cls.link_angle, cls.prob_angle, cls.sample_num) # manually calculated bead or atom positions # the first commented out positions are for when l1 is first instead of l2 """cls.linear_pos_values = np.array([[0.0, 0.0, 0.0], [1.5, 0.0, 0.0], [1.9829629131445341, -0.12940952255126037, 0.0], [3.4829629131445339, -0.12940952255126037, 0.0], [3.9659258262890682, 0.0, 0.0], [5.4659258262890678, 0.0, 0.0], [5.9488887394336016, -0.12940952255126037, 0.0], [7.4488887394336016, -0.12940952255126037, 0.0]])""" cls.linear_chain_actual = np.array([[0.0, 0.0, 0.0], [1.5, 0.0, 0.0], [1.9829629131445341, 0.12940952255126037, 0.0], [3.4829629131445339, 0.12940952255126037, 0.0], [3.9659258262890682, 0.0, 0.0], [5.4659258262890678, 0.0, 0.0], [5.9488887394336016, 0.12940952255126037, 0.0], [7.4488887394336016, 0.12940952255126037, 0.0]]) def test_build_chain(self): np.testing.assert_almost_equal(self.linear_chain_actual, self.polymer.chain[:8]) def test_random_angle(self): angle_num = self.monomer_num - 1 self.polymer.rotate_chain() np.testing.assert_equal(angle_num, len(self.polymer.dihedral_set)) for angle in self.polymer.dihedral_set: self.assertIn(angle, self.prob_angle[:, 1]) def test_rotate_chain(self): self.polymer.rotate_chain() # this makes a fake molecule and checks all the dihedral angles fake_atoms = [] fake_atom_coords = [] for coord in self.polymer.relax_chain: fake_atoms.append('C') fake_atom_coords.append(coord) fake_mol = Molecule(species=fake_atoms, coords=fake_atom_coords) # find all the dihedral angles dihedral_list_actual = [] for site, val in enumerate(fake_mol, 1): if site <= len(fake_mol) - 3 and site % 2 != 0: da = round(dihedral_tools.get_dihedral(fake_mol, [site, site + 1, site + 2, site + 3])) # this if statement ensures 180 == -180 and 0 == -0 if da == -180.0 or da == -0.0: da = abs(da) dihedral_list_actual.append(da) self.assertEqual(len(dihedral_list_actual), len(self.polymer.dihedral_set)) rotate_chain_dihedral_set = [] # again this loop ensures 180 == -180 and 0 == -0 for angle in self.polymer.dihedral_set: if angle == -180.0 or angle == -0.0: rotate_chain_dihedral_set.append(abs(angle)) else: rotate_chain_dihedral_set.append(angle) np.testing.assert_almost_equal(dihedral_list_actual, rotate_chain_dihedral_set) def test_tangent_auto_corr(self): # check case where all tangent vectors are aligned self.polymer.tangent_auto_corr(self.polymer.chain) for stat in self.polymer.tangent_corr: np.testing.assert_allclose(stat.mean, 1.0) def test_unit_normal_vectors(self): self.polymer._unit_normal_vectors(self.polymer.chain) np.testing.assert_array_equal(len(self.polymer.unit_normal), self.monomer_num) totally_planar_normal = np.array([0.0, 0.0, 1.0]) for u_vec in self.polymer.unit_normal: np.testing.assert_almost_equal(u_vec ** 2, totally_planar_normal ** 2) self.polymer._unit_normal_vectors(self.polymer.relax_chain) for u_vec in self.polymer.unit_normal: np.testing.assert_almost_equal(np.linalg.norm(u_vec), 1.0) calc_u_vectors = np.zeros((self.monomer_num, 3)) index = 0 for i, pt in enumerate(self.polymer.relax_chain): if i == 0: vec1 = self.polymer.relax_chain[i + 1] - pt vec2 = self.polymer.relax_chain[i + 2] - pt calc_u_vectors[i] = np.cross(vec1, vec2) calc_u_vectors[i] /= np.linalg.norm(calc_u_vectors[i]) index += 1 if i % 2 != 0 and i < (len(self.polymer.relax_chain) - 2): vec1 = self.polymer.relax_chain[i + 1] - pt vec2 = self.polymer.relax_chain[i + 2] - pt calc_u_vectors[index] = np.cross(vec1, vec2) calc_u_vectors[index] /= np.linalg.norm(calc_u_vectors[index]) index += 1 np.testing.assert_almost_equal(self.polymer.unit_normal ** 2, calc_u_vectors ** 2) def test_p2_order_param(self): # two case all aligned, and isotropic # case 1 all aligned z_unit = np.array([0., 0., 1.] * 1000) z_unit.shape = (1000, 3) self.polymer.p2_order_param(unit_vectors=z_unit) np.testing.assert_almost_equal(np.trace(self.polymer.director_matrix), 0.0) np.testing.assert_almost_equal(self.polymer.s_order_param.mean, 1.0) # case 2 isotropic # generate uniform vectors on a unit sphere index = 0 n = 50000 iso_unit = np.zeros((n, 3)) while index <= (n - 1): chi_1 = np.random.uniform(0.0, 1.0, 1) chi_2 = np.random.uniform(0.0, 1.0, 1) xhi_1 = 1 - (2 * chi_1) xhi_2 = 1 - (2 * chi_2) xhi_sq = xhi_1 ** 2 + xhi_2 ** 2 if xhi_sq < 1: iso_unit[index] = [2 * xhi_1 * ((1 - xhi_sq) ** (1. / 2.)), 2 * xhi_2 * ((1 - xhi_sq) ** (1. / 2.)), 1 - 2 * xhi_sq] index += 1 self.polymer.p2_order_param(unit_vectors=iso_unit) np.testing.assert_almost_equal(np.trace(self.polymer.director_matrix), 0.0) np.testing.assert_almost_equal(self.polymer.s_order_param.mean, 0.0, decimal=1) def test_p2_auto_corr(self): samples = 200 p2_polymer = Polymer(self.monomer_num, self.monomer_len, self.link_len, self.link_angle, self.prob_angle) p2_polymer.p2_auto_corr(p2_polymer.chain) # check correlation is 1 when all aligned for stat in p2_polymer.s_x_corr: np.testing.assert_allclose(1.0, stat.mean) # check the correlation over a bunch of samples pair_interacts = int((self.monomer_num * (self.monomer_num + 1)) / 2) # adds 1 to all lists for case where everything is aligned ensemble_list = [[1.0] for i in range(self.monomer_num)] # loops of the number of samples for sample in range(1, samples): p2_polymer.rotate_chain() p2_polymer.p2_auto_corr(p2_polymer.relax_chain) polymer_list = [] for i in range(self.monomer_num): pair_list = [] for j in range(i, self.monomer_num, 1): pair_list.append(((3. / 2.) * (np.dot(p2_polymer.unit_normal[i], p2_polymer.unit_normal[j]) ** 2)) - (1. / 2.)) polymer_list.append(pair_list) for l in polymer_list: for i, val in enumerate(l): ensemble_list[i].append(val) actual_means = [np.mean(i) for i in ensemble_list] # check the right number of pair interactions were sampled # checks all the self interactions np.testing.assert_equal(int((samples * self.monomer_num)), int(p2_polymer.s_x_corr[0].k)) # checks the longest interaction only 1 per polymer chain sample np.testing.assert_equal(int(samples), int(p2_polymer.s_x_corr[-1].k)) for i, stat in enumerate(p2_polymer.s_x_corr): # print(actual_means[i], stat.mean) np.testing.assert_allclose(actual_means[i], stat.mean, atol=0.01, rtol=0.0) def test_sample_chain(self): # sample by looping over rotate_chains # start a new chain sample_polymer = Polymer(self.monomer_num, self.monomer_len, self.link_len, self.link_angle, self.prob_angle, sample_num=self.sample_num) end_to_end = [] for i in range(self.sample_num): sample_polymer.rotate_chain() end_to_end.append(sample_polymer.end_to_end[-1]) mean_ete = np.mean(end_to_end) std_ete = np.std(end_to_end) # sample using polymer class sample_polymer.sample_chains() # print(mean_ete, sample_polymer.ete_stats.mean[-1]) # print(std_ete, sample_polymer.ete_stats.stdev[-1]) np.testing.assert_allclose(mean_ete, sample_polymer.ete_stats.mean[-1], atol=0.85, rtol=0.0) np.testing.assert_allclose(std_ete, sample_polymer.ete_stats.stdev[-1], atol=0.85, rtol=0.0) class TestRandomChargedPolymer(unittest.TestCase): @classmethod def setUpClass(cls): cls.monomer_num = 51 cls.monomer_len = 1.5 cls.link_len = 0.5 cls.link_angle = 15.0 cls.sample_num = 500 cls.prob_angle = np.array([[0.0, -180.0], [0.2, -90.0], [0.3, -45.0], [0.4, 0.0], [0.5, 45.0], [0.6, 90.0], [0.8, 180.0]]) cls.c_monomer_len = 1.6 cls.c_link_len = 0.6 cls.c_link_angle = 14.0 cls.c_prob_angle = np.array([[0.0, 175.0], [0.5, 5.0]]) cls.c_polymer = RandomChargePolymer(cls.monomer_num, cls.monomer_len, cls.link_len, cls.link_angle, cls.prob_angle, cls.c_monomer_len, cls.c_link_len, cls.c_link_angle, cls.c_prob_angle, cls.sample_num) def test_c_random_angle(self): self.c_polymer.shuffle_charged_chain(10) c_angle_num = 10 self.assertEqual(c_angle_num, len(self.c_polymer.c_dihedral_set)) for angle in self.c_polymer.c_dihedral_set: self.assertIn(angle, self.c_prob_angle[:, 1]) def test_shuffle_charged_chain(self): self.c_polymer.shuffle_charged_chain(10) # check position lists are same length self.assertEqual(len(self.c_polymer.relax_chain), len(self.c_polymer.charged_chain)) # loop through the chain and check dihedral angles fake_atoms = [] fake_atom_coords = [] for coord in self.c_polymer.charged_chain: fake_atoms.append('C') fake_atom_coords.append(coord) fake_mol = Molecule(species=fake_atoms, coords=fake_atom_coords) # find all the dihedral angles dihedral_list_actual = [] for site, val in enumerate(fake_mol, 1): if site <= len(fake_mol) - 3 and site % 2 != 0: da = round(dihedral_tools.get_dihedral(fake_mol, [site, site + 1, site + 2, site + 3])) # this if statement ensures 180 == -180 and 0 == -0 if da == -180.0 or da == -0.0: da = abs(da) dihedral_list_actual.append(da) self.assertEqual(len(dihedral_list_actual), len(self.c_polymer.shuffle_dihedral_set)) shuffle_dihedral_set = [] # again this loop ensures 180 == -180 and 0 == -0 for angle in self.c_polymer.shuffle_dihedral_set: if angle == -180.0 or angle == -0.0: shuffle_dihedral_set.append(abs(angle)) else: shuffle_dihedral_set.append(angle) np.testing.assert_almost_equal(dihedral_list_actual, shuffle_dihedral_set) def test_c_build_chain(self): self.c_polymer.shuffle_charged_chain(0) # check the length is right self.assertEqual(self.monomer_num * 2, len(self.c_polymer.c_chain)) # check that build_chain and c_build_chain are the same when there are 0 excited dihedrals
np.testing.assert_almost_equal(self.c_polymer.chain, self.c_polymer.c_chain)
numpy.testing.assert_almost_equal
import numpy as np import numpy.linalg as linalg import math import unittest from trio.common.camera import Camera from trio.common.math import normalize, column, euclidean, homogeneous from trio.common.matrix import matrix_rank, matrix_ypr, \ matrix_decompose_ypr, matrix_look_at, matrix_intrinsic, \ matrix_permute_ecef, matrix_decompose_camera, matrix_decompose_projection, \ matrix_relative_rotation from .utils import equal_matrices, equal_arrays def normalized_camera_ray(fov): """ Helper function to generate a normalized camera ray from angles. """ x = math.tan(fov[0]) y = math.tan(fov[1]) z = 1.0 return normalize(np.array([x, y, z])) class CommonMatrixTestCase(unittest.TestCase): def test_matrix_ypr(self): # Start with a matrix with no rotation. zero_m = matrix_ypr(np.radians((0, 0, 0))) self.assertEqual(3, matrix_rank(zero_m)) self.assertEqual((3, 3), zero_m.shape) # It shall be equal to the identity matrix. eye_m = np.eye(3, dtype=float) self.assertTrue(equal_matrices(eye_m, zero_m)) # Continue with a "random" rotation. random_m = matrix_ypr(np.radians((-87, 13.2, 37))) self.assertEqual(3, matrix_rank(random_m)) self.assertEqual((3, 3), random_m.shape) # Rotation matrix multiplied with its transpose shall be the identity. self.assertTrue(equal_matrices(eye_m, random_m.T @ random_m)) def test_matrix_decompose_ypr(self): # Start with a matrix with no rotation. zero_m = matrix_ypr(np.radians((0, 0, 0))) zero_d = np.degrees(matrix_decompose_ypr(zero_m)) self.assertAlmostEqual(0, zero_d[0]) self.assertAlmostEqual(0, zero_d[1]) self.assertAlmostEqual(0, zero_d[2]) # Continue with a "random" rotation. random_m = matrix_ypr(np.radians((-87, 13.2, 37))) random_d = np.degrees(matrix_decompose_ypr(random_m)) self.assertAlmostEqual(-87, random_d[0]) self.assertAlmostEqual(13.2, random_d[1]) self.assertAlmostEqual(37, random_d[2]) def test_matrix_look_at_decompose_ypr(self): # Start with a matrix that shall have no rotation. zero_m = matrix_look_at(np.array([0, 0, 0]), np.array([2, 0, 0]), np.array([0, 0, 1])) self.assertEqual(3, matrix_rank(zero_m)) # It shall be equal to the identity matrix. eye_m = np.eye(3, dtype=float) self.assertTrue(equal_matrices(eye_m, zero_m)) # Continue with a random look at. random_m = matrix_look_at(np.array([4, 3.3, 2.9]), np.array([0, 0, 0]), np.array([0, 0.6, 0.7])) self.assertEqual(3, matrix_rank(random_m)) # Decompose and recreate with ypr - shall be equal matrices. ypr = matrix_decompose_ypr(random_m) ypr_m = matrix_ypr(np.array(ypr)) self.assertTrue(equal_matrices(random_m, ypr_m)) def intrinsic_matrix(self, fov, rect): i = matrix_intrinsic(fov, rect) iInv = linalg.inv(i) # Build test data for the image mid point and the four corners. xs = [(np.array([0, 0]), np.array([rect[0] + rect[2] / 2.0, rect[1] + rect[3] / 2.0])), (np.array([-fov[0], -fov[1]]) / 2.0, np.array([rect[0], rect[1]])), (np.array([fov[0], -fov[1]]) / 2.0, np.array([rect[0] + rect[2], rect[1]])), (np.array([-fov[0], fov[1]]) / 2.0, np.array([rect[0], rect[1] + rect[3]])), (np.array([fov[0], fov[1]]) / 2.0, np.array([rect[0] + rect[2], rect[1] + rect[3]])) ] for x in xs: ray = normalized_camera_ray(x[0]) px = euclidean(i @ column(ray)) self.assertTrue(equal_matrices(column(x[1]), px)) # Test inversion. ray2 = normalize(iInv @ homogeneous(px)) self.assertTrue(equal_matrices(column(ray), ray2)) def test_intrinsic_matrix(self): # Test unit size image size. self.intrinsic_matrix(np.radians((30, 20)), np.array([-0.5, -0.5, 1.0, 1.0])) # Test ordinary image size type. self.intrinsic_matrix(np.radians((30, 20)), np.array([0, 0, 720 - 1, 480 - 1])) def test_matrix_decompose_camera(self): # Create some random camera position. c = Camera(np.array([1899.8, 3678, -8765.5]), np.radians((-90, 33, 4)), np.radians((30, 20))) permute = matrix_permute_ecef() decomp = matrix_decompose_camera(c.camera_matrix, permute) # Compare. self.assertTrue(equal_arrays(np.radians((-90, 33, 4)), np.array(decomp[0]))) self.assertTrue(equal_arrays(np.array([1899.8, 3678, -8765.5]), decomp[1])) def test_matrix_decompose_projection(self): # Create some random camera position. c = Camera(np.array([1899.8, 3678, -8765.5]), np.radians((-90, 33, 4)), np.radians((30, 20))) intrinsic = matrix_intrinsic(np.radians((30, 20)),
np.array([-0.5, -0.5, 1.0, 1.0])
numpy.array
#!/usr/bin/python # -*- coding: utf-8 -*- from sklearn.base import BaseEstimator, TransformerMixin from sklearn.preprocessing import LabelEncoder from collections import defaultdict import numpy as np import sys PY3 = sys.version_info[0] == 3 def lambda_underscore(): # Module level named lambda-function to make defaultdict picklable return "_" class LetterConfig: def __init__(self,letters=None, vowels=None, pos_lookup=None): if letters is None: self.letters = defaultdict(set) self.vowels = set() self.pos_lookup = defaultdict(lambda: "_") else: letter_cats = ["current_letter", "prev_prev_letter", "prev_letter", "next_letter", "next_next_letter", "prev_grp_first", "prev_grp_last", "next_grp_first", "next_grp_last"] self.letters = defaultdict(set) if "group_in_lex" in letters or "current_letter" in letters: # Letters dictionary already instantiated - we are loading from disk self.letters.update(letters) else: for cat in letter_cats: self.letters[cat] = letters self.vowels = vowels self.pos_lookup = pos_lookup class DataFrameSelector(BaseEstimator, TransformerMixin): def __init__(self, attribute_names): self.attribute_names = attribute_names def fit(self, X, y=None): return self def transform(self, X): return X[self.attribute_names].values class MultiColumnLabelEncoder(LabelEncoder): """ Wraps sklearn LabelEncoder functionality for use on multiple columns of a pandas dataframe. """ def __init__(self, columns=None): self.encoder_dict = {} if isinstance(columns, list): self.columns = np.array(columns) else: self.columns = columns def fit(self, dframe): """ Fit label encoder to pandas columns. Access individual column classes via indexing `self.all_classes_` Access individual column encoders via indexing `self.all_encoders_` """ # if columns are provided, iterate through and get `classes_` if self.columns is not None: # ndarray to hold LabelEncoder().classes_ for each # column; should match the shape of specified `columns` self.all_classes_ =
np.ndarray(shape=self.columns.shape, dtype=object)
numpy.ndarray
# Script which downloads and preprocesses a collection of UCI datasets. # Flag --dir specifies the relative path at which the script will work. # The script creates a directory called "data" under --dir and downloads # the UCI data there. It then preprocesses the data to a format ready # to be consumed by the models. By default, this will overwrite an existing # "data" directory. # # For each dataset, the script creates an x.npy and y.npy array containing # the model input and outputs under data/dataset_name/. import os import shutil import zipfile import urllib.request import argparse import numpy as np import pandas as pd from scipy.io import arff from sklearn.compose import ColumnTransformer from sklearn.preprocessing import OneHotEncoder, \ StandardScaler, \ OrdinalEncoder, \ Binarizer from sklearn.utils import as_float_array from sklearn.pipeline import Pipeline argparser = argparse.ArgumentParser() argparser.add_argument("--dir", dest="dir", required=True, type=str) argparser.add_argument("--no-download", dest='no_download', action="store_true") args = argparser.parse_args() # ============================================================================= # Dataset downloader # ============================================================================= def download_dataset(root_dir, dataset_name, info): print(f'Downloading {dataset_name} dataset') dataset_dir = f'{root_dir}/{dataset_name}' if os.path.exists(os.path.join(dataset_dir, "data.npy")): print(f'{dataset_name} dataset already exists!') return else: if not os.path.exists(dataset_dir): os.mkdir(dataset_dir) base_url = info['base_url'] # Handle the case where the data must be unzipped if info['zipped']: # Download zip file url = f"{base_url}/{info['zipfile']}" save_location = f"{dataset_dir}/{info['zipfile']}" urllib.request.urlretrieve(url, save_location) # Unzip data with zipfile.ZipFile(save_location, 'r') as zip_handle: zip_handle.extractall(save_location[:-4]) data = [] for i, file_name in enumerate(info['files']): save_location = f'{dataset_dir}/{file_name}' if not info['zipped']: if not os.path.exists(save_location): url = f"{base_url}/{file_name}" urllib.request.urlretrieve(url, save_location) if ('post-download' in info) and \ (info['post-download'][i] is not None): info['post-download'][i](save_location) _data = None if ('pre-process' in info) and \ (info['pre-process'][i] is not None): _data = info['pre-process'][i](save_location) elif save_location[-5:] == '.xlsx': _data = np.array(pd.read_excel(save_location), dtype=str) else: _data = np.loadtxt(save_location, dtype=str, delimiter=info['delimiter']) _data = _data[1:] if info['drop-header'] else _data try: rows_with_missing = np.any(_data == '?', axis=1) except np.AxisError: rows_with_missing = np.any(np.isnan(_data), axis=1) print(f'{np.sum(rows_with_missing)}/{rows_with_missing.shape[0]} ' f'rows had missing data\n') if info['remove-missing']: _data = _data[~rows_with_missing, :] data.append(_data) data =
np.concatenate(data, axis=0)
numpy.concatenate
# -*- coding: utf-8 -*- import numpy as np from inspect import isfunction from dramkit.gentools import isnull from sklearn.preprocessing import OneHotEncoder class ELMClassifier(object): ''' | 极限学习机,分类任务 | 记输入为层X,输出层为Y,隐藏层为H,样本量为Nsmp、X特征数为NcolX、 | 隐藏层节点数为n_hide、Y特征数为NcolY,则ELM的过程为: | H(Nsmp*n_hide) = X(Nsmp*NcolX) * w(NcolX*n_hide) + b((Nsmp*1)*n_hide) | Y(Nsmp*NcolY) = H(Nsmp*n_hide) * beta(n_hide*NcolY) | ELM的训练过程:W和b随机生成,beta则利用公式求解析解(beta = H的MP广义逆 * Y) References ---------- - https://blog.csdn.net/m0_37922734/article/details/80424133 - https://blog.csdn.net/qq_32892383/article/details/90760481 - https://blog.csdn.net/qq_40360172/article/details/105175946 ''' def __init__(self, n_hide=10, func_act='softplus', w_low=-1, w_up=1, b_low=-1, b_up=1, c=None, random_state=5262): ''' Parameters ---------- n_hide : int 隐层节点数 func_act: str, function 激活函数,可选['softplus', 'sigmoid', 'tanh']或自定义 w_low : float 输入层—>隐层权重w取值下限 w_up : float 输入层—>隐层权重w取值上限 b_low : float 输入层—>隐层偏置项b取值下限 b_up : float 输入层—>隐层偏置项b取值上限 c : float, None 正则化参数 random_state : None, int 随机数种子 ''' self.n_hide = n_hide # 隐藏层节点数 # 输入层—>隐层权重w和偏置项b取值上下限 self.w_low = w_low self.w_up = w_up self.b_low = b_low self.b_up = b_up self.w = '未初始化参数(shape: NcolX*{})'.format(n_hide) self.b = '未初始化参数(shape: 1*{})'.format(n_hide) self.beta = '未初始化参数(shape: {}*NcolY)'.format(n_hide) # 正则化参数 self.c = c # 激活函数 if func_act == 'softplus': self.func_act = self.softplus elif func_act == 'sigmoid': self.func_act = self.sigmoid elif func_act == 'tanh': self.func_act = self.tanh else: if isfunction(func_act): self.func_act = func_act else: raise ValueError('不能识别的激活函数,请检查!') # 其他参数 self.random_state = random_state @staticmethod def sigmoid(x): '''sigmoid激活函数''' return 1.0 / (1 + np.exp(-x)) @staticmethod def softplus(x): '''softplus激活函数 ''' return np.log(1 + np.exp(x)) @staticmethod def tanh(x): '''tanh激活函数''' return (np.exp(x) - np.exp(-x)) / (np.exp(x) + np.exp(-x)) def fit(self, x_train, y_train): ''' 模型训练 Parameters ---------- x_train : pd.DataFrame, np.array 训练集输入,每行一个样本 y_train : pd.DataFrame, np.array 训练集输出,每行一个样本 ''' x_train, y_train = np.array(x_train), np.array(y_train) Nsmp, NcolX = x_train.shape[0], x_train.shape[1] # 样本数和特征数 # 将标签进行onehot编码 self.Yonehot = None if len(y_train.shape) == 1 or y_train.shape[1] == 1: self.Yonehot = OneHotEncoder() y_train = self.Yonehot.fit_transform(y_train.reshape(-1, 1)).toarray() # 随机数种子 if isnull(self.random_state): rnd_w = np.random.RandomState() rnd_b = np.random.RandomState() else: rnd_w = np.random.RandomState(self.random_state) rnd_b = np.random.RandomState(self.random_state) # 输入层——>隐藏层权重w随机化 self.w = rnd_w.uniform(self.w_low, self.w_up, (NcolX, self.n_hide)) # 输入层——>隐藏层偏置b随机化 self.b = rnd_b.uniform(self.b_low, self.b_up, (1, self.n_hide)) Bhide= np.ones([Nsmp, self.n_hide]) * self.b # 隐层计算 Hide = np.matrix(self.func_act(np.dot(x_train, self.w) + Bhide)) # beta计算 if isnull(self.c): iMP = np.linalg.pinv(Hide) # Moore–Penrose广义逆 self.beta = np.dot(iMP, y_train) else: Hide_ = np.dot(Hide.T, Hide) + Nsmp / self.c iMP = np.linalg.pinv(Hide_) # Moore–Penrose广义逆 iMP_ = np.dot(iMP, Hide.T) self.beta = np.dot(iMP_, y_train) return self def predict(self, x): '''模型预测,x每行为一个待预测样本''' Nsmp = x.shape[0] Bhide = np.ones([Nsmp, self.n_hide]) * self.b Hide = np.matrix(self.func_act(np.dot(x, self.w) + Bhide)) y_pred_ =
np.dot(Hide, self.beta)
numpy.dot
# -*- coding: utf-8 -*- ########################################################################## # NSAp - Copyright (C) CEA, 2020 # Distributed under the terms of the CeCILL-B license, as published by # the CEA-CNRS-INRIA. Refer to the LICENSE file or to # http://www.cecill.info/licences/Licence_CeCILL-B_V1-en.html # for details. ########################################################################## """ Common functions to transform image. Code: https://github.com/fepegar/torchio """ # Import import numpy as np from scipy.spatial.transform import Rotation from scipy.ndimage import map_coordinates from .transform import compose from .transform import gaussian_random_field from .transform import affine_flow from .utils import interval def affine(arr, rotation=10, translation=10, zoom=0.2, seed=None): """ Random affine transformation. Parameters ---------- arr: array the input data. rotation: float or 2-uplet, default 10 the rotation in degrees of the simulated movements. Larger values generate more distorted images. translation: float or 2-uplet, default 10 the translation in voxel of the simulated movements. Larger values generate more distorted images. zoom: float, default 0.2 the zooming magnitude. Larger values generate more distorted images. seed: int, default None seed to control random number generator. Returns ------- transformed: array the transformed input data. """ rotation = interval(rotation) translation = interval(translation)
np.random.seed(seed)
numpy.random.seed
import numpy as np from numpy import linalg as np_linalg from scipy import linalg as sp_linalg from scipy import stats as sp_stats from tqdm import tqdm class RBLasso(): def __init__(self, alpha=1.0, rao_s2=False, keep_history=False, init_ols=True): """Parameters: * alpha: the lasso (a.k.a. "lambda") regularization constant. * rao_s2: if True, use a Rao-Blackwellized estimate for the variance term. * keep_history: if True, keep the value of each parameter during every iteration. * init_ols: if True, initialize inference with OLS solution (not possible if p > n). """ self.__alpha = alpha self.__rao_s2 = rao_s2 self.__keep_history = keep_history self.__iterations = 0 self.__init_ols = init_ols self.__beta = None self.__sigma = None self.__tau = None self.__X_mean = None self.__X_norm = None self.__y_mean = None def fit(self, X, y, num_iter=1000): """Fits the model, running for num_iter iterations.""" ## compute norms and means self.__X_mean = np.mean(X, axis=0) self.__X_norm = np_linalg.norm(X, axis=0) self.__y_mean = np.mean(y) ## center X and y X = (X - self.__X_mean) / self.__X_norm y = y - self.__y_mean ## compute XtX and Xty XtX = np.dot(X.T, X) Xty = np.dot(X.T, y) ## if doing rao-blackwellized sigma, compute yTy if self.__rao_s2: yTy = np.sum(y**2) ## initialize beta, tau and sigma arrays, depending on keep_history flag. arr_size = num_iter if self.__keep_history else 2 ## initialize beta self.__beta = np.zeros((arr_size, X.shape[1])) if self.__init_ols and X.shape[0] > X.shape[1]: ## OLS estimate for beta, if possible chol_XtX = sp_linalg.cho_factor(XtX) self.__beta[0] = sp_linalg.cho_solve(chol_XtX, Xty) else: ## otherwise, random uniform self.__beta[0] = 2*np.random.rand(X.shape[1]) - 1.0 ## initialize sigma with RSS of beta. self.__sigma = np.zeros(arr_size) resid = y - np.dot(X, self.__beta[0]) self.__sigma[0] = resid.var() ## initialize taus self.__tau = np.zeros((arr_size, X.shape[1])) ## iterate for cur_iter in tqdm(range(1, num_iter)): prev_pos = (cur_iter - 1) if self.__keep_history else (cur_iter - 1) % 2 next_pos = cur_iter if self.__keep_history else cur_iter % 2 ## update taus tau_loc = 0.5*(np.log(self.__alpha) + np.log(self.__sigma[prev_pos])) - np.log(np.abs(self.__beta[prev_pos])) tau_scale = self.__alpha self.__tau[next_pos] = sp_stats.invgauss.rvs(mu=np.exp(tau_loc) / tau_scale, scale=tau_scale) ## update beta beta_A = XtX + np.diag(self.__tau[next_pos]) beta_A_chol = sp_linalg.cho_factor(beta_A) beta_mu = sp_linalg.cho_solve(beta_A_chol, Xty) beta_cov = sp_linalg.cho_solve(beta_A_chol, np.diag(
np.repeat(self.__sigma[prev_pos], X.shape[1])
numpy.repeat
import numpy as np from scipy.optimize import minimize from scipy.interpolate import interp1d def compute_fwd_interpolation(fwd, swap_rate_end, zero_rates_known, start_tenor, end_tenor): """ Interpolates forward rates as described by EIOPA (constant forward rates between liquid maturities). Source: 'Background Document On The Opinion On The 2020 Review Of Solvency II' p.787f. :param fwd: fwd to be calculated: 1d-Ndarray :param swap_rate_end: last liquid swap rate in interval. E.g. for 15y --> 20y period this would be 20y swap rate: 1d-Ndarray :param zero_rates_known: zero rates known so far: 1d-Ndarray :param start_tenor: last known tenor / maturity: float :param end_tenor: final tenor / maturity (end of interpolation): float :return: cash value of swap (par swap = 1) """ left_side_1 = sum([1. / ((1+rate)**(t+1)) for t, rate in enumerate(zero_rates_known)]) left_side_2 = sum([1. / ((1+fwd)**t) for t in range(1, end_tenor - start_tenor + 1)]) left_side = left_side_1 + (1. / (1+zero_rates_known[-1])**start_tenor) * left_side_2 right_side = 1. / ((1+zero_rates_known[start_tenor-1])**(start_tenor) * (1+fwd)**(end_tenor - start_tenor)) return swap_rate_end * left_side + right_side def error_fwd_interpolation(fwd, args): """ Error function for numeric procedure required to interpolate between observed liquid market rates :param fwd: dummy forward rate (rate is later used for numeric operation) :param args: optimization parameters :return: (cash value of swap - 1) ---> if fwd rate is solved for this should be minimized """ swap_rate_end = args[0] zero_rates_known = args[1] start_tenor = args[2] end_tenor = args[3] res = compute_fwd_interpolation(fwd, swap_rate_end, zero_rates_known, start_tenor, end_tenor) return np.abs(res-1) def interpolate_fwd(fwd, swap_rate_end, zero_rates_known, start_tenor, end_tenor): """ Interpolates forward rates according to methodology described by EIOPA review 2020. Source: 'Background Document On The Opinion On The 2020 Review Of Solvency II' p.788 :param fwd: fwd to be calculated: 1d-Ndarray :param swap_rate_end: last liquid swap rate in interval. E.g. for 15y --> 20y period this would be 20y swap rate: 1d-Ndarray :param zero_rates_known: zero rates known so far: 1d-Ndarray :param start_tenor: last known tenor / maturity: float :param end_tenor: final tenor / maturity (end of interpolation): float :return: final_fwd that can be used for calculation of all zero rates in between the observed swap rates: 1d-Ndarray """ # Optimization tolerance TOLERANCE = 1e-10 # Number of assets number_of_fwds = len(fwd) # Long only weights to be assigned bound = (-1.0, 1.0) bounds = tuple(bound for asset in range(number_of_fwds)) # Optimisation (minimize error) optimize_result = minimize(fun=error_fwd_interpolation, x0=fwd, args=[swap_rate_end, zero_rates_known, start_tenor, end_tenor], method='SLSQP', bounds=bounds, tol=TOLERANCE, options={'disp': False}) # Recover the weights from the optimised object final_fwd = optimize_result.x return final_fwd def compute_interpolated_zero(swap_rates_market, liquid_maturities): """ Based on swap rates with maturity of 1-12, 15, 20, 25, 30, 40 and 50 years this function builds the forward and zero rates. Source: "Background Document On The Opinion On The 2020 Review Of Solvency II" p.787f. :param swap_rates_market: market rates where index position indicates maturity (e.g. [4] corresponds to a maturity of 5y): Ndarray :param liquid_maturities: maturities of the respective interest rates: 1d-Ndarry :return: contains interpolated zero curve based on liquid swap rates: list """ # Creates dummy to start interpolation fwd_dummy = np.array([0.01]) # Number of liquid maturities N = len(liquid_maturities) # Construct zero rates zero_rates_market = np.array(swap_to_zero(swap_rates_market)) # Starting point of zero curve with interpolation zero_rates_market_interpolated = [zero_rates_market[0]] # Loop through each liquid rate pair and see whether interpolation is required for liquid_idx in range(1, N): t1 = liquid_maturities[liquid_idx] t2 = liquid_maturities[liquid_idx - 1] t = t1 - t2 if t > 1: fwd = interpolate_fwd(fwd=fwd_dummy, swap_rate_end=swap_rates_market[t1 - 1], zero_rates_known=np.array(zero_rates_market_interpolated), start_tenor=t2, end_tenor=t1) z = (1 + zero_rates_market_interpolated[-1]) ** t2 for zero_runs in range(1, t + 1): z_temp = (z * (1 + fwd) ** zero_runs) ** (1. / (t2 + zero_runs)) zero_rates_market_interpolated.append(z_temp[0] - 1.) else: # Assuming this can only happen for short maturities in the beginning zero_rates_market_interpolated.append(zero_rates_market[t1 - 1]) return zero_rates_market_interpolated def extract_fwds(zero_rates_market_interpolated, liquid_maturities, fsp=20): """ Extracts main (interpolated) forwards. Source: "Background Document On The Opinion On The 2020 Review Of Solvency II" p.787ff. :param zero_rates_market_interpolated: interpolated zero rates where index position indicates maturity (e.g. [4] corresponds to a maturity of 5y): 1d-Ndarray :param liquid_maturities: maturities of the respective interest rates: 1d-Ndarray :param fsp: maturity in years of first smoothing point: float :return: forwards_pre_fsp & forwards_llfr (rates required for llfr calculation): list """ # Number of liquid maturities N = len(liquid_maturities) # Init forwards_pre_fsp = [zero_rates_market_interpolated[0]] forwards_llfr = [] # Loop through each liquid rate pair and calculate required fwds for liquid_idx in range(1, N): t1 = liquid_maturities[liquid_idx] t2 = liquid_maturities[liquid_idx - 1] t = t1 - t2 if t1 <= fsp: fwd = ((1 + zero_rates_market_interpolated[t1 - 1]) ** t1 / ( 1 + zero_rates_market_interpolated[t2 - 1]) ** t2) ** (1 / t) - 1 forwards_pre_fsp.append(fwd) if t1 == fsp: fwd = ((1 + zero_rates_market_interpolated[t1 - 1]) ** t1 / ( 1 + zero_rates_market_interpolated[t2 - 1]) ** t2) ** (1 / t) - 1 forwards_llfr.append(fwd) if t1 > fsp: t = t1 - fsp fwd = ((1 + zero_rates_market_interpolated[t1 - 1]) ** t1 / ( 1 + zero_rates_market_interpolated[fsp - 1]) ** fsp) ** (1 / t) - 1 forwards_llfr.append(fwd) return forwards_pre_fsp, forwards_llfr def compute_llfr(fwd, volume=np.array([3.3, 1.45 , 6, 0.3, 0.4]), va=0.0): """ Calculates last liquid forward rate (llfr) as described by EIOPA review 2020. Source: "Background Document On The Opinion On The 2020 Review Of Solvency II" p.788f. volume[0] = 20y volume[1] = 25y volume[2] = 30y volume[3] = 40y volume[4] = 50y fwd[0] = 15y-20y --> 15y5y + VA fwd[1] = 20y-25y --> 20y5y fwd[2] = 20y-30y --> 20y10y fwd[3] = 20y-40y --> 20y20y fwd[4] = 20y-50y --> 20y30y :param fwd: forward rates: 1d-Ndarray :param volume: respective volume / weighting of forward rates: 1d-Ndarray :param va: volatility adjustment in bps (as float, e.g. 10): float :return: last liquid forward rate """ weight = volume / volume.sum() fwds_incl_va = fwd.copy() fwds_incl_va[0] = fwds_incl_va[0] + va / 10000.0 llfr = fwds_incl_va * weight return np.array([llfr.sum()]) def compute_curve_with_va(forwards_pre_fsp, liquid_maturities, fsp=20, va=0): """ Constructs zero curve from forwards until FPS - potentially including VA. Source: "Background Document On The Opinion On The 2020 Review Of Solvency II" p.788f. :param forwards_pre_fsp: forwards between liquid rates: 1d-Ndarray :param liquid_maturities: maturities of the respective interest rates: 1d-Ndarray :param fsp: maturity in years of first smoothing point: float :param va: volatility adjustment: float :return: contains interpolated zero curve up to a maturity of 20y including va: list """ # Number of liquid maturities smaller than or equal to fsp N = len(liquid_maturities[liquid_maturities <= fsp]) # Input check assert N == len(forwards_pre_fsp) # Add va to all forwards forwards_pre_fsp_incl_va = forwards_pre_fsp.copy() forwards_pre_fsp_incl_va = [fwd_rate + va / 10000.0 for fwd_rate in forwards_pre_fsp_incl_va] # Init zero_rates = [forwards_pre_fsp_incl_va[0]] # Loop through each liquid rate pair and calculate required fwds for liquid_idx in range(1, N): t1 = liquid_maturities[liquid_idx] t2 = liquid_maturities[liquid_idx - 1] t = t1 - t2 if t > 1: fwd = (1 + forwards_pre_fsp_incl_va[liquid_idx]) base_rate = ((1 + zero_rates[-1]) ** t2) for zero_run in range(1, t + 1): z = base_rate * fwd ** zero_run z = z ** (1 / (t2 + zero_run)) - 1 zero_rates.append(z) else: z = ((1 + zero_rates[-1]) ** t2) * ((1 + forwards_pre_fsp_incl_va[liquid_idx]) ** t) z = z ** (1 / t1) - 1 zero_rates.append(z) return zero_rates def big_b(h, alpha=0.1): """ Helper function """ top = 1 - np.exp(-alpha*h) bottom = alpha * h return top / bottom def extrapolate_fwds(h, ufr, llfr, alpha=0.10): """ Extrapolates forward rates beyond fsp. Source: "Background Document On The Opinion On The 2020 Review Of Solvency II" p.789. fwd_fsp_fsp_plus_h: fwd that can be used for calculation of all zero rates in between the observed swap rates :param h: forward rate beyond fsp (at year 20+h): 1d-Ndarray :param ufr: ultimate forward rate: 1d-Ndarray :param llfr: last liquid forward rate: 1d-Ndarray :param alpha: convergence speed: float :return: fwd_fsp_fsp_plus_h: 1d-Ndarray """ fwd_fsp_fsp_plus_h = np.log(1 + ufr) + (llfr - np.log(1 + ufr)) * big_b(h, alpha) return fwd_fsp_fsp_plus_h def extrapolate_zero(known_zero_rates, ufr, llfr, alpha=0.10, fsp=20): """ Extrapolation of zero rates beyond fsp. Source: "Background Document On The Opinion On The 2020 Review Of Solvency II" p.790. :param known_zero_rates: :param ufr: ultimate forward rate :param llfr: last liquid forward rate :param alpha: convergence speed :param fsp: first-smoothing-point :return: extrapolated_zero_rates: 1d-Ndarray """ # FSP z_fsp = known_zero_rates[fsp - 1] # Extrapolated zero rates extrapolated_zero_rates = known_zero_rates[0:fsp] # Regardless of fsp we want to calculate the extrapolated rates with a maturity of up to 120y up_to = 120 - fsp # Calculate extrapolated zero rates up to and including 120y maturity for h in range(1, up_to + 1): z = np.exp((fsp * z_fsp + h * extrapolate_fwds(h, ufr, llfr, alpha)) / (fsp + h)) - 1 extrapolated_zero_rates.append(z[0]) return extrapolated_zero_rates def alternative_extrapolation(input_rates, input_liquid, ufr, fsp=20, alpha=None, va=0.0, volume_traded=np.array([3.3, 1.45, 6, 0.3, 0.4])): """ Wrapper function for alternative extrapolation method of SII curves. Source: "Background Document On The Opinion On The 2020 Review Of Solvency II" p.783-790. :param input_rates: :param input_liquid: :param ufr: ultimate forward rate :param fsp: first-smoothing-point :param alpha: convergence speed :param va: volatility adjustment :param volume_traded: weighting for llfr :return: """ # Assign base variables liquid_maturities = np.where(input_liquid == 1)[0] + 1 liquid_rates_swap = input_rates[
np.where(input_liquid == 1)
numpy.where
import numpy as np def RotX(th): sth, cth = np.sin(th),
np.cos(th)
numpy.cos
#from IPython import embed import torch.nn as nn import logging import torch import torch.nn.functional as F from mmcv.cnn import constant_init, kaiming_init from mmcv.runner import load_checkpoint from torch.nn.modules.batchnorm import _BatchNorm from mmdet.ops import ContextBlock, DeformConv, ModulatedDeformConv from ..registry import AGG,BACKBONES from ..utils import build_conv_layer, build_norm_layer import numpy as np from mmcv.cnn import normal_init from ..utils import ConvModule, bias_init_with_prob @AGG.register_module class STSN_trans(nn.Module): def __init__(self,in_channels,out_channels,dcn): super(STSN_trans,self).__init__() offset_channels = 18 #agg1 self.offset1 = nn.Conv2d(in_channels,offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.sim1 = nn.Conv2d(in_channels,1, kernel_size=1,stride=1,padding=0,dilation=1) #agg2 self.offset2 = nn.Conv2d(in_channels,offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.sim2 = nn.Conv2d(in_channels,1, kernel_size=1,stride=1,padding=0,dilation=1) #agg3 self.offset3 = nn.Conv2d(in_channels,offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.sim3 = nn.Conv2d(in_channels,1, kernel_size=1,stride=1,padding=0,dilation=1) #agg4 self.offset4 = nn.Conv2d(in_channels,offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.sim4 = nn.Conv2d(in_channels,1, kernel_size=1,stride=1,padding=0,dilation=1) #agg5 self.offset5 = nn.Conv2d(in_channels,offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.sim5 = nn.Conv2d(in_channels,1, kernel_size=1,stride=1,padding=0,dilation=1) self.grid_x=nn.Parameter(torch.arange(2000).view(2000,1).expand(2000,2000).float()) self.grid_y=nn.Parameter(torch.arange(2000).view(1,2000).expand(2000,2000).float()) self.relu=nn.LeakyReLU(inplace=True) self.offset=[] self.mask=[] # print('init transform kernel') # self.trans_kernel=torch.from_numpy(np.load('/home/ld/RepPoints/mmdetection/mmdet/ops/dcn/init_kernel.npy')) # self.trans_kernel=nn.Parameter(self.trans_kernel) def init_weights(self, pretrained=None): if isinstance(pretrained, str): logger = logging.getLogger() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: for m in self.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m) elif isinstance(m, (_BatchNorm, nn.GroupNorm)): constant_init(m, 1) bias_cls = bias_init_with_prob(0.01) normal_init(self.offset1, std=0.01) normal_init(self.sim1, std=0.01) normal_init(self.offset2, std=0.01) normal_init(self.sim2, std=0.01) normal_init(self.offset3, std=0.01) normal_init(self.sim3, std=0.01) normal_init(self.offset4, std=0.01) normal_init(self.sim4, std=0.01) normal_init(self.offset5, std=0.01) normal_init(self.sim5, std=0.01) def agg1(self,support,reference,test=False): n=reference.shape[0] h=reference.shape[-2] w=reference.shape[-1] fuse=torch.cat([support,reference],dim=1) offset=self.offset1(fuse) feature=[] weight=[] warp_grid=[] for i in range(9): grid_x=self.grid_x[:h,:w].unsqueeze(0).expand(n,h,w)+offset[:,2*i,:,:] grid_y=self.grid_y[:h,:w].unsqueeze(0).expand(n,h,w)+offset[:,2*i+1,:,:] grid=torch.cat([2*(grid_x.unsqueeze(3)/h-0.5),2*(grid_y.unsqueeze(3)/w-0.5)],dim=3) new_feature=torch.nn.functional.grid_sample(support,grid) feature.append(new_feature) weight.append(torch.nn.functional.cosine_similarity(reference,new_feature,dim=1).unsqueeze(1)) warp_grid.append(grid) feature=torch.stack(feature,dim=4) weight=torch.stack(weight,dim=4) weight=torch.nn.functional.softmax(weight,dim=4) warp_feature=torch.sum(feature*weight,dim=4) # print(torch.stack(warp_grid,dim=4).shape,weight.shape) trans=torch.sum(torch.stack(warp_grid,dim=4)*weight.squeeze(1).unsqueeze(3),dim=4) if test: return warp_feature,trans,[offset,weight,trans] else: return warp_feature,trans def agg2(self,support,reference,test=False): n=reference.shape[0] h=reference.shape[-2] w=reference.shape[-1] fuse=torch.cat([support,reference],dim=1) offset=self.offset2(fuse) feature=[] weight=[] warp_grid=[] for i in range(9): grid_x=self.grid_x[:h,:w].unsqueeze(0).expand(n,h,w)+offset[:,2*i,:,:] grid_y=self.grid_y[:h,:w].unsqueeze(0).expand(n,h,w)+offset[:,2*i+1,:,:] grid=torch.cat([2*(grid_x.unsqueeze(3)/h-0.5),2*(grid_y.unsqueeze(3)/w-0.5)],dim=3) new_feature=torch.nn.functional.grid_sample(support,grid) feature.append(new_feature) weight.append(torch.nn.functional.cosine_similarity(reference,new_feature,dim=1).unsqueeze(1)) warp_grid.append(grid) feature=torch.stack(feature,dim=4) weight=torch.stack(weight,dim=4) weight=torch.nn.functional.softmax(weight,dim=4) warp_feature=torch.sum(feature*weight,dim=4) # print(torch.stack(warp_grid,dim=4).shape,weight.shape) trans=torch.sum(torch.stack(warp_grid,dim=4)*weight.squeeze(1).unsqueeze(3),dim=4) if test: return warp_feature,trans,[offset,weight,trans] else: return warp_feature,trans def agg3(self,support,reference,test=False): n=reference.shape[0] h=reference.shape[-2] w=reference.shape[-1] fuse=torch.cat([support,reference],dim=1) offset=self.offset3(fuse) feature=[] weight=[] warp_grid=[] for i in range(9): grid_x=self.grid_x[:h,:w].unsqueeze(0).expand(n,h,w)+offset[:,2*i,:,:] grid_y=self.grid_y[:h,:w].unsqueeze(0).expand(n,h,w)+offset[:,2*i+1,:,:] grid=torch.cat([2*(grid_x.unsqueeze(3)/h-0.5),2*(grid_y.unsqueeze(3)/w-0.5)],dim=3) new_feature=torch.nn.functional.grid_sample(support,grid) feature.append(new_feature) weight.append(torch.nn.functional.cosine_similarity(reference,new_feature,dim=1).unsqueeze(1)) warp_grid.append(grid) feature=torch.stack(feature,dim=4) weight=torch.stack(weight,dim=4) weight=torch.nn.functional.softmax(weight,dim=4) warp_feature=torch.sum(feature*weight,dim=4) # print(torch.stack(warp_grid,dim=4).shape,weight.shape) trans=torch.sum(torch.stack(warp_grid,dim=4)*weight.squeeze(1).unsqueeze(3),dim=4) if test: return warp_feature,trans,[offset,weight,trans] else: return warp_feature,trans def agg4(self,support,reference,test=False): n=reference.shape[0] h=reference.shape[-2] w=reference.shape[-1] fuse=torch.cat([support,reference],dim=1) offset=self.offset4(fuse) feature=[] weight=[] warp_grid=[] for i in range(9): grid_x=self.grid_x[:h,:w].unsqueeze(0).expand(n,h,w)+offset[:,2*i,:,:] grid_y=self.grid_y[:h,:w].unsqueeze(0).expand(n,h,w)+offset[:,2*i+1,:,:] grid=torch.cat([2*(grid_x.unsqueeze(3)/h-0.5),2*(grid_y.unsqueeze(3)/w-0.5)],dim=3) new_feature=torch.nn.functional.grid_sample(support,grid) feature.append(new_feature) weight.append(torch.nn.functional.cosine_similarity(reference,new_feature,dim=1).unsqueeze(1)) warp_grid.append(grid) feature=torch.stack(feature,dim=4) weight=torch.stack(weight,dim=4) weight=torch.nn.functional.softmax(weight,dim=4) warp_feature=torch.sum(feature*weight,dim=4) # print(torch.stack(warp_grid,dim=4).shape,weight.shape) trans=torch.sum(torch.stack(warp_grid,dim=4)*weight.squeeze(1).unsqueeze(3),dim=4) if test: return warp_feature,trans,[offset,weight,trans] else: return warp_feature,trans def agg5(self,support,reference,test=False): n=reference.shape[0] h=reference.shape[-2] w=reference.shape[-1] fuse=torch.cat([support,reference],dim=1) offset=self.offset5(fuse) feature=[] weight=[] warp_grid=[] for i in range(9): grid_x=self.grid_x[:h,:w].unsqueeze(0).expand(n,h,w)+offset[:,2*i,:,:] grid_y=self.grid_y[:h,:w].unsqueeze(0).expand(n,h,w)+offset[:,2*i+1,:,:] grid=torch.cat([2*(grid_x.unsqueeze(3)/h-0.5),2*(grid_y.unsqueeze(3)/w-0.5)],dim=3) new_feature=torch.nn.functional.grid_sample(support,grid) feature.append(new_feature) weight.append(torch.nn.functional.cosine_similarity(reference,new_feature,dim=1).unsqueeze(1)) warp_grid.append(grid) feature=torch.stack(feature,dim=4) weight=torch.stack(weight,dim=4) weight=torch.nn.functional.softmax(weight,dim=4) warp_feature=torch.sum(feature*weight,dim=4) # print(torch.stack(warp_grid,dim=4).shape,weight.shape) trans=torch.sum(torch.stack(warp_grid,dim=4)*weight.squeeze(1).unsqueeze(3),dim=4) if test: return warp_feature,trans,[offset,weight,trans] else: return warp_feature,trans def forward(self,datas,test=False): # torch.Size([2, 256, 48, 156]) # torch.Size([2, 256, 24, 78]) # torch.Size([2, 256, 12, 39]) # torch.Size([2, 256, 6, 20]) # torch.Size([2, 256, 3, 10]) output=[] self.agg=[self.agg1,self.agg2,self.agg3,self.agg4,self.agg5] shuffle_id=np.random.randint(low=0,high=datas[0].shape[0],size=datas[0].shape[0]) shuffle_id[shuffle_id==np.arange(datas[0].shape[0])]=shuffle_id[shuffle_id==np.arange(datas[0].shape[0])]-1 shuffle_id2=np.random.randint(low=0,high=datas[0].shape[0],size=datas[0].shape[0]) shuffle_id2[shuffle_id2==np.arange(datas[0].shape[0])]=shuffle_id2[shuffle_id2==np.arange(datas[0].shape[0])]-1 print('shuffle id:',shuffle_id) print('shuffle id2:',shuffle_id2) for i in [-1,-2,-3,-4,-5]: reference=datas[i]+0 support=datas[i][shuffle_id,:,:,:]+0 n=reference.shape[0] h=reference.shape[-2] w=reference.shape[-1] if i==-1: tk_feature,trans=self.agg[i](support,reference,test) else: trans=trans.transpose(1,3) trans=torch.nn.functional.interpolate(trans*2,(w,h)).transpose(1,3) support=torch.nn.functional.grid_sample(support,trans) tk_feature,trans=self.agg[i](support,reference,test) # weight1=torch.nn.functional.cosine_similarity(reference,tk_feature,dim=1).unsqueeze(1).unsqueeze(1) # weight0=torch.ones_like(weight1) # weight=torch.nn.functional.softmax(torch.cat([weight0,weight1],dim=1),dim=1) # feature=torch.cat([reference.unsqueeze(1),tk_feature.unsqueeze(1)],dim=1) # agg_feature=torch.sum(feature*weight,dim=1) output.append(tk_feature) return_out=[] for i in [-1,-2,-3,-4,-5]: return_out.append(output[i]) return tuple(return_out) def forward_test(self,datas,test=True): output=[] self.offset=[] self.agg=[self.agg1,self.agg2,self.agg3,self.agg4,self.agg5] for i in [-1,-2,-3,-4,-5]: reference=datas[i][:1,:,:,:]+0 if datas[i].shape[0]>1: shuffle_id=np.random.randint(low=1,high=datas[i].shape[0],size=1) support=datas[i][shuffle_id,:,:,:]+0 else: shuffle_id=[0] support=datas[i][shuffle_id,:,:,:]+0 # print(shuffle_id) # print(reference.shape,support.shape) n=reference.shape[0] h=reference.shape[-2] w=reference.shape[-1] if i==-1: tk_feature,trans,offset=self.agg[i](support,reference,test) else: trans=trans.transpose(1,3) trans=torch.nn.functional.interpolate(trans*2,(w,h)).transpose(1,3) support=torch.nn.functional.grid_sample(support,trans) tk_feature,trans,offset=self.agg[i](support,reference,test) # weight1=torch.nn.functional.cosine_similarity(reference,tk_feature,dim=1).unsqueeze(1).unsqueeze(1) # weight0=torch.ones_like(weight1) # weight=torch.nn.functional.softmax(torch.cat([weight0,weight1],dim=1),dim=1) # feature=torch.cat([reference.unsqueeze(1),tk_feature.unsqueeze(1)],dim=1) # agg_feature=torch.sum(feature*weight,dim=1) output.append(tk_feature) self.offset.append(offset) return_out=[] for i in [-1,-2,-3,-4,-5]: return_out.append(output[i]) return tuple(return_out) @AGG.register_module class STSN(nn.Module): def __init__(self,in_channels,out_channels,dcn): super(STSN,self).__init__() self.deformable_groups = dcn.get('deformable_groups', 1) self.with_modulated_dcn = dcn.get('modulated', False) if not self.with_modulated_dcn: conv_op = DeformConv offset_channels = 18 else: conv_op = ModulatedDeformConv offset_channels = 27 #agg1 self.conv11_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.conv11 = conv_op(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv12_offset = nn.Conv2d(in_channels, self.deformable_groups * offset_channels, kernel_size=3, stride=1, padding=1, dilation=1) self.conv12 = conv_op(in_channels,in_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv13_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv13 = conv_op(in_channels,in_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv14_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv14 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) #agg2 self.conv21_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.conv21 = conv_op(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv22_offset = nn.Conv2d(in_channels, self.deformable_groups * offset_channels, kernel_size=3, stride=1, padding=1, dilation=1) self.conv22 = conv_op(in_channels,in_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv23_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv23 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) #agg3 self.conv31_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.conv31 = conv_op(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv32_offset = nn.Conv2d(in_channels, self.deformable_groups * offset_channels, kernel_size=3, stride=1, padding=1, dilation=1) self.conv32 = conv_op(in_channels,in_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv33_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv33 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) #agg4 self.conv41_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.conv41 = conv_op(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv42_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv42 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) #agg5 self.conv51_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.conv51 = conv_op(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv52_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv52 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.relu=nn.LeakyReLU(inplace=True) self.offset=[] self.mask=[] print('init transform kernel') self.trans_kernel=torch.from_numpy(np.load('/home/ld/RepPoints/mmdetection/mmdet/ops/dcn/init_kernel.npy')) self.trans_kernel=nn.Parameter(self.trans_kernel) def init_weights(self, pretrained=None): if isinstance(pretrained, str): logger = logging.getLogger() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: for m in self.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m) elif isinstance(m, (_BatchNorm, nn.GroupNorm)): constant_init(m, 1) bias_cls = bias_init_with_prob(0.01) normal_init(self.conv11_offset, std=0.01) normal_init(self.conv11, std=0.01) normal_init(self.conv12_offset, std=0.01) normal_init(self.conv12, std=0.01) normal_init(self.conv13_offset, std=0.01) normal_init(self.conv13, std=0.01) normal_init(self.conv14_offset, std=0.01) normal_init(self.conv14, std=0.01) normal_init(self.conv21_offset, std=0.01) normal_init(self.conv21, std=0.01) normal_init(self.conv22_offset, std=0.01) normal_init(self.conv22, std=0.01) normal_init(self.conv23_offset, std=0.01) normal_init(self.conv23, std=0.01) normal_init(self.conv31_offset, std=0.01) normal_init(self.conv31, std=0.01) normal_init(self.conv32_offset, std=0.01) normal_init(self.conv32, std=0.01) normal_init(self.conv33_offset, std=0.01) normal_init(self.conv33, std=0.01) normal_init(self.conv41_offset, std=0.01) normal_init(self.conv41, std=0.01) normal_init(self.conv42_offset, std=0.01) normal_init(self.conv42, std=0.01) normal_init(self.conv51_offset, std=0.01) normal_init(self.conv51, std=0.01) normal_init(self.conv52_offset, std=0.01) normal_init(self.conv52, std=0.01) def agg1(self,support,reference,test=False): feature_f0=torch.cat([support,reference],dim=1) if self.with_modulated_dcn: offset_mask1 = self.conv11_offset(feature_f0) offset = offset_mask1[:, :18 * self.deformable_groups, :, :] mask = offset_mask1[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv11(feature_f0, offset, mask) offset_mask2 = self.conv12_offset(out) offset = offset_mask2[:, :18 * self.deformable_groups, :, :] mask = offset_mask2[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv12(out, offset, mask) offset_mask3 = self.conv13_offset(out) offset = offset_mask3[:, :18 * self.deformable_groups, :, :] mask = offset_mask3[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv13(out, offset, mask) offset_mask4 = self.conv14_offset(out) offset = offset_mask4[:, :18 * self.deformable_groups, :, :] mask = offset_mask4[:, -9 * self.deformable_groups:, :, :] # mask = mask.sigmoid() mask=torch.nn.functional.softmax(mask,dim=1) print(torch.max(mask,dim=1)[0].mean()) kernel_weight=self.trans_kernel.detach()*9 self.conv14.weight=nn.Parameter(self.trans_kernel.detach()) out = self.conv14(support, offset, mask) if test: return out,offset,mask else: return out else: # print('agg1',feature_f0.device,self.conv11_offset.weight.device) offset1=self.conv11_offset(feature_f0) feature_f1=self.conv11(feature_f0,offset1) offset2=self.conv12_offset(feature_f1) feature_f2=self.conv12(feature_f1,offset2) offset3=self.conv13_offset(feature_f2) feature_f3=self.conv13(feature_f2,offset3) offset4=self.conv14_offset(feature_f3) self.conv14.weight=nn.Parameter(self.trans_kernel.detach()) agg_features=self.conv14(support,offset4) if test: return agg_features,offset4 else: return agg_features def agg2(self,support,reference,test=False): feature_f0=torch.cat([support,reference],dim=1) if self.with_modulated_dcn: offset_mask1 = self.conv21_offset(feature_f0) offset = offset_mask1[:, :18 * self.deformable_groups, :, :] mask = offset_mask1[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv21(feature_f0, offset, mask) offset_mask2 = self.conv22_offset(out) offset = offset_mask2[:, :18 * self.deformable_groups, :, :] mask = offset_mask2[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv22(out, offset, mask) offset_mask4 = self.conv23_offset(out) offset = offset_mask4[:, :18 * self.deformable_groups, :, :] mask = offset_mask4[:, -9 * self.deformable_groups:, :, :] # mask = mask.sigmoid() mask=torch.nn.functional.softmax(mask,dim=1) kernel_weight=self.trans_kernel.detach()*9 self.conv23.weight=nn.Parameter(self.trans_kernel.detach()) out = self.conv23(support, offset, mask) if test: return out,offset,mask else: return out else: offset1=self.conv21_offset(feature_f0) feature_f1=self.conv21(feature_f0,offset1) offset2=self.conv22_offset(feature_f1) feature_f2=self.conv22(feature_f1,offset2) offset3=self.conv23_offset(feature_f2) self.conv23.weight=nn.Parameter(self.trans_kernel.detach()) agg_features=self.conv23(support,offset3) if test: return agg_features,offset3 else: return agg_features def agg3(self,support,reference,test=False): feature_f0=torch.cat([support,reference],dim=1) if self.with_modulated_dcn: offset_mask1 = self.conv31_offset(feature_f0) offset = offset_mask1[:, :18 * self.deformable_groups, :, :] mask = offset_mask1[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv31(feature_f0, offset, mask) offset_mask2 = self.conv32_offset(out) offset = offset_mask2[:, :18 * self.deformable_groups, :, :] mask = offset_mask2[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv32(out, offset, mask) offset_mask4 = self.conv33_offset(out) offset = offset_mask4[:, :18 * self.deformable_groups, :, :] mask = offset_mask4[:, -9 * self.deformable_groups:, :, :] # mask = mask.sigmoid() mask=torch.nn.functional.softmax(mask,dim=1) kernel_weight=self.trans_kernel.detach()*9 self.conv33.weight=nn.Parameter(self.trans_kernel.detach()) out = self.conv33(support, offset, mask) if test: return out,offset,mask else: return out else: offset1=self.conv31_offset(feature_f0) feature_f1=self.conv31(feature_f0,offset1) offset2=self.conv32_offset(feature_f1) feature_f2=self.conv32(feature_f1,offset2) offset3=self.conv33_offset(feature_f2) self.conv33.weight=nn.Parameter(self.trans_kernel.detach()) agg_features=self.conv33(support,offset3) if test: return agg_features,offset3 else: return agg_features def agg4(self,support,reference,test=False): feature_f0=torch.cat([support,reference],dim=1) if self.with_modulated_dcn: offset_mask1 = self.conv41_offset(feature_f0) offset = offset_mask1[:, :18 * self.deformable_groups, :, :] mask = offset_mask1[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv41(feature_f0, offset, mask) offset_mask4 = self.conv42_offset(out) offset = offset_mask4[:, :18 * self.deformable_groups, :, :] mask = offset_mask4[:, -9 * self.deformable_groups:, :, :] # mask = mask.sigmoid() mask=torch.nn.functional.softmax(mask,dim=1) kernel_weight=self.trans_kernel.detach()*9 self.conv42.weight=nn.Parameter(self.trans_kernel.detach()) out = self.conv42(support, offset, mask) if test: return out,offset,mask else: return out else: offset1=self.conv41_offset(feature_f0) feature_f1=self.conv41(feature_f0,offset1) offset2=self.conv42_offset(feature_f1) self.conv42.weight=nn.Parameter(self.trans_kernel.detach()) agg_features=self.conv42(support,offset2) if test: return agg_features,offset2 else: return agg_features def agg5(self,support,reference,test=False): feature_f0=torch.cat([support,reference],dim=1) if self.with_modulated_dcn: offset_mask1 = self.conv51_offset(feature_f0) offset = offset_mask1[:, :18 * self.deformable_groups, :, :] mask = offset_mask1[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv51(feature_f0, offset, mask) offset_mask4 = self.conv52_offset(out) offset = offset_mask4[:, :18 * self.deformable_groups, :, :] mask = offset_mask4[:, -9 * self.deformable_groups:, :, :] # mask = mask.sigmoid() mask=torch.nn.functional.softmax(mask,dim=1) kernel_weight=self.trans_kernel.detach()*9 self.conv52.weight=nn.Parameter(self.trans_kernel.detach()) out = self.conv52(support, offset, mask) if test: return out,offset,mask else: return out else: offset1=self.conv51_offset(feature_f0) feature_f1=self.conv51(feature_f0,offset1) offset2=self.conv52_offset(feature_f1) self.conv52.weight=nn.Parameter(self.trans_kernel.detach()) agg_features=self.conv52(support,offset2) if test: return agg_features,offset2 else: return agg_features def forward(self,datas,test=False): # torch.Size([2, 256, 48, 156]) # torch.Size([2, 256, 24, 78]) # torch.Size([2, 256, 12, 39]) # torch.Size([2, 256, 6, 20]) # torch.Size([2, 256, 3, 10]) output=[] self.agg=[self.agg1,self.agg2,self.agg3,self.agg4,self.agg5] shuffle_id=np.random.randint(low=0,high=datas[0].shape[0],size=datas[0].shape[0]) shuffle_id[shuffle_id==np.arange(datas[0].shape[0])]=shuffle_id[shuffle_id==np.arange(datas[0].shape[0])]-1 print('shuffle id:',shuffle_id) for i in range(len(datas)): reference=datas[i]+0 support=datas[i][shuffle_id,:,:,:]+0 # print('split',support.device,reference.device,self.conv11.weight.device) tk_feature=self.agg[i](support,reference,test) output.append(tk_feature) return tuple(output) def forward_test(self,datas,test=True): output=[] self.agg=[self.agg1,self.agg2,self.agg3,self.agg4,self.agg5] print('stsn test') for i in range(len(datas)): reference=datas[i][:1,:,:,:]+0 if datas[i].shape[0]>1: shuffle_id=np.random.randint(low=1,high=datas[i].shape[0],size=1) support=datas[i][shuffle_id,:,:,:]+0 else: shuffle_id=[0] support=datas[i][shuffle_id,:,:,:]+0 if self.with_modulated_dcn: tk_feature,soffset4,mask4=self.agg[i](support,reference,test) self.offset.append(soffset4) self.mask.append(mask4) else: tk_feature,soffset4=self.agg[i](support,reference,test) self.offset.append(soffset4) output.append(tk_feature) return tuple(output) @AGG.register_module class STSN_fuse(nn.Module): def __init__(self,in_channels,out_channels,dcn): super(STSN_fuse,self).__init__() self.deformable_groups = dcn.get('deformable_groups', 1) self.with_modulated_dcn = dcn.get('modulated', False) if not self.with_modulated_dcn: conv_op = DeformConv offset_channels = 18 else: conv_op = ModulatedDeformConv offset_channels = 27 #agg1 self.conv11_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.conv11 = conv_op(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv12_offset = nn.Conv2d(in_channels, self.deformable_groups * offset_channels, kernel_size=3, stride=1, padding=1, dilation=1) self.conv12 = conv_op(in_channels,in_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv13_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv13 = conv_op(in_channels,in_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv14_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv14 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) #agg2 self.conv21_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.conv21 = conv_op(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv22_offset = nn.Conv2d(in_channels, self.deformable_groups * offset_channels, kernel_size=3, stride=1, padding=1, dilation=1) self.conv22 = conv_op(in_channels,in_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv23_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv23 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) #agg3 self.conv31_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.conv31 = conv_op(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv32_offset = nn.Conv2d(in_channels, self.deformable_groups * offset_channels, kernel_size=3, stride=1, padding=1, dilation=1) self.conv32 = conv_op(in_channels,in_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv33_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv33 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) #agg4 self.conv41_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.conv41 = conv_op(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv42_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv42 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) #agg5 self.conv51_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.conv51 = conv_op(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv52_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv52 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.relu=nn.LeakyReLU(inplace=True) self.offset=[] self.mask=[] print('init transform kernel') self.trans_kernel=torch.from_numpy(np.load('/home/ld/RepPoints/mmdetection/mmdet/ops/dcn/init_kernel.npy')) self.trans_kernel=nn.Parameter(self.trans_kernel) def init_weights(self, pretrained=None): if isinstance(pretrained, str): logger = logging.getLogger() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: for m in self.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m) elif isinstance(m, (_BatchNorm, nn.GroupNorm)): constant_init(m, 1) bias_cls = bias_init_with_prob(0.01) normal_init(self.conv11_offset, std=0.01) normal_init(self.conv11, std=0.01) normal_init(self.conv12_offset, std=0.01) normal_init(self.conv12, std=0.01) normal_init(self.conv13_offset, std=0.01) normal_init(self.conv13, std=0.01) normal_init(self.conv14_offset, std=0.01) normal_init(self.conv14, std=0.01) normal_init(self.conv21_offset, std=0.01) normal_init(self.conv21, std=0.01) normal_init(self.conv22_offset, std=0.01) normal_init(self.conv22, std=0.01) normal_init(self.conv23_offset, std=0.01) normal_init(self.conv23, std=0.01) normal_init(self.conv31_offset, std=0.01) normal_init(self.conv31, std=0.01) normal_init(self.conv32_offset, std=0.01) normal_init(self.conv32, std=0.01) normal_init(self.conv33_offset, std=0.01) normal_init(self.conv33, std=0.01) normal_init(self.conv41_offset, std=0.01) normal_init(self.conv41, std=0.01) normal_init(self.conv42_offset, std=0.01) normal_init(self.conv42, std=0.01) normal_init(self.conv51_offset, std=0.01) normal_init(self.conv51, std=0.01) normal_init(self.conv52_offset, std=0.01) normal_init(self.conv52, std=0.01) def agg1(self,support,reference,test=False): feature_f0=torch.cat([support,reference],dim=1) if self.with_modulated_dcn: offset_mask1 = self.conv11_offset(feature_f0) offset = offset_mask1[:, :18 * self.deformable_groups, :, :] mask = offset_mask1[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv11(feature_f0, offset, mask) offset_mask2 = self.conv12_offset(out) offset = offset_mask2[:, :18 * self.deformable_groups, :, :] mask = offset_mask2[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv12(out, offset, mask) offset_mask3 = self.conv13_offset(out) offset = offset_mask3[:, :18 * self.deformable_groups, :, :] mask = offset_mask3[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv13(out, offset, mask) offset_mask4 = self.conv14_offset(out) offset = offset_mask4[:, :18 * self.deformable_groups, :, :] mask = offset_mask4[:, -9 * self.deformable_groups:, :, :] # mask = mask.sigmoid() mask=torch.nn.functional.softmax(mask,dim=1) # print('mask weight',torch.max(mask,dim=1)[0].mean().item()) kernel_weight=self.trans_kernel.detach()*9 self.conv14.weight=nn.Parameter(self.trans_kernel.detach()) out = self.conv14(support, offset, mask) if test: return out,offset,mask else: return out else: # print('agg1',feature_f0.device,self.conv11_offset.weight.device) offset1=self.conv11_offset(feature_f0) feature_f1=self.conv11(feature_f0,offset1) offset2=self.conv12_offset(feature_f1) feature_f2=self.conv12(feature_f1,offset2) offset3=self.conv13_offset(feature_f2) feature_f3=self.conv13(feature_f2,offset3) offset4=self.conv14_offset(feature_f3) self.conv14.weight=nn.Parameter(self.trans_kernel.detach()) agg_features=self.conv14(support,offset4) if test: return agg_features,offset4 else: return agg_features def agg2(self,support,reference,test=False): feature_f0=torch.cat([support,reference],dim=1) if self.with_modulated_dcn: offset_mask1 = self.conv21_offset(feature_f0) offset = offset_mask1[:, :18 * self.deformable_groups, :, :] mask = offset_mask1[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv21(feature_f0, offset, mask) offset_mask2 = self.conv22_offset(out) offset = offset_mask2[:, :18 * self.deformable_groups, :, :] mask = offset_mask2[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv22(out, offset, mask) offset_mask4 = self.conv23_offset(out) offset = offset_mask4[:, :18 * self.deformable_groups, :, :] mask = offset_mask4[:, -9 * self.deformable_groups:, :, :] # mask = mask.sigmoid() mask=torch.nn.functional.softmax(mask,dim=1) kernel_weight=self.trans_kernel.detach()*9 self.conv23.weight=nn.Parameter(self.trans_kernel.detach()) out = self.conv23(support, offset, mask) if test: return out,offset,mask else: return out else: offset1=self.conv21_offset(feature_f0) feature_f1=self.conv21(feature_f0,offset1) offset2=self.conv22_offset(feature_f1) feature_f2=self.conv22(feature_f1,offset2) offset3=self.conv23_offset(feature_f2) self.conv23.weight=nn.Parameter(self.trans_kernel.detach()) agg_features=self.conv23(support,offset3) if test: return agg_features,offset3 else: return agg_features def agg3(self,support,reference,test=False): feature_f0=torch.cat([support,reference],dim=1) if self.with_modulated_dcn: offset_mask1 = self.conv31_offset(feature_f0) offset = offset_mask1[:, :18 * self.deformable_groups, :, :] mask = offset_mask1[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv31(feature_f0, offset, mask) offset_mask2 = self.conv32_offset(out) offset = offset_mask2[:, :18 * self.deformable_groups, :, :] mask = offset_mask2[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv32(out, offset, mask) offset_mask4 = self.conv33_offset(out) offset = offset_mask4[:, :18 * self.deformable_groups, :, :] mask = offset_mask4[:, -9 * self.deformable_groups:, :, :] # mask = mask.sigmoid() mask=torch.nn.functional.softmax(mask,dim=1) kernel_weight=self.trans_kernel.detach()*9 self.conv33.weight=nn.Parameter(self.trans_kernel.detach()) out = self.conv33(support, offset, mask) if test: return out,offset,mask else: return out else: offset1=self.conv31_offset(feature_f0) feature_f1=self.conv31(feature_f0,offset1) offset2=self.conv32_offset(feature_f1) feature_f2=self.conv32(feature_f1,offset2) offset3=self.conv33_offset(feature_f2) self.conv33.weight=nn.Parameter(self.trans_kernel.detach()) agg_features=self.conv33(support,offset3) if test: return agg_features,offset3 else: return agg_features def agg4(self,support,reference,test=False): feature_f0=torch.cat([support,reference],dim=1) if self.with_modulated_dcn: offset_mask1 = self.conv41_offset(feature_f0) offset = offset_mask1[:, :18 * self.deformable_groups, :, :] mask = offset_mask1[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv41(feature_f0, offset, mask) offset_mask4 = self.conv42_offset(out) offset = offset_mask4[:, :18 * self.deformable_groups, :, :] mask = offset_mask4[:, -9 * self.deformable_groups:, :, :] # mask = mask.sigmoid() mask=torch.nn.functional.softmax(mask,dim=1) kernel_weight=self.trans_kernel.detach()*9 self.conv42.weight=nn.Parameter(self.trans_kernel.detach()) out = self.conv42(support, offset, mask) if test: return out,offset,mask else: return out else: offset1=self.conv41_offset(feature_f0) feature_f1=self.conv41(feature_f0,offset1) offset2=self.conv42_offset(feature_f1) self.conv42.weight=nn.Parameter(self.trans_kernel.detach()) agg_features=self.conv42(support,offset2) if test: return agg_features,offset2 else: return agg_features def agg5(self,support,reference,test=False): feature_f0=torch.cat([support,reference],dim=1) if self.with_modulated_dcn: offset_mask1 = self.conv51_offset(feature_f0) offset = offset_mask1[:, :18 * self.deformable_groups, :, :] mask = offset_mask1[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv51(feature_f0, offset, mask) offset_mask4 = self.conv52_offset(out) offset = offset_mask4[:, :18 * self.deformable_groups, :, :] mask = offset_mask4[:, -9 * self.deformable_groups:, :, :] # mask = mask.sigmoid() mask=torch.nn.functional.softmax(mask,dim=1) kernel_weight=self.trans_kernel.detach()*9 self.conv52.weight=nn.Parameter(self.trans_kernel.detach()) out = self.conv52(support, offset, mask) if test: return out,offset,mask else: return out else: offset1=self.conv51_offset(feature_f0) feature_f1=self.conv51(feature_f0,offset1) offset2=self.conv52_offset(feature_f1) self.conv52.weight=nn.Parameter(self.trans_kernel.detach()) agg_features=self.conv52(support,offset2) if test: return agg_features,offset2 else: return agg_features def forward(self,datas,test=False): # torch.Size([2, 256, 48, 156]) # torch.Size([2, 256, 24, 78]) # torch.Size([2, 256, 12, 39]) # torch.Size([2, 256, 6, 20]) # torch.Size([2, 256, 3, 10]) agg_output=[] refer_out=[] support1_out=[] support2_out=[] self.agg=[self.agg1,self.agg2,self.agg3,self.agg4,self.agg5] shuffle_id=np.random.randint(low=0,high=datas[0].shape[0],size=datas[0].shape[0]) shuffle_id[shuffle_id==np.arange(datas[0].shape[0])]=shuffle_id[shuffle_id==np.arange(datas[0].shape[0])]-1 shuffle_id2=np.random.randint(low=0,high=datas[0].shape[0],size=datas[0].shape[0]) shuffle_id2[shuffle_id2==np.arange(datas[0].shape[0])]=shuffle_id2[shuffle_id2==np.arange(datas[0].shape[0])]-1 print('shuffle id:',shuffle_id) print('shuffle id2:',shuffle_id2) for i in range(len(datas)): reference=datas[i]+0 support=datas[i][shuffle_id,:,:,:]+0 tk_feature1=self.agg[i](support.detach(),reference.detach(),test) support=datas[i][shuffle_id2,:,:,:]+0 tk_feature2=self.agg[i](support.detach(),reference.detach(),test) weight1=torch.nn.functional.cosine_similarity(reference.detach(),tk_feature1,dim=1).unsqueeze(1).unsqueeze(1) weight2=torch.nn.functional.cosine_similarity(reference.detach(),tk_feature2,dim=1).unsqueeze(1).unsqueeze(1) weight0=torch.ones_like(weight1) weight=torch.nn.functional.softmax(torch.cat([weight0,weight1,weight2],dim=1),dim=1) print('agg weight',(weight[:,0,...]).mean().item()) feature=torch.cat([reference.unsqueeze(1),tk_feature1.unsqueeze(1),tk_feature2.unsqueeze(1)],dim=1) agg_feature=torch.sum(feature*weight,dim=1) agg_output.append(agg_feature) refer_out.append(reference) support1_out.append(tk_feature1) support2_out.append(tk_feature2) # print(len(agg_output),len(refer_out),len(support1_out),print(support2_out)) return [tuple(agg_output),tuple(refer_out),tuple(support1_out),tuple(support2_out)] def forward_test(self,datas,test=True): output=[] self.agg=[self.agg1,self.agg2,self.agg3,self.agg4,self.agg5] print('stsn test') self.offset=[] self.mask=[] for i in range(len(datas)): reference=datas[i][:1,:,:,:]+0 if datas[i].shape[0]>1: shuffle_id=np.random.randint(low=1,high=datas[i].shape[0],size=1) support=datas[i][shuffle_id,:,:,:]+0 else: shuffle_id=[0] support=datas[i][shuffle_id,:,:,:]+0 if self.with_modulated_dcn: tk_feature,soffset4,mask4=self.agg[i](support,reference,test) self.offset.append(soffset4) self.mask.append(mask4) else: tk_feature,soffset4=self.agg[i](support,reference,test) self.offset.append(soffset4) weight1=torch.nn.functional.cosine_similarity(reference,tk_feature,dim=1).unsqueeze(1).unsqueeze(1) weight0=torch.ones_like(weight1) weight=torch.nn.functional.softmax(torch.cat([weight0,weight1],dim=1),dim=1) feature=torch.cat([reference.unsqueeze(1),tk_feature.unsqueeze(1)],dim=1) agg_feature=torch.sum(feature*weight,dim=1) output.append(agg_feature) return tuple(output) def forward_eval(self,datas,test=True): output=[] self.agg=[self.agg1,self.agg2,self.agg3,self.agg4,self.agg5] print('stsn eval') self.offset=[] self.mask=[] refer_out=[] agg_out=[] support_out=[] self.offset=[] self.mask=[] for i in range(datas[0].shape[0]-1): support_out.append([]) self.offset.append([]) self.mask.append([]) out=[] for i in range(len(datas)): reference=datas[i][:1,:,:,:]+0 refer_out.append(reference) if datas[i].shape[0]>1: support=datas[i][1:,:,:,:]+0 else: shuffle_id=[0] support=datas[i][:1,:,:,:]+0 weight0=torch.ones_like(torch.nn.functional.cosine_similarity(reference,reference,dim=1).unsqueeze(1).unsqueeze(1)) feature=reference.unsqueeze(1) for j in range(support.shape[0]): tk_feature,offset,mask=self.agg[i](support[j:j+1,...],reference,test) weight=torch.nn.functional.cosine_similarity(reference,tk_feature,dim=1).unsqueeze(1).unsqueeze(1) weight0=torch.cat([weight0,weight],dim=1) feature=torch.cat([feature,tk_feature.unsqueeze(1)],dim=1) support_out[j].append(tk_feature) self.offset[j].append(offset) self.mask[j].append(mask) weight=torch.nn.functional.softmax(weight0,dim=1) agg_feature=torch.sum(feature*weight,dim=1) agg_out.append(agg_feature) for i in range(datas[0].shape[0]-1): support_out[i]=tuple(support_out[i]) out=[tuple(refer_out),tuple(agg_out)]+support_out return out @AGG.register_module class STSN_fuse_c(nn.Module): #fuse on each channel def __init__(self,in_channels,out_channels,dcn): super(STSN_fuse_c,self).__init__() self.deformable_groups = dcn.get('deformable_groups', 1) self.with_modulated_dcn = dcn.get('modulated', False) if not self.with_modulated_dcn: conv_op = DeformConv offset_channels = 18 else: conv_op = ModulatedDeformConv offset_channels = 27 #agg1 self.conv11_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.conv11 = conv_op(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv12_offset = nn.Conv2d(in_channels, self.deformable_groups * offset_channels, kernel_size=3, stride=1, padding=1, dilation=1) self.conv12 = conv_op(in_channels,in_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv13_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv13 = conv_op(in_channels,in_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv14_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv14 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) #agg2 self.conv21_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.conv21 = conv_op(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv22_offset = nn.Conv2d(in_channels, self.deformable_groups * offset_channels, kernel_size=3, stride=1, padding=1, dilation=1) self.conv22 = conv_op(in_channels,in_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv23_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv23 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) #agg3 self.conv31_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.conv31 = conv_op(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv32_offset = nn.Conv2d(in_channels, self.deformable_groups * offset_channels, kernel_size=3, stride=1, padding=1, dilation=1) self.conv32 = conv_op(in_channels,in_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv33_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv33 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) #agg4 self.conv41_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.conv41 = conv_op(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv42_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv42 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) #agg5 self.conv51_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.conv51 = conv_op(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv52_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv52 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.weight_conv=nn.Sequential(nn.Conv3d(out_channels,out_channels, kernel_size=(3,1,1), stride=1,padding=(1,0,0),dilation=1), nn.Conv3d(out_channels,out_channels, kernel_size=(3,1,1), stride=1,padding=(1,0,0),dilation=1)) self.relu=nn.LeakyReLU(inplace=True) self.offset=[] self.mask=[] print('init transform kernel') self.trans_kernel=torch.from_numpy(np.load('/home/ld/RepPoints/mmdetection/mmdet/ops/dcn/init_kernel.npy')) self.trans_kernel=nn.Parameter(self.trans_kernel) def init_weights(self, pretrained=None): if isinstance(pretrained, str): logger = logging.getLogger() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: for m in self.