prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
from __future__ import division import argparse import multiprocessing import numpy as np import chainer from chainer import iterators import chainermn from chainercv.evaluations import calc_semantic_segmentation_confusion from chainercv.evaluations import calc_semantic_segmentation_iou from chainercv.utils import apply_to_iterator from chainercv.utils import ProgressHook from eval_semantic_segmentation import get_dataset_and_model def main(): parser = argparse.ArgumentParser() parser.add_argument( '--dataset', choices=('cityscapes', 'ade20k', 'camvid')) parser.add_argument( '--model', choices=( 'pspnet_resnet101', 'segnet')) parser.add_argument('--pretrained-model') parser.add_argument('--input-size', type=int, default=None) args = parser.parse_args() # https://docs.chainer.org/en/stable/chainermn/tutorial/tips_faqs.html#using-multiprocessiterator if hasattr(multiprocessing, 'set_start_method'): multiprocessing.set_start_method('forkserver') p = multiprocessing.Process() p.start() p.join() comm = chainermn.create_communicator() device = comm.intra_rank if args.input_size is None: input_size = None else: input_size = (args.input_size, args.input_size) dataset, label_names, model = get_dataset_and_model( args.dataset, args.model, args.pretrained_model, input_size) assert len(dataset) % comm.size == 0, \ "The size of the dataset should be a multiple "\ "of the number of GPUs" chainer.cuda.get_device_from_id(device).use() model.to_gpu() if comm.rank == 0: indices = np.arange(len(dataset)) else: indices = None indices = chainermn.scatter_dataset(indices, comm) dataset = dataset.slice[indices] it = iterators.SerialIterator( dataset, 1, repeat=False, shuffle=False) in_values, out_values, rest_values = apply_to_iterator( model.predict, it, hook=ProgressHook(len(dataset))) # Delete an iterator of images to save memory usage. del in_values pred_labels, = out_values gt_labels, = rest_values confusion = calc_semantic_segmentation_confusion(pred_labels, gt_labels) confusion = comm.allreduce(confusion) if comm.rank == 0: iou = calc_semantic_segmentation_iou(confusion) pixel_accuracy = np.diag(confusion).sum() / confusion.sum() class_accuracy = np.diag(confusion) /
np.sum(confusion, axis=1)
numpy.sum
import os import pickle import librosa import warnings import numpy as np import pandas as pd warnings.filterwarnings('ignore') from scipy.stats import skew, kurtosis from pychorus import find_and_output_chorus from flask import Flask, request, json, render_template # Create flask app app = Flask(__name__) # Load pkl model model = pickle.load(open('Your model name here', 'rb')) @app.route('/') def home(): return render_template('index.html') @app.route('/predict', methods = ['POST']) def predict(): song_link = list(request.form.values())[0] # get features from songs data = [] d, cols = extract_features(song_link) data.append(d) dataset = pd.DataFrame(data, columns=cols) # select features which we used in ml model df = pd.read_csv('Data/bestfeatures.csv') columns = list(df['feature'][df['type']=='best']) X = dataset[columns] # making prediction prediction = model.predict(X) output = 'Unpopular' if prediction[0] == 0 else 'Popular' return render_template('index.html', prediction_text = f'The song is {output}') def statistics(list, feature, columns_name, data): i = 0 for ele in list: _skew = skew(ele) columns_name.append(f'{feature}_kew_{i}') min = np.min(ele) columns_name.append(f'{feature}_min_{i}') max = np.max(ele) columns_name.append(f'{feature}_max_{i}') std = np.std(ele) columns_name.append(f'{feature}_std_{i}') mean = np.mean(ele) columns_name.append(f'{feature}_mean_{i}') median =
np.median(ele)
numpy.median
# OpenSeesPy visualization module # Author: <NAME> # Faculty of Civil Engineering and Architecture # Opole University of Technology, Poland # ver. 0.94, 2020 August # License: MIT # Notes: # 1. matplotlib's plt.axis('equal') does not work for 3d plots # therefore right angles are not guaranteed to be 90 degrees on the # plots import openseespy.opensees as ops # installed from pip # import opensees as ops # local compilation import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d.art3d import Poly3DCollection from matplotlib.patches import Circle, Polygon from matplotlib.animation import FuncAnimation import matplotlib.tri as tri # default settings # fmt: format string setting color, marker and linestyle # check documentation on matplotlib's plot # continuous interpolated shape line fmt_interp = 'b-' # blue solid line, no markers # element end nodes fmt_nodes = 'rs' # red square markers, no line # undeformed model fmt_undefo = 'g--' # green dashed line, no markers # section forces fmt_secforce = 'b-' # blue solid line # figure left right bottom top offsets fig_lbrt = (.04, .04, .96, .96) # azimuth and elevation in degrees az_el = (-60., 30.) # figure width and height in centimeters fig_wi_he = (16., 10.) def _plot_model_2d(node_labels, element_labels, offset_nd_label, axis_off): max_x_crd, max_y_crd, max_crd = -np.inf, -np.inf, -np.inf node_tags = ops.getNodeTags() ele_tags = ops.getEleTags() nen = np.shape(ops.eleNodes(ele_tags[0]))[0] # truss and beam/frame elements if nen == 2: for node_tag in node_tags: x_crd = ops.nodeCoord(node_tag)[0] y_crd = ops.nodeCoord(node_tag)[1] if x_crd > max_x_crd: max_x_crd = x_crd if y_crd > max_y_crd: max_y_crd = y_crd max_crd = np.amax([max_x_crd, max_y_crd]) _offset = 0.005 * max_crd for i, ele_tag in enumerate(ele_tags): nd1, nd2 = ops.eleNodes(ele_tag) # element node1-node2, x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1]]) # location of label xt = sum(ex)/nen yt = sum(ey)/nen plt.plot(ex, ey, 'bo-') if element_labels: if ex[1]-ex[0] == 0: va = 'center' ha = 'left' offset_x, offset_y = _offset, 0.0 elif ey[1]-ey[0] == 0: va = 'bottom' ha = 'center' offset_x, offset_y = 0.0, _offset else: va = 'bottom' ha = 'left' offset_x, offset_y = 0.03, 0.03 plt.text(xt+offset_x, yt+offset_y, f'{ele_tag}', va=va, ha=ha, color='red') if node_labels: for node_tag in node_tags: if not offset_nd_label == 'above': offset_nd_label_x, offset_nd_label_y = _offset, _offset va = 'bottom' ha = 'left' else: offset_nd_label_x, offset_nd_label_y = 0.0, _offset va = 'bottom' ha = 'center' plt.text(ops.nodeCoord(node_tag)[0]+offset_nd_label_x, ops.nodeCoord(node_tag)[1]+offset_nd_label_y, f'{node_tag}', va=va, ha=ha, color='blue') # plt.axis('equal') # 2d triangular (tri31) elements elif nen == 3: for node_tag in node_tags: x_crd = ops.nodeCoord(node_tag)[0] y_crd = ops.nodeCoord(node_tag)[1] if x_crd > max_x_crd: max_x_crd = x_crd if y_crd > max_y_crd: max_y_crd = y_crd max_crd = np.amax([max_x_crd, max_y_crd]) _offset = 0.005 * max_crd _offnl = 0.003 * max_crd for i, ele_tag in enumerate(ele_tags): nd1, nd2, nd3 = ops.eleNodes(ele_tag) # element x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0], ops.nodeCoord(nd3)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1], ops.nodeCoord(nd3)[1]]) # location of label xt = sum(ex)/nen yt = sum(ey)/nen plt.plot(np.append(ex, ex[0]), np.append(ey, ey[0]), 'bo-') if element_labels: va = 'center' ha = 'center' plt.text(xt, yt, f'{ele_tag}', va=va, ha=ha, color='red') if node_labels: for node_tag in node_tags: if not offset_nd_label == 'above': offset_nd_label_x, offset_nd_label_y = _offnl, _offnl va = 'bottom' # va = 'center' ha = 'left' else: offset_nd_label_x, offset_nd_label_y = 0.0, _offnl va = 'bottom' ha = 'center' plt.text(ops.nodeCoord(node_tag)[0]+offset_nd_label_x, ops.nodeCoord(node_tag)[1]+offset_nd_label_y, f'{node_tag}', va=va, ha=ha, color='blue') # 2d quadrilateral (quad) elements elif nen == 4: for node_tag in node_tags: x_crd = ops.nodeCoord(node_tag)[0] y_crd = ops.nodeCoord(node_tag)[1] if x_crd > max_x_crd: max_x_crd = x_crd if y_crd > max_y_crd: max_y_crd = y_crd max_crd = np.amax([max_x_crd, max_y_crd]) _offset = 0.005 * max_crd _offnl = 0.003 * max_crd for i, ele_tag in enumerate(ele_tags): nd1, nd2, nd3, nd4 = ops.eleNodes(ele_tag) # element x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0], ops.nodeCoord(nd3)[0], ops.nodeCoord(nd4)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1], ops.nodeCoord(nd3)[1], ops.nodeCoord(nd4)[1]]) # location of label xt = sum(ex)/nen yt = sum(ey)/nen # plt.plot(np.append(ex, ex[0]), np.append(ey, ey[0]), 'bo-') plt.plot(np.append(ex, ex[0]), np.append(ey, ey[0]), 'b-', lw=0.4) if element_labels: va = 'center' ha = 'center' plt.text(xt, yt, f'{ele_tag}', va=va, ha=ha, color='red') if node_labels: for node_tag in node_tags: if not offset_nd_label == 'above': offset_nd_label_x, offset_nd_label_y = _offnl, _offnl va = 'bottom' # va = 'center' ha = 'left' else: offset_nd_label_x, offset_nd_label_y = 0.0, _offnl va = 'bottom' ha = 'center' plt.text(ops.nodeCoord(node_tag)[0]+offset_nd_label_x, ops.nodeCoord(node_tag)[1]+offset_nd_label_y, f'{node_tag}', va=va, ha=ha, color='blue') plt.axis('equal') def _plot_model_3d(node_labels, element_labels, offset_nd_label, axis_off, az_el, fig_wi_he, fig_lbrt): node_tags = ops.getNodeTags() ele_tags = ops.getEleTags() azim, elev = az_el fig_wi, fig_he = fig_wi_he fleft, fbottom, fright, ftop = fig_lbrt fig = plt.figure(figsize=(fig_wi/2.54, fig_he/2.54)) fig.subplots_adjust(left=.08, bottom=.08, right=.985, top=.94) ax = fig.add_subplot(111, projection=Axes3D.name) ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') ax.view_init(azim=azim, elev=elev) max_x_crd, max_y_crd, max_z_crd, max_crd = -np.inf, -np.inf, \ -np.inf, -np.inf nen = np.shape(ops.eleNodes(ele_tags[0]))[0] # truss and beam/frame elements if nen == 2: for node_tag in node_tags: x_crd = ops.nodeCoord(node_tag)[0] y_crd = ops.nodeCoord(node_tag)[1] z_crd = ops.nodeCoord(node_tag)[2] if x_crd > max_x_crd: max_x_crd = x_crd if y_crd > max_y_crd: max_y_crd = y_crd if z_crd > max_z_crd: max_z_crd = z_crd if offset_nd_label == 0 or offset_nd_label == 0.: _offset = 0. else: max_crd = np.amax([max_x_crd, max_y_crd, max_z_crd]) _offset = 0.005 * max_crd # # work-around fix because of aspect equal bug # _max_overall = 1.1*max_crd # _min_overall = -0.1*max_crd # ax.set_xlim(_min_overall, _max_overall) # ax.set_ylim(_min_overall, _max_overall) # ax.set_zlim(_min_overall, _max_overall) for i, ele_tag in enumerate(ele_tags): nd1, nd2 = ops.eleNodes(ele_tag) # element node1-node2, x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1]]) ez = np.array([ops.nodeCoord(nd1)[2], ops.nodeCoord(nd2)[2]]) # location of label xt = sum(ex)/nen yt = sum(ey)/nen zt = sum(ez)/nen ax.plot(ex, ey, ez, 'bo-') # fixme: placement of node_tag labels if element_labels: if ex[1]-ex[0] == 0: va = 'center' ha = 'left' offset_x, offset_y, offset_z = _offset, 0.0, 0.0 elif ey[1]-ey[0] == 0: va = 'bottom' ha = 'center' offset_x, offset_y, offset_z = 0.0, _offset, 0.0 elif ez[1]-ez[0] == 0: va = 'bottom' ha = 'center' offset_x, offset_y, offset_z = 0.0, 0.0, _offset else: va = 'bottom' ha = 'left' offset_x, offset_y, offset_z = 0.03, 0.03, 0.03 ax.text(xt+offset_x, yt+offset_y, zt+offset_z, f'{ele_tag}', va=va, ha=ha, color='red') if node_labels: for node_tag in node_tags: ax.text(ops.nodeCoord(node_tag)[0]+_offset, ops.nodeCoord(node_tag)[1]+_offset, ops.nodeCoord(node_tag)[2]+_offset, f'{node_tag}', va='bottom', ha='left', color='blue') # quad in 3d elif nen == 4: for node_tag in node_tags: x_crd = ops.nodeCoord(node_tag)[0] y_crd = ops.nodeCoord(node_tag)[1] z_crd = ops.nodeCoord(node_tag)[2] if x_crd > max_x_crd: max_x_crd = x_crd if y_crd > max_y_crd: max_y_crd = y_crd if z_crd > max_z_crd: max_z_crd = z_crd # ax.plot(np.array([x_crd]), # np.array([y_crd]), # np.array([z_crd]), 'ro') max_crd = np.amax([max_x_crd, max_y_crd, max_z_crd]) _offset = 0.002 * max_crd for i, ele_tag in enumerate(ele_tags): nd1, nd2, nd3, nd4 = ops.eleNodes(ele_tag) # element node1-node2, x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0], ops.nodeCoord(nd3)[0], ops.nodeCoord(nd4)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1], ops.nodeCoord(nd3)[1], ops.nodeCoord(nd4)[1]]) ez = np.array([ops.nodeCoord(nd1)[2], ops.nodeCoord(nd2)[2], ops.nodeCoord(nd3)[2], ops.nodeCoord(nd4)[2]]) # location of label xt = sum(ex)/nen yt = sum(ey)/nen zt = sum(ez)/nen ax.plot(np.append(ex, ex[0]), np.append(ey, ey[0]), np.append(ez, ez[0]), 'bo-') # fixme: placement of node_tag labels if element_labels: if ex[1]-ex[0] == 0: va = 'center' ha = 'left' offset_x, offset_y, offset_z = _offset, 0.0, 0.0 elif ey[1]-ey[0] == 0: va = 'bottom' ha = 'center' offset_x, offset_y, offset_z = 0.0, _offset, 0.0 elif ez[1]-ez[0] == 0: va = 'bottom' ha = 'center' offset_x, offset_y, offset_z = 0.0, 0.0, _offset else: va = 'bottom' ha = 'left' offset_x, offset_y, offset_z = 0.03, 0.03, 0.03 ax.text(xt+offset_x, yt+offset_y, zt+offset_z, f'{ele_tag}', va=va, ha=ha, color='red') if node_labels: for node_tag in node_tags: ax.text(ops.nodeCoord(node_tag)[0]+_offset, ops.nodeCoord(node_tag)[1]+_offset, ops.nodeCoord(node_tag)[2]+_offset, f'{node_tag}', va='bottom', ha='left', color='blue') # 8-node brick, 3d model elif nen == 8: for node_tag in node_tags: x_crd = ops.nodeCoord(node_tag)[0] y_crd = ops.nodeCoord(node_tag)[1] z_crd = ops.nodeCoord(node_tag)[2] if x_crd > max_x_crd: max_x_crd = x_crd if y_crd > max_y_crd: max_y_crd = y_crd if z_crd > max_z_crd: max_z_crd = z_crd # ax.plot(np.array([x_crd]), # np.array([y_crd]), # np.array([z_crd]), 'ro') max_crd = np.amax([max_x_crd, max_y_crd, max_z_crd]) _offset = 0.005 * max_crd # work-around fix because of aspect equal bug _max_overall = 1.1*max_crd _min_overall = -0.1*max_crd ax.set_xlim(_min_overall, _max_overall) ax.set_ylim(_min_overall, _max_overall) ax.set_zlim(_min_overall, _max_overall) for i, ele_tag in enumerate(ele_tags): nd1, nd2, nd3, nd4, nd5, nd6, nd7, nd8 = ops.eleNodes(ele_tag) # element node1-node2, x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0], ops.nodeCoord(nd3)[0], ops.nodeCoord(nd4)[0], ops.nodeCoord(nd5)[0], ops.nodeCoord(nd6)[0], ops.nodeCoord(nd7)[0], ops.nodeCoord(nd8)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1], ops.nodeCoord(nd3)[1], ops.nodeCoord(nd4)[1], ops.nodeCoord(nd5)[1], ops.nodeCoord(nd6)[1], ops.nodeCoord(nd7)[1], ops.nodeCoord(nd8)[1]]) ez = np.array([ops.nodeCoord(nd1)[2], ops.nodeCoord(nd2)[2], ops.nodeCoord(nd3)[2], ops.nodeCoord(nd4)[2], ops.nodeCoord(nd5)[2], ops.nodeCoord(nd6)[2], ops.nodeCoord(nd7)[2], ops.nodeCoord(nd8)[2]]) # location of label xt = sum(ex)/nen yt = sum(ey)/nen zt = sum(ez)/nen ax.plot(np.append(ex[0:4], ex[0]), np.append(ey[0:4], ey[0]), np.append(ez[0:4], ez[0]), 'bo-') ax.plot(np.append(ex[4:8], ex[4]), np.append(ey[4:8], ey[4]), np.append(ez[4:8], ez[4]), 'bo-') ax.plot(np.array([ex[0], ex[4]]), np.array([ey[0], ey[4]]), np.array([ez[0], ez[4]]), 'bo-') ax.plot(np.array([ex[1], ex[5]]), np.array([ey[1], ey[5]]), np.array([ez[1], ez[5]]), 'bo-') ax.plot(np.array([ex[2], ex[6]]), np.array([ey[2], ey[6]]), np.array([ez[2], ez[6]]), 'bo-') ax.plot(np.array([ex[3], ex[7]]), np.array([ey[3], ey[7]]), np.array([ez[3], ez[7]]), 'bo-') # fixme: placement of node_tag labels if element_labels: if ex[1]-ex[0] == 0: va = 'center' ha = 'left' offset_x, offset_y, offset_z = _offset, 0.0, 0.0 elif ey[1]-ey[0] == 0: va = 'bottom' ha = 'center' offset_x, offset_y, offset_z = 0.0, _offset, 0.0 elif ez[1]-ez[0] == 0: va = 'bottom' ha = 'center' offset_x, offset_y, offset_z = 0.0, 0.0, _offset else: va = 'bottom' ha = 'left' offset_x, offset_y, offset_z = 0.03, 0.03, 0.03 ax.text(xt+offset_x, yt+offset_y, zt+offset_z, f'{ele_tag}', va=va, ha=ha, color='red') if node_labels: for node_tag in node_tags: ax.text(ops.nodeCoord(node_tag)[0]+_offset, ops.nodeCoord(node_tag)[1]+_offset, ops.nodeCoord(node_tag)[2]+_offset, f'{node_tag}', va='bottom', ha='left', color='blue') def plot_model(node_labels=1, element_labels=1, offset_nd_label=False, axis_off=0, az_el=az_el, fig_wi_he=fig_wi_he, fig_lbrt=fig_lbrt): """Plot defined model of the structure. Args: node_labels (int): 1 - plot node labels, 0 - do not plot them; (default: 1) element_labels (int): 1 - plot element labels, 0 - do not plot them; (default: 1) offset_nd_label (bool): False - do not offset node labels from the actual node location. This option can enhance visibility. axis_off (int): 0 - turn off axes, 1 - display axes; (default: 0) az_el (tuple): contains azimuth and elevation for 3d plots fig_wi_he (tuple): contains width and height of the figure fig_lbrt (tuple): a tuple contating left, bottom, right and top offsets Usage: ``plot_()`` - plot deformed shape with default parameters and automatically calcutated scale factor. ``plot_defo(interpFlag=0)`` - plot displaced nodes without shape function interpolation ``plot_defo(sfac=1.5)`` - plot with specified scale factor ``plot_defo(unDefoFlag=0, endDispFlag=0)`` - plot without showing undeformed (original) mesh and without showing markers at the element ends. """ # az_el - azimut, elevation used for 3d plots only node_tags = ops.getNodeTags() ndim = np.shape(ops.nodeCoord(node_tags[0]))[0] if ndim == 2: _plot_model_2d(node_labels, element_labels, offset_nd_label, axis_off) if axis_off: plt.axis('off') elif ndim == 3: _plot_model_3d(node_labels, element_labels, offset_nd_label, axis_off, az_el, fig_wi_he, fig_lbrt) if axis_off: plt.axis('off') else: print(f'\nWarning! ndim: {ndim} not supported yet.') # plt.show() # call this from main py file for more control def _plot_defo_mode_2d(modeNo, sfac, nep, unDefoFlag, fmt_undefo, interpFlag, endDispFlag, fmt_interp, fmt_nodes): ele_tags = ops.getEleTags() nen = np.shape(ops.eleNodes(ele_tags[0]))[0] # truss and beam/frame elements if nen == 2: ndf = np.shape(ops.nodeDOFs(ops.eleNodes(ele_tags[0])[0]))[0] # truss element if ndf == 2: for ele_tag in ele_tags: nd1, nd2 = ops.eleNodes(ele_tag) # element x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1]]) if modeNo: eux = np.array([ops.nodeEigenvector(nd1, modeNo)[0], ops.nodeEigenvector(nd2, modeNo)[0]]) euy = np.array([ops.nodeEigenvector(nd1, modeNo)[1], ops.nodeEigenvector(nd2, modeNo)[1]]) else: eux = np.array([ops.nodeDisp(nd1)[0], ops.nodeDisp(nd2)[0]]) euy = np.array([ops.nodeDisp(nd1)[1], ops.nodeDisp(nd2)[1]]) # displaced element coordinates (scaled by sfac factor) edx = np.array([ex[0] + sfac*eux[0], ex[1] + sfac*eux[1]]) edy = np.array([ey[0] + sfac*euy[0], ey[1] + sfac*euy[1]]) if unDefoFlag: plt.plot(ex, ey, fmt_undefo) plt.plot(edx, edy, fmt_interp) # beam/frame element elif ndf == 3: for ele_tag in ele_tags: nd1, nd2 = ops.eleNodes(ele_tag) # element x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1]]) if modeNo: ed = np.array([ops.nodeEigenvector(nd1, modeNo)[0], ops.nodeEigenvector(nd1, modeNo)[1], ops.nodeEigenvector(nd1, modeNo)[2], ops.nodeEigenvector(nd2, modeNo)[0], ops.nodeEigenvector(nd2, modeNo)[1], ops.nodeEigenvector(nd2, modeNo)[2]]) else: ed = np.array([ops.nodeDisp(nd1)[0], ops.nodeDisp(nd1)[1], ops.nodeDisp(nd1)[2], ops.nodeDisp(nd2)[0], ops.nodeDisp(nd2)[1], ops.nodeDisp(nd2)[2]]) if unDefoFlag: plt.plot(ex, ey, fmt_undefo) # interpolated displacement field if interpFlag: xcdi, ycdi = beam_defo_interp_2d(ex, ey, ed, sfac, nep) plt.plot(xcdi, ycdi, fmt_interp) # translations of ends if endDispFlag: xdi, ydi = beam_disp_ends(ex, ey, ed, sfac) plt.plot(xdi, ydi, fmt_nodes) plt.axis('equal') # plt.show() # call this from main py file for more control # 2d triangular (tri31) elements elif nen == 3: for ele_tag in ele_tags: nd1, nd2, nd3 = ops.eleNodes(ele_tag) # element x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0], ops.nodeCoord(nd3)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1], ops.nodeCoord(nd3)[1]]) if modeNo: ed = np.array([ops.nodeEigenvector(nd1, modeNo)[0], ops.nodeEigenvector(nd1, modeNo)[1], ops.nodeEigenvector(nd2, modeNo)[0], ops.nodeEigenvector(nd2, modeNo)[1], ops.nodeEigenvector(nd3, modeNo)[0], ops.nodeEigenvector(nd3, modeNo)[1]]) else: ed = np.array([ops.nodeDisp(nd1)[0], ops.nodeDisp(nd1)[1], ops.nodeDisp(nd2)[0], ops.nodeDisp(nd2)[1], ops.nodeDisp(nd3)[0], ops.nodeDisp(nd3)[1]]) if unDefoFlag: plt.plot(np.append(ex, ex[0]), np.append(ey, ey[0]), fmt_undefo) # xcdi, ycdi = beam_defo_interp_2d(ex, ey, ed, sfac, nep) # xdi, ydi = beam_disp_ends(ex, ey, ed, sfac) # # interpolated displacement field # plt.plot(xcdi, ycdi, 'b.-') # # translations of ends only # plt.plot(xdi, ydi, 'ro') # xc = [x, x[0, :]] # yc = [x, x[0, :]] # test it with one element x = ex+sfac*ed[[0, 2, 4]] y = ey+sfac*ed[[1, 3, 5]] # x = ex+sfac*ed[[0, 2, 4, 6]] # y = ey+sfac*ed[[1, 3, 5, 7]] plt.plot(np.append(x, x[0]), np.append(y, y[0]), 'b.-') plt.axis('equal') # 2d quadrilateral (quad) elements elif nen == 4: for ele_tag in ele_tags: nd1, nd2, nd3, nd4 = ops.eleNodes(ele_tag) # element x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0], ops.nodeCoord(nd3)[0], ops.nodeCoord(nd4)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1], ops.nodeCoord(nd3)[1], ops.nodeCoord(nd4)[1]]) if modeNo: ed = np.array([ops.nodeEigenvector(nd1, modeNo)[0], ops.nodeEigenvector(nd1, modeNo)[1], ops.nodeEigenvector(nd2, modeNo)[0], ops.nodeEigenvector(nd2, modeNo)[1], ops.nodeEigenvector(nd3, modeNo)[0], ops.nodeEigenvector(nd3, modeNo)[1], ops.nodeEigenvector(nd4, modeNo)[0], ops.nodeEigenvector(nd4, modeNo)[1]]) else: ed = np.array([ops.nodeDisp(nd1)[0], ops.nodeDisp(nd1)[1], ops.nodeDisp(nd2)[0], ops.nodeDisp(nd2)[1], ops.nodeDisp(nd3)[0], ops.nodeDisp(nd3)[1], ops.nodeDisp(nd4)[0], ops.nodeDisp(nd4)[1]]) if unDefoFlag: plt.plot(np.append(ex, ex[0]), np.append(ey, ey[0]), fmt_undefo) # xcdi, ycdi = beam_defo_interp_2d(ex, ey, ed, sfac, nep) # xdi, ydi = beam_disp_ends(ex, ey, ed, sfac) # # interpolated displacement field # plt.plot(xcdi, ycdi, 'b.-') # # translations of ends only # plt.plot(xdi, ydi, 'ro') # test it with one element x = ex+sfac*ed[[0, 2, 4, 6]] y = ey+sfac*ed[[1, 3, 5, 7]] plt.plot(np.append(x, x[0]), np.append(y, y[0]), 'b.-') plt.axis('equal') # 2d 8-node quadratic elements # elif nen == 8: # x = ex+sfac*ed[:, [0, 2, 4, 6, 8, 10, 12, 14]] # y = ex+sfac*ed[:, [1, 3, 5, 7, 9, 11, 13, 15]] # t = -1 # n = 0 # for s in range(-1, 1.4, 0.4): # n += 1 # ... else: print(f'\nWarning! Elements not supported yet. nen: {nen}; must be: 2, 3, 4, 8.') # noqa: E501 def _plot_defo_mode_3d(modeNo, sfac, nep, unDefoFlag, fmt_undefo, interpFlag, endDispFlag, fmt_interp, fmt_nodes, az_el, fig_wi_he, fig_lbrt): ele_tags = ops.getEleTags() azim, elev = az_el fig_wi, fig_he = fig_wi_he fleft, fbottom, fright, ftop = fig_lbrt fig = plt.figure(figsize=(fig_wi/2.54, fig_he/2.54)) fig.subplots_adjust(left=.08, bottom=.08, right=.985, top=.94) ax = fig.add_subplot(111, projection=Axes3D.name) # ax.axis('equal') ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') ax.view_init(azim=azim, elev=elev) nen = np.shape(ops.eleNodes(ele_tags[0]))[0] # plot: truss and beam/frame elements in 3d if nen == 2: ndf = np.shape(ops.nodeDOFs(ops.eleNodes(ele_tags[0])[0]))[0] # plot: beam/frame element in 3d if ndf == 6: for i, ele_tag in enumerate(ele_tags): nd1, nd2 = ops.eleNodes(ele_tag) # element x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1]]) ez = np.array([ops.nodeCoord(nd1)[2], ops.nodeCoord(nd2)[2]]) if modeNo: ed = np.array([ops.nodeEigenvector(nd1, modeNo)[0], ops.nodeEigenvector(nd1, modeNo)[1], ops.nodeEigenvector(nd1, modeNo)[2], ops.nodeEigenvector(nd1, modeNo)[3], ops.nodeEigenvector(nd1, modeNo)[4], ops.nodeEigenvector(nd1, modeNo)[5], ops.nodeEigenvector(nd2, modeNo)[0], ops.nodeEigenvector(nd2, modeNo)[1], ops.nodeEigenvector(nd2, modeNo)[2], ops.nodeEigenvector(nd2, modeNo)[3], ops.nodeEigenvector(nd2, modeNo)[4], ops.nodeEigenvector(nd2, modeNo)[5]]) else: ed = np.array([ops.nodeDisp(nd1)[0], ops.nodeDisp(nd1)[1], ops.nodeDisp(nd1)[2], ops.nodeDisp(nd1)[3], ops.nodeDisp(nd1)[4], ops.nodeDisp(nd1)[5], ops.nodeDisp(nd2)[0], ops.nodeDisp(nd2)[1], ops.nodeDisp(nd2)[2], ops.nodeDisp(nd2)[3], ops.nodeDisp(nd2)[4], ops.nodeDisp(nd2)[5]]) # eo = Eo[i, :] xloc = ops.eleResponse(ele_tag, 'xlocal') yloc = ops.eleResponse(ele_tag, 'ylocal') zloc = ops.eleResponse(ele_tag, 'zlocal') g = np.vstack((xloc, yloc, zloc)) if unDefoFlag: plt.plot(ex, ey, ez, fmt_undefo) # interpolated displacement field if interpFlag: xcd, ycd, zcd = beam_defo_interp_3d(ex, ey, ez, g, ed, sfac, nep) ax.plot(xcd, ycd, zcd, fmt_interp) ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') # translations of ends if endDispFlag: xd, yd, zd = beam_disp_ends3d(ex, ey, ez, ed, sfac) ax.plot(xd, yd, zd, fmt_nodes) # # work-around fix because of aspect equal bug # xmin, xmax = ax.get_xlim() # ymin, ymax = ax.get_ylim() # zmin, zmax = ax.get_zlim() # min_overall = np.amax([np.abs(xmin), np.abs(ymin), np.abs(zmin)]) # max_overall = np.amax([np.abs(xmax), np.abs(ymax), np.abs(zmax)]) # minmax_overall = max(min_overall, max_overall) # _max_overall = 1.1 * minmax_overall # _min_overall = -1.1 * minmax_overall # ax.set_xlim(_min_overall, _max_overall) # ax.set_ylim(_min_overall, _max_overall) # # ax.set_zlim(_min_overall, _max_overall) # ax.set_zlim(0.0, _max_overall) # plot: quad in 3d elif nen == 4: ndf = np.shape(ops.nodeDOFs(ops.eleNodes(ele_tags[0])[0]))[0] # plot: shell in 3d if ndf == 6: for i, ele_tag in enumerate(ele_tags): nd1, nd2, nd3, nd4 = ops.eleNodes(ele_tag) # element node1-node2, x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0], ops.nodeCoord(nd3)[0], ops.nodeCoord(nd4)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1], ops.nodeCoord(nd3)[1], ops.nodeCoord(nd4)[1]]) ez = np.array([ops.nodeCoord(nd1)[2], ops.nodeCoord(nd2)[2], ops.nodeCoord(nd3)[2], ops.nodeCoord(nd4)[2]]) if modeNo: ed = np.array([ops.nodeEigenvector(nd1, modeNo)[0], ops.nodeEigenvector(nd1, modeNo)[1], ops.nodeEigenvector(nd1, modeNo)[2], ops.nodeEigenvector(nd2, modeNo)[0], ops.nodeEigenvector(nd2, modeNo)[1], ops.nodeEigenvector(nd2, modeNo)[2], ops.nodeEigenvector(nd3, modeNo)[0], ops.nodeEigenvector(nd3, modeNo)[1], ops.nodeEigenvector(nd3, modeNo)[2], ops.nodeEigenvector(nd4, modeNo)[0], ops.nodeEigenvector(nd4, modeNo)[1], ops.nodeEigenvector(nd4, modeNo)[2]]) else: ed = np.array([ops.nodeDisp(nd1)[0], ops.nodeDisp(nd1)[1], ops.nodeDisp(nd1)[2], ops.nodeDisp(nd2)[0], ops.nodeDisp(nd2)[1], ops.nodeDisp(nd2)[2], ops.nodeDisp(nd3)[0], ops.nodeDisp(nd3)[1], ops.nodeDisp(nd3)[2], ops.nodeDisp(nd4)[0], ops.nodeDisp(nd4)[1], ops.nodeDisp(nd4)[2]]) if unDefoFlag: ax.plot(np.append(ex, ex[0]), np.append(ey, ey[0]), np.append(ez, ez[0]), fmt_undefo) x = ex+sfac*ed[[0, 3, 6, 9]] y = ey+sfac*ed[[1, 4, 7, 10]] z = ez+sfac*ed[[2, 5, 8, 11]] # ax.plot(np.append(x, x[0]), # np.append(y, y[0]), # np.append(z, z[0]), # 'b.-') # ax.axis('equal') pts = [[x[0], y[0], z[0]], [x[1], y[1], z[1]], [x[2], y[2], z[2]], [x[3], y[3], z[3]]] verts = [[pts[0], pts[1], pts[2], pts[3]]] ax.add_collection3d(Poly3DCollection(verts, linewidths=1, edgecolors='k', alpha=.25)) ax.scatter(x, y, z, s=0) # 8-node brick, 3d model elif nen == 8: for i, ele_tag in enumerate(ele_tags): nd1, nd2, nd3, nd4, nd5, nd6, nd7, nd8 = ops.eleNodes(ele_tag) # element node1-node2, x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0], ops.nodeCoord(nd3)[0], ops.nodeCoord(nd4)[0], ops.nodeCoord(nd5)[0], ops.nodeCoord(nd6)[0], ops.nodeCoord(nd7)[0], ops.nodeCoord(nd8)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1], ops.nodeCoord(nd3)[1], ops.nodeCoord(nd4)[1], ops.nodeCoord(nd5)[1], ops.nodeCoord(nd6)[1], ops.nodeCoord(nd7)[1], ops.nodeCoord(nd8)[1]]) ez = np.array([ops.nodeCoord(nd1)[2], ops.nodeCoord(nd2)[2], ops.nodeCoord(nd3)[2], ops.nodeCoord(nd4)[2], ops.nodeCoord(nd5)[2], ops.nodeCoord(nd6)[2], ops.nodeCoord(nd7)[2], ops.nodeCoord(nd8)[2]]) if modeNo: ed = np.array([ops.nodeEigenvector(nd1, modeNo)[0], ops.nodeEigenvector(nd1, modeNo)[1], ops.nodeEigenvector(nd1, modeNo)[2], ops.nodeEigenvector(nd2, modeNo)[0], ops.nodeEigenvector(nd2, modeNo)[1], ops.nodeEigenvector(nd2, modeNo)[2], ops.nodeEigenvector(nd3, modeNo)[0], ops.nodeEigenvector(nd3, modeNo)[1], ops.nodeEigenvector(nd3, modeNo)[2], ops.nodeEigenvector(nd4, modeNo)[0], ops.nodeEigenvector(nd4, modeNo)[1], ops.nodeEigenvector(nd4, modeNo)[2], ops.nodeEigenvector(nd5, modeNo)[0], ops.nodeEigenvector(nd5, modeNo)[1], ops.nodeEigenvector(nd5, modeNo)[2], ops.nodeEigenvector(nd6, modeNo)[0], ops.nodeEigenvector(nd6, modeNo)[1], ops.nodeEigenvector(nd6, modeNo)[2], ops.nodeEigenvector(nd7, modeNo)[0], ops.nodeEigenvector(nd7, modeNo)[1], ops.nodeEigenvector(nd7, modeNo)[2], ops.nodeEigenvector(nd8, modeNo)[0], ops.nodeEigenvector(nd8, modeNo)[1], ops.nodeEigenvector(nd8, modeNo)[2]]) else: ed = np.array([ops.nodeDisp(nd1)[0], ops.nodeDisp(nd1)[1], ops.nodeDisp(nd1)[2], ops.nodeDisp(nd2)[0], ops.nodeDisp(nd2)[1], ops.nodeDisp(nd2)[2], ops.nodeDisp(nd3)[0], ops.nodeDisp(nd3)[1], ops.nodeDisp(nd3)[2], ops.nodeDisp(nd4)[0], ops.nodeDisp(nd4)[1], ops.nodeDisp(nd4)[2], ops.nodeDisp(nd5)[0], ops.nodeDisp(nd5)[1], ops.nodeDisp(nd5)[2], ops.nodeDisp(nd6)[0], ops.nodeDisp(nd6)[1], ops.nodeDisp(nd6)[2], ops.nodeDisp(nd7)[0], ops.nodeDisp(nd7)[1], ops.nodeDisp(nd7)[2], ops.nodeDisp(nd8)[0], ops.nodeDisp(nd8)[1], ops.nodeDisp(nd8)[2]]) if unDefoFlag: ax.plot(np.append(ex[0:4], ex[0]), np.append(ey[0:4], ey[0]), np.append(ez[0:4], ez[0]), fmt_undefo) ax.plot(np.append(ex[4:8], ex[4]), np.append(ey[4:8], ey[4]), np.append(ez[4:8], ez[4]), fmt_undefo) ax.plot(np.array([ex[0], ex[4]]), np.array([ey[0], ey[4]]), np.array([ez[0], ez[4]]), fmt_undefo) ax.plot(np.array([ex[1], ex[5]]), np.array([ey[1], ey[5]]), np.array([ez[1], ez[5]]), fmt_undefo) ax.plot(np.array([ex[2], ex[6]]), np.array([ey[2], ey[6]]), np.array([ez[2], ez[6]]), fmt_undefo) ax.plot(np.array([ex[3], ex[7]]), np.array([ey[3], ey[7]]), np.array([ez[3], ez[7]]), fmt_undefo) x = ex+sfac*ed[[0, 3, 6, 9, 12, 15, 18, 21]] y = ey+sfac*ed[[1, 4, 7, 10, 13, 16, 19, 22]] z = ez+sfac*ed[[2, 5, 8, 11, 14, 17, 20, 23]] ax.plot(np.append(x[:4], x[0]), np.append(y[:4], y[0]), np.append(z[:4], z[0]), 'b.-') ax.plot(np.append(x[4:8], x[4]), np.append(y[4:8], y[4]), np.append(z[4:8], z[4]), 'b.-') ax.plot(np.array([x[0], x[4]]), np.array([y[0], y[4]]), np.array([z[0], z[4]]), 'b.-') ax.plot(np.array([x[1], x[5]]), np.array([y[1], y[5]]), np.array([z[1], z[5]]), 'b.-') ax.plot(np.array([x[2], x[6]]), np.array([y[2], y[6]]), np.array([z[2], z[6]]), 'b.-') ax.plot(np.array([x[3], x[7]]), np.array([y[3], y[7]]), np.array([z[3], z[7]]), 'b.-') # ax.axis('equal') # work-around fix because of aspect equal bug xmin, xmax = ax.get_xlim() ymin, ymax = ax.get_ylim() zmin, zmax = ax.get_zlim() min_overall = np.amax([np.abs(xmin), np.abs(ymin), np.abs(zmin)]) max_overall = np.amax([np.abs(xmax), np.abs(ymax), np.abs(zmax)]) minmax_overall = max(min_overall, max_overall) _min_overall = -1.1 * minmax_overall _max_overall = 1.1 * minmax_overall ax.set_xlim(0.3*_min_overall, 0.3*_max_overall) ax.set_ylim(0.3*_min_overall, 0.3*_max_overall) # ax.set_zlim(_min_overall, _max_overall) ax.set_zlim(0.0, _max_overall) def plot_defo(sfac=False, nep=17, unDefoFlag=1, fmt_undefo=fmt_undefo, interpFlag=1, endDispFlag=1, fmt_interp=fmt_interp, fmt_nodes=fmt_nodes, Eo=0, az_el=az_el, fig_wi_he=fig_wi_he, fig_lbrt=fig_lbrt): """Plot deformed shape of the structure. Args: sfac (float): scale factor to increase/decrease displacements obtained from FE analysis. If not specified (False), sfac is automatically calculated based on the maximum overall displacement and this maximum displacement is plotted as 20 percent (hordcoded) of the maximum model dimension. interpFlag (int): 1 - use interpolated deformation using shape function, 0 - do not use interpolation, just show displaced element nodes (default is 1) nep (int): number of evaluation points for shape function interpolation (default: 17) Usage: ``plot_defo()`` - plot deformed shape with default parameters and automatically calcutated scale factor. ``plot_defo(interpFlag=0)`` - plot simplified deformation by displacing the nodes connected with straight lines (shape function interpolation) ``plot_defo(sfac=1.5)`` - plot with specified scale factor ``plot_defo(unDefoFlag=0, endDispFlag=0)`` - plot without showing undeformed (original) mesh and without showing markers at the element ends. """ node_tags = ops.getNodeTags() # calculate sfac min_x, min_y, min_z = np.inf, np.inf, np.inf max_x, max_y, max_z = -np.inf, -np.inf, -np.inf max_ux, max_uy, max_uz = -np.inf, -np.inf, -np.inf ratio = 0.1 ndim = np.shape(ops.nodeCoord(node_tags[0]))[0] if ndim == 2: if not sfac: for node_tag in node_tags: x_crd = ops.nodeCoord(node_tag)[0] y_crd = ops.nodeCoord(node_tag)[1] ux = ops.nodeDisp(node_tag)[0] uy = ops.nodeDisp(node_tag)[1] min_x = min(min_x, x_crd) min_y = min(min_y, y_crd) max_x = max(max_x, x_crd) max_y = max(max_y, y_crd) max_ux = max(max_ux, np.abs(ux)) max_uy = max(max_uy, np.abs(uy)) dxmax = max_x - min_x dymax = max_y - min_y dlmax = max(dxmax, dymax) edmax = max(max_ux, max_uy) sfac = ratio * dlmax/edmax if sfac > 1000.: print("""\nWarning!\nsfac is quite large - perhaps try to specify \ sfac value yourself. This usually happens when translational DOFs are too small\n\n""") _plot_defo_mode_2d(0, sfac, nep, unDefoFlag, fmt_undefo, interpFlag, endDispFlag, fmt_interp, fmt_nodes) elif ndim == 3: if not sfac: for node_tag in node_tags: x_crd = ops.nodeCoord(node_tag)[0] y_crd = ops.nodeCoord(node_tag)[1] z_crd = ops.nodeCoord(node_tag)[2] ux = ops.nodeDisp(node_tag)[0] uy = ops.nodeDisp(node_tag)[1] uz = ops.nodeDisp(node_tag)[2] min_x = min(min_x, x_crd) min_y = min(min_y, y_crd) min_z = min(min_z, z_crd) max_x = max(max_x, x_crd) max_y = max(max_y, y_crd) max_z = max(max_z, z_crd) max_ux = max(max_ux, np.abs(ux)) max_uy = max(max_uy, np.abs(uy)) max_uz = max(max_uz, np.abs(uz)) dxmax = max_x - min_x dymax = max_y - min_y dzmax = max_z - min_z dlmax = max(dxmax, dymax, dzmax) edmax = max(max_ux, max_uy, max_uz) sfac = ratio * dlmax/edmax _plot_defo_mode_3d(0, sfac, nep, unDefoFlag, fmt_undefo, interpFlag, endDispFlag, fmt_interp, fmt_nodes, az_el, fig_wi_he, fig_lbrt) else: print(f'\nWarning! ndim: {ndim} not supported yet.') def _anim_mode_2d(modeNo, sfac, nep, unDefoFlag, fmt_undefo, interpFlag, endDispFlag, fmt_interp, fmt_nodes, fig_wi_he, xlim, ylim, lw): fig_wi, fig_he = fig_wi_he ele_tags = ops.getEleTags() nen = np.shape(ops.eleNodes(ele_tags[0]))[0] # truss and beam/frame elements if nen == 2: ndf = np.shape(ops.nodeDOFs(ops.eleNodes(ele_tags[0])[0]))[0] # truss element if ndf == 2: for ele_tag in ele_tags: nd1, nd2 = ops.eleNodes(ele_tag) # element x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1]]) if modeNo: eux = np.array([ops.nodeEigenvector(nd1, modeNo)[0], ops.nodeEigenvector(nd2, modeNo)[0]]) euy = np.array([ops.nodeEigenvector(nd1, modeNo)[1], ops.nodeEigenvector(nd2, modeNo)[1]]) else: eux = np.array([ops.nodeDisp(nd1)[0], ops.nodeDisp(nd2)[0]]) euy = np.array([ops.nodeDisp(nd1)[1], ops.nodeDisp(nd2)[1]]) # displaced element coordinates (scaled by sfac factor) edx = np.array([ex[0] + sfac*eux[0], ex[1] + sfac*eux[1]]) edy = np.array([ey[0] + sfac*euy[0], ey[1] + sfac*euy[1]]) if unDefoFlag: plt.plot(ex, ey, fmt_undefo) plt.plot(edx, edy, fmt_interp) # beam/frame element anim eigen elif ndf == 3: fig, ax = plt.subplots(figsize=(fig_wi/2.54, fig_he/2.54)) ax.axis('equal') ax.set_xlim(xlim[0], xlim[1]) ax.set_ylim(ylim[0], ylim[1]) nel = len(ele_tags) Ex = np.zeros((nel, 2)) Ey = np.zeros((nel, 2)) Ed = np.zeros((nel, 6)) # time vector for one cycle (period) n_frames = 32 + 1 t = np.linspace(0., 2*np.pi, n_frames) lines = [] for i, ele_tag in enumerate(ele_tags): nd1, nd2 = ops.eleNodes(ele_tag) # element x, y coordinates Ex[i, :] = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0]]) Ey[i, :] = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1]]) Ed[i, :] = np.array([ops.nodeEigenvector(nd1, modeNo)[0], ops.nodeEigenvector(nd1, modeNo)[1], ops.nodeEigenvector(nd1, modeNo)[2], ops.nodeEigenvector(nd2, modeNo)[0], ops.nodeEigenvector(nd2, modeNo)[1], ops.nodeEigenvector(nd2, modeNo)[2]]) lines.append(ax.plot([], [], fmt_nodes, lw=lw)[0]) def init(): for j, ele_tag in enumerate(ele_tags): lines[j].set_data([], []) return lines def animate(i): for j, ele_tag in enumerate(ele_tags): if interpFlag: xcdi, ycdi = beam_defo_interp_2d(Ex[j, :], Ey[j, :], Ed[j, :], sfac*np.cos(t[i]), nep) lines[j].set_data(xcdi, ycdi) else: xdi, ydi = beam_disp_ends(Ex[j, :], Ey[j, :], Ed[j, :], sfac*np.cos(t[i])) lines[j].set_data(xdi, ydi) # plt.plot(xcdi, ycdi, fmt_interp) return lines FuncAnimation(fig, animate, init_func=init, frames=n_frames, interval=50, blit=True) # plt.axis('equal') # plt.show() # call this from main py file for more control # 2d triangular elements - todo # elif nen == 3: # x = ex+sfac*ed[:, [0, 2, 4]] # y = ex+sfac*ed[:, [1, 3, 5]] # xc = [x, x[0, :]] # yc = [x, x[0, :]] # 2d quadrilateral (quad) elements elif nen == 4: for ele_tag in ele_tags: nd1, nd2, nd3, nd4 = ops.eleNodes(ele_tag) # element x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0], ops.nodeCoord(nd3)[0], ops.nodeCoord(nd4)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1], ops.nodeCoord(nd3)[1], ops.nodeCoord(nd4)[1]]) if modeNo: ed = np.array([ops.nodeEigenvector(nd1, modeNo)[0], ops.nodeEigenvector(nd1, modeNo)[1], ops.nodeEigenvector(nd2, modeNo)[0], ops.nodeEigenvector(nd2, modeNo)[1], ops.nodeEigenvector(nd3, modeNo)[0], ops.nodeEigenvector(nd3, modeNo)[1], ops.nodeEigenvector(nd4, modeNo)[0], ops.nodeEigenvector(nd4, modeNo)[1]]) else: ed = np.array([ops.nodeDisp(nd1)[0], ops.nodeDisp(nd1)[1], ops.nodeDisp(nd2)[0], ops.nodeDisp(nd2)[1], ops.nodeDisp(nd3)[0], ops.nodeDisp(nd3)[1], ops.nodeDisp(nd4)[0], ops.nodeDisp(nd4)[1]]) if unDefoFlag: plt.plot(np.append(ex, ex[0]), np.append(ey, ey[0]), fmt_undefo) # xcdi, ycdi = beam_defo_interp_2d(ex, ey, ed, sfac, nep) # xdi, ydi = beam_disp_ends(ex, ey, ed, sfac) # # interpolated displacement field # plt.plot(xcdi, ycdi, 'b.-') # # translations of ends only # plt.plot(xdi, ydi, 'ro') # test it with one element x = ex+sfac*ed[[0, 2, 4, 6]] y = ey+sfac*ed[[1, 3, 5, 7]] plt.plot(np.append(x, x[0]), np.append(y, y[0]), 'b.-') plt.axis('equal') # 2d 8-node quadratic elements # elif nen == 8: # x = ex+sfac*ed[:, [0, 2, 4, 6, 8, 10, 12, 14]] # y = ex+sfac*ed[:, [1, 3, 5, 7, 9, 11, 13, 15]] # t = -1 # n = 0 # for s in range(-1, 1.4, 0.4): # n += 1 # ... else: print(f'\nWarning! Elements not supported yet. nen: {nen}; must be: 2, 3, 4, 8.') # noqa: E501 def anim_mode(modeNo, sfac=False, nep=17, unDefoFlag=1, fmt_undefo=fmt_undefo, interpFlag=1, endDispFlag=1, fmt_interp=fmt_interp, fmt_nodes='b-', Eo=0, az_el=az_el, fig_wi_he=fig_wi_he, fig_lbrt=fig_lbrt, xlim=[0, 1], ylim=[0, 1], lw=3.): """Make animation of a mode shape obtained from eigenvalue solution. Args: modeNo (int): indicates which mode shape to animate. Eds (ndarray): An array (n_eles x n_dof_per_element) containing displacements per element. timeV (1darray): vector of discretized time values sfac (float): scale factor nep (integer): number of evaluation points inside the element and including both element ends unDefoFlag (integer): 1 - plot the undeformed model (mesh), 0 - do not plot the mesh interpFlag (integer): 1 - interpolate deformation inside element, 0 - no interpolation endDispFlag (integer): 1 - plot marks at element ends, 0 - no marks fmt_interp (string): format line string for interpolated (continuous) deformated shape. The format contains information on line color, style and marks as in the standard matplotlib plot function. fmt_nodes (string): format string for the marks of element ends az_el (tuple): a tuple containing the azimuth and elevation fig_lbrt (tuple): a tuple contating left, bottom, right and top offsets fig_wi_he (tuple): contains width and height of the figure Examples: Notes: See also: """ node_tags = ops.getNodeTags() # calculate sfac # min_x, min_y, min_z = np.inf, np.inf, np.inf # max_x, max_y, max_z = -np.inf, -np.inf, -np.inf # max_ux, max_uy, max_uz = -np.inf, -np.inf, -np.inf min_x, min_y = np.inf, np.inf max_x, max_y = -np.inf, -np.inf max_ux, max_uy = -np.inf, -np.inf ratio = 0.1 ndim = np.shape(ops.nodeCoord(node_tags[0]))[0] if ndim == 2: if not sfac: for node_tag in node_tags: x_crd = ops.nodeCoord(node_tag)[0] y_crd = ops.nodeCoord(node_tag)[1] ux = ops.nodeEigenvector(node_tag, modeNo)[0] uy = ops.nodeEigenvector(node_tag, modeNo)[1] min_x = min(min_x, x_crd) min_y = min(min_y, y_crd) max_x = max(max_x, x_crd) max_y = max(max_y, y_crd) max_ux = max(max_ux, np.abs(ux)) max_uy = max(max_uy, np.abs(uy)) dxmax = max_x - min_x dymax = max_y - min_y dlmax = max(dxmax, dymax) edmax = max(max_ux, max_uy) sfac = ratio * dlmax/edmax _anim_mode_2d(modeNo, sfac, nep, unDefoFlag, fmt_undefo, interpFlag, endDispFlag, fmt_interp, fmt_nodes, fig_wi_he, xlim, ylim, lw) # elif ndim == 3: # if not sfac: # for node_tag in node_tags: # x_crd = ops.nodeCoord(node_tag)[0] # y_crd = ops.nodeCoord(node_tag)[1] # z_crd = ops.nodeCoord(node_tag)[2] # ux = ops.nodeEigenvector(node_tag, modeNo)[0] # uy = ops.nodeEigenvector(node_tag, modeNo)[1] # uz = ops.nodeEigenvector(node_tag, modeNo)[2] # min_x = min(min_x, x_crd) # min_y = min(min_y, y_crd) # min_z = min(min_z, z_crd) # max_x = max(max_x, x_crd) # max_y = max(max_y, y_crd) # max_z = max(max_z, z_crd) # max_ux = max(max_ux, np.abs(ux)) # max_uy = max(max_uy, np.abs(uy)) # max_uz = max(max_uz, np.abs(uz)) # dxmax = max_x - min_x # dymax = max_y - min_y # dzmax = max_z - min_z # dlmax = max(dxmax, dymax, dzmax) # edmax = max(max_ux, max_uy, max_uz) # sfac = ratio * dlmax/edmax # _plot_defo_mode_3d(modeNo, sfac, nep, unDefoFlag, fmt_undefo, # interpFlag, endDispFlag, fmt_interp, fmt_nodes, # Eo, az_el, fig_wi_he, fig_lbrt) else: print(f'\nWarning! ndim: {ndim} not supported yet.') def plot_mode_shape(modeNo, sfac=False, nep=17, unDefoFlag=1, fmt_undefo=fmt_undefo, interpFlag=1, endDispFlag=1, fmt_interp=fmt_interp, fmt_nodes=fmt_nodes, Eo=0, az_el=az_el, fig_wi_he=fig_wi_he, fig_lbrt=fig_lbrt): """Plot mode shape of the structure obtained from eigenvalue analysis. Args: modeNo (int): indicates which mode shape to plot sfac (float): scale factor to increase/decrease displacements obtained from FE analysis. If not specified (False), sfac is automatically calculated based on the maximum overall displacement and this maximum displacement is plotted as 20 percent (hordcoded) of the maximum model dimension. interpFlag (int): 1 - use interpolated deformation using shape function, 0 - do not use interpolation, just show displaced element nodes (default is 1) nep (int): number of evaluation points for shape function interpolation (default: 17) Usage: ``plot_mode_shape(1)`` - plot the first mode shape with default parameters and automatically calcutated scale factor. ``plot_mode_shape(2, interpFlag=0)`` - plot the 2nd mode shape by displacing the nodes connected with straight lines (shape function interpolation) ``plot_mode_shape(3, sfac=1.5)`` - plot the 3rd mode shape with specified scale factor ``plot_mode_shape(4, unDefoFlag=0, endDispFlag=0)`` - plot the 4th mode shape without showing undeformed (original) mesh and without showing markers at the element ends. Examples: Notes: See also: """ node_tags = ops.getNodeTags() # calculate sfac min_x, min_y, min_z = np.inf, np.inf, np.inf max_x, max_y, max_z = -np.inf, -np.inf, -np.inf max_ux, max_uy, max_uz = -np.inf, -np.inf, -np.inf ratio = 0.1 ndim = np.shape(ops.nodeCoord(node_tags[0]))[0] if ndim == 2: if not sfac: for node_tag in node_tags: x_crd = ops.nodeCoord(node_tag)[0] y_crd = ops.nodeCoord(node_tag)[1] ux = ops.nodeEigenvector(node_tag, modeNo)[0] uy = ops.nodeEigenvector(node_tag, modeNo)[1] min_x = min(min_x, x_crd) min_y = min(min_y, y_crd) max_x = max(max_x, x_crd) max_y = max(max_y, y_crd) max_ux = max(max_ux, np.abs(ux)) max_uy = max(max_uy, np.abs(uy)) dxmax = max_x - min_x dymax = max_y - min_y dlmax = max(dxmax, dymax) edmax = max(max_ux, max_uy) sfac = ratio * dlmax/edmax _plot_defo_mode_2d(modeNo, sfac, nep, unDefoFlag, fmt_undefo, interpFlag, endDispFlag, fmt_interp, fmt_nodes) elif ndim == 3: if not sfac: for node_tag in node_tags: x_crd = ops.nodeCoord(node_tag)[0] y_crd = ops.nodeCoord(node_tag)[1] z_crd = ops.nodeCoord(node_tag)[2] ux = ops.nodeEigenvector(node_tag, modeNo)[0] uy = ops.nodeEigenvector(node_tag, modeNo)[1] uz = ops.nodeEigenvector(node_tag, modeNo)[2] min_x = min(min_x, x_crd) min_y = min(min_y, y_crd) min_z = min(min_z, z_crd) max_x = max(max_x, x_crd) max_y = max(max_y, y_crd) max_z = max(max_z, z_crd) max_ux = max(max_ux, np.abs(ux)) max_uy = max(max_uy, np.abs(uy)) max_uz = max(max_uz, np.abs(uz)) dxmax = max_x - min_x dymax = max_y - min_y dzmax = max_z - min_z dlmax = max(dxmax, dymax, dzmax) edmax = max(max_ux, max_uy, max_uz) sfac = ratio * dlmax/edmax _plot_defo_mode_3d(modeNo, sfac, nep, unDefoFlag, fmt_undefo, interpFlag, endDispFlag, fmt_interp, fmt_nodes, az_el, fig_wi_he, fig_lbrt) else: print(f'\nWarning! ndim: {ndim} not supported yet.') def rot_transf_3d(ex, ey, ez, g): Lxyz = np.array([ex[1]-ex[0], ey[1]-ey[0], ez[1]-ez[0]]) L = np.sqrt(Lxyz @ Lxyz) z = np.zeros((3, 3)) G = np.block([[g, z, z, z], [z, g, z, z], [z, z, g, z], [z, z, z, g]]) return G, L def beam_defo_interp_2d(ex, ey, u, sfac, nep=17): """ Interpolate element displacements at nep points. Parametrs: ex, ey : element x, y coordinates, u : element nodal displacements sfac : scale factor for deformation plot nep : number of evaluation points (including end nodes) Returns: crd_xc, crd_yc : x, y coordinates of interpolated (at nep points) beam deformation required for plot_defo() function """ Lxy = np.array([ex[1]-ex[0], ey[1]-ey[0]]) L = np.sqrt(Lxy @ Lxy) cosa, cosb = Lxy / L G = np.array([[cosa, cosb, 0., 0., 0., 0.], [-cosb, cosa, 0., 0., 0., 0.], [0., 0., 1., 0., 0., 0.], [0., 0., 0., cosa, cosb, 0.], [0., 0., 0., -cosb, cosa, 0.], [0., 0., 0., 0., 0., 1.]]) u_l = G @ u xl = np.linspace(0., L, num=nep) one = np.ones(xl.shape) # longitudinal deformation (1) N_a = np.column_stack((one - xl/L, xl/L)) u_ac = N_a @ np.array([u_l[0], u_l[3]]) # transverse deformation (2) N_t = np.column_stack((one - 3*xl**2/L**2 + 2*xl**3/L**3, xl - 2*xl**2/L + xl**3/L**2, 3*xl**2/L**2 - 2*xl**3/L**3, -xl**2/L + xl**3/L**2)) u_tc = N_t @ np.array([u_l[1], u_l[2], u_l[4], u_l[5]]) # combined two row vectors # 1-st vector longitudinal deformation (1) # 2-nd vector transverse deformation (2) u_atc = np.vstack((u_ac, u_tc)) # project longitudinal (u_ac) and transverse deformation # (local u and v) to (global u and v) G1 = np.array([[cosa, -cosb], [cosb, cosa]]) u_xyc = G1 @ u_atc # discretize element coordinates # first row = X + [0 dx 2dx ... 4-dx 4] # second row = Y + [0 dy 2dy ... 3-dy 3] xy_c = np.vstack((np.linspace(ex[0], ex[1], num=nep), np.linspace(ey[0], ey[1], num=nep))) # Continuous x, y displacement coordinates crd_xc = xy_c[0, :] + sfac * u_xyc[0, :] crd_yc = xy_c[1, :] + sfac * u_xyc[1, :] # latex_array(ecrd_xc) # latex_array(ecrd_yc) return crd_xc, crd_yc def beam_defo_interp_3d(ex, ey, ez, g, u, sfac, nep=17): """ 3d beam version of beam_defo_interp_2d. """ G, L = rot_transf_3d(ex, ey, ez, g) ul = G @ u _, crd_yc = beam_defo_interp_2d(np.array([0., L]), np.array([0., 0.]), np.array([ul[0], ul[1], ul[5], ul[6], ul[7], ul[11]]), sfac, nep) crd_xc, crd_zc = beam_defo_interp_2d(np.array([0., L]), np.array([0., 0.]), np.array([ul[0], ul[2], -ul[4], ul[6], ul[8], -ul[10]]), sfac, nep) xl = np.linspace(0., L, num=nep) crd_xc = crd_xc - xl crd_xyzc = np.vstack([crd_xc, crd_yc, crd_zc]) u_xyzc = np.transpose(g) @ crd_xyzc xyz_c = np.vstack((np.linspace(ex[0], ex[1], num=nep), np.linspace(ey[0], ey[1], num=nep), np.linspace(ez[0], ez[1], num=nep))) crd_xc = xyz_c[0, :] + u_xyzc[0, :] crd_yc = xyz_c[1, :] + u_xyzc[1, :] crd_zc = xyz_c[2, :] + u_xyzc[2, :] return crd_xc, crd_yc, crd_zc def beam_disp_ends(ex, ey, d, sfac): """ Calculate the element deformation at element ends only. """ # indx: 0 1 2 3 4 5 # Ed = ux1 uy1 ur1 ux2 uy2 ur2 exd = np.array([ex[0] + sfac*d[0], ex[1] + sfac*d[3]]) eyd = np.array([ey[0] + sfac*d[1], ey[1] + sfac*d[4]]) return exd, eyd def beam_disp_ends3d(ex, ey, ez, d, sfac): """ Calculate the element deformation at element ends only. """ # indx: 0 1 2 3 4 5 6 7 8 9 10 11 # Ed = ux1 uy1 uz1 rx1 ry1 rz1 ux2 uy2 uz2 rx2 ry2 rz2 exd = np.array([ex[0] + sfac*d[0], ex[1] + sfac*d[6]]) eyd = np.array([ey[0] + sfac*d[1], ey[1] + sfac*d[7]]) ezd = np.array([ez[0] + sfac*d[2], ez[1] + sfac*d[8]]) return exd, eyd, ezd # plot_fiber_section is inspired by Matlab ``plotSection.zip`` # written by <NAME> available at # http://users.ntua.gr/divamva/software.html def plot_fiber_section(fib_sec_list, fillflag=1, matcolor=['y', 'b', 'r', 'g', 'm', 'k']): """Plot fiber cross-section. Args: fib_sec_list (list): list of lists in the format similar to the input given for in fillflag (int): 1 - filled fibers with color specified in matcolor list, 0 - no color, only the outline of fibers matcolor (list): sequence of colors for various material tags assigned to fibers Examples: :: fib_sec_1 = [['section', 'Fiber', 1, '-GJ', 1.0e6], ['patch', 'quad', 1, 4, 1, 0.032, 0.317, -0.311, 0.067, -0.266, 0.005, 0.077, 0.254], # noqa: E501 ['patch', 'quad', 1, 1, 4, -0.075, 0.144, -0.114, 0.116, 0.075, -0.144, 0.114, -0.116], # noqa: E501 ['patch', 'quad', 1, 4, 1, 0.266, -0.005, -0.077, -0.254, -0.032, -0.317, 0.311, -0.067] # noqa: E501 ] opsv.fib_sec_list_to_cmds(fib_sec_1) matcolor = ['r', 'lightgrey', 'gold', 'w', 'w', 'w'] opsv.plot_fiber_section(fib_sec_1, matcolor=matcolor) plt.axis('equal') # plt.savefig(f'{kateps}fibsec_rc.png') plt.show() Notes: ``fib_sec_list`` can be reused by means of a python helper function ``ops_vis.fib_sec_list_to_cmds(fib_sec_list_1)`` See also: ``ops_vis.fib_sec_list_to_cmds()`` """ fig, ax = plt.subplots() ax.set_xlabel('z') ax.set_ylabel('y') ax.grid(False) for item in fib_sec_list: if item[0] == 'layer': matTag = item[2] if item[1] == 'straight': n_bars = item[3] As = item[4] Iy, Iz, Jy, Jz = item[5], item[6], item[7], item[8] r = np.sqrt(As / np.pi) Y = np.linspace(Iy, Jy, n_bars) Z = np.linspace(Iz, Jz, n_bars) for zi, yi in zip(Z, Y): bar = Circle((zi, yi), r, ec='k', fc='k', zorder=10) ax.add_patch(bar) if item[0] == 'patch': matTag, nIJ, nJK = item[2], item[3], item[4] if item[1] == 'quad' or item[1] == 'quadr': Iy, Iz, Jy, Jz = item[5], item[6], item[7], item[8] Ky, Kz, Ly, Lz = item[9], item[10], item[11], item[12] if item[1] == 'rect': Iy, Iz, Ky, Kz = item[5], item[6], item[7], item[8] Jy, Jz, Ly, Lz = Ky, Iz, Iy, Kz # check for convexity (vector products) outIJxIK = (Jy-Iy)*(Kz-Iz) - (Ky-Iy)*(Jz-Iz) outIKxIL = (Ky-Iy)*(Lz-Iz) - (Ly-Iy)*(Kz-Iz) # check if I, J, L points are colinear outIJxIL = (Jy-Iy)*(Lz-Iz) - (Ly-Iy)*(Jz-Iz) # outJKxJL = (Ky-Jy)*(Lz-Jz) - (Ly-Jy)*(Kz-Jz) if outIJxIK <= 0 or outIKxIL <= 0 or outIJxIL <= 0: print('\nWarning! Patch quad is non-convex or counter-clockwise defined or has at least 3 colinear points in line') # noqa: E501 IJz, IJy = np.linspace(Iz, Jz, nIJ+1), np.linspace(Iy, Jy, nIJ+1) JKz, JKy = np.linspace(Jz, Kz, nJK+1), np.linspace(Jy, Ky, nJK+1) LKz, LKy = np.linspace(Lz, Kz, nIJ+1), np.linspace(Ly, Ky, nIJ+1) ILz, ILy = np.linspace(Iz, Lz, nJK+1), np.linspace(Iy, Ly, nJK+1) if fillflag: Z = np.zeros((nIJ+1, nJK+1)) Y = np.zeros((nIJ+1, nJK+1)) for j in range(nIJ+1): Z[j, :] = np.linspace(IJz[j], LKz[j], nJK+1) Y[j, :] = np.linspace(IJy[j], LKy[j], nJK+1) for j in range(nIJ): for k in range(nJK): zy = np.array([[Z[j, k], Y[j, k]], [Z[j, k+1], Y[j, k+1]], [Z[j+1, k+1], Y[j+1, k+1]], [Z[j+1, k], Y[j+1, k]]]) poly = Polygon(zy, True, ec='k', fc=matcolor[matTag-1]) ax.add_patch(poly) else: # horizontal lines for az, bz, ay, by in zip(IJz, LKz, IJy, LKy): plt.plot([az, bz], [ay, by], 'b-', zorder=1) # vertical lines for az, bz, ay, by in zip(JKz, ILz, JKy, ILy): plt.plot([az, bz], [ay, by], 'b-', zorder=1) def fib_sec_list_to_cmds(fib_sec_list): """Reuses fib_sec_list to define fiber section in OpenSees. At present it is not possible to extract fiber section data from the OpenSees domain, this function is a workaround. The idea is to prepare data similar to the one the regular OpenSees commands (``section('Fiber', ...)``, ``fiber()``, ``patch()`` and/or ``layer()``) require. Args: fib_sec_list (list): is a list of fiber section data. First sub-list also defines the torsional stiffness (GJ). Warning: If you use this function, do not issue the regular OpenSees: section, Fiber, Patch or Layer commands. See also: ``ops_vis.plot_fiber_section()`` """ for dat in fib_sec_list: if dat[0] == 'section': secTag, GJ = dat[2], dat[4] ops.section('Fiber', secTag, '-GJ', GJ) if dat[0] == 'layer': matTag = dat[2] if dat[1] == 'straight': n_bars = dat[3] As = dat[4] Iy, Iz, Jy, Jz = dat[5], dat[6], dat[7], dat[8] ops.layer('straight', matTag, n_bars, As, Iy, Iz, Jy, Jz) if dat[0] == 'patch': matTag = dat[2] nIJ = dat[3] nJK = dat[4] if dat[1] == 'quad' or dat[1] == 'quadr': Iy, Iz, Jy, Jz = dat[5], dat[6], dat[7], dat[8] Ky, Kz, Ly, Lz = dat[9], dat[10], dat[11], dat[12] ops.patch('quad', matTag, nIJ, nJK, Iy, Iz, Jy, Jz, Ky, Kz, Ly, Lz) if dat[1] == 'rect': Iy, Iz, Ky, Kz = dat[5], dat[6], dat[7], dat[8] Jy, Jz, Ly, Lz = Ky, Iz, Iy, Kz ops.patch('rect', matTag, nIJ, nJK, Iy, Iz, Ky, Kz) def _anim_defo_2d(Eds, timeV, sfac, nep, unDefoFlag, fmt_undefo, interpFlag, endDispFlag, fmt_interp, fmt_nodes, fig_wi_he, xlim, ylim): fig_wi, fig_he = fig_wi_he ele_tags = ops.getEleTags() nen = np.shape(ops.eleNodes(ele_tags[0]))[0] # truss and beam/frame elements if nen == 2: ndf = np.shape(ops.nodeDOFs(ops.eleNodes(ele_tags[0])[0]))[0] # truss element if ndf == 2: for ele_tag in ele_tags: nd1, nd2 = ops.eleNodes(ele_tag) # element x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1]]) eux = np.array([ops.nodeDisp(nd1)[0], ops.nodeDisp(nd2)[0]]) euy = np.array([ops.nodeDisp(nd1)[1], ops.nodeDisp(nd2)[1]]) # displaced element coordinates (scaled by sfac factor) edx = np.array([ex[0] + sfac*eux[0], ex[1] + sfac*eux[1]]) edy = np.array([ey[0] + sfac*euy[0], ey[1] + sfac*euy[1]]) if unDefoFlag: plt.plot(ex, ey, fmt_undefo) plt.plot(edx, edy, fmt_interp) # beam/frame element anim defo elif ndf == 3: fig, ax = plt.subplots(figsize=(fig_wi/2.54, fig_he/2.54)) ax.axis('equal') ax.set_xlim(xlim[0], xlim[1]) ax.set_ylim(ylim[0], ylim[1]) # ax.grid() nel = len(ele_tags) Ex = np.zeros((nel, 2)) Ey = np.zeros((nel, 2)) # no of frames equal to time intervals n_frames, _, _ = np.shape(Eds) lines = [] # time_text = ax.set_title('') # does not work time_text = ax.text(.05, .95, '', transform=ax.transAxes) for i, ele_tag in enumerate(ele_tags): nd1, nd2 = ops.eleNodes(ele_tag) # element x, y coordinates Ex[i, :] = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0]]) Ey[i, :] = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1]]) lines.append(ax.plot([], [], fmt_nodes, lw=3)[0]) def init(): for j, ele_tag in enumerate(ele_tags): lines[j].set_data([], []) time_text.set_text('') return tuple(lines) + (time_text,) def animate(i): for j, ele_tag in enumerate(ele_tags): if interpFlag: xcdi, ycdi = beam_defo_interp_2d(Ex[j, :], Ey[j, :], Eds[i, j, :], sfac, nep) lines[j].set_data(xcdi, ycdi) else: xdi, ydi = beam_disp_ends(Ex[j, :], Ey[j, :], Eds[i, j, :], sfac) lines[j].set_data(xdi, ydi) # plt.plot(xcdi, ycdi, fmt_interp) # time_text.set_text(f'f') time_text.set_text(f'frame: {i+1}/{n_frames}, \ time: {timeV[i]:.3f} s') return tuple(lines) + (time_text,) FuncAnimation(fig, animate, init_func=init, frames=n_frames, interval=50, blit=True, repeat=False) # plt.axis('equal') # plt.show() # call this from main py file for more control # 2d triangular elements # elif nen == 3: # x = ex+sfac*ed[:, [0, 2, 4]] # y = ex+sfac*ed[:, [1, 3, 5]] # xc = [x, x[0, :]] # yc = [x, x[0, :]] # 2d quadrilateral (quad) elements elif nen == 4: for ele_tag in ele_tags: nd1, nd2, nd3, nd4 = ops.eleNodes(ele_tag) # element x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0], ops.nodeCoord(nd3)[0], ops.nodeCoord(nd4)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1], ops.nodeCoord(nd3)[1], ops.nodeCoord(nd4)[1]]) # if modeNo: # ed = np.array([ops.nodeEigenvector(nd1, modeNo)[0], # ops.nodeEigenvector(nd1, modeNo)[1], # ops.nodeEigenvector(nd2, modeNo)[0], # ops.nodeEigenvector(nd2, modeNo)[1], # ops.nodeEigenvector(nd3, modeNo)[0], # ops.nodeEigenvector(nd3, modeNo)[1], # ops.nodeEigenvector(nd4, modeNo)[0], # ops.nodeEigenvector(nd4, modeNo)[1]]) # else: ed = np.array([ops.nodeDisp(nd1)[0], ops.nodeDisp(nd1)[1], ops.nodeDisp(nd2)[0], ops.nodeDisp(nd2)[1], ops.nodeDisp(nd3)[0], ops.nodeDisp(nd3)[1], ops.nodeDisp(nd4)[0], ops.nodeDisp(nd4)[1]]) if unDefoFlag: plt.plot(np.append(ex, ex[0]), np.append(ey, ey[0]), fmt_undefo) # xcdi, ycdi = beam_defo_interp_2d(ex, ey, ed, sfac, nep) # xdi, ydi = beam_disp_ends(ex, ey, ed, sfac) # # interpolated displacement field # plt.plot(xcdi, ycdi, 'b.-') # # translations of ends only # plt.plot(xdi, ydi, 'ro') # test it with one element x = ex+sfac*ed[[0, 2, 4, 6]] y = ey+sfac*ed[[1, 3, 5, 7]] plt.plot(np.append(x, x[0]), np.append(y, y[0]), 'b.-') plt.axis('equal') # 2d 8-node quadratic elements # elif nen == 8: # x = ex+sfac*ed[:, [0, 2, 4, 6, 8, 10, 12, 14]] # y = ex+sfac*ed[:, [1, 3, 5, 7, 9, 11, 13, 15]] # t = -1 # n = 0 # for s in range(-1, 1.4, 0.4): # n += 1 # ... else: print(f'\nWarning! Elements not supported yet. nen: {nen}; must be: 2, 3, 4, 8.') # noqa: E501 def anim_defo(Eds, timeV, sfac, nep=17, unDefoFlag=1, fmt_undefo=fmt_undefo, interpFlag=1, endDispFlag=1, fmt_interp=fmt_interp, fmt_nodes='b-', az_el=az_el, fig_lbrt=fig_lbrt, fig_wi_he=fig_wi_he, xlim=[0, 1], ylim=[0, 1]): """Make animation of the deformed shape computed by transient analysis Args: Eds (ndarray): An array (n_eles x n_dof_per_element) containing displacements per element. timeV (1darray): vector of discretized time values sfac (float): scale factor nep (integer): number of evaluation points inside the element and including both element ends unDefoFlag (integer): 1 - plot the undeformed model (mesh), 0 - do not plot the mesh interpFlag (integer): 1 - interpolate deformation inside element, 0 - no interpolation endDispFlag (integer): 1 - plot marks at element ends, 0 - no marks fmt_interp (string): format line string for interpolated (continuous) deformated shape. The format contains information on line color, style and marks as in the standard matplotlib plot function. fmt_nodes (string): format string for the marks of element ends az_el (tuple): a tuple containing the azimuth and elevation fig_lbrt (tuple): a tuple contating left, bottom, right and top offsets fig_wi_he (tuple): contains width and height of the figure Examples: Notes: See also: """ node_tags = ops.getNodeTags() ndim = np.shape(ops.nodeCoord(node_tags[0]))[0] if ndim == 2: _anim_defo_2d(Eds, timeV, sfac, nep, unDefoFlag, fmt_undefo, interpFlag, endDispFlag, fmt_interp, fmt_nodes, fig_wi_he, xlim, ylim) else: print(f'\nWarning! ndim: {ndim} not supported yet.') def section_force_distribution_2d(ex, ey, pl, nep=2, ele_load_data=['-beamUniform', 0., 0.]): """ Calculate section forces (N, V, M) for an elastic 2D Euler-Bernoulli beam. Input: ex, ey - x, y element coordinates in global system nep - number of evaluation points, by default (2) at element ends ele_load_list - list of transverse and longitudinal element load syntax: [ele_load_type, Wy, Wx] For now only '-beamUniform' element load type is acceptable Output: s = [N V M]; shape: (nep,3) section forces at nep points along local x xl: coordinates of local x-axis; shape: (nep,) Use it with dia_sf to draw N, V, M diagrams. TODO: add '-beamPoint' element load type """ # eload_type, Wy, Wx = ele_load_data[0], ele_load_data[1], ele_load_data[2] Wy, Wx = ele_load_data[1], ele_load_data[2] nlf = len(pl) if nlf == 2: # trusses N_1 = pl[0] elif nlf == 6: # plane frames # N_1, V_1, M_1 = pl[0], pl[1], pl[2] N_1, V_1, M_1 = pl[:3] else: print('\nWarning! Not supported. Number of nodal forces: {nlf}') Lxy = np.array([ex[1]-ex[0], ey[1]-ey[0]]) L = np.sqrt(Lxy @ Lxy) xl = np.linspace(0., L, nep) one = np.ones(nep) N = -1.*(N_1 * one + Wx * xl) if nlf == 6: V = V_1 * one + Wy * xl M = -M_1 * one + V_1 * xl + 0.5 * Wy * xl**2 s = np.column_stack((N, V, M)) elif nlf == 2: s = np.column_stack((N)) # if eload_type == '-beamUniform': # else: return s, xl def section_force_distribution_3d(ex, ey, ez, pl, nep=2, ele_load_data=['-beamUniform', 0., 0., 0.]): """ Calculate section forces (N, Vy, Vz, T, My, Mz) for an elastic 3d beam. Longer description Parameters ---------- ex : list x element coordinates ey : list y element coordinates ez : list z element coordinates pl : ndarray nep : int number of evaluation points, by default (2) at element ends ele_load_list : list list of transverse and longitudinal element load syntax: [ele_load_type, Wy, Wz, Wx] For now only '-beamUniform' element load type is acceptable. Returns ------- s : ndarray [N Vx Vy T My Mz]; shape: (nep,6) column vectors of section forces along local x-axis uvwfi : ndarray [u v w fi]; shape (nep,4) displacements at nep points along local x xl : ndarray coordinates of local x-axis; shape (nep,) Notes ----- Todo: add '-beamPoint' element load type """ # eload_type = ele_load_data[0] Wy, Wz, Wx = ele_load_data[1], ele_load_data[2], ele_load_data[3] N1, Vy1, Vz1, T1, My1, Mz1 = pl[:6] Lxyz = np.array([ex[1]-ex[0], ey[1]-ey[0], ez[1]-ez[0]]) L = np.sqrt(Lxyz @ Lxyz) xl = np.linspace(0., L, nep) one = np.ones(nep) N = -1.*(N1*one + Wx*xl) Vy = Vy1*one + Wy*xl Vz = Vz1*one + Wz*xl T = -T1*one Mz = -Mz1*one + Vy1*xl + 0.5*Wy*xl**2 My = My1*one + Vz1*xl + 0.5*Wz*xl**2 s = np.column_stack((N, Vy, Vz, T, My, Mz)) return s, xl def section_force_diagram_2d(sf_type, Ew, sfac=1., nep=17, fmt_secforce=fmt_secforce): """Display section forces diagram for 2d beam column model. This function plots a section forces diagram for 2d beam column elements with or without element loads. For now only '-beamUniform' constant transverse or axial element loads are supported. Args: sf_type (str): type of section force: 'N' - normal force, 'V' - shear force, 'M' - bending moments. Ew (dict): Ew Python dictionary contains information on non-zero element loads, therfore each item of the Python dictionary is in the form: 'ele_tag: ['-beamUniform', Wy, Wx]'. sfac (float): scale factor by wich the values of section forces are multiplied. nep (int): number of evaluation points including both end nodes (default: 17) fmt_secforce (str): format line string for section force distribution curve. The format contains information on line color, style and marks as in the standard matplotlib plot function. (default: fmt_secforce = 'b-' # blue solid line) Usage: :: Wy, Wx = -10.e+3, 0. Ew = {3: ['-beamUniform', Wy, Wx]} sfacM = 5.e-5 plt.figure() minVal, maxVal = opsv.section_force_diagram_2d('M', Ew, sfacM) plt.title('Bending moments') Todo: Add support for other element loads available in OpenSees: partial (trapezoidal) uniform element load, and 'beamPoint' element load. """ maxVal, minVal = -np.inf, np.inf ele_tags = ops.getEleTags() for ele_tag in ele_tags: # by default no element load eload_data = ['', 0., 0.] if ele_tag in Ew: eload_data = Ew[ele_tag] nd1, nd2 = ops.eleNodes(ele_tag) # element x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1]]) Lxy = np.array([ex[1]-ex[0], ey[1]-ey[0]]) L = np.sqrt(Lxy @ Lxy) cosa, cosb = Lxy / L pl = ops.eleResponse(ele_tag, 'localForces') s_all, xl = section_force_distribution_2d(ex, ey, pl, nep, eload_data) if sf_type == 'N' or sf_type == 'axial': s = s_all[:, 0] elif sf_type == 'V' or sf_type == 'shear' or sf_type == 'T': s = s_all[:, 1] elif sf_type == 'M' or sf_type == 'moment': s = s_all[:, 2] minVal = min(minVal, np.min(s)) maxVal = max(maxVal, np.max(s)) s = s*sfac s_0 = np.zeros((nep, 2)) s_0[0, :] = [ex[0], ey[0]] s_0[1:, 0] = s_0[0, 0] + xl[1:] * cosa s_0[1:, 1] = s_0[0, 1] + xl[1:] * cosb s_p = np.copy(s_0) # positive M are opposite to N and V if sf_type == 'M' or sf_type == 'moment': s *= -1. s_p[:, 0] -= s * cosb s_p[:, 1] += s * cosa plt.axis('equal') # section force curve plt.plot(s_p[:, 0], s_p[:, 1], fmt_secforce, solid_capstyle='round', solid_joinstyle='round', dash_capstyle='butt', dash_joinstyle='round') # model plt.plot(ex, ey, 'k-', solid_capstyle='round', solid_joinstyle='round', dash_capstyle='butt', dash_joinstyle='round') # reference perpendicular lines for i in np.arange(nep): plt.plot([s_0[i, 0], s_p[i, 0]], [s_0[i, 1], s_p[i, 1]], fmt_secforce, solid_capstyle='round', solid_joinstyle='round', dash_capstyle='butt', dash_joinstyle='round') return minVal, maxVal def section_force_diagram_3d(sf_type, Ew, sfac=1., nep=17, fmt_secforce=fmt_secforce): """Display section forces diagram of a 3d beam column model. This function plots section forces diagrams for 3d beam column elements with or without element loads. For now only '-beamUniform' constant transverse or axial element loads are supported. Args: sf_type (str): type of section force: 'N' - normal force, 'Vy' or 'Vz' - shear force, 'My' or 'Mz' - bending moments, 'T' - torsional moment. Ew (dict): Ew Python dictionary contains information on non-zero element loads, therfore each item of the Python dictionary is in the form: 'ele_tag: ['-beamUniform', Wy, Wz, Wx]'. sfac (float): scale factor by wich the values of section forces are multiplied. nep (int): number of evaluation points including both end nodes (default: 17) fmt_secforce (str): format line string for section force distribution curve. The format contains information on line color, style and marks as in the standard matplotlib plot function. (default: fmt_secforce = 'b-' # blue solid line) Usage: :: Wy, Wz, Wx = -5., 0., 0. Ew = {3: ['-beamUniform', Wy, Wz, Wx]} sfacMz = 1.e-1 plt.figure() minY, maxY = opsv.section_force_diagram_3d('Mz', Ew, sfacMz) plt.title(f'Bending moments Mz, max = {maxY:.2f}, min = {minY:.2f}') Todo: Add support for other element loads available in OpenSees: partial (trapezoidal) uniform element load, and 'beamPoint' element load. """ maxVal, minVal = -np.inf, np.inf ele_tags = ops.getEleTags() azim, elev = az_el fig_wi, fig_he = fig_wi_he fleft, fbottom, fright, ftop = fig_lbrt fig = plt.figure(figsize=(fig_wi/2.54, fig_he/2.54)) fig.subplots_adjust(left=.08, bottom=.08, right=.985, top=.94) ax = fig.add_subplot(111, projection=Axes3D.name) # ax.axis('equal') ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') ax.view_init(azim=azim, elev=elev) for i, ele_tag in enumerate(ele_tags): # by default no element load eload_data = ['-beamUniform', 0., 0., 0.] if ele_tag in Ew: eload_data = Ew[ele_tag] nd1, nd2 = ops.eleNodes(ele_tag) # element x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1]]) ez = np.array([ops.nodeCoord(nd1)[2], ops.nodeCoord(nd2)[2]]) # eo = Eo[i, :] xloc = ops.eleResponse(ele_tag, 'xlocal') yloc = ops.eleResponse(ele_tag, 'ylocal') zloc = ops.eleResponse(ele_tag, 'zlocal') g = np.vstack((xloc, yloc, zloc)) G, _ = rot_transf_3d(ex, ey, ez, g) g = G[:3, :3] pl = ops.eleResponse(ele_tag, 'localForces') s_all, xl = section_force_distribution_3d(ex, ey, ez, pl, nep, eload_data) # 1:'y' 2:'z' if sf_type == 'N': s = s_all[:, 0] dir_plt = 1 elif sf_type == 'Vy': s = s_all[:, 1] dir_plt = 1 elif sf_type == 'Vz': s = s_all[:, 2] dir_plt = 2 elif sf_type == 'T': s = s_all[:, 3] dir_plt = 1 elif sf_type == 'My': s = s_all[:, 4] dir_plt = 2 elif sf_type == 'Mz': s = s_all[:, 5] dir_plt = 1 minVal = min(minVal, np.min(s)) maxVal = max(maxVal, np.max(s)) s = s*sfac # FIXME - can be simplified s_0 = np.zeros((nep, 3)) s_0[0, :] = [ex[0], ey[0], ez[0]] s_0[1:, 0] = s_0[0, 0] + xl[1:] * g[0, 0] s_0[1:, 1] = s_0[0, 1] + xl[1:] * g[0, 1] s_0[1:, 2] = s_0[0, 2] + xl[1:] * g[0, 2] s_p = np.copy(s_0) # positive M are opposite to N and V # if sf_type == 'Mz' or sf_type == 'My': if sf_type == 'Mz': s *= -1. s_p[:, 0] += s * g[dir_plt, 0] s_p[:, 1] += s * g[dir_plt, 1] s_p[:, 2] += s * g[dir_plt, 2] # plt.axis('equal') # section force curve plt.plot(s_p[:, 0], s_p[:, 1], s_p[:, 2], fmt_secforce, solid_capstyle='round', solid_joinstyle='round', dash_capstyle='butt', dash_joinstyle='round') # model plt.plot(ex, ey, ez, 'k-', solid_capstyle='round', solid_joinstyle='round', dash_capstyle='butt', dash_joinstyle='round') # reference perpendicular lines for i in np.arange(nep): plt.plot([s_0[i, 0], s_p[i, 0]], [s_0[i, 1], s_p[i, 1]], [s_0[i, 2], s_p[i, 2]], fmt_secforce, solid_capstyle='round', solid_joinstyle='round', dash_capstyle='butt', dash_joinstyle='round') return minVal, maxVal def quad_sig_out_per_node(): """Return a 2d numpy array of stress components per OpenSees node. Returns: sig_out (ndarray): a 2d array of stress components per node with the following components: sxx, syy, sxy, svm, s1, s2, angle. Size (n_nodes x 7). Examples: sig_out = opsv.quad_sig_out_per_node() Notes: s1, s2: principal stresses angle: angle of the principal stress s1 """ ele_tags = ops.getEleTags() node_tags = ops.getNodeTags() n_nodes = len(node_tags) # initialize helper arrays sig_out = np.zeros((n_nodes, 7)) nodes_tag_count = np.zeros((n_nodes, 2), dtype=int) nodes_tag_count[:, 0] = node_tags for i, ele_tag in enumerate(ele_tags): nd1, nd2, nd3, nd4 = ops.eleNodes(ele_tag) ind1 = node_tags.index(nd1) ind2 = node_tags.index(nd2) ind3 = node_tags.index(nd3) ind4 = node_tags.index(nd4) nodes_tag_count[[ind1, ind2, ind3, ind4], 1] += 1 sig_ip_el = ops.eleResponse(ele_tag, 'stress') sigM_ip = np.vstack(([sig_ip_el[0:3], sig_ip_el[3:6], sig_ip_el[6:9], sig_ip_el[9:12]])) sigM_nd = quad_extrapolate_ip_to_node(sigM_ip) # sxx sig_out[ind1, 0] += sigM_nd[0, 0] sig_out[ind2, 0] += sigM_nd[1, 0] sig_out[ind3, 0] += sigM_nd[2, 0] sig_out[ind4, 0] += sigM_nd[3, 0] # syy sig_out[ind1, 1] += sigM_nd[0, 1] sig_out[ind2, 1] += sigM_nd[1, 1] sig_out[ind3, 1] += sigM_nd[2, 1] sig_out[ind4, 1] += sigM_nd[3, 1] # sxy sig_out[ind1, 2] += sigM_nd[0, 2] sig_out[ind2, 2] += sigM_nd[1, 2] sig_out[ind3, 2] += sigM_nd[2, 2] sig_out[ind4, 2] += sigM_nd[3, 2] indxs, = np.where(nodes_tag_count[:, 1] > 1) # n_indxs < n_nodes: e.g. 21<25 (bous), 2<6 (2el) etc. n_indxs = np.shape(indxs)[0] # divide summed stresses by the number of common nodes sig_out[indxs, :] = \ sig_out[indxs, :]/nodes_tag_count[indxs, 1].reshape(n_indxs, 1) # warning reshape from (pts,ncomp) to (ncomp,pts) vm_out = vm_stress(np.transpose(sig_out[:, :3])) sig_out[:, 3] = vm_out princ_sig_out = princ_stress(np.transpose(sig_out[:, :3])) sig_out[:, 4:7] = np.transpose(princ_sig_out) return sig_out def quad_extrapolate_ip_to_node(yip): """ Exprapolate values at 4 integration points to 4 nodes of a quad element. Integration points of Gauss quadrature. Usefull for : stress components (sxx, syy, sxy) yip - either a single vector (4,) or array (4,3) /sxx syy sxy/ or array (4, n) """ xep = np.sqrt(3.)/2 X = np.array([[1.+xep, -1/2., 1.-xep, -1/2.], [-1/2., 1.+xep, -1/2., 1.-xep], [1.-xep, -1/2., 1.+xep, -1/2.], [-1/2., 1.-xep, -1/2., 1.+xep]]) ynp = X @ yip return ynp def quad_9n_extrapolate_ip_to_node(yip): """ Exprapolate values at 9 integration points to 9 nodes of a quad element. Integration points of Gauss quadrature. Usefull for : stress components (sxx, syy, sxy) yip - either a single vector (4,) or array (4,3) /sxx syy sxy/ or array (4, n) """ a = 1./np.sqrt(0.6) a10 = 1 - a*a a9 = a10 * a10 a11, a12 = 1 + a, 1 - a a1, a2, a3 = a11 * a11, a11 * a12, a12 * a12 a4, a5 = a10 * a11, a10 * a12 # 1 n5, n6, n7, n8 = a4/2-a9/2, a5/2-a9/2, a5/2-a9/2, a4/2-a9/2 n1 = a1/4 - (n8 + n5)/2 - a9/4 n2 = a2/4 - (n5 + n6)/2 - a9/4 n3 = a3/4 - (n6 + n7)/2 - a9/4 n4 = a2/4 - (n7 + n8)/2 - a9/4 r1 = np.array([n1, n2, n3, n4, n5, n6, n7, n8, a9]) # 2 n5, n6, n7, n8 = a4/2-a9/2, a4/2-a9/2, a5/2-a9/2, a5/2-a9/2 n1 = a2/4 - (n8 + n5)/2 - a9/4 n2 = a1/4 - (n5 + n6)/2 - a9/4 n3 = a2/4 - (n6 + n7)/2 - a9/4 n4 = a3/4 - (n7 + n8)/2 - a9/4 r2 = np.array([n1, n2, n3, n4, n5, n6, n7, n8, a9]) # 3 n5, n6, n7, n8 = a5/2-a9/2, a4/2-a9/2, a4/2-a9/2, a5/2-a9/2 n1 = a3/4 - (n8 + n5)/2 - a9/4 n2 = a2/4 - (n5 + n6)/2 - a9/4 n3 = a1/4 - (n6 + n7)/2 - a9/4 n4 = a2/4 - (n7 + n8)/2 - a9/4 r3 = np.array([n1, n2, n3, n4, n5, n6, n7, n8, a9]) # 4 n5, n6, n7, n8 = a5/2-a9/2, a5/2-a9/2, a4/2-a9/2, a4/2-a9/2 n1 = a2/4 - (n8 + n5)/2 - a9/4 n2 = a3/4 - (n5 + n6)/2 - a9/4 n3 = a2/4 - (n6 + n7)/2 - a9/4 n4 = a1/4 - (n7 + n8)/2 - a9/4 r4 = np.array([n1, n2, n3, n4, n5, n6, n7, n8, a9]) # 5 n5, n6, n7, n8 = a11/2-a10/2, a10/2-a10/2, a12/2-a10/2, a10/2-a10/2 n1 = a11/4 - (n8 + n5)/2 - a10/4 n2 = a11/4 - (n5 + n6)/2 - a10/4 n3 = a12/4 - (n6 + n7)/2 - a10/4 n4 = a12/4 - (n7 + n8)/2 - a10/4 r5 = np.array([n1, n2, n3, n4, n5, n6, n7, n8, a10]) # 6 n5, n6, n7, n8 = a10/2-a10/2, a11/2-a10/2, a10/2-a10/2, a12/2-a10/2 n1 = a12/4 - (n8 + n5)/2 - a10/4 n2 = a11/4 - (n5 + n6)/2 - a10/4 n3 = a11/4 - (n6 + n7)/2 - a10/4 n4 = a12/4 - (n7 + n8)/2 - a10/4 r6 = np.array([n1, n2, n3, n4, n5, n6, n7, n8, a10]) # 7 n5, n6, n7, n8 = a12/2-a10/2, a10/2-a10/2, a11/2-a10/2, a10/2-a10/2 n1 = a12/4 - (n8 + n5)/2 - a10/4 n2 = a12/4 - (n5 + n6)/2 - a10/4 n3 = a11/4 - (n6 + n7)/2 - a10/4 n4 = a11/4 - (n7 + n8)/2 - a10/4 r7 = np.array([n1, n2, n3, n4, n5, n6, n7, n8, a10]) # 8 n5, n6, n7, n8 = a10/2-a10/2, a12/2-a10/2, a10/2-a10/2, a11/2-a10/2 n1 = a11/4 - (n8 + n5)/2 - a10/4 n2 = a12/4 - (n5 + n6)/2 - a10/4 n3 = a12/4 - (n6 + n7)/2 - a10/4 n4 = a11/4 - (n7 + n8)/2 - a10/4 r8 = np.array([n1, n2, n3, n4, n5, n6, n7, n8, a10]) r9 = np.array([0., 0., 0., 0., 0., 0., 0., 0., 1.]) X = np.vstack((r1, r2, r3, r4, r5, r6, r7, r8, r9)) ynp = X @ yip # ynp = 1.0 return ynp def quad_8n_extrapolate_ip_to_node(yip): """ Exprapolate values at 8 integration points to 8 nodes of a quad element. Integration points of Gauss quadrature. Usefull for : stress components (sxx, syy, sxy) yip - either a single vector (4,) or array (4,3) /sxx syy sxy/ or array (4, n) """ a = 1./np.sqrt(0.6) a0 = 1 - a**2 a4, a5 = -(1-a)**2*(1+2*a)/4, -(1+a)**2*(1-2*a)/4 a7 = -a0/4 a11, a12 = a0*(1+a)/2, a0*(1-a)/2 a1, a2, a3 = (1+a)/2, (1-a)/2, (1-a**2)/2 X = np.array([[a5, a7, a4, a7, a11, a12, a12, a11], [a7, a5, a7, a4, a11, a11, a12, a12], [a4, a7, a5, a7, a12, a11, a11, a12], [a7, a4, a7, a5, a12, a12, a11, a11], [a7, a7, a7, a7, a1, a3, a2, a3], [a7, a7, a7, a7, a3, a1, a3, a2], [a7, a7, a7, a7, a2, a3, a1, a3], [a7, a7, a7, a7, a3, a2, a3, a1]]) ynp = X @ yip # ynp = 1.0 return ynp def quad_interpolate_node_to_ip(ynp): """ Interpolate values at 4 nodes to 4 integration points a quad element. Integration points of Gauss quadrature. Usefull for : stress components (sxx, syy, sxy) ynp - either a single vector (4,) or array (4,3) /sxx syy sxy/ or array (4, n) """ jsz = 1./6. jtr = 1./3. p2 = jsz * np.sqrt(3.) X = np.array([[jtr+p2, jsz, jtr-p2, jsz], [jsz, jtr+p2, jsz, jtr-p2], [jtr-p2, jsz, jtr+p2, jsz], [jsz, jtr-p2, jsz, jtr+p2]]) yip = X @ ynp return yip def princ_stress(sig): """Return a tuple (s1, s2, angle): principal stresses (plane stress) and angle Args: sig (ndarray): input array of stresses at nodes: sxx, syy, sxy (tau) Returns: out (ndarray): 1st row is first principal stress s1, 2nd row is second principal stress s2, 3rd row is the angle of s1 """ sx, sy, tau = sig[0], sig[1], sig[2] ds = (sx-sy)/2 R = np.sqrt(ds**2 + tau**2) s1 = (sx+sy)/2. + R s2 = (sx+sy)/2. - R angle = np.arctan2(tau, ds)/2 out = np.vstack((s1, s2, angle)) return out def vm_stress(sig): n_sig_comp, n_pts = np.shape(sig) if n_sig_comp > 3: x, y, z, xy, xz, yz = sig else: x, y, xy = sig z, xz, yz = 0., 0., 0. _a = 0.5*((x-y)**2 + (y-z)**2 + (z-x)**2 + 6.*(xy**2 + xz**2 + yz**2)) return np.sqrt(_a) def quad_crds_node_to_ip(): """ Return global coordinates of 4 quad ip nodes and corner nodes. It also returns quad connectivity. """ node_tags, ele_tags = ops.getNodeTags(), ops.getEleTags() n_nodes, n_eles = len(node_tags), len(ele_tags) # idiom coordinates as ordered in node_tags nds_crd = np.zeros((n_nodes, 2)) for i, node_tag in enumerate(node_tags): nds_crd[i] = ops.nodeCoord(node_tag) quads_conn = np.zeros((n_eles, 4), dtype=int) # quads_conn_ops = np.zeros((n_eles, 4), dtype=int) eles_nds_crd = np.zeros((n_eles, 4, 2)) eles_ips_crd = np.zeros((n_eles, 4, 2)) for i, ele_tag in enumerate(ele_tags): nd1, nd2, nd3, nd4 = ops.eleNodes(ele_tag) ind1 = node_tags.index(nd1) ind2 = node_tags.index(nd2) ind3 = node_tags.index(nd3) ind4 = node_tags.index(nd4) quads_conn[i] = np.array([ind1, ind2, ind3, ind4]) # quads_conn_ops[i] = np.array([nd1, nd2, nd3, nd4]) eles_nds_crd[i] = np.array([[ops.nodeCoord(nd1, 1), ops.nodeCoord(nd1, 2)], [ops.nodeCoord(nd2, 1), ops.nodeCoord(nd2, 2)], [ops.nodeCoord(nd3, 1), ops.nodeCoord(nd3, 2)], [ops.nodeCoord(nd4, 1), ops.nodeCoord(nd4, 2)]]) eles_ips_crd[i] = quad_interpolate_node_to_ip(eles_nds_crd[i]) return eles_ips_crd, eles_nds_crd, nds_crd, quads_conn def quad_sig_out_per_ele(): """ Extract stress components for all elements from OpenSees analysis. Returns: eles_ips_sig_out, eles_nds_sig_out (tuple of ndarrays): eles_ips_sig_out - values at integration points of elements (n_eles x 4 x 4) eles_nds_sig_out - values at nodes of elements (n_eles x 4 x 4) Examples: eles_ips_sig_out, eles_nds_sig_out = opsv.quad_sig_out_per_ele() Notes: Stress components in array columns are: Sxx, Syy, Sxy, Svmis, empty Used e.g. by plot_mesh_with_ips_2d function """ node_tags, ele_tags = ops.getNodeTags(), ops.getEleTags() n_nodes, n_eles = len(node_tags), len(ele_tags) eles_ips_sig_out = np.zeros((n_eles, 4, 4)) eles_nds_sig_out = np.zeros((n_eles, 4, 4)) # array (n_nodes, 2): # node_tags, number of occurrence in quad elements) # correspondence indx and node_tag is in node_tags.index # (a) data in np.array of integers nodes_tag_count = np.zeros((n_nodes, 2), dtype=int) nodes_tag_count[:, 0] = node_tags for i, ele_tag in enumerate(ele_tags): nd1, nd2, nd3, nd4 = ops.eleNodes(ele_tag) ind1 = node_tags.index(nd1) ind2 = node_tags.index(nd2) ind3 = node_tags.index(nd3) ind4 = node_tags.index(nd4) nodes_tag_count[[ind1, ind2, ind3, ind4], 1] += 1 sig_ip_el = ops.eleResponse(ele_tag, 'stress') sigM_ip = np.vstack(([sig_ip_el[0:3], sig_ip_el[3:6], sig_ip_el[6:9], sig_ip_el[9:12]])) sigM_nd = quad_extrapolate_ip_to_node(sigM_ip) eles_ips_sig_out[i, :, :3] = sigM_ip eles_nds_sig_out[i, :, :3] = sigM_nd vm_ip_out = vm_stress(np.transpose(eles_ips_sig_out[i, :, :3])) vm_nd_out = vm_stress(np.transpose(eles_nds_sig_out[i, :, :3])) eles_ips_sig_out[i, :, 3] = vm_ip_out eles_nds_sig_out[i, :, 3] = vm_nd_out return eles_ips_sig_out, eles_nds_sig_out def quads_to_4tris(quads_conn, nds_crd, nds_val): """ Get triangles connectivity, coordinates and new values at quad centroids. Args: quads_conn (ndarray): nds_crd (ndarray): nds_val (ndarray): Returns: tris_conn, nds_c_crd, nds_c_val (tuple): Notes: Triangles connectivity array is based on quadrilaterals connectivity. Each quad is split into four triangles. New nodes are created at the quad centroid. See also: function: quads_to_8tris_9n, quads_to_8tris_8n """ n_quads, _ = quads_conn.shape n_nds, _ = nds_crd.shape # coordinates and values at quad centroids _c_ nds_c_crd = np.zeros((n_quads, 2)) nds_c_val = np.zeros(n_quads) tris_conn = np.zeros((4*n_quads, 3), dtype=int) for i, quad_conn in enumerate(quads_conn): j = 4*i n0, n1, n2, n3 = quad_conn # quad centroids nds_c_crd[i] = np.array([np.sum(nds_crd[[n0, n1, n2, n3], 0])/4., np.sum(nds_crd[[n0, n1, n2, n3], 1])/4.]) nds_c_val[i] = np.sum(nds_val[[n0, n1, n2, n3]])/4. # triangles connectivity tris_conn[j] = np.array([n0, n1, n_nds+i]) tris_conn[j+1] = np.array([n1, n2, n_nds+i]) tris_conn[j+2] = np.array([n2, n3, n_nds+i]) tris_conn[j+3] = np.array([n3, n0, n_nds+i]) return tris_conn, nds_c_crd, nds_c_val def plot_mesh_2d(nds_crd, eles_conn, lw=0.4, ec='k'): """ Plot 2d mesh (quads or triangles) outline. """ for ele_conn in eles_conn: x = nds_crd[ele_conn, 0] y = nds_crd[ele_conn, 1] plt.fill(x, y, edgecolor=ec, lw=lw, fill=False) def plot_stress_2d(nds_val, mesh_outline=1, cmap='jet'): """ Plot stress distribution of a 2d elements of a 2d model. Args: nds_val (ndarray): the values of a stress component, which can be extracted from sig_out array (see quad_sig_out_per_node function) mesh_outline (int): 1 - mesh is plotted, 0 - no mesh plotted. cmap (str): Matplotlib color map (default is 'jet') Usage: :: sig_out = opsv.quad_sig_out_per_node() j, jstr = 3, 'vmis' nds_val = sig_out[:, j] opsv.plot_stress_2d(nds_val) plt.xlabel('x [m]') plt.ylabel('y [m]') plt.title(f'{jstr}') plt.show() See also: :ref:`ops_vis_quad_sig_out_per_node` """ node_tags, ele_tags = ops.getNodeTags(), ops.getEleTags() n_nodes, n_eles = len(node_tags), len(ele_tags) # idiom coordinates as ordered in node_tags # use node_tags.index(tag) for correspondence nds_crd = np.zeros((n_nodes, 2)) for i, node_tag in enumerate(node_tags): nds_crd[i] = ops.nodeCoord(node_tag) # from utils / quad_sig_out_per_node # fixme: if this can be simplified # index (starts from 0) to node_tag correspondence # (a) data in np.array of integers # nodes_tag_count = np.zeros((n_nodes, 2), dtype=int) # nodes_tag_count[:, 0] = node_tags # # correspondence indx and node_tag is in node_tags.index # after testing remove the above quads_conn = np.zeros((n_eles, 4), dtype=int) for i, ele_tag in enumerate(ele_tags): nd1, nd2, nd3, nd4 = ops.eleNodes(ele_tag) ind1 = node_tags.index(nd1) ind2 = node_tags.index(nd2) ind3 = node_tags.index(nd3) ind4 = node_tags.index(nd4) quads_conn[i] = np.array([ind1, ind2, ind3, ind4]) tris_conn, nds_c_crd, nds_c_val = \ quads_to_4tris(quads_conn, nds_crd, nds_val) nds_crd_all = np.vstack((nds_crd, nds_c_crd)) # nds_val_all = np.concatenate((nds_val, nds_c_val)) nds_val_all = np.hstack((nds_val, nds_c_val)) # 1. plot contour maps triangulation = tri.Triangulation(nds_crd_all[:, 0], nds_crd_all[:, 1], tris_conn) plt.tricontourf(triangulation, nds_val_all, 50, cmap=cmap) # 2. plot original mesh (quad) without subdivision into triangles if mesh_outline: plot_mesh_2d(nds_crd, quads_conn) # plt.colorbar() plt.axis('equal') def plot_stress_9n_2d(nds_val, cmap='jet'): node_tags, ele_tags = ops.getNodeTags(), ops.getEleTags() n_nodes, n_eles = len(node_tags), len(ele_tags) # idiom coordinates as ordered in node_tags # use node_tags.index(tag) for correspondence nds_crd = np.zeros((n_nodes, 2)) for i, node_tag in enumerate(node_tags): nds_crd[i] = ops.nodeCoord(node_tag) # from utils / quad_sig_out_per_node # fixme: if this can be simplified # index (starts from 0) to node_tag correspondence # (a) data in np.array of integers # nodes_tag_count = np.zeros((n_nodes, 2), dtype=int) # nodes_tag_count[:, 0] = node_tags # # correspondence indx and node_tag is in node_tags.index # after testing remove the above quads_conn = np.zeros((n_eles, 4), dtype=int) for i, ele_tag in enumerate(ele_tags): nd1, nd2, nd3, nd4 = ops.eleNodes(ele_tag) ind1 = node_tags.index(nd1) ind2 = node_tags.index(nd2) ind3 = node_tags.index(nd3) ind4 = node_tags.index(nd4) quads_conn[i] = np.array([ind1, ind2, ind3, ind4]) tris_conn, nds_c_crd, nds_c_val = \ quads_to_4tris(quads_conn, nds_crd, nds_val) nds_crd_all = np.vstack((nds_crd, nds_c_crd)) # nds_val_all = np.concatenate((nds_val, nds_c_val)) nds_val_all = np.hstack((nds_val, nds_c_val)) # 1. plot contour maps triangulation = tri.Triangulation(nds_crd_all[:, 0], nds_crd_all[:, 1], tris_conn) plt.tricontourf(triangulation, nds_val_all, 50, cmap=cmap) # 2. plot original mesh (quad) without subdivision into triangles plot_mesh_2d(nds_crd, quads_conn) # plt.colorbar() plt.axis('equal') def plot_extruded_model_rect_section_3d(b, h, az_el=az_el, fig_wi_he=fig_wi_he, fig_lbrt=fig_lbrt): """Plot an extruded 3d model based on cross-section dimenions. Three arrows present local section axes: green - local x-axis, red - local z-axis, blue - local y-axis. Args: b (float): section width h (float): section height az_el (tuple): azimuth and elevation fig_wi_he: figure width and height in centimeters fig_lbrt: figure left, bottom, right, top boundaries Usage: :: plot_extruded_model_rect_section_3d(0.3, 0.4) Notes: - For now only rectangular cross-section is supported. """ b2, h2 = b/2, h/2 ele_tags = ops.getEleTags() azim, elev = az_el fig_wi, fig_he = fig_wi_he fleft, fbottom, fright, ftop = fig_lbrt fig = plt.figure(figsize=(fig_wi/2.54, fig_he/2.54)) fig.subplots_adjust(left=.08, bottom=.08, right=.985, top=.94) ax = fig.add_subplot(111, projection=Axes3D.name) # ax.axis('equal') ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') ax.view_init(azim=azim, elev=elev) for i, ele_tag in enumerate(ele_tags): nd1, nd2 = ops.eleNodes(ele_tag) # element x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1]]) ez = np.array([ops.nodeCoord(nd1)[2], ops.nodeCoord(nd2)[2]]) # eo = Eo[i, :] xloc = ops.eleResponse(ele_tag, 'xlocal') yloc = ops.eleResponse(ele_tag, 'ylocal') zloc = ops.eleResponse(ele_tag, 'zlocal') g = np.vstack((xloc, yloc, zloc)) # G, L = rot_transf_3d(ex, ey, ez, eo) G, L = rot_transf_3d(ex, ey, ez, g) # g = G[:3, :3] Xi, Yi, Zi = ex[0], ey[0], ez[0] Xj, Yj, Zj = ex[1], ey[1], ez[1] g10, g11, g12 = g[1, 0]*h2, g[1, 1]*h2, g[1, 2]*h2 g20, g21, g22 = g[2, 0]*b2, g[2, 1]*b2, g[2, 2]*b2 # beg node cross-section vertices Xi1, Yi1, Zi1 = Xi - g10 - g20, Yi - g11 - g21, Zi - g12 - g22 Xi2, Yi2, Zi2 = Xi + g10 - g20, Yi + g11 - g21, Zi + g12 - g22 Xi3, Yi3, Zi3 = Xi + g10 + g20, Yi + g11 + g21, Zi + g12 + g22 Xi4, Yi4, Zi4 = Xi - g10 + g20, Yi - g11 + g21, Zi - g12 + g22 # end node cross-section vertices Xj1, Yj1, Zj1 = Xj - g10 - g20, Yj - g11 - g21, Zj - g12 - g22 Xj2, Yj2, Zj2 = Xj + g10 - g20, Yj + g11 - g21, Zj + g12 - g22 Xj3, Yj3, Zj3 = Xj + g10 + g20, Yj + g11 + g21, Zj + g12 + g22 Xj4, Yj4, Zj4 = Xj - g10 + g20, Yj - g11 + g21, Zj - g12 + g22 # mesh outline ax.plot(ex, ey, ez, 'k--', solid_capstyle='round', solid_joinstyle='round', dash_capstyle='butt', dash_joinstyle='round') # collected i-beg, j-end node coordinates, counter-clockwise order pts = [[Xi1, Yi1, Zi1], [Xi2, Yi2, Zi2], [Xi3, Yi3, Zi3], [Xi4, Yi4, Zi4], [Xj1, Yj1, Zj1], [Xj2, Yj2, Zj2], [Xj3, Yj3, Zj3], [Xj4, Yj4, Zj4]] # list of 4-node sides verts = [[pts[0], pts[1], pts[2], pts[3]], # beg [pts[4], pts[5], pts[6], pts[7]], # end [pts[0], pts[4], pts[5], pts[1]], # bottom [pts[3], pts[7], pts[6], pts[2]], # top [pts[0], pts[4], pts[7], pts[3]], # front [pts[1], pts[5], pts[6], pts[2]]] # back # plot 3d element composed with sides ax.add_collection3d(Poly3DCollection(verts, linewidths=1, edgecolors='k', alpha=.25)) Xm, Ym, Zm = sum(ex)/2, sum(ey)/2, sum(ez)/2 alen = 0.1*L # plot local axis directional vectors: workaround quiver = arrow plt.quiver(Xm, Ym, Zm, g[0, 0], g[0, 1], g[0, 2], color='g', lw=2, length=alen, alpha=.8, normalize=True) plt.quiver(Xm, Ym, Zm, g[1, 0], g[1, 1], g[1, 2], color='b', lw=2, length=alen, alpha=.8, normalize=True) plt.quiver(Xm, Ym, Zm, g[2, 0], g[2, 1], g[2, 2], color='r', lw=2, length=alen, alpha=.8, normalize=True) def plot_mesh_with_ips_2d(nds_crd, eles_ips_crd, eles_nds_crd, quads_conn, eles_ips_sig_out, eles_nds_sig_out, sig_out_indx): """ Plot 2d element mesh with the values at gauss and nodal points. Args: nds_crd (ndarray): nodes coordinates (n_nodes x 2) eles_ips_crd (ndarray): integration points coordinates of elements (n_eles x 4 x 2) eles_nds_crd (ndarray): nodal coordinates of elements (n_eles x 4 x 2) quads_conn (ndarray): connectivity array (n_eles x 4) eles_ips_sig_out (ndarray): stress component values at integration points (n_eles x 4 x 5) eles_nds_sig_out (ndarray): stress component values at element nodes (n_eles x 4 x 5) sig_out_indx (int): which sig_out component Notes: This function is suitable for small models for illustration purposes. """ plot_mesh_2d(nds_crd, quads_conn, lw=1.2, ec='b') ele_tags = ops.getEleTags() n_eles = len(ele_tags) for i in range(n_eles): plt.plot(eles_ips_crd[i, :, 0], eles_ips_crd[i, :, 1], 'kx', markersize=3) ips_val = eles_ips_sig_out[i, :, sig_out_indx] nds_val = eles_nds_sig_out[i, :, sig_out_indx] # show ips values plt.text(eles_ips_crd[i, 0, 0], eles_ips_crd[i, 0, 1], f'{ips_val[0]:.2f}', {'color': 'C0'}, ha='center', va='bottom') plt.text(eles_ips_crd[i, 1, 0], eles_ips_crd[i, 1, 1], f'{ips_val[1]:.2f}', {'color': 'C1'}, ha='center', va='bottom') plt.text(eles_ips_crd[i, 2, 0], eles_ips_crd[i, 2, 1], f'{ips_val[2]:.2f}', {'color': 'C2'}, ha='center', va='top') plt.text(eles_ips_crd[i, 3, 0], eles_ips_crd[i, 3, 1], f'{ips_val[3]:.2f}', {'color': 'C3'}, ha='center', va='top') # show node values plt.text(eles_nds_crd[i, 0, 0], eles_nds_crd[i, 0, 1], f' {nds_val[0]:.2f}', {'color': 'C0'}, ha='left', va='bottom') plt.text(eles_nds_crd[i, 1, 0], eles_nds_crd[i, 1, 1], f'{nds_val[1]:.2f} ', {'color': 'C1'}, ha='right', va='bottom') plt.text(eles_nds_crd[i, 2, 0], eles_nds_crd[i, 2, 1], f'{nds_val[2]:.2f} ', {'color': 'C2'}, ha='right', va='top') plt.text(eles_nds_crd[i, 3, 0], eles_nds_crd[i, 3, 1], f' {nds_val[3]:.2f}', {'color': 'C3'}, ha='left', va='top') plt.axis('equal') # see also quads_to_8tris_9n def quads_to_8tris_8n(quads_conn, nds_crd, nds_val): """ Get triangles connectivity, coordinates and new values at quad centroids. Args: quads_conn (ndarray): nds_crd (ndarray): nds_val (ndarray): Returns: tris_conn, nds_c_crd, nds_c_val (tuple): Notes: Triangles connectivity array is based on quadrilaterals connectivity. Each quad is split into eight triangles. New nodes are created at the quad centroid. See also: function: quads_to_8tris_9n, quads_to_4tris """ n_quads, _ = quads_conn.shape n_nds, _ = nds_crd.shape # coordinates and values at quad centroids _c_ nds_c_crd = np.zeros((n_quads, 2)) nds_c_val = np.zeros(n_quads) tris_conn = np.zeros((8*n_quads, 3), dtype=int) for i, quad_conn in enumerate(quads_conn): j = 8*i n0, n1, n2, n3, n4, n5, n6, n7 = quad_conn # quad centroids # nds_c_crd[i] = np.array([np.sum(nds_crd[[n0, n1, n2, n3], 0])/4., # np.sum(nds_crd[[n0, n1, n2, n3], 1])/4.]) # nds_c_val[i] = np.sum(nds_val[[n0, n1, n2, n3]])/4. nds_c_crd[i] = quad_8n_val_at_center(nds_crd[[n0, n1, n2, n3, n4, n5, n6, n7]]) nds_c_val[i] = quad_8n_val_at_center(nds_val[[n0, n1, n2, n3, n4, n5, n6, n7]]) # triangles connectivity tris_conn[j] = np.array([n0, n4, n_nds+i]) tris_conn[j+1] = np.array([n4, n1, n_nds+i]) tris_conn[j+2] = np.array([n1, n5, n_nds+i]) tris_conn[j+3] = np.array([n5, n2, n_nds+i]) tris_conn[j+4] = np.array([n2, n6, n_nds+i]) tris_conn[j+5] = np.array([n6, n3, n_nds+i]) tris_conn[j+6] = np.array([n3, n7, n_nds+i]) tris_conn[j+7] =
np.array([n7, n0, n_nds+i])
numpy.array
#! /usr/bin/env python """ Implementation of a median subtraction algorithm for model PSF subtraction in high-contrast imaging sequences. In the case of ADI, the algorithm is based on [MAR06]_. The ADI+IFS method, is an extension of this basic idea to multi-spectral cubes. .. [MAR06] | Marois et al. 2006 | **Angular Differential Imaging: A Powerful High-Contrast Imaging Technique** | *The Astrophysical Journal, Volume 641, Issue 1, pp. 556-564* | `https://arxiv.org/abs/astro-ph/0512335 <https://arxiv.org/abs/astro-ph/0512335>`_ """ __author__ = '<NAME>' __all__ = ['median_sub'] import numpy as np from multiprocessing import cpu_count from ..config import time_ini, timing from ..var import get_annulus_segments, mask_circle from ..preproc import (cube_derotate, cube_collapse, check_pa_vector, check_scal_vector) from ..preproc import cube_rescaling_wavelengths as scwave from ..config.utils_conf import pool_map, iterable, print_precision from ..preproc.derotation import _find_indices_adi, _define_annuli from ..preproc.rescaling import _find_indices_sdi def median_sub(cube, angle_list, scale_list=None, flux_sc_list=None, fwhm=4, radius_int=0, asize=4, delta_rot=1, delta_sep=(0.1, 1), mode='fullfr', nframes=4, sdi_only=False, imlib='vip-fft', interpolation='lanczos4', collapse='median', nproc=1, full_output=False, verbose=True, **rot_options): """ Implementation of a median subtraction algorithm for model PSF subtraction in high-contrast imaging sequences. In the case of ADI, the algorithm is based on [MAR06]_. The ADI+IFS method is an extension of this basic idea to multi-spectral cubes. Parameters ---------- cube : numpy ndarray, 3d Input cube. angle_list : numpy ndarray, 1d Corresponding parallactic angle for each frame. scale_list : numpy ndarray, 1d, optional If provided, triggers mSDI reduction. These should be the scaling factors used to re-scale the spectral channels and align the speckles in case of IFS data (ADI+mSDI cube). Usually, these can be approximated by the last channel wavelength divided by the other wavelengths in the cube (more thorough approaches can be used to get the scaling factors, e.g. with ``vip_hci.preproc.find_scal_vector``). flux_sc_list : numpy ndarray, 1d In the case of IFS data (ADI+SDI), this is the list of flux scaling factors applied to each spectral frame after geometrical rescaling. These should be set to either the ratio of stellar fluxes between the last spectral channel and the other channels, or to the second output of `preproc.find_scal_vector` (when using 2 free parameters). If not provided, the algorithm will still work, but with a lower efficiency at subtracting the stellar halo. fwhm : float or 1d numpy array Known size of the FHWM in pixels to be used. Default is 4. radius_int : int, optional The radius of the innermost annulus. By default is 0, if >0 then the central circular area is discarded. asize : int, optional The size of the annuli, in pixels. delta_rot : int, optional Factor for increasing the parallactic angle threshold, expressed in FWHM. Default is 1 (excludes 1 FHWM on each side of the considered frame). delta_sep : float or tuple of floats, optional The threshold separation in terms of the mean FWHM (for ADI+mSDI data). If a tuple of two values is provided, they are used as the lower and upper intervals for the threshold (grows as a function of the separation). mode : {'fullfr', 'annular'}, str optional In ``fullfr`` mode only the median frame is subtracted, in ``annular`` mode also the 4 closest frames given a PA threshold (annulus-wise) are subtracted. nframes : int or None, optional Number of frames (even value) to be used for building the optimized reference PSF when working in ``annular`` mode. None by default, which means that all frames, excluding the thresholded ones, are used. sdi_only: bool, optional In the case of IFS data (ADI+SDI), whether to perform median-SDI, or median-ASDI (default). imlib : str, optional See the documentation of the ``vip_hci.preproc.frame_rotate`` function. interpolation : str, optional See the documentation of the ``vip_hci.preproc.frame_rotate`` function. collapse : {'median', 'mean', 'sum', 'trimmean'}, str optional Sets the way of collapsing the frames for producing a final image. nproc : None or int, optional Number of processes for parallel computing. If None the number of processes will be set to cpu_count()/2. By default the algorithm works in single-process mode. full_output: bool, optional Whether to return the final median combined image only or with other intermediate arrays. verbose : bool, optional If True prints to stdout intermediate info. rot_options: dictionary, optional Dictionary with optional keyword values for "border_mode", "mask_val", "edge_blend", "interp_zeros", "ker" (see documentation of ``vip_hci.preproc.frame_rotate``) Returns ------- cube_out : numpy ndarray, 3d [full_output=True] The cube of residuals. cube_der : numpy ndarray, 3d [full_output=True] The derotated cube of residuals. frame : numpy ndarray, 2d Median combination of the de-rotated cube. """ global ARRAY ARRAY = cube.copy() if not (ARRAY.ndim == 3 or ARRAY.ndim == 4): raise TypeError('Input array is not a 3d or 4d array') if verbose: start_time = time_ini() if nproc is None: nproc = cpu_count() // 2 # Hyper-threading doubles the # of cores angle_list = check_pa_vector(angle_list) if ARRAY.ndim == 3: n, y, _ = ARRAY.shape if ARRAY.shape[0] != angle_list.shape[0]: msg = 'Input vector or parallactic angles has wrong length' raise TypeError(msg) # The median frame is first subtracted from each frame model_psf = np.median(ARRAY, axis=0) ARRAY -= model_psf # Depending on the ``mode`` cube_out = ARRAY if mode == 'fullfr': # MASK AFTER DEROTATION TO AVOID ARTEFACTS # if radius_int > 0: # cube_out = mask_circle(ARRAY, radius_int, fillwith=np.nan) # else: # cube_out = ARRAY if verbose: print('Median psf reference subtracted') elif mode == 'annular': if nframes is not None: if nframes % 2 != 0: raise TypeError('`nframes` argument must be even value') n_annuli = int((y / 2 - radius_int) / asize) if verbose: print('N annuli = {}, FWHM = {}'.format(n_annuli, fwhm)) res = pool_map(nproc, _median_subt_ann_adi, iterable(range(n_annuli)), angle_list, n_annuli, fwhm, radius_int, asize, delta_rot, nframes, verbose=verbose, msg='Processing annuli:', progressbar_single=True) res = np.array(res, dtype=object) mres = res[:, 0] yy = res[:, 1] xx = res[:, 2] #cube_out = np.zeros_like(ARRAY) #cube_out[:] = np.nan for ann in range(n_annuli): cube_out[:, yy[ann], xx[ann]] = mres[ann] if verbose: print('Optimized median psf reference subtracted') else: raise RuntimeError('Mode not recognized') cube_der = cube_derotate(cube_out, angle_list, nproc=nproc, imlib=imlib, interpolation=interpolation, **rot_options) if radius_int: cube_out = mask_circle(cube_out, radius_int) cube_der = mask_circle(cube_der, radius_int) frame = cube_collapse(cube_der, mode=collapse) elif ARRAY.ndim == 4: z, n, y_in, x_in = ARRAY.shape if scale_list is None: raise ValueError('Scaling factors vector must be provided') else: if np.array(scale_list).ndim > 1: raise ValueError('Scaling factors vector is not 1d') if not scale_list.shape[0] == z: raise ValueError('Scaling factors vector has wrong length') if flux_sc_list is not None: if np.array(flux_sc_list).ndim > 1: raise ValueError('Scaling factors vector is not 1d') if not flux_sc_list.shape[0] == z: raise ValueError('Scaling factors vector has wrong length') # Exploiting spectral variability (radial movement) fwhm = int(np.round(np.mean(fwhm))) n_annuli = int((y_in / 2 - radius_int) / asize) if nframes is not None: if nframes % 2 != 0: raise TypeError('`nframes` argument must be even value') if verbose: print('{} spectral channels per IFS frame'.format(z)) print('First median subtraction exploiting spectral variability') if mode == 'annular': print('N annuli = {}, mean FWHM = {:.3f}'.format(n_annuli, fwhm)) res = pool_map(nproc, _median_subt_fr_sdi, iterable(range(n)), scale_list, flux_sc_list, n_annuli, fwhm, radius_int, asize, delta_sep, nframes, imlib, interpolation, collapse, mode) residuals_cube_channels = np.array(res) if verbose: timing(start_time) print('{} ADI frames'.format(n)) print('Median subtraction in the ADI fashion') if sdi_only: cube_out = residuals_cube_channels else: if mode == 'fullfr': median_frame = np.nanmedian(residuals_cube_channels, axis=0) cube_out = residuals_cube_channels - median_frame elif mode == 'annular': if verbose: print('N annuli = {}, mean FWHM = {:.3f}'.format(n_annuli, fwhm)) ARRAY = residuals_cube_channels res = pool_map(nproc, _median_subt_ann_adi, iterable(range(n_annuli)), angle_list, n_annuli, fwhm, radius_int, asize, delta_rot, nframes) res = np.array(res, dtype=object) mres = res[:, 0] yy = res[:, 1] xx = res[:, 2] pa_thrs = np.array(res[:, 3]) if verbose: print('PA thresholds: ') print_precision(pa_thrs) cube_out =
np.zeros_like(ARRAY)
numpy.zeros_like
""" factor.py Defines variables, variable sets, and dense factors over discrete variables (tables) for graphical models Version 0.1.0 (2021-03-25) (c) 2015-2021 <NAME> under the FreeBSD license; see license.txt for details. """ import numpy as np #import autograd.numpy as np from sortedcontainers import SortedSet as sset ## Under testing: cython-compiled variable sets for faster operations try: from pyGMs.varset_c import Var,VarSet except ImportError: #print "Compiled version not loaded; importing python version" from pyGMs.varset_py import Var,VarSet # sortedcontainers version #from .varset_py2 import Var,VarSet # numpy array version inf = float('inf') orderMethod = 'F' # TODO: currently stores in fortran order (as Matlab); should be trivially changable #orderMethod = 'C' # Can we make this "seamless" to the user, and/or force them to do something consistent? # Notes: column-major (order=F) puts last index sequentially ("big endian"): t[0 0 0], t[0 0 1], t[0 1 0] ... # row major (order=C) puts 1st index sequentially ("little endian"): t[0 0 0], t[1 0 0], t[0 1 0], ... class Factor(object): """A basic factor<float> class Factors are the basic building block of our graphical model representations. In general, a factor consists of a set of variables (its "scope"), and a table of values indicating f(x) for each joint configuration x (a tuple of values) of its variables. Variables are stored in sorted order; most of the time, factors are constructed by reading from files, but if built by hand it is safest to use indexing to set the values, e.g., >>> f = Factor( [X,Y,Z], 0.0 ) # builds a factor over X,Y,Z filled with zeros >>> f[0,1,0] = 1.5 # set f(X=0,Y=1,Z=0) to 1.5 Useful attributes are f.vars (the scope) and f.table (the table, a numpy array). Factors are imbued with many basic operations for manipulation: Operators: *, +, /, -, **, exp, log, abs, etc. In-place versions: *=, +=, /=, -=, **=, expIP, logIP, etc. Elimination: max, min, sum, lse (log-sum-exp), etc. Conditioning: return a factor defined by a sub-table, assigning some variables to values Other: argmax, argmin, sample, etc., return configurations of X (tuples) """ #v = VarSet([]) # internal storage for variable set (VarSet) #t = np.ndarray([]) # internal storage for table (numpy array) def __init__(self,vars=VarSet(),vals=1.0): """Constructor for Factor class >>> f = Factor( [X,Y,Z],[vals] ) # creates factor over [X,Y,Z] with table [vals] [vals] should be a correctly sized numpy array, or something that can be cast to the same. """ # TODO: add user-specified order method for values (order=) # TODO: accept out-of-order vars list (=> permute vals as req'd) try: self.v = VarSet(vars) # try building varset with args except TypeError: # if not iterable (e.g. single variable) self.v = VarSet() # try just adding it self.v.add(vars) #assert( self.v.nrStates() > 0) #if self.v.nrStatesDouble() > 1e8: raise ValueError("Too big!"); try: self.t = np.empty(self.v.dims(), float, orderMethod); self.t[:] = vals # try filling factor with "vals" except ValueError: # if it's an incompatible shape, self.t = np.reshape(np.array(vals, float), self.v.dims(), orderMethod) # try again using reshape def __build(self,vs,ndarray): """Internal build function from numpy ndarray""" self.v = vs self.t = ndarray return self #TODO: def assign(self, F) : set self equal to rhs F, e.g., *this = F def copy(self): """Copy constructor; make a copy of a factor""" return Factor().__build(self.v.copy(),self.t.copy('K')) # order=orderMethod? def changeVars(self, vars, copy=True): """Copy a factor but change its arguments (scope). >>> f = Factor([X0,X1], table) >>> g = changeVars( f, [X7,X5]) # now, g(X5=b,X7=a) = f(X0=a,X1=b) """ v = VarSet(vars) newOrder = map(lambda x:vars.index(x), v) if copy: ret = Factor(v, self.t.transpose(newOrder)) else: ret = Factor().__build(v, self.t.transpose(newOrder)) # try not to copy if possible return ret def __repr__(self): """Detailed representation: scope (varset) + table memory location""" return 'Factor({:s},[0x{:x}])'.format(str(self.v),self.t.ctypes.data) def __str__(self): """Basic string representation: scope (varset) only""" return 'Factor({:s})'.format(str(self.v)) def latex(self, valueformat="0.4f", factorname="$f(x)$", varnames=None): """Return string containing latex code for table values. Arguments: valueformat : string formatter for values in value column; default "0.4f" factorname : string for header of value column varnames : dict mapping variable ID to string for that column (defaults to $x_i$ if None) """ tex = "\\begin{tabular}[t]{" + "".join(["c" for v in self.v]) + "|c}\n" #tex += " & ".join(["$x"+str(int(v))+"$" for v in self.v]) + " & $f_{"+"".join([str(int(v)) for v in self.v])+"}$ \\\\ \\hline \n" if varnames is None: varnames = {v:"$x_{"+str(int(v))+"}$" for v in self.v} tex += " & ".join([varnames[v] for v in self.v]) + " & "+factorname+" \\\\ \\hline \n" for s in range(self.numel()): tex += " & ".join([str(si) for si in self.v.ind2sub(s)]) + " & " + ("{:"+valueformat+"}").format(self[s]) + "\\\\ \n" tex += "\\end{tabular} \n" return tex @property def vars(self): """Variables (scope) of the factor; read-only""" return self.v @vars.setter def vars(self,value): raise AttributeError("Read-only attribute") @property def table(self): """Table (values, as numpy array) of the factor""" return self.t @table.setter def table(self,values): try: self.t[:] = values # try filling factor with "values" except ValueError: # if it's an incompatible shape, self.t = np.array(values,dtype=float).reshape(self.v.dims(),order=orderMethod) # try again using reshape @property def nvar(self): """Number of arguments (variables, scope size) for the factor""" return len(self.v) #@property def dims(self): """Dimensions (table shape) of the tabular factor""" return self.t.shape #@property # TODO: make property? def numel(self): """Number of elements (size) of the tabular factor""" return self.t.size ################## METHODS ########################################## def __getitem__(self,loc): """Accessor: F[x1,x2] = F[sub2ind(x1,x2)] = F(X1=x1,X2=x2)""" if isinstance(loc, dict): return self.valueMap(loc) if self.t.ndim == 1 or isinstance(loc, (tuple, list)): return self.t[loc] else: try: return self.t[self.v.ind2sub(loc)] except ValueError: raise IndexError("Index {} invalid for table with size {}".format(loc,self.t.shape)) def __setitem__(self,loc,val): """Assign values of the factor: F[i,j,k] = F[idx] = val if idx=sub2ind(i,j,k)""" if isinstance(loc, dict): return self.setValueMap(loc,val) if self.t.ndim == 1 or isinstance(loc, (tuple, list)): self.t[loc] = val else: try: self.t[self.v.ind2sub(loc)] = val #self.t.flat[loc] = val # uses c-contiguous order... except ValueError: raise IndexError("Index {} invalid for table with size {}".format(loc,self.t.shape)) #value = __getitem__ # def f.value(loc): Alternate name for __getitem__ def value(self,x): """Type-safe version of __getitem__: returns scalar float entry of table at tuple x, or exception""" if self.nvar == 0: return self.t[0] return self.t.item(x) def setValue(self,x,val): """Type-safe version of __setitem__: sets a scalar float entry of table at tuple x, or exception""" self.t.itemset(x,val) def valueMap(self,x): """Accessor: F[x[i],x[j]] where i,j = F.vars, i.e, x is a map from variables to their state values""" if self.nvar == 0: return self.t[0] # if a scalar f'n, nothing to index return self.t[tuple(x[v] for v in self.v)] # otherwise, find entry of table def setValueMap(self,x,val): """Set F[x[i],x[j]] = val, where i,j = F.vars, i.e, x is a map from variables to their state values""" self.t[tuple(x[v] for v in self.v) if len(self.v) else 0] = val # lookup location to set, or 0 if scalar f'n def __float__(self): """Convert factor F to scalar float if possible; otherwise raises ValueError""" if (self.nvar == 0): return self.t[0] else: raise ValueError("Factor is not a scalar; scope {}".format(self.v)) # TODO missing comparator functions? def isnan(self): """Check for NaN (not-a-number) entries in the factor's values; true if any NaN present""" return self.isAny( (lambda x: np.isnan(x)) ) def isfinite(self): """Check for infinite (-inf, inf) or NaN values in the factor; false if any present""" return not self.isAny( (lambda x: not np.isfinite(x)) ) def isAny(self,test): """Generic check for any entries satisfying lambda-expression "test" in the factor""" for x in np.nditer(self.t, op_flags=['readonly']): if test(x): return True return False #### UNARY OPERATIONS #### def __abs__(self): """Return the absolute value of F: G = F.abs() => G(x) = | F(x) | for all x""" return Factor().__build( self.v.copy() , np.fabs(self.t) ) abs = __abs__ def __neg__(self): """Return the negative of F: G = -F => G(x) = -F(x) for all x""" return Factor().__build( self.v.copy() , np.negative(self.t) ) def exp(self): """Return the exponential of F: G = F.exp() => G(x) = exp(F(x)) for all x""" return Factor().__build( self.v.copy() , np.exp(self.t) ) def __pow__(self,power): """Return F raised to a power: G = F.power(p) => G(x) = ( F(x) )^p for all x""" return Factor().__build( self.v.copy() , np.power(self.t,power) ) power = __pow__ def log(self): # just use base? """Return the natural log of F: G = F.log() => G(x) = log( F(x) ) for all x""" with np.errstate(divide='ignore'): return Factor().__build( self.v.copy() , np.log(self.t) ) def log2(self): """Return the log base 2 of F: G = F.log2() => G(x) = log2( F(x) ) for all x""" with np.errstate(divide='ignore'): return Factor().__build( self.v.copy() , np.log2(self.t) ) def log10(self): """Return the log base 10 of F: G = F.log10() => G(x) = log10( F(x) ) for all x""" with np.errstate(divide='ignore'): return Factor().__build( self.v.copy() , np.log10(self.t) ) #### IN-PLACE UNARY OPERATIONS #### # always return "self" for chaining: f.negIP().expIP() = exp(-f(x)) in-place def absIP(self): """Take the absolute value of F: F.absIP() => F(x) <- |F(x)| (in-place)""" np.fabs(self.t, out=self.t) return self def expIP(self): """Take the exponential of F: F.expIP() => F(x) <- exp(F(x)) (in-place)"""
np.exp(self.t, out=self.t)
numpy.exp
import numpy as np from sstcam_sandbox import get_data, get_plot from CHECLabPy.core.io import HDF5Reader from IPython import embed def process(path, output_dir): with HDF5Reader(path) as reader: df = reader.read('data') dtack = [] stale = [] fci = [] for _, group in df.groupby("ipath"): dtack.append(np.diff(group['tack'])) stale.append(group['stale'][1:]) fci.append(group['fci'][1:]) dtack = np.concatenate(dtack) stale = np.concatenate(stale).astype(np.bool) fci = np.concatenate(fci) istale =
np.where(stale)
numpy.where
## SOLVING ODEs WITH EULER FORWARD/MODIFIED #ODE #dy/dx = x/y, y(0) = 1 import numpy as np import matplotlib.pyplot as plt ## analytic solution xa = np.linspace(0,0.3,1000) ya =
np.sqrt(xa**2 + 1)
numpy.sqrt
import tensorflow as tf import numpy as np import pickle #from reward_model.utils import LimitedRunningStat, RunningStat from utils import DynamicRunningStat, LimitedRunningStat, RunningStat import random from math import sqrt from utils import * eps = 1e-12 class RewardModel: def __init__(self, actions_size, policy, sess = None, gamma=0.99, lr=1e-5, batch_size=32, num_itr=20, use_vairl=False, mutual_information=0.5, alpha=0.0005, with_action=False, name='reward_model', entropy_weight = 0.5, with_value=True, fixed_reward_model=False, vs=None, **kwargs): # Initialize some model attributes # RunningStat to normalize reward from the model if not fixed_reward_model: self.r_norm = DynamicRunningStat() else: self.r_norm = RunningStat(1) # Discount factor self.gamma = gamma # Policy agent needed to compute the discriminator self.policy = policy # Demonstrations buffer self.expert_traj = None self.validation_traj = None # Num of actions available in the environment self.actions_size = actions_size # If is state-only or state-action discriminator self.with_action = with_action # TF parameters self.sess = sess self.lr = lr self.batch_size = batch_size self.num_itr = num_itr self.entropy_weight = entropy_weight # Use Variation Bottleneck Autoencoder self.use_vairl = use_vairl self.mutual_information = mutual_information self.alpha = alpha self.name = name # Buffer of policy experience with which train the reward model self.buffer = dict() self.create_buffer() with tf.compat.v1.variable_scope(name) as vs: with tf.compat.v1.variable_scope('irl'): # Input spec for both reward and value function # Current state (DeepCrawl spec) self.global_state = tf.compat.v1.placeholder(tf.float32, [None, 10, 10, 52], name='global_state') self.local_state = tf.compat.v1.placeholder(tf.float32, [None, 5, 5, 52], name='local_state') self.local_two_state = tf.compat.v1.placeholder(tf.float32, [None, 3, 3, 52], name='local_two_state') self.agent_stats = tf.compat.v1.placeholder(tf.int32, [None, 16], name='agent_stats') self.target_stats = tf.compat.v1.placeholder(tf.int32, [None, 15], name='target_stats') if self.with_action: self.acts = tf.compat.v1.placeholder(tf.int32, [None, 1], name='acts') # Next state (DeepCrawl spec) - for discriminator self.global_state_n = tf.compat.v1.placeholder(tf.float32, [None, 10, 10, 52], name='global_state_n') self.local_state_n = tf.compat.v1.placeholder(tf.float32, [None, 5, 5, 52], name='local_state_n') self.local_two_state_n = tf.compat.v1.placeholder(tf.float32, [None, 3, 3, 52], name='local_two_state_n') self.agent_stats_n = tf.compat.v1.placeholder(tf.int32, [None, 16], name='agent_stats_n') self.target_stats_n = tf.compat.v1.placeholder(tf.int32, [None, 15], name='target_stats_n') # Probability distribution and labels - whether or not this state belongs to expert buffer self.probs = tf.compat.v1.placeholder(tf.float32, [None, 1], name='probs') self.labels = tf.compat.v1.placeholder(tf.float32, [None, 1], name='labels') # For V-AIRL self.use_noise = tf.compat.v1.placeholder( shape=[1], dtype=tf.float32, name="noise" ) self.z_sigma_g = None self.z_sigma_h = None if self.use_vairl: self.z_sigma_g = tf.compat.v1.get_variable( 'z_sigma_g', 100, dtype=tf.float32, initializer=tf.compat.v1.ones_initializer(), ) self.z_sigma_g_sq = self.z_sigma_g * self.z_sigma_g self.z_log_sigma_g_sq = tf.compat.v1.log(self.z_sigma_g_sq + eps) self.z_sigma_h = tf.compat.v1.get_variable( "z_sigma_h", 100, dtype=tf.float32, initializer=tf.compat.v1.ones_initializer(), ) self.z_sigma_h_sq = self.z_sigma_h * self.z_sigma_h self.z_log_sigma_h_sq = tf.compat.v1.log(self.z_sigma_h_sq + eps) # Reward Funvtion with tf.compat.v1.variable_scope('reward'): self.reward, self.z_g = self.conv_net(self.global_state, self.local_state, self.local_two_state, self.agent_stats, self.target_stats, with_action = self.with_action, z_sigma=self.z_sigma_g, use_noise=self.use_noise) # Value Function if with_value: with tf.compat.v1.variable_scope('value'): self.value, self.z_h = self.conv_net(self.global_state, self.local_state, self.local_two_state, self.agent_stats, self.target_stats, z_sigma=self.z_sigma_h, use_noise=self.use_noise, with_action=False) with tf.compat.v1.variable_scope('value', reuse=True): self.value_n, self.z_1_h = self.conv_net(self.global_state_n, self.local_state_n, self.local_two_state_n, self.agent_stats_n, self.target_stats_n, z_sigma=self.z_sigma_h, use_noise=self.use_noise, with_action=False) self.f = self.reward + self.gamma * self.value_n - self.value else: self.f = self.reward # Discriminator self.discriminator = tf.math.divide(tf.math.exp(self.f), tf.math.add(tf.math.exp(self.f), self.probs)) # Loss Function self.loss = -tf.reduce_mean((self.labels * tf.math.log(self.discriminator + eps)) + ( (1 - self.labels) * tf.math.log(1 - self.discriminator + eps))) # Loss function modification for V-AIRL if self.use_vairl: # Define beta self.beta = tf.compat.v1.get_variable( "airl_beta", [], trainable=False, dtype=tf.float32, initializer=tf.compat.v1.ones_initializer(), ) # Number of batch element self.batch = tf.compat.v1.shape(self.z_g)[0] self.batch_index = tf.dtypes.cast(self.batch / 2, tf.int32) self.kl_loss = tf.reduce_mean( -tf.reduce_sum( 1 + self.z_log_sigma_g_sq - 0.5 * tf.square( self.z_g[0:self.batch_index, :] * self.z_h[0:self.batch_index, :] * self.z_1_h[ 0:self.batch_index, :]) - 0.5 * tf.square( self.z_g[self.batch_index:, :] * self.z_h[self.batch_index:, :] * self.z_1_h[ self.batch_index:, :]) - tf.exp(self.z_log_sigma_g_sq), 1, ) ) self.loss = self.beta * (self.kl_loss - self.mutual_information) + self.loss # Adam optimizer with gradient clipping optimizer = tf.compat.v1.train.AdamOptimizer(self.lr) gradients, variables = zip(*optimizer.compute_gradients(self.loss)) gradients, _ = tf.compat.v1.clip_by_global_norm(gradients, 1.0) self.step = optimizer.apply_gradients(zip(gradients, variables)) #self.step = tf.compat.v1.train.AdamOptimizer(learning_rate=self.lr).minimize(self.loss) if self.use_vairl: self.make_beta_update() self.vs = vs self.saver = tf.compat.v1.train.Saver(max_to_keep=None) ## Layers def linear(self, inp, inner_size, name='linear', bias=True, activation = None, init = None): with tf.compat.v1.variable_scope(name): lin = tf.compat.v1.layers.dense(inp, inner_size, name=name, activation=activation, use_bias=bias, kernel_initializer=init) return lin def conv_layer_2d(self, input, filters, kernel_size, strides=(1, 1), padding="SAME", name='conv', activation=None, bias = True): with tf.compat.v1.variable_scope(name): conv = tf.compat.v1.layers.conv2d(input, filters, kernel_size, strides, padding=padding, name=name, activation=activation, use_bias=bias) return conv def embedding(self, input, indices, size, name='embs'): with tf.compat.v1.variable_scope(name): shape = (indices, size) stddev = min(0.1, sqrt(2.0 / (product(xs=shape[:-1]) + shape[-1]))) initializer = tf.random.normal(shape=shape, stddev=stddev, dtype=tf.float32) W = tf.Variable( initial_value=initializer, trainable=True, validate_shape=True, name='W', dtype=tf.float32, shape=shape ) return tf.nn.tanh(tf.compat.v1.nn.embedding_lookup(params=W, ids=input, max_norm=None)) # Netowrk specification def conv_net(self, global_state, local_state, local_two_state, agent_stats, target_stats, z_sigma=None, use_noise=None, with_action=False): conv_10 = self.conv_layer_2d(global_state, 32, [1, 1], name='conv_10', activation=tf.nn.tanh) conv_11 = self.conv_layer_2d(conv_10, 32, [3, 3], name='conv_11', activation=tf.nn.leaky_relu) conv_12 = self.conv_layer_2d(conv_11, 32, [3, 3], name='conv_12', activation=tf.nn.leaky_relu) fc11 = tf.reshape(conv_12, [-1,10*10*32]) embs_41 = tf.nn.tanh(self.embedding(agent_stats, 129, 32, name='embs_41')) embs_41 = tf.reshape(embs_41, [-1, 16 * 32]) fc_41 = self.linear(embs_41, 100, name = 'fc_41', activation=tf.nn.leaky_relu) embs_51 = self.embedding(target_stats, 125, 32, name='embs_51') embs_51 = tf.reshape(embs_51, [-1, 15 * 32]) fc_51 = self.linear(embs_51, 100, name = 'fc_51', activation = tf.nn.leaky_relu) all_flat = tf.concat([fc11, fc_41, fc_51], axis=1) all_flat = self.linear(all_flat, 32, name='fc1', activation=tf.nn.leaky_relu) if with_action: hot_acts = tf.one_hot(self.acts, self.actions_size) hot_acts = tf.reshape(hot_acts, [-1, self.actions_size]) all_flat = tf.concat([all_flat, hot_acts], axis=1) z_mean = None fc2 = self.linear(all_flat, 32, name='fc2', activation = tf.nn.leaky_relu) # In case we want to use V-AIRL if self.use_vairl: z_mean = self.linear(fc2, 32, name='z_mean', init=tf.compat.v1.initializers.variance_scaling(0.01)) noise = tf.compat.v1.random_normal(tf.compat.v1.shape(z_mean), dtype=tf.float32) z = z_mean + z_sigma * noise * use_noise fc2 = z return self.linear(fc2, 1, name='out'), z_mean else: return self.linear(fc2, 1, name='out'), None # Train method of the discriminator def train(self): losses = [] # Update discriminator for it in range(self.num_itr): expert_batch_idxs = random.sample(range(len(self.expert_traj['obs'])), self.batch_size) policy_batch_idxs = random.sample(range(len(self.buffer['obs'])), self.batch_size) #expert_batch_idxs = np.random.randint(0, len(expert_traj['obs']), batch_size) #policy_batch_idxs = np.random.randint(0, len(policy_traj['obs']), batch_size) expert_obs = [self.expert_traj['obs'][id] for id in expert_batch_idxs] policy_obs = [self.buffer['obs'][id] for id in policy_batch_idxs] expert_obs_n = [self.expert_traj['obs_n'][id] for id in expert_batch_idxs] policy_obs_n = [self.buffer['obs_n'][id] for id in policy_batch_idxs] expert_acts = [self.expert_traj['acts'][id] for id in expert_batch_idxs] policy_acts = [self.buffer['acts'][id] for id in policy_batch_idxs] expert_probs = [] for (index, state) in enumerate(expert_obs): _, probs = self.select_action(state) expert_probs.append(probs[expert_acts[index]]) policy_probs = [] for (index, state) in enumerate(policy_obs): _, probs = self.select_action(state) policy_probs.append(probs[policy_acts[index]]) expert_probs = np.asarray(expert_probs) policy_probs = np.asarray(policy_probs) labels = np.ones((self.batch_size, 1)) labels = np.concatenate([labels, np.zeros((self.batch_size, 1))]) e_states = self.obs_to_state(expert_obs) p_states = self.obs_to_state(policy_obs) all_global = np.concatenate([e_states[0], p_states[0]], axis=0) all_local = np.concatenate([e_states[1], p_states[1]], axis=0) all_local_two =
np.concatenate([e_states[2], p_states[2]], axis=0)
numpy.concatenate