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m) elif isinstance(m, (_BatchNorm, nn.GroupNorm)): constant_init(m, 1) bias_cls = bias_init_with_prob(0.01) normal_init(self.conv11_offset, std=0.01) normal_init(self.conv11, std=0.01) normal_init(self.conv12_offset, std=0.01) normal_init(self.conv12, std=0.01) normal_init(self.conv13_offset, std=0.01) normal_init(self.conv13, std=0.01) normal_init(self.conv14_offset, std=0.01) normal_init(self.conv14, std=0.01) normal_init(self.conv21_offset, std=0.01) normal_init(self.conv21, std=0.01) normal_init(self.conv22_offset, std=0.01) normal_init(self.conv22, std=0.01) normal_init(self.conv23_offset, std=0.01) normal_init(self.conv23, std=0.01) normal_init(self.conv31_offset, std=0.01) normal_init(self.conv31, std=0.01) normal_init(self.conv32_offset, std=0.01) normal_init(self.conv32, std=0.01) normal_init(self.conv33_offset, std=0.01) normal_init(self.conv33, std=0.01) normal_init(self.conv41_offset, std=0.01) normal_init(self.conv41, std=0.01) normal_init(self.conv42_offset, std=0.01) normal_init(self.conv42, std=0.01) normal_init(self.conv51_offset, std=0.01) normal_init(self.conv51, std=0.01) normal_init(self.conv52_offset, std=0.01) normal_init(self.conv52, std=0.01) def agg1(self,support,reference,test=False): feature_f0=torch.cat([support,reference],dim=1) if self.with_modulated_dcn: offset_mask1 = self.conv11_offset(feature_f0) offset = offset_mask1[:, :18 * self.deformable_groups, :, :] mask = offset_mask1[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv11(feature_f0, offset, mask) offset_mask2 = self.conv12_offset(out) offset = offset_mask2[:, :18 * self.deformable_groups, :, :] mask = offset_mask2[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv12(out, offset, mask) offset_mask3 = self.conv13_offset(out) offset = offset_mask3[:, :18 * self.deformable_groups, :, :] mask = offset_mask3[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv13(out, offset, mask) offset_mask4 = self.conv14_offset(out) offset = offset_mask4[:, :18 * self.deformable_groups, :, :] mask = offset_mask4[:, -9 * self.deformable_groups:, :, :] # mask = mask.sigmoid() mask=torch.nn.functional.softmax(mask,dim=1) # print('mask weight',torch.max(mask,dim=1)[0].mean().item()) kernel_weight=self.trans_kernel.detach()*9 self.conv14.weight=nn.Parameter(self.trans_kernel.detach()) out = self.conv14(support, offset, mask) if test: return out,offset,mask else: return out else: # print('agg1',feature_f0.device,self.conv11_offset.weight.device) offset1=self.conv11_offset(feature_f0) feature_f1=self.conv11(feature_f0,offset1) offset2=self.conv12_offset(feature_f1) feature_f2=self.conv12(feature_f1,offset2) offset3=self.conv13_offset(feature_f2) feature_f3=self.conv13(feature_f2,offset3) offset4=self.conv14_offset(feature_f3) self.conv14.weight=nn.Parameter(self.trans_kernel.detach()) agg_features=self.conv14(support,offset4) if test: return agg_features,offset4 else: return agg_features def agg2(self,support,reference,test=False): feature_f0=torch.cat([support,reference],dim=1) if self.with_modulated_dcn: offset_mask1 = self.conv21_offset(feature_f0) offset = offset_mask1[:, :18 * self.deformable_groups, :, :] mask = offset_mask1[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv21(feature_f0, offset, mask) offset_mask2 = self.conv22_offset(out) offset = offset_mask2[:, :18 * self.deformable_groups, :, :] mask = offset_mask2[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv22(out, offset, mask) offset_mask4 = self.conv23_offset(out) offset = offset_mask4[:, :18 * self.deformable_groups, :, :] mask = offset_mask4[:, -9 * self.deformable_groups:, :, :] # mask = mask.sigmoid() mask=torch.nn.functional.softmax(mask,dim=1) kernel_weight=self.trans_kernel.detach()*9 self.conv23.weight=nn.Parameter(self.trans_kernel.detach()) out = self.conv23(support, offset, mask) if test: return out,offset,mask else: return out else: offset1=self.conv21_offset(feature_f0) feature_f1=self.conv21(feature_f0,offset1) offset2=self.conv22_offset(feature_f1) feature_f2=self.conv22(feature_f1,offset2) offset3=self.conv23_offset(feature_f2) self.conv23.weight=nn.Parameter(self.trans_kernel.detach()) agg_features=self.conv23(support,offset3) if test: return agg_features,offset3 else: return agg_features def agg3(self,support,reference,test=False): feature_f0=torch.cat([support,reference],dim=1) if self.with_modulated_dcn: offset_mask1 = self.conv31_offset(feature_f0) offset = offset_mask1[:, :18 * self.deformable_groups, :, :] mask = offset_mask1[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv31(feature_f0, offset, mask) offset_mask2 = self.conv32_offset(out) offset = offset_mask2[:, :18 * self.deformable_groups, :, :] mask = offset_mask2[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv32(out, offset, mask) offset_mask4 = self.conv33_offset(out) offset = offset_mask4[:, :18 * self.deformable_groups, :, :] mask = offset_mask4[:, -9 * self.deformable_groups:, :, :] # mask = mask.sigmoid() mask=torch.nn.functional.softmax(mask,dim=1) kernel_weight=self.trans_kernel.detach()*9 self.conv33.weight=nn.Parameter(self.trans_kernel.detach()) out = self.conv33(support, offset, mask) if test: return out,offset,mask else: return out else: offset1=self.conv31_offset(feature_f0) feature_f1=self.conv31(feature_f0,offset1) offset2=self.conv32_offset(feature_f1) feature_f2=self.conv32(feature_f1,offset2) offset3=self.conv33_offset(feature_f2) self.conv33.weight=nn.Parameter(self.trans_kernel.detach()) agg_features=self.conv33(support,offset3) if test: return agg_features,offset3 else: return agg_features def agg4(self,support,reference,test=False): feature_f0=torch.cat([support,reference],dim=1) if self.with_modulated_dcn: offset_mask1 = self.conv41_offset(feature_f0) offset = offset_mask1[:, :18 * self.deformable_groups, :, :] mask = offset_mask1[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv41(feature_f0, offset, mask) offset_mask4 = self.conv42_offset(out) offset = offset_mask4[:, :18 * self.deformable_groups, :, :] mask = offset_mask4[:, -9 * self.deformable_groups:, :, :] # mask = mask.sigmoid() mask=torch.nn.functional.softmax(mask,dim=1) kernel_weight=self.trans_kernel.detach()*9 self.conv42.weight=nn.Parameter(self.trans_kernel.detach()) out = self.conv42(support, offset, mask) if test: return out,offset,mask else: return out else: offset1=self.conv41_offset(feature_f0) feature_f1=self.conv41(feature_f0,offset1) offset2=self.conv42_offset(feature_f1) self.conv42.weight=nn.Parameter(self.trans_kernel.detach()) agg_features=self.conv42(support,offset2) if test: return agg_features,offset2 else: return agg_features def agg5(self,support,reference,test=False): feature_f0=torch.cat([support,reference],dim=1) if self.with_modulated_dcn: offset_mask1 = self.conv51_offset(feature_f0) offset = offset_mask1[:, :18 * self.deformable_groups, :, :] mask = offset_mask1[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv51(feature_f0, offset, mask) offset_mask4 = self.conv52_offset(out) offset = offset_mask4[:, :18 * self.deformable_groups, :, :] mask = offset_mask4[:, -9 * self.deformable_groups:, :, :] # mask = mask.sigmoid() mask=torch.nn.functional.softmax(mask,dim=1) kernel_weight=self.trans_kernel.detach()*9 self.conv52.weight=nn.Parameter(self.trans_kernel.detach()) out = self.conv52(support, offset, mask) if test: return out,offset,mask else: return out else: offset1=self.conv51_offset(feature_f0) feature_f1=self.conv51(feature_f0,offset1) offset2=self.conv52_offset(feature_f1) self.conv52.weight=nn.Parameter(self.trans_kernel.detach()) agg_features=self.conv52(support,offset2) if test: return agg_features,offset2 else: return agg_features def forward(self,datas,test=False): # torch.Size([2, 256, 48, 156]) # torch.Size([2, 256, 24, 78]) # torch.Size([2, 256, 12, 39]) # torch.Size([2, 256, 6, 20]) # torch.Size([2, 256, 3, 10]) print('fuse channel') agg_output=[] refer_out=[] support1_out=[] support2_out=[] self.agg=[self.agg1,self.agg2,self.agg3,self.agg4,self.agg5] shuffle_id=np.random.randint(low=0,high=datas[0].shape[0],size=datas[0].shape[0]) shuffle_id[shuffle_id==np.arange(datas[0].shape[0])]=shuffle_id[shuffle_id==np.arange(datas[0].shape[0])]-1 shuffle_id2=np.random.randint(low=0,high=datas[0].shape[0],size=datas[0].shape[0]) shuffle_id2[shuffle_id2==np.arange(datas[0].shape[0])]=shuffle_id2[shuffle_id2==np.arange(datas[0].shape[0])]-1 # print('shuffle id:',shuffle_id) # print('shuffle id2:',shuffle_id2) for i in range(len(datas)): reference=datas[i]+0 support=datas[i][shuffle_id,:,:,:]+0 tk_feature1=self.agg[i](support.detach(),reference.detach(),test) support=datas[i][shuffle_id2,:,:,:]+0 tk_feature2=self.agg[i](support.detach(),reference.detach(),test) # weight1=torch.nn.functional.cosine_similarity(reference.detach(),tk_feature1,dim=1).unsqueeze(1).unsqueeze(1) # weight2=torch.nn.functional.cosine_similarity(reference.detach(),tk_feature2,dim=1).unsqueeze(1).unsqueeze(1) # weight0=torch.ones_like(weight1) # weight=torch.nn.functional.softmax(torch.cat([weight0,weight1,weight2],dim=1),dim=1) weight_f=torch.cat([reference.unsqueeze(2),tk_feature1.unsqueeze(2),tk_feature2.unsqueeze(2)],dim=2) weight_f=self.weight_conv(weight_f) weight=torch.nn.functional.softmax(weight_f,dim=2) print('agg weight',(weight[:,:,0,...]).max().item(),((weight[:,:,0,...]).max()>0.7).float().sum().item()) feature=torch.cat([reference.unsqueeze(2),tk_feature1.unsqueeze(2),tk_feature2.unsqueeze(2)],dim=2) agg_feature=torch.sum(feature*weight,dim=2) agg_output.append(agg_feature) refer_out.append(reference) support1_out.append(tk_feature1) support2_out.append(tk_feature2) # print(len(agg_output),len(refer_out),len(support1_out),print(support2_out)) return [tuple(agg_output),tuple(refer_out),tuple(support1_out),tuple(support2_out)] def forward_test(self,datas,test=True): output=[] self.agg=[self.agg1,self.agg2,self.agg3,self.agg4,self.agg5] print('stsn test') self.offset=[] self.mask=[] for i in range(len(datas)): reference=datas[i][:1,:,:,:]+0 if datas[i].shape[0]>1: shuffle_id=np.random.randint(low=1,high=datas[i].shape[0],size=1) support=datas[i][shuffle_id,:,:,:]+0 else: shuffle_id=[0] support=datas[i][shuffle_id,:,:,:]+0 if self.with_modulated_dcn: tk_feature,soffset4,mask4=self.agg[i](support,reference,test) self.offset.append(soffset4) self.mask.append(mask4) else: tk_feature,soffset4=self.agg[i](support,reference,test) self.offset.append(soffset4) weight1=torch.nn.functional.cosine_similarity(reference,tk_feature,dim=1).unsqueeze(1).unsqueeze(1) weight0=torch.ones_like(weight1) weight=torch.nn.functional.softmax(torch.cat([weight0,weight1],dim=1),dim=1) feature=torch.cat([reference.unsqueeze(1),tk_feature.unsqueeze(1)],dim=1) agg_feature=torch.sum(feature*weight,dim=1) output.append(agg_feature) return tuple(output) def forward_eval(self,datas,test=True): output=[] self.agg=[self.agg1,self.agg2,self.agg3,self.agg4,self.agg5] print('stsn eval') self.offset=[] self.mask=[] refer_out=[] agg_out=[] support_out=[] self.offset=[] self.mask=[] for i in range(datas[0].shape[0]-1): support_out.append([]) self.offset.append([]) self.mask.append([]) out=[] for i in range(len(datas)): reference=datas[i][:1,:,:,:]+0 refer_out.append(reference) if datas[i].shape[0]>1: support=datas[i][1:,:,:,:]+0 else: shuffle_id=[0] support=datas[i][:1,:,:,:]+0 # weight0=torch.ones_like(torch.nn.functional.cosine_similarity(reference,reference,dim=1).unsqueeze(1).unsqueeze(1)) feature=reference.unsqueeze(2) for j in range(support.shape[0]): tk_feature,offset,mask=self.agg[i](support[j:j+1,...],reference,test) # weight=torch.nn.functional.cosine_similarity(reference,tk_feature,dim=1).unsqueeze(1).unsqueeze(1) # weight0=torch.cat([weight0,weight],dim=1) feature=torch.cat([feature,tk_feature.unsqueeze(2)],dim=2) support_out[j].append(tk_feature) self.offset[j].append(offset) self.mask[j].append(mask) weight_f=feature+0 weight_f=self.weight_conv(weight_f) weight=torch.nn.functional.softmax(weight_f,dim=2) agg_feature=torch.sum(feature*weight,dim=2) agg_out.append(agg_feature) for i in range(datas[0].shape[0]-1): support_out[i]=tuple(support_out[i]) out=[tuple(refer_out),tuple(agg_out)]+support_out return out @AGG.register_module class STSN_fuse_t(nn.Module): #trainable dcn weight def __init__(self,in_channels,out_channels,dcn): super(STSN_fuse_t,self).__init__() self.deformable_groups = dcn.get('deformable_groups', 1) self.with_modulated_dcn = dcn.get('modulated', False) if not self.with_modulated_dcn: conv_op = DeformConv offset_channels = 18 else: conv_op = ModulatedDeformConv offset_channels = 27 #agg1 self.conv11_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.conv11 = conv_op(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv12_offset = nn.Conv2d(in_channels, self.deformable_groups * offset_channels, kernel_size=3, stride=1, padding=1, dilation=1) self.conv12 = conv_op(in_channels,in_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv13_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv13 = conv_op(in_channels,in_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv14_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv14 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) #agg2 self.conv21_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.conv21 = conv_op(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv22_offset = nn.Conv2d(in_channels, self.deformable_groups * offset_channels, kernel_size=3, stride=1, padding=1, dilation=1) self.conv22 = conv_op(in_channels,in_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv23_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv23 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) #agg3 self.conv31_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.conv31 = conv_op(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv32_offset = nn.Conv2d(in_channels, self.deformable_groups * offset_channels, kernel_size=3, stride=1, padding=1, dilation=1) self.conv32 = conv_op(in_channels,in_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv33_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv33 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) #agg4 self.conv41_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.conv41 = conv_op(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv42_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv42 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) #agg5 self.conv51_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.conv51 = conv_op(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv52_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv52 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.relu=nn.LeakyReLU(inplace=True) self.offset=[] self.mask=[] print('init transform kernel') self.trans_kernel=torch.from_numpy(np.load('/home/ld/RepPoints/mmdetection/mmdet/ops/dcn/init_kernel.npy')) self.trans_kernel=nn.Parameter(self.trans_kernel) def init_weights(self, pretrained=None): if isinstance(pretrained, str): logger = logging.getLogger() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: for m in self.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m) elif isinstance(m, (_BatchNorm, nn.GroupNorm)): constant_init(m, 1) bias_cls = bias_init_with_prob(0.01) normal_init(self.conv11_offset, std=0.01) normal_init(self.conv11, std=0.01) normal_init(self.conv12_offset, std=0.01) normal_init(self.conv12, std=0.01) normal_init(self.conv13_offset, std=0.01) normal_init(self.conv13, std=0.01) normal_init(self.conv14_offset, std=0.01) normal_init(self.conv14, std=0.01) normal_init(self.conv21_offset, std=0.01) normal_init(self.conv21, std=0.01) normal_init(self.conv22_offset, std=0.01) normal_init(self.conv22, std=0.01) normal_init(self.conv23_offset, std=0.01) normal_init(self.conv23, std=0.01) normal_init(self.conv31_offset, std=0.01) normal_init(self.conv31, std=0.01) normal_init(self.conv32_offset, std=0.01) normal_init(self.conv32, std=0.01) normal_init(self.conv33_offset, std=0.01) normal_init(self.conv33, std=0.01) normal_init(self.conv41_offset, std=0.01) normal_init(self.conv41, std=0.01) normal_init(self.conv42_offset, std=0.01) normal_init(self.conv42, std=0.01) normal_init(self.conv51_offset, std=0.01) normal_init(self.conv51, std=0.01) normal_init(self.conv52_offset, std=0.01) normal_init(self.conv52, std=0.01) def agg1(self,support,reference,test=False): feature_f0=torch.cat([support,reference],dim=1) if self.with_modulated_dcn: offset_mask1 = self.conv11_offset(feature_f0) offset = offset_mask1[:, :18 * self.deformable_groups, :, :] mask = offset_mask1[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv11(feature_f0, offset, mask) offset_mask2 = self.conv12_offset(out) offset = offset_mask2[:, :18 * self.deformable_groups, :, :] mask = offset_mask2[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv12(out, offset, mask) offset_mask3 = self.conv13_offset(out) offset = offset_mask3[:, :18 * self.deformable_groups, :, :] mask = offset_mask3[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv13(out, offset, mask) offset_mask4 = self.conv14_offset(out) offset = offset_mask4[:, :18 * self.deformable_groups, :, :] mask = offset_mask4[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() # mask=torch.nn.functional.softmax(mask,dim=1) # print('mask weight',torch.max(mask,dim=1)[0].mean().item()) # kernel_weight=self.trans_kernel.detach()*9 # self.conv14.weight=nn.Parameter(self.trans_kernel.detach()) out = self.conv14(support, offset, mask) if test: return out,offset,mask else: return out else: # print('agg1',feature_f0.device,self.conv11_offset.weight.device) offset1=self.conv11_offset(feature_f0) feature_f1=self.conv11(feature_f0,offset1) offset2=self.conv12_offset(feature_f1) feature_f2=self.conv12(feature_f1,offset2) offset3=self.conv13_offset(feature_f2) feature_f3=self.conv13(feature_f2,offset3) offset4=self.conv14_offset(feature_f3) # self.conv14.weight=nn.Parameter(self.trans_kernel.detach()) agg_features=self.conv14(support,offset4) if test: return agg_features,offset4 else: return agg_features def agg2(self,support,reference,test=False): feature_f0=torch.cat([support,reference],dim=1) if self.with_modulated_dcn: offset_mask1 = self.conv21_offset(feature_f0) offset = offset_mask1[:, :18 * self.deformable_groups, :, :] mask = offset_mask1[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv21(feature_f0, offset, mask) offset_mask2 = self.conv22_offset(out) offset = offset_mask2[:, :18 * self.deformable_groups, :, :] mask = offset_mask2[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv22(out, offset, mask) offset_mask4 = self.conv23_offset(out) offset = offset_mask4[:, :18 * self.deformable_groups, :, :] mask = offset_mask4[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() # mask=torch.nn.functional.softmax(mask,dim=1) # kernel_weight=self.trans_kernel.detach()*9 # self.conv23.weight=nn.Parameter(self.trans_kernel.detach()) out = self.conv23(support, offset, mask) if test: return out,offset,mask else: return out else: offset1=self.conv21_offset(feature_f0) feature_f1=self.conv21(feature_f0,offset1) offset2=self.conv22_offset(feature_f1) feature_f2=self.conv22(feature_f1,offset2) offset3=self.conv23_offset(feature_f2) # self.conv23.weight=nn.Parameter(self.trans_kernel.detach()) agg_features=self.conv23(support,offset3) if test: return agg_features,offset3 else: return agg_features def agg3(self,support,reference,test=False): feature_f0=torch.cat([support,reference],dim=1) if self.with_modulated_dcn: offset_mask1 = self.conv31_offset(feature_f0) offset = offset_mask1[:, :18 * self.deformable_groups, :, :] mask = offset_mask1[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv31(feature_f0, offset, mask) offset_mask2 = self.conv32_offset(out) offset = offset_mask2[:, :18 * self.deformable_groups, :, :] mask = offset_mask2[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv32(out, offset, mask) offset_mask4 = self.conv33_offset(out) offset = offset_mask4[:, :18 * self.deformable_groups, :, :] mask = offset_mask4[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() # mask=torch.nn.functional.softmax(mask,dim=1) # kernel_weight=self.trans_kernel.detach()*9 # self.conv33.weight=nn.Parameter(self.trans_kernel.detach()) out = self.conv33(support, offset, mask) if test: return out,offset,mask else: return out else: offset1=self.conv31_offset(feature_f0) feature_f1=self.conv31(feature_f0,offset1) offset2=self.conv32_offset(feature_f1) feature_f2=self.conv32(feature_f1,offset2) offset3=self.conv33_offset(feature_f2) # self.conv33.weight=nn.Parameter(self.trans_kernel.detach()) agg_features=self.conv33(support,offset3) if test: return agg_features,offset3 else: return agg_features def agg4(self,support,reference,test=False): feature_f0=torch.cat([support,reference],dim=1) if self.with_modulated_dcn: offset_mask1 = self.conv41_offset(feature_f0) offset = offset_mask1[:, :18 * self.deformable_groups, :, :] mask = offset_mask1[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv41(feature_f0, offset, mask) offset_mask4 = self.conv42_offset(out) offset = offset_mask4[:, :18 * self.deformable_groups, :, :] mask = offset_mask4[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() # mask=torch.nn.functional.softmax(mask,dim=1) # kernel_weight=self.trans_kernel.detach()*9 # self.conv42.weight=nn.Parameter(self.trans_kernel.detach()) out = self.conv42(support, offset, mask) if test: return out,offset,mask else: return out else: offset1=self.conv41_offset(feature_f0) feature_f1=self.conv41(feature_f0,offset1) offset2=self.conv42_offset(feature_f1) # self.conv42.weight=nn.Parameter(self.trans_kernel.detach()) agg_features=self.conv42(support,offset2) if test: return agg_features,offset2 else: return agg_features def agg5(self,support,reference,test=False): feature_f0=torch.cat([support,reference],dim=1) if self.with_modulated_dcn: offset_mask1 = self.conv51_offset(feature_f0) offset = offset_mask1[:, :18 * self.deformable_groups, :, :] mask = offset_mask1[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv51(feature_f0, offset, mask) offset_mask4 = self.conv52_offset(out) offset = offset_mask4[:, :18 * self.deformable_groups, :, :] mask = offset_mask4[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() # mask=torch.nn.functional.softmax(mask,dim=1) # kernel_weight=self.trans_kernel.detach()*9 # self.conv52.weight=nn.Parameter(self.trans_kernel.detach()) out = self.conv52(support, offset, mask) if test: return out,offset,mask else: return out else: offset1=self.conv51_offset(feature_f0) feature_f1=self.conv51(feature_f0,offset1) offset2=self.conv52_offset(feature_f1) # self.conv52.weight=nn.Parameter(self.trans_kernel.detach()) agg_features=self.conv52(support,offset2) if test: return agg_features,offset2 else: return agg_features def forward(self,datas,test=False): # torch.Size([2, 256, 48, 156]) # torch.Size([2, 256, 24, 78]) # torch.Size([2, 256, 12, 39]) # torch.Size([2, 256, 6, 20]) # torch.Size([2, 256, 3, 10]) agg_output=[] refer_out=[] support1_out=[] support2_out=[] self.agg=[self.agg1,self.agg2,self.agg3,self.agg4,self.agg5] shuffle_id=np.random.randint(low=0,high=datas[0].shape[0],size=datas[0].shape[0]) shuffle_id[shuffle_id==np.arange(datas[0].shape[0])]=shuffle_id[shuffle_id==np.arange(datas[0].shape[0])]-1 shuffle_id2=np.random.randint(low=0,high=datas[0].shape[0],size=datas[0].shape[0]) shuffle_id2[shuffle_id2==np.arange(datas[0].shape[0])]=shuffle_id2[shuffle_id2==np.arange(datas[0].shape[0])]-1 # print('shuffle id:',shuffle_id) # print('shuffle id2:',shuffle_id2) for i in range(len(datas)): reference=datas[i]+0 tk_feature0=self.agg[i](reference.detach(),reference.detach(),test) support=datas[i][shuffle_id,:,:,:]+0 tk_feature1=self.agg[i](support.detach(),reference.detach(),test) support=datas[i][shuffle_id2,:,:,:]+0 tk_feature2=self.agg[i](support.detach(),reference.detach(),test) weight1=torch.nn.functional.cosine_similarity(tk_feature0.detach(),tk_feature1,dim=1).unsqueeze(1).unsqueeze(1) weight2=torch.nn.functional.cosine_similarity(tk_feature0.detach(),tk_feature2,dim=1).unsqueeze(1).unsqueeze(1) weight0=torch.ones_like(weight1) weight=torch.nn.functional.softmax(torch.cat([weight0,weight1,weight2],dim=1),dim=1) # print('agg weight',(weight[:,0,...]).mean().item()) feature=torch.cat([tk_feature0.unsqueeze(1),tk_feature1.unsqueeze(1),tk_feature2.unsqueeze(1)],dim=1) agg_feature=torch.sum(feature*weight,dim=1) agg_output.append(agg_feature) refer_out.append(tk_feature0) support1_out.append(tk_feature1) support2_out.append(tk_feature2) # print(len(agg_output),len(refer_out),len(support1_out),print(support2_out)) return [tuple(agg_output),tuple(refer_out),tuple(support1_out),tuple(support2_out)] def forward_test(self,datas,test=True): output=[] self.agg=[self.agg1,self.agg2,self.agg3,self.agg4,self.agg5] print('stsn test') self.offset=[] self.mask=[] for i in range(len(datas)): reference=datas[i][:1,:,:,:]+0 if datas[i].shape[0]>1: shuffle_id=np.random.randint(low=1,high=datas[i].shape[0],size=1) support=datas[i][shuffle_id,:,:,:]+0 else: shuffle_id=[0] support=datas[i][shuffle_id,:,:,:]+0 if self.with_modulated_dcn: tk_feature,soffset4,mask4=self.agg[i](support,reference,test) self.offset.append(soffset4) self.mask.append(mask4) else: tk_feature,soffset4=self.agg[i](support,reference,test) self.offset.append(soffset4) weight1=torch.nn.functional.cosine_similarity(reference,tk_feature,dim=1).unsqueeze(1).unsqueeze(1) weight0=torch.ones_like(weight1) weight=torch.nn.functional.softmax(torch.cat([weight0,weight1],dim=1),dim=1) feature=torch.cat([reference.unsqueeze(1),tk_feature.unsqueeze(1)],dim=1) agg_feature=torch.sum(feature*weight,dim=1) output.append(agg_feature) return tuple(output) def forward_eval(self,datas,test=True): output=[] self.agg=[self.agg1,self.agg2,self.agg3,self.agg4,self.agg5] print('stsn eval') self.offset=[] self.mask=[] refer_out=[] agg_out=[] support_out=[] self.offset=[] self.mask=[] for i in range(datas[0].shape[0]-1): support_out.append([]) self.offset.append([]) self.mask.append([]) out=[] for i in range(len(datas)): reference=datas[i][:1,:,:,:]+0 if datas[i].shape[0]>1: support=datas[i][1:,:,:,:]+0 else: shuffle_id=[0] support=datas[i][:1,:,:,:]+0 tk_feature0=self.agg[i](reference.detach(),reference.detach(),test) refer_out.append(tk_feature0) weight0=torch.ones_like(torch.nn.functional.cosine_similarity(tk_feature0,tk_feature0,dim=1).unsqueeze(1).unsqueeze(1)) feature=tk_feature0.unsqueeze(1) for j in range(support.shape[0]): tk_feature,offset,mask=self.agg[i](support[j:j+1,...],reference,test) weight=torch.nn.functional.cosine_similarity(tk_feature0,tk_feature,dim=1).unsqueeze(1).unsqueeze(1) weight0=torch.cat([weight0,weight],dim=1) feature=torch.cat([feature,tk_feature.unsqueeze(1)],dim=1) support_out[j].append(tk_feature) self.offset[j].append(offset) self.mask[j].append(mask) weight=torch.nn.functional.softmax(weight0,dim=1) agg_feature=torch.sum(feature*weight,dim=1) agg_out.append(agg_feature) for i in range(datas[0].shape[0]-1): support_out[i]=tuple(support_out[i]) out=[tuple(refer_out),tuple(agg_out)]+support_out return out @AGG.register_module class STSN_fuse_r(nn.Module): def __init__(self,in_channels,out_channels,dcn): super(STSN_fuse_r,self).__init__() self.deformable_groups = dcn.get('deformable_groups', 1) self.with_modulated_dcn = dcn.get('modulated', False) if not self.with_modulated_dcn: conv_op = DeformConv offset_channels = 18 else: conv_op = ModulatedDeformConv offset_channels = 27 #agg1 self.conv11_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.conv11 = conv_op(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv12_offset = nn.Conv2d(in_channels, self.deformable_groups * offset_channels, kernel_size=3, stride=1, padding=1, dilation=1) self.conv12 = conv_op(in_channels,in_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv13_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv13 = conv_op(in_channels,in_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv14_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv14 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) #agg2 self.conv21_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.conv21 = conv_op(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv22_offset = nn.Conv2d(in_channels, self.deformable_groups * offset_channels, kernel_size=3, stride=1, padding=1, dilation=1) self.conv22 = conv_op(in_channels,in_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv23_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv23 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) #agg3 self.conv31_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.conv31 = conv_op(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv32_offset = nn.Conv2d(in_channels, self.deformable_groups * offset_channels, kernel_size=3, stride=1, padding=1, dilation=1) self.conv32 = conv_op(in_channels,in_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv33_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv33 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) #agg4 self.conv41_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.conv41 = conv_op(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv42_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv42 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) #agg5 self.conv51_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.conv51 = conv_op(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv52_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv52 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.relu=nn.LeakyReLU(inplace=True) self.offset=[] self.mask=[] print('init transform kernel') # for i in range(256): # for j in range(256): # for m in range(3): # for n in range(3): # if i==j: # self.trans_kernel[i,j,m,n]=self.trans_kernel[i,j,m,n]/self.trans_kernel[i,j,m,n] # self.trans_kernel[i,j,m,n]=self.trans_kernel[i,j,m,n]/9 # else: # self.trans_kernel[i,j,m,n]=self.trans_kernel[i,j,m,n]*0 # np.save('/home/ld/RepPoints/mmdetection/mmdet/ops/dcn/init_kernel.npy',self.trans_kernel.data.cpu().numpy()) self.trans_kernel=torch.from_numpy(np.load('/home/ld/RepPoints/mmdetection/mmdet/ops/dcn/init_kernel.npy')) self.trans_kernel=nn.Parameter(self.trans_kernel) def init_weights(self, pretrained=None): if isinstance(pretrained, str): logger = logging.getLogger() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: for m in self.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m) elif isinstance(m, (_BatchNorm, nn.GroupNorm)): constant_init(m, 1) bias_cls = bias_init_with_prob(0.01) normal_init(self.conv11_offset, std=0.01) normal_init(self.conv11, std=0.01) normal_init(self.conv12_offset, std=0.01) normal_init(self.conv12, std=0.01) normal_init(self.conv13_offset, std=0.01) normal_init(self.conv13, std=0.01) normal_init(self.conv14_offset, std=0.01) normal_init(self.conv14, std=0.01) normal_init(self.conv21_offset, std=0.01) normal_init(self.conv21, std=0.01) normal_init(self.conv22_offset, std=0.01) normal_init(self.conv22, std=0.01) normal_init(self.conv23_offset, std=0.01) normal_init(self.conv23, std=0.01) normal_init(self.conv31_offset, std=0.01) normal_init(self.conv31, std=0.01) normal_init(self.conv32_offset, std=0.01) normal_init(self.conv32, std=0.01) normal_init(self.conv33_offset, std=0.01) normal_init(self.conv33, std=0.01) normal_init(self.conv41_offset, std=0.01) normal_init(self.conv41, std=0.01) normal_init(self.conv42_offset, std=0.01) normal_init(self.conv42, std=0.01) normal_init(self.conv51_offset, std=0.01) normal_init(self.conv51, std=0.01) normal_init(self.conv52_offset, std=0.01) normal_init(self.conv52, std=0.01) def agg1(self,support,reference,test=False): feature_f0=torch.cat([support,reference],dim=1) if self.with_modulated_dcn: offset_mask1 = self.conv11_offset(feature_f0) offset = offset_mask1[:, :18 * self.deformable_groups, :, :] mask = offset_mask1[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() # mask=torch.nn.functional.softmax(mask,dim=1) # kernel_weight=self.trans_kernel.detach()*9 # self.conv11.weight=nn.Parameter(self.trans_kernel.detach()) out = self.conv11(feature_f0, offset, mask) offset_mask2 = self.conv12_offset(out) offset = offset_mask2[:, :18 * self.deformable_groups, :, :] mask = offset_mask2[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv12(out, offset, mask) offset_mask3 = self.conv13_offset(out) offset = offset_mask3[:, :18 * self.deformable_groups, :, :] mask = offset_mask3[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv13(out, offset, mask) offset_mask4 = self.conv14_offset(out) offset = offset_mask4[:, :18 * self.deformable_groups, :, :] mask = offset_mask4[:, -9 * self.deformable_groups:, :, :] # mask = mask.sigmoid() mask=torch.nn.functional.softmax(mask,dim=1) kernel_weight=self.trans_kernel.detach()*9 self.conv14.weight=nn.Parameter(self.trans_kernel.detach()) out = self.conv14(support, offset, mask) if test: return out,offset,mask else: return out else: # print('agg1',feature_f0.device,self.conv11_offset.weight.device) offset1=self.conv11_offset(feature_f0) feature_f1=self.conv11(feature_f0,offset1) offset2=self.conv12_offset(feature_f1) feature_f2=self.conv12(feature_f1,offset2) offset3=self.conv13_offset(feature_f2) feature_f3=self.conv13(feature_f2,offset3) offset4=self.conv14_offset(feature_f3) self.conv14.weight=nn.Parameter(self.trans_kernel.detach()) agg_features=self.conv14(support,offset4) if test: return agg_features,offset4 else: return agg_features def agg2(self,support,reference,test=False): feature_f0=torch.cat([support,reference],dim=1) if self.with_modulated_dcn: offset_mask1 = self.conv21_offset(feature_f0) offset = offset_mask1[:, :18 * self.deformable_groups, :, :] mask = offset_mask1[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv21(feature_f0, offset, mask) offset_mask2 = self.conv22_offset(out) offset = offset_mask2[:, :18 * self.deformable_groups, :, :] mask = offset_mask2[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv22(out, offset, mask) offset_mask4 = self.conv23_offset(out) offset = offset_mask4[:, :18 * self.deformable_groups, :, :] mask = offset_mask4[:, -9 * self.deformable_groups:, :, :] # mask = mask.sigmoid() mask=torch.nn.functional.softmax(mask,dim=1) kernel_weight=self.trans_kernel.detach()*9 self.conv23.weight=nn.Parameter(self.trans_kernel.detach()) out = self.conv23(support, offset, mask) if test: return out,offset,mask else: return out else: offset1=self.conv21_offset(feature_f0) feature_f1=self.conv21(feature_f0,offset1) offset2=self.conv22_offset(feature_f1) feature_f2=self.conv22(feature_f1,offset2) offset3=self.conv23_offset(feature_f2) self.conv23.weight=nn.Parameter(self.trans_kernel.detach()) agg_features=self.conv23(support,offset3) if test: return agg_features,offset3 else: return agg_features def agg3(self,support,reference,test=False): feature_f0=torch.cat([support,reference],dim=1) if self.with_modulated_dcn: offset_mask1 = self.conv31_offset(feature_f0) offset = offset_mask1[:, :18 * self.deformable_groups, :, :] mask = offset_mask1[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv31(feature_f0, offset, mask) offset_mask2 = self.conv32_offset(out) offset = offset_mask2[:, :18 * self.deformable_groups, :, :] mask = offset_mask2[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv32(out, offset, mask) offset_mask4 = self.conv33_offset(out) offset = offset_mask4[:, :18 * self.deformable_groups, :, :] mask = offset_mask4[:, -9 * self.deformable_groups:, :, :] # mask = mask.sigmoid() mask=torch.nn.functional.softmax(mask,dim=1) kernel_weight=self.trans_kernel.detach()*9 self.conv33.weight=nn.Parameter(self.trans_kernel.detach()) out = self.conv33(support, offset, mask) if test: return out,offset,mask else: return out else: offset1=self.conv31_offset(feature_f0) feature_f1=self.conv31(feature_f0,offset1) offset2=self.conv32_offset(feature_f1) feature_f2=self.conv32(feature_f1,offset2) offset3=self.conv33_offset(feature_f2) self.conv33.weight=nn.Parameter(self.trans_kernel.detach()) agg_features=self.conv33(support,offset3) if test: return agg_features,offset3 else: return agg_features def agg4(self,support,reference,test=False): feature_f0=torch.cat([support,reference],dim=1) if self.with_modulated_dcn: offset_mask1 = self.conv41_offset(feature_f0) offset = offset_mask1[:, :18 * self.deformable_groups, :, :] mask = offset_mask1[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv41(feature_f0, offset, mask) offset_mask4 = self.conv42_offset(out) offset = offset_mask4[:, :18 * self.deformable_groups, :, :] mask = offset_mask4[:, -9 * self.deformable_groups:, :, :] # mask = mask.sigmoid() mask=torch.nn.functional.softmax(mask,dim=1) kernel_weight=self.trans_kernel.detach()*9 self.conv42.weight=nn.Parameter(self.trans_kernel.detach()) out = self.conv42(support, offset, mask) if test: return out,offset,mask else: return out else: offset1=self.conv41_offset(feature_f0) feature_f1=self.conv41(feature_f0,offset1) offset2=self.conv42_offset(feature_f1) self.conv42.weight=nn.Parameter(self.trans_kernel.detach()) agg_features=self.conv42(support,offset2) if test: return agg_features,offset2 else: return agg_features def agg5(self,support,reference,test=False): feature_f0=torch.cat([support,reference],dim=1) if self.with_modulated_dcn: offset_mask1 = self.conv51_offset(feature_f0) offset = offset_mask1[:, :18 * self.deformable_groups, :, :] mask = offset_mask1[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv51(feature_f0, offset, mask) offset_mask4 = self.conv52_offset(out) offset = offset_mask4[:, :18 * self.deformable_groups, :, :] mask = offset_mask4[:, -9 * self.deformable_groups:, :, :] # mask = mask.sigmoid() mask=torch.nn.functional.softmax(mask,dim=1) kernel_weight=self.trans_kernel.detach()*9 self.conv52.weight=nn.Parameter(self.trans_kernel.detach()) out = self.conv52(support, offset, mask) if test: return out,offset,mask else: return out else: offset1=self.conv51_offset(feature_f0) feature_f1=self.conv51(feature_f0,offset1) offset2=self.conv52_offset(feature_f1) self.conv52.weight=nn.Parameter(self.trans_kernel.detach()) agg_features=self.conv52(support,offset2) if test: return agg_features,offset2 else: return agg_features def forward(self,datas,test=False): # torch.Size([2, 256, 48, 156]) # torch.Size([2, 256, 24, 78]) # torch.Size([2, 256, 12, 39]) # torch.Size([2, 256, 6, 20]) # torch.Size([2, 256, 3, 10]) output=[] self.agg=[self.agg1,self.agg2,self.agg3,self.agg4,self.agg5] shuffle_id=np.random.randint(low=0,high=datas[0].shape[0],size=datas[0].shape[0]) shuffle_id[shuffle_id==np.arange(datas[0].shape[0])]=shuffle_id[shuffle_id==np.arange(datas[0].shape[0])]-1 shuffle_id2=np.random.randint(low=0,high=datas[0].shape[0],size=datas[0].shape[0]) shuffle_id2[shuffle_id2==np.arange(datas[0].shape[0])]=shuffle_id2[shuffle_id2==np.arange(datas[0].shape[0])]-1 print('shuffle id:',shuffle_id) print('shuffle id2:',shuffle_id2) for i in range(len(datas)): reference=datas[i]+0 tk_feature0=self.agg[i](reference,reference,test) support=datas[i][shuffle_id,:,:,:]+0 tk_feature1=self.agg[i](support,reference,test) support=datas[i][shuffle_id2,:,:,:]+0 tk_feature2=self.agg[i](support,reference,test) weight1=torch.nn.functional.cosine_similarity(reference,tk_feature1,dim=1).unsqueeze(1).unsqueeze(1) weight2=torch.nn.functional.cosine_similarity(reference,tk_feature2,dim=1).unsqueeze(1).unsqueeze(1) weight0=torch.nn.functional.cosine_similarity(reference,tk_feature0,dim=1).unsqueeze(1).unsqueeze(1) weight=torch.nn.functional.softmax(torch.cat([weight0,weight1,weight2],dim=1),dim=1) feature=torch.cat([tk_feature0.unsqueeze(1),tk_feature1.unsqueeze(1),tk_feature2.unsqueeze(1)],dim=1) agg_feature=torch.sum(feature*weight,dim=1) output.append(agg_feature) self.loss_trans=(torch.nn.functional.l1_loss(tk_feature0,reference.detach(),reduction='mean')+ \ 0.1*torch.nn.functional.l1_loss(tk_feature1,reference.detach(),reduction='mean')+ \ 0.1*torch.nn.functional.l1_loss(tk_feature2,reference.detach(),reduction='mean'))/1.2+ \ self.loss_trans self.loss_trans=self.loss_trans/len(datas) return tuple(output),self.loss_trans def forward_test(self,datas,test=True): output=[] self.agg=[self.agg1,self.agg2,self.agg3,self.agg4,self.agg5] print('stsn test') self.offset=[] for i in range(len(datas)): reference=datas[i][:1,:,:,:]+0 tk_feature0,offset=self.agg[i](reference,reference,test) if datas[i].shape[0]>1: shuffle_id=np.random.randint(low=1,high=datas[i].shape[0],size=1) support=datas[i][shuffle_id,:,:,:]+0 else: shuffle_id=[0] support=datas[i][shuffle_id,:,:,:]+0 if self.with_modulated_dcn: print(i) tk_feature1,offset_mask=self.agg[i](support,reference,test) self.offset.append(offset_mask) else: tk_feature1,offset=self.agg[i](support,reference,test) self.offset.append(offset) weight1=torch.nn.functional.cosine_similarity(reference,tk_feature1,dim=1).unsqueeze(1).unsqueeze(1) weight0=torch.nn.functional.cosine_similarity(reference,tk_feature0,dim=1).unsqueeze(1).unsqueeze(1) weight=torch.nn.functional.softmax(torch.cat([weight0,weight1],dim=1),dim=1) feature=torch.cat([tk_feature0.unsqueeze(1),tk_feature1.unsqueeze(1)],dim=1) agg_feature=torch.sum(feature*weight,dim=1) output.append(agg_feature) return tuple(output) class STSN_fuse_ori(nn.Module): def __init__(self,in_channels,out_channels,dcn): super(STSN_fuse_ori,self).__init__() self.deformable_groups = dcn.get('deformable_groups', 1) self.with_modulated_dcn = dcn.get('modulated', False) if not self.with_modulated_dcn: conv_op = DeformConv offset_channels = 18 else: conv_op = ModulatedDeformConv offset_channels = 27 #agg1 self.conv11_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.conv11 = conv_op(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv12_offset = nn.Conv2d(in_channels, self.deformable_groups * offset_channels, kernel_size=3, stride=1, padding=1, dilation=1) self.conv12 = conv_op(in_channels,in_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv13_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv13 = conv_op(in_channels,in_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv14_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv14 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) #agg2 self.conv21_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.conv21 = conv_op(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv22_offset = nn.Conv2d(in_channels, self.deformable_groups * offset_channels, kernel_size=3, stride=1, padding=1, dilation=1) self.conv22 = conv_op(in_channels,in_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv23_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv23 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) #agg3 self.conv31_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.conv31 = conv_op(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv32_offset = nn.Conv2d(in_channels, self.deformable_groups * offset_channels, kernel_size=3, stride=1, padding=1, dilation=1) self.conv32 = conv_op(in_channels,in_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv33_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv33 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) #agg4 self.conv41_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.conv41 = conv_op(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv42_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv42 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) #agg5 self.conv51_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.conv51 = conv_op(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv52_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv52 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.relu=nn.LeakyReLU(inplace=True) self.offset=[] self.mask=[] print('init transform kernel') self.trans_kernel=torch.from_numpy(np.load('/home/ld/RepPoints/mmdetection/mmdet/ops/dcn/init_kernel.npy')) self.trans_kernel=nn.Parameter(self.trans_kernel) def init_weights(self, pretrained=None): if isinstance(pretrained, str): logger = logging.getLogger() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: for m in self.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m) elif isinstance(m, (_BatchNorm, nn.GroupNorm)): constant_init(m, 1) bias_cls = bias_init_with_prob(0.01) normal_init(self.conv11_offset, std=0.01) normal_init(self.conv11, std=0.01) normal_init(self.conv12_offset, std=0.01) normal_init(self.conv12, std=0.01) normal_init(self.conv13_offset, std=0.01) normal_init(self.conv13, std=0.01) normal_init(self.conv14_offset, std=0.01) normal_init(self.conv14, std=0.01) normal_init(self.conv21_offset, std=0.01) normal_init(self.conv21, std=0.01) normal_init(self.conv22_offset, std=0.01) normal_init(self.conv22, std=0.01) normal_init(self.conv23_offset, std=0.01) normal_init(self.conv23, std=0.01) normal_init(self.conv31_offset, std=0.01) normal_init(self.conv31, std=0.01) normal_init(self.conv32_offset, std=0.01) normal_init(self.conv32, std=0.01) normal_init(self.conv33_offset, std=0.01) normal_init(self.conv33, std=0.01) normal_init(self.conv41_offset, std=0.01) normal_init(self.conv41, std=0.01) normal_init(self.conv42_offset, std=0.01) normal_init(self.conv42, std=0.01) normal_init(self.conv51_offset, std=0.01) normal_init(self.conv51, std=0.01) normal_init(self.conv52_offset, std=0.01) normal_init(self.conv52, std=0.01) def agg1(self,support,reference,test=False): feature_f0=torch.cat([support,reference],dim=1) if self.with_modulated_dcn: offset_mask1 = self.conv11_offset(feature_f0) offset = offset_mask1[:, :18 * self.deformable_groups, :, :] mask = offset_mask1[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv11(feature_f0, offset, mask) offset_mask2 = self.conv12_offset(out) offset = offset_mask2[:, :18 * self.deformable_groups, :, :] mask = offset_mask2[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv12(out, offset, mask) offset_mask3 = self.conv13_offset(out) offset = offset_mask3[:, :18 * self.deformable_groups, :, :] mask = offset_mask3[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv13(out, offset, mask) offset_mask4 = self.conv14_offset(out) offset = offset_mask4[:, :18 * self.deformable_groups, :, :] mask = offset_mask4[:, -9 * self.deformable_groups:, :, :] # mask = mask.sigmoid() mask=torch.nn.functional.softmax(mask,dim=1) kernel_weight=self.trans_kernel.detach()*9 self.conv14.weight=nn.Parameter(self.trans_kernel.detach()) out = self.conv14(support, offset, mask) if test: return out,offset,mask else: return out else: # print('agg1',feature_f0.device,self.conv11_offset.weight.device) offset1=self.conv11_offset(feature_f0) feature_f1=self.conv11(feature_f0,offset1) offset2=self.conv12_offset(feature_f1) feature_f2=self.conv12(feature_f1,offset2) offset3=self.conv13_offset(feature_f2) feature_f3=self.conv13(feature_f2,offset3) offset4=self.conv14_offset(feature_f3) self.conv14.weight=nn.Parameter(self.trans_kernel.detach()) agg_features=self.conv14(support,offset4) if test: return agg_features,offset4 else: return agg_features def agg2(self,support,reference,test=False): feature_f0=torch.cat([support,reference],dim=1) if self.with_modulated_dcn: offset_mask1 = self.conv21_offset(feature_f0) offset = offset_mask1[:, :18 * self.deformable_groups, :, :] mask = offset_mask1[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv21(feature_f0, offset, mask) offset_mask2 = self.conv22_offset(out) offset = offset_mask2[:, :18 * self.deformable_groups, :, :] mask = offset_mask2[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv22(out, offset, mask) offset_mask4 = self.conv23_offset(out) offset = offset_mask4[:, :18 * self.deformable_groups, :, :] mask = offset_mask4[:, -9 * self.deformable_groups:, :, :] # mask = mask.sigmoid() mask=torch.nn.functional.softmax(mask,dim=1) kernel_weight=self.trans_kernel.detach()*9 self.conv23.weight=nn.Parameter(self.trans_kernel.detach()) out = self.conv23(support, offset, mask) if test: return out,offset,mask else: return out else: offset1=self.conv21_offset(feature_f0) feature_f1=self.conv21(feature_f0,offset1) offset2=self.conv22_offset(feature_f1) feature_f2=self.conv22(feature_f1,offset2) offset3=self.conv23_offset(feature_f2) self.conv23.weight=nn.Parameter(self.trans_kernel.detach()) agg_features=self.conv23(support,offset3) if test: return agg_features,offset3 else: return agg_features def agg3(self,support,reference,test=False): feature_f0=torch.cat([support,reference],dim=1) if self.with_modulated_dcn: offset_mask1 = self.conv31_offset(feature_f0) offset = offset_mask1[:, :18 * self.deformable_groups, :, :] mask = offset_mask1[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv31(feature_f0, offset, mask) offset_mask2 = self.conv32_offset(out) offset = offset_mask2[:, :18 * self.deformable_groups, :, :] mask = offset_mask2[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv32(out, offset, mask) offset_mask4 = self.conv33_offset(out) offset = offset_mask4[:, :18 * self.deformable_groups, :, :] mask = offset_mask4[:, -9 * self.deformable_groups:, :, :] # mask = mask.sigmoid() mask=torch.nn.functional.softmax(mask,dim=1) kernel_weight=self.trans_kernel.detach()*9 self.conv33.weight=nn.Parameter(self.trans_kernel.detach()) out = self.conv33(support, offset, mask) if test: return out,offset,mask else: return out else: offset1=self.conv31_offset(feature_f0) feature_f1=self.conv31(feature_f0,offset1) offset2=self.conv32_offset(feature_f1) feature_f2=self.conv32(feature_f1,offset2) offset3=self.conv33_offset(feature_f2) self.conv33.weight=nn.Parameter(self.trans_kernel.detach()) agg_features=self.conv33(support,offset3) if test: return agg_features,offset3 else: return agg_features def agg4(self,support,reference,test=False): feature_f0=torch.cat([support,reference],dim=1) if self.with_modulated_dcn: offset_mask1 = self.conv41_offset(feature_f0) offset = offset_mask1[:, :18 * self.deformable_groups, :, :] mask = offset_mask1[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv41(feature_f0, offset, mask) offset_mask4 = self.conv42_offset(out) offset = offset_mask4[:, :18 * self.deformable_groups, :, :] mask = offset_mask4[:, -9 * self.deformable_groups:, :, :] # mask = mask.sigmoid() mask=torch.nn.functional.softmax(mask,dim=1) kernel_weight=self.trans_kernel.detach()*9 self.conv42.weight=nn.Parameter(self.trans_kernel.detach()) out = self.conv42(support, offset, mask) if test: return out,offset,mask else: return out else: offset1=self.conv41_offset(feature_f0) feature_f1=self.conv41(feature_f0,offset1) offset2=self.conv42_offset(feature_f1) self.conv42.weight=nn.Parameter(self.trans_kernel.detach()) agg_features=self.conv42(support,offset2) if test: return agg_features,offset2 else: return agg_features def agg5(self,support,reference,test=False): feature_f0=torch.cat([support,reference],dim=1) if self.with_modulated_dcn: offset_mask1 = self.conv51_offset(feature_f0) offset = offset_mask1[:, :18 * self.deformable_groups, :, :] mask = offset_mask1[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv51(feature_f0, offset, mask) offset_mask4 = self.conv52_offset(out) offset = offset_mask4[:, :18 * self.deformable_groups, :, :] mask = offset_mask4[:, -9 * self.deformable_groups:, :, :] # mask = mask.sigmoid() mask=torch.nn.functional.softmax(mask,dim=1) kernel_weight=self.trans_kernel.detach()*9 self.conv52.weight=nn.Parameter(self.trans_kernel.detach()) out = self.conv52(support, offset, mask) if test: return out,offset,mask else: return out else: offset1=self.conv51_offset(feature_f0) feature_f1=self.conv51(feature_f0,offset1) offset2=self.conv52_offset(feature_f1) self.conv52.weight=nn.Parameter(self.trans_kernel.detach()) agg_features=self.conv52(support,offset2) if test: return agg_features,offset2 else: return agg_features def forward(self,datas,test=False): # torch.Size([2, 256, 48, 156]) # torch.Size([2, 256, 24, 78]) # torch.Size([2, 256, 12, 39]) # torch.Size([2, 256, 6, 20]) # torch.Size([2, 256, 3, 10]) output=[] self.agg=[self.agg1,self.agg2,self.agg3,self.agg4,self.agg5] shuffle_id=np.random.randint(low=0,high=datas[0].shape[0],size=datas[0].shape[0]) shuffle_id[shuffle_id==np.arange(datas[0].shape[0])]=shuffle_id[shuffle_id==np.arange(datas[0].shape[0])]-1 shuffle_id2=np.random.randint(low=0,high=datas[0].shape[0],size=datas[0].shape[0]) shuffle_id2[shuffle_id2==np.arange(datas[0].shape[0])]=shuffle_id2[shuffle_id2==np.arange(datas[0].shape[0])]-1 print('shuffle id:',shuffle_id) print('shuffle id2:',shuffle_id2) for i in range(len(datas)): reference=datas[i]+0 support=datas[i][shuffle_id,:,:,:]+0 tk_feature1=self.agg[i](support,reference,test) support=datas[i][shuffle_id2,:,:,:]+0 tk_feature2=self.agg[i](support,reference,test) weight1=torch.nn.functional.cosine_similarity(reference,tk_feature1,dim=1).unsqueeze(1).unsqueeze(1) weight2=torch.nn.functional.cosine_similarity(reference,tk_feature2,dim=1).unsqueeze(1).unsqueeze(1) weight0=torch.ones_like(weight1) weight=torch.nn.functional.softmax(torch.cat([weight0,weight1,weight2],dim=1),dim=1) feature=torch.cat([reference.unsqueeze(1),tk_feature1.unsqueeze(1),tk_feature2.unsqueeze(1)],dim=1) agg_feature=torch.sum(feature*weight,dim=1) output.append(agg_feature) return tuple(output) def forward_test(self,datas,test=True): output=[] self.agg=[self.agg1,self.agg2,self.agg3,self.agg4,self.agg5] print('stsn test') for i in range(len(datas)): reference=datas[i][:1,:,:,:]+0 if datas[i].shape[0]>1: shuffle_id=np.random.randint(low=1,high=datas[i].shape[0],size=1) support=datas[i][shuffle_id,:,:,:]+0 else: shuffle_id=[0] support=datas[i][shuffle_id,:,:,:]+0 if self.with_modulated_dcn: tk_feature,soffset4,mask4=self.agg[i](support,reference,test) self.offset.append(soffset4) self.mask.append(mask4) else: tk_feature,soffset4=self.agg[i](support,reference,test) self.offset.append(soffset4) weight1=torch.nn.functional.cosine_similarity(reference,tk_feature,dim=1).unsqueeze(1).unsqueeze(1) weight0=torch.ones_like(weight1) weight=torch.nn.functional.softmax(torch.cat([weight0,weight1],dim=1),dim=1) feature=torch.cat([reference.unsqueeze(1),tk_feature.unsqueeze(1)],dim=1) agg_feature=torch.sum(feature*weight,dim=1) output.append(agg_feature) return tuple(output) @AGG.register_module class STSN_ada_dcn(nn.Module): def __init__(self,in_channels,out_channels,dcn): super(STSN_ada_dcn,self).__init__() self.deformable_groups = dcn.get('deformable_groups', 1) self.with_modulated_dcn = dcn.get('modulated', False) if not self.with_modulated_dcn: conv_op = DeformConv offset_channels = 18 else: conv_op = ModulatedDeformConv offset_channels = 27 self.conv1_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.conv1 = conv_op(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv2_offset = nn.Conv2d(in_channels, self.deformable_groups * offset_channels, kernel_size=3, stride=1, padding=1, dilation=1) self.conv2 = conv_op(in_channels,in_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv3_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv3 = conv_op(in_channels,in_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv4_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv4 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.relu=nn.LeakyReLU(inplace=True) self.neck=nn.Sequential( build_conv_layer(None, 256, 512, kernel_size=1, stride=1, padding=0,bias=False), nn.GroupNorm(32,512), nn.LeakyReLU(inplace=True), build_conv_layer(None, 512, 256, kernel_size=3, stride=1, padding=1, bias=False), nn.GroupNorm(32,256), nn.LeakyReLU(inplace=True), build_conv_layer(None, 256, 256, kernel_size=1, stride=1, padding=0, bias=False)) self.agg_set=[self.agg1,self.agg2,self.agg3,self.agg4,self.agg5] self.offset=[] def init_weights(self, pretrained=None): if isinstance(pretrained, str): logger = logging.getLogger() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: for m in self.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m) elif isinstance(m, (_BatchNorm, nn.GroupNorm)): constant_init(m, 1) def agg1(self,support,reference,test=False): features=torch.cat([support,reference],dim=1) offset1=self.conv1_offset(features) agg_features1=self.conv1(features,offset1) offset2=self.conv2_offset(agg_features1) agg_features2=self.conv2(agg_features1,offset2) offset3=self.conv3_offset(agg_features2) agg_features3=self.conv3(agg_features2,offset3) offset4=self.conv4_offset(agg_features3) agg_features=self.conv4(support,offset4) if test: return agg_features,[offset1,offset2,offset3,offset4] else: return agg_features def agg2(self,support,reference,test=False): features=torch.cat([support,reference],dim=1) offset1=self.conv1_offset(features) agg_features1=self.conv1(features,offset1) offset2=self.conv2_offset(agg_features1) agg_features2=self.conv2(agg_features1,offset2) offset4=self.conv4_offset(agg_features2) agg_features=self.conv4(support,offset4) if test: return agg_features,[offset1,offset2,offset4] else: return agg_features def agg3(self,support,reference,test=False): features=torch.cat([support,reference],dim=1) offset1=self.conv1_offset(features) agg_features1=self.conv1(features,offset1) offset4=self.conv4_offset(agg_features1) agg_features=self.conv4(support,offset4) if test: return agg_features,[offset1,offset4] else: return agg_features def agg4(self,support,reference,test=False): features=torch.cat([support,reference],dim=1) offset4=self.conv4_offset(features) agg_features=self.conv4(support,offset4) if test: return agg_features,[offset4] else: return agg_features def agg5(self,support,reference,test=False): features=torch.cat([support,reference],dim=1) offset4=self.conv4_offset(features) agg_features=self.conv4(support,offset4) if test: return agg_features,[offset4] else: return agg_features def forward(self,datas,test=False): # torch.Size([2, 256, 48, 156]) # torch.Size([2, 256, 24, 78]) # torch.Size([2, 256, 12, 39]) # torch.Size([2, 256, 6, 20]) # torch.Size([2, 256, 3, 10]) output=[] shuffle_id=np.random.randint(low=0,high=datas[0].shape[0],size=datas[0].shape[0]) shuffle_id[shuffle_id==np.arange(datas[0].shape[0])]=shuffle_id[shuffle_id==np.arange(datas[0].shape[0])]-1 print('shuffle id:',shuffle_id) for i in range(len(datas)): reference=datas[i]+0 support=datas[i][shuffle_id,:,:,:]+0 tt_feature=self.agg_set[i](reference,reference,test) # print(self.roffset4.shape) stt=self.neck(tt_feature) # stt=tt_feature # ttweight=torch.exp(self.similarity(torch.cat([stt,stt],dim=1)).unsqueeze(1))#(b,1,w,h) ttweight=torch.nn.functional.cosine_similarity(stt,stt,dim=1).unsqueeze(1) # print(ttweight.max(),ttweight.min()) tk_feature=self.agg_set[i](support,reference,test) stk=self.neck(tk_feature) # stk=tk_feature # tkweight=torch.exp(self.similarity(torch.cat([stt,stk],dim=1)).unsqueeze(1)) tkweight=torch.nn.functional.cosine_similarity(stt,stk,dim=1).unsqueeze(1) # print(tkweight.max(),tkweight.min()) weights=torch.cat([ttweight.unsqueeze(0),tkweight.unsqueeze(0)],dim=0)#(2,b,1,w,h) weights=F.softmax(weights,dim=0) print('support weight','scale:',i*8,torch.mean(weights[1,:,:,:]).item(),torch.min(weights[1,:,:,:]).item(),torch.max(weights[1,:,:,:]).item()) features=torch.cat([tt_feature.unsqueeze(0),tk_feature.unsqueeze(0)],dim=0)#(2,b,c,w,h) agg_features=torch.sum(weights*features,dim=0)#(b,c,w,h) output.append(agg_features) # print(agg_features.shape) return tuple(output) # return stt def forward_test(self,datas,test=True): output=[] print('test') for i in range(len(datas)): reference=datas[i][:1,:,:,:]+0 if datas[i].shape[0]>1: shuffle_id=np.random.randint(low=1,high=datas[i].shape[0],size=1) # print(shuffle_id) support=datas[i][shuffle_id,:,:,:]+0 else: shuffle_id=[0] support=datas[i][shuffle_id,:,:,:]+0 # support=datas[:1,:,:,:]+0 # print(datas.shape) tt_feature,roffset=self.agg_set[i](reference,reference,test) # print(self.roffset4.shape) stt=self.neck(tt_feature) # stt=tt_feature # ttweight=torch.exp(self.similarity(torch.cat([stt,stt],dim=1)).unsqueeze(1))#(b,1,w,h) ttweight=torch.nn.functional.cosine_similarity(stt,stt,dim=1).unsqueeze(1) # print(ttweight.max(),ttweight.min()) tk_feature,soffset=self.agg_set[i](support,reference,test) self.offset.append(soffset) stk=self.neck(tk_feature) # stk=tk_feature # tkweight=torch.exp(self.similarity(torch.cat([stt,stk],dim=1)).unsqueeze(1)) tkweight=torch.nn.functional.cosine_similarity(stt,stk,dim=1).unsqueeze(1) # print(tkweight.max(),tkweight.min()) weights=torch.cat([ttweight.unsqueeze(0),tkweight.unsqueeze(0)],dim=0)#(2,b,1,w,h) weights=F.softmax(weights,dim=0) # print(torch.max((weights).abs())) self.weight=weights features=torch.cat([tt_feature.unsqueeze(0),tk_feature.unsqueeze(0)],dim=0)#(2,b,c,w,h) agg_features=torch.sum(weights*features,dim=0)#(b,c,w,h) output.append(agg_features) # print(agg_features.shape) return tuple(output) @AGG.register_module class STSN_atrous_dcn(nn.Module): def __init__(self,in_channels,out_channels,dcn): super(STSN_atrous_dcn,self).__init__() self.deformable_groups = dcn.get('deformable_groups', 1) self.with_modulated_dcn = dcn.get('modulated', False) if not self.with_modulated_dcn: conv_op = DeformConv offset_channels = 18 else: conv_op = ModulatedDeformConv offset_channels = 27 self.conv1_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=2,dilation=2) self.conv1 = conv_op(out_channels, out_channels, kernel_size=3, stride=1, padding=2, dilation=2, deformable_groups=self.deformable_groups, bias=False) self.conv2_offset = nn.Conv2d(in_channels, self.deformable_groups * offset_channels, kernel_size=3, stride=1, padding=4, dilation=4) self.conv2 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=4,dilation=4,deformable_groups=self.deformable_groups,bias=False) self.conv3_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=8,dilation=8) self.conv3 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=8,dilation=8,deformable_groups=self.deformable_groups,bias=False) self.conv4_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=16,dilation=16) self.conv4 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=16,dilation=16,deformable_groups=self.deformable_groups,bias=False) self.relu=nn.LeakyReLU(inplace=True) self.neck=nn.Sequential( build_conv_layer(None, 256, 512, kernel_size=1, stride=1, padding=0,bias=False), nn.GroupNorm(32,512), nn.LeakyReLU(inplace=True), build_conv_layer(None, 512, 256, kernel_size=3, stride=1, padding=1, bias=False), nn.GroupNorm(32,256), nn.LeakyReLU(inplace=True), build_conv_layer(None, 256, 256, kernel_size=1, stride=1, padding=0, bias=False)) self.agg_set=[self.agg1,self.agg2,self.agg3,self.agg4,self.agg5] self.offsets_record=[] def init_weights(self, pretrained=None): if isinstance(pretrained, str): logger = logging.getLogger() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: for m in self.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m) elif isinstance(m, (_BatchNorm, nn.GroupNorm)): constant_init(m, 1) def agg1(self,support,reference,test=False): features=torch.cat([support,reference],dim=1) offset1=self.conv1_offset(features) agg_features1=self.conv1(support,offset1) offset2=self.conv2_offset(features) agg_features2=self.conv2(support,offset2) offset3=self.conv3_offset(features) agg_features3=self.conv3(support,offset3) offset4=self.conv4_offset(features) agg_features4=self.conv4(support,offset4) agg_features=0.25*(agg_features1+agg_features2+agg_features3+agg_features4) if test: return agg_features,offset1,offset2,offset3,offset4 else: return agg_features def agg2(self,support,reference,test=False): features=torch.cat([support,reference],dim=1) offset1=self.conv1_offset(features) agg_features1=self.conv1(support,offset1) offset2=self.conv2_offset(features) agg_features2=self.conv2(support,offset2) offset3=self.conv3_offset(features) agg_features3=self.conv3(support,offset3) agg_features=0.33*(agg_features1+agg_features2+agg_features3) if test: return agg_features,offset1,offset2,offset3 else: return agg_features def agg3(self,support,reference,test=False): features=torch.cat([support,reference],dim=1) offset1=self.conv1_offset(features) agg_features1=self.conv1(support,offset1) offset2=self.conv2_offset(features) agg_features2=self.conv2(support,offset2) agg_features=0.5*(agg_features1+agg_features2) if test: return agg_features,offset1,offset2 else: return agg_features def agg4(self,support,reference,test=False): features=torch.cat([support,reference],dim=1) offset1=self.conv1_offset(features) agg_features=self.conv1(support,offset1) if test: return agg_features,offset1 else: return agg_features def agg5(self,support,reference,test=False): features=torch.cat([support,reference],dim=1) offset1=self.conv1_offset(features) agg_features=self.conv1(support,offset1) if test: return agg_features,offset1 else: return agg_features def forward(self,datas,test=False): # torch.Size([2, 256, 48, 156]) # torch.Size([2, 256, 24, 78]) # torch.Size([2, 256, 12, 39]) # torch.Size([2, 256, 6, 20]) # torch.Size([2, 256, 3, 10]) output=[] shuffle_id=np.random.randint(low=0,high=datas[0].shape[0],size=datas[0].shape[0]) shuffle_id[shuffle_id==np.arange(datas[0].shape[0])]=shuffle_id[shuffle_id==np.arange(datas[0].shape[0])]-1 print('shuffle id:',shuffle_id) for i in range(len(datas)): reference=datas[i]+0 support=datas[i][shuffle_id,:,:,:]+0 tt_feature=self.agg_set[i](reference,reference,test) # print(self.roffset4.shape) stt=self.neck(tt_feature) # stt=tt_feature # ttweight=torch.exp(self.similarity(torch.cat([stt,stt],dim=1)).unsqueeze(1))#(b,1,w,h) ttweight=torch.nn.functional.cosine_similarity(stt,stt,dim=1).unsqueeze(1) # print(ttweight.max(),ttweight.min()) tk_feature=self.agg_set[i](support,reference,test) stk=self.neck(tk_feature) # stk=tk_feature # tkweight=torch.exp(self.similarity(torch.cat([stt,stk],dim=1)).unsqueeze(1)) tkweight=torch.nn.functional.cosine_similarity(stt,stk,dim=1).unsqueeze(1) # print(tkweight.max(),tkweight.min()) weights=torch.cat([ttweight.unsqueeze(0),tkweight.unsqueeze(0)],dim=0)#(2,b,1,w,h) weights=F.softmax(weights,dim=0) print('support weight','scale:',i*8,torch.mean(weights[1,:,:,:]).item(),torch.min(weights[1,:,:,:]).item(),torch.max(weights[1,:,:,:]).item()) features=torch.cat([tt_feature.unsqueeze(0),tk_feature.unsqueeze(0)],dim=0)#(2,b,c,w,h) agg_features=torch.sum(weights*features,dim=0)#(b,c,w,h) output.append(agg_features) # print(agg_features.shape) return tuple(output) # return stt def forward_test(self,datas,test=True): output=[] for i in range(len(datas)): reference=datas[i][:1,:,:,:]+0 if datas[i].shape[0]>1: shuffle_id=np.random.randint(low=1,high=datas[i].shape[0],size=1) # print(shuffle_id) support=datas[i][shuffle_id,:,:,:]+0 else: shuffle_id=[0] support=datas[i][shuffle_id,:,:,:]+0 # support=datas[:1,:,:,:]+0 # print(datas.shape) tt_feature,roffset1,roffset2,roffset3,roffset4=self.agg_set[i](reference,reference,test) if(roffset1.shape[-1]==20): self.roffset1,self.roffset2,self.roffset3,self.roffset4=roffset1,roffset2,roffset3,roffset4 # print(self.roffset4.shape) stt=self.neck(tt_feature) # stt=tt_feature # ttweight=torch.exp(self.similarity(torch.cat([stt,stt],dim=1)).unsqueeze(1))#(b,1,w,h) ttweight=torch.nn.functional.cosine_similarity(stt,stt,dim=1).unsqueeze(1) # print(ttweight.max(),ttweight.min()) tk_feature,soffset1,soffset2,soffset3,soffset4=self.agg_set[i](support,reference,test) if(soffset1.shape[-1]==20): self.soffset1,self.soffset2,self.soffset3,self.soffset4=soffset1,soffset2,soffset3,soffset4 stk=self.neck(tk_feature) # stk=tk_feature # tkweight=torch.exp(self.similarity(torch.cat([stt,stk],dim=1)).unsqueeze(1)) tkweight=torch.nn.functional.cosine_similarity(stt,stk,dim=1).unsqueeze(1) # print(tkweight.max(),tkweight.min()) weights=torch.cat([ttweight.unsqueeze(0),tkweight.unsqueeze(0)],dim=0)#(2,b,1,w,h) weights=F.softmax(weights,dim=0) # print(torch.max((weights).abs())) if(roffset1.shape[-1]==20): self.weight=weights features=torch.cat([tt_feature.unsqueeze(0),tk_feature.unsqueeze(0)],dim=0)#(2,b,c,w,h) agg_features=torch.sum(weights*features,dim=0)#(b,c,w,h) output.append(agg_features) # print(agg_features.shape) return tuple(output) @AGG.register_module class STSN_ms(nn.Module): def __init__(self,in_channels,out_channels,dcn): super(STSN_ms,self).__init__() self.deformable_groups = dcn.get('deformable_groups', 1) self.with_modulated_dcn = dcn.get('modulated', False) if not self.with_modulated_dcn: conv_op = DeformConv offset_channels = 18 else: conv_op = ModulatedDeformConv offset_channels = 27 self.conv1_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.conv1 = conv_op(out_channels, out_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv1_1 = conv_op(out_channels, out_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv2_offset = nn.Conv2d(in_channels, self.deformable_groups * offset_channels, kernel_size=3, stride=1, padding=1, dilation=1) self.conv2 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv2_1 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv3_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv3 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv3_1 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv4_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv4 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv4_1 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv5_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv5 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.relu=nn.LeakyReLU(inplace=True) self.neck=nn.Sequential( build_conv_layer(None, 256, 512, kernel_size=1, stride=1, padding=0,bias=False), nn.GroupNorm(32,512), nn.LeakyReLU(inplace=True), build_conv_layer(None, 512, 256, kernel_size=3, stride=1, padding=1, bias=False), nn.GroupNorm(32,256), nn.LeakyReLU(inplace=True), build_conv_layer(None, 256, 256, kernel_size=1, stride=1, padding=0, bias=False)) self.offsets_record=[] self.agg_set=[self.agg1,self.agg2,self.agg3,self.agg4,self.agg5] self.pre_dcn=[self.conv1_1,self.conv2_1,self.conv3_1,self.conv4_1] dcn_base = np.arange(-1, 2).astype(np.float64) dcn_base_y = np.repeat(dcn_base, 3) dcn_base_x = np.tile(dcn_base, 3) dcn_base_offset = np.stack([dcn_base_y, dcn_base_x], axis=1).reshape( (-1)) self.dcn_base_offset = torch.tensor(dcn_base_offset).view(1, -1, 1, 1) def init_weights(self, pretrained=None): if isinstance(pretrained, str): logger = logging.getLogger() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: for m in self.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m) elif isinstance(m, (_BatchNorm, nn.GroupNorm)): constant_init(m, 1) def agg1(self,support,reference,test=False): features=torch.cat([support,reference],dim=1) offset1=self.conv1_offset(features) agg_features=self.conv1(support,offset1) return agg_features,offset1 def agg2(self,support,reference,test=False): features=torch.cat([support,reference],dim=1) offset1=self.conv2_offset(features) agg_features=self.conv2(support,offset1) return agg_features,offset1 def agg3(self,support,reference,test=False): features=torch.cat([support,reference],dim=1) offset1=self.conv3_offset(features) agg_features=self.conv3(support,offset1) return agg_features,offset1 def agg4(self,support,reference,test=False): features=torch.cat([support,reference],dim=1) offset1=self.conv4_offset(features) agg_features=self.conv4(support,offset1) return agg_features,offset1 def agg5(self,support,reference,test=False): features=torch.cat([support,reference],dim=1) offset1=self.conv5_offset(features) agg_features=self.conv5(support,offset1) return agg_features,offset1 def forward(self,datas,test=False): # torch.Size([2, 256, 48, 156]) # torch.Size([2, 256, 24, 78]) # torch.Size([2, 256, 12, 39]) # torch.Size([2, 256, 6, 20]) # torch.Size([2, 256, 3, 10]) output=[] shuffle_id=np.random.randint(low=0,high=datas[0].shape[0],size=datas[0].shape[0]) shuffle_id[shuffle_id==np.arange(datas[0].shape[0])]=shuffle_id[shuffle_id==np.arange(datas[0].shape[0])]-1 print('shuffle id:',shuffle_id) offset_ori=self.dcn_base_offset for i in [4,3,2,1,0]: reference=datas[i]+0 support=datas[i][shuffle_id,:,:,:]+0 bias=torch.zeros(reference.shape[0],2,reference.shape[-2],reference.shape[-1]).cuda(datas[0].device) template=torch.ones_like(bias).float() template[:,:,0]*=torch.reshape(torch.arange(template.shape[-2]).float(),(2000,1)) template[:,:,1]*=torch.reshape(torch.arange(template.shape[-1]).float(),(1,2000)) if i!=4: # offset_ori[:,:9,:,:]=self.dcn_base_offset[:,:9,:,:]*bias[:,0,:,:]*torch.mean(offset_ori[:,:9,:,:],dim=1,keepdim=True) # offset_ori[:,9:,:,:]=self.dcn_base_offset[:,9:,:,:]*bias[:,1,:,:]*torch.mean(offset_ori[:,9:,:,:],dim=1,keepdim=True) offset_ori=torch.nn.functional.interpolate(bias,scale_factor=2,mode='bilinear')*2 # new_support=self.pre_dcn[i](support,offset_ori) tt_feature,_=self.agg_set[i](reference,reference,test) stt=self.neck(tt_feature) ttweight=torch.nn.functional.cosine_similarity(stt,stt,dim=1).unsqueeze(1) tk_feature,offset=self.agg_set[i](new_support,reference,test) bias=offset.view(offset.shape[0],2,9,offset.shape[-2],offset.shape[-1]) bias=torch.mean(bias, dim=2) stk=self.neck(tk_feature) tkweight=torch.nn.functional.cosine_similarity(stt,stk,dim=1).unsqueeze(1) weights=torch.cat([ttweight.unsqueeze(0),tkweight.unsqueeze(0)],dim=0)#(2,b,1,w,h) weights=F.softmax(weights,dim=0) print('support weight','scale:',i*8,torch.mean(weights[1,:,:,:]).item(),torch.min(weights[1,:,:,:]).item(),torch.max(weights[1,:,:,:]).item()) features=torch.cat([tt_feature.unsqueeze(0),tk_feature.unsqueeze(0)],dim=0)#(2,b,c,w,h) agg_features=torch.sum(weights*features,dim=0)#(b,c,w,h) output.append(agg_features) # print(agg_features.shape) return tuple(output) @AGG.register_module class STSN_s2_ori(nn.Module): def __init__(self,in_channels,out_channels,dcn): super(STSN_s2_ori,self).__init__() self.deformable_groups = dcn.get('deformable_groups', 1) self.with_modulated_dcn = dcn.get('modulated', False) if not self.with_modulated_dcn: conv_op = DeformConv offset_channels = 18 else: conv_op = ModulatedDeformConv offset_channels = 27 self.conv1_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3, stride=1,padding=1,dilation=1) self.conv1 = conv_op(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dilation=1, deformable_groups=self.deformable_groups, bias=False) self.conv2_offset = nn.Conv2d(in_channels, self.deformable_groups * offset_channels, kernel_size=3, stride=1, padding=1, dilation=1) self.conv2 = conv_op(in_channels,in_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv3_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv3 = conv_op(in_channels,in_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.conv4_offset = nn.Conv2d(in_channels,self.deformable_groups * offset_channels, kernel_size=3,stride=1,padding=1,dilation=1) self.conv4 = conv_op(out_channels,out_channels,kernel_size=3,stride=1, padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) # self.conv5 = DeformConv(out_channels,out_channels,kernel_size=3,stride=1, # padding=1,dilation=1,deformable_groups=self.deformable_groups,bias=False) self.relu=nn.LeakyReLU(inplace=True) self.offset=[] # self.norm1 = nn.GroupNorm(32,in_channels) # self.norm2 = nn.GroupNorm(32,in_channels) # self.norm3 = nn.GroupNorm(32,in_channels) # self.norm4 = nn.GroupNorm(32,out_channels) # self.similarity=nn.Sequential( # build_conv_layer(None, 512, 256, kernel_size=1, stride=1, padding=0,bias=False), # nn.GroupNorm(32,256), # nn.LeakyReLU(inplace=True), # build_conv_layer(None, 256, 128, kernel_size=1, stride=1, padding=0, bias=False), # nn.GroupNorm(32,128), # nn.LeakyReLU(inplace=True), # build_conv_layer(None, 128, 64, kernel_size=1, stride=1, padding=0, bias=False), # nn.GroupNorm(32,64), # nn.LeakyReLU(inplace=True), # build_conv_layer(None, 64, 1, kernel_size=1, stride=1, padding=0, bias=False), # ) self.neck=nn.Sequential( build_conv_layer(None, 256, 512, kernel_size=1, stride=1, padding=0,bias=False), nn.GroupNorm(32,512), nn.LeakyReLU(inplace=True), build_conv_layer(None, 512, 256, kernel_size=3, stride=1, padding=1, bias=False), nn.GroupNorm(32,256), nn.LeakyReLU(inplace=True), build_conv_layer(None, 256, 256, kernel_size=1, stride=1, padding=0, bias=False)) self.trans_kernel=self.conv4.weight.detach() print('init transform kernel') # for i in range(256): # for j in range(256): # for m in range(3): # for n in range(3): # if i==j: # self.trans_kernel[i,j,m,n]=self.trans_kernel[i,j,m,n]/self.trans_kernel[i,j,m,n] # self.trans_kernel[i,j,m,n]=self.trans_kernel[i,j,m,n]/9 # else: # self.trans_kernel[i,j,m,n]=self.trans_kernel[i,j,m,n]*0 # np.save('/home/ld/RepPoints/mmdetection/mmdet/ops/dcn/init_kernel.npy',self.trans_kernel.data.cpu().numpy()) self.trans_kernel=torch.from_numpy(np.load('/home/ld/RepPoints/mmdetection/mmdet/ops/dcn/init_kernel.npy')) self.trans_kernel=nn.Parameter(self.trans_kernel) def init_weights(self, pretrained=None): if isinstance(pretrained, str): logger = logging.getLogger() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: for m in self.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m) elif isinstance(m, (_BatchNorm, nn.GroupNorm)): constant_init(m, 1) bias_cls = bias_init_with_prob(0.01) normal_init(self.conv1_offset, std=0.01) normal_init(self.conv1, std=0.01) normal_init(self.conv2_offset, std=0.01) normal_init(self.conv2, std=0.01) normal_init(self.conv3_offset, std=0.01) normal_init(self.conv3, std=0.01) normal_init(self.conv4_offset, std=0.01) normal_init(self.conv4, std=0.01) def agg(self,support,reference,test=False): # features=torch.cat([support,reference],dim=1) feature_f0=torch.cat([support,reference],dim=1) print(feature_f0.device,self.conv1.weight.device) if self.with_modulated_dcn: offset_mask1 = self.conv1_offset(feature_f0) offset = offset_mask1[:, :18 * self.deformable_groups, :, :] mask = offset_mask1[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv1(feature_f0, offset, mask) offset_mask2 = self.conv2_offset(out) offset = offset_mask2[:, :18 * self.deformable_groups, :, :] mask = offset_mask2[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv2(out, offset, mask) offset_mask3 = self.conv3_offset(out) offset = offset_mask3[:, :18 * self.deformable_groups, :, :] mask = offset_mask3[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() out = self.conv3(out, offset, mask) offset_mask4 = self.conv4_offset(out) offset = offset_mask4[:, :18 * self.deformable_groups, :, :] mask = offset_mask4[:, -9 * self.deformable_groups:, :, :] mask = mask.sigmoid() kernel_weight=self.trans_kernel.detach()*9 self.conv4.weight=nn.Parameter(self.trans_kernel.detach()) out = self.conv4(support, offset, mask) if test: return out,offset_mask1,offset_mask2,offset_mask3,offset_mask4 else: return out else: offset1=self.conv1_offset(feature_f0) feature_f1=self.conv1(feature_f0,offset1) offset2=self.conv2_offset(feature_f1) feature_f2=self.conv2(feature_f1,offset2) offset3=self.conv3_offset(feature_f2) feature_f3=self.conv3(feature_f2,offset3) offset4=self.conv4_offset(feature_f3) # print(self.conv4_offset.weight.shape) # print(self.conv4.weight.shape) self.conv4.weight=nn.Parameter(self.trans_kernel.detach()) agg_features=self.conv4(support,offset4) self.offset4=offset4 # offset4=torch.max(offset4.abs(),dim=1,keepdim=True).expand_as(offset4) # if offset4.shape[-1]==156: # print('load') # offset4_load=np.load('/home/ld/RepPoints/debug/agg_st_support/0/offset4.npy') # offset4_load=torch.from_numpy(offset4_load).to(support.device) # print('offset check in stsn',(offset4==offset4_load).all()) # #true for video 0 # support_load=np.load('/home/ld/RepPoints/debug/agg_st_support/2/support_f.npy') # support_load=torch.from_numpy(support_load).to(support.device) # print('support check in stsn',(support==support_load).all()) # agg_features=self.conv4(support_load,offset4_load) # np.save('/home/ld/RepPoints/debug/feature_change/2/agg_f.npy',agg_features.data.cpu().numpy()) # np.save('/home/ld/RepPoints/debug/feature_change/2/support_f.npy',support_load.data.cpu().numpy()) # # np.save('/home/ld/RepPoints/debug/feature_change/0/refer_f.npy',reference.data.cpu().numpy()) # agg_load=np.load('/home/ld/RepPoints/debug/agg_st_support/2/agg_f.npy') # agg_load=torch.from_numpy(agg_load).to(support.device) # print('agg check in stsn',(agg_features==agg_load).all()) # # exit() # #True for video 2 # self.offset4=offset4 # self.support_f=support # self.agg_f=agg_features # self.refer_f=reference # return agg_features,offset1,offset2,offset3,offset4 # #?shape # # offset4=torch.rand_like(offset4) # else: # agg_features=self.conv4(support,offset4) # y_offset=[] # for i in range(9): # y_offset.append(offset4[:,2*i+1,:,:]) # y_offset=torch.stack(y_offset,dim=0) # print(torch.max(y_offset.abs())) # agg_features=(agg_features+support)/2 # agg_features=self.norm4(agg_features) # agg_features=self.relu(agg_features) if test: return agg_features,offset1,offset2,offset3,offset4 else: return agg_features def forward(self,datas,test=False): # torch.Size([2, 256, 48, 156]) # torch.Size([2, 256, 24, 78]) # torch.Size([2, 256, 12, 39]) # torch.Size([2, 256, 6, 20]) # torch.Size([2, 256, 3, 10]) output=[] shuffle_id=np.random.randint(low=0,high=datas[0].shape[0],size=datas[0].shape[0]) shuffle_id[shuffle_id==