import argparse import numpy as np import os, sys from numpy import linalg as LA import math from PIL import Image from matplotlib import pyplot as plt import random try: sys.path.remove('/opt/ros/kinetic/lib/python2.7/dist-packages') except: pass import cv2 def circle(x,y,map,x_center,y_center,radius): if (x-x_center)**2+(y-y_center)**2<=(radius+Robot_dia/2)**2: map[x,y,:]=[0,0,0] return map def rectrangle(x,y,map,x_min,y_min,x_max,y_max): if x in range (int(x_min-Robot_dia/2),int(x_max+Robot_dia/2)+1) and y in range(int(y_min-Robot_dia/2),int(y_max+Robot_dia/2)+1): map[x,y,:]=[0,0,0] return map def Map(): map=255*np.array(np.ones((1110,1010,3)),dtype=np.uint8) for X in range (map.shape[0]): for Y in range(map.shape[1]): map=circle(X,Y,map,390,965,81/2) # 1 map=circle(X,Y,map,438,736,81/2) # 2 map=circle(X,Y,map,438,274,81/2) # 3 map=circle(X,Y,map,390,45,81/2) # 4 map=circle(X,Y,map,149.95,830.05,159.9/2) # 5 map=circle(X,Y,map,309.73,830.05,159.9/2) # 6 map=rectrangle(X,Y,map,149.95,750.1,309.73,910) # 7 map=rectrangle(X,Y,map,438,315,529,315+183) # 8 map=rectrangle(X,Y,map,438+91,35+152+78,438+91+183,35+152+78+76) # 9 map=rectrangle(X,Y,map,1110-636,35,1110-636+274,35+152) # 10 map=rectrangle(X,Y,map,1110-425,0,1110,35) # 11 map=rectrangle(X,Y,map,1110-183,35,1110,35+76) # 12 map=rectrangle(X,Y,map,1110-117-31-183,35,1110-31-183,35+58) # 13 map=rectrangle(X,Y,map,1110-58,1010-313-76-55.5-117-86-67.25-117,1110,1010-313-76-55.5-117-86-67.25) # 14 map=rectrangle(X,Y,map,438+91+183+72.5,35+152+80,438+91+183+72.5+152,35+152+80+117) # 15 map=rectrangle(X,Y,map,1110-91,1010-313-76-55.5-117-86,1110,1010-313-76-55.5-117) # 16 map=rectrangle(X,Y,map,1110-58,1010-313-76-55.5-117,1110,1010-313-76-55.5) # 17 map=rectrangle(X,Y,map,1110-366,1010-313-76,1110,1010-313) # 18 map=rectrangle(X,Y,map,1110-192-86,1010-183,1110-192,1010) # 19 map=rectrangle(X,Y,map,1110-84-43,1010-91,1110-84,1010) # 20 if X in range(int(Robot_dia/2)+1) or X in range(map.shape[0]-int(Robot_dia/2)-1,map.shape[0]): map[X,Y,:]=[0,0,0] if Y in range(int(Robot_dia/2)+1) or Y in range(map.shape[1]-int(Robot_dia/2)-1,map.shape[0]): map[X,Y,:]=[0,0,0] return map def Huerastic_distance(x_src,y_src,x_dest,y_dest): return np.sqrt((x_src-x_dest)**2+(y_src-y_dest)**2) def Step(x,y,theta,RPM_L,RPM_R): instants=50 for i in range(instants): x=x+Wheel_Dia*math.pi*(RPM_L+RPM_R)*math.cos(theta)*time/(120*instants) y=y+Wheel_Dia*math.pi*(RPM_L+RPM_R)*math.sin(theta)*time/(120*instants) theta=theta+Wheel_Dia*math.pi*(RPM_R-RPM_L)*time/(60*Wheel_distance*instants) return x , y ,theta def NodeCheck(Master_mat,X,Y): flag_n=True threshold=2 # less than buffer explore_limit=5000 if len(Master_mat)<=explore_limit: for i in range(len(Master_mat)): if X<Master_mat[i,2]+threshold and X>Master_mat[i,2]-threshold and Y<Master_mat[i,3]+threshold and Y>Master_mat[i,3]-threshold: flag_n=False else : l=len(Master_mat) for i in range(1,explore_limit): if X<Master_mat[l-i,2]+threshold and X>Master_mat[l-i,2]-threshold and Y<Master_mat[l-i,3]+threshold and Y>Master_mat[l-i,3]-threshold: flag_n=False return flag_n def boundry_check(x,y): flag=0 X=int(x) Y=int(y) if int(x) in range(0,1110) and int(y) in range(0,1010): flag=1 return flag def Explore_choice(Master_mat,Parent_X,Parent_Y,Parent_Theta,Parent_Cost,Parent_index,RPM_L,RPM_R,weight,flag): x_new,y_new,theta_new=Step(Parent_X,Parent_Y,Parent_Theta,RPM_L,RPM_R) if(boundry_check(x_new,y_new)==1 and Map[int(x_new),int(y_new),0]==255 and flag==True and NodeCheck(Master_mat,x_new,y_new)==True): #cost=Parent_Cost+weight Map[int(x_new),int(y_new),:]=[0,0,200] cost=Parent_Cost+Huerastic_distance(Parent_X,Parent_Y,x_new,y_new) Distance=Huerastic_distance(x_new,y_new,Goal[0],Goal[1]) stack=np.mat([len(Master_mat),Parent_index,x_new,y_new,theta_new,cost,cost+Distance,(RPM_L*2*22)/(7*60),(RPM_R*2*22)/(7*60)]) Master_mat=np.vstack((Master_mat,stack)) if int(x_new) in range(Goal[0]-buffer,Goal[0]+buffer) and int(y_new) in range(Goal[1]-buffer,Goal[1]+buffer): flag=False return Master_mat,flag def pointexplore(index,Master_mat,Map,flag): Parent_index=Master_mat[index,0] Parent_X=Master_mat[index,2] Parent_Y=Master_mat[index,3] Parent_Theta=Master_mat[index,4] Parent_Cost=Master_mat[index,5] RPM_L,RPM_R,weight=RPM1,0,cost_of_step[0,0] Master_mat,flag=Explore_choice(Master_mat,Parent_X,Parent_Y,Parent_Theta,Parent_Cost,Parent_index,RPM_L,RPM_R,weight,flag) RPM_L,RPM_R,weight=RPM2,0,cost_of_step[0,1] Master_mat,flag=Explore_choice(Master_mat,Parent_X,Parent_Y,Parent_Theta,Parent_Cost,Parent_index,RPM_L,RPM_R,weight,flag) RPM_L,RPM_R,weight=RPM2,RPM1,cost_of_step[0,2] Master_mat,flag=Explore_choice(Master_mat,Parent_X,Parent_Y,Parent_Theta,Parent_Cost,Parent_index,RPM_L,RPM_R,weight,flag) RPM_L,RPM_R,weight=RPM1,RPM1,cost_of_step[0,3] Master_mat,flag=Explore_choice(Master_mat,Parent_X,Parent_Y,Parent_Theta,Parent_Cost,Parent_index,RPM_L,RPM_R,weight,flag) RPM_L,RPM_R,weight=RPM2,RPM2,cost_of_step[0,4] Master_mat,flag=Explore_choice(Master_mat,Parent_X,Parent_Y,Parent_Theta,Parent_Cost,Parent_index,RPM_L,RPM_R,weight,flag) RPM_L,RPM_R,weight=RPM1,RPM2,cost_of_step[0,5] Master_mat,flag=Explore_choice(Master_mat,Parent_X,Parent_Y,Parent_Theta,Parent_Cost,Parent_index,RPM_L,RPM_R,weight,flag) RPM_L,RPM_R,weight=0,RPM1,cost_of_step[0,6] Master_mat,flag=Explore_choice(Master_mat,Parent_X,Parent_Y,Parent_Theta,Parent_Cost,Parent_index,RPM_L,RPM_R,weight,flag) RPM_L,RPM_R,weight=0,RPM2,cost_of_step[0,7] Master_mat,flag=Explore_choice(Master_mat,Parent_X,Parent_Y,Parent_Theta,Parent_Cost,Parent_index,RPM_L,RPM_R,weight,flag) Master_mat[index,6]=math.inf return Master_mat,flag def backtrack(Master_mat): back_mat=[Master_mat[-1,0]] Found=1 while(Found!=0): pointer=int(back_mat[-1]) Found=Master_mat[pointer,1] print(Found) back_mat=np.append([back_mat],[Found]) return back_mat # function returns matrix with final path def backtrackmat(back_mat,Node,Map): backtrackmat=np.array(np.zeros((len(back_mat),3))) Velocity_matrix=np.array(np.zeros((len(back_mat),2))) for a in range(len(back_mat)): i=len(back_mat)-a-1 value=int(back_mat[a]) backtrackmat[i,0]=Node[value,2] backtrackmat[i,1]=Node[value,3] backtrackmat[i,2]=Node[value,4] Velocity_matrix[i,0]=Node[value,7] Velocity_matrix[i,1]=Node[value,8] return backtrackmat,Velocity_matrix,Map def Step_plot(Path,Velocity_matrix,Map): instants=50 for i in range(1,len(Path)): theta=Path[i-1,2] x=Path[i-1,0] y=Path[i-1,1] RPM_L=Velocity_matrix[i,0]*60*7/(2*22) RPM_R=Velocity_matrix[i,1]*60*7/(2*22) for j in range(instants): x=x+Wheel_Dia*math.pi*(RPM_L+RPM_R)*math.cos(theta)*time/(120*instants) y=y+Wheel_Dia*math.pi*(RPM_L+RPM_R)*math.sin(theta)*time/(120*instants) theta=theta+Wheel_Dia*math.pi*(RPM_R-RPM_L)*time/(60*Wheel_distance*instants) Map[int(x),int(y),:]=[0,200,0] Map_path=cv2.rotate(Map.copy(), cv2.ROTATE_90_COUNTERCLOCKWISE) scale_p = cv2.resize(Map_path,None,fx=0.5, fy=0.5, interpolation = cv2.INTER_CUBIC) cv2.imshow('map_p',scale_p) cv2.waitKey(10) return Map ######---------------------------------------------------------- # Initialize RPM1= 15 # in RPM RPM2= 20 # in RPM #Goal=[100,500] # in cm #Start=[100,100] # in cm Wheel_Dia=7.6 # in cm Wheel_distance=23 # in cm Robot_dia=35.4 # in cm Allowable_clerance=2 # in cm time=2 # in sec theta=0 # in degrees sampling_frequency=1 # samples in a sec. buffer=3 # in cm ####----------------------------------------------------------- print('Map is getting generated') Map=Map() error=0 print("Input co-ordinates has origin at bottom left" ) print("Input co-ordinates of x between 20 & 1090") print("Input co-ordinates of y between 20 & 990") Startx=float(input('Value of Start x \n')) Starty=float(input('Value of Start y \n')) Endx=float(input('Value of Goal x \n')) Endy=float(input('Value of Goal y \n')) Startx=int(Startx) Starty=int(Starty) Endx=int(Endx) Endy=int(Endy) # Error conditions if Startx not in range(1110) and Starty not in range(1010): print('Start point out of bound') error=1 if Endx not in range(1110) or Endy not in range(1010): print('End point out of bound') error=1 if (error==0): if (Map[Startx,Starty,0]==0): print('Start point is in obstacle') error=1 if (Map[Endx,Endy,0]==0): print('End point is in obstacle') error=1 Start=[Startx,Starty] Goal=[Endx,Endy] #######------------------------------------------------------------------ cost_of_step=
np.mat([1,1,1,1,1,1,1,1,1])
numpy.mat
#!/usr/bin/python -B # -*- coding: utf-8 -*- """ Created on Apr 2014 @author: <NAME> """ import site site.addsitedir('.') import sys import argparse from time import time import numpy as np from clmat import HAS_PYOPENCL, CPU, GPU, DEVICE_TYPE_MAP, REDUCTION_ENUM, Computer, Mat, get_gpu import warnings # Verbose levels vl must be >= to this vl_error_summary = 0 vl_full_summary = 1 vl_times = 2 vl_cmds = 3 vl_data = 4 dt_names = {np.single: 's', np.double: 'd'} dt_colors = {np.single: 36, np.double: 46} def correct_nan_inf(x0, x1): nans = np.isnan(x0) * np.isnan(x1) posinfs = np.isposinf(x0) * np.isposinf(x1) neginfs = np.isneginf(x0) * np.isneginf(x1) if isinstance(x0, np.ndarray): x0 = x0.copy() x1 = x1.copy() x0[nans + posinfs + neginfs] = 0 x1[nans + posinfs + neginfs] = 0 elif nans or posinfs or neginfs: x0 *= 0 x1 *= 0 return x0, x1 def rel_err(x0, x1, x0_baseline=False): x0 = np.array(x0) x1 = np.array(x1) if x0_baseline: normalizer = np.linalg.norm(x0.flatten(), 2) else: normalizer = (np.linalg.norm(x0.flatten(), 2) + np.linalg.norm(x1.flatten(), 2))/2 if normalizer == 0: normalizer = 1 return np.linalg.norm((x1-x0).flatten(), 2)/normalizer def max_rel_diff(x0, x1, x0_baseline=False): x0 =
np.array(x0)
numpy.array
__all__ = ["Scalar", "Vector", "Matrix"] class Scalar(object): """ Scalar variable type. It holds a 64-bits floating point value, stored via a zero-dimensional ``ndl``, listen to changes, and fix or unfix its value. Parameters ---------- value : float Initial value. """ __slots__ = [ "raw", "_fixed", "value", "__array_interface__", "__array_struct__", "_bounds", ] def __init__(self, value): from ndarray_listener import ndl from numpy import float64, inf self._bounds = (-inf, +inf) self._fixed = False value = ndl(float64(value)) self.raw = value self.__array_interface__ = value.__array_interface__ self.__array_struct__ = value.__array_struct__ @property def bounds(self): return self._bounds @bounds.setter def bounds(self, v): self._bounds = v def copy(self): """Return a copy.""" return Scalar(self.raw) @property def shape(self): """ Shape according to :mod:`numpy`. """ return self.raw.shape @property def ndim(_): """ Number of dimensions. """ return 0 @property def size(self): """ Size according to :mod:`numpy`. """ return self.raw.size def asarray(self): """ Return a :class:`numpy.ndarray` representation. """ from numpy import array return array(self.raw) @property def isfixed(self): """ Return whether it is fixed or not. """ return self._fixed def fix(self): """ Set it fixed. """ self._fixed = True def unfix(self): """ Set it unfixed. """ self._fixed = False def listen(self, you): """ Request a callback for value modification. Parameters ---------- you : object An instance having ``__call__`` attribute. """ self.raw.talk_to(you) def __setattr__(self, name, value): from numpy import float64 if name == "value": try: value = float64(value) except TypeError: value = value[0] self.raw.itemset(value) else: Scalar.__dict__[name].__set__(self, value) def __getattr__(self, name): if name == "value": name = "raw" return Scalar.__dict__[name].__get__(self) def __str__(self): return "Scalar(" + str(self.raw) + ")" def __repr__(self): return repr(self.raw) def __ge__(self, that): return self.raw >= that.raw def __gt__(self, that): return self.raw > that.raw def __le__(self, that): return self.raw <= that.raw def __lt__(self, that): return self.raw < that.raw def __eq__(self, that): return self.raw == that.raw def __ne__(self, that): return self.raw != that.raw class Vector(object): """ Vector variable type. It holds an array of 64-bits floating point values, via an one-dimensional ``ndl``, listen to changes, and fix or unfix its values. Parameters ---------- value : float Initial value. """ __slots__ = [ "raw", "_fixed", "__array_interface__", "__array_struct__", "value", "_bounds", ] def __init__(self, value): from numpy import asarray, atleast_1d, inf from ndarray_listener import ndl self._bounds = [(-inf, +inf)] * len(value) self._fixed = False value = asarray(value, float) value = ndl(atleast_1d(value).ravel()) self.raw = value self.__array_interface__ = value.__array_interface__ self.__array_struct__ = value.__array_struct__ @property def bounds(self): return self._bounds @bounds.setter def bounds(self, v): self._bounds = v def copy(self): """ Return a copy. """ return Vector(self.raw) @property def shape(self): """ Shape according to :mod:`numpy`. """ return self.raw.shape @property def ndim(self): """ Number of dimensions. """ return len(self.shape) @property def size(self): """ Size according to :mod:`numpy`. """ return self.raw.size def asarray(self): """ Return a :class:`numpy.ndarray` representation. """ from numpy import array return
array(self.raw)
numpy.array
# -*- coding: utf-8 -*- """ Created on Tue Feb 2 13:41:28 2016 @author: <NAME> steele{AT}cbs{dot}mpg{dot}de """ import numpy as np from os.path import sep as pathsep import sys #TODO: hardcoded for now, make relative before release sys.path.append('/home/chris/Documents/code/python/cbstools-python/cbstoolsjcc-3.1.0.1-py2.7-linux-x86_64.egg') import cbstoolsjcc as cj from defaults import * #ATLAS_DIR and TOPOLOGY_LUT_DIR def normalise(img_d): return (img_d - np.min(img_d))/np.max(img_d) def setup_JVM(JVM_initialheap = '4000M', JVM_maxheap = '4000M'): """ initialise the JVM and set all of the base with reasonable defaults for memory :param JVM_initialheap: :param JVM_maxheap: :return: """ try: res=cj.initVM(initialheap=JVM_initialheap,maxheap=JVM_maxheap) print(res) print("Java virtual machine successfully started.") except ValueError: print("A java virtual machine is already running.") def ExtractBrainRegion(): pass def Mp2rageSkullStripping(): pass def IntensityBackgroundEstimator(): pass def SurfaceProbabilityToLevelset(): pass def get_affine_orientation_slice(a): # get the orientation of the affine, and the slice order import nibabel as nb ori=nb.aff2axcodes(a) if ori[-1] == "I" or ori[-1] == "S": slc = "AXIAL" elif ori[-1] == "L" or ori[-1] == "R": slc="SAGITTAL" else: slc="CORONAL" return ori, slc def get_affine_orientation(a): import nibabel.orientations as orient return orient.io_orientation(a) #orientation of the x, y, z def flip_affine_data_orientation(d,a,flipLR = False,flipAP = False, flipIS = False): if flipLR: a[1,1]=a[1,1]*-1 if flipAP: a[2,2] = a[2,2] * -1 #d=d[:,::-1,:] if flipIS: a[3,3] = a[3,3]*-1 return d,a def MGDMBrainSegmentation(input_filename_type_list, output_dir = None, num_steps = 5, atlas_file=None, topology_lut_dir = None): """ Perform MGDM segmentation :param input_filename_type_list: list of [[fname1,type1],[fname2,type2],...] - for a maximum of 4 inputs :param output_dir: full path to the output directory :param num_steps: number of steps for (default 5, set to 0 for testing) :param atlas_file: full path to the atlas file, default set in defaults.py :param topology_lut_dir: full path to the directory with the topology files, default set in defaults.py :return: """ from nibabel.orientations import io_orientation, inv_ornt_aff, apply_orientation, ornt_transform import os print("Thank you for choosing the MGDM segmentation from the cbstools for your brain segmentation needs") print("Sit back and relax, let the magic of algorithms happen...") print("") if output_dir is None: output_dir = os.path.dirname(input_filename_type_list[0][0]) if atlas_file is None: atlas = os.path.join(ATLAS_DIR,'brain-atlas-3.0.3.txt') else: atlas = atlas_file if topology_lut_dir is None: topology_lut_dir = TOPOLOGY_LUT_DIR # grabbing this from the default settings in defaults.py else: if not(topology_lut_dir[-1] == os.sep): #if we don't end in a path sep, we need to make sure that we add it topology_lut_dir += os.sep print("Atlas file: " + atlas) print("Topology LUT durectory: " + topology_lut_dir) print("") if not any(isinstance(el, list) for el in input_filename_type_list): #make into list of lists input_filename_type_list = [input_filename_type_list] #now we setup the mgdm specfic settings mgdm = cj.BrainMgdmMultiSegmentation2() mgdm.setAtlasFile(atlas) mgdm.setTopologyLUTdirectory(topology_lut_dir) mgdm.setOutputImages('segmentation') # --> mgdm.setOrientations(mgdm.AXIAL, mgdm.R2L, mgdm.A2P, mgdm.I2S) # this is the default for MGDM, <-- # mgdm.setOrientations(mgdm.AXIAL, mgdm.L2R, mgdm.P2A, mgdm.I2S) #LR,PA,IS is always how they are returned from nibabel mgdm.setAdjustIntensityPriors(False) # default is True mgdm.setComputePosterior(False) mgdm.setDiffuseProbabilities(False) mgdm.setSteps(num_steps) mgdm.setTopology('wcs') # {'wcs','no'} no=off for testing, wcs=default for idx,con in enumerate(input_filename_type_list): print("Input files and filetypes:") print(" " + str(idx+1) + " "), print(con) #flipLR = False #flipAP = False #flipIS = False fname = con[0] type = con[1] d,d_aff,d_head = niiLoad(fname,return_header=True) ## usage example in the proc_file function of : https://github.com/nipy/nibabel/blob/master/bin/parrec2nii ornt_orig = io_orientation(d_aff) ornt_mgdm = io_orientation(np.diag([-1, -1, 1, 1]).dot(d_aff)) # -1 -1 1 LPS (mgdm default); 1 1 1 is RAS ornt_chng = ornt_transform(ornt_mgdm, ornt_orig) # to get from MGDM to our original input # convert orientation information to mgdm slice and orientation info aff_orients,aff_slc = get_affine_orientation_slice(d_aff) print("data orientation: " + str(aff_orients)), print("slice settings: " + aff_slc) print("mgdm orientation: " + str(ornt_mgdm)) print("data orientation: " + str(ornt_orig)) if aff_slc == "AXIAL": SLC=mgdm.AXIAL elif aff_slc == "SAGITTAL": SLC=mgdm.SAGITTAL else: SLC=mgdm.CORONAL for aff_orient in aff_orients: #TODO: if anything is different from the default MGDM settings, we need to flip axes of the data at the end if aff_orient == "L": LR=mgdm.R2L elif aff_orient == "R": LR = mgdm.L2R # flipLR = True elif aff_orient == "A": AP = mgdm.P2A #flipAP = True elif aff_orient == "P": AP = mgdm.A2P elif aff_orient == "I": IS = mgdm.S2I #flipIS = True elif aff_orient == "S": IS = mgdm.I2S mgdm.setOrientations(SLC, LR, AP, IS) #L2R,P2A,I2S is nibabel default (i.e., RAS) if idx+1 == 1: # we use the first image to set the dimensions and resolutions res = d_head.get_zooms() res = [a1.item() for a1 in res] # cast to regular python float type mgdm.setDimensions(d.shape[0], d.shape[1], d.shape[2]) mgdm.setResolutions(res[0], res[1], res[2]) # keep the shape and affine from the first image for saving d_shape = np.array(d.shape) out_root_fname = os.path.basename(fname)[0:os.path.basename(fname).find('.')] #assumes no periods in filename, :-/ mgdm.setContrastImage1(cj.JArray('float')((d.flatten('F')).astype(float))) mgdm.setContrastType1(type) elif idx+1 == 2: mgdm.setContrastImage2(cj.JArray('float')((d.flatten('F')).astype(float))) mgdm.setContrastType2(type) elif idx + 1 == 3: mgdm.setContrastImage3(cj.JArray('float')((d.flatten('F')).astype(float))) mgdm.setContrastType3(type) elif idx + 1 == 4: mgdm.setContrastImage4(cj.JArray('float')((d.flatten('F')).astype(float))) mgdm.setContrastType4(type) try: print("Executing MGDM on your inputs") print("Don't worry, the magic is happening!") mgdm.execute() print(os.path.join(output_dir, out_root_fname + '_seg_cjs.nii.gz')) # outputs # reshape fortran stype to convert back to the format the nibabel likes seg_im = np.reshape(np.array(mgdm.getSegmentedBrainImage(), dtype=np.uint32), d_shape,'F') lbl_im = np.reshape(np.array(mgdm.getPosteriorMaximumLabels4D(), dtype=np.uint32), d_shape, 'F') ids_im = np.reshape(np.array(mgdm.getSegmentedIdsImage(), dtype=np.uint32), d_shape, 'F') # fix orientation back to the input orientation :-/ not really working # seg_im = apply_orientation(seg_im, ornt_chng) # this takes care of the orientations between mipav and input # lbl_im = apply_orientation(lbl_im, ornt_chng) # TODO: fix the origin point offset?, 2x check possible RL flip # ids_im = apply_orientation(ids_im, ornt_chng) # alternative: register? https://github.com/pyimreg # # save seg_file = os.path.join(output_dir, out_root_fname + '_seg_cjs.nii.gz') lbl_file = os.path.join(output_dir, out_root_fname + '_lbl_cjs.nii.gz') ids_file = os.path.join(output_dir, out_root_fname + '_ids_cjs.nii.gz') ## this will work, but the solution with nibabel.orientations is much cleaner # if our settings were not the same as MGDM likes, we need to flip the relevant settings: #d_aff_new = flip_affine_orientation(d_aff, flipLR=flipLR, flipAP=flipAP, flipIS=flipIS) d_head['data_type'] = np.array(32).astype('uint32') #convert the header as well d_head['cal_max'] = np.max(seg_im) #max for display niiSave(seg_file, seg_im, d_aff, header=d_head, data_type='uint32') d_head['cal_max'] = np.max(lbl_im) niiSave(lbl_file, lbl_im, d_aff, header=d_head, data_type='uint32') d_head['cal_max'] = np.max(ids_im) # convert the header as well niiSave(ids_file, ids_im, d_aff, header=d_head, data_type='uint32') print("Data stored in: " + output_dir) except: print("--- MGDM failed. Go cry. ---") return print("Execution completed") return seg_im,d_aff,d_head def MGDMBrainSegmentation_v2(con1_files, con1_type, con2_files=None, con2_type=None, con3_files=None, con3_type=None, con4_files=None, con4_type=None, output_dir = None, num_steps = 5, topology = 'wcs', atlas_file=None, topology_lut_dir = None, adjust_intensity_priors = False, compute_posterior = False, diffuse_probabilities = False, file_suffix = None): """ Perform MGDM segmentation simplified inputs adjust_intensity_priors is supposed to be True??? totally screws up :-/ :param con1_files: List of files for contrast 1, required :param con1_type: Contrast 1 type (from get_MGDM_seg_contrast_names(atlas_file)) :param con2_files: List of files for contrast 2, optional, must be matched to con1_files :param con2_type: Contrast 2 type :param con3_files: List of files for contrast 3, optional, must be matched to con1_files :param con3_type: Contrast 3 type :param con4_files: List of files for contrast 4, optional, must be matched to con1_files :param con4_type: Contrast 4 type :param output_dir: Directory to place output, defaults to input directory if = None :param num_steps: Number of steps for MGDM, default = 5, set to 0 for quicker testing (but worse quality segmentation) :param topology: Topology setting {'wcs', 'no'} ('no' for no topology) :param atlas_file: Atlas file full path and filename :param topology_lut_dir: Directory for topology files :param adjust_intensity_priors: Adjust intensity priors based on dataset: True/False :param compute_posterior: Copmute posterior: True/False :param diffuse_probabilities: Compute diffuse probabilities: True/False :param file_suffix: Distinguishing text to add to the end of the filename :return: """ #from nibabel.orientations import io_orientation, inv_ornt_aff, apply_orientation, ornt_transform import os print("Thank you for choosing the MGDM segmentation from the cbstools for your brain segmentation needs") print("Sit back and relax, let the magic of algorithms happen...") print("") out_files_seg = [] out_files_lbl = [] out_files_ids = [] if output_dir is None: output_dir = os.path.dirname(con1_files[0]) if atlas_file is None: atlas = os.path.join(ATLAS_DIR,'brain-atlas-3.0.3.txt') else: atlas = atlas_file create_dir(output_dir) if topology_lut_dir is None: topology_lut_dir = TOPOLOGY_LUT_DIR # grabbing this from the default settings in defaults.py else: if not(topology_lut_dir[-1] == pathsep): #if we don't end in a path sep, we need to make sure that we add it topology_lut_dir += pathsep print("Atlas file: " + atlas) print("Topology LUT durectory: " + topology_lut_dir) print("") if not isinstance(con1_files, list): # make into lists if they were not con1_files = [con1_files] if con2_files is not None and not isinstance(con2_files, list): # make into list of lists con2_files = [con2_files] if con3_files is not None and not isinstance(con3_files, list): # make into list of lists con3_files = [con3_files] if con4_files is not None and not isinstance(con4_files, list): # make into list of lists con4_files = [con4_files] #now we setup the mgdm specfic settings mgdm = cj.BrainMgdmMultiSegmentation2() mgdm.setAtlasFile(atlas) mgdm.setTopologyLUTdirectory(topology_lut_dir) mgdm.setOutputImages('segmentation') # --> mgdm.setOrientations(mgdm.AXIAL, mgdm.R2L, mgdm.A2P, mgdm.I2S) # this is the default for MGDM, <-- # mgdm.setOrientations(mgdm.AXIAL, mgdm.L2R, mgdm.P2A, mgdm.I2S) #LR,PA,IS is always how they are returned from nibabel mgdm.setAdjustIntensityPriors(adjust_intensity_priors) # default is True mgdm.setComputePosterior(compute_posterior) mgdm.setDiffuseProbabilities(diffuse_probabilities) mgdm.setSteps(num_steps) mgdm.setTopology(topology) # {'wcs','no'} no=off for testing, wcs=default for idx,con1 in enumerate(con1_files): print("Input files and filetypes:") print(con1_type + ":\t" + con1.split(pathsep)[-1]) fname = con1 type = con1_type d,d_aff,d_head = niiLoad(fname,return_header=True) # convert orientation information to mgdm slice and orientation info # aff_orients,aff_slc = get_affine_orientation_slice(d_aff) # print("data orientation: " + str(aff_orients)), # print("slice settings: " + aff_slc) # if aff_slc == "AXIAL": # SLC=mgdm.AXIAL # elif aff_slc == "SAGITTAL": # SLC=mgdm.SAGITTAL # else: # SLC=mgdm.CORONAL # for aff_orient in aff_orients: #TODO: if anything is different from the default MGDM settings, we need to flip axes of the data at the end # if aff_orient == "L": # LR=mgdm.R2L # elif aff_orient == "R": # LR = mgdm.L2R # # flipLR = True # elif aff_orient == "A": # AP = mgdm.P2A # #flipAP = True # elif aff_orient == "P": # AP = mgdm.A2P # elif aff_orient == "I": # IS = mgdm.S2I # #flipIS = True # elif aff_orient == "S": # IS = mgdm.I2S #mgdm.setOrientations(SLC, LR, AP, IS) #L2R,P2A,I2S is nibabel default (i.e., RAS) # we use the first image to set the dimensions and resolutions res = d_head.get_zooms() res = [a1.item() for a1 in res] # cast to regular python float type mgdm.setDimensions(d.shape[0], d.shape[1], d.shape[2]) mgdm.setResolutions(res[0], res[1], res[2]) # keep the shape and affine from the first image for saving d_shape = np.array(d.shape) out_root_fname = os.path.basename(fname)[0:os.path.basename(fname).find('.')] # assumes no periods in filename, :-/ mgdm.setContrastImage1(cj.JArray('float')((d.flatten('F')).astype(float))) mgdm.setContrastType1(type) if con2_files is not None: #only bother with the other contrasts if something is in the one before it print(con2_type + ":\t" + con2_files[idx].split(pathsep)[-1]) d, a = niiLoad(con2_files[idx], return_header=False) mgdm.setContrastImage2(cj.JArray('float')((d.flatten('F')).astype(float))) mgdm.setContrastType2(con2_type) if con3_files is not None: print(con3_type + ":\t" + con3_files[idx].split(pathsep)[-1]) d, a = niiLoad(con3_files[idx], return_header=False) mgdm.setContrastImage3(cj.JArray('float')((d.flatten('F')).astype(float))) mgdm.setContrastType3(con3_type) if con4_files is not None: print(con4_type + ":\t" + con4_files[idx].split(pathsep)[-1]) d, a = niiLoad(con4_files[idx], return_header=False) mgdm.setContrastImage4(cj.JArray('float')((d.flatten('F')).astype(float))) mgdm.setContrastType4(con4_type) try: print("Executing MGDM on your inputs") print("Don't worry, the magic is happening!") ## ---------------------------- MGDM MAGIC START ---------------------------- ## mgdm.execute() ## ---------------------------- MGDM MAGIC END ---------------------------- ## # outputs # reshape fortran stype to convert back to the format the nibabel likes seg_im = np.reshape(np.array(mgdm.getSegmentedBrainImage(), dtype=np.uint32), d_shape,'F') lbl_im = np.reshape(np.array(mgdm.getPosteriorMaximumLabels4D(), dtype=np.uint32), d_shape, 'F') ids_im = np.reshape(np.array(mgdm.getSegmentedIdsImage(), dtype=np.uint32), d_shape, 'F') # filenames for saving if file_suffix is not None: seg_file = os.path.join(output_dir, out_root_fname + '_seg' + file_suffix + '.nii.gz') lbl_file = os.path.join(output_dir, out_root_fname + '_lbl' + file_suffix + '.nii.gz') ids_file = os.path.join(output_dir, out_root_fname + '_ids' + file_suffix + '.nii.gz') else: seg_file = os.path.join(output_dir, out_root_fname + '_seg.nii.gz') lbl_file = os.path.join(output_dir, out_root_fname + '_lbl.nii.gz') ids_file = os.path.join(output_dir, out_root_fname + '_ids.nii.gz') d_head['data_type'] = np.array(32).astype('uint32') #convert the header as well d_head['cal_max'] = np.max(seg_im) #max for display niiSave(seg_file, seg_im, d_aff, header=d_head, data_type='uint32') d_head['cal_max'] = np.max(lbl_im) niiSave(lbl_file, lbl_im, d_aff, header=d_head, data_type='uint32') d_head['cal_max'] = np.max(ids_im) # convert the header as well niiSave(ids_file, ids_im, d_aff, header=d_head, data_type='uint32') print("Data stored in: " + output_dir) print("") out_files_seg.append(seg_file) out_files_lbl.append(lbl_file) out_files_ids.append(ids_file) except: print("--- MGDM failed. Go cry. ---") return print("Execution completed") return out_files_seg, out_files_lbl, out_files_ids def compare_atlas_segs_priors(seg_file_orig,seg_file_new,atlas_file_orig=None,atlas_file_new=None, metric_contrast_name=None,background_idx=1,seg_null_value=0): """ Compare a new segmentation and atlas priors to another. Comparison is made relative to the orig :param seg_file_orig: :param atlas_file_orig: :param seg_file_new: :param atlas_file_new: :param metric_contrast_name: Contrast type from atlas file :return: """ import numpy as np d1, a1 = niiLoad(seg_file_orig,return_header=False) d2, a2 = niiLoad(seg_file_new, return_header=False) idxs1 = np.unique(d1) idxs2 = np.unique(d2) [lut1, con_idx1, lut_rows1, priors1] = extract_lut_priors_from_atlas(atlas_file_orig, metric_contrast_name) #TODO: make sure that all indices are in both segs? or just base it all on the gold standard? for struc_idx in lut1.Index: # for struc_idx in idxs1: if not(struc_idx == background_idx): print("Structure index: {0}, {1}").format(struc_idx,lut1.index[lut1.Index==struc_idx][0]) bin_vol = np.zeros_like(d1) bin_vol[d1 == struc_idx] = 1 dice = np.sum(bin_vol[d2 == struc_idx]) * 2.0 / (np.sum(bin_vol) + np.sum(d2 == struc_idx)) print("Dice similarity: {}").format(dice) #identify misclassifications bin_vol = np.ones_like(d1) * seg_null_value bin_vol[d1==struc_idx] = 1 overlap = np.multiply(bin_vol,d2) overlap_idxs = np.unique(overlap) overlap_idxs = np.delete(overlap_idxs,np.where(overlap_idxs == struc_idx)) #remove the idx that we should be at the moment overlap_idxs = np.delete(overlap_idxs,np.where(overlap_idxs == seg_null_value)) #remove the null value, now left with the overlap with things we don't want :-( #print overlap_idxs #TODO: overlap comparison here #[lut2, con_idx2, lut_rows2, priors2] = extract_lut_priors_from_atlas(atlas_file_new, metric_contrast_name) #TODO: based on overlap comparison, adjust intensity priors return lut1 def seg_erode(seg_d, iterations=1, background_idx=1, structure=None, min_vox_count=5, seg_null_value=0, VERBOSE=False): """ Binary erosion (or dilation) of integer type segmentation data (np.array) with options If iterations < 0, performs binary dilation :param seg_d: np.array of segmentation, integers :param iterations: number of erosion iterations, if negative, provides the number of dilations (in this case, min_vox_count not used) :param background_idx: value for background index, currently ignored (TODO: remove) :param structure: binary structure for erosion from scipy.ndimage (ndimage.morphology.generate_binary_structure(3,1)) :param min_vox_count: minimun number of voxels to allow to be in a segmentation, if less, does not erode :param seg_null_value: value to set as null for binary erosion step (i.e., a value NOT in your segmentation index) :param VERBOSE: spit out loads of text to stdout, because you can. :return: seg_shrunk_d eroded (or dilated) version of segmentation """ import scipy.ndimage as ndi import numpy as np if iterations >= 0: pos_iter = True else: iterations = iterations*-1 pos_iter = False if structure is None: structure = ndi.morphology.generate_binary_structure(3, 1) if seg_null_value == 0: seg_shrunk_d = np.zeros_like(seg_d) temp_d = np.zeros_like(seg_d) else: seg_shrunk_d = np.ones_like(seg_d) * seg_null_value temp_d = np.ones_like(seg_d) * seg_null_value seg_idxs = np.unique(seg_d) if seg_null_value in seg_idxs: print("Shit, your null value is also an index. This will not work.") print("Set it to a suitably strange value that is not already an index. {0,999}") return None if VERBOSE: print("Indices:") for seg_idx in seg_idxs: if VERBOSE: print(seg_idx), if (background_idx is not None) and (background_idx == seg_idx): seg_shrunk_d[seg_d == seg_idx] = seg_idx # just set the value to the bckgrnd value, and be done with it if VERBOSE: print("[bckg]"), else: temp_d[seg_d == seg_idx] = 1 for idx in range(0, iterations): # messy, does not exit the loop when already gone too far. but it still works if pos_iter: temp_temp_d = ndi.binary_erosion(temp_d, iterations=1, structure=structure) else: temp_temp_d = ndi.binary_dilation(temp_d, iterations=1, structure=structure) if np.sum(temp_temp_d) >= min_vox_count: temp_d = temp_temp_d if VERBOSE: print("[y]"), else: if VERBOSE: print("[no]"), seg_shrunk_d[temp_d == 1] = seg_idx temp_d[:, :, :] = seg_null_value if VERBOSE: print(seg_idx) if VERBOSE: print("") return seg_shrunk_d def extract_metrics_from_seg(seg_d, metric_d, seg_idxs=None,norm_data=True, background_idx=1, seg_null_value=0, percentile_top_bot=[75, 25], return_normed_metric_d=False): """ Extract median and interquartile range from metric file given a co-registered segmentation :param seg_d: segmentation data (integers) :param metric_d: metric data to extract seg-specific values from :param seg_idxs: indices of segmentation, usually taken from LUT but can be generated based on seg_d :param norm_data: perform data normalisation on metric_d prior to extracting values from metric :param background_idx: index for background data, currently treated as just another index (TODO: remove) :param seg_null_value: value to set as null for binary erosion step, not included in metric extraction :param percentile_top_bot: top and bottom percentiles to extract from each seg region :param return_normed_metric_d: return the normalised metric as an np matrix, must also set norm_data=True :return: seg_idxs, res segmentation indices and results matrix of median, 75, 25 percentliles (metric_d) optional metric_d scaled between 0 and 1 """ import numpy as np if seg_idxs is None: seg_idxs = np.unique(seg_d) if (seg_null_value is not None) and (seg_null_value in seg_idxs): #remove the null value from the idxs so we don't look np.delete(seg_idxs,np.where(seg_idxs==seg_null_value)) res = np.zeros((len(seg_idxs), 3)) if norm_data: # rescale the data to 0 if background_idx is not None: # we need to exclude the background data from the norming metric_d[seg_d != background_idx] = (metric_d[seg_d != background_idx] - np.min( metric_d[seg_d != background_idx])) / (np.max(metric_d[seg_d != background_idx]) - np.min( metric_d[seg_d != background_idx])) else: metric_d = (metric_d - np.min(metric_d)) / (np.max(metric_d) - np.min(metric_d)) for idx, seg_idx in enumerate(seg_idxs): d_1d = np.ndarray.flatten(metric_d[seg_d == seg_idx]) res[idx, :] = [np.median(d_1d), np.percentile(d_1d, np.max(percentile_top_bot)), np.percentile(d_1d, np.min(percentile_top_bot))] if return_normed_metric_d: return seg_idxs, res, metric_d else: return seg_idxs, res def extract_lut_priors_from_atlas(atlas_file,contrast_name): """ Given an MGDM segmentation priors atlas file, extract the lut and identify the start index (in the file) of the contrast of interest, and the number of rows of priors that it should have. Returns pandas dataframe of lut, contrast index, number of rows in prior definition, and pd.DataFrame of priors, :param atlas_file: full path to atlas file for lut and metric index extraction :param contrast_name: intensity prior contrast name as listed in the metric file :return: lut, con_idx, lut_rows, priors """ import pandas as pd fp = open(atlas_file) for i, line in enumerate(fp): if "Structures:" in line: # this is the beginning of the LUT lut_idx = i lut_rows = map(int, [line.split()[1]])[0] + 1 #+1 to ensure that the last line is included if "Intensity Prior:" in line: if contrast_name in line: con_idx = i fp.close() # dump lut and priors values into pandas dataframes lut = pd.read_csv(atlas_file, sep="\t+", skiprows=lut_idx + 1, nrows=lut_rows, engine='python', names=["Index", "Type"]) priors = pd.read_csv(atlas_file, sep="\t+", skiprows=con_idx + 1, nrows=lut_rows, engine='python', names=["Median", "Spread", "Weight"]) return lut,con_idx,lut_rows,priors def write_priors_to_atlas(prior_medians,prior_quart_diffs,atlas_file,new_atlas_file,metric_contrast_name): """ Write modified priors of given metric contrast to new_atlas Assumes that the ordering of indices and the ordering of the priors are the same (could add prior_weights as well, in future, and use something more structured than just line reading and writing) :param prior_medians: 2xN list of prior medians :param prior_quart_diffs: 2xN list of prior quartile differences :param atlas_file: full path to original atlas file :param new_atlas_file: full path to new atlas file to be written to :param metric_contrast_name: name of MGDM metric contrast from atlas_file """ import pandas as pd #get the relevant information from the old atlas file [lut, con_idx, lut_rows, priors] = extract_lut_priors_from_atlas(atlas_file, metric_contrast_name) seg_idxs = lut.Index.get_values() #np vector of index values priors_new = pd.DataFrame.copy(priors) #uppdate the priors with the new ones that were passed #TODO: double-check this for idx in lut.Index: priors_new[lut["Index"] == idx] = [prior_medians[seg_idxs == idx], prior_quart_diffs[seg_idxs == idx],1] priors_new_string = priors_new.to_csv(sep="\t", header=False, float_format="%.2f") priors_new_string_lines = priors_new_string.split("\n")[0:-1] # convert to list of lines, cut the last empty '' line fp = open(atlas_file) fp_new = open(new_atlas_file, "w") ii = 0 # only replace the lines that we changed for i, line in enumerate(fp): if i > con_idx and i < con_idx + lut_rows: fp_new.write(priors_new_string_lines[ii] + "\n") ii += 1 else: fp_new.write(line) fp.close() fp_new.close() print('New atlas file written to: \n' + fp_new.name) return fp_new.name def filter_sigmoid(d, x0=0.002, slope=0.0005, output_fname=None): """ Pass data through a sigmoid filter (scaled between 0 and 1). Defaults set for MD rescaling If you are lazy and pass it a filename, it will pass you back the data with affine and header :param d: :param x0: :param slope: :return: """ import numpy as np from scipy.stats import linregress return_nii_parts = False if not isinstance(d, (np.ndarray, np.generic) ): try: [d,a,h]=niiLoad(d,return_header=True) return_nii_parts = True except: print("niiLoad tried to load this is a file and failed, are you calling it properly?") return # if x0 is None: #we can see what we can do to generate the mean , not a great solution TODO: improve x0,slope calc # d_subset = d[d>0] # d_subset = d_subset[ np.where(np.logical_and(d_subset < np.percentile(d_subset, 95),d_subset > np.percentile(d_subset,75)))] # x0 = np.median(d_subset) # print("x0 calculated from the data: %.6F") %x0 # if slope is None: # x=d_subset[d_subset>x0] # y=d_subset[d_subset<x0] # print((linregress(x,y))) # slope = np.abs(linregress(x,y)[0]) # print("Slope calculated from the data: %.6F") %slope if output_fname is not None and return_nii_parts: niiSave(output_fname,d,a,h) if return_nii_parts: return 1 / (1 + np.exp(-1 * (d - x0) / slope)), a, h else: return 1/(1 + np.exp(-1 * (d - x0) / slope)) def niiLoad(nii_fname,return_header=False): """ Load nii data into numpy array, along with aff and header as desired :param nii_fname: :param return_affine: :param return_header: :return: """ import nibabel as nb img=nb.load(nii_fname) if return_header: return img.get_data(), img.affine, img.header else: return img.get_data(), img.affine def niiSave(nii_fname,d,affine,header=None,data_type=None): """ Save nifti image to file :param nii_fname: :param d: :param affine: :param header: text of numpy data_type (e.g. 'uint32','float32') :param data_type: :return: """ import nibabel as nb if data_type is not None: d.astype(data_type) img=nb.Nifti1Image(d,affine,header=header) if data_type is not None: img.set_data_dtype(data_type) img.to_filename(nii_fname) return nii_fname def create_dir(some_directory): """ Create directory recursively if it does not exist - uses os.mkdirs """ import os if not os.path.exists(some_directory): os.makedirs(some_directory) def get_MGDM_seg_contrast_names(atlas_file): """ Return a list of contrast names that are available as intensity priors in the MGDM atlas that you are using :param atlas_file: atlas file :return: seg_contrast_names list of names of contrasts that have intensity priors available """ seg_contrast_names = [] fp = open(atlas_file) for i, line in enumerate(fp): if "Structures:" in line: # this is the beginning of the LUT lut_idx = i lut_rows = map(int, [line.split()[1]])[0] if "Intensity Prior:" in line: seg_contrast_names.append(line.split()[-1]) fp.close() return seg_contrast_names def generate_group_intensity_priors(orig_seg_files,metric_files,metric_contrast_name, atlas_file,erosion_iterations=1, min_quart_diff=0.1, seg_null_value = 0, background_idx = 1, VERBOSE=False, intermediate_output_dir=None): """ generates group intensity priors for metric_files based on orig_seg files (i.e., orig_seg could be Mprage3T and metric_files could be DWIFA3T) does not do the initial segmentation for you, that needs to be done first :-) we assume that you already did due-diligence and have matched lists of inputs (orig_seg_files and metric_files) :param orig_seg_files: segmentation from other modality :param metric_files: metric files in same space as orig_seg_files :param metric_contrast_name: name of contrast from priors atlas file, not used currently :param atlas_file: prior atlas file (use os.path.join(ATLAS_DIR,DEFAULT_ATLAS)) :param erosion_iterations: number of voxels to erode from each segmented region prior to metric extraction :param min_quart_diff: minimum difference between quartiles to accept, otherwise replace with this :param seg_null_value: null value for segmentation results (choose a value that is not in your seg, usually 0) :param background_idx: background index value (usually 1, to leave 0 as a seg_null_value) :param VERBOSE: :return: medians, spread metric-specific prior medians and spread for atlas file """ import nibabel as nb import numpy as np import os MGDM_contrast_names = get_MGDM_seg_contrast_names(atlas_file) if metric_contrast_name not in MGDM_contrast_names: print("You have not chosen a valid contrast for your metric_contrast_name, please choose from: ") print(", ".join(MGDM_contrast_names)) return [None, None] [lut,con_idx,lut_rows,priors] = extract_lut_priors_from_atlas(atlas_file, metric_contrast_name) seg_idxs = lut.Index all_Ss_priors_median = np.array(seg_idxs) #always put the seg_idxs on top row! all_Ss_priors_spread = np.array(seg_idxs) #seg_null_value = 0 #value to fill in when we are NOT using the voxels at all (not background and not other index) #background_idx = 1 #min_quart_diff = 0.10 #minimun spread allowed in priors atlas # make a list if we only input one dataset if len(orig_seg_files) == 1: orig_seg_files = [orig_seg_files] if len(metric_files) == 1: metric_files = [metric_files] if not(len(orig_seg_files) == len(metric_files)): print("You do not have the same number of segmentation and metric files. Bad!") print("Exiting") return [None, None] if erosion_iterations >0: print("Performing segmentation erosion on each segmented region with %i step(s)" % erosion_iterations) for idx, seg_file in enumerate(orig_seg_files): metric_file = metric_files[idx] img=nb.load(metric_file) d_metric = img.get_data() a_metric = img.affine #not currently using the affine and header, but could also output the successive steps h_metric = img.header print(seg_file.split(pathsep)[-1]) print(metric_file.split(pathsep)[-1]) d_seg = nb.load(seg_file).get_data() #erode our data if erosion_iterations>0: d_seg_ero = seg_erode(d_seg,iterations=erosion_iterations, background_idx=background_idx, seg_null_value=seg_null_value) else: d_seg_ero = d_seg #extract summary metrics (median, 75 and 25 percentile) from metric file [seg_idxs, seg_stats] = extract_metrics_from_seg(d_seg_ero, d_metric, seg_idxs=seg_idxs, seg_null_value=seg_null_value, return_normed_metric_d=False) prior_medians = seg_stats[:, 0] prior_quart_diffs = np.squeeze(np.abs(np.diff(seg_stats[:, 1:3]))) prior_quart_diffs[prior_quart_diffs < min_quart_diff] = min_quart_diff #now place this output into a growing array for use on the group level all_Ss_priors_median = np.vstack((all_Ss_priors_median, prior_medians)) all_Ss_priors_spread =
np.vstack((all_Ss_priors_spread, prior_quart_diffs))
numpy.vstack
import os import sys import yaml import numpy as np import torch import torch.utils.data as data import numpy as np import numpy.random as npr import cv2 import copy import glob import scipy import datasets from config.config import cfg from transforms3d.quaternions import mat2quat, quat2mat from utils.se3 import * from utils.pose_error import * from utils.cython_bbox import bbox_overlaps _SUBJECTS = [ '20200709-subject-01', '20200813-subject-02', '20200820-subject-03', '20200903-subject-04', '20200908-subject-05', '20200918-subject-06', '20200928-subject-07', '20201002-subject-08', '20201015-subject-09', '20201022-subject-10', ] _SERIALS = [ '836212060125', '839512060362', '840412060917', '841412060263', '932122060857', '932122060861', '932122061900', '932122062010', ] _YCB_CLASSES = { 1: '002_master_chef_can', 2: '003_cracker_box', 3: '004_sugar_box', 4: '005_tomato_soup_can', 5: '006_mustard_bottle', 6: '007_tuna_fish_can', 7: '008_pudding_box', 8: '009_gelatin_box', 9: '010_potted_meat_can', 10: '011_banana', 11: '019_pitcher_base', 12: '021_bleach_cleanser', 13: '024_bowl', 14: '025_mug', 15: '035_power_drill', 16: '036_wood_block', 17: '037_scissors', 18: '040_large_marker', 19: '051_large_clamp', 20: '052_extra_large_clamp', 21: '061_foam_brick', } _MANO_JOINTS = [ 'wrist', 'thumb_mcp', 'thumb_pip', 'thumb_dip', 'thumb_tip', 'index_mcp', 'index_pip', 'index_dip', 'index_tip', 'middle_mcp', 'middle_pip', 'middle_dip', 'middle_tip', 'ring_mcp', 'ring_pip', 'ring_dip', 'ring_tip', 'little_mcp', 'little_pip', 'little_dip', 'little_tip' ] _MANO_JOINT_CONNECT = [ [0, 1], [ 1, 2], [ 2, 3], [ 3, 4], [0, 5], [ 5, 6], [ 6, 7], [ 7, 8], [0, 9], [ 9, 10], [10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20], ] _BOP_EVAL_SUBSAMPLING_FACTOR = 4 class dex_ycb_dataset(data.Dataset): def __init__(self, setup, split, obj_list): self._setup = setup self._split = split self._color_format = "color_{:06d}.jpg" self._depth_format = "aligned_depth_to_color_{:06d}.png" self._label_format = "labels_{:06d}.npz" self._height = 480 self._width = 640 # paths self._name = 'dex_ycb_' + setup + '_' + split self._image_set = split self._dex_ycb_path = self._get_default_path() path = os.path.join(self._dex_ycb_path, 'data') self._data_dir = path self._calib_dir = os.path.join(self._data_dir, "calibration") self._model_dir = os.path.join(self._data_dir, "models") self._obj_file = { k: os.path.join(self._model_dir, v, "textured_simple.obj") for k, v in _YCB_CLASSES.items() } # define all the classes self._classes_all = ('002_master_chef_can', '003_cracker_box', '004_sugar_box', '005_tomato_soup_can', '006_mustard_bottle', \ '007_tuna_fish_can', '008_pudding_box', '009_gelatin_box', '010_potted_meat_can', '011_banana', '019_pitcher_base', \ '021_bleach_cleanser', '024_bowl', '025_mug', '035_power_drill', '036_wood_block', '037_scissors', '040_large_marker', \ '051_large_clamp', '052_extra_large_clamp', '061_foam_brick') self._num_classes_all = len(self._classes_all) self._class_colors_all = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255), (0, 255, 255), \ (128, 0, 0), (0, 128, 0), (0, 0, 128), (128, 128, 0), (128, 0, 128), (0, 128, 128), \ (64, 0, 0), (0, 64, 0), (0, 0, 64), (64, 64, 0), (64, 0, 64), (0, 64, 64), (192, 0, 0), (0, 192, 0), (0, 0, 192)] self._extents_all = self._load_object_extents() self._posecnn_class_indexes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21] # compute class index class_index = [] for name in obj_list: for i in range(self._num_classes_all): if name == self._classes_all[i]: class_index.append(i) break print('class index:', class_index) self._class_index = class_index # select a subset of classes self._classes = obj_list self._num_classes = len(self._classes) self._class_colors = [self._class_colors_all[i] for i in class_index] self._extents = self._extents_all[class_index] self._points, self._points_all = self._load_object_points(self._classes, self._extents) # Seen subjects, camera views, grasped objects. if self._setup == 's0': if self._split == 'train': subject_ind = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] serial_ind = [0, 1, 2, 3, 4, 5, 6, 7] sequence_ind = [i for i in range(100) if i % 5 != 4] if self._split == 'val': subject_ind = [0, 1] serial_ind = [0, 1, 2, 3, 4, 5, 6, 7] sequence_ind = [i for i in range(100) if i % 5 == 4] if self._split == 'test': subject_ind = [2, 3, 4, 5, 6, 7, 8, 9] serial_ind = [0, 1, 2, 3, 4, 5, 6, 7] sequence_ind = [i for i in range(100) if i % 5 == 4] # Unseen subjects. if self._setup == 's1': if self._split == 'train': subject_ind = [0, 1, 2, 3, 4, 5, 9] serial_ind = [0, 1, 2, 3, 4, 5, 6, 7] sequence_ind = list(range(100)) if self._split == 'val': subject_ind = [6] serial_ind = [0, 1, 2, 3, 4, 5, 6, 7] sequence_ind = list(range(100)) if self._split == 'test': subject_ind = [7, 8] serial_ind = [0, 1, 2, 3, 4, 5, 6, 7] sequence_ind = list(range(100)) # Unseen camera views. if self._setup == 's2': if self._split == 'train': subject_ind = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] serial_ind = [0, 1, 2, 3, 4, 5] sequence_ind = list(range(100)) if self._split == 'val': subject_ind = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] serial_ind = [6] sequence_ind = list(range(100)) if self._split == 'test': subject_ind = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] serial_ind = [7] sequence_ind = list(range(100)) # Unseen grasped objects. if self._setup == 's3': if self._split == 'train': subject_ind = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] serial_ind = [0, 1, 2, 3, 4, 5, 6, 7] sequence_ind = [ i for i in range(100) if i // 5 not in (3, 7, 11, 15, 19) ] if self._split == 'val': subject_ind = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] serial_ind = [0, 1, 2, 3, 4, 5, 6, 7] sequence_ind = [i for i in range(100) if i // 5 in (3, 19)] if self._split == 'test': subject_ind = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] serial_ind = [0, 1, 2, 3, 4, 5, 6, 7] sequence_ind = [i for i in range(100) if i // 5 in (7, 11, 15)] self._subjects = [_SUBJECTS[i] for i in subject_ind] self._serials = [_SERIALS[i] for i in serial_ind] self._intrinsics = [] for s in self._serials: intr_file = os.path.join(self._calib_dir, "intrinsics", "{}_{}x{}.yml".format(s, self._width, self._height)) with open(intr_file, 'r') as f: intr = yaml.load(f, Loader=yaml.FullLoader) intr = intr['color'] self._intrinsics.append(intr) # build mapping self._sequences = [] self._mapping = [] self._ycb_ids = [] offset = 0 for n in self._subjects: seq = sorted(os.listdir(os.path.join(self._data_dir, n))) seq = [os.path.join(n, s) for s in seq] assert len(seq) == 100 seq = [seq[i] for i in sequence_ind] self._sequences += seq for i, q in enumerate(seq): meta_file = os.path.join(self._data_dir, q, "meta.yml") with open(meta_file, 'r') as f: meta = yaml.load(f, Loader=yaml.FullLoader) c = np.arange(len(self._serials)) f = np.arange(meta['num_frames']) f, c = np.meshgrid(f, c) c = c.ravel() f = f.ravel() s = (offset + i) * np.ones_like(c) m = np.vstack((s, c, f)).T self._mapping.append(m) self._ycb_ids.append(meta['ycb_ids']) offset += len(seq) self._mapping = np.vstack(self._mapping) # sample a subset for training if split == 'train': self._mapping = self._mapping[::10] # dataset size self._size = len(self._mapping) print('dataset %s with images %d' % (self._name, self._size)) def __len__(self): return self._size def get_bop_id_from_idx(self, idx): s, c, f = map(lambda x: x.item(), self._mapping[idx]) scene_id = s * len(self._serials) + c im_id = f return scene_id, im_id def __getitem__(self, idx): s, c, f = self._mapping[idx] is_testing = f % _BOP_EVAL_SUBSAMPLING_FACTOR == 0 if self._split == 'test' and not is_testing: sample = {'is_testing': is_testing} return sample scene_id, im_id = self.get_bop_id_from_idx(idx) video_id = '%04d' % (scene_id) image_id = '%06d' % (im_id) # posecnn result path posecnn_result_path = os.path.join(self._dex_ycb_path, 'results_posecnn', self._name, 'vgg16_dex_ycb_epoch_16.checkpoint.pth', video_id + '_' + image_id + '.mat') d = os.path.join(self._data_dir, self._sequences[s], self._serials[c]) roidb = { 'color_file': os.path.join(d, self._color_format.format(f)), 'depth_file': os.path.join(d, self._depth_format.format(f)), 'label_file': os.path.join(d, self._label_format.format(f)), 'intrinsics': self._intrinsics[c], 'ycb_ids': self._ycb_ids[s], 'posecnn': posecnn_result_path, } # Get the input image blob im_color, im_depth = self._get_image_blob(roidb['color_file'], roidb['depth_file']) # build the label blob im_label, intrinsic_matrix, poses, gt_boxes, poses_result, rois_result, labels_result \ = self._get_label_blob(roidb, self._num_classes) is_syn = 0 im_scale = 1.0 im_info = np.array([im_color.shape[1], im_color.shape[2], im_scale, is_syn], dtype=np.float32) sample = {'image_color': im_color[:, :, (2, 1, 0)], 'image_depth': im_depth, 'label': im_label, 'intrinsic_matrix': intrinsic_matrix, 'gt_poses': poses, 'gt_boxes': gt_boxes, 'poses_result': poses_result, 'rois_result': rois_result, 'labels_result': labels_result, 'extents': self._extents, 'points': self._points_all, 'im_info': im_info, 'video_id': video_id, 'image_id': image_id} if self._split == 'test': sample['is_testing'] = is_testing return sample def _get_image_blob(self, color_file, depth_file): # rgba rgba = cv2.imread(color_file, cv2.IMREAD_UNCHANGED) if rgba.shape[2] == 4: im = np.copy(rgba[:,:,:3]) alpha = rgba[:,:,3] I = np.where(alpha == 0) im[I[0], I[1], :] = 0 else: im = rgba im_color = im.astype('float') / 255.0 # depth image im_depth = cv2.imread(depth_file, cv2.IMREAD_UNCHANGED) im_depth = im_depth.astype('float') / 1000.0 return im_color, im_depth def _get_label_blob(self, roidb, num_classes): """ build the label blob """ # parse data cls_indexes = roidb['ycb_ids'] classes = np.array(self._class_index) fx = roidb['intrinsics']['fx'] fy = roidb['intrinsics']['fy'] px = roidb['intrinsics']['ppx'] py = roidb['intrinsics']['ppy'] intrinsic_matrix = np.eye(3, dtype=np.float32) intrinsic_matrix[0, 0] = fx intrinsic_matrix[1, 1] = fy intrinsic_matrix[0, 2] = px intrinsic_matrix[1, 2] = py label = np.load(roidb['label_file']) # label image im_label = label['seg'] # poses poses = label['pose_y'] if len(poses.shape) == 2: poses = np.reshape(poses, (1, 3, 4)) num = poses.shape[0] assert num == len(cls_indexes), 'number of poses not equal to number of objects' # bounding boxes gt_boxes = np.zeros((num, 5), dtype=np.float32) for i in range(num): cls = int(cls_indexes[i]) - 1 ind = np.where(classes == cls)[0] if len(ind) > 0: R = poses[i, :, :3] T = poses[i, :, 3] # compute box x3d = np.ones((4, self._points_all.shape[1]), dtype=np.float32) x3d[0, :] = self._points_all[ind,:,0] x3d[1, :] = self._points_all[ind,:,1] x3d[2, :] = self._points_all[ind,:,2] RT = np.zeros((3, 4), dtype=np.float32) RT[:3, :3] = R RT[:, 3] = T x2d = np.matmul(intrinsic_matrix, np.matmul(RT, x3d)) x2d[0, :] = np.divide(x2d[0, :], x2d[2, :]) x2d[1, :] = np.divide(x2d[1, :], x2d[2, :]) gt_boxes[i, 0] = np.min(x2d[0, :]) gt_boxes[i, 1] = np.min(x2d[1, :]) gt_boxes[i, 2] = np.max(x2d[0, :]) gt_boxes[i, 3] = np.max(x2d[1, :]) gt_boxes[i, 4] = ind # load posecnn result if available if os.path.exists(roidb['posecnn']): result = scipy.io.loadmat(roidb['posecnn']) n = result['poses'].shape[0] poses_result = np.zeros((n, 9), dtype=np.float32) poses_result[:, 0] = 1 poses_result[:, 1] = result['rois'][:, 1] poses_result[:, 2:] = result['poses'] rois_result = result['rois'].copy() labels_result = result['labels'].copy() # select the classes, one object per class index = [] flags = np.zeros((self._num_classes, ), dtype=np.int32) for i in range(poses_result.shape[0]): cls = self._posecnn_class_indexes[int(poses_result[i, 1])] - 1 ind = np.where(classes == cls)[0] if len(ind) > 0 and flags[ind] == 0: index.append(i) poses_result[i, 1] = ind rois_result[i, 1] = ind flags[ind] = 1 poses_result = poses_result[index, :] rois_result = rois_result[index, :] else: # print('no posecnn result %s' % (roidb['posecnn'])) poses_result = np.zeros((0, 9), dtype=np.float32) rois_result = np.zeros((0, 7), dtype=np.float32) labels_result = np.zeros((0, 1), dtype=np.float32) poses = poses.transpose((1, 2, 0)) return im_label, intrinsic_matrix, poses, gt_boxes, poses_result, rois_result, labels_result def _get_default_path(self): """ Return the default path where YCB_Video is expected to be installed. """ return os.path.join(datasets.ROOT_DIR, 'data', 'DEX_YCB') def _load_object_extents(self): extents = np.zeros((self._num_classes_all, 3), dtype=np.float32) for i in range(self._num_classes_all): point_file = os.path.join(self._model_dir, self._classes_all[i], 'points.xyz') print(point_file) assert os.path.exists(point_file), 'Path does not exist: {}'.format(point_file) points = np.loadtxt(point_file) extents[i, :] = 2 * np.max(np.absolute(points), axis=0) return extents def _load_object_points(self, classes, extents): points = [[] for _ in range(len(classes))] num = np.inf num_classes = len(classes) for i in range(num_classes): point_file = os.path.join(self._model_dir, classes[i], 'points.xyz') print(point_file) assert os.path.exists(point_file), 'Path does not exist: {}'.format(point_file) points[i] = np.loadtxt(point_file) if points[i].shape[0] < num: num = points[i].shape[0] points_all = np.zeros((num_classes, num, 3), dtype=np.float32) for i in range(num_classes): points_all[i, :, :] = points[i][:num, :] return points, points_all def write_dop_results(self, output_dir, modality): # only write the result file filename = os.path.join(output_dir, 'poserbpf_' + self._name + '_' + modality + '.csv') f = open(filename, 'w') f.write('scene_id,im_id,obj_id,score,R,t,time\n') # list the mat file filename = os.path.join(output_dir, '*.mat') files = sorted(glob.glob(filename)) # for each image for i in range(len(files)): filename = os.path.basename(files[i]) # parse filename pos = filename.find('_') scene_id = int(filename[:pos]) im_id = int(filename[pos+1:-4]) # load result print(files[i]) result = scipy.io.loadmat(files[i]) if len(result['rois']) == 0: continue rois = result['rois'] num = rois.shape[0] for j in range(num): obj_id = self._class_index[int(rois[j, 1])] + 1 if obj_id == 0: continue score = rois[j, -1] run_time = -1 # pose from network R = quat2mat(result['poses'][j, :4].flatten()) t = result['poses'][j, 4:] * 1000 line = '{scene_id},{im_id},{obj_id},{score},{R},{t},{time}\n'.format( scene_id=scene_id, im_id=im_id, obj_id=obj_id, score=score, R=' '.join(map(str, R.flatten().tolist())), t=' '.join(map(str, t.flatten().tolist())), time=run_time) f.write(line) # close file f.close() # compute box def compute_box(self, cls, intrinsic_matrix, RT): ind = np.where(self._class_index == cls)[0] x3d = np.ones((4, self._points_all.shape[1]), dtype=np.float32) x3d[0, :] = self._points_all[ind,:,0] x3d[1, :] = self._points_all[ind,:,1] x3d[2, :] = self._points_all[ind,:,2] x2d = np.matmul(intrinsic_matrix, np.matmul(RT, x3d)) x2d[0, :] = np.divide(x2d[0, :], x2d[2, :]) x2d[1, :] = np.divide(x2d[1, :], x2d[2, :]) x1 = np.min(x2d[0, :]) y1 = np.min(x2d[1, :]) x2 = np.max(x2d[0, :]) y2 = np.max(x2d[1, :]) return [x1, y1, x2, y2] def evaluation(self, output_dir, modality): self.write_dop_results(output_dir, modality) filename = os.path.join(output_dir, 'results_poserbpf.mat') if os.path.exists(filename): results_all = scipy.io.loadmat(filename) print('load results from file') print(filename) distances_sys = results_all['distances_sys'] distances_non = results_all['distances_non'] errors_rotation = results_all['errors_rotation'] errors_translation = results_all['errors_translation'] results_seq_id = results_all['results_seq_id'].flatten() results_frame_id = results_all['results_frame_id'].flatten() results_object_id = results_all['results_object_id'].flatten() results_cls_id = results_all['results_cls_id'].flatten() else: # save results num_max = 200000 num_results = 1 distances_sys = np.zeros((num_max, num_results), dtype=np.float32) distances_non = np.zeros((num_max, num_results), dtype=np.float32) errors_rotation = np.zeros((num_max, num_results), dtype=np.float32) errors_translation =
np.zeros((num_max, num_results), dtype=np.float32)
numpy.zeros
#!/usr/bin/env python3 import os import time import h5py import numpy as np import pandas as pd from pprint import pprint import matplotlib.pyplot as plt plt.style.use("../../pygama/clint.mpl") from pygama import DataSet, read_lh5, get_lh5_header import pygama.analysis.histograms as pgh def main(): """ this is the high-level part of the code, something that a user might write (even on the interpreter) for processing with a specific config file. """ # process_data() plot_data() # plot_waveforms() def process_data(): from pygama import DataSet ds = DataSet(0, md="config.json") ds.daq_to_raw(overwrite=True, test=False) # ds.raw_to_dsp(....) def plot_data(): """ read the lh5 output. """ f_lh5 = "/Users/wisecg/Data/L200/tier1/t1_run0.lh5" df = get_lh5_header(f_lh5) # df = read_lh5(f_lh5) # print(df) exit() # hf = h5py.File("/Users/wisecg/Data/L200/tier1/t1_run0.lh5") # # 1. energy histogram # wf_max = hf['/daqdata/wf_max'][...] # slice reads into memory # wf_bl = hf['/daqdata/baseline'][...] # wf_max = wf_max - wf_bl # xlo, xhi, xpb = 0, 5000, 10 # hist, bins = pgh.get_hist(wf_max, range=(xlo, xhi), dx=xpb) # plt.semilogy(bins, hist, ls='steps', c='b') # plt.xlabel("Energy (uncal)", ha='right', x=1) # plt.ylabel("Counts", ha='right', y=1) # # plt.show() # # exit() # plt.cla() # 2. energy vs time # ts = hf['/daqdata/timestamp'] # plt.plot(ts, wf_max, '.b') # plt.show() # 3. waveforms nevt = hf['/daqdata/waveform/values/cumulative_length'].size # create a waveform block compatible w/ pygama # and yeah, i know, for loops are inefficient. i'll optimize when it matters wfs = [] wfidx = hf["/daqdata/waveform/values/cumulative_length"] # where each wf starts wfdata = hf["/daqdata/waveform/values/flattened_data"] # adc values wfsel =
np.arange(2000)
numpy.arange
import torch import torchvision import torchvision.transforms as tvt import torch.nn as nn import matplotlib.pyplot as plt import numpy as np from torch import optim import torch.nn.functional as F import math as m import time import os #from google.colab import drive import random from PIL import Image from torch.autograd import Variable, variable from PIL import Image import numpy import tensorflow as tf from pathlib import Path import pickle import numpy as np import torch import torchvision import torch.nn.functional as F import text_model import test_retrieval import torch_functions #import datasets from tqdm import tqdm as tqdm import PIL import argparse import datasets import img_text_composition_models Path1=r"C:\MMaster\Files" Path1=r"D:\personal\master\MyCode\files" #Path1=r"C:\MMaster\Files" ################# Support Functions Section ################# def dataset(batch_size_all): trainset = Fashion200k( path=Path1, split='train', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size_all, shuffle=False, num_workers=2) return trainset,trainloader def euclideandistance(signature,signatureimg): from scipy.spatial import distance return distance.euclidean(signature, signatureimg) #.detach().numpy() def testvaluessame(): train = datasets.Fashion200k( path=Path1, split='train', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) trig= img_text_composition_models.TIRG([t.encode().decode('utf-8') for t in train.get_all_texts()],512) trig.load_state_dict(torch.load(Path1+r'\fashion200k.tirg.iter160k.pth' , map_location=torch.device('cpu') )['model_state_dict']) trig.eval() query='women/tops/blouses/91422080/91422080_0.jpeg' qttext='replace sunrise with pleat-neck' target='women/tops/sleeveless_and_tank_tops/90068628/90068628_0.jpeg' text=[] text.append(qttext) text.append(qttext) img = Image.open(Path1+'/'+query) img = img.convert('RGB') img=transform(img) img2 = Image.open(Path1+'/'+target) img2 = img2.convert('RGB') img2=transform(img2) img=img.unsqueeze_(0) img2=img2.unsqueeze_(0) images=torch.cat([img, img2], dim=0) trigdataQ=trig.compose_img_text(images,text) trigdataQ1=trig.compose_img_text(images,text) print('...........') print(trigdataQ) print(trigdataQ1) def getbetatrainNot(): train = datasets.Fashion200k( path=Path1, split='train', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) trig= img_text_composition_models.TIRG([t.encode().decode('utf-8') for t in train.get_all_texts()],512) trig.load_state_dict(torch.load(Path1+r'\fashion200k.tirg.iter160k.pth' , map_location=torch.device('cpu') )['model_state_dict']) trig.eval() imgs = [] mods = [] trigdata=[] target=[] imgdata=[] for Data in tqdm(train): imgs += [Data['source_img_data']] mods += [Data['mod']['str']] target +=[Data['target_img_data']] imgs = torch.stack(imgs).float() imgs = torch.autograd.Variable(imgs) f = trig.compose_img_text(imgs, mods).data.cpu().numpy() target = torch.stack(target).float() target = torch.autograd.Variable(target) f2 = trig.extract_img_feature(target).data.cpu().numpy() trigdata.append(f[0]) imgdata.append(f2[0]) imgs = [] mods = [] target = [] trigdata=np.array(trigdata) imgdata=np.array(imgdata) Ntrigdata=trigdata Nimgdata=imgdata Ntrig2=[] for i in range(Ntrigdata.shape[0]): Ntrigdata[i, :] /= np.linalg.norm(Ntrigdata[i, :]) for i in range(Nimgdata.shape[0]): Nimgdata[i, :] /= np.linalg.norm(Nimgdata[i, :]) for i in range(Ntrigdata.shape[0]): Ntrig2.append(np.insert(Ntrigdata[i],0, 1)) Ntrig2=np.array(Ntrig2) Ntrigdata1=Ntrig2.transpose() X1=np.matmul(Ntrigdata1,Ntrig2) X2=np.linalg.inv(X1) X3=np.matmul(X2,Ntrigdata1) Nbeta=np.matmul(X3,Nimgdata) with open(Path1+r"/"+'BetaNot.txt', 'wb') as fp: pickle.dump(Nbeta, fp) def GetValuestrain15time(): with open (Path1+"/trainBetaNormalized.txt", 'rb') as fp: BetaNormalize = pickle.load(fp) trainset = datasets.Fashion200k( path=Path1, split='train', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) trainloader = trainset.get_loader( batch_size=2, shuffle=True, drop_last=True, num_workers=0) testset = TestFashion200k( path=Path1, split='test', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) trig= TIRG([t.encode().decode('utf-8') for t in trainset.get_all_texts()],512) trig.load_state_dict(torch.load(Path1+r'\checkpoint_fashion200k.pth' , map_location=torch.device('cpu') )['model_state_dict']) opt = argparse.ArgumentParser() opt.add_argument('--batch_size', type=int, default=2) opt.add_argument('--dataset', type=str, default='fashion200k') opt.batch_size =1 opt.dataset='fashion200k' Results=[] for i in range(15): for name, dataset in [ ('train', trainset)]: #,('test', testset)]: # betaNor="['1 ---> 5.27', '5 ---> 14.39', '10 ---> 21.6', '50 ---> 43.830000000000005', '100 ---> 55.33']" # Results.append('No.'+str(i)+' DataSet='+name+' Type= BetaNormalized '+' Result=' +betaNor) try: betaNor = test_retrieval.testbetanormalizednot(opt, trig, dataset,BetaNormalize) print(name,' BetaNormalized: ',betaNor) Results.append('No.'+str(i)+' DataSet='+name+' Type= BetaNormalized '+' Result=' +betaNor) except: print('ERROR') try: asbook = test_retrieval.test(opt, trig, dataset) print(name,' As PaPer: ',asbook) Results.append('No.'+str(i)+' DataSet='+name+' Type= As PaPer '+' Result=' +betaNor) except: print('ERROR') with open(Path1+r"/"+'Results15time.txt', 'wb') as fp: pickle.dump(Results, fp) def distanceBetaand(): with open (Path1+"/Beta.txt", 'rb') as fp: Beta = pickle.load(fp) trainset = datasets.Fashion200k( path=Path1, split='train', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) test = datasets.Fashion200k( path=Path1, split='test', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) trig= img_text_composition_models.TIRG([t.encode().decode('utf-8') for t in trainset.get_all_texts()],512) trig.load_state_dict(torch.load(Path1+r'\fashion200k.tirg.iter160k.pth' , map_location=torch.device('cpu') )['model_state_dict']) trig.eval() imgs = [] mods = [] target = [] batchsize=2 Distance=[] sourceid=[] targetid=[] countbeta=0 counttrig=0 for Data in tqdm(trainset): imgs += [Data['source_img_data']] mods += [Data['mod']['str']] target +=[Data['target_img_data']] sourceid.append(Data['source_img_id']) targetid.append(Data['target_img_id']) imgs = torch.stack(imgs).float() imgs = torch.autograd.Variable(imgs) f = trig.compose_img_text(imgs, mods).data.cpu().numpy() target = torch.stack(target).float() target = torch.autograd.Variable(target) f2 = trig.extract_img_feature(target).data.cpu().numpy() trigdata=f[0] trigbeta = np.insert(trigdata,0, 1) trigbeta=np.matmul(trigbeta,Beta) Targetdata = f2[0] SourceTarget=euclideandistance(trigdata,Targetdata) betaTarget=euclideandistance(trigbeta,Targetdata) if(SourceTarget > betaTarget): countbeta= countbeta+1 else: counttrig=counttrig+1 # opsig={'source':sourceid[0],'target':targetid[0],'disbeta':betaTarget,'disorig':SourceTarget} # Distance.append(opsig ) imgs = [] mods = [] target = [] sourceid=[] targetid=[] with open(Path1+r"/"+'Distance.txt', 'wb') as fp: pickle.dump(Distance, fp) print('Train Data :Count beta less:',countbeta , ' ,countbeta bigger:',counttrig) imgs = [] mods = [] target = [] batchsize=2 Distance=[] sourceid=[] targetid=[] countbeta=0 counttrig=0 for Data in tqdm(test.get_test_queries()): imgs += [test.get_img(Data['source_img_id'])] mods += [Data['mod']['str']] target +=[test.get_img(Data['target_id'])] imgs = torch.stack(imgs).float() imgs = torch.autograd.Variable(imgs) f = trig.compose_img_text(imgs, mods).data.cpu().numpy() target = torch.stack(target).float() target = torch.autograd.Variable(target) f2 = trig.extract_img_feature(target).data.cpu().numpy() trigdata=f[0] trigbeta = np.insert(trigdata,0, 1) trigbeta=np.matmul(trigbeta,Beta) Targetdata = f2[0] SourceTarget=euclideandistance(trigdata,Targetdata) betaTarget=euclideandistance(trigbeta,Targetdata) if(SourceTarget > betaTarget): countbeta= countbeta+1 else: counttrig=counttrig+1 imgs = [] mods = [] target = [] sourceid=[] targetid=[] print('Test Data :Count beta less:',countbeta , ' ,countbeta bigger:',counttrig) ################# Beta From Test Set Section ################# def getbeta(): train = datasets.Fashion200k( path=Path1, split='train', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) test = datasets.Fashion200k( path=Path1, split='test', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) trig= img_text_composition_models.TIRG([t.encode().decode('utf-8') for t in train.get_all_texts()],512) trig.load_state_dict(torch.load(Path1+r'\fashion200k.tirg.iter160k.pth' , map_location=torch.device('cpu') )['model_state_dict']) trig.eval() imgs = [] mods = [] trigdata=[] target=[] imgdata=[] all_source_captions=[] all_target_captions=[] for Data in tqdm(test.get_test_queries()): imgs += [test.get_img(Data['source_img_id'])] mods += [Data['mod']['str']] target +=[test.get_img(Data['target_id'])] all_source_captions +=Data['source_caption'] all_target_captions +=Data['target_caption'] imgs = torch.stack(imgs).float() imgs = torch.autograd.Variable(imgs) f = trig.compose_img_text(imgs, mods).data.cpu().numpy() target = torch.stack(target).float() target = torch.autograd.Variable(target) f2 = trig.extract_img_feature(target).data.cpu().numpy() trigdata.append(f[0]) imgdata.append(f2[0]) imgs = [] mods = [] target = [] with open(Path1+r"/"+'test_all_source_captionsG.pkl', 'wb') as fp: pickle.dump(all_source_captions, fp) with open(Path1+r"/"+'test_all_target_captionsG.pkl', 'wb') as fp: pickle.dump(all_target_captions, fp) trigdata=np.array(trigdata) imgdata=np.array(imgdata) with open(Path1+r"/"+'test_all_queriesG.pkl', 'wb') as fp: pickle.dump(trigdata, fp) with open(Path1+r"/"+'test_all_imgsG.pkl', 'wb') as fp: pickle.dump(imgdata, fp) Ntrigdata=trigdata Nimgdata=imgdata Ntrig2=[] trigdata2=[] for i in range(Ntrigdata.shape[0]): Ntrigdata[i, :] /= np.linalg.norm(Ntrigdata[i, :]) for i in range(Nimgdata.shape[0]): Nimgdata[i, :] /= np.linalg.norm(Nimgdata[i, :]) for i in range(Ntrigdata.shape[0]): Ntrig2.append(np.insert(Ntrigdata[i],0, 1)) Ntrig2=np.array(Ntrig2) Ntrigdata1=Ntrig2.transpose() X1=np.matmul(Ntrigdata1,Ntrig2) X2=np.linalg.inv(X1) X3=np.matmul(X2,Ntrigdata1) Nbeta=np.matmul(X3,Nimgdata) with open(Path1+r"/"+'testBetaNormalizedG.txt', 'wb') as fp: pickle.dump(Nbeta, fp) def GetValues(): with open (Path1+"/testBetaNormalized.txt", 'rb') as fp: Nbeta = pickle.load(fp) train = datasets.Fashion200k( path=Path1, split='train', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) test = datasets.Fashion200k( path=Path1, split='test', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) trig= img_text_composition_models.TIRG([t.encode().decode('utf-8') for t in train.get_all_texts()],512) trig.load_state_dict(torch.load(Path1+r'\fashion200k.tirg.iter160k.pth' , map_location=torch.device('cpu') )['model_state_dict']) opt = argparse.ArgumentParser() opt.add_argument('--batch_size', type=int, default=2) opt.add_argument('--dataset', type=str, default='fashion200k') opt.batch_size =1 opt.dataset='fashion200k' for name, dataset in [ ('train', train),('test', test)]: #('train', trainset), betaNor = test_retrieval.testWbeta(opt, trig, dataset,Nbeta) print(name,' BetaNormalized: ',betaNor) asbook = test_retrieval.test(opt, trig, dataset) print(name,' As PaPer: ',asbook) ################# Beta From Train Set Section ################# def getbetatrain(): train = datasets.Fashion200k( path=Path1, split='train', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) trig= img_text_composition_models.TIRG([t.encode().decode('utf-8') for t in train.get_all_texts()],512) trig.load_state_dict(torch.load(Path1+r'\fashion200k.tirg.iter160k.pth' , map_location=torch.device('cpu') )['model_state_dict']) trig.eval() imgs = [] mods = [] trigdata=[] target=[] imgdata=[] #m = nn.ReLU() for i in range(172048): #172048 print('get images=',i,end='\r') item = train[i] imgs += [item['source_img_data']] mods += [item['mod']['str']] target += [item['target_img_data']] imgs = torch.stack(imgs).float() imgs = torch.autograd.Variable(imgs) f = trig.compose_img_text(imgs, mods).data.cpu().numpy() target = torch.stack(target).float() target = torch.autograd.Variable(target) f2 = trig.extract_img_feature(target).data.cpu().numpy() trigdata.append(f[0]) imgdata.append(f2[0]) imgs = [] mods = [] target = [] trigdata=np.array(trigdata) imgdata=np.array(imgdata) Ntrig2=[] for i in range(trigdata.shape[0]): trigdata[i, :] /= np.linalg.norm(trigdata[i, :]) for i in range(imgdata.shape[0]): imgdata[i, :] /= np.linalg.norm(imgdata[i, :]) for i in range(trigdata.shape[0]): Ntrig2.append(np.insert(trigdata[i],0, 1)) print("Ntrig2 shape %d first elemnt %d",Ntrig2[0] ) Ntrig2=np.array(Ntrig2) Ntrigdata1=Ntrig2.transpose() X1=np.matmul(Ntrigdata1,Ntrig2) X2=np.linalg.inv(X1) X3=np.matmul(X2,Ntrigdata1) Nbeta=np.matmul(X3,imgdata) with open(Path1+r"/"+'Betatrain.txt', 'wb') as fp: pickle.dump(Nbeta, fp) def GetValuestrain(): with open (Path1+"\\Betatrain.txt", 'rb') as fp: BetaNormalize = pickle.load(fp) trainset = datasets.Fashion200k( path=Path1, split='train', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) testset = datasets.Fashion200k( path=Path1, split='test', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) trig= img_text_composition_models.TIRG([t.encode().decode('utf-8') for t in trainset.get_all_texts()],512) trig.load_state_dict(torch.load(Path1+r'\fashion200k.tirg.iter160k.pth' , map_location=torch.device('cpu') )['model_state_dict']) opt = argparse.ArgumentParser() opt.add_argument('--batch_size', type=int, default=2) opt.add_argument('--dataset', type=str, default='fashion200k') opt.batch_size =1 opt.dataset='fashion200k' for name, dataset in [ ('train', trainset),('test', testset)]: #('train', trainset), betaNor = test_retrieval.testWbeta(opt, trig, dataset,BetaNormalize) print(name,' BetaNormalized: ',betaNor) # asbook = test_retrieval.test(opt, trig, dataset) # print(name,' As PaPer: ',asbook) ################# Get Average Beta ################# def GetAverageBeta(): with open (Path1+"/Beta.txt", 'rb') as fp: BetaTrain = pickle.load(fp) with open (Path1+"/testBetaNormalized.txt", 'rb') as fp: BetaTest = pickle.load(fp) BetaAvg1= np.add(BetaTrain, BetaTest) BetaAvg2=BetaAvg1/2 trainset = datasets.Fashion200k( path=Path1, split='train', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) testset = datasets.Fashion200k( path=Path1, split='test', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) trig= img_text_composition_models.TIRG([t.encode().decode('utf-8') for t in trainset.get_all_texts()],512) trig.load_state_dict(torch.load(Path1+r'\fashion200k.tirg.iter160k.pth' , map_location=torch.device('cpu') )['model_state_dict']) opt = argparse.ArgumentParser() opt.add_argument('--batch_size', type=int, default=2) opt.add_argument('--dataset', type=str, default='fashion200k') opt.batch_size =1 opt.dataset='fashion200k' for name, dataset in [ ('train', trainset),('test', testset)]: betaNor = test_retrieval.testWbeta(opt, trig, dataset,BetaAvg2) print(name,' Beta Avg: ',betaNor) asbook = test_retrieval.test(opt, trig, dataset) print(name,' As PaPer: ',asbook) ################# Beta From Train & Test Set Section ################# def getbetaall(): test = datasets.Fashion200k( path=Path1, split='test', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) train = datasets.Fashion200k( path=Path1, split='train', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) trig= img_text_composition_models.TIRG([t.encode().decode('utf-8') for t in train.get_all_texts()],512) trig.load_state_dict(torch.load(Path1+r'\fashion200k.tirg.iter160k.pth' , map_location=torch.device('cpu') )['model_state_dict']) trig.eval() imgs = [] mods = [] trigdata=[] target=[] imgdata=[] for Data in tqdm(train): imgs += [train.get_img(Data['source_img_id'])] mods += [Data['mod']['str']] target +=[train.get_img(Data['target_img_id'])] imgs = torch.stack(imgs).float() imgs = torch.autograd.Variable(imgs) f = trig.compose_img_text(imgs, mods).data.cpu().numpy() target = torch.stack(target).float() target = torch.autograd.Variable(target) f2 = trig.extract_img_feature(target).data.cpu().numpy() trigdata.append(f[0]) imgdata.append(f2[0]) imgs = [] mods = [] target = [] for Data in tqdm(test.get_test_queries()): imgs += [test.get_img(Data['source_img_id'])] mods += [Data['mod']['str']] target +=[test.get_img(Data['target_id'])] imgs = torch.stack(imgs).float() imgs = torch.autograd.Variable(imgs) f = trig.compose_img_text(imgs, mods).data.cpu().numpy() target = torch.stack(target).float() target = torch.autograd.Variable(target) f2 = trig.extract_img_feature(target).data.cpu().numpy() trigdata.append(f[0]) imgdata.append(f2[0]) imgs = [] mods = [] target = [] trigdata=np.array(trigdata) imgdata=np.array(imgdata) Ntrigdata=trigdata Nimgdata=imgdata Ntrig2=[] for i in range(Ntrigdata.shape[0]): Ntrigdata[i, :] /= np.linalg.norm(Ntrigdata[i, :]) for i in range(Nimgdata.shape[0]): Nimgdata[i, :] /= np.linalg.norm(Nimgdata[i, :]) for i in range(Ntrigdata.shape[0]): Ntrig2.append(np.insert(Ntrigdata[i],0, 1)) Ntrig2=np.array(Ntrig2) Ntrigdata1=Ntrig2.transpose() X1=np.matmul(Ntrigdata1,Ntrig2) X2=np.linalg.inv(X1) X3=np.matmul(X2,Ntrigdata1) Nbeta=np.matmul(X3,Nimgdata) with open(Path1+r"/"+'Betaall.txt', 'wb') as fp: pickle.dump(Nbeta, fp) def GetValuesall(): with open (Path1+"/Betaall.txt", 'rb') as fp: BetaNormalize = pickle.load(fp) trainset = datasets.Fashion200k( path=Path1, split='train', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) testset = datasets.Fashion200k( path=Path1, split='test', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) trig= img_text_composition_models.TIRG([t.encode().decode('utf-8') for t in trainset.get_all_texts()],512) trig.load_state_dict(torch.load(Path1+r'\fashion200k.tirg.iter160k.pth' , map_location=torch.device('cpu') )['model_state_dict']) opt = argparse.ArgumentParser() opt.add_argument('--batch_size', type=int, default=2) opt.add_argument('--dataset', type=str, default='fashion200k') opt.batch_size =1 opt.dataset='fashion200k' for name, dataset in [ ('train', trainset)]: #('train', trainset), ,('test', testset) betaNor = test_retrieval.testWbeta(opt, trig, dataset,BetaNormalize) print(name,' BetaNormalized: ',betaNor) # asbook = test_retrieval.test(opt, trig, dataset) # print(name,' As PaPer: ',asbook) def getvaluespdf(): train = datasets.Fashion200k( path=Path1, split='train', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) trig= img_text_composition_models.TIRG([t.encode().decode('utf-8') for t in train.get_all_texts()],512) trig.load_state_dict(torch.load(Path1+r'\fashion200k.tirg.iter160k.pth' , map_location=torch.device('cpu') )['model_state_dict']) trig.eval() imgs = [] mods = [] trigdata=[] target=[] imgdata=[] #m = nn.ReLU() for i in range(172048): #172048 print('get images=',i,end='\r') item = train[i] imgs += [item['source_img_data']] mods += [item['mod']['str']] target += [item['target_img_data']] imgs = torch.stack(imgs).float() imgs = torch.autograd.Variable(imgs) f = trig.compose_img_text(imgs, mods).data.cpu().numpy() target = torch.stack(target).float() target = torch.autograd.Variable(target) f2 = trig.extract_img_feature(target).data.cpu().numpy() trigdata.append(f[0]) imgdata.append(f2[0]) imgs = [] mods = [] target=[] for i in range(trigdata.shape[0]): trigdata[i, :] /= np.linalg.norm(trigdata[i, :]) for i in range(imgdata.shape[0]): imgdata[i, :] /= np.linalg.norm(imgdata[i, :]) print(trigdata) print(imgdata) with open(Path1+r"/"+'traindata.txt', 'wb') as fp: pickle.dump(trigdata, fp) with open(Path1+r"/"+'imgdata.txt', 'wb') as fp: pickle.dump(imgdata, fp) class NLR(nn.Module): def __init__(self,insize,outsize,hidden): super().__init__() self.nlmodel= torch.nn.Sequential(torch.nn.Linear(insize, hidden),torch.nn.Sigmoid(),torch.nn.Linear(hidden, outsize)) def myforward (self,x11): p=self.nlmodel(x11) return p def getNLP(): train = datasets.Fashion200k( path=Path1, split='train', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) trig= img_text_composition_models.TIRG([t.encode().decode('utf-8') for t in train.get_all_texts()],512) trig.load_state_dict(torch.load(Path1+r'\fashion200k.tirg.iter160k.pth' , map_location=torch.device('cpu') )['model_state_dict']) trig.eval() imgs = [] mods = [] trigdata=[] target=[] imgdata=[] dtsz, indm, hddm, oudm = 172048, 513, 700, 512 loss_fn = torch.nn.MSELoss(reduction='sum') torch.manual_seed(3) model=NLR(indm,oudm,hddm) #model=model.cuda() torch.manual_seed(3) criterion=nn.MSELoss() optimizer=torch.optim.SGD(model.parameters(), lr=0.001) epoch=50 losses=[] for j in range(epoch): for l in range(dtsz): #172048 print('Epoch:',j,' get images=',l,end='\r') item = train[l] imgs += [item['source_img_data']] mods += [item['mod']['str']] target += [item['target_img_data']] imgs = torch.stack(imgs).float() imgs = torch.autograd.Variable(imgs)#.cuda() target = torch.stack(target).float() target = torch.autograd.Variable(target)#.cuda() f = trig.compose_img_text(imgs, mods).data.cpu().numpy() f2 = trig.extract_img_feature(target).data.cpu().numpy() for i in range(f.shape[0]): f[i, :] /= np.linalg.norm(f[i, :]) for i in range(f2.shape[0]): f2[i, :] /= np.linalg.norm(f2[i, :]) for i in range(f.shape[0]): trigdata =np.insert(f[i],0, 1) trigdata=torch.from_numpy(trigdata) f2=torch.from_numpy(f2) yp=model.myforward(trigdata) loss=criterion(yp,f2) if(l%20000 == 0): print("epoch ",j, "loss ", loss.item()) losses.append(loss) optimizer.zero_grad() loss.backward() optimizer.step() imgs = [] mods = [] trigdata=[] target=[] imgdata=[] print('Finished Training') torch.save(model.state_dict(), Path1+r'\NLP2.pth') def resultsNLP(): dtsz, indm, hddm, oudm = 172048, 513, 700, 512 model=NLR(indm,oudm,hddm) model.load_state_dict(torch.load(Path1+r'\NLP.pth' , map_location=torch.device('cpu') )) model.eval() trainset = datasets.Fashion200k( path=Path1, split='train', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) testset = datasets.Fashion200k( path=Path1, split='test', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) trig= img_text_composition_models.TIRG([t.encode().decode('utf-8') for t in trainset.get_all_texts()],512) trig.load_state_dict(torch.load(Path1+r'\fashion200k.tirg.iter160k.pth' , map_location=torch.device('cpu') )['model_state_dict']) opt = argparse.ArgumentParser() opt.add_argument('--batch_size', type=int, default=2) opt.add_argument('--dataset', type=str, default='fashion200k') opt.batch_size =1 opt.dataset='fashion200k' for name, dataset in [ ('train', trainset),('test', testset)]: #('train', trainset), NLP = test_retrieval.testNLP(opt, trig, dataset,model) print(name,' NLP: ',NLP) asbook = test_retrieval.test(opt, trig, dataset) print(name,' As PaPer: ',asbook) def savevaluestofile(): train = datasets.Fashion200k( path=Path1, split='train', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) trig= img_text_composition_models.TIRG([t.encode().decode('utf-8') for t in train.get_all_texts()],512) trig.load_state_dict(torch.load(Path1+r'\fashion200k.tirg.iter160k.pth' , map_location=torch.device('cpu') )['model_state_dict']) trig.eval() imgs = [] mods = [] trigdata=[] target=[] imgdata=[] alldata=[] #m = nn.ReLU() for i in range(172048): #172048 print('get images=',i,end='\r') item = train[i] imgs += [item['source_img_data']] mods += [item['mod']['str']] target += [item['target_img_data']] imgs = torch.stack(imgs).float() imgs = torch.autograd.Variable(imgs) f = trig.compose_img_text(imgs, mods).data.cpu().numpy() target = torch.stack(target).float() target = torch.autograd.Variable(target) f2 = trig.extract_img_feature(target).data.cpu().numpy() # trigdata.append(f[0]) # imgdata.append(f2[0]) opsig={ 'SourceTrig':f[0], 'TargetData':f2[0], 'IDX':i } alldata.append(opsig) imgs = [] mods = [] trigdata=[] target=[] imgdata=[] with open(Path1+r"/"+'TrigImgData172.txt', 'wb') as fp: pickle.dump(alldata, fp) def Savevaluestest(): train = datasets.Fashion200k( path=Path1, split='train', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) test = datasets.Fashion200k( path=Path1, split='test', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) trig= img_text_composition_models.TIRG([t.encode().decode('utf-8') for t in train.get_all_texts()],512) trig.load_state_dict(torch.load(Path1+r'\fashion200k.tirg.iter160k.pth' , map_location=torch.device('cpu') )['model_state_dict']) trig.eval() imgs = [] mods = [] trigdata=[] target=[] imgdata=[] alldata=[] for Data in tqdm(test.get_test_queries()): imgs += [test.get_img(Data['source_img_id'])] mods += [Data['mod']['str']] target +=[test.get_img(Data['target_id'])] imgs = torch.stack(imgs).float() imgs = torch.autograd.Variable(imgs) f = trig.compose_img_text(imgs, mods).data.cpu().numpy() target = torch.stack(target).float() target = torch.autograd.Variable(target) f2 = trig.extract_img_feature(target).data.cpu().numpy() opsig={ 'SourceTrig':f[0], 'TargetData':f2[0], 'IDX':Data['source_img_id'] } alldata.append(opsig) all_captions = [img['captions'][0] for img in test.imgs] imgs = [] mods = [] trigdata=[] target=[] imgdata=[] with open(Path1+r"/"+'allcaptions.txt', 'wb') as fp: pickle.dump(all_captions, fp) with open(Path1+r"/"+'TrigImgDatatestset.txt', 'wb') as fp: pickle.dump(alldata, fp) def trainsaveddataresultsa(): with open (Path1+"\\TrigImgData172.txt", 'rb') as fp: Datasaved172 = pickle.load(fp) with open (Path1+"\\TrigImgDatatestset.txt", 'rb') as fp: Datasavedtest = pickle.load(fp) with open (Path1+"\\Betatrain.txt", 'rb') as fp: BetaNormalize = pickle.load(fp) #betaNor = test_retrieval.testWbetaWsaveddataa(BetaNormalize,Datasaved172) #print('trained',' BetaNormalized: ',betaNor) betaNor = test_retrieval.testWbetaWsaveddataa(BetaNormalize,Datasavedtest) print('test',' BetaNormalized: ',betaNor) def trainsaveddataresults(): with open (Path1+"\\TrigImgData172.txt", 'rb') as fp: Datasaved172 = pickle.load(fp) with open (Path1+"\\TrigImgDatatestset.txt", 'rb') as fp: Datasavedtest = pickle.load(fp) with open (Path1+"\\Betatrain.txt", 'rb') as fp: BetaNormalize = pickle.load(fp) trainset = datasets.Fashion200k( path=Path1, split='train', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) testset = datasets.Fashion200k( path=Path1, split='test', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) trig= img_text_composition_models.TIRG([t.encode().decode('utf-8') for t in trainset.get_all_texts()],512) trig.load_state_dict(torch.load(Path1+r'\fashion200k.tirg.iter160k.pth' , map_location=torch.device('cpu') )['model_state_dict']) opt = argparse.ArgumentParser() opt.add_argument('--batch_size', type=int, default=2) opt.add_argument('--dataset', type=str, default='fashion200k') opt.batch_size =1 opt.dataset='fashion200k' for name, dataset in [ ('train', trainset),('test', testset)]: #('train', trainset), betaNor = test_retrieval.testWbetaWsaveddata(opt, trig, dataset,BetaNormalize,Datasaved172,Datasavedtest) print(name,' BetaNormalized: ',betaNor) def Save_GetValues(): train = datasets.Fashion200k( path=Path1, split='train', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) test = datasets.Fashion200k( path=Path1, split='test', transform=torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])) trig= img_text_composition_models.TIRG([t.encode().decode('utf-8') for t in train.get_all_texts()],512) trig.load_state_dict(torch.load(Path1+r'\fashion200k.tirg.iter160k.pth' , map_location=torch.device('cpu') )['model_state_dict']) opt = argparse.ArgumentParser() opt.add_argument('--batch_size', type=int, default=2) opt.add_argument('--dataset', type=str, default='fashion200k') opt.batch_size =1 opt.dataset='fashion200k' #for name, dataset in [ ('test', test),('train', train)]: #('train', trainset), for name, dataset in [ ('test', test)]: #('train', trainset), asbook = test_retrieval.test_and_save(opt, trig, dataset) print(name,' As PaPer: ',asbook) def print_results(sourceFile,out,test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld): print(' Experiment setup : ', file = sourceFile) if (test_train==1): print('Dataset:Training Data set', file = sourceFile) else: print('Dataset:Testing Data set', file = sourceFile) if (normal_beta==0): print(' Trig', file = sourceFile) else: print(' Trig followed by Regression network', file = sourceFile) if (normal_beta==1): if (create_load==0): print(' Regression Network Created, save to file', file = sourceFile) else: print(' Regression Network Loaded from file ', file = sourceFile) print(' = ',filename, file = sourceFile) if (normal_normalize==0): print(' Regression done without normalization ', file = sourceFile) else: print(' Regression done on normalized vectors ', file = sourceFile) else: print(' ', file=sourceFile) if (dot_eucld==0): print(' Distance: Cos Angle between vectors ', file = sourceFile) else: print(' Distance: Eucledian ', file = sourceFile) print(' Dataset size Divider ', set_size_divider, file = sourceFile) print(' Experiment Outcome: - ','\n',out,'\n', file = sourceFile) def results(): sourceFile = open(Path1+r"/"+'results'+time.strftime("%Y%m%d-%H%M%S")+'.txt', 'w') test_train=0 normal_beta=0 set_size_divider=1 normal_normalize=0 create_load=0 filename='na' dot_eucld=0 # 1 print(' 1', file=sourceFile) out =test_retrieval.test_on_saved(test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) print_results(sourceFile,out,test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) test_train=1 set_size_divider=17.2 # 2 print(' 2', file=sourceFile) out =test_retrieval.test_on_saved(test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) print_results(sourceFile,out,test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) test_train=1 normal_beta=1 create_load=0 filename='REGTR10ND.BTA' # 3 print(' 3', file=sourceFile) out =test_retrieval.test_on_saved(test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) print_results(sourceFile,out,test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) test_train=0 set_size_divider=1 normal_beta=1 create_load=1 filename='REGTR10ND.BTA' # 4 print(' 4', file=sourceFile) out =test_retrieval.test_on_saved(test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) print_results(sourceFile,out,test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) test_train=0 set_size_divider=1 normal_beta=1 create_load=0 filename='REGTS33ND.BTA' # 5 print(' 5', file=sourceFile) out =test_retrieval.test_on_saved(test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) print_results(sourceFile,out,test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) test_train=1 set_size_divider=1 normal_beta=0 create_load=0 filename='na' # 6 print(' 6', file=sourceFile) out =test_retrieval.test_on_saved(test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) print_results(sourceFile,out,test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) test_train=1 set_size_divider=1 normal_beta=1 create_load=0 filename='REGTR172ND,BTA' # 7 print(' 7', file=sourceFile) out =test_retrieval.test_on_saved(test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) print_results(sourceFile,out,test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) test_train=0 set_size_divider=1 normal_beta=1 create_load=1 filename='REGTR172ND,BTA' # 8 print(' 8', file=sourceFile) out =test_retrieval.test_on_saved(test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) print_results(sourceFile,out,test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) ###################NNORMALIZED BETA############################################################## test_train=3 normal_beta=1 set_size_divider=17.2 normal_normalize=0 create_load=0 filename='REGTR10NND.BTA' dot_eucld=0 test_train=1 # 3NN print(' 3NN', file=sourceFile) out =test_retrieval.test_on_saved(test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) print_results(sourceFile,out,test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) test_train=0 set_size_divider=1 normal_beta=1 create_load=1 filename='REGTR10NND.BTA' # 4 NN print(' 4NN', file=sourceFile) out =test_retrieval.test_on_saved(test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) print_results(sourceFile,out,test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) test_train=1 set_size_divider=1 normal_beta=1 create_load=0 filename='REGTR172NND,BTA' # 7 NN print(' 7NN', file=sourceFile) out =test_retrieval.test_on_saved(test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) print_results(sourceFile,out,test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) test_train=0 set_size_divider=1 normal_beta=1 create_load=1 filename='REGTR172NND,BTA' # 8 NN print(' 8NN', file=sourceFile) out =test_retrieval.test_on_saved(test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) print_results(sourceFile,out,test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) ###################eucledian############################################################## test_train=0 normal_beta=0 set_size_divider=1 normal_normalize=0 create_load=0 filename='na' dot_eucld=1 # 1 E print(' 1 E', file=sourceFile) out =test_retrieval.test_on_saved(test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) print_results(sourceFile,out,test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) test_train=1 set_size_divider=17.2 # 2 E print(' 2 E', file=sourceFile) out =test_retrieval.test_on_saved(test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) print_results(sourceFile,out,test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) test_train=1 normal_beta=1 create_load=0 filename='REGTR10NE.BTA' # 3 E print(' 3 E', file=sourceFile) out =test_retrieval.test_on_saved(test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) print_results(sourceFile,out,test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) test_train=0 set_size_divider=1 normal_beta=1 create_load=1 filename='REGTR10NE.BTA' # 4 E print(' 4 E', file=sourceFile) out =test_retrieval.test_on_saved(test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) print_results(sourceFile,out,test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) test_train=0 set_size_divider=1 normal_beta=1 create_load=0 filename='REGTS33NE.BTA' # 5 E print(' 5 E', file=sourceFile) out =test_retrieval.test_on_saved(test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) print_results(sourceFile,out,test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) test_train=1 set_size_divider=1 normal_beta=0 create_load=0 filename='na' # 6 E print(' 6 E', file=sourceFile) out =test_retrieval.test_on_saved(test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) print_results(sourceFile,out,test_train,normal_beta,create_load,filename,normal_normalize, set_size_divider, dot_eucld) sourceFile.close() # Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Evaluates the retrieval model.""" import numpy as np import pickle import torch from tqdm import tqdm as tqdm from scipy.spatial import distance def test(opt, model, testset): """Tests a model over the given testset.""" model.eval() test_queries = testset.get_test_queries() all_imgs = [] all_captions = [] all_queries = [] all_target_captions = [] if test_queries: # compute test query features imgs = [] mods = [] for t in tqdm(test_queries): imgs += [testset.get_img(t['source_img_id'])] mods += [t['mod']['str']] if len(imgs) >= opt.batch_size or t is test_queries[-1]: if 'torch' not in str(type(imgs[0])): imgs = [torch.from_numpy(d).float() for d in imgs] imgs = torch.stack(imgs).float() imgs = torch.autograd.Variable(imgs)#.cuda() f = model.compose_img_text(imgs, mods).data.cpu().numpy() all_queries += [f] imgs = [] mods = [] all_queries = np.concatenate(all_queries) all_target_captions = [t['target_caption'] for t in test_queries] # compute all image features imgs = [] for i in tqdm(range(len(testset.imgs))): imgs += [testset.get_img(i)] if len(imgs) >= opt.batch_size or i == len(testset.imgs) - 1: if 'torch' not in str(type(imgs[0])): imgs = [torch.from_numpy(d).float() for d in imgs] imgs = torch.stack(imgs).float() imgs = torch.autograd.Variable(imgs)#.cuda() imgs = model.extract_img_feature(imgs).data.cpu().numpy() all_imgs += [imgs] imgs = [] all_imgs = np.concatenate(all_imgs) all_captions = [img['captions'][0] for img in testset.imgs] else: # use training queries to approximate training retrieval performance imgs0 = [] imgs = [] mods = [] for i in range(10000): print('get images=',i,end='\r') item = testset[i] imgs += [item['source_img_data']] mods += [item['mod']['str']] if len(imgs) >= opt.batch_size or i == 9999: imgs = torch.stack(imgs).float() imgs = torch.autograd.Variable(imgs) f = model.compose_img_text(imgs, mods).data.cpu().numpy() #.cuda() all_queries += [f] imgs = [] mods = [] imgs0 += [item['target_img_data']] if len(imgs0) >= opt.batch_size or i == 9999: imgs0 = torch.stack(imgs0).float() imgs0 = torch.autograd.Variable(imgs0) imgs0 = model.extract_img_feature(imgs0).data.cpu().numpy() #.cuda() all_imgs += [imgs0] imgs0 = [] all_captions += [item['target_caption']] all_target_captions += [item['target_caption']] all_imgs = np.concatenate(all_imgs) all_queries = np.concatenate(all_queries) # feature normalization for i in range(all_queries.shape[0]): all_queries[i, :] /= np.linalg.norm(all_queries[i, :]) for i in range(all_imgs.shape[0]): all_imgs[i, :] /= np.linalg.norm(all_imgs[i, :]) # match test queries to target images, get nearest neighbors nn_result = [] for i in tqdm(range(all_queries.shape[0])): sims = all_queries[i:(i+1), :].dot(all_imgs.T) if test_queries: sims[0, test_queries[i]['source_img_id']] = -10e10 # remove query image nn_result.append(np.argsort(-sims[0, :])[:110]) # compute recalls out = [] nn_result = [[all_captions[nn] for nn in nns] for nns in nn_result] for k in [1, 5, 10, 50, 100]: r = 0.0 for i, nns in enumerate(nn_result): if all_target_captions[i] in nns[:k]: r += 1 r /= len(nn_result) #out += [('recall_top' + str(k) + '_correct_composition', r)] out.append(str(k) + ' ---> '+ str(r*100)) if opt.dataset == 'mitstates': r = 0.0 for i, nns in enumerate(nn_result): if all_target_captions[i].split()[0] in [c.split()[0] for c in nns[:k]]: r += 1 r /= len(nn_result) out += [('recall_top' + str(k) + '_correct_adj', r)] r = 0.0 for i, nns in enumerate(nn_result): if all_target_captions[i].split()[1] in [c.split()[1] for c in nns[:k]]: r += 1 r /= len(nn_result) out += [('recall_top' + str(k) + '_correct_noun', r)] return out def testWbeta(opt, model, testset,beta): """Tests a model over the given testset.""" model.eval() test_queries = testset.get_test_queries() all_imgs = [] all_captions = [] all_queries = [] all_target_captions = [] if test_queries: # compute test query features imgs = [] mods = [] for t in tqdm(test_queries): imgs += [testset.get_img(t['source_img_id'])] mods += [t['mod']['str']] if len(imgs) >= opt.batch_size or t is test_queries[-1]: if 'torch' not in str(type(imgs[0])): imgs = [torch.from_numpy(d).float() for d in imgs] imgs = torch.stack(imgs).float() imgs = torch.autograd.Variable(imgs) f = model.compose_img_text(imgs, mods).data.cpu().numpy() for j in range(len(f)): # for i in range(f.shape[0]): # f[i, :] /= np.linalg.norm(f[i, :]) f[j, :] /= np.linalg.norm(f[j, :]) X1 = np.insert(f[j],0, 1) X2=np.matmul(X1,beta) f[j]=X2 all_queries += [f] imgs = [] mods = [] all_queries = np.concatenate(all_queries) all_target_captions = [t['target_caption'] for t in test_queries] # compute all image features imgs = [] for i in tqdm(range(len(testset.imgs))): imgs += [testset.get_img(i)] if len(imgs) >= opt.batch_size or i == len(testset.imgs) - 1: if 'torch' not in str(type(imgs[0])): imgs = [torch.from_numpy(d).float() for d in imgs] imgs = torch.stack(imgs).float() imgs = torch.autograd.Variable(imgs) imgs = model.extract_img_feature(imgs).data.cpu().numpy() all_imgs += [imgs] imgs = [] all_imgs = np.concatenate(all_imgs) all_captions = [img['captions'][0] for img in testset.imgs] else: # use training queries to approximate training retrieval performance imgs0 = [] imgs = [] mods = [] for i in range(10000): print('get images=',i,end='\r') item = testset[i] imgs += [item['source_img_data']] mods += [item['mod']['str']] if len(imgs) >= opt.batch_size or i == 9999: imgs = torch.stack(imgs).float() imgs = torch.autograd.Variable(imgs) f = model.compose_img_text(imgs, mods).data.cpu().numpy() for j in range(len(f)): #for i in range(f.shape[0]): #f[i, :] /= np.linalg.norm(f[i, :]) f[j, :] /= np.linalg.norm(f[j, :]) X1 = np.insert(f[j],0, 1) X2=np.matmul(X1,beta) f[j]=X2 all_queries += [f] imgs = [] mods = [] imgs0 += [item['target_img_data']] if len(imgs0) >= opt.batch_size or i == 9999: imgs0 = torch.stack(imgs0).float() imgs0 = torch.autograd.Variable(imgs0) imgs0 = model.extract_img_feature(imgs0).data.cpu().numpy() all_imgs += [imgs0] imgs0 = [] all_captions += [item['target_caption']] all_target_captions += [item['target_caption']] all_imgs = np.concatenate(all_imgs) all_queries = np.concatenate(all_queries) # feature normalization for i in range(all_queries.shape[0]): all_queries[i, :] /= np.linalg.norm(all_queries[i, :]) for i in range(all_imgs.shape[0]): all_imgs[i, :] /= np.linalg.norm(all_imgs[i, :]) # match test queries to target images, get nearest neighbors nn_result = [] for i in tqdm(range(all_queries.shape[0])): sims = all_queries[i:(i+1), :].dot(all_imgs.T) if test_queries: sims[0, test_queries[i]['source_img_id']] = -10e10 # remove query image nn_result.append(np.argsort(-sims[0, :])[:110]) # compute recalls out = [] nn_result = [[all_captions[nn] for nn in nns] for nns in nn_result] for k in [1, 5, 10, 50, 100]: r = 0.0 for i, nns in enumerate(nn_result): if all_target_captions[i] in nns[:k]: r += 1 r /= len(nn_result) #out += [('recall_top' + str(k) + '_correct_composition', r)] out.append(str(k) + ' ---> '+ str(r*100)) if opt.dataset == 'mitstates': r = 0.0 for i, nns in enumerate(nn_result): if all_target_captions[i].split()[0] in [c.split()[0] for c in nns[:k]]: r += 1 r /= len(nn_result) out += [('recall_top' + str(k) + '_correct_adj', r)] r = 0.0 for i, nns in enumerate(nn_result): if all_target_captions[i].split()[1] in [c.split()[1] for c in nns[:k]]: r += 1 r /= len(nn_result) out += [('recall_top' + str(k) + '_correct_noun', r)] return out def testNLP(opt, model, testset,model2): """Tests a model over the given testset.""" model.eval() test_queries = testset.get_test_queries() all_imgs = [] all_captions = [] all_queries = [] all_target_captions = [] if test_queries: # compute test query features imgs = [] mods = [] for t in tqdm(test_queries): imgs += [testset.get_img(t['source_img_id'])] mods += [t['mod']['str']] if len(imgs) >= opt.batch_size or t is test_queries[-1]: if 'torch' not in str(type(imgs[0])): imgs = [torch.from_numpy(d).float() for d in imgs] imgs = torch.stack(imgs).float() imgs = torch.autograd.Variable(imgs) f = model.compose_img_text(imgs, mods).data.cpu().numpy() for i in range(f.shape[0]): f[i, :] /= np.linalg.norm(f[i, :]) f =np.insert(f,0, 1) f=np.expand_dims(f, axis=0) f=torch.from_numpy(f) f=model2.myforward(f).data.cpu().numpy() all_queries += [f] imgs = [] mods = [] all_queries = np.concatenate(all_queries) all_target_captions = [t['target_caption'] for t in test_queries] # compute all image features imgs = [] for i in tqdm(range(len(testset.imgs))): imgs += [testset.get_img(i)] if len(imgs) >= opt.batch_size or i == len(testset.imgs) - 1: if 'torch' not in str(type(imgs[0])): imgs = [torch.from_numpy(d).float() for d in imgs] imgs = torch.stack(imgs).float() imgs = torch.autograd.Variable(imgs) imgs = model.extract_img_feature(imgs).data.cpu().numpy() all_imgs += [imgs] imgs = [] all_imgs = np.concatenate(all_imgs) all_captions = [img['captions'][0] for img in testset.imgs] else: # use training queries to approximate training retrieval performance imgs0 = [] imgs = [] mods = [] for i in range(10000): print('get images=',i,end='\r') item = testset[i] imgs += [item['source_img_data']] mods += [item['mod']['str']] if len(imgs) >= opt.batch_size or i == 9999: imgs = torch.stack(imgs).float() imgs = torch.autograd.Variable(imgs) f = model.compose_img_text(imgs, mods).data.cpu().numpy() for i in range(f.shape[0]): f[i, :] /= np.linalg.norm(f[i, :]) f =np.insert(f,0, 1) f=np.expand_dims(f, axis=0) f=torch.from_numpy(f) f=model2.myforward(f).data.cpu().numpy() all_queries += [f] imgs = [] mods = [] imgs0 += [item['target_img_data']] if len(imgs0) >= opt.batch_size or i == 9999: imgs0 = torch.stack(imgs0).float() imgs0 = torch.autograd.Variable(imgs0) imgs0 = model.extract_img_feature(imgs0).data.cpu().numpy() all_imgs += [imgs0] imgs0 = [] all_captions += [item['target_caption']] all_target_captions += [item['target_caption']] all_imgs = np.concatenate(all_imgs) all_queries = np.concatenate(all_queries) # feature normalization # for i in range(all_queries.shape[0]): # all_queries[i, :] /= np.linalg.norm(all_queries[i, :]) for i in range(all_imgs.shape[0]): all_imgs[i, :] /= np.linalg.norm(all_imgs[i, :]) # match test queries to target images, get nearest neighbors nn_result = [] for i in tqdm(range(all_queries.shape[0])): sims = all_queries[i:(i+1), :].dot(all_imgs.T) if test_queries: sims[0, test_queries[i]['source_img_id']] = -10e10 # remove query image nn_result.append(np.argsort(-sims[0, :])[:110]) # compute recalls out = [] nn_result = [[all_captions[nn] for nn in nns] for nns in nn_result] for k in [1, 5, 10, 50, 100]: r = 0.0 for i, nns in enumerate(nn_result): if all_target_captions[i] in nns[:k]: r += 1 r /= len(nn_result) #out += [('recall_top' + str(k) + '_correct_composition', r)] out.append(str(k) + ' ---> '+ str(r*100)) if opt.dataset == 'mitstates': r = 0.0 for i, nns in enumerate(nn_result): if all_target_captions[i].split()[0] in [c.split()[0] for c in nns[:k]]: r += 1 r /= len(nn_result) out += [('recall_top' + str(k) + '_correct_adj', r)] r = 0.0 for i, nns in enumerate(nn_result): if all_target_captions[i].split()[1] in [c.split()[1] for c in nns[:k]]: r += 1 r /= len(nn_result) out += [('recall_top' + str(k) + '_correct_noun', r)] return out def testWbetaWsaveddata(opt, model, testset,beta,savedtrain,savedtest): """Tests a model over the given testset.""" model.eval() test_queries = testset.get_test_queries() all_imgs = [] all_captions = [] all_queries = [] all_target_captions = [] if test_queries: # compute test query features imgs = [] mods = [] for t in range(len(savedtest)): print('get testdata=',t,end='\r') f=savedtest[t]['SourceTrig'] f=np.expand_dims(f, axis=0) for j in range(len(f)): f[j, :] /= np.linalg.norm(f[j, :]) X1 = np.insert(f[j],0, 1) X2=np.matmul(X1,beta) f[j]=X2 all_queries += [f] imgs = [] mods = [] all_queries = np.concatenate(all_queries) all_target_captions = [t['target_caption'] for t in test_queries] # compute all image features imgs = [] for i in tqdm(range(len(testset.imgs))): imgs += [testset.get_img(i)] if len(imgs) >= opt.batch_size or i == len(testset.imgs) - 1: if 'torch' not in str(type(imgs[0])): imgs = [torch.from_numpy(d).float() for d in imgs] imgs = torch.stack(imgs).float() imgs = torch.autograd.Variable(imgs) imgs = model.extract_img_feature(imgs).data.cpu().numpy() all_imgs += [imgs] imgs = [] all_imgs = np.concatenate(all_imgs) all_captions = [img['captions'][0] for img in testset.imgs] else: # use training queries to approximate training retrieval performance imgs0 = [] imgs = [] mods = [] for i in range(10000): print('get images=',i,end='\r') item = testset[i] f=savedtrain[i]['SourceTrig'] f=np.expand_dims(f, axis=0) for j in range(len(f)): f[j, :] /=
np.linalg.norm(f[j, :])
numpy.linalg.norm
from __future__ import print_function import matplotlib matplotlib.use('tkAgg') import matplotlib.pyplot as plt from scipy.sparse import csr_matrix from dolfin import * import scipy import numpy as np import pyshtools from deepsphere import utils # Test for PETSc and SLEPc if not has_linear_algebra_backend("PETSc"): print("DOLFIN has not been configured with PETSc. Exiting.") exit() if not has_slepc(): print("DOLFIN has not been configured with SLEPc. Exiting.") exit() def to_array(f, bw): """From a 1-d vector to a 2D grid necessary to initiate a pyshtools.SHGrid object""" height, width = 2*bw, 2*bw array = np.zeros((height, width)) # shape=(longitude, latitude) f = np.append([f[0]]*(2*bw-1), f) # correct! the first line is the North pole repeated 2bw times # now we need to undo the meshgrid assert f.size == array.size for n, fx in enumerate(f): j = n%width i = n//width array[i, j] = fx return array spectral_content = dict() spectral_content_reordered = dict() bws = [4, 8] for bw in bws: lmax = bw-1 N = np.cumsum(np.arange(1, 2*lmax+2, 2))[-1] npix = 2*bw*(2*bw-1)+1 # Define mesh, function space mesh = Mesh("meshes/equi_{}.xml".format(bw)) global_normal = Expression(("x[0]", "x[1]", "x[2]"), degree=1) mesh.init_cell_orientations(global_normal) V = FunctionSpace(mesh, "Lagrange", 1) # Define basis and bilinear form u = TrialFunction(V) v = TestFunction(V) a = dot(grad(u), grad(v))*dx b = dot(u, v)*dx # Assemble stiffness form A = PETScMatrix() B = PETScMatrix() assemble(a, tensor=A) assemble(b, tensor=B) # Create eigensolver eigensolver = SLEPcEigenSolver(A, B) eigensolver.parameters['spectrum'] = 'target real' eigensolver.parameters['tolerance'] = 1.e-3 eigensolver.parameters['maximum_iterations'] = 100 # Compute all eigenvalues of A x = \lambda x print("Computing eigenvalues. This can take a minute.") eigensolver.solve(N) print('Done. Extracting results...') eig_vectors = np.ndarray((npix, N), dtype='float') eig_values = np.ndarray(N, dtype='float') for i in range(N): # Extract largest (first) eigenpair r, c, rx, cx = eigensolver.get_eigenpair(i) # ----- keeping the dof ordering ----- eig_vectors[:, i] = np.asarray(rx) eig_values[i] = r # --------------------------------------------------------- # --------------------------------------------------------- cl = np.empty((N, lmax+1)) spectral_content[bw] = np.empty((lmax+1, lmax+1)) for i in range(N): eigenvector = eig_vectors[:,i] # ---------ANAFAST ON THIS SAMPLING DOES NOT WORK ANYMORE------- ### cl[i] = hp.sphtfunc.anafast(eigenvector, lmax=lmax, iter=8) eig_array = to_array(eigenvector, bw) g = pyshtools.SHGrid.from_array(eig_array) clm = g.expand(normalization='unnorm') cl[i] = clm.spectrum() start = 0 for ell in range(lmax+1): end = start + (2 * ell + 1) spectral_content[bw][ell] = np.sum(cl[start:end,:], axis=0)/ np.sum(cl[start:end,:]) start = end # --------------------------------------------------------- # ---------- reordering ---------- reordered_mask = np.load('15_reordering_masks/reordering_mask_{}.npy'.format(bw)) eig_vectors = eig_vectors[reordered_mask] # --------------------------------------------------------- # --------------------------------------------------------- cl_reordered = np.empty((N, lmax+1)) spectral_content_reordered[bw] =
np.empty((lmax+1, lmax+1))
numpy.empty
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np def get_errors(arr,x): e = [np.linalg.norm(arr[:,i] - x)/np.linalg.norm(x) for i in range(arr.shape[1])] e.insert(0,1) return e def get_x_opt(X,y,gamma): H = X.T@X + gamma*np.eye(X.shape[1]) x_opt = np.linalg.solve(H,X.T@y) return x_opt # Find where errors are > t def greater_than_thld(arr, thld): ''' Given an input array arr, find the first index where arr > thld. ''' i_thld = np.where(arr>thld)[0][0] return i_thld def linear_fit(x, a, b): """ Wrapper function for scipy to fit a line of best fit to datapoints. """ return a*x + b def reciprocal_fit(x, a, b): """ Wrapper function for scipy to fit a curve of a/x + b to datapoints. """ return a/x + b def gaussian_projection(data,sketch_size,random_seed=10): """ evaluates the linear random projection SA with S sampled from a standard Gaussian distribution with appropriate scaling. """ rng = np.random.seed(random_seed) [n,d] = data.shape S = np.random.randn(sketch_size,n) / np.sqrt(sketch_size) return S@data def sparse_projection(data,sketch_size,sparsity=1,random_seed=10): """ Performs the sparse johnson lindenstrauss transform of Kane and Nelson """ [n,d] = data.shape sketch = np.zeros((sketch_size,n),dtype=float) for i in range(n): nnz_loc = np.random.choice(sketch_size,size=sparsity,replace=False) nnz_sign = np.random.choice([-1,1],size=sparsity,replace=True) sketch[nnz_loc,i] = nnz_sign return (1./np.sqrt(sparsity))*sketch@data def get_covariance_bound(X,k,sketch_dimension): ''' Given input data X and rank k, evaluate tthe covariance error bound: ||X - Xk||_F^2 / (sketch_dimension - k) ''' U, S, Vt = np.linalg.svd(X, full_matrices=False) Xk = U[:,:k]@(np.diag(S[:k])@Vt[:k,:]) delta_k = np.linalg.norm(X- Xk,ord='fro')**2 return delta_k / (sketch_dimension - k ) def get_covariance_bound_vary_sketch_size(X,k,sketch_sizes): ''' Returns the range of covariance bounds as the sketch size is varied ''' U, S, Vt = np.linalg.svd(X, full_matrices=False) Xk = U[:,:k]@(np.diag(S[:k])@Vt[:k,:]) delta_k = np.linalg.norm(X- Xk,ord='fro')**2 bounds = delta_k*
np.ones_like(sketch_sizes,dtype=float)
numpy.ones_like
from __future__ import annotations import scipy import numpy as np from warnings import warn from .arrays import ImgArray, PropArray from .arrays.utils import _docs from .arrays.utils._corr import subpixel_pcc from .utils.axesop import * from .utils.utilcls import Progress from .utils.deco import dims_to_spatial_axes from ._cupy import xp, asnumpy, xp_ndi from ._types import Dims __all__ = ["fsc", "fourier_shell_correlation", "ncc", "zncc", "fourier_ncc", "fourier_zncc", "nmi", "pcc_maximum", "ft_pcc_maximum", "pearson_coloc", "manders_coloc"] @_docs.write_docs @dims_to_spatial_axes def fsc(img0: ImgArray, img1: ImgArray, nbin: int = 32, r_max: float = None, *, squeeze: bool = True, dims: Dims = None) -> PropArray: r""" Calculate Fourier Shell Correlation (FSC; or Fourier Ring Correlation, FRC, for 2-D images) between two images. FSC is defined as: .. math:: FSC(r) = \frac{Re(\sum_{r<r'<r+dr}[F_0(r') \cdot \bar{F_1}(r)])} {\sqrt{\sum_{r<r'<r+dr}|F_0(r')|^2 \cdot \sum_{r<r'<r+dr}|F_1(r')|^2}} Parameters ---------- {inputs_of_correlation} nbin : int, default is 32 Number of bins. r_max : float, optional Maximum radius to make profile. Region 0 <= r < r_max will be split into `nbin` rings (or shells). **Scale must be considered** because scales of each axis may vary. {squeeze} {dims} Returns ------- PropArray FSC stored in x-axis by default. If input images have tzcyx-axes, then an array with tcx-axes will be returned. Make sure x-axis no longer means length in x because images are Fourier transformed. """ img0, img1 = _check_inputs(img0, img1) spatial_shape = img0.sizesof(dims) inds = xp.indices(spatial_shape) center = [s/2 for s in spatial_shape] r = xp.sqrt(sum(((x - c)/img0.scale[a])**2 for x, c, a in zip(inds, center, dims))) r_lim = r.max() # check r_max if r_max is None: r_max = r_lim elif r_max > r_lim or r_max <= 0: raise ValueError(f"`r_max` must be in range of 0 < r_max <= {r_lim} with this image.") with Progress("fsc"): # make radially separated labels r_rel = r/r_max labels = (nbin * r_rel).astype(np.uint16) labels[r_rel >= 1] = 0 c_axes = complement_axes(dims, img0.axes) nlabels = int(asnumpy(labels.max())) out = xp.empty(img0.sizesof(c_axes)+(nlabels,), dtype=xp.float32) def radial_sum(arr): arr = xp.asarray(arr) return xp_ndi.sum_labels(arr, labels=labels, index=xp.arange(1, nlabels+1)) f0 = img0.fft(dims=dims) f1 = img1.fft(dims=dims) for sl, f0_, f1_ in iter2(f0, f1, c_axes, exclude=dims): cov = f0_.real*f1_.real + f0_.imag*f1_.imag pw0 = f0_.real**2 + f0_.imag**2 pw1 = f1_.real**2 + f1_.imag**2 out[sl] = radial_sum(cov)/xp.sqrt(radial_sum(pw0)*radial_sum(pw1)) if out.ndim == 0 and squeeze: out = out[()] out = PropArray(asnumpy(out), dtype=np.float32, axes=c_axes+dims[-1], dirpath=img0.dirpath, metadata=img0.metadata, propname="fsc") return out # alias fourier_shell_correlation = fsc def _ncc(img0: ImgArray, img1: ImgArray, dims: Dims): # Basic Normalized Cross Correlation with batch processing n = np.prod(img0.sizesof(dims)) if isinstance(dims, str): dims = tuple(img0.axisof(a) for a in dims) img0 = xp.asarray(img0) img1 = xp.asarray(img1) corr = xp.sum(img0 * img1, axis=dims) / ( xp.std(img0, axis=dims)*xp.std(img1, axis=dims)) / n return asnumpy(corr) def _masked_ncc(img0: ImgArray, img1: ImgArray, dims: Dims, mask: ImgArray): if mask.ndim < img0.ndim: mask = add_axes(img0.axes, img0.shape, mask, mask.axes) n = np.prod(img0.sizesof(dims)) img0ma = np.ma.array(img0.value, mask=mask) img1ma = np.ma.array(img1.value, mask=mask) axis = tuple(img0.axisof(a) for a in dims) return np.ma.sum(img0ma * img1ma, axis=axis) / ( np.ma.std(img0ma, axis=axis)*np.ma.std(img1ma, axis=axis)) / n def _zncc(img0: ImgArray, img1: ImgArray, dims: Dims): # Basic Zero-Normalized Cross Correlation with batch processing. # Inputs must be already zero-normalized. if isinstance(dims, str): dims = tuple(img0.axisof(a) for a in dims) img0 = xp.asarray(img0) img1 = xp.asarray(img1) corr = xp.sum(img0 * img1, axis=dims) / ( xp.sqrt(xp.sum(img0**2, axis=dims)*xp.sum(img1**2, axis=dims))) return asnumpy(corr) def _masked_zncc(img0: ImgArray, img1: ImgArray, dims: Dims, mask: ImgArray): if mask.ndim < img0.ndim: mask = add_axes(img0.axes, img0.shape, mask, mask.axes) img0ma = np.ma.array(img0.value, mask=mask) img1ma = np.ma.array(img1.value, mask=mask) axis = tuple(img0.axisof(a) for a in dims) return np.sum(img0ma * img1ma, axis=axis) / ( np.sqrt(np.sum(img0ma**2, axis=axis)*np.sum(img1ma**2, axis=axis))) @_docs.write_docs @dims_to_spatial_axes def ncc(img0: ImgArray, img1: ImgArray, mask: ImgArray | None = None, squeeze: bool = True, *, dims: Dims = None) -> PropArray | float: """ Normalized Cross Correlation. Parameters ---------- {inputs_of_correlation} mask : boolean ImgArray, optional If provided, True regions will be masked and will not be taken into account when calculate correlation. {squeeze} {dims} Returns ------- PropArray or float Correlation value(s). """ with Progress("ncc"): img0, img1 = _check_inputs(img0, img1) if mask is None: corr = _ncc(img0, img1, dims) else: corr = _masked_ncc(img0, img1, dims, mask) return _make_corr_output(corr, img0, "ncc", squeeze, dims) @_docs.write_docs @dims_to_spatial_axes def zncc(img0: ImgArray, img1: ImgArray, mask: ImgArray | None = None, squeeze: bool = True, *, dims: Dims = None) -> PropArray | float: """ Zero-Normalized Cross Correlation. Parameters ---------- {inputs_of_correlation} mask : boolean ImgArray, optional If provided, True regions will be masked and will not be taken into account when calculate correlation. {squeeze} {dims} Returns ------- PropArray or float Correlation value(s). """ with Progress("zncc"): img0, img1 = _check_inputs(img0, img1) img0zn = img0 - np.mean(img0, axis=dims, keepdims=True) img1zn = img1 - np.mean(img1, axis=dims, keepdims=True) if mask is None: corr = _zncc(img0zn, img1zn, dims) else: corr = _masked_zncc(img0zn, img1zn, dims, mask) return _make_corr_output(corr, img0, "zncc", squeeze, dims) # alias pearson_coloc = zncc @_docs.write_docs @dims_to_spatial_axes def nmi(img0: ImgArray, img1: ImgArray, mask: ImgArray | None = None, bins: int = 100, squeeze: bool = True, *, dims: Dims = None) -> PropArray | float: r""" Normalized Mutual Information. :math:`Y(A, B) = \frac{H(A) + H(B)}{H(A, B)}` See "Elegant SciPy" Parameters ---------- {inputs_of_correlation} mask : boolean ImgArray, optional If provided, True regions will be masked and will not be taken into account when calculate correlation. bins : int, default is 100 Number of bins to construct histograms. {squeeze} {dims} Returns ------- PropArray or float Correlation value(s). """ from scipy.stats import entropy img0, img1 = _check_inputs(img0, img1) c_axes = complement_axes(dims, img0.axes) out = np.empty(img0.sizesof(c_axes), dtype=np.float32) if mask.ndim < img0.ndim: mask = add_axes(img0.axes, img0.shape, mask, mask.axes) for sl, img0_, img1_ in iter2(img0, img1, c_axes): mask_ = mask[sl] hist, edges = np.histogramdd([np.ravel(img0_[mask_]),
np.ravel(img1_[mask_])
numpy.ravel