np.arange(datas[0].shape[0])
numpy.arange
import math import numpy as np import random import sys #Helper Methods ------------------------------------------------------------------------ # Finds the mean/centroid of a cluster. def centerOfCluster(cluster): cluster = np.asarray(cluster) center =np.array([0,0]) result = np.array([0,0]) for i in range(len(cluster)): result = np.sum([cluster[i], result], axis = 0) numberOfPoints = len(cluster) if numberOfPoints > 0: result = result * (1 / numberOfPoints) return result else: print ("A cluster is empty") sys.exit() # Calculates the distance between 2 2d vectors. def distVector(vectorA, vectorB): vectorA =
np.asarray(vectorA)
numpy.asarray
# Imports. import numpy as np ######################################################### # Set the hyperparameters for the Neural Network to use. ######################################################### iterations = int(3e3) learning_rate = 5e-1 hidden_nodes = 25 output_nodes = 1 class NeuralNetwork(object): """ Class implementation of an Artificial Neural Network (ANN). """ def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate): """ Initialize an ANN instance. Params ====== input_nodes (int): Number of nodes in the input layer hidden_nodes (int): Number of nodes in the hidden layer output_nodes (int): Number of nodes in the output layer learning_rate (float): Learning rate """ # Set the number of nodes in input, hidden and output layers. self.input_nodes = input_nodes self.hidden_nodes = hidden_nodes self.output_nodes = output_nodes # Initialize weights. self.weights_input_to_hidden = np.random.normal( 0., self.input_nodes**-.5, (self.input_nodes, self.hidden_nodes)) self.weights_hidden_to_output = np.random.normal( 0., self.hidden_nodes**-.5, (self.hidden_nodes, self.output_nodes)) # Set the learning rate. self.lr = learning_rate # Setting the activation function to a sigmoid function. # Here, we define a function with a lambda expression. self.activation_function = lambda x : 1. / (1. + (np.exp(-x))) def train(self, features, targets): """ Train the ANN on batch of features and targets. Params ====== features: 2D array, each row is one data record, each column is a feature targets: 1D array of target values """ # Set the parameters. n_records = features.shape[0] delta_weights_i_h =
np.zeros(self.weights_input_to_hidden.shape)
numpy.zeros
## Functions for evaluation of model performance ## TODO: references to source for each function where applicable ## TODO: write documentation for each function # Modules from nltk.translate.bleu_score import sentence_bleu import matplotlib.pyplot as plt import numpy as np def decode_sequence(input_seq, encoder_model, decoder_model, mapping_input, mapping_output): ''' Take input as one-hot encoded vector and predict the output. :param input_seq: one-hot encoded input word :param encoder_model: trained model encoder (see 'inference' in seq2seq.py) :param decoder_model: trained model decoder :param mapping_input: hash tables from character --> integer and vice versa :param mapping_output: hash tables from character --> integer and vice versa :return: predicted pronunciation :adapted from: https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html ''' # Encode the input as state vectors. states_value = encoder_model.predict(input_seq) # Generate empty target sequence of length 1. target_seq =
np.zeros((1, 1, mapping_output.n_chars))
numpy.zeros
import numpy as np import pandas as pd import threading import time import pickle import tsfresh from psutil import cpu_percent from tsfresh import extract_features from tsfresh import select_features from tsfresh.utilities.dataframe_functions import impute from sklearn.decomposition import PCA from sklearn import preprocessing import matplotlib.pyplot as plt import matplotlib.patches as mpatches import scipy as sp from sklearn import preprocessing from sklearn.preprocessing import StandardScaler, Normalizer, MinMaxScaler,normalize from scipy import io from mpl_toolkits.mplot3d import Axes3D from scipy.spatial.distance import pdist, cdist, squareform from matplotlib.colors import ListedColormap from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.datasets import make_moons, make_circles, make_classification from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.naive_bayes import GaussianNB from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from sklearn.metrics import recall_score, f1_score, precision_score from tsfresh.feature_extraction import extract_features, ComprehensiveFCParameters from tsfresh.feature_extraction.settings import from_columns from tsfresh.feature_extraction import feature_calculators from tsfresh.feature_extraction import EfficientFCParameters import os import glob from tsfresh.feature_extraction import extract_features, EfficientFCParameters def Recovery (DataName): #Recovery function #Changing Work Folder add_path1 = "/PCA_Analyses/" add_path2 = "/Kernel/" add_path3 = "/.Recovery/" base_path = os.getcwd () working_path = os.getcwd() + '/Model' PCA_Analyses_path = working_path + add_path1 Kernel_path = working_path + add_path2 Recovery_path = working_path + add_path3 if DataName == 'D_S_parameters': try: # Now change to Kernel directory os.chdir( Kernel_path ) Final_Target = np.genfromtxt('FinalTarget.csv', delimiter = ',') # Now change to Recovery directory os.chdir( Recovery_path ) P_N_groups = int(np.load('M_N_groups.npy')) Output_Id = int(np.load('ID.npy')) P_N_Ids = int(np.load('N_IDs.npy')) # Now change to base directory os.chdir( base_path ) Output = {'FinalTarget': Final_Target, 'M_N_groups': P_N_groups, 'ID': Output_Id, 'N_IDs': P_N_Ids} #retval = os.getcwd() #print ("Final working directory %s" % retval) print("D_S_parameters Recovered!") return Output except: print("D_S_parameters not recovered =(" + '\033[0m') elif DataName == 'ExtractedNames': try: # Now change to Recovery directory os.chdir( Recovery_path ) extracted_names = np.load('extracted_names.npy') # Now change to base directory os.chdir( base_path ) #retval = os.getcwd() #print ("Final working directory %s" % retval) print("ExtractedNames recovered!") return extracted_names except: print('\033[93m' + "ExtractedNames not recovered =(" + '\033[0m') elif DataName == 'SelectedFeatures': try: # Now change to Recovery directory os.chdir( Recovery_path ) Output_Id = int(np.load('ID.npy')) # Now change to Kernel directory os.chdir( Kernel_path ) features_filtered_1 = pd.read_csv('features_filtered_' + str(Output_Id) + '.csv') # Now change to base directory os.chdir( base_path ) Output = {'FeaturesFiltered': features_filtered_1, 'ID': Output_Id} #retval = os.getcwd() #print ("Final working directory %s" % retval) print("SelectedFeatures recovered!") return Output except: print('\033[93m' + "SelectedFeatures not recovered =(" + '\033[0m') elif DataName == 'ReducedFeatures': try: # Now change to Recovery directory os.chdir( Recovery_path ) Output_Id = int(np.load('ID.npy')) # Now change to PCA Analyses directory os.chdir( PCA_Analyses_path ) features_reduzidas = np.genfromtxt("features_reduzidas_" + str(Output_Id) + ".csv", delimiter=',') # Now change to base directory os.chdir( base_path ) Output = {'ReducedFeatures': features_reduzidas, 'ID': Output_Id} #retval = os.getcwd() #print ("Final working directory %s" % retval) print("ReducedFeatures recovered!") return Output except: print('\033[93m' + "ReducedFeatures not recovered =(" + '\033[0m') elif DataName == 'SODA_parameters_processing_parameters': try: # Now change to base directory os.chdir( Recovery_path ) #retval = os.getcwd() #print ("Current working directory %s" % retval) Output_Id = int(np.load('ID.npy')) processing_parameters = np.load(('processing_parameters.npy'), allow_pickle=True) processing_parameters = processing_parameters.tolist() distances = np.load(('distances.npy'), allow_pickle=True) distances = distances.tolist() min_granularity = np.load('Min_g.npy') max_granularity = np.load('Max_g.npy') pace = np.load('Pace.npy') Output = {'Distances': distances, 'Min_g': min_granularity, 'Max_g': max_granularity, 'Pace': pace, 'ID': Output_Id} # Now change to base directory os.chdir( base_path ) #retval = os.getcwd() #print ("Current working directory %s" % retval) print("SODA_parameters_processing_parameters recovered!") return Output, processing_parameters except: print('\033[93m' + "SODA_parameters_processing_parameters not recovered =(" + '\033[0m') elif DataName == 'ClassificationPar': try: # Now change to base directory os.chdir( Recovery_path ) #retval = os.getcwd() #print ("Current working directory %s" % retval) Output_Id = int(np.load('ID.npy')) pace = np.load("Pace.npy") distances = np.load(('distances.npy'), allow_pickle=True) distances = distances.tolist() define_percent = np.load('define_percent.npy') Output = {'Percent': define_percent, 'Distances': distances, 'Pace': pace, 'ID': Output_Id} # Now change to base directory os.chdir( base_path ) #retval = os.getcwd() #print ("Current working directory %s" % retval) print("ClassificationPar recovered!") return Output except: print('\033[93m' + "ClassificationPar not recovered =(" + '\033[0m') elif DataName == 'ModelPar': try: # Now change to base directory os.chdir( Recovery_path ) #retval = os.getcwd() #print ("Current working directory %s" % retval) # load the model from disk model = pickle.load(open("Model.sav", 'rb')) X_test = np.load('X_test.npy') y_test = np.load('y_test.npy') Output = {'Model': model, 'X': X_test, 'Y': y_test} # Now change to base directory os.chdir( base_path ) #retval = os.getcwd() #print ("Current working directory %s" % retval) print("ModelPar recovered!") return Output except: print('\033[93m' + "ModelPar not recovered =(" + '\033[0m') else: print('\033[93m' + "Wrong name lad/lass, please check de Recovery input" + '\033[0m') def scale(X, x_min, x_max): #Normalization nom = (X-X.min(axis=0))*(x_max-x_min) denom = X.max(axis=0) - X.min(axis=0) if denom==0: denom = 1 return x_min + nom/denom def format_func(value, tick_number): #Plot Formater # find number of multiples of pi/2 N = int(value) if N == 0: return "X1" elif N == 50: return "X50" elif N == 100: return "X100" elif N == 150: return "X150" elif N == 200: return "X200" elif N == 250: return "X250" elif N == 300: return "X300" elif N == 350: return "X350" elif N == 400: return "X400" elif N == 450: return "X450" elif N == 500: return "X500" elif N == 550: return "X550" elif N == 600: return "X600" elif N == 650: return "X650" elif N == 700: return "X700" elif N == 750: return "X750" elif N == 800: return "X800" elif N == 850: return "X850" def DataSlicer (Output_Id, id_per_group=20, Choice='All'): ''' Function to Slice a time series dataset into several datasets for save RAM during model execution Parameters: ------ Output_Id : int identifier for the dataset id_per_group: int, optional number of time series per division (default is 20) Choice : str, optional option of data, can be ['Main Data', 'Eminence Data', 'All'] (default is 'All') Returns: ------- dictionary, with the following items 'FinalTarget': np.array targets of the entire dataset 'M_N_groups': int number of groups 'ID': int identifier for the dataset 'N_IDs': int number of time series ''' print('Data Slicer Control Output') print('----------------------------------') #Changing Work Folder add_path1 = "/Input/" add_path2 = "/Kernel/" add_path3 = "/.Recovery/" base_path = os.getcwd() working_path = os.getcwd() Input_path = working_path + add_path1 Kernel_path = working_path + add_path2 Recovery_path = working_path + add_path3 # Now change to Input directory os.chdir( Input_path ) # Loading the required input Full_data = np.genfromtxt('Output_' + str(int(Output_Id)) + '.csv', delimiter=',') #E_data = np.genfromtxt('Eminence_Data_' + str(Output_Id) + '.csv', delimiter=',') columns = Full_data.shape[1] data = Full_data[:,2:columns-1] info = Full_data[:,0:2] #centralizar os dados e colocá-los com desvioPadrão=1 #scaler = MinMaxScaler(feature_range=(-1,1)).fit(data) #data = scaler.transform(data) P_data = np.concatenate((info,data), axis=1) Target = Full_data[:,columns-1] print('Full Matrix: ' + str(Full_data.shape)) print('Main Data: ' + str(P_data.shape)) print('Labels: ' + str(Target.shape)) #print('Eminence Data: ' + str(E_data.shape)) # Now change to Kernel directory os.chdir( Kernel_path ) #pickle.dump(scaler, open('norm.sav', 'wb')) ###______________________________________________________________________### ### ProDiMes Slicing Parameters ### P_N_Ids = int(np.amax(P_data,axis=0)[0]) P_N_voos = int(np.amax(P_data,axis=0)[1]) P_last_group = int(P_N_Ids % id_per_group) if P_last_group != 0: P_N_groups = int((P_N_Ids / id_per_group) + 1) else: P_N_groups = int (P_N_Ids / id_per_group) ### Formating Final Target ### Final_Target = np.zeros((P_N_Ids)) p_n_good = 0 p_n_bad = 0 aquired_time = P_N_Ids*P_N_voos/1000 for i in range (P_N_Ids): if Target [i*P_N_voos] == 0: p_n_good += 1 else: p_n_bad += 1 Final_Target[i] = Target [i*P_N_voos] print ('Total Number of Ids: ' + str(P_N_Ids)) print ('Number of healthy Ids: ' + str(p_n_good)) print ('Number of falty Ids: ' + str(p_n_bad)) print ('Total lifetime: ' + str(aquired_time) + ' s') print ('Main data Number of mesures: ' + str(P_N_voos )) print ('Main data Number of groups: ' + str(P_N_groups )) print ('Main data Last group: ' + str(P_last_group )) print ('___________________________________________') ###______________________________________________________________________### ### Eminences Slicing Parameters ### #E_N_Ids = int(np.amax(E_data,axis=0)[0] - np.amax(P_data,axis=0)[0]) #E_N_voos = int(np.amax(E_data,axis=0)[1]) + 1 #E_last_group = int(E_N_Ids % id_per_group) #if (E_last_group != 0): # E_N_groups = int((E_N_Ids / id_per_group) + 1) #else: # E_N_groups = int (E_N_Ids / id_per_group) #print ('Eminences Number of Ids: ' + str(E_N_Ids )) #print ('Eminences Number of flights: ' + str(E_N_voos )) #print ('Eminences Number of groups: ' + str(E_N_groups )) #print ('Eminences Last group: ' + str(E_last_group )) #np.savetxt(('Target_' + str(int(Output_Id)) + '.csv'), Final_Target, delimiter = ',') ###______________________________________________________________________### ### Slicing Prodimes Data ### if (Choice =='Main Data') or (Choice =='All'): for i in range (P_N_groups): Data = np.zeros(((id_per_group * P_N_voos),columns-1)) for j in range (id_per_group): for k in range (P_N_voos): if (i < (P_N_groups - 1)): Data[(j * P_N_voos) + k,:] = P_data [(((i * id_per_group + j) * P_N_voos) + k ) ,:] elif (P_last_group == 0) and (i == (P_N_groups - 1)): Data[(j * P_N_voos) + k,:] = P_data [(((i * id_per_group + j) * P_N_voos) + k ) ,:] if (P_last_group != 0) and (i == (P_N_groups - 1)): Data = np.zeros(((P_last_group * P_N_voos),columns-1)) for j in range (P_last_group): for k in range (P_N_voos): Data[(j * P_N_voos) + k,:] = P_data [(((i * id_per_group + j) * P_N_voos) + k ) ,:] np.savetxt(('Data_' + str(i) + '.csv'), Data, delimiter = ',') ###______________________________________________________________________### ### Slicing Eminences ### ''' if (Choice == 'Eminence Data') or (Choice =='All'): for i in range (E_N_groups): Data = np.zeros(((id_per_group * E_N_voos),columns-3)) for j in range (id_per_group): for k in range (E_N_voos): if (i < (E_N_groups - 1)): Data[(j * E_N_voos) + k,:] = E_data [(((i * id_per_group + j) * E_N_voos) + k ) ,:] if (E_last_group != 0) and (i == (E_N_groups - 1)): Data = np.zeros(((E_last_group * E_N_voos),columns-3)) for j in range (E_last_group): for k in range (E_N_voos): Data[(j * E_N_voos) + k,:] = E_data [(((i * id_per_group + j) * E_N_voos) + k ) ,:] np.savetxt(('Eminence_' + str(i) + '.csv'), Data, delimiter = ',') ''' np.savetxt(('FinalTarget.csv'), Final_Target, delimiter = ',') # Now change to Recovery directory os.chdir( Recovery_path ) np.save(('M_N_groups.npy'), P_N_groups) np.save(('ID.npy'), Output_Id) np.save(('N_IDs.npy'), P_N_Ids) # Now change back to Base directory os.chdir( base_path ) Output = {'FinalTarget': Final_Target, 'M_N_groups': P_N_groups, 'ID': Output_Id, 'N_IDs': P_N_Ids} return Output def TSFRESH_Extraction(D_S_parameters): ''' Function to extract features of the time series using TSFRESH method Parameters: ------ D_S_parameters : dictionary, with the following items 'FinalTarget': np.array targets of the entire dataset 'M_N_groups': int number of groups 'ID': int identifier for the dataset 'N_IDs': int number of time series Returns: ------- list a list of string with the name of the extracted features by TSFRESH ''' print(' ') print('TSFRESH Control Output') print('----------------------------------') #Changing Work Folder add_path2 = "/Kernel/" add_path3 = "/.Recovery/" base_path = os.getcwd() working_path = os.getcwd() Kernel_path = working_path + add_path2 Recovery_path = working_path + add_path3 # Now change to Kernel directory os.chdir( Kernel_path ) ###______________________________________________________________________### ### Feature Extraction ### #E_N_groups = np.load('E_N_groups.npy') P_N_groups = D_S_parameters['M_N_groups'] for i in range(P_N_groups): Data = np.genfromtxt('Data_' + str(i) + '.csv', delimiter=',') data = pd.DataFrame(Data, columns= ['id','time'] + ['Sensor_' + str(x) for x in range(1,(Data.shape[1]-1))]) Data_extracted_features = extract_features(data,column_id = "id", column_sort="time",n_jobs=4,disable_progressbar=True) extracted_names = list(Data_extracted_features.columns) np.savetxt('Data_Features_' + str(i) + '.csv', Data_extracted_features.values, delimiter=',') #for i in range(E_N_groups): # data = pd.DataFrame(np.genfromtxt('Eminence_' + str(i) + '.csv', delimiter=','), # columns= ['id','time','sensor_1','sensor_2','sensor_3','sensor_4', # 'sensor_5','sensor_6','sensor_7']) # extracted_features = extract_features(data, column_id = "id", column_sort="time") # np.savetxt('Eminence_Features_' + str(i) + '.csv', extracted_features, delimiter=',') # Now change to Recovery directory os.chdir( Recovery_path ) np.save('extracted_names.npy',extracted_names) # Now change back to base directory os.chdir( base_path ) print("Number of Extracted Features: {}".format(len(extracted_names))) return extracted_names def tsfresh_chucksize(full_data,output_id): # Loading the required input L, W = full_data.shape data = full_data[:,2:-1] info = full_data[:,0:2] # Normalizing scaler = MinMaxScaler() data = scaler.fit_transform(data) n_measures = int(max(info[:,1])) target = full_data[::n_measures,-1] u, idx = np.unique(info[:,0], return_index=True) df = pd.DataFrame(np.concatenate((info,data), axis=1), columns= ['id','time'] + ['Sensor_' + str(x) for x in range(1,W-2)]) with open('Kernel/valid_features_dict.pkl', 'rb') as f: kind_to_fc_parameters = pickle.load(f) columns = [] for i,x in enumerate(kind_to_fc_parameters): aux = pd.DataFrame(np.hstack((df.loc[:,:'time'].values, df.loc[:,x].values.reshape((-1,1)))), columns=['id','time',x]) aux2 = tsfresh.extract_features(aux, column_id="id", column_sort="time", default_fc_parameters=kind_to_fc_parameters[x], #chunksize=3*24000, n_jobs=4, disable_progressbar=False) for j in range(len(aux2.columns.tolist())):columns.append(aux2.columns.tolist()[j]) if i == 0: extracted_features = np.array(aux2.values) else: extracted_features = np.hstack((extracted_features,aux2.values)) final_features = pd.DataFrame(extracted_features,columns=columns) filtered_features = select_features(final_features, target,n_jobs=4) filtered_features.sort_index(inplace = True) with open('Kernel/final_target_' + output_id + '.pkl', 'wb') as f: pickle.dump(target, f) # Extracting the selected features dictionary from pandas data frame kind_to_fc_parameters = tsfresh.feature_extraction.settings.from_columns(filtered_features) # Saving dictionary for the on-line phase with open('Kernel/kind_to_fc_parameters.pkl', 'wb') as f: pickle.dump(kind_to_fc_parameters, f) with open('Kernel/columns.pkl', 'wb') as f: pickle.dump(filtered_features.columns.to_list(), f) Output = {'FeaturesFiltered': filtered_features, 'FinalTarget': target, 'ID': int(output_id)} return Output def tsfresh_chucksize_test(output_id): # Loading the required input full_data = np.genfromtxt('Input/Output_' + output_id + '.csv', delimiter=',') L, W = full_data.shape data = full_data[:,2:-1] info = full_data[:,0:2] # Normalizing scaler = MinMaxScaler() data = scaler.fit_transform(data) n_measures = int(max(info[:,1])) target = full_data[::n_measures,-1] u, idx = np.unique(info[:,0], return_index=True) df = pd.DataFrame(np.concatenate((info,data), axis=1), columns= ['id','time'] + ['Sensor_' + str(x) for x in range(1,W-2)]) extracted_features = tsfresh.extract_features(df, column_id="id", column_sort="time", n_jobs=4,default_fc_parameters=EfficientFCParameters()) return extracted_features def tsfresh_NaN_filter(output_id,fft=False): """ Given an output_id, this function withdraw all NaN features from the TSFRESH extraction; Inputs: -output_id: str() -> the given id -fft: True or False -> filter fft features Outputs: - Saves via picklen in ./Kernel/ an extraction dictonary without features that generates NaN """ df = tsfresh_chucksize_test(output_id) features = df.columns nan_columns = [] for col in features: data = df.loc[:,col].values nan_test = np.isnan(data) aux = col.split('__')[1].split('_')[0] if aux == 'fft' and fft == True: nan_columns.append(col) elif any(nan == True for nan in nan_test): nan_columns.append(col) print('Percentage of invalid features: ', len(nan_columns)*100/len(features)) valid_features = [] for i in range(len(features)): if features[i] not in nan_columns: valid_features.append(features[i]) print('Percentage of valid features: ', len(valid_features)*100/len(features)) valid_features_dict = from_columns(valid_features) with open('Kernel/valid_features_dict.pkl', 'wb') as f: pickle.dump(valid_features_dict, f) return def tsfresh_ensemble(output_id): # Loading the required input full_data = np.genfromtxt('Input/Output_{}.csv'.format(output_id), delimiter=',') L, W = full_data.shape data = full_data[:,2:-1] info = full_data[:,0:2] n_measures = int(max(info[:,1])) n_timeseries = int(max(info[:,0])) label = full_data[::n_measures,-1] scaler = MinMaxScaler(feature_range=(-1,1)).fit(data) data = scaler.transform(data) with open('Kernel/scaler.pkl', 'wb') as f: pickle.dump(scaler, f) full_data = np.concatenate((info,data), axis=1) divisions = 1 idx = np.random.choice(range(n_timeseries),n_timeseries,replace=False) idx_division = np.array_split(idx,divisions) for i,div in enumerate(idx_division): div.sort() indices = [d2 for d1 in div for d2 in range(d1*n_measures,(d1+1)*n_measures)] ensemble_data = full_data[indices,:] ensemble_label = label[div] df = pd.DataFrame(ensemble_data, columns= ['id','time'] + ['Sensor_' + str(x) for x in range(1,W-2)]) extracted_features = tsfresh.extract_features(df, column_id="id", column_sort="time", n_jobs=0) features = extracted_features.columns nan_columns = [] for col in features: nan_test = np.isnan(extracted_features.loc[:,col].values) if any(nan == True for nan in nan_test): nan_columns.append(col) print(' - Percentage of invalid features: ', len(nan_columns)*100/len(features)) cleaned_features = features.drop(nan_columns) cleaned_df = extracted_features[cleaned_features] filtered_df, relevance_table = selection.select_features(cleaned_df, ensemble_label, n_jobs=0) relevance_table.fillna(value=100) if i == 0: relevance_table_final = relevance_table.copy() extracted_features_final = extracted_features.copy() else: relevance_table_final.p_value = relevance_table_final.p_value + relevance_table.p_value extracted_features_final = pd.concat([extracted_features_final,extracted_features], axis=0) extracted_features_final = extracted_features_final.sort_index() relevance_table_final.p_value = relevance_table_final.p_value/divisions relevance_table_final.relevant = relevance_table_final.p_value < 0.0029 relevant_features = relevance_table_final[relevance_table_final.relevant].feature extracted_features_final = extracted_features_final[relevant_features] kind_to_fc_parameters = from_columns(relevant_features) with open('Kernel/kind_to_fc_parameters.pkl', 'wb') as f: pickle.dump(kind_to_fc_parameters, f) with open('Kernel/columns.pkl', 'wb') as f: pickle.dump(relevant_features.keys().tolist(), f) with open('Kernel/final_target_{}.pkl'.format(output_id), 'wb') as f: pickle.dump(label, f) Output = {'FeaturesFiltered': extracted_features_final, 'FinalTarget': label, 'ID': int(output_id)} return Output def dynamic_tsfresh (total_data, mode='prototype'): ''' Function for ONLINE mode This function read the data from the acquisition module and executes a dynamic and lighter version of TSFRESH. Parameters: ------ output_id : int identifier of the seed dataset extracted_names: list Returns: ------- dataframe ######################################################### ''' data = total_data[:,2:-1] info = total_data[:,0:2] # Normalizing scaler = MinMaxScaler() data = scaler.fit_transform(data) total_data = np.concatenate((info,data), axis=1) # ----------------------------------------------------------------- # df = pd.DataFrame(total_data, columns= ['id','time'] + ['Sensor_' + str(x) for x in range(1,(total_data.shape[1]-1))]) # Loading feature dictionary with open('Kernel/kind_to_fc_parameters.pkl', 'rb') as f: kind_to_fc_parameters = pickle.load(f) # Loading column names with open('Kernel/columns.pkl', 'rb') as f: original_columns = pickle.load(f) columns = [] for i,x in enumerate(kind_to_fc_parameters): aux = pd.DataFrame(np.hstack((df.loc[:,:'time'].values, df.loc[:,x].values.reshape((-1,1)))), columns=['id','time',x]) aux2 = tsfresh.extract_features(aux, column_id="id", column_sort="time", default_fc_parameters=kind_to_fc_parameters[x],#chunksize=24000, n_jobs=0 #disable_progressbar=True ) for j in range(len(aux2.columns.tolist())):columns.append(aux2.columns.tolist()[j]) if i == 0: extracted_features = np.array(aux2.values) else: extracted_features = np.hstack((extracted_features,aux2.values)) final_features = pd.DataFrame(extracted_features,columns=columns) final_features = final_features[original_columns] return impute(final_features), extracted_features def test_tsfresh (SelectedFeatures,extracted_features): tsf_offline = SelectedFeatures['FeaturesFiltered'].values tsf_online = extracted_features.values equal = np.equal(tsf_offline,tsf_online) n_errors = 0 error_size = [] for i in range(equal.shape[0]): for j in range(equal.shape[1]): if equal[i,j]== False: n_errors += 1 error_size.append(100*(tsf_offline[i,j]-tsf_online[i,j])/tsf_online[i,j]) error_size = pd.DataFrame(error_size) error_size = impute(error_size) print('Porcentagem de amostrar erradas (%): ',n_errors*100/(equal.shape[0]*equal.shape[1])) print('Média de erro percentual (%): ',np.mean(error_size[0])) print('Desvio (%): ',np.std(error_size[0])) def PCA_calc (SelectedFeatures,N_PCs,Chose = 'Analytics',it=0): ''' Function to project and execute a Principal Components Analysis Parameters: ------ SelectedFeatures : dictionary, with the following items 'FeaturesFiltered': pd.DataFrame contain the output data of TSFRESH, i.e., the dataset with features selected by the hypothesis test 'FinalTarget': np.array targets of the entire dataset 'ID': int identifier for the dataset N_PCs: int number of Principal Components to mantain Chose: str type of analysis, can be ['Test', 'Calc', 'Specific', 'Analytics'] (default is 'Analytics') Returns: ------- dictionary, with the following items 'ReducedFeatures': np.array contain the output data of PCA, i.e., the dataset with Principal Componentes projected by PCA 'ID': int identifier for the dataset ''' if (Chose == 'Test') or (Chose == 'Calc') or (Chose == 'Specific') or (Chose == 'Analytics'): #Changing Work Folder add_path1 = "/PCA_Analyses/" add_path2 = "/Input/" add_path3 = "/Kernel/" add_path4 = "/PCA_Analyses/Figures/" base_path = os.getcwd() working_path = os.getcwd() PCA_Analyses_path = working_path + add_path1 Input_path = working_path + add_path2 Kernel_path = working_path + add_path3 PCA_Figures_path = working_path + add_path4 # Now change to PCA Figures directory os.chdir( Kernel_path ) print(' ') print('PCA Control Output') print('----------------------------------') Output_Id = SelectedFeatures['ID'] features = SelectedFeatures['FeaturesFiltered'] Target = SelectedFeatures['FinalTarget'] selected_names = list(features.columns) #centralizar os dados e colocá-los com desvioPadrão=1 scaler = StandardScaler().fit(features) features_padronizadas = scaler.transform(features) #features_padronizadas = pd.DataFrame(features_padronizadas) pickle.dump(scaler, open('pca_scaler.sav', 'wb')) pca= PCA(n_components = N_PCs) pca.fit(features_padronizadas) # save the model to disk pickle.dump(pca, open('pca.sav', 'wb')) variacao_percentual_pca = np.round(pca.explained_variance_ratio_ * 100, decimals = 2) # Now change to PCA Figures directory fig = plt.figure(figsize=[16,8]) ax = fig.subplots(1,1) ax.bar(x=['PC' + str(x) for x in range(1,(N_PCs+1))],height=variacao_percentual_pca[0:N_PCs]) ax.set_ylabel('Percentage of Variance Held',fontsize=27) ax.set_xlabel('Principal Components',fontsize=20) ax.tick_params(axis='x', labelsize=22) ax.tick_params(axis='y', labelsize=22) ax.grid() #plt.show() fig.savefig('Percentage_of_Variance_Held__{}__{}.png'.format(Output_Id,it), bbox_inches='tight') print('Variation maintained: %.2f' % variacao_percentual_pca.sum()) print(' ') if (Chose != 'Test'): features_reduzidas = pca.transform(features_padronizadas) print('Filtered Features') print('-' * 20) print(np.size(features_padronizadas,0)) print(np.size(features_padronizadas,1)) print('-' * 20) print('Reduced Features') print('-' * 20) print(np.size(features_reduzidas,0)) print(np.size(features_reduzidas,1)) if (Chose != 'Test'): ### Análise de atributos ### eigen_matrix = np.array(pca.components_) eigen_matrix = pow((pow(eigen_matrix,2)),0.5) #invertendo valores negativos for i in range (eigen_matrix.shape[0]): LineSum = sum(eigen_matrix[i,:]) for j in range (eigen_matrix.shape[1]): eigen_matrix[i,j] = ((eigen_matrix[i,j]*100)/LineSum) if Chose == 'Specific': ### Análise Expecífica ### fig = plt.figure(figsize=[16,int(8*N_PCs)]) fig.suptitle('Contribution percentage per PC', fontsize=16) ax = fig.subplots(int(N_PCs),1) for i in range (int(N_PCs)): s = eigen_matrix[i,:] ax[i].bar(x=range(0,(eigen_matrix.shape[1])),height=s) ax[i].set(xlabel='Features', ylabel='Contribution Percentage', title = 'PC ' + str(i+1)) ax[i].grid() # Hide x labels and tick labels for top plots and y ticks for right plots. for axs in ax.flat: axs.label_outer() plt.show() fig.savefig('Contribution_Percentage_Per_PC_{}.png'.format(Output_Id), bbox_inches='tight') if (Chose == 'Analytics'): ### Análise Geral ### weighted_contribution = np.zeros((2,eigen_matrix.shape[1])) for i in range (eigen_matrix.shape[1]): NumeratorSum = 0 for j in range (N_PCs): NumeratorSum += eigen_matrix[j,i] * variacao_percentual_pca[j] weighted_contribution[0,i] = NumeratorSum / sum(variacao_percentual_pca) df_weighted_contribution = pd.DataFrame(weighted_contribution,columns=selected_names) df_weighted_contribution = df_weighted_contribution.drop([1]) df_weighted_contribution = df_weighted_contribution.sort_values(by=0, axis=1, ascending=False) #pd.set_option('display.max_rows', len(df_weighted_contribution)) #print(type(df_weighted_contribution)) #print(df_weighted_contribution.head()) #pd.reset_option('display.max_rows') #Creating Separated Data Frames por Sensors and Features Contribution sensors_names = [None] * int(df_weighted_contribution.shape[1]) features_names = [None] * int(df_weighted_contribution.shape[1]) general_features = [None] * int(df_weighted_contribution.shape[1]) for i, names in zip(range (df_weighted_contribution.shape[1]), df_weighted_contribution.columns): c = '__' words = names.split(c) sensors_names[i] = words[0] general_features[i]= words[1] features_names[i] = c.join(words[1:]) #print(names) #print(words) #print(sensors_names[i]) #print(features_names[i]) #print(50*'-') unique_sensors_names = np.ndarray.tolist(np.unique(np.array(sensors_names))) unique_general_feature = np.ndarray.tolist(np.unique(np.array(general_features))) unique_features_names = np.ndarray.tolist(np.unique(np.array(features_names))) sensors_contribution = pd.DataFrame (np.zeros((2,np.shape(unique_sensors_names)[0])), columns=unique_sensors_names) general_features_contribution = pd.DataFrame (np.zeros((2,np.shape(unique_general_feature)[0])), columns=unique_general_feature) features_contribution = pd.DataFrame (np.zeros((2,np.shape(unique_features_names)[0])), columns=unique_features_names) sensors_contribution = sensors_contribution.drop([1]) general_features_contribution = general_features_contribution.drop([1]) features_contribution = features_contribution.drop([1]) # For the output Formating """ unique_sensors_names = np.ndarray.tolist(np.unique(np.array(sensors_names))) unique_features_names = np.ndarray.tolist(np.unique(np.array(features_names))) sensor_dt = np.transpose(np.vstack((unique_sensors_names,np.asarray(np.zeros(np.shape(unique_sensors_names)[0]),object)))) feature_dt = np.transpose(np.vstack((unique_features_names,np.asarray(np.zeros(np.shape(unique_features_names)[0]),object)))) sensors_contribution = pd.DataFrame(sensor_dt,columns = ['Sensor','Contribution']) features_contribution = pd.DataFrame(feature_dt,columns = ['Feature','Contribution']) """ #print(sensors_contribution.head()) #print(features_contribution.head()) #Creating dictionaries form Data Frame orientation """ Creates a mapping from kind names to fc_parameters objects (which are itself mappings from feature calculators to settings) to extract only the features contained in the columns. To do so, for every feature name in columns this method 1. split the column name into col, feature, params part 2. decide which feature we are dealing with (aggregate with/without params or apply) 3. add it to the new name_to_function dict 4. set up the params :param columns: containing the feature names :type columns: list of str :param columns_to_ignore: columns which do not contain tsfresh feature names :type columns_to_ignore: list of str :return: The kind_to_fc_parameters object ready to be used in the extract_features function. :rtype: dict """ weighted_contribution_dic = {} for col in df_weighted_contribution.columns: # Split according to our separator into <col_name>, <feature_name>, <feature_params> parts = col.split('__') n_parts = len(parts) if n_parts == 1: raise ValueError("Splitting of columnname {} resulted in only one part.".format(col)) kind = parts[0] feature = c.join(parts[1:]) feature_name = parts[1] if kind not in weighted_contribution_dic: weighted_contribution_dic[kind] = {} if not hasattr(feature_calculators, feature_name): raise ValueError("Unknown feature name {}".format(feature_name)) sensors_contribution.loc[0,kind] += df_weighted_contribution.loc[0,col] general_features_contribution.loc[0,feature_name] += df_weighted_contribution.loc[0,col] features_contribution.loc[0,feature] += df_weighted_contribution.loc[0,col] weighted_contribution_dic[kind][feature] = df_weighted_contribution.loc[0,col] # End of the tsfresh stolen function """ sensors_dic = {} for i in range(len(unique_sensors_names)): sensors_dic[unique_sensors_names[i]] = i features_dic = {} for i in range(len(unique_features_names)): features_dic[unique_features_names[i]] = i #Suming the contibution for Sensors and Features for i in range(df_weighted_contribution.shape[0]): names = df_weighted_contribution.loc[i,'tsfresh_info'] c = '__' words = names.split(c) S= words[0] F= c.join(words[1:]) sensors_contribution.loc[sensors_dic[S],'Contribution'] += df_weighted_contribution.loc[i,'Contribution'] features_contribution.loc[features_dic[F],'Contribution'] += df_weighted_contribution.loc[i,'Contribution'] sensors_contribution = sensors_contribution.sort_values(by=['Contribution'], ascending=False) features_contribution = features_contribution.sort_values(by=['Contribution'], ascending=False) """ features_contribution = features_contribution.sort_values(by=0, axis=1, ascending=False) general_features_contribution = general_features_contribution.sort_values(by=0, axis=1, ascending=False) features_indexes = [x for x in range(1,(features_contribution.shape[0])+1)] general_features_indexes = [x for x in range(1,(general_features_contribution.shape[0])+1)] features_contribution.set_index(pd.Index(features_indexes)) general_features_contribution.set_index(pd.Index(general_features_indexes)) sorted_sensors_contribution = sensors_contribution.values[0,:] sorted_features_contribution = features_contribution.values[0,:] sorted_general_features_contribution = general_features_contribution.values[0,:] #Ploting Cntribution Sensors Results fig = plt.figure(figsize=[16,8]) #fig.suptitle('Sensors Weighted Contribution Percentage', fontsize=16) ax = fig.subplots(1,1) s = sorted_sensors_contribution[:] ax.bar(x=['Voltage','Current'],height=s) plt.ylabel('Relevance Percentage',fontsize = 20) plt.xlabel('Sensors',fontsize = 20) plt.tick_params(axis='x', labelsize=16) plt.tick_params(axis='y', labelsize=18) ax.grid() plt.show() fig.savefig('Sensor_Weighted_Contribution_Percentage_{}.png'.format(Output_Id), bbox_inches='tight') #Ploting Cntribution Features Results fig = plt.figure(figsize=[16,8]) #fig.suptitle('Features Weighted Contribution Percentage', fontsize=16) ax = fig.subplots(1,1) s = sorted_features_contribution[:] ax.bar(x=range(0,(sorted_features_contribution.shape[0])),height=s) plt.ylabel('Relevance Percentage',fontsize = 20) plt.xlabel('Features',fontsize = 20) plt.tick_params(axis='x', labelsize=16) plt.tick_params(axis='y', labelsize=18) ax.xaxis.set_major_locator(plt.MultipleLocator(50)) ax.xaxis.set_minor_locator(plt.MultipleLocator(50)) ax.xaxis.set_major_formatter(plt.FuncFormatter(format_func)) ax.grid() plt.show() fig.savefig('Features_Weighted_Contribution_Percentage_{}.png'.format(Output_Id), bbox_inches='tight') ### Análise Geral para os 20 melhores atributos completos ### fig = plt.figure(figsize=[16,8]) #fig.suptitle('Best Features Weighted Contribution Percentage', fontsize=16) #print('Porcentagem de pertinência: ', np.sum(sorted_features_contribution[0:140])) #print('Number of Selected Features: ', sorted_features_contribution.shape[0]) ax = fig.subplots(1,1) s = sorted_features_contribution[0:20] ax.bar(x=['X' + str(x) for x in range(1,(20+1))],height=s) plt.ylabel('Relevance Percentage',fontsize = 20) plt.xlabel('Features',fontsize = 20) plt.tick_params(axis='x', labelsize=16) plt.tick_params(axis='y', labelsize=18) ax.grid() plt.show() fig.savefig('{}th_Best_Features_Weighted_Contribution_Percentage_{}.png'.format(20,Output_Id), bbox_inches='tight') ### Análise Geral para os 20 melhores atributos gerais ### fig = plt.figure(figsize=[16,8]) #fig.suptitle('Best Features Weighted Contribution Percentage', fontsize=16) #print('Porcentagem de pertinência: ', np.sum(sorted_features_contribution[0:140])) #print('Number of Selected Features: ', sorted_features_contribution.shape[0]) ax = fig.subplots(1,1) s = sorted_features_contribution[0:20] ax.bar(x=['X' + str(x) for x in range(1,(20+1))],height=s) plt.ylabel('Relevance Percentage',fontsize = 20) plt.xlabel('Features',fontsize = 20) plt.tick_params(axis='x', labelsize=16) plt.tick_params(axis='y', labelsize=18) ax.grid() ax.set_ylim([s[-1]-0.05,s[0]+0.05]) plt.show() fig.savefig('{}th_Best_Features_Weighted_Contribution_Percentage_{}_zoom.png'.format(20,Output_Id), bbox_inches='tight') #Ploting the data of the most relevant sensor with the best features sensors_contribution.values[:,0] name_1 = df_weighted_contribution.columns[0] name_2 = df_weighted_contribution.columns[1] name_3 = df_weighted_contribution.columns[2] #pd.set_option('display.max_columns', len(features)) #print(features) #pd.reset_option('display.max_columns') x = features.loc[:,name_1].values y = features.loc[:,name_2].values z = features.loc[:,name_3].values data_saida = np.array([x, y, z]).T np.savetxt('atributos.csv', data_saida, delimiter=',') x = scale(x,-1,1) y = scale(y,-1,1) z = scale(z,-1,1) x_bom=[] x_ruim=[] y_bom=[] y_ruim=[] z_bom=[] z_ruim=[] for i in range(len(Target)): if Target[i] == 0: x_bom.append(x[i]) y_bom.append(y[i]) z_bom.append(z[i]) if Target[i] == 1: x_ruim.append(x[i]) y_ruim.append(y[i]) z_ruim.append(z[i]) os.chdir( base_path ) #np.savetxt('x_bom.csv', x_bom, delimiter=',') #np.savetxt('x_ruim.csv', x_ruim, delimiter=',') os.chdir( PCA_Figures_path ) fig = plt.figure(figsize=[14,10]) ax = fig.add_subplot(111, projection='3d') ax.scatter(x_bom, y_bom, z_bom, c = 'blue' ) ax.scatter(x_ruim, y_ruim, z_ruim, c = 'red' ) plt.ylabel('X2',fontsize = 20,labelpad=18) plt.xlabel('X1',fontsize = 20, labelpad=18) ax.set_zlabel('X3', fontsize = 20, labelpad=12) plt.tick_params(axis='x', labelsize=16) plt.tick_params(axis='y', labelsize=16) plt.tick_params(axis='z', labelsize=16) ax.grid() red_patch = mpatches.Patch(color='red', label='Non-Funcional Tools') blue_patch = mpatches.Patch(color='blue', label='Funcional Tools') plt.legend(handles=[red_patch,blue_patch],fontsize = 20) #plt.show() fig.savefig('ScatterPlot_PCA_{}.png'.format(Output_Id), bbox_inches='tight') # ------------------------------------------- fig = plt.figure(figsize=[21,7]) ax = fig.subplots(1,3) ax[0].scatter(x_bom, y_bom, c = 'blue' ) ax[0].scatter(x_ruim, y_ruim, c = 'red' ) ax[0].set_xlabel('X1',fontsize = 20) ax[0].set_ylabel('X2',fontsize = 20) ax[0].grid() ax[1].scatter(x_bom, z_bom, c = 'blue' ) ax[1].scatter(x_ruim, z_ruim, c = 'red' ) ax[1].set_xlabel('X1',fontsize = 20) ax[1].set_ylabel('X3',fontsize = 20) ax[1].grid() ax[2].scatter(y_bom, z_bom, c = 'blue' ) ax[2].scatter(y_ruim, z_ruim, c = 'red' ) ax[2].set_xlabel('X2',fontsize = 20,) ax[2].set_ylabel('X3',fontsize = 20) ax[2].grid() #plt.show() fig.savefig('X1X2X3_{}.png'.format(Output_Id), bbox_inches='tight') # ------------------------------------------- # Now change to PCA Analyses directory os.chdir( PCA_Analyses_path ) general_features_contribution.to_csv('unique_features_used_{}.csv'.format(Output_Id),index = False) sensors_contribution.to_csv('sensors_weighted_contribution_{}.csv'.format(Output_Id), index=True) features_contribution.to_csv('features_weighted_contribution_{}.csv'.format(Output_Id), index=True) # Now change to PCA Analyses directory # ------------------------------------------- x = features_reduzidas[:,0] y = features_reduzidas[:,1] z = features_reduzidas[:,2] x_bom=[] x_ruim=[] y_bom=[] y_ruim=[] z_bom=[] z_ruim=[] for i in range(len(Target)): if Target[i] == 0: x_bom.append(x[i]) y_bom.append(y[i]) z_bom.append(z[i]) if Target[i] == 1: x_ruim.append(x[i]) y_ruim.append(y[i]) z_ruim.append(z[i]) os.chdir( PCA_Figures_path ) fig = plt.figure(figsize=[14,10]) ax = fig.add_subplot(111, projection='3d') ax.scatter(x_bom, y_bom, z_bom, c = 'blue' ) ax.scatter(x_ruim, y_ruim, z_ruim, c = 'red' ) plt.ylabel('PC2',fontsize = 20,labelpad=18) plt.xlabel('PC1',fontsize = 20, labelpad=18) ax.set_zlabel('PC3', fontsize = 20, labelpad=12) plt.tick_params(axis='x', labelsize=16) plt.tick_params(axis='y', labelsize=16) plt.tick_params(axis='z', labelsize=16) ax.grid() red_patch = mpatches.Patch(color='red', label='Non-Funcional Tools') blue_patch = mpatches.Patch(color='blue', label='Funcional Tools') plt.legend(handles=[red_patch,blue_patch],fontsize = 20) #plt.show() fig.savefig('ScatterPlot_features__{}__{}.png'.format(Output_Id,it), bbox_inches='tight') # ------------------------------------------- fig = plt.figure(figsize=[21,7]) ax = fig.subplots(1,3) ax[0].scatter(x_bom, y_bom, c = 'blue' ) ax[0].scatter(x_ruim, y_ruim, c = 'red' ) ax[0].set_xlabel('PC1',fontsize = 20) ax[0].set_ylabel('PC2',fontsize = 20) ax[0].grid() ax[1].scatter(x_bom, z_bom, c = 'blue' ) ax[1].scatter(x_ruim, z_ruim, c = 'red' ) ax[1].set_xlabel('PC1',fontsize = 20) ax[1].set_ylabel('PC3',fontsize = 20) ax[1].grid() ax[2].scatter(y_bom, z_bom, c = 'blue' ) ax[2].scatter(y_ruim, z_ruim, c = 'red' ) ax[2].set_xlabel('PC2',fontsize = 20,) ax[2].set_ylabel('PC3',fontsize = 20) ax[2].grid() #plt.show() fig.savefig('PC1PC2PC3__{}__{}.png'.format(Output_Id,it), bbox_inches='tight') # ------------------------------------------- # ------------------------------------------- os.chdir( PCA_Analyses_path ) np.savetxt("features_reduzidas_" + str(Output_Id) + ".csv", features_reduzidas, delimiter=',') Output = {'ReducedFeatures': features_reduzidas, 'ID': Output_Id} elif (Chose == 'Test'): Output = {'ID': Output_Id} # Now change back to base directory os.chdir( base_path ) return Output def PCA_projection (features): ''' Function for ONLINE mode This function project the data into a trained PCA. Parameters: ------ features: dataframe ############################################################# Returns: ------- dataframe contain the output data of PCA, i.e., the dataset with Principal Componentes projected by PCA ''' loaded_scaler = pickle.load(open('Kernel/pca_scaler.sav', 'rb')) features_padronizadas = loaded_scaler.transform(features) #centralizar os dados e colocá-los com desvioPadrão=1 #scaler = StandardScaler().fit(features) #features_padronizadas = scaler.transform(features) pca= PCA(n_components = 3) pca.fit(features_padronizadas) variacao_percentual_pca = np.round(pca.explained_variance_ratio_ * 100, decimals = 2) print('Variation maintained: %.2f' % variacao_percentual_pca.sum()) print(' ') features_reduzidas = pca.transform(features_padronizadas) """ # load the model from disk loaded_pca = pickle.load(open('Kernel/pca.sav', 'rb')) scaler = StandardScaler().fit(features) features_padronizadas = scaler.transform(features) features_padronizadas = scaler.transform(features) features_reduzidas = loaded_pca.transform(features_padronizadas) """ return features_reduzidas class cpu_usage(threading.Thread):### Thread to calculate duration and mean cpu percente usage in a SODA classifier def __init__(self): threading.Thread.__init__(self) self.control = True def run(self): cpu = [] t_inicial = time.time() while self.control: cpu.append(cpu_percent(interval=1, percpu=True)) t_final = time.time() self.deltatime = t_final - t_inicial self.mean_cpu = np.mean(cpu) def stop(self): self.control = False def join(self): threading.Thread.join(self) return self.deltatime, self.mean_cpu def grid_set(data, N): #SODA process _ , W = data.shape AvD1 = data.mean(0) X1 = np.mean(np.sum(np.power(data,2),axis=1)) grid_trad = np.sqrt(2*(X1 - AvD1*AvD1.T))/N Xnorm = np.sqrt(np.sum(np.power(data,2),axis=1)) aux = Xnorm for _ in range(W-1): aux = np.insert(aux,0,Xnorm.T,axis=1) data = data / aux seq = np.argwhere(np.isnan(data)) if tuple(seq[::]): data[tuple(seq[::])] = 1 AvD2 = data.mean(0) grid_angl = np.sqrt(1-AvD2*AvD2.T)/N return X1, AvD1, AvD2, grid_trad, grid_angl def pi_calculator(Uniquesample, mode):#SODA process UN, W = Uniquesample.shape if mode == 'euclidean' or mode == 'mahalanobis' or mode == 'cityblock' or mode == 'chebyshev' or mode == 'canberra': AA1 = Uniquesample.mean(0) X1 = sum(sum(np.power(Uniquesample,2)))/UN DT1 = X1 - sum(np.power(AA1,2)) aux = [] for i in range(UN): aux.append(AA1) aux2 = [Uniquesample[i]-aux[i] for i in range(UN)] uspi = np.sum(np.power(aux2,2),axis=1)+DT1 if mode == 'minkowski': AA1 = Uniquesample.mean(0) X1 = sum(sum(np.power(Uniquesample,2)))/UN DT1 = X1 - sum(np.power(AA1,2)) aux = np.matrix(AA1) for i in range(UN-1): aux = np.insert(aux,0,AA1,axis=0) aux = np.array(aux) uspi = np.sum(np.power(cdist(Uniquesample, aux, mode, p=1.5),2),1)+DT1 if mode == 'cosine': Xnorm = np.matrix(np.sqrt(np.sum(np.power(Uniquesample,2),axis=1))).T aux2 = Xnorm for i in range(W-1): aux2 = np.insert(aux2,0,Xnorm.T,axis=1) Uniquesample1 = Uniquesample / aux2 AA2 = np.mean(Uniquesample1,0) X2 = 1 DT2 = X2 - np.sum(np.power(AA2,2)) aux = [] for i in range(UN): aux.append(AA2) aux2 = [Uniquesample1[i]-aux[i] for i in range(UN)] uspi = np.sum(np.sum(np.power(aux2,2),axis=1),axis=1)+DT2 return uspi def Globaldensity_Calculator(data, distancetype):#SODA process Uniquesample, J, K = np.unique(data, axis=0, return_index=True, return_inverse=True) Frequency, _ = np.histogram(K,bins=len(J)) uspi1 = pi_calculator(Uniquesample, distancetype) sum_uspi1 = sum(uspi1) Density_1 = uspi1 / sum_uspi1 uspi2 = pi_calculator(Uniquesample, 'cosine') sum_uspi2 = sum(uspi2) Density_2 = uspi2 / sum_uspi2 GD = (Density_2+Density_1) * Frequency index = GD.argsort()[::-1] GD = GD[index] Uniquesample = Uniquesample[index] Frequency = Frequency[index] return GD, Uniquesample, Frequency def chessboard_division(Uniquesample, MMtypicality, interval1, interval2, distancetype):#SODA process L, W = Uniquesample.shape if distancetype == 'euclidean': W = 1 BOX = [Uniquesample[k] for k in range(W)] BOX_miu = [Uniquesample[k] for k in range(W)] BOX_S = [1]*W BOX_X = [sum(Uniquesample[k]**2) for k in range(W)] NB = W BOXMT = [MMtypicality[k] for k in range(W)] for i in range(W,L): if distancetype == 'minkowski': a = cdist(Uniquesample[i].reshape(1,-1), BOX_miu, metric=distancetype, p=1.5) else: a = cdist(Uniquesample[i].reshape(1,-1), BOX_miu, metric=distancetype) b = np.sqrt(cdist(Uniquesample[i].reshape(1,-1), BOX_miu, metric='cosine')) distance = np.array([a[0],b[0]]).T SQ = [] for j,d in enumerate(distance): if d[0] < interval1 and d[1] < interval2: SQ.append(j) #SQ = np.argwhere(distance[::,0]<interval1 and (distance[::,1]<interval2)) COUNT = len(SQ) if COUNT == 0: BOX.append(Uniquesample[i]) NB = NB + 1 BOX_S.append(1) BOX_miu.append(Uniquesample[i]) BOX_X.append(sum(Uniquesample[i]**2)) BOXMT.append(MMtypicality[i]) if COUNT >= 1: DIS = distance[SQ[::],0]/interval1 + distance[SQ[::],1]/interval2 # pylint: disable=E1136 # pylint/issues/3139 b = np.argmin(DIS) BOX_S[SQ[b]] = BOX_S[SQ[b]] + 1 BOX_miu[SQ[b]] = (BOX_S[SQ[b]]-1)/BOX_S[SQ[b]]*BOX_miu[SQ[b]] + Uniquesample[i]/BOX_S[SQ[b]] BOX_X[SQ[b]] = (BOX_S[SQ[b]]-1)/BOX_S[SQ[b]]*BOX_X[SQ[b]] + sum(Uniquesample[i]**2)/BOX_S[SQ[b]] BOXMT[SQ[b]] = BOXMT[SQ[b]] + MMtypicality[i] return BOX, BOX_miu, BOX_X, BOX_S, BOXMT, NB def ChessBoard_PeakIdentification(BOX_miu,BOXMT,NB,Internval1,Internval2, distancetype):#SODA process Centers = [] n = 2 ModeNumber = 0 if distancetype == 'minkowski': distance1 = squareform(pdist(BOX_miu,metric=distancetype, p=1.5)) else: distance1 = squareform(pdist(BOX_miu,metric=distancetype)) distance2 = np.sqrt(squareform(pdist(BOX_miu,metric='cosine'))) for i in range(NB): seq = [] for j,(d1,d2) in enumerate(zip(distance1[i],distance2[i])): if d1 < n*Internval1 and d2 < n*Internval2: seq.append(j) Chessblocak_typicality = [BOXMT[j] for j in seq] if max(Chessblocak_typicality) == BOXMT[i]: Centers.append(BOX_miu[i]) ModeNumber = ModeNumber + 1 return Centers, ModeNumber def cloud_member_recruitment(ModelNumber,Center_samples,Uniquesample,grid_trad,grid_angl, distancetype):#SODA process L, W = Uniquesample.shape Membership = np.zeros((L,ModelNumber)) Members = np.zeros((L,ModelNumber*W)) Count = [] if distancetype == 'minkowski': distance1 = cdist(Uniquesample,Center_samples, metric=distancetype, p=1.5)/grid_trad else: distance1 = cdist(Uniquesample,Center_samples, metric=distancetype)/grid_trad distance2 = np.sqrt(cdist(Uniquesample, Center_samples, metric='cosine'))/grid_angl distance3 = distance1 + distance2 B = distance3.argmin(1) for i in range(ModelNumber): seq = [] for j,b in enumerate(B): if b == i: seq.append(j) Count.append(len(seq)) Membership[:Count[i]:,i] = seq Members[:Count[i]:,W*i:W*(i+1)] = [Uniquesample[j] for j in seq] MemberNumber = Count #Converte a matriz para vetor E SOMA +1 PARA NAO TER CONJUNTO 0' B = B.A1 B = [x+1 for x in B] return Members,MemberNumber,Membership,B def SelfOrganisedDirectionAwareDataPartitioning(Input, Mode='Offline'):#SODA process ''' Main function of SODA Parameters: ------ Input: dictionary, with the following items 'GridSize': float current granularity value 'StaticData': np.matrix data 'DistanceType': str current magnitude distance metrics, can be ['euclidean', 'mahalanobis', 'cityblock', 'chebyshev', 'minkowski', 'canberra'] Mode: str SODA Algorithm mode, can be ['Offline', 'Evolvig'] (default = 'Offline') Returns: ------- dictionary, with the following items 'C': list list of center coordenates 'IDX': list list of the corresponding index of the data cloud to which each event belongs 'SystemParams': dictionary, with the following items 'BOX': list 'BOX_miu': list 'BOX_S': list 'NB': int 'XM': float 'L': int number of events 'AvM': np.matrix 'AvA': np.matrix 'GridSize': int current granularity value 'DistanceType': str current magnitude distance metrics, can be ['euclidean', 'mahalanobis', 'cityblock', 'chebyshev', 'minkowski', 'canberra'] ''' if Mode == 'Offline': data = Input['StaticData'] L = data.shape[0] N = Input['GridSize'] distancetype = Input['DistanceType'] X1, AvD1, AvD2, grid_trad, grid_angl = grid_set(data,N) GD, Uniquesample, Frequency = Globaldensity_Calculator(data, distancetype) BOX,BOX_miu,BOX_X,BOX_S,BOXMT,NB = chessboard_division(Uniquesample,GD,grid_trad,grid_angl, distancetype) Center,ModeNumber = ChessBoard_PeakIdentification(BOX_miu,BOXMT,NB,grid_trad,grid_angl, distancetype) Members,Membernumber,Membership,IDX = cloud_member_recruitment(ModeNumber,Center,data,grid_trad,grid_angl, distancetype) Boxparameter = {'BOX': BOX, 'BOX_miu': BOX_miu, 'BOX_S': BOX_S, 'NB': NB, 'XM': X1, 'L': L, 'AvM': AvD1, 'AvA': AvD2, 'GridSize': N} if Mode == 'Evolving': #TODO print(Mode) Output = {'C': Center, 'IDX': IDX, 'SystemParams': Boxparameter, 'DistanceType': distancetype} return Output def SODA (ReducedFeatures, min_granularity, max_granularity, pace):#SODA ''' Start of SODA Parameters: ------ ReducedFeatures : dictionary, with the following items 'ReducedFeatures': np.array contain the output data of PCA, i.e., the dataset with Principal Componentes projected by PCA 'ID': int identifier for the dataset min_granularity: float first value of granularity for SODA algorithm max_granularity: float final value of granularity for SODA algorithm pace: float increase of granularity for SODA algorithm Returns: ------- dictionary, with the following items 'Distances': list list of magnitude distances metrics used in SODA algorithm, 'Min_g': float first value of granularity for SODA algorithm 'Max_g': float final value of granularity for SODA algorithm 'Pace': float increase of granularity for SODA algorithm 'ID':int identifier for the dataset list of dictionaries, with the following items 'DistanceType': str magnitude distance metric used 'Granularity': float granularity used 'Time': datetime.datetime execution time of SODA for this specific granularity and magnitude distance metric 'CPUPercent': float mean percentage of CPU usage for this specific granularity and magnitude distance metric ''' #Changing Work Folder add_path2 = "/Kernel/" add_path3 = "/.Recovery/" base_path = os.getcwd() working_path = os.getcwd() Kernel_path = working_path + add_path2 Recovery_path = working_path + add_path3 DataSetID = ReducedFeatures['ID'] data = ReducedFeatures['ReducedFeatures'] data = np.matrix(data) distances = ['euclidean']#, 'mahalanobis', 'cityblock', 'chebyshev', 'minkowski', 'canberra'] processing_parameters = [] #### Looping SODA within the chosen granularities and distances #### # Now change to Kernel directory os.chdir( Kernel_path ) #retval = os.getcwd() #print ("Current working directory %s" % retval) for g in np.arange(int(min_granularity), int (max_granularity + pace), pace): for d in distances: ### Start Thread time_cpu_thread = cpu_usage() time_cpu_thread.start() Input = {'GridSize':g, 'StaticData':data, 'DistanceType': d} out = SelfOrganisedDirectionAwareDataPartitioning(Input,'Offline') ### Interrupt Thread and Calculate Parameters time_cpu_thread.stop() deltatime, mean_cpu = time_cpu_thread.join() pp = {'DistanceType': d, 'Granularity': g, 'Time': deltatime, 'CPUPercent': mean_cpu} processing_parameters.append(pp) np.savetxt('SODA_' + d + '_label_' + str (DataSetID) + '_' + str("%.2f" % g) + '.csv', out['IDX'],delimiter=',') # Now change to base directory os.chdir( Recovery_path ) #retval = os.getcwd() #print ("Current working directory %s" % retval) np.save(('processing_parameters.npy'), processing_parameters) np.save(('distances.npy'), distances) np.save(('Min_g.npy'), min_granularity) np.save(('Max_g.npy'), max_granularity) np.save(('Pace.npy'), pace) Output = {'Distances': distances, 'Min_g': min_granularity, 'Max_g': max_granularity, 'Pace': pace, 'ID': DataSetID} # Now change to base directory os.chdir( base_path ) #retval = os.getcwd() #print ("Current working directory %s" % retval) return Output, processing_parameters def GroupingAlgorithm (SODA_parameters,define_percent, processing_parameters,DataSetID): #Grouping Algorithm #Changing Work Folder add_path1 = "/PCA_Analyses/" add_path2 = "/Kernel/" add_path3 = "/.Recovery/" add_path4 = "/Grouping_Analyses/" base_path = os.getcwd() working_path = os.getcwd() PCA_Analyses_path = working_path + add_path1 Kernel_path = working_path + add_path2 Recovery_path = working_path + add_path3 Grouping_Analyses_path = working_path + add_path4 print(' ') print('Grouping Algorithm Control Output') print('----------------------------------') #### imput data #### DataSetID = SODA_parameters['ID'] min_granularity = SODA_parameters['Min_g'] max_granularity = SODA_parameters['Max_g'] pace = SODA_parameters['Pace'] distances = SODA_parameters['Distances'] # Change to Kernel directory os.chdir(Kernel_path) with open('final_target_'+str(DataSetID)+'.pkl', 'rb') as f: y_original = pickle.load(f) # functional engines #n_IDs_gp1 = 0 # non-functional engines #n_IDs_gp2 = 3598 # eminent fault engines for d in distances: for g in np.arange(int(min_granularity), int (max_granularity + pace), pace): ### Start Thread time_cpu_thread = cpu_usage() time_cpu_thread.start() s = 'SODA_' + d + '_label_' + str(DataSetID) + '_' + str("%.2f" % g) + '.csv' #### Data-base Imput #### # Now change to Kernel directory os.chdir( Kernel_path ) #retval = os.getcwd() #print ("Current working directory %s" % retval) SodaOutput = np.genfromtxt( s , delimiter=',') # Now change to PCA Analyses directory os.chdir( PCA_Analyses_path ) #retval = os.getcwd() #print ("Current working directory %s" % retval) SelectedFeatures = np.genfromtxt('features_reduzidas_' + str(DataSetID) + '.csv' , delimiter=',') #### Program Matrix's and Variables #### n_DA_planes = np.max(SodaOutput) Percent = np.zeros((int(n_DA_planes),3)) n_IDs_per_gp = np.zeros((int(n_DA_planes),2)) n_tot_Id_per_DA = np.zeros((int(n_DA_planes),1)) decision = np.zeros(int(n_DA_planes)) selected_samples = np.zeros(2) n_DA_excluded = 0 n_excluded = 0 n_gp0 = 0 n_gp1 = 0 n_gp2 = 0 n_data_def = 0 k = 0 #### Definition Percentage Calculation ##### for i in range(y_original.shape[0]): if y_original[i] == 0: n_IDs_per_gp [int(SodaOutput[i]-1),0] += 1 else: n_IDs_per_gp [int(SodaOutput[i]-1),1] += 1 n_tot_Id_per_DA [int(SodaOutput[i]-1)] += 1 for i in range(int(n_DA_planes)): Percent[i,0] = (n_IDs_per_gp[i,0] / n_tot_Id_per_DA[i]) * 100 Percent[i,1] = (n_IDs_per_gp[i,1] / n_tot_Id_per_DA[i]) * 100 #Percent[i,2] = ((n_tot_Id_per_DA[i] - (n_IDs_per_gp[i,0] + n_IDs_per_g[i,1])) / n_tot_Id_per_DA[i]) * 100 #### Using Definition Percentage as Decision Parameter #### for i in range(Percent.shape[0]): # pylint: disable=E1136 # pylint/issues/3139 if (Percent[i,0] >= define_percent): n_gp0 = n_gp0 + 1 decision[i] = 0 elif (Percent[i,1] >= define_percent): n_gp1 = n_gp1 + 1 decision[i] = 1 elif (Percent[i,2] >= define_percent): n_gp2 = n_gp2 + 1 decision[i] = 2 else: n_DA_excluded += 1 decision[i] = -1 #### Using decision matrix to determine the number of excluded data for i in range (len (decision)): if decision[i] == -1: n_excluded += np.sum(n_IDs_per_gp[i,:]) #### Passing data of well defined DA planes to SelectedData and defining labels SelectedData = np.zeros((int(SelectedFeatures.shape[0] - n_excluded),int(SelectedFeatures.shape[1])))# pylint: disable=E1136 # pylint/issues/3139 ClassifiersLabel = np.zeros((int(SelectedFeatures.shape[0] - n_excluded)))# pylint: disable=E1136 # pylint/issues/3139 ComparisonLabel = np.zeros((int(y_original.shape[0] - n_excluded)))# pylint: disable=E1136 # pylint/issues/3139 for i in range (SodaOutput.shape[0]): # pylint: disable=E1136 # pylint/issues/3139 if decision[int (SodaOutput[i]-1)] != -1: SelectedData[k] = SelectedFeatures[i] ClassifiersLabel [k] = decision[int (SodaOutput[i]-1)] ComparisonLabel [k] = y_original[i] k += 1 for i in range (decision.shape[0]): # pylint: disable=E1136 # pylint/issues/3139 if decision[i] != -1: selected_samples[0] += n_IDs_per_gp[i,0] selected_samples[1] += n_IDs_per_gp[i,1] #### Printing Processed Data, ID's and Percentage # Now change to Kernel directory os.chdir( Kernel_path ) #retval = os.getcwd() #print ("Current working directory %s" % retval) #np.savetxt('X_' + str(define_percent) + '_' + d + '_Labels_' + str(DataSetID) + '_' + str("%.2f" % g) + '.csv', SelectedData, delimiter=',') #np.savetxt('Y_' + str(define_percent) + '_' + d + '_Labels_' + str(DataSetID) + '_' + str("%.2f" % g) + '.csv', ClassifiersLabel, delimiter=',') #np.savetxt('Original_Y_' + str(define_percent) + '_' + d + '_Labels_' + str(DataSetID) + '_' + str("%.2f" % g) + '.csv', ComparisonLabel, delimiter=',') np.save('X_' + str(define_percent) + '_' + d + '_Labels_' + str(DataSetID) + '_' + str("%.2f" % g) + '.npy', SelectedData) np.save('Y_' + str(define_percent) + '_' + d + '_Labels_' + str(DataSetID) + '_' + str("%.2f" % g) + '.npy', ClassifiersLabel) np.save('Original_Y_' + str(define_percent) + '_' + d + '_Labels_' + str(DataSetID) + '_' + str("%.2f" % g) + '.npy', ComparisonLabel) ### Interrupt Thread and recalculate parameters time_cpu_thread.stop() deltatime, mean_cpu = time_cpu_thread.join() for pp in processing_parameters: if pp['DistanceType'] == d and pp['Granularity'] == g: aux = pp break totaltime = deltatime + aux['Time'] cpu_percent = (mean_cpu + aux['CPUPercent'])/2 ### Printig Analitics results print(s) print('Number of data clouds: %d' % n_DA_planes) print('Number of good tools groups: %d' % n_gp0) print('Number of worn tools groups: %d' % n_gp1) print('Number of excluded data clouds: %d' % n_DA_excluded) print('Number of samples: %d' % int(SodaOutput.shape[0])) # pylint: disable=E1136 # pylint/issues/3139 print('Number of good tools samples: %d' % int(selected_samples[0])) print('Number of worn tools samples: %d' % int(selected_samples[1])) print('Number of excluded samples: %d' % n_excluded) print('Data representation loss: %.2f' % (100-((SelectedData.shape[0] / SelectedFeatures.shape[0]) * 100))) # pylint: disable=E1136 # pylint/issues/3139 print('Analyse execution time: %.6f segundos' % totaltime) print('Avarage CPU usage: %.2f' % cpu_percent) print('---------------------------------------------------') #### Saving Processed Data, ID's and Percentage # Now change to Kernel directory os.chdir( Grouping_Analyses_path ) Grouping_Analyse = open("Grouping_Analyse_ID_" + str(DataSetID) + "_min_" + str(min_granularity) + "_max_" + str(max_granularity) + '_' + str(define_percent) +"%.txt","a+") Grouping_Analyse.write(s) Grouping_Analyse.write('\nNumber of data clouds: %d\n' % n_DA_planes) Grouping_Analyse.write('Number of good tools groups: %d\n' % n_gp0) Grouping_Analyse.write('Number of worn tools groups: %d\n' % n_gp1) Grouping_Analyse.write('Number of excluded data clouds: %d\n' % n_DA_excluded) Grouping_Analyse.write('Number of samples: %d\n' % int(SodaOutput.shape[0])) Grouping_Analyse.write('Number of good tools samples: %d\n' % int(selected_samples[0])) Grouping_Analyse.write('Number of worn tools samples: %d\n' % int(selected_samples[1])) Grouping_Analyse.write('Number of excluded samples: %d\n' % n_excluded) Grouping_Analyse.write('Data representation loss: %.2f\n' % (100-((SelectedData.shape[0] / SelectedFeatures.shape[0]) * 100))) # pylint: disable=E1136 # pylint/issues/3139 Grouping_Analyse.write('Analyse execution time: %.6f segundos\n' % totaltime) Grouping_Analyse.write('Avarage CPU usage: %.2f\n' % cpu_percent) Grouping_Analyse.write('---------------------------------------------------') Grouping_Analyse.close() #np.savetxt('Percent.csv',define_percent,delimiter = ',') # Now change to base directory os.chdir( Recovery_path ) np.save("define_percent.npy",define_percent) Output = {'Percent': define_percent, 'Distances': distances, 'Pace': pace, 'ID': DataSetID} # Now change to base directory os.chdir( base_path ) #retval = os.getcwd() #print ("Current working directory %s" % retval) return Output def Classification (ClassificationPar, min_granularity,max_granularity,n_a): #Classifiers #Changing Work Folder add_path1 = "/Classification/" add_path2 = "/Kernel/" add_path3 = "/.Recovery/" base_path = os.getcwd() working_path = os.getcwd() Classification_path = working_path + add_path1 Kernel_path = working_path + add_path2 Recovery_path = working_path + add_path3 # Change to Kernel directory os.chdir(Kernel_path) names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Gaussian Process", "Decision Tree", "Random Forest", "Neural Net", "AdaBoost", "Naive Bayes", "QDA"] classifiers = [ KNeighborsClassifier(3), SVC(gamma='scale'), SVC(gamma=2, C=1), GaussianProcessClassifier(1.0 * RBF(1.0)), DecisionTreeClassifier(), RandomForestClassifier(n_estimators=100), MLPClassifier(alpha=1,max_iter=500), AdaBoostClassifier(), GaussianNB(), QuadraticDiscriminantAnalysis()] Output_ID = ClassificationPar['ID'] distances = ClassificationPar['Distances'] pace = ClassificationPar['Pace'] gra = np.arange(min_granularity,max_granularity,pace) for d in distances: for g in gra: try: # Now change to Kernel directory os.chdir( Kernel_path ) # preprocess dataset, split into training and test part Accuracy = np.zeros((n_a, len(classifiers) + 1)) Precision = np.zeros((n_a, len(classifiers) + 1)) Recall = np.zeros((n_a, len(classifiers) + 1)) F1 = np.zeros((n_a, len(classifiers) + 1)) s = str (int(ClassificationPar['Percent'] )) + '_' + d + '_Labels_' + str(int(ClassificationPar['ID'])) + '_' + str("%.2f" % g) + '.npy' X = np.load('X_' + s) y_soda = np.load('Y_' + s) y_original = np.load('Original_Y_' + s) #Loop into numbeer od samples for i in range(Accuracy.shape[0]): # pylint: disable=E1136 # pylint/issues/3139 k = 0 # iterate over classifiers X_train, X_test, y_train_soda, y_test_soda, y_train_original, y_test_original = train_test_split(X, y_soda, y_original, test_size=.4) for name, clf in zip(names, classifiers): clf.fit(X_train, y_train_soda) pickle.dump(clf, open('model.sav', 'wb')) score = clf.score(X_test, y_test_original) y_predict = list(clf.predict(X_test)) Accuracy[i,k] = score*100 Precision[i,k] = precision_score(y_test_original, y_predict, zero_division=0)*100 Recall[i,k] = recall_score(y_test_original, y_predict)*100 F1[i,k] = f1_score(y_test_original, y_predict)*100 k +=1 ClassifiersLabel = list(clf.predict(X_test)) results = [] latex_results = [] #Calculinng Mean and Std. Derivation for i in range(len(names)): results.append(['{:.2f} \u00B1 {:.2f}%'.format(np.mean(Accuracy[:,i]),np.std(Accuracy[:,i])), '{:.2f} \u00B1 {:.2f}%'.format(np.mean(Precision[:,i]),np.std(Precision[:,i])), '{:.2f} \u00B1 {:.2f}%'.format(np.mean(Recall[:,i]),np.std(Recall[:,i])), '{:.2f} \u00B1 {:.2f}%'.format(np.mean(F1[:,i]),np.std(F1[:,i]))]) latex_results.append(['{:.2f} $\pm$ {:.2f} &'.format(np.mean(Accuracy[:,i]),np.std(Accuracy[:,i])), '{:.2f} $\pm$ {:.2f} &'.format(
np.mean(Precision[:,i])
numpy.mean
import numpy as np import pytest from scipy.stats import (bootstrap, BootstrapDegenerateDistributionWarning, monte_carlo_test, permutation_test) from numpy.testing import assert_allclose, assert_equal, suppress_warnings from scipy import stats from scipy import special from .. import _resampling as _resampling from scipy._lib._util import rng_integers from scipy.optimize import root def test_bootstrap_iv(): message = "`data` must be a sequence of samples." with pytest.raises(ValueError, match=message): bootstrap(1, np.mean) message = "`data` must contain at least one sample." with pytest.raises(ValueError, match=message): bootstrap(tuple(), np.mean) message = "each sample in `data` must contain two or more observations..." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3], [1]), np.mean) message = ("When `paired is True`, all samples must have the same length ") with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3], [1, 2, 3, 4]), np.mean, paired=True) message = "`vectorized` must be `True` or `False`." with pytest.raises(ValueError, match=message): bootstrap(1, np.mean, vectorized='ekki') message = "`axis` must be an integer." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, axis=1.5) message = "could not convert string to float" with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, confidence_level='ni') message = "`n_resamples` must be a positive integer." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, n_resamples=-1000) message = "`n_resamples` must be a positive integer." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, n_resamples=1000.5) message = "`batch` must be a positive integer or None." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, batch=-1000) message = "`batch` must be a positive integer or None." with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, batch=1000.5) message = "`method` must be in" with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, method='ekki') message = "`method = 'BCa' is only available for one-sample statistics" def statistic(x, y, axis): mean1 = np.mean(x, axis) mean2 = np.mean(y, axis) return mean1 - mean2 with pytest.raises(ValueError, match=message): bootstrap(([.1, .2, .3], [.1, .2, .3]), statistic, method='BCa') message = "'herring' cannot be used to seed a" with pytest.raises(ValueError, match=message): bootstrap(([1, 2, 3],), np.mean, random_state='herring') @pytest.mark.parametrize("method", ['basic', 'percentile', 'BCa']) @pytest.mark.parametrize("axis", [0, 1, 2]) def test_bootstrap_batch(method, axis): # for one-sample statistics, batch size shouldn't affect the result np.random.seed(0) x = np.random.rand(10, 11, 12) res1 = bootstrap((x,), np.mean, batch=None, method=method, random_state=0, axis=axis, n_resamples=100) res2 = bootstrap((x,), np.mean, batch=10, method=method, random_state=0, axis=axis, n_resamples=100) assert_equal(res2.confidence_interval.low, res1.confidence_interval.low) assert_equal(res2.confidence_interval.high, res1.confidence_interval.high) assert_equal(res2.standard_error, res1.standard_error) @pytest.mark.parametrize("method", ['basic', 'percentile', 'BCa']) def test_bootstrap_paired(method): # test that `paired` works as expected np.random.seed(0) n = 100 x = np.random.rand(n) y = np.random.rand(n) def my_statistic(x, y, axis=-1): return ((x-y)**2).mean(axis=axis) def my_paired_statistic(i, axis=-1): a = x[i] b = y[i] res = my_statistic(a, b) return res i = np.arange(len(x)) res1 = bootstrap((i,), my_paired_statistic, random_state=0) res2 = bootstrap((x, y), my_statistic, paired=True, random_state=0) assert_allclose(res1.confidence_interval, res2.confidence_interval) assert_allclose(res1.standard_error, res2.standard_error) @pytest.mark.parametrize("method", ['basic', 'percentile', 'BCa']) @pytest.mark.parametrize("axis", [0, 1, 2]) @pytest.mark.parametrize("paired", [True, False]) def test_bootstrap_vectorized(method, axis, paired): # test that paired is vectorized as expected: when samples are tiled, # CI and standard_error of each axis-slice is the same as those of the # original 1d sample if not paired and method == 'BCa': # should re-assess when BCa is extended pytest.xfail(reason="BCa currently for 1-sample statistics only") np.random.seed(0) def my_statistic(x, y, z, axis=-1): return x.mean(axis=axis) + y.mean(axis=axis) + z.mean(axis=axis) shape = 10, 11, 12 n_samples = shape[axis] x = np.random.rand(n_samples) y = np.random.rand(n_samples) z = np.random.rand(n_samples) res1 = bootstrap((x, y, z), my_statistic, paired=paired, method=method, random_state=0, axis=0, n_resamples=100) reshape = [1, 1, 1] reshape[axis] = n_samples x = np.broadcast_to(x.reshape(reshape), shape) y = np.broadcast_to(y.reshape(reshape), shape) z = np.broadcast_to(z.reshape(reshape), shape) res2 = bootstrap((x, y, z), my_statistic, paired=paired, method=method, random_state=0, axis=axis, n_resamples=100) assert_allclose(res2.confidence_interval.low, res1.confidence_interval.low) assert_allclose(res2.confidence_interval.high, res1.confidence_interval.high) assert_allclose(res2.standard_error, res1.standard_error) result_shape = list(shape) result_shape.pop(axis) assert_equal(res2.confidence_interval.low.shape, result_shape) assert_equal(res2.confidence_interval.high.shape, result_shape) assert_equal(res2.standard_error.shape, result_shape) @pytest.mark.parametrize("method", ['basic', 'percentile', 'BCa']) def test_bootstrap_against_theory(method): # based on https://www.statology.org/confidence-intervals-python/ data = stats.norm.rvs(loc=5, scale=2, size=5000, random_state=0) alpha = 0.95 dist = stats.t(df=len(data)-1, loc=np.mean(data), scale=stats.sem(data)) expected_interval = dist.interval(confidence=alpha) expected_se = dist.std() res = bootstrap((data,), np.mean, n_resamples=5000, confidence_level=alpha, method=method, random_state=0) assert_allclose(res.confidence_interval, expected_interval, rtol=5e-4) assert_allclose(res.standard_error, expected_se, atol=3e-4) tests_R = {"basic": (23.77, 79.12), "percentile": (28.86, 84.21), "BCa": (32.31, 91.43)} @pytest.mark.parametrize("method, expected", tests_R.items()) def test_bootstrap_against_R(method, expected): # Compare against R's "boot" library # library(boot) # stat <- function (x, a) { # mean(x[a]) # } # x <- c(10, 12, 12.5, 12.5, 13.9, 15, 21, 22, # 23, 34, 50, 81, 89, 121, 134, 213) # # Use a large value so we get a few significant digits for the CI. # n = 1000000 # bootresult = boot(x, stat, n) # result <- boot.ci(bootresult) # print(result) x = np.array([10, 12, 12.5, 12.5, 13.9, 15, 21, 22, 23, 34, 50, 81, 89, 121, 134, 213]) res = bootstrap((x,), np.mean, n_resamples=1000000, method=method, random_state=0) assert_allclose(res.confidence_interval, expected, rtol=0.005) tests_against_itself_1samp = {"basic": 1780, "percentile": 1784, "BCa": 1784} @pytest.mark.parametrize("method, expected", tests_against_itself_1samp.items()) def test_bootstrap_against_itself_1samp(method, expected): # The expected values in this test were generated using bootstrap # to check for unintended changes in behavior. The test also makes sure # that bootstrap works with multi-sample statistics and that the # `axis` argument works as expected / function is vectorized. np.random.seed(0) n = 100 # size of sample n_resamples = 999 # number of bootstrap resamples used to form each CI confidence_level = 0.9 # The true mean is 5 dist = stats.norm(loc=5, scale=1) stat_true = dist.mean() # Do the same thing 2000 times. (The code is fully vectorized.) n_replications = 2000 data = dist.rvs(size=(n_replications, n)) res = bootstrap((data,), statistic=np.mean, confidence_level=confidence_level, n_resamples=n_resamples, batch=50, method=method, axis=-1) ci = res.confidence_interval # ci contains vectors of lower and upper confidence interval bounds ci_contains_true = np.sum((ci[0] < stat_true) & (stat_true < ci[1])) assert ci_contains_true == expected # ci_contains_true is not inconsistent with confidence_level pvalue = stats.binomtest(ci_contains_true, n_replications, confidence_level).pvalue assert pvalue > 0.1 tests_against_itself_2samp = {"basic": 892, "percentile": 890} @pytest.mark.parametrize("method, expected", tests_against_itself_2samp.items()) def test_bootstrap_against_itself_2samp(method, expected): # The expected values in this test were generated using bootstrap # to check for unintended changes in behavior. The test also makes sure # that bootstrap works with multi-sample statistics and that the # `axis` argument works as expected / function is vectorized. np.random.seed(0) n1 = 100 # size of sample 1 n2 = 120 # size of sample 2 n_resamples = 999 # number of bootstrap resamples used to form each CI confidence_level = 0.9 # The statistic we're interested in is the difference in means def my_stat(data1, data2, axis=-1): mean1 = np.mean(data1, axis=axis) mean2 = np.mean(data2, axis=axis) return mean1 - mean2 # The true difference in the means is -0.1 dist1 = stats.norm(loc=0, scale=1) dist2 = stats.norm(loc=0.1, scale=1) stat_true = dist1.mean() - dist2.mean() # Do the same thing 1000 times. (The code is fully vectorized.) n_replications = 1000 data1 = dist1.rvs(size=(n_replications, n1)) data2 = dist2.rvs(size=(n_replications, n2)) res = bootstrap((data1, data2), statistic=my_stat, confidence_level=confidence_level, n_resamples=n_resamples, batch=50, method=method, axis=-1) ci = res.confidence_interval # ci contains vectors of lower and upper confidence interval bounds ci_contains_true = np.sum((ci[0] < stat_true) & (stat_true < ci[1])) assert ci_contains_true == expected # ci_contains_true is not inconsistent with confidence_level pvalue = stats.binomtest(ci_contains_true, n_replications, confidence_level).pvalue assert pvalue > 0.1 @pytest.mark.parametrize("method", ["basic", "percentile"]) @pytest.mark.parametrize("axis", [0, 1]) def test_bootstrap_vectorized_3samp(method, axis): def statistic(*data, axis=0): # an arbitrary, vectorized statistic return sum((sample.mean(axis) for sample in data)) def statistic_1d(*data): # the same statistic, not vectorized for sample in data: assert sample.ndim == 1 return statistic(*data, axis=0) np.random.seed(0) x = np.random.rand(4, 5) y = np.random.rand(4, 5) z = np.random.rand(4, 5) res1 = bootstrap((x, y, z), statistic, vectorized=True, axis=axis, n_resamples=100, method=method, random_state=0) res2 = bootstrap((x, y, z), statistic_1d, vectorized=False, axis=axis, n_resamples=100, method=method, random_state=0) assert_allclose(res1.confidence_interval, res2.confidence_interval) assert_allclose(res1.standard_error, res2.standard_error) @pytest.mark.xfail_on_32bit("Failure is not concerning; see gh-14107") @pytest.mark.parametrize("method", ["basic", "percentile", "BCa"]) @pytest.mark.parametrize("axis", [0, 1]) def test_bootstrap_vectorized_1samp(method, axis): def statistic(x, axis=0): # an arbitrary, vectorized statistic return x.mean(axis=axis) def statistic_1d(x): # the same statistic, not vectorized assert x.ndim == 1 return statistic(x, axis=0) np.random.seed(0) x = np.random.rand(4, 5) res1 = bootstrap((x,), statistic, vectorized=True, axis=axis, n_resamples=100, batch=None, method=method, random_state=0) res2 = bootstrap((x,), statistic_1d, vectorized=False, axis=axis, n_resamples=100, batch=10, method=method, random_state=0) assert_allclose(res1.confidence_interval, res2.confidence_interval) assert_allclose(res1.standard_error, res2.standard_error) @pytest.mark.parametrize("method", ["basic", "percentile", "BCa"]) def test_bootstrap_degenerate(method): data = 35 * [10000.] if method == "BCa": with np.errstate(invalid='ignore'): with pytest.warns(BootstrapDegenerateDistributionWarning): res = bootstrap([data, ], np.mean, method=method) assert_equal(res.confidence_interval, (np.nan, np.nan)) else: res = bootstrap([data, ], np.mean, method=method) assert_equal(res.confidence_interval, (10000., 10000.)) assert_equal(res.standard_error, 0) @pytest.mark.parametrize("method", ["basic", "percentile", "BCa"]) def test_bootstrap_gh15678(method): # Check that gh-15678 is fixed: when statistic function returned a Python # float, method="BCa" failed when trying to add a dimension to the float rng = np.random.default_rng(354645618886684) dist = stats.norm(loc=2, scale=4) data = dist.rvs(size=100, random_state=rng) data = (data,) res = bootstrap(data, stats.skew, method=method, n_resamples=100, random_state=np.random.default_rng(9563)) # this always worked because np.apply_along_axis returns NumPy data type ref = bootstrap(data, stats.skew, method=method, n_resamples=100, random_state=np.random.default_rng(9563), vectorized=False) assert_allclose(res.confidence_interval, ref.confidence_interval)