import numpy as np import sys import monai import ponai # sys.path.append('/nfs/home/pedro/portio') from torchvision import datasets, transforms, models from torch.utils.data import DataLoader, Dataset from PIL import Image import pandas as pd import os import argparse import torchvision import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.tensorboard import SummaryWriter from model.model import nnUNet import random from model.metric import DiceLoss import glob import time import nibabel as nib import re import monai.visualize.img2tensorboard as img2tensorboard sys.path.append('/nfs/home/pedro/RangerLARS/over9000') # from over9000 import RangerLars os.chdir('/nfs/home/pedro/PhysicsPyTorch') import porchio from early_stopping import pytorchtools import runai.hpo strategy = runai.hpo.Strategy.GridSearch runai.hpo.init('/nfs/home/pedro/', 'stratification') # import yaml # print(f'The pyyaml version is {yaml.__version__}') class PairwiseMeasures(object): def __init__(self, seg_img, ref_img, measures=None, num_neighbors=8, pixdim=(1, 1, 1), empty=False, list_labels=None): self.m_dict = { 'ref volume': (self.n_pos_ref, 'Volume (Ref)'), 'seg volume': (self.n_pos_seg, 'Volume (Seg)'), 'ref bg volume': (self.n_neg_ref, 'Volume (Ref bg)'), 'seg bg volume': (self.n_neg_seg, 'Volume (Seg bg)'), 'list_labels': (self.list_labels, 'List Labels Seg'), 'fp': (self.fp, 'FP'), 'fn': (self.fn, 'FN'), 'tp': (self.tp, 'TP'), 'tn': (self.tn, 'TN'), 'n_intersection': (self.n_intersection, 'Intersection'), 'n_union': (self.n_union, 'Union'), 'sensitivity': (self.sensitivity, 'Sens'), 'specificity': (self.specificity, 'Spec'), 'accuracy': (self.accuracy, 'Acc'), 'fpr': (self.false_positive_rate, 'FPR'), 'ppv': (self.positive_predictive_values, 'PPV'), 'npv': (self.negative_predictive_values, 'NPV'), 'dice': (self.dice_score, 'Dice'), 'IoU': (self.intersection_over_union, 'IoU'), 'jaccard': (self.jaccard, 'Jaccard'), 'informedness': (self.informedness, 'Informedness'), 'markedness': (self.markedness, 'Markedness'), 'vol_diff': (self.vol_diff, 'VolDiff'), 'ave_dist': (self.measured_average_distance, 'AveDist'), 'haus_dist': (self.measured_hausdorff_distance, 'HausDist'), 'connected_elements': (self.connected_elements, 'TPc,FPc,FNc'), 'outline_error': (self.outline_error, 'OER,OEFP,OEFN'), 'detection_error': (self.detection_error, 'DE,DEFP,DEFN') } self.seg = seg_img self.ref = ref_img self.list_labels = list_labels self.flag_empty = empty self.measures = measures if measures is not None else self.m_dict self.neigh = num_neighbors self.pixdim = pixdim def check_binary(self): """ Checks whether self.seg and self.ref are binary. This is to enable measurements such as 'false positives', which only have meaning in the binary case (what is positive/negative for multiple class?) """ is_seg_binary, is_ref_binary = [((x > 0.5) == x).all() for x in [self.seg, self.ref]] # if (not is_ref_binary) or (not is_seg_binary): # raise ValueError("The input segmentation/reference images" # " must be binary for this function.") def __FPmap(self): """ This function calculates the false positive map from binary segmentation and reference maps :return: FP map """ self.check_binary() return np.asarray((self.seg - self.ref) > 0.0, dtype=np.float32) def __FNmap(self): """ This function calculates the false negative map :return: FN map """ self.check_binary() return np.asarray((self.ref - self.seg) > 0.0, dtype=np.float32) def __TPmap(self): """ This function calculates the true positive map (i.e. how many reference voxels are positive) :return: TP map """ self.check_binary() return np.logical_and(self.ref > 0.5, self.seg > 0.5).astype(float) def __TNmap(self): """ This function calculates the true negative map :return: TN map """ self.check_binary() return np.logical_and(self.ref < 0.5, self.seg < 0.5).astype(float) def __union_map(self): """ This function calculates the union map between segmentation and reference image :return: union map """ self.check_binary() return np.logical_or(self.ref, self.seg).astype(float) def __intersection_map(self): """ This function calculates the intersection between segmentation and reference image :return: intersection map """ self.check_binary() return np.multiply(self.ref, self.seg) def n_pos_ref(self): return np.sum(self.ref) def n_neg_ref(self): self.check_binary() return np.sum(self.ref == 0) def n_pos_seg(self): return np.sum(self.seg) def n_neg_seg(self): return np.sum(1 - self.seg) def fp(self): return np.sum(self.__FPmap()) def fn(self): return np.sum(self.__FNmap()) def tp(self): return np.sum(self.__TPmap()) def tn(self): return np.sum(self.__TNmap()) def n_intersection(self): return np.sum(self.__intersection_map()) def n_union(self): return np.sum(self.__union_map()) def sensitivity(self): return self.tp() / self.n_pos_ref() def specificity(self): return self.tn() / self.n_neg_ref() def accuracy(self): return (self.tn() + self.tp()) / \ (self.tn() + self.tp() + self.fn() + self.fp()) def false_positive_rate(self): return self.fp() / self.n_neg_ref() def positive_predictive_values(self): if self.flag_empty: return -1 return self.tp() / (self.tp() + self.fp()) def negative_predictive_values(self): """ This function calculates the negative predictive value ratio between the number of true negatives and the total number of negative elements :return: """ return self.tn() / (self.fn() + self.tn()) def dice_score(self): """ This function returns the dice score coefficient between a reference and segmentation images :return: dice score """ return 2 * self.tp() / np.sum(self.ref + self.seg) def intersection_over_union(self): """ This function the intersection over union ratio - Definition of jaccard coefficient :return: """ return self.n_intersection() / self.n_union() def jaccard(self): """ This function returns the jaccard coefficient (defined as intersection over union) :return: jaccard coefficient """ return self.intersection_over_union() def informedness(self): """ This function calculates the informedness between the segmentation and the reference :return: informedness """ return self.sensitivity() + self.specificity() - 1 def markedness(self): """ This functions calculates the markedness :return: """ return self.positive_predictive_values() + \ self.negative_predictive_values() - 1 def list_labels(self): if self.list_labels is None: return () return tuple(np.unique(self.list_labels)) def vol_diff(self): """ This function calculates the ratio of difference in volume between the reference and segmentation images. :return: vol_diff """ return np.abs(self.n_pos_ref() - self.n_pos_seg()) / self.n_pos_ref() # @CacheFunctionOutput # def _boundaries_dist_mat(self): # dist = DistanceMetric.get_metric('euclidean') # border_ref = MorphologyOps(self.ref, self.neigh).border_map() # border_seg = MorphologyOps(self.seg, self.neigh).border_map() # coord_ref = np.multiply(np.argwhere(border_ref > 0), self.pixdim) # coord_seg = np.multiply(np.argwhere(border_seg > 0), self.pixdim) # pairwise_dist = dist.pairwise(coord_ref, coord_seg) # return pairwise_dist def measured_distance(self): """ This functions calculates the average symmetric distance and the hausdorff distance between a segmentation and a reference image :return: hausdorff distance and average symmetric distance """ ref_border_dist, seg_border_dist, ref_border, \ seg_border = self.border_distance() average_distance = (np.sum(ref_border_dist) + np.sum( seg_border_dist)) / (np.sum(self.ref + self.seg)) hausdorff_distance = np.max( [np.max(ref_border_dist), np.max(seg_border_dist)]) return hausdorff_distance, average_distance def measured_average_distance(self): """ This function returns only the average distance when calculating the distances between segmentation and reference :return: """ return self.measured_distance()[1] def measured_hausdorff_distance(self): """ This function returns only the hausdorff distance when calculated the distances between segmentation and reference :return: """ return self.measured_distance()[0] # def average_distance(self): # pairwise_dist = self._boundaries_dist_mat() # return (np.sum(np.min(pairwise_dist, 0)) + \ # np.sum(np.min(pairwise_dist, 1))) / \ # (np.sum(self.ref + self.seg)) # # def hausdorff_distance(self): # pairwise_dist = self._boundaries_dist_mat() # return np.max((np.max(np.min(pairwise_dist, 0)), # np.max(np.min(pairwise_dist, 1)))) def connected_elements(self): """ This function returns the number of FP FN and TP in terms of connected components. :return: Number of true positive connected components, Number of false positives connected components, Number of false negatives connected components """ blobs_ref, blobs_seg, init = self._connected_components() list_blobs_ref = range(1, blobs_ref[1]) list_blobs_seg = range(1, blobs_seg[1]) mul_blobs_ref = np.multiply(blobs_ref[0], init) mul_blobs_seg = np.multiply(blobs_seg[0], init) list_TP_ref = np.unique(mul_blobs_ref[mul_blobs_ref > 0]) list_TP_seg = np.unique(mul_blobs_seg[mul_blobs_seg > 0]) list_FN = [x for x in list_blobs_ref if x not in list_TP_ref] list_FP = [x for x in list_blobs_seg if x not in list_TP_seg] return len(list_TP_ref), len(list_FP), len(list_FN) def connected_errormaps(self): """ This functions calculates the error maps from the connected components :return: """ blobs_ref, blobs_seg, init = self._connected_components() list_blobs_ref = range(1, blobs_ref[1]) list_blobs_seg = range(1, blobs_seg[1]) mul_blobs_ref = np.multiply(blobs_ref[0], init) mul_blobs_seg = np.multiply(blobs_seg[0], init) list_TP_ref = np.unique(mul_blobs_ref[mul_blobs_ref > 0]) list_TP_seg = np.unique(mul_blobs_seg[mul_blobs_seg > 0]) list_FN = [x for x in list_blobs_ref if x not in list_TP_ref] list_FP = [x for x in list_blobs_seg if x not in list_TP_seg] # print(np.max(blobs_ref),np.max(blobs_seg)) tpc_map = np.zeros_like(blobs_ref[0]) fpc_map = np.zeros_like(blobs_ref[0]) fnc_map = np.zeros_like(blobs_ref[0]) for i in list_TP_ref: tpc_map[blobs_ref[0] == i] = 1 for i in list_TP_seg: tpc_map[blobs_seg[0] == i] = 1 for i in list_FN: fnc_map[blobs_ref[0] == i] = 1 for i in list_FP: fpc_map[blobs_seg[0] == i] = 1 return tpc_map, fnc_map, fpc_map def outline_error(self): """ This function calculates the outline error as defined in Wack et al. :return: OER: Outline error ratio, OEFP: number of false positive outlier error voxels, OEFN: number of false negative outline error elements """ TPcMap, _, _ = self.connected_errormaps() OEFMap = self.ref - np.multiply(TPcMap, self.seg) unique, counts = np.unique(OEFMap, return_counts=True) # print(counts) OEFN = counts[unique == 1] OEFP = counts[unique == -1] OEFN = 0 if len(OEFN) == 0 else OEFN[0] OEFP = 0 if len(OEFP) == 0 else OEFP[0] OER = 2 * (OEFN + OEFP) / (self.n_pos_seg() + self.n_pos_ref()) return OER, OEFP, OEFN def detection_error(self): """ This function calculates the volume of detection error as defined in Wack et al. :return: DE: Total volume of detection error, DEFP: Detection error false positives, DEFN: Detection error false negatives """ TPcMap, FNcMap, FPcMap = self.connected_errormaps() DEFN = np.sum(FNcMap) DEFP = np.sum(FPcMap) return DEFN + DEFP, DEFP, DEFN def header_str(self): result_str = [self.m_dict[key][1] for key in self.measures] result_str = ',' + ','.join(result_str) return result_str def to_string(self, fmt='{:.4f}'): result_str = "" list_space = ['com_ref', 'com_seg', 'list_labels'] for key in self.measures: result = self.m_dict[key][0]() if key in list_space: result_str += ' '.join(fmt.format(x) for x in result) \ if isinstance(result, tuple) else fmt.format(result) else: result_str += ','.join(fmt.format(x) for x in result) \ if isinstance(result, tuple) else fmt.format(result) result_str += ',' return result_str[:-1] # trim the last comma class PairwiseMeasuresRegression(object): def __init__(self, reg_img, ref_img, measures=None): self.reg = reg_img self.ref = ref_img self.measures = measures self.m_dict = { 'mse': (self.mse, 'MSE'), 'rmse': (self.rmse, 'RMSE'), 'mae': (self.mae, 'MAE'), 'r2': (self.r2, 'R2') } def mse(self): return np.mean(np.square(self.reg - self.ref)) def rmse(self): return np.sqrt(self.mse()) def mae(self): return np.mean(np.abs(self.ref - self.reg)) def r2(self): ref_var = np.sum(np.square(self.ref - np.mean(self.ref))) reg_var = np.sum(np.square(self.reg - np.mean(self.reg))) cov_refreg = np.sum( (self.reg -
np.mean(self.reg)
numpy.mean
import numpy as np from scipy.interpolate import CubicSpline class WaypointTraj(object): """ """ def __init__(self, points): """ This is the constructor for the Trajectory object. A fresh trajectory object will be constructed before each mission. For a waypoint trajectory, the input argument is an array of 3D destination coordinates. You are free to choose the times of arrival and the path taken between the points in any way you like. You should initialize parameters and pre-compute values such as polynomial coefficients here. Inputs: points, (N, 3) array of N waypoint coordinates in 3D """ self.v = 2 #m/s self.points = points self.t = np.zeros(len(points),) if np.shape(self.points) == (3,) or np.shape(self.points) == (1,3): pass elif np.shape(self.points) != (3,) or np.shape(self.points) != (1,3): for i in range(len(self.t)-1): self.t[(i+1)] = np.linalg.norm((points[(i+1)]-points[i]))/self.v self.point_t = np.zeros(len(points),) for i in range(int(len(self.t)-1)): self.point_t[(i+1)] = self.point_t[i] + self.t[i+1] self.f = CubicSpline(self.point_t,self.points,axis = 0) def update(self, t): """ Given the present time, return the desired flat output and derivatives. Inputs t, time, s Outputs flat_output, a dict describing the present desired flat outputs with keys x, position, m x_dot, velocity, m/s x_ddot, acceleration, m/s**2 x_dddot, jerk, m/s**3 x_ddddot, snap, m/s**4 yaw, yaw angle, rad yaw_dot, yaw rate, rad/s """ x = np.zeros((3,)) x_dot = np.zeros((3,)) x_ddot = np.zeros((3,)) x_dddot = np.zeros((3,)) x_ddddot = np.zeros((3,)) yaw = 0 yaw_dot = 0 if
np.shape(self.points)
numpy.shape
import warnings import numpy as np from scipy import linspace from scipy.ndimage import affine_transform '''Automatically determine whether background is darker than foreground''' MODE_AUTO = "auto" '''Background is darker than foreground''' MODE_DARK = "dark" '''Background is brighter than foreground''' MODE_BRIGHT = "bright" '''Some foreground is darker, some is lighter''' MODE_GRAY = "gray" def prcntiles(x,percents): '''Equivalent to matlab prctile(x,p), uses linear interpolation.''' x=np.array(x).flatten() listx = np.sort(x) xpcts=[] lenlistx=len(listx) refs=[] for i in range(0,lenlistx): r=100*((.5+i)/lenlistx) #refs[i] is percentile of listx[i] in matrix x refs.append(r) rpcts=[] for p in percents: if p<refs[0]: rpcts.append(listx[0]) elif p>refs[-1]: rpcts.append(listx[-1]) else: for j in range(0,lenlistx): #lenlistx=len(refs) if refs[j]<=p and refs[j+1]>=p: my=listx[j+1]-listx[j] mx=refs[j+1]-refs[j] m=my/mx #slope of line between points rpcts.append((m*(p-refs[j]))+listx[j]) break xpcts.append(rpcts) return np.array(xpcts).transpose() def automode(data): '''Tries to guess if the image contains dark objects on a bright background (1) or if the image contains bright objects on a dark background (-1), or if it contains both dark and bright objects on a gray background (0).''' pct=prcntiles(np.array(data),[1,20,80,99]) upper=pct[3]-pct[2] mid=pct[2]-pct[1] lower=pct[1]-pct[0] ##print 'upper = '+str(upper) ##print 'mid = '+str(mid) ##print 'lower = '+str(lower) #upper objects if upper>mid: uo=1 else: uo=0 ##print 'uo = '+str(uo) #lower objects if lower>mid: lo=1 else: lo=0 ##print 'lo = '+str(lo) if uo==1: if lo==1: mode=0 #both upper and lower objects else: mode=-1 #only upper objects else: if lo==1: mode=1 #only lower objects else: mode=0 #no objects at all return mode def spline_factors(u): '''u is np.array''' X = np.array([(1.-u)**3 , 4-(6.*(u**2))+(3.*(u**3)) , 1.+(3.*u)+(3.*(u**2))-(3.*(u**3)) , u**3]) * (1./6) return X def pick(picklist,val): '''Index to first value in picklist that is larger than val. If none is larger, index=len(picklist).''' assert np.all(np.sort(picklist) == picklist), "pick list is not ordered correctly" val = np.array(val) i_pick, i_val = np.mgrid[0:len(picklist),0:len(val)] # # Mark a picklist entry as 1 if the value is before or at, # mark it as zero if it is afterward # is_not_larger = picklist[i_pick] <= val[i_val] # # The index is the number of entries that are 1 # p = np.sum(is_not_larger, 0) return p def confine(x,low,high): '''Confine x to [low,high]. Values outside are set to low/high. See also restrict.''' y=x.copy() y[y < low] = low y[y > high] = high return y def gauss(x,m_y,sigma): '''returns the gaussian with mean m_y and std. dev. sigma, calculated at the points of x.''' e_y = [np.exp((1.0/(2*float(sigma)**2)*-(n-m_y)**2)) for n in np.array(x)] y = [1.0/(float(sigma) * np.sqrt(2 * np.pi)) * e for e in e_y] return np.array(y) def d2gauss(x,m_y,sigma): '''returns the second derivative of the gaussian with mean m_y, and standard deviation sigma, calculated at the points of x.''' return gauss(x,m_y,sigma)*[-1/sigma**2 + (n-m_y)**2/sigma**4 for n in x] def spline_matrix(x,px): n=len(px) lx=len(x) # Assign each x to an interval. Subtract 1 to get the beginning of the interval. px = np.array(px) x = np.array(x) j = np.array(pick(px,x)) - 1 # # We need at least one entry before and two after for the four factors # of the cubic spline # j = confine(j, 1, n-3) u = (x-px[j]) / (px[j+1]-px[j]) #how far are we on the line segment px[j]->px[j+1], 0<=u<1 spf=spline_factors(u) # # Set up to broadcast spf to the correct spline factors # The cubic has four factors that broadcast starting at j-1 to j+2 # ii, jj = np.mgrid[0:spf.shape[0], 0:lx] V = np.zeros((n, lx)) V[j[jj] - 1 + ii, jj] = spf[ii, jj] return V def spline_matrix2d(x,y,px,py,mask=None): '''For boundary constraints, the first two and last two spline pieces are constrained to be part of the same cubic curve.''' V = np.kron(spline_matrix(x,px),spline_matrix(y,py)) lenV = len(V) if mask is not None: indices = np.nonzero(mask.T.flatten()) if len(indices)>1: indices = np.nonzero(mask.T.flatten())[1][0] newV=V.T[indices] V=newV.T V=V.reshape((V.shape[0],V.shape[1])) return V def splinefit2d(x, y, z, px, py, mask=None): '''Make a least squares fit of the spline (px,py,pz) to the surface (x,y,z). If mask is given, only masked points are used for the regression.''' if mask is None: V = np.array(spline_matrix2d(x, y, px, py)) a = np.array(z.T.flatten()) pz =
np.linalg.lstsq(V.T, a.T)
numpy.linalg.lstsq
import numpy as np import vectormath as vmath from sortedcontainers import SortedList # constants INFINITY = 2 ** 63 # integer max (python 3 has no bound) DEBUG = False ############################################################################ # sub classes for algorithm # ############################################################################ # sub triangle data (vertex indexes, coordinates, scales, precomputed Matrix) class Triangle: def __init__(self, v1, v2, v3): # 3 vertices for a trangle self.nVerts = [v1, v2, v3] self.vTriCoords = [] # 2D position (x,y) self.vScaled = np.zeros((3, 2), dtype=float) # un-scaled triangle # GMatrix: pre-computed matrices for triangle scaling step self.mF = self.mC = [[]] # simply 2D coordinate # class Vertex: # def __init__(self, x, y): # self.x, self.y = x, y class Constraint: def __init__(self, nVertex, vec): self.nVertex = nVertex self.vConstrainedPos = vec def __lt__(self, other): return self.nVertex < other.nVertex # LU-decomp, matrix and pivot class LUData: # information of LU decompositions def __init__(self, matrix, vPivots): self.mLU = matrix self.vPivots = vPivots ############################################################################## # global variables : m is member variable # @TODO make it as a class ############################################################################### m_bSetupValid = None m_mFirstMatrix = None # G' matrix m_vConstraints = SortedList() m_vInitialVerts = [] # initial positions of points m_vDeformedVerts = [] # current deformed positions of points m_vTriangles = [] # contains deformed triangles m_vVertexMap = [] # m_vVertexMap m_mHXPrime, m_mHYPrime = None, None # m_mHXPrime, m_mHYPrime m_mDX, m_mDY = None, None # m_mDX, m_mDY m_mLUDecompX, m_mLUDecompY = None, None # m_mLUDecompX, m_mLUDecompY # functions def Error(): print("ERROR") exit() def _invalidateSetup(): # global m_bSetupValid m_bSetupValid = False def _getInitialVert(nVert, Verts): ret = vmath.Vector2(float(Verts[nVert][0]), float(Verts[nVert][1])) return ret def _normalize(vec): l = vec.length return vec / l def _squared_length(vec): return vec.length * vec.length def _extractSubMatrix(mFrom, nRowOffset, nColOffset, row, col): ret = np.zeros((row, col), dtype=float) for i in range(row): for j in range(col): ret[i][j] = mFrom[i + nRowOffset][j + nColOffset] return ret #################################################################### # Static Matrices # #################################################################### # # 1. scale-free transfrom matrix # def _precomputeOrientationMatrix(): if DEBUG: print("\nprecomputeOrientationMatrix()") # m_vConstraints = shared.m_vConstraints # put constraints into vConstraintVec vConstraintVec = [] for i in range(len(m_vConstraints)): vConstraintVec.append(m_vConstraints[i]) # resize matrix and clear to zero nVerts = len(m_vDeformedVerts) G = np.zeros((nVerts * 2, nVerts * 2), dtype=float) # G' matrix in eqn (8) nConstraints = len(vConstraintVec) nFreeVerts = nVerts - nConstraints if DEBUG: print("nConstraints =", nConstraints, ", Free =", nFreeVerts) # figure out vertices ordering. First free vertices and then constraints nRow = 0 m_vVertexMap = np.zeros(nVerts, dtype=int) for i in range(nVerts): c = Constraint(i, [0.0, 0.0]) if m_vConstraints.count(c) > 0: continue m_vVertexMap[i] = nRow nRow += 1 if nRow != nFreeVerts: Error() for i in range(nConstraints): m_vVertexMap[vConstraintVec[i].nVertex] = nRow nRow += 1 if nRow != nVerts: Error() # test vectors gUTest = np.zeros(nVerts * 2, dtype=float) for i in range(nVerts): c = Constraint(i, [0.0, 0.0]) if m_vConstraints.count(c) > 0: continue Row = m_vVertexMap[i] gUTest[Row * 2] = m_vInitialVerts[i][0] gUTest[Row * 2 + 1] = m_vInitialVerts[i][1] for i in range(nConstraints): Row = m_vVertexMap[vConstraintVec[i].nVertex] gUTest[Row * 2] = vConstraintVec[i].vConstrainedPos[0] gUTest[Row * 2 + 1] = vConstraintVec[i].vConstrainedPos[1] # fill matrix line = 1 nTri = len(m_vTriangles) for i in range(nTri): t = m_vTriangles[i] fTriSumErr = 0 # Error of the triangles for j in range(3): fTriErr = 0 # Error of the subtriangles n0x = 2 * m_vVertexMap[t.nVerts[j]] n0y = n0x + 1 n1x = 2 * m_vVertexMap[t.nVerts[(j + 1) % 3]] n1y = n1x + 1 n2x = 2 * m_vVertexMap[t.nVerts[(j + 2) % 3]] n2y = n2x + 1 x, y = t.vTriCoords[j][0], t.vTriCoords[j][1] v0 = vmath.Vector2(float(gUTest[n0x]), float(gUTest[n0y])) v1 = vmath.Vector2(float(gUTest[n1x]), float(gUTest[n1y])) v2 = vmath.Vector2(float(gUTest[n2x]), float(gUTest[n2y])) v01 = v1 - v0 v01Perp = vmath.Vector2(v01[1], -v01[0]) vTest = v0 + x * v01 + y * v01Perp fDist = (vTest - v2).dot(vTest - v2) """ add line = 1 for debug print("debug line", line, ":", x, y) print("debug line", line, ":", v0[0], v0[1]) print("debug line", line, ":", v1[0], v1[1]) print("debug line", line, ":", v2[0], v2[1]) print("debug line", line, ":", v01[0], v01[1]) print("debug line", line, ":", v01Perp[0], v01Perp[1]) print("debug line", line, ":", vTest[0], vTest[1]) line += 1 if fDist > 0.0001: Error() """ G[n0x][n0x] += 1 - 2 * x + x * x + y * y G[n0x][n1x] += 2 * x - 2 * x * x - 2 * y * y G[n0x][n1y] += 2 * y G[n0x][n2x] += -2 + 2 * x G[n0x][n2y] += -2 * y fTriErr += (1 - 2 * x + x * x + y * y) * gUTest[n0x] * gUTest[n0x] fTriErr += (2 * x - 2 * x * x - 2 * y * y) * \ gUTest[n0x] * gUTest[n1x] fTriErr += (2 * y) * gUTest[n0x] * gUTest[n1y] fTriErr += (-2 + 2 * x) * gUTest[n0x] * gUTest[n2x] fTriErr += (-2 * y) * gUTest[n0x] * gUTest[n2y] G[n0y][n0y] += 1 - 2 * x + x * x + y * y G[n0y][n1x] += -2 * y G[n0y][n1y] += 2 * x - 2 * x * x - 2 * y * y G[n0y][n2x] += 2 * y G[n0y][n2y] += -2 + 2 * x fTriErr += (1 - 2 * x + x * x + y * y) * gUTest[n0y] * gUTest[n0y] fTriErr += (-2 * y) * gUTest[n0y] * gUTest[n1x] fTriErr += (2 * x - 2 * x * x - 2 * y * y) * \ gUTest[n0y] * gUTest[n1y] fTriErr += (2 * y) * gUTest[n0y] * gUTest[n2x] fTriErr += (-2 + 2 * x) * gUTest[n0y] * gUTest[n2y] G[n1x][n1x] += x * x + y * y G[n1x][n2x] += -2 * x G[n1x][n2y] += 2 * y fTriErr += (x * x + y * y) * gUTest[n1x] * gUTest[n1x] fTriErr += (-2 * x) * gUTest[n1x] * gUTest[n2x] fTriErr += (2 * y) * gUTest[n1x] * gUTest[n2y] G[n1y][n1y] += x * x + y * y G[n1y][n2x] += -2 * y G[n1y][n2y] += -2 * x fTriErr += (x * x + y * y) * gUTest[n1y] * gUTest[n1y] fTriErr += (-2 * y) * gUTest[n1y] * gUTest[n2x] fTriErr += (-2 * x) * gUTest[n1y] * gUTest[n2y] G[n2x][n2x] += 1 G[n2y][n2y] += 1 fTriErr += gUTest[n2x] * gUTest[n2x] + gUTest[n2y] * gUTest[n2y] fTriSumErr += fTriErr gUTemp = np.matmul(G, gUTest) fSum = gUTemp.dot(gUTest) # print("(test) Residual =", fSum) # extract G00 matrix G00 = np.zeros((2 * nFreeVerts, 2 * nFreeVerts), dtype=float) dim = np.shape(G00) row, col = dim[0], dim[1] G00 = _extractSubMatrix(G, 0, 0, row, col) # extract G01 and G10 matrices G01 = np.zeros((2 * nFreeVerts, 2 * nConstraints), dtype=float) dim = np.shape(G01) row, col = dim[0], dim[1] G01 = _extractSubMatrix(G, 0, 2 * nFreeVerts, row, col) G10 = np.zeros((2 * nConstraints, 2 * nFreeVerts), dtype=float) dim = np.shape(G10) row, col = dim[0], dim[1] G10 = _extractSubMatrix(G, 2 * nFreeVerts, 0, row, col) # compute GPrime = G00 + Transpose(G00) and B = G01 + Transpose(G10) eqn (8) GPrime = G00 + np.transpose(G00) B = G01 + np.transpose(G10) # invert GPrime and final result = -GPrimeInverse * B GPrimeInverse = np.linalg.inv(GPrime) mFinal = np.matmul(GPrimeInverse, B) return -mFinal # checked: gUTest, m_vVertexMap, G, G00, G01, G10, GPrime, B, GPrimeInverse, mFinal # # LUDecompostion for Scale Matrix calculation # def _LUDecompose(mMatrix, vDecomp): # return tuple(ifSquare, vDecomp) dim = np.shape(mMatrix) row, col = dim[0], dim[1] if row != col: return False, vDecomp # initialize vDecomp vDecomp = LUData(np.zeros((row, row), dtype=float), np.zeros(row, int)) vPivots = vDecomp.vPivots # need to assign value back mLUMatrix = vDecomp.mLU # need to assign value back mLUMatrix = mMatrix # scaling of each row dRowSwaps, dTemp = 1, None vScale = np.zeros(row, dtype=float) for i in range(row): dLargest = 0.0 for j in range(row): dTemp = abs(float(mLUMatrix[i][j])) if (dTemp > dLargest): dLargest = dTemp if dLargest == 0: return False, vDecomp vScale[i] = 1.0 / dLargest niMax = 0 for j in range(row): for i in range(j): dSum = mLUMatrix[i][j] for k in range(i): dSum -= mLUMatrix[i][k] * mLUMatrix[k][j] mLUMatrix[i][j] = dSum dLargestPivot = 0.0 for i in range(j, row): dSum = mLUMatrix[i][j] for k in range(j): dSum -= mLUMatrix[i][k] * mLUMatrix[k][j] mLUMatrix[i][j] = dSum dTemp = vScale[i] * abs(float(dSum)) if dTemp > dLargestPivot: dLargestPivot = dTemp niMax = i if j != niMax: for k in range(row): dSwap = mLUMatrix[niMax][k] mLUMatrix[niMax][k] = mLUMatrix[j][k] mLUMatrix[j][k] = dSwap dRowSwaps = -dRowSwaps vScale[niMax] = vScale[j] vPivots[j] = niMax if mLUMatrix[j][j] == 0: mLUMatrix[j][j] = EPSILON if j != row - 1: dScale = 1.0 / mLUMatrix[j][j] for i in range(j + 1, row): mLUMatrix[i][j] *= dScale vDecomp = LUData(mLUMatrix, vPivots) return True, vDecomp # # 2. scaling matrix # # def _precomputeScalingMatrices(nTriangle): if DEBUG: print("precomputeScalingMatrices(", nTriangle, ")") t = m_vTriangles[nTriangle] t.mF = np.zeros((4, 4), dtype=float) t.mC = np.zeros((4, 6), dtype=float) # precompute coefficients x01 = t.vTriCoords[0][0] y01 = t.vTriCoords[0][1] x12 = t.vTriCoords[1][0] y12 = t.vTriCoords[1][1] x20 = t.vTriCoords[2][0] y20 = t.vTriCoords[2][1] k1 = x12 * y01 + (-1 + x01) * y12 k2 = -x12 + x01 * x12 - y01 * y12 k3 = -y01 + x20 * y01 + x01 * y20 k4 = -y01 + x01 * y01 + x01 * y20 k5 = -x01 + x01 * x20 - y01 * y20 a = -1 + x01 a1 = pow(-1 + x01, 2) + pow(y01, 2) a2 = pow(x01, 2) + pow(y01, 2) b = -1 + x20 b1 = pow(-1 + x20, 2) + pow(y20, 2) c2 = pow(x12, 2) + pow(y12, 2) r1 = 1 + 2 * a * x12 + a1 * pow(x12, 2) - 2 * y01 * y12 + a1 * pow(y12, 2) r2 = -(b * x01) - b1 * pow(x01, 2) + y01 * (-(b1 * y01) + y20) r3 = -(a * x12) - a1 * pow(x12, 2) + y12 * (y01 - a1 * y12) r5 = a * x01 + pow(y01, 2) r6 = -(b * y01) - x01 * y20 r7 = 1 + 2 * b * x01 + b1 * pow(x01, 2) + b1 * pow(y01, 2) - 2 * y01 * y20 # setup F matrix t.mF[0][0] = 2 * a1 + 2 * a1 * c2 + 2 * r7 t.mF[0][1] = 0 t.mF[0][2] = 2 * r2 + 2 * r3 - 2 * r5 t.mF[0][3] = 2 * k1 + 2 * r6 + 2 * y01 t.mF[1][0] = 0 t.mF[1][1] = 2 * a1 + 2 * a1 * c2 + 2 * r7 t.mF[1][2] = -2 * k1 + 2 * k3 - 2 * y01 t.mF[1][3] = 2 * r2 + 2 * r3 - 2 * r5 t.mF[2][0] = 2 * r2 + 2 * r3 - 2 * r5 t.mF[2][1] = -2 * k1 + 2 * k3 - 2 * y01 t.mF[2][2] = 2 * a2 + 2 * a2 * b1 + 2 * r1 t.mF[2][3] = 0 t.mF[3][0] = 2 * k1 - 2 * k3 + 2 * y01 t.mF[3][1] = 2 * r2 + 2 * r3 - 2 * r5 t.mF[3][2] = 0 t.mF[3][3] = 2 * a2 + 2 * a2 * b1 + 2 * r1 mFInverse = np.linalg.inv(t.mF) mFInverse *= -1.0 t.mF = mFInverse # setup C matrix t.mC[0][0] = 2 * k2 t.mC[0][1] = -2 * k1 t.mC[0][2] = 2 * (-1 - k5) t.mC[0][3] = 2 * k3 t.mC[0][4] = 2 * a t.mC[0][5] = -2 * y01 t.mC[1][0] = 2 * k1 t.mC[1][1] = 2 * k2 t.mC[1][2] = -2 * k3 t.mC[1][3] = 2 * (-1 - k5) t.mC[1][4] = 2 * y01 t.mC[1][5] = 2 * a t.mC[2][0] = 2 * (-1 - k2) t.mC[2][1] = 2 * k1 t.mC[2][2] = 2 * k5 t.mC[2][3] = 2 * r6 t.mC[2][4] = -2 * x01 t.mC[2][5] = 2 * y01 t.mC[3][0] = 2 * k1 t.mC[3][1] = 2 * (-1 - k2) t.mC[3][2] = -2 * k3 t.mC[3][3] = 2 * k5 t.mC[3][4] = -2 * y01 t.mC[3][5] = -2 * x01 # np.set_printoptions(precision = 4, suppress = True) # print("t.mC:", t.mC) # print("t.mF:", t.mF) return t # # 3. Fitting Matrix # def _precomputeFittingMatrices(): if DEBUG: print("precomputeFittingMatrices()") global m_mHXPrime, m_mHYPrime, m_mDX, m_mDY, m_vConstraints # put constraints into vConstraintVec vConstraintVec = [] for i in range(len(m_vConstraints)): vConstraintVec.append(m_vConstraints[i]) # resize matrix and clear to zero nVerts = len(m_vDeformedVerts) nConstraints = len(vConstraintVec) nFreeVerts = nVerts - nConstraints # figure out vertices ordering. First free vertices and then constraints nRow = 0 global m_vVertexMap m_vVertexMap = np.zeros(nVerts, dtype=int) for i in range(nVerts): c = Constraint(i, [0.0, 0.0]) if m_vConstraints.count(c) > 0: continue m_vVertexMap[i] = nRow nRow += 1 if nRow != nFreeVerts: Error() for i in range(nConstraints): m_vVertexMap[vConstraintVec[i].nVertex] = nRow nRow += 1 if nRow != nVerts: Error() # test vectors gUTestX = np.zeros(nVerts, dtype=float) gUTestY = np.zeros(nVerts, dtype=float) for i in range(nVerts): c = Constraint(i, [0.0, 0.0]) if m_vConstraints.count(c) > 0: continue row = m_vVertexMap[i] gUTestX[row] = m_vInitialVerts[i][0] gUTestY[row] = m_vInitialVerts[i][1] for i in range(nConstraints): row = m_vVertexMap[vConstraintVec[i].nVertex] gUTestX[row] = vConstraintVec[i].vConstrainedPos[0] gUTestY[row] = vConstraintVec[i].vConstrainedPos[1] # construct Hy and Hx matrices mHX = np.zeros((nVerts, nVerts), dtype=float) mHY = np.zeros((nVerts, nVerts), dtype=float) nTri = len(m_vTriangles) for i in range(nTri): t = m_vTriangles[i] for j in range(3): nA, nB = m_vVertexMap[t.nVerts[j] ], m_vVertexMap[t.nVerts[(j + 1) % 3]] mHX[nA][nA] += 2 mHX[nA][nB] += -2 mHX[nB][nA] += -2 mHX[nB][nB] += 2 mHY[nA][nA] += 2 mHY[nA][nB] += -2 mHY[nB][nA] += -2 mHY[nB][nB] += 2 # extract HX00 and HY00 matrices mHX00 = np.zeros((nFreeVerts, nFreeVerts), dtype=float) mHY00 = np.zeros((nFreeVerts, nFreeVerts), dtype=float) dim = np.shape(mHX00) row, col = dim[0], dim[1] mHX00 = _extractSubMatrix(mHX, 0, 0, row, col) dim = np.shape(mHY00) row, col = dim[0], dim[1] mHY00 = _extractSubMatrix(mHY, 0, 0, row, col) # extract HX01 and HX10 matrices mHX01 = np.zeros((nFreeVerts, nConstraints), dtype=float) mHX10 = np.zeros((nConstraints, nFreeVerts), dtype=float) dim = np.shape(mHX01) row, col = dim[0], dim[1] mHX01 = _extractSubMatrix(mHX, 0, nFreeVerts, row, col) dim = np.shape(mHX10) row, col = dim[0], dim[1] mHX10 = _extractSubMatrix(mHX, nFreeVerts, 0, row, col) # extract HY01 and HY10 matrices mHY01 = np.zeros((nFreeVerts, nConstraints), dtype=float) mHY10 =
np.zeros((nConstraints, nFreeVerts), dtype=float)
numpy.zeros
# -*- coding: iso-8859-1 -*- """ This code plots the scattering limit test of our code. """ ######################## ###Import useful libraries ######################## import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import pdb import pickle deg2rad=np.pi/180. def cm2inch(cm): #function to convert cm to inches; useful for complying with Astrobiology size guidelines return cm/2.54 ######################## ###A=0 ######################## ###z=0 fnetdict=pickle.load(open('./TwoStreamOutput/rugheimer_earth_epoch0_w0=1-1e-12_a=0_z=0.p','rb')) F_net=fnetdict['F_net'] #net flux in each layer, 0th layer is TOA, erg/s/cm2/nm wav_leftedges=fnetdict['wav_leftedges'] #nm wav_rightedges=fnetdict['wav_rightedges'] #nm wav_centers=fnetdict['wav_centers'] #nm z_lower=fnetdict['z_lower'] #cm, 0th layer is TOA z_upper=fnetdict['z_upper'] #cm z_center=fnetdict['z_center'] #cm flux_toa=fnetdict['flux_toa'] #TOA "flux" (really intensity) in erg/s/cm2/nm (cgs) solarzenithangle=fnetdict['solarzenithangle'] #radians N_wavelengths=np.size(wav_centers) ###NOTE: We assume wavelength structure is the same for all of these (!!!) direct_flux_toa=np.cos(solarzenithangle)*flux_toa #true TOA flux F_net_deviation=np.zeros(np.shape(F_net)) F_net_deviation_max=np.zeros(N_wavelengths) F_net_deviation_stddevs=np.zeros(N_wavelengths) F_net_deviation_median=np.zeros(N_wavelengths) for ind in range(0, N_wavelengths): median_val=np.median(F_net[:,ind]) F_net_deviation_median[ind]=median_val F_net_deviation[:,ind]=F_net[:,ind]-median_val F_net_deviation_max[ind]=np.max(np.abs(F_net_deviation[:,ind])) F_net_deviation_stddevs[ind]=np.std(F_net[:,ind]) F_net_deviation_max_normalized_0_0=F_net_deviation_max/(direct_flux_toa) F_net_deviation_stddevs_normalized_0_0=F_net_deviation_stddevs/(direct_flux_toa) ###z=60 fnetdict=pickle.load(open('./TwoStreamOutput/rugheimer_earth_epoch0_w0=1-1e-12_a=0_z=60.p','rb')) F_net=fnetdict['F_net'] #net flux in each layer, 0th layer is TOA, erg/s/cm2/nm wav_leftedges=fnetdict['wav_leftedges'] #nm wav_rightedges=fnetdict['wav_rightedges'] #nm wav_centers=fnetdict['wav_centers'] #nm z_lower=fnetdict['z_lower'] #cm, 0th layer is TOA z_upper=fnetdict['z_upper'] #cm z_center=fnetdict['z_center'] #cm flux_toa=fnetdict['flux_toa'] #TOA "flux" (really intensity) in erg/s/cm2/nm (cgs) solarzenithangle=fnetdict['solarzenithangle'] #radians direct_flux_toa=np.cos(solarzenithangle)*flux_toa #true TOA flux F_net_deviation=np.zeros(np.shape(F_net)) F_net_deviation_max=np.zeros(N_wavelengths) F_net_deviation_stddevs=np.zeros(N_wavelengths) F_net_deviation_median=np.zeros(N_wavelengths) for ind in range(0, N_wavelengths): median_val=np.median(F_net[:,ind]) F_net_deviation_median[ind]=median_val F_net_deviation[:,ind]=F_net[:,ind]-median_val F_net_deviation_max[ind]=np.max(np.abs(F_net_deviation[:,ind])) F_net_deviation_stddevs[ind]=np.std(F_net[:,ind]) F_net_deviation_max_normalized_0_60=F_net_deviation_max/(direct_flux_toa) F_net_deviation_stddevs_normalized_0_60=F_net_deviation_stddevs/(direct_flux_toa) ###z=85 fnetdict=pickle.load(open('./TwoStreamOutput/rugheimer_earth_epoch0_w0=1-1e-12_a=0_z=85.p','rb')) F_net=fnetdict['F_net'] #net flux in each layer, 0th layer is TOA, erg/s/cm2/nm wav_leftedges=fnetdict['wav_leftedges'] #nm wav_rightedges=fnetdict['wav_rightedges'] #nm wav_centers=fnetdict['wav_centers'] #nm z_lower=fnetdict['z_lower'] #cm, 0th layer is TOA z_upper=fnetdict['z_upper'] #cm z_center=fnetdict['z_center'] #cm flux_toa=fnetdict['flux_toa'] #TOA "flux" (really intensity) in erg/s/cm2/nm (cgs) solarzenithangle=fnetdict['solarzenithangle'] #radians direct_flux_toa=np.cos(solarzenithangle)*flux_toa #true TOA flux F_net_deviation=np.zeros(np.shape(F_net)) F_net_deviation_max=np.zeros(N_wavelengths) F_net_deviation_stddevs=np.zeros(N_wavelengths) F_net_deviation_median=np.zeros(N_wavelengths) for ind in range(0, N_wavelengths): median_val=np.median(F_net[:,ind]) F_net_deviation_median[ind]=median_val F_net_deviation[:,ind]=F_net[:,ind]-median_val F_net_deviation_max[ind]=np.max(np.abs(F_net_deviation[:,ind])) F_net_deviation_stddevs[ind]=np.std(F_net[:,ind]) F_net_deviation_max_normalized_0_85=F_net_deviation_max/(direct_flux_toa) F_net_deviation_stddevs_normalized_0_85=F_net_deviation_stddevs/(direct_flux_toa) ######################## ###A=0.20 ######################## ###z=0 fnetdict=pickle.load(open('./TwoStreamOutput/rugheimer_earth_epoch0_w0=1-1e-12_a=0.2_z=0.p','rb')) F_net=fnetdict['F_net'] #net flux in each layer, 0th layer is TOA, erg/s/cm2/nm wav_leftedges=fnetdict['wav_leftedges'] #nm wav_rightedges=fnetdict['wav_rightedges'] #nm wav_centers=fnetdict['wav_centers'] #nm z_lower=fnetdict['z_lower'] #cm, 0th layer is TOA z_upper=fnetdict['z_upper'] #cm z_center=fnetdict['z_center'] #cm flux_toa=fnetdict['flux_toa'] #TOA "flux" (really intensity) in erg/s/cm2/nm (cgs) solarzenithangle=fnetdict['solarzenithangle'] #radians direct_flux_toa=np.cos(solarzenithangle)*flux_toa #true TOA flux F_net_deviation=np.zeros(np.shape(F_net)) F_net_deviation_max=np.zeros(N_wavelengths) F_net_deviation_stddevs=np.zeros(N_wavelengths) F_net_deviation_median=np.zeros(N_wavelengths) for ind in range(0, N_wavelengths): median_val=np.median(F_net[:,ind]) F_net_deviation_median[ind]=median_val F_net_deviation[:,ind]=F_net[:,ind]-median_val F_net_deviation_max[ind]=np.max(np.abs(F_net_deviation[:,ind])) F_net_deviation_stddevs[ind]=np.std(F_net[:,ind]) F_net_deviation_max_normalized_p245_0=F_net_deviation_max/(direct_flux_toa) F_net_deviation_stddevs_normalized_p245_0=F_net_deviation_stddevs/(direct_flux_toa) ###z=60 fnetdict=pickle.load(open('./TwoStreamOutput/rugheimer_earth_epoch0_w0=1-1e-12_a=0.2_z=60.p','rb')) F_net=fnetdict['F_net'] #net flux in each layer, 0th layer is TOA, erg/s/cm2/nm wav_leftedges=fnetdict['wav_leftedges'] #nm wav_rightedges=fnetdict['wav_rightedges'] #nm wav_centers=fnetdict['wav_centers'] #nm z_lower=fnetdict['z_lower'] #cm, 0th layer is TOA z_upper=fnetdict['z_upper'] #cm z_center=fnetdict['z_center'] #cm flux_toa=fnetdict['flux_toa'] #TOA "flux" (really intensity) in erg/s/cm2/nm (cgs) solarzenithangle=fnetdict['solarzenithangle'] #radians direct_flux_toa=np.cos(solarzenithangle)*flux_toa #true TOA flux F_net_deviation=np.zeros(np.shape(F_net)) F_net_deviation_max=np.zeros(N_wavelengths) F_net_deviation_stddevs=np.zeros(N_wavelengths) F_net_deviation_median=np.zeros(N_wavelengths) for ind in range(0, N_wavelengths): median_val=np.median(F_net[:,ind]) F_net_deviation_median[ind]=median_val F_net_deviation[:,ind]=F_net[:,ind]-median_val F_net_deviation_max[ind]=np.max(np.abs(F_net_deviation[:,ind])) F_net_deviation_stddevs[ind]=np.std(F_net[:,ind]) F_net_deviation_max_normalized_p245_60=F_net_deviation_max/(direct_flux_toa) F_net_deviation_stddevs_normalized_p245_60=F_net_deviation_stddevs/(direct_flux_toa) ###z=85 fnetdict=pickle.load(open('./TwoStreamOutput/rugheimer_earth_epoch0_w0=1-1e-12_a=0.2_z=85.p','rb')) F_net=fnetdict['F_net'] #net flux in each layer, 0th layer is TOA, erg/s/cm2/nm wav_leftedges=fnetdict['wav_leftedges'] #nm wav_rightedges=fnetdict['wav_rightedges'] #nm wav_centers=fnetdict['wav_centers'] #nm z_lower=fnetdict['z_lower'] #cm, 0th layer is TOA z_upper=fnetdict['z_upper'] #cm z_center=fnetdict['z_center'] #cm flux_toa=fnetdict['flux_toa'] #TOA "flux" (really intensity) in erg/s/cm2/nm (cgs) solarzenithangle=fnetdict['solarzenithangle'] #radians direct_flux_toa=np.cos(solarzenithangle)*flux_toa #true TOA flux F_net_deviation=np.zeros(np.shape(F_net)) F_net_deviation_max=np.zeros(N_wavelengths) F_net_deviation_stddevs=np.zeros(N_wavelengths) F_net_deviation_median=
np.zeros(N_wavelengths)
numpy.zeros
# -*- coding: utf-8 -*- import os #OS関連処理用モジュールの読込 import sys #システム関連処理用モジュールの読込 import time #時間関連処理用モジュールの読込 import numpy as np #行列処理用モジュールの読込 import math as mt #各種計算用モジュールの読込 import cv2 #画像処理用モジュールの読込 import glob #ファイルパス一括取得用モジュールの読込 from PySide2 import QtCore, QtGui, QtWidgets #GUI関連処理用モジュールの読込 from MIIL_DATASET_CREATER_A_GUI import Ui_MainWindow #QT Designerで作成し変換したファイルの読込 from getRectanglePos import getRectanglePos #2点の何れかが選択領域の開始点(左上)になり、終点(左下)になるか判定し、さらに終点が指定した範囲にあるかるか確認するライブラリ from getRotatedRectanglePos import getRotatedRectanglePos #座標回転後の四角内包座取得用モジュールの読込 from getRotatedPos import getRotatedPos #回転座標取得用モジュールの読込 import shutil #ドライブ操作用モジュールの読込 import random #####グローバル変数######################################## cap = 0 #cap = cv2.VideoCapture(0) #キャプチャーオブジェクトを作成 #cap.set(3, 320) #3 = CV_CAP_PROP_FRAME_WIDTH #cap.set(4, 240) #4 = CV_CAP_PROP_FRAME_HEIGHT capLoop = 0 #動画を表示中か判定するフラグ #camWidth = 320 #動画の横サイズ #camHeight = 240 #動画の縦サイズ sStartFlag = 0 #領域選択開始フラグ sFlag = 0 #領域選択成功フラグ mX1 = 0 #マウスボタンを押した時の横方向の座標 mY1 = 0 #マウスボタンを押した時の縦方向の座標 mX2 = 0 #マウスボタンを離した時の横方向の座標 mY2 = 0 #マウスボタンを離した時の縦方向の座標 ssX = 0 #選択領域開始点(左上)の横方向座標 ssY = 0 #選択領域開始点(左上)の縦方向座標 seX = 0 #選択領域終点(右下)の横方向座標(デフォルトではフレームワークで未使用) seY = 0 #選択領域終点(右下)の縦方向座標(デフォルトではフレームワークで未使用) sXL = 0 #選択領域の横方向座標の長さ(開始点+長さで終点を求める場合は1を引く) sYL = 0 #選択領域の縦方向座標の長さ(開始点+長さで終点を求める場合は1を引く) ######フレームワーク以外のグローバル変数変数######################################## FileNum = 0 #読込んだファイル数を記憶 DirPath = "" #写真が保存してあるフォルダパスを記憶 SettingDataDir = "" #領域生データ保存用フォルダ AnnotationDir = "" #アノテーションデータ保存用フォルダ #DarknetAnnotationDir = "" #Darknetアノテーションデータ保存用フォルダ SettingList = [] #設定データ保存用リスト CurPic = "" #読込んだ画像データ CurPicWidth = 0 CurPicHeight = 0 CapWidth = 320 #キャプチャー用Width CapHeight = 240 #キャプチャー用Height fourcc = cv2.VideoWriter_fourcc(*'MJPG') aviOut = cv2.VideoWriter() cFlag = 0 #1フレーム読込み用 rnFlag = 0 #1を設定した場合、listWidget2のイベント発生時に処理をしないようにする。 trimMode = 0 #トリムモード用フラグ tw = 0 #トリムモード用Width th = 0 #トリムモード用Height label_color ={} #各ラベルのカラーコード保存用ディクショナリ color_code = 255 #カラーコード保存用変数 label_pos = {} #各ラベルのカラーパターン保存用ディクショナリ color_pos = 0 #カラーパターン保存用変数 curLabel = 0 #現在のラベル番号 #####各種処理用関数######################################## #=====メインループ処理======================================== #スタートボタンで開始 def mainLoop(): global capLoop global sStartFlag global sFlag global ssX global ssY global sXL global sYL global FileNum global DirPath global cFlag global aviOut global CurPic global CurPicWidth global CurPicHeight global label_color global label_pos global color_pos global color_code global curLabel curLabelColor1 = 2550 #現在のラベル表示色 curLabelColor2 = 1550 #現在のラベル表示色 while(True): if capLoop == 1: ########## #カメラから写真を取得するモード ########## if win.ui.radioButton1.isChecked() == True: ##########CAMERA INPUT MODE########## ret, frame = cap.read() if ret == True: #frame = gray(frame) ########## frameB = frameとした場合、frameBに対する処理がframeに反映されてしまう ########## frameと同じサイズの空画像frameBを作成し、そこにframeコピーする事で上記の問題は改善出来る frameB = np.copy(frame) #画像を画像にコピー ########## ########## #!!!!!!!!!!openCVの処理は此処で行う!!!!!!!!!! if trimMode == 1: #トリムモードで領域が選択されている場合 trimY = int((CapHeight - int(th)) / 2) trimX = int((CapWidth - int(tw)) / 2) frameB = frameB[trimY:trimY + int(th), trimX:trimX + int(tw)] #指定したサイズに画像をトリム cv2.imshow("MIIL MDC CAMERA MODE",frameB) cvKey = cv2.waitKey(1) if cvKey == 32: ##########SPACE KEY########## cv2.imwrite(DirPath + '/' + str(FileNum) + '.jpg', frameB) time.sleep(0.5) f = open(DirPath + '/' + str(FileNum) + '.txt', "w") f.write('') f.close() win.ui.listWidget2.addItem(str(FileNum)) Lpos = win.ui.listWidget2.count() - 1 win.ui.listWidget2.setCurrentRow(Lpos) app.processEvents() #ボタン処理のタイミング確認用 if capLoop == 1: font_size = 2 font = cv2.FONT_HERSHEY_PLAIN cv2.putText(frameB, str(FileNum) + '.jpg SAVED.' , (5, 25), font, font_size,(0, 0, 255), 1) cv2.imshow("MIIL MDC CAMERA MODE",frameB) app.processEvents() time.sleep(1) app.processEvents() #ボタン処理のタイミング確認用 if capLoop == 1: cv2.imshow("MIIL MDC CAMERA MODE",frameB) FileNum += 1 else: msgbox = QtWidgets.QMessageBox() msgbox.setWindowTitle("MDC") msgbox.setText("Failed to process video.\nPlease change camera ID or camera resolution to capture.") #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 break #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ########## #認識領域描画モード ########## elif win.ui.radioButton2.isChecked() == True: ##########LABEL DRAWING ON PICTURE MODE########## frame = np.copy(CurPic) if capLoop == 1: #frame = gray(frame) ########## frameB = frameとした場合、frameBに対する処理がframeに反映されてしまう ########## frameと同じサイズの空画像frameBを作成し、そこにframeコピーする事で上記の問題は改善出来る frameB = np.copy(frame) #画像を画像にコピー ########## ########## #!!!!!!!!!!openCVの処理は此処で行う!!!!!!!!!! curLabelProcess = 0 if len(SettingList) > 0: for x in SettingList: ROW, LABEL,TX, TY, BX, BY = x.split(',') if(LABEL in label_color) == False: #ラベル名がラベル色保存用ディクショナリにないか確認 label_color[LABEL] = color_code #ラベルに対する色を保存 label_pos[LABEL] = color_pos #ラベルに対するカラーパターンを保存 color_pos += 1 if color_pos == 6: #6パターン毎に色の明度を下げる color_pos = 0 color_code -= 10 TX = int(TX) TY = int(TY) BX = int(BX) BY = int(BY) font_size = 1 #フォントサイズを指定 #pix_size = 10 font = cv2.FONT_HERSHEY_PLAIN #フォントを指定 if curLabelProcess == curLabel: curCol1 = int(curLabelColor1 / 10) curCol2 = int(curLabelColor2 / 10) cv2.putText(frameB, LABEL,(TX - 6, TY - 1), font, font_size, (curCol2, curCol2, curCol2), 1) #ラベル名の影を描画 cv2.putText(frameB, LABEL,(TX - 7, TY - 2), font, font_size, (curCol1, curCol1, curCol1), 1) #ラベル名を描画 cv2.rectangle(frameB, (TX + 1, TY + 1), (BX, BY), (curCol2, curCol2, curCol2), 1) #検出領域に枠の影を描画 cv2.rectangle(frameB, (TX, TY), (BX - 1, BY - 1), (curCol1, curCol1, curCol1), 1) #検出領域に枠を描画 else: if label_pos[LABEL] == 0: #パターン0の色設定 cv2.putText(frameB, LABEL,(TX - 6, TY - 1), font, font_size, (0, 0, 0), 1) #ラベル名の影を描画 cv2.putText(frameB, LABEL,(TX - 7, TY - 2), font, font_size, (label_color[LABEL], 0, 0), 1) #ラベル名を描画 cv2.rectangle(frameB, (TX + 1, TY + 1), (BX, BY), (0, 0, 0), 1) #検出領域に枠の影を描画 cv2.rectangle(frameB, (TX, TY), (BX - 1, BY - 1), (label_color[LABEL], 0, 0), 1) #検出領域に枠を描画 elif label_pos[LABEL] == 1: #パターン1の色設定 cv2.putText(frameB, LABEL,(TX - 6, TY - 1), font, font_size, (0, 0, 0), 1) #ラベル名の影を描画 cv2.putText(frameB, LABEL,(TX - 7, TY - 2), font, font_size, (0, label_color[LABEL], 0), 1) #ラベル名を描画 cv2.rectangle(frameB, (TX + 1, TY + 1), (BX, BY), (0, 0, 0), 1) #検出領域に枠の影を描画 cv2.rectangle(frameB, (TX, TY), (BX - 1, BY - 1), (0, label_color[LABEL], 0), 1) #検出領域に枠を描画 elif label_pos[LABEL] == 2: #パターン2の色設定 cv2.putText(frameB, LABEL,(TX - 6, TY - 1), font, font_size, (0, 0, 0), 1) #ラベル名の影を描画 cv2.putText(frameB, LABEL,(TX - 7, TY - 2), font, font_size, (0, 0, label_color[LABEL]), 1) #ラベル名を描画 cv2.rectangle(frameB, (TX + 1, TY + 1), (BX, BY), (0, 0, 0), 1) #検出領域に枠の影を描画 cv2.rectangle(frameB, (TX, TY), (BX - 1, BY - 1), (0, 0, label_color[LABEL]), 1) #検出領域に枠を描画 elif label_pos[LABEL] == 3: #パターン3の色設定 cv2.putText(frameB, LABEL,(TX - 6, TY - 1), font, font_size, (0, 0, 0), 1) #ラベル名の影を描画 cv2.putText(frameB, LABEL,(TX - 7, TY - 2), font, font_size, (label_color[LABEL], label_color[LABEL], 0), 1) #ラベル名を描画 cv2.rectangle(frameB, (TX + 1, TY + 1), (BX, BY), (0, 0, 0), 1) #検出領域に枠の影を描画 cv2.rectangle(frameB, (TX, TY), (BX - 1, BY - 1), (label_color[LABEL], label_color[LABEL], 0), 1) #検出領域に枠を描画 elif label_pos[LABEL] == 4: #パターン4の色設定 cv2.putText(frameB, LABEL,(TX - 6, TY - 1), font, font_size, (0, 0, 0), 1) #ラベル名の影を描画 cv2.putText(frameB, LABEL,(TX - 7, TY - 2), font, font_size, (label_color[LABEL], 0, label_color[LABEL]), 1) #ラベル名を描画 cv2.rectangle(frameB, (TX + 1, TY + 1), (BX, BY), (0, 0, 0), 1) #検出領域に枠の影を描画 cv2.rectangle(frameB, (TX, TY), (BX - 1, BY - 1), (label_color[LABEL], 0, label_color[LABEL]), 1) #検出領域に枠を描画 elif label_pos[LABEL] == 5: #パターン5の色設定 cv2.putText(frameB, LABEL,(TX - 6, TY - 1), font, font_size, (0, 0, 0), 1) #ラベル名の影を描画 cv2.putText(frameB, LABEL,(TX - 7, TY - 2), font, font_size, (0, label_color[LABEL], label_color[LABEL]), 1) #ラベル名を描画 cv2.rectangle(frameB, (TX + 1, TY + 1), (BX, BY), (0, 0, 0), 1) #検出領域に枠の影を描画 cv2.rectangle(frameB, (TX, TY), (BX - 1, BY - 1), (0, label_color[LABEL], label_color[LABEL]), 1) #検出領域に枠を描画 curLabelProcess += 1 curLabelColor1 -= 5 curLabelColor2 -= 5 if curLabelColor1 < 1550: curLabelColor1 = 2550 if curLabelColor2 < 550: curLabelColor2 = 1550 else: cv2.rectangle(frameB, (0, 0), (CurPicWidth - 1, CurPicHeight - 1), (0, 0, 255), 1) font_size = 1 font = cv2.FONT_HERSHEY_PLAIN cv2.putText(frameB, 'EXCLUDE', (10, 20),font, font_size,(0,0,255),1) if sStartFlag == 1: #領域選択開始後の処理 frameB = cv2.rectangle(frameB, (ssX, ssY), (sXL, sYL), (0, 0, 255), 1) if trimMode == 1: cv2.rectangle(frameB, (mX1, mY1), (mX1 + int(tw) - 1, mY1 + int(th) - 1), (255, 0, 0), 1) cvKey = cv2.waitKey(1) Lcnt1 = win.ui.listWidget1.count() cur1 = win.ui.listWidget1.currentRow() Lcnt2 = win.ui.listWidget2.count() cur2 = win.ui.listWidget2.currentRow() if cvKey == 113 and Lcnt1 > 0: ##########KEY Q########## if cur1 - 1 >= 0: cur1 = cur1 - 1 win.ui.listWidget1.setCurrentRow(cur1) elif cvKey == 97 and Lcnt1 > 0: ##########KEY A########## if cur1 + 1 <= Lcnt1 - 1: cur1 = cur1 + 1 win.ui.listWidget1.setCurrentRow(cur1) elif cvKey == 119 and Lcnt2 > 0: ##########KEY W########## if cur2 - 1 >= 0: cur2 = cur2 - 1 win.ui.listWidget2.setCurrentRow(cur2) elif cvKey == 115 and Lcnt2 > 0: ##########KEY S########## if cur2 + 1 <= Lcnt2 - 1: cur2 = cur2 + 1 win.ui.listWidget2.setCurrentRow(cur2) elif cvKey == 101 and Lcnt2 > 0: ##########KEY E########## if curLabel - 1 >= 0: curLabel = curLabel - 1 elif cvKey == 100 and Lcnt2 > 0: ##########KEY D########## if curLabel + 1 <= len(SettingList) - 1: curLabel = curLabel + 1 elif cvKey == 98 and Lcnt2 > 0 and len(SettingList) > 0: ##########KEY B########## del SettingList[curLabel] filepath = SettingDataDir + '/' + win.ui.listWidget2.currentItem().text() + '.set' filepath2 = AnnotationDir + '/' + win.ui.listWidget2.currentItem().text() + '.xml' filepath3 = DirPath + '/' + win.ui.listWidget2.currentItem().text() + '.txt' if len(SettingList) > 0: text = "" for x in SettingList: text = text + x + "\n" f = open(filepath, "w") f.writelines(text) f.close() fY = CurPic.shape[0] fX = CurPic.shape[1] text2 = '<annotation>' + '\n<filename>' + win.ui.listWidget2.currentItem().text() + '.jpg</filename>\n<size>\n<width>' + str(fX) + '</width>' + '\n' + '<height>' + str(fY) + '</height>\n</size>\n' for x in SettingList: ROW, LABEL,TX, TY, BX, BY = x.split(',') text2 = text2 + '<object>\n<name>' + LABEL + '</name>\n<bndbox>' + '\n' + '<xmin>' + str(int(TX)) + '</xmin>' + '\n' + '<ymin>' + str(int(TY)) + '</ymin>' + '\n' + '<xmax>' + str(int(BX)) + '</xmax>' + '\n' + '<ymax>' + str(int(BY)) + '</ymax>\n</bndbox>\n</object>\n' text2 = text2 + '</annotation>\n' f = open(filepath2, "w") f.writelines(text2) f.close() text3 = "" for x in SettingList: ROW, LABEL,TX, TY, BX, BY = x.split(',') cw = 1 / CurPicWidth ch = 1 / CurPicHeight cnx = (int(TX) + int(BX)) / 2 cny = (int(TY) + int(BY)) / 2 cnw = int(BX) - int(TX) cnh = int(BY) - int(TY) cnx = cnx * cw cny = cny * ch cnw = cnw * cw cnh = cnh * ch text3 = text3 + ROW + ' ' + str(cnx) + ' ' + str(cny) + ' ' + str(cnw) + ' ' + str(cnh) + '\n' f = open(filepath3, "w") f.writelines(text3) f.close() else: if os.path.isfile(filepath): os.remove(filepath) if os.path.isfile(filepath2): os.remove(filepath2) if os.path.isfile(filepath3) == False: f = open(filepath3, "w") f.write('') f.close() curLabel = 0 elif cvKey == 116 and Lcnt2 > 0 and trimMode == 1: ##########KEY T########## if mX1 > 0 and mY1 and mX1 + int(tw) - 1 <= CurPicWidth and mY1 + int(th) - 1 <= CurPicHeight: frameB = frame[mY1:mY1 + int(th), mX1:mX1 + int(tw)] cv2.imwrite(DirPath + '/' + win.ui.listWidget2.currentItem().text() +'.jpg', frameB) CurPic = frameB CurPicHeight = CurPic.shape[0] CurPicWidth = CurPic.shape[1] sFile = SettingDataDir + '/' + win.ui.listWidget2.currentItem().text() +'.set' aFile = AnnotationDir + '/' + win.ui.listWidget2.currentItem().text() +'.xml' dFile = DirPath + '/' + win.ui.listWidget2.currentItem().text() +'.txt' if os.path.isfile(sFile): os.remove(sFile) SettingList.clear() if os.path.isfile(aFile): os.remove(aFile) if os.path.isfile(dFile): os.remove(dFile) if os.path.isfile(dFile) == False: f = open(dFile, "w") f.write('') f.close() elif cvKey == 27 and Lcnt2 > 0: ##########KEY ESC########## sFile = SettingDataDir + '/' + win.ui.listWidget2.currentItem().text() +'.set' aFile = AnnotationDir + '/' + win.ui.listWidget2.currentItem().text() +'.xml' dFile = DirPath + '/' + win.ui.listWidget2.currentItem().text() +'.txt' if os.path.isfile(sFile): os.remove(sFile) SettingList.clear() if os.path.isfile(aFile): os.remove(aFile) if os.path.isfile(dFile): os.remove(dFile) if os.path.isfile(dFile) == False: f = open(dFile, "w") f.write('') f.close() app.processEvents() #ボタン処理のタイミング確認用 if capLoop == 1: currentListIndex = win.ui.listWidget2.currentRow() if currentListIndex != -1: cv2.imshow("MIIL MDC DRAW MODE",frameB) cv2.setMouseCallback("MIIL MDC DRAW MODE", onInput) else: break #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ########## #ビデオ録画モード ########## elif win.ui.radioButton3.isChecked() == True: ##########VIDEO RECORDING MODE########## ret, frame = cap.read() if ret == True: frameB = np.copy(frame) #画像を画像にコピー if capLoop == 1: cv2.imshow("MIIL MDC VIDEO MODE",frameB) aviOut.write(frameB) app.processEvents() #ボタン処理のタイミング確認用 else: msgbox = QtWidgets.QMessageBox() msgbox.setWindowTitle("MDC") msgbox.setText("Failed to process video.\nPlease change camera ID or camera resolution to capture.") #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 break #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ########## #ビデオファイルから写真を取得するモード ########## elif win.ui.radioButton4.isChecked() == True: ##########GET PICTRE FROM VIDEO FILE########## if cFlag == 1: ret, frame = cap.read() cFlag = 0 if ret == True: frameB = np.copy(frame) #画像を画像にコピー else: msgbox = QtWidgets.QMessageBox() msgbox.setWindowTitle("MDC") msgbox.setText("Failed to process video.\nIf reading from the video is not done, please change camera ID or camera resolution to capture.") #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 break cvKey = cv2.waitKey(1) if cvKey == 32: ##########KEY SPACE########## cv2.imwrite(DirPath + '/' + str(FileNum) + '.jpg', frame) f = open(DirPath + '/' + str(FileNum) + '.txt', "w") f.write('') f.close() win.ui.listWidget2.addItem(str(FileNum)) Lpos = win.ui.listWidget2.count() -1 win.ui.listWidget2.setCurrentRow(Lpos) app.processEvents() #ボタン処理のタイミング確認用 if capLoop == 1: font_size = 2 font = cv2.FONT_HERSHEY_PLAIN cv2.putText(frameB, str(FileNum) + '.jpg SAVED.' , (5, 25), font, font_size,(0, 0, 255), 1) cv2.imshow("MIIL MDC FILE MODE",frameB) app.processEvents() frameB = np.copy(frame) #画像を画像にコピー app.processEvents() #ボタン処理のタイミング確認用 if capLoop == 1: cv2.imshow("MIIL MDC FILE MODE",frameB) FileNum += 1 elif cvKey == 116 and trimMode == 1: ##########KEY T########## fY = frame.shape[0] fX = frame.shape[1] if mX1 > 0 and mY1 and mX1 + int(tw) - 1 <= fX and mY1 + int(th) - 1 <= fY: frameB = frame[mY1:mY1 + int(th), mX1:mX1 + int(tw)] cv2.imwrite(DirPath + '/' + str(FileNum) +'.jpg', frameB) f = open(DirPath + '/' + str(FileNum) + '.txt', "w") f.write('') f.close() app.processEvents() if capLoop == 1: cv2.imshow("MIIL MDC FILE MODE",frameB) app.processEvents() time.sleep(1) win.ui.listWidget2.addItem(str(FileNum)) Lpos = win.ui.listWidget2.count() -1 win.ui.listWidget2.setCurrentRow(Lpos) FileNum += 1 frameB = np.copy(frame) #画像を画像にコピー elif cvKey == 122: ##########KEY Z########## cFlag = 1 app.processEvents() #ボタン処理のタイミング確認用 if capLoop == 1: if trimMode == 1: cv2.rectangle(frameB, (mX1, mY1), (mX1 + int(tw) - 1, mY1 + int(th) - 1), (255, 0, 0), 1) cv2.imshow("MIIL MDC FILE MODE", frameB) cv2.setMouseCallback("MIIL MDC FILE MODE", onInput) else: break app.processEvents() #####Pysideのウィンドウ処理クラス######################################## class MainWindow1(QtWidgets.QMainWindow): #QtWidgets.QMainWindowを継承 #=====GUI用クラス継承の定型文======================================== def __init__(self, parent = None): #クラス初期化時にのみ実行される関数(コンストラクタと呼ばれる) super(MainWindow1, self).__init__(parent) #親クラスのコンストラクタを呼び出す(親クラスのコンストラクタを再利用したい場合) 指定する引数は、親クラスのコンストラクタの引数からselfを除いた引数 self.ui = Ui_MainWindow() #uiクラスの作成。Ui_MainWindowのMainWindowは、QT DesignerのobjectNameで設定した名前 self.ui.setupUi(self) #uiクラスの設定 self.ui.comboBox1.addItems(["320x240", "640x480", "800x600", "1024x768", "1280x960", "1400x1050", "2592x1944", "320x180", "640x360", "1280x720", "1600x900", "1920x1080"]) #####コンボボックスにアイテムを追加 self.ui.comboBox1.setCurrentIndex(0) #####コンボボックスのアイテムを選択 self.ui.comboBox2.addItems(["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10"]) #コンボボックスにアイテムを追加 self.ui.comboBox2.setCurrentIndex(0) #コンボボックスのアイテムを選択 #self.ui.comboBox2.addItems(["0.1", "0.2", "0.3", "0.4", "0.5", "0.6", "0.7", "0.8", "0.9", "1.0"]) #####コンボボックスにアイテムを追加 #self.ui.comboBox2.setCurrentIndex(6) #####コンボボックスのアイテムを選択 #-----シグナルにメッソドを関連付け---------------------------------------- self.ui.listWidget2.currentRowChanged.connect(self.listWidget2_changed) #listWidget2_changedは任意(新方式) self.ui.comboBox1.currentIndexChanged.connect(self.comboBox1_changed) #comboBox1_changedは任意 self.ui.checkBox1.clicked.connect(self.checkBox1_clicked) #checkBox1_clickedは任意 QtCore.QObject.connect(self.ui.pushButton1, QtCore.SIGNAL("clicked()"), self.pushButton1_clicked) #pushButton1_clickedは任意 QtCore.QObject.connect(self.ui.pushButton2, QtCore.SIGNAL("clicked()"), self.pushButton2_clicked) #pushButton2_clickedは任意 QtCore.QObject.connect(self.ui.pushButton3, QtCore.SIGNAL("clicked()"), self.pushButton3_clicked) #pushButton1_clickedは任意 QtCore.QObject.connect(self.ui.pushButton4, QtCore.SIGNAL("clicked()"), self.pushButton4_clicked) #pushButton2_clickedは任意 QtCore.QObject.connect(self.ui.pushButton5, QtCore.SIGNAL("clicked()"), self.pushButton5_clicked) #pushButton1_clickedは任意 QtCore.QObject.connect(self.ui.pushButton6, QtCore.SIGNAL("clicked()"), self.pushButton6_clicked) #pushButton2_clickedは任意 QtCore.QObject.connect(self.ui.pushButton7, QtCore.SIGNAL("clicked()"), self.pushButton7_clicked) #pushButton7_clickedは任意 QtCore.QObject.connect(self.ui.pushButton8, QtCore.SIGNAL("clicked()"), self.pushButton8_clicked) #pushButton8_clickedは任意 QtCore.QObject.connect(self.ui.pushButton9, QtCore.SIGNAL("clicked()"), self.pushButton9_clicked) #pushButton9_clickedは任意 QtCore.QObject.connect(self.ui.pushButton10, QtCore.SIGNAL("clicked()"), self.pushButton10_clicked) #pushButton10_clickedは任意 QtCore.QObject.connect(self.ui.pushButton11, QtCore.SIGNAL("clicked()"), self.pushButton11_clicked) #pushButton11_clickedは任意 QtCore.QObject.connect(self.ui.pushButton12, QtCore.SIGNAL("clicked()"), self.pushButton12_clicked) #pushButton12_clickedは任意 QtCore.QObject.connect(self.ui.pushButton13, QtCore.SIGNAL("clicked()"), self.pushButton13_clicked) #pushButton13_clickedは任意 QtCore.QObject.connect(self.ui.pushButton14, QtCore.SIGNAL("clicked()"), self.pushButton14_clicked) #pushButton14_clickedは任意 QtCore.QObject.connect(self.ui.pushButton15, QtCore.SIGNAL("clicked()"), self.pushButton15_clicked) #pushButton15_clickedは任意 QtCore.QObject.connect(self.ui.pushButton16, QtCore.SIGNAL("clicked()"), self.pushButton16_clicked) #pushButton16_clickedは任意 QtCore.QObject.connect(self.ui.pushButton17, QtCore.SIGNAL("clicked()"), self.pushButton17_clicked) #pushButton17_clickedは任意 QtCore.QObject.connect(self.ui.pushButton18, QtCore.SIGNAL("clicked()"), self.pushButton18_clicked) #pushButton18_clickedは任意 QtCore.QObject.connect(self.ui.pushButton19, QtCore.SIGNAL("clicked()"), self.pushButton19_clicked) #pushButton19_clickedは任意 QtCore.QObject.connect(self.ui.pushButton20, QtCore.SIGNAL("clicked()"), self.pushButton20_clicked) #pushButton20_clickedは任意 QtCore.QObject.connect(self.ui.pushButton21, QtCore.SIGNAL("clicked()"), self.pushButton21_clicked) #pushButton21_clickedは任意 QtCore.QObject.connect(self.ui.pushButton22, QtCore.SIGNAL("clicked()"), self.pushButton22_clicked) #pushButton22_clickedは任意 QtCore.QObject.connect(self.ui.pushButton23, QtCore.SIGNAL("clicked()"), self.pushButton23_clicked) #pushButton23_clickedは任意 QtCore.QObject.connect(self.ui.pushButton24, QtCore.SIGNAL("clicked()"), self.pushButton24_clicked) #pushButton24_clickedは任意 QtCore.QObject.connect(self.ui.pushButton25, QtCore.SIGNAL("clicked()"), self.pushButton25_clicked) #pushButton25_clickedは任意 QtCore.QObject.connect(self.ui.pushButton26, QtCore.SIGNAL("clicked()"), self.pushButton26_clicked) #pushButton26_clickedは任意 QtCore.QObject.connect(self.ui.pushButton27, QtCore.SIGNAL("clicked()"), self.pushButton27_clicked) #pushButton27_clickedは任意 QtCore.QObject.connect(self.ui.pushButton28, QtCore.SIGNAL("clicked()"), self.pushButton28_clicked) #pushButton28_clickedは任意 QtCore.QObject.connect(self.ui.pushButton29, QtCore.SIGNAL("clicked()"), self.pushButton29_clicked) #pushButton29_clickedは任意 QtCore.QObject.connect(self.ui.pushButton30, QtCore.SIGNAL("clicked()"), self.pushButton30_clicked) #pushButton30_clickedは任意 QtCore.QObject.connect(self.ui.pushButton31, QtCore.SIGNAL("clicked()"), self.pushButton31_clicked) #pushButton31_clickedは任意 QtCore.QObject.connect(self.ui.pushButton32, QtCore.SIGNAL("clicked()"), self.pushButton32_clicked) #pushButton32_clickedは任意 QtCore.QObject.connect(self.ui.pushButton33, QtCore.SIGNAL("clicked()"), self.pushButton33_clicked) #pushButton33_clickedは任意 QtCore.QObject.connect(self.ui.pushButton34, QtCore.SIGNAL("clicked()"), self.pushButton34_clicked) #pushButton34_clickedは任意 QtCore.QObject.connect(self.ui.pushButton35, QtCore.SIGNAL("clicked()"), self.pushButton35_clicked) #pushButton35_clickedは任意 QtCore.QObject.connect(self.ui.pushButton36, QtCore.SIGNAL("clicked()"), self.pushButton36_clicked) #pushButton36_clickedは任意 QtCore.QObject.connect(self.ui.pushButton37, QtCore.SIGNAL("clicked()"), self.pushButton37_clicked) #pushButton37_clickedは任意 #=====ウィジットのシグナル処理用メッソド======================================== #-----checkBox1用イベント処理---------------------------------------- def checkBox1_clicked(self): global tw global th global trimMode if self.ui.checkBox1.isChecked() == True: tw = self.ui.lineEdit4.text() th = self.ui.lineEdit5.text() if tw.isdigit() == False or th.isdigit() == False: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText("Need digits.") #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 self.ui.checkBox1.setChecked(False) #チェックを外す elif int(tw) < 100 or int(th) < 100: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText("Value should be more than 100.") #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 self.ui.checkBox1.setChecked(False) #チェックを外す #elif int(tw) > CapWidth or int(th) > CapHeight: #msgbox = QtWidgets.QMessageBox(self) #msgbox.setWindowTitle("MDC") #msgbox.setText("value should be less than the source size.") #メッセージボックスのテキストを設定 #ret = msgbox.exec_() #メッセージボックスを表示 #self.ui.checkBox1.setChecked(False) #チェックを外す else: self.ui.lineEdit4.setEnabled(False) self.ui.lineEdit5.setEnabled(False) #self.ui.comboBox1.setEnabled(False) trimMode = 1 else: self.ui.lineEdit4.setEnabled(True) self.ui.lineEdit5.setEnabled(True) #self.ui.comboBox1.setEnabled(True) trimMode = 0 #-----listWidget2用イベント処理---------------------------------------- def listWidget2_changed(self): global SettingDataDir #領域生データ保存用フォルダ global SettingList #設定データ保存用リスト global CurPic global CurPicWidth global CurPicHeight global sStartFlag global sFlag global curLabel curLabel = 0 currentListIndex = self.ui.listWidget2.currentRow() self.ui.lineEdit6.setText(str(currentListIndex)) if rnFlag == 0 and currentListIndex != -1: #listWidget2のイベント処理が可能な場合。 