assert_allclose(res.standard_error, ref.standard_error)
numpy.testing.assert_allclose
# Copyright (c) <NAME>. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory. # parallel optimization retry of a list of problems. import numpy as np import _pickle as cPickle import bz2 import multiprocessing as mp from scipy.optimize import OptimizeResult from fcmaes.optimizer import logger, de_cma, eprint from fcmaes import advretry def minimize(problems, ids=None, num_retries = min(256, 8*mp.cpu_count()), keep = 0.7, optimizer = de_cma(1500), logger = None, datafile = None): """Minimization of a list of optimization problems by first applying parallel retry to filter the best ones and then applying coordinated retry to evaluate these further. Can replace mixed integer optimization if the integer variables are narrowly bound. In this case all combinations of these integer values can be enumerated to generate a list of problem instances each representing one combination. See for instance https://www.esa.int/gsp/ACT/projects/gtop/tandem where there is a problem instance for each planet sequence. Parameters ---------- problems: list list of objects providing name, fun and bounds attributes like fcmaes.astro.Astrofun ids: list, optional list of objects corresponding to the list of problems used in logging to identify the problem variant currently logged. If None, the index of the problem variant is used instead. num_retries: int, optional number of coordinated retries applied in the problem filter for each problem in each iteration. keep: float, optional rate of the problems kept after each iteration. 100*(1 - keep) % will be deleted. optimizer: optimizer.Optimizer, optional optimizer to use for the problem filter. logger, optional logger for log output. If None, logging is switched off. Default is a logger which logs both to stdout and appends to a file. datafile, optional file to persist / retrieve the internal state of the optimizations. Returns ------- dictionary( optimizer -> ret): scipy.OptimizeResult The optimization result is represented as an ``OptimizeResult`` object. Important attributes are: ``x`` the solution array, ``fun`` the best function value, ``nfev`` the number of function evaluations, ``success`` a Boolean flag indicating if the optimizer exited successfully. """ solver = multiretry(logger) n = len(problems) for i in range(n): id = str(i+1) if ids is None else ids[i] solver.add(problem_stats(problems[i], id, i, num_retries, logger)) if not datafile is None: solver.load(datafile) while solver.size() > 1: solver.retry(optimizer) to_remove = int(round((1.0 - keep) * solver.size())) if to_remove == 0 and keep < 1.0: to_remove = 1 solver.remove_worst(to_remove) solver.dump() if not datafile is None: solver.save(datafile) idx = solver.values_all().argsort() return list(np.asarray(solver.all_stats)[idx]) class problem_stats: def __init__(self, prob, id, index, num_retries = 64, logger = None): self.store = advretry.Store(prob.bounds, logger = logger, num_retries=num_retries) self.prob = prob self.name = prob.name self.fun = prob.fun self.num_retries = num_retries self.retries = 0 self.value = 0 self.id = id self.index = index self.ret = None def retry(self, optimizer): self.retries += self.num_retries self.ret = advretry.retry(self.fun, self.store, optimizer.minimize) self.value = self.store.get_y_best() class multiretry: def __init__(self, logger = None): self.problem_stats = [] self.all_stats = [] self.logger = logger def add(self, stats): self.problem_stats.append(stats) self.all_stats.append(stats) def retry(self, optimizer): for ps in self.problem_stats: if not self.logger is None: self.logger.info("problem " + ps.prob.name + ' ' + str(ps.id)) ps.retry(optimizer) def values(self): return np.array([ps.value for ps in self.problem_stats]) def remove_worst(self, n = 1): idx = self.values().argsort() self.problem_stats = list(np.asarray(self.problem_stats)[idx]) for _ in range(n): self.problem_stats.pop(-1) def size(self): return len(self.problem_stats) def dump(self): if not self.logger is None: for i in range(self.size()): ps = self.problem_stats[i] self.logger.info(str(ps.id) + ' ' + str(ps.value)) def dump_all(self): if not self.logger is None: idx = self.values_all().argsort() self.all_stats = list(np.asarray(self.all_stats)[idx]) for i in range(len(self.all_stats)): ps = self.all_stats[i] self.logger.info(str(ps.id) + ' ' + str(ps.value)) def values_all(self): return
np.array([ps.value for ps in self.all_stats])
numpy.array
import numpy as np var1=
np.array([(2,4,6), (1,3,5)])
numpy.array
""" Copyright (c) 2021, <NAME> All rights reserved. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. """ import traceback as tb from dataclasses import dataclass import re as re import numpy as np it_function_dict = {} class Accumulator: def __init__(self, accumulation_seed): self.accumulation_seed = accumulation_seed def append(self, element_or_substring): if isinstance(self.accumulation_seed, str): self.accumulation_seed += element_or_substring elif isinstance(self.accumulation_seed, list): self.accumulation_seed.append(element_or_substring) return Accumulator(self.accumulation_seed) class StringBuilder: def __init__(self): self.string = '' def __new__(cls): return Accumulator('') class PyKot: def __init__(self, variable, recall=False): self.variable = variable self.recall = recall self.var = variable def __repr__(self): return str(self.variable) def last_index(self): # lastIndex() raise_type_error_if_merited("last_index()", self.variable, str, list, tuple, type(np.array([]))) return PyKot(len(self.variable) - 1) def drop(self, drop_from_front: int): # drop(n) raise_type_error_if_merited("drop(Int)", self.variable, str, list, tuple, type(np.array([]))) self.variable, original_type = pre_type_work(self.variable) result = self.variable[drop_from_front:] result = post_type_work(result, original_type) return PyKot(result, True) def drop_last(self, drop_from_back: int): # dropLast(n) raise_type_error_if_merited("drop_last(Int)", self.variable, str, list, tuple, type(np.array([]))) self.variable, original_type = pre_type_work(self.variable) result = self.variable[:(len(self.variable) - drop_from_back)] result = post_type_work(result, original_type) return PyKot(result, True) def drop_while(self, it_expression): # dropWhile(it expression) raise_type_error_if_merited("drop_while(it expression)", self.variable, str, list, tuple, type(np.array([]))) self.variable, original_type = pre_type_work(self.variable) while it_expression.in_line_function(self.variable[0]): self.variable = self.variable[1:] result = post_type_work(self.variable, original_type) return PyKot(result, True) def drop_last_while(self, it_expression): # dropLastWhile(it expression) raise_type_error_if_merited("drop_last_while(it expression)", self.variable, str, list, tuple, type(np.array([]))) self.variable, original_type = pre_type_work(self.variable) while it_expression.in_line_function(self.variable[-1]): self.variable = self.variable[:-1] result = post_type_work(self.variable, original_type) return PyKot(result, True) def take(self, take_from_front: int): # take(n) raise_type_error_if_merited("take(Int)", self.variable, str, list, tuple, type(np.array([]))) self.variable, original_type = pre_type_work(self.variable) result = self.variable[:take_from_front] result = post_type_work(result, original_type) return PyKot(result, True) def take_last(self, take_from_back: int): # take_last(n) raise_type_error_if_merited("take_last(Int)", self.variable, str, list, tuple, type(np.array([]))) self.variable, original_type = pre_type_work(self.variable) result = self.variable[len(self.variable) - take_from_back:] result = post_type_work(result, original_type) return PyKot(result, True) def take_while(self, it_expression): # take_while(it expression) raise_type_error_if_merited("take_while(it expression)", self.variable, str, list, tuple, type(np.array([]))) self.variable, original_type = pre_type_work(self.variable) if type_compliance(self.variable, str): result = '' while it_expression.in_line_function(self.variable[0]): result += self.variable[0] self.variable = self.variable[1:] else: result = [] while it_expression.in_line_function(self.variable[0]): result.append(self.variable[0]) self.variable = self.variable[1:] result = post_type_work(result, original_type) return PyKot(result, True) def take_last_while(self, it_expression): # take_last_while(it expression) raise_type_error_if_merited("take_last_while(it expression)", self.variable, str, list, tuple, type(np.array([]))) self.variable, original_type = pre_type_work(self.variable) if type_compliance(self.variable, str): result = '' while it_expression.in_line_function(self.variable[-1]): result += self.variable[-1] self.variable = self.variable[:-1] else: result = [] while it_expression.in_line_function(self.variable[-1]): result.append(self.variable[-1]) self.variable = self.variable[:-1] result = post_type_work(result, original_type) return PyKot(result, True) def length(self): # length() raise_type_error_if_merited("length()", self.variable, str, list, tuple, type(np.array([]))) return PyKot(len(self.variable)) def first(self): # first() raise_type_error_if_merited("first()", self.variable, str, list, tuple, type(np.array([]))) return PyKot(self.variable[0], True) def last(self): # last() raise_type_error_if_merited("last()", self.variable, str, list, tuple, type(np.array([]))) return PyKot(self.variable[-1], True) def trim_margin(self, margin="|"): # trimMargin(margin) raise_type_error_if_merited("trim_margin(margin='|')", self.variable, str) return PyKot(self.variable[(self.variable.find(margin) + len(margin)):], True) def compare_to(self, comparison: str, ignorecase=False): # compareTo(String, ignorecase=False) self.variable, original_type = pre_type_work(self.variable) comparison, original_type_comparison = pre_type_work(comparison) if type_compliance(self.variable, dict): self.variable = tuple(self.variable) if type_compliance(comparison, dict): comparison = tuple(comparison) if ignorecase: self.variable = self.variable.lower() comparison = comparison.lower() original = [self.variable, comparison] sort_compare = [self.variable, comparison] sort_compare.sort() sort_compare = -1 if sort_compare == original else 1 return PyKot(0 if self.variable == comparison else sort_compare) def sub_string(self, first_index, second_index): # subString(i, j) raise_type_error_if_merited("sub_string(Int, Int)", self.variable, str) first_index, valid1, second_index, valid2 = unwrap_it(first_index, second_index) if valid1: first_index = first_index(self.variable) if valid2: second_index = second_index(self.variable) return PyKot(self.variable[first_index: second_index], True) def split(self, delimiter=' ', *additional_delimiters, ignorecase=False): # split(delimiter) or # split(delimiter, ignorecase=True) or split(delimiter.toRegex()) or split(regex(delimiter)) raise_type_error_if_merited("split(delimiter=' ', *additional_delimiters, ignorecase=False)", self.variable, str) if ignorecase: string = self.variable.lower() delimiter_list = [delimiter.lower()] + [d.lower() for d in additional_delimiters] else: string = self.variable delimiter_list = [delimiter] + [d for d in additional_delimiters] if type_compliance(delimiter, type(re.compile(''))): result = re.split(delimiter, self.variable) else: delimiter_indexes = [] found = 0 for delimiter in delimiter_list: while found != -1 and (len(string) - found) >= len(delimiter): found = string.find(delimiter, found, len(string) - 1) if found == -1: continue delimiter_indexes.append(found) found += len(delimiter) delimiter_indexes.append(found) found = 0 delimiter_indexes.append(0) delimiter_indexes.sort() delimiter_indexes.append(-1) di = iter(delimiter_indexes) delimiter_indexes = list(zip(di, di)) result = [self.variable[i:] if j == -1 else self.variable[i: j] for i, j in delimiter_indexes] return PyKot(tuple(result), True) def sub_sequence(self, first_index: int, second_index: int): # subSequence(i, j) raise_type_error_if_merited("sub_string(Int, Int)", self.variable, str) first_index, valid1, second_index, valid2 = unwrap_it(first_index, second_index) if valid1: first_index = first_index(self.variable) if valid2: second_index = second_index(self.variable) return PyKot(self.variable[first_index: second_index], True) def lines(self): # lines() raise_type_error_if_merited("lines()", self.variable, str) return PyKot(self.variable.splitlines(), True) def capitalize(self): # capitalize() raise_type_error_if_merited("capitalize()", self.variable, str) return PyKot(self.variable.capitalize(), True) def to_regex(self): # toRegex() raise_type_error_if_merited("to_regex()", self.variable, str) return re.compile(self.variable) def replace(self, old_value: str, new_value: str, ignorecase=False): # replace(old, new, ignorecase=False) raise_type_error_if_merited("replace(String, String, ignorecase=False)", self.variable, str) if ignorecase: find_index = self.variable.lower().find(old_value.lower()) if find_index == -1: return PyKot(self.variable, True) return PyKot(self.variable[:find_index] + new_value + self.variable[(find_index + len(old_value)):], True) return PyKot(self.variable.replace(old_value, new_value), True) def ends_with(self, substring): # endsWith(substring) raise_type_error_if_merited("ends_with(String)", self.variable, str, list, tuple, type(np.array([]))) if type_compliance(self.variable, str): result = True if self.variable[-len(substring):] == substring else False else: self.variable = unpack_array(self.variable) result = True for element in self.variable: if not type_compliance(element, str): raise TypeError("All elements in iterable must be a String to use ends_with()") if result: result = True if element[-len(substring):] == substring else False return PyKot(result, True) def plus(self, string_or_int): # plus(String) or plus(Int) raise_type_error_if_merited("plus(String) or plus(Int)", self.variable, str, int) if type_compliance(self.variable, str) and type_compliance(string_or_int, int): string_or_int = str(string_or_int) elif type_compliance(self.variable, int) and type_compliance(string_or_int, str): string_or_int = int(string_or_int) return PyKot(self.variable + string_or_int, True) def get(self, index): # get() raise_type_error_if_merited("get(Int)", self.variable, str, list, tuple, type(np.array([])), dict) if isinstance(self.variable[index], type(np.array([1])[0])): result = int(self.variable[index]) elif isinstance(self.variable[index], type(np.array([1.0])[0])): result = float(self.variable[index]) elif isinstance(self.variable, dict): result = self.variable[index] if index in self.variable.keys() else None else: result = self.variable[index] return PyKot(result, True) def to_string(self): # toString() raise_type_error_if_merited("to_string()", self.variable, str, int, list, tuple, range, dict) if isinstance(self.variable, str): result = self.variable else: result = str(self.variable) return PyKot(result, True) def content_to_string(self): # contentToString() raise_type_error_if_merited("content_to_string()", self.variable, list, tuple, type(np.array([]))) return PyKot(str([x for x in self.variable]), True) def any(self, predicate=None): # any(predicate) raise_type_error_if_merited("any(), any(value), or any(predicate)", self.variable, list, tuple, dict, type(np.array([]))) result = unpack_array(self.variable) if type_compliance(predicate, type(it())): predicate = predicate.in_line_function if type_compliance(self.variable, dict): if not type_compliance(predicate, str, int): result = True if len(list(filter(predicate, self.variable.items()))) > 0 else False else: if not type_compliance(predicate, str, int): result = True if len(list(filter(predicate, result))) > 0 else False if type_compliance(predicate, str, int): if type_compliance(self.variable, dict): result = True if predicate in self.variable.keys() else False else: result = True if predicate in self.variable else False if predicate is None: if self.variable: result = True else: result = False return PyKot(result, True) def none(self): # any(predicate) raise_type_error_if_merited("any(), any(value), or any(predicate)", self.variable, list, tuple, dict, type(np.array([]))) return PyKot(False if unpack_array(self.variable) else True, True) def to_list(self): # toList() raise_type_error_if_merited("to_list()", self.variable, list, tuple, dict, type(np.array([]))) if type_compliance(self.variable, tuple): result = self.variable elif type_compliance(self.variable, dict): result = tuple([(key, self.variable[key]) for key in self.variable.keys()]) else: result = tuple(self.variable) return PyKot(result, True) def to_mutable_list(self): # toMutableList() raise_type_error_if_merited("to_mutable_list()", self.variable, list, tuple, dict, type(np.array([]))) if isinstance(self.variable, tuple): result = list(self.variable) elif type_compliance(self.variable, dict): result = [(key, self.variable[key]) for key in self.variable.keys()] elif type_compliance(self.variable, type(np.array([]))): result = [x for x in unpack_array(self.variable)] else: result = self.variable return PyKot(result, True) def contains(self, element): # contains(element) raise_type_error_if_merited("contains()", self.variable, list, tuple, dict, type(np.array([]))) if isinstance(self.variable, dict): return PyKot(element in self.variable.keys(), True) return PyKot(element in self.variable, True) def filter(self, predicate): # filter(predicate) raise_type_error_if_merited("filter(function)", self.variable, list, tuple, dict, type(np.array([]))) predicate = predicate.in_line_function if type_compliance(self.variable, dict): new_map = dict(tuple(filter(predicate, self.variable.items()))) result = new_map else: result = list(filter(predicate, self.variable)) return PyKot(result, True) def filter_not(self, predicate): # filterNot(predicate) raise_type_error_if_merited("filter_not(function)", self.variable, list, tuple, dict, type(np.array([]))) predicate = predicate.in_line_function if type_compliance(self.variable, dict): new_map = {} do_not_include = list(filter(predicate, self.variable.items())) do_not_include = [x for x, y in do_not_include] for key in self.variable.keys(): if key not in do_not_include: new_map[key] = self.variable[key] result = new_map else: new_list = [] do_not_include = list(filter(predicate, self.variable)) for value in [unpack_array_element(x) for x in self.variable]: if value not in do_not_include: new_list.append(value) result = new_list return PyKot(result, True) def filter_indexed(self, predicate): # filter_indexed(predicate) raise_type_error_if_merited("filter_indexed(predicate)", self.variable, list, tuple, type(np.array([]))) raise_type_error_if_merited("filter_indexed()", predicate, type(lambda x: x)) return PyKot([y for x, y in enumerate(unpack_array(self.variable)) if predicate(x, y)], True) def filter_not_null(self): # filter_not_null() raise_type_error_if_merited("filter_not_null()", self.variable, list, tuple, type(np.array([]))) return PyKot([x for x in unpack_array(self.variable) if x is not None]) def filter_is_instance(self, acceptable_type): # filter_is_instance(type) raise_type_error_if_merited("filter_is_instance(acceptable_type)", self.variable, list, tuple, type(np.array([]))) return PyKot([x for x in unpack_array(self.variable) if type(x) == acceptable_type]) def partition(self, predicate): # partition(predicate) raise_type_error_if_merited("partition(predicate)", self.variable, list, tuple, type(np.array([]))) if type_compliance(predicate, type(it())): predicate = predicate.in_line_function match = [] rest = [] for element in unpack_array(self.variable): if predicate(element): match.append(element) else: rest.append(element) return PyKot((tuple(match), tuple(rest)), True) def for_each(self, *statements): # forEach( statements ) raise_type_error_if_merited("for_each(*statements)", self.variable, list, tuple, type(np.array([])), dict) if type_compliance(self.variable, dict): useful_list = [PyKot(self.variable[x]) for x in self.variable.keys()] for value in useful_list: for statement in statements: statement(value) else: useful_list = [PyKot(unpack_array_element(x)) for x in self.variable] for value in useful_list: for statement in statements: statement(value) return PyKot(self.variable, True) def also(self, *statements): # also( statements ) raise_type_error_if_merited("also(*statements)", self.variable, str, int, range, list, tuple, type(np.array([])), dict) if type_compliance(self.variable, dict): useful_list = [PyKot(self.variable[x]) for x in self.variable.keys()] for value in useful_list: for statement in statements: statement(value) elif type_compliance(self.variable, range, list, tuple, type(np.array([]))): useful_list = [PyKot(unpack_array_element(x)) for x in self.variable] for value in useful_list: for statement in statements: statement(value) elif type_compliance(self.variable, str, int): for statement in statements: statement(self.variable) return PyKot(self.variable, True) def let(self, *statements): # let( statements ) raise_type_error_if_merited("let(*statements)", self.variable, str, int, range, list, tuple, type(np.array([])), dict, type(None)) if self.variable is None: return PyKot(self.variable, True) if type_compliance(self.variable, dict): useful_list = [PyKot(self.variable[x]) for x in self.variable.keys()] for value in useful_list: for statement in statements: statement(value) elif type_compliance(self.variable, range, list, tuple, type(np.array([]))): useful_list = [PyKot(unpack_array_element(x)) for x in self.variable] for value in useful_list: for statement in statements: statement(value) elif type_compliance(self.variable, str, int): for statement in statements: statement(self.variable) return PyKot(self.variable, True) def find(self, predicate): # find(predicate) raise_type_error_if_merited("find(predicate)", self.variable, list, tuple, type(np.array([]))) predicate = predicate.in_line_function found = list(filter(predicate, self.variable)) if len(found) == 0: return PyKot(None, True) return PyKot(found[0], True) def find_last(self, predicate): # findLast(predicate) raise_type_error_if_merited("find_last(predicate)", self.variable, list, tuple, type(np.array([]))) predicate = predicate.in_line_function found = list(filter(predicate, self.variable)) if len(found) == 0: return PyKot(None, True) return PyKot(found[-1], True) def with_index(self): # withIndex() raise_type_error_if_merited("with_index()", self.variable, list, tuple, type(np.array([]))) new_variable = [(i, e) for i, e in enumerate(self.variable)] if type_compliance(self.variable, list): return PyKot(new_variable, True) return PyKot(tuple(new_variable), True) def grouping_by(self, predicate): # groupingBy(it expression) raise_type_error_if_merited("grouping_by(predicate)", self.variable, list, tuple, type(np.array([]))) predicate = predicate.in_line_function output_map = {} for element in self.variable: if predicate(element) in output_map: output_map[predicate(element)] = output_map[predicate(element)] + [element] continue output_map[predicate(element)] = [element] return PyKot(output_map, True) def size(self): # .size() raise_type_error_if_merited("size()", self.variable, list, tuple, type(np.array([])), dict) if type_compliance(self.variable, dict): return len(self.variable.items()) return PyKot(len(self.variable), True) def min_or_null(self): # minOrNull() raise_type_error_if_merited("min_or_null()", self.variable, list, tuple, type(np.array([]))) if len(self.variable) == 0: return PyKot(None, True) useful_list = [unpack_array_element(x) for x in self.variable] useful_list.sort() return PyKot(useful_list[0], True) def min_by_or_null(self, predicate): # minByOrNull(predicate) raise_type_error_if_merited("min_by_or_null()", self.variable, list, tuple, type(np.array([]))) predicate = predicate.in_line_function useful_list = list(filter(predicate, [unpack_array_element(x) for x in self.variable])) if len(useful_list) == 0: return PyKot(None, True) if len(useful_list) == len(self.variable): useful_list.sort(key=predicate) else: useful_list.sort() return PyKot(useful_list[0], True) def max_or_null(self): # maxOrNull() raise_type_error_if_merited("max_or_null()", self.variable, list, tuple, type(np.array([]))) if len(self.variable) == 0: return PyKot(None, True) useful_list = [unpack_array_element(x) for x in self.variable] useful_list.sort() return PyKot(useful_list[-1], True) def max_by_or_null(self, predicate): # maxByOrNull(predicate) raise_type_error_if_merited("max_by_or_null()", self.variable, list, tuple, type(np.array([]))) predicate = predicate.in_line_function useful_list = list(filter(predicate, [unpack_array_element(x) for x in self.variable])) if len(useful_list) == 0: return PyKot(None, True) if len(useful_list) == len(self.variable): useful_list.sort(key=predicate) else: useful_list.sort() return PyKot(useful_list[-1], True) def average(self): # average() raise_type_error_if_merited("max_or_null()", self.variable, list, tuple, type(np.array([]))) useful_list = [x for x in self.variable] return PyKot(int(sum(useful_list) / len(useful_list)), True) def sum(self): # sum() raise_type_error_if_merited("max_or_null()", self.variable, list, tuple, type(np.array([]))) return PyKot(int(sum([x for x in self.variable])), True) def count(self): # count() raise_type_error_if_merited("max_or_null()", self.variable, list, tuple, type(np.array([]))) return PyKot(len([x for x in self.variable]), True) def add(self, element): # add(element) raise_type_error_if_merited("add()", self.variable, list) self.variable.append(element) return PyKot(self.variable, True) def add_all(self, *args): # addAll(elements) raise_type_error_if_merited("add_all(element) or add_all(element, ..., element)", self.variable, list) self.variable += [arg for arg in args] return PyKot(self.variable, True) def keys(self): # keys() raise_type_error_if_merited("keys()", self.variable, dict) return PyKot(self.variable.keys(), True) def values(self): # values() raise_type_error_if_merited("values()", self.variable, dict) return PyKot(self.variable.values(), True) def each_count(self): # eachCount() raise_type_error_if_merited("each_count()", self.variable, dict) output_map = dict([(key, len(self.variable[key])) if type_compliance(self.variable[key], list, tuple, type(
np.array([])
numpy.array
import numpy as np # Constant def Constant_vit(): # (1,7)-RLL constraint, 4 states, 4 error propagations # Encoder_Dict[a][b]: a stands for each state, b stands for (1 - input tags, 2 - output words, 3 - next state) encoder_dict = { 1 : { 'input' : np.array([[0, 0], [0, 1], [1, 0], [1, 1]]), 'output' : np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0], [1, 0, 0]]), 'next_state' : np.array([[1], [2], [3], [3]]) }, 2 : { 'input' : np.array([[0, 0], [0, 1], [1, 0], [1, 1]]), 'output' : np.array([[1, 0, 0], [1, 0, 0], [1, 0, 1], [1, 0, 1]]), 'next_state' : np.array([[1], [2], [3], [4]]) }, 3 : { 'input' : np.array([[0, 0], [0, 1], [1, 0], [1, 1]]), 'output' : np.array([[0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 0, 1]]), 'next_state' : np.array([[1], [2], [3], [4]]) }, 4 : { 'input' : np.array([[0, 0], [0, 1], [1, 0], [1, 1]]), 'output' : np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 0, 0]]), 'next_state' : np.array([[1], [2], [3], [3]]) } } encoder_definite = {'m' : 0, 'a' : 2} sbd_dict = { 'i1' : ['00x', '01x', '1xx', '20x', '21x', '40x', '41x', '5xx'], 'i2' : ['042', '044', '045', '05x', '101', '100', '242', '244', '245', '25x', '40x', '41x', '442', '444', '445', '45x', '500', '501', '52x', '12x', '00x', '01x'], 'list' : { 0 : np.array([[0, 0, 0]]), 1 : np.array([[0, 0, 1]]), 2 : np.array([[0, 1, 0]]), 4 : np.array([[1, 0, 0]]), 5 : np.array([[1, 0, 1]]) }, 'num_list' : np.array([[0, 1, 2, 4, 5]]) } # channel state machine channel_dict = { 'state_machine' : np.array([ [0, 0], [0, 1], [1, 2], [2, 3], [2, 4], [3, 7], [4, 8], [4, 9], [5, 0], [5, 1], [6, 2], [7, 5], [7, 6], [8, 7], [9, 8], [9, 9] ]), 'in_out' : np.array([ [0, 0], [1, 1], [1, 3], [0, 2], [1, 3], [0, -2], [0, 0], [1, 1], [0, -1], [1, 0], [1, 2], [0, -3], [1, -2], [0, -3], [0, -1], [1, 0] ]), 'state_label' : np.array([ [0, 0, 0, 0, 0], [0, 0, 0, 1, 1], [0, 0, 1, 1, 2], [0, 1, 1, 0, 3], [0, 1, 1, 1, 4], [1, 0, 0, 0, 5], [1, 0, 0, 1, 6], [1, 1, 0, 0, 7], [1, 1, 1, 0, 8], [1, 1, 1, 1, 9] ]), 'num_state' : 10, 'ini_state' : 0 } channel_in_out_norm = np.zeros(channel_dict['in_out'].shape) channel_in_out_norm[:, 0] = channel_dict['in_out'][:, 0] channel_in_out_norm[:, 1] = channel_dict['in_out'][:, 1] / np.sqrt(10) channel_dict['in_out'] = channel_in_out_norm # List of dummy bits paths dummy_dict = { 0 : np.array([[0, 0, 0, 0, 0]]), 1 : np.array([[2, 3, 7, 5, 0]]), 2 : np.array([[3, 7, 5, 0, 0]]), 3 : np.array([[7, 5, 0, 0, 0]]), 4 : np.array([[8, 7, 5, 0, 0]]), 5 : np.array([[0, 0, 0, 0, 0]]), 6 : np.array([[2, 3, 7, 5, 0]]), 7 : np.array([[5, 0, 0, 0, 0]]), 8 : np.array([[7, 5, 0, 0, 0]]), 9 :
np.array([[8, 7, 5, 0, 0]])
numpy.array
"""Test the derivative coupling calculation.""" import os import shutil from typing import Sequence import numpy as np from assertionlib import assertion from nanoqm.common import DictConfig, is_data_in_hdf5, retrieve_hdf5_data from nanoqm.workflows.input_validation import process_input from nanoqm.workflows.workflow_coupling import workflow_derivative_couplings from .utilsTest import PATH_TEST, remove_files def test_fast_couplings(tmp_path): """Check the derivative couplings workflow""" run_derivative_coupling(tmp_path, 'input_fast_test_derivative_couplings.yml') def test_unrestricted_alphas(tmp_path): """Test the derivative coupling for the alphas spin orbitals.""" run_derivative_coupling(tmp_path, 'input_couplings_alphas.yml', "alphas") def test_unrestricted_betas(tmp_path): """Test the derivative coupling for the alphas spin orbitals.""" run_derivative_coupling(tmp_path, 'input_couplings_both.yml', "both") def run_derivative_coupling(tmp_path: str, input_file: str, orbitals_type: str = "") -> None: """Check that the couplings run.""" path_input = PATH_TEST / input_file config = process_input(path_input, 'derivative_couplings') config["scratch_path"] = tmp_path tmp_hdf5 = os.path.join(tmp_path, 'fast_couplings.hdf5') shutil.copy(config.path_hdf5, tmp_hdf5) config['path_hdf5'] = tmp_hdf5 config['write_overlaps'] = True try: check_results(config, tmp_hdf5, orbitals_type) # Run the calculation again to test that the data is read from the hdf5 check_results(config, tmp_hdf5, orbitals_type) finally: remove_files() def check_results(config: DictConfig, tmp_hdf5: str, orbitals_type: str) -> None: """Check the computed results stored in the HDF5 file.""" if orbitals_type != "both": hamiltonians, _ = workflow_derivative_couplings(config) check_couplings(config, tmp_hdf5, orbitals_type) check_hamiltonians(hamiltonians) else: result_alphas, result_betas = workflow_derivative_couplings(config) check_couplings(config, tmp_hdf5, "alphas") check_couplings(config, tmp_hdf5, "betas") check_hamiltonians(result_alphas[0]) check_hamiltonians(result_betas[0]) def check_couplings(config: DictConfig, tmp_hdf5: str, orbitals_type: str) -> None: """Check that the couplings have meaningful values.""" def create_paths(keyword: str) -> list: return [os.path.join(orbitals_type, f'{keyword}_{x}') for x in range(len(config.geometries) - 1)] overlaps = create_paths('overlaps') couplings = create_paths('coupling') # Check that couplings and overlaps exists assertion.truth(is_data_in_hdf5(tmp_hdf5, overlaps)) assertion.truth(is_data_in_hdf5(tmp_hdf5, couplings)) # All the elements are different of inifinity or nan tensor_couplings = np.stack(retrieve_hdf5_data(tmp_hdf5, couplings)) assertion.truth(np.isfinite(tensor_couplings).all()) # Check that the couplings are anti-symetric for mtx in tensor_couplings[:]: assertion(np.allclose(mtx, -mtx.T)) # Check that there are not NaN assertion.truth(not np.all(np.isnan(tensor_couplings))) def check_hamiltonians(hamiltonians: Sequence[str]) -> None: """Check that the hamiltonians were written correctly.""" energies = np.stack([np.diag(np.loadtxt(ts[1])) for ts in hamiltonians]) couplings = np.stack([np.loadtxt(ts[0]) for ts in hamiltonians]) # check that energies and couplings are finite values assertion.truth(
np.isfinite(energies)
numpy.isfinite
# Copyright (C) 2018 <NAME> # All rights reserved. # # This file is part of phonopy. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # * Neither the name of the phonopy project nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import sys import numpy as np from phonopy.harmonic.force_constants import distribute_force_constants def get_fc2(supercell, primitive, disp_dataset, atom_list=None, log_level=0): lattice = supercell.get_cell().T positions = supercell.get_scaled_positions() numbers = supercell.get_atomic_numbers() natom = len(numbers) disps, forces = _collect_disps_and_forces(disp_dataset) p2s_map = primitive.p2s_map p2p_map = primitive.p2p_map if log_level: print("-------------------------------" " ALM FC2 start " "------------------------------") print("ALM by <NAME>, https://github.com/ttadano/ALM") if log_level == 1: print("Use -v option to watch detailed ALM log.") try: from alm import ALM except ImportError: raise ModuleNotFoundError("ALM python module was not found.") sys.stdout.flush() with ALM(lattice, positions, numbers) as alm: if log_level > 0: log_level_alm = log_level - 1 else: log_level_alm = 0 alm.set_verbosity(log_level_alm) alm.define(1) alm.set_displacement_and_force(disps, forces) alm.optimize() if (atom_list == p2s_map).all(): fc2 = np.zeros((len(p2s_map), natom, 3, 3), dtype='double', order='C') for fc, indices in zip(*alm.get_fc(1, mode='origin')): v1, v2 = indices // 3 c1, c2 = indices % 3 fc2[p2p_map[v1], v2, c1, c2] = fc elif atom_list is None or (atom_list == np.range(natom)): fc2 = np.zeros((natom, natom, 3, 3), dtype='double', order='C') for fc, indices in zip(*alm.get_fc(1, mode='all')): v1, v2 = indices // 3 c1, c2 = indices % 3 fc2[v1, v2, c1, c2] = fc else: # This case would not happen. fc2 =
np.zeros((natom, natom, 3, 3), dtype='double', order='C')
numpy.zeros
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Class to do trained model inference in beam.""" import importlib import os import struct import subprocess as sp import time import numpy as np import tensorflow as tf from tensorflow.contrib import framework as contrib_framework # LDIF is an internal package, should be imported last. # pylint: disable=g-bad-import-order from ldif.datasets import preprocess from ldif.datasets import shapenet from ldif.inference import experiment as experiments from ldif.inference import extract_mesh from ldif.inference import metrics from ldif.model import model as sdf_model from ldif.representation import structured_implicit_function from ldif.util import camera_util from ldif.util import file_util from ldif.util import gaps_util from ldif.util import geom_util from ldif.util import geom_util_np from ldif.util import gpu_util from ldif.util import path_util from ldif.util import py_util from ldif.util import sdf_util from ldif.util import np_util from ldif.util.file_util import log # pylint: enable=g-bad-import-order importlib.reload(extract_mesh) importlib.reload(structured_implicit_function) importlib.reload(sdf_model) importlib.reload(geom_util) class TrainedNetwork(object): """A base class for all networks trained in XManager.""" def __init__(self, job, ckpt, use_gpu, **kwargs): # pylint: disable=unused-argument self.job = job self.ckpt = ckpt self.graph = tf.Graph() self.use_gpu = use_gpu @classmethod def from_experiment(cls, experiment, xid, ckpt_idx, use_temp_ckpts=None, overrides=None, use_gpu=True, **kwargs): """Instantiates a TrainedNetwork from an experiment object.""" job = experiment.job_from_xmanager_id(xid, must_be_visible=True) if use_temp_ckpts is not None: job.set_use_temp_ckpts(use_temp_ckpts) if overrides is not None: for k, v in overrides.items(): setattr(job.model_config.hparams, k, v) if ckpt_idx == 0: log.error('Please select a checkpoint and rerun. Valid checkpoints:') log.error(str(job.all_checkpoint_indices)) return must_equal = ckpt_idx != -1 ckpt = job.latest_checkpoint_before(ckpt_idx, must_equal=must_equal) log.info(f'Loading checkpoint {ckpt.abspath}') return cls(job, ckpt, use_gpu, **kwargs) @classmethod def from_modeldir(cls, model_directory, model_name, experiment_name, xid, ckpt_idx, overrides=None, use_temp_ckpts=True, use_gpu=True, **kwargs): """Creates a TrainedModel from a model directory root and name.""" experiment = experiments.Experiment(model_directory, model_name, experiment_name) return cls.from_experiment(experiment, xid, ckpt_idx, use_temp_ckpts, overrides, use_gpu, **kwargs) @classmethod def from_identifiers(cls, user, model_name, experiment_name, xid, ckpt_idx, overrides=None, use_temp_ckpts=None, charged_user='viscam', use_gpu=True, **kwargs): """Creates a trained network from experiment identifiers.""" raise ValueError('No longer supported.') def restore(self): """Creates a session with restored model variables.""" with self.graph.as_default(): if self.use_gpu: # For now these are disabled since it is difficult to work on # all GPUs. #allowable_frac = gpu_util.get_allowable_fraction_without( # mem_to_reserve=1024 + 512, cuda_device_index=0) # ~1GB #gpu_options = tf.GPUOptions( # per_process_gpu_memory_fraction=allowable_frac) #config = tf.ConfigProto(gpu_options=gpu_options) config = tf.ConfigProto() config.gpu_options.allow_growth = True else: config = tf.ConfigProto(device_count={'GPU': 0}) self.session = tf.Session(config=config) saver = tf.train.Saver() saver.restore(self.session, self.ckpt.abspath) def conform_prediction(vector): """Forces an arbitrary vector to be a valid (D)SIF.""" vector = vector.copy() if vector.shape[-1] not in [10, 42]: raise ValueError('Unimplemented.') consts, centers, radii_aa, radii_cov = np.split( vector[..., :10], [1, 4, 7], axis=-1) consts = np.minimum(consts, 0.0) radii_aa = np.maximum(radii_aa, 1e-9) radii_cov = np.clip(radii_cov, -np.pi / 4., np.pi / 4.) log.verbose( repr([ x.shape for x in [consts, centers, radii_aa, radii_cov, vector[..., 10:]] ])) return np.concatenate( [consts, centers, radii_aa, radii_cov, vector[..., 10:]], axis=-1) class SingleViewDepthEncoder(TrainedNetwork): """Maps from a single depth image (max-0) to a shape representation.""" def __init__(self, job, ckpt, use_gpu, **kwargs): super(SingleViewDepthEncoder, self).__init__(job, ckpt, use_gpu, **kwargs) with self.graph.as_default(): model_config = self.job.model_config model_config.inputs = shapenet.build_placeholder_interface( model_config, proto='ShapeNetOneImXyzPC') training_example = preprocess.preprocess(model_config) self.depth_input = model_config.inputs['dataset'].depth_render self.xyz_input = model_config.inputs['dataset'].xyz_render self.points_input = model_config.inputs['dataset'].surface_point_samples training_example = preprocess.preprocess(model_config) observation = sdf_model.Observation(model_config, training_example) imp_net = sdf_model.StructuredImplicitModel(model_config, 'imp_net') prediction = imp_net.forward(observation) structured_implicit = prediction.structured_implicit self.packed_vector = structured_implicit.vector self.restore() def run(self, depth, points, xyz): """Runs the network on the input data, returning a (D)SIF.""" h, w = np.squeeze(depth).shape depth = np.reshape(depth, [1, h, w, 1]) points = np.reshape(points, [1, 10000, 6]) xyz = np.reshape(xyz, [1, h, w, 3]) with self.graph.as_default(): packed_vector = self.session.run( self.packed_vector, feed_dict={ self.depth_input: depth, self.points_input: points, self.xyz_input: xyz }) packed_vector = np.reshape(packed_vector, [self.job.model_config.hparams.sc, -1]) return packed_vector def run_example(self, ex): return self.run(ex.max_depth_224[0, ...] * 1000.0, ex.get_max_world_pts_from_idx(0), ex.max_world_xyz_224[0, ...]) def run_example_bts(self, ex): return self.run(ex.bts_depth_224[0, ...] * 1000.0, ex.get_bts_world_pts_from_idx(0), ex.bts_world_xyz_224[0, ...]) class DepthEncoder(TrainedNetwork): """Maps from a dodecahedron of depth images to shape elements.""" def __init__(self, job, ckpt, use_gpu, **kwargs): super(DepthEncoder, self).__init__(job, ckpt, use_gpu, **kwargs) with self.graph.as_default(): model_config = self.job.model_config model_config.hparams.bs = 1 model_config.inputs = shapenet.build_placeholder_interface(model_config) training_example = preprocess.preprocess(model_config) self.depth_input = model_config.inputs['dataset'].depth_renders self.points_input = model_config.inputs['dataset'].surface_point_samples self.nss_input = model_config.inputs['dataset'].near_surface_samples training_example = preprocess.preprocess(model_config) if hasattr(training_example, '_tx'): self.tx = training_example._tx else: self.tx = None observation = sdf_model.Observation(model_config, training_example) imp_net = sdf_model.StructuredImplicitModel(model_config, 'imp_net') prediction = imp_net.forward(observation) structured_implicit = prediction.structured_implicit self.packed_vector = structured_implicit.vector # *phew* we have set up the graph... now we need to pull the weights. self.restore() def run(self, dodeca, points, nss=None): """Runs the network on the input data, returning a (D)SIF.""" dodeca = np.reshape(dodeca, [1, 20, 224, 224, 1]) points = np.reshape(points, [1, 10000, 6]) with self.graph.as_default(): feed_dict = {self.depth_input: dodeca, self.points_input: points} if nss is not None: feed_dict[self.nss_input] = np.reshape(nss, [1, 100000, 4]) if self.tx is not None: packed_vector, tx = self.session.run([self.packed_vector, self.tx], feed_dict=feed_dict) else: packed_vector = self.session.run( self.packed_vector, feed_dict=feed_dict) packed_vector = np.reshape(packed_vector, [self.job.model_config.hparams.sc, -1]) if self.tx is not None: return packed_vector, np.reshape(tx, [4, 4]) return packed_vector def run_example(self, ex): return self.run(ex.depth_images, ex.precomputed_surface_samples_from_dodeca) class Decoder(TrainedNetwork): """A SIF -> Mesh decoder.""" def __init__(self, job, ckpt, use_gpu, **kwargs): super(Decoder, self).__init__(job, ckpt, use_gpu, **kwargs) with self.graph.as_default(): self.sif_input = tf.placeholder(tf.float32, self.batched_vector_shape) # TODO(kgenova) Maybe the net should be handled entirely by the structured # implicit function? Although there is a difference between the network # that can give a result from a vector and a simple wrapper for models # that don't need variables. Maybe it's just intelligent about creating # the net only when really needed. if 'silence_implicits' in kwargs and kwargs['silence_implicits']: self.job.model_config.hparams.ipc = 'f' log.info('Silencing implicits.') net = sdf_model.StructuredImplicitModel( self.job.model_config, name='imp_net') structured_implicit = ( structured_implicit_function.StructuredImplicit.from_packed_vector( self.job.model_config, self.sif_input, net)) self.structured_implicit = structured_implicit self.block_res = 32 self.native_point_count = self.block_res**3 self.sample_locations_ph = tf.placeholder( tf.float32, shape=[self.block_res, self.block_res, self.block_res, 3]) samples = tf.reshape(self.sample_locations_ph, [1, self.block_res**3, 3]) predicted_alg, predicted_locals = structured_implicit.class_at_samples( samples, apply_class_transfer=False) predicted_class = sdf_util.apply_class_transfer( predicted_alg, self.job.model_config, soft_transfer=True, offset=self.job.model_config.hparams.lset) vol_shape = [self.block_res, self.block_res, self.block_res] self.predicted_alg_grid = tf.reshape(predicted_alg, vol_shape) self.predicted_class_grid = tf.reshape(predicted_class, vol_shape) effective_element_count = ( structured_implicit_function.get_effective_element_count( self.job.model_config)) self.local_decisions = tf.reshape(predicted_locals[0], [ effective_element_count, self.block_res, self.block_res, self.block_res ]) self.base_grid = np_util.make_coordinate_grid_3d( length=self.block_res, height=self.block_res, width=self.block_res, is_screen_space=False, is_homogeneous=False).astype(np.float32) self._world2local = structured_implicit.world2local self._use_inference_kernel = True # Influence samples self.true_sample_count = 10000 self.generic_sample_ph = tf.placeholder( tf.float32, shape=[self.true_sample_count, 3]) self.predicted_influences = structured_implicit.rbf_influence_at_samples( tf.expand_dims(self.generic_sample_ph, axis=0)) # Optimizer stuff self.optimizer_pc = 5000 self.optimizer_samples = tf.placeholder( tf.float32, shape=[self.optimizer_pc, 3]) optimizer_samples = tf.reshape(self.optimizer_samples, [1, self.optimizer_pc, 3]) self.predicted_class, _ = structured_implicit.class_at_samples( optimizer_samples) self.predicted_class = tf.reshape(self.predicted_class, [self.optimizer_pc, 1]) self.target_class_ph = tf.placeholder(tf.float32, [self.optimizer_pc, 1]) loss = 'crossentropy' if loss == 'crossentropy': clipped_pred = tf.clip_by_value(self.predicted_class, 1e-05, 1 - 1e-05) self.optimizer_elt_loss = tf.where(self.target_class_ph > 0.5, -tf.log(clipped_pred), -tf.log(1 - clipped_pred)) elif loss == 'l1': self.optimizer_elt_loss = tf.abs(self.target_class_ph - self.predicted_class) elif loss == 'l2': self.optimizer_elt_loss = tf.square(self.target_class_ph - self.predicted_class) apply_where_agree = True if not apply_where_agree: gt_outside = self.target_class_ph > 0.5 pred_outside = self.predicted_class > 0.5 gt_inside = tf.logical_not(gt_outside) pred_inside = tf.logical_not(pred_outside) agree = tf.logical_or( tf.logical_and(gt_outside, pred_outside), tf.logical_and(gt_inside, pred_inside)) self.optimizer_elt_loss = tf.where_v2(agree, 0.0, self.optimizer_elt_loss) self.optimizer_loss = tf.reduce_mean(self.optimizer_elt_loss) self.ldif_gradients = tf.gradients(self.optimizer_loss, self.sif_input) # TODO(kgenova) Currently disabled since it's in testing and hardcodes # some values. # self.coords_ph = tf.placeholder(tf.float32, shape=[3]) # self.am_image_ph = tf.placeholder(tf.int32, shape=[224, 224]) # pose_cam2world, pose_eye = self._spherical_to_4x4(self.coords_ph) # self.pose_error = self._evaluate_pose_error(pose_cam2world, pose_eye, # self.am_image_ph) # self.pose3_gradients = tf.gradients(self.pose_error, self.coords_ph) try: self.restore() except ValueError: log.warning('No variables to restore or restoration otherwise failed.') @property def unbatched_vector_shape(self): shape_count = self.job.model_config.hparams.sc shape_size = structured_implicit_function.element_dof(self.job.model_config) return [shape_count, shape_size] @property def batched_vector_shape(self): return [1] + self.unbatched_vector_shape @property def use_inference_kernel(self): return self._use_inference_kernel @use_inference_kernel.setter def use_inference_kernel(self, should_use): self._use_inference_kernel = bool(should_use) # TODO(kgenova) The intermediate vector should really be its own class... def savetxt(self, sif_vector, path=None, version='v1'): """Saves a (D)SIF as ASCII text in the SIF file format. Args: sif_vector: A numpy array containing the ldif to write to disk. Has shape (element_count, element_length). path: A string containing the path to the file to write to, if provided. If none, no file is written. version: A string with the version identifier. Must equal 'v1'. Returns: A string encoding of the (D)SIF. """ if version == 'v0': raise ValueError('SIF v0 files are no longer supported.') elif version == 'v1': s = self.encode_sif_v1(sif_vector) else: raise ValueError(f'Unrecognized SIF file format: {version}.') if path is not None: file_util.writetxt(path, s) return s def encode_sif_v1(self, sif_vector): """Encodes a ldif to a string, and optionally writes it to disk. A description of the file format: Line 1: SIF Line 2: Three ints separated by spaces. In order: 1) The number of blobs. 2) The version ID for the blob types. I added this to be safe since last time when we updated to add rotation it broke all the old txt files. For now it will always be zero, which means the following eleven explicit parameters will be given per blob (in order): 1 constant. float. 3 centers (XYZ). float. 3 radii (XYZ diagonals). float. 3 radii (roll-pitch-yaw rotations). float. 1 symmetry ID type. int. For now it will be either 0 or 1: Zero: Not symmetric. One: Left-right (XY-plane) symmetry. 3) The number of implicit parameters per blob. So it will likely be between 0-256. After the first two lines, there is a line for each blob. Each line will have the explicit parameters followed by the implicit parameters. They are space separated. Args: sif_vector: The SIF vector to encode as a np array. Has shape (element_count, element_length). Returns: A string encoding of v in the ldif v1 file format. """ sif_vector = sif_vector.copy() shape_count = sif_vector.shape[-2] shape_len = sif_vector.shape[-1] if shape_len == 7: off_axis = np.zeros([shape_count, 3]) sif_vector = np.concatenate([sif_vector, off_axis], axis=1) shape_len = 10 explicit_len = 10 implicit_len = shape_len - explicit_len sif_vector = np.reshape(sif_vector, [shape_count, shape_len]) has_implicits = implicit_len > 0 if not has_implicits: assert shape_len == 10 implicit_len = 0 sif_vector[:, 4:7] = np.sqrt(np.maximum(sif_vector[:, 4:7], 0)) header = 'SIF\n%i %i %i\n' % (shape_count, 0, implicit_len) out = header for row_idx in range(shape_count): row = ' '.join(10 * ['%.9g']) % tuple(sif_vector[row_idx, :10].tolist()) symmetry = int(row_idx < self.job.model_config.hparams.lyr) row += ' %i' % symmetry if has_implicits: implicit_params = ' '.join(implicit_len * ['%.9g']) % ( tuple(sif_vector[row_idx, 10:].tolist())) row += ' ' + implicit_params row += '\n' out += row return out def render_ellipsoids(self, sif_vector): """Renders an ellipsoid image visualizing the (D)SIF RBFs.""" with py_util.py2_temporary_directory() as d: qpath = d + '/q.txt' self.savetxt(sif_vector, qpath) impath = d + '/im.png' camera = ('1.0451 1.17901 0.630437 ' '-0.614259 -0.695319 -0.373119 ' '-0.547037 0.715996 -0.433705') with py_util.x11_server(): cmd = '%s/qview %s -camera %s -image %s' % (path_util.gaps_path(), qpath, camera, impath) sp.check_output(cmd, shell=True) im = file_util.read_image(impath) return im def interactive_viewer(self, sif_vector, mesh=None): """Opens a GAPS viewer that can display the SIF blobs alongside a mesh.""" with py_util.py2_temporary_directory() as d: qpath = d + '/q.txt' self.savetxt(sif_vector, qpath) init_camera = ('1.0451 1.17901 0.630437 ' '-0.614259 -0.695319 -0.373119 ' '-0.547037 0.715996 -0.433705') mstr = '' if mesh is not None: mpath = d + '/m.ply' file_util.write_mesh(mpath, mesh) mstr = f' -input_mesh {mpath}' cmd = f'{path_util.gaps_path()}/qview {qpath} -camera {init_camera}{mstr}' sp.check_output(cmd, shell=True) def world2local(self, sif_vector): if sif_vector.shape[0] != 1: sif_vector = np.expand_dims(sif_vector, axis=0) m = self.session.run( self._world2local, feed_dict={self.sif_input: sif_vector}) return m def interactive_mesh_viewer(self, sif_vector, resolution): """Opens up an OpenGL session viewing the mesh defined by the SIF/LDIF.""" with py_util.py2_temporary_directory() as d: mpath = d + '/m.ply' m = self.extract_mesh(sif_vector, resolution) file_util.write_mesh(mpath, m) init_camera = ('1.0451 1.17901 0.630437 ' '-0.614259 -0.695319 -0.373119 ' '-0.547037 0.715996 -0.433705') cmd = '%s/mshview %s -camera %s' % (path_util.gaps_path(), mpath, init_camera) sp.check_output(cmd, shell=True) def interactive_gridview(self, sif_vector, resolution, extent=0.75): volume = self._grid_eval( sif_vector, resolution, extent, extract_parts=False, world2local=None) return gaps_util.grdview(volume) def _spherical_to_4x4(self, coords): """Turns spherical coords into a 4x4 affine transformation matrix.""" r = coords[0] theta = coords[1] phi = coords[2] st = tf.sin(theta) x = r * st * tf.cos(phi) y = r * st * tf.sin(phi) z = r * tf.cos(theta) eye = tf.stack([x, y, z], axis=0) eye = tf.reshape(eye, [1, 3]) center = tf.zeros([1, 3], dtype=tf.float32) world_up = tf.constant([[0., 1., 0.]], dtype=tf.float32) world2cam = camera_util.look_at(eye, center, world_up) cam2world = tf.linalg.inv(world2cam) cam2world = tf.constant( [[-9.9398971e-01, 2.7342862e-03, -4.7837296e-03, 1.4993416e-04], [1.6200442e-09, 8.6298174e-01, 4.9326313e-01, 7.1943283e-01], [5.5100261e-03, 4.9325553e-01, -8.6296844e-01, -1.2277470e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 1.0000000e+00]], dtype=tf.float32) return tf.reshape(cam2world, [4, 4]), eye def _evaluate_pose_error(self, cam2world, eye, am_image): """Evaluates the error of an estimated 4x4 pose matrix.""" # TODO(kgenova) Thisis a hack that only workds for 3d-r2n2 ray_directions = gaps_util.gaps_depth_image_to_cam_image( np.ones((224, 224)), xfov=0.422204).astype(np.float32) tc = 15 t_vals = tf.constant(np.arange(0.75, 2.25, .1), dtype=tf.float32) t_vals = tf.reshape(t_vals, [1, tc, 1]) ray_count = int(np.prod(ray_directions.shape[:-1])) ray_directions = tf.reshape(ray_directions, [ray_count, 1, 3]) eye = tf.reshape(eye, [1, 1, 3]) cam_rays = ray_directions * t_vals + eye world_pts = geom_util.apply_4x4( cam_rays, cam2world, are_points=True, batch_rank=0, sample_rank=2) world_pts = tf.reshape(world_pts, [1, ray_count * tc, 3]) self.cam_3dof_pts = world_pts world_rbfs = self.structured_implicit.rbf_influence_at_samples(world_pts) eec = world_rbfs.get_shape().as_list()[-1] assert len(am_image.get_shape().as_list()) == 2 is_bg = tf.reshape( tf.logical_not(tf.equal(am_image, eec)), [1, ray_count, 1]) am_image = tf.tile(tf.expand_dims(am_image, axis=-1), [1, 1, tc]) flat_am = tf.reshape(am_image, [ray_count * tc, 1]) flat_am = tf.where_v2(tf.equal(flat_am, 45), 0, flat_am) world_rbfs = tf.reshape(world_rbfs, [ray_count * tc, 45]) max_val = tf.gather(world_rbfs, flat_am, batch_dims=1) max_val = tf.reshape(max_val, [1, ray_count, tc]) max_val = tf.reduce_max(max_val, axis=-1) is_bg_mult = tf.cast(is_bg, dtype=tf.float32) max_val = is_bg_mult * max_val error = -1.0 * tf.reduce_sum(max_val) return error def optimize_3dof_pose(self, sif_vector, am_image, e, step_count=10, lr=1e-6): """Tries to fit a pose given a SIF in 3D and a SIF segmentation image.""" if len(sif_vector.shape) == 2: sif_vector = np.expand_dims(sif_vector, axis=0) # Now rays is an array of shape [h, w, 3]. The origin is currently [0,0,0] # because the rays are in camera space (for now). lr = np.array([0.0, lr, lr], dtype=np.float32) # Just worry about a single step for now: # The pose is 3-dof: distance, phi, theta. coords = np.array([0.812717413913 / 1.75, 0.0, 0.0], dtype=np.float32) # cam2world, eye = self._spherical_to_4x4(coords) for i in range(step_count): log.verbose('Step %i: (%0.4f, %0.4f, %0.4f)' % (i, coords[0], coords[1], coords[2])) grad, err, pts = self.session.run( [self.pose3_gradients, self.pose_error, self.cam_3dof_pts], feed_dict={ self.am_image_ph: am_image, self.sif_input: sif_vector, self.coords_ph: coords }) grad = grad[0] log.verbose('Error: %0.2f' % err) log.verbose('grad: %s' % repr(grad)) log.verbose('pts.shape: ', repr(pts.shape)) assert len(grad.shape) == 1 assert grad.shape[0] == 3 update = lr * grad log.verbose('Update: ', str(update)) gaps_util.ptsview(pts, mesh=e.v1_gt_mesh) coords = coords - lr * grad return coords def optimize_to_gt(self, sif_vector, example, step_count=1, lr=0.01, vis=0, verbosity=0, target='all', samps='nss'): """Iteratively optimizes a SIF or LDIF to fit ground truth in/out values.""" if samps == 'nss': all_samples = example.near_surface_samples.copy() np.random.shuffle(all_samples) elif samps == 'uni': all_samples = example.uniform_samples.copy() elif samps == 'nssuni': all_samples = np.concatenate( [example.near_surface_samples, example.uniform_samples], axis=0) elif samps == 'dodeca': depth_ims = example.depth_images / 1000.0 all_samples = geom_util.depth_dodeca_to_samples(depth_ims) elif samps == 'depth': depth_idx = 1 # TODO(kgenova) Make this the one in the observation. depth_ims = example.depth_images / 1000.0 depth_im = depth_ims[0, depth_idx, :, :, :] cam2world = geom_util.get_dodeca_camera_to_worlds()[depth_idx, :, :] assert depth_im.shape[0] == 224 assert cam2world.shape[0] == 4 log.verbose('Depth im shape: ', depth_im.shape) all_samples = geom_util.depth_image_to_samples(depth_im, cam2world) if verbosity >= 2: gaps_util.ptsview(all_samples[..., :], self.extract_mesh(sif_vector, 128)) np.random.shuffle(all_samples) cl = all_samples[:, 3] all_samples[cl < 0, 3] = 0 all_samples[cl > 0, 3] = 1 samples, gt_class = np.split(all_samples, [3], axis=-1) samples = samples[:self.optimizer_pc, :] gt_class = gt_class[:self.optimizer_pc, :] def print_sat_count(vec): """Prints the number of contraints that are satisfied and the total.""" pred = self.class_at_samples(vec, np.reshape(samples, [-1, 3])) pred_is_out = pred > 0.5 gt_is_out = gt_class > 0.5 log.verbose(pred_is_out.shape, gt_is_out.shape) agree = np.logical_or( np.logical_and(pred_is_out, gt_is_out), np.logical_and( np.logical_not(pred_is_out), np.logical_not(gt_is_out))) sat_count = np.count_nonzero(agree) log.info('%i/%i constraints are satisfied.' % (sat_count, self.optimizer_pc)) if verbosity >= 1: log.info('Beginning optimization.') print_sat_count(sif_vector) assert gt_class.shape[-1] == 1 sif_vector = sif_vector.copy() sif_vector = np.expand_dims(sif_vector, axis=0) cur_vector = sif_vector.copy() ret_best = False if ret_best: min_loss = np.inf best_vec = cur_vector.copy() momentum = 0.9 velocity = np.zeros_like(cur_vector) cur_batch_idx = 0 for i in range(step_count): batch_start = cur_batch_idx batch_end = cur_batch_idx + self.optimizer_pc if batch_end > all_samples.shape[0]: np.random.shuffle(all_samples) batch_start = 0 batch_end = self.optimizer_pc cur_batch_idx = 0 batch_all_samples = all_samples[batch_start:batch_end, :] cur_batch_idx += self.optimizer_pc batch_samples, batch_gt_class = np.split(batch_all_samples, [3], axis=-1) grad = self.session.run( self.ldif_gradients, feed_dict={ self.target_class_ph: batch_gt_class, self.sif_input: cur_vector, self.optimizer_samples: batch_samples })[0] vis_this_time = vis >= 2 or (vis >= 1 and (i == 0 or i == step_count - 1)) print_this_time = verbosity >= 2 or (verbosity >= 1 and not i % 1000) if vis_this_time or print_this_time: loss = self.session.run( self.optimizer_elt_loss, feed_dict={ self.target_class_ph: batch_gt_class, self.sif_input: cur_vector, self.optimizer_samples: batch_samples }) if ret_best: lsum =
np.sum(loss)
numpy.sum
import numpy as np import pandas as pd import os import platform import datetime import re CHAR={ 'menu' : u'\u2630', 'tridot' : u'\u26EC', 'apply' : u'\u1809', 'compute' : u'\u2699', 'close' : u'\u274C', 'add' : u'\u2795', 'add_small': u'\ufe62', 'clear' : u'-', 'sun' : u'\u2600', 'suncloud' : u'\u26C5', 'cloud' : u'\u2601', 'check' : u'\u2714', 'help' : u'\u2753' } # --------------------------------------------------------------------------------} # --- ellude # --------------------------------------------------------------------------------{ def common_start(*strings): """ Returns the longest common substring from the beginning of the `strings` """ if len(strings)==1: strings=tuple(strings[0]) def _iter(): for z in zip(*strings): if z.count(z[0]) == len(z): # check all elements in `z` are the same yield z[0] else: return return ''.join(_iter()) def common_end(*strings): if len(strings)==1: strings=strings[0] else: strings=list(strings) strings = [s[-1::-1] for s in strings] return common_start(strings)[-1::-1] def find_leftstop(s): for i,c in enumerate(reversed(s)): if c in ['.','_','|']: i=i+1 return s[:len(s)-i] return s def ellude_common(strings,minLength=2): """ ellude the common parts of two strings minLength: if -1, string might be elluded up until there are of 0 length if 0 , if a string of zero length is obtained, it will be tried to be extended until a stop character is found """ # Selecting only the strings that do not start with the safe '>' char S = [s for i,s in enumerate(strings) if ((len(s)>0) and (s[0]!= '>'))] if len(S)==0: pass elif len(S)==1: ns=S[0].rfind('|')+1 ne=0; else: ss = common_start(S) se = common_end(S) iu = ss[:-1].rfind('_') ip = ss[:-1].rfind('_') if iu > 0: if ip>0: if iu>ip: ss=ss[:iu+1] else: ss=ss[:iu+1] iu = se[:-1].find('_') if iu > 0: se=se[iu:] iu = se[:-1].find('.') if iu > 0: se=se[iu:] ns=len(ss) ne=len(se) # Reduce start length if some strings end up empty # Look if any of the strings will end up empty SSS=[len(s[ns:-ne].lstrip('_') if ne>0 else s[ns:].lstrip('_')) for s in S] currentMinLength=np.min(SSS) if currentMinLength<minLength: delta=minLength-currentMinLength #print('ss',ss,'ns',ns) if delta>0: ss=ss[:-delta] ns=len(ss) #print('ss',ss) ss=find_leftstop(ss) #print('ss',ss) if len(ss)==ns: ns=0 else: ns=len(ss)+1 for i,s in enumerate(strings): if len(s)>0 and s[0]=='>': strings[i]=s[1:] else: s=s[ns:-ne] if ne>0 else s[ns:] strings[i]=s.lstrip('_') if len(strings[i])==0: strings[i]='tab{}'.format(i) return strings # --------------------------------------------------------------------------------} # --- Key value # --------------------------------------------------------------------------------{ def extract_key_tuples(text): """ all=(0.1,-2),b=(inf,0), c=(-inf,0.3e+10) """ regex = re.compile(r'(?P<key>[\w\-]+)=\((?P<value1>[0-9+epinf.-]*?),(?P<value2>[0-9+epinf.-]*?)\)($|,)') return {match.group("key"): (np.float(match.group("value1")),np.float(match.group("value2"))) for match in regex.finditer(text.replace(' ',''))} def extract_key_num(text): """ all=0.1, b=inf, c=-0.3e+10 """ regex = re.compile(r'(?P<key>[\w\-]+)=(?P<value>[0-9+epinf.-]*?)($|,)') return {match.group("key"): np.float(match.group("value")) for match in regex.finditer(text.replace(' ',''))} # --------------------------------------------------------------------------------} # --- # --------------------------------------------------------------------------------{ # def getMonoFontAbs(): # import wx # #return wx.Font(9, wx.MODERN, wx.NORMAL, wx.NORMAL, False, u'Monospace') # if os.name=='nt': # font=wx.Font(9, wx.TELETYPE, wx.NORMAL, wx.NORMAL, False) # elif os.name=='posix': # font=wx.Font(10, wx.TELETYPE, wx.NORMAL, wx.NORMAL, False) # else: # font=wx.Font(8, wx.TELETYPE, wx.NORMAL, wx.NORMAL, False) # return font # # def getMonoFont(widget): # import wx # font = widget.GetFont() # font.SetFamily(wx.TELETYPE) # if platform.system()=='Windows': # pass # elif platform.system()=='Linux': # pass # elif platform.system()=='Darwin': # font.SetPointSize(font.GetPointSize()-1) # else: # pass # return font def getDt(x): """ returns dt in s """ def myisnat(dt): if isinstance(dt,pd._libs.tslibs.timedeltas.Timedelta): try: dt=pd.to_timedelta(dt) # pandas 1.0 except: dt=pd.to_timedelta(dt,box=False) # backward compatibility elif isinstance(dt,datetime.timedelta): dt=np.array([dt],dtype='timedelta64')[0] return pd.isna(dt) # try: # print('>>>', dt,type(dt)) # isnat=np.isnat(dt) # except: # print(type(dt),type(dx)) # isnat=False # raise # return isnat if len(x)<=1: return np.NaN if isinstance(x[0],float): return x[1]-x[0] if isinstance(x[0],int) or isinstance(x[0],np.int32) or isinstance(x[0],np.int64): return x[1]-x[0] # first try with seconds #print('') #print('getDT: dx:',x[1]-x[0]) dx = x[1]-x[0] #print(type(dx)) if myisnat(dx): # we try the last values (or while loop, but may take a while) dx = x[-1]-x[-2] if myisnat(dx): return np.nan dt=np.timedelta64(dx,'s').item().total_seconds() if dt<1: # try higher resolution dt=
np.timedelta64(dx,'ns')
numpy.timedelta64
# authored by <NAME> # modified by <NAME> @ 01/06/2017 import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" import argparse import base64 import json import numpy as np import socketio import eventlet import eventlet.wsgi import time from PIL import Image from PIL import ImageOps from flask import Flask, render_template from io import BytesIO import cv2 from keras.models import model_from_json from keras.preprocessing.image import img_to_array import tensorflow as tf from tensorflow.python.ops import control_flow_ops tf.python.control_flow_ops = control_flow_ops sio = socketio.Server() app = Flask(__name__) model = None def preprocess_input(img): ''' Crop, resize and convert input image from RGB to HLS colorspace :param img: np array of uint8 :return: preprocessed image in float32 ''' img = cv2.resize(img[60:140, 40:280], (200, 66)) return cv2.cvtColor(img, cv2.COLOR_RGB2HLS).astype("float32")/255.0 - 0.5 @sio.on('telemetry') def telemetry(sid, data): # current steering angle of the car steering_angle = data["steering_angle"] # current throttle of the car throttle = data["throttle"] # current speed of the car speed = float(data["speed"]) # current image from the center camera of the car img_string = data["image"] img = Image.open(BytesIO(base64.b64decode(img_string))) # preprocess image from center camera img =
np.array(img, dtype=np.uint8)
numpy.array
import numpy as np import six import pandas as pd from kavica.transformer.TransformingFunctions import * from kavica.transformer.BatchTransformer import TransformerFunction __all__ = ['VerticalTransformer'] # TODO: It is needed to revised class VerticalTransformer(TransformerFunction): """ Transform is a tuple that is included: (str(new name), func(transform function), list(column/s),bool(replace) 1- the transformation function 2- the column/s that have to be transferred 3- the name of the new column 4- the add the main column or replace it with the transformed """ def __init__(self, transformers, rest='transit'): super(VerticalTransformer, self).__init__() self.transformers = transformers # [('name','transformation', [columns]),replace] self.rest = rest # transit | cast self._remainder = None self._columns = [] self.data = pd.DataFrame() self.X = pd.DataFrame() self.Y = pd.DataFrame() self.iterator = None self.yIndex = None @property def _transformers(self): return [(name, trans, reconstructor) for name, trans, _, reconstructor in self.transformers] @property def named_transformers_(self): """Access the fitted transformer by name. Read-only attribute to access any transformer by given name. Keys are transformer names and values are the fitted transformer objects. """ # Use Bunch object to improve autocomplete return (dict([(name, trans) for name, trans, _, _ in self.transformers])) # checking the type of the data column that will be transformed def _get_column(self, X, key): def _check_key_type(key, superclass): if isinstance(key, superclass): return True if isinstance(key, slice): return (isinstance(key.start, (superclass, type(None))) and isinstance(key.stop, (superclass, type(None)))) if isinstance(key, list): return all(isinstance(x, superclass) for x in key) if hasattr(key, 'dtype'): if superclass is int: return key.dtype.kind == 'i' else: # superclass = six.string_types return key.dtype.kind in ('O', 'U', 'S') return False if callable(key): key = key(X) # check whether we have string column names or integers if _check_key_type(key, int): column_names = False elif _check_key_type(key, six.string_types): column_names = True elif hasattr(key, 'dtype') and np.issubdtype(key.dtype, np.bool_): # boolean mask column_names = False if hasattr(X, 'loc'): # pandas boolean masks don't work with iloc, so take loc path column_names = True else: raise ValueError("No valid specification of the columns. Only a " "scalar, list or slice of all integers or all " "strings, or boolean mask is allowed") if column_names: if hasattr(X, 'loc'): # pandas dataframes return X.loc[:, key] else: raise ValueError("Specifying the columns using strings is only " "supported for pandas DataFrames") else: if hasattr(X, 'iloc'): return X.iloc[:, key] else: # numpy arrays, sparse arrays return X[:, key] def _check_key_type(self, key, superclass): """ Check that scalar, list or slice is of a certain type. This is only used in _get_column and _get_column_indices to check if the `key` (column specification) is fully integer or fully string-like. Parameters ---------- key : scalar, list, slice, array-like The column specification to check superclass : int or six.string_types The type for which to check the `key` """ if isinstance(key, superclass): return True if isinstance(key, slice): return (isinstance(key.start, (superclass, type(None))) and isinstance(key.stop, (superclass, type(None)))) if isinstance(key, list): return all(isinstance(x, superclass) for x in key) if hasattr(key, 'dtype'): if superclass is int: return key.dtype.kind == 'i' else: # superclass = six.string_types return key.dtype.kind in ('O', 'U', 'S') return False # checking the name of the transformed data def _validate_names(self, names, X): invalid_names = None if len(set(names)) != len(names): raise ValueError('Provided names are not unique: ' '{0!r}'.format(list(names))) if not all(name for name in names): raise ValueError('All the transformation are needed to have name' .format()) if isinstance(X, pd.DataFrame): if X.columns.values.dtype != np.int64: invalid_names = set(names).intersection(X.columns.values) else: raise ValueError('The constructor arguments is {} and ' ' It should not assinge a name to it.' .format(X.columns.values.dtype)) elif isinstance(X, np.ndarray): if X.dtype.names: invalid_names = set(names).intersection(X.dtype.names) else: raise ValueError('The constructor arguments is {} and ' ' It should not assign a name to it' .format('int64')) if invalid_names: raise ValueError('Estimator names conflict with constructor ' 'arguments: {0!r}'.format(sorted(invalid_names))) invalid_names = [name for name in names if '__' in name] if invalid_names: raise ValueError('Estimator names must not contain __: got ' '{0!r}'.format(invalid_names)) def _get_column_indices(self, X, key): """ Get feature column indices for input data X and key. For accepted values of `key`, see the docstring of _get_column """ n_columns = X.shape[1] if callable(key): key = key(X) if self._check_key_type(key, int): if isinstance(key, int): return [key] elif isinstance(key, slice): return list(range(n_columns)[key]) else: return list(key) elif self._check_key_type(key, six.string_types): try: all_columns = list(X.columns) except AttributeError: raise ValueError("Specifying the columns using strings is only " "supported for pandas DataFrames") if isinstance(key, six.string_types): columns = [key] elif isinstance(key, slice): start, stop = key.start, key.stop if start is not None: start = all_columns.index(start) if stop is not None: # pandas indexing with strings is endpoint included stop = all_columns.index(stop) + 1 else: stop = n_columns + 1 return list(range(n_columns)[slice(start, stop)]) else: columns = list(key) return [all_columns.index(col) for col in columns] elif hasattr(key, 'dtype') and np.issubdtype(key.dtype, np.bool_): # boolean mask return list(np.arange(n_columns)[key]) else: raise ValueError("No valid specification of the columns. Only a " "scalar, list or slice of all integers or all " "strings, or boolean mask is allowed") def _validate_rest(self, X, Y=None): if self.rest not in ('transit', 'cast'): raise ValueError( "The rest column needs to be one of 'attach', 'detach'," " or estimator. '%s' was passed instead" % self.rest) n_columns = X.shape[1] cols = [] yIndex = [] for _, _, columns, _ in self.transformers: cols.extend(self._get_column_indices(X, columns)) remaining_idx = sorted(list(set(range(n_columns)) - set(cols))) or None if Y: self.yIndex = self._get_column_indices(X, Y) if self.yIndex[0] in remaining_idx: remaining_idx.remove(self.yIndex[0]) yIndex = self.yIndex else: yIndex = [] self._remainder = ('rest', self.rest, remaining_idx, yIndex) print(self._remainder) def _validate_transformers(self, X): if not self.transformers: return names, transformers, _, reconstructor = zip(*self.transformers) # validate names self._validate_names(names, X) # validate reconstruction for t in reconstructor: if t in ('replace', 'add'): continue if (not (hasattr(t, "fit") or hasattr(t, "fit_transform")) or not hasattr(t, "transform")): raise TypeError("All estimators should implement fit and " "transform, or can be 'replace' or 'save' " "specifiers. '%s' (type %s) doesn't." % (t, type(t))) def _validate_column_callables(self, X): """ Converts callable column specifications. """ columns = [] for _, _, column, _ in self.transformers: if callable(column): column = column(X) elif column is not int: column = self._get_column_indices(X, column) columns.extend(column) self._columns = columns def __transform_generator(self, X): for trasition, column in zip(self.transformers, self._columns): names, transformers, _, reconstructor, column = (*trasition, column) yield (column, X.iloc[:, column].name, transformers, names, reconstructor, np.array(X.iloc[:, column]), X.iloc[:, column].dtype.name,) def fiting(self, X, Y=None): if isinstance(X, pd.DataFrame): pass elif isinstance(X, np.ndarray): X = pd.DataFrame(X) elif isinstance(X, list): X = pd.DataFrame(X) self.X = pd.DataFrame(index=X.index) self._validate_column_callables(X) self._validate_rest(X, Y) self._validate_transformers(X) # initiate the output X,Y if self.rest == 'transit': self.X = X.iloc[:, self._remainder[2]] if Y: self.Y = pd.DataFrame(index=X.index) if self._remainder[3]: self.Y = X.iloc[:, self._remainder[3]] self.iterator = self.__transform_generator(X) return self def transform(self): for transform in self.iterator: transformedItem = self._transform(transform[5].reshape(1, -1), func=transform[2]) if transform[4] == 'add': self.X[transform[1]] = transform[5] elif transform[4] == 'replace': pass else: raise TypeError("It is {} that is not replace or add".format(transform[4])) self.X[transform[3]] = transformedItem[0] def main(): data = np.array([(1, 9, 6, 13, 1, 72, 4), (1, 9, 0, 13, 1, 12, 4), (2, 2, 45, 23, 24, 13, 16), (3, 12, 0, 9, 5, 20, 89)]) datanp = np.array([(1, 9, 6), (1, 9, 0), (2, 2, 45), (3, 12, 0)], dtype={'col1': ('i1', 0, 'title 1'), 'col2': ('f4', 1, 'title 2'), 'col3': ('f4', 1, 'title 3')}) headers = ['A', 'B', 'C', 'D', 'E', 'F', 'G'] df = pd.DataFrame(data, columns=headers) data1 = [1, 9, 6, 13, 1, 72, 4] data2 =
np.array([1, 9, 6, 13, 1, 72, 4])
numpy.array
import shlex import subprocess import cv2 import pybullet_data from gym import error import numpy as np from inspect import currentframe, getframeinfo import gibson from gibson.core.physics.robot_locomotors import Fetch from gibson.core.render.pcrender import PCRenderer from gibson.data.datasets import ViewDataSet3D from gibson.envs.env_bases import * from gibson.envs.env_modalities import CameraRobotEnv, OneViewUI, TwoViewUI, ThreeViewUI, FourViewUI CALC_OBSTACLE_PENALTY = 1 tracking_camera = { 'yaw': 20, 'z_offset': 0.5, 'distance': 1, 'pitch': -20 } def quaternion_multiply(quaternion1, quaternion0): w0, x0, y0, z0 = quaternion0 w1, x1, y1, z1 = quaternion1 return np.array([-x1 * x0 - y1 * y0 - z1 * z0 + w1 * w0, x1 * w0 + y1 * z0 - z1 * y0 + w1 * x0, -x1 * z0 + y1 * w0 + z1 * x0 + w1 * y0, x1 * y0 - y1 * x0 + z1 * w0 + w1 * z0], dtype=np.float64) class FetchNavigateEnv(CameraRobotEnv): def _reward(self, action): raise NotImplementedError() def __init__(self, config, gpu_idx=0, depth_render_port=5556, use_filler=None): self.config = config assert (self.config["envname"] == self.__class__.__name__ or self.config["envname"] == "TestEnv") if isinstance(use_filler, bool): self._use_filler = use_filler else: self._use_filler = config["use_filler"] CameraRobotEnv.__init__(self, self.config, gpu_idx, scene_type="stadium" if self.config["model_id"] == "stadium" else "building", tracking_camera=tracking_camera, start_port=depth_render_port, use_filler=use_filler) # print("Finished setting up camera_env") self.window_width = self.config['window_width'] self.window_height = self.config['window_height'] self._render_width = self.config['window_width'] self._render_height = self.config['window_height'] self._target_labels = self.config['target_labels'] self.keys_to_action = { (ord('s'),): [-0.05, 0] + [0] * 13, # backward (ord('w'),): [0.05, 0] + [0] * 13, # forward (ord('d'),): [0, 0.05] + [0] * 13, # turn right (ord('a'),): [0, -0.05] + [0] * 13, # turn left (): [0] * 15 } # print("[{} {}] Fetch init'd".format(getframeinfo(currentframe()).filename, getframeinfo(currentframe()).lineno)) fetch = Fetch(self.config, env=self) # print("[{} {}] Introducing robot".format(getframeinfo(currentframe()).filename, getframeinfo(currentframe()).lineno)) self.robot_introduce(fetch) # print("[{} {}] Introducing scene".format(getframeinfo(currentframe()).filename, # getframeinfo(currentframe()).lineno)) self.scene_introduce() # print("[{} {}] Scene Introduced".format(getframeinfo(currentframe()).filename, # getframeinfo(currentframe()).lineno)) self.total_reward = 0 self.total_frame = 0 self.goal_img = None self.initial_pos = config['initial_pos'] self.initial_orn = config['initial_orn'] self.step = self._step self.reset = self._reset self.nonWheelJoints = [j for j in self.robot.ordered_joints if 'wheel' not in j.joint_name] self.markers = [] self.marker_ids = [] # Initialize camera to point top down if self.gui: pos = self.robot._get_scaled_position() # orn = self.robot.get_orientation() pos = (pos[0], pos[1], pos[2] + self.tracking_camera['z_offset']) pos =
np.array(pos)
numpy.array
# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. import logging import numpy as np import time import weakref from typing import Dict, List, Optional import torch from torch.nn.parallel import DataParallel, DistributedDataParallel import detectron2.utils.comm as comm from detectron2.utils.events import EventStorage, get_event_storage from tensorboardX import SummaryWriter import os import cv2 from tqdm import tqdm import shutil import xml.dom.minidom # from .defaults import DefaultPredictor # from ..data.datasets import get_icard19_dataset try: from azureml.core.run import Run aml_run = Run.get_context() except ImportError: aml_run = None __all__ = ["HookBase", "TrainerBase", "SimpleTrainer", "AMPTrainer"] class HookBase: """ Base class for hooks that can be registered with :class:`TrainerBase`. Each hook can implement 4 methods. The way they are called is demonstrated in the following snippet: :: hook.before_train() for iter in range(start_iter, max_iter): hook.before_step() trainer.run_step() hook.after_step() iter += 1 hook.after_train() Notes: 1. In the hook method, users can access ``self.trainer`` to access more properties about the context (e.g., model, current iteration, or config if using :class:`DefaultTrainer`). 2. A hook that does something in :meth:`before_step` can often be implemented equivalently in :meth:`after_step`. If the hook takes non-trivial time, it is strongly recommended to implement the hook in :meth:`after_step` instead of :meth:`before_step`. The convention is that :meth:`before_step` should only take negligible time. Following this convention will allow hooks that do care about the difference between :meth:`before_step` and :meth:`after_step` (e.g., timer) to function properly. Attributes: trainer (TrainerBase): A weak reference to the trainer object. Set by the trainer when the hook is registered. """ def before_train(self): """ Called before the first iteration. """ pass def after_train(self): """ Called after the last iteration. """ pass def before_step(self): """ Called before each iteration. """ pass def after_step(self): """ Called after each iteration. """ pass class TrainerBase: """ Base class for iterative trainer with hooks. The only assumption we made here is: the training runs in a loop. A subclass can implement what the loop is. We made no assumptions about the existence of dataloader, optimizer, model, etc. Attributes: iter(int): the current iteration. start_iter(int): The iteration to start with. By convention the minimum possible value is 0. max_iter(int): The iteration to end training. storage(EventStorage): An EventStorage that's opened during the course of training. """ def __init__(self) -> None: self._hooks: List[HookBase] = [] self.iter: int self.start_iter: int self.max_iter: int self.storage: EventStorage def register_hooks(self, hooks: List[Optional[HookBase]]) -> None: """ Register hooks to the trainer. The hooks are executed in the order they are registered. Args: hooks (list[Optional[HookBase]]): list of hooks """ hooks = [h for h in hooks if h is not None] for h in hooks: assert isinstance(h, HookBase) # To avoid circular reference, hooks and trainer cannot own each other. # This normally does not matter, but will cause memory leak if the # involved objects contain __del__: # See http://engineering.hearsaysocial.com/2013/06/16/circular-references-in-python/ h.trainer = weakref.proxy(self) self._hooks.extend(hooks) def train(self, start_iter: int, max_iter: int): """ Args: start_iter, max_iter (int): See docs above """ self.local_rank = self.cfg._rank self.logging_steps = self.cfg._logging_steps if self.local_rank in [-1, 0]: self.tb_writer = SummaryWriter( logdir=os.path.join(self.cfg._output_dir, 'tblogs')) self.logger = logging.getLogger(__name__) self.logger.info("Starting training from iteration {}".format(start_iter)) self.iter = self.start_iter = start_iter self.max_iter = max_iter self.loss_cls, self.logging_loss_cls = 0.0, 0.0 self.loss_box_reg, self.logging_loss_box_reg = 0.0, 0.0 self.loss_mask, self.logging_loss_mask = 0.0, 0.0 self.loss_rpn_cls, self.logging_loss_rpn_cls = 0.0, 0.0 self.loss_rpn_loc, self.logging_loss_rpn_loc = 0.0, 0.0 self.loss_mrcnn_total, self.logging_loss_mrcnn_total = 0.0, 0.0 with EventStorage(start_iter) as self.storage: try: self.before_train() iterator = tqdm(range(start_iter, max_iter), desc='Iteration', disable=self.local_rank not in [-1, 0]) for _, self.iter in enumerate(iterator): self.before_step() self.res = self.run_step() self.after_step() # self.iter == max_iter can be used by `after_train` to # tell whether the training successfully finished or failed # due to exceptions. self.iter += 1 except Exception: self.logger.exception("Exception during training:") raise finally: self.after_train() def before_train(self): for h in self._hooks: h.before_train() def after_train(self): self.storage.iter = self.iter for h in self._hooks: h.after_train() def before_step(self): # Maintain the invariant that storage.iter == trainer.iter # for the entire execution of each step self.storage.iter = self.iter for h in self._hooks: h.before_step() def user_logging(self): self.loss_cls += self.res['loss_cls'] self.loss_box_reg += self.res['loss_box_reg'] self.loss_mask += self.res['loss_mask'] self.loss_rpn_cls += self.res['loss_rpn_cls'] self.loss_rpn_loc += self.res['loss_rpn_loc'] self.loss_mrcnn_total += self.res['loss_cls'] + self.res['loss_box_reg'] + self.res['loss_mask'] + self.res[ 'loss_rpn_cls'] + self.res['loss_rpn_loc'] if self.local_rank in [-1, 0] and self.logging_steps > 0 and self.iter % self.logging_steps == 0: self.tb_writer.add_scalar('lr', self.scheduler.get_last_lr()[0], self.iter) self.tb_writer.add_scalar( 'loss_cls', (self.loss_cls - self.logging_loss_cls) / self.logging_steps, self.iter, ) self.tb_writer.add_scalar( 'loss_box_reg', (self.loss_box_reg - self.logging_loss_box_reg) / self.logging_steps, self.iter, ) self.tb_writer.add_scalar( 'loss_mask', (self.loss_mask - self.logging_loss_mask) / self.logging_steps, self.iter, ) self.tb_writer.add_scalar( 'loss_rpn_cls', (self.loss_rpn_cls - self.logging_loss_rpn_cls) / self.logging_steps, self.iter, ) self.tb_writer.add_scalar( 'loss_rpn_loc', (self.loss_rpn_loc - self.logging_loss_rpn_loc) / self.logging_steps, self.iter, ) self.tb_writer.add_scalar( 'loss_mrcnn_total', (self.loss_mrcnn_total - self.logging_loss_mrcnn_total) / self.logging_steps, self.iter, ) if aml_run is not None: aml_run.log('lr', self.scheduler.get_last_lr()[0]) aml_run.log('loss_cls', (self.loss_cls - self.logging_loss_cls) / self.logging_steps) aml_run.log('loss_box_reg', (self.loss_box_reg - self.logging_loss_box_reg) / self.logging_steps) aml_run.log('loss_mask', (self.loss_mask - self.logging_loss_mask) / self.logging_steps) aml_run.log('loss_rpn_cls', (self.loss_rpn_cls - self.logging_loss_rpn_cls) / self.logging_steps) aml_run.log('loss_rpn_loc', (self.loss_rpn_loc - self.logging_loss_rpn_loc) / self.logging_steps) aml_run.log('loss_mrcnn_total', (self.loss_mrcnn_total - self.logging_loss_mrcnn_total) / self.logging_steps) self.logger.info( 'step: {} | lr: {:.4E} | total_loss: {:6.4f} | table loss: {:6.4f} '.format( self.iter, self.scheduler.get_last_lr()[0], (self.loss_mrcnn_total - self.logging_loss_mrcnn_total) / self.logging_steps, (self.loss_mrcnn_total - self.logging_loss_mrcnn_total) / self.logging_steps, )) self.logging_loss_cls = self.loss_cls self.logging_loss_box_reg = self.loss_box_reg self.logging_loss_mask = self.loss_mask self.logging_loss_rpn_cls = self.loss_rpn_cls self.logging_loss_rpn_loc = self.loss_rpn_loc self.logging_loss_mrcnn_total = self.loss_mrcnn_total def evaluate(self): def calc_table_bbox(table_pred, file_name): table_bbox = [] assert len(table_pred) == len(file_name) for i in range(len(table_pred)): cur_item = { 'filename': file_name[i], 'bbox': [] } raw_bbox = table_pred[i]._fields['pred_boxes'].tensor res_size = raw_bbox.shape for j in range(res_size[0]): cur_bbox = raw_bbox[j].tolist() x0, y0, x1, y1 = map(int, cur_bbox) cur_item['bbox'].append([x0, y0, x0, y1, x1, y1, x1, y0]) table_bbox.append(cur_item) return table_bbox def save_table_result(table_result, output_path): for i in tqdm(range(len(table_result))): pure_filename = table_result[i]['filename'] doc = xml.dom.minidom.Document() root = doc.createElement('document') root.setAttribute('filename', table_result[i]['filename']) doc.appendChild(root) tables = table_result[i]['bbox'] table_id = 0 for table in tables: table_id += 1 nodeManager = doc.createElement('table') nodeManager.setAttribute('id', str(table_id)) bbox_str = '{},{} {},{} {},{} {},{}'.format(table[0], table[1], table[2], table[3], table[4], table[5], table[6], table[7]) nodeCoords = doc.createElement('Coords') nodeCoords.setAttribute('points', bbox_str) nodeManager.appendChild(nodeCoords) root.appendChild(nodeManager) filename = '{}-result.xml'.format(pure_filename) fp = open(os.path.join(output_path, filename), 'w') doc.writexml(fp, indent='', addindent='\t', newl='\n', encoding="utf-8") fp.flush() fp.close() from .defaults import DefaultPredictor from ..data.datasets import get_icard19_dataset from ..evaluation import calc_table_score self.cfg.MODEL.WEIGHTS = os.path.join(self.cfg._output_dir, 'model_{:0=7}.pth'.format(self.iter - 1)) predictor = DefaultPredictor(self.cfg) dataset_dicts = get_icard19_dataset("test", self.cfg._data_dir) # all_data = [] table_preds = [] image_name = [] # for d in random.sample(dataset_dicts, 10): for d in tqdm(dataset_dicts): im = cv2.imread(d["file_name"]) outputs = predictor(im) # all_data.append(d) table_preds.append(outputs['instances']) image_name.append(os.path.basename(d['file_name'])[:-4]) assert len(table_preds) == len(image_name) table_result = calc_table_bbox(table_preds, image_name) output_path = os.path.join(self.cfg._output_dir, 'checkpoint-{}'.format(self.iter)) output_path = os.path.join(output_path, 'table_predict') if os.path.exists(output_path): shutil.rmtree(output_path) os.makedirs(output_path) save_table_result(table_result, output_path) table_final_score = calc_table_score(output_path) resutls = {} try: resutls.update(table_final_score) except: resutls.update( { 'p_six': 0.0, "r_six": 0.0, "f1_six": 0.0, "p_seven": 0.0, "r_seven": 0.0, "f1_seven": 0.0, "p_eight": 0.0, "r_eight": 0.0, "f1_eight": 0.0, "p_nine": 0.0, "r_nine": 0.0, "f1_nine": 0.0, "wF1": 0.0 } ) for key in resutls.keys(): self.logger.info('{} = {}\n'.format(key, str(resutls[key]))) # self.logger.info(resutls) for key, value in resutls.items(): self.tb_writer.add_scalar('eval_threshold:{}_{}'.format(self.cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST, key), value, self.iter) if aml_run is not None: aml_run.log('eval_threshold:{}_{}'.format(self.cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST, key), value) return resutls def after_step(self): self.user_logging() for h in self._hooks: h.after_step() if self.iter != 0 and self.iter % self.cfg.SOLVER.CHECKPOINT_PERIOD == 0 and self.local_rank in [-1, 0]: self.evaluate() def run_step(self): raise NotImplementedError class SimpleTrainer(TrainerBase): """ A simple trainer for the most common type of task: single-cost single-optimizer single-data-source iterative optimization, optionally using data-parallelism. It assumes that every step, you: 1. Compute the loss with a data from the data_loader. 2. Compute the gradients with the above loss. 3. Update the model with the optimizer. All other tasks during training (checkpointing, logging, evaluation, LR schedule) are maintained by hooks, which can be registered by :meth:`TrainerBase.register_hooks`. If you want to do anything fancier than this, either subclass TrainerBase and implement your own `run_step`, or write your own training loop. """ def __init__(self, model, data_loader, optimizer): """ Args: model: a torch Module. Takes a data from data_loader and returns a dict of losses. data_loader: an iterable. Contains data to be used to call model. optimizer: a torch optimizer. """ super().__init__() """ We set the model to training mode in the trainer. However it's valid to train a model that's in eval mode. If you want your model (or a submodule of it) to behave like evaluation during training, you can overwrite its train() method. """ model.train() self.model = model self.data_loader = data_loader self._data_loader_iter = iter(data_loader) self.optimizer = optimizer def run_step(self): """ Implement the standard training logic described above. """ assert self.model.training, "[SimpleTrainer] model was changed to eval mode!" start = time.perf_counter() """ If you want to do something with the data, you can wrap the dataloader. """ data = next(self._data_loader_iter) data_time = time.perf_counter() - start """ If you want to do something with the losses, you can wrap the model. """ loss_dict = self.model(data) losses = sum(loss_dict.values()) """ If you need to accumulate gradients or do something similar, you can wrap the optimizer with your custom `zero_grad()` method. """ self.optimizer.zero_grad() losses.backward() self._write_metrics(loss_dict, data_time) """ If you need gradient clipping/scaling or other processing, you can wrap the optimizer with your custom `step()` method. But it is suboptimal as explained in https://arxiv.org/abs/2006.15704 Sec 3.2.4 """ self.optimizer.step() def _write_metrics( self, loss_dict: Dict[str, torch.Tensor], data_time: float, prefix: str = "", ): """ Args: loss_dict (dict): dict of scalar losses data_time (float): time taken by the dataloader iteration """ metrics_dict = {k: v.detach().cpu().item() for k, v in loss_dict.items()} metrics_dict["data_time"] = data_time # Gather metrics among all workers for logging # This assumes we do DDP-style training, which is currently the only # supported method in detectron2. all_metrics_dict = comm.gather(metrics_dict) if comm.is_main_process(): storage = get_event_storage() # data_time among workers can have high variance. The actual latency # caused by data_time is the maximum among workers. data_time = np.max([x.pop("data_time") for x in all_metrics_dict]) storage.put_scalar("data_time", data_time) # average the rest metrics metrics_dict = { k:
np.mean([x[k] for x in all_metrics_dict])
numpy.mean
from __future__ import print_function, division, absolute_import import time import matplotlib matplotlib.use('Agg') # fix execution of tests involving matplotlib on travis import numpy as np import six.moves as sm import cv2 import shapely import shapely.geometry import imgaug as ia from imgaug.testutils import reseed def main(): time_start = time.time() test_is_np_array() test_is_single_integer() test_is_single_float() test_is_single_number() test_is_iterable() test_is_string() test_is_single_bool() test_is_integer_array() test_is_float_array() test_is_callable() test_caller_name() test_seed() test_current_random_state() test_new_random_state() test_dummy_random_state() test_copy_random_state() test_derive_random_state() test_derive_random_states() test_forward_random_state() # test_quokka() # test_quokka_square() # test_angle_between_vectors() # test_draw_text() test_imresize_many_images() test_imresize_single_image() test_pad() test_compute_paddings_for_aspect_ratio() test_pad_to_aspect_ratio() test_pool() test_avg_pool() test_max_pool() test_draw_grid() # test_show_grid() # test_do_assert() # test_HooksImages_is_activated() # test_HooksImages_is_propagating() # test_HooksImages_preprocess() # test_HooksImages_postprocess() test_Keypoint() test_KeypointsOnImage() test_BoundingBox() test_BoundingBoxesOnImage() # test_HeatmapsOnImage_get_arr() # test_HeatmapsOnImage_find_global_maxima() test_HeatmapsOnImage_draw() test_HeatmapsOnImage_draw_on_image() test_HeatmapsOnImage_invert() test_HeatmapsOnImage_pad() # test_HeatmapsOnImage_pad_to_aspect_ratio() test_HeatmapsOnImage_avg_pool() test_HeatmapsOnImage_max_pool() test_HeatmapsOnImage_scale() # test_HeatmapsOnImage_to_uint8() # test_HeatmapsOnImage_from_uint8() # test_HeatmapsOnImage_from_0to1() # test_HeatmapsOnImage_change_normalization() # test_HeatmapsOnImage_copy() # test_HeatmapsOnImage_deepcopy() test_SegmentationMapOnImage_bool() test_SegmentationMapOnImage_get_arr_int() # test_SegmentationMapOnImage_get_arr_bool() test_SegmentationMapOnImage_draw() test_SegmentationMapOnImage_draw_on_image() test_SegmentationMapOnImage_pad() test_SegmentationMapOnImage_pad_to_aspect_ratio() test_SegmentationMapOnImage_scale() test_SegmentationMapOnImage_to_heatmaps() test_SegmentationMapOnImage_from_heatmaps() test_SegmentationMapOnImage_copy() test_SegmentationMapOnImage_deepcopy() test_Polygon___init__() test_Polygon_xx() test_Polygon_yy() test_Polygon_xx_int() test_Polygon_yy_int() test_Polygon_is_valid() test_Polygon_area() test_Polygon_project() test_Polygon__compute_inside_image_point_mask() test_Polygon_is_fully_within_image() test_Polygon_is_partly_within_image() test_Polygon_is_out_of_image() test_Polygon_cut_out_of_image() test_Polygon_clip_out_of_image() test_Polygon_shift() test_Polygon_draw_on_image() test_Polygon_extract_from_image() test_Polygon_to_shapely_polygon() test_Polygon_to_bounding_box() test_Polygon_from_shapely() test_Polygon_copy() test_Polygon_deepcopy() test_Polygon___repr__() test_Polygon___str__() # test_Batch() test_BatchLoader() # test_BackgroundAugmenter.get_batch() # test_BackgroundAugmenter._augment_images_worker() # test_BackgroundAugmenter.terminate() time_end = time.time() print("<%s> Finished without errors in %.4fs." % (__file__, time_end - time_start,)) def test_is_np_array(): class _Dummy(object): pass values_true = [ np.zeros((1, 2), dtype=np.uint8), np.zeros((64, 64, 3), dtype=np.uint8), np.zeros((1, 2), dtype=np.float32), np.zeros((100,), dtype=np.float64) ] values_false = [ "A", "BC", "1", True, False, (1.0, 2.0), [1.0, 2.0], _Dummy(), -100, 1, 0, 1, 100, -1.2, -0.001, 0.0, 0.001, 1.2, 1e-4 ] for value in values_true: assert ia.is_np_array(value) is True for value in values_false: assert ia.is_np_array(value) is False def test_is_single_integer(): assert ia.is_single_integer("A") is False assert ia.is_single_integer(None) is False assert ia.is_single_integer(1.2) is False assert ia.is_single_integer(1.0) is False assert ia.is_single_integer(np.ones((1,), dtype=np.float32)[0]) is False assert ia.is_single_integer(1) is True assert ia.is_single_integer(1234) is True assert ia.is_single_integer(np.ones((1,), dtype=np.uint8)[0]) is True assert ia.is_single_integer(np.ones((1,), dtype=np.int32)[0]) is True def test_is_single_float(): assert ia.is_single_float("A") is False assert ia.is_single_float(None) is False assert ia.is_single_float(1.2) is True assert ia.is_single_float(1.0) is True assert ia.is_single_float(np.ones((1,), dtype=np.float32)[0]) is True assert ia.is_single_float(1) is False assert ia.is_single_float(1234) is False assert ia.is_single_float(np.ones((1,), dtype=np.uint8)[0]) is False assert ia.is_single_float(np.ones((1,), dtype=np.int32)[0]) is False def test_caller_name(): assert ia.caller_name() == 'test_caller_name' def test_is_single_number(): class _Dummy(object): pass values_true = [-100, 1, 0, 1, 100, -1.2, -0.001, 0.0, 0.001, 1.2, 1e-4] values_false = ["A", "BC", "1", True, False, (1.0, 2.0), [1.0, 2.0], _Dummy(), np.zeros((1, 2), dtype=np.uint8)] for value in values_true: assert ia.is_single_number(value) is True for value in values_false: assert ia.is_single_number(value) is False def test_is_iterable(): class _Dummy(object): pass values_true = [ [0, 1, 2], ["A", "X"], [[123], [456, 789]], [], (1, 2, 3), (1,), tuple(), "A", "ABC", "", np.zeros((100,), dtype=np.uint8) ] values_false = [1, 100, 0, -100, -1, 1.2, -1.2, True, False, _Dummy()] for value in values_true: assert ia.is_iterable(value) is True, value for value in values_false: assert ia.is_iterable(value) is False def test_is_string(): class _Dummy(object): pass values_true = ["A", "BC", "1", ""] values_false = [-100, 1, 0, 1, 100, -1.2, -0.001, 0.0, 0.001, 1.2, 1e-4, True, False, (1.0, 2.0), [1.0, 2.0], _Dummy(), np.zeros((1, 2), dtype=np.uint8)] for value in values_true: assert ia.is_string(value) is True for value in values_false: assert ia.is_string(value) is False def test_is_single_bool(): class _Dummy(object): pass values_true = [False, True] values_false = [-100, 1, 0, 1, 100, -1.2, -0.001, 0.0, 0.001, 1.2, 1e-4, (1.0, 2.0), [1.0, 2.0], _Dummy(), np.zeros((1, 2), dtype=np.uint8), np.zeros((1,), dtype=bool)] for value in values_true: assert ia.is_single_bool(value) is True for value in values_false: assert ia.is_single_bool(value) is False def test_is_integer_array(): class _Dummy(object): pass values_true = [ np.zeros((1, 2), dtype=np.uint8), np.zeros((100,), dtype=np.uint8), np.zeros((1, 2), dtype=np.uint16), np.zeros((1, 2), dtype=np.int32), np.zeros((1, 2), dtype=np.int64) ] values_false = [ "A", "BC", "1", "", -100, 1, 0, 1, 100, -1.2, -0.001, 0.0, 0.001, 1.2, 1e-4, True, False, (1.0, 2.0), [1.0, 2.0], _Dummy(), np.zeros((1, 2), dtype=np.float16), np.zeros((100,), dtype=np.float32), np.zeros((1, 2), dtype=np.float64), np.zeros((1, 2), dtype=np.bool) ] for value in values_true: assert ia.is_integer_array(value) is True for value in values_false: assert ia.is_integer_array(value) is False def test_is_float_array(): class _Dummy(object): pass values_true = [ np.zeros((1, 2), dtype=np.float16), np.zeros((100,), dtype=np.float32), np.zeros((1, 2), dtype=np.float64) ] values_false = [ "A", "BC", "1", "", -100, 1, 0, 1, 100, -1.2, -0.001, 0.0, 0.001, 1.2, 1e-4, True, False, (1.0, 2.0), [1.0, 2.0], _Dummy(), np.zeros((1, 2), dtype=np.uint8), np.zeros((100,), dtype=np.uint8), np.zeros((1, 2), dtype=np.uint16), np.zeros((1, 2), dtype=np.int32), np.zeros((1, 2), dtype=np.int64), np.zeros((1, 2), dtype=np.bool) ] for value in values_true: assert ia.is_float_array(value) is True for value in values_false: assert ia.is_float_array(value) is False def test_is_callable(): def _dummy_func(): pass _dummy_func2 = lambda x: x class _Dummy1(object): pass class _Dummy2(object): def __call__(self): pass values_true = [_dummy_func, _dummy_func2, _Dummy2()] values_false = ["A", "BC", "1", "", -100, 1, 0, 1, 100, -1.2, -0.001, 0.0, 0.001, 1.2, 1e-4, True, False, (1.0, 2.0), [1.0, 2.0], _Dummy1(), np.zeros((1, 2), dtype=np.uint8)] for value in values_true: assert ia.is_callable(value) == True for value in values_false: assert ia.is_callable(value) == False def test_seed(): ia.seed(10017) rs = np.random.RandomState(10017) assert ia.CURRENT_RANDOM_STATE.randint(0, 1000*1000) == rs.randint(0, 1000*1000) reseed() def test_current_random_state(): assert ia.current_random_state() == ia.CURRENT_RANDOM_STATE def test_new_random_state(): seed = 1000 ia.seed(seed) rs_observed = ia.new_random_state(seed=None, fully_random=False) rs_expected = np.random.RandomState(np.random.RandomState(seed).randint(0, 10**6, 1)[0]) assert rs_observed.randint(0, 10**6) == rs_expected.randint(0, 10**6) rs_observed1 = ia.new_random_state(seed=None, fully_random=False) rs_observed2 = ia.new_random_state(seed=None, fully_random=False) assert rs_observed1.randint(0, 10**6) != rs_observed2.randint(0, 10**6) ia.seed(seed) np.random.seed(seed) rs_observed = ia.new_random_state(seed=None, fully_random=True) rs_not_expected = np.random.RandomState(np.random.RandomState(seed).randint(0, 10**6, 1)[0]) assert rs_observed.randint(0, 10**6) != rs_not_expected.randint(0, 10**6) rs_observed1 = ia.new_random_state(seed=None, fully_random=True) rs_observed2 = ia.new_random_state(seed=None, fully_random=True) assert rs_observed1.randint(0, 10**6) != rs_observed2.randint(0, 10**6) rs_observed1 = ia.new_random_state(seed=1234) rs_observed2 = ia.new_random_state(seed=1234) rs_expected = np.random.RandomState(1234) assert rs_observed1.randint(0, 10**6) == rs_observed2.randint(0, 10**6) == rs_expected.randint(0, 10**6) def test_dummy_random_state(): assert ia.dummy_random_state().randint(0, 10**6) == np.random.RandomState(1).randint(0, 10**6) def test_copy_random_state(): rs = np.random.RandomState(1017) rs_copy = ia.copy_random_state(rs) assert rs != rs_copy assert rs.randint(0, 10**6) == rs_copy.randint(0, 10**6) assert ia.copy_random_state(np.random) == np.random assert ia.copy_random_state(np.random, force_copy=True) != np.random def test_derive_random_state(): rs = np.random.RandomState(1017) rs_observed = ia.derive_random_state(np.random.RandomState(1017)) rs_expected = np.random.RandomState(np.random.RandomState(1017).randint(0, 10**6)) assert rs_observed.randint(0, 10**6) == rs_expected.randint(0, 10**6) def test_derive_random_states(): rs_observed1, rs_observed2 = ia.derive_random_states(np.random.RandomState(1017), n=2) seed = np.random.RandomState(1017).randint(0, 10**6) rs_expected1 = np.random.RandomState(seed+0) rs_expected2 = np.random.RandomState(seed+1) assert rs_observed1.randint(0, 10**6) == rs_expected1.randint(0, 10**6) assert rs_observed2.randint(0, 10**6) == rs_expected2.randint(0, 10**6) def test_forward_random_state(): rs1 = np.random.RandomState(1017) rs2 = np.random.RandomState(1017) ia.forward_random_state(rs1) rs2.uniform() assert rs1.randint(0, 10**6) == rs2.randint(0, 10**6) def test_imresize_many_images(): interpolations = [None, "nearest", "linear", "area", "cubic", cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_AREA, cv2.INTER_CUBIC] for c in [1, 3]: image1 = np.zeros((16, 16, c), dtype=np.uint8) + 255 image2 = np.zeros((16, 16, c), dtype=np.uint8) image3 = np.pad( np.zeros((8, 8, c), dtype=np.uint8) + 255, ((4, 4), (4, 4), (0, 0)), mode="constant", constant_values=0 ) image1_small = np.zeros((8, 8, c), dtype=np.uint8) + 255 image2_small = np.zeros((8, 8, c), dtype=np.uint8) image3_small = np.pad( np.zeros((4, 4, c), dtype=np.uint8) + 255, ((2, 2), (2, 2), (0, 0)), mode="constant", constant_values=0 ) image1_large = np.zeros((32, 32, c), dtype=np.uint8) + 255 image2_large = np.zeros((32, 32, c), dtype=np.uint8) image3_large = np.pad( np.zeros((16, 16, c), dtype=np.uint8) + 255, ((8, 8), (8, 8), (0, 0)), mode="constant", constant_values=0 ) images = np.uint8([image1, image2, image3]) images_small = np.uint8([image1_small, image2_small, image3_small]) images_large = np.uint8([image1_large, image2_large, image3_large]) for images_this_iter in [images, list(images)]: # test for ndarray and list(ndarray) input for interpolation in interpolations: images_same_observed = ia.imresize_many_images(images_this_iter, (16, 16), interpolation=interpolation) for image_expected, image_observed in zip(images_this_iter, images_same_observed): diff = np.abs(image_expected.astype(np.int32) - image_observed.astype(np.int32)) assert np.sum(diff) == 0 for interpolation in interpolations: images_small_observed = ia.imresize_many_images(images_this_iter, (8, 8), interpolation=interpolation) for image_expected, image_observed in zip(images_small, images_small_observed): diff = np.abs(image_expected.astype(np.int32) - image_observed.astype(np.int32)) diff_fraction = np.sum(diff) / (image_observed.size * 255) assert diff_fraction < 0.5 for interpolation in interpolations: images_large_observed = ia.imresize_many_images(images_this_iter, (32, 32), interpolation=interpolation) for image_expected, image_observed in zip(images_large, images_large_observed): diff = np.abs(image_expected.astype(np.int32) - image_observed.astype(np.int32)) diff_fraction = np.sum(diff) / (image_observed.size * 255) assert diff_fraction < 0.5 # test size given as single int images = np.zeros((1, 4, 4, 3), dtype=np.uint8) observed = ia.imresize_many_images(images, 8) assert observed.shape == (1, 8, 8, 3) # test size given as single float images = np.zeros((1, 4, 4, 3), dtype=np.uint8) observed = ia.imresize_many_images(images, 2.0) assert observed.shape == (1, 8, 8, 3) images = np.zeros((1, 4, 4, 3), dtype=np.uint8) observed = ia.imresize_many_images(images, 0.5) assert observed.shape == (1, 2, 2, 3) # test size given as (float, float) images = np.zeros((1, 4, 4, 3), dtype=np.uint8) observed = ia.imresize_many_images(images, (2.0, 2.0)) assert observed.shape == (1, 8, 8, 3) images = np.zeros((1, 4, 4, 3), dtype=np.uint8) observed = ia.imresize_many_images(images, (0.5, 0.5)) assert observed.shape == (1, 2, 2, 3) images = np.zeros((1, 4, 4, 3), dtype=np.uint8) observed = ia.imresize_many_images(images, (2.0, 0.5)) assert observed.shape == (1, 8, 2, 3) images = np.zeros((1, 4, 4, 3), dtype=np.uint8) observed = ia.imresize_many_images(images, (0.5, 2.0)) assert observed.shape == (1, 2, 8, 3) # test size given as int+float or float+int images = np.zeros((1, 4, 4, 3), dtype=np.uint8) observed = ia.imresize_many_images(images, (11, 2.0)) assert observed.shape == (1, 11, 8, 3) images = np.zeros((1, 4, 4, 3), dtype=np.uint8) observed = ia.imresize_many_images(images, (2.0, 11)) assert observed.shape == (1, 8, 11, 3) # test no channels images = np.zeros((1, 4, 4), dtype=np.uint8) images_rs = ia.imresize_many_images(images, (2, 2)) assert images_rs.shape == (1, 2, 2) images = [np.zeros((4, 4), dtype=np.uint8)] images_rs = ia.imresize_many_images(images, (2, 2)) assert isinstance(images_rs, list) assert images_rs[0].shape == (2, 2) # test len 0 input observed = ia.imresize_many_images(np.zeros((0, 8, 8, 3), dtype=np.uint8), (4, 4)) assert ia.is_np_array(observed) assert observed.dtype.type == np.uint8 assert len(observed) == 0 observed = ia.imresize_many_images([], (4, 4)) assert isinstance(observed, list) assert len(observed) == 0 # test images with zero height/width images = [np.zeros((0, 4, 3), dtype=np.uint8)] got_exception = False try: _ = ia.imresize_many_images(images, sizes=(2, 2)) except Exception as exc: assert "Cannot resize images, because at least one image has a height and/or width of zero." in str(exc) got_exception = True assert got_exception images = [np.zeros((4, 0, 3), dtype=np.uint8)] got_exception = False try: _ = ia.imresize_many_images(images, sizes=(2, 2)) except Exception as exc: assert "Cannot resize images, because at least one image has a height and/or width of zero." in str(exc) got_exception = True assert got_exception images = [np.zeros((0, 0, 3), dtype=np.uint8)] got_exception = False try: _ = ia.imresize_many_images(images, sizes=(2, 2)) except Exception as exc: assert "Cannot resize images, because at least one image has a height and/or width of zero." in str(exc) got_exception = True assert got_exception # test invalid sizes sizes_all = [(-1, 2), (0, 2)] sizes_all = sizes_all\ + [(float(a), b) for a, b in sizes_all]\ + [(a, float(b)) for a, b in sizes_all]\ + [(float(a), float(b)) for a, b in sizes_all]\ + [(-a, -b) for a, b in sizes_all]\ + [(-float(a), -b) for a, b in sizes_all]\ + [(-a, -float(b)) for a, b in sizes_all]\ + [(-float(a), -float(b)) for a, b in sizes_all] sizes_all = sizes_all\ + [(b, a) for a, b in sizes_all] sizes_all = sizes_all\ + [-1.0, 0.0, -1, 0] for sizes in sizes_all: images = [np.zeros((4, 4, 3), dtype=np.uint8)] got_exception = False try: _ = ia.imresize_many_images(images, sizes=sizes) except Exception as exc: assert "value is zero or lower than zero." in str(exc) got_exception = True assert got_exception # test list input but all with same shape images = [np.zeros((8, 8, 3), dtype=np.uint8) for _ in range(2)] observed = ia.imresize_many_images(images, (4, 4)) assert isinstance(observed, list) assert all([image.shape == (4, 4, 3) for image in observed]) assert all([image.dtype.type == np.uint8 for image in observed]) def test_imresize_single_image(): for c in [-1, 1, 3]: image1 = np.zeros((16, 16, abs(c)), dtype=np.uint8) + 255 image2 = np.zeros((16, 16, abs(c)), dtype=np.uint8) image3 = np.pad( np.zeros((8, 8, abs(c)), dtype=np.uint8) + 255, ((4, 4), (4, 4), (0, 0)), mode="constant", constant_values=0 ) image1_small = np.zeros((8, 8, abs(c)), dtype=np.uint8) + 255 image2_small = np.zeros((8, 8, abs(c)), dtype=np.uint8) image3_small = np.pad( np.zeros((4, 4, abs(c)), dtype=np.uint8) + 255, ((2, 2), (2, 2), (0, 0)), mode="constant", constant_values=0 ) image1_large = np.zeros((32, 32, abs(c)), dtype=np.uint8) + 255 image2_large = np.zeros((32, 32, abs(c)), dtype=np.uint8) image3_large = np.pad( np.zeros((16, 16, abs(c)), dtype=np.uint8) + 255, ((8, 8), (8, 8), (0, 0)), mode="constant", constant_values=0 ) images = np.uint8([image1, image2, image3]) images_small = np.uint8([image1_small, image2_small, image3_small]) images_large = np.uint8([image1_large, image2_large, image3_large]) if c == -1: images = images[:, :, 0] images_small = images_small[:, :, 0] images_large = images_large[:, :, 0] interpolations = [None, "nearest", "linear", "area", "cubic", cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_AREA, cv2.INTER_CUBIC] for interpolation in interpolations: for image in images: image_observed = ia.imresize_single_image(image, (16, 16), interpolation=interpolation) diff = np.abs(image.astype(np.int32) - image_observed.astype(np.int32)) assert np.sum(diff) == 0 for interpolation in interpolations: for image, image_expected in zip(images, images_small): image_observed = ia.imresize_single_image(image, (8, 8), interpolation=interpolation) diff = np.abs(image_expected.astype(np.int32) - image_observed.astype(np.int32)) diff_fraction = np.sum(diff) / (image_observed.size * 255) assert diff_fraction < 0.5 for interpolation in interpolations: for image, image_expected in zip(images, images_large): image_observed = ia.imresize_single_image(image, (32, 32), interpolation=interpolation) diff = np.abs(image_expected.astype(np.int32) - image_observed.astype(np.int32)) diff_fraction = np.sum(diff) / (image_observed.size * 255) assert diff_fraction < 0.5 def test_pad(): # ------- # uint8, int32 # ------- for dtype in [np.uint8, np.int32]: arr = np.zeros((3, 3), dtype=dtype) + 255 arr_pad = ia.pad(arr) assert arr_pad.shape == (3, 3) assert arr_pad.dtype.type == dtype assert np.array_equal(arr_pad, arr) arr_pad = ia.pad(arr, top=1) assert arr_pad.shape == (4, 3) assert arr_pad.dtype.type == dtype assert np.all(arr_pad[0, :] == 0) arr_pad = ia.pad(arr, right=1) assert arr_pad.shape == (3, 4) assert arr_pad.dtype.type == dtype assert np.all(arr_pad[:, -1] == 0) arr_pad = ia.pad(arr, bottom=1) assert arr_pad.shape == (4, 3) assert arr_pad.dtype.type == dtype assert np.all(arr_pad[-1, :] == 0) arr_pad = ia.pad(arr, left=1) assert arr_pad.shape == (3, 4) assert arr_pad.dtype.type == dtype assert np.all(arr_pad[:, 0] == 0) arr_pad = ia.pad(arr, top=1, right=2, bottom=3, left=4) assert arr_pad.shape == (3+(1+3), 3+(2+4)) assert arr_pad.dtype.type == dtype assert np.all(arr_pad[0, :] == 0) assert np.all(arr_pad[:, -2:] == 0) assert np.all(arr_pad[-3:, :] == 0) assert np.all(arr_pad[:, :4] == 0) arr_pad = ia.pad(arr, top=1, cval=10) assert arr_pad.shape == (4, 3) assert arr_pad.dtype.type == dtype assert np.all(arr_pad[0, :] == 10) arr = np.zeros((3, 3, 3), dtype=dtype) + 128 arr_pad = ia.pad(arr, top=1) assert arr_pad.shape == (4, 3, 3) assert arr_pad.dtype.type == dtype assert np.all(arr_pad[0, :, 0] == 0) assert np.all(arr_pad[0, :, 1] == 0) assert np.all(arr_pad[0, :, 2] == 0) arr = np.zeros((3, 3), dtype=dtype) + 128 arr[1, 1] = 200 arr_pad = ia.pad(arr, top=1, mode="maximum") assert arr_pad.shape == (4, 3) assert arr_pad.dtype.type == dtype assert arr_pad[0, 0] == 128 assert arr_pad[0, 1] == 200 assert arr_pad[0, 2] == 128 arr = np.zeros((3, 3), dtype=dtype) arr_pad = ia.pad(arr, top=1, mode="constant", cval=123) assert arr_pad.shape == (4, 3) assert arr_pad.dtype.type == dtype assert arr_pad[0, 0] == 123 assert arr_pad[0, 1] == 123 assert arr_pad[0, 2] == 123 assert arr_pad[1, 0] == 0 arr = np.zeros((1, 1), dtype=dtype) + 100 arr_pad = ia.pad(arr, top=4, mode="linear_ramp", cval=200) assert arr_pad.shape == (5, 1) assert arr_pad.dtype.type == dtype assert arr_pad[0, 0] == 200 assert arr_pad[1, 0] == 175 assert arr_pad[2, 0] == 150 assert arr_pad[3, 0] == 125 assert arr_pad[4, 0] == 100 # ------- # float32, float64 # ------- for dtype in [np.float32, np.float64]: arr = np.zeros((3, 3), dtype=dtype) + 1.0 arr_pad = ia.pad(arr) assert arr_pad.shape == (3, 3) assert arr_pad.dtype.type == dtype assert np.allclose(arr_pad, arr) arr_pad = ia.pad(arr, top=1) assert arr_pad.shape == (4, 3) assert arr_pad.dtype.type == dtype assert np.allclose(arr_pad[0, :], dtype([0, 0, 0])) arr_pad = ia.pad(arr, right=1) assert arr_pad.shape == (3, 4) assert arr_pad.dtype.type == dtype assert np.allclose(arr_pad[:, -1], dtype([0, 0, 0])) arr_pad = ia.pad(arr, bottom=1) assert arr_pad.shape == (4, 3) assert arr_pad.dtype.type == dtype assert np.allclose(arr_pad[-1, :], dtype([0, 0, 0])) arr_pad = ia.pad(arr, left=1) assert arr_pad.shape == (3, 4) assert arr_pad.dtype.type == dtype assert np.allclose(arr_pad[:, 0], dtype([0, 0, 0])) arr_pad = ia.pad(arr, top=1, right=2, bottom=3, left=4) assert arr_pad.shape == (3+(1+3), 3+(2+4)) assert arr_pad.dtype.type == dtype assert 0 - 1e-6 < np.max(arr_pad[0, :]) < 0 + 1e-6 assert 0 - 1e-6 < np.max(arr_pad[:, -2:]) < 0 + 1e-6 assert 0 - 1e-6 < np.max(arr_pad[-3, :]) < 0 + 1e-6 assert 0 - 1e-6 < np.max(arr_pad[:, :4]) < 0 + 1e-6 arr_pad = ia.pad(arr, top=1, cval=0.2) assert arr_pad.shape == (4, 3) assert arr_pad.dtype.type == dtype assert np.allclose(arr_pad[0, :], dtype([0.2, 0.2, 0.2])) arr = np.zeros((3, 3, 3), dtype=dtype) + 0.5 arr_pad = ia.pad(arr, top=1) assert arr_pad.shape == (4, 3, 3) assert arr_pad.dtype.type == dtype assert np.allclose(arr_pad[0, :, 0], dtype([0, 0, 0])) assert np.allclose(arr_pad[0, :, 1], dtype([0, 0, 0])) assert np.allclose(arr_pad[0, :, 2], dtype([0, 0, 0])) arr = np.zeros((3, 3), dtype=dtype) + 0.5 arr[1, 1] = 0.75 arr_pad = ia.pad(arr, top=1, mode="maximum") assert arr_pad.shape == (4, 3) assert arr_pad.dtype.type == dtype assert 0.50 - 1e-6 < arr_pad[0, 0] < 0.50 + 1e-6 assert 0.75 - 1e-6 < arr_pad[0, 1] < 0.75 + 1e-6 assert 0.50 - 1e-6 < arr_pad[0, 2] < 0.50 + 1e-6 arr = np.zeros((3, 3), dtype=dtype) arr_pad = ia.pad(arr, top=1, mode="constant", cval=0.4) assert arr_pad.shape == (4, 3) assert arr_pad.dtype.type == dtype assert 0.4 - 1e-6 < arr_pad[0, 0] < 0.4 + 1e-6 assert 0.4 - 1e-6 < arr_pad[0, 1] < 0.4 + 1e-6 assert 0.4 - 1e-6 < arr_pad[0, 2] < 0.4 + 1e-6 assert 0.0 - 1e-6 < arr_pad[1, 0] < 0.0 + 1e-6 arr = np.zeros((1, 1), dtype=dtype) + 0.6 arr_pad = ia.pad(arr, top=4, mode="linear_ramp", cval=1.0) assert arr_pad.shape == (5, 1) assert arr_pad.dtype.type == dtype assert 1.0 - 1e-6 < arr_pad[0, 0] < 1.0 + 1e-6 assert 0.9 - 1e-6 < arr_pad[1, 0] < 0.9 + 1e-6 assert 0.8 - 1e-6 < arr_pad[2, 0] < 0.8 + 1e-6 assert 0.7 - 1e-6 < arr_pad[3, 0] < 0.7 + 1e-6 assert 0.6 - 1e-6 < arr_pad[4, 0] < 0.6 + 1e-6 def test_compute_paddings_for_aspect_ratio(): arr = np.zeros((4, 4), dtype=np.uint8) top, right, bottom, left = ia.compute_paddings_for_aspect_ratio(arr, 1.0) assert top == 0 assert right == 0 assert bottom == 0 assert left == 0 arr = np.zeros((1, 4), dtype=np.uint8) top, right, bottom, left = ia.compute_paddings_for_aspect_ratio(arr, 1.0) assert top == 2 assert right == 0 assert bottom == 1 assert left == 0 arr = np.zeros((4, 1), dtype=np.uint8) top, right, bottom, left = ia.compute_paddings_for_aspect_ratio(arr, 1.0) assert top == 0 assert right == 2 assert bottom == 0 assert left == 1 arr = np.zeros((2, 4), dtype=np.uint8) top, right, bottom, left = ia.compute_paddings_for_aspect_ratio(arr, 1.0) assert top == 1 assert right == 0 assert bottom == 1 assert left == 0 arr = np.zeros((4, 2), dtype=np.uint8) top, right, bottom, left = ia.compute_paddings_for_aspect_ratio(arr, 1.0) assert top == 0 assert right == 1 assert bottom == 0 assert left == 1 arr = np.zeros((4, 4), dtype=np.uint8) top, right, bottom, left = ia.compute_paddings_for_aspect_ratio(arr, 0.5) assert top == 2 assert right == 0 assert bottom == 2 assert left == 0 arr = np.zeros((4, 4), dtype=np.uint8) top, right, bottom, left = ia.compute_paddings_for_aspect_ratio(arr, 2.0) assert top == 0 assert right == 2 assert bottom == 0 assert left == 2 def test_pad_to_aspect_ratio(): for dtype in [np.uint8, np.int32, np.float32]: # aspect_ratio = 1.0 arr = np.zeros((4, 4), dtype=dtype) arr_pad = ia.pad_to_aspect_ratio(arr, 1.0) assert arr_pad.dtype.type == dtype assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 4 arr = np.zeros((1, 4), dtype=dtype) arr_pad = ia.pad_to_aspect_ratio(arr, 1.0) assert arr_pad.dtype.type == dtype assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 4 arr = np.zeros((4, 1), dtype=dtype) arr_pad = ia.pad_to_aspect_ratio(arr, 1.0) assert arr_pad.dtype.type == dtype assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 4 arr = np.zeros((2, 4), dtype=dtype) arr_pad = ia.pad_to_aspect_ratio(arr, 1.0) assert arr_pad.dtype.type == dtype assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 4 arr = np.zeros((4, 2), dtype=dtype) arr_pad = ia.pad_to_aspect_ratio(arr, 1.0) assert arr_pad.dtype.type == dtype assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 4 # aspect_ratio != 1.0 arr = np.zeros((4, 4), dtype=dtype) arr_pad = ia.pad_to_aspect_ratio(arr, 2.0) assert arr_pad.dtype.type == dtype assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 8 arr = np.zeros((4, 4), dtype=dtype) arr_pad = ia.pad_to_aspect_ratio(arr, 0.5) assert arr_pad.dtype.type == dtype assert arr_pad.shape[0] == 8 assert arr_pad.shape[1] == 4 # 3d arr arr = np.zeros((4, 2, 3), dtype=dtype) arr_pad = ia.pad_to_aspect_ratio(arr, 1.0) assert arr_pad.dtype.type == dtype assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 4 assert arr_pad.shape[2] == 3 # cval arr = np.zeros((4, 4), dtype=np.uint8) + 128 arr_pad = ia.pad_to_aspect_ratio(arr, 2.0) assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 8 assert np.max(arr_pad[:, 0:2]) == 0 assert np.max(arr_pad[:, -2:]) == 0 assert np.max(arr_pad[:, 2:-2]) == 128 arr = np.zeros((4, 4), dtype=np.uint8) + 128 arr_pad = ia.pad_to_aspect_ratio(arr, 2.0, cval=10) assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 8 assert np.max(arr_pad[:, 0:2]) == 10 assert np.max(arr_pad[:, -2:]) == 10 assert np.max(arr_pad[:, 2:-2]) == 128 arr = np.zeros((4, 4), dtype=np.float32) + 0.5 arr_pad = ia.pad_to_aspect_ratio(arr, 2.0, cval=0.0) assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 8 assert 0 - 1e-6 <= np.max(arr_pad[:, 0:2]) <= 0 + 1e-6 assert 0 - 1e-6 <= np.max(arr_pad[:, -2:]) <= 0 + 1e-6 assert 0.5 - 1e-6 <= np.max(arr_pad[:, 2:-2]) <= 0.5 + 1e-6 arr = np.zeros((4, 4), dtype=np.float32) + 0.5 arr_pad = ia.pad_to_aspect_ratio(arr, 2.0, cval=0.1) assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 8 assert 0.1 - 1e-6 <= np.max(arr_pad[:, 0:2]) <= 0.1 + 1e-6 assert 0.1 - 1e-6 <= np.max(arr_pad[:, -2:]) <= 0.1 + 1e-6 assert 0.5 - 1e-6 <= np.max(arr_pad[:, 2:-2]) <= 0.5 + 1e-6 # mode arr = np.zeros((4, 4), dtype=np.uint8) + 128 arr[1:3, 1:3] = 200 arr_pad = ia.pad_to_aspect_ratio(arr, 2.0, mode="maximum") assert arr_pad.shape[0] == 4 assert arr_pad.shape[1] == 8 assert np.max(arr_pad[0:1, 0:2]) == 128 assert np.max(arr_pad[1:3, 0:2]) == 200 assert np.max(arr_pad[3:, 0:2]) == 128 assert np.max(arr_pad[0:1, -2:]) == 128 assert np.max(arr_pad[1:3, -2:]) == 200 assert np.max(arr_pad[3:, -2:]) == 128 # TODO add tests for return_pad_values=True def test_pool(): # basic functionality with uint8, int32, float32 arr = np.uint8([ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] ]) arr_pooled = ia.pool(arr, 2, np.average) assert arr_pooled.shape == (2, 2) assert arr_pooled.dtype == arr.dtype.type assert arr_pooled[0, 0] == int(np.average([0, 1, 4, 5])) assert arr_pooled[0, 1] == int(np.average([2, 3, 6, 7])) assert arr_pooled[1, 0] == int(np.average([8, 9, 12, 13])) assert arr_pooled[1, 1] == int(np.average([10, 11, 14, 15])) arr = np.int32([ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] ]) arr_pooled = ia.pool(arr, 2, np.average) assert arr_pooled.shape == (2, 2) assert arr_pooled.dtype == arr.dtype.type assert arr_pooled[0, 0] == int(np.average([0, 1, 4, 5])) assert arr_pooled[0, 1] == int(np.average([2, 3, 6, 7])) assert arr_pooled[1, 0] == int(np.average([8, 9, 12, 13])) assert arr_pooled[1, 1] == int(np.average([10, 11, 14, 15])) arr = np.float32([ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] ]) arr_pooled = ia.pool(arr, 2, np.average) assert arr_pooled.shape == (2, 2) assert arr_pooled.dtype == arr.dtype.type assert np.allclose(arr_pooled[0, 0], np.average([0, 1, 4, 5])) assert np.allclose(arr_pooled[0, 1], np.average([2, 3, 6, 7])) assert np.allclose(arr_pooled[1, 0], np.average([8, 9, 12, 13])) assert np.allclose(arr_pooled[1, 1], np.average([10, 11, 14, 15])) # preserve_dtype off arr = np.uint8([ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] ]) arr_pooled = ia.pool(arr, 2, np.average, preserve_dtype=False) assert arr_pooled.shape == (2, 2) assert arr_pooled.dtype == np.float64 assert np.allclose(arr_pooled[0, 0], np.average([0, 1, 4, 5])) assert np.allclose(arr_pooled[0, 1], np.average([2, 3, 6, 7])) assert np.allclose(arr_pooled[1, 0], np.average([8, 9, 12, 13])) assert np.allclose(arr_pooled[1, 1], np.average([10, 11, 14, 15])) # maximum function arr = np.uint8([ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] ]) arr_pooled = ia.pool(arr, 2, np.max) assert arr_pooled.shape == (2, 2) assert arr_pooled.dtype == arr.dtype.type assert arr_pooled[0, 0] == int(np.max([0, 1, 4, 5])) assert arr_pooled[0, 1] == int(np.max([2, 3, 6, 7])) assert arr_pooled[1, 0] == int(np.max([8, 9, 12, 13])) assert arr_pooled[1, 1] == int(np.max([10, 11, 14, 15])) # 3d array arr = np.uint8([ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] ]) arr = np.tile(arr[..., np.newaxis], (1, 1, 3)) arr_pooled = ia.pool(arr, 2, np.average) assert arr_pooled.shape == (2, 2, 3) assert np.array_equal(arr_pooled[..., 0], arr_pooled[..., 1]) assert np.array_equal(arr_pooled[..., 1], arr_pooled[..., 2]) arr_pooled = arr_pooled[..., 0] assert arr_pooled.dtype == arr.dtype.type assert arr_pooled[0, 0] == int(np.average([0, 1, 4, 5])) assert arr_pooled[0, 1] == int(np.average([2, 3, 6, 7])) assert arr_pooled[1, 0] == int(np.average([8, 9, 12, 13])) assert arr_pooled[1, 1] == int(np.average([10, 11, 14, 15])) # block_size per axis arr = np.float32([ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] ]) arr_pooled = ia.pool(arr, (2, 1), np.average) assert arr_pooled.shape == (2, 4) assert arr_pooled.dtype == arr.dtype.type assert np.allclose(arr_pooled[0, 0], np.average([0, 4])) assert np.allclose(arr_pooled[0, 1], np.average([1, 5])) assert np.allclose(arr_pooled[0, 2], np.average([2, 6])) assert np.allclose(arr_pooled[0, 3], np.average([3, 7])) assert np.allclose(arr_pooled[1, 0], np.average([8, 12])) assert np.allclose(arr_pooled[1, 1], np.average([9, 13])) assert np.allclose(arr_pooled[1, 2], np.average([10, 14])) assert np.allclose(arr_pooled[1, 3], np.average([11, 15])) # cval arr = np.uint8([ [0, 1, 2], [4, 5, 6], [8, 9, 10] ]) arr_pooled = ia.pool(arr, 2, np.average) assert arr_pooled.shape == (2, 2) assert arr_pooled.dtype == arr.dtype.type assert arr_pooled[0, 0] == int(np.average([0, 1, 4, 5])) assert arr_pooled[0, 1] == int(np.average([2, 0, 6, 0])) assert arr_pooled[1, 0] == int(np.average([8, 9, 0, 0])) assert arr_pooled[1, 1] == int(np.average([10, 0, 0, 0])) arr = np.uint8([ [0, 1], [4, 5] ]) arr_pooled = ia.pool(arr, (4, 1), np.average) assert arr_pooled.shape == (1, 2) assert arr_pooled.dtype == arr.dtype.type assert arr_pooled[0, 0] == int(np.average([0, 4, 0, 0])) assert arr_pooled[0, 1] == int(np.average([1, 5, 0, 0])) arr = np.uint8([ [0, 1, 2], [4, 5, 6], [8, 9, 10] ]) arr_pooled = ia.pool(arr, 2, np.average, cval=22) assert arr_pooled.shape == (2, 2) assert arr_pooled.dtype == arr.dtype.type assert arr_pooled[0, 0] == int(np.average([0, 1, 4, 5])) assert arr_pooled[0, 1] == int(np.average([2, 22, 6, 22])) assert arr_pooled[1, 0] == int(np.average([8, 9, 22, 22])) assert arr_pooled[1, 1] == int(np.average([10, 22, 22, 22])) def test_avg_pool(): # very basic test, as avg_pool() just calls pool(), which is tested in test_pool() arr = np.uint8([ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] ]) arr_pooled = ia.avg_pool(arr, 2) assert arr_pooled.shape == (2, 2) assert arr_pooled.dtype == arr.dtype.type assert arr_pooled[0, 0] == int(np.average([0, 1, 4, 5])) assert arr_pooled[0, 1] == int(np.average([2, 3, 6, 7])) assert arr_pooled[1, 0] == int(np.average([8, 9, 12, 13])) assert arr_pooled[1, 1] == int(np.average([10, 11, 14, 15])) def test_max_pool(): # very basic test, as avg_pool() just calls pool(), which is tested in test_pool() arr = np.uint8([ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] ]) arr_pooled = ia.max_pool(arr, 2) assert arr_pooled.shape == (2, 2) assert arr_pooled.dtype == arr.dtype.type assert arr_pooled[0, 0] == int(np.max([0, 1, 4, 5])) assert arr_pooled[0, 1] == int(np.max([2, 3, 6, 7])) assert arr_pooled[1, 0] == int(np.max([8, 9, 12, 13])) assert arr_pooled[1, 1] == int(np.max([10, 11, 14, 15])) def test_draw_grid(): image = np.zeros((2, 2, 3), dtype=np.uint8) image[0, 0] = 64 image[0, 1] = 128 image[1, 0] = 192 image[1, 1] = 256 grid = ia.draw_grid([image], rows=1, cols=1) assert np.array_equal(grid, image) grid = ia.draw_grid(np.uint8([image]), rows=1, cols=1) assert np.array_equal(grid, image) grid = ia.draw_grid([image, image, image, image], rows=2, cols=2) expected = np.vstack([ np.hstack([image, image]), np.hstack([image, image]) ]) assert np.array_equal(grid, expected) grid = ia.draw_grid([image, image], rows=1, cols=2) expected = np.hstack([image, image]) assert np.array_equal(grid, expected) grid = ia.draw_grid([image, image, image, image], rows=2, cols=None) expected = np.vstack([ np.hstack([image, image]), np.hstack([image, image]) ]) assert np.array_equal(grid, expected) grid = ia.draw_grid([image, image, image, image], rows=None, cols=2) expected = np.vstack([ np.hstack([image, image]), np.hstack([image, image]) ]) assert np.array_equal(grid, expected) grid = ia.draw_grid([image, image, image, image], rows=None, cols=None) expected = np.vstack([ np.hstack([image, image]), np.hstack([image, image]) ]) assert np.array_equal(grid, expected) def test_Keypoint(): eps = 1e-8 # x/y/x_int/y_int kp = ia.Keypoint(y=1, x=2) assert kp.y == 1 assert kp.x == 2 assert kp.y_int == 1 assert kp.x_int == 2 kp = ia.Keypoint(y=1.1, x=2.7) assert 1.1 - eps < kp.y < 1.1 + eps assert 2.7 - eps < kp.x < 2.7 + eps assert kp.y_int == 1 assert kp.x_int == 3 # project kp = ia.Keypoint(y=1, x=2) kp2 = kp.project((10, 10), (10, 10)) assert kp2.y == 1 assert kp2.x == 2 kp2 = kp.project((10, 10), (20, 10)) assert kp2.y == 2 assert kp2.x == 2 kp2 = kp.project((10, 10), (10, 20)) assert kp2.y == 1 assert kp2.x == 4 kp2 = kp.project((10, 10), (20, 20)) assert kp2.y == 2 assert kp2.x == 4 # shift kp = ia.Keypoint(y=1, x=2) kp2 = kp.shift(y=1) assert kp2.y == 2 assert kp2.x == 2 kp2 = kp.shift(y=-1) assert kp2.y == 0 assert kp2.x == 2 kp2 = kp.shift(x=1) assert kp2.y == 1 assert kp2.x == 3 kp2 = kp.shift(x=-1) assert kp2.y == 1 assert kp2.x == 1 kp2 = kp.shift(y=1, x=2) assert kp2.y == 2 assert kp2.x == 4 # __repr__ / __str_ kp = ia.Keypoint(y=1, x=2) assert kp.__repr__() == kp.__str__() == "Keypoint(x=2.00000000, y=1.00000000)" kp = ia.Keypoint(y=1.2, x=2.7) assert kp.__repr__() == kp.__str__() == "Keypoint(x=2.70000000, y=1.20000000)" def test_KeypointsOnImage(): eps = 1e-8 kps = [ia.Keypoint(x=1, y=2), ia.Keypoint(x=3, y=4)] # height/width kpi = ia.KeypointsOnImage(keypoints=kps, shape=(10, 20, 3)) assert kpi.height == 10 assert kpi.width == 20 # image instead of shape kpi = ia.KeypointsOnImage(keypoints=kps, shape=np.zeros((10, 20, 3), dtype=np.uint8)) assert kpi.shape == (10, 20, 3) # on() kpi2 = kpi.on((10, 20, 3)) assert all([kp_i.x == kp_j.x and kp_i.y == kp_j.y for kp_i, kp_j in zip(kpi.keypoints, kpi2.keypoints)]) kpi2 = kpi.on((20, 40, 3)) assert kpi2.keypoints[0].x == 2 assert kpi2.keypoints[0].y == 4 assert kpi2.keypoints[1].x == 6 assert kpi2.keypoints[1].y == 8 kpi2 = kpi.on(np.zeros((20, 40, 3), dtype=np.uint8)) assert kpi2.keypoints[0].x == 2 assert kpi2.keypoints[0].y == 4 assert kpi2.keypoints[1].x == 6 assert kpi2.keypoints[1].y == 8 # draw_on_image kpi = ia.KeypointsOnImage(keypoints=kps, shape=(5, 5, 3)) image = np.zeros((5, 5, 3), dtype=np.uint8) + 10 kps_mask = np.zeros(image.shape[0:2], dtype=np.bool) kps_mask[2, 1] = 1 kps_mask[4, 3] = 1 image_kps = kpi.draw_on_image(image, color=[0, 255, 0], size=1, copy=True, raise_if_out_of_image=False) assert np.all(image_kps[kps_mask] == [0, 255, 0]) assert np.all(image_kps[~kps_mask] == [10, 10, 10]) image_kps = kpi.draw_on_image(image, color=[0, 255, 0], size=3, copy=True, raise_if_out_of_image=False) kps_mask_size3 = np.copy(kps_mask) kps_mask_size3[2-1:2+1+1, 1-1:1+1+1] = 1 kps_mask_size3[4-1:4+1+1, 3-1:3+1+1] = 1 assert np.all(image_kps[kps_mask_size3] == [0, 255, 0]) assert np.all(image_kps[~kps_mask_size3] == [10, 10, 10]) image_kps = kpi.draw_on_image(image, color=[0, 0, 255], size=1, copy=True, raise_if_out_of_image=False) assert np.all(image_kps[kps_mask] == [0, 0, 255]) assert np.all(image_kps[~kps_mask] == [10, 10, 10]) image_kps = kpi.draw_on_image(image, color=255, size=1, copy=True, raise_if_out_of_image=False) assert np.all(image_kps[kps_mask] == [255, 255, 255]) assert np.all(image_kps[~kps_mask] == [10, 10, 10]) image2 = np.copy(image) image_kps = kpi.draw_on_image(image2, color=[0, 255, 0], size=1, copy=False, raise_if_out_of_image=False) assert np.all(image2 == image_kps) assert np.all(image_kps[kps_mask] == [0, 255, 0]) assert np.all(image_kps[~kps_mask] == [10, 10, 10]) assert np.all(image2[kps_mask] == [0, 255, 0]) assert np.all(image2[~kps_mask] == [10, 10, 10]) kpi = ia.KeypointsOnImage(keypoints=kps + [ia.Keypoint(x=100, y=100)], shape=(5, 5, 3)) image = np.zeros((5, 5, 3), dtype=np.uint8) + 10 kps_mask = np.zeros(image.shape[0:2], dtype=np.bool) kps_mask[2, 1] = 1 kps_mask[4, 3] = 1 image_kps = kpi.draw_on_image(image, color=[0, 255, 0], size=1, copy=True, raise_if_out_of_image=False) assert np.all(image_kps[kps_mask] == [0, 255, 0]) assert np.all(image_kps[~kps_mask] == [10, 10, 10]) kpi = ia.KeypointsOnImage(keypoints=kps + [ia.Keypoint(x=100, y=100)], shape=(5, 5, 3)) image = np.zeros((5, 5, 3), dtype=np.uint8) + 10 got_exception = False try: image_kps = kpi.draw_on_image(image, color=[0, 255, 0], size=1, copy=True, raise_if_out_of_image=True) assert np.all(image_kps[kps_mask] == [0, 255, 0]) assert np.all(image_kps[~kps_mask] == [10, 10, 10]) except Exception: got_exception = True assert got_exception kpi = ia.KeypointsOnImage(keypoints=kps + [ia.Keypoint(x=5, y=5)], shape=(5, 5, 3)) image = np.zeros((5, 5, 3), dtype=np.uint8) + 10 kps_mask = np.zeros(image.shape[0:2], dtype=np.bool) kps_mask[2, 1] = 1 kps_mask[4, 3] = 1 image_kps = kpi.draw_on_image(image, color=[0, 255, 0], size=1, copy=True, raise_if_out_of_image=False) assert np.all(image_kps[kps_mask] == [0, 255, 0]) assert np.all(image_kps[~kps_mask] == [10, 10, 10]) got_exception = False try: image_kps = kpi.draw_on_image(image, color=[0, 255, 0], size=1, copy=True, raise_if_out_of_image=True) assert np.all(image_kps[kps_mask] == [0, 255, 0]) assert np.all(image_kps[~kps_mask] == [10, 10, 10]) except Exception: got_exception = True assert got_exception # shift kpi = ia.KeypointsOnImage(keypoints=kps, shape=(5, 5, 3)) kpi2 = kpi.shift(x=0, y=0) assert kpi2.keypoints[0].x == kpi.keypoints[0].x assert kpi2.keypoints[0].y == kpi.keypoints[0].y assert kpi2.keypoints[1].x == kpi.keypoints[1].x assert kpi2.keypoints[1].y == kpi.keypoints[1].y kpi2 = kpi.shift(x=1) assert kpi2.keypoints[0].x == kpi.keypoints[0].x + 1 assert kpi2.keypoints[0].y == kpi.keypoints[0].y assert kpi2.keypoints[1].x == kpi.keypoints[1].x + 1 assert kpi2.keypoints[1].y == kpi.keypoints[1].y kpi2 = kpi.shift(x=-1) assert kpi2.keypoints[0].x == kpi.keypoints[0].x - 1 assert kpi2.keypoints[0].y == kpi.keypoints[0].y assert kpi2.keypoints[1].x == kpi.keypoints[1].x - 1 assert kpi2.keypoints[1].y == kpi.keypoints[1].y kpi2 = kpi.shift(y=1) assert kpi2.keypoints[0].x == kpi.keypoints[0].x assert kpi2.keypoints[0].y == kpi.keypoints[0].y + 1 assert kpi2.keypoints[1].x == kpi.keypoints[1].x assert kpi2.keypoints[1].y == kpi.keypoints[1].y + 1 kpi2 = kpi.shift(y=-1) assert kpi2.keypoints[0].x == kpi.keypoints[0].x assert kpi2.keypoints[0].y == kpi.keypoints[0].y - 1 assert kpi2.keypoints[1].x == kpi.keypoints[1].x assert kpi2.keypoints[1].y == kpi.keypoints[1].y - 1 kpi2 = kpi.shift(x=1, y=2) assert kpi2.keypoints[0].x == kpi.keypoints[0].x + 1 assert kpi2.keypoints[0].y == kpi.keypoints[0].y + 2 assert kpi2.keypoints[1].x == kpi.keypoints[1].x + 1 assert kpi2.keypoints[1].y == kpi.keypoints[1].y + 2 # get_coords_array kpi = ia.KeypointsOnImage(keypoints=kps, shape=(5, 5, 3)) observed = kpi.get_coords_array() expected = np.float32([ [1, 2], [3, 4] ]) assert np.allclose(observed, expected) # from_coords_array arr = np.float32([ [1, 2], [3, 4] ]) kpi = ia.KeypointsOnImage.from_coords_array(arr, shape=(5, 5, 3)) assert 1 - eps < kpi.keypoints[0].x < 1 + eps assert 2 - eps < kpi.keypoints[0].y < 2 + eps assert 3 - eps < kpi.keypoints[1].x < 3 + eps assert 4 - eps < kpi.keypoints[1].y < 4 + eps # to_keypoint_image kpi = ia.KeypointsOnImage(keypoints=kps, shape=(5, 5, 3)) image = kpi.to_keypoint_image(size=1) image_size3 = kpi.to_keypoint_image(size=3) kps_mask = np.zeros((5, 5, 2), dtype=np.bool) kps_mask[2, 1, 0] = 1 kps_mask[4, 3, 1] = 1 kps_mask_size3 = np.zeros_like(kps_mask) kps_mask_size3[2-1:2+1+1, 1-1:1+1+1, 0] = 1 kps_mask_size3[4-1:4+1+1, 3-1:3+1+1, 1] = 1 assert np.all(image[kps_mask] == 255) assert np.all(image[~kps_mask] == 0) assert np.all(image_size3[kps_mask] == 255) assert np.all(image_size3[kps_mask_size3] >= 128) assert np.all(image_size3[~kps_mask_size3] == 0) # from_keypoint_image() kps_image = np.zeros((5, 5, 2), dtype=np.uint8) kps_image[2, 1, 0] = 255 kps_image[4, 3, 1] = 255 kpi2 = ia.KeypointsOnImage.from_keypoint_image(kps_image, nb_channels=3) assert kpi2.shape == (5, 5, 3) assert len(kpi2.keypoints) == 2 assert kpi2.keypoints[0].y == 2 assert kpi2.keypoints[0].x == 1 assert kpi2.keypoints[1].y == 4 assert kpi2.keypoints[1].x == 3 kps_image = np.zeros((5, 5, 2), dtype=np.uint8) kps_image[2, 1, 0] = 255 kps_image[4, 3, 1] = 10 kpi2 = ia.KeypointsOnImage.from_keypoint_image(kps_image, if_not_found_coords={"x": -1, "y": -2}, threshold=20, nb_channels=3) assert kpi2.shape == (5, 5, 3) assert len(kpi2.keypoints) == 2 assert kpi2.keypoints[0].y == 2 assert kpi2.keypoints[0].x == 1 assert kpi2.keypoints[1].y == -2 assert kpi2.keypoints[1].x == -1 kps_image = np.zeros((5, 5, 2), dtype=np.uint8) kps_image[2, 1, 0] = 255 kps_image[4, 3, 1] = 10 kpi2 = ia.KeypointsOnImage.from_keypoint_image(kps_image, if_not_found_coords=(-1, -2), threshold=20, nb_channels=3) assert kpi2.shape == (5, 5, 3) assert len(kpi2.keypoints) == 2 assert kpi2.keypoints[0].y == 2 assert kpi2.keypoints[0].x == 1 assert kpi2.keypoints[1].y == -2 assert kpi2.keypoints[1].x == -1 kps_image = np.zeros((5, 5, 2), dtype=np.uint8) kps_image[2, 1, 0] = 255 kps_image[4, 3, 1] = 10 kpi2 = ia.KeypointsOnImage.from_keypoint_image(kps_image, if_not_found_coords=None, threshold=20, nb_channels=3) assert kpi2.shape == (5, 5, 3) assert len(kpi2.keypoints) == 1 assert kpi2.keypoints[0].y == 2 assert kpi2.keypoints[0].x == 1 got_exception = False try: kps_image = np.zeros((5, 5, 2), dtype=np.uint8) kps_image[2, 1, 0] = 255 kps_image[4, 3, 1] = 10 _ = ia.KeypointsOnImage.from_keypoint_image(kps_image, if_not_found_coords="exception-please", threshold=20, nb_channels=3) except Exception as exc: assert "Expected if_not_found_coords to be" in str(exc) got_exception = True assert got_exception # copy() kps = [ia.Keypoint(x=1, y=2), ia.Keypoint(x=3, y=4)] kpi = ia.KeypointsOnImage(keypoints=kps, shape=(5, 5, 3)) kpi2 = kpi.copy() assert kpi2.keypoints[0].x == 1 assert kpi2.keypoints[0].y == 2 assert kpi2.keypoints[1].x == 3 assert kpi2.keypoints[1].y == 4 kps[0].x = 100 assert kpi2.keypoints[0].x == 100 assert kpi2.keypoints[0].y == 2 assert kpi2.keypoints[1].x == 3 assert kpi2.keypoints[1].y == 4 # deepcopy() kps = [ia.Keypoint(x=1, y=2), ia.Keypoint(x=3, y=4)] kpi = ia.KeypointsOnImage(keypoints=kps, shape=(5, 5, 3)) kpi2 = kpi.deepcopy() assert kpi2.keypoints[0].x == 1 assert kpi2.keypoints[0].y == 2 assert kpi2.keypoints[1].x == 3 assert kpi2.keypoints[1].y == 4 kps[0].x = 100 assert kpi2.keypoints[0].x == 1 assert kpi2.keypoints[0].y == 2 assert kpi2.keypoints[1].x == 3 assert kpi2.keypoints[1].y == 4 # repr/str kps = [ia.Keypoint(x=1, y=2), ia.Keypoint(x=3, y=4)] kpi = ia.KeypointsOnImage(keypoints=kps, shape=(5, 5, 3)) expected = "KeypointsOnImage([Keypoint(x=1.00000000, y=2.00000000), Keypoint(x=3.00000000, y=4.00000000)], " \ + "shape=(5, 5, 3))" assert kpi.__repr__() == kpi.__str__() == expected def test_BoundingBox(): eps = 1e-8 # properties with ints bb = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) assert bb.y1_int == 10 assert bb.x1_int == 20 assert bb.y2_int == 30 assert bb.x2_int == 40 assert bb.width == 40 - 20 assert bb.height == 30 - 10 center_x = bb.x1 + (bb.x2 - bb.x1)/2 center_y = bb.y1 + (bb.y2 - bb.y1)/2 assert center_x - eps < bb.center_x < center_x + eps assert center_y - eps < bb.center_y < center_y + eps # wrong order of y1/y2, x1/x2 bb = ia.BoundingBox(y1=30, x1=40, y2=10, x2=20, label=None) assert bb.y1_int == 10 assert bb.x1_int == 20 assert bb.y2_int == 30 assert bb.x2_int == 40 # properties with floats bb = ia.BoundingBox(y1=10.1, x1=20.1, y2=30.9, x2=40.9, label=None) assert bb.y1_int == 10 assert bb.x1_int == 20 assert bb.y2_int == 31 assert bb.x2_int == 41 assert bb.width == 40.9 - 20.1 assert bb.height == 30.9 - 10.1 center_x = bb.x1 + (bb.x2 - bb.x1)/2 center_y = bb.y1 + (bb.y2 - bb.y1)/2 assert center_x - eps < bb.center_x < center_x + eps assert center_y - eps < bb.center_y < center_y + eps # area bb = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) assert bb.area == (30-10) * (40-20) # project bb = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = bb.project((10, 10), (10, 10)) assert 10 - eps < bb2.y1 < 10 + eps assert 20 - eps < bb2.x1 < 20 + eps assert 30 - eps < bb2.y2 < 30 + eps assert 40 - eps < bb2.x2 < 40 + eps bb = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = bb.project((10, 10), (20, 20)) assert 10*2 - eps < bb2.y1 < 10*2 + eps assert 20*2 - eps < bb2.x1 < 20*2 + eps assert 30*2 - eps < bb2.y2 < 30*2 + eps assert 40*2 - eps < bb2.x2 < 40*2 + eps bb2 = bb.project((10, 10), (5, 5)) assert 10*0.5 - eps < bb2.y1 < 10*0.5 + eps assert 20*0.5 - eps < bb2.x1 < 20*0.5 + eps assert 30*0.5 - eps < bb2.y2 < 30*0.5 + eps assert 40*0.5 - eps < bb2.x2 < 40*0.5 + eps bb2 = bb.project((10, 10), (10, 20)) assert 10*1 - eps < bb2.y1 < 10*1 + eps assert 20*2 - eps < bb2.x1 < 20*2 + eps assert 30*1 - eps < bb2.y2 < 30*1 + eps assert 40*2 - eps < bb2.x2 < 40*2 + eps bb2 = bb.project((10, 10), (20, 10)) assert 10*2 - eps < bb2.y1 < 10*2 + eps assert 20*1 - eps < bb2.x1 < 20*1 + eps assert 30*2 - eps < bb2.y2 < 30*2 + eps assert 40*1 - eps < bb2.x2 < 40*1 + eps # extend bb = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = bb.extend(all_sides=1) assert bb2.y1 == 10-1 assert bb2.y2 == 30+1 assert bb2.x1 == 20-1 assert bb2.x2 == 40+1 bb2 = bb.extend(all_sides=-1) assert bb2.y1 == 10-(-1) assert bb2.y2 == 30+(-1) assert bb2.x1 == 20-(-1) assert bb2.x2 == 40+(-1) bb2 = bb.extend(top=1) assert bb2.y1 == 10-1 assert bb2.y2 == 30+0 assert bb2.x1 == 20-0 assert bb2.x2 == 40+0 bb2 = bb.extend(right=1) assert bb2.y1 == 10-0 assert bb2.y2 == 30+0 assert bb2.x1 == 20-0 assert bb2.x2 == 40+1 bb2 = bb.extend(bottom=1) assert bb2.y1 == 10-0 assert bb2.y2 == 30+1 assert bb2.x1 == 20-0 assert bb2.x2 == 40+0 bb2 = bb.extend(left=1) assert bb2.y1 == 10-0 assert bb2.y2 == 30+0 assert bb2.x1 == 20-1 assert bb2.x2 == 40+0 # intersection bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=10, x1=39, y2=30, x2=59, label=None) bb_inter = bb1.intersection(bb2) assert bb_inter.x1 == 39 assert bb_inter.x2 == 40 assert bb_inter.y1 == 10 assert bb_inter.y2 == 30 bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=10, x1=41, y2=30, x2=61, label=None) bb_inter = bb1.intersection(bb2, default=False) assert bb_inter is False # union bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=10, x1=39, y2=30, x2=59, label=None) bb_union = bb1.union(bb2) assert bb_union.x1 == 20 assert bb_union.x2 == 59 assert bb_union.y1 == 10 assert bb_union.y2 == 30 # iou bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) iou = bb1.iou(bb2) assert 1.0 - eps < iou < 1.0 + eps bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=10, x1=41, y2=30, x2=61, label=None) iou = bb1.iou(bb2) assert 0.0 - eps < iou < 0.0 + eps bb1 = ia.BoundingBox(y1=10, x1=10, y2=20, x2=20, label=None) bb2 = ia.BoundingBox(y1=15, x1=15, y2=25, x2=25, label=None) iou = bb1.iou(bb2) area_union = 10 * 10 + 10 * 10 - 5 * 5 area_intersection = 5 * 5 iou_expected = area_intersection / area_union assert iou_expected - eps < iou < iou_expected + eps # is_fully_within_image bb = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) assert bb.is_fully_within_image((100, 100, 3)) is True assert bb.is_fully_within_image((20, 100, 3)) is False assert bb.is_fully_within_image((100, 30, 3)) is False assert bb.is_fully_within_image((1, 1, 3)) is False # is_partly_within_image bb = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) assert bb.is_partly_within_image((100, 100, 3)) is True assert bb.is_partly_within_image((20, 100, 3)) is True assert bb.is_partly_within_image((100, 30, 3)) is True assert bb.is_partly_within_image((1, 1, 3)) is False # is_out_of_image() bb = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) assert bb.is_out_of_image((100, 100, 3), partly=True, fully=True) is False assert bb.is_out_of_image((100, 100, 3), partly=False, fully=True) is False assert bb.is_out_of_image((100, 100, 3), partly=True, fully=False) is False assert bb.is_out_of_image((20, 100, 3), partly=True, fully=True) is True assert bb.is_out_of_image((20, 100, 3), partly=False, fully=True) is False assert bb.is_out_of_image((20, 100, 3), partly=True, fully=False) is True assert bb.is_out_of_image((100, 30, 3), partly=True, fully=True) is True assert bb.is_out_of_image((100, 30, 3), partly=False, fully=True) is False assert bb.is_out_of_image((100, 30, 3), partly=True, fully=False) is True assert bb.is_out_of_image((1, 1, 3), partly=True, fully=True) is True assert bb.is_out_of_image((1, 1, 3), partly=False, fully=True) is True assert bb.is_out_of_image((1, 1, 3), partly=True, fully=False) is False # cut_out_of_image bb = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb_cut = bb.cut_out_of_image((100, 100, 3)) eps = np.finfo(np.float32).eps assert bb_cut.y1 == 10 assert bb_cut.x1 == 20 assert bb_cut.y2 == 30 assert bb_cut.x2 == 40 bb_cut = bb.cut_out_of_image(np.zeros((100, 100, 3), dtype=np.uint8)) assert bb_cut.y1 == 10 assert bb_cut.x1 == 20 assert bb_cut.y2 == 30 assert bb_cut.x2 == 40 bb_cut = bb.cut_out_of_image((20, 100, 3)) assert bb_cut.y1 == 10 assert bb_cut.x1 == 20 assert 20 - 2*eps < bb_cut.y2 < 20 assert bb_cut.x2 == 40 bb_cut = bb.cut_out_of_image((100, 30, 3)) assert bb_cut.y1 == 10 assert bb_cut.x1 == 20 assert bb_cut.y2 == 30 assert 30 - 2*eps < bb_cut.x2 < 30 # shift bb = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb_top = bb.shift(top=0) bb_right = bb.shift(right=0) bb_bottom = bb.shift(bottom=0) bb_left = bb.shift(left=0) assert bb_top.y1 == 10 assert bb_top.x1 == 20 assert bb_top.y2 == 30 assert bb_top.x2 == 40 assert bb_right.y1 == 10 assert bb_right.x1 == 20 assert bb_right.y2 == 30 assert bb_right.x2 == 40 assert bb_bottom.y1 == 10 assert bb_bottom.x1 == 20 assert bb_bottom.y2 == 30 assert bb_bottom.x2 == 40 assert bb_left.y1 == 10 assert bb_left.x1 == 20 assert bb_left.y2 == 30 assert bb_left.x2 == 40 bb_top = bb.shift(top=1) bb_right = bb.shift(right=1) bb_bottom = bb.shift(bottom=1) bb_left = bb.shift(left=1) assert bb_top.y1 == 10+1 assert bb_top.x1 == 20 assert bb_top.y2 == 30+1 assert bb_top.x2 == 40 assert bb_right.y1 == 10 assert bb_right.x1 == 20-1 assert bb_right.y2 == 30 assert bb_right.x2 == 40-1 assert bb_bottom.y1 == 10-1 assert bb_bottom.x1 == 20 assert bb_bottom.y2 == 30-1 assert bb_bottom.x2 == 40 assert bb_left.y1 == 10 assert bb_left.x1 == 20+1 assert bb_left.y2 == 30 assert bb_left.x2 == 40+1 bb_top = bb.shift(top=-1) bb_right = bb.shift(right=-1) bb_bottom = bb.shift(bottom=-1) bb_left = bb.shift(left=-1) assert bb_top.y1 == 10-1 assert bb_top.x1 == 20 assert bb_top.y2 == 30-1 assert bb_top.x2 == 40 assert bb_right.y1 == 10 assert bb_right.x1 == 20+1 assert bb_right.y2 == 30 assert bb_right.x2 == 40+1 assert bb_bottom.y1 == 10+1 assert bb_bottom.x1 == 20 assert bb_bottom.y2 == 30+1 assert bb_bottom.x2 == 40 assert bb_left.y1 == 10 assert bb_left.x1 == 20-1 assert bb_left.y2 == 30 assert bb_left.x2 == 40-1 bb_mix = bb.shift(top=1, bottom=2, left=3, right=4) assert bb_mix.y1 == 10+1-2 assert bb_mix.x1 == 20+3-4 assert bb_mix.y2 == 30+3-4 assert bb_mix.x2 == 40+1-2 # draw_on_image() image = np.zeros((10, 10, 3), dtype=np.uint8) bb = ia.BoundingBox(y1=1, x1=1, y2=3, x2=3, label=None) bb_mask = np.zeros(image.shape[0:2], dtype=np.bool) bb_mask[1:3+1, 1] = True bb_mask[1:3+1, 3] = True bb_mask[1, 1:3+1] = True bb_mask[3, 1:3+1] = True image_bb = bb.draw_on_image(image, color=[255, 255, 255], alpha=1.0, thickness=1, copy=True, raise_if_out_of_image=False) assert np.all(image_bb[bb_mask] == [255, 255, 255]) assert np.all(image_bb[~bb_mask] == [0, 0, 0]) assert np.all(image == 0) image_bb = bb.draw_on_image(image, color=[255, 0, 0], alpha=1.0, thickness=1, copy=True, raise_if_out_of_image=False) assert np.all(image_bb[bb_mask] == [255, 0, 0]) assert np.all(image_bb[~bb_mask] == [0, 0, 0]) image_bb = bb.draw_on_image(image, color=128, alpha=1.0, thickness=1, copy=True, raise_if_out_of_image=False) assert np.all(image_bb[bb_mask] == [128, 128, 128]) assert np.all(image_bb[~bb_mask] == [0, 0, 0]) image_bb = bb.draw_on_image(image+100, color=[200, 200, 200], alpha=0.5, thickness=1, copy=True, raise_if_out_of_image=False) assert np.all(image_bb[bb_mask] == [150, 150, 150]) assert np.all(image_bb[~bb_mask] == [100, 100, 100]) image_bb = bb.draw_on_image((image+100).astype(np.float32), color=[200, 200, 200], alpha=0.5, thickness=1, copy=True, raise_if_out_of_image=False) assert np.sum(np.abs((image_bb - [150, 150, 150])[bb_mask])) < 0.1 assert np.sum(np.abs((image_bb - [100, 100, 100])[~bb_mask])) < 0.1 image_bb = bb.draw_on_image(image, color=[255, 255, 255], alpha=1.0, thickness=1, copy=False, raise_if_out_of_image=False) assert np.all(image_bb[bb_mask] == [255, 255, 255]) assert np.all(image_bb[~bb_mask] == [0, 0, 0]) assert np.all(image[bb_mask] == [255, 255, 255]) assert np.all(image[~bb_mask] == [0, 0, 0]) image = np.zeros_like(image) bb = ia.BoundingBox(y1=-1, x1=-1, y2=2, x2=2, label=None) bb_mask = np.zeros(image.shape[0:2], dtype=np.bool) bb_mask[2, 0:3] = True bb_mask[0:3, 2] = True image_bb = bb.draw_on_image(image, color=[255, 255, 255], alpha=1.0, thickness=1, copy=True, raise_if_out_of_image=False) assert np.all(image_bb[bb_mask] == [255, 255, 255]) assert np.all(image_bb[~bb_mask] == [0, 0, 0]) bb = ia.BoundingBox(y1=1, x1=1, y2=3, x2=3, label=None) bb_mask = np.zeros(image.shape[0:2], dtype=np.bool) bb_mask[0:5, 0:5] = True bb_mask[2, 2] = False image_bb = bb.draw_on_image(image, color=[255, 255, 255], alpha=1.0, thickness=2, copy=True, raise_if_out_of_image=False) assert np.all(image_bb[bb_mask] == [255, 255, 255]) assert np.all(image_bb[~bb_mask] == [0, 0, 0]) bb = ia.BoundingBox(y1=-1, x1=-1, y2=1, x2=1, label=None) bb_mask = np.zeros(image.shape[0:2], dtype=np.bool) bb_mask[0:1+1, 1] = True bb_mask[1, 0:1+1] = True image_bb = bb.draw_on_image(image, color=[255, 255, 255], alpha=1.0, thickness=1, copy=True, raise_if_out_of_image=False) assert np.all(image_bb[bb_mask] == [255, 255, 255]) assert np.all(image_bb[~bb_mask] == [0, 0, 0]) bb = ia.BoundingBox(y1=-1, x1=-1, y2=1, x2=1, label=None) got_exception = False try: _ = bb.draw_on_image(image, color=[255, 255, 255], alpha=1.0, thickness=1, copy=True, raise_if_out_of_image=True) except Exception: got_exception = True assert got_exception is False bb = ia.BoundingBox(y1=-5, x1=-5, y2=-1, x2=-1, label=None) got_exception = False try: _ = bb.draw_on_image(image, color=[255, 255, 255], alpha=1.0, thickness=1, copy=True, raise_if_out_of_image=True) except Exception: got_exception = True assert got_exception is True # extract_from_image() image = np.random.RandomState(1234).randint(0, 255, size=(10, 10, 3)) bb = ia.BoundingBox(y1=1, y2=3, x1=1, x2=3, label=None) image_sub = bb.extract_from_image(image) assert np.array_equal(image_sub, image[1:3, 1:3, :]) image = np.random.RandomState(1234).randint(0, 255, size=(10, 10)) bb = ia.BoundingBox(y1=1, y2=3, x1=1, x2=3, label=None) image_sub = bb.extract_from_image(image) assert np.array_equal(image_sub, image[1:3, 1:3]) image = np.random.RandomState(1234).randint(0, 255, size=(10, 10)) bb = ia.BoundingBox(y1=1, y2=3, x1=1, x2=3, label=None) image_sub = bb.extract_from_image(image) assert np.array_equal(image_sub, image[1:3, 1:3]) image = np.random.RandomState(1234).randint(0, 255, size=(10, 10, 3)) image_pad = np.pad(image, ((0, 1), (0, 1), (0, 0)), mode="constant", constant_values=0) bb = ia.BoundingBox(y1=8, y2=11, x1=8, x2=11, label=None) image_sub = bb.extract_from_image(image) assert np.array_equal(image_sub, image_pad[8:11, 8:11, :]) image = np.random.RandomState(1234).randint(0, 255, size=(10, 10, 3)) image_pad = np.pad(image, ((1, 0), (1, 0), (0, 0)), mode="constant", constant_values=0) bb = ia.BoundingBox(y1=-1, y2=3, x1=-1, x2=4, label=None) image_sub = bb.extract_from_image(image) assert np.array_equal(image_sub, image_pad[0:4, 0:5, :]) # to_keypoints() bb = ia.BoundingBox(y1=1, y2=3, x1=1, x2=3, label=None) kps = bb.to_keypoints() assert kps[0].y == 1 assert kps[0].x == 1 assert kps[1].y == 1 assert kps[1].x == 3 assert kps[2].y == 3 assert kps[2].x == 3 assert kps[3].y == 3 assert kps[3].x == 1 # copy() bb = ia.BoundingBox(y1=1, y2=3, x1=1, x2=3, label="test") bb2 = bb.copy() assert bb2.y1 == 1 assert bb2.y2 == 3 assert bb2.x1 == 1 assert bb2.x2 == 3 assert bb2.label == "test" bb2 = bb.copy(y1=10, x1=20, y2=30, x2=40, label="test2") assert bb2.y1 == 10 assert bb2.x1 == 20 assert bb2.y2 == 30 assert bb2.x2 == 40 assert bb2.label == "test2" # deepcopy() bb = ia.BoundingBox(y1=1, y2=3, x1=1, x2=3, label=["test"]) bb2 = bb.deepcopy() assert bb2.y1 == 1 assert bb2.y2 == 3 assert bb2.x1 == 1 assert bb2.x2 == 3 assert bb2.label[0] == "test" # BoundingBox_repr() bb = ia.BoundingBox(y1=1, y2=3, x1=1, x2=3, label=None) assert bb.__repr__() == "BoundingBox(x1=1.0000, y1=1.0000, x2=3.0000, y2=3.0000, label=None)" # test_BoundingBox_str() bb = ia.BoundingBox(y1=1, y2=3, x1=1, x2=3, label=None) assert bb.__str__() == "BoundingBox(x1=1.0000, y1=1.0000, x2=3.0000, y2=3.0000, label=None)" def test_BoundingBoxesOnImage(): reseed() # test height/width bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=15, x1=25, y2=35, x2=45, label=None) bbsoi = ia.BoundingBoxesOnImage([bb1, bb2], shape=(40, 50, 3)) assert bbsoi.height == 40 assert bbsoi.width == 50 bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=15, x1=25, y2=35, x2=45, label=None) bbsoi = ia.BoundingBoxesOnImage([bb1, bb2], shape=np.zeros((40, 50, 3), dtype=np.uint8)) assert bbsoi.height == 40 assert bbsoi.width == 50 # on() bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=15, x1=25, y2=35, x2=45, label=None) bbsoi = ia.BoundingBoxesOnImage([bb1, bb2], shape=np.zeros((40, 50, 3), dtype=np.uint8)) bbsoi_projected = bbsoi.on((40, 50)) assert bbsoi_projected.bounding_boxes[0].y1 == 10 assert bbsoi_projected.bounding_boxes[0].x1 == 20 assert bbsoi_projected.bounding_boxes[0].y2 == 30 assert bbsoi_projected.bounding_boxes[0].x2 == 40 assert bbsoi_projected.bounding_boxes[1].y1 == 15 assert bbsoi_projected.bounding_boxes[1].x1 == 25 assert bbsoi_projected.bounding_boxes[1].y2 == 35 assert bbsoi_projected.bounding_boxes[1].x2 == 45 bbsoi_projected = bbsoi.on((40*2, 50*2, 3)) assert bbsoi_projected.bounding_boxes[0].y1 == 10*2 assert bbsoi_projected.bounding_boxes[0].x1 == 20*2 assert bbsoi_projected.bounding_boxes[0].y2 == 30*2 assert bbsoi_projected.bounding_boxes[0].x2 == 40*2 assert bbsoi_projected.bounding_boxes[1].y1 == 15*2 assert bbsoi_projected.bounding_boxes[1].x1 == 25*2 assert bbsoi_projected.bounding_boxes[1].y2 == 35*2 assert bbsoi_projected.bounding_boxes[1].x2 == 45*2 bbsoi_projected = bbsoi.on(np.zeros((40*2, 50*2, 3), dtype=np.uint8)) assert bbsoi_projected.bounding_boxes[0].y1 == 10*2 assert bbsoi_projected.bounding_boxes[0].x1 == 20*2 assert bbsoi_projected.bounding_boxes[0].y2 == 30*2 assert bbsoi_projected.bounding_boxes[0].x2 == 40*2 assert bbsoi_projected.bounding_boxes[1].y1 == 15*2 assert bbsoi_projected.bounding_boxes[1].x1 == 25*2 assert bbsoi_projected.bounding_boxes[1].y2 == 35*2 assert bbsoi_projected.bounding_boxes[1].x2 == 45*2 # draw_on_image() bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=15, x1=25, y2=35, x2=45, label=None) bbsoi = ia.BoundingBoxesOnImage([bb1, bb2], shape=(40, 50, 3)) image = bbsoi.draw_on_image(np.zeros(bbsoi.shape, dtype=np.uint8), color=[0, 255, 0], alpha=1.0, thickness=1, copy=True, raise_if_out_of_image=False) assert np.all(image[10-1, 20-1, :] == [0, 0, 0]) assert np.all(image[10-1, 20-0, :] == [0, 0, 0]) assert np.all(image[10-0, 20-1, :] == [0, 0, 0]) assert np.all(image[10-0, 20-0, :] == [0, 255, 0]) assert np.all(image[10+1, 20+1, :] == [0, 0, 0]) assert np.all(image[30-1, 40-1, :] == [0, 0, 0]) assert np.all(image[30+1, 40-0, :] == [0, 0, 0]) assert np.all(image[30+0, 40+1, :] == [0, 0, 0]) assert np.all(image[30+0, 40+0, :] == [0, 255, 0]) assert np.all(image[30+1, 40+1, :] == [0, 0, 0]) assert np.all(image[15-1, 25-1, :] == [0, 0, 0]) assert np.all(image[15-1, 25-0, :] == [0, 0, 0]) assert np.all(image[15-0, 25-1, :] == [0, 0, 0]) assert np.all(image[15-0, 25-0, :] == [0, 255, 0]) assert np.all(image[15+1, 25+1, :] == [0, 0, 0]) assert np.all(image[35-1, 45-1, :] == [0, 0, 0]) assert np.all(image[35+1, 45+0, :] == [0, 0, 0]) assert np.all(image[35+0, 45+1, :] == [0, 0, 0]) assert np.all(image[35+0, 45+0, :] == [0, 255, 0]) assert np.all(image[35+1, 45+1, :] == [0, 0, 0]) # remove_out_of_image() bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=15, x1=25, y2=35, x2=51, label=None) bbsoi = ia.BoundingBoxesOnImage([bb1, bb2], shape=(40, 50, 3)) bbsoi_slim = bbsoi.remove_out_of_image(fully=True, partly=True) assert len(bbsoi_slim.bounding_boxes) == 1 assert bbsoi_slim.bounding_boxes[0] == bb1 # cut_out_of_image() bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=15, x1=25, y2=35, x2=51, label=None) bbsoi = ia.BoundingBoxesOnImage([bb1, bb2], shape=(40, 50, 3)) eps = np.finfo(np.float32).eps bbsoi_cut = bbsoi.cut_out_of_image() assert len(bbsoi_cut.bounding_boxes) == 2 assert bbsoi_cut.bounding_boxes[0].y1 == 10 assert bbsoi_cut.bounding_boxes[0].x1 == 20 assert bbsoi_cut.bounding_boxes[0].y2 == 30 assert bbsoi_cut.bounding_boxes[0].x2 == 40 assert bbsoi_cut.bounding_boxes[1].y1 == 15 assert bbsoi_cut.bounding_boxes[1].x1 == 25 assert bbsoi_cut.bounding_boxes[1].y2 == 35 assert 50 - 2*eps < bbsoi_cut.bounding_boxes[1].x2 < 50 # shift() bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=15, x1=25, y2=35, x2=51, label=None) bbsoi = ia.BoundingBoxesOnImage([bb1, bb2], shape=(40, 50, 3)) bbsoi_shifted = bbsoi.shift(right=1) assert len(bbsoi_cut.bounding_boxes) == 2 assert bbsoi_shifted.bounding_boxes[0].y1 == 10 assert bbsoi_shifted.bounding_boxes[0].x1 == 20 - 1 assert bbsoi_shifted.bounding_boxes[0].y2 == 30 assert bbsoi_shifted.bounding_boxes[0].x2 == 40 - 1 assert bbsoi_shifted.bounding_boxes[1].y1 == 15 assert bbsoi_shifted.bounding_boxes[1].x1 == 25 - 1 assert bbsoi_shifted.bounding_boxes[1].y2 == 35 assert bbsoi_shifted.bounding_boxes[1].x2 == 51 - 1 # copy() bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=15, x1=25, y2=35, x2=51, label=None) bbsoi = ia.BoundingBoxesOnImage([bb1, bb2], shape=(40, 50, 3)) bbsoi_copy = bbsoi.copy() assert len(bbsoi.bounding_boxes) == 2 assert bbsoi_copy.bounding_boxes[0].y1 == 10 assert bbsoi_copy.bounding_boxes[0].x1 == 20 assert bbsoi_copy.bounding_boxes[0].y2 == 30 assert bbsoi_copy.bounding_boxes[0].x2 == 40 assert bbsoi_copy.bounding_boxes[1].y1 == 15 assert bbsoi_copy.bounding_boxes[1].x1 == 25 assert bbsoi_copy.bounding_boxes[1].y2 == 35 assert bbsoi_copy.bounding_boxes[1].x2 == 51 bbsoi.bounding_boxes[0].y1 = 0 assert bbsoi_copy.bounding_boxes[0].y1 == 0 # deepcopy() bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=15, x1=25, y2=35, x2=51, label=None) bbsoi = ia.BoundingBoxesOnImage([bb1, bb2], shape=(40, 50, 3)) bbsoi_copy = bbsoi.deepcopy() assert len(bbsoi.bounding_boxes) == 2 assert bbsoi_copy.bounding_boxes[0].y1 == 10 assert bbsoi_copy.bounding_boxes[0].x1 == 20 assert bbsoi_copy.bounding_boxes[0].y2 == 30 assert bbsoi_copy.bounding_boxes[0].x2 == 40 assert bbsoi_copy.bounding_boxes[1].y1 == 15 assert bbsoi_copy.bounding_boxes[1].x1 == 25 assert bbsoi_copy.bounding_boxes[1].y2 == 35 assert bbsoi_copy.bounding_boxes[1].x2 == 51 bbsoi.bounding_boxes[0].y1 = 0 assert bbsoi_copy.bounding_boxes[0].y1 == 10 # repr() / str() bb1 = ia.BoundingBox(y1=10, x1=20, y2=30, x2=40, label=None) bb2 = ia.BoundingBox(y1=15, x1=25, y2=35, x2=51, label=None) bbsoi = ia.BoundingBoxesOnImage([bb1, bb2], shape=(40, 50, 3)) bb1_expected = "BoundingBox(x1=20.0000, y1=10.0000, x2=40.0000, y2=30.0000, label=None)" bb2_expected = "BoundingBox(x1=25.0000, y1=15.0000, x2=51.0000, y2=35.0000, label=None)" expected = "BoundingBoxesOnImage([%s, %s], shape=(40, 50, 3))" % (bb1_expected, bb2_expected) assert bbsoi.