sStartFlag = 0 sFlag = 0 SettingList.clear() picpath = DirPath + '/' + self.ui.listWidget2.currentItem().text() + '.jpg' if os.path.isfile(picpath): CurPic = cv2.imread(picpath) CurPicHeight = CurPic.shape[0] CurPicWidth = CurPic.shape[1] filepath = SettingDataDir + '/' + self.ui.listWidget2.currentItem().text() + '.set' if os.path.isfile(filepath): #####ファイル名のみの取得 f = open(filepath, "r") text = f.readlines() #改行コードも含む f.close() if len(text) > 0: for setting in text: SettingList.append(setting.replace("\n", "")) else: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText("Something is wrong with setting data.") #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 ##### else: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText("Something is wrong with picture data.") #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 #-----comboBox1用イベント処理---------------------------------------- def comboBox1_changed(self): #global cap global CapWidth global CapHeight res = self.ui.comboBox1.currentText() rx, ry = res.split('x') #cap.set(3, int(rx)) #3 = CV_CAP_PROP_FRAME_WIDTH #cap.set(4, int(ry)) #4 = CV_CAP_PROP_FRAME_HEIGHT CapWidth = int(rx) CapHeight = int(ry) #-----pushButton1用イベント処理---------------------------------------- def pushButton1_clicked(self): global capLoop global aviOut global cap global CapWidth global CapHeight global cFlag global curLabel curLabel = 0 currentListIndex = self.ui.listWidget1.currentRow() currentListIndex2 = self.ui.listWidget2.currentRow() if self.ui.lineEdit1.text() == "" and self.ui.radioButton3.isChecked() != True: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText("Please set a picture folder path.") #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif self.ui.radioButton2.isChecked() == True and currentListIndex2 == -1: #FileNum == 0: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText("No file in the directory.") #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif self.ui.radioButton2.isChecked() == True and currentListIndex == -1: msgbox = QtWidgets.QMessageBox() #####メッセージボックスを準備 msgbox.setWindowTitle("MDC") msgbox.setText("No label selected.") #####メッセージボックスのテキストを設定 ret = msgbox.exec_() #####メッセージボックスを表示 elif self.ui.radioButton3.isChecked() == True and self.ui.lineEdit3.text() == "": msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText("Please set a video file name to save.") #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif self.ui.radioButton4.isChecked() == True and self.ui.lineEdit3.text() == "": msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText("Please open a movie file.") #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif self.ui.radioButton1.isChecked() == True and self.ui.checkBox1.isChecked() == True: if int(tw) > CapWidth or int(th) > CapHeight: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText("Triming size should be less than the source size.") #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif self.ui.radioButton4.isChecked() == True and self.ui.checkBox1.isChecked() == True: if int(tw) > CapWidth or int(th) > CapHeight: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText("Triming size should be less than the source size.") #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 else: self.ui.pushButton1.setEnabled(False) self.ui.pushButton2.setEnabled(True) self.ui.pushButton3.setEnabled(False) self.ui.pushButton4.setEnabled(False) self.ui.pushButton5.setEnabled(False) self.ui.pushButton6.setEnabled(False) self.ui.pushButton7.setEnabled(False) self.ui.pushButton8.setEnabled(False) self.ui.pushButton9.setEnabled(False) self.ui.pushButton11.setEnabled(False) self.ui.pushButton12.setEnabled(False) self.ui.pushButton17.setEnabled(False) self.ui.pushButton20.setEnabled(False) self.ui.pushButton31.setEnabled(False) if win.ui.radioButton2.isChecked() == True: self.ui.pushButton10.setEnabled(True) self.ui.pushButton13.setEnabled(True) self.ui.pushButton14.setEnabled(True) self.ui.pushButton15.setEnabled(True) self.ui.pushButton16.setEnabled(True) self.ui.pushButton18.setEnabled(True) self.ui.pushButton19.setEnabled(True) self.ui.pushButton21.setEnabled(True) self.ui.pushButton22.setEnabled(True) self.ui.pushButton23.setEnabled(True) self.ui.pushButton24.setEnabled(True) self.ui.pushButton25.setEnabled(True) self.ui.pushButton26.setEnabled(True) self.ui.pushButton27.setEnabled(True) self.ui.pushButton28.setEnabled(True) self.ui.pushButton29.setEnabled(True) self.ui.pushButton30.setEnabled(True) self.ui.pushButton32.setEnabled(True) self.ui.pushButton33.setEnabled(True) self.ui.pushButton34.setEnabled(True) self.ui.pushButton35.setEnabled(True) self.ui.pushButton36.setEnabled(True) self.ui.pushButton37.setEnabled(True) self.ui.radioButton1.setEnabled(False) self.ui.radioButton2.setEnabled(False) self.ui.radioButton3.setEnabled(False) self.ui.radioButton4.setEnabled(False) self.ui.lineEdit2.setEnabled(False) self.ui.lineEdit4.setEnabled(False) self.ui.lineEdit5.setEnabled(False) self.ui.checkBox1.setEnabled(False) self.ui.comboBox1.setEnabled(False) self.ui.comboBox2.setEnabled(False) if self.ui.radioButton1.isChecked() == True: cap = cv2.VideoCapture(int(self.ui.comboBox2.currentText())) res = self.ui.comboBox1.currentText() rx, ry = res.split('x') #cap.set(6,cv2.VideoWriter_fourcc(*'MJPG')) #cap.set(5,10) cap.set(3, int(rx)) #3 = CV_CAP_PROP_FRAME_WIDTH cap.set(4, int(ry)) #4 = CV_CAP_PROP_FRAME_HEIGHT CapWidth = int(rx) CapHeight = int(ry) elif self.ui.radioButton3.isChecked() == True: cap = cv2.VideoCapture(int(self.ui.comboBox2.currentText())) res = self.ui.comboBox1.currentText() rx, ry = res.split('x') cap.set(3, int(rx)) #3 = CV_CAP_PROP_FRAME_WIDTH cap.set(4, int(ry)) #4 = CV_CAP_PROP_FRAME_HEIGHT CapWidth = int(rx) CapHeight = int(ry) rate, buttonState = QtWidgets.QInputDialog.getItem(self, "MDC", "Please choose frame rate.", ["1", "2", "3", "4", "5", "10", "20", "30", "60", "120", "144", "240"], 4, False) if buttonState: aviOut = cv2.VideoWriter(self.ui.lineEdit3.text(), fourcc, int(rate), (CapWidth, CapHeight)) else: msgbox = QtWidgets.QMessageBox(self) #####メッセージボックスを準備 msgbox.setWindowTitle("MDC") msgbox.setText("Set frame rate to 20.") #####メッセージボックスのテキストを設定 ret = msgbox.exec_() #####メッセージボックスを表示 aviOut = cv2.VideoWriter(self.ui.lineEdit3.text(), fourcc, 20, (CapWidth, CapHeight)) elif self.ui.radioButton4.isChecked() == True: #cap = cv2.VideoCapture(0) cap = cv2.VideoCapture(self.ui.lineEdit3.text()) cFlag = 1 if capLoop == 0: capLoop = 1 mainLoop() #-----pushButton2用イベント処理---------------------------------------- def pushButton2_clicked(self): global capLoop global sStartFlag global sFlag if capLoop == 1: capLoop = 0 time.sleep(0.2) sStartFlag = 0 sFlag = 0 self.ui.pushButton1.setEnabled(True) self.ui.pushButton2.setEnabled(False) self.ui.pushButton3.setEnabled(True) self.ui.pushButton4.setEnabled(True) self.ui.pushButton5.setEnabled(True) self.ui.pushButton6.setEnabled(True) self.ui.pushButton7.setEnabled(True) self.ui.pushButton8.setEnabled(True) self.ui.pushButton9.setEnabled(True) self.ui.pushButton10.setEnabled(False) self.ui.pushButton11.setEnabled(True) self.ui.pushButton12.setEnabled(True) self.ui.pushButton13.setEnabled(False) self.ui.pushButton14.setEnabled(False) self.ui.pushButton15.setEnabled(False) self.ui.pushButton16.setEnabled(False) self.ui.pushButton17.setEnabled(True) self.ui.pushButton18.setEnabled(False) self.ui.pushButton19.setEnabled(False) self.ui.pushButton20.setEnabled(True) self.ui.pushButton21.setEnabled(False) self.ui.pushButton22.setEnabled(False) self.ui.pushButton23.setEnabled(False) self.ui.pushButton24.setEnabled(False) self.ui.pushButton25.setEnabled(False) self.ui.pushButton26.setEnabled(False) self.ui.pushButton27.setEnabled(False) self.ui.pushButton28.setEnabled(False) self.ui.pushButton29.setEnabled(False) self.ui.pushButton30.setEnabled(False) self.ui.pushButton32.setEnabled(False) self.ui.pushButton33.setEnabled(False) self.ui.pushButton34.setEnabled(False) self.ui.pushButton35.setEnabled(False) self.ui.pushButton36.setEnabled(False) self.ui.pushButton37.setEnabled(False) self.ui.pushButton31.setEnabled(True) self.ui.radioButton1.setEnabled(True) self.ui.radioButton2.setEnabled(True) self.ui.radioButton3.setEnabled(True) self.ui.radioButton4.setEnabled(True) self.ui.lineEdit2.setEnabled(True) self.ui.lineEdit4.setEnabled(True) self.ui.lineEdit5.setEnabled(True) self.ui.checkBox1.setEnabled(True) #if trimMode == 0: self.ui.comboBox1.setEnabled(True) self.ui.comboBox2.setEnabled(True) if self.ui.radioButton1.isChecked() == True: cap.release() #キャプチャー用オブジェクトを廃棄 elif self.ui.radioButton3.isChecked() == True: cap.release() #キャプチャー用オブジェクトを廃棄 aviOut.release() #録画用オブジェクトを廃棄 elif self.ui.radioButton4.isChecked() == True: cap.release() #キャプチャー用オブジェクトを廃棄 cv2.destroyAllWindows() #-----処理開始---------------------------------------- def process_start(self): self.ui.pushButton2.setEnabled(False) self.ui.pushButton10.setEnabled(False) self.ui.pushButton13.setEnabled(False) self.ui.pushButton14.setEnabled(False) self.ui.pushButton15.setEnabled(False) self.ui.pushButton16.setEnabled(False) self.ui.pushButton18.setEnabled(False) self.ui.pushButton19.setEnabled(False) self.ui.pushButton21.setEnabled(False) self.ui.pushButton22.setEnabled(False) self.ui.pushButton23.setEnabled(False) self.ui.pushButton24.setEnabled(False) self.ui.pushButton25.setEnabled(False) self.ui.pushButton26.setEnabled(False) self.ui.pushButton27.setEnabled(False) self.ui.pushButton28.setEnabled(False) self.ui.pushButton29.setEnabled(False) self.ui.pushButton30.setEnabled(False) self.ui.pushButton32.setEnabled(False) self.ui.pushButton33.setEnabled(False) self.ui.pushButton34.setEnabled(False) self.ui.pushButton35.setEnabled(False) self.ui.pushButton36.setEnabled(False) self.ui.pushButton37.setEnabled(False) self.ui.listWidget1.setEnabled(False) self.ui.listWidget2.setEnabled(False) self.ui.lineEdit7.setEnabled(False) self.ui.lineEdit8.setEnabled(False) #-----処理開始---------------------------------------- def process_end(self): self.ui.pushButton2.setEnabled(True) self.ui.pushButton10.setEnabled(True) self.ui.pushButton13.setEnabled(True) self.ui.pushButton14.setEnabled(True) self.ui.pushButton15.setEnabled(True) self.ui.pushButton16.setEnabled(True) self.ui.pushButton18.setEnabled(True) self.ui.pushButton19.setEnabled(True) self.ui.pushButton21.setEnabled(True) self.ui.pushButton22.setEnabled(True) self.ui.pushButton23.setEnabled(True) self.ui.pushButton24.setEnabled(True) self.ui.pushButton25.setEnabled(True) self.ui.pushButton26.setEnabled(True) self.ui.pushButton27.setEnabled(True) self.ui.pushButton28.setEnabled(True) self.ui.pushButton29.setEnabled(True) self.ui.pushButton30.setEnabled(True) self.ui.pushButton32.setEnabled(True) self.ui.pushButton33.setEnabled(True) self.ui.pushButton34.setEnabled(True) self.ui.pushButton35.setEnabled(True) self.ui.pushButton36.setEnabled(True) self.ui.pushButton37.setEnabled(True) self.ui.listWidget1.setEnabled(True) self.ui.listWidget2.setEnabled(True) self.ui.lineEdit7.setEnabled(True) self.ui.lineEdit8.setEnabled(True) #-----pushButton3用イベント処理---------------------------------------- def pushButton3_clicked(self): global FileNum #読込んだファイル数を記憶 global DirPath #写真が保存してあるフォルダパスを記憶 global SettingDataDir #領域生データ保存用フォルダ global AnnotationDir #アノテーションデータ保存用フォルダ global rnFlag #####ディレクトリ選択 DirPath = QtWidgets.QFileDialog.getExistingDirectory(self) #写真が保存してあるフォルダを選択 if DirPath: #フォルダが選択された場合 rnFlag = 1 #listWidget2のイベント発生時に処理をしないようにする。 self.ui.listWidget2.clear() self.ui.lineEdit1.setText(DirPath) #フォルダパスを表示 DN = DirPath.rsplit('/', 1) #フォルダパスの文字列右側から指定文字列で分割 SettingDataDir = DN[0] + '/' + DN[1] + '_setting' AnnotationDir = DN[0] + '/' + DN[1] + '_annotation' if os.path.isdir(SettingDataDir) == False: os.mkdir(SettingDataDir) msgbox = QtWidgets.QMessageBox(self) msgbox.setText(DN[1] + '_setting directory created.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 if os.path.isdir(AnnotationDir) == False: os.mkdir(AnnotationDir) msgbox = QtWidgets.QMessageBox(self) msgbox.setText(DN[1] + '_annotation directory created.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 NumList = [] #ファイルの連番名記憶用リスト FileList = glob.glob(DirPath + '/*.jpg') #フォルダ内の各ファイルパスをリスト形式で取得 for FN in FileList: FN1 = FN.rsplit(".", 1) #ファイルパスの文字列右側から指定文字列で分割 FN1[0] = FN1[0].replace('\\', '/') #globのバグを修正 FN2 = FN1[0].rsplit('/', 1) #ファイルパスの文字列右側から指定文字列で分割 if FN2[1].isdigit() == True: #ファイル名が数字か確認 if os.path.isfile(FN1[0] + '.txt') == False: #画像と同名のテキストファイルがあるか確認 f = open(FN1[0] + '.txt', "w") f.write('') f.close() NumList.append(int(FN2[1])) #ファイルの連番名を取得 NumList.sort() else: print("\nNOTICE : A file whose name is not digit was found while reading jpg files.") print("NOTICE : Please check " + FN2[1] + ".jpg\n") if len(NumList) > 0: FileNum = max(NumList) + 1#ファイルの連番名の最大値を取得 self.ui.listWidget2.clear() for x in NumList: self.ui.listWidget2.addItem(str(x)) rnFlag = 0 self.ui.listWidget2.setCurrentRow(0) else: rnFlag = 0 FileNum = 0 #-----pushButton4用イベント処理---------------------------------------- def pushButton4_clicked(self): #####ファイル読込 filepath, _ = QtWidgets.QFileDialog.getOpenFileName(self, "Open File", "",'lab File (*.lab)') if filepath: #####ファイル名のみの取得 filename1 = filepath.rsplit(".", 1) #ファイルパスの文字列右側から指定文字列で分割 filename2 = filename1[0].rsplit("/", 1) #ファイルパスの文字列右側から指定文字列で分割 #os.chdir(filename2[0] + "/") #カレントディレクトリをファイルパスへ変更 f = open(filepath, "r") text = f.readlines() #改行コードも含む f.close() self.ui.listWidget1.clear() if len(text) > 0: for Label in text: self.ui.listWidget1.addItem(Label.replace("\n", "")) self.ui.listWidget1.setCurrentRow(0) ##### ##### #-----pushButton5用イベント処理---------------------------------------- def pushButton5_clicked(self): #####ファイル書込み Lcount = self.ui.listWidget1.count() if Lcount == 0: msgbox = QtWidgets.QMessageBox(self) #####メッセージボックスを準備 msgbox.setWindowTitle("MDC") msgbox.setText("No item in the list.") #####メッセージボックスのテキストを設定 ret = msgbox.exec_() #####メッセージボックスを表示 return filepath, _ = QtWidgets.QFileDialog.getSaveFileName(self, "Save File", "",'lab File (*.lab)') if filepath: #####ファイル名のみの取得 filename1 = filepath.rsplit(".", 1) #ファイルパスの文字列右側から指定文字列で分割 filename2 = filename1[0].rsplit("/", 1) #ファイルパスの文字列右側から指定文字列で分割 #os.chdir(filename2[0] + "/") #カレントディレクトリをファイルパスへ変更 f = open(filepath, "w") CurRow = 0 text = "" for CurRow in range(Lcount): text = text + self.ui.listWidget1.item(CurRow).text() + "\n" CurRow += 1 f.writelines(text) f.close() msgbox = QtWidgets.QMessageBox(self) #####メッセージボックスを準備 msgbox.setWindowTitle("MDC") msgbox.setText("FILE : Saved.") #####メッセージボックスのテキストを設定 ret = msgbox.exec_() #####メッセージボックスを表示 ##### ##### #-----pushButton6用イベント処理---------------------------------------- def pushButton6_clicked(self): #####リストウィジットにアイテムを追加 if self.ui.lineEdit2.text() == "": msgbox = QtWidgets.QMessageBox(self) #####メッセージボックスを準備 msgbox.setWindowTitle("MDC") msgbox.setText("No text to add.") #####メッセージボックスのテキストを設定 ret = msgbox.exec_() #####メッセージボックスを表示 else: self.ui.listWidget1.addItem(self.ui.lineEdit2.text()) self.ui.listWidget1.setCurrentRow(0) ##### #-----pushButton7用イベント処理---------------------------------------- def pushButton7_clicked(self): #####リストウィジットにアイテムを追加 currentListIndex = self.ui.listWidget1.currentRow() if currentListIndex == -1: msgbox = QtWidgets.QMessageBox(self) #####メッセージボックスを準備 msgbox.setWindowTitle("MDC") msgbox.setText("No item selected.") #####メッセージボックスのテキストを設定 ret = msgbox.exec_() #####メッセージボックスを表示 else: self.ui.listWidget1.takeItem(currentListIndex) ##### #-----pushButton8用イベント処理---------------------------------------- def pushButton8_clicked(self): #####ファイル読込 filepath, _ = QtWidgets.QFileDialog.getSaveFileName(self, "Open File", "",'avi File (*.avi)') if filepath: self.ui.lineEdit3.setText(filepath) #-----pushButton9用イベント処理---------------------------------------- def pushButton9_clicked(self): #####ファイル読込 filepath, _ = QtWidgets.QFileDialog.getOpenFileName(self, "Open File", "",'avi File (*.avi)') if filepath: self.ui.lineEdit3.setText(filepath) #-----pushButton10用イベント処理---------------------------------------- def pushButton10_clicked(self): #####リストウィジットにアイテムを追加 currentListIndex = self.ui.listWidget2.currentRow() if currentListIndex == -1: msgbox = QtWidgets.QMessageBox(self) #####メッセージボックスを準備 msgbox.setWindowTitle("MDC") msgbox.setText("No item selected.") #####メッセージボックスのテキストを設定 ret = msgbox.exec_() #####メッセージボックスを表示 else: fName = self.ui.listWidget2.currentItem().text() self.ui.listWidget2.takeItem(currentListIndex) pFile = DirPath + '/' + fName +'.jpg' sFile = SettingDataDir + '/' + fName +'.set' aFile = AnnotationDir + '/' + fName +'.xml' dFile = DirPath + '/' + fName +'.txt' if os.path.isfile(pFile): os.remove(pFile) if os.path.isfile(sFile): os.remove(sFile) if os.path.isfile(aFile): os.remove(aFile) if os.path.isfile(dFile): os.remove(dFile) cv2.destroyAllWindows() ##### #-----pushButton11用イベント処理---------------------------------------- def pushButton11_clicked(self): msgbox = QtWidgets.QMessageBox(self) ret = msgbox.question(None, "MDC", "Renumber file names.", QtWidgets.QMessageBox.Yes, QtWidgets.QMessageBox.No) #選択用メッセージボックスを表示 if ret == QtWidgets.QMessageBox.Yes: #メッセージボックスでYESが選択された場合 cn, buttonState = QtWidgets.QInputDialog.getInt(self, "MDC", "Please input starting number.", 0, 0, 9999999, 1) if buttonState: global DirPath #写真が保存してあるフォルダパスを記憶 global SettingDataDir #領域生データ保存用フォルダ global AnnotationDir #アノテーションデータ保存用フォルダ #global DarknetAnnotationDir #アノテーションデータ保存用フォルダ global rnFlag global FileNum lCount = self.ui.listWidget2.count() if lCount == 0: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('No item in the list.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 #elif cn.isdigit() == False: #msgbox = QtWidgets.QMessageBox(self) #msgbox.setWindowTitle("MDC") #msgbox.setText('Please input digits.') #メッセージボックスのテキストを設定 #ret = msgbox.exec_() #メッセージボックスを表示 else: rnFlag = 1 iNum = int(cn) cNum = 0 LWitems = [] progC = 0 progP = 0 prog = QtWidgets.QProgressDialog('Renaming files.', None, 0, 100, None, QtCore.Qt.Window | QtCore.Qt.WindowTitleHint | QtCore.Qt.CustomizeWindowHint) prog.setWindowTitle("MDC") prog.setFixedSize(prog.sizeHint()) prog.setValue(progP) prog.show() while(True): self.ui.listWidget2.setCurrentRow(cNum) LWitems.append(iNum) pFile = DirPath + '/' + win.ui.listWidget2.currentItem().text() +'.jpg' npFile = DirPath + '/a' + str(iNum) +'.jpg' sFile = SettingDataDir + '/' + win.ui.listWidget2.currentItem().text() +'.set' nsFile = SettingDataDir + '/a' + str(iNum) +'.set' aFile = AnnotationDir + '/' + win.ui.listWidget2.currentItem().text() +'.xml' naFile = AnnotationDir + '/a' + str(iNum) +'.xml' daFile = DirPath + '/' + win.ui.listWidget2.currentItem().text() +'.txt' dnaFile = DirPath + '/a' + str(iNum) +'.txt' if os.path.isfile(pFile): os.rename(pFile, npFile) if os.path.isfile(sFile): os.rename(sFile, nsFile) if os.path.isfile(aFile): os.rename(aFile, naFile) if os.path.isfile(daFile): os.rename(daFile, dnaFile) iNum += 1 cNum += 1 progC += 1 progP = int(100 * progC / (lCount * 2)) prog.setValue(progP) app.processEvents() if cNum > lCount - 1: break iNum = int(cn) cNum = 0 while(True): pFile = DirPath + '/a' + str(iNum) +'.jpg' npFile = DirPath + '/' + str(iNum) +'.jpg' sFile = SettingDataDir + '/a' + str(iNum) +'.set' nsFile = SettingDataDir + '/' + str(iNum) +'.set' aFile = AnnotationDir + '/a' + str(iNum) +'.xml' naFile = AnnotationDir + '/' + str(iNum) +'.xml' daFile = DirPath + '/a' + str(iNum) +'.txt' dnaFile = DirPath + '/' + str(iNum) +'.txt' if os.path.isfile(pFile): os.rename(pFile, npFile) if os.path.isfile(sFile): os.rename(sFile, nsFile) if os.path.isfile(aFile): os.rename(aFile, naFile) f = open(naFile, "r") text = f.readlines() #改行コードも含む f.close() text2 = "" if len(text) > 0: for line in text: if(("<filename>" in line) == True): line = '<filename>' + str(iNum) +'.jpg' + '</filename>\n' text2 = text2 + line f = open(naFile, "w") f.write(text2) f.close() if os.path.isfile(daFile): os.rename(daFile, dnaFile) iNum += 1 cNum += 1 progC += 1 progP = int(100 * progC / (lCount * 2)) prog.setValue(progP) app.processEvents() if cNum > lCount - 1: break self.ui.listWidget2.clear() LWitems.sort() for x in LWitems: self.ui.listWidget2.addItem(str(x)) FileNum = iNum rnFlag = 0 self.ui.listWidget2.setCurrentRow(0) msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Reumbering done.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 #-----pushButton12用イベント処理---------------------------------------- def pushButton12_clicked(self): ########## #指定したディレクトリのファイル名を連番にする ########## msgbox = QtWidgets.QMessageBox(self) ret = msgbox.question(None, "MDC", "If you would like to renumber file names to serial number, press yes.\nDo not renumber the files in the folder you are currently editing or the folder you have edited.\nOtherwise the data is going to be corrupted!!!\n\nThis function renumbers any files in the folder.\nPlease only place files you want to renumber in the folder.", QtWidgets.QMessageBox.Yes, QtWidgets.QMessageBox.No) #選択用メッセージボックスを表示 if ret == QtWidgets.QMessageBox.Yes: #メッセージボックスでYESが選択された場合 #####ディレクトリ選択 tmpPath = QtWidgets.QFileDialog.getExistingDirectory(self) #写真が保存してあるフォルダを選択 if tmpPath: #フォルダが選択された場合 cn, buttonState = QtWidgets.QInputDialog.getInt(self, "MDC", "Please input starting number.", 0, 0, 9999999, 1) if buttonState: FileList = glob.glob(tmpPath + '/*.jpg') #フォルダ内の各ファイルパスをリスト形式で取得 FileList2 = [] lCount = len(FileList) progC = 0 progP = 0 prog = QtWidgets.QProgressDialog('Renaming files.', None, 0, 100, None, QtCore.Qt.Window | QtCore.Qt.WindowTitleHint | QtCore.Qt.CustomizeWindowHint) prog.setWindowTitle("MDC") prog.setFixedSize(prog.sizeHint()) prog.setValue(progP) prog.show() for FN in FileList: FileList2.append(FN.replace('\\', '/')) #globのバグを修正 print(str(len(FileList))) iNum = cn rF = [] for FN in FileList2: npFile = tmpPath + '/abcdefghijklmnopqrstuvqxyz' + str(iNum) +'.jpg' os.rename(FN, npFile) iNum += 1 progC += 1 progP = int(100 * progC / (lCount * 2)) prog.setValue(progP) app.processEvents() rF.append(npFile) iNum = cn for FN in rF: npFile = tmpPath + '/' + str(iNum) +'.jpg' os.rename(FN, npFile) iNum += 1 progC += 1 progP = int(100 * progC / (lCount * 2)) prog.setValue(progP) app.processEvents() msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Reumbering done.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 ##### #-----pushButton13用イベント処理---------------------------------------- def pushButton13_clicked(self): ########## #現在の画像を回転させ保存する ########## degree, buttonState = QtWidgets.QInputDialog.getItem(self, "MDC", "Please choose dgrees to rotate the pictures.", ["1", "2", "3", "4", "5", "8", "10", "15", "30", "60", "90", "120", "180"], 2, False) if buttonState: self.process_start() if self.ui.listWidget2.count() != -1: self.rotatePic(int(degree)) self.process_end() #-----pushButton14用イベント処理---------------------------------------- def pushButton14_clicked(self): ########## #現在の画像の輝度と色合いを変えて保存する ########## text, buttonState = QtWidgets.QInputDialog.getItem(self, "MDC", "Please choose what to change and add to the list.", ["GAMMA", "COLOR", "GAMMA AND COLOR"], 0, False) if buttonState: if text == "GAMMA": flag = 0 elif text == "COLOR": flag = 1 else: flag = 2 self.process_start() if self.ui.listWidget2.count() != -1: self.cngGamma(flag) self.process_end() #-----pushButton15用イベント処理---------------------------------------- def pushButton15_clicked(self): ########## #リストウィジット内全ての画像ファイルを回転させ保存する ########## SP = self.ui.lineEdit7.text() EP = self.ui.lineEdit8.text() if self.ui.listWidget2.count() == -1: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('No file in the directory.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif SP.isdigit() == False: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Please input digit for start position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif EP.isdigit() == False: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Please input digit for end position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif int(SP) > int(EP): msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Start position should be equal or smaller than end position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif int(SP) > self.ui.listWidget2.count() - 1: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Start position should be equal or smaller than max picture position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif int(EP) > self.ui.listWidget2.count() - 1: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('End position should be equal or smaller than max picture position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 else: SP = int(SP) EP = int(EP) + 1 msgbox = QtWidgets.QMessageBox(self) ret = msgbox.question(None, "MDC", "Create rotated files from pictures in the list?", QtWidgets.QMessageBox.Yes, QtWidgets.QMessageBox.No) #選択用メッセージボックスを表示 if ret == QtWidgets.QMessageBox.Yes: #メッセージボックスでYESが選択された場合 degree, buttonState = QtWidgets.QInputDialog.getItem(self, "MDC", "Please choose dgrees to rotate the pictures.", ["1", "2", "3", "4", "5", "8", "10", "15", "30", "60", "90", "120", "180"], 2, False) if buttonState: step, buttonState = QtWidgets.QInputDialog.getInt(self, "MDC", "Please choose steps.", 1, 0, 100, 1) if buttonState: self.process_start() #listItemCount = self.ui.listWidget2.count() #if self.ui.listWidget2.count() != -1: count = 0 for x in range(SP, EP): self.ui.listWidget2.setCurrentRow(x) count += 1 if count == step: self.rotatePic(int(degree)) app.processEvents() count = 0 self.process_end() #-----pushButton16用イベント処理---------------------------------------- def pushButton16_clicked(self): ########## #リストウィジット内全ての画像ファイルを輝度と色合いを変えて保存する ########## SP = self.ui.lineEdit7.text() EP = self.ui.lineEdit8.text() if self.ui.listWidget2.count() == -1: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('No file in the directory.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif SP.isdigit() == False: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Please input digit for start position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif EP.isdigit() == False: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Please input digit for end position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif int(SP) > int(EP): msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Start position should be equal or smaller than end position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif int(SP) > self.ui.listWidget2.count() - 1: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Start position should be equal or smaller than max picture position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif int(EP) > self.ui.listWidget2.count() - 1: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('End position should be equal or smaller than max picture position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 else: SP = int(SP) EP = int(EP) + 1 msgbox = QtWidgets.QMessageBox(self) ret = msgbox.question(None, "MDC", "Create colored files from pictures in the list?", QtWidgets.QMessageBox.Yes, QtWidgets.QMessageBox.No) #選択用メッセージボックスを表示 if ret == QtWidgets.QMessageBox.Yes: #メッセージボックスでYESが選択された場合 text, buttonState = QtWidgets.QInputDialog.getItem(self, "MDC", "Please choose what to change and add to the list.", ["GAMMA", "COLOR", "GAMMA AND COLOR"], 0, False) if buttonState: if text == "GAMMA": flag = 0 elif text == "COLOR": flag = 1 else: flag = 2 step, buttonState = QtWidgets.QInputDialog.getInt(self, "MDC", "Please choose steps.", 1, 0, 100, 1) if buttonState: self.process_start() count = 0 for x in range(SP, EP): self.ui.listWidget2.setCurrentRow(x) count += 1 if count == step: self.cngGamma(flag) app.processEvents() count = 0 self.process_end() #-----pushButton17用イベント処理---------------------------------------- def pushButton17_clicked(self): ########## #ビデオから画像ファイルを自動保存 ########## msgbox = QtWidgets.QMessageBox(self) ret = msgbox.question(None, "MDC", "Get pictures from a video file automaticaly?\nPlease do not choose the foulder you are currently editing.", QtWidgets.QMessageBox.Yes, QtWidgets.QMessageBox.No) #選択用メッセージボックスを表示 if ret == QtWidgets.QMessageBox.Yes: #メッセージボックスでYESが選択された場合 filepath, _ = QtWidgets.QFileDialog.getOpenFileName(self, "Load File", "",'avi File (*.avi)') if filepath: #ファイルパスが選択されているか確認 DirPath = QtWidgets.QFileDialog.getExistingDirectory(self) #フォルダの選択 if DirPath: #フォルダが選択された場合 intVal, buttonState = QtWidgets.QInputDialog.getInt(self, "MDC", "Please set first file number.", 0, 0, 1000000, 1) if buttonState: step, buttonState = QtWidgets.QInputDialog.getInt(self, "MDC", "Please choose steps.", 1, 0, 100, 1) if buttonState: cap = cv2.VideoCapture(filepath) capNum = intVal count = 0 while(True): ret, frame = cap.read() if ret == True: count += 1 if count == step: if trimMode == 1: #トリムモードで領域が選択されている場合 vidHeight, vidWidth = frame.shape[:2] trimH = int((vidHeight - int(th)) / 2) trimW = int((vidWidth - int(tw)) / 2) frame = frame[trimH:trimH + int(th), trimW:trimW + int(tw)] #指定したサイズに画像をトリム cv2.imshow("CAPTURE",frame) cv2.imwrite(DirPath + '/' + str(capNum) + '.jpg', frame) capNum += 1 count = 0 app.processEvents() #ボタン処理のタイミング確認用 else: cap.release() #キャプチャー用オブジェクトを廃棄 cv2.destroyAllWindows() msgbox = QtWidgets.QMessageBox() msgbox.setWindowTitle("MDC") msgbox.setText("Done.") #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 break #-----pushButton18用イベント処理---------------------------------------- def pushButton18_clicked(self): ########## #現在の画像を射影変換し保存する ########## self.process_start() if self.ui.listWidget2.count() != -1: self.persPic() self.process_end() #-----pushButton19用イベント処理---------------------------------------- def pushButton19_clicked(self): ########## #リストウィジット内の全ての画像を射影変換し保存する ########## SP = self.ui.lineEdit7.text() EP = self.ui.lineEdit8.text() if self.ui.listWidget2.count() == -1: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('No file in the directory.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif SP.isdigit() == False: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Please input digit for start position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif EP.isdigit() == False: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Please input digit for end position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif int(SP) > int(EP): msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Start position should be equal or smaller than end position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif int(SP) > self.ui.listWidget2.count() - 1: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Start position should be equal or smaller than max picture position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif int(EP) > self.ui.listWidget2.count() - 1: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('End position should be equal or smaller than max picture position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 else: SP = int(SP) EP = int(EP) + 1 step, buttonState = QtWidgets.QInputDialog.getInt(self, "MDC", "Please choose steps.", 1, 0, 100, 1) if buttonState: self.process_start() count = 0 for x in range(SP, EP): self.ui.listWidget2.setCurrentRow(x) count += 1 if count == step: self.persPic() app.processEvents() count = 0 self.process_end() #-----pushButton20用イベント処理---------------------------------------- def pushButton20_clicked(self): ########## #指定したディレクトリの画像サイズを全て変更する ########## msgbox = QtWidgets.QMessageBox(self) ret = msgbox.question(None, "MDC", "If you would like to resize pictures, press yes.\nDo not resise the files in the folder you are currently editing or the folder you have edited.\nOtherwise the data is going to be corrupted!!!\n\nThis function resize any pictures in the folder.\nPlease only place files you want to resize in the folder.", QtWidgets.QMessageBox.Yes, QtWidgets.QMessageBox.No) #選択用メッセージボックスを表示 if ret == QtWidgets.QMessageBox.Yes: #メッセージボックスでYESが選択された場合 #####ディレクトリ選択 tmpPath = QtWidgets.QFileDialog.getExistingDirectory(self) #写真が保存してあるフォルダを選択 if tmpPath: #フォルダが選択された場合 text, buttonState = QtWidgets.QInputDialog.getItem(self, "MDC", "Choose a way to resize pictures", ["CHOOSE PERCENTAGE", "INPUT PERCENTAGE", "INPUT SIZE"], 0, False) if buttonState: if text == "CHOOSE PERCENTAGE": percentage, buttonState = QtWidgets.QInputDialog.getItem(self, "MDC", "Please choose percentage to resize the pictures.", ["10", "20", "30", "40", "50", "60", "70", "80", "90", "110", "120", "130", "140", "150", "160", "170", "180", "190", "200"], 4, False) if buttonState: percentage = int(percentage) * 0.01 FileList = glob.glob(tmpPath + '/*.jpg') #フォルダ内の各ファイルパスをリスト形式で取得 FileList2 = [] lCount = len(FileList) progC = 0 progP = 0 prog = QtWidgets.QProgressDialog('Resize files.', None, 0, 100, None, QtCore.Qt.Window | QtCore.Qt.WindowTitleHint | QtCore.Qt.CustomizeWindowHint) prog.setWindowTitle("MDC") prog.setFixedSize(prog.sizeHint()) prog.setValue(progP) prog.show() for FN in FileList: FileList2.append(FN.replace('\\', '/')) #globのバグを修正 for FN in FileList2: img = cv2.imread(FN) height = img.shape[0] width = img.shape[1] img2 = cv2.resize(img , (int(width * percentage), int(height * percentage))) cv2.imwrite(FN, img2) progC += 1 progP = int(100 * progC / (lCount)) prog.setValue(progP) app.processEvents() msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Resizing done.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 if text == "INPUT PERCENTAGE": percentage, buttonState = QtWidgets.QInputDialog.getInt(self, "MDC", "Please input percentage to resize the pictures.", 50, 10, 200, 10) if buttonState: percentage = int(percentage) * 0.01 FileList = glob.glob(tmpPath + '/*.jpg') #フォルダ内の各ファイルパスをリスト形式で取得 FileList2 = [] lCount = len(FileList) progC = 0 progP = 0 prog = QtWidgets.QProgressDialog('Resize files.', None, 0, 100, None, QtCore.Qt.Window | QtCore.Qt.WindowTitleHint | QtCore.Qt.CustomizeWindowHint) prog.setWindowTitle("MDC") prog.setFixedSize(prog.sizeHint()) prog.setValue(progP) prog.show() for FN in FileList: FileList2.append(FN.replace('\\', '/')) #globのバグを修正 for FN in FileList2: img = cv2.imread(FN) height = img.shape[0] width = img.shape[1] img2 = cv2.resize(img , (int(width * percentage), int(height * percentage))) cv2.imwrite(FN, img2) progC += 1 progP = int(100 * progC / (lCount)) prog.setValue(progP) app.processEvents() msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Resizing done.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 if text == "INPUT SIZE": width, buttonState = QtWidgets.QInputDialog.getInt(self, "MDC", "Please input width to resize the pictures.", 608, 1, 99999, 1) if buttonState: height, buttonState = QtWidgets.QInputDialog.getInt(self, "MDC", "Please input height to resize the pictures.", 608, 1, 99999, 1) if buttonState: FileList = glob.glob(tmpPath + '/*.jpg') #フォルダ内の各ファイルパスをリスト形式で取得 FileList2 = [] lCount = len(FileList) progC = 0 progP = 0 prog = QtWidgets.QProgressDialog('Resize files.', None, 0, 100, None, QtCore.Qt.Window | QtCore.Qt.WindowTitleHint | QtCore.Qt.CustomizeWindowHint) prog.setWindowTitle("MDC") prog.setFixedSize(prog.sizeHint()) prog.setValue(progP) prog.show() for FN in FileList: FileList2.append(FN.replace('\\', '/')) #globのバグを修正 for FN in FileList2: img = cv2.imread(FN) #height = img.shape[0] #width = img.shape[1] img2 = cv2.resize(img , (width, height)) cv2.imwrite(FN, img2) progC += 1 progP = int(100 * progC / (lCount)) prog.setValue(progP) app.processEvents() msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Resizing done.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 ##### #-----pushButton21用イベント処理---------------------------------------- def pushButton21_clicked(self): ########## #画像サイズを変更する ########## if self.ui.listWidget2.count() != -1: self.process_start() msgbox = QtWidgets.QMessageBox(self) ret = msgbox.question(None, "MDC", "Resize the picture currently selected?", QtWidgets.QMessageBox.Yes, QtWidgets.QMessageBox.No) #選択用メッセージボックスを表示 if ret == QtWidgets.QMessageBox.Yes: #メッセージボックスでYESが選択された場合 text, buttonState = QtWidgets.QInputDialog.getItem(self, "MDC", "Choose a way to resize pictures", ["CHOOSE PERCENTAGE", "INPUT PERCENTAGE", "INPUT SIZE"], 0, False) if buttonState: if text == "CHOOSE PERCENTAGE": percentage, buttonState = QtWidgets.QInputDialog.getItem(self, "MDC", "Please choose percentage to resize the pictures.", ["10", "20", "30", "40", "50", "60", "70", "80", "90", "110", "120", "130", "140", "150", "160", "170", "180", "190", "200"], 4, False) if buttonState: self.resizePic(percentage, 0, 0, mode = 0) if text == "INPUT PERCENTAGE": percentage, buttonState = QtWidgets.QInputDialog.getInt(self, "MDC", "Please input percentage to resize the pictures.", 50, 10, 200, 10) if buttonState: self.resizePic(percentage, 0, 0, mode = 0) if text == "INPUT SIZE": width, buttonState = QtWidgets.QInputDialog.getInt(self, "MDC", "Please input width to resize the pictures.", 608, 1, 99999, 1) if buttonState: height, buttonState = QtWidgets.QInputDialog.getInt(self, "MDC", "Please input height to resize the pictures.", 608, 1, 99999, 1) if buttonState: self.resizePic(0, width, height, mode = 1) self.process_end() ##### #-----pushButton22用イベント処理---------------------------------------- def pushButton22_clicked(self): ########## #画像サイズを全て変更する ########## SP = self.ui.lineEdit7.text() EP = self.ui.lineEdit8.text() if self.ui.listWidget2.count() == -1: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('No file in the directory.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif SP.isdigit() == False: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Please input digit for start position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif EP.isdigit() == False: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Please input digit for end position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif int(SP) > int(EP): msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Start position should be equal or smaller than end position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif int(SP) > self.ui.listWidget2.count() - 1: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Start position should be equal or smaller than max picture position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif int(EP) > self.ui.listWidget2.count() - 1: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('End position should be equal or smaller than max picture position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 else: SP = int(SP) EP = int(EP) + 1 #if self.ui.listWidget2.count() != -1: self.process_start() msgbox = QtWidgets.QMessageBox(self) ret = msgbox.question(None, "MDC", "Resize all pictures in the folder?", QtWidgets.QMessageBox.Yes, QtWidgets.QMessageBox.No) #選択用メッセージボックスを表示 if ret == QtWidgets.QMessageBox.Yes: #メッセージボックスでYESが選択された場合 text, buttonState = QtWidgets.QInputDialog.getItem(self, "MDC", "Choose a way to resize pictures", ["CHOOSE PERCENTAGE", "INPUT PERCENTAGE", "INPUT SIZE"], 0, False) if buttonState: if text == "CHOOSE PERCENTAGE": percentage, buttonState = QtWidgets.QInputDialog.getItem(self, "MDC", "Please choose percentage to resize the pictures.", ["10", "20", "30", "40", "50", "60", "70", "80", "90", "110", "120", "130", "140", "150", "160", "170", "180", "190", "200"], 4, False) if buttonState: for x in range(SP, EP): self.ui.listWidget2.setCurrentRow(x) self.resizePic(percentage, 0, 0, mode = 0) app.processEvents() if text == "INPUT PERCENTAGE": percentage, buttonState = QtWidgets.QInputDialog.getInt(self, "MDC", "Please input percentage to resize the pictures.", 50, 10, 200, 10) if buttonState: for x in range(SP, EP): self.ui.listWidget2.setCurrentRow(x) self.resizePic(percentage, 0, 0, mode = 0) app.processEvents() if text == "INPUT SIZE": width, buttonState = QtWidgets.QInputDialog.getInt(self, "MDC", "Please input width to resize the pictures.", 608, 1, 99999, 1) if buttonState: height, buttonState = QtWidgets.QInputDialog.getInt(self, "MDC", "Please input height to resize the pictures.", 608, 1, 99999, 1) if buttonState: for x in range(SP, EP): self.ui.listWidget2.setCurrentRow(x) self.resizePic(0, width, height, mode = 1) app.processEvents() self.process_end() ##### #-----pushButton23用イベント処理---------------------------------------- def pushButton23_clicked(self): ########## #領域を切り抜き回転させ背景ににコピー後保存する ########## #####ディレクトリ選択 msgbox = QtWidgets.QMessageBox(self) ret = msgbox.question(None, "MDC", "Create rotated files from a picture in the list with different background?\nPlease choose a folder contains background pictures.", QtWidgets.QMessageBox.Yes, QtWidgets.QMessageBox.No) #選択用メッセージボックスを表示 if ret == QtWidgets.QMessageBox.Yes: #メッセージボックスでYESが選択された場合 tmpPath = QtWidgets.QFileDialog.getExistingDirectory(self) #写真が保存してあるフォルダを選択 if tmpPath: #フォルダが選択された場合 FileList = glob.glob(tmpPath + '/*.jpg') #フォルダ内の各ファイルパスをリスト形式で取得 if len(FileList) == 0: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('JPEG file not found in the folder.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 else: degree, buttonState = QtWidgets.QInputDialog.getItem(self, "MDC", "Please choose dgrees to rotate the pictures.", ["1", "2", "3", "4", "5", "8", "10", "15", "30", "60", "90", "120", "180"], 2, False) if buttonState: FileList2 = [] for FN in FileList: FileList2.append(FN.replace('\\', '/')) #globのバグを修正 self.pasteRotatePic(int(degree), FileList2) #-----pushButton24用イベント処理---------------------------------------- def pushButton24_clicked(self): ########## #フォルダ内全ての写真に対して、領域を切り抜き回転させ背景にコピー後保存する ########## SP = self.ui.lineEdit7.text() EP = self.ui.lineEdit8.text() if self.ui.listWidget2.count() == -1: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('No file in the directory.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif SP.isdigit() == False: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Please input digit for start position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif EP.isdigit() == False: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Please input digit for end position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif int(SP) > int(EP): msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Start position should be equal or smaller than end position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif int(SP) > self.ui.listWidget2.count() - 1: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Start position should be equal or smaller than max picture position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif int(EP) > self.ui.listWidget2.count() - 1: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('End position should be equal or smaller than max picture position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 else: SP = int(SP) EP = int(EP) + 1 msgbox = QtWidgets.QMessageBox(self) ret = msgbox.question(None, "MDC", "Create rotated files from pictures in the list with different background?\nPlease choose a folder contains background pictures.", QtWidgets.QMessageBox.Yes, QtWidgets.QMessageBox.No) #選択用メッセージボックスを表示 if ret == QtWidgets.QMessageBox.Yes: #メッセージボックスでYESが選択された場合 tmpPath = QtWidgets.QFileDialog.getExistingDirectory(self) #写真が保存してあるフォルダを選択 if tmpPath: #フォルダが選択された場合 FileList = glob.glob(tmpPath + '/*.jpg') #フォルダ内の各ファイルパスをリスト形式で取得 if len(FileList) == 0: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('JPEG file not found in the folder.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 else: degree, buttonState = QtWidgets.QInputDialog.getItem(self, "MDC", "Please choose dgrees to rotate the pictures.", ["1", "2", "3", "4", "5", "8", "10", "15", "30", "60", "90", "120", "180"], 2, False) if buttonState: step, buttonState = QtWidgets.QInputDialog.getInt(self, "MDC", "Please choose steps.", 1, 0, 100, 1) if buttonState: self.process_start() FileList2 = [] for FN in FileList: FileList2.append(FN.replace('\\', '/')) #globのバグを修正 count = 0 for x in range(SP, EP): self.ui.listWidget2.setCurrentRow(x) count += 1 if count == step: self.pasteRotatePic(int(degree), FileList2) app.processEvents() count = 0 self.process_end() #-----pushButton25用イベント処理---------------------------------------- def pushButton25_clicked(self): ########## #領域を切り抜き回転保存する ########## #####ディレクトリ選択 degree, buttonState = QtWidgets.QInputDialog.getItem(self, "MDC", "Please choose dgrees to rotate the pictures.", ["1", "2", "3", "4", "5", "8", "10", "15", "30", "60", "90", "120", "180"], 2, False) if buttonState: self.cutRotatePic(int(degree)) #-----pushButton26用イベント処理---------------------------------------- def pushButton26_clicked(self): ########## #フォルダ内全ての写真に対して、領域を切り抜き回転させ保存する ########## SP = self.ui.lineEdit7.text() EP = self.ui.lineEdit8.text() if self.ui.listWidget2.count() == -1: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('No file in the directory.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif SP.isdigit() == False: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Please input digit for start position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif EP.isdigit() == False: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Please input digit for end position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif int(SP) > int(EP): msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Start position should be equal or smaller than end position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif int(SP) > self.ui.listWidget2.count() - 1: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Start position should be equal or smaller than max picture position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif int(EP) > self.ui.listWidget2.count() - 1: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('End position should be equal or smaller than max picture position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 else: SP = int(SP) EP = int(EP) + 1 msgbox = QtWidgets.QMessageBox(self) ret = msgbox.question(None, "MDC", "Create rotated files from pictures in the list with black background?", QtWidgets.QMessageBox.Yes, QtWidgets.QMessageBox.No) #選択用メッセージボックスを表示 if ret == QtWidgets.QMessageBox.Yes: #メッセージボックスでYESが選択された場合 degree, buttonState = QtWidgets.QInputDialog.getItem(self, "MDC", "Please choose dgrees to rotate the pictures.", ["1", "2", "3", "4", "5", "8", "10", "15", "30", "60", "90", "120", "180"], 2, False) if buttonState: step, buttonState = QtWidgets.QInputDialog.getInt(self, "MDC", "Please choose steps.", 1, 0, 100, 1) if buttonState: self.process_start() count = 0 for x in range(SP, EP): self.ui.listWidget2.setCurrentRow(x) count += 1 if count == step: self.cutRotatePic(int(degree)) app.processEvents() count = 0 self.process_end() #-----pushButton25用イベント処理---------------------------------------- def pushButton27_clicked(self): ########## #領域を切り抜き回転保存する ########## #####ディレクトリ選択 degree, buttonState = QtWidgets.QInputDialog.getItem(self, "MDC", "Please choose dgrees to rotate the pictures.", ["1", "2", "3", "4", "5", "8", "10", "15", "30", "60", "90", "120", "180"], 2, False) if buttonState: self.cutBRotatePic(int(degree)) #-----pushButton26用イベント処理---------------------------------------- def pushButton28_clicked(self): ########## #フォルダ内全ての写真に対して、領域を切り抜き回転させ保存する ########## SP = self.ui.lineEdit7.text() EP = self.ui.lineEdit8.text() if self.ui.listWidget2.count() == -1: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('No file in the directory.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif SP.isdigit() == False: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Please input digit for start position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif EP.isdigit() == False: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Please input digit for end position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif int(SP) > int(EP): msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Start position should be equal or smaller than end position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif int(SP) > self.ui.listWidget2.count() - 1: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Start position should be equal or smaller than max picture position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif int(EP) > self.ui.listWidget2.count() - 1: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('End position should be equal or smaller than max picture position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 else: SP = int(SP) EP = int(EP) + 1 msgbox = QtWidgets.QMessageBox(self) ret = msgbox.question(None, "MDC", "Create rotated files from pictures in the list with black background?", QtWidgets.QMessageBox.Yes, QtWidgets.QMessageBox.No) #選択用メッセージボックスを表示 if ret == QtWidgets.QMessageBox.Yes: #メッセージボックスでYESが選択された場合 degree, buttonState = QtWidgets.QInputDialog.getItem(self, "MDC", "Please choose dgrees to rotate the pictures.", ["1", "2", "3", "4", "5", "8", "10", "15", "30", "60", "90", "120", "180"], 2, False) if buttonState: step, buttonState = QtWidgets.QInputDialog.getInt(self, "MDC", "Please choose steps.", 1, 0, 100, 1) if buttonState: self.process_start() count = 0 for x in range(SP, EP): self.ui.listWidget2.setCurrentRow(x) count += 1 if count == step: self.cutBRotatePic(int(degree)) app.processEvents() count = 0 self.process_end() #-----pushButton29用イベント処理---------------------------------------- def pushButton29_clicked(self): ########## #領域を切り抜き回転させ背景ににコピー後保存する ########## #####ディレクトリ選択 msgbox = QtWidgets.QMessageBox(self) ret = msgbox.question(None, "MDC", "Create rotated files from a picture in the list with different background?\nPlease choose a folder contains background pictures.", QtWidgets.QMessageBox.Yes, QtWidgets.QMessageBox.No) #選択用メッセージボックスを表示 if ret == QtWidgets.QMessageBox.Yes: #メッセージボックスでYESが選択された場合 tmpPath = QtWidgets.QFileDialog.getExistingDirectory(self) #写真が保存してあるフォルダを選択 if tmpPath: #フォルダが選択された場合 FileList = glob.glob(tmpPath + '/*.jpg') #フォルダ内の各ファイルパスをリスト形式で取得 if len(FileList) == 0: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('JPEG file not found in the folder.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 else: degree, buttonState = QtWidgets.QInputDialog.getItem(self, "MDC", "Please choose dgrees to rotate the pictures.", ["1", "2", "3", "4", "5", "8", "10", "15", "30", "60", "90", "120", "180"], 2, False) if buttonState: FileList2 = [] for FN in FileList: FileList2.append(FN.replace('\\', '/')) #globのバグを修正 self.pasteBRotatePic(int(degree), FileList2) #-----pushButton30用イベント処理---------------------------------------- def pushButton30_clicked(self): ########## #フォルダ内全ての写真に対して、領域を切り抜き回転させ背景にコピー後保存する ########## SP = self.ui.lineEdit7.text() EP = self.ui.lineEdit8.text() if self.ui.listWidget2.count() == -1: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('No file in the directory.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif SP.isdigit() == False: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Please input digit for start position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif EP.isdigit() == False: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Please input digit for end position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif int(SP) > int(EP): msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Start position should be equal or smaller than end position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif int(SP) > self.ui.listWidget2.count() - 1: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Start position should be equal or smaller than max picture position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif int(EP) > self.ui.listWidget2.count() - 1: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('End position should be equal or smaller than max picture position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 else: SP = int(SP) EP = int(EP) + 1 msgbox = QtWidgets.QMessageBox(self) ret = msgbox.question(None, "MDC", "Create rotated files from pictures in the list with different background?\nPlease choose a folder contains background pictures.", QtWidgets.QMessageBox.Yes, QtWidgets.QMessageBox.No) #選択用メッセージボックスを表示 if ret == QtWidgets.QMessageBox.Yes: #メッセージボックスでYESが選択された場合 tmpPath = QtWidgets.QFileDialog.getExistingDirectory(self) #写真が保存してあるフォルダを選択 if tmpPath: #フォルダが選択された場合 FileList = glob.glob(tmpPath + '/*.jpg') #フォルダ内の各ファイルパスをリスト形式で取得 if len(FileList) == 0: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('JPEG file not found in the folder.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 else: degree, buttonState = QtWidgets.QInputDialog.getItem(self, "MDC", "Please choose dgrees to rotate the pictures.", ["1", "2", "3", "4", "5", "8", "10", "15", "30", "60", "90", "120", "180"], 2, False) if buttonState: step, buttonState = QtWidgets.QInputDialog.getInt(self, "MDC", "Please choose steps.", 1, 0, 100, 1) if buttonState: self.process_start() FileList2 = [] for FN in FileList: FileList2.append(FN.replace('\\', '/')) #globのバグを修正 count = 0 for x in range(SP, EP): self.ui.listWidget2.setCurrentRow(x) count += 1 if count == step: self.pasteBRotatePic(int(degree), FileList2) app.processEvents() count = 0 self.process_end() #-----pushButton31用イベント処理---------------------------------------- def pushButton31_clicked(self): #####写真からビデオを作成 filepath, _ = QtWidgets.QFileDialog.getSaveFileName(self, "Open File", "",'avi File (*.avi)') if filepath: dirPath = QtWidgets.QFileDialog.getExistingDirectory(self) #写真が保存してあるフォルダを選択 if dirPath: #フォルダが選択された場合 FileList = glob.glob(dirPath + '/*.jpg') #フォルダ内の各ファイルパスをリスト形式で取得 if len(FileList) == 0: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('JPEG file not found in the folder.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 else: rate, buttonState = QtWidgets.QInputDialog.getItem(self, "MDC", "Please choose frame rate.", ["1", "2", "3", "4", "5", "10", "20", "30", "60", "120", "144", "240"], 4, False) if buttonState: msgbox = QtWidgets.QMessageBox(self) ans = msgbox.question(None, "MDC", "Put file names on pictures.", QtWidgets.QMessageBox.Yes, QtWidgets.QMessageBox.No) #選択用メッセージボックスを表示 tmp = FileList[0] tmp = tmp.replace('\\', '/') #globのバグを修正 tmpImg = cv2.imread(tmp) imgHeight = tmpImg.shape[0] imgWidth = tmpImg.shape[1] aviOut = cv2.VideoWriter(filepath, fourcc, int(rate), (imgWidth, imgHeight)) for FN in FileList: fPath = FN.replace('\\', '/') #globのバグを修正 img = cv2.imread(fPath) if ans == QtWidgets.QMessageBox.Yes: #メッセージボックスでYESが選択された場合 fPath1 = fPath.rsplit(".", 1) #ファイルパスの文字列右側から指定文字列で分割 fPath2 = fPath1[0].rsplit("/", 1) #ファイルパスの文字列右側から指定文字列で分割 font_size = 1 font = cv2.FONT_HERSHEY_PLAIN cv2.putText(img, fPath2[1], (5, 25), font, font_size, (255, 255, 255), 1) cv2.imshow("MIIL MDC", img) app.processEvents() #ボタン処理のタイミング確認用 aviOut.write(img) cv2.destroyAllWindows() msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Video file created.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 #-----pushButton32用イベント処理---------------------------------------- def pushButton32_clicked(self): ########## #現在の画像を回転させ保存する ########## degree, buttonState = QtWidgets.QInputDialog.getItem(self, "MDC", "Please choose dgrees to rotate the pictures.", ["1", "2", "3", "4", "5", "8", "10", "15", "30", "60", "90", "120", "180"], 2, False) if buttonState: self.process_start() if self.ui.listWidget2.count() != -1: self.rotatePicPC(int(degree)) self.process_end() #-----pushButton33用イベント処理---------------------------------------- def pushButton33_clicked(self): ########## #リストウィジット内全ての画像ファイルを回転させ保存する ########## SP = self.ui.lineEdit7.text() EP = self.ui.lineEdit8.text() if self.ui.listWidget2.count() == -1: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('No file in the directory.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif SP.isdigit() == False: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Please input digit for start position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif EP.isdigit() == False: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Please input digit for end position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif int(SP) > int(EP): msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Start position should be equal or smaller than end position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif int(SP) > self.ui.listWidget2.count() - 1: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Start position should be equal or smaller than max picture position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif int(EP) > self.ui.listWidget2.count() - 1: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('End position should be equal or smaller than max picture position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 else: SP = int(SP) EP = int(EP) + 1 msgbox = QtWidgets.QMessageBox(self) ret = msgbox.question(None, "MDC", "Create rotated files from pictures in the list?", QtWidgets.QMessageBox.Yes, QtWidgets.QMessageBox.No) #選択用メッセージボックスを表示 if ret == QtWidgets.QMessageBox.Yes: #メッセージボックスでYESが選択された場合 degree, buttonState = QtWidgets.QInputDialog.getItem(self, "MDC", "Please choose dgrees to rotate the pictures.", ["1", "2", "3", "4", "5", "8", "10", "15", "30", "60", "90", "120", "180"], 2, False) if buttonState: step, buttonState = QtWidgets.QInputDialog.getInt(self, "MDC", "Please choose steps.", 1, 0, 100, 1) if buttonState: self.process_start() #listItemCount = self.ui.listWidget2.count() #if self.ui.listWidget2.count() != -1: count = 0 for x in range(SP, EP): self.ui.listWidget2.setCurrentRow(x) count += 1 if count == step: self.rotatePicPC(int(degree)) app.processEvents() count = 0 self.process_end() #-----pushButton34用イベント処理---------------------------------------- def pushButton34_clicked(self): ########## #現在の画像を反転させて保存する ########## self.process_start() if self.ui.listWidget2.count() != -1: self.reversePic() self.process_end() #-----pushButton35用イベント処理---------------------------------------- def pushButton35_clicked(self): ########## #現在の画像を反転させて保存する ########## SP = self.ui.lineEdit7.text() EP = self.ui.lineEdit8.text() if self.ui.listWidget2.count() == -1: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('No file in the directory.