__repr__() == bbsoi.__str__() == expected def test_HeatmapsOnImage_draw(): heatmaps_arr = np.float32([ [0.5, 0.0, 0.0, 0.5], [0.0, 1.0, 1.0, 0.0], [0.0, 1.0, 1.0, 0.0], [0.5, 0.0, 0.0, 0.5], ]) heatmaps = ia.HeatmapsOnImage(heatmaps_arr, shape=(4, 4, 3)) heatmaps_drawn = heatmaps.draw()[0] assert heatmaps_drawn.shape == (4, 4, 3) v1 = heatmaps_drawn[0, 1] v2 = heatmaps_drawn[0, 0] v3 = heatmaps_drawn[1, 1] for y, x in [(0, 1), (0, 2), (1, 0), (1, 3), (2, 0), (2, 3), (3, 1), (3, 2)]: assert np.allclose(heatmaps_drawn[y, x], v1) for y, x in [(0, 0), (0, 3), (3, 0), (3, 3)]: assert np.allclose(heatmaps_drawn[y, x], v2) for y, x in [(1, 1), (1, 2), (2, 1), (2, 2)]: assert np.allclose(heatmaps_drawn[y, x], v3) # size differs from heatmap array size heatmaps_arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) heatmaps = ia.HeatmapsOnImage(heatmaps_arr, shape=(2, 2, 3)) heatmaps_drawn = heatmaps.draw(size=(4, 4))[0] assert heatmaps_drawn.shape == (4, 4, 3) v1 = heatmaps_drawn[0, 0] v2 = heatmaps_drawn[0, -1] for y in range(4): for x in range(2): assert np.allclose(heatmaps_drawn[y, x], v1) for y in range(4): for x in range(2, 4): assert np.allclose(heatmaps_drawn[y, x], v2) def test_HeatmapsOnImage_draw_on_image(): heatmaps_arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) heatmaps = ia.HeatmapsOnImage(heatmaps_arr, shape=(2, 2, 3)) image = np.uint8([ [0, 0, 0, 255], [0, 0, 0, 255], [0, 0, 0, 255], [0, 0, 0, 255] ]) image = np.tile(image[..., np.newaxis], (1, 1, 3)) heatmaps_drawn = heatmaps.draw_on_image(image, alpha=0.5, cmap=None)[0] assert heatmaps_drawn.shape == (4, 4, 3) assert np.all(heatmaps_drawn[0:4, 0:2, :] == 0) assert np.all(heatmaps_drawn[0:4, 2:3, :] == 128) or np.all(heatmaps_drawn[0:4, 2:3, :] == 127) assert np.all(heatmaps_drawn[0:4, 3:4, :] == 255) or np.all(heatmaps_drawn[0:4, 3:4, :] == 254) image = np.uint8([ [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0] ]) image = np.tile(image[..., np.newaxis], (1, 1, 3)) heatmaps_drawn = heatmaps.draw_on_image(image, alpha=0.5, resize="image", cmap=None)[0] assert heatmaps_drawn.shape == (2, 2, 3) assert np.all(heatmaps_drawn[0:2, 0, :] == 0) assert np.all(heatmaps_drawn[0:2, 1, :] == 128) or np.all(heatmaps_drawn[0:2, 1, :] == 127) def test_HeatmapsOnImage_invert(): heatmaps_arr = np.float32([ [0.0, 5.0, 10.0], [-1.0, -2.0, 7.5] ]) expected = np.float32([ [8.0, 3.0, -2.0], [9.0, 10.0, 0.5] ]) # (H, W) heatmaps = ia.HeatmapsOnImage(heatmaps_arr, shape=(2, 3), min_value=-2.0, max_value=10.0) assert np.allclose(heatmaps.get_arr(), heatmaps_arr) assert np.allclose(heatmaps.invert().get_arr(), expected) # (H, W, 1) heatmaps = ia.HeatmapsOnImage(heatmaps_arr[..., np.newaxis], shape=(2, 3), min_value=-2.0, max_value=10.0) assert np.allclose(heatmaps.get_arr(), heatmaps_arr[..., np.newaxis]) assert np.allclose(heatmaps.invert().get_arr(), expected[..., np.newaxis]) def test_HeatmapsOnImage_pad(): heatmaps_arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) heatmaps = ia.HeatmapsOnImage(heatmaps_arr, shape=(2, 2, 3)) heatmaps_padded = heatmaps.pad(top=1, right=2, bottom=3, left=4) assert heatmaps_padded.arr_0to1.shape == (2+(1+3), 2+(4+2), 1) assert np.allclose( heatmaps_padded.arr_0to1[:, :, 0], np.float32([ [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ]) ) heatmaps_padded = heatmaps.pad(top=1, right=2, bottom=3, left=4, cval=0.5) assert heatmaps_padded.arr_0to1.shape == (2+(1+3), 2+(4+2), 1) assert np.allclose( heatmaps_padded.arr_0to1[:, :, 0], np.float32([ [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5, 0.5, 0.0, 1.0, 0.5, 0.5], [0.5, 0.5, 0.5, 0.5, 0.0, 1.0, 0.5, 0.5], [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5] ]) ) heatmaps_padded = heatmaps.pad(top=1, right=2, bottom=3, left=4, mode="edge") assert heatmaps_padded.arr_0to1.shape == (2+(1+3), 2+(4+2), 1) assert np.allclose( heatmaps_padded.arr_0to1[:, :, 0], np.float32([ [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0] ]) ) def test_HeatmapsOnImage_avg_pool(): heatmaps_arr = np.float32([ [0.0, 0.0, 0.5, 1.0], [0.0, 0.0, 0.5, 1.0], [0.0, 0.0, 0.5, 1.0], [0.0, 0.0, 0.5, 1.0] ]) heatmaps = ia.HeatmapsOnImage(heatmaps_arr, shape=(4, 4, 3)) heatmaps_pooled = heatmaps.avg_pool(2) assert heatmaps_pooled.arr_0to1.shape == (2, 2, 1) assert np.allclose( heatmaps_pooled.arr_0to1[:, :, 0], np.float32([[0.0, 0.75], [0.0, 0.75]]) ) def test_HeatmapsOnImage_max_pool(): heatmaps_arr = np.float32([ [0.0, 0.0, 0.5, 1.0], [0.0, 0.0, 0.5, 1.0], [0.0, 0.0, 0.5, 1.0], [0.0, 0.0, 0.5, 1.0] ]) heatmaps = ia.HeatmapsOnImage(heatmaps_arr, shape=(4, 4, 3)) heatmaps_pooled = heatmaps.max_pool(2) assert heatmaps_pooled.arr_0to1.shape == (2, 2, 1) assert np.allclose( heatmaps_pooled.arr_0to1[:, :, 0], np.float32([[0.0, 1.0], [0.0, 1.0]]) ) def test_HeatmapsOnImage_scale(): heatmaps_arr = np.float32([ [0.0, 1.0] ]) heatmaps = ia.HeatmapsOnImage(heatmaps_arr, shape=(4, 4, 3)) heatmaps_scaled = heatmaps.scale((4, 4), interpolation="nearest") assert heatmaps_scaled.arr_0to1.shape == (4, 4, 1) assert heatmaps_scaled.arr_0to1.dtype.type == np.float32 assert np.allclose( heatmaps_scaled.arr_0to1[:, :, 0], np.float32([ [0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0] ]) ) heatmaps_arr = np.float32([ [0.0, 1.0] ]) heatmaps = ia.HeatmapsOnImage(heatmaps_arr, shape=(4, 4, 3)) heatmaps_scaled = heatmaps.scale(2.0, interpolation="nearest") assert heatmaps_scaled.arr_0to1.shape == (2, 4, 1) assert heatmaps_scaled.arr_0to1.dtype.type == np.float32 assert np.allclose( heatmaps_scaled.arr_0to1[:, :, 0], np.float32([ [0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0] ]) ) def test_SegmentationMapOnImage_bool(): # Test for #189 (boolean mask inputs into SegmentationMapOnImage not working) arr = np.array([ [0, 0, 0], [0, 1, 0], [0, 0, 0] ], dtype=bool) assert arr.dtype.type == np.bool_ segmap = ia.SegmentationMapOnImage(arr, shape=(3, 3)) observed = segmap.get_arr_int() assert observed.dtype.type == np.int32 assert np.array_equal(arr, observed) arr = np.array([ [0, 0, 0], [0, 1, 0], [0, 0, 0] ], dtype=np.bool) assert arr.dtype.type == np.bool_ segmap = ia.SegmentationMapOnImage(arr, shape=(3, 3)) observed = segmap.get_arr_int() assert observed.dtype.type == np.int32 assert np.array_equal(arr, observed) def test_SegmentationMapOnImage_get_arr_int(): arr = np.int32([ [0, 0, 1], [0, 2, 1], [1, 3, 1] ]) segmap = ia.SegmentationMapOnImage(arr, shape=(3, 3), nb_classes=4) observed = segmap.get_arr_int() assert observed.dtype.type == np.int32 assert np.array_equal(arr, observed) arr_c0 = np.float32([ [0.1, 0.1, 0.1], [0.1, 0.9, 0.1], [0.0, 0.1, 0.0] ]) arr_c1 = np.float32([ [0.2, 1.0, 0.2], [0.2, 0.8, 0.2], [0.0, 0.0, 0.0] ]) arr_c2 = np.float32([ [0.0, 0.0, 0.0], [0.3, 0.7, 0.3], [0.1, 0.0, 0.0001] ]) arr = np.concatenate([ arr_c0[..., np.newaxis], arr_c1[..., np.newaxis], arr_c2[..., np.newaxis] ], axis=2) segmap = ia.SegmentationMapOnImage(arr, shape=(3, 3)) observed = segmap.get_arr_int() expected = np.int32([ [2, 2, 2], [3, 1, 3], [3, 1, 0] ]) assert observed.dtype.type == np.int32 assert np.array_equal(observed, expected) got_exception = False try: _ = segmap.get_arr_int(background_class_id=2) except Exception as exc: assert "The background class id may only be changed if " in str(exc) got_exception = True assert got_exception observed = segmap.get_arr_int(background_threshold=0.21) expected = np.int32([ [0, 2, 0], [3, 1, 3], [0, 0, 0] ]) assert observed.dtype.type == np.int32 assert np.array_equal(observed, expected) def test_SegmentationMapOnImage_draw(): arr = np.int32([ [0, 1, 1], [0, 1, 1], [0, 1, 1] ]) segmap = ia.SegmentationMapOnImage(arr, shape=(3, 3), nb_classes=2) # simple example with 2 classes observed = segmap.draw() col0 = ia.SegmentationMapOnImage.DEFAULT_SEGMENT_COLORS[0] col1 = ia.SegmentationMapOnImage.DEFAULT_SEGMENT_COLORS[1] expected = np.uint8([ [col0, col1, col1], [col0, col1, col1], [col0, col1, col1] ]) assert np.array_equal(observed, expected) # same example, with resizing to 2x the size observed = segmap.draw(size=(6, 6)) expected = ia.imresize_single_image(expected, (6, 6), interpolation="nearest") assert np.array_equal(observed, expected) # custom choice of colors col0 = (10, 10, 10) col1 = (50, 51, 52) observed = segmap.draw(colors=[col0, col1]) expected = np.uint8([ [col0, col1, col1], [col0, col1, col1], [col0, col1, col1] ]) assert np.array_equal(observed, expected) # background_threshold, background_class and foreground mask arr_c0 = np.float32([ [0, 0, 0], [1.0, 0, 0], [0, 0, 0] ]) arr_c1 = np.float32([ [0, 1, 1], [0, 1, 1], [0.1, 1, 1] ]) arr = np.concatenate([ arr_c0[..., np.newaxis], arr_c1[..., np.newaxis] ], axis=2) segmap = ia.SegmentationMapOnImage(arr, shape=(3, 3)) observed, observed_fg = segmap.draw(background_threshold=0.01, return_foreground_mask=True) col0 = ia.SegmentationMapOnImage.DEFAULT_SEGMENT_COLORS[0] col1 = ia.SegmentationMapOnImage.DEFAULT_SEGMENT_COLORS[1] col2 = ia.SegmentationMapOnImage.DEFAULT_SEGMENT_COLORS[2] expected = np.uint8([ [col0, col2, col2], [col1, col2, col2], [col2, col2, col2] ]) expected_fg = np.array([ [False, True, True], [True, True, True], [True, True, True] ], dtype=np.bool) assert np.array_equal(observed, expected) assert np.array_equal(observed_fg, expected_fg) # background_threshold, background_class and foreground mask # here with higher threshold so that bottom left pixel switches to background observed, observed_fg = segmap.draw(background_threshold=0.11, return_foreground_mask=True) col0 = ia.SegmentationMapOnImage.DEFAULT_SEGMENT_COLORS[0] col1 = ia.SegmentationMapOnImage.DEFAULT_SEGMENT_COLORS[1] col2 = ia.SegmentationMapOnImage.DEFAULT_SEGMENT_COLORS[2] expected = np.uint8([ [col0, col2, col2], [col1, col2, col2], [col0, col2, col2] ]) expected_fg = np.array([ [False, True, True], [True, True, True], [False, True, True] ], dtype=np.bool) assert np.array_equal(observed, expected) assert np.array_equal(observed_fg, expected_fg) def test_SegmentationMapOnImage_draw_on_image(): arr = np.int32([ [0, 1, 1], [0, 1, 1], [0, 1, 1] ]) segmap = ia.SegmentationMapOnImage(arr, shape=(3, 3), nb_classes=2) image = np.uint8([ [0, 10, 20], [30, 40, 50], [60, 70, 80] ]) image = np.tile(image[:, :, np.newaxis], (1, 1, 3)) # only image visible observed = segmap.draw_on_image(image, alpha=0) assert np.array_equal(observed, image) # only segmap visible observed = segmap.draw_on_image(image, alpha=1.0, draw_background=True) col0 = ia.SegmentationMapOnImage.DEFAULT_SEGMENT_COLORS[0] col1 = ia.SegmentationMapOnImage.DEFAULT_SEGMENT_COLORS[1] expected = np.uint8([ [col0, col1, col1], [col0, col1, col1], [col0, col1, col1] ]) assert np.array_equal(observed, expected) # only segmap visible - in foreground observed = segmap.draw_on_image(image, alpha=1.0, draw_background=False) col1 = ia.SegmentationMapOnImage.DEFAULT_SEGMENT_COLORS[1] expected = np.uint8([ [image[0, 0, :], col1, col1], [image[1, 0, :], col1, col1], [image[2, 0, :], col1, col1] ]) assert np.array_equal(observed, expected) # overlay without background drawn a1 = 0.7 a0 = 1.0 - a1 observed = segmap.draw_on_image(image, alpha=a1, draw_background=False) col1 = np.uint8(ia.SegmentationMapOnImage.DEFAULT_SEGMENT_COLORS[1]) expected = np.float32([ [image[0, 0, :], a0*image[0, 1, :] + a1*col1, a0*image[0, 2, :] + a1*col1], [image[1, 0, :], a0*image[1, 1, :] + a1*col1, a0*image[1, 2, :] + a1*col1], [image[2, 0, :], a0*image[2, 1, :] + a1*col1, a0*image[2, 2, :] + a1*col1] ]) d_max = np.max(np.abs(observed.astype(np.float32) - expected)) assert observed.shape == expected.shape assert d_max <= 1.0 + 1e-4 # overlay with background drawn a1 = 0.7 a0 = 1.0 - a1 observed = segmap.draw_on_image(image, alpha=a1, draw_background=True) col0 = ia.SegmentationMapOnImage.DEFAULT_SEGMENT_COLORS[0] col1 = ia.SegmentationMapOnImage.DEFAULT_SEGMENT_COLORS[1] expected = np.uint8([ [col0, col1, col1], [col0, col1, col1], [col0, col1, col1] ]) expected = a0 * image + a1 * expected d_max = np.max(np.abs(observed.astype(np.float32) - expected.astype(np.float32))) assert observed.shape == expected.shape assert d_max <= 1.0 + 1e-4 # resizing of segmap to image arr = np.int32([ [0, 1, 1] ]) segmap = ia.SegmentationMapOnImage(arr, shape=(3, 3), nb_classes=2) image = np.uint8([ [0, 10, 20], [30, 40, 50], [60, 70, 80] ]) image = np.tile(image[:, :, np.newaxis], (1, 1, 3)) a1 = 0.7 a0 = 1.0 - a1 observed = segmap.draw_on_image(image, alpha=a1, draw_background=True, resize="segmentation_map") expected = np.uint8([ [col0, col1, col1], [col0, col1, col1], [col0, col1, col1] ]) expected = a0 * image + a1 * expected d_max = np.max(np.abs(observed.astype(np.float32) - expected.astype(np.float32))) assert observed.shape == expected.shape assert d_max <= 1.0 + 1e-4 # resizing of image to segmap arr = np.int32([ [0, 1, 1], [0, 1, 1], [0, 1, 1] ]) segmap = ia.SegmentationMapOnImage(arr, shape=(1, 3), nb_classes=2) image = np.uint8([ [0, 10, 20] ]) image = np.tile(image[:, :, np.newaxis], (1, 1, 3)) image_rs = ia.imresize_single_image(image, arr.shape[0:2], interpolation="cubic") a1 = 0.7 a0 = 1.0 - a1 observed = segmap.draw_on_image(image, alpha=a1, draw_background=True, resize="image") expected = np.uint8([ [col0, col1, col1], [col0, col1, col1], [col0, col1, col1] ]) expected = a0 * image_rs + a1 * expected d_max = np.max(np.abs(observed.astype(np.float32) - expected.astype(np.float32))) assert observed.shape == expected.shape assert d_max <= 1.0 + 1e-4 def test_SegmentationMapOnImage_pad(): arr = np.int32([ [0, 1, 1], [0, 2, 1], [0, 1, 3] ]) segmap = ia.SegmentationMapOnImage(arr, shape=(3, 3), nb_classes=4) segmap_padded = segmap.pad(top=1, right=2, bottom=3, left=4) observed = segmap_padded.arr expected = np.pad(segmap.arr, ((1, 3), (4, 2), (0, 0)), mode="constant", constant_values=0) assert np.allclose(observed, expected) segmap_padded = segmap.pad(top=1, right=2, bottom=3, left=4, cval=1.0) observed = segmap_padded.arr expected = np.pad(segmap.arr, ((1, 3), (4, 2), (0, 0)), mode="constant", constant_values=1.0) assert np.allclose(observed, expected) segmap_padded = segmap.pad(top=1, right=2, bottom=3, left=4, mode="edge") observed = segmap_padded.arr expected = np.pad(segmap.arr, ((1, 3), (4, 2), (0, 0)), mode="edge") assert
np.allclose(observed, expected)
numpy.allclose
import numpy from scipy.stats import rv_discrete from Utils.DCA import dca_solver, sdr_solver, check_feasibility from constants import GS_DCA, GS_SDR, DCA_ONLY, SDR_ONLY, PERFECT_AGGREGATION class SystemOptimizationSolver: def __init__(self, p, m, lam, delta, p_var_bound, gradient_bound, d, s, k, tau, h_mat, data_size_list, optimization_scaling_factor): self.p = p self.m = m self.lam = lam self.delta = delta self.p_var_bound = p_var_bound self.gradient_bound = gradient_bound self.d = d self.s = s self.k = k self.tau = tau self.h_mat = h_mat self.data_size_list = data_size_list self.optimization_scaling_factor = optimization_scaling_factor def compute_objective_value(self, a, current_device_set): if len(current_device_set) <= 0: return 1e6 elif len(current_device_set) > self.m: object_val = (1 / (1 - self.lam)) * (1 + numpy.sqrt(2 * numpy.log(self.m / self.delta))) * numpy.sqrt( 1 / self.s) * self.gradient_bound else: data_size = 0 min_data_size = 1e6 for i in current_device_set: data_size += self.data_size_list[i] min_data_size = min(min_data_size, self.data_size_list[i]) first_term = numpy.sqrt( 3 * self.d * self.tau / self.p) * self.optimization_scaling_factor * numpy.linalg.norm( a) / data_size # print('objective first term: ' + str(first_term)) second_term = numpy.sqrt(24 * (1 - (data_size / (self.m * self.s))) ** 2 / min_data_size + 1 / self.s) * ( 1 / (1 - self.lam)) * ( 1 + numpy.sqrt(2 * numpy.log(1 / self.delta))) * self.gradient_bound object_val = first_term + second_term # print('objective second term: ' + str(second_term)) return object_val def gibbs_sampling_based_device_selection(self, mode, beta=0.8, rho=0.8, max_iter=100): device_entry_vector = numpy.ones(self.m) cache_a = None cache_device_entry_vectors = list() cache_beamforming_list = list() cache_objective_list = list() for i in range(max_iter): index_list = range(self.m) probability_list = list() beamforming_list = list() total_objective_val = 0 scaling_factor = 0 for j in range(self.m): current_device_entry_vector = numpy.copy(device_entry_vector) current_device_entry_vector[j] = 1 - current_device_entry_vector[j] # current_device_set = [x for x in current_device_entry_vector if x == 1] # print('Gibbs Sampling: iter ' + str(i) + ' neighbor ' + str(j)) # print('current device entry vector: ' + str(current_device_entry_vector)) current_device_set = numpy.where(numpy.array(current_device_entry_vector) == 1)[0].tolist() # print(current_device_set) # print(current_device_set) # current_a = numpy.zeros((self.k, 1)) current_a = None cache_index = 0 while cache_index < len(cache_device_entry_vectors): if numpy.array_equal(cache_device_entry_vectors[cache_index], current_device_entry_vector): break cache_index += 1 if cache_index != len(cache_device_entry_vectors): current_a = cache_beamforming_list[cache_index] current_objective_val = cache_objective_list[cache_index] else: if mode == GS_DCA: current_a = dca_solver(current_device_set, self.h_mat, cache_a=cache_a) elif mode == GS_SDR: current_a = sdr_solver(current_device_set, self.h_mat, cache_a=cache_a) if
numpy.linalg.norm(current_a)
numpy.linalg.norm
import numpy as np import matplotlib.pyplot as plt import os from astropy.io import fits import shutil import catkit.datalogging def test_data_log_interface(): logger = catkit.datalogging.get_logger(__name__) # Make sure this doesn't crash, even though nothing should be written out. logger.log_scalar('tag', 5) log_dir = './data_log_test' if os.path.exists(log_dir): shutil.rmtree(log_dir) os.makedirs(log_dir) writer = catkit.datalogging.DataLogWriter(log_dir) logger.log_scalar('tag2', 10) # Cleanup writer.close() shutil.rmtree(log_dir) def test_data_log_retrieval(): logger = catkit.datalogging.get_logger(__name__) log_dir = './data_log_test' if os.path.exists(log_dir): shutil.rmtree(log_dir) os.makedirs(log_dir) writer = catkit.datalogging.DataLogWriter(log_dir) catkit.datalogging.DataLogger.add_writer(writer) scalar = float(np.random.randn(1)) tensor = np.random.randn(100, 250) curve_x = np.random.randn(30) curve_y = np.random.randn(30) plt.plot(curve_x, curve_y) hdu = fits.PrimaryHDU(tensor) fits_fname = os.path.join(log_dir, 'tensor.fits') hdu.writeto(fits_fname) logger.log_scalar('a', scalar) logger.log_scalar('a', scalar * 2) logger.log_scalar('a', scalar * -0.5) logger.log_tensor('b', tensor) logger.log_curve('c', curve_x, curve_y) logger.log_figure('d') logger.log_fits_file('e', fits_fname) # Unregister writer catkit.datalogging.DataLogger.remove_writer(writer) writer.close() reader = catkit.datalogging.DataLogReader(log_dir) wall_time, scalars = reader.get('a') assert np.allclose(scalars[0], scalar) assert len(scalars) == 3 wall_time, scalars = reader.get('a', slice(1,None)) assert len(scalars) == 2 assert len(wall_time) == 2 wall_time, tensors = reader.get('b') assert np.allclose(tensors[0], tensor) wall_time, curve = reader.get('c') assert np.allclose(curve[0]['x'], curve_x) assert np.allclose(curve[0]['y'], curve_y) wall_time, figs = reader.get('d') assert figs[0].ndim == 3 wall_time, fits_files = reader.get('e') assert
np.allclose(fits_files[0][0].data, tensor)
numpy.allclose
from config import Config import cv2 import numpy as np import keyboard import time from utils.custom_mouse import mouse from template_finder import TemplateFinder from ui_manager import detect_screen_object, ScreenObjects, center_mouse from utils.misc import wait, trim_black, color_filter, cut_roi from inventory import consumables, personal from ui import view from screen import grab from dataclasses import dataclass from logger import Logger from ocr import Ocr @dataclass class BoxInfo: img: np.ndarray = None pos: tuple = None column: int = None row: int = None need_id: bool = False sell: bool = False keep: bool = False def __getitem__(self, key): return super().__getattribute__(key) def __setitem__(self, key, value): setattr(self, key, value) def get_slot_pos_and_img(img: np.ndarray, column: int, row: int) -> tuple[tuple[int, int], np.ndarray]: """ Get the pos and img of a specific slot position in Inventory. Inventory must be open in the image. :param config: The config which should be used :param img: Image from screen.grab() not cut :param column: Column in the Inventory :param row: Row in the Inventory :return: Returns position and image of the cut area as such: [[x, y], img] """ top_left_slot = (Config().ui_pos["inventory_top_left_slot_x"], Config().ui_pos["inventory_top_left_slot_y"]) slot_width = Config().ui_pos["slot_width"] slot_height= Config().ui_pos["slot_height"] slot = (top_left_slot[0] + slot_width * column, top_left_slot[1] + slot_height * row) # decrease size to make sure not to have any borders of the slot in the image offset_w = int(slot_width * 0.12) offset_h = int(slot_height * 0.12) min_x = slot[0] + offset_w max_x = slot[0] + slot_width - offset_w min_y = slot[1] + offset_h max_y = slot[1] + slot_height - offset_h slot_img = img[min_y:max_y, min_x:max_x] center_pos = (int(slot[0] + (slot_width // 2)), int(slot[1] + (slot_height // 2))) return center_pos, slot_img def slot_has_item(slot_img: np.ndarray) -> bool: """ Check if a specific slot in the inventory has an item or not based on color :param slot_img: Image of the slot :return: Bool if there is an item or not """ slot_img = cv2.cvtColor(slot_img, cv2.COLOR_BGR2HSV) avg_brightness = np.average(slot_img[:, :, 2]) return avg_brightness > 16.0 def close(img: np.ndarray = None) -> np.ndarray: img = grab() if img is None else img if detect_screen_object(ScreenObjects.RightPanel, img).valid or detect_screen_object(ScreenObjects.LeftPanel, img).valid: keyboard.send("esc") wait(0.1, 0.2) if detect_screen_object(ScreenObjects.RightPanel, img).valid or detect_screen_object(ScreenObjects.LeftPanel, img).valid: success = view.return_to_play() if not success: return None return img def calc_item_roi(img_pre, img_post): try: diff = cv2.absdiff(img_pre, img_post) gray = cv2.cvtColor(diff, cv2.COLOR_BGR2GRAY) diff_thresh = cv2.threshold(gray, 1, 255, cv2.THRESH_BINARY)[1] blue_mask, _ = color_filter(img_pre, Config().colors["blue_slot"]) red_mask, _ = color_filter(img_pre, Config().colors["red_slot"]) green_mask, _ = color_filter(img_post, Config().colors["green_slot"]) blue_red_mask = np.bitwise_or(blue_mask, red_mask) final = np.bitwise_and.reduce([blue_red_mask, green_mask, diff_thresh]) _, roi = trim_black(final) return roi except BaseException as err: Logger.error(f"_calc_item_roi: Unexpected {err=}, {type(err)=}") return None def tome_state(img: np.ndarray = None, tome_type: str = "tp", roi: list = None): img = img if img is not None else grab() if (tome_found := TemplateFinder().search([f"{tome_type.upper()}_TOME", f"{tome_type.upper()}_TOME_RED"], img, roi = roi, threshold = 0.8, best_match = True, normalize_monitor = True)).valid: if tome_found.name == f"{tome_type.upper()}_TOME": state = "ok" else: state = "empty" position = tome_found.center else: state = position = None return state, position def id_item_with_tome(item_location: list, id_tome_location: list): mouse.move(id_tome_location[0], id_tome_location[1], randomize=4, delay_factor=[0.4, 0.8]) wait(0.2, 0.4) mouse.click(button="right") wait(0.1) mouse.move(item_location[0], item_location[1], randomize=4, delay_factor=[0.4, 0.8]) wait(0.1) mouse.click(button="left") consumables.increment_need("id", 1) wait(0.2, 0.4) def transfer_items(items: list, action: str = "drop") -> list: #requires open inventory / stash / vendor img = grab() filtered = [] left_panel_open = detect_screen_object(ScreenObjects.LeftPanel, img).valid if action == "drop": filtered = [ item for item in items if item.keep == False and item.sell == False ] elif action == "sell": filtered = [ item for item in items if item.keep == False and item.sell == True ] if not left_panel_open: Logger.error(f"transfer_items: Can't perform, vendor is not open") elif action == "stash": if detect_screen_object(ScreenObjects.GoldBtnStash, img).valid: filtered = [ item for item in items if item.keep == True ] else: Logger.error(f"transfer_items: Can't perform, stash is not open") else: Logger.error(f"transfer_items: incorrect action param={action}") if filtered: # if dropping, control+click to drop unless left panel is open, then drag to middle # if stashing, control+click to stash # if selling, control+click to sell # TODO: if purchasing, right-click to buy # TODO: if purchasing stack, shift+right-click to buy if (action == "drop" and not left_panel_open) or action in ["sell", "stash"]: keyboard.send('ctrl', do_release=False) wait(0.2, 0.4) for item in filtered: attempts = 0 prev_gold_img = cut_roi(grab(), roi=Config().ui_roi["inventory_gold_digits"]) while attempts < 2: # move to item position and left click mouse.move(*item.pos, randomize=4, delay_factor=[0.2, 0.4]) wait(0.2, 0.4) mouse.press(button="left") wait(0.2, 0.4) mouse.release(button="left") wait(0.2, 0.4) # if dropping, drag item to middle if vendor/stash is open if action == "drop" and left_panel_open: center_mouse() wait(0.2, 0.3) mouse.press(button="left") wait(0.2, 0.3) mouse.release(button="left") wait(0.8, 1) # check if item is still there img=grab() slot_img = get_slot_pos_and_img(img, item.column, item.row)[1] if not slot_has_item(slot_img): # item successfully transferred, delete from list for cnt, o_item in enumerate(items): if o_item.pos == item.pos: items.pop(cnt) break # check and see if inventory gold count changed new_gold_img = cut_roi(img, roi=Config().ui_roi["inventory_gold_digits"]) if prev_gold_img.shape == new_gold_img.shape and not(np.bitwise_xor(prev_gold_img, new_gold_img).any()): Logger.info("Inventory gold is full, force stash") personal.set_inventory_gold_full(True) else: personal.set_inventory_gold_full(False) break else: # item is still there, try again attempts += 1 if attempts > 1: Logger.error(f"transfer_items: could not stash in position {item.pos}") if (action == "drop" and not left_panel_open) or action in ["sell", "stash"]: keyboard.send('ctrl', do_press=False) wait(0.1) return items # use with caution--unreliable def read_gold(img: np.ndarray = None, type: str = "inventory"): if type not in ["vendor", "inventory", "stash"]: Logger.error(f"read_gold: type {type} not supported") return False img = img if img is not None else grab() img = cut_roi(img, Config().ui_roi[f"{type}_gold_digits"]) # _, img = color_filter(img, Config().colors["gold_numbers"]) img =
np.pad(img, pad_width=[(8, 8),(8, 8),(0, 0)], mode='constant')
numpy.pad
"""Utility functions for the qp package""" import numpy as np from scipy import stats as sps from scipy.interpolate import interp1d import sys epsilon = sys.float_info.epsilon infty = sys.float_info.max * epsilon lims = (epsilon, 1.) CASE_PRODUCT = 0 CASE_FACTOR = 1 CASE_2D = 2 CASE_FLAT = 3 def safelog(arr, threshold=epsilon): """ Takes the natural logarithm of an array of potentially non-positive numbers Parameters ---------- arr: numpy.ndarray, float values to be logged threshold: float small, positive value to replace zeros and negative numbers Returns ------- logged: numpy.ndarray logarithms, with approximation in place of zeros and negative numbers """ return np.log(np.array(arr).clip(threshold, np.inf)) _ = """ def normalize_quantiles(in_data, threshold=epsilon, vb=False): Evaluates PDF from quantiles including endpoints from linear extrapolation Parameters ---------- in_data: tuple, numpy.ndarray, float tuple of CDF values iy corresponding to quantiles and the points x at which those CDF values are achieved threshold: float, optional optional minimum threshold for PDF vb: boolean, optional be careful and print progress to stdout? Returns ------- out_data: tuple, ndarray, float tuple of values x at which CDF is achieved, including extrema, and normalized PDF values y at x (iy, x) = in_data (xs, ys) = evaluate_quantiles((iy, x), vb=vb) # xs = xs[1:-1] # ys = ys[1:-1] x_min = xs[0] - 2 * iy[0] / ys[0] x_max = xs[-1] + 2 * (1. - iy[-1]) / ys[-1] xs = sandwich(xs, (x_min, x_max)) ys = sandwich(ys, (threshold, threshold)) out_data = (xs, ys) return out_data """ def edge_to_center(edges): """Return the centers of a set of bins given the edges""" return 0.5*(edges[1:] + edges[:-1]) def bin_widths(edges): """Return the widths of a set of bins given the edges""" return edges[1:] - edges[:-1] def get_bin_indices(bins, x): """Return the bin indexes for a set of values If the bins are equal width this will use arithmatic, If the bins are not equal width this will use a binary search """ widths = bin_widths(bins) n_bins = np.size(bins) - 1 if np.allclose(widths, widths[0]): idx = np.atleast_1d(np.floor((x-bins[0])/widths[0]).astype(int)) else: idx = np.atleast_1d(np.searchsorted(bins, x, side='left')-1) mask = (idx >= 0) * (idx < bins.size-1) np.putmask(idx, 1-mask, 0) xshape = np.shape(x) return idx.reshape(xshape).clip(0, n_bins-1), mask.reshape(xshape) def normalize_interp1d(xvals, yvals): """ Normalize a set of 1D interpolators Parameters ---------- xvals : array-like X-values used for the interpolation yvals : array-like Y-values used for the interpolation Returns ------- ynorm: array-like Normalized y-vals """ #def row_integral(irow): # return quad(interp1d(xvals[irow], yvals[irow], **kwargs), limits[0], limits[1])[0] #vv = np.vectorize(row_integral) #integrals = vv(np.arange(xvals.shape[0])) integrals = np.sum(xvals[:,1:]*yvals[:,1:] - xvals[:,:-1]*yvals[:,1:], axis=1) return (yvals.T / integrals).T def build_kdes(samples, **kwargs): """ Build a set of Gaussian Kernal Density Estimates Parameters ---------- samples : array-like X-values used for the spline Keywords -------- Passed to the `scipy.stats.gaussian_kde` constructor Returns ------- kdes : list of `scipy.stats.gaussian_kde` objects """ return [ sps.gaussian_kde(row, **kwargs) for row in samples ] def evaluate_kdes(xvals, kdes): """ Build a evaluate a set of kdes Parameters ---------- xvals : array_like X-values used for the spline kdes : list of `sps.gaussian_kde` The kernel density estimates Returns ------- yvals : array_like The kdes evaluated at the xvamls """ return np.vstack([kde(xvals) for kde in kdes]) def get_eval_case(x, row): """ Figure out which of the various input formats scipy.stats has passed us Parameters ---------- x : array_like Pdf x-vals row : array_like Pdf row indices Returns ------- case : `int` The case code xx : array_like The x-values properly shaped rr : array_like The y-values, properly shaped Notes ----- The cases are: CASE_FLAT : x, row have shapes (n) , (n) and do not factor CASE_FACTOR : x, row can be factors to shapes (1, nx) and (npdf, 1) CASE_PRODUCT : x, row have shapes (1, nx) and (npdf, 1) CASE_2D : x, row have shapes (npdf, nx) and (npdf, nx) """ nd_x = np.ndim(x) nd_row = np.ndim(row) #if nd_x > 2 or nd_row > 2: #pragma: no cover # raise ValueError("Too many dimensions: x(%s), row(%s)" % (np.shape(x), np.shape(row))) if nd_x >= 2 and nd_row != 1: return CASE_2D, x, row if nd_x >= 2 and nd_row == 1: #pragma: no cover raise ValueError("Dimension mismatch: x(%s), row(%s)" % (np.shape(x), np.shape(row))) if nd_row >= 2: return CASE_PRODUCT, x, row if np.size(x) == 1 or np.size(row) == 1: return CASE_FLAT, x, row xx = np.unique(x) rr = np.unique(row) if np.size(xx) == np.size(x): xx = x if np.size(rr) == np.size(row): rr = row if np.size(xx) * np.size(rr) != np.size(x): return CASE_FLAT, x, row return CASE_FACTOR, xx, np.expand_dims(rr, -1) def evaluate_hist_x_multi_y_flat(x, row, bins, vals, derivs=None): #pragma: no cover """ Evaluate a set of values from histograms Parameters ---------- x : array_like (n) X values to interpolate at row : array_like (n) Which rows to interpolate at bins : array_like (N+1) 'x' bin edges vals : array_like (npdf, N) 'y' bin contents Returns ------- out : array_like (n) The histogram values """ assert np.ndim(x) < 2 and np.ndim(row) < 2 idx, mask = get_bin_indices(bins, x) if derivs is None: deltas = np.zeros(idx.shape) else: deltas = x - bins[idx] def evaluate_row(idxv, maskv, rv, delta): if derivs is None: return np.where(maskv, vals[rv, idxv], 0) return np.where(maskv, vals[rv, idxv] + delta*derivs[rv, idxv], 0) vv = np.vectorize(evaluate_row) return vv(idx, mask, row, deltas) def evaluate_hist_x_multi_y_product(x, row, bins, vals, derivs=None): #pragma: no cover """ Evaluate a set of values from histograms Parameters ---------- x : array_like (npts) X values to interpolate at row : array_like (npdf, 1) Which rows to interpolate at bins : array_like (N+1) 'x' bin edges vals : array_like (npdf, N) 'y' bin contents Returns ------- out : array_like (npdf, npts) The histogram values """ #assert np.ndim(x) < 2 and np.ndim(row) == 2 idx, mask0 = get_bin_indices(bins, x) mask = np.ones(row.shape) * mask0 if derivs is None: return np.where(mask, vals[:,idx][np.squeeze(row)], 0) deltas = x - bins[idx] return np.where(mask, vals[:,idx][np.squeeze(row)] + deltas*derivs[:,idx][np.squeeze(row)] , 0) def evaluate_hist_x_multi_y_2d(x, row, bins, vals, derivs=None): #pragma: no cover """ Evaluate a set of values from histograms Parameters ---------- x : array_like (npdf, npts) X values to interpolate at row : array_like (npdf, 1) Which rows to interpolate at bins : array_like (N+1) 'x' bin edges vals : array_like (npdf, N) 'y' bin contents Returns ------- out : array_like (npdf, npts) The histogram values """ assert np.ndim(x) >= 2 and np.ndim(row) >= 2 idx, mask = get_bin_indices(bins, x) if derivs is None: deltas = np.zeros(idx.shape) else: deltas = x - bins[idx] def evaluate_row(idxv, maskv, rv, delta): if derivs is None: return np.where(maskv, vals[rv, idxv], 0) return np.where(maskv, vals[rv, idxv] + delta*derivs[rv, idxv], 0) vv = np.vectorize(evaluate_row) return vv(idx, mask, row, deltas) def evaluate_hist_x_multi_y(x, row, bins, vals, derivs=None): """ Evaluate a set of values from histograms Parameters ---------- x : array_like X values to interpolate at row : array_like Which rows to interpolate at bins : array_like (N+1) 'x' bin edges vals : array_like (npdf, N) 'y' bin contents Returns ------- out : array_like The histogram values Notes ----- Depending on the shape of 'x' and 'row' this will use one of the three specific implementations. """ case_idx, xx, rr = get_eval_case(x, row) if case_idx in [CASE_PRODUCT, CASE_FACTOR]: return evaluate_hist_x_multi_y_product(xx, rr, bins, vals, derivs) if case_idx == CASE_2D: return evaluate_hist_x_multi_y_2d(xx, rr, bins, vals, derivs) return evaluate_hist_x_multi_y_flat(xx, rr, bins, vals, derivs) def evaluate_hist_multi_x_multi_y_flat(x, row, bins, vals, derivs=None): #pragma: no cover """ Evaluate a set of values from histograms Parameters ---------- x : array_like (n) X values to interpolate at row : array_like (n) Which rows to interpolate at bins : array_like (npdf, N+1) 'x' bin edges vals : array_like (npdf, N) 'y' bin contents Returns ------- out : array_like (n) The histogram values """ def evaluate_row(xv, rv): bins_row = bins[rv] idx, mask = get_bin_indices(bins_row, xv) delta = xv - bins_row[idx] if derivs is None: return np.where(mask, vals[rv, idx], 0) return np.where(mask, vals[rv, idx] + delta*derivs[rv, idx], 0) vv = np.vectorize(evaluate_row) return vv(x, row) def evaluate_hist_multi_x_multi_y_product(x, row, bins, vals, derivs=None): #pragma: no cover """ Evaluate a set of values from histograms Parameters ---------- x : array_like (npts) X values to interpolate at row : array_like (npdf, 1) Which rows to interpolate at bins : array_like (npdf, N+1) 'x' bin edges vals : array_like (npdf, N) 'y' bin contents Returns ------- out : array_like (npdf, npts) The histogram values """ def evaluate_row(rv): bins_flat = bins[rv].flatten() idx, mask = get_bin_indices(bins_flat, x) delta = x - bins_flat[idx] if derivs is None: return np.where(mask, np.squeeze(vals[rv])[idx], 0).flatten() return np.where(mask, np.squeeze(vals[rv])[idx] + delta* np.squeeze(derivs[rv])[idx], 0) vv = np.vectorize(evaluate_row, signature="(1)->(%i)" % (x.size)) return vv(row) def evaluate_hist_multi_x_multi_y_2d(x, row, bins, vals, derivs=None): #pragma: no cover """ Evaluate a set of values from histograms Parameters ---------- x : array_like (npdf, npts) X values to interpolate at row : array_like (npdf, 1) Which rows to interpolate at bins : array_like (npdf, N+1) 'x' bin edges vals : array_like (npdf, N) 'y' bin contents Returns ------- out : array_like (npdf, npts) The histogram values """ nx = np.shape(x)[-1] def evaluate_row(rv, xv): flat_bins = bins[rv].flatten() idx, mask = get_bin_indices(flat_bins, xv) delta = xv - flat_bins[idx] if derivs is None: return np.where(mask, np.squeeze(vals[rv])[idx], 0).flatten() return np.where(mask, np.squeeze(vals[rv])[idx] + delta*np.squeeze(derivs[rv])[idx], 0).flatten() vv = np.vectorize(evaluate_row, signature="(1),(%i)->(%i)" % (nx, nx)) return vv(row, x) def evaluate_hist_multi_x_multi_y(x, row, bins, vals, derivs=None): """ Evaluate a set of values from histograms Parameters ---------- x : array_like X values to interpolate at row : array_like Which rows to interpolate at bins : array_like (npdf, N+1) 'x' bin edges vals : array_like (npdf, N) 'y' bin contents Returns ------- out : array_like The histogram values """ case_idx, xx, rr = get_eval_case(x, row) if case_idx in [CASE_PRODUCT, CASE_FACTOR]: return evaluate_hist_multi_x_multi_y_product(xx, rr, bins, vals, derivs) if case_idx == CASE_2D: return evaluate_hist_multi_x_multi_y_2d(xx, rr, bins, vals, derivs) return evaluate_hist_multi_x_multi_y_flat(xx, rr, bins, vals, derivs) def interpolate_x_multi_y_flat(x, row, xvals, yvals, **kwargs): """ Interpolate a set of values Parameters ---------- x : array_like (n) X values to interpolate at row : array_like (n) Which rows to interpolate at xvals : array_like (npts) X-values used for the interpolation yvals : array_like (npdf, npts) Y-avlues used for the inteolation Returns ------- vals : array_like (npdf, n) The interpoalted values """ def single_row(xv, rv): return interp1d(xvals, yvals[rv], **kwargs)(xv) vv = np.vectorize(single_row) return vv(x, row) def interpolate_x_multi_y_product(x, row, xvals, yvals, **kwargs): """ Interpolate a set of values Parameters ---------- x : array_like (n) X values to interpolate at row : array_like (npdf, 1) Which rows to interpolate at xvals : array_like (npts) X-values used for the interpolation yvals : array_like (npdf, npts) Y-avlues used for the inteolation Returns ------- vals : array_like (npdf, n) The interpoalted values """ rr = np.squeeze(row) return interp1d(xvals, yvals[rr], **kwargs)(x) def interpolate_x_multi_y_2d(x, row, xvals, yvals, **kwargs): """ Interpolate a set of values Parameters ---------- x : array_like (npdf, n) X values to interpolate at row : array_like (npdf, 1) Which rows to interpolate at xvals : array_like (npts) X-values used for the interpolation yvals : array_like (npdf, npts) Y-avlues used for the inteolation Returns ------- vals : array_like (npdf, n) The interpoalted values """ nx = np.shape(x)[-1] def evaluate_row(rv, xv): return interp1d(xvals, yvals[rv], **kwargs)(xv) vv = np.vectorize(evaluate_row, signature="(1),(%i)->(%i)" % (nx, nx)) return vv(row, x) def interpolate_x_multi_y(x, row, xvals, yvals, **kwargs): """ Interpolate a set of values Parameters ---------- x : array_like (npdf, n) X values to interpolate at row : array_like (npdf, 1) Which rows to interpolate at xvals : array_like (npts) X-values used for the interpolation yvals : array_like (npdf, npts) Y-avlues used for the inteolation Returns ------- vals : array_like The interpoalted values """ case_idx, xx, rr = get_eval_case(x, row) if case_idx in [CASE_PRODUCT, CASE_FACTOR]: return interpolate_x_multi_y_product(xx, rr, xvals, yvals, **kwargs) if case_idx == CASE_2D: return interpolate_x_multi_y_2d(xx, rr, xvals, yvals, **kwargs) return interpolate_x_multi_y_flat(xx, rr, xvals, yvals, **kwargs) def interpolate_multi_x_multi_y_flat(x, row, xvals, yvals, **kwargs): """ Interpolate a set of values Parameters ---------- x : array_like (n) X values to interpolate at row : array_like (n) Which rows to interpolate at xvals : array_like (npdf, npts) X-values used for the interpolation yvals : array_like (npdf, npts) Y-avlues used for the inteolation Returns ------- vals : array_like (npdf, n) The interpoalted values """ def single_row(xv, rv): return interp1d(xvals[rv], yvals[rv], **kwargs)(xv) vv = np.vectorize(single_row) return vv(x, row) def interpolate_multi_x_multi_y_product(x, row, xvals, yvals, **kwargs): """ Interpolate a set of values Parameters ---------- x : array_like (n) X values to interpolate at row : array_like (npdf, 1) Which rows to interpolate at xvals : array_like (npdf, npts) X-values used for the interpolation yvals : array_like (npdf, npts) Y-avlues used for the inteolation Returns ------- vals : array_like (npdf, n) The interpoalted values """ rr = np.squeeze(row) nx = np.shape(x)[-1] def single_row(rv): return interp1d(xvals[rv], yvals[rv], **kwargs)(x) vv = np.vectorize(single_row, signature="()->(%i)" % (nx)) return vv(rr) def interpolate_multi_x_multi_y_2d(x, row, xvals, yvals, **kwargs): """ Interpolate a set of values Parameters ---------- x : array_like (npdf, n) X values to interpolate at row : array_like (npdf, 1) Which rows to interpolate at xvals : array_like (npdf, npts) X-values used for the interpolation yvals : array_like (npdf, npts) Y-avlues used for the inteolation Returns ------- vals : array_like (npdf, n) The interpoalted values """ nx = np.shape(x)[-1] def evaluate_row(rv, xv): return interp1d(xvals[rv], yvals[rv], **kwargs)(xv) vv = np.vectorize(evaluate_row, signature="(),(%i)->(%i)" % (nx, nx)) return vv(np.squeeze(row), x) def interpolate_multi_x_multi_y(x, row, xvals, yvals, **kwargs): """ Interpolate a set of values Parameters ---------- x : array_like (npdf, n) X values to interpolate at row : array_like (npdf, 1) Which rows to interpolate at xvals : array_like (npdf, npts) X-values used for the interpolation yvals : array_like (npdf, npts) Y-avlues used for the inteolation Returns ------- vals : array_like The interpoalted values """ case_idx, xx, rr = get_eval_case(x, row) if case_idx in [CASE_PRODUCT, CASE_FACTOR]: return interpolate_multi_x_multi_y_product(xx, rr, xvals, yvals, **kwargs) if case_idx == CASE_2D: return interpolate_multi_x_multi_y_2d(xx, rr, xvals, yvals, **kwargs) return interpolate_multi_x_multi_y_flat(xx, rr, xvals, yvals, **kwargs) def interpolate_multi_x_y_flat(x, row, xvals, yvals, **kwargs): """ Interpolate a set of values Parameters ---------- x : array_like (n) X values to interpolate at row : array_like (n) Which rows to interpolate at xvals : array_like (npdf, npts) X-values used for the interpolation yvals : array_like (npdf) Y-avlues used for the inteolation Returns ------- vals : array_like (npdf, n) The interpoalted values """ def single_row(xv, rv): return interp1d(xvals[rv], yvals, **kwargs)(xv) vv = np.vectorize(single_row) return vv(x, row) def interpolate_multi_x_y_product(x, row, xvals, yvals, **kwargs): """ Interpolate a set of values Parameters ---------- x : array_like (n) X values to interpolate at row : array_like (npdf, 1) Which rows to interpolate at xvals : array_like (npdf, npts) X-values used for the interpolation yvals : array_like (npdf) Y-avlues used for the inteolation Returns ------- vals : array_like (npdf, n) The interpoalted values """ rr = np.squeeze(row) nx = np.shape(x)[-1] def single_row(rv): return interp1d(xvals[rv], yvals, **kwargs)(x) vv = np.vectorize(single_row, signature="()->(%i)" % (nx)) return vv(rr) def interpolate_multi_x_y_2d(x, row, xvals, yvals, **kwargs): """ Interpolate a set of values Parameters ---------- x : array_like (npdf, n) X values to interpolate at row : array_like (npdf, 1) Which rows to interpolate at xvals : array_like (npdf, npts) X-values used for the interpolation yvals : array_like (npdf) Y-avlues used for the inteolation Returns ------- vals : array_like (npdf, n) The interpoalted values """ nx = np.shape(x)[-1] def evaluate_row(rv, xv): return interp1d(xvals[rv], yvals, **kwargs)(xv) vv = np.vectorize(evaluate_row, signature="(),(%i)->(%i)" % (nx, nx)) return vv(np.squeeze(row), x) def interpolate_multi_x_y(x, row, xvals, yvals, **kwargs): """ Interpolate a set of values Parameters ---------- x : array_like (npdf, n) X values to interpolate at row : array_like (npdf, 1) Which rows to interpolate at xvals : array_like (npdf, npts) X-values used for the interpolation yvals : array_like (npdf) Y-avlues used for the inteolation Returns ------- vals : array_like The interpoalted values """ case_idx, xx, rr = get_eval_case(x, row) if case_idx in [CASE_PRODUCT, CASE_FACTOR]: return interpolate_multi_x_y_product(xx, rr, xvals, yvals, **kwargs) if case_idx == CASE_2D: return interpolate_multi_x_y_2d(xx, rr, xvals, yvals, **kwargs) return interpolate_multi_x_y_flat(xx, rr, xvals, yvals, **kwargs) def profile(x_data, y_data, x_bins, std=True): """Make a 'profile' plot Paramters --------- x_data : array_like (n) The x-values y_data : array_like (n) The y-values x_bins : array_like (nbins+1) The values of the bin edges std : bool If true, return the standard deviations, if false return the errors on the means Returns ------- vals : array_like (nbins) The means errs : array_like (nbins) The standard deviations or errors on the means """ idx, mask = get_bin_indices(x_bins, x_data) count = np.zeros(x_bins.size-1) vals =
np.zeros(x_bins.size-1)
numpy.zeros
from pathlib import Path import numpy as np import pytest from hnswlib_searcher import HnswlibSearcher from jina import Document, DocumentArray, Executor _DIM = 10 @pytest.fixture def two_elem_index(): index = HnswlibSearcher(dim=_DIM, metric='l2') da = DocumentArray( [ Document(id='a', embedding=np.ones(_DIM) * 1.0), Document(id='b', embedding=np.ones(_DIM) * 2.0), ] ) index.index(da, {}) return index, da def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.metric == 'cosine' def test_empty_search(): index = HnswlibSearcher(dim=_DIM) da = DocumentArray([Document(embedding=np.random.normal(size=(_DIM,)))]) index.search(da, {}) assert len(da[0].matches) == 0 def test_index_no_docs(): index = HnswlibSearcher(dim=_DIM) index.index(None, {}) def test_index_empty_docs(): index = HnswlibSearcher(dim=_DIM) da = DocumentArray() index.index(da, {}) def test_update_no_docs(): index = HnswlibSearcher(dim=_DIM) index.update(None, {}) def test_update_empty_docs(): index = HnswlibSearcher(dim=_DIM) da = DocumentArray() index.update(da, {}) def test_search_no_docs(): index = HnswlibSearcher(dim=_DIM) index.search(None, {}) def test_searh_empty_docs(): index = HnswlibSearcher(dim=_DIM) da = DocumentArray() index.search(da, {}) def test_index(): NUM_DOCS = 1000 index = HnswlibSearcher(dim=_DIM) embeddings = np.random.normal(size=(NUM_DOCS, _DIM)) da1 = DocumentArray([Document(embedding=emb) for emb in embeddings]) da2 = DocumentArray([Document(embedding=emb) for emb in embeddings]) index.index(da1, {}) assert len(index._ids_to_inds) == NUM_DOCS assert index._index.element_count == NUM_DOCS assert set(index._ids_to_inds.keys()) == set(da1.get_attributes('id')) index.index(da2, {}) assert len(index._ids_to_inds) == 2 * NUM_DOCS assert index._index.element_count == 2 * NUM_DOCS assert set(index._ids_to_inds.keys()) == set(da1.get_attributes('id')).union( da2.get_attributes('id') ) def test_index_with_update(two_elem_index): index, da = two_elem_index da_search = DocumentArray( [ Document(embedding=np.ones(_DIM) * 1.1), Document(embedding=np.ones(_DIM) * 2.1), ] ) # switch embeddings of a and b da[0].embedding = np.ones(_DIM) * 2.0 da[1].embedding = np.ones(_DIM) * 1.0 index.index(da, {}) assert index._ids_to_inds == {'a': 0, 'b': 1} assert index._index.element_count == 2 index.search(da_search, {}) assert [m.id for m in da_search[0].matches] == ['b', 'a'] assert [m.id for m in da_search[1].matches] == ['a', 'b'] def test_index_wrong_dim(): index = HnswlibSearcher(dim=10) embeddings = np.random.normal(size=(2, 11)) da1 = DocumentArray([Document(embedding=emb) for emb in embeddings]) with pytest.raises(ValueError, match='Attempted to index'): index.index(da1, {}) @pytest.mark.parametrize('limit', [5, 10]) @pytest.mark.parametrize( ['metric', 'is_distance'], [ ('cosine', True), ('euclidean', True), ('inner_product', True), ('cosine', False), ('euclidean', False), ('inner_product', False), ], ) def test_search_basic(limit: int, metric: str, is_distance: bool): index = HnswlibSearcher( dim=_DIM, metric=metric, limit=limit, is_distance=is_distance ) embeddings_ind = np.random.normal(size=(1000, _DIM)) embeddings_search =
np.random.normal(size=(10, _DIM))
numpy.random.normal
#solarnmf_plotting.py #<NAME> #3 April 2015 import logging import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib.ticker import MultipleLocator, FormatStrFormatter from scipy.ndimage.interpolation import rotate class Plotter(object): def __init__(self,toption,input_type,u,v,A,T,div=None,q=None,angle=0.0,fig_size=(8,8),print_format='eps',print_dpi=1000,**kwargs): self.toption = toption self.input_type = input_type self.u = u self.v = v self.A = A self.T = T #Configure logger self.logger = logging.getLogger(type(self).__name__) if div is not None: self.div = div if not q: self.q = self.u.shape[1] else: self.q = q if self.input_type == 'matrix': self.ny,self.nx = np.shape(T) else: self.ny,self.nx = np.shape(T)[0],np.shape(T)[0] #set optional member variables self.angle = angle self.print_format = print_format self.print_dpi = print_dpi self.fs = 18 self.cm = 'Blues' self.zero_tol = 1.e-5 self.fig_size = fig_size self.yaxis_format = FormatStrFormatter('%3.1f') #Preprocessing self.A = self.rotate_back(A) self.get_components() #Check data type if self.toption == 'simulation': try: self.target = kwargs['target'] except: raise ValueError("Please specify list of target sources when plotting simulation results.") if self.input_type == 'timeseries': try: self.ny = kwargs['Tmat'].shape[0] except: raise ValueError("Please specify matrix representation of time series when using 1D representation.") def rotate_back(self,mat): """Rotate back and reshape""" #rotate matrix back if self.angle != 0.0: mat_rot = rotate(mat,-self.angle) else: mat_rot = mat #get indices of rotated matrix ny_r,nx_r = mat_rot.shape #calculate differences delta_y = int(np.round((ny_r - self.ny)/2.0)) delta_x = int(np.round((nx_r - self.nx)/2.0)) #Return cut and rotated matrix res = mat_rot[delta_y:((ny_r - delta_y)),delta_x:((nx_r - delta_x))] if not np.shape(res) == (self.ny,self.nx): self.logger.warning("Rotated dimensions do not match original dimensions; (%d,%d) != (ny=%d,nx=%d)"%(np.shape(res)[0],np.shape(res)[1],self.ny,self.nx)) self.logger.warning("Adjusting dimensions for compatibility.") diff_row = self.ny - np.shape(res)[0] diff_col = self.nx - np.shape(res)[1] #adjust row dim if diff_row < 0: #remove last row res = res[:self.ny,:] elif diff_row > 0: #add last row below zero tol res = np.vstack([res,0.9*self.zero_tol*np.ones(np.shape(res)[1])]) else: self.logger.warning("No adjustment on rows, %d==%d"%(np.shape(res)[0],self.ny)) #adjust col dim if diff_col < 0: #remove last col res = res[:,:self.nx] elif diff_col > 0: res = np.hstack([res,0.9*self.zero_tol*np.ones([np.shape(res)[0],1])]) else: self.logger.warning("No adjustment on columns, %d==%d"%(np.shape(res)[1],self.nx)) return res def get_components(self): """Separate A matrix into components""" self.components = [] for i in range(self.q): self.components.append(self.rotate_back(np.outer(self.u[:,i],self.v[i,:]))) def plot_obs_pred_total(self,**kwargs): """Plot original observation and recovered result""" if self.input_type == 'matrix': fig,ax = plt.subplots(1,2,figsize=self.fig_size) plt.tight_layout() imT = ax[0].imshow(np.ma.masked_where(self.T<self.zero_tol*
np.max(self.T)
numpy.max
import numpy as np import pickle
np.random.seed(0)
numpy.random.seed
#!/usr/bin/env python3 # ------------------------------------------------------------------------ # Copyright (c) 2021 megvii-model. All Rights Reserved. # ------------------------------------------------------------------------ import os, sys import math, pdb import numpy as np from typing import List, Tuple class BoxView: """ Utilities for box calculations. Create a view on the original data rather than make a copy Dimensions: (left, top, right, bottom) [left, right), [top, bottom) """ _box = None def __init__(self, box): self._box = self._as_array(box) def __getitem__(self, index:int): return self._box[index] def __setitem__(self, index:int, v): self._box[index] = v def __len__(self): return 4 def _as_array(self, box) -> np.ndarray: assert not (box is None) if isinstance(box, BoxView): return box.array else: assert isinstance(box, np.ndarray) assert box.size == 4 return box.reshape([-1]) def _as_readonly_array(self, box) -> np.ndarray: if isinstance(box, BoxView): return box.array elif isinstance(box, np.ndarray): assert box.size == 4 return box.reshape([-1]) elif box is None: return np.zeros([4]) else: r = np.array(box) assert r.size == 4 return r.reshape([-1]) @property def array(self) -> np.ndarray: return self._box @array.setter def array(self, v): self._box = self._as_array(v) @property def width(self): return max(self._box[2] - self._box[0], 0) @property def height(self): return max(self._box[3] - self._box[1], 0) @property def valid(self): return self._box[2] > self._box[0] and self._box[3] > self._box[1] @property def area(self): return self.width * self.height @property def center(self): return np.float64(self._box[:2] + self._box[2:] - 1) / 2 @property def vertices(self) -> np.ndarray: """ return [left-top, left-bottom, right-bottom, right-top] """ return np.array([ (self._box[0], self._box[1]), (self._box[0], self._box[3] - 1), (self._box[2] - 1, self._box[3] - 1), (self._box[2] - 1, self._box[1]) ]) def intersect(self, other) -> "Box": other = self._as_readonly_array(other) left_top = np.max([self._box[:2], other[:2]], axis=0) right_bottom = np.min([self._box[2:], other[2:]], axis=0) r = Box(np.concatenate([left_top, right_bottom])) return r if r.valid else Box() def IoU(self, other) -> float: inter_area = self.intersect(other).area area_a = self.area area_b = Box(other).area if area_a == 0 and area_b == 0: return 0. else: return inter_area / (area_a + area_b - inter_area) def move_by(self, offset:np.ndarray): assert len(offset) == 2 self._box[0] += offset[0] self._box[1] += offset[1] self._box[2] += offset[0] self._box[3] += offset[1] return self def move_by_points(self,offset:np.array): assert len(offset) == 4 self._box[0] += offset[0] self._box[1] += offset[1] self._box[2] += offset[2] self._box[3] += offset[3] return self def is_legal(self): return self._box[0] > -1 and self._box[1] > -1 and self._box[2] > -1 \ and self._box[3] > -1 def clip_boundary(self,height,width): self._box[0] = np.max([0,self._box[0]]) self._box[1] = np.max([0,self._box[1]]) self._box[2] = np.min([width,self._box[2]]) self._box[3] = np.min([height,self._box[3]]) def expend_by(self, width:int): self._box[:2] -= width self._box[2:] += width return self def get_rotated_vertices(self, degree): """ Get counter-clockwise rotated vertices of the box. The rotation center is the center of the box """ vertices = np.float64(self.vertices) # pdb.set_trace() center = self.center center = center.reshape([1, -1]) vertices -= center theta = degree / 180.0 * math.pi cos_theta = math.cos(theta) sin_theta = math.sin(theta) rot_mat =
np.array([[cos_theta, -sin_theta], [sin_theta, cos_theta]])
numpy.array
# -*- coding: utf-8 -*- __author__ = "<NAME>" import time import os import sys import numpy as np sys.path.append(os.path.abspath('../')) from loaders.aec_loader import aec_loader from utils.mat_helpers import * from algorithms.audio_processing import * from algorithms.ssaec_fast import * class feature_generator(object): # -------------------------------------------------------------------------- def __init__(self,): self.aec_loader = aec_loader(name='aec') self.ssaec = ssaec_fast(wlen=512, tail_length=0.250) self.fs = self.aec_loader.fs self.samples = int(self.fs*15) self.silence = int(self.fs*5) self.dataset_dir = self.aec_loader.dataset_dir self.scenarios = ['nearend', 'farend', 'doubletalk'] self.modes = ['real','simu','hard'] self.train_set_length = 5000 self.test_set_length = len(self.aec_loader.d_test) self.blind_test_set_length = len(self.aec_loader.d_test_blind) self.nband = 25 self.Q_long = create_mel_filterbank(nbin=513, fs=16e3, nband=self.nband) self.Q_short = create_mel_filterbank(nbin=129, fs=16e3, nband=self.nband) #------------------------------------------------------------------------- def compensate_delay(self, x, d): Fx = rfft(x) Fd = rfft(d) Phi = Fd*np.conj(Fx) Phi /= np.abs(Phi) + 1e-3 Phi[0] = 0 tmp = irfft(Phi) tau = np.argmax(np.abs(tmp)) x = np.roll(x, tau) #print(tau/self.fs) return x #------------------------------------------------------------------------- #scenarios = ['nearend', 'farend', 'doubletalk'] #modes = ['real','simu','hard'] def load_train(self, nbatch=1, mode=None, scenario=None, idx=None, p_modes=[0.3, 0.3, 0.4], p_scenarios=[0.1, 0.1, 0.8]): mode0 = mode scenario0 = scenario idx0 = idx x = np.zeros((nbatch, self.samples-self.silence), dtype=np.float32) y = np.zeros((nbatch, self.samples-self.silence), dtype=np.float32) d = np.zeros((nbatch, self.samples-self.silence), dtype=np.float32) e = np.zeros((nbatch, self.samples-self.silence), dtype=np.float32) s = np.zeros((nbatch, self.samples-self.silence), dtype=np.float32) for b in range(nbatch): if mode0==None: mode = np.random.choice(self.modes, p=p_modes) else: mode = mode0 if scenario0==None: scenario = np.random.choice(self.scenarios, p=p_scenarios) else: scenario = scenario0 if idx0==None: idx =
np.random.choice(self.train_set_length)
numpy.random.choice
import unittest from scipy.stats import norm import warnings import pickle import tensorflow as tf import sys import os import numpy as np import scipy.stats as stats sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) from cde.density_estimator import NormalizingFlowEstimator from cde.density_estimator.normalizing_flows import InvertedPlanarFlow, AffineFlow, IdentityFlow, InvertedRadialFlow class TestFlows(unittest.TestCase): def test_planar_invertibel(self): with tf.Session() as sess: u = tf.constant([[-2.], [1.], [10.], [2.]]) w = tf.constant([[80.], [-1.], [1.], [1.]]) # Compute w * û inv = sess.run(w * InvertedPlanarFlow._u_circ(u, w)) for i in inv: self.assertGreater(i, -1.) def test_affine_shift_and_scale(self): with tf.Session() as sess: base_dist = tf.distributions.Normal(loc=0., scale=1.) # shift the distribution three to the right transf_dist = tf.distributions.Normal(loc=3., scale=1.) flow = AffineFlow(tf.constant([[0., 3.]]), 1) flow_dist = tf.contrib.distributions.TransformedDistribution(distribution=base_dist, bijector=flow) # eval the samples so they stay constant samples = sess.run(base_dist.sample([1000])) # the output is of shape (?, 1) so it needs to be squeezed pdf_estimate = tf.squeeze(flow_dist.prob(samples)) pdf_actual = transf_dist.prob(samples) pdf_estimate, pdf_actual = sess.run([pdf_estimate, pdf_actual]) self.assertLessEqual(np.mean(np.abs(pdf_actual - pdf_estimate)), 0.1) def _test_flow_correct_dims_NN(self, flow_name): """ General structure: flow_params = MLP(x) pdf(y|x) = flow(y, flow_params) The tensor being transformed (=y) are of shape (batch_size, event_dims) - batch_size = len(x) == len(y) - event_dims = rank(y) For each element of x, the MLP outputs one parametrization for the flows for each of these parameters, the flow transforms one element of y therefore len(x) == len(y) the event dimension describes the rank of the base probability distribution that's being transformed Tensorflow's MultivariateNormal doesn't implement a CDF. Therefore we switch to a Normal for 1-D Problems Caveat: MultivariateNormal PDF output shape: (batch_size, ) UnivariateNormal PDF output shape: (batch_size, 1) Therefore we adapt the output shape of the ildj to be (batch_size, 1) for 1-D, (batch_size, ) for N-D The flows are transforming tensors (batch_size, event_size) Forward: (batch_size, event_size) -> (batch_size, event_size) Inverse: (batch_size, event_size) -> (batch_size, event_size) ILDJ: (batch_size, event_size) -> (batch_size, 1) [1-D] or (batch_size, ) [N-D] This forms a transformed distribution: Sample: -> (batch_size, event_size) PDF: (batch_size, event_size) -> (batch_size, 1) [1-D] or (batch_size, ) [N-D] CDF: (batch_size, event_size) -> (batch_size, 1) [EXISTS ONLY FOR 1-D!] """ tests = [ { 'x': [[1.], [0.], [2.], [4.], [1.]], 'y': [[1.], [0.], [2.], [3.], [1.]], 'ndim_x': 1, 'ndim_y': 1 }, { 'x': [[1., 1.], [0., 0.], [2., 2.], [4., 4.], [1., 1.]], 'y': [[1., 1.], [0., 0.], [2., 2.], [3., 3.], [1., 1.]], 'ndim_x': 2, 'ndim_y': 2 } ] with tf.Session() as sess: for test in tests: model = NormalizingFlowEstimator('nf_dimtest_' + flow_name + str(tests.index(test)), test['ndim_x'], test['ndim_y'], random_seed=22, n_training_epochs=2, flows_type=(flow_name,)) x, y = np.array(test['x']), np.array(test['y']) model.fit(x, y) p = model.pdf(x, y) self.assertEqual(p.shape, (len(y),)) # every test has equal first and last elements, theses are basic sanity tests self.assertAlmostEqual(p[0], p[-1], places=5) self.assertNotAlmostEqual(p[0], p[1], places=5) def _test_flow_correct_dims(self, flow_class): tests = [ ([[1.], [2.], [1.]], 1), ([[1., 1.], [2., 2.], [1., 1.]], 2), ] with tf.Session() as sess: for test in tests: y, event_dims = test batch_size = len(y) y = np.array(y, dtype=np.float32) if event_dims == 1: base_dist = tf.distributions.Normal(loc=0., scale=1.) else: base_dist = tf.contrib.distributions.MultivariateNormalDiag(loc=[0.] * event_dims, scale_diag=[1.] * event_dims) params = tf.ones(shape=(batch_size, flow_class.get_param_size(event_dims))) flow = flow_class(params, event_dims) flow_dist = tf.contrib.distributions.TransformedDistribution(distribution=base_dist, bijector=flow) # reverse should transform (batch_size, event_dims) -> (batch_size, event_dims) self.assertEqual(y.shape, (batch_size, event_dims)) inverse_y = flow.inverse(y).eval() self.assertEqual(inverse_y.shape, (batch_size, event_dims)) # ildj is a reduction over event_dims # therefore transforms: (batch_size, event_dims) -> (batch_size, 1) self.assertEqual(y.shape, (batch_size, event_dims)) ildj_y = flow.inverse_log_det_jacobian(y).eval() if event_dims == 1: self.assertEqual(ildj_y.shape, (batch_size, 1)) else: self.assertEqual(ildj_y.shape, (batch_size,)) # probability: (batch_size, event_dims) -> (batch_size, 1) self.assertEqual(y.shape, (batch_size, event_dims)) p = flow_dist.prob(y).eval() if event_dims == 1: self.assertEqual(p.shape, (batch_size, 1)) else: self.assertEqual(p.shape, (batch_size,)) # the first an same element of every test is the same, this is a basic sanity test self.assertEqual(p[0], p[2]) self.assertNotEqual(p[0], p[1]) def test_affine_flow_correct_dimension(self): self._test_flow_correct_dims(AffineFlow) self._test_flow_correct_dims_NN('affine') def test_identity_flow_correct_dimension(self): self._test_flow_correct_dims(IdentityFlow) # we don't test NN dimensions for the Identity flow as it contains no trainable variables def test_planar_flow_correct_dimension(self): self._test_flow_correct_dims(InvertedPlanarFlow) self._test_flow_correct_dims_NN('planar') def test_radial_flow_correct_dimension(self): self._test_flow_correct_dims(InvertedRadialFlow) self._test_flow_correct_dims_NN('radial') class Test_NF_2d_gaussian(unittest.TestCase): def get_samples(self, mu=2, std=1.0): np.random.seed(22) data = np.random.normal([mu, mu], std, size=(2000, 2)) X = data[:, 0] Y = data[:, 1] return X, Y def test_NF_radial_with_2d_gaussian(self): mu = 200 std = 23 X, Y = self.get_samples(mu=mu, std=std) model = NormalizingFlowEstimator("nf_estimator_2d_radial", 1, 1, flows_type=('radial',), n_training_epochs=500, random_seed=22) model.fit(X, Y) y = np.arange(mu - 3 * std, mu + 3 * std, 6 * std / 20) x = np.asarray([mu for i in range(y.shape[0])]) p_est = model.pdf(x, y) p_true = norm.pdf(y, loc=mu, scale=std) self.assertLessEqual(np.mean(np.abs(p_true - p_est)), 0.1) def test_NF_affine_with_2d_gaussian(self): mu = 3 std = 2 X, Y = self.get_samples(mu=mu, std=std) model = NormalizingFlowEstimator("nf_estimator_2d_affine", 1, 1, flows_type=('affine',), n_training_epochs=500, random_seed=22) model.fit(X, Y) y = np.arange(mu - 3 * std, mu + 3 * std, 6 * std / 20) x = np.asarray([mu for i in range(y.shape[0])]) p_est = model.pdf(x, y) p_true = norm.pdf(y, loc=mu, scale=std) self.assertLessEqual(np.mean(np.abs(p_true - p_est)), 0.1) def test_NF_planar_with_2d_gaussian(self): mu = 200 std = 23 X, Y = self.get_samples(mu=mu, std=std) model = NormalizingFlowEstimator("nf_estimator_2d_planar", 1, 1, flows_type=('planar',), n_training_epochs=500, random_seed=22) model.fit(X, Y) y =
np.arange(mu - 3 * std, mu + 3 * std, 6 * std / 20)
numpy.arange
""" Test cases for the regi0.geographic.outliers._is_std_outlier function. """ import numpy as np import pytest from regi0.geographic.outliers import _is_std_outlier @pytest.fixture() def values(): return np.array([52, 56, 53, 57, 51, 59, 1, 99]) def test_std(values): result = _is_std_outlier(values) expected =
np.array([False, False, False, False, False, False, True, False])
numpy.array
######################################## # MIT License # # Copyright (c) 2020 <NAME> ######################################## ''' Definition of different minimization functions. ''' from ..base import parameters from ..pdfs import dataset import functools import numpy as np import warnings __all__ = ['binned_chisquare', 'binned_maximum_likelihood', 'binned_extended_chisquare', 'binned_extended_maximum_likelihood', 'unbinned_maximum_likelihood', 'unbinned_extended_maximum_likelihood'] # Names of different FCNs BINNED_CHISQUARE = 'chi2' BINNED_EXTENDED_CHISQUARE = 'echi2' BINNED_MAXIMUM_LIKELIHOOD = 'bml' BINNED_EXTENDED_MAXIMUM_LIKELIHOOD = 'beml' UNBINNED_MAXIMUM_LIKELIHOOD = 'uml' UNBINNED_EXTENDED_MAXIMUM_LIKELIHOOD = 'ueml' def data_type_for_fcn(fcn): ''' Get the associated data type for a given FCN. :param fcn: FCN to consider. :type fcn: str :returns: data type associated to the FCN. :rtype: str :raises ValueError: if the FCN is unknown. ''' if fcn in (BINNED_CHISQUARE, BINNED_EXTENDED_CHISQUARE, BINNED_MAXIMUM_LIKELIHOOD, BINNED_EXTENDED_MAXIMUM_LIKELIHOOD): return dataset.BINNED elif fcn in (UNBINNED_MAXIMUM_LIKELIHOOD, UNBINNED_EXTENDED_MAXIMUM_LIKELIHOOD): return dataset.UNBINNED else: raise ValueError(f'Unknown FCN type "{fcn}"') def evaluate_constraints(constraints=None): ''' Calculate the values of the constraints, if any. :param constraints: functions defining constraints to different parameters. :type contraints: list(PDF) or None :returns: evaluation of the product of constraints. :rtype: float ''' if constraints is None: return 0. res = 1. for c in constraints: res *= c.function(normalized=True) return -2. *
np.log(res)
numpy.log
"""Script that tests the compiled TF-KDTree """ import sys sys.path.append("../") #TODO: Hack import os import unittest import numpy as np import tensorflow as tf tf.compat.v1.disable_eager_execution() assert(not tf.executing_eagerly()) from tf_nearest_neighbor import nn_distance, buildKDTree, searchKDTree import sys from IPython.utils import io import timeit from scipy.spatial import cKDTree np.random.seed(0) class TestKNNImplementation(unittest.TestCase): def __init__(self, test_name = None): super(TestKNNImplementation, self).__init__(test_name) self.sess = tf.compat.v1.InteractiveSession() def referenceSolution(self, points_ref, points_query, k): kdtree = cKDTree(points_ref) dists, inds = kdtree.query(points_query, k) return dists, inds def executeTest(self, nr_refs, nr_query, k, d=3): points_ref = np.random.uniform(size=(nr_refs, d)).astype(np.float32) * 1e3 points_query = np.random.uniform(size=(nr_query, d)).astype(np.float32) * 1e3 points_ref_tf = tf.compat.v1.placeholder(dtype=tf.float32, shape=points_ref.shape) points_query_tf = tf.compat.v1.placeholder(dtype=tf.float32, shape=points_query.shape) dists_ref, inds_ref = self.referenceSolution(points_ref, points_query, k=k) nn_distance_result = nn_distance(points_ref, points_query, nr_nns_searches=k) dists_knn, inds_knn = self.sess.run(nn_distance_result, feed_dict={points_ref_tf: points_ref, points_query_tf: points_query}) #Shape checks self.assertTrue(inds_knn.shape[-1] == k) self.assertTrue(inds_knn.shape[0] == points_query.shape[0]) self.assertTrue(np.all(inds_knn.shape == dists_knn.shape)) self.assertTrue((dists_ref.ndim == 1 and dists_knn.ndim == 2 and dists_knn.shape[-1] == 1) or np.all(dists_ref.shape == dists_knn.shape)) self.checkSuccessful(points_ref, points_query, k, dists_ref, inds_ref, dists_knn, inds_knn) def checkSuccessful(self, points_ref, points_query, k, dists_ref, inds_ref, dists_knn, inds_knn): if dists_ref.ndim == 1: #dists_knn = dists_knn[..., 0] #inds_knn = inds_knn[..., 0] dists_ref = dists_ref[..., np.newaxis] inds_ref = inds_ref[..., np.newaxis] self.assertTrue( np.allclose(dists_ref ** 2, np.sum((points_query[:, np.newaxis] - points_ref[inds_ref]) ** 2, axis=-1), atol=1e-5)) self.assertTrue( np.allclose(dists_knn,
np.sum((points_query[:, np.newaxis] - points_ref[inds_knn]) ** 2, axis=-1)
numpy.sum
import numpy as np import pickle as pk import os, sys, torch sys.path.insert(1, os.path.join(sys.path[0], '../..')) import bayesiancoresets as bc #make it so we can import models/etc from parent folder sys.path.insert(1, os.path.join(sys.path[0], '../common')) from model_neurlinr import * from neural import * def linearize(): args_dict = dict() c = -1 for beta in [0.2]: for tr in range(10): # trial number for nm in ["BCORES", "SVI"]: # coreset method for i0 in [.1]: for f_rate in [30, 0]: for dnm in ["boston"]: #["year"]: #, "prices2018"]: c += 1 args_dict[c] = (tr, nm, dnm, f_rate, beta, i0) return args_dict mapping = linearize() #tr, algnm, dnm, f_rate, beta, i0 = mapping[int(sys.argv[1])] tr, algnm, dnm, f_rate, beta, i0 = mapping[0] # randomize datapoints order def unison_shuffled_copies(a, b): assert a.shape[0] == b.shape[0] p = np.random.permutation(a.shape[0]) return a[p], b[p] # Parse input arguments np.random.seed(int(tr)) #Specify results folder results_fldr = 'results' if not os.path.exists(results_fldr): os.mkdir(results_fldr) ## Prepare and read dataset if dnm=='synthetic': N = 3000 # number of data points X, Y = build_synthetic_dataset(N) else: X, Y = load_data(dnm, data_dir='../data') #X, Y = load_data(dnm, data_dir='/home/dm754/rds/hpc-work/zellner_neural/data') N = Y.shape[0] # number of data points if dnm=='boston': init_size = 10 batch_size = 20 out_features = 20 # dimension of the ouput of the neural encoder used for lin reg weight_decay = 1. initial_lr = 1e-2 n_subsample_select = 3 elif dnm=='year': init_size = 200 batch_size = 100 out_features = 100 weight_decay = 3. initial_lr = 1e-2 n_subsample_select = 100 elif dnm=='prices2018': init_size = 200 batch_size = 100 out_features = 5 weight_decay = 1. initial_lr = 1e-2 n_subsample_select = 100 test_size = int(0.1*N) tss = min(500, test_size) # test set sample size # Split datasets X, Y = unison_shuffled_copies(X.astype(np.float32), Y.astype(np.float32)) X_init, Y_init, X, Y, X_test, Y_test=( X[:init_size,:], Y[:init_size], X[init_size:-test_size,:], Y[init_size:-test_size], X[-test_size:,:], Y[-test_size:]) X, Y, X_init, Y_init, X_test, Y_test, input_mean, input_std, output_mean, output_std = preprocessing(X, Y, X_init, Y_init, X_test, Y_test) print(X.shape) exit() #Specify priors #get empirical mean/std datastd = Y.std() datamn = Y.mean() groups = list(np.split(np.arange(X.shape[0]), range(batch_size, X.shape[0], batch_size))) X, Y = perturb(X, Y, f_rate=0.01*f_rate, groups=groups) # corrupt datapoints Z_init = np.hstack((X_init, Y_init)).astype(np.float32) Z = np.hstack((X, Y)).astype(np.float32) Z_test = np.hstack((X_test, Y_test)).astype(np.float32)[:1000,:] # Specify encoder and coreset hyperparameters nl = NeuralLinear(Z_init, out_features=out_features, input_mean=input_mean, input_std=input_std, output_mean=output_mean, output_std=output_std, seed=tr) train_nn_freq = 1 # frequency of nn training wrt coreset iterations VI_opt_itrs = 500 n_subsample_opt = 1000 proj_dim = 100 SVI_step_sched = lambda i : i0/(1.+i) #BPSVI_step_sched = lambda m: lambda i : i0/(1.+i) BCORES_step_sched = lambda i : i0/(1.+i) M = 20 # max num of coreset iterations mu0 = datamn*np.ones(out_features) ey = np.eye(out_features) Sig0 = (datastd**2+datamn**2)*ey Sig0inv = np.linalg.inv(Sig0) #create function to output log_likelihood given param samples print('Creating log-likelihood function') deep_encoder = lambda nl, pts: (np.hstack((nl.encode(torch.from_numpy(pts[:, :-1].astype(np.float32))).detach().numpy(), pts[:,-1][:,np.newaxis].astype(np.float32)))) log_likelihood = lambda pts, th, nl: neurlinr_loglikelihood(deep_encoder(nl, pts), th, datastd**2) grad_log_likelihood = lambda pts, th, nl: NotImplementedError beta_likelihood = lambda pts, th, beta, nl: neurlinr_beta_likelihood(deep_encoder(nl, pts), th, beta, datastd**2) grad_beta = lambda pts, th, beta, nl : NotImplementedError print('Creating black box projector for sampling from coreset posterior') ''' def sampler_w(n, wts, pts): if pts.shape[0] == 0: wts = np.zeros(1) pts = np.zeros((1, Z.shape[1])) muw, LSigw, LSigwInv = weighted_post(mu0, Sig0inv, datastd**2, deep_encoder(nl, pts), wts) return muw + np.random.randn(n, muw.shape[0]).dot(LSigw.T) ''' def sampler_w(n, wts, pts): if pts.shape[0] == 0: wts = np.zeros(1) pts = np.zeros((1, Z.shape[1])) sigsq = datastd**2 z = deep_encoder(nl, pts) X = z[:, :-1] Y = z[:, -1] Sigp = np.linalg.inv(Sig0inv + (wts[:, np.newaxis]*X).T.dot(X)/sigsq) mup = np.dot(Sigp, np.dot(Sig0inv,np.ones(out_features)) + (wts[:, np.newaxis]*Y[:,np.newaxis]*X).sum(axis=0)/datastd**2) return np.random.multivariate_normal(mup, Sigp, n) prj_w = bc.BlackBoxProjector(sampler_w, proj_dim, log_likelihood, grad_log_likelihood, nl=nl) prj_bw = bc.BetaBlackBoxProjector(sampler_w, proj_dim, beta_likelihood, log_likelihood, grad_beta, nl=nl) #create coreset construction objects print('Creating coreset construction objects') in_batches = True if in_batches: sparsevi = bc.SparseVICoreset(Z, prj_w, opt_itrs=VI_opt_itrs, n_subsample_opt=n_subsample_opt, n_subsample_select=n_subsample_select, step_sched=SVI_step_sched, wts=np.ones(init_size), idcs=1e7+np.arange(init_size), pts=Z_init, groups=groups, initialized=True, enforce_new=False) bcoresvi = bc.BetaCoreset(Z, prj_bw, opt_itrs=VI_opt_itrs, n_subsample_opt=n_subsample_opt, n_subsample_select=n_subsample_select, step_sched=BCORES_step_sched, beta=beta, learn_beta=False, wts=np.ones(init_size), idcs=1e7+np.arange(init_size), pts=Z_init, groups=groups, initialized=True) unif = bc.UniformSamplingCoreset(Z, wts=np.ones(init_size), idcs=1e7+np.arange(init_size), pts=Z_init, groups=groups) else: raise NotImplementedError("Supported only batch data acquisition") algs = {'BCORES': bcoresvi, #'BPSVI': bpsvi, 'SVI': sparsevi, 'RAND': unif, 'PRIOR': None} alg = algs[algnm] # Diagnostics nlls =
np.zeros(M+1)
numpy.zeros