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif SP.isdigit() == False: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Please input digit for start position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif EP.isdigit() == False: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Please input digit for end position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif int(SP) > int(EP): msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Start position should be equal or smaller than end position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif int(SP) > self.ui.listWidget2.count() - 1: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Start position should be equal or smaller than max picture position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif int(EP) > self.ui.listWidget2.count() - 1: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('End position should be equal or smaller than max picture position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 else: SP = int(SP) EP = int(EP) + 1 msgbox = QtWidgets.QMessageBox(self) ret = msgbox.question(None, "MDC", "Flip the picture?", QtWidgets.QMessageBox.Yes, QtWidgets.QMessageBox.No) #選択用メッセージボックスを表示 if ret == QtWidgets.QMessageBox.Yes: #メッセージボックスでYESが選択された場合 step, buttonState = QtWidgets.QInputDialog.getInt(self, "MDC", "Please choose steps.", 1, 0, 100, 1) if buttonState: self.process_start() #listItemCount = self.ui.listWidget2.count() #if self.ui.listWidget2.count() != -1: count = 0 for x in range(SP, EP): self.ui.listWidget2.setCurrentRow(x) count += 1 if count == step: self.reversePic() app.processEvents() count = 0 self.process_end() #-----pushButton36用イベント処理---------------------------------------- def pushButton36_clicked(self): ########## #現在の画像を移動させて保存する ########## self.process_start() if self.ui.listWidget2.count() != -1: self.movePic() self.process_end() #-----pushButton37用イベント処理---------------------------------------- def pushButton37_clicked(self): ########## #現在の画像を移動させて保存する ########## SP = self.ui.lineEdit7.text() EP = self.ui.lineEdit8.text() if self.ui.listWidget2.count() == -1: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('No file in the directory.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif SP.isdigit() == False: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Please input digit for start position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif EP.isdigit() == False: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Please input digit for end position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif int(SP) > int(EP): msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Start position should be equal or smaller than end position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif int(SP) > self.ui.listWidget2.count() - 1: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('Start position should be equal or smaller than max picture position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 elif int(EP) > self.ui.listWidget2.count() - 1: msgbox = QtWidgets.QMessageBox(self) msgbox.setWindowTitle("MDC") msgbox.setText('End position should be equal or smaller than max picture position.') #メッセージボックスのテキストを設定 ret = msgbox.exec_() #メッセージボックスを表示 else: SP = int(SP) EP = int(EP) + 1 msgbox = QtWidgets.QMessageBox(self) ret = msgbox.question(None, "MDC", "Shift the picture?", QtWidgets.QMessageBox.Yes, QtWidgets.QMessageBox.No) #選択用メッセージボックスを表示 if ret == QtWidgets.QMessageBox.Yes: #メッセージボックスでYESが選択された場合 step, buttonState = QtWidgets.QInputDialog.getInt(self, "MDC", "Please choose steps.", 1, 0, 100, 1) if buttonState: self.process_start() #listItemCount = self.ui.listWidget2.count() #if self.ui.listWidget2.count() != -1: count = 0 for x in range(SP, EP): self.ui.listWidget2.setCurrentRow(x) count += 1 if count == step: self.movePic() app.processEvents() count = 0 self.process_end() #-----画像反転保存用関数---------------------------------------- def reversePic(self): ########## #現在の画像を反転させ保存する ########## global FileNum items = [] cIndex = self.ui.listWidget2.currentRow() frameR = np.copy(CurPic) fPic = cv2.flip(frameR, 1) cv2.imwrite(DirPath + '/' + str(FileNum) + '.jpg', fPic) text1 = "" text2 = "" text3 = "" fY = CurPic.shape[0] fX = CurPic.shape[1] xmlHeader = '<annotation>' + '\n<filename>' + str(FileNum) + '.jpg</filename>\n<size>\n<width>' + str(fX) + '</width>' + '\n' + '<height>' + str(fY) + '</height>\n</size>\n' xmlfooter = '</annotation>\n' for x in SettingList: ROW, LABEL,TX, TY, BX, BY = x.split(',') ROW = ROW.replace(" ", "") LABEL = LABEL.replace(" ", "") fsx = abs(int(TX) - (CurPicWidth -1)) fsy = int(TY) esx = abs(int(BX) - (CurPicWidth -1)) esy = int(BY) _ , fsx, fsy, esx, esy, _ , _ = getRectanglePos(fsx, fsy, esx, esy, CurPicWidth, CurPicHeight) filepath = SettingDataDir + '/' + str(FileNum) + '.set' filepath2 = AnnotationDir + '/' + str(FileNum) + '.xml' filepath3 = DirPath + '/' + str(FileNum) + '.txt' text1 = text1 + ROW + ', ' + LABEL + ', ' + str(fsx) + ', ' + str(fsy) + ', ' + str(esx) + ', ' + str(esy) + '\n' text2 = text2 + '<object>\n<name>' + LABEL + '</name>\n<bndbox>' + '\n' + '<xmin>' + str(fsx) + '</xmin>' + '\n' + '<ymin>' + str(fsy) + '</ymin>' + '\n' + '<xmax>' + str(esx) + '</xmax>' + '\n' + '<ymax>' + str(esy) + '</ymax>\n</bndbox>\n</object>\n' cw = 1 / CurPicWidth ch = 1 / CurPicHeight cnx = (fsx + esx) / 2 cny = (fsy + esy) / 2 cnw = esx - fsx cnh = esy - fsy cnx = cnx * cw cny = cny * ch cnw = cnw * cw cnh = cnh * ch text3 = text3 + ROW + ' ' + str(cnx) + ' ' + str(cny) + ' ' + str(cnw) + ' ' + str(cnh) + '\n' cv2.rectangle(fPic, (fsx, fsy), (esx, esy), (0, 255, 0), 1) font_size = 1 font = cv2.FONT_HERSHEY_PLAIN cv2.putText(fPic, LABEL, (fsx + 2, fsy - 2), font, font_size,(0,255,0),1) f = open(filepath, "w") f.writelines(text1) f.close() text2 = xmlHeader + text2 + xmlfooter f = open(filepath2, "w") f.writelines(text2) f.close() f = open(filepath3, "w") f.writelines(text3) f.close() cv2.imshow("MIIL MDC DRAW MODE", fPic) items.append(str(FileNum)) FileNum += 1 #Lpos = win.ui.listWidget2.count() - 1 #self.ui.listWidget2.setCurrentRow(Lpos) app.processEvents() #ボタン処理のタイミング確認用 self.ui.listWidget2.addItems(items) self.ui.listWidget2.setCurrentRow(cIndex) #-----画像回転保存用関数---------------------------------------- def pasteBRotatePic(self, degree, BackgroundList): ########## #領域を切り抜き回転させ背景がにコピー後保存する ########## global FileNum items = [] rTimes = int(360 / degree) cIndex = self.ui.listWidget2.currentRow() for x in SettingList: ROW, LABEL,TX, TY, BX, BY = x.split(',') ROW = ROW.replace(" ", "") LABEL = LABEL.replace(" ", "") if len(SettingList) == 1: fy = CurPic.shape[0] fx = CurPic.shape[1] copyPic = np.copy(CurPic) imageArray = np.zeros((fy, fx, 3), np.uint8) cutPic = copyPic[int(TY):int(BY), int(TX):int(BX)] imageArray[int(TY):int(BY), int(TX):int(BX)] = cutPic for i in range(1, rTimes): deg = i * degree cx = int(TX) + int((int(BX) - int(TX)) / 2) cy = int(TY) + int((int(BY) - int(TY)) / 2) fsx, fsy, esx, esy, _ , _ = getRotatedRectanglePos(deg, cx, cy, int(TX), int(TY), int(BX), int(BY), CurPicWidth, CurPicHeight) frameR = np.copy(imageArray) M = cv2.getRotationMatrix2D((cx, cy), deg, 1) fPic = cv2.warpAffine(frameR,M,(CurPicWidth, CurPicHeight), borderValue=(255, 255, 255)) bgPic = cv2.imread(random.choice(BackgroundList)) cutPicB = fPic[fsy:esy, fsx:esx] bgPic[fsy:esy, fsx:esx] = cutPicB cv2.imwrite(DirPath + '/' + str(FileNum) + '.jpg', bgPic) filepath = SettingDataDir + '/' + str(FileNum) + '.set' filepath2 = AnnotationDir + '/' + str(FileNum) + '.xml' filepath3 = DirPath + '/' + str(FileNum) + '.txt' text = ROW + ', ' + LABEL + ', ' + str(fsx) + ', ' + str(fsy) + ', ' + str(esx) + ', ' + str(esy) + '\n' f = open(filepath, "w") f.writelines(text) f.close() text = '<annotation>' + '\n<filename>' + str(FileNum) + '.jpg</filename>\n<size>\n<width>' + str(fx) + '</width>' + '\n' + '<height>' + str(fy) + '</height>\n</size>\n' text = text + '<object>\n<name>' + LABEL + '</name>\n<bndbox>' + '\n' + '<xmin>' + str(fsx) + '</xmin>' + '\n' + '<ymin>' + str(fsy) + '</ymin>' + '\n' + '<xmax>' + str(esx) + '</xmax>' + '\n' + '<ymax>' + str(esy) + '</ymax>\n</bndbox>\n</object>\n' text = text + '</annotation>\n' f = open(filepath2, "w") f.writelines(text) f.close() cw = 1 / CurPicWidth ch = 1 / CurPicHeight cnx = (fsx + esx) / 2 cny = (fsy + esy) / 2 cnw = esx - fsx cnh = esy - fsy cnx = cnx * cw cny = cny * ch cnw = cnw * cw cnh = cnh * ch text = ROW + ' ' + str(cnx) + ' ' + str(cny) + ' ' + str(cnw) + ' ' + str(cnh) + '\n' f = open(filepath3, "w") f.writelines(text) f.close() cv2.rectangle(bgPic, (fsx, fsy), (esx, esy), (0, 255, 0), 1) font_size = 1 font = cv2.FONT_HERSHEY_PLAIN cv2.putText(bgPic, LABEL,(fsx + 2, fsy - 2),font, font_size,(0,255,0),1) cv2.imshow("MIIL MDC DRAW MODE", bgPic) items.append(str(FileNum)) FileNum += 1 #Lpos = win.ui.listWidget2.count() - 1 #self.ui.listWidget2.setCurrentRow(Lpos) app.processEvents() #ボタン処理のタイミング確認用 self.ui.listWidget2.addItems(items) self.ui.listWidget2.setCurrentRow(cIndex) #-----画像回転保存用関数---------------------------------------- def cutBRotatePic(self, degree): ########## #領域を切り抜き回転させ背景がにコピー後保存する ########## global FileNum items = [] rTimes = int(360 / degree) cIndex = self.ui.listWidget2.currentRow() for x in SettingList: ROW, LABEL,TX, TY, BX, BY = x.split(',') ROW = ROW.replace(" ", "") LABEL = LABEL.replace(" ", "") if len(SettingList) == 1: fy = CurPic.shape[0] fx = CurPic.shape[1] copyPic = np.copy(CurPic) imageArray = np.zeros((fy, fx, 3), np.uint8) cutPic = copyPic[int(TY):int(BY), int(TX):int(BX)] imageArray[int(TY):int(BY), int(TX):int(BX)] = cutPic for i in range(1, rTimes): deg = i * degree cx = int(TX) + int((int(BX) - int(TX)) / 2) cy = int(TY) + int((int(BY) - int(TY)) / 2) fsx, fsy, esx, esy, _ , _ = getRotatedRectanglePos(deg, cx, cy, int(TX), int(TY), int(BX), int(BY), CurPicWidth, CurPicHeight) frameR = np.copy(CurPic) frameRB = np.copy(imageArray) M = cv2.getRotationMatrix2D((cx, cy), deg, 1) fPic = cv2.warpAffine(frameR,M,(CurPicWidth, CurPicHeight), borderValue=(255, 255, 255)) fPicB = cv2.warpAffine(frameRB,M,(CurPicWidth, CurPicHeight), borderValue=(255, 255, 255)) cutPicB = fPicB[fsy:esy, fsx:esx] fPic[fsy:esy, fsx:esx] = cutPicB cv2.imwrite(DirPath + '/' + str(FileNum) + '.jpg', fPic) filepath = SettingDataDir + '/' + str(FileNum) + '.set' filepath2 = AnnotationDir + '/' + str(FileNum) + '.xml' filepath3 = DirPath + '/' + str(FileNum) + '.txt' text = ROW + ', ' + LABEL + ', ' + str(fsx) + ', ' + str(fsy) + ', ' + str(esx) + ', ' + str(esy) + '\n' f = open(filepath, "w") f.writelines(text) f.close() text = '<annotation>' + '\n<filename>' + str(FileNum) + '.jpg</filename>\n<size>\n<width>' + str(fx) + '</width>' + '\n' + '<height>' + str(fy) + '</height>\n</size>\n' text = text + '<object>\n<name>' + LABEL + '</name>\n<bndbox>' + '\n' + '<xmin>' + str(fsx) + '</xmin>' + '\n' + '<ymin>' + str(fsy) + '</ymin>' + '\n' + '<xmax>' + str(esx) + '</xmax>' + '\n' + '<ymax>' + str(esy) + '</ymax>\n</bndbox>\n</object>\n' text = text + '</annotation>\n' f = open(filepath2, "w") f.writelines(text) f.close() cw = 1 / CurPicWidth ch = 1 / CurPicHeight cnx = (fsx + esx) / 2 cny = (fsy + esy) / 2 cnw = esx - fsx cnh = esy - fsy cnx = cnx * cw cny = cny * ch cnw = cnw * cw cnh = cnh * ch text = ROW + ' ' + str(cnx) + ' ' + str(cny) + ' ' + str(cnw) + ' ' + str(cnh) + '\n' f = open(filepath3, "w") f.writelines(text) f.close() cv2.rectangle(fPic, (fsx, fsy), (esx, esy), (0, 255, 0), 1) font_size = 1 font = cv2.FONT_HERSHEY_PLAIN cv2.putText(fPic, LABEL,(fsx + 2, fsy - 2),font, font_size,(0,255,0),1) cv2.imshow("MIIL MDC DRAW MODE", fPic) items.append(str(FileNum)) FileNum += 1 #Lpos = win.ui.listWidget2.count() - 1 #self.ui.listWidget2.setCurrentRow(Lpos) app.processEvents() #ボタン処理のタイミング確認用 self.ui.listWidget2.addItems(items) self.ui.listWidget2.setCurrentRow(cIndex) #-----画像回転保存用関数---------------------------------------- def cutRotatePic(self, degree): ########## #領域を切り抜き回転させ背景がにコピー後保存する ########## global FileNum items = [] rTimes = int(360 / degree) cIndex = self.ui.listWidget2.currentRow() for x in SettingList: ROW, LABEL,TX, TY, BX, BY = x.split(',') ROW = ROW.replace(" ", "") LABEL = LABEL.replace(" ", "") if len(SettingList) == 1: fy = CurPic.shape[0] fx = CurPic.shape[1] copyPic = np.copy(CurPic) imageArray = np.zeros((fy, fx, 3), np.uint8) cutPic = copyPic[int(TY):int(BY), int(TX):int(BX)] imageArray[int(TY):int(BY), int(TX):int(BX)] = cutPic for i in range(1, rTimes): deg = i * degree cx = int(TX) + int((int(BX) - int(TX)) / 2) cy = int(TY) + int((int(BY) - int(TY)) / 2) fsx, fsy, esx, esy, _ , _ = getRotatedRectanglePos(deg, cx, cy, int(TX), int(TY), int(BX), int(BY), CurPicWidth, CurPicHeight) frameR = np.copy(imageArray) M = cv2.getRotationMatrix2D((cx, cy), deg, 1) fPic = cv2.warpAffine(frameR,M,(CurPicWidth, CurPicHeight), borderValue=(255, 255, 255)) cv2.imwrite(DirPath + '/' + str(FileNum) + '.jpg', fPic) filepath = SettingDataDir + '/' + str(FileNum) + '.set' filepath2 = AnnotationDir + '/' + str(FileNum) + '.xml' filepath3 = DirPath + '/' + str(FileNum) + '.txt' text = ROW + ', ' + LABEL + ', ' + str(fsx) + ', ' + str(fsy) + ', ' + str(esx) + ', ' + str(esy) + '\n' f = open(filepath, "w") f.writelines(text) f.close() text = '<annotation>' + '\n<filename>' + str(FileNum) + '.jpg</filename>\n<size>\n<width>' + str(fx) + '</width>' + '\n' + '<height>' + str(fy) + '</height>\n</size>\n' text = text + '<object>\n<name>' + LABEL + '</name>\n<bndbox>' + '\n' + '<xmin>' + str(fsx) + '</xmin>' + '\n' + '<ymin>' + str(fsy) + '</ymin>' + '\n' + '<xmax>' + str(esx) + '</xmax>' + '\n' + '<ymax>' + str(esy) + '</ymax>\n</bndbox>\n</object>\n' text = text + '</annotation>\n' f = open(filepath2, "w") f.writelines(text) f.close() cw = 1 / CurPicWidth ch = 1 / CurPicHeight cnx = (fsx + esx) / 2 cny = (fsy + esy) / 2 cnw = esx - fsx cnh = esy - fsy cnx = cnx * cw cny = cny * ch cnw = cnw * cw cnh = cnh * ch text = ROW + ' ' + str(cnx) + ' ' + str(cny) + ' ' + str(cnw) + ' ' + str(cnh) + '\n' f = open(filepath3, "w") f.writelines(text) f.close() cv2.rectangle(fPic, (fsx, fsy), (esx, esy), (0, 255, 0), 1) font_size = 1 font = cv2.FONT_HERSHEY_PLAIN cv2.putText(fPic, LABEL,(fsx + 2, fsy - 2),font, font_size,(0,255,0),1) cv2.imshow("MIIL MDC DRAW MODE", fPic) items.append(str(FileNum)) FileNum += 1 #Lpos = win.ui.listWidget2.count() - 1 #self.ui.listWidget2.setCurrentRow(Lpos) app.processEvents() #ボタン処理のタイミング確認用 self.ui.listWidget2.addItems(items) self.ui.listWidget2.setCurrentRow(cIndex) #-----画像回転保存用関数---------------------------------------- def pasteRotatePic(self, degree, BackgroundList): ########## #領域を切り抜き回転させ背景がにコピー後保存する ########## global FileNum items = [] rTimes = int(360 / degree) cIndex = self.ui.listWidget2.currentRow() for x in SettingList: ROW, LABEL,TX, TY, BX, BY = x.split(',') ROW = ROW.replace(" ", "") LABEL = LABEL.replace(" ", "") if len(SettingList) == 1: fy = CurPic.shape[0] fx = CurPic.shape[1] #copyPic = np.copy(CurPic) #imageArray = np.zeros((fy, fx, 3), np.uint8) #cutPic = copyPic[int(TY):int(BY), int(TX):int(BX)] #imageArray[int(TY):int(BY), int(TX):int(BX)] = cutPic for i in range(1, rTimes): deg = i * degree cx = int(TX) + int((int(BX) - int(TX)) / 2) cy = int(TY) + int((int(BY) - int(TY)) / 2) fsx, fsy, esx, esy, _ , _ = getRotatedRectanglePos(deg, cx, cy, int(TX), int(TY), int(BX), int(BY), CurPicWidth, CurPicHeight) frameR = np.copy(CurPic) M = cv2.getRotationMatrix2D((cx, cy), deg, 1) fPic = cv2.warpAffine(frameR,M,(CurPicWidth, CurPicHeight), borderValue=(255, 255, 255)) x1, y1, x2, y2, x3 , y3, x4, y4 = getRotatedPos(deg, cx, cy, int(TX), int(TY), int(BX), int(BY)) maskPic = np.zeros((fy, fx, 3), np.uint8) # 任意の描画したいポリゴンの頂点を与える contours = np.array( [ [x1, y1], [x2, y2], [x3, y3], [x4, y4], ] ) cv2.fillConvexPoly(maskPic, points = contours, color=(255, 255, 255)) bgPic = cv2.imread(random.choice(BackgroundList)) roi = bgPic[0:fy, 0:fx, :] rPic = np.where(maskPic==255, fPic, roi) cv2.imwrite(DirPath + '/' + str(FileNum) + '.jpg', rPic) filepath = SettingDataDir + '/' + str(FileNum) + '.set' filepath2 = AnnotationDir + '/' + str(FileNum) + '.xml' filepath3 = DirPath + '/' + str(FileNum) + '.txt' text = ROW + ', ' + LABEL + ', ' + str(fsx) + ', ' + str(fsy) + ', ' + str(esx) + ', ' + str(esy) + '\n' f = open(filepath, "w") f.writelines(text) f.close() text = '<annotation>' + '\n<filename>' + str(FileNum) + '.jpg</filename>\n<size>\n<width>' + str(fx) + '</width>' + '\n' + '<height>' + str(fy) + '</height>\n</size>\n' text = text + '<object>\n<name>' + LABEL + '</name>\n<bndbox>' + '\n' + '<xmin>' + str(fsx) + '</xmin>' + '\n' + '<ymin>' + str(fsy) + '</ymin>' + '\n' + '<xmax>' + str(esx) + '</xmax>' + '\n' + '<ymax>' + str(esy) + '</ymax>\n</bndbox>\n</object>\n' text = text + '</annotation>\n' f = open(filepath2, "w") f.writelines(text) f.close() cw = 1 / CurPicWidth ch = 1 / CurPicHeight cnx = (fsx + esx) / 2 cny = (fsy + esy) / 2 cnw = esx - fsx cnh = esy - fsy cnx = cnx * cw cny = cny * ch cnw = cnw * cw cnh = cnh * ch text = ROW + ' ' + str(cnx) + ' ' + str(cny) + ' ' + str(cnw) + ' ' + str(cnh) + '\n' f = open(filepath3, "w") f.writelines(text) f.close() cv2.rectangle(rPic, (fsx, fsy), (esx, esy), (0, 255, 0), 1) font_size = 1 font = cv2.FONT_HERSHEY_PLAIN cv2.putText(rPic, LABEL,(fsx + 2, fsy - 2),font, font_size,(0,255,0),1) cv2.imshow("MIIL MDC DRAW MODE", rPic) items.append(str(FileNum)) FileNum += 1 #Lpos = win.ui.listWidget2.count() - 1 #self.ui.listWidget2.setCurrentRow(Lpos) app.processEvents() #ボタン処理のタイミング確認用 self.ui.listWidget2.addItems(items) self.ui.listWidget2.setCurrentRow(cIndex) #-----画像回転保存用関数(リージョン中心)---------------------------------------- def rotatePic(self, degree): ########## #現在の画像を回転させ保存する ########## global FileNum items = [] rTimes = int(360 / degree) cIndex = self.ui.listWidget2.currentRow() for x in SettingList: ROW, LABEL,TX, TY, BX, BY = x.split(',') ROW = ROW.replace(" ", "") LABEL = LABEL.replace(" ", "") if len(SettingList) == 1: for i in range(1, rTimes): deg = i * degree cx = int(TX) + int((int(BX) - int(TX)) / 2) cy = int(TY) + int((int(BY) - int(TY)) / 2) fsx, fsy, esx, esy, _ , _ = getRotatedRectanglePos(deg, cx, cy, int(TX), int(TY), int(BX), int(BY), CurPicWidth, CurPicHeight) frameR = np.copy(CurPic) M = cv2.getRotationMatrix2D((cx, cy), deg, 1) print(M) fPic = cv2.warpAffine(frameR,M,(CurPicWidth, CurPicHeight), borderValue=(255, 255, 255)) cv2.imwrite(DirPath + '/' + str(FileNum) + '.jpg', fPic) filepath = SettingDataDir + '/' + str(FileNum) + '.set' filepath2 = AnnotationDir + '/' + str(FileNum) + '.xml' filepath3 = DirPath + '/' + str(FileNum) + '.txt' text = ROW + ', ' + LABEL + ', ' + str(fsx) + ', ' + str(fsy) + ', ' + str(esx) + ', ' + str(esy) + '\n' f = open(filepath, "w") f.writelines(text) f.close() fY = CurPic.shape[0] fX = CurPic.shape[1] text = '<annotation>' + '\n<filename>' + str(FileNum) + '.jpg</filename>\n<size>\n<width>' + str(fX) + '</width>' + '\n' + '<height>' + str(fY) + '</height>\n</size>\n' text = text + '<object>\n<name>' + LABEL + '</name>\n<bndbox>' + '\n' + '<xmin>' + str(fsx) + '</xmin>' + '\n' + '<ymin>' + str(fsy) + '</ymin>' + '\n' + '<xmax>' + str(esx) + '</xmax>' + '\n' + '<ymax>' + str(esy) + '</ymax>\n</bndbox>\n</object>\n' text = text + '</annotation>\n' f = open(filepath2, "w") f.writelines(text) f.close() cw = 1 / CurPicWidth ch = 1 / CurPicHeight cnx = (fsx + esx) / 2 cny = (fsy + esy) / 2 cnw = esx - fsx cnh = esy - fsy cnx = cnx * cw cny = cny * ch cnw = cnw * cw cnh = cnh * ch text = ROW + ' ' + str(cnx) + ' ' + str(cny) + ' ' + str(cnw) + ' ' + str(cnh) + '\n' f = open(filepath3, "w") f.writelines(text) f.close() cv2.rectangle(fPic, (fsx, fsy), (esx, esy), (0, 255, 0), 1) font_size = 1 font = cv2.FONT_HERSHEY_PLAIN cv2.putText(fPic, LABEL,(fsx + 2, fsy - 2),font, font_size,(0,255,0),1) cv2.imshow("MIIL MDC DRAW MODE", fPic) items.append(str(FileNum)) FileNum += 1 #Lpos = win.ui.listWidget2.count() - 1 #self.ui.listWidget2.setCurrentRow(Lpos) app.processEvents() #ボタン処理のタイミング確認用 self.ui.listWidget2.addItems(items) self.ui.listWidget2.setCurrentRow(cIndex) #-----画像回転保存用関数(画像中心)---------------------------------------- def rotatePicPC(self, degree): ########## #現在の画像を回転させ保存する ########## global FileNum items = [] rTimes = int(360 / degree) cIndex = self.ui.listWidget2.currentRow() for i in range(1, rTimes): deg = i * degree cx = int((CurPicWidth -1) / 2) cy = int((CurPicHeight -1) / 2) frameR = np.copy(CurPic) M = cv2.getRotationMatrix2D((cx, cy), deg, 1) fPic = cv2.warpAffine(frameR,M,(CurPicWidth, CurPicHeight), borderValue=(255, 255, 255)) cv2.imwrite(DirPath + '/' + str(FileNum) + '.jpg', fPic) text1 = "" text2 = "" text3 = "" fY = CurPic.shape[0] fX = CurPic.shape[1] xmlHeader = '<annotation>' + '\n<filename>' + str(FileNum) + '.jpg</filename>\n<size>\n<width>' + str(fX) + '</width>' + '\n' + '<height>' + str(fY) + '</height>\n</size>\n' xmlfooter = '</annotation>\n' if len(SettingList) > 0: for x in SettingList: ROW, LABEL,TX, TY, BX, BY = x.split(',') ROW = ROW.replace(" ", "") LABEL = LABEL.replace(" ", "") fsx, fsy, esx, esy, _ , _ = getRotatedRectanglePos(deg, cx, cy, int(TX), int(TY), int(BX), int(BY), CurPicWidth, CurPicHeight) filepath = SettingDataDir + '/' + str(FileNum) + '.set' filepath2 = AnnotationDir + '/' + str(FileNum) + '.xml' filepath3 = DirPath + '/' + str(FileNum) + '.txt' text1 = text1 + ROW + ', ' + LABEL + ', ' + str(fsx) + ', ' + str(fsy) + ', ' + str(esx) + ', ' + str(esy) + '\n' text2 = text2 + '<object>\n<name>' + LABEL + '</name>\n<bndbox>' + '\n' + '<xmin>' + str(fsx) + '</xmin>' + '\n' + '<ymin>' + str(fsy) + '</ymin>' + '\n' + '<xmax>' + str(esx) + '</xmax>' + '\n' + '<ymax>' + str(esy) + '</ymax>\n</bndbox>\n</object>\n' cw = 1 / CurPicWidth ch = 1 / CurPicHeight cnx = (fsx + esx) / 2 cny = (fsy + esy) / 2 cnw = esx - fsx cnh = esy - fsy cnx = cnx * cw cny = cny * ch cnw = cnw * cw cnh = cnh * ch text3 = text3 + ROW + ' ' + str(cnx) + ' ' + str(cny) + ' ' + str(cnw) + ' ' + str(cnh) + '\n' cv2.rectangle(fPic, (fsx, fsy), (esx, esy), (0, 255, 0), 1) font_size = 1 font = cv2.FONT_HERSHEY_PLAIN cv2.putText(fPic, LABEL, (fsx + 2, fsy - 2), font, font_size,(0,255,0),1) f = open(filepath, "w") f.writelines(text1) f.close() text2 = xmlHeader + text2 + xmlfooter f = open(filepath2, "w") f.writelines(text2) f.close() f = open(filepath3, "w") f.writelines(text3) f.close() else: filepath3 = DirPath + '/' + str(FileNum) + '.txt' f = open(filepath3, "w") f.writelines("") f.close() cv2.imshow("MIIL MDC DRAW MODE", fPic) items.append(str(FileNum)) FileNum += 1 #Lpos = win.ui.listWidget2.count() - 1 #self.ui.listWidget2.setCurrentRow(Lpos) app.processEvents() #ボタン処理のタイミング確認用 self.ui.listWidget2.addItems(items) self.ui.listWidget2.setCurrentRow(cIndex) #-----輝度・色合い変更保存用関数1---------------------------------------- def cngGamma(self, flag): ########## #現在の画像の輝度と色合いを変えて保存する ########## lookUpTable = np.empty((1,256), np.uint8) #ガンマ値を使ってLook up tableを作成 currentListIndex = self.ui.listWidget2.currentRow() if currentListIndex != -1: #listWidget2のアイテムが選択されている場合。 currentListText = self.ui.listWidget2.currentItem().text() sFile = SettingDataDir + '/' + currentListText +'.set' xFile = AnnotationDir + '/' + currentListText +'.xml' tFile = DirPath + '/' + currentListText +'.txt' CurPicB = np.copy(CurPic) #画像を画像にコピー if flag == 0 or flag == 2: CurPicC = np.copy(CurPicB) #画像を画像にコピー self.saveFile(CurPicC, sFile, xFile, tFile, 1.4) #CurPicC = np.copy(CurPicB) #画像を画像にコピー #self.saveFile(CurPicC, sFile, xFile, tFile, 1.2) #CurPicC = np.copy(CurPicB) #画像を画像にコピー #self.saveFile(CurPicC, sFile, xFile, tFile, 0.8) CurPicC = np.copy(CurPicB) #画像を画像にコピー self.saveFile(CurPicC, sFile, xFile, tFile, 0.6) if flag == 1 or flag == 2: b,g,r = cv2.split(CurPicB) #色要素を分割 gamma = 0.8 #ガンマ値を決める for i in range(256): lookUpTable[0,i] = np.clip(pow(i / 255.0, gamma) * 255.0, 0, 255) bL = cv2.LUT(b, lookUpTable) #Look up tableを使って画像の輝度値を変更 gamma = 1.2 #ガンマ値を決める for i in range(256): lookUpTable[0,i] = np.clip(pow(i / 255.0, gamma) * 255.0, 0, 255) bH = cv2.LUT(b, lookUpTable) #Look up tableを使って画像の輝度値を変更 gamma = 0.8 #ガンマ値を決める for i in range(256): lookUpTable[0,i] = np.clip(pow(i / 255.0, gamma) * 255.0, 0, 255) gL = cv2.LUT(g, lookUpTable) #Look up tableを使って画像の輝度値を変更 gamma = 1.2 #ガンマ値を決める for i in range(256): lookUpTable[0,i] = np.clip(pow(i / 255.0, gamma) * 255.0, 0, 255) gH = cv2.LUT(g, lookUpTable) #Look up tableを使って画像の輝度値を変更 #ガンマ値を決める gamma = 0.8 #ガンマ値を決める for i in range(256): lookUpTable[0,i] = np.clip(pow(i / 255.0, gamma) * 255.0, 0, 255) rL = cv2.LUT(r, lookUpTable) #Look up tableを使って画像の輝度値を変更 gamma = 1.2 #ガンマ値を決める for i in range(256): lookUpTable[0,i] = np.clip(pow(i / 255.0, gamma) * 255.0, 0, 255) rH = cv2.LUT(r, lookUpTable) #Look up tableを使って画像の輝度値を変更 CurPicC = cv2.merge((bL, gL, r)) #色要素を結合 self.saveFile(CurPicC, sFile, xFile, tFile, 0) CurPicC = cv2.merge((bL, gL, rH)) #色要素を結合 self.saveFile(CurPicC, sFile, xFile, tFile, 0) CurPicC = cv2.merge((bL, g, rL)) #色要素を結合 self.saveFile(CurPicC, sFile, xFile, tFile, 0) CurPicC = cv2.merge((bL ,g, r)) #色要素を結合 self.saveFile(CurPicC, sFile, xFile, tFile, 0) CurPicC = cv2.merge((bL, g, rH)) #色要素を結合 self.saveFile(CurPicC, sFile, xFile, tFile, 0) CurPicC = cv2.merge((bL, gH, rL)) #色要素を結合 self.saveFile(CurPicC, sFile, xFile, tFile, 0) CurPicC = cv2.merge((bL, gH, r)) #色要素を結合 self.saveFile(CurPicC, sFile, xFile, tFile, 0) CurPicC = cv2.merge((bL, gH, rH)) #色要素を結合 self.saveFile(CurPicC, sFile, xFile, tFile, 0) CurPicC = cv2.merge((b, gL, rL)) #色要素を結合 self.saveFile(CurPicC, sFile, xFile, tFile, 0) CurPicC = cv2.merge((b, gL, r)) #色要素を結合 self.saveFile(CurPicC, sFile, xFile, tFile, 0) CurPicC = cv2.merge((b, gL, rH)) #色要素を結合 self.saveFile(CurPicC, sFile, xFile, tFile, 0) CurPicC = cv2.merge((b, g, rL)) #色要素を結合 self.saveFile(CurPicC, sFile, xFile, tFile, 0) CurPicC = cv2.merge((b, g, rH)) #色要素を結合 self.saveFile(CurPicC, sFile, xFile, tFile, 0) CurPicC = cv2.merge((b, gH, rL)) #色要素を結合 self.saveFile(CurPicC, sFile, xFile, tFile, 0) CurPicC = cv2.merge((b, gH, r)) #色要素を結合 self.saveFile(CurPicC, sFile, xFile, tFile, 0) CurPicC = cv2.merge((b, gH, rH)) #色要素を結合 self.saveFile(CurPicC, sFile, xFile, tFile, 0) CurPicC = cv2.merge((bH, gL, rL)) #色要素を結合 self.saveFile(CurPicC, sFile, xFile, tFile, 0) CurPicC = cv2.merge((bH, gL, r)) #色要素を結合 self.saveFile(CurPicC, sFile, xFile, tFile, 0) CurPicC = cv2.merge((bH, gL, rH)) #色要素を結合 self.saveFile(CurPicC, sFile, xFile, tFile, 0) CurPicC = cv2.merge((bH, g, rL)) #色要素を結合 self.saveFile(CurPicC, sFile, xFile, tFile, 0) CurPicC = cv2.merge((bH, g, r)) #色要素を結合 self.saveFile(CurPicC, sFile, xFile, tFile, 0) CurPicC = cv2.merge((bH, g, rH)) #色要素を結合 self.saveFile(CurPicC, sFile, xFile, tFile, 0) CurPicC = cv2.merge((bH, gH, rL)) #色要素を結合 self.saveFile(CurPicC, sFile, xFile, tFile, 0) CurPicC = cv2.merge((bH, gH, r)) #色要素を結合 self.saveFile(CurPicC, sFile, xFile, tFile, 0) self.ui.listWidget2.setCurrentRow(currentListIndex) #-----輝度・色合い変更保存用関数2---------------------------------------- def saveFile(self, CurPicC, sFile, xFile, tFile, gamma): global FileNum if gamma > 0: lookUpTable =
np.empty((1,256), np.uint8)
numpy.empty
import numpy as np import cv2 import dlib import math import imutils def warp_affine(image, points, scale=1.0): dis1,dis2 = getDis(points[2][0],points[2][1],points[0][0],points[0][1],points[1][0],points[1][1]) eye_center = ((points[0][0] + points[1][0]) / 2, (points[0][1] + points[1][1]) / 2) dy = points[1][1] - points[0][1] dx = points[1][0] - points[0][0] center=(points[2][0],points[2][1]) # 计算旋转角度 angle = cv2.fastAtan2(dy, dx) #获取旋转角度angle = cv2.fastAtan2((y2 - y1), (x2 - x1)) print("angle:",angle) rot = cv2.getRotationMatrix2D(center, angle, scale=scale) # 获取旋转矩阵 rot_img = cv2.warpAffine(image, rot, dsize=(image.shape[1], image.shape[0])) delta_width = dis2*1 delta_height1 = dis1*3 delta_height2 = dis1*2 x1 = max(round(center[0]-delta_width),0) y1 = max(round(center[1]-delta_height1),0) x2 = min(x1+round(delta_width*2),rot_img.shape[1]) y2 = min(round(y1+delta_height1+delta_height2),rot_img.shape[0]) return rot_img,(x1,y1,x2,y2) def detect(image): detector = dlib.get_frontal_face_detector() # 取灰度 img_gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) # 人脸数rects rects = detector(img_gray, 0) return rects def landmark(image,rects): predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat') landmarksList=[] for i in range(len(rects)): landmarks = np.matrix([[p.x, p.y] for p in predictor(image,rects[i]).parts()]) landmarksList.append(landmarks) return landmarksList def vis_landmark(landmarksList,image): img = image.copy() for idx, point in enumerate(landmarks): # 68点的坐标 pos = (point[0, 0], point[0, 1]) print(idx,pos) # 利用cv2.circle给每个特征点画一个圈,共68个 cv2.circle(img, pos, 5, color=(0, 255, 0)) # 利用cv2.putText输出1-68 font = cv2.FONT_HERSHEY_SIMPLEX cv2.putText(img, str(idx+1), pos, font, 0.8, (0, 0, 255), 1,cv2.LINE_AA) return img def dlib_points(landmark): eye_left=np.mean(np.asarray(landmark[36:42]), axis=0) eye_right=np.mean(np.asarray(landmark[42:48]), axis=0) nose_tip = np.asarray(landmark[30]) nose_tip = np.squeeze(nose_tip) points=[] points.append([eye_left[0],eye_left[1]]) points.append([eye_right[0],eye_right[1]]) points.append([nose_tip[0],nose_tip[1]]) return points def getDis(pointX,pointY,lineX1,lineY1,lineX2,lineY2): a=lineY2-lineY1 b=lineX1-lineX2 c=lineX2*lineY1-lineX1*lineY2 dis1=(math.fabs(a*pointX+b*pointY+c))/(math.pow(a*a+b*b,0.5)) dis2=math.sqrt(a*a+b*b) return dis1,dis2 def crop_face(image, points): dis1,dis2 = getDis(points[2][0],points[2][1],points[0][0],points[0][1],points[1][0],points[1][1]) dy = points[1][1] - points[0][1] dx = points[1][0] - points[0][0] center=(points[2][0],points[2][1]) print("center:",center) cv2.circle(image,center,radius =3, color = (0,0,255), thickness = 2) print(dis1,dis2) # 计算旋转角度 angle = cv2.fastAtan2(dy, dx) #获取旋转角度angle = cv2.fastAtan2((y2 - y1), (x2 - x1)) delta_width = dis2*1 delta_height1 = dis1*3 delta_height2 = dis1*2 x1 = max(round(center[0]-delta_width),0) y1 = max(round(center[1]-delta_height1),0) x2 = min(x1+round(delta_width*2),image.shape[1]) y2 = min(round(y1+delta_height1+delta_height2),image.shape[0]) polygon = np.array([(x1,y1), (x2,y1), (x2,y2), (x1,y2),],np.int32) print("polygon:",polygon) #cv2.circle(image,(int(center[0]-delta_width),int(center[1]-delta_height)),radius =3, # color = (0,0,255), thickness = 2) #cv2.circle(image,(int(center[0]+delta_width),int(center[1]+delta_height)),radius =3, # color = (0,0,255), thickness = 2) # magic that makes sense if one understands numpy arrays poly =
np.reshape(polygon,(4,1,2))
numpy.reshape
import os import re import glob import numpy as np import matplotlib.pylab as plt import matplotlib from scipy.spatial import ConvexHull from scipy.interpolate import interp1d from itertools import chain, count from collections import defaultdict from os import makedirs from os.path import isdir, isfile, join from plot_util import * from plot_other import * # ------------------------------------------------------------------------------ matplotlib.rcParams['pdf.fonttype'] = 42 matplotlib.rcParams['ps.fonttype'] = 42 method_labels_map = { 'FH': 'FH', 'FH_Minus': 'FH$^-$', 'NH': 'NH', 'FH_wo_S': 'FH-wo-S', 'FH_Minus_wo_S': 'FH$^{-}$-wo-S', 'NH_wo_S': 'NH-wo-S', 'EH': 'EH', 'Orig_EH': 'EH', 'BH': 'BH', 'Orig_BH': 'BH', 'MH': 'MH', 'Orig_MH': 'MH', 'Random_Scan': 'Random-Scan', 'Sorted_Scan': 'Sorted-Scan', 'Linear': 'Linear-Scan' } dataset_labels_map = { 'Yelp': 'Yelp', 'Music': 'Music-100', 'GloVe100': 'GloVe', 'Tiny1M': 'Tiny-1M', 'Msong': 'Msong', 'MovieLens150': 'MovieLens', 'Netflix300': 'Netflix', 'Yahoo300': 'Yahoo', 'Mnist': 'Mnist', 'Sift': 'Sift', 'Gaussian': 'Gaussian', 'Gist': 'Gist', } # datasets = ['Yelp', 'GloVe100'] datasets = ['Yelp', 'Music', 'GloVe100', 'Tiny1M', 'Msong'] dataset_labels = [dataset_labels_map[dataset] for dataset in datasets] method_colors = ['red', 'blue', 'green', 'purple', 'deepskyblue', 'darkorange', 'olive', 'deeppink', 'dodgerblue', 'dimgray'] method_markers = ['o', '^', 's', 'd', '*', 'p', 'x', 'v', 'D', '>'] # ------------------------------------------------------------------------------ def calc_width_and_height(n_datasets, n_rows): ''' calc the width and height of figure :params n_datasets: number of dataset (integer) :params n_rows: number of rows (integer) :returns: width and height of figure ''' fig_width = 0.55 + 3.333 * n_datasets fig_height = 0.80 + 2.5 * n_rows return fig_width, fig_height # ------------------------------------------------------------------------------ def get_filename(input_folder, dataset_name, method_name): ''' get the file prefix 'dataset_method' :params input_folder: input folder (string) :params dataset_name: name of dataset (string) :params method_name: name of method (string) :returns: file prefix (string) ''' name = '%s%s_%s.out' % (input_folder, dataset_name, method_name) return name # ------------------------------------------------------------------------------ def parse_res(filename, chosen_top_k): ''' parse result and get info such as ratio, qtime, recall, index_size, chosen_k, and the setting of different methods BH: m=2, l=8, b=0.90 Indexing Time: 2.708386 Seconds Estimated Memory: 347.581116 MB cand=10000 1 5.948251 2.960960 0.000000 0.000000 0.844941 5 4.475743 2.954690 0.400000 0.000200 0.845279 10 3.891794 2.953910 0.900000 0.000899 0.845703 20 3.289422 2.963460 0.950000 0.001896 0.846547 50 2.642880 2.985980 0.900000 0.004478 0.849082 100 2.244649 3.012860 0.800000 0.007922 0.853307 cand=50000 1 3.905541 14.901140 6.000000 0.000120 4.222926 5 2.863510 14.905370 4.800000 0.000480 4.223249 10 2.626913 14.910181 5.300000 0.001061 4.223649 20 2.392440 14.913270 4.850000 0.001941 4.224458 50 2.081206 14.931760 4.560000 0.004558 4.227065 100 1.852284 14.964050 4.500000 0.008987 4.231267 ''' setting_pattern = re.compile(r'\S+\s+.*=.*') setting_m = re.compile(r'.*(m)=(\d+).*') setting_l = re.compile(r'.*(l)=(\d+).*') setting_M = re.compile(r'.*(M)=(\d+).*') setting_s = re.compile(r'.*(s)=(\d+).*') setting_b = re.compile(r'.*(b)=(\d+\.\d+).*') param_settings = [setting_m, setting_l, setting_M, setting_s, setting_b] index_time_pattern = re.compile(r'Indexing Time: (\d+\.\d+).*') memory_usage_pattern = re.compile(r'Estimated Memory: (\d+\.\d+).*') candidate_pattern = re.compile(r'.*cand=(\d+).*') records_pattern = re.compile(r'(\d+)\s*(\d+\.\d+)\s*(\d+\.\d+)\s*(\d+\.\d+)\s*(\d+\.\d+)\s*(\d+\.\d+)') params = {} with open(filename, 'r') as f: for line in f: res = setting_pattern.match(line) if res: for param_setting in param_settings: tmp_res = param_setting.match(line) if tmp_res is not None: # print(tmp_res.groups()) params[tmp_res.group(1)] = tmp_res.group(2) # print("setting=", line) res = index_time_pattern.match(line) if res: chosen_k = float(res.group(1)) # print('chosen_k=', chosen_k) res = memory_usage_pattern.match(line) if res: memory_usage = float(res.group(1)) # print('memory_usage=', memory_usage) res = candidate_pattern.match(line) if res: cand = int(res.group(1)) # print('cand=', cand) res = records_pattern.match(line) if res: top_k = int(res.group(1)) ratio = float(res.group(2)) qtime = float(res.group(3)) recall = float(res.group(4)) precision = float(res.group(5)) fraction = float(res.group(6)) # print(top_k, ratio, qtime, recall, precision, fraction) if top_k == chosen_top_k: yield ((cand, params), (top_k, chosen_k, memory_usage, ratio, qtime, recall, precision, fraction)) # ------------------------------------------------------------------------------ def getindexingtime(res): return res[1] def getindexsize(res): return res[2] def getratio(res): return res[3] def gettime(res): return res[4] def getrecall(res): return res[5] def getprecision(res): return res[6] def getfraction(res): return res[7] def get_cand(res): return int(res[0][0]) def get_l(res): return int(res[0][1]['l']) def get_m(res): return int(res[0][1]['m']) def get_s(res): return int(res[0][1]['s']) def get_time(res): return float(res[1][4]) def get_recall(res): return float(res[1][5]) def get_precision(res): return float(res[1][6]) def get_fraction(res): return float(res[1][7]) # ------------------------------------------------------------------------------ def lower_bound_curve(xys): ''' get the time-recall curve by convex hull and interpolation :params xys: 2-dim array (np.array) :returns: time-recall curve with interpolation ''' # add noise and conduct convex hull to find the curve eps = np.random.normal(size=xys.shape) * 1e-6 xys += eps # print(xys) hull = ConvexHull(xys) hull_vs = xys[hull.vertices] # hull_vs = np.array(sorted(hull_vs, key=lambda x:x[1])) # print("hull_vs: ", hull_vs) # find max pair (maxv0) and min pairs (v1s) from the convex hull v1s = [] maxv0 = [-1, -1] for v0, v1 in zip(hull_vs, chain(hull_vs[1:], hull_vs[:1])): # print(v0, v1) if v0[1] > v1[1] and v0[0] > v1[0]: v1s = np.append(v1s, v1, axis=-1) if v0[1] > maxv0[1]: maxv0 = v0 # print(v1s, maxv0) # interpolation: vs[:, 1] -> recall (x), vs[:, 0] -> time (y) vs = np.array(
np.append(maxv0, v1s)
numpy.append
########################################################### import numpy as np import seaborn as sns import matplotlib.pyplot as plt import scikitplot as skplt import pandas as pd from sklearn.metrics import classification_report #Util functions def Extract(lst): return [item[0] for item in lst] fontdict = {'fontsize': 9, 'fontweight': 'medium'} def training_roc(roc): roc = roc.toPandas() plt.plot(roc['FPR'], roc['TPR']) plt.ylabel('False Positive Rate', fontdict=fontdict, color='black') plt.xlabel('True Positive Rate', fontdict=fontdict, color='black') plt.title('Training - ROC Curve', fontsize=10, weight='bold', color='steelblue') plt.plot([0, 1], [0, 1], 'k--') plt.xticks([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0], fontsize=8, weight='bold', color='darkslategrey') plt.yticks([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0], fontsize=8, weight='bold', color='darkslategrey') plt.show() def training_pr(pr): pr = pr.toPandas() plt.plot(pr['recall'], pr['precision']) plt.ylabel('Precision', fontdict=fontdict, color='black') plt.xlabel('Recall', fontdict=fontdict, color='black') plt.title('Training - PR Curve', fontsize=10, weight='bold', color='steelblue') plt.plot([0, 1], [0, 1], 'r--') plt.xticks([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0], fontsize=8, weight='bold', color='darkslategrey') plt.yticks([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0], fontsize=8, weight='bold', color='darkslategrey') plt.show() def plot_cm(cm): fig_len = 1 + cm.shape[0] fig_wid = round(fig_len * 0.75) fig, ax = plt.subplots(figsize=(fig_len, fig_wid)) sns.set(font_scale=0.75) cm_sum = np.sum(cm, axis=1, keepdims=True) cm_perc = cm / cm_sum.astype(float) * 100 annot =
np.empty_like(cm)
numpy.empty_like
#!/usr/bin/env python import roslib roslib.load_manifest('crazyflie_control') import rospy import sys from geometry_msgs.msg import Vector3 from nav_msgs.msg import Odometry from crazyflie_driver.msg import RPYT import dynamic_reconfigure.server from crazyflie_control.cfg import CrazyflieControlConfig from math import * import numpy as np class CrazyflieControlNode(object): mass = 1.0 gravity = 9.801 kpz = 1.0 kdz = 1.0 kpx = 1.0 kpy = 1.0 kdx = 1.0 kdy = 1.0 xd = 0.0 yd = 0.0 zd = 0.0 xp = 0.0 yp = 0.0 zp = 0.0 x = 0.0 y = 0.0 z = 0.0 q0 = 1.0 q1 = 0.0 q2 = 0.0 q3 = 0.0 last_odometry_update = rospy.Time() def __init__(self, default_name='apollo', default_update_rate=100): self.default_name = default_name self.default_update_rate = default_update_rate rospy.init_node('crazyflie_control') self._init_params() self._init_pubsub() dynamic_reconfigure.server.Server(CrazyflieControlConfig, self.reconfigure) self.last_odometry_update = rospy.get_rostime() def _init_params(self): self.name = rospy.get_param('~name', self.default_name) self.update_rate = rospy.get_param('~update_rate', self.default_update_rate) def _init_pubsub(self): self.vicon_sub = rospy.Subscriber('/' + self.name + '/odom', Odometry, self.set_odometry) self.rotation_desired_pub = rospy.Publisher('/' + self.name + '/rotation_desired', RPYT) self.rotation_actual_pub = rospy.Publisher('/' + self.name + '/rotation_actual', Vector3) def set_odometry(self, msg): now = rospy.get_rostime() dt = self.last_odometry_update - now x_old = self.x y_old = self.y z_old = self.z self.x = msg.pose.pose.position.x * 0.001 self.y = msg.pose.pose.position.y * 0.001 self.z = msg.pose.pose.position.z * 0.001 self.q1 = msg.pose.pose.orientation.x self.q2 = msg.pose.pose.orientation.y self.q3 = msg.pose.pose.orientation.z self.q0 = msg.pose.pose.orientation.w self.xd = (2.0/dt.to_sec())*(self.x - x_old) - self.xd self.yd = (2.0/dt.to_sec())*(self.y - y_old) - self.yd self.zd = (2.0/dt.to_sec())*(self.z - z_old) - self.zd self.last_odometry_update = now def reconfigure(self, config, level): self.kpx = config['kpx'] self.kpy = config['kpy'] self.kpz = config['kpz'] self.kdx = config['kdx'] self.kdy = config['kdy'] self.kdz = config['kdz'] self.xd = config['xd'] self.yd = config['yd'] self.zd = config['zd'] self.power = config['power'] return config def spin(self): rospy.loginfo("Spinning") r = rospy.Rate(self.update_rate) while not rospy.is_shutdown(): gx = 2 * (self.q1*self.q3 - self.q0*self.q2); gy = 2 * (self.q0*self.q1 + self.q2*self.q3); gz = self.q0*self.q0 - self.q1*self.q1 - self.q2*self.q2 + self.q3*self.q3; yaw = atan2(2*self.q1*self.q2 - 2*self.q0*self.q3, 2*self.q0*self.q0 + 2*self.q1*self.q1 - 1) * 180 /pi; pitch = atan(gx / sqrt(gy*gy + gz*gz)) * 180 / pi; roll = atan(gy / sqrt(gx*gx + gz*gz)) * 180 / pi; msg_actual = Vector3() msg_actual.x = roll msg_actual.y = pitch msg_actual.z = yaw self.rotation_actual_pub.publish(msg_actual) R = [ [0]*3 ]*3 R[0][0] = pow(self.q0,2) + pow(self.q1,2) - pow(self.q2,2) - pow(self.q3,2) R[0][1] = 2*self.q0*self.q1 - 2*self.q0*self.q3 R[0][2] = 2*self.q1*self.q3 + 2*self.q0*self.q2 R[1][0] = 2*self.q0*self.q1 + 2*self.q0*self.q3 R[1][1] = pow(self.q0,2) - pow(self.q1,2) + pow(self.q2,2) - pow(self.q3,2) R[1][2] = 2*self.q2*self.q3 - 2*self.q0*self.q1 R[2][0] = 2*self.q1*self.q3 - 2*self.q0*self.q2 R[2][1] = 2*self.q2*self.q3 + 2*self.q0*self.q1 R[2][2] = pow(self.q0,2) - pow(self.q1,2) - pow(self.q2,2) + pow(self.q3,2) r_matrix = np.matrix(R) # This is the thrust, should be also placed in the function below... f = self.mass / R[2][2] * ( self.gravity - self.kpz*(self.z-self.zd) - self.kdz*self.zp ) r13d = self.mass / f * ( -self.kpx*(self.x-self.xd) - self.kdx*self.xp ) r23d = self.mass / f * ( -self.kpy*(self.y-self.yd) - self.kdy*self.yp ) r33d = sqrt(1-pow(r13d,2)-pow(r23d,2)) v = [0]*3 v[0] = -r23d v[1] = r13d v[2] = 0.0 angle = acos(r33d) ca = cos(angle) sa = sin(angle) A = [ [0]*3 ]*3 A[0][0] = ca + pow(v[0],2)*(1-ca) A[0][1] = v[0]*v[1]*(1-ca) - v[2]*sa A[0][2] = v[0]*v[2]*(1-ca) + v[1]*sa A[1][0] = v[0]*v[1]*(1-ca) + v[2]*sa A[1][1] = ca + pow(v[1],2)*(1-ca) A[1][2] = v[1]*v[2]*(1-ca) - v[0]*sa A[2][0] = v[0]*v[2]*(1-ca) + v[1]*sa A[2][1] = v[1]*v[2]*(1-ca) + v[0]*sa A[2][2] = ca + pow(v[2],2)*(1-ca) a_matrix = np.matrix(A) rd = [0]*3 rd[0] = r13d rd[1] = r23d rd[2] = r33d rd_matrix = np.matrix(rd) gd =
np.transpose(r_matrix)
numpy.transpose
from math import radians, degrees, sin, cos, tan, asin, acos, atan2 import numpy as np import matplotlib.pyplot as plt #Define Latitude in radians lat=radians(49.3978620896919) #Define hoirzontal limit in altitude in degree horizon_limit=12 def equ_to_altaz(ha,dec): """ Transforms equatorial coordinates (hourangle, declination) to horizontal coordinates (azimuth,altitude). Input: ha in hours as float, dec in degree as float. Returns altitude and azimuth as float in degrees. """ #Check if Input arrays have same dimensions if not np.isscalar(ha) and not np.isscalar(dec): if (len(ha)!=len(dec) or ha.ndim!=1 or dec.ndim!=1): return 0 #Convert hour angle to radians #Convert hour angle to degree first and convert negative hour angles to #positive ones (e.g. -11 to 13) ha=ha+24*(ha<0) ha=np.radians(ha*15.) #Convert declination to radians dec=np.radians(dec) #Calculate altitude and azimuth (formulaes from celestial mechanics script #of <NAME>) #For altitudwe have the formula: #sin(alt)=cos(ha)*cos(lat)*cos(dec)+sin(lat)*sin(dec)) alt=np.arcsin(np.sin(lat)*np.sin(dec)+np.cos(lat)*np.cos(dec)*np.cos(ha)) #For azimuth we have the formula #tan(az)=-sin(ha)/(cos(lat)*tan(dec)-sin(lat)*cos(ha)) az=np.arctan2(np.sin(ha),(-np.cos(lat)*np.tan(dec)+np.sin(lat)*np.cos(ha))) #Convert alt and az to degrees alt=np.degrees(alt) az=np.degrees(az) #If Input was an array longer than 1 return the float arrays if not np.isscalar(alt): return (alt,az) #If Input was single values than also format the Output #In that case transform arrays to float alt=float(alt) az=float(az) formated_coord_list=[] #Also Format alt/az to +dd°mm'ss" as string #Get the sign of ha_float for coord in [alt,az]: if coord>=0: sign='+' elif coord<0: sign='-' #Calculate the absolute of coord to convert it to hh mm ss coord=abs(coord) #Format hour angle to hh:mm:ss deg=int(coord) rest=abs(coord-deg)*60 minutes=int(rest) rest=abs(rest-minutes)*60 #We want to round seconds to get a more continous updating of seconds seconds=round(rest) #But we have to take care of rounding up to 60. Increase minutes by one in that case. if seconds==60: seconds=0 minutes=minutes+1 coord='''{}{:02}°{:02}'{:02}"'''.format(sign,deg,minutes,seconds) formated_coord_list.append(coord) #Return altitude and azimuth return (alt,az,formated_coord_list[0],formated_coord_list[1]) def altaz_to_equ(alt,az): """ Transforms horizontal coordinates (azimuth,altitude). to equatorial coordinates (hourangle, declination). Input: alt in degrees as float or array of floats, az in degrees as float or array of floats. Returns ha as float in hours and dec as float in degrees. """ #Convert alt and az to radians alt=np.radians(alt) az=np.radians(az) #Calculate hour angle and declination (formulaes from celestial mechanics script #of Genevieve Parmentier) #For hour angle we have the formula: #tan(ha)=(sin(az))/(cos(lat)*tan(alt)+cos(az)*sin(lat)) ha=np.arctan2(np.sin(az),np.cos(lat)*np.tan(alt)+np.cos(az)*np.sin(lat)) #For declination we have the formula: #sin(dec)=sin(lat)*sin(alt)-cos(lat)*cos(alt)*cos(az) dec=np.arcsin(np.sin(lat)*np.sin(alt)-np.cos(lat)*np.cos(alt)*np.cos(az)) #Convert ha to hours ha=np.degrees(ha)/15. #Convert dec to degrees dec=np.degrees(dec) return (ha, dec) def check_coordinates(alt,az): """Checks if coordinates are observable and safe to slew. Returns True if coordinates do not reach limits. Returns False if coordinates are in limits. """ #Check if alt and az are set as floats if (not isinstance(alt, (int, float)) or not isinstance(az, (int, float))): return False #Calculate altitude limit alt_limit=calc_alt_limit(az) #Check if altitude is above or below limit if alt>=alt_limit: return True else: return False def calc_alt_limit(az): """ Calculates altitude limits. Returns Altitude limit in degrees. Input: Array of az as floats between -180 and 180 """ #Check Input: If int or float make array if isinstance(az,(float,int)): az=
np.array([az])
numpy.array
import imageio import numpy as np import cv2 from PIL import Image from scipy.spatial import distance as dist import pyautogui import time import os pyautogui.PAUSE = 0.1 DIFFICULTIES = ['medium'] CELL_DEF = { "medium": (14,18) } # Background Color Definitions BACKGROUND_COLORS = [(229,193,161), (215,183,155), (136,174,70), (171,213,94), (163, 207, 86)] UNCLICKABLE = [(229,193,161), (215,183,155)] CLICKABLE = [(171,213,94), (163, 207, 86)] # Cell grid number color definitions NUMBER_COLORS = [(27,121,206), (63,142,69), (210,51,54), (134,54,158), (254,146,0), (14,152,166)] class Cell(object): def __init__(self, value, left, top, width,height): self.value = value self.left = int(left) self.top = int(top) self.width = int(width) self.height = int(height) self.mouse_center = (left+width/2, top+height/2) class SweeperGrid(object): def __init__(self, difficulty='medium'): if difficulty not in DIFFICULTIES: raise Exception("Only {} difficulties supported. You passed: {}".format(DIFFICULTIES, difficulty)) medium_grid = cv2.imread('resources/medium_grid.png', cv2.IMREAD_GRAYSCALE) # Visualization Params self.screen_vis = None # Locate the grid and save where it is (self.x_min, self.y_min),(self.x_max, self.y_max) = self.getGridPosition(medium_grid) self.grid_w, self.grid_h = (self.x_max-self.x_min, self.y_max-self.y_min) # Compute and initialze each grid cell self.rows, self.cols = CELL_DEF[difficulty] self.cell_w, self.cell_h = (self.grid_w/self.cols, self.grid_h/self.rows) x_grid = np.linspace(0, self.grid_w, num = self.cols, endpoint=False) y_grid = np.linspace(0, self.grid_h, num = self.rows, endpoint=False) self.cells = [[Cell(-1, self.x_min+x, self.y_min+y, self.cell_w, self.cell_h) for x in x_grid] for y in y_grid] def getGridPosition(self, grid_template): screen = np.asarray(imageio.imread('<screen>')) self.screen_vis = screen screen = cv2.cvtColor(screen, cv2.COLOR_BGR2GRAY) (tH, tW) = grid_template.shape[:2] found = None for scale in np.linspace(0.2, 1.0, 100)[::-1]: resized = np.array(Image.fromarray(screen).resize( (int(screen.shape[1] * scale), int(screen.shape[0] * scale)) )) r = screen.shape[0] / float(resized.shape[0]) if resized.shape[0] < tH or resized.shape[1] < tW: break result = cv2.matchTemplate(resized, grid_template, cv2.TM_CCOEFF_NORMED) (_, maxVal, _, maxLoc) = cv2.minMaxLoc(result) if found is None or maxVal > found[0]: found = (maxVal, maxLoc, r) if maxVal > 0.99: break (maxVal, maxLoc, r) = found if maxVal < 0.9: raise Exception("Unable to find a suitable playing grid") (startX, startY) = (int(maxLoc[0] * r), int(maxLoc[1] * r)) (endX, endY) = (int((maxLoc[0] + tW) * r), int((maxLoc[1] + tH) * r)) return (startX, startY), (endX, endY) def updateGrid(self): screen = np.asarray(imageio.imread('<screen>')) self.screen_vis = screen cells = [] for row in self.cells: for col in row: cells.append(screen[col.top:col.top+col.height, col.left: col.left+col.width].copy()) cells = np.stack(cells) cell_masks = self._getMaskedCells(cells, BACKGROUND_COLORS) for i, (cell, mask) in enumerate(zip(cells, cell_masks)): row, col = (int(i/self.cols), int(i%self.cols)) mean = cv2.mean(cell, mask = mask.astype('uint8'))[:3] if np.sum(mean) > 50: minDist = self._getClosestColor(mean, NUMBER_COLORS) self.cells[row][col].value = minDist[1] + 1 else: mean = cv2.mean(cell)[:3] minDist = self._getClosestColor(mean, CLICKABLE + UNCLICKABLE) if minDist[1]<=1: self.cells[row][col].value = -1 else: self.cells[row][col].value = -2 def updateMines(self, mine_locations): for mines in mine_locations: self.cells[mines[0]][mines[1]].value -3 def _getMaskedCells(self, cells, background_colors): final_mask = np.zeros(cells.shape[:-1]) for color in background_colors: final_mask = np.logical_or(
np.all(cells == color, axis=-1)
numpy.all
import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from scipy.constants import golden mpl.rc("text", usetex=True) mpl.rc("font", family="serif") x = np.array([-1, -0.8, -0.6, -0.4, -0.2, 0, 0.2, 0.4, 0.6, 0.8, 1]) t = np.array([-4.9, -3.5, -2.8, 0.8, 0.3, -1.6, -1.3, 0.5, 2.1, 2.9, 5.6]) def f(x): return 3*np.sin((1/2)*np.pi * x) - 2*np.sin((3/2) * np.pi * x) Ms = [2, 4, 6, 8] fig = plt.figure(figsize=(8, 8/golden)) for i, M in enumerate(Ms): N = len(x) X = np.zeros((N, M+1)) for m in range(M+1): X[:, m] = x**m w = np.linalg.inv(X.T @ X) @ X.T @ t h = np.poly1d(
np.flip(w, 0)
numpy.flip
#!/usr/bin/env python # coding: utf-8 # # Parts-of-Speech Tagging - Working with tags and Numpy # In this lecture notebook you will create a matrix using some tag information and then modify it using different approaches. # This will serve as hands-on experience working with Numpy and as an introduction to some elements used for POS tagging. # In[1]: import numpy as np import pandas as pd # ### Some information on tags # For this notebook you will be using a toy example including only three tags (or states). In a real world application there are many more tags which can be found [here](https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html). # In[2]: # Define tags for Adverb, Noun and To (the preposition) , respectively tags = ['RB', 'NN', 'TO'] # In this week's assignment you will construct some dictionaries that provide useful information of the tags and words you will be working with. # # One of these dictionaries is the `transition_counts` which counts the number of times a particular tag happened next to another. The keys of this dictionary have the form `(previous_tag, tag)` and the values are the frequency of occurrences. # # Another one is the `emission_counts` dictionary which will count the number of times a particular pair of `(tag, word)` appeared in the training dataset. # # In general think of `transition` when working with tags only and of `emission` when working with tags and words. # # In this notebook you will be looking at the first one: # In[3]: # Define 'transition_counts' dictionary # Note: values are the same as the ones in the assignment transition_counts = { ('NN', 'NN'): 16241, ('RB', 'RB'): 2263, ('TO', 'TO'): 2, ('NN', 'TO'): 5256, ('RB', 'TO'): 855, ('TO', 'NN'): 734, ('NN', 'RB'): 2431, ('RB', 'NN'): 358, ('TO', 'RB'): 200 } # Notice that there are 9 combinations of the 3 tags used. Each tag can appear after the same tag so you should include those as well. # # ### Using Numpy for matrix creation # # Now you will create a matrix that includes these frequencies using Numpy arrays: # In[4]: # Store the number of tags in the 'num_tags' variable num_tags = len(tags) # Initialize a 3X3 numpy array with zeros transition_matrix = np.zeros((num_tags, num_tags)) # Print matrix transition_matrix # Visually you can see the matrix has the correct dimensions. Don't forget you can check this too using the `shape` attribute: # In[5]: # Print shape of the matrix transition_matrix.shape # Before filling this matrix with the values of the `transition_counts` dictionary you should sort the tags so that their placement in the matrix is consistent: # In[6]: # Create sorted version of the tag's list sorted_tags = sorted(tags) # Print sorted list sorted_tags # To fill this matrix with the correct values you can use a `double for loop`. You could also use `itertools.product` to one line this double loop: # In[7]: # Loop rows for i in range(num_tags): # Loop columns for j in range(num_tags): # Define tag pair tag_tuple = (sorted_tags[i], sorted_tags[j]) # Get frequency from transition_counts dict and assign to (i, j) position in the matrix transition_matrix[i, j] = transition_counts.get(tag_tuple) # Print matrix transition_matrix # Looks like this worked fine. However the matrix can be hard to read as `Numpy` is more about efficiency, rather than presenting values in a pretty format. # # For this you can use a `Pandas DataFrame`. In particular, a function that takes the matrix as input and prints out a pretty version of it will be very useful: # In[8]: # Define 'print_matrix' function def print_matrix(matrix): print(pd.DataFrame(matrix, index=sorted_tags, columns=sorted_tags)) # Notice that the tags are not a parameter of the function. This is because the `sorted_tags` list will not change in the rest of the notebook so it is safe to use the variable previously declared. To test this function simply run: # In[9]: # Print the 'transition_matrix' by calling the 'print_matrix' function print_matrix(transition_matrix) # That is a lot better, isn't it? # # As you may have already deducted this matrix is not symmetrical. # ### Working with Numpy for matrix manipulation # Now that you got the matrix set up it is time to see how a matrix can be manipulated after being created. # # `Numpy` allows vectorized operations which means that operations that would normally include looping over the matrix can be done in a simpler manner. This is consistent with treating numpy arrays as matrices since you get support for common matrix operations. You can do matrix multiplication, scalar multiplication, vector addition and many more! # # For instance try scaling each value in the matrix by a factor of $\frac{1}{10}$. Normally you would loop over each value in the matrix, updating them accordingly. But in Numpy this is as easy as dividing the whole matrix by 10: # In[10]: # Scale transition matrix transition_matrix = transition_matrix/10 # Print scaled matrix print_matrix(transition_matrix) # Another trickier example is to normalize each row so that each value is equal to $\frac{value}{sum \,of \,row}$. # # This can be easily done with vectorization. First you will compute the sum of each row: # In[11]: # Compute sum of row for each row rows_sum = transition_matrix.sum(axis=1, keepdims=True) # Print sum of rows rows_sum # Notice that the `sum()` method was used. This method does exactly what its name implies. Since the sum of the rows was desired the axis was set to `1`. In Numpy `axis=1` refers to the columns so the sum is done by summing each column of a particular row, for each row. # # Also the `keepdims` parameter was set to `True` so the resulting array had shape `(3, 1)` rather than `(3,)`. This was done so that the axes were consistent with the desired operation. # # When working with Numpy, always remember to check the shape of the arrays you are working with, many unexpected errors happen because of axes not being consistent. The `shape` attribute is your friend for these cases. # In[12]: # Normalize transition matrix transition_matrix = transition_matrix / rows_sum # Print normalized matrix print_matrix(transition_matrix) # Notice that the normalization that was carried out forces the sum of each row to be equal to `1`. You can easily check this by running the `sum` method on the resulting matrix: # In[13]: transition_matrix.sum(axis=1, keepdims=True) # For a final example you are asked to modify each value of the diagonal of the matrix so that they are equal to the `log` of the sum of the current row plus the current value. When doing mathematical operations like this one don't forget to import the `math` module. # # This can be done using a standard `for loop` or `vectorization`. You'll see both in action: # In[14]: import math # Copy transition matrix for for-loop example t_matrix_for = np.copy(transition_matrix) # Copy transition matrix for numpy functions example t_matrix_np =
np.copy(transition_matrix)
numpy.copy