import numpy from scipy.integrate import odeint import matplotlib.pyplot as plt # This Program calculate state-space matrices of a 2DOF Quarter Car Model # A Matrix give the system matrix # B1 Matrix represents the disturbance dynamics # B2 Matrix represents the actuator dynamics # m1: chassis mass # J: chassis mass inertia # m2: left front shaft mass # m3: left rear shaft mass # m4: right front shaft mass # m5: right rear shaft mass #Left # k1: left front suspension stiffness # k2: left front tire stiffness # c1: left front suspension damping # c2: left front tire damping # k3: left rear suspension stiffness # k4: left rear tire stiffness # c3: left rear suspension damping # c4: left rear tire damping # Right # k5: right front suspension stiffness # k6: right front tire stiffness # c5: right front suspension damping # c6: right front tire damping # k7: right rear suspension stiffness # k8: right rear tire stiffness # c7: right rear suspension damping # c8: right rear tire damping # Inertial parameters m1 = 1000 m2 = 30 m3 = 30 m4 = 30 m5 = 30 J1 = 1000 J2 = 2000 # Geometric Parameters L1 = 1.2 L2 = 1.5 L3 = 0.5 L4 = 0.5 # Left Front Suspension Parameters k1 = 15000 k2 = 220000 c1 = 100 c2 = 1000 # Left Rear Suspension Parameters k3 = 15000 k4 = 220000 c3 = 100 c4 = 1000 # Right Front Suspension Parameters k5 = 15000 k6 = 220000 c5 = 100 c6 = 1000 # Right Rear Suspension Parameters k7 = 15000 k8 = 220000 c7 = 100 c8 = 1000 # inertia matrix M_row1 = [m1, 0, 0, 0, 0, 0, 0] M_row2 = [0, m2, 0, 0, 0, 0, 0] M_row3 = [0, 0, m3, 0, 0, 0, 0] M_row4 = [0, 0, 0, m4, 0, 0, 0] M_row5 = [0, 0, 0, 0, m5, 0, 0] M_row6 = [0, 0, 0, 0, 0, J1, 0] M_row7 = [0, 0, 0, 0, 0, 0, J2] M = numpy.array((M_row1, M_row2, M_row3, M_row4, M_row5, M_row6, M_row7)) print(M) M_inv = numpy.linalg.inv(M) # Rigidity Matrix K_row1 = [k1+k3+k5+k7, -k1, -k3, -k5, -k7, L1*(k1+k5)-L2*(k3+k7), L3*(k1+k3)-L4*(k5+k7)] K_row2 = [-k1, k1+k2, 0, 0, 0, -k1*L1, -k1*L3] K_row3 = [-k3, 0, k3+k4, 0, 0, k3*L2, -k3*L3] K_row4 = [-k5, 0, 0, k5+k6, 0, -k5*L1, k5*L4] K_row5 = [-k7, 0, 0, 0, k7+k8, k7*L2, k7*L4] K_row6 = [L1*(k1+k5)-L2*(k3+k7), -k1*L1, k3*L2, -k5*L1, k7*L2, L1**2*(k1+k5)+L2**2*(k3+k7), L1*(k1*L3-k5*L4)-L2*(k3*L3-k7*L4)] K_row7 = [L3*(k1+k3)-L4*(k5+k7), -k1*L3, -k3*L3, k5*L4, k7*L4, L3*(k1*L1-k3*L2)-L4*(k5*L1-k7*L2), L3**2*(k1+k3)+L4**2*(k5+k7)] K = numpy.array((K_row1, K_row2, K_row3, K_row4, K_row5, K_row6, K_row7)) print(K) # Rigidity Matrix C_row1 = [c1+c3+c5+c7, -c1, -c3, -c5, -c7, L1*(c1+c5)-L2*(c3+c7), L3*(c1+c3)-L4*(c5+c7)] C_row2 = [-c1, c1+c2, 0, 0, 0, -c1*L1, -c1*L3] C_row3 = [-c3, 0, c3+c4, 0, 0, c3*L2, -c3*L3] C_row4 = [-c5, 0, 0, c5+c6, 0, -c5*L1, c5*L4] C_row5 = [-c7, 0, 0, 0, c7+c8, c7*L2, c7*L4] C_row6 = [L1*(c1+c5)-L2*(c3+c7), -c1*L1, c3*L2, -c5*L1, c7*L2, L1**2*(c1+c5)+L2**2*(c3+c7), L1*(c1*L3-c5*L4)-L2*(c3*L3-c7*L4)] C_row7 = [L3*(c1+c3)-L4*(c5+c7), -c1*L3, -c3*L3, c5*L4, c7*L4, L3*(c1*L1-c3*L2)-L4*(c5*L1-c7*L2), L3**2*(c1+c3)+L4**2*(c5+c7)] C = numpy.array((C_row1, C_row2, C_row3, C_row4, C_row5, C_row6, C_row7)) print(C) print('Check K') print(K-numpy.transpose(K)) print('Check C') print(C-numpy.transpose(C)) s = len(M) print(s) # A Matrix A1 = numpy.concatenate((numpy.zeros((s, s)), numpy.identity(s)), axis=1) A2 = numpy.concatenate((-numpy.dot(M_inv, K), -numpy.dot(M_inv, C)), axis=1) A = numpy.concatenate((A1, A2), axis=0) # B matrices B12_row1 = [0, 0, 0, 0, 0, 0, 0, 0] B12_row2 = [k2 / m2, c2 / m2, 0, 0, 0, 0, 0, 0] B12_row3 = [0, 0, k4 / m3, c4 / m3, 0, 0, 0, 0] B12_row4 = [0, 0, 0, 0, k6 / m4, c6 / m4, 0, 0] B12_row5 = [0, 0, 0, 0, 0, 0, k8 / m5, c8 / m5] B12_row6 = [0, 0, 0, 0, 0, 0, 0, 0] B12_row7 = [0, 0, 0, 0, 0, 0, 0, 0] sb12 = len(B12_row7) B11 = numpy.zeros((s, sb12)) B12 = numpy.array((B12_row1, B12_row2, B12_row3, B12_row4, B12_row5, B12_row6, B12_row7)) B1 = numpy.concatenate((B11, B12), axis=0) B22_row1 = numpy.array([1 / m1, 1 / m1, 0, 0]) B22_row2 = numpy.array([-1 / m2, 0, 0, 0]) B22_row3 = numpy.array([0, -1 / m3, 0, 0]) B22_row4 = numpy.array([0, 0, -1 / m2, 0]) B22_row5 = numpy.array([0, 0, 0, -1 / m3]) B22_row6 = numpy.array([-L1 / J1, L2 / J1, -L1 / J1, L2 / J1]) B22_row7 = numpy.array([-L3 / J2, -L3 / J2, L4 / J2, L4 / J2]) sb22 = len(B22_row7) B21 = numpy.zeros((s, sb22)) B22 = numpy.array((B22_row1, B22_row2, B22_row3, B22_row4, B22_row5, B22_row6, B22_row7)) B2 = numpy.concatenate((B21, B22), axis=0) # C matrix Cc = numpy.identity(2 * s) # D matrix sc = len(Cc) sb1 = len(B1[0]) sb2 = len(B2[0]) Dd1 = numpy.zeros((sc, sb1)) Dd2 = numpy.zeros((sc, sb2)) # System is xdot=Ax + B1w + B2u # Output is y=Ccx + Dd1w + Dd2u print("Autonomous system matrix") print(A) print("disturbance matrix") print(B1) print("Actuator matrix") print(B2) D, V = numpy.linalg.eig(A) print(D) # state space function def full_car(x, t): w = numpy.transpose(
numpy.array([1, 0, 1, 0, 1, 0, 1, 0])
numpy.array
"""Error operation in PyQuest-cffi""" # Copyright 2019 HQS Quantum Simulations GmbH # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pyquest_cffi.questlib import quest, _PYQUEST, tqureg, ffi_quest import numpy as np from typing import Tuple, Sequence, List import warnings from pyquest_cffi import cheat class mixDensityMatrix(_PYQUEST): r"""Modifies qureg to become (1-probability)*qureg + probability*qureg_other Both registers must be equal-dimension density matrices, and prob must be in [0, 1]. Args: qureg: quantum register to be modified probability: the probability of qureg_other in the modified qureg qureg_other: the quantum register to be mixed into qureg """ def call_interactive(self, qureg: tqureg, probability: float, qureg_other: tqureg) -> None: r"""Interactive call of PyQuest-cffi Args: qureg: quantum register to be modified probability: the probability of qureg_other in the modified qureg qureg_other: the quantum register to be mixed into qureg Raises: RuntimeError: Both quregs must be density matrix, but at least one of them is a wavefunction RuntimeError: Qureg and Qureg_other must be defined for the same number of qubits """ if not qureg.isDensityMatrix or not qureg_other.isDensityMatrix: raise RuntimeError("Both quregs must be density matrix, " + "but at least one of them is a wavefunction") elif not (cheat.getNumQubits()(qureg=qureg) == cheat.getNumQubits()(qureg=qureg_other)): raise RuntimeError("Qureg and Qureg_other must be defined " + "for the same number of qubits") else: quest.mixDensityMatrix(qureg, probability, qureg_other) def Kraus_matrices(self, probability: float, **kwargs) -> Tuple[np.ndarray, np.ndarray]: r"""The definition of the Kraus Operator as a matrix Args: probability: The probability/ relative amplitude with which the dephasing occurs, probability needs to be smaller than 1/2 **kwargs: Additional keyword arguments Raises: NotImplementedError: not implemented """ raise NotImplementedError() def superoperator_matrix(self, probability: float, **kwargs) -> np.ndarray: r"""The definition of the superoperator acting on the density matrix written as a vector .. math:: \rho = A \rho B \\ \vec{\rho} = \mathcal{L} \vec{\rho} where A and B are arbitrary matrices Args: probability: The probability/ relative amplitude with which the dephasing occurs, probability needs to be smaller than 1/2 **kwargs: Additional keyword arguments Raises: NotImplementedError: not implemented """ raise NotImplementedError() class mixDephasing(_PYQUEST): r"""One qubit dephasing error Apply the dephasing :math:`\sigma^z` operator to a qubit q with probability p Can also be expressed as a Kraus operator :math:`\mathcal{K}` .. math:: \rho &= (1-p) \rho + p \sigma^z_q \rho \sigma^z_q \\ \rho &= \mathcal{K} \rho \mathcal{K} \\ \vec{\rho} &= \mathcal{L} \vec{\rho} \\ \mathcal{L} &= \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1-2p & 0 & 0\\ 0 & 0 & 1-2p & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} """ def call_interactive(self, qureg: tqureg, qubit: int, probability: float) -> None: r"""Interactive call of PyQuest-cffi Args: qureg: a qureg containing a density matrix qubit: The qubit dephasing probability: The probability/ relative amplitude with which the dephasing occurs, probability needs to be smaller than 1/2 Raises: RuntimeError: Probability of mixDephasing needs to be smaller that 1/2 RuntimeError: Qureg has to be a density matrix qureg but wavefunction qureg was used """ if probability > 1 / 2: raise RuntimeError( "Probability of mixDephasing needs to be smaller that 1/2") if qureg.isDensityMatrix: quest.mixDephasing(qureg, qubit, probability) else: raise RuntimeError("Qureg has to be a density matrix qureg but " + "wavefunction qureg was used") def Kraus_matrices(self, probability: float, **kwargs) -> Tuple[np.ndarray, np.ndarray]: r"""The definition of the Kraus Operator as a matrix Args: probability: The probability/ relative amplitude with which the dephasing occurs, probability needs to be smaller than 1/2 **kwargs: Additional keyword arguments Returns: Tuple[np.ndarray] """ sqp = np.sqrt(probability) sqmp = np.sqrt(1 - probability) dephasing = np.array([[sqp, 0], [0, -sqp]], dtype=np.complex) residual = np.array([[sqmp, 0], [0, sqmp]], dtype=np.complex) return (residual, dephasing) def superoperator_matrix(self, probability: float, **kwargs) -> np.ndarray: r"""The definition of the superoperator acting on the density matrix written as a vector .. math:: \rho = A \rho B \\ \vec{\rho} = \mathcal{L} \vec{\rho} where A and B are arbitrary matrices Args: probability: The probability/ relative amplitude with which the dephasing occurs, probability needs to be smaller than 1/2 **kwargs: Additional keyword arguments Returns: np.ndarray """ matrix = np.array([[1, 0, 0, 0], [0, 1 - 2 * probability, 0, 0], [0, 0, 1 - 2 * probability, 0], [0, 0, 0, 1]], dtype=np.complex) return matrix class mixDepolarising(_PYQUEST): r"""One qubit depolarisation error Apply the depolarisation operators :math:`\sigma^x`, :math:`\sigma^y` and :math:`\sigma^z` to a qubit q with an evenly distributed probability p` .. math:: \rho = (1-p) \rho + \frac{p}{3} \left( \sigma^x_q \rho \sigma^x_q + \sigma^y_q \rho \sigma^y_q + \sigma^z_q \rho \sigma^z_q \right) Args: qureg: a qureg containing a density matrix qubit: The qubit depolarising probability: The probability/ relative amplitude with which the dephasing occurs, probability needs to be smaller than 3/4 """ def call_interactive(self, qureg: tqureg, qubit: int, probability: float) -> None: r"""Interactive call of PyQuest-cffi Args: qureg: a qureg containing a density matrix qubit: The qubit depolarising probability: The probability/ relative amplitude with which the dephasing occurs, probability needs to be smaller than 1/2 Raises: RuntimeError: Probability of mixDepolarising needs to be smaller that 3/4 RuntimeError: Qureg has to be a density matrix qureg but wavefunction qureg was used """ if probability > 3 / 4: raise RuntimeError( "Probability of mixDepolarising needs to be smaller that 3/4") if qureg.isDensityMatrix: quest.mixDepolarising(qureg, qubit, probability) else: raise RuntimeError("Qureg has to be a density matrix qureg but " + "wavefunction qureg was used") def Kraus_matrices(self, probability: float, **kwargs ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: r"""The definition of the Kraus Operator as a matrix Args: probability: The probability/ relative amplitude with which the dephasing occurs, probability needs to be smaller than 1/2 **kwargs: Additional keyword arguments Returns: Tuple[np.ndarray] """ sqp = np.sqrt(probability / 3) sqmp = np.sqrt(1 - probability) residual = np.array([[sqmp, 0], [0, sqmp]], dtype=np.complex) depol1 = np.array([[0, sqp], [sqp, 0]], dtype=np.complex) depol2 = np.array([[0, -1j * sqp], [1j * sqp, 0]], dtype=np.complex) depol3 = np.array([[sqp, 0], [0, -sqp]], dtype=np.complex) return (residual, depol1, depol2, depol3) def superoperator_matrix(self, probability: float, **kwargs) -> np.ndarray: r"""The definition of the Superoperator acting on the density matrix written as a vector .. math:: \rho = A \rho B \\ \vec{\rho} = \mathcal{L} \vec{\rho} where A and B are arbitrary matrices Args: probability: The probability/ relative amplitude with which the dephasing occurs, probability needs to be smaller than 1/2 **kwargs: Additional keyword arguments Returns: np.ndarray """ one_plus = 1 - 2 / 3 * probability one_minus = 1 - 4 / 3 * probability two_three = 2 / 3 * probability matrix = np.array([[one_plus, 0, 0, two_three], [0, one_minus, 0, 0], [0, 0, one_minus, 0], [two_three, 0, 0, one_plus]], dtype=np.complex) return matrix class mixDamping(_PYQUEST): r"""One qubit damping error Apply a pure damping error corresponding to zero temperature environments .. math:: \rho &= \mathcal{K} \rho \mathcal{K}\\ Args: qureg: a qureg containing a density matrix qubit: The damped qubit probability: The probability/ relative amplitude with which the dephasing occurs """ def call_interactive(self, qureg: tqureg, qubit: int, probability: float) -> None: r"""Interactive call of PyQuest-cffi Args: qureg: a qureg containing a density matrix qubit: The damped qubit probability: The probability/relative amplitude with which the dephasing occurs Raises: RuntimeError: Qureg has to be a density matrix qureg but wavefunction qureg was used """ if qureg.isDensityMatrix: quest.mixDamping(qureg, qubit, probability) else: raise RuntimeError("Qureg has to be a density matrix qureg but " + "wavefunction qureg was used") def Kraus_matrices(self, probability: float, **kwargs) -> Tuple[np.ndarray, np.ndarray]: r"""The definition of the Kraus Operator as a matrix Args: probability: The probability/ relative amplitude with which the dephasing occurs, probability needs to be smaller than 1/2 **kwargs: Additional keyword arguments Returns: Tuple[np.ndarray] """ sqp = np.sqrt(probability) sqmp = np.sqrt(1 - probability) damping = np.array([[0, sqp], [0, 0]], dtype=np.complex) residual = np.array([[1, 0], [0, sqmp]], dtype=np.complex) return (residual, damping) def superoperator_matrix(self, probability: float, **kwargs) -> np.ndarray: r"""The definition of the Superoperator acting on the density matrix written as a vector .. math:: \rho = A \rho B \\ \vec{\rho} = \mathcal{L} \vec{\rho} where A and B are arbitrary matrices Args: probability: The probability/ relative amplitude with which the dephasing occurs, probability needs to be smaller than 1/2 **kwargs: Additional keyword arguments Returns: np.ndarray """ sqmp = np.sqrt(1 - probability) matrix = np.zeros((16, 16), dtype=np.complex) matrix = np.array([[1, 0, 0, probability], [0, sqmp, 0, 0], [0, 0, sqmp, 0], [0, 0, 0, 1 - probability]], dtype=np.complex) return matrix class mixTwoQubitDepolarising(_PYQUEST): r"""Two qubit depolarisation error Apply any tensor product of two operators :math:`U` :math:`\sigma^x`, :math:`\sigma^y` and :math:`\sigma^z` to two qubits q1 and q2 with an evenly distributed probability p` .. math:: \rho &= (1-p) \rho + \frac{p}{15} \sum_{A, B \in \{ I, \sigma^x, \sigma^y, \sigma^z\}} A_{q1}B_{q2} \rho B_{q2}A_{q1} \\ \rho &= \mathcal{K} \rho \mathcal{K} Args: qureg: a qureg containing a density matrix qubit1: The first qubit dephasing qubit2: The second qubit dephasing probability: The probability/ relative amplitude with which the depolarisation occurs. Needs to be smaller than :math:`\frac{15}{16}` """ def call_interactive(self, qureg: tqureg, qubit1: int, qubit2: int, probability: float) -> None: r"""Interactive call of PyQuest-cffi Args: qureg: a qureg containing a density matrix qubit1: The first qubit dephasing qubit2: The second qubit dephasing probability: The probability/ relative amplitude with which the depolarisation occurs. Needs to be smaller than :math:`\frac{15}{16}` Raises: RuntimeError: Probability of twoQubitDepolariseErrors needs to be smaller that 15/16 RuntimeError: Qureg has to be a density matrix qureg but wavefunction qureg was used """ if probability > 15 / 16: raise RuntimeError( "Probability of twoQubitDepolariseErrors needs to be smaller that 15/16") if qureg.isDensityMatrix: quest.mixTwoQubitDepolarising(qureg, qubit1, qubit2, probability) else: raise RuntimeError("Qureg has to be a density matrix qureg but " + "wavefunction qureg was used") def superoperator_matrix(self, probability: float, **kwargs) -> None: r"""The definition of the superoperator acting on the density matrix written as a vector .. math:: \rho = A \rho B \\ \vec{\rho} = \mathcal{L} \vec{\rho} where A and B are arbitrary matrices Args: probability: The probability/ relative amplitude with which the dephasing occurs, probability needs to be smaller than 1/2 **kwargs: Additional keyword arguments Raises: NotImplementedError: not implemented """ raise NotImplementedError() class mixTwoQubitDephasing(_PYQUEST): r"""Two qubit dephasing error Apply the dephasing :math:`\sigma^z` operator to two qubits q1 and q2 with probability p Can also be expressed as a Kraus operator :math:`\mathcal{K}` .. math:: \rho &= (1-p) \rho + \frac{p}{3} \left( \sigma^z_{q1} \rho \sigma^z_{q1} + \sigma^z_{q2} \rho \sigma^z_{q2} + \sigma^z_{q1}\sigma^z_{q2} \rho \sigma^z_{q2} \sigma^z_{q1} \right)\\ \rho &= \mathcal{K} \rho \mathcal{K} Args: qureg: a qureg containing a density matrix qubit1: The first qubit dephasing qubit2: The second qubit dephasing probability: The probability/ relative amplitude with which the dephasing occurs, probability needs to be smaller than 3/4 """ def call_interactive(self, qureg: tqureg, qubit1: int, qubit2: int, probability: float) -> None: r"""Interactive call of PyQuest-cffi Args: qureg: a qureg containing a density matrix qubit1: The first qubit dephasing qubit2: The second qubit dephasing probability: The probability/ relative amplitude with which the dephasing occurs, probability needs to be smaller than 3/4 Raises: RuntimeError: Probability of twoQubitDepolariseErrors needs to be smaller that 3/4 RuntimeError: Qureg has to be a density matrix qureg but wavefunction qureg was used """ if probability > 3 / 4: raise RuntimeError( "Probability of twoQubitDepolariseErrors needs to be smaller that 3/4") if qureg.isDensityMatrix: quest.mixTwoQubitDephasing(qureg, qubit1, qubit2, probability) else: raise RuntimeError("Qureg has to be a density matrix qureg but " + "wavefunction qureg was used") def Kraus_matrices(self, probability: float, **kwargs ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: r"""The definition of the Kraus Operator as a matrix Args: probability: The probability/ relative amplitude with which the dephasing occurs, probability needs to be smaller than 1/2 **kwargs: Additional keyword arguments Returns: Tuple[np.ndarray] """ sqp = np.sqrt(probability / 3) sqmp = np.sqrt(1 - probability) residual = np.array([[sqmp, 0, 0, 0], [0, sqmp, 0, 0], [0, 0, sqmp, 0], [0, 0, 0, sqmp]], dtype=np.complex) dephasing1 = np.array([[sqp, 0, 0, 0], [0, 0, sqp, 0], [0, 0, -sqp, 0], [0, 0, 0, -sqp]], dtype=np.complex) dephasing2 = np.array([[sqp, 0, 0, 0], [0, 0, -sqp, 0], [0, 0, sqp, 0], [0, 0, 0, -sqp]], dtype=np.complex) dephasing3 = np.array([[-sqp, 0, 0, 0], [0, 0, sqp, 0], [0, 0, sqp, 0], [0, 0, 0, -sqp]], dtype=np.complex) return (residual, dephasing1, dephasing2, dephasing3) def superoperator_matrix(self, probability: float, **kwargs) -> np.ndarray: r"""The definition of the superoperator acting on the density matrix written as a vector .. math:: \rho = A \rho B \\ \vec{\rho} = \mathcal{L} \vec{\rho} where A and B are arbitrary matrices Args: probability: The probability/ relative amplitude with which the dephasing occurs, probability needs to be smaller than 1/2 **kwargs: Additional keyword arguments Returns: np.ndarray Raises: NotImplementedError: not implemented """ raise NotImplementedError() matrix = np.zeros((16, 16), dtype=np.complex) for ci in range(0, 16): matrix[ci, ci] = 1 if (ci % 4) == 1 else 1 - 2 * (probability) return matrix class applyOneQubitDephaseError(mixDephasing): r"""One Qubit Dephasing - deprecated""" def __init__(self, *args, **kwargs) -> None: r"""Initialisation Args: *args: Arguments **kwargs: Additional keyword arguments """ warnings.warn( "applyOneQubitDephaseError will be removed in future versions, use mixDephasing", DeprecationWarning) super().__init__(*args, **kwargs) class applyOneQubitDepolariseError(mixDepolarising): r"""One Qubit Depolarisation - deprecated""" def __init__(self, *args, **kwargs) -> None: r"""Initialisation Args: *args: Arguments **kwargs: Additional keyword arguments """ warnings.warn( "applyOneQubitDepolariseError will be removed in future versions, use mixDepolarising", DeprecationWarning) super().__init__(*args, **kwargs) class applyOneQubitDampingError(mixDamping): r"""One Qubit Damping - deprecated""" def __init__(self, *args, **kwargs) -> None: r"""Initialisation Args: *args: Arguments **kwargs: Additional keyword arguments """ warnings.warn( "applyOneQubitDampingError will be removed in future versions, use mixDamping", DeprecationWarning) super().__init__(*args, **kwargs) class applyTwoQubitDephaseError(mixTwoQubitDephasing): r"""Two Qubit Dephasing - deprecated""" def __init__(self, *args, **kwargs) -> None: r"""Initialisation Args: *args: Arguments **kwargs: Additional keyword arguments """ warnings.warn( "applyTwoQubitDephaseError will be removed in future versions," + " use mixTwoQubitDephasing", DeprecationWarning) super().__init__(*args, **kwargs) class applyTwoQubitDepolariseError(mixTwoQubitDepolarising): r"""Two Qubit Depolarisation - deprecated""" def __init__(self, *args, **kwargs) -> None: r"""Initialisation Args: *args: Arguments **kwargs: Additional keyword arguments """ warnings.warn( "applyTwoQubitDepolariseError will be removed in future versions," + " use mixTwoQubitDepolarising", DeprecationWarning) super().__init__(*args, **kwargs) class mixMultiQubitKrausMap(_PYQUEST): r"""Error affecting multiple qubits An error acting on multiple qubtis simultaneously is defined by a set of Kraus operators Args: qureg: a qureg containing a density matrix qubits: The qubits the Kraus operators are acting on operators: The Kraus operators """ def call_interactive(self, qureg: tqureg, qubits: Sequence[int], operators: Sequence[np.ndarray], ) -> None: r"""Interactive call of PyQuest-cffi Args: qureg: a qureg containing a density matrix qubits: The qubits the Kraus operators are acting on operators: The Kraus operators Raises: RuntimeError: Number of target qubits and dimension of Kraus operators mismatch RuntimeError: Not a valid Kraus map """ for op in operators: if 2**len(qubits) != op.shape[0] or 2**len(qubits) != op.shape[1]: raise RuntimeError("Number of target qubits" + " and dimension of Kraus operators mismatch") operator_sum = np.sum([op.conjugate().T @ op for op in operators], axis=0) if not np.array_equal(operator_sum,
np.eye(operators[0].shape[0])
numpy.eye
import os import re import logging import numpy as np import struct import binascii import math from MiscLibs.common_functions import nans class RtbRowe(object): """ Class to read data from RTB files Single file to read in RTB data, then create an list of objects. The lists will contain all the data from the file. This file was specifically created to work in QRevPy to decode RTI data and follow QRevPy's data format. """ # Prevent Magic Numbers HEADER_SIZE = 32 # Header size in bytes CHECKSUM_SIZE = 4 # Checksum size in bytes MAX_DATASETS = 20 # Maximum number of datasets in an ensemble BYTES_INT32 = 4 # Bytes in Int32 BYTES_FLOAT = 4 # Bytes in Float NUM_DATASET_HEADER_ELEMENTS = 6 # Number of elements in dataset header BAD_VEL = 88.888 # RTB Bad Velocity def __init__(self, file_path: str): """ Constructor initializing instance variables. :param file_path: Full Path of RTB file to be read """ # File path self.file_name = file_path # Count the number of ensembles in the file to initialize the np.array self.num_ens, self.num_beams, self.num_bins = self.get_file_info(file_path=file_path) # List of all the ensemble data decoded # Instrument Specific data self.Inst = Inst(num_ens=self.num_ens) # ADCP Configuration values self.Cfg = Cfg(num_ens=self.num_ens) # ADCP Sensors like temp and compass self.Sensor = Sensor(num_ens=self.num_ens) # Water velocity data and quality self.Wt = Wt(num_ens=self.num_ens, num_beams=self.num_beams, num_bins=self.num_bins) # Range Tracking Data self.Rt = RT(num_ens=self.num_ens, num_beams=self.num_beams) # Bottom Track Data self.Bt = BT(num_ens=self.num_ens, num_beams=self.num_beams) # NMEA data self.Nmea = Nmea(num_ens=self.num_ens) # Water Gage Data self.Gage = Gage(num_ens=self.num_ens) self.Gps = Gps(num_ens=self.num_ens) self.Gps2 = Gps2(num_ens=self.num_ens) # Surface velocity data self.Surface = Surface(num_ens=self.num_ens, num_beams=self.num_beams, max_surface_bins=0) # TODO: NOT USED RIGHT NOW self.AutoMode = [] # River Bottom Track data self.River_BT = RiverBT(num_ens=self.num_ens, num_subsystems=10) # TODO: NOT SET CORRECTLY, NEED TO READ IN IN CHECK # Keep track of ensemble index # This is used only for 3 or 4 beam ensembles # Vertical beams are merged with 3 or 4 beam ensemble self.ens_index = 0 # Read in the given file path self.rtb_read(file_path=file_path) @staticmethod def count_ensembles(file_path: str): """ Get the file information like the number of ensembles in the file. """ # RTB ensemble delimiter delimiter = b'\x80' * 16 # Block size to read in data # BLOCK_SIZE = 4096 block_size = 4096 # Keep count of the number of ensembles found ens_count = 0 # Search for the number of ensembles by looking for the delimiter # Check to ensure file exists if os.path.exists(file_path): with open(file_path, "rb") as f: data = f.read(block_size) # Read in data # Verify data was found while data: # Check for the delimiter if delimiter in data: ens_count += 1 # Read the next batch of data data = f.read(block_size) return ens_count def get_file_info(self, file_path: str): """ Get the file information like the number of ensembles, number of beams and number of bins. This only counts 3 or 4 beam ensembles. Vertical beams will be merged with 4 beam ensembles. :param file_path File path to inspect. :return NumEnsembles, NumBeams, NumBins """ # RTB ensemble delimiter delimiter = b'\x80' * 16 # Block size to read in data block_size = 4096 # Create a buffer buff = bytes() # Keep count of the number of ensembles found ens_count = 0 num_beams = 0 num_bins = 0 # Search for the number of ensembles by looking for the delimiter # Check to ensure file exists if os.path.exists(file_path): with open(file_path, "rb") as f: data = f.read(block_size) # Read in data # Verify data was found while data: # Accumulate the buffer buff += data # Check for the delimiter if delimiter in buff: # If delimiter found, split at the delimiter to get the remaining buffer data chunks = buff.split(delimiter) # Put the remaining data back in the buffer buff = chunks.pop() # Take out the ens data for chunk in chunks: # Process the binary ensemble data # Verify the ENS data is good # This will check that all the data is there and the checksum is good if self.verify_ens_data(delimiter + chunk): # Get the ensemble info bin_count, beams_count = self.get_ens_info(delimiter + chunk) # Verify we have 3 or 4 beam data ensemble # Vertical beam is not counted and is merged with 4 beam ensembles if beams_count > 2: ens_count += 1 # Set the largest beam and bin number num_beams = max(beams_count, num_beams) num_bins = max(bin_count, num_bins) # Read the next batch of data data = f.read(block_size) # Process whatever is remaining in the buffer # Verify the ENS data is good # This will check that all the data is there and the checksum is good if self.verify_ens_data(delimiter + buff): # Get the ensemble info bin_count, beams_count = self.get_ens_info(delimiter + buff) # Verify we have 3 or 4 beam data ensemble # Vertical beam is not counted and is merged with 4 beam ensembles if beams_count > 2: ens_count += 1 # Set the largest beam and bin number num_beams = max(beams_count, num_beams) num_bins = max(bin_count, num_bins) return ens_count, num_beams, num_bins def get_ens_info(self, ens_bytes: list): """ Decode the datasets to an ensemble to get the general information about the ensemble. This includes the number of beams and bins. Use verify_ens_data if you are using this as a static method to verify the data is correct. :param ens_bytes: Ensemble binary data. Decode the dataset. :return: Return number of beam and number of bins. """ packet_pointer = self.HEADER_SIZE ens_len = len(ens_bytes) num_elements = 0 element_multiplier = 0 # Decode the ensemble datasets # Limit the number of attempts to look for new datasets for x in range(self.MAX_DATASETS): # Check if we are at the end of the payload if packet_pointer >= ens_len - RtbRowe.CHECKSUM_SIZE - RtbRowe.HEADER_SIZE: break # Get the dataset info # ds_type = RtbRowe.get_int32(packet_pointer + (RtbRowe.BYTES_INT32 * 0), RtbRowe.BYTES_INT32, ens_bytes) num_elements = RtbRowe.get_int32(packet_pointer + (RtbRowe.BYTES_INT32 * 1), RtbRowe.BYTES_INT32, ens_bytes) element_multiplier = RtbRowe.get_int32(packet_pointer + (RtbRowe.BYTES_INT32 * 2), RtbRowe.BYTES_INT32, ens_bytes) # image = RtbRowe.get_int32(packet_pointer + (RtbRowe.BYTES_INT32 * 3), RtbRowe.BYTES_INT32, ens_bytes) # name_len = RtbRowe.get_int32(packet_pointer + (RtbRowe.BYTES_INT32 * 4), RtbRowe.BYTES_INT32, ens_bytes) name = str(ens_bytes[packet_pointer + (RtbRowe.BYTES_INT32 * 5):packet_pointer + (RtbRowe.BYTES_INT32 * 5) + 8], 'UTF-8') # Beam velocity will contain all the information we need if "E000001" in name: # Ensure this is not vertical beam data if element_multiplier > 1: # Return the number bins and number of beams return num_elements, element_multiplier return num_elements, element_multiplier def rtb_read(self, file_path: str): """ Reads the binary RTB file and assigns values to object instance variables. :param file_path: Full file path """ # RTB ensemble delimiter # DELIMITER = b'\x80' * 16 delimiter = b'\x80' * 16 # Block size to read in data block_size = 4096 # Get the total file size to keep track of total bytes read and show progress # file_size = os.path.getsize(file_path) bytes_read = 0 # Create a buffer buff = bytes() # Assign default values # n_velocities = 4 # max_surface_bins = 5 # Check to ensure file exists if os.path.exists(file_path): # file_info = os.path.getsize(file_path) with open(file_path, "rb") as f: data = f.read(block_size) # Read in data # Keep track of bytes read # bytes_read += block_size # self.file_progress(bytes_read, file_size, fullname) # Verify data was found while data: # Accumulate the buffer buff += data # Check for the delimiter if delimiter in buff: # If delimiter found, split at the delimiter to get the remaining buffer data chunks = buff.split(delimiter) # Put the remaining data back in the buffer buff = chunks.pop() # Take out the ens data for chunk in chunks: # Process the binary ensemble data self.decode_ens(delimiter + chunk) # Read the next batch of data data = f.read(block_size) # Keep track of bytes read bytes_read += block_size # self.file_progress(bytes_read, file_size, ens_file_path) # self.file_progress(block_size, file_size, fullname) # Process whatever is remaining in the buffer self.decode_ens(delimiter + buff) # self.Gps2.corr_qual = np.array(self.Gps2.corr_qual) # self.Gps2.lat_deg = np.array(self.Gps2.lat_deg) def decode_ens(self, ens_bytes: list): """ Attempt to decode the ensemble. This will verify the checksum passes. If the checksum is good, then decode the data. When the data is decoded, automatically add it to list of ensembles. :param ens_bytes: Ensemble byte array to decode. :return """ # Verify the ENS data is good # This will check that all the data is there and the checksum is good if self.verify_ens_data(ens_bytes): # Decode the ens binary data logging.debug("Decoding binary data to ensemble: " + str(len(ens_bytes))) # Decode the data self.decode_data_sets(ens_bytes) def verify_ens_data(self, ens_bytes: list, ens_start: int = 0): """ Get the ensemble number and the ensemble size. Verify we have all the ensemble bytes in the buffer by comparing aginst the ensemble size. Then check the checksum and verify it is correct. :param ens_bytes: Ensemble binary data. :param ens_start: Start location in the ens_data :return True if the ensemble is good and checksum passes. """ try: # Ensemble Length ens_len = len(ens_bytes) # Verify at least the minimum number of bytes are available to verify the ensemble if ens_len <= self.HEADER_SIZE + self.CHECKSUM_SIZE: return False # Check Ensemble number ens_num = struct.unpack("I", ens_bytes[ens_start + 16:ens_start + 20]) # Check ensemble size payload_size = struct.unpack("I", ens_bytes[ens_start + 24:ens_start + 28]) # Ensure the entire ensemble is in the buffer if ens_len >= ens_start + self.HEADER_SIZE + payload_size[0] + self.CHECKSUM_SIZE: # Check checksum checksum_loc = ens_start + self.HEADER_SIZE + payload_size[0] checksum = struct.unpack("I", ens_bytes[checksum_loc:checksum_loc + self.CHECKSUM_SIZE]) # Calculate Checksum # Use only the payload for the checksum ens = ens_bytes[ens_start + self.HEADER_SIZE:ens_start + self.HEADER_SIZE + payload_size[0]] calc_checksum = binascii.crc_hqx(ens, 0) # Verify checksum if checksum[0] == calc_checksum: logging.debug(ens_num[0]) return True else: logging.warning("Ensemble fails checksum. {:#04x} {:#04x}".format(checksum[0], calc_checksum)) return False else: logging.warning("Incomplete ensemble.") return False except Exception as e: logging.error("Error verifying Ensemble. " + str(e)) return False # return False def decode_data_sets(self, ens_bytes: list): """ Decode the datasets to an ensemble. Use verify_ens_data if you are using this as a static method to verify the data is correct. :param ens_bytes: Ensemble binary data. Decode the dataset. :return: Return the decoded ensemble. """ packet_pointer = self.HEADER_SIZE ens_len = len(ens_bytes) # Flag if BT data found # bt_data_found = False # bt_adcp3_data_found = False # ancillary_adcp3_found = False # Flag if this ensemble is vertical beam ensemble is_vert_ens = False # Decode the ensemble datasets # Limit the number of attempts to look for new datasets for x in range(self.MAX_DATASETS): # Check if we are at the end of the payload if packet_pointer >= ens_len - RtbRowe.CHECKSUM_SIZE - RtbRowe.HEADER_SIZE: break # Get the dataset info ds_type = RtbRowe.get_int32(packet_pointer + (RtbRowe.BYTES_INT32 * 0), RtbRowe.BYTES_INT32, ens_bytes) num_elements = RtbRowe.get_int32(packet_pointer + (RtbRowe.BYTES_INT32 * 1), RtbRowe.BYTES_INT32, ens_bytes) element_multiplier = RtbRowe.get_int32(packet_pointer + (RtbRowe.BYTES_INT32 * 2), RtbRowe.BYTES_INT32, ens_bytes) # image = RtbRowe.get_int32(packet_pointer + (RtbRowe.BYTES_INT32 * 3), RtbRowe.BYTES_INT32, ens_bytes) name_len = RtbRowe.get_int32(packet_pointer + (RtbRowe.BYTES_INT32 * 4), RtbRowe.BYTES_INT32, ens_bytes) name = str(ens_bytes[packet_pointer + (RtbRowe.BYTES_INT32 * 5):packet_pointer + (RtbRowe.BYTES_INT32 * 5) + 8], 'UTF-8') # Calculate the dataset size data_set_size = RtbRowe.get_data_set_size(ds_type, name_len, num_elements, element_multiplier) # Beam Velocity if "E000001" in name: logging.debug(name) # Test if this ensemble is a vertical beam if element_multiplier == 1: is_vert_ens = True # Do nothing else for vertical beam else: self.Wt.decode_vel(ens_bytes=ens_bytes[packet_pointer:packet_pointer + data_set_size], ens_index=self.ens_index, num_elements=num_elements, element_multiplier=element_multiplier, name_len=name_len) # Instrument Velocity if "E000002" in name: logging.debug(name) # Test if this ensemble is a vertical beam if element_multiplier == 1: is_vert_ens = True # Do nothing else for vertical beam else: self.Wt.decode_instr_vel(ens_bytes=ens_bytes[packet_pointer:packet_pointer + data_set_size], ens_index=self.ens_index, num_elements=num_elements, element_multiplier=element_multiplier, name_len=name_len) # Earth Velocity if "E000003" in name: logging.debug(name) # Test if this ensemble is a vertical beam if element_multiplier == 1: is_vert_ens = True # Do nothing else for vertical beam else: self.Wt.decode_earth_vel(ens_bytes=ens_bytes[packet_pointer:packet_pointer + data_set_size], ens_index=self.ens_index, num_elements=num_elements, element_multiplier=element_multiplier, name_len=name_len) # Amplitude if "E000004" in name: logging.debug(name) # Check for vertical beam data if element_multiplier == 1: is_vert_ens = True # Do nothing else for vertical beam else: self.Wt.decode_rssi(ens_bytes=ens_bytes[packet_pointer:packet_pointer+data_set_size], ens_index=self.ens_index, num_elements=num_elements, element_multiplier=element_multiplier, name_len=name_len) # Correlation if "E000005" in name: logging.debug(name) # num_repeats = None # if (len(self.Cfg.wp_repeat_n) > self.ens_index-1 > 0 and # not np.isnan(self.Cfg.wp_repeat_n[self.ens_index-1])): # num_repeats = self.Cfg.wp_repeat_n[self.ens_index-1] # Check for vertical beam data if element_multiplier < 2: is_vert_ens = True # Do nothing else for vertical beam else: self.Wt.decode_corr(ens_bytes=ens_bytes[packet_pointer:packet_pointer+data_set_size], ens_index=self.ens_index, num_elements=num_elements, element_multiplier=element_multiplier, # num_repeats=num_repeats, name_len=name_len) # Good Beam if "E000006" in name: logging.debug(name) # Get the number of pings used in the ensemble # pings_per_ens = 1 # if len(self.Cfg.wp) > self.ens_index-1 > 0 and not np.isnan(self.Cfg.wp[self.ens_index-1]): # pings_per_ens = self.Cfg.wp[self.ens_index-1] # Check if vertical beam data if element_multiplier < 2: is_vert_ens = True # Do nothing else for vertical beam else: self.Wt.decode_pgb(ens_bytes=ens_bytes[packet_pointer:packet_pointer+data_set_size], ens_index=self.ens_index, num_elements=num_elements, element_multiplier=element_multiplier, # pings_per_ens=pings_per_ens, name_len=name_len) # Good Earth if "E000007" in name: logging.debug(name) # Get the number of pings used in the ensemble # pings_per_ens = 1 # if len(self.Cfg.wp) > self.ens_index-1 > 0 and not np.isnan(self.Cfg.wp[self.ens_index-1]): # pings_per_ens = self.Cfg.wp[self.ens_index-1] # Test if this ensemble is a vertical beam if element_multiplier < 2: is_vert_ens = True # Do nothing else for vertical beam else: self.Wt.decode_pg_earth(ens_bytes=ens_bytes[packet_pointer:packet_pointer+data_set_size], ens_index=self.ens_index, num_elements=num_elements, element_multiplier=element_multiplier, # pings_per_ens=pings_per_ens, name_len=name_len) # Ensemble Data if "E000008" in name: logging.debug(name) # This should have already been flagged if the data is vertical # from the velocity, amplitude or correlation data # If it is vertical beam data, do not add the data if not is_vert_ens: self.Cfg.decode_ensemble_data(ens_bytes=ens_bytes[packet_pointer:packet_pointer+data_set_size], ens_index=self.ens_index, name_len=name_len) self.Inst.decode_ensemble_data(ens_bytes=ens_bytes[packet_pointer:packet_pointer+data_set_size], ens_index=self.ens_index, name_len=name_len) self.Sensor.decode_ensemble_data(ens_bytes=ens_bytes[packet_pointer:packet_pointer+data_set_size], ens_index=self.ens_index, name_len=name_len) # Ancillary Data if "E000009" in name: logging.debug(name) # This should have already been flagged if the data is vertical # from the velocity, amplitude or correlation data # If it is vertical beam data, do not add the data if not is_vert_ens: # Configuration data self.Cfg.decode_ancillary_data(ens_bytes=ens_bytes[packet_pointer:packet_pointer+data_set_size], ens_index=self.ens_index, name_len=name_len) # Sensor data self.Sensor.decode_ancillary_data(ens_bytes=ens_bytes[packet_pointer:packet_pointer+data_set_size], ens_index=self.ens_index, name_len=name_len) # New ADCP3 Hardware includes this data # There are additional values at the end if num_elements > 19: self.Sensor.decode_ancillary_adcp3_data( ens_bytes=ens_bytes[packet_pointer:packet_pointer+data_set_size], ens_index=self.ens_index, name_len=name_len) self.Cfg.decode_ancillary_adcp3_data( ens_bytes=ens_bytes[packet_pointer:packet_pointer+data_set_size], ens_index=self.ens_index, name_len=name_len) # Bottom Track if "E000010" in name: logging.debug(name) # This should have already been flagged if the data is vertical # from the velocity, amplitude or correlation data # If it is vertical beam data, do not add the data if not is_vert_ens: # Populate Bottom Track data self.Bt.decode(ens_bytes=ens_bytes[packet_pointer:packet_pointer+data_set_size], ens_index=self.ens_index, name_len=name_len) # Populate Config data self.Cfg.decode_bottom_track_data(ens_bytes=ens_bytes[packet_pointer:packet_pointer+data_set_size], ens_index=self.ens_index, name_len=name_len) # Populate Sensor data self.Sensor.decode_bottom_track_data( ens_bytes=ens_bytes[packet_pointer:packet_pointer+data_set_size], ens_index=self.ens_index, name_len=name_len) # Check if ADCP 3 data is available # Number of elements. 74 for 4 Beam system, 59 for 3 beam, 29 for 1 beam if num_elements > 74: self.Sensor.decode_bottom_track_adcp3_data( ens_bytes=ens_bytes[packet_pointer:packet_pointer+data_set_size], ens_index=self.ens_index, name_len=name_len) # NMEA data if "E000011" in name: logging.debug(name) # This should have already been flagged if the data is vertical # from the velocity, amplitude or correlation data # If it is vertical beam data, do not add the data if not is_vert_ens: self.Nmea.decode(ens_bytes=ens_bytes[packet_pointer:packet_pointer+data_set_size], ens_index=self.ens_index, name_len=name_len) self.Gps2.decode(ens_bytes=ens_bytes[packet_pointer:packet_pointer + data_set_size], ens_index=self.ens_index, # num_ens=self.num_ens, name_len=name_len) self.Gps.decode(ens_bytes=ens_bytes[packet_pointer:packet_pointer + data_set_size], ens_index=self.ens_index, # num_ens=self.num_ens, name_len=name_len) # System Setup if "E000014" in name: logging.debug(name) # This should have already been flagged if the data is vertical # from the velocity, amplitude or correlation data # If it is vertical beam data, do not add the data if not is_vert_ens: # Configuration data # Check if the Cfg is already created from other dataset self.Cfg.decode_systemsetup_data(ens_bytes=ens_bytes[packet_pointer:packet_pointer + data_set_size], ens_index=self.ens_index, name_len=name_len) self.Sensor.decode_systemsetup_data( ens_bytes=ens_bytes[packet_pointer:packet_pointer + data_set_size], ens_index=self.ens_index, name_len=name_len) self.Inst.decode_systemsetup_data( ens_bytes=ens_bytes[packet_pointer:packet_pointer + data_set_size], ens_index=self.ens_index, name_len=name_len) # Range Tracking if "E000015" in name: logging.debug(name) # This should have already been flagged if the data is vertical # from the velocity, amplitude or correlation data # If it is vertical beam data, do not add the data if is_vert_ens: # Vertical beam data # Add the vertical beam data to the previous ensemble if self.ens_index-1 >= 0: self.Sensor.decode_vert_rt(ens_bytes=ens_bytes[packet_pointer:packet_pointer + data_set_size], ens_index=self.ens_index-1, name_len=name_len) else: self.Rt.decode(ens_bytes=ens_bytes[packet_pointer:packet_pointer + data_set_size], ens_index=self.ens_index, name_len=name_len) if "E000016" in name: logging.debug(name) # This should have already been flagged if the data is vertical # from the velocity, amplitude or correlation data # If it is vertical beam data, do not add the data if not is_vert_ens: self.Gage.decode_data(ens_bytes=ens_bytes[packet_pointer:packet_pointer + data_set_size], ens_index=self.ens_index, name_len=name_len) if "R000001" in name: logging.debug(name) # This should have already been flagged if the data is vertical # from the velocity, amplitude or correlation data # If it is vertical beam data, do not add the data if not is_vert_ens: self.River_BT.decode_data(ens_bytes=ens_bytes[packet_pointer:packet_pointer + data_set_size], ens_index=self.ens_index, name_len=name_len) if "R000002" in name: logging.debug(name) # RiverTimeStamp if "R000003" in name: logging.debug(name) # RiverNmea if "R000004" in name: logging.debug(name) # RiverBThump if "R000005" in name: logging.debug(name) # RiverStationID if "R000006" in name: logging.debug(name) # RiverTransectID # Move to the next dataset packet_pointer += data_set_size # Increment the ensemble index if not a vertical beam if not is_vert_ens: self.ens_index += 1 @staticmethod def get_data_set_size(ds_type: int, name_len: int, num_elements: int, element_multiplier: int): """ Get the dataset size. :param ds_type: Dataset type. (Int, float, ...) :param name_len: Length of the name. :param num_elements: Number of elements. :param element_multiplier: Element element multiplier. :return: Size of the dataset in bytes. """ # Number of bytes in the data type datatype_size = 4 if ds_type == 50: # Byte Datatype datatype_size = 1 elif ds_type == 20: # Int Datatype datatype_size = 4 elif ds_type == 10: # Float Datatype datatype_size = 4 return ((num_elements * element_multiplier) * datatype_size) + RtbRowe.get_base_data_size(name_len) @staticmethod def get_base_data_size(name_len: int): """ Get the size of the header for a dataset. :param name_len: Length of the name. :return: Dataset header size in bytes. """ return name_len + (RtbRowe.BYTES_INT32 * (RtbRowe.NUM_DATASET_HEADER_ELEMENTS - 1)) @staticmethod def is_float_close(a, b, rel_tol=1e-06, abs_tol=0.0): """ Check if the float values are the same. :param a: First float value :param b: Second float value :param rel_tol: Value within this :param abs_tol: Absolute value within this :return: """ return abs(a - b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol) @staticmethod def is_bad_velocity(vel): """ Check if the velocity given is good or bad. :param vel: Velocity value to check. :return: True if Bad Velocity. """ if vel >= RtbRowe.BAD_VEL: return True if RtbRowe.is_float_close(vel, RtbRowe.BAD_VEL): return True if vel is None: return True return False @staticmethod def get_int32(start: int, num_bytes: int, ens_bytes: list): """ Convert the bytes given into an Int32. This will look in the ens given. :param start: Start location in the ens_bytes. :param num_bytes: Number of bytes in the int32. :param ens_bytes: Buffer containing the bytearray data. :return: Int32 of the data in the buffer. """ try: return struct.unpack("i", ens_bytes[start:start + num_bytes])[0] except Exception as e: logging.error("Error creating a Int32 from bytes. " + str(e)) return 0 @staticmethod def get_float(start: int, num_bytes: int, ens: list): """ Convert the bytes given into an int32. This will look in the ens given. :param start: Start location. :param num_bytes: Number of bytes in the float. :param ens: Buffer containing the bytearray data. :return: Float of the data in the buffer. """ try: return struct.unpack("f", ens[start:start + num_bytes])[0] except Exception as e: logging.debug("Error creating a float from bytes. " + str(e)) return 0.0 @staticmethod # def nans(num_ens: int, dtype=float): def nans(shape, dtype=float): """ Create a numpy array filled with NaN @param shape: tuple Shape of array to be filled with nans @param dtype: Data Type Type of array """ empty_arr = np.empty(shape, dtype=dtype) empty_arr.fill(np.nan) return empty_arr class Wt: """ Water Profile data. Beam Velocity. Velocity data in the Beam Coordinate Transform. (Raw Velocity Data) Correlation, Amplitude and Good Beam data for data quality. """ def __init__(self, num_beams: int, num_bins: int, num_ens: int): """ :param num_beams Number of beams on the system. Not including vertical beam :param num_bins Number of bins/cells. :param num_ens Number of ensembles in file. """ self.corr = nans([num_beams, num_bins, num_ens]) # Correlation in fraction self.pergd = nans([num_beams, num_bins, num_ens]) # Percent Good in percentage self.rssi = nans([num_beams, num_bins, num_ens]) # RSSI/Amplitude in dB self.vel_beam_mps = nans([num_beams, num_bins, num_ens]) # Beam Velocity in m/s. self.vel_mps = nans([num_beams, num_bins, num_ens]) # Velocity in m/s for Qrev use self.vel_earth_mps = nans([num_beams, num_bins, num_ens]) # Earth Velocity in m/s self.pergd_earth = nans([num_beams, num_bins, num_ens]) # Percent Good in Earth data self.vel_instr_mps = nans([num_beams, num_bins, num_ens]) # Instrument Velocity in m/s def decode_vel(self, ens_bytes: list, ens_index: int, num_elements: int, element_multiplier: int, name_len: int = 8): """ Decode the ensemble data for the Beam velocity. Initialize the list of velocity data. [beam][bin] RTB is m/s RTB Bad Value is 88.888 :param ens_bytes: Byte array containing the ensemble data. :param ens_index: Ensemble Index. :param element_multiplier: Number of beams. :param num_elements; Number of bins. :param name_len: Length of the name of the dataset. """ # Determine where to start in the ensemble data packet_pointer = RtbRowe.get_base_data_size(name_len) # Initialize the array vel = np.empty(shape=[element_multiplier, num_elements]) # Create a 2D list of velocities # [beam][bin] for beam in range(element_multiplier): for bin_num in range(num_elements): vel[beam][bin_num] = RtbRowe.get_float(packet_pointer, RtbRowe.BYTES_FLOAT, ens_bytes) # Move the pointer packet_pointer += RtbRowe.BYTES_FLOAT self.vel_beam_mps[:element_multiplier, :num_elements, ens_index] = vel def decode_rssi(self, ens_bytes: list, ens_index: int, num_elements: int, element_multiplier: int, name_len: int = 8): """ Decode the ensemble data for the Amplitude data. Amplitude data which reports signal strength. Amplitude values range from 0 dB - 140 dB. Values below 25dB is considered noise. The noise floor with systems with high EMI can be as a 40dB. Initialize the list of amplitude data. [beam][bin] :param ens_bytes: Byte array containing the ensemble data. :param ens_index: Ensemble index to store the data. :param element_multiplier: Number of beams. :param num_elements; Number of bins. :param name_len: Length of the name of the dataset. """ # Determine where to start in the ensemble data packet_pointer = RtbRowe.get_base_data_size(name_len) # Initialize the array amp = np.empty(shape=[element_multiplier, num_elements], dtype=np.float) # Create a 2D list of velocities # [beam][bin] for beam in range(element_multiplier): for bin_num in range(num_elements): amp[beam][bin_num] = RtbRowe.get_float(packet_pointer, RtbRowe.BYTES_FLOAT, ens_bytes) # Move the pointer packet_pointer += RtbRowe.BYTES_FLOAT self.rssi[:element_multiplier, :num_elements, ens_index] = amp def decode_corr(self, ens_bytes: list, ens_index: int, num_elements: int, element_multiplier: int, name_len: int = 8): # Determine where to start in the ensemble data packet_pointer = RtbRowe.get_base_data_size(name_len) # Initialize the array corr = np.empty(shape=[element_multiplier, num_elements], dtype=np.float) # Create a 2D list of velocities # [beam][bin] for beam in range(element_multiplier): for bin_num in range(num_elements): corr[beam][bin_num] = RtbRowe.get_float(packet_pointer, RtbRowe.BYTES_FLOAT, ens_bytes) # Move the pointer packet_pointer += RtbRowe.BYTES_FLOAT self.corr[:element_multiplier, :num_elements, ens_index] = corr def decode_pgb(self, ens_bytes: list, ens_index: int, num_elements: int, element_multiplier: int, name_len: int = 8): # , pings_per_ens: int = 1): """ Decode the ensemble data for the Good Beam Ping data. Good Beam Pings. This give a number of pings that were used when averaging pings together. This will give a number of pings, so you will need to look at the settings to know the actual number of pings attempted. Initialize the list of Good Beam data. [beam][bin] :param ens_bytes: Byte array containing the ensemble data. :param ens_index: Ensemble Index to store the data. :param element_multiplier: Number of beams. :param num_elements; Number of bins. :param name_len: Length of the name of the dataset. # :param pings_per_ens: Number of pings in the ensemble """ # Determine where to start in the ensemble data packet_pointer = RtbRowe.get_base_data_size(name_len) # Initialize the array pings = np.empty(shape=[element_multiplier, num_elements], dtype=np.int) # Create a 2D list # [beam][bin] for beam in range(element_multiplier): for bin_num in range(num_elements): pings[beam][bin_num] = RtbRowe.get_int32(packet_pointer, RtbRowe.BYTES_INT32, ens_bytes) # Move the pointer packet_pointer += RtbRowe.BYTES_INT32 self.pergd[:element_multiplier, :num_elements, ens_index] = pings def decode_earth_vel(self, ens_bytes: list, ens_index: int, num_elements: int, element_multiplier: int, name_len: int = 8): """ Decode the ensemble data for the Earth velocity. Initialize the list of velocity data. [beam][bin] :param ens_bytes: Byte array containing the ensemble data. :param ens_index: Ensemble index in the file. :param element_multiplier: Number of beams. :param num_elements; Number of bins. :param name_len: Length of the name of the dataset. """ # Determine where to start in the ensemble data packet_pointer = RtbRowe.get_base_data_size(name_len) # Initialize the array vel = np.empty(shape=[element_multiplier, num_elements]) # Create a 2D list of velocities # [beam][bin] for beam in range(element_multiplier): for bin_num in range(num_elements): vel[beam][bin_num] = RtbRowe.get_float(packet_pointer, RtbRowe.BYTES_FLOAT, ens_bytes) # Move the pointer packet_pointer += RtbRowe.BYTES_FLOAT self.vel_earth_mps[:element_multiplier, :num_elements, ens_index] = vel self.vel_mps[:element_multiplier, :num_elements, ens_index] = vel def decode_pg_earth(self, ens_bytes: list, ens_index: int, num_elements: int, element_multiplier: int, name_len: int = 8): # , pings_per_ens: int = 1): """ Decode the ensemble data for the Good Earth Ping data. Initialize the list of Good Beam data. [beam][bin] :param ens_bytes: Byte array containing the ensemble data. :param ens_index: Ensemble index in the file. :param element_multiplier: Number of beams. :param num_elements; Number of bins. :param name_len: Length of the name of the dataset. # :param pings_per_ens: Number of pings in the ensemble """ # Determine where to start in the ensemble data packet_pointer = RtbRowe.get_base_data_size(name_len) # Initialize the array pings = np.empty(shape=[element_multiplier, num_elements], dtype=np.int) # Create a 2D list # [beam][bin] for beam in range(element_multiplier): for bin_num in range(num_elements): pings[beam][bin_num] = RtbRowe.get_int32(packet_pointer, RtbRowe.BYTES_INT32, ens_bytes) # Move the pointer packet_pointer += RtbRowe.BYTES_INT32 # Reshape the data from [beam, bin] to [bin, beam] # pings = np.reshape(pings, [num_elements, element_multiplier]) # Add the data the numpy array [:num_beams, :num_bins, ens_index] # self.pergd_earth[:element_multiplier, :num_elements, ens_index] = pings.T self.pergd_earth[:element_multiplier, :num_elements, ens_index] = pings def decode_instr_vel(self, ens_bytes: list, ens_index: int, num_elements: int, element_multiplier: int, name_len: int = 8): """ Decode the ensemble data for the Instrument velocity. Initialize the list of velocity data. [beam][bin] :param ens_bytes: Byte array containing the ensemble data. :param ens_index: Ensemble index in the file. :param element_multiplier: Number of beams. :param num_elements; Number of bins. :param name_len: Length of the name of the dataset. """ # Determine where to start in the ensemble data packet_pointer = RtbRowe.get_base_data_size(name_len) # Initialize the array vel = np.empty(shape=[element_multiplier, num_elements]) # Create a 2D list of velocities # [beam][bin] for beam in range(element_multiplier): for bin_num in range(num_elements): vel[beam][bin_num] = RtbRowe.get_float(packet_pointer, RtbRowe.BYTES_FLOAT, ens_bytes) # Move the pointer packet_pointer += RtbRowe.BYTES_FLOAT # Reshape the data from [beam, bin] to [bin, beam] # vel = np.reshape(vel, [num_elements, element_multiplier]) # Add the data the numpy array [:num_beams, :num_bins, ens_index] # self.vel_instr_mps[:element_multiplier, :num_elements, ens_index] = vel.T self.vel_instr_mps[:element_multiplier, :num_elements, ens_index] = vel class Inst: """ Instrument specific values. """ def __init__(self, num_ens: int): """ Initialize the values. """ self.firm_major = RtbRowe.nans(num_ens) # Firmware Major Number self.firm_minor = RtbRowe.nans(num_ens) # Firmware Minor Number self.firm_rev = RtbRowe.nans(num_ens) # Firmware Revision self.data_type = [''] * num_ens # Data type "Real" or "Simu" self.firm_ver = RtbRowe.nans(num_ens) # Firmware version as a string self.beam_ang = RtbRowe.nans(num_ens) # Beam Angle in degrees self.beams = RtbRowe.nans(num_ens) # Number of beams used in velocity measurement self.freq = RtbRowe.nans(num_ens) # System frequency in Khz self.pat = [''] * num_ens # Beam Pattern: Concave, Convex or n/a self.res_RDI = 0 # Reserved self.sensor_CFG = RtbRowe.nans(num_ens) # Sensor Configuration self.xducer = [''] * num_ens # Indicates if transducer is attached: 'Not Attached', # Attached, n/a self.t_matrix = np.tile([np.nan], [4, 4]) # Transformation matrix self.demod = RtbRowe.nans(num_ens) # Demodulation code def decode_ensemble_data(self, ens_bytes: list, ens_index: int, name_len: int = 8): """ Decode the ensemble data for the Instrument data. :param ens_bytes: Byte array containing the ensemble data. :param ens_index: Ensemble index. :param name_len: Length of the name of the dataset. """ # Determine where to start in the ensemble data packet_pointer = RtbRowe.get_base_data_size(name_len) self.beams[ens_index] = RtbRowe.get_int32(packet_pointer + RtbRowe.BYTES_INT32 * 2, RtbRowe.BYTES_INT32, ens_bytes) firm_rev = struct.unpack("B", ens_bytes[packet_pointer + RtbRowe.BYTES_INT32 * 21 + 0: packet_pointer + RtbRowe.BYTES_INT32 * 21 + 1])[0] firm_minor = struct.unpack("B", ens_bytes[packet_pointer + RtbRowe.BYTES_INT32 * 21 + 1: packet_pointer + RtbRowe.BYTES_INT32 * 21 + 2])[0] firm_major = struct.unpack("B", ens_bytes[packet_pointer + RtbRowe.BYTES_INT32 * 21 + 2: packet_pointer + RtbRowe.BYTES_INT32 * 21 + 3])[0] self.firm_rev[ens_index] = firm_rev self.firm_minor[ens_index] = firm_minor self.firm_major[ens_index] = firm_major self.firm_ver[ens_index] = round(firm_minor + (firm_rev/100.0), 2) # Determine the beam angle based on the subsystem type ss_code = str(ens_bytes[packet_pointer + RtbRowe.BYTES_INT32 * 21 + 3: packet_pointer + RtbRowe.BYTES_INT32 * 21 + 4], "UTF-8") if ss_code == "A" or ss_code == "B" or ss_code == "C": self.beam_ang[ens_index] = 0 else: self.beam_ang[ens_index] = 20 def decode_systemsetup_data(self, ens_bytes: list, ens_index: int, name_len: int = 8): """ Decode the system setup data for the Configuration data. :param ens_bytes: Byte array containing the ensemble data. :param ens_index: Ensemble Index. :param name_len: Length of the name of the dataset. """ # Determine where to start in the ensemble data packet_pointer = RtbRowe.get_base_data_size(name_len) # Get the frequency and convert from Hz to kHz freq = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 6, RtbRowe.BYTES_FLOAT, ens_bytes) freq_khz = freq / 1000 if 60 < freq_khz < 80: freq_khz = 75 elif 130 < freq_khz < 160: freq_khz = 150 elif 200 < freq_khz < 400: freq_khz = 300 elif 400 < freq_khz < 800: freq_khz = 600 elif 1000 < freq_khz < 1300: freq_khz = 1200 elif 1800 < freq_khz < 2500: freq_khz = 2400 # else: # freq_khz = np.nan # Set the value self.freq[ens_index] = freq_khz # Options are Concave, Convex or n/a self.pat[ens_index] = 'Concave' # Options are 'Not Attached', Attached or n/a self.xducer[ens_index] = 'Attached' # Options are 'Simu' or 'Real' self.data_type = 'Real' # Transformation matrix self.t_matrix[0] = [-1.4619, 1.4619, 0, 0] self.t_matrix[1] = [0, 0, -1.4619, 1.4619] self.t_matrix[2] = [-0.2660, -0.2660, -0.2660, -0.2660] self.t_matrix[3] = [0.25, 0.25, -0.25, -0.25] class Cfg: """ System configuration data is all the data that describes the ADCP configuration and date and time. This includes the bin size, blank and number of bins, the ensemble number, date and time. """ def __init__(self, num_ens: int): """ Initialize all the values :param num_ens: Number of ensembles. """ self.ens_num = RtbRowe.nans(num_ens) # Ensemble number # self.num_bins = RtbRowe.nans(num_ens) # Replaced with wn Number of bins self.desired_ping_count = RtbRowe.nans(num_ens) # Avg Ping Count configured in seconds # self.actual_ping_count = RtbRowe.nans(num_ens) # Replaced with wp. Avg Ping Count actually # output in seconds # self.serial_num_index = RtbRowe.nans(num_ens) # np.empty(num_ens, dtype=str) # Serial Number Index # self.serial_num_index = RtbRowe.nans(num_ens, dtype=str) # self.subsystem_code = RtbRowe.nans(num_ens, dtype=str)# SubsystemCode(Identifier of frequency and orientation) # self.subsystem_config = RtbRowe.nans(num_ens) # Subsystem Config. System allows multiple configures # of the same frequency. This identifies each configuration self.status = RtbRowe.nans(num_ens) # Status code # self.year = RtbRowe.nans(num_ens) # Year # self.month = RtbRowe.nans(num_ens) # Month # self.day = RtbRowe.nans(num_ens) # Day # self.hour = RtbRowe.nans(num_ens) # Hour # self.minute = RtbRowe.nans(num_ens) # Minute # self.second = RtbRowe.nans(num_ens) # Second # self.hsec = RtbRowe.nans(num_ens) # Hundredth Second # ADCP 3 values self.current_system = RtbRowe.nans(num_ens) self.status_2 = RtbRowe.nans(num_ens) self.burst_index = RtbRowe.nans(num_ens) self.first_ping_time = RtbRowe.nans(num_ens) # First Ping Time in seconds. self.last_ping_time = RtbRowe.nans(num_ens) # Last Ping Time in seconds. (If averaging pings, # this will be the last ping) self.salinity = RtbRowe.nans(num_ens) # Water Salinity set by the user in PPT self.speed_of_sound = RtbRowe.nans(num_ens) # Speed of Sound in m/s. self.bt_first_ping_time = RtbRowe.nans(num_ens) self.bt_last_ping_time = RtbRowe.nans(num_ens) self.bt_speed_of_sound = RtbRowe.nans(num_ens) self.bt_status = RtbRowe.nans(num_ens) self.bt_num_beams = RtbRowe.nans(num_ens) self.bt_actual_ping_count = RtbRowe.nans(num_ens) self.bt_samples_per_second = RtbRowe.nans(num_ens) # Bottom Track Samples Per Second self.bt_system_freq_hz = RtbRowe.nans(num_ens) # Bottom Track System Frequency (Hz) self.bt_cpce = RtbRowe.nans(num_ens) # Bottom Track Carrier cycles per Code Elements self.bt_nce = RtbRowe.nans(num_ens) # Bottom Track Number of Code Elements contained in a lag self.bt_repeat_n = RtbRowe.nans(num_ens) # Bottom Track Number of times the NCE is repeated in the # transmit signal self.wp_samples_per_second = RtbRowe.nans(num_ens) # Water Profile Samples per Second # self.wp_system_freq_hz = [] # Water Profile System Frequency (Hz) self.wp_cpce = RtbRowe.nans(num_ens) # Water Profile Carrier cycles per Code Elements self.wp_nce = RtbRowe.nans(num_ens) # Water Profile Number of Code Elements contained in a lag self.wp_repeat_n = RtbRowe.nans(num_ens) # Water Profile Number of times the NCE is repeated in the # transmit signal self.wp_lag_samples = RtbRowe.nans(num_ens) # Water Profile Lag Samples # self.bt_broadband = RtbRowe.nans(num_ens) # Bottom Track Broadband self.bt_lag_length = RtbRowe.nans(num_ens) # Bottom Track Pulse to Pulse Lag (m) self.bt_narrowband = RtbRowe.nans(num_ens) # Bottom Track Long Range Switch Depth (m) self.bt_beam_mux = RtbRowe.nans(num_ens) # Bottom Track Beam Multiplex # self.wp_broadband = RtbRowe.nans(num_ens) # Water Profile Mode self.lag_cm = RtbRowe.nans(num_ens) # Water Profile Lag Length self.lag_near_bottom = RtbRowe.nans(num_ens) # Water Profile Lag Near Bottom self.wp_transmit_bandwidth = RtbRowe.nans(num_ens) # Water Profile Transmit Bandwidth self.wp_receive_bandwidth = RtbRowe.nans(num_ens) # Water Profile Receive Bandwidth self.wp_beam_mux = RtbRowe.nans(num_ens) # WP Beam Mux self.ba = RtbRowe.nans(num_ens) # Bottom Track Amplitude Threshold self.bc = RtbRowe.nans(num_ens) # Bottom Track Correlation Threshold self.be_mmps = RtbRowe.nans(num_ens) # Bottom Track Error Velocity Threshold self.bg = RtbRowe.nans(num_ens) # Bottom Track Percent Good Threshold self.bm = RtbRowe.nans(num_ens) # * Bottom Track Mode self.bp = RtbRowe.nans(num_ens) # Bottom Track Number of Pings self.bx_dm = RtbRowe.nans(num_ens) # Maximum Tracking depth in decimeters self.code_reps = RtbRowe.nans(num_ens) # Number of code repetitions self.coord_sys = ['Earth'] * num_ens # Coordinate System self.cpu_ser_no = RtbRowe.nans([num_ens, 8]) # CPU Serial Number self.cq = RtbRowe.nans(num_ens) # Transmit Power self.cx = RtbRowe.nans(num_ens) # Low Latency Trigger self.dist_bin1_cm = RtbRowe.nans(num_ens) # * Distance to center of bin 1 from transducer self.ea_deg = RtbRowe.nans(num_ens) # Heading alignment self.eb_deg = RtbRowe.nans(num_ens) # Heading bias self.sensor_avail = [''] * num_ens # Sensor availability code self.ex = [''] * num_ens # Coordinate transformation codes self.ez = [''] * num_ens # Sensor codes self.head_src = [''] * num_ens # Heading sources self.lag_cm = RtbRowe.nans(num_ens) # * Lag Length in centimeter self.map_bins = [''] * num_ens # * Bin Mapping self.n_beams = RtbRowe.nans(num_ens) # * Number of velocity beams self.pitch_src = [''] * num_ens # Source of pitch data self.ref_lay_end_cell = RtbRowe.nans(num_ens) # Reference Layer end cell self.ref_lay_str_cell = RtbRowe.nans(num_ens) # Reference Layer start cell self.roll_src = [''] * num_ens # Source of roll data self.sal_src = [''] * num_ens # Salinity Source self.wm = RtbRowe.nans(num_ens) # * Water Mode self.sos_src = [''] * num_ens # Speed of Sound source self.temp_src = [''] * num_ens # Temperature Source self.tp_sec = RtbRowe.nans(num_ens) # * Time between Pings self.use_3beam = [''] * num_ens # Setting to use 3-Beam solution or not self.use_pr = [''] * num_ens # Setting to use pitch and roll or not self.wa = RtbRowe.nans(num_ens) # Water Track amplitude threshold self.wb = RtbRowe.nans(num_ens) # Water Track bandwidth threshold self.wc = RtbRowe.nans(num_ens) # Water Track correlation threshold self.we_mmps = RtbRowe.nans(num_ens) # Water Track error velocity threshold self.wf_cm = RtbRowe.nans(num_ens) # * Blank after Transmit in cm self.wg_per = RtbRowe.nans(num_ens) # Water Track percent good threshold self.wj = RtbRowe.nans(num_ens) # Receiver Gain setting self.wn = RtbRowe.nans(num_ens) # * Number of depth cells (bins) self.wp = RtbRowe.nans(num_ens) # * Number of water pings self.ws_cm = RtbRowe.nans(num_ens) # * Bin size in cm self.xdcr_dep_srs = [''] * num_ens # Salinity Source self.xmit_pulse_cm = RtbRowe.nans(num_ens) # Transmit Pulse length self.lag_near_bottom = RtbRowe.nans(num_ens) # Lag near bottom setting def decode_ensemble_data(self, ens_bytes: list, ens_index: int, name_len: int = 8): """ Decode the ensemble data for the configuration data. :param ens_bytes: Byte array containing the ensemble data. :param ens_index: Ensemble index to store the data. :param name_len: Length of the name of the dataset. """ # Determine where to start in the ensemble data packet_pointer = RtbRowe.get_base_data_size(name_len) self.ens_num[ens_index] = RtbRowe.get_int32(packet_pointer + RtbRowe.BYTES_INT32 * 0, RtbRowe.BYTES_INT32, ens_bytes) self.wn[ens_index] = RtbRowe.get_int32(packet_pointer + RtbRowe.BYTES_INT32 * 1, RtbRowe.BYTES_INT32, ens_bytes) self.n_beams[ens_index] = RtbRowe.get_int32(packet_pointer + RtbRowe.BYTES_INT32 * 2, RtbRowe.BYTES_INT32, ens_bytes) self.desired_ping_count[ens_index] = RtbRowe.get_int32(packet_pointer + RtbRowe.BYTES_INT32 * 3, RtbRowe.BYTES_INT32, ens_bytes) self.wp[ens_index] = RtbRowe.get_int32(packet_pointer + RtbRowe.BYTES_INT32 * 4, RtbRowe.BYTES_INT32, ens_bytes) self.status[ens_index] = RtbRowe.get_int32(packet_pointer + RtbRowe.BYTES_INT32 * 5, RtbRowe.BYTES_INT32, ens_bytes) # self.year.append(RtbRowe.get_int32(packet_pointer + RtbRowe.BYTES_INT32 * 6, RtbRowe.BYTES_INT32, ens_bytes)) # self.month[ens_index] = RtbRowe.get_int32(packet_pointer + RtbRowe.BYTES_INT32 * 7, RtbRowe.BYTES_INT32, # ens_bytes) # self.day[ens_index] = RtbRowe.get_int32(packet_pointer + RtbRowe.BYTES_INT32 * 8, RtbRowe.BYTES_INT32, # ens_bytes) # self.hour[ens_index] = RtbRowe.get_int32(packet_pointer + RtbRowe.BYTES_INT32 * 9, RtbRowe.BYTES_INT32, # ens_bytes) # self.minute[ens_index] = RtbRowe.get_int32(packet_pointer + RtbRowe.BYTES_INT32 * 10, RtbRowe.BYTES_INT32, # ens_bytes) # self.second[ens_index] = RtbRowe.get_int32(packet_pointer + RtbRowe.BYTES_INT32 * 11, RtbRowe.BYTES_INT32, # ens_bytes) # self.hsec[ens_index] = RtbRowe.get_int32(packet_pointer + RtbRowe.BYTES_INT32 * 12, RtbRowe.BYTES_INT32, # ens_bytes) # self.serial_num_index[ens_index] = str( # ens_bytes[packet_pointer + RtbRowe.BYTES_INT32 * 13:packet_pointer + RtbRowe.BYTES_INT32 * 21], "UTF-8") # self.subsystem_code[ens_index] = str(ens_bytes[packet_pointer + # RtbRowe.BYTES_INT32 * 21 + 3: # packet_pointer + RtbRowe.BYTES_INT32 * 21 + 4], "UTF-8") # self.subsystem_config[ens_index] = struct.unpack("B", ens_bytes[packet_pointer + # RtbRowe.BYTES_INT32 * 22 + 3:packet_pointer + # RtbRowe.BYTES_INT32 * 22 + 4])[0] # With our data format, Beam, Instrument and Earth # Are always available. The Data stored in vel_mps # will always be Earth data. self.coord_sys[ens_index] = 'Earth' def decode_ancillary_data(self, ens_bytes: list, ens_index: int, name_len: int = 8): """ Decode the ancillary data for the Configuration data. :param ens_bytes: Byte array containing the ensemble data. :param ens_index: Ensemble index to store the data. :param name_len: Length of the name of the dataset. """ # Determine where to start in the ensemble data packet_pointer = RtbRowe.get_base_data_size(name_len) self.wf_cm[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 0, RtbRowe.BYTES_FLOAT, ens_bytes) * 100.0 self.ws_cm[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 1, RtbRowe.BYTES_FLOAT, ens_bytes) * 100.0 first_ping_time = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 2, RtbRowe.BYTES_FLOAT, ens_bytes) last_ping_time = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 3, RtbRowe.BYTES_FLOAT, ens_bytes) self.first_ping_time[ens_index] = first_ping_time self.last_ping_time[ens_index] = last_ping_time self.tp_sec[ens_index] = last_ping_time - first_ping_time # If there is any value other than 0 # Then pressure sensor is available pressure = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 10, RtbRowe.BYTES_FLOAT, ens_bytes) if pressure > 0: self.use_pr = 'Yes' else: self.use_pr = 'No' # Our system will always perform bin mapping self.map_bins = 'Yes' self.dist_bin1_cm[ens_index] = self.wf_cm[ens_index] self.use_3beam = 'Yes' # Based on the data, unable to determine # which source was used for the Speed of Sound source # Could be calculated or a fixed value. # Options: 'Manual EC', 'Calculated', 'SVSS Sensor', N/a' self.sos_src = 'Calculated' # Based on the data, unable to determine # which source was used for the heading source # Could be compass, fixed value or GPS # Options: "Manual EH", 'Int. Sensor', 'N/a' self.head_src = 'Int. Sensor' # Pitch source currently only internal sensor self.pitch_src = "Int. Sensor" self.roll_src = "Int. Sensor" # Based on the data, unable to determine # which source was used for depth source. # Could be RT or pressure # Options: "Manual ES", 'Int. Sensor', 'N/a' self.xdcr_dep_srs = "Manual ES" # Based on the data, unable to determine # which source was used for temperature # Could be internal sensor or fixed value # Options: 'Manual ET', 'Int. Sensor', 'N/a' self.temp_src = 'Int. Sensor' self.salinity[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 9, RtbRowe.BYTES_FLOAT, ens_bytes) self.speed_of_sound[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 12, RtbRowe.BYTES_FLOAT, ens_bytes) def decode_ancillary_adcp3_data(self, ens_bytes: list, ens_index: int, name_len: int = 8): """ Decode the ancillary data for the Configuration data. :param ens_bytes: Byte array containing the ensemble data. :param ens_index: Ensemble index to store the data. :param name_len: Length of the name of the dataset. """ # Determine where to start in the ensemble data packet_pointer = RtbRowe.get_base_data_size(name_len) self.current_system[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 0, RtbRowe.BYTES_FLOAT, ens_bytes) self.status_2[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 1, RtbRowe.BYTES_FLOAT, ens_bytes) self.burst_index[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 2, RtbRowe.BYTES_FLOAT, ens_bytes) def decode_systemsetup_data(self, ens_bytes: list, ens_index: int, name_len: int = 8): """ Decode the system setup data for the Configuration data. :param ens_bytes: Byte array containing the ensemble data. :param ens_index: Ensemble index to store the data. :param name_len: Length of the name of the dataset. """ # Determine where to start in the ensemble data packet_pointer = RtbRowe.get_base_data_size(name_len) self.bt_samples_per_second[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 0, RtbRowe.BYTES_FLOAT, ens_bytes) self.bt_system_freq_hz[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 1, RtbRowe.BYTES_FLOAT, ens_bytes) self.bt_cpce[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 2, RtbRowe.BYTES_FLOAT, ens_bytes) self.bt_nce[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 3, RtbRowe.BYTES_FLOAT, ens_bytes) self.bt_repeat_n[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 4, RtbRowe.BYTES_FLOAT, ens_bytes) self.wp_samples_per_second[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 5, RtbRowe.BYTES_FLOAT, ens_bytes) # self.wp_system_freq_hz.append(RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 6, RtbRowe.BYTES_FLOAT, # ens_bytes)) self.wp_cpce[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 7, RtbRowe.BYTES_FLOAT, ens_bytes) self.wp_nce[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 8, RtbRowe.BYTES_FLOAT, ens_bytes) self.wp_repeat_n[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 9, RtbRowe.BYTES_FLOAT, ens_bytes) self.wp_lag_samples[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 10, RtbRowe.BYTES_FLOAT, ens_bytes) self.bm[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 13, RtbRowe.BYTES_FLOAT, ens_bytes) self.bt_lag_length[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 14, RtbRowe.BYTES_FLOAT, ens_bytes) self.bt_narrowband[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 15, RtbRowe.BYTES_FLOAT, ens_bytes) self.bt_beam_mux[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 16, RtbRowe.BYTES_FLOAT, ens_bytes) self.wm[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 17, RtbRowe.BYTES_FLOAT, ens_bytes) self.lag_cm[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 18, RtbRowe.BYTES_FLOAT, ens_bytes) * 100.0 self.wp_transmit_bandwidth[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 19, RtbRowe.BYTES_FLOAT, ens_bytes) self.wp_receive_bandwidth[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 20, RtbRowe.BYTES_FLOAT, ens_bytes) self.wp_beam_mux[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 22, RtbRowe.BYTES_FLOAT, ens_bytes) # Use the same as lag self.lag_near_bottom[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 18, RtbRowe.BYTES_FLOAT, ens_bytes) * 100.0 # Assume always a 20 degree beam angle for now beam_angle = 20 # Get the speed of sound from this ensemble or previous speed_of_sound = 1500 if not np.isnan(self.speed_of_sound[ens_index]): speed_of_sound = self.speed_of_sound[ens_index] elif ens_index-1 >= 0 and not np.isnan(self.speed_of_sound[ens_index-1]): speed_of_sound = self.speed_of_sound[ens_index-1] # Calculate lag length # and Xmit Pulse Length # sample_rate = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 5, RtbRowe.BYTES_FLOAT, ens_bytes) # lag_samples = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 10, RtbRowe.BYTES_FLOAT, ens_bytes) cpce = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 7, RtbRowe.BYTES_FLOAT, ens_bytes) nce = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 8, RtbRowe.BYTES_FLOAT, ens_bytes) repeats_n = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 9, RtbRowe.BYTES_FLOAT, ens_bytes) sys_freq_hz = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 6, RtbRowe.BYTES_FLOAT, ens_bytes) # meters_per_sample = math.cos(math.pi * (beam_angle/180.0)) * speed_of_sound / 2 / sample_rate # lag_m = lag_samples * meters_per_sample meters_per_cycle = math.cos(math.pi * (beam_angle/180.0)) * speed_of_sound / 2 / sys_freq_hz xmt_m = cpce * nce * repeats_n * meters_per_cycle self.xmit_pulse_cm[ens_index] = xmt_m * 100.0 def decode_bottom_track_data(self, ens_bytes: list, ens_index: int, name_len: int = 8): """ Decode the system Bottom Track data for the Configuration data. :param ens_bytes: Byte array containing the ensemble data. :param ens_index: Ensemble index to store the data. :param name_len: Length of the name of the dataset. """ # Determine where to start in the ensemble data packet_pointer = RtbRowe.get_base_data_size(name_len) self.bt_first_ping_time[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 0, RtbRowe.BYTES_FLOAT, ens_bytes) self.bt_last_ping_time[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 1, RtbRowe.BYTES_FLOAT, ens_bytes) self.bt_speed_of_sound[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 10, RtbRowe.BYTES_FLOAT, ens_bytes) self.bt_status[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 11, RtbRowe.BYTES_FLOAT, ens_bytes) self.bt_num_beams[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 12, RtbRowe.BYTES_FLOAT, ens_bytes) self.bt_actual_ping_count[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 13, RtbRowe.BYTES_FLOAT, ens_bytes) class Sensor: """ System sensor data is all the data from the sensors within the ADCP. This includes compass and temperature sensor. """ def __init__(self, num_ens: int): """ Initialize all the values Set the flag if using PD0 format data. This will change the scale of the pressure sensor and orientation of the roll value. :param num_ens: Number of ensembles in the file. """ self.voltage = RtbRowe.nans(num_ens) # Voltage input to ADCP self.transmit_boost_neg_volt = RtbRowe.nans(num_ens) # Transmitter Boost Negative Voltage self.raw_mag_field_strength = RtbRowe.nans(num_ens) # Raw magnetic field strength (uT) (micro Tesla) self.raw_mag_field_strength2 = RtbRowe.nans(num_ens) # Raw magnetic field strength (uT) (micro Tesla) self.raw_mag_field_strength3 = RtbRowe.nans(num_ens) # Raw magnetic field strength (uT) (micro Tesla) self.pitch_gravity_vec = RtbRowe.nans(num_ens) # Pitch Gravity Vector self.roll_gravity_vec = RtbRowe.nans(num_ens) # Roll Gravity Vector self.vertical_gravity_vec = RtbRowe.nans(num_ens) # Vertical Gravity Vector self.bt_heading = RtbRowe.nans(num_ens) self.bt_pitch = RtbRowe.nans(num_ens) self.bt_roll = RtbRowe.nans(num_ens) self.bt_water_temp = RtbRowe.nans(num_ens) self.bt_system_temp = RtbRowe.nans(num_ens) self.bt_salinity = RtbRowe.nans(num_ens) self.bt_pressure = RtbRowe.nans(num_ens) self.bt_transducer_depth = RtbRowe.nans(num_ens) # ADCP 3 Values self.hs1_temp = RtbRowe.nans(num_ens) self.hs2_temp = RtbRowe.nans(num_ens) self.rcv1_temp = RtbRowe.nans(num_ens) self.rcv2_temp = RtbRowe.nans(num_ens) self.vinf = RtbRowe.nans(num_ens) self.vg = RtbRowe.nans(num_ens) self.vt = RtbRowe.nans(num_ens) self.vtl = RtbRowe.nans(num_ens) self.d3v3 = RtbRowe.nans(num_ens) self.bt_hs1_temp = RtbRowe.nans(num_ens) self.bt_hs2_temp = RtbRowe.nans(num_ens) self.bt_rcv1_temp = RtbRowe.nans(num_ens) self.bt_rcv2_temp = RtbRowe.nans(num_ens) self.bt_vinf = RtbRowe.nans(num_ens) self.bt_vg = RtbRowe.nans(num_ens) self.bt_vt = RtbRowe.nans(num_ens) self.bt_vtl = RtbRowe.nans(num_ens) self.bt_d3v3 = RtbRowe.nans(num_ens) self.bt_sounder_range = RtbRowe.nans(num_ens) self.bt_sounder_snr = RtbRowe.nans(num_ens) self.bt_sounder_amp = RtbRowe.nans(num_ens) self.echo_sounder_depth = RtbRowe.nans(num_ens) self.ambient_temp = RtbRowe.nans(num_ens) # ADC ambient temperature self.attitude_temp = RtbRowe.nans(num_ens) # ADC attitude temperature self.attitude = RtbRowe.nans(num_ens) # ADC attitude self.bit_test = RtbRowe.nans(num_ens) # Bit Test Result self.contam_sensor = RtbRowe.nans(num_ens) # ADC contamination sensor self.date = RtbRowe.nans([num_ens, 3]) # date as int self.date_y2k = RtbRowe.nans([num_ens, 4]) # Date Y2K compatible self.date_not_y2k = RtbRowe.nans([num_ens, 3]) # Date not Y2K compatible self.error_status_word = [''] * num_ens # Error Status codes self.heading_deg = RtbRowe.nans(num_ens) # Heading to magnetic north in degrees self.heading_std_dev_deg = RtbRowe.nans(num_ens) # Standard deviation of headings for an ensemble self.mpt_msc = RtbRowe.nans([num_ens, 3]) # Minimum time prior to ping self.num = RtbRowe.nans(num_ens) # Ensemble number self.num_fact = RtbRowe.nans(num_ens) # Number fraction self.num_tot = RtbRowe.nans(num_ens) # Number total self.orient = [''] * num_ens # Orientation of ADCP self.pitch_std_dev_deg = RtbRowe.nans(num_ens) # Standard deviation of pitch for an ensemble self.pitch_deg = RtbRowe.nans(num_ens) # Pitch in degrees self.pressure_neg = RtbRowe.nans(num_ens) # ADC pressure negative self.pressure_pos = RtbRowe.nans(num_ens) # ADC pressure positive self.pressure_pascal = RtbRowe.nans(num_ens) # Pressure at transducer face in deca-pascals self.pressure_var_pascal = RtbRowe.nans(num_ens) # Pressure variance in deca-pascals self.roll_std_dev_deg = RtbRowe.nans(num_ens) # Standard deviation of roll for an ensemble self.roll_deg = RtbRowe.nans(num_ens) # Roll in degrees self.salinity_ppt = RtbRowe.nans(num_ens) # Salinity in parts per thousand PPT self.sos_mps = RtbRowe.nans(num_ens) # Speed of Sound in m/s self.temperature_deg_c = RtbRowe.nans(num_ens) # Water Temperature in degrees C self.time = RtbRowe.nans([num_ens, 4]) # Time self.time_y2k = RtbRowe.nans([num_ens, 4]) # Y2K compatible time self.xdcr_depth_dm = RtbRowe.nans(num_ens) # Transducer depth in decimeters self.xmit_current = RtbRowe.nans(num_ens) # Transmit current self.xmit_voltage = RtbRowe.nans(num_ens) # Transmit voltage self.vert_beam_eval_amp = RtbRowe.nans(num_ens) # Vertical beam amplitude self.vert_beam_RSSI_amp = RtbRowe.nans(num_ens) # Vertical beam return signal strength indicator self.vert_beam_range_m = RtbRowe.nans(num_ens) # Vertical beam range in m self.vert_beam_gain = [''] * num_ens # Vertical beam gain setting self.vert_beam_status = np.zeros(num_ens) # Vertical beam status def decode_ensemble_data(self, ens_bytes: list, ens_index: int, name_len: int = 8): """ Decode the system setup data for the Sensor data. :param ens_bytes: Byte array containing the ensemble data. :param ens_index: Ensemble index in the file. :param name_len: Length of the name of the dataset. """ # Determine where to start in the ensemble data packet_pointer = RtbRowe.get_base_data_size(name_len) year = RtbRowe.get_int32(packet_pointer + RtbRowe.BYTES_INT32 * 6, RtbRowe.BYTES_INT32, ens_bytes) month = RtbRowe.get_int32(packet_pointer + RtbRowe.BYTES_INT32 * 7, RtbRowe.BYTES_INT32, ens_bytes) day = RtbRowe.get_int32(packet_pointer + RtbRowe.BYTES_INT32 * 8, RtbRowe.BYTES_INT32, ens_bytes) hour = RtbRowe.get_int32(packet_pointer + RtbRowe.BYTES_INT32 * 9, RtbRowe.BYTES_INT32, ens_bytes) minute = RtbRowe.get_int32(packet_pointer + RtbRowe.BYTES_INT32 * 10, RtbRowe.BYTES_INT32, ens_bytes) second = RtbRowe.get_int32(packet_pointer + RtbRowe.BYTES_INT32 * 11, RtbRowe.BYTES_INT32, ens_bytes) hsec = RtbRowe.get_int32(packet_pointer + RtbRowe.BYTES_INT32 * 12, RtbRowe.BYTES_INT32, ens_bytes) ens_date = [year, month, day] ens_date_y2k = [2000, year-2000, month, day] ens_date_not_y2k = [year - 2000, month, day] ens_time = [hour, minute, second, hsec] self.date[ens_index] = ens_date self.date_not_y2k[ens_index] = ens_date_not_y2k self.date_y2k[ens_index] = ens_date_y2k self.time_y2k[ens_index] = ens_time self.time[ens_index] = ens_time def decode_systemsetup_data(self, ens_bytes: list, ens_index: int, name_len: int = 8): """ Decode the system setup data for the Sensor data. :param ens_bytes: Byte array containing the ensemble data. :param ens_index: Ensemble index in the file. :param name_len: Length of the name of the dataset. """ # Determine where to start in the ensemble data packet_pointer = RtbRowe.get_base_data_size(name_len) self.voltage[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 11, RtbRowe.BYTES_FLOAT, ens_bytes) self.xmit_voltage[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 12, RtbRowe.BYTES_FLOAT, ens_bytes) self.transmit_boost_neg_volt[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 21, RtbRowe.BYTES_FLOAT, ens_bytes) def decode_ancillary_data(self, ens_bytes: list, ens_index: int, name_len: int = 8): """ Decode the ancillary data for the Sensor data. :param ens_bytes: Byte array containing the ensemble data. :param ens_index: Ensemble index to store the data. :param name_len: Length of the name of the dataset. """ # Determine where to start in the ensemble data packet_pointer = RtbRowe.get_base_data_size(name_len) self.heading_deg[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 4, RtbRowe.BYTES_FLOAT, ens_bytes) self.pitch_deg[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 5, RtbRowe.BYTES_FLOAT, ens_bytes) self.temperature_deg_c[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 7, RtbRowe.BYTES_FLOAT, ens_bytes) self.ambient_temp[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 8, RtbRowe.BYTES_FLOAT, ens_bytes) self.salinity_ppt[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 9, RtbRowe.BYTES_FLOAT, ens_bytes) self.sos_mps[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 12, RtbRowe.BYTES_FLOAT, ens_bytes) self.raw_mag_field_strength[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 13, RtbRowe.BYTES_FLOAT, ens_bytes) self.raw_mag_field_strength2[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 14, RtbRowe.BYTES_FLOAT, ens_bytes) self.raw_mag_field_strength3[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 15, RtbRowe.BYTES_FLOAT, ens_bytes) self.pitch_gravity_vec[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 16, RtbRowe.BYTES_FLOAT, ens_bytes) self.roll_gravity_vec[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 17, RtbRowe.BYTES_FLOAT, ens_bytes) self.vertical_gravity_vec[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 18, RtbRowe.BYTES_FLOAT, ens_bytes) self.roll_deg[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 6, RtbRowe.BYTES_FLOAT, ens_bytes) self.pressure_pascal[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 10, RtbRowe.BYTES_FLOAT, ens_bytes) self.xdcr_depth_dm[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 11, RtbRowe.BYTES_FLOAT, ens_bytes) def decode_ancillary_adcp3_data(self, ens_bytes: list, ens_index: int, name_len: int = 8): """ Decode the ancillary ADCP3 data for the Sensor data. :param ens_bytes: Byte array containing the ensemble data. :param ens_index: Ensemble index in the file. :param name_len: Length of the name of the dataset. """ # Determine where to start in the ensemble data packet_pointer = RtbRowe.get_base_data_size(name_len) self.hs1_temp[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 13, RtbRowe.BYTES_FLOAT, ens_bytes) self.hs2_temp[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 14, RtbRowe.BYTES_FLOAT, ens_bytes) self.rcv1_temp[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 15, RtbRowe.BYTES_FLOAT, ens_bytes) self.rcv2_temp[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 16, RtbRowe.BYTES_FLOAT, ens_bytes) self.vinf[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 17, RtbRowe.BYTES_FLOAT, ens_bytes) self.vg[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 18, RtbRowe.BYTES_FLOAT, ens_bytes) self.vt[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 16, RtbRowe.BYTES_FLOAT, ens_bytes) self.vtl[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 17, RtbRowe.BYTES_FLOAT, ens_bytes) self.d3v3[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 18, RtbRowe.BYTES_FLOAT, ens_bytes) def decode_bottom_track_data(self, ens_bytes: list, ens_index: int, name_len: int = 8): """ Decode the bottom track data for the Sensor data. :param ens_bytes: Byte array containing the ensemble data. :param ens_index: Ensemble index in the file. :param name_len: Length of the name of the dataset. """ # Determine where to start in the ensemble data packet_pointer = RtbRowe.get_base_data_size(name_len) self.bt_heading[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 2, RtbRowe.BYTES_FLOAT, ens_bytes) self.bt_pitch[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 3, RtbRowe.BYTES_FLOAT, ens_bytes) self.bt_water_temp[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 5, RtbRowe.BYTES_FLOAT, ens_bytes) self.bt_system_temp[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 6, RtbRowe.BYTES_FLOAT, ens_bytes) self.bt_salinity[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 7, RtbRowe.BYTES_FLOAT, ens_bytes) self.bt_roll[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 4, RtbRowe.BYTES_FLOAT, ens_bytes) self.bt_pressure[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 8, RtbRowe.BYTES_FLOAT, ens_bytes) self.bt_transducer_depth[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 9, RtbRowe.BYTES_FLOAT, ens_bytes) def decode_bottom_track_adcp3_data(self, ens_bytes: list, ens_index: int, name_len: int = 8): """ Decode the bottom track ADCP3 data for the Sensor data. :param ens_bytes: Byte array containing the ensemble data. :param ens_index: Ensemble index in the file. :param name_len: Length of the name of the dataset. """ # Determine where to start in the ensemble data packet_pointer = RtbRowe.get_base_data_size(name_len) # Get the number of beams num_beams = int(RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 12, RtbRowe.BYTES_FLOAT, ens_bytes)) # 14 raw values plus 15 values for each beam data_index = 14 + (15 * num_beams) self.bt_hs1_temp[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * (data_index + 1), RtbRowe.BYTES_FLOAT, ens_bytes) self.bt_hs2_temp[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * (data_index + 2), RtbRowe.BYTES_FLOAT, ens_bytes) self.bt_rcv1_temp[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * (data_index + 3), RtbRowe.BYTES_FLOAT, ens_bytes) self.bt_rcv2_temp[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * (data_index + 4), RtbRowe.BYTES_FLOAT, ens_bytes) self.bt_vinf[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * (data_index + 5), RtbRowe.BYTES_FLOAT, ens_bytes) self.bt_vg[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * (data_index + 6), RtbRowe.BYTES_FLOAT, ens_bytes) self.bt_vt[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * (data_index + 7), RtbRowe.BYTES_FLOAT, ens_bytes) self.bt_vtl[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * (data_index + 8), RtbRowe.BYTES_FLOAT, ens_bytes) self.bt_d3v3[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * (data_index + 9), RtbRowe.BYTES_FLOAT, ens_bytes) self.bt_sounder_range[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * (data_index + 11), RtbRowe.BYTES_FLOAT, ens_bytes) self.bt_sounder_snr[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * (data_index + 12), RtbRowe.BYTES_FLOAT, ens_bytes) self.bt_sounder_amp[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * (data_index + 13), RtbRowe.BYTES_FLOAT, ens_bytes) def decode_vert_rt(self, ens_bytes: list, ens_index: int, name_len: int = 8): # Determine where to start in the ensemble data packet_pointer = RtbRowe.get_base_data_size(name_len) # Get the number of beams num_beams = int(RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 0, RtbRowe.BYTES_FLOAT, ens_bytes)) if num_beams == 1: self.vert_beam_RSSI_amp[ens_index] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 1, RtbRowe.BYTES_FLOAT, ens_bytes)) self.vert_beam_range_m[ens_index] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 2, RtbRowe.BYTES_FLOAT, ens_bytes)) self.vert_beam_eval_amp[ens_index] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 4, RtbRowe.BYTES_FLOAT, ens_bytes)) self.vert_beam_gain[ens_index] = 'L' self.vert_beam_status[ens_index] = 1 class BT: """ Bottom Tracking used to measure the depth and vessel speed (Speed over Ground). """ def __init__(self, num_ens: int, num_beams: int): """ Set the flag if using PD0 format data. If using PD0 format, then the beams will be rearranged to match PD0 beam order and the scale will change from percentage to counts. The value has to be converted from :param num_ens: Number of ensembles. :param num_beams: Number of velocity beams. """ self.num_beams = 0 self.corr = RtbRowe.nans([num_beams, num_ens]) self.depth_m = RtbRowe.nans([num_beams, num_ens]) self.eval_amp = RtbRowe.nans([num_beams, num_ens]) self.ext_depth_cm = RtbRowe.nans(num_ens) self.pergd = RtbRowe.nans([num_beams, num_ens]) self.rssi = RtbRowe.nans([num_beams, num_ens]) self.snr = RtbRowe.nans([num_beams, num_ens]) self.vel_mps = RtbRowe.nans([num_beams, num_ens]) self.instr_vel = RtbRowe.nans([num_beams, num_ens]) self.instr_good = RtbRowe.nans([num_beams, num_ens]) self.earth_vel = RtbRowe.nans([num_beams, num_ens]) self.earth_good = RtbRowe.nans([num_beams, num_ens]) self.pulse_coh_snr = RtbRowe.nans([num_beams, num_ens]) self.pulse_coh_amp = RtbRowe.nans([num_beams, num_ens]) self.pulse_coh_vel = RtbRowe.nans([num_beams, num_ens]) self.pulse_coh_noise = RtbRowe.nans([num_beams, num_ens]) self.pulse_coh_corr = RtbRowe.nans([num_beams, num_ens]) def decode(self, ens_bytes: list, ens_index: int, name_len: int = 8): """ Decode the ensemble data for the Bottom Traack data. Initialize the list of Bottom Track data. [beam] :param ens_bytes: Byte array containing the Bottom Track data. :param ens_index: Ensemble index to store the data. :param name_len: Length of the name of the dataset. """ # Determine where to start in the ensemble data packet_pointer = RtbRowe.get_base_data_size(name_len) # Get the number of beams self.num_beams = int(RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 12, RtbRowe.BYTES_FLOAT, ens_bytes)) # Get the ping count # Value stored in Cfg but needed for conversion to PD0 # bt_actual_ping_count = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 13, # RtbRowe.BYTES_FLOAT, ens_bytes) # Initialize the array snr = np.empty(shape=[self.num_beams]) depth = np.empty(shape=[self.num_beams]) amp = np.empty(shape=[self.num_beams]) corr = np.empty(shape=[self.num_beams]) beam_vel = np.empty(shape=[self.num_beams]) beam_good = np.empty(shape=[self.num_beams]) instr_vel = np.empty(shape=[self.num_beams]) instr_good = np.empty(shape=[self.num_beams]) earth_vel = np.empty(shape=[self.num_beams]) earth_good = np.empty(shape=[self.num_beams]) pulse_coh_snr = np.empty(shape=[self.num_beams]) pulse_coh_amp = np.empty(shape=[self.num_beams]) pulse_coh_vel = np.empty(shape=[self.num_beams]) pulse_coh_noise = np.empty(shape=[self.num_beams]) pulse_coh_corr = np.empty(shape=[self.num_beams]) # Index to start at for the following data index = 14 # Range Values for beam in range(self.num_beams): # Get the value value = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) # Store RTB data depth[beam] = value # Increment for the next beam index += 1 # Add the data the numpy array [:num_beams, ens_index] self.depth_m[:self.num_beams, ens_index] = depth.T # SNR values for beam in range(self.num_beams): # Get the value value = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) snr[beam] = value # Increment for the next beam index += 1 # Add the data the numpy array [:num_beams, ens_index] self.snr[:self.num_beams, ens_index] = snr.T # Amplitude values for beam in range(self.num_beams): # Get the value value = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) amp[beam] = value # Increment for the next beam index += 1 # Add the data the numpy array [:num_beams, ens_index] self.rssi[:self.num_beams, ens_index] = amp.T # Correlation values for beam in range(self.num_beams): # Get the value value = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) corr[beam] = value # Increment for the next beam index += 1 # Add the data the numpy array [:num_beams, ens_index] self.corr[:self.num_beams, ens_index] = corr.T # Beam Velocity values for beam in range(self.num_beams): # Get the value value = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) # Check for bad velocity and convert if RtbRowe.is_bad_velocity(value): value = np.nan beam_vel[beam] = value # Increment for the next beam index += 1 # Add the data the numpy array [:num_beams, ens_index] self.vel_mps[:self.num_beams, ens_index] = beam_vel.T # Beam Good Pings values for beam in range(self.num_beams): # Get the value value = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) beam_good[beam] = int(value) # Increment for the next beam index += 1 # Add the data the numpy array [:num_beams, ens_index] self.pergd[:self.num_beams, ens_index] = beam_good.T # Instrument Velocity values for beam in range(self.num_beams): # Get the value value = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) # Check for bad velocity and convert if RtbRowe.is_bad_velocity(value): value = np.nan instr_vel[beam] = value # Increment for the next beam index += 1 # Add the data the numpy array [:num_beams, ens_index] self.instr_vel[:self.num_beams, ens_index] = instr_vel.T # Instrument Good Pings values for beam in range(self.num_beams): # Get the value value = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) instr_good[beam] = int(value) # Increment for the next beam index += 1 # Add the data the numpy array [:num_beams, ens_index] self.instr_good[:self.num_beams, ens_index] = instr_good.T # Earth Velocity values for beam in range(self.num_beams): # Get the value value = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) # Check for bad velocity and convert if RtbRowe.is_bad_velocity(value): value = np.nan earth_vel[beam] = -value # Increment for the next beam index += 1 # Add the data the numpy array [:num_beams, ens_index] self.earth_vel[:self.num_beams, ens_index] = earth_vel.T self.vel_mps[:self.num_beams, ens_index] = earth_vel.T # Earth Good Pings values for beam in range(self.num_beams): # Get the value value = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) earth_good[beam] = int(value) # Increment for the next beam index += 1 # Add the data the numpy array [:num_beams, ens_index] self.earth_good[:self.num_beams, ens_index] = earth_good.T # Pulse Coherent SNR values for beam in range(self.num_beams): pulse_coh_snr[beam] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 # Add the data the numpy array [:num_beams, ens_index] self.pulse_coh_snr[:self.num_beams, ens_index] = pulse_coh_snr.T # Pulse Coherent Amplitude values for beam in range(self.num_beams): pulse_coh_amp[beam] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 # Add the data the numpy array [:num_beams, ens_index] self.pulse_coh_amp[:self.num_beams, ens_index] = pulse_coh_amp.T # Pulse Coherent Velocity values for beam in range(self.num_beams): pulse_coh_vel[beam] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 # Add the data the numpy array [:num_beams, ens_index] self.pulse_coh_vel[:self.num_beams, ens_index] = pulse_coh_vel.T # Pulse Coherent Noise values for beam in range(self.num_beams): pulse_coh_noise[beam] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 # Add the data the numpy array [:num_beams, ens_index] self.pulse_coh_noise[:self.num_beams, ens_index] = pulse_coh_noise.T # Pulse Coherent Correlation values for beam in range(self.num_beams): pulse_coh_corr[beam] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 # Add the data the numpy array [:num_beams, ens_index] self.pulse_coh_corr[:self.num_beams, ens_index] = pulse_coh_corr.T class RT: """ Range Tracking values to measure the surface when upward looking. When downward looking, values are used as an echo sounder using the profile ping. """ def __init__(self, num_ens: int, num_beams: int): """ Set the flag if using PD0 format data. If using PD0 format, then the beams will be rearranged to match PD0 beam order and the scale will change from percentage to counts. The value has to be converted from :param num_ens: Number of ensembles. :param num_beams: Number of velocity beams. """ self.num_beams = 0 self.snr = RtbRowe.nans([num_beams, num_ens]) self.depth = RtbRowe.nans([num_beams, num_ens]) self.pings = RtbRowe.nans([num_beams, num_ens]) self.amp = RtbRowe.nans([num_beams, num_ens]) self.corr = RtbRowe.nans([num_beams, num_ens]) self.beam_vel = RtbRowe.nans([num_beams, num_ens]) self.instr_vel = RtbRowe.nans([num_beams, num_ens]) self.earth_vel = RtbRowe.nans([num_beams, num_ens]) def decode(self, ens_bytes: list, ens_index: int, name_len: int = 8): """ Decode the ensemble data for the Range Tracking data. Initialize the list of Range Tracking data. [beam] :param ens_bytes: Byte array containing the ensemble data. :param ens_index: Ensemble Index. :param name_len: Length of the name of the dataset. """ # Determine where to start in the ensemble data packet_pointer = RtbRowe.get_base_data_size(name_len) # Get the number of beams self.num_beams = int(RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 0, RtbRowe.BYTES_FLOAT, ens_bytes)) # Initialize the array snr = np.empty(shape=[self.num_beams], dtype=np.float) depth = np.empty(shape=[self.num_beams], dtype=np.float) pings = np.empty(shape=[self.num_beams], dtype=np.float) amp = np.empty(shape=[self.num_beams], dtype=np.float) corr = np.empty(shape=[self.num_beams], dtype=np.float) beam_vel = np.empty(shape=[self.num_beams], dtype=np.float) instr_vel = np.empty(shape=[self.num_beams], dtype=np.float) earth_vel = np.empty(shape=[self.num_beams], dtype=np.float) if self.num_beams == 4: snr[0] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 1, RtbRowe.BYTES_FLOAT, ens_bytes)) snr[1] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 2, RtbRowe.BYTES_FLOAT, ens_bytes)) snr[2] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 3, RtbRowe.BYTES_FLOAT, ens_bytes)) snr[3] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 4, RtbRowe.BYTES_FLOAT, ens_bytes)) depth[0] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 5, RtbRowe.BYTES_FLOAT, ens_bytes)) depth[1] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 6, RtbRowe.BYTES_FLOAT, ens_bytes)) depth[2] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 7, RtbRowe.BYTES_FLOAT, ens_bytes)) depth[3] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 8, RtbRowe.BYTES_FLOAT, ens_bytes)) pings[0] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 9, RtbRowe.BYTES_FLOAT, ens_bytes)) pings[1] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 10, RtbRowe.BYTES_FLOAT, ens_bytes)) pings[2] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 11, RtbRowe.BYTES_FLOAT, ens_bytes)) pings[3] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 12, RtbRowe.BYTES_FLOAT, ens_bytes)) amp[0] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 13, RtbRowe.BYTES_FLOAT, ens_bytes)) amp[1] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 14, RtbRowe.BYTES_FLOAT, ens_bytes)) amp[2] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 15, RtbRowe.BYTES_FLOAT, ens_bytes)) amp[3] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 16, RtbRowe.BYTES_FLOAT, ens_bytes)) corr[0] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 17, RtbRowe.BYTES_FLOAT, ens_bytes)) corr[1] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 18, RtbRowe.BYTES_FLOAT, ens_bytes)) corr[2] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 19, RtbRowe.BYTES_FLOAT, ens_bytes)) corr[3] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 20, RtbRowe.BYTES_FLOAT, ens_bytes)) beam_vel[0] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 21, RtbRowe.BYTES_FLOAT, ens_bytes)) beam_vel[1] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 22, RtbRowe.BYTES_FLOAT, ens_bytes)) beam_vel[2] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 23, RtbRowe.BYTES_FLOAT, ens_bytes)) beam_vel[3] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 24, RtbRowe.BYTES_FLOAT, ens_bytes)) instr_vel[0] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 25, RtbRowe.BYTES_FLOAT, ens_bytes)) instr_vel[1] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 26, RtbRowe.BYTES_FLOAT, ens_bytes)) instr_vel[2] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 27, RtbRowe.BYTES_FLOAT, ens_bytes)) instr_vel[3] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 28, RtbRowe.BYTES_FLOAT, ens_bytes)) earth_vel[0] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 29, RtbRowe.BYTES_FLOAT, ens_bytes)) earth_vel[1] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 30, RtbRowe.BYTES_FLOAT, ens_bytes)) earth_vel[2] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 31, RtbRowe.BYTES_FLOAT, ens_bytes)) earth_vel[3] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 32, RtbRowe.BYTES_FLOAT, ens_bytes)) elif self.num_beams == 3: snr[0] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 1, RtbRowe.BYTES_FLOAT, ens_bytes)) snr[1] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 2, RtbRowe.BYTES_FLOAT, ens_bytes)) snr[2] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 3, RtbRowe.BYTES_FLOAT, ens_bytes)) depth[0] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 4, RtbRowe.BYTES_FLOAT, ens_bytes)) depth[1] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 5, RtbRowe.BYTES_FLOAT, ens_bytes)) depth[2] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 6, RtbRowe.BYTES_FLOAT, ens_bytes)) pings[0] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 7, RtbRowe.BYTES_FLOAT, ens_bytes)) pings[1] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 8, RtbRowe.BYTES_FLOAT, ens_bytes)) pings[2] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 9, RtbRowe.BYTES_FLOAT, ens_bytes)) amp[0] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 10, RtbRowe.BYTES_FLOAT, ens_bytes)) amp[1] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 11, RtbRowe.BYTES_FLOAT, ens_bytes)) amp[2] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 12, RtbRowe.BYTES_FLOAT, ens_bytes)) corr[0] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 13, RtbRowe.BYTES_FLOAT, ens_bytes)) corr[1] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 14, RtbRowe.BYTES_FLOAT, ens_bytes)) corr[2] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 15, RtbRowe.BYTES_FLOAT, ens_bytes)) beam_vel[0] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 16, RtbRowe.BYTES_FLOAT, ens_bytes)) beam_vel[1] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 17, RtbRowe.BYTES_FLOAT, ens_bytes)) beam_vel[2] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 18, RtbRowe.BYTES_FLOAT, ens_bytes)) instr_vel[0] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 19, RtbRowe.BYTES_FLOAT, ens_bytes)) instr_vel[1] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 20, RtbRowe.BYTES_FLOAT, ens_bytes)) instr_vel[2] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 21, RtbRowe.BYTES_FLOAT, ens_bytes)) earth_vel[0] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 22, RtbRowe.BYTES_FLOAT, ens_bytes)) earth_vel[1] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 23, RtbRowe.BYTES_FLOAT, ens_bytes)) earth_vel[2] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 24, RtbRowe.BYTES_FLOAT, ens_bytes)) elif self.num_beams == 2: snr[0] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 1, RtbRowe.BYTES_FLOAT, ens_bytes)) snr[1] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 2, RtbRowe.BYTES_FLOAT, ens_bytes)) depth[0] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 3, RtbRowe.BYTES_FLOAT, ens_bytes)) depth[1] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 4, RtbRowe.BYTES_FLOAT, ens_bytes)) pings[0] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 5, RtbRowe.BYTES_FLOAT, ens_bytes)) pings[1] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 6, RtbRowe.BYTES_FLOAT, ens_bytes)) amp[0] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 7, RtbRowe.BYTES_FLOAT, ens_bytes)) amp[1] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 8, RtbRowe.BYTES_FLOAT, ens_bytes)) corr[0] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 9, RtbRowe.BYTES_FLOAT, ens_bytes)) corr[1] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 10, RtbRowe.BYTES_FLOAT, ens_bytes)) beam_vel[0] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 11, RtbRowe.BYTES_FLOAT, ens_bytes)) beam_vel[1] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 12, RtbRowe.BYTES_FLOAT, ens_bytes)) instr_vel[0] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 13, RtbRowe.BYTES_FLOAT, ens_bytes)) instr_vel[1] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 14, RtbRowe.BYTES_FLOAT, ens_bytes)) earth_vel[0] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 15, RtbRowe.BYTES_FLOAT, ens_bytes)) earth_vel[1] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 16, RtbRowe.BYTES_FLOAT, ens_bytes)) elif self.num_beams == 1: snr[0] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 1, RtbRowe.BYTES_FLOAT, ens_bytes)) depth[0] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 2, RtbRowe.BYTES_FLOAT, ens_bytes)) pings[0] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 3, RtbRowe.BYTES_FLOAT, ens_bytes)) amp[0] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 4, RtbRowe.BYTES_FLOAT, ens_bytes)) corr[0] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 5, RtbRowe.BYTES_FLOAT, ens_bytes)) beam_vel[0] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 6, RtbRowe.BYTES_FLOAT, ens_bytes)) instr_vel[0] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 7, RtbRowe.BYTES_FLOAT, ens_bytes)) earth_vel[0] = (RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 8, RtbRowe.BYTES_FLOAT, ens_bytes)) # Add the data the numpy array [:num_beams, ens_index] self.snr[:self.num_beams, ens_index] = snr.T self.depth[:self.num_beams, ens_index] = depth.T self.pings[:self.num_beams, ens_index] = pings.T self.amp[:self.num_beams, ens_index] = amp.T self.corr[:self.num_beams, ens_index] = corr.T self.beam_vel[:self.num_beams, ens_index] = beam_vel.T self.instr_vel[:self.num_beams, ens_index] = instr_vel.T self.earth_vel[:self.num_beams, ens_index] = earth_vel.T class Gage: """ Gage Height data from the ensemble dataset. """ def __init__(self, num_ens: int): """ Initialize all the values. Initializing the lists as list and converting to numpy array after data is decoded. :param num_ens: Number of ensembles in the file. """ self.status = RtbRowe.nans(num_ens) self.avg_range = RtbRowe.nans(num_ens) self.sd = RtbRowe.nans(num_ens) self.avg_sn = RtbRowe.nans(num_ens) self.n = RtbRowe.nans(num_ens) self.salinity = RtbRowe.nans(num_ens) self.pressure = RtbRowe.nans(num_ens) self.depth = RtbRowe.nans(num_ens) self.water_temp = RtbRowe.nans(num_ens) self.backplane_temp = RtbRowe.nans(num_ens) self.speed_of_sound = RtbRowe.nans(num_ens) self.heading = RtbRowe.nans(num_ens) self.pitch = RtbRowe.nans(num_ens) self.roll = RtbRowe.nans(num_ens) self.avg_s = RtbRowe.nans(num_ens) self.avg_n1 = RtbRowe.nans(num_ens) self.avg_n2 = RtbRowe.nans(num_ens) self.gain_frac = RtbRowe.nans(num_ens) self.pings = RtbRowe.nans(num_ens) self.snr_thresh = RtbRowe.nans(num_ens) self.gain_thresh = RtbRowe.nans(num_ens) self.stat_thresh = RtbRowe.nans(num_ens) self.xmt_cycles = RtbRowe.nans(num_ens) self.depth_offset = RtbRowe.nans(num_ens) def decode_data(self, ens_bytes: list, ens_index: int, name_len: int = 8): """ Decode the ancillary data for the Configuration data. :param ens_bytes: Byte array containing the ensemble data. :param ens_index: Index into array. :param name_len: Length of the name of the dataset. Parameters ---------- ens_bytes ens_index name_len """ # Determine where to start in the ensemble data packet_pointer = RtbRowe.get_base_data_size(name_len) self.status[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 0, RtbRowe.BYTES_FLOAT, ens_bytes) self.avg_range[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 1, RtbRowe.BYTES_FLOAT, ens_bytes) self.sd[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 2, RtbRowe.BYTES_FLOAT, ens_bytes) self.avg_sn[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 3, RtbRowe.BYTES_FLOAT, ens_bytes) self.n[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 4, RtbRowe.BYTES_FLOAT, ens_bytes) self.salinity[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 5, RtbRowe.BYTES_FLOAT, ens_bytes) self.pressure[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 6, RtbRowe.BYTES_FLOAT, ens_bytes) self.depth[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 7, RtbRowe.BYTES_FLOAT, ens_bytes) self.water_temp[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 8, RtbRowe.BYTES_FLOAT, ens_bytes) self.backplane_temp[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 9, RtbRowe.BYTES_FLOAT, ens_bytes) self.speed_of_sound[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 10, RtbRowe.BYTES_FLOAT, ens_bytes) self.heading[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 11, RtbRowe.BYTES_FLOAT, ens_bytes) self.pitch[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 12, RtbRowe.BYTES_FLOAT, ens_bytes) self.roll[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 13, RtbRowe.BYTES_FLOAT, ens_bytes) self.avg_s[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 14, RtbRowe.BYTES_FLOAT, ens_bytes) self.avg_n1[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 15, RtbRowe.BYTES_FLOAT, ens_bytes) self.avg_n2[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 16, RtbRowe.BYTES_FLOAT, ens_bytes) self.gain_frac[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 17, RtbRowe.BYTES_FLOAT, ens_bytes) self.pings[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 18, RtbRowe.BYTES_FLOAT, ens_bytes) self.snr_thresh[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 19, RtbRowe.BYTES_FLOAT, ens_bytes) self.gain_thresh[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 20, RtbRowe.BYTES_FLOAT, ens_bytes) self.stat_thresh[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 21, RtbRowe.BYTES_FLOAT, ens_bytes) self.xmt_cycles[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 22, RtbRowe.BYTES_FLOAT, ens_bytes) self.depth_offset[ens_index] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 23, RtbRowe.BYTES_FLOAT, ens_bytes) class RiverBT: """ River Bottom Track data from the ensemble dataset. """ def __init__(self, num_ens: int, num_subsystems: int): """ Initialize all the values. Initializing the lists as list and converting to numpy array after data is decoded. :param num_ens: Number of ensembles in the file. """ self.num_subsystems = RtbRowe.nans(num_ens) # Number of subsystems to decode self.ping_count = RtbRowe.nans([num_ens, num_subsystems]) # Pings averaged self.status = RtbRowe.nans([num_ens, num_subsystems]) # Data status self.beams = RtbRowe.nans([num_ens, num_subsystems]) # Number of beams self.nce = RtbRowe.nans([num_ens, num_subsystems]) # Number of code elements self.repeats_n = RtbRowe.nans([num_ens, num_subsystems]) # Number of code repeats self.cpce = RtbRowe.nans([num_ens, num_subsystems]) # Codes per code elements self.bb = RtbRowe.nans([num_ens, num_subsystems]) # Broadband self.ll = RtbRowe.nans([num_ens, num_subsystems]) self.beam_mux = RtbRowe.nans([num_ens, num_subsystems]) # Beam Mux setup self.nb = RtbRowe.nans([num_ens, num_subsystems]) # Narrowband self.ping_sec = RtbRowe.nans([num_ens, num_subsystems]) # Ping time in seconds self.heading = RtbRowe.nans([num_ens, num_subsystems]) # Heading 0 to 360 self.pitch = RtbRowe.nans([num_ens, num_subsystems]) # Pitch -90 to 90 self.roll = RtbRowe.nans([num_ens, num_subsystems]) # Roll -180 to 180 self.water_temp = RtbRowe.nans([num_ens, num_subsystems]) # Water Temperature in C self.backplane_temp = RtbRowe.nans([num_ens, num_subsystems]) # Internal System temperature in C self.salinity = RtbRowe.nans([num_ens, num_subsystems]) # Salinity in PPT self.pressure = RtbRowe.nans([num_ens, num_subsystems]) # Pressure in Pascal self.depth = RtbRowe.nans([num_ens, num_subsystems]) # Pressure converted to m self.speed_of_sound = RtbRowe.nans([num_ens, num_subsystems]) # Speed of Sound in m/s self.mx = RtbRowe.nans([num_ens, num_subsystems]) self.my = RtbRowe.nans([num_ens, num_subsystems]) self.mz = RtbRowe.nans([num_ens, num_subsystems]) self.gp = RtbRowe.nans([num_ens, num_subsystems]) self.gr = RtbRowe.nans([num_ens, num_subsystems]) self.gz = RtbRowe.nans([num_ens, num_subsystems]) self.samples_per_sec = RtbRowe.nans([num_ens, num_subsystems]) # Samples per second self.system_freq_hz = RtbRowe.nans([num_ens, num_subsystems]) # System frequency in Hz self.bt_range = RtbRowe.nans([num_ens, num_subsystems]) # Bottom Track Range in m self.bt_snr = RtbRowe.nans([num_ens, num_subsystems]) # Bottom Track SNR in dB self.bt_amp = RtbRowe.nans([num_ens, num_subsystems]) # Bottom Track Amplitude in dB self.bt_noise_amp_bp = RtbRowe.nans([num_ens, num_subsystems]) # Noise in Amplitude Back Porch self.bt_noise_amp_fp = RtbRowe.nans([num_ens, num_subsystems]) # Noise in Amplitude Front Porch self.bt_corr = RtbRowe.nans([num_ens, num_subsystems]) # Bottom Track Correlation in fraction self.vel = RtbRowe.nans([num_ens, num_subsystems]) # Bottom Track Beam Velocity in m/s self.beam_n = RtbRowe.nans([num_ens, num_subsystems]) def decode_data(self, ens_bytes: list, ens_index: int, name_len: int = 8): """ Decode the River Bottom data data. :param ens_bytes: Byte array containing the ensemble data. :param ens_index: Ensemble index in the file. :param name_len: Length of the name of the dataset. """ # Determine where to start in the ensemble data packet_pointer = RtbRowe.get_base_data_size(name_len) num_subsystems = int(RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * 0, RtbRowe.BYTES_FLOAT, ens_bytes)) self.num_subsystems[ens_index] = num_subsystems # Start of the data index = 1 # Create a temp list to hold all the values for each subsystem # Accumulate the list then add it to the data type # Index will keep track of where we are located in the data ping_count = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): ping_count[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.ping_count[ens_index, :num_subsystems] = ping_count.T status = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): status[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.status[ens_index, :num_subsystems] = status.T beams = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): beams[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.beams[ens_index, :num_subsystems] = beams.T nce = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): nce[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.nce[ens_index, :num_subsystems] = nce.T repeats_n = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): repeats_n[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.repeats_n[ens_index, :num_subsystems] = repeats_n.T cpce = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): cpce[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.cpce[ens_index, :num_subsystems] = cpce.T bb = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): bb[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.bb[ens_index, :num_subsystems] = bb.T ll = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): ll[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.ll[ens_index, :num_subsystems] = ll.T beam_mux = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): beam_mux[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.beam_mux[ens_index, :num_subsystems] = beam_mux.T nb = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): nb[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.nb[ens_index, :num_subsystems] = nb.T ps = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): ps[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.ping_sec[ens_index, :num_subsystems] = ps.T hdg = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): hdg[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.heading[ens_index, :num_subsystems] = hdg.T ptch = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): ptch[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.pitch[ens_index, :num_subsystems] = ptch.T roll = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): roll[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.roll[ens_index, :num_subsystems] = roll.T wt = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): wt[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.water_temp[ens_index, :num_subsystems] = wt.T sys_temp = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): sys_temp[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.backplane_temp[ens_index, :num_subsystems] = sys_temp.T sal = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): sal[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.salinity[ens_index, :num_subsystems] = sal.T pres = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): pres[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.pressure[ens_index, :num_subsystems] = pres.T depth = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): depth[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.depth[ens_index, :num_subsystems] = depth.T sos = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): sos[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.speed_of_sound[ens_index, :num_subsystems] = sos.T mx = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): mx[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.mx[ens_index, :num_subsystems] = mx.T my = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): my[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.my[ens_index, :num_subsystems] = my.T mz = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): mz[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.mz[ens_index, :num_subsystems] = mz.T gp = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): gp[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.gp[ens_index, :num_subsystems] = gp.T gr = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): gr[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.gr[ens_index, :num_subsystems] = gr.T gz = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): gz[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.gz[ens_index, :num_subsystems] = gz.T sps = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): sps[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.samples_per_sec[ens_index, :num_subsystems] = sps.T freq = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): freq[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.system_freq_hz[ens_index, :num_subsystems] = freq.T bt_range = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): bt_range[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.bt_range[ens_index, :num_subsystems] = bt_range.T snr = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): snr[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.bt_snr[ens_index, :num_subsystems] = snr.T amp = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): amp[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.bt_amp[ens_index, :num_subsystems] = amp.T noise_bp = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): noise_bp[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.bt_noise_amp_bp[ens_index, :num_subsystems] = noise_bp.T noise_fp = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): noise_fp[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.bt_noise_amp_fp[ens_index, :num_subsystems] = noise_fp.T corr = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): corr[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.bt_corr[ens_index, :num_subsystems] = corr.T vel = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): vel[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.vel[ens_index, :num_subsystems] = vel.T beam_n = np.empty(shape=[num_subsystems], dtype=np.float) for sb in range(num_subsystems): beam_n[sb] = RtbRowe.get_float(packet_pointer + RtbRowe.BYTES_FLOAT * index, RtbRowe.BYTES_FLOAT, ens_bytes) index += 1 self.beam_n[ens_index, :num_subsystems] = beam_n.T class Surface: """ Surf data are to accommodate RiverRay and RiverPro. pd0_read sets these values to nan when reading Rio Grande or StreamPro data """ def __init__(self, num_ens: int, num_beams: int, max_surface_bins: int): """ Initialize all the values. :param num_ens: Number of ensembles in the file. :param num_beams: Number of beams on the system. :param max_surface_bins: Number of surface bins. """ self.no_cells = RtbRowe.nans(num_ens) # Number of surface cells in the # ensemble self.cell_size_cm = RtbRowe.nans(num_ens) # Cell size in cm self.dist_bin1_cm = RtbRowe.nans(num_ens) # Distance to center of cell 1 in cm self.vel_mps = np.tile([np.nan], [num_beams, max_surface_bins, num_ens]) # 3D array of velocity data in each # cell and ensemble self.corr = RtbRowe.nans([num_beams, max_surface_bins, num_ens]) # 3D array of correlation data for # each beam, cell, and ensemble self.pergd = RtbRowe.nans([num_beams, max_surface_bins, num_ens]) # 3D array of percent good data for # each beam, cell, and ensemble self.rssi = RtbRowe.nans([num_beams, max_surface_bins, num_ens]) # 3D array of signal strength data # for each beam, cell, and ensemble class Nmea: """ NMEA data from the ensemble dataset. Store the raw NMEA strings. Also store the last NMEA values in the message. """ def __init__(self, num_ens: int): """ Initialize all the values. Initializing the lists as list and converting to numpy array after data is decoded. :param num_ens: Number of ensembles in the file. """ self.gga = [''] * num_ens self.gsa = [''] * num_ens self.vtg = [''] * num_ens self.dbt = [''] * num_ens self.hdt = [''] * num_ens # GGA self.gga_delta_time = RtbRowe.nans(num_ens) # float self.gga_header = RtbRowe.nans(num_ens) # str self.utc = RtbRowe.nans(num_ens) # float self.lat_deg = RtbRowe.nans(num_ens) # float self.lat_ref = RtbRowe.nans(num_ens) # str self.lon_deg = RtbRowe.nans(num_ens) # float self.lon_ref = RtbRowe.nans(num_ens) # str self.corr_qual = RtbRowe.nans(num_ens) # float self.num_sats = RtbRowe.nans(num_ens) # int self.hdop = RtbRowe.nans(num_ens) # float self.alt = RtbRowe.nans(num_ens) # float self.alt_unit = RtbRowe.nans(num_ens) # str self.geoid = RtbRowe.nans(num_ens) # str self.geoid_unit = RtbRowe.nans(num_ens) # str self.d_gps_age = RtbRowe.nans(num_ens) # float self.ref_stat_id = RtbRowe.nans(num_ens) # float # VTG self.vtg_delta_time = RtbRowe.nans(num_ens) # float self.vtg_header = RtbRowe.nans(num_ens) # str self.course_true = RtbRowe.nans(num_ens) # float self.true_indicator = RtbRowe.nans(num_ens) # str self.course_mag = RtbRowe.nans(num_ens) # float self.mag_indicator = RtbRowe.nans(num_ens) # str self.speed_knots = RtbRowe.nans(num_ens) # float self.knots_indicator = RtbRowe.nans(num_ens) # str self.speed_kph = RtbRowe.nans(num_ens) # float self.kph_indicator = RtbRowe.nans(num_ens) # str self.mode_indicator = RtbRowe.nans(num_ens) # str # HDT self.hdt_header = RtbRowe.nans(num_ens) self.heading = RtbRowe.nans(num_ens) self.rel_true_north = RtbRowe.nans(num_ens) # Used to keep track of the last nmea message to process self.last_gga = None self.last_vtg = None self.last_hdt = None def decode(self, ens_bytes: list, ens_index: int, name_len: int = 8): """ Decode the NMEA dataset. This will be the raw NMEA messages from the ADCP containing GPS data. :param ens_bytes Bytes for dataset. :param ens_index: Ensemble index in the file. :param name_len: Name length to get the start location. """ # Clear the previous NMEA messages self.last_gga = None self.last_vtg = None self.last_hdt = None packet_pointer = RtbRowe.get_base_data_size(name_len) # Convert all the messages to a string nmea_str = str(ens_bytes[packet_pointer:], "UTF-8") # Accumulate NMEA messages for msg in nmea_str.split(): self.decode_nmea(msg, ens_index) # Decode the last messages if self.last_gga: self.decode_gga(self.last_gga, ens_index) if self.last_vtg: self.decode_vtg(self.last_vtg, ens_index) if self.last_hdt: self.decode_hdt(self.last_hdt, ens_index) def decode_nmea(self, nmea_str: str, ens_index: int): """ Verify the NMEA message is by checking the checksum. Then add the message to the list and decode each message. :param nmea_str NMEA string to decode. :param ens_index: Ensemble index in the file. """ # Verify the NMEA string is good if Nmea.check_nmea_checksum(nmea_str): # Add each message to the list # Decode the data if 'gga' in nmea_str or 'GGA' in nmea_str: self.gga[ens_index] += nmea_str self.last_gga = nmea_str if 'gsa' in nmea_str or 'GSA' in nmea_str: self.gsa[ens_index] += nmea_str if 'vtg' in nmea_str or 'VTG' in nmea_str: self.vtg[ens_index] += nmea_str self.last_vtg = nmea_str if 'dbt' in nmea_str or 'DBT' in nmea_str: self.dbt[ens_index] += nmea_str if 'hdt' in nmea_str or 'HDT' in nmea_str: self.hdt[ens_index] += nmea_str self.last_hdt = nmea_str def decode_gga(self, nmea_str: str, ens_index: int): """ Decode GGA message. Update the variables. Store the last result for the ensemble. :param nmea_str NMEA string. :param ens_index: Ensemble index. """ try: if nmea_str: temp_array = np.array(nmea_str.split(',')) temp_array[temp_array == '999.9'] = '' # self.gga_delta_time = delta_time self.gga_header[ens_index] = temp_array[0] self.utc[ens_index] = float(temp_array[1]) lat_str = temp_array[2] lat_deg = float(lat_str[0:2]) lat_deg = lat_deg + float(lat_str[2:]) / 60 self.lat_deg[ens_index] = lat_deg self.lat_ref[ens_index] = temp_array[3] lon_str = temp_array[4] lon_num = float(lon_str) lon_deg = np.floor(lon_num / 100) lon_deg = lon_deg + (((lon_num / 100.) - lon_deg) * 100.) / 60. self.lon_deg[ens_index] = lon_deg self.lon_ref[ens_index] = temp_array[5] self.corr_qual[ens_index] = float(temp_array[6]) self.num_sats[ens_index] = float(temp_array[7]) self.hdop[ens_index] = float(temp_array[8]) self.alt[ens_index] = float(temp_array[9]) self.alt_unit[ens_index] = temp_array[10] self.geoid[ens_index] = temp_array[11] self.geoid_unit[ens_index] = temp_array[12] self.d_gps_age[ens_index] = float(temp_array[13]) idx_star = temp_array[14].find('*') self.ref_stat_id[ens_index] = float(temp_array[15][:idx_star]) except (ValueError, EOFError, IndexError): pass def decode_vtg(self, nmea_str: str, ens_index: int): """ Decode the VTG message and set all the variables. Decode the last message. :param nmea_str: NMEA string. :param ens_index: Ensemble index. """ try: if nmea_str: temp_array = np.array(nmea_str.split(',')) temp_array[temp_array == '999.9'] = '' # self.vtg_delta_time = delta_time self.vtg_header[ens_index] = temp_array[0] self.course_true[ens_index] = Nmea.valid_number(temp_array[1]) self.true_indicator[ens_index] = temp_array[2] self.course_mag[ens_index] = Nmea.valid_number(temp_array[3]) self.mag_indicator[ens_index] = temp_array[4] self.speed_knots[ens_index] = Nmea.valid_number(temp_array[5]) self.knots_indicator[ens_index] = temp_array[6] self.speed_kph[ens_index] = Nmea.valid_number(temp_array[7]) self.kph_indicator[ens_index] = temp_array[8] idx_star = temp_array[9].find('*') self.mode_indicator[ens_index] = temp_array[9][:idx_star] except (ValueError, EOFError, IndexError): pass def decode_hdt(self, nmea_str: str, ens_index: int): """ Decode the HDT message and set all the variables. Decode the last message. :param nmea_str: NMEA string. :param ens_index: Ensemble Index. """ try: if nmea_str: temp_array = np.array(nmea_str.split(',')) temp_array[temp_array == '999.9'] = '' # self.vtg_delta_time = delta_time self.hdt_header[ens_index] = temp_array[0] self.heading[ens_index] = Nmea.valid_number(temp_array[1]) idx_star = temp_array[2].find('*') self.rel_true_north[ens_index] = temp_array[2][:idx_star] except (ValueError, EOFError, IndexError): pass @staticmethod def valid_number(data_in): """ Check to see if data_in can be converted to float. :param data_in: str String to be converted to float :return Returns a float of data_in or nan if conversion is not possible """ try: data_out = float(data_in) except ValueError: data_out = np.nan return data_out @staticmethod def check_nmea_checksum(nmea_str: str): """ Calculate the NMEA checksum. Verify the checksum value matches the given value. :param nmea_str NMEA string. :return TRUE = Good checksum """ try: # Remove newline and spaces at the end nmea_str = nmea_str.rstrip('\n') # Get the checksum value checksum = nmea_str[len(nmea_str) - 2:] checksum = int(checksum, 16) # Get the data from the string nmea_data = re.sub("(\n|\r\n)", "", nmea_str[nmea_str.find("$") + 1:nmea_str.find("*")]) # Calculate the checksum calc_checksum = 0 for c in nmea_data: calc_checksum ^= ord(c) calc_checksum = calc_checksum & 0xFF # Verify the checksum matches if calc_checksum == checksum: return True return False except Exception as ex: logging.error(ex) return False class Gps(object): """ Class to hold GPS data from WinRiver. RTB format does not include all this information. Specifically the velocities. I typically use a geodectic calculator like pygeodesy to do these calculations. Attributes ---------- alt_m: np.array(float) Altitude in meters gga_diff: np.array(int) Differential correction indicator gga_hdop: np.array(float) Horizontal dilution of precision gga_n_stats: np.array(int) Number of satellites gga_vel_e_mps: np.array(float) Velocity in east direction from GGA data gga_vel_n_mps: np.array(float) Velocity in north direction from GGA data gsa_p_dop: np.array(int) Position dilution of precision gsa_sat: np.array(int) Satellites gsa_v_dop: np.array(float) Vertical dilution of precision lat_deg: np.array(float) Latitude in degrees long_deg: np.array(float) Longitude in degrees vtg_vel_e_mps: np.array(float) Velocity in east direction from VTG data vtg_vel_n_mps: np.array(float) Velocity in north direction from VTG data """ def __init__(self, num_ens: int): """ Initialize instance variables. :param num_ens: Number of ensembles """ self.alt_m = RtbRowe.nans(num_ens) self.gga_diff = RtbRowe.nans(num_ens) self.gga_hdop = RtbRowe.nans(num_ens) self.gga_n_stats = RtbRowe.nans(num_ens) self.gga_vel_e_mps = RtbRowe.nans(num_ens) self.gga_vel_n_mps = RtbRowe.nans(num_ens) self.gsa_p_dop = RtbRowe.nans(num_ens) self.gsa_sat = RtbRowe.nans([num_ens, 6]) self.gsa_v_dop = RtbRowe.nans(num_ens) self.lat_deg = RtbRowe.nans(num_ens) self.long_deg = RtbRowe.nans(num_ens) self.vtg_vel_e_mps = RtbRowe.nans(num_ens) self.vtg_vel_n_mps = RtbRowe.nans(num_ens) # def decode(self, ens_bytes: list, ens_index: int, num_ens: int, name_len: int = 8): def decode(self, ens_bytes: list, ens_index: int, name_len: int = 8): """ Decode the NMEA dataset. This will be the raw NMEA messages from the ADCP containing GPS data. :param ens_bytes Bytes for dataset. :param ens_index: Ensemble index in the file. # :param num_ens: Number of ensembles in the file. :param name_len: Name length to get the start location. """ packet_pointer = RtbRowe.get_base_data_size(name_len) # Convert all the messages to a string nmea_str = str(ens_bytes[packet_pointer:], "UTF-8") # Decode each NMEA message for msg in nmea_str.split(): # Verify the NMEA string is good if Nmea.check_nmea_checksum(msg): # Add each message to the list # Decode the data if 'gga' in msg or 'GGA' in msg: self.decode_gga(nmea_str, ens_index) def decode_gga(self, nmea_str: str, ens_index: int): """ Decode GGA message. Update the variables. :param nmea_str NMEA string. :param ens_index: Ensemble index. """ try: if nmea_str: temp_array = np.array(nmea_str.split(',')) temp_array[temp_array == '999.9'] = '' # self.gga_delta_time = delta_time # self.gga_header.append(temp_array[0]) # self.utc.append(float(temp_array[1])) lat_str = temp_array[2] lat_deg = float(lat_str[0:2]) lat_deg = lat_deg + float(lat_str[2:]) / 60 self.lat_deg[ens_index] = lat_deg # self.lat_ref.append(temp_array[3]) lon_str = temp_array[4] lon_num = float(lon_str) lon_deg = np.floor(lon_num / 100) lon_deg = lon_deg + (((lon_num / 100.) - lon_deg) * 100.) / 60. self.long_deg[ens_index] = lon_deg # self.lon_ref.append(temp_array[5]) self.gga_diff[ens_index] = float(temp_array[6]) self.gga_n_stats[ens_index] = float(temp_array[7]) self.gga_hdop[ens_index] = float(temp_array[8]) self.alt_m[ens_index] = float(temp_array[9]) # self.alt_unit.append(temp_array[10]) # self.geoid.append(temp_array[11]) # self.geoid_unit.append(temp_array[12]) # self.d_gps_age.append(float(temp_array[13])) # idx_star = temp_array[14].find('*') # self.ref_stat_id.append(float(temp_array[15][:idx_star])) except (ValueError, EOFError, IndexError): pass class Gps2(object): """Class to hold GPS data for WinRiver II. Attributes ---------- gga_delta_time: np.array(float) Time between ping and gga data gga_header: list GGA header gga_sentence: list GGA sentence utc: np.array(float) UTC time lat_deg: np.array(float) Latitude in degrees lat_ref: list Latitude reference lon_deg: np.array(float) Longitude in degrees lon_ref: list Longitude reference corr_qual: np.array(float) Differential quality indicator num_sats: np.array(int) Number of satellites hdop: np.array(float) Horizontal dilution of precision alt: np.array(float) Altitude alt_unit: list Units for altitude geoid: np.array(float) Geoid height geoid_unit: list Units for geoid height d_gps_age: np.array(float) Age of differential correction ref_stat_id: np.array(float) Reference station ID vtg_delta_time: np.array(float) Time between ping and VTG data vtg_header: list VTG header vtg_sentence: list VTG sentence course_true: np.array(float) Course relative to true north true_indicator: list True north indicator course_mag: np.array(float) Course relative to magnetic north mag_indicator: list Magnetic north indicator speed_knots: np.array(float) Speed in knots knots_indicator: list Knots indicator speed_kph: np.array(float) Speed in kilometers per hour kph_indicator: list Kilometers per hour indicator mode_indicator: list Mode indicator dbt_delta_time: np.array(float) Time between ping and echo sounder data dbt_header: list Echo sounder header depth_ft: np.array(float) Depth in ft from echo sounder ft_indicator: list Feet indicator depth_m: np.array(float) Depth in meters from echo sounder m_indicator: list Meters indicator depth_fath: np.array(float) Depth in fathoms from echo sounder fath_indicator: list Fathoms indicator hdt_delta_time: np.array(float) Time between ping and external heading data hdt_header: list External heading header heading_deg: np.array(float) Heading in degrees from external heading h_true_indicator: list Heading indicator to true north gga_velE_mps: np.array(float) Velocity in east direction in m/s from GGA for WR gga_velN_mps: np.array(float) Velocity in north direction in m/s from GGA for WR vtg_velE_mps: np.array(float) Velocity in east direction in m/s from VTG for WR vtg_velN_mps: np.array(float) Velocity in north direction in m/s from VTG for WR """ def __init__(self, num_ens: int): """ Initialize instance variables. Parameters ---------- :param num_ens: Number of ensembles """ self.gga_delta_time = np.full([num_ens, 20], np.nan) self.gga_header = [x[:] for x in [[''] * 20] * num_ens] self.gga_sentence = [x[:] for x in [[''] * 20] * num_ens] self.utc = np.full([num_ens, 20], np.nan) self.lat_deg = np.zeros([num_ens, 20]) # self.lat_deg = [[np.nan]] * num_ens self.lat_ref = [x[:] for x in [[''] * 20] * num_ens] self.lon_deg = np.zeros([num_ens, 20]) self.lon_ref = [x[:] for x in [[''] * 20] * num_ens] self.corr_qual = np.full([num_ens, 20], np.nan) # self.corr_qual = [[np.nan]] * num_ens self.num_sats =
np.full([num_ens, 20], np.nan)
numpy.full
# -------------- # Importing the neccessary packages import numpy as np import cv2 from matplotlib import pyplot as plt #load the image 'path' using opencv library cv2 image = cv2.imread(path) #convert the above image into grayscale image_gray=cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Now we split the image to 5000 cells, each 20x20 size cells=[np.hsplit(row,100) for row in np.vsplit(image_gray, 50)] cells_array=np.array(cells) # create labels for train and test data train_data=cells_array[:,:50].reshape(-1, 400).astype(np.float32) test_data=cells_array[:,50:100].reshape(-1,400).astype(np.float32) # Instatiate the KNN model, train the data labels=np.arange(10) train_labels=np.repeat(labels,250)[:, np.newaxis] test_labels=train_labels.copy() knn=cv2.ml.KNearest_create() knn.train(train_data,cv2.ml.ROW_SAMPLE, train_labels) # Test the model on test data _, result,_,_=knn.findNearest(test_data, k=5) no_of_matches=result==test_labels correct_matches=np.count_nonzero(no_of_matches) accuracy=(correct_matches/result.size)*100 print(accuracy) # Save the knn model (Modify the variables according to your code) save_path = user_data_dir + "knn_data.npz" np.savez(save_path, train= train_data, train_labels= train_labels) # Load the saved model with np.load(save_path) as data: train=data['train'] train_labels=data['train_labels'] knn_saved=cv2.ml.KNearest_create() knn_saved.train(train,cv2.ml.ROW_SAMPLE, train_labels) # Load the test image saved in 'path1' test_img=cv2.imread(path1) test_img_gray=cv2.cvtColor(test_img,cv2.COLOR_BGR2GRAY) blur_sg=cv2.GaussianBlur(test_img_gray, (5,5),0) (T,th)=cv2.threshold(blur_sg, 155, 255, cv2.THRESH_BINARY_INV) th=th[400:880, 200:750] test_img_resize=cv2.resize(th,(20,20)) x=np.array(test_img_resize) test_img_reshape=x.reshape(-1,400).astype(np.float32) _,result,_,_=knn_saved.findNearest(test_img_reshape,k=1) fig, ax=plt.subplots(nrows=1, ncols=2, figsize=(15,7)) ax[0].imshow(test_img) ax[0].title.set_text('Original Image') ax[1].imshow(test_img_resize, 'gray') ax[1].title.set_text('Preprocessed Image') fig.show(); print(int(result)) # Create deskew function def deskew(input_image): SZ=20 m=cv2.moments(input_image) if abs(m['mu02']) < 1e-2: return input_image.copy() skew=m['mu11']/m['mu02'] M=
np.float32([[1,skew, -0.5*SZ*skew],[0,1,0]])
numpy.float32
import os import json from collections import OrderedDict import warnings import numpy as np from .camera_model import CameraModel from .camera_model import is_rotation_matrix from pymvg.util import pretty_json_dump, normalize_M, \ parse_radfile, my_rq, center from pymvg.align import estsimt class MultiCameraSystem: def __init__(self,cameras): self._cameras=OrderedDict() for camera in cameras: self.append(camera) def append(self,camera): assert isinstance(camera, CameraModel) name = camera.name if name in self._cameras: raise ValueError('Cannot create MultiCameraSystem with ' 'multiple identically-named cameras.') self._cameras[name]=camera @classmethod def from_dict(cls, d): cam_dict_list = d['camera_system'] cams = [CameraModel.from_dict(cd) for cd in cam_dict_list] return MultiCameraSystem( cameras=cams ) def get_pymvg_str( self ): d = self.to_dict() d['__pymvg_file_version__']='1.0' buf = pretty_json_dump(d) return buf def save_to_pymvg_file( self, fname ): buf = self.get_pymvg_str() with open(fname,mode='w') as fd: fd.write(buf) @classmethod def from_pymvg_str(cls, buf): d = json.loads(buf) assert d['__pymvg_file_version__']=='1.0' cam_dict_list = d['camera_system'] cams = [CameraModel.from_dict(cd) for cd in cam_dict_list] return MultiCameraSystem( cameras=cams ) @classmethod def from_pymvg_file(cls, fname): with open(fname,mode='r') as fd: buf = fd.read() return MultiCameraSystem.from_pymvg_str(buf) @classmethod def from_mcsc(cls, dirname ): '''create MultiCameraSystem from output directory of MultiCamSelfCal''' # FIXME: This is a bit convoluted because it's been converted # from multiple layers of internal code. It should really be # simplified and cleaned up. do_normalize_pmat=True all_Pmat = {} all_Res = {} all_K = {} all_distortion = {} opj = os.path.join with open(opj(dirname,'camera_order.txt'),mode='r') as fd: cam_ids = fd.read().strip().split('\n') with open(os.path.join(dirname,'Res.dat'),'r') as res_fd: for i, cam_id in enumerate(cam_ids): fname = 'camera%d.Pmat.cal'%(i+1) pmat = np.loadtxt(opj(dirname,fname)) # 3 rows x 4 columns if do_normalize_pmat: pmat_orig = pmat pmat = normalize_M(pmat) all_Pmat[cam_id] = pmat all_Res[cam_id] = map(int,res_fd.readline().split()) # load non linear parameters rad_files = [ f for f in os.listdir(dirname) if f.endswith('.rad') ] for cam_id_enum, cam_id in enumerate(cam_ids): filename = os.path.join(dirname, 'basename%d.rad'%(cam_id_enum+1,)) if os.path.exists(filename): K, distortion = parse_radfile(filename) all_K[cam_id] = K all_distortion[cam_id] = distortion else: if len(rad_files): raise RuntimeError( '.rad files present but none named "%s"'%filename) warnings.warn('no non-linear data (e.g. radial distortion) ' 'in calibration for %s'%cam_id) all_K[cam_id] = None all_distortion[cam_id] = None cameras = [] for cam_id in cam_ids: w,h = all_Res[cam_id] Pmat = all_Pmat[cam_id] M = Pmat[:,:3] K,R = my_rq(M) if not is_rotation_matrix(R): # RQ may return left-handed rotation matrix. Make right-handed. R2 = -R K2 = -K assert np.allclose(np.dot(K2,R2), np.dot(K,R)) K,R = K2,R2 P = np.zeros((3,4)) P[:3,:3] = K KK = all_K[cam_id] # from rad file or None distortion = all_distortion[cam_id] # (ab)use PyMVG's rectification to do coordinate transform # for MCSC's undistortion. # The intrinsic parameters used for 3D -> 2D. ex = P[0,0] bx = P[0,2] Sx = P[0,3] ey = P[1,1] by = P[1,2] Sy = P[1,3] if KK is None: rect = np.eye(3) KK = P[:,:3] else: # Parameters used to define undistortion coordinates. fx = KK[0,0] fy = KK[1,1] cx = KK[0,2] cy = KK[1,2] rect = np.array([[ ex/fx, 0, (bx+Sx-cx)/fx ], [ 0, ey/fy, (by+Sy-cy)/fy ], [ 0, 0, 1 ]]).T if distortion is None: distortion = np.zeros((5,)) C = center(Pmat) rot = R t = -np.dot(rot, C)[:,0] d = {'width':w, 'height':h, 'P':P, 'K':KK, 'R':rect, 'translation':t, 'Q':rot, 'D':distortion, 'name':cam_id, } cam = CameraModel.from_dict(d) cameras.append( cam ) return MultiCameraSystem( cameras=cameras ) def __eq__(self, other): assert isinstance( self, MultiCameraSystem ) if not isinstance( other, MultiCameraSystem ): return False if len(self.get_names()) != len(other.get_names()): return False for name in self.get_names(): if self._cameras[name] != other._cameras[name]: return False return True def __ne__(self,other): return not (self==other) def get_names(self): result = list(self._cameras.keys()) return result def get_camera_dict(self): return self._cameras def get_camera(self,name): return self._cameras[name] def to_dict(self): return {'camera_system': [self._cameras[name].to_dict() for name in self._cameras]} def find3d(self,pts,undistort=True): """Find 3D coordinate using all data given Implements a linear triangulation method to find a 3D point. For example, see Hartley & Zisserman section 12.2 (p.312). By default, this function will undistort 2D points before finding a 3D point. """ # for info on SVD, see Hartley & Zisserman (2003) p. 593 (see # also p. 587) # Construct matrices A=[] for name,xy in pts: cam = self._cameras[name] if undistort: xy = cam.undistort( [xy] ) Pmat = cam.get_M() # Pmat is 3 rows x 4 columns row2 = Pmat[2,:] x,y = xy[0,:] A.append( x*row2 - Pmat[0,:] ) A.append( y*row2 - Pmat[1,:] ) # Calculate best point A=np.array(A) u,d,vt=np.linalg.svd(A) X = vt[-1,0:3]/vt[-1,3] # normalize return X def find2d(self,camera_name,xyz,distorted=True): cam = self._cameras[camera_name] xyz = np.array(xyz) rank1 = xyz.ndim==1 xyz = np.atleast_2d(xyz) pix = cam.project_3d_to_pixel( xyz, distorted=distorted ).T if rank1: # convert back to rank1 pix = pix[:,0] return pix def get_aligned_copy(self, other): """return copy of self that is scaled, translated, and rotated to best match other""" assert isinstance( other, MultiCameraSystem) orig_names = self.get_names() new_names = other.get_names() names = set(orig_names).intersection( new_names ) if len(names) < 3: raise ValueError('need 3 or more cameras in common to align.') orig_points = np.array([ self._cameras[name].get_camcenter() for name in names ]).T new_points = np.array([ other._cameras[name].get_camcenter() for name in names ]).T s,R,t = estsimt(orig_points,new_points) assert is_rotation_matrix(R) new_cams = [] for name in self.get_names(): orig_cam = self._cameras[name] new_cam = orig_cam.get_aligned_camera(s,R,t) new_cams.append( new_cam ) result = MultiCameraSystem(new_cams) return result def build_example_system(n=6,z=5.0): base = CameraModel.load_camera_default() x = np.linspace(0, 2*n, n) theta = np.linspace(0, 2*np.pi, n) cams = [] for i in range(n): # cameras are spaced parallel to the x axis center = np.array( (x[i], 0.0, z) ) # cameras are looking at +y lookat = center + np.array( (0,1,0)) # camera up direction rotates around the y axis up = -np.sin(theta[i]), 0,
np.cos(theta[i])
numpy.cos
import os, time, sys import numpy as np from pypianoroll import Multitrack, BinaryTrack, StandardTrack import cfp import torch import torch.nn as nn import torch.nn.functional as F import argparse def smoothing(roll): # step1 Turn consecutively pitch labels into notes. new_map = np.zeros(roll.shape) min_note_frames = 3 last_midinote = 0 count = 0 for i in range(len(roll)): midinote = np.argmax(roll[i,:]) if midinote > 0 and midinote == last_midinote: count+= 1 else: if count >= min_note_frames: new_map[i-count-1:i,last_midinote] = 1 last_midinote = midinote count = 0 note_map = new_map else_map = roll - note_map # Step2 Connect the breakpoint near the note. new_map = np.zeros(roll.shape) for i in range(len(else_map)): midinote = np.argmax(else_map[i,:]) if midinote > 0: if note_map[i-1,midinote-1] > 0: new_map[i,midinote-1] = 1 else_map[i,midinote] = 0 elif note_map[i-1,midinote+1] > 0: new_map[i,midinote+1] = 1 else_map[i,midinote] = 0 elif (i+1)<len(else_map) and note_map[i+1,midinote-1] > 0: new_map[i,midinote-1] = 1 else_map[i,midinote] = 0 elif (i+1)<len(else_map) and note_map[i+1,midinote+1] > 0: new_map[i,midinote+1] = 1 else_map[i,midinote] = 0 note_map = note_map + new_map # step3 Turn vibrato pitch labels into notes. new_map = np.zeros(roll.shape) min_note_frames = 3 last_midinote = 0 note_list = [] count = 0 for i in range(len(else_map)): midinote = np.argmax(else_map[i,:]) if midinote > 0 and np.abs(midinote - last_midinote) <= 1: last_midinote = midinote note_list.append(midinote) count+= 1 else: if count >= min_note_frames: median_note = note_list[int((len(note_list)/2))] new_map[i-count-1:i,median_note] = 1 else_map[i-count-1:i,:] = 0 last_midinote = midinote note_list = [] count = 0 note_map = note_map + new_map # step4 Connect nearby notes with the same pitch label. last_midinote = 0 for i in range(len(note_map)): midinote = np.argmax(note_map[i,:]) if last_midinote !=0 and midinote == 0: if (i+1)<len(note_map) and np.argmax(note_map[i+1,:]) == last_midinote: note_map[i,last_midinote] = 1 elif (i+2)<len(note_map) and np.argmax(note_map[i+2,:]) == last_midinote: note_map[i:i+2,last_midinote] = 1 elif (i+3)<len(note_map) and np.argmax(note_map[i+3,:]) == last_midinote: note_map[i:i+3,last_midinote] = 1 elif (i+4)<len(note_map) and np.argmax(note_map[i+4,:]) == last_midinote: note_map[i:i+4,last_midinote] = 1 elif (i+5)<len(note_map) and np.argmax(note_map[i+5,:]) == last_midinote: note_map[i:i+5,last_midinote] = 1 last_midinote = midinote else: last_midinote = midinote return note_map class MSnet(nn.Module): def __init__(self): super(MSnet, self).__init__() self.conv1 = nn.Sequential( nn.BatchNorm2d(3), nn.Conv2d(3, 32, 5, padding=2), nn.SELU() ) self.pool1 = nn.MaxPool2d((3,1), return_indices=True) self.conv2 = nn.Sequential( nn.BatchNorm2d(32), nn.Conv2d(32, 64, 5, padding=2), nn.SELU() ) self.pool2 = nn.MaxPool2d((4,1), return_indices=True) self.conv3 = nn.Sequential( nn.BatchNorm2d(64), nn.Conv2d(64, 128, 5, padding=2), nn.SELU() ) self.pool3 = nn.MaxPool2d((4,1), return_indices=True) self.bottom = nn.Sequential( nn.BatchNorm2d(128), nn.Conv2d(128, 1, (6,5), padding=(0,2)), nn.SELU() ) self.up_pool3 = nn.MaxUnpool2d((4,1)) self.up_conv3 = nn.Sequential( nn.BatchNorm2d(128), nn.Conv2d(128, 64, 5, padding=2), nn.SELU() ) self.up_pool2 = nn.MaxUnpool2d((4,1)) self.up_conv2 = nn.Sequential( nn.BatchNorm2d(64), nn.Conv2d(64, 32, 5, padding=2), nn.SELU() ) self.up_pool1 = nn.MaxUnpool2d((3,1)) self.up_conv1 = nn.Sequential( nn.BatchNorm2d(32), nn.Conv2d(32, 1, 5, padding=2), nn.SELU() ) self.softmax = nn.Softmax(dim=1) def forward(self, x): c1, ind1 = self.pool1(self.conv1(x)) c2, ind2 = self.pool2(self.conv2(c1)) c3, ind3 = self.pool3(self.conv3(c2)) bm = self.bottom(c3) u3 = self.up_conv3(self.up_pool3(c3, ind3)) u2 = self.up_conv2(self.up_pool2(u3, ind2)) u1 = self.up_conv1(self.up_pool1(u2, ind1)) out = torch.cat((bm, u1), dim=2) out = torch.squeeze(out,1) output = self.softmax(out) return output def est(output): CenFreq = cfp.get_CenFreq(StartFreq=32.7, StopFreq=2093.0, NumPerOct=48) song_len = output.shape[-1] est_time = np.arange(song_len)*0.02322 output = output[0,:,:] amax_freq = np.argmax(output, axis=0) est_freq =
np.zeros(song_len)
numpy.zeros
import numpy as np import matplotlib.image as mimg import matplotlib.pyplot as plt from digitizing import digitizing_point import os from projective_coefficients import projective_coefficients from projective_transformation import transform_points from quadratic_a_matrix import a_mat_quadratic if __name__ == "__main__": # ************************** Data Prepration *************************** gcps = np.array([[5, 82, 320], [1000, 118, 400], [1000, 931, 420], [18, 1000, 390], [194, 249, 303.5], [-23, 721, 422.3], [247, 1119, 445.0], [257, 855, 447.8], [596, 531, 423.9], [770, 362, 405.1]]) u = 6 img = mimg.imread('img.jpg') # *************** Get 10 Raw points ******************* if os.path.isfile('raw_data.txt'): raw_data = np.loadtxt('raw_data.txt') else: print('\nUse right click to add point,\n ' 'Backspace to delete worng point and\n ' 'Enter to finish digitizing\n') height = np.empty((0, gcps.shape[0])) raw_data = digitizing_point(img_mat=img, height_value=height) np.savetxt('raw_data.txt', raw_data) raw_data = np.loadtxt('raw_data_20.txt') # *************** Get 5 Personal Raw points ******************* if os.path.isfile('personal_raw_data_20.txt'): personal_raw_data = np.loadtxt('personal_raw_data_20.txt') else: print('\nUse right click to add point,\n ' 'Backspace to delete worng point and\n ' 'Enter to finish digitizing\n') height = np.array([[320, 400, 420, 370, 430]]) personal_raw_data = digitizing_point(img_mat=img, height_value=height) np.savetxt('personal_raw_data.txt', personal_raw_data) personal_raw_data = np.loadtxt('personal_raw_data.txt') # *************** Find the Coefficients of Projective Transformation ******************* x_cap_proj = projective_coefficients(gcp=gcps, raw=raw_data) # *************** Create dataset with 15 points ******************* personal_raw_data_projected = transform_points(personal_raw_data, x_cap_proj) full_dataset = np.concatenate((gcps, personal_raw_data_projected), axis=0) # *************** RMSE Estimation with 10 and 15 Points ******************* x_cap_quad = [] for i in [10, 15]: a_mat = a_mat_quadratic(full_dataset[:i, :]) x_cap = np.linalg.inv(np.transpose(a_mat).dot(a_mat)).dot(np.transpose(a_mat)).dot(full_dataset[:i, 2]) z_cap = a_mat.dot(x_cap) print(f'x_cap of {i} point is equal to:\n {x_cap} \n') z = full_dataset[:i, 2] v = [z_cap[i] - z[i] for i in range(z_cap.shape[0])] rmse = np.sqrt((np.transpose(np.array(v)).dot(np.array(v))) / (i - u)) print(f'RMSE of {i} point is equal to: {rmse} ') print('\n', '*' * 25, '\n') x_cap_quad.append(x_cap) # *************** Z0 Estimation with 10 and 15 Points ******************* loi = np.array([[260, 520]]) z0_10point = a_mat_quadratic(loi).dot(x_cap_quad[0]) z0_15point = a_mat_quadratic(loi).dot(x_cap_quad[1]) print(f'z0_10point: {z0_10point[0]},\t z0_15point: {z0_15point[0]}') print('\n', '*' * 25, '\n') # *************** Plot 3D: Personal Points and GCPs ******************* plt.figure(1) ax = plt.axes(projection='3d') ax.scatter3D(full_dataset[:10, 0], full_dataset[:10, 1], full_dataset[:10, 2], marker='^', cmap='Reds', s=300, label='GCPs') ax.scatter3D(full_dataset[10:15, 0], full_dataset[10:15, 1], full_dataset[10:15, 2], marker='o', cmap='Reds', s=300, label='Personal Points') ax.set_xlabel('$x$', fontsize=30) ax.set_ylabel('$y$', fontsize=30) ax.set_zlabel('$z$', fontsize=30) plt.title("Plot 3D: Personal Points and GCPs", fontsize=30) plt.legend(loc='upper left', numpoints=1, ncol=3, fontsize=30, bbox_to_anchor=(0, 0)) # *************** Plot 3D Surface ******************* plt.figure(2) xgrid = np.linspace(-50, 1100, 50) ygrid = np.linspace(0, 1200, 50) x, y = np.meshgrid(xgrid, ygrid) z = np.array([a_mat_quadratic([[x[j][i], y[j][i]]]).dot(x_cap_quad[1]) for j in np.arange(ygrid.shape[0]) for i in np.arange(xgrid.shape[0])]) ax = plt.axes(projection='3d') ax.plot_surface(x.reshape(50, 50), y.reshape(50, 50), z.reshape(50, 50), rstride=1, cstride=1, cmap='viridis', edgecolor='none') ax.scatter3D(full_dataset[:10, 0], full_dataset[:10, 1], full_dataset[:10, 2], marker='^', cmap='Reds', s=300, label='GCPs') ax.scatter3D(full_dataset[10:15, 0], full_dataset[10:15, 1], full_dataset[10:15, 2], marker='o', cmap='Reds', s=300, label='Personal Points') ax.set_xlabel('$x$', fontsize=30) ax.set_ylabel('$y$', fontsize=30) ax.set_zlabel('$z$', fontsize=30) ax.set_title('Plot 3D Surface, Quadratic Polynomial', fontsize=30) plt.legend(loc='upper left', numpoints=1, ncol=3, fontsize=30, bbox_to_anchor=(0, 0)) # *************** Height Profile ******************* plt.figure(3) x_height = np.linspace(5, 770, 120) y_height = np.linspace(82, 362, 120) z_height = [] dist = [] d = np.sqrt((x_height[0] - x_height[1]) ** 2 + (y_height[0] - y_height[1]) ** 2) z_height = np.empty((0, 1)) dist =
np.empty((0, 1))
numpy.empty
# coding: utf-8 import os import chainer import numpy as np from PIL import Image from glob import glob import cv2 from functions import onehot2label from generator import ResNetDeepLab from options import get_options def resize_and_crop(img): w, h = img.size out = None if h < w: out = img.resize((int(256 * w / h), 256)) left = int(out.width / 2 - 128) out = out.crop((left, 0, left + 256, 256)) else: out = img.resize((256, int(256 * h / w))) top = int(out.height / 2 - 128) out = out.crop((0, top, 256, top + 256)) return out # in default, not removing def remove_noise(img, ksize=5): img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) img_mask = cv2.medianBlur(img, ksize) indexes = np.where((img_mask == [0, 0, 0]).all(axis=2)) img_mask[indexes] = img[indexes] img_mask = cv2.cvtColor(img_mask, cv2.COLOR_BGR2RGB) return img_mask def img_save(x, path): img_array = np.transpose(x, (1, 2, 0)) img_array = np.uint8(img_array * 255) img = Image.fromarray(img_array) img.save(path) def is_exist_color(img, rgb_list, threshold_num=1): class_color = np.array(rgb_list).astype('uint8') class_color = class_color.reshape(1, 1, 3) class_color = np.repeat(class_color, img.shape[0], axis=0) class_color = np.repeat(class_color, img.shape[1], axis=1) mask = np.sum(img == rgb_list, axis=2) == 3 out = np.sum(mask) >= threshold_num return out def main(): out_dir = 'predict_to' in_dir = 'predict_from' gen_npz = 'pretrained/gen.npz' opt = get_options() gen = ResNetDeepLab(opt) gen.to_gpu(0) chainer.serializers.load_npz(gen_npz, gen) gen.to_cpu() num = 0 os.makedirs(out_dir, exist_ok=True) files = glob(in_dir + '/*.*') for filename in files: print(filename) img = resize_and_crop(Image.open(filename)) img_array = np.array(img, dtype='float32') img_array = img_array.transpose((2, 0, 1)) / 255 x = chainer.Variable(img_array[np.newaxis, :3, :, :]) out = gen(x) onehot = out.array[0] x = x.array[0] out = onehot2label(onehot) bg_onehot = np.argmax(onehot, axis=0) bg_onehot = bg_onehot == 4 bg_threshold = 0.5 bg_num = x * bg_onehot bg_num = bg_num > bg_threshold bg_num = np.sum(bg_num, axis=0) bg_num = np.sum(bg_num == 3) bg_ratio = bg_num / np.sum(bg_onehot) if bg_ratio < 0.6: print('Black Background') continue out = np.transpose(out * 255, (1, 2, 0)).astype('uint8') # out = remove_noise(out, ksize=ksize) # exist eye ? if not is_exist_color(out, [255, 0, 0], threshold_num=32): print('No Eye') continue # exist face ? if not is_exist_color(out, [0, 255, 0], threshold_num=100): print('No Face') continue # exist hair ? if not is_exist_color(out, [0, 0, 255], threshold_num=100): print('No Hair') continue x =
np.transpose(x * 255, (1, 2, 0))
numpy.transpose