import json import os import time from copy import deepcopy import TransportMaps.Distributions as dist import TransportMaps.Likelihoods as like from typing import List, Dict from matplotlib import pyplot as plt from factors.Factors import Factor, ExplicitPriorFactor, ImplicitPriorFactor, \ LikelihoodFactor, BinaryFactorMixture, KWayFactor from sampler.NestedSampling import GlobalNestedSampler from sampler.SimulationBasedSampler import SimulationBasedSampler from slam.Variables import Variable, VariableType from slam.FactorGraph import FactorGraph from slam.BayesTree import BayesTree, BayesTreeNode import numpy as np from sampler.sampler_utils import JointFactor from utils.Functions import sort_pair_lists from utils.Visualization import plot_2d_samples from utils.Functions import sample_dict_to_array, array_order_to_dict class SolverArgs: def __init__(self, elimination_method: str = "natural", posterior_sample_num: int = 500, local_sample_num: int = 500, store_clique_samples: bool = False, local_sampling_method="direct", adaptive_posterior_sampling=None, *args, **kwargs ): # graph-related and tree-related params self.elimination_method = elimination_method self.posterior_sample_num = posterior_sample_num self.store_clique_samples = store_clique_samples self.local_sampling_method = local_sampling_method self.local_sample_num = local_sample_num self.adaptive_posterior_sampling = adaptive_posterior_sampling def jsonStr(self): return json.dumps(self.__dict__) class CliqueSeparatorFactor(ImplicitPriorFactor): def sample(self, num_samples: int, **kwargs): return NotImplementedError("implementation depends on density models") class ConditionalSampler: def conditional_sample_given_observation(self, conditional_dim, obs_samples=None, sample_number=None): """ This method returns samples with the dimension of conditional_dim. If sample_number is given, samples of the first conditional_dim variables are return. If obs_samples is given, samples of the first conditional_dim variables after the dimension of obs_samples will be returned. obs_samples.shape = (sample num, dim) Note that the dims here are of the vectorized point on manifolds not the dim of manifold. """ raise NotImplementedError("Implementation depends on density estimation method.") class FactorGraphSolver: """ This is the abstract class of factor graph solvers. It mainly works as: 1. the interface for users to define and solve factor graphs. 2. the maintainer of factor graphs and Bayes tree for incremental inference 3. fitting probabilistic models to the working part of factor graph and Bayes tree 4. inference (sampling) on the entire Bayes tree The derived class may reply on different probabilistic modeling approaches. """ def __init__(self, args: SolverArgs): """ Parameters ---------- elimination_method : string option of heuristics for variable elimination ordering. TODO: this can be a dynamic parameter when updating Bayes tree """ self._args = args self._physical_graph = FactorGraph() self._working_graph = FactorGraph() self._physical_bayes_tree = None self._working_bayes_tree = None self._conditional_couplings = {} # map from Bayes tree clique to flows self._implicit_factors = {} # map from Bayes tree clique to factor self._samples = {} # map from variable to samples self._new_nodes = [] self._new_factors = [] self._clique_samples = {} # map from Bayes tree clique to samples self._clique_true_obs = {} # map from Bayes tree clique to observations which augments flow models self._clique_density_model = {} # map from Bayes tree clique to flow model # map from Bayes tree clique to variable pattern; (Separator,Frontal) in reverse elimination order self._clique_variable_pattern = {} self._elimination_ordering = [] self._reverse_ordering_map = {} self._temp_training_loss = {} def set_args(self, args: SolverArgs): raise NotImplementedError("Implementation depends on probabilistic modeling approaches.") @property def elimination_method(self) -> str: return self._args.elimination_method @property def elimination_ordering(self) -> List[Variable]: return self._elimination_ordering @property def physical_vars(self) -> List[Variable]: return self._physical_graph.vars @property def new_vars(self) -> List[Variable]: return self._new_nodes @property def working_vars(self) -> List[Variable]: return self._working_graph.vars @property def physical_factors(self) -> List[Factor]: return self._physical_graph.factors @property def new_factors(self) -> List[Factor]: return self._new_factors @property def working_factors(self) -> List[Factor]: return self._working_graph.factors @property def working_factor_graph(self) -> FactorGraph: return self._working_graph @property def physical_factor_graph(self) -> FactorGraph: return self._physical_graph @property def working_bayes_tree(self) -> BayesTree: return self._working_bayes_tree @property def physical_bayes_tree(self) -> BayesTree: return self._physical_bayes_tree def generate_natural_ordering(self) -> None: """ Generate the ordering by which nodes are added """ self._elimination_ordering = self._physical_graph.vars + self._new_nodes def generate_pose_first_ordering(self) -> None: """ Generate the ordering by which nodes are added and lmk eliminated later """ natural_order = self._physical_graph.vars + self._new_nodes pose_list = [] lmk_list = [] for node in natural_order: if node._type == VariableType.Landmark: lmk_list.append(node) else: pose_list.append(node) self._elimination_ordering = pose_list + lmk_list def generate_ccolamd_ordering(self) -> None: """ """ physical_graph_ordering = [var for var in self._elimination_ordering if var not in self._working_graph.vars] working_graph_ordering = self._working_graph.analyze_elimination_ordering( method="ccolamd", last_vars= [[var for var in self._working_graph.vars if var.type == VariableType.Pose][-1]]) self._elimination_ordering = physical_graph_ordering + working_graph_ordering def generate_ordering(self) -> None: """ Generate the ordering by which Bayes tree should be generated """ if self._args.elimination_method == "natural": self.generate_natural_ordering() elif self._args.elimination_method == "ccolamd": self.generate_ccolamd_ordering() elif self._args.elimination_method == "pose_first": self.generate_pose_first_ordering() self._reverse_ordering_map = { var: index for index, var in enumerate(self._elimination_ordering[::-1])} # TODO: Add other ordering methods def add_node(self, var: Variable = None, name: str = None, dim: int = None) -> "FactorGraphSolver": """ Add a new node The node has not been added to the physical or current factor graphs :param var: :param name: used only when variable is not specified :param dim: used only when variable is not specified :return: the current problem """ if var: self._new_nodes.append(var) else: self._new_nodes.append(Variable(name, dim)) return self def add_factor(self, factor: Factor) -> "FactorGraphSolver": """ Add a prior factor to specified nodes The factor has not been added to physical or current factor graphs :param factor :return: the current problem """ self._new_factors.append(factor) return self def add_prior_factor(self, vars: List[Variable], distribution: dist.Distribution) -> "FactorGraphSolver": """ Add a prior factor to specified nodes The factor has not been added to physical or current factor graphs :param vars :param distribution :return: the current problem """ self._new_factors.append(ExplicitPriorFactor( vars=vars, distribution=distribution)) return self def add_likelihood_factor(self, vars: List[Variable], likelihood: like.LikelihoodBase) -> "FactorGraphSolver": """ Add a likelihood factor to specified nodes The factor has not been added to physical or current factor graphs :param vars :param likelihood :return: the current problem """ self._new_factors.append(LikelihoodFactor( vars=vars, log_likelihood=likelihood)) return self def update_physical_and_working_graphs(self, timer: List[float] = None, device: str = "cpu" ) -> "FactorGraphSolver": """ Add all new nodes and factors into the physical factor graph, retrieve the working factor graph, update Bayes trees :return: the current problem """ start = time.time() # Determine the affected variables in the physical Bayes tree old_nodes = set(self.physical_vars) nodes_of_new_factors = set.union(*[set(factor.vars) for factor in self._new_factors]) old_nodes_of_new_factors = set.intersection(old_nodes, nodes_of_new_factors) # Get the working factor graph if self._physical_bayes_tree: # if not first step, get sub graph affected_nodes, sub_bayes_trees = \ self._physical_bayes_tree. \ get_affected_vars_and_partial_bayes_trees( vars=old_nodes_of_new_factors) self._working_graph = self._physical_graph.get_sub_factor_graph_with_prior( variables=affected_nodes, sub_trees=sub_bayes_trees, clique_prior_dict=self._implicit_factors) else: sub_bayes_trees = set() for node in self._new_nodes: self._working_graph.add_node(node) for factor in self._new_factors: self._working_graph.add_factor(factor) # Get the working Bayes treeget_sub_factor_graph old_ordering = self._elimination_ordering self.generate_ordering() self._working_bayes_tree = self._working_graph.get_bayes_tree( ordering=[var for var in self._elimination_ordering if var in set(self.working_vars)]) # Update the physical factor graph for node in self._new_nodes: self._physical_graph.add_node(node) for factor in self._new_factors: self._physical_graph.add_factor(factor) # Update the physical Bayesian tree self._physical_bayes_tree = self._working_bayes_tree.__copy__() self._physical_bayes_tree.append_child_bayes_trees(sub_bayes_trees) # Delete legacy conditional samplers in the old tree and # convert the density model w/o separator at leaves to density model w/ separator. cliques_to_delete = set() for old_clique in set(self._clique_density_model.keys()).difference(self._physical_bayes_tree.clique_nodes): for new_clique in self._working_bayes_tree.clique_nodes: if old_clique.vars == new_clique.vars and [var for var in old_ordering if var in old_clique.vars] == \ [var for var in self._elimination_ordering if var in new_clique.vars]: # This clique was the root in the old tree but is leaf in the new tree. # If the ordering of variables remains the same, its density model can be re-used. # Update the clique to density model dict self._clique_true_obs[new_clique] = self._clique_true_obs[old_clique] if old_clique in self._clique_variable_pattern: self._clique_variable_pattern[new_clique] = self._clique_variable_pattern[old_clique] if old_clique in self._clique_samples: self._clique_samples[new_clique] = self._clique_samples[old_clique] self._clique_density_model[new_clique] = \ self.root_clique_density_model_to_leaf(old_clique, new_clique, device) # since new clique will be skipped, related factors shall be eliminated beforehand. # TODO: update _clique_density_model.keys() in which some clique parents change # TODO: this currently has no impact on results # TODO: if we store all models or clique-depend values on cliques, this issue will disappear new_separator_factor = None if new_clique.separator: # extract new factor over separator separator_var_list = sorted(new_clique.separator, key=lambda x: self._reverse_ordering_map[x]) new_separator_factor = \ self.clique_density_to_separator_factor(separator_var_list, self._clique_density_model[new_clique], self._clique_true_obs[old_clique]) self._implicit_factors[new_clique] = new_separator_factor self._working_graph = self._working_graph.eliminate_clique_variables(clique=new_clique, new_factor=new_separator_factor) break cliques_to_delete.add(old_clique) for old_clique in cliques_to_delete: del self._clique_density_model[old_clique] del self._clique_true_obs[old_clique] if old_clique in self._clique_variable_pattern: del self._clique_variable_pattern[old_clique] if old_clique in self._clique_samples: del self._clique_samples[old_clique] # Clear all newly added variables and factors self._new_nodes = [] self._new_factors = [] end = time.time() if timer is not None: timer.append(end - start) return self def root_clique_density_model_to_leaf(self, old_clique: BayesTreeNode, new_clique: BayesTreeNode, device) -> "ConditionalSampler": """ when old clique and new clique have same variables but different division of frontal and separator vars, recycle the density model in the old clique and convert it to that in the new clique. """ raise NotImplementedError("Implementation depends on probabilistic modeling") def clique_density_to_separator_factor(self, separator_var_list: List[Variable], density_model, true_obs: np.ndarray) -> CliqueSeparatorFactor: """ extract marginal of separator variables from clique density as separator factor """ raise NotImplementedError("Implementation depends on probabilistic modeling") def incremental_inference(self, timer: List[float] = None, clique_dim_timer: List[List[float]] = None, *args, **kwargs ): self.fit_tree_density_models(timer=timer, clique_dim_timer=clique_dim_timer, *args, **kwargs) if self._args.adaptive_posterior_sampling is None: self._samples = self.sample_posterior(timer=timer, *args, **kwargs) else: self._samples = self.adaptive_posterior(timer=timer, *args, **kwargs) return self._samples def fit_clique_density_model(self, clique, samples, var_ordering, timer, *args, **kwargs) -> "ConditionalSampler": raise NotImplementedError("Implementation depends on probabilistic modeling.") def adaptive_posterior(self, timer: List[float] = None, *args, **kwargs ) -> Dict[Variable, np.ndarray]: """ Generate samples for all variables """ raise NotADirectoryError("implementation depends on density models.") def fit_tree_density_models(self, timer: List[float] = None, clique_dim_timer: List[List[float]] = None, *args, **kwargs): """ By the order of Bayes tree, perform local sampling and training on all cliques :return: """ self._temp_training_loss = {} clique_ordering = self._working_bayes_tree.clique_ordering() total_clique_num = len(clique_ordering) clique_cnt = 1 before_clique_time = time.time() while clique_ordering: start_clique_time = time.time() clique = clique_ordering.pop() if clique in self._clique_density_model: end_clique_time = time.time() print(f"\tTime for clique {clique_cnt}/{total_clique_num}: " + str( end_clique_time - start_clique_time) + " sec, " "total time elapsed: " + str( end_clique_time - before_clique_time) + " sec") clique_cnt += 1 if (clique_dim_timer is not None): clique_dim_timer.append([clique.dim, end_clique_time - before_clique_time]) continue # local sampling sampler_start = time.time() local_samples, sample_var_ordering, true_obs = \ self.clique_training_sampler(clique, num_samples=self._args.local_sample_num, method=self._args.local_sampling_method) sampler_end = time.time() if timer is not None: timer.append(sampler_end - sampler_start) self._clique_true_obs[clique] = true_obs if self._args.store_clique_samples: self._clique_samples[clique] = local_samples local_density_model = \ self.fit_clique_density_model(clique=clique, samples=local_samples, var_ordering=sample_var_ordering, timer=timer) self._clique_density_model[clique] = local_density_model new_separator_factor = None if clique.separator: # extract new factor over separator separator_list = sorted(clique.separator, key=lambda x: self._reverse_ordering_map[x]) new_separator_factor = self.clique_density_to_separator_factor(separator_list, local_density_model, true_obs) self._implicit_factors[clique] = new_separator_factor self._working_graph = self._working_graph.eliminate_clique_variables(clique=clique, new_factor=new_separator_factor) end_clique_time = time.time() print(f"\tTime for clique {clique_cnt}/{total_clique_num}: " + str( end_clique_time - start_clique_time) + " sec, " "total time elapsed: " + str( end_clique_time - before_clique_time) + " sec" + ", clique_dim is " + str(clique.dim)) if (clique_dim_timer is not None): clique_dim_timer.append([clique.dim, end_clique_time - before_clique_time]) clique_cnt += 1 def clique_training_sampler(self, clique: BayesTreeNode, num_samples: int, method: str): r""" This function returns training samples, simulated variables, and unused observations """ graph = self._working_graph.get_clique_factor_graph(clique) variable_pattern = \ self._working_bayes_tree.clique_variable_pattern(clique) if method == "direct": sampler = SimulationBasedSampler(factors=graph.factors, vars=variable_pattern) samples, var_list, unused_obs = sampler.sample(num_samples) elif method == "nested" or method == "dynamic nested": ns_sampler = GlobalNestedSampler(nodes=variable_pattern, factors=graph.factors) samples = ns_sampler.sample(live_points=num_samples, sampling_method=method) var_list = variable_pattern unused_obs = np.array([]) else: raise ValueError("Unknown sampling method.") return samples, var_list, unused_obs def sample_posterior(self, timer: List[float] = None, *args, **kwargs ) -> Dict[Variable, np.ndarray]: """ Generate samples for all variables """ num_samples = self._args.posterior_sample_num start = time.time() stack = [self._physical_bayes_tree.root] samples = {} while stack: # Retrieve the working clique clique = stack.pop() # Local sampling frontal_list = sorted(clique.frontal, key=lambda x: self._reverse_ordering_map[x]) separator_list = sorted(clique.separator, key=lambda x: self._reverse_ordering_map[x]) clique_density_model = self._clique_density_model[clique] obs = self._clique_true_obs[clique] aug_separator_samples = np.zeros(shape=(num_samples, 0)) if len(obs) != 0: aug_separator_samples = np.tile(obs, (num_samples, 1)) for var in separator_list: aug_separator_samples = np.hstack((aug_separator_samples, samples[var])) if aug_separator_samples.shape[1] != 0: frontal_samples = clique_density_model. \ conditional_sample_given_observation(conditional_dim=clique.frontal_dim, obs_samples=aug_separator_samples) else: # the root clique frontal_samples = clique_density_model. \ conditional_sample_given_observation(conditional_dim=clique.frontal_dim, sample_number=num_samples) # Dispatch samples cur_index = 0 for var in frontal_list: samples[var] = frontal_samples[:, cur_index: cur_index + var.dim] cur_index += var.dim if clique.children: for child in clique.children: stack.append(child) end = time.time() if timer is not None: timer.append(end - start) return samples def plot2d_posterior(self, title: str = None, xlim=None, ylim=None, marker_size: float = 1, if_legend: bool = False): # xlim and ylim are tuples vars = self._elimination_ordering # list(self._samples.keys()) len_var = len(vars) for i in range(len_var): cur_sample = self._samples[vars[i]] plt.scatter(cur_sample[:, 0], cur_sample[:, 1], marker=".", s=marker_size) if xlim is not None: plt.xlim(xlim) if ylim is not None: plt.ylim(ylim) if if_legend: plt.legend([var.name for var in vars]) plt.xlabel('x (m)') plt.ylabel('y (m)') if title is not None: plt.title(title) fig_handle = plt.gcf() plt.show() return fig_handle def results(self): return list(self._samples.values()), list(self._samples.keys()) def plot2d_mean_points(self, title: str = None, xlim=None, ylim=None, if_legend: bool = False): # xlim and ylim are tuples vars = self._elimination_ordering # list(self._samples.keys()) len_var = len(vars) x_list = [] y_list = [] for i in range(len_var): cur_sample = self._samples[vars[i]] x = np.mean(cur_sample[:, 0]) y = np.mean(cur_sample[:, 1]) x_list.append(x) y_list.append(y) if xlim is not None: plt.xlim(xlim) if ylim is not None: plt.ylim(ylim) plt.plot(x_list, y_list) if if_legend: plt.legend([var.name for var in vars]) plt.xlabel('x (m)') plt.ylabel('y (m)') if title is not None: plt.title(title) fig_handle = plt.gcf() plt.show() return fig_handle def plot2d_mean_rbt_only(self, title: str = None, xlim=None, ylim=None, if_legend: bool = False, fname=None, front_size=None, show_plot=False, **kwargs): # xlim and ylim are tuples vars = self._elimination_ordering # list(self._samples.keys()) len_var = len(vars) x_list = [] y_list = [] lmk_list = [] for i in range(len_var): if vars[i]._type == VariableType.Landmark: lmk_list.append(vars[i]) else: cur_sample = self._samples[vars[i]] x = np.mean(cur_sample[:, 0]) y = np.mean(cur_sample[:, 1]) x_list.append(x) y_list.append(y) if xlim is not None: plt.xlim(xlim) if ylim is not None: plt.ylim(ylim) plt.plot(x_list, y_list) for var in lmk_list: cur_sample = self._samples[var] plt.scatter(cur_sample[:, 0], cur_sample[:, 1], label=var.name) if if_legend: if front_size is not None: plt.legend() else: plt.legend(fontsize=front_size) if front_size is not None: plt.xlabel('x (m)', fontsize=front_size) plt.ylabel('y (m)', fontsize=front_size) else: plt.xlabel('x (m)') plt.ylabel('y (m)') if title is not None: if front_size is not None: plt.title(title, fontsize=front_size) else: plt.title(title) fig_handle = plt.gcf() if fname is not None: plt.savefig(fname) if show_plot: plt.show() return fig_handle def plot2d_MAP_rbt_only(self, title: str = None, xlim=None, ylim=None, if_legend: bool = False, fname=None, front_size=None): # xlim and ylim are tuples vars = self._elimination_ordering jf = JointFactor(self.physical_factors, vars) # list(self._samples.keys()) all_sample = sample_dict_to_array(self._samples, vars) log_pdf = jf.log_pdf(all_sample) max_idx = np.argmax(log_pdf) map_sample = all_sample[max_idx:max_idx+1] map_sample_dict = array_order_to_dict(map_sample, vars) len_var = len(vars) x_list = [] y_list = [] lmk_list = [] for i in range(len_var): if vars[i]._type == VariableType.Landmark: lmk_list.append(vars[i]) else: cur_sample = map_sample_dict[vars[i]] x = np.mean(cur_sample[:, 0]) y = np.mean(cur_sample[:, 1]) x_list.append(x) y_list.append(y) if xlim is not None: plt.xlim(xlim) if ylim is not None: plt.ylim(ylim) plt.plot(x_list, y_list) for var in lmk_list: cur_sample = map_sample_dict[var] plt.scatter(cur_sample[:, 0], cur_sample[:, 1], label=var.name) if if_legend: if front_size is not None: plt.legend() else: plt.legend(fontsize=front_size) if front_size is not None: plt.xlabel('x (m)', fontsize=front_size) plt.ylabel('y (m)', fontsize=front_size) else: plt.xlabel('x (m)') plt.ylabel('y (m)') if title is not None: if front_size is not None: plt.title(title, fontsize=front_size) else: plt.title(title) fig_handle = plt.gcf() if fname is not None: plt.savefig(fname) plt.show() return fig_handle def plot2d_mean_poses(self, title: str = None, xlim=None, ylim=None, width: float = 0.05, if_legend: bool = False): # xlim and ylim are tuples vars = self._elimination_ordering # list(self._samples.keys()) len_var = len(vars) x_list = [] y_list = [] for i in range(len_var): cur_sample = self._samples[vars[i]] x = np.mean(cur_sample[:, 0]) y = np.mean(cur_sample[:, 1]) x_list.append(x) y_list.append(y) # th_mean = circmean(cur_sample[:,2]) # dx, dy = np.cos(th_mean), np.sin(th_mean) # plt.arrow(x-dx/2, y-dy/2, dx, dy, # head_width=4*width, # width=0.05) if xlim is not None: plt.xlim(xlim) if ylim is not None: plt.ylim(ylim) plt.plot(x_list, y_list) if if_legend: plt.legend([var.name for var in vars]) plt.xlabel('x (m)') plt.ylabel('y (m)') if title is not None: plt.title(title) fig_handle = plt.gcf() plt.show() return fig_handle def plot_factor_graph(self): pass def plot_bayes_tree(self): pass def run_incrementally(case_dir: str, solver: FactorGraphSolver, nodes_factors_by_step, truth=None, traj_plot=False, plot_args=None, check_root_transform=False) -> None: run_count = 1 while os.path.exists(f"{case_dir}/run{run_count}"): run_count += 1 os.mkdir(f"{case_dir}/run{run_count}") run_dir = f"{case_dir}/run{run_count}" print("create run dir: " + run_dir) file = open(f"{run_dir}/parameters", "w+") params = solver._args.jsonStr() print(params) file.write(params) file.close() num_batches = len(nodes_factors_by_step) observed_nodes = [] step_timer = [] step_list = [] posterior_sampling_timer = [] fitting_timer = [] mixture_factor2weights = {} show_plot = True if "show_plot" in plot_args and not plot_args["show_plot"]: show_plot = False for i in range(num_batches): step_nodes, step_factors = nodes_factors_by_step[i] for node in step_nodes: solver.add_node(node) for factor in step_factors: solver.add_factor(factor) if isinstance(factor, BinaryFactorMixture): mixture_factor2weights[factor] = [] observed_nodes += step_nodes step_list.append(i) step_file_prefix = f"{run_dir}/step{i}" detailed_timer = [] clique_dim_timer = [] start = time.time() solver.update_physical_and_working_graphs(timer=detailed_timer) cur_sample = solver.incremental_inference(timer=detailed_timer, clique_dim_timer=clique_dim_timer) end = time.time() step_timer.append(end - start) print(f"step {i}/{num_batches} time: {step_timer[-1]} sec, " f"total time: {sum(step_timer)}") file = open(f"{step_file_prefix}_ordering", "w+") file.write(" ".join([var.name for var in solver.elimination_ordering])) file.close() file = open(f"{step_file_prefix}_split_timing", "w+") file.write(" ".join([str(t) for t in detailed_timer])) file.close() file = open(f"{step_file_prefix}_step_training_loss", "w+") last_training_loss = json.dumps(solver._temp_training_loss) file.write(last_training_loss) file.close() posterior_sampling_timer.append(detailed_timer[-1]) fitting_timer.append(sum(detailed_timer[1:-1])) X = np.hstack([cur_sample[var] for var in solver.elimination_ordering]) np.savetxt(fname=step_file_prefix, X=X) # check transformation if check_root_transform: root_clique = solver.physical_bayes_tree.root root_clique_model = solver._clique_density_model[root_clique] y = root_clique_model.prior.sample((3000,)) tx = deepcopy(y) if hasattr(root_clique_model, "flows"): for f in root_clique_model.flows[::-1]: tx = f.inverse_given_separator(tx, None) y = y.detach().numpy() tx = tx.detach().numpy() np.savetxt(fname=step_file_prefix + '_root_normal_data', X=y)
np.savetxt(fname=step_file_prefix + '_root_transformed', X=tx)
numpy.savetxt
# Copyright 2019 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the python library parsing Revisited Oxford/Paris datasets.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np import tensorflow as tf from delf.python.detect_to_retrieve import dataset class DatasetTest(tf.test.TestCase): def testParseEasyMediumHardGroundTruth(self): # Define input. ground_truth = [{ 'easy': np.array([10, 56, 100]), 'hard': np.array([0]), 'junk': np.array([6, 90]) }, { 'easy': np.array([], dtype='int64'), 'hard': [5], 'junk': [99, 100] }, { 'easy': [33], 'hard': [66, 99], 'junk': np.array([], dtype='int64') }] # Run tested function. (easy_ground_truth, medium_ground_truth, hard_ground_truth) = dataset.ParseEasyMediumHardGroundTruth(ground_truth) # Define expected outputs. expected_easy_ground_truth = [{ 'ok': np.array([10, 56, 100]), 'junk': np.array([6, 90, 0]) }, { 'ok': np.array([], dtype='int64'), 'junk': np.array([99, 100, 5]) }, { 'ok': np.array([33]), 'junk': np.array([66, 99]) }] expected_medium_ground_truth = [{ 'ok': np.array([10, 56, 100, 0]), 'junk': np.array([6, 90]) }, { 'ok': np.array([5]), 'junk': np.array([99, 100]) }, { 'ok': np.array([33, 66, 99]), 'junk': np.array([], dtype='int64') }] expected_hard_ground_truth = [{ 'ok': np.array([0]), 'junk': np.array([6, 90, 10, 56, 100]) }, { 'ok': np.array([5]), 'junk': np.array([99, 100]) }, { 'ok': np.array([66, 99]), 'junk': np.array([33]) }] # Compare actual versus expected. def _AssertListOfDictsOfArraysAreEqual(ground_truth, expected_ground_truth): """Helper function to compare ground-truth data. Args: ground_truth: List of dicts of arrays. expected_ground_truth: List of dicts of arrays. """ self.assertEqual(len(ground_truth), len(expected_ground_truth)) for i, ground_truth_entry in enumerate(ground_truth): self.assertEqual(sorted(ground_truth_entry.keys()), ['junk', 'ok']) self.assertAllEqual(ground_truth_entry['junk'], expected_ground_truth[i]['junk']) self.assertAllEqual(ground_truth_entry['ok'], expected_ground_truth[i]['ok']) _AssertListOfDictsOfArraysAreEqual(easy_ground_truth, expected_easy_ground_truth) _AssertListOfDictsOfArraysAreEqual(medium_ground_truth, expected_medium_ground_truth) _AssertListOfDictsOfArraysAreEqual(hard_ground_truth, expected_hard_ground_truth) def testAdjustPositiveRanksWorks(self): # Define inputs. positive_ranks = np.array([0, 2, 6, 10, 20]) junk_ranks = np.array([1, 8, 9, 30]) # Run tested function. adjusted_positive_ranks = dataset.AdjustPositiveRanks( positive_ranks, junk_ranks) # Define expected output. expected_adjusted_positive_ranks = [0, 1, 5, 7, 17] # Compare actual versus expected. self.assertAllEqual(adjusted_positive_ranks, expected_adjusted_positive_ranks) def testComputeAveragePrecisionWorks(self): # Define input. positive_ranks = [0, 2, 5] # Run tested function. average_precision = dataset.ComputeAveragePrecision(positive_ranks) # Define expected output. expected_average_precision = 0.677778 # Compare actual versus expected. self.assertAllClose(average_precision, expected_average_precision) def testComputePRAtRanksWorks(self): # Define inputs. positive_ranks = np.array([0, 2, 5]) desired_pr_ranks = np.array([1, 5, 10]) # Run tested function. precisions, recalls = dataset.ComputePRAtRanks(positive_ranks, desired_pr_ranks) # Define expected outputs. expected_precisions = [1.0, 0.4, 0.5] expected_recalls = [0.333333, 0.666667, 1.0] # Compare actual versus expected. self.assertAllClose(precisions, expected_precisions) self.assertAllClose(recalls, expected_recalls) def testComputeMetricsWorks(self): # Define inputs: 3 queries. For the last one, there are no expected images # to be retrieved sorted_index_ids = np.array([[4, 2, 0, 1, 3], [0, 2, 4, 1, 3], [0, 1, 2, 3, 4]]) ground_truth = [{ 'ok': np.array([0, 1]), 'junk': np.array([2]) }, { 'ok': np.array([0, 4]), 'junk': np.array([], dtype='int64') }, { 'ok': np.array([], dtype='int64'), 'junk': np.array([], dtype='int64') }] desired_pr_ranks = [1, 2, 5] # Run tested function. (mean_average_precision, mean_precisions, mean_recalls, average_precisions, precisions, recalls) = dataset.ComputeMetrics(sorted_index_ids, ground_truth, desired_pr_ranks) # Define expected outputs. expected_mean_average_precision = 0.604167 expected_mean_precisions = [0.5, 0.5, 0.666667] expected_mean_recalls = [0.25, 0.5, 1.0] expected_average_precisions = [0.416667, 0.791667, float('nan')] expected_precisions = [[0.0, 0.5, 0.666667], [1.0, 0.5, 0.666667], [float('nan'), float('nan'), float('nan')]] expected_recalls = [[0.0, 0.5, 1.0], [0.5, 0.5, 1.0], [float('nan'), float('nan'), float('nan')]] # Compare actual versus expected. self.assertAllClose(mean_average_precision, expected_mean_average_precision) self.assertAllClose(mean_precisions, expected_mean_precisions) self.assertAllClose(mean_recalls, expected_mean_recalls) self.assertAllClose(average_precisions, expected_average_precisions) self.assertAllClose(precisions, expected_precisions) self.assertAllClose(recalls, expected_recalls) def testSaveMetricsFileWorks(self): # Define inputs. mean_average_precision = {'hard': 0.7, 'medium': 0.9} mean_precisions = { 'hard': np.array([1.0, 0.8]), 'medium': np.array([1.0, 1.0]) } mean_recalls = { 'hard':
np.array([0.5, 0.8])
numpy.array
"""Film Mode Matching Mode Solver Implementation of the Film Mode Matching (FMM) algorithm, as described in: - Sudbo, "Film mode matching a versatile numerical method for vector mode field calculations in dielectric waveguides", Pure App. Optics, 2 (1993), 211-233 - Sudbo, "Improved formulation of the film mode matching method for mode field calculations in dielectric waveguides", Pure App. Optics, 3 (1994), 381-388 Examples ======== See L{FMM1d} and L{FMM2d}. """ from __future__ import print_function from builtins import zip from builtins import range from builtins import object from functools import reduce __author__ = '<NAME> & <NAME>' import numpy import scipy import scipy.optimize import copy import EMpy.utils from EMpy.modesolvers.interface import * import pylab class Message(object): def __init__(self, msg, verbosity=0): self.msg = msg self.verbosity = verbosity def show(self, verbosity=0): if self.verbosity <= verbosity: print((self.verbosity - 1) * '\t' + self.msg) class Struct(object): """Empty class to fill with whatever I want. Maybe a dictionary would do?""" pass class Boundary(object): """Boundary conditions. Electric and Magnetic boundary conditions are translated to Symmetric and Antisymmetric for each field. @ivar xleft: Left bc on x. @ivar xright: Right bc on x. @ivar yleft: Left bc on y. @ivar yright: Right bc on y. """ def __init__(self, xleft='Electric Wall', yleft='Magnetic Wall', xright='Electric Wall', yright='Magnetic Wall'): """Set the boundary conditions, validate and translate.""" self.xleft = xleft self.yleft = yleft self.xright = xright self.yright = yright self.validate() self.translate() def validate(self): """Validate the input. @raise ValueError: Unknown boundary. """ if not reduce(lambda x, y: x & y, [(x == 'Electric Wall') | (x == 'Magnetic Wall') for x in [self.xleft, self.yleft, self.xright, self.yright]]): raise ValueError('Unknown boundary.') def translate(self): """Translate for each field. @raise ValueError: Unknown boundary. """ self.xh = '' self.xe = '' self.yh = '' self.ye = '' if self.xleft == 'Electric Wall': self.xh += 'A' self.xe += 'S' elif self.xleft == 'Magnetic Wall': self.xh += 'S' self.xe += 'A' else: raise ValueError('Unknown boundary.') if self.xright == 'Electric Wall': self.xh += 'A' self.xe += 'S' elif self.xright == 'Magnetic Wall': self.xh += 'S' self.xe += 'A' else: raise ValueError('Unknown boundary.') if self.yleft == 'Electric Wall': self.yh += 'A' self.ye += 'S' elif self.yleft == 'Magnetic Wall': self.yh += 'S' self.ye += 'A' else: raise ValueError('Unknown boundary.') if self.yright == 'Electric Wall': self.yh += 'A' self.ye += 'S' elif self.yright == 'Magnetic Wall': self.yh += 'S' self.ye += 'A' else: raise ValueError('Unknown boundary.') def __str__(self): return 'xleft = %s, xright = %s, yleft = %s, yright = %s' % (self.xleft, self.xright, self.yleft, self.yright) class Slice(object): """One dimensional arrangement of layers and 1d modes. A slice is made of a stack of layers, i.e. refractive indeces with a thickness, with given boundary conditions. It holds 1d modes, both TE and TM. @ivar x1: start point of the slice in x. @ivar x2: end point of the slice in x. @ivar Uy: array of points delimiting the layers. @ivar boundary: boundary conditions. @ivar modie: E modes. @ivar modih: H modes. @ivar Ux: array of points delimiting the slices in x (internally set). @ivar refractiveindex: refractive index of all the slices (internally set). @ivar epsilon: epsilon of all the slices (internally set). @ivar wl: vacuum wavelength. """ def __init__(self, x1, x2, Uy, boundary, modie, modih): self.x1 = x1 self.x2 = x2 self.Uy = Uy self.boundary = boundary self.modie = modie self.modih = modih def __str__(self): return 'x1 = %g, x2 = %g\nUy = %s\nboundary = %s' % (self.x1, self.x2, self.Uy, self.boundary) class FMMMode1d(Mode): """One dimensional mode. Note ==== Virtual class. """ pass class FMMMode1dx(FMMMode1d): """Matching coefficients in the x-direction. L{FMMMode1dy}s are weighted by these coefficients to assure continuity. """ def __str__(self): return 'sl = %s\nsr = %s\nal = %s\nar = %s\nk = %s\nU = %s' % \ (self.sl.__str__(), self.sr.__str__(), self.al.__str__(), self.ar.__str__(), self.k.__str__(), self.U.__str__()) class FMMMode1dy(FMMMode1d): """One dimensional mode. It holds the coefficients that describe the mode in the FMM expansion. Note ==== The mode is suppose one dimensional, in the y direction. @ivar sl: array of value of the mode at the lhs of each slice. @ivar sr: array of value of the mode at the rhs of each slice. @ivar al: array of value of the derivative of the mode at the lhs of each slice. @ivar ar: array of value of the derivative of the mode at the lhs of each slice. @ivar k: wavevector inside each layer. @ivar keff: effective wavevector. @ivar zero: how good the mode is? it must be as close to zero as possible! @ivar Uy: array of points delimiting the layers. """ def eval(self, y_): """Evaluate the mode at y.""" y = numpy.atleast_1d(y_) ny = len(y) f = numpy.zeros(ny, dtype=complex) for iU in range(len(self.U) - 1): k = self.k[iU] sl = self.sl[iU] al = self.al[iU] Ul = self.U[iU] Ur = self.U[iU+1] idx = numpy.where((Ul <= y) & (y <= Ur)) yy = y[idx] - Ul f[idx] = sl * numpy.cos(k * yy) + al * sinxsux(k * yy) * yy return f def plot(self, y): f = self.eval(y) pylab.plot(y, numpy.real(f), y, numpy.imag(y)) pylab.legend(('real', 'imag')) pylab.xlabel('y') pylab.ylabel('mode1d') pylab.show() def __str__(self): return 'sl = %s\nsr = %s\nal = %s\nar = %s\nk = %s\nkeff = %s\nzero = %s\nU = %s' % \ (self.sl.__str__(), self.sr.__str__(), self.al.__str__(), self.ar.__str__(), self.k.__str__(), self.keff.__str__(), self.zero.__str__(), self.U.__str__()) class FMMMode2d(Mode): """Two dimensional mode. It holds the coefficients that describe the mode in the FMM expansion. """ def get_x(self, n=100): return numpy.linspace(self.slicesx[0].Ux[0], self.slicesx[0].Ux[-1], n) def get_y(self, n=100): return numpy.linspace(self.slicesx[0].Uy[0], self.slicesx[0].Uy[-1], n) def eval(self, x_=None, y_=None): """Evaluate the mode at x,y.""" if x_ is None: x = self.get_x() else: x = numpy.atleast_1d(x_) if y_ is None: y = self.get_y() else: y = numpy.atleast_1d(y_) nmodi = len(self.modie) lenx = len(x) leny = len(y) k0 = 2. * numpy.pi / self.slicesx[0].wl kz = self.keff uh = numpy.zeros((nmodi, lenx), dtype=complex) ue = numpy.zeros_like(uh) udoth = numpy.zeros_like(uh) udote = numpy.zeros_like(uh) Exsh = numpy.zeros((leny, nmodi), dtype=complex) Exah = numpy.zeros_like(Exsh) Exse = numpy.zeros_like(Exsh) Exae = numpy.zeros_like(Exsh) Eysh = numpy.zeros_like(Exsh) Eyah = numpy.zeros_like(Exsh) Eyse = numpy.zeros_like(Exsh) Eyae = numpy.zeros_like(Exsh) Ezsh = numpy.zeros_like(Exsh) Ezah = numpy.zeros_like(Exsh) Ezse = numpy.zeros_like(Exsh) Ezae = numpy.zeros_like(Exsh) cBxsh = numpy.zeros_like(Exsh) cBxah = numpy.zeros_like(Exsh) cBxse = numpy.zeros_like(Exsh) cBxae = numpy.zeros_like(Exsh) cBysh = numpy.zeros_like(Exsh) cByah = numpy.zeros_like(Exsh) cByse = numpy.zeros_like(Exsh) cByae = numpy.zeros_like(Exsh) cBzsh = numpy.zeros_like(Exsh) cBzah = numpy.zeros_like(Exsh) cBzse = numpy.zeros_like(Exsh) cBzae = numpy.zeros_like(Exsh) ExTE = numpy.zeros((leny,lenx), dtype=complex) EyTE = numpy.zeros_like(ExTE) EzTE = numpy.zeros_like(ExTE) ExTM = numpy.zeros_like(ExTE) EyTM = numpy.zeros_like(ExTE) EzTM = numpy.zeros_like(ExTE) cBxTE = numpy.zeros_like(ExTE) cByTE = numpy.zeros_like(ExTE) cBzTE = numpy.zeros_like(ExTE) cBxTM = numpy.zeros_like(ExTE) cByTM = numpy.zeros_like(ExTE) cBzTM = numpy.zeros_like(ExTE) for mx, slice in enumerate(self.slicesx): idx = numpy.where((slice.x1 <= x) & (x < slice.x2)) x2 = x[idx] - slice.x1 x1 = slice.x2 - x[idx] dx = slice.x2 - slice.x1 for n in range(nmodi): fi = slice.modih[n].eval(y) fidot = dot(slice.modih[n]).eval(y) psi = slice.modie[n].eval(y) psisueps = sueps(slice.modie[n]).eval(y) psidotsueps = sueps(dot(slice.modie[n])).eval(y) kfh = self.modih[n].k[mx] kxh = scipy.sqrt(kfh**2 - kz**2) sl = self.modih[n].sl[mx] * (k0/kfh)**2 al = self.modih[n].al[mx] sr = self.modih[n].sr[mx] * (k0/kfh)**2 ar = self.modih[n].ar[mx] uh[n,idx] = (numpy.sin(kxh * x1) * sl + numpy.sin(kxh * x2) * sr) / numpy.sin(kxh * dx) udoth[n,idx] = (numpy.sin(kxh * x1) * al + numpy.sin(kxh * x2) * ar) / numpy.sin(kxh * dx) kfe = self.modie[n].k[mx] kxe = scipy.sqrt(kfe**2 - kz**2) sl = self.modie[n].sl[mx] * (k0/kfe)**2 al = self.modie[n].al[mx] sr = self.modie[n].sr[mx] * (k0/kfe)**2 ar = self.modie[n].ar[mx] ue[n,idx] = (numpy.sin(kxe * x1) * sl + numpy.sin(kxe * x2) * sr) / numpy.sin(kxe * dx) udote[n,idx] = (numpy.sin(kxe * x1) * al + numpy.sin(kxe * x2) * ar) / numpy.sin(kxe * dx) Exsh[:,n] = (kz/k0) * fi Exah[:,n] = 0 Exse[:,n] = 0 Exae[:,n] = -psidotsueps / k0**2 Eysh[:,n] = 0 Eyah[:,n] = 0 Eyse[:,n] = -(kfe/k0)**2 * psisueps Eyae[:,n] = 0 Ezsh[:,n] = 0 Ezah[:,n] = -1j * fi / k0 Ezse[:,n] = 1j * kz / k0**2 * psidotsueps Ezae[:,n] = 0 cBxsh[:,n] = 0 cBxah[:,n] = fidot / k0**2 cBxse[:,n] = kz / k0 * psi cBxae[:,n] = 0 cBysh[:,n] = (kfh/k0)**2 * fi cByah[:,n] = 0 cByse[:,n] = 0 cByae[:,n] = 0 cBzsh[:,n] = -1j * kz / k0**2 * fidot cBzah[:,n] = 0 cBzse[:,n] = 0 cBzae[:,n] = -1j * psi / k0 ExTE[:,idx] = numpy.tensordot(Exsh, uh[:,idx], axes=1) + numpy.tensordot(Exah, udoth[:,idx], axes=1) ExTM[:,idx] = numpy.tensordot(Exse, ue[:,idx], axes=1) + numpy.tensordot(Exae, udote[:,idx], axes=1) EyTE[:,idx] = numpy.tensordot(Eysh, uh[:,idx], axes=1) + numpy.tensordot(Eyah, udoth[:,idx], axes=1) EyTM[:,idx] = numpy.tensordot(Eyse, ue[:,idx], axes=1) + numpy.tensordot(Eyae, udote[:,idx], axes=1) EzTE[:,idx] = numpy.tensordot(Ezsh, uh[:,idx], axes=1) + numpy.tensordot(Ezah, udoth[:,idx], axes=1) EzTM[:,idx] = numpy.tensordot(Ezse, ue[:,idx], axes=1) + numpy.tensordot(Ezae, udote[:,idx], axes=1) cBxTE[:,idx] = numpy.tensordot(cBxsh, uh[:,idx], axes=1) + numpy.tensordot(cBxah, udoth[:,idx], axes=1) cBxTM[:,idx] = numpy.tensordot(cBxse, ue[:,idx], axes=1) + numpy.tensordot(cBxae, udote[:,idx], axes=1) cByTE[:,idx] = numpy.tensordot(cBysh, uh[:,idx], axes=1) + numpy.tensordot(cByah, udoth[:,idx], axes=1) cByTM[:,idx] = numpy.tensordot(cByse, ue[:,idx], axes=1) + numpy.tensordot(cByae, udote[:,idx], axes=1) cBzTE[:,idx] = numpy.tensordot(cBzsh, uh[:,idx], axes=1) + numpy.tensordot(cBzah, udoth[:,idx], axes=1) cBzTM[:,idx] = numpy.tensordot(cBzse, ue[:,idx], axes=1) + numpy.tensordot(cBzae, udote[:,idx], axes=1) return (ExTE, ExTM, EyTE, EyTM, EzTE, EzTM, cBxTE, cBxTM, cByTE, cByTM, cBzTE, cBzTM) def fields(self, x=None, y=None): ExTE, ExTM, EyTE, EyTM, EzTE, EzTM, cBxTE, cBxTM, cByTE, cByTM, cBzTE, cBzTM = self.eval(x, y) Ex = ExTE + ExTM Ey = EyTE + EyTM Ez = EzTE + EzTM cBx = cBxTE + cBxTM cBy = cByTE + cByTM cBz = cBzTE + cBzTM return (Ex, Ey, Ez, cBx, cBy, cBz) def intensity(self, x=None, y=None): Ex, Ey, Ez, cBx, cBy, cBz = self.fields(x, y) cSz = .5 * (Ex * numpy.conj(cBy) - Ey * numpy.conj(cBx)) return cSz def TEfrac_old(self, x_=None, y_=None): if x_ is None: x = self.get_x() else: x = numpy.atleast_1d(x_) if y_ is None: y = self.get_y() else: y = numpy.atleast_1d(y_) Ex, Ey, Ez, cBx, cBy, cBz, cSz = self.fields(x, y) cSTE = .5 * EMpy.utils.trapz2(Ex * numpy.conj(cBy), y, x) cSTM = .5 * EMpy.utils.trapz2(-Ey * numpy.conj(cBx), y, x) return numpy.abs(cSTE) / (numpy.abs(cSTE) + numpy.abs(cSTM)) def TEfrac(self): Sx, Sy = self.__overlap(self) return Sx / (Sx - Sy) def overlap_old(self, m, x_=None, y_=None): if x_ is None: x = self.get_x() else: x = numpy.atleast_1d(x_) if y_ is None: y = self.get_y() else: y = numpy.atleast_1d(y_) Ex, Ey, Ez, cBx, cBy, cBz = self.fields(x, y) cSz = self.intensity(x, y) norm = scipy.sqrt(EMpy.utils.trapz2(cSz, y, x)) Ex1, Ey1, Ez1, cBx1, cBy1, cBz1 = m.fields(x, y) cSz1 = m.intensity(x, y) norm1 = scipy.sqrt(EMpy.utils.trapz2(cSz1, y, x)) return .5 * EMpy.utils.trapz2(Ex/norm * numpy.conj(cBy1/norm1) - Ey/norm * numpy.conj(cBx1/norm1), y, x) def __overlap_old(self, mode): nmodi = len(self.modie) k0 = 2. * numpy.pi / self.slicesx[0].wl kz = self.keff Sx = 0j Sy = 0j for mx, slice in enumerate(self.slicesx): for n1 in range(nmodi): phi_n1 = slice.modih[n1] phidot_n1 = dot(phi_n1) psi_n1 = slice.modie[n1] psisueps_n1 = sueps(psi_n1) psidotsueps_n1 = sueps(dot(psi_n1)) uh_n1 = copy.deepcopy(self.modih[n1]) # reduce to a single slice kfh_n1 = uh_n1.k[mx] uh_n1.k = numpy.atleast_1d(scipy.sqrt(kfh_n1**2 - kz**2)) uh_n1.sl = numpy.atleast_1d(uh_n1.sl[mx] * (k0/kfh_n1)**2) uh_n1.al = numpy.atleast_1d(uh_n1.al[mx]) uh_n1.sr = numpy.atleast_1d(uh_n1.sr[mx] * (k0/kfh_n1)**2) uh_n1.ar = numpy.atleast_1d(uh_n1.ar[mx]) uh_n1.U = numpy.atleast_1d(uh_n1.U[mx:mx+2]) uhdot_n1 = dot(uh_n1) ue_n1 = copy.deepcopy(self.modie[n1]) # reduce to a single slice kfe_n1 = ue_n1.k[mx] ue_n1.k = numpy.atleast_1d(scipy.sqrt(kfe_n1**2 - kz**2)) ue_n1.sl = numpy.atleast_1d(ue_n1.sl[mx] * (k0/kfe_n1)**2) ue_n1.al = numpy.atleast_1d(ue_n1.al[mx]) ue_n1.sr = numpy.atleast_1d(ue_n1.sr[mx] * (k0/kfe_n1)**2) ue_n1.ar = numpy.atleast_1d(ue_n1.ar[mx]) ue_n1.U = numpy.atleast_1d(ue_n1.U[mx:mx+2]) uedot_n1 = dot(ue_n1) for n2 in range(nmodi): phi_n2 = mode.slicesx[mx].modih[n2] phidot_n2 = dot(phi_n2) psi_n2 = mode.slicesx[mx].modie[n2] psisueps_n2 = sueps(psi_n2) psidotsueps_n2 = sueps(dot(psi_n2)) uh_n2 = copy.deepcopy(mode.modih[n2]) # reduce to a single slice kfh_n2 = uh_n2.k[mx] uh_n2.k = numpy.atleast_1d(scipy.sqrt(kfh_n2**2 - kz**2)) uh_n2.sl = numpy.atleast_1d(uh_n2.sl[mx] * (k0/kfh_n2)**2) uh_n2.al = numpy.atleast_1d(uh_n2.al[mx]) uh_n2.sr = numpy.atleast_1d(uh_n2.sr[mx] * (k0/kfh_n2)**2) uh_n2.ar = numpy.atleast_1d(uh_n2.ar[mx]) uh_n2.U = numpy.atleast_1d(uh_n2.U[mx:mx+2]) uhdot_n2 = dot(uh_n2) ue_n2 = copy.deepcopy(mode.modie[n2]) # reduce to a single slice kfe_n2 = ue_n2.k[mx] ue_n2.k = numpy.atleast_1d(scipy.sqrt(kfe_n2**2 - kz**2)) ue_n2.sl = numpy.atleast_1d(ue_n2.sl[mx] * (k0/kfe_n2)**2) ue_n2.al = numpy.atleast_1d(ue_n2.al[mx]) ue_n2.sr = numpy.atleast_1d(ue_n2.sr[mx] * (k0/kfe_n2)**2) ue_n2.ar = numpy.atleast_1d(ue_n2.ar[mx]) ue_n2.U =
numpy.atleast_1d(ue_n2.U[mx:mx+2])
numpy.atleast_1d
import numpy as np import biorbd try: import BiorbdViz biorbd_viz_found = True except ModuleNotFoundError: biorbd_viz_found = False # # This examples shows how to # 1. Load a model # 2. Generate data (should be acquired via real data) # 3. Create a Kalman filter # 4. Apply the Kalman filter (inverse kinematics) # 5. Plot the kinematics (Q), velocity (Qdot) and acceleration (Qddot) # # Please note that this example will work only with the Eigen backend. # Please also note that kalman will be VERY slow if compiled in debug # # Load a predefined model model = biorbd.Model("../pyomecaman.bioMod") nq = model.nbQ() nb_mus = model.nbMuscles() n_frames = 20 # Generate clapping gesture data qinit = np.array([0, 0, -.3, 0.35, 1.15, -0.35, 1.15, 0, 0, 0, 0, 0, 0]) qmid =
np.array([0, 0, -.3, 0.5, 1.15, -0.5, 1.15, 0, 0, 0, 0, 0, 0])
numpy.array
# -*- coding: utf-8 -*- """ Created on Wed Oct 28 09:27:49 2020 @author: <NAME> """ import pickle import pandas as pd import numpy as np from country import country from scipy.integrate import solve_ivp from scipy.optimize import minimize from scipy.optimize import dual_annealing from scipy.optimize import brute from scipy.interpolate import interp1d from scipy.ndimage.filters import uniform_filter1d import psutil from functools import partial import multiprocessing as mp from tqdm import tqdm_notebook as tqdm import pdb from datetime import date, datetime, timedelta import time from pathlib import Path from matplotlib import pyplot as plt import statsmodels.api as sm from sklearn import linear_model import matplotlib.patches as mpatches import country_converter as coco import math import seaborn as sns # -------------------------------------------------------- # Global variables, chosen cohorts of data and estimates # -------------------------------------------------------- from param_simple import * # ---------------------- # Main class # ---------------------- class solveCovid: def __init__(self,iso2: str): # eg 'US' self.iso2 = iso2 # Policy strategies for forecast self.policy = 'optim' # ['optim', 'linear'] self.phi_option = 'fit' # ['fit','exo']: Fit phi to latest data or specify as exogenous self.phi_exo = 2.5e-9 # weight on mobility in social welfare function self.phi_min = 1e-13 # Lowerbound for phi - authorities care about output # Infection rate model for forecast self.gamma_tilde_model = 'AR1' # ['AR1','AR2','shock'] self.gamma_shock_length = 10 # Shock gamma_tilde for x days self.gamma_shock_depth = 0.5 # Daily increment of gamma self.default_init_single = default_init_single self.default_bounds_single = default_bounds_single # Vaccine assumptions self.vac_assump = 'vac_base' # Vaccination scenarios: ['vac_base','vac_worse','vac_better'] self.vac_receiver = 'S+R' # Vaccines given to S or S+R? ['S only','S+R'] self.effi_one = 0.5 # Efficacy after one dose in % self.effi_two = 0.95 # Efficacy after two doses in % self.target_weight = 0.7 # How targeted vaccine distribution is (1 = sequenced from eldest to youngest, 0 is random) self.vac_base_cover = 1 # Baseline: (already started): % of effective coverage by December 2021 (to be controlled by country-specific scaling factor below) self.vac_base_delayedstart = '2021-06-30' # Baseline: (hasn't started): first date of vaccination self.vac_base_delayedcover = 0.75 # Baseline: (hasn't started): % of contracted dosages deployed by December 2021 self.vac_worse_cover = 0.3 # Worse (started): Use by end of 2021 self.vac_worse_delayedstart = '2021-09-30' # Worse (hasn't started): Starting date self.vac_worse_delayedcover = 0.3 # Worse (hasn't started): Use by end of 2021 self.vac_better_cover = 1.3 self.vac_better_delayedstart = '2021-06-30' self.vac_better_delayedcover = 1 # Reinfection and loss of immunity self.reinfect = 'immune' # ['immune','reinfect'] self.r_re1_R = np.log(2)/10000 # Baseline: R loses immunity after 3 years self.r_re1_V = np.log(2)/10000 # Baseline: V loses immunity after 3 years self.r_re2_R = np.log(2)/60 # Downside risk: R loses immunity after 60 days, approx 1% of R lose immunity each day self.r_re2_V = np.log(2)/60 # Downside risk: V loses immunity after 60 days, approx 1% of V lose immunity each day # Death probabilities self.pdth_assump = 'martingale' # ['martingale','treatment'] self.pdth_min = 0.005 # Lowerbound on death probability - countries with very few cases still think there is death probability self.pdth_halflife = 60 # Halflife for treatment case; no. of days it takes to close half the gap of current and assumed minimum death prob self.pdth_theta = np.exp(-np.log(2)/self.pdth_halflife) # --------------- 1. Preliminary: Get the data ------------------------ def prelim(self): iso2 = self.iso2 self.N = df1.fillna(method='ffill')['population'][iso2].iloc[-1] df2 = df1.iloc[:,df1.columns.get_level_values(1)==iso2][[ 'total_cases','total_deaths','new_cases','new_deaths', 'google_smooth','icu_patients','hosp_patients','reproduction_rate', 'new_tests','tests_per_case','aged_70_older', 'vac_total','vac_people', 'vac_fully']][df1['total_cases'][iso2] > virus_thres] df2 = df2.droplevel('iso2',axis=1) df2['vac_total'] = df2['vac_total'].interpolate() df2['vac_people'] = df2['vac_people'].interpolate() if iso2 == 'AU' or iso2 == 'SA': # Countries with no breakdowns; do manual approximation df2['vac_partial'] = 0.8 * df2['vac_total'] df2['vac_fully'] = 0.2 * df2['vac_total'] else : # For most countries, date1 = df2['vac_fully'].first_valid_index() # Next 2 lines fill NA in 'vac_fully', so vac_partial is defined df2['vac_fully'].iloc[:df2.index.get_loc(date1)-1] = 0 df2['vac_fully'] = df2['vac_fully'].interpolate() df2['vac_partial'] = df2['vac_people'] - df2['vac_fully'] df2 = df2.fillna(0) # Replace NaN by 0 - deaths and vaccinations PopulationI = df2['total_cases'][0] PopulationD = df2['total_deaths'][0] if PopulationD==0: PopulationD = 0 PopulationR = 5 else: PopulationR = PopulationD * 5 PopulationCI = PopulationI - PopulationD - PopulationR # Undetected and infectious cases self.cases_data_fit = df2['total_cases'].tolist() self.deaths_data_fit = df2['total_deaths'].tolist() self.newcases_data_fit = df2['new_cases'].tolist() self.newdeaths_data_fit = df2['new_deaths'].tolist() self.balance = self.cases_data_fit[-1] / max(self.deaths_data_fit[-1], 10) / 3 date_day_since100 = pd.to_datetime(df2.index[0]) self.maxT = (default_maxT - date_day_since100).days + 1 self.mobility_vec = df2['google_smooth'].values self.T = len(df2) self.t_cases = np.arange(0,self.T) self.mobility_interp = interp1d(self.t_cases,self.mobility_vec,bounds_error=False,fill_value=0.,kind='cubic') self.GLOBAL_PARAMS = (self.N, PopulationCI, PopulationR, PopulationD, PopulationI, p_d, p_h, p_v) self.gamma_0_days = 1 # average of gamma_t during first n days becomes the target # Compute vaccination parameters self.vac_partial = df2['vac_partial'].values self.vac_fully = df2['vac_fully'].values #self.vac_contracted = 1000*df_vac.loc[iso2]['No. of people covered (thousands)']/self.N df2['V_'] = self.N * (self.effi_one*df2['vac_partial'] + self.effi_two*df2['vac_fully'])/100 # V = expected number of effectively vaccinated persons ix = pd.date_range(start=df2.index[0], end=default_maxT, freq='D') # Expand time-sample, to include forecast later df_v = df2.reindex(ix) # Vaccination assumptions if self.iso2 in ['GB','US']: vac_scale = 1 elif self.iso2 in ['BE','FR','DE','IT','NL','PL','SG','ES','CH','RO','CL','CA']: vac_scale = 0.8 elif self.iso2 in ['AU','SA','SE','TR']: vac_scale = 0.65 elif self.iso2 in ['AR','BR','MX','RU']: vac_scale = 0.50 elif self.iso2 in ['ID','IN','JP','KR','MY','TH']: vac_scale = 0.25 elif self.iso2 in ['ZA']: vac_scale = 0.10 else: vac_scale = 0.50 print('Missing vaccine assumption for selected country') if self.vac_assump == 'vac_base': if df2['V_'][-1] > 0: # already started df_v['V_'].loc['2021-12-31'] = self.vac_base_cover * vac_scale * self.N elif df2['V_'][-1] == 0: # If has not started, assume starting by xxx and cover xxx at year end df_v['V_'].loc[self.vac_base_delayedstart] = 100 # 100 = assumed number of effectively vaccinated on first day df_v['V_'].loc['2021-12-31'] = self.vac_base_delayedcover* vac_scale*self.N # partial orders filled by year end elif self.vac_assump == 'vac_worse': if df2['V_'][-1] > 0: df_v['V_'].loc['2021-12-31'] = self.vac_worse_cover * vac_scale * self.N elif df2['V_'][-1] == 0: df_v['V_'].loc[self.vac_worse_delayedstart] = 100 df_v['V_'].loc['2021-12-31'] = self.vac_worse_delayedcover* vac_scale*self.N elif self.vac_assump == 'vac_better': if df2['V_'][-1]>0: df_v['V_'].loc['2021-12-31'] = self.vac_better_cover * vac_scale * self.N elif df2['V_'][-1] == 0: df_v['V_'].loc[self.vac_better_delayedstart] = 100 df_v['V_'].loc['2021-12-31'] = self.vac_better_delayedcover* vac_scale*self.N df_v['V_'] = df_v['V_'].interpolate() df_v['V_'] = df_v['V_'].clip(0,self.N) self.df2 = df2 self.df_v = df_v print(f'Data preparation for {iso2} done') # --------------------------3 . SEIR model ------------------ def step_seir(self, t, x, gamma_t, p_dth) -> list: """ SEIR model building on DELPHI v.3 Features 16 distinct states, taking into account undetected, deaths, hospitalized and recovered [0 S, 1 E, 2 I, 3 UR, 4 DHR, 5 DQR, 6 UD, 7 DHD, 8 DQD, 9 R, 10 D, 11 TH, 12 DVR,13 DVD, 14 DD, 15 DT, 16 V] """ S, E, I, AR, DHR, DQR, AD, DHD, DQD, R, D, TH, DVR, DVD, DD, DT, V = x r_v = self.df_v['V_'].iloc[t+1] - self.df_v['V_'].iloc[t] # Reinfection parameters if self.reinfect == 'immune': r_re_R = self.r_re1_R r_re_V = self.r_re1_V elif self.reinfect == 'reinfect': if t <= self.T: r_re_R = self.r_re1_R r_re_V = self.r_re1_V else: r_re_R = self.r_re2_R r_re_V = self.r_re2_V # Vaccination recipients (S, or S+R) if self.vac_receiver == 'S only': zeta = 1 elif self.vac_receiver == 'S+R': zeta = S/(S+R) else: print('Re-specify vaccine recipient choice') # Main equations S1 = S - gamma_t * S * I / self.N + r_re_R*R +r_re_V*V - r_v * zeta if S1 < 0: # Vaccination reaches saturating point S1 = 0 r_v = (S - gamma_t * S * I / self.N + r_re_R*R +r_re_V*V) /zeta E1 = E + gamma_t * S * I / self.N - r_i * E I1 = I + r_i * E - r_d * I AR1 = AR + r_d * (1 - p_dth) * (1 - p_d) * I - r_ri * AR DHR1 = DHR + r_d * (1 - p_dth) * p_d * p_h * I - r_rh * DHR DQR1 = DQR + r_d * (1 - p_dth) * p_d * (1 - p_h) * I - r_ri * DQR AD1 = AD + r_d * p_dth * (1 - p_d) * I - r_dth * AD DHD1 = DHD + r_d * p_dth * p_d * p_h * I - r_dth * DHD DQD1 = DQD + r_d * p_dth * p_d * (1 - p_h) * I - r_dth * DQD R1 = R + r_ri * (AR + DQR) + r_rh * DHR - r_re_R*R - r_v * (1-zeta) D1 = D + r_dth * (AD + DQD + DHD) # Helper states TH1 = TH + r_d * p_d * p_h * I DVR1 = DVR + r_d * (1 - p_dth) * p_d * p_h * p_v * I - r_rv * DVR DVD1 = DVD + r_d * p_dth * p_d * p_h * p_v * I - r_dth * DVD DD1 = DD + r_dth * (DHD + DQD) DT1 = DT + r_d * p_d * I V1 = V + r_v -r_re_V*V x1 = [S1, E1, I1, AR1, DHR1, DQR1, AD1, DHD1, DQD1, R1, D1, TH1, DVR1, DVD1, DD1, DT1, V1] return x1 # ------------------ X. Construct initial conditions def initial_states_func(self,k): N, PopulationCI, PopulationR, PopulationD, PopulationI, p_d, p_h, p_v = self.GLOBAL_PARAMS p_dth0 = self.newdeaths_data_fit[0]/(r_dth*PopulationCI) # Set p_dth0 to match D1-D0 to newdeaths_data_fit E_0 = PopulationCI / p_d * k I_0 = PopulationCI / p_d * k UR_0 = (PopulationCI / p_d - PopulationCI) * (1 - p_dth0) DHR_0 = (PopulationCI * p_h) * (1 - p_dth0) DQR_0 = PopulationCI * (1 - p_h) * (1 - p_dth0) UD_0 = (PopulationCI / p_d - PopulationCI) * p_dth0 DHD_0 = PopulationCI * p_h * p_dth0 DQD_0 = PopulationCI * (1 - p_h) * p_dth0 R_0 = PopulationR / p_d D_0 = PopulationD / p_d S_0 = N - (E_0 +I_0 +UR_0 +DHR_0 +DQR_0 +UD_0 +DHD_0 +DQD_0 +R_0 +D_0) TH_0 = PopulationCI * p_h DVR_0 = (PopulationCI * p_h * p_v) * (1 - p_dth0) DVD_0 = (PopulationCI * p_h * p_v) * p_dth0 DD_0 = PopulationD DT_0 = PopulationI V_0 = 0 x_init = [ S_0, E_0, I_0, UR_0, DHR_0, DQR_0, UD_0, DHD_0, DQD_0, R_0, D_0, TH_0, DVR_0, DVD_0, DD_0, DT_0, V_0 ] return x_init # Find k=k1,k2 that matches gamma_0 to 2.08 (R0=6 equivalent) def loss_gamma0(self,k): newcases = np.array(self.newcases_data_fit) newdeaths = np.array(self.newdeaths_data_fit) newcases_sm = uniform_filter1d(newcases, size=21, mode='nearest') newdeaths_sm = uniform_filter1d(newdeaths, size=21, mode='nearest') gamma_t_vec = [] x_init = self.initial_states_func(k) (S_0, E_0, I_0, UR_0, DHR_0, DQR_0, UD_0, DHD_0, DQD_0, R_0, D_0, TH_0, DVR_0, DVD_0, DD_0, DT_0, V_0) = x_init newcases_sm2 = np.append(newcases_sm, newcases_sm[-2:]) # Extend the list for forward projection below newdeaths_sm2 = np.append(newdeaths_sm, newdeaths_sm[-1]) x_0 = x_init.copy() for t in range(self.gamma_0_days): # Target first n days gamma_t = (newcases_sm2[t+2]/(r_d*p_d) - (1-r_d)**2 *I_0 - r_i*(2-r_d-r_i)*E_0 )*self.N/(r_i*S_0*I_0) p_dth = (newdeaths_sm2[t+1] - r_dth*(1-r_dth)*(DHD_0 + DQD_0))/(r_dth*r_d*p_d*I_0) gamma_t = np.clip(gamma_t, 0.01, 10) p_dth = np.clip(p_dth,0,1) # Probability limit [0,1] x_1 = self.step_seir(t, x_0, gamma_t, p_dth) x_0 = x_1 gamma_t_vec.append(gamma_t) gamma_0 = np.mean(gamma_t_vec) loss = (gamma_0 - (r_d*6) )**2 # gamma_0 equivalent to R0=6 is 2.08 return loss def fit_gamma0(self): output = dual_annealing( self.loss_gamma0, x0 = [5], bounds = [(1,50)], ) k_star = output.x return k_star def get_initial_conditions(self): if Path(f'../params/param_fixed/kstar.csv').exists(): df = pd.read_csv(f'../params/param_fixed/kstar.csv') kstar = df[self.iso2].values[0] else: kstar = self.fit_gamma0()[0] # find kstar that matches gamma_0 to target x_init = self.initial_states_func(kstar) return x_init # -------------------- x. Implied gamma_t and pdth_t in-sample ------------------- def gamma_t_compute(self): newcases = np.array(self.newcases_data_fit) newdeaths = np.array(self.newdeaths_data_fit) newcases_sm = uniform_filter1d(newcases, size=21, mode='nearest') newdeaths_sm = uniform_filter1d(newdeaths, size=21, mode='nearest') gamma_t_vec = [] p_dth_vec = [] x_init = self.get_initial_conditions() S_0, E_0, I_0, AR_0, DHR_0, DQR_0, AD_0, DHD_0, DQD_0, R_0, D_0, TH_0, DVR_0, DVD_0, DD_0, DT_0, V_0 = x_init S_vec = [S_0] E_vec = [E_0] I_vec = [I_0] DT_vec = [DT_0] DD_vec = [DD_0] DHR_vec = [DHR_0] DHD_vec = [DHD_0] newcases_sm2 = np.append(newcases_sm, newcases_sm[-2:]) # Extend the list for forward projection below newdeaths_sm2 = np.append(newdeaths_sm, newdeaths_sm[-1]) x_0 = x_init.copy() for t in range(len(newcases)): # Work backwards to compute 'exact' gamma_t and p_dth gamma_t = (newcases_sm2[t+2]/(r_d*p_d) - (1-r_d)**2 *I_0 - r_i*(2-r_d-r_i)*E_0 )*self.N/(r_i*S_0*I_0) p_dth = (newdeaths_sm2[t+1] - r_dth*(1-r_dth)*(DHD_0 + DQD_0))/(r_dth*r_d*p_d*I_0) gamma_t = np.clip(gamma_t, 0.01, 10) p_dth = np.clip(p_dth,0,1) # Probability limit [0,1] x_1 = self.step_seir(t, x_0, gamma_t, p_dth) S_0, E_0, I_0, AR_0, DHR_0, DQR_0, AD_0, DHD_0, DQD_0, R_0, D_0, TH_0, DVR_0, DVD_0, DD_0, DT_0, V_0 = x_1 x_0 = x_1 gamma_t_vec.append(gamma_t) p_dth_vec.append(p_dth) S_vec.append(S_0) I_vec.append(I_0) E_vec.append(E_0) DT_vec.append(DT_0) DD_vec.append(DD_0) DHR_vec.append(DHR_0) DHD_vec.append(DHD_0) self.df2['gamma_t'] = gamma_t_vec self.df2['pdth_t'] = p_dth_vec self.S_vec = S_vec # In-sample estmates, useful for phi calculation later on self.I_vec = I_vec self.DHR_vec = DHR_vec # For fitting death probability self.DHD_vec = DHD_vec HD_HR = np.array(self.DHR_vec) + np.array(self.DHD_vec) self.df2['HD_HR'] = 100*HD_HR[:-1]/self.N # gamma_t_sm = uniform_filter1d(gamma_t_vec, size=6, mode='nearest') # self.df2['gamma_sm'] = gamma_t_sm return gamma_t_vec, p_dth_vec # -------------------- x. Estimating the model ----------- def gamma_func(self, params): m_t = self.df2['google_smooth'].values tvec = np.arange(len(m_t)) beta0, beta1 = params gamma_vec = beta0*np.exp(beta1* m_t) return gamma_vec def loss_betas(self, params) -> float: gamma_model = self.gamma_func(params) loss = sum( (self.df2['gamma_t'].values[:len(gamma_model)] - gamma_model)**2 ) return loss def fitmodel(self): # A. Fit beta0 and beta1 x0 = self.default_init_single bounds_0 = self.default_bounds_single output = dual_annealing( self.loss_betas, x0 = x0, bounds = bounds_0, ) best_betas = output.x self.best_betas = best_betas # B. Fit the residual (gamma_tilde) to AR models m_t = self.df2['google_smooth'].values tvec = np.arange(len(self.df2)) beta0, beta1 = self.best_betas self.df2['gamma_mob'] = beta0*np.exp(beta1* m_t) self.df2['gamma_tilde'] = self.df2['gamma_t'] - self.df2['gamma_mob'] self.df2['gamma_tilde_sm'] = uniform_filter1d(self.df2['gamma_tilde'], size=21, mode='reflect') self.df2['gamma_tilde_resid'] = self.df2['gamma_tilde'] - self.df2['gamma_tilde_sm'] y = self.df2['gamma_tilde_sm'] self.df2['gamma_tilde_sm_lag1'] = self.df2['gamma_tilde_sm'].shift(1) # No constant term self.df2['gamma_tilde_sm_lag2'] = self.df2['gamma_tilde_sm'].shift(2) reg_AR1 = sm.OLS(y,self.df2['gamma_tilde_sm_lag1'],missing='drop').fit() reg_AR2 = sm.OLS(y,self.df2[['gamma_tilde_sm_lag1','gamma_tilde_sm_lag2']],missing='drop').fit() best_rho1 = reg_AR1.params[0] best_rho1 = np.clip(best_rho1, 0.1, 0.99) #Assume stationarity best_rho2 = reg_AR2.params[:] best_params = np.array([beta0, beta1, best_rho1, best_rho2[0], best_rho2[1]]) self.best_rho1 = best_rho1 self.best_rho2 = best_rho2 self.best_params = best_params # C. Empirically fit phi for optimal policy to last observation if self.phi_option == 'fit': m = self.df2['google_smooth'][-15:].mean() # Take average of last 15 days to smooth volatility s = self.S_vec[-1]/self.N i = self.I_vec[-1]/self.N gamma_tilde = self.df2['gamma_tilde'][-1] pdth = self.df2['pdth_t'][-1] pdth = max(pdth, self.pdth_min) # Get around cases where pdth=0 for countries with very few cases LHS1 = pdth*r_d*i*s*(beta0*beta1*np.exp(beta1*m)) LHS2 = pdth*r_d*i*(1 - r_d + s*(gamma_tilde + beta0*np.exp(beta1*m))) phi = -(LHS1 * LHS2)/m self.phi = max(phi, self.phi_min) elif self.phi_option == 'exo': self.phi = self.phi_exo return best_params # ------------------ x. Forecasts --------------------------- def step_gamma_tilde(self, gamma_tilde_lag1, gamma_tilde_lag2, model='AR1'): if model =='AR1': return self.best_rho1*gamma_tilde_lag1 elif model =='AR2': return self.best_rho2[0]*gamma_tilde_lag1 + self.best_rho2[1]*gamma_tilde_lag2 def mobility_choice(self,x,gamma_tilde,pdth): if self.policy == 'constant': mob = self.poparam_constant elif self.policy == 'linear-I': # Respond linearly to infection level mob = self.poparam_linear_I[0] + self.poparam_linear_I[1]*x[2] elif self.policy == 'linear-dI': # Respond to new infections dI = r_i*x[1] - r_d*x[2] # x[1]=E, x[2]=I mob = self.poparam_linear_dI[0] + self.poparam_linear_dI[1]*dI elif self.policy == 'optim': # Analytical optimal policy based on simplified model and quadratic losses beta0 = self.best_params[0] beta1 = self.best_params[1] phi = self.phi s = x[0]/self.N i = x[2]/self.N m_set = np.linspace(-1,0,101) RHS = -phi*m_set LHS1 = pdth*r_d*i*s*(beta0*beta1*np.exp(beta1*m_set)) LHS2 = pdth*r_d*i*(1 - r_d + s*(gamma_tilde + beta0*np.exp(beta1*m_set))) LHS = LHS1 * LHS2 m_id = np.argmin(np.abs(RHS-LHS)) mob = m_set[m_id] return mob def fatality_factor(self,V): # Factor to adjust 'base' fatality prob idx = (f_table[self.iso2]['vaccine_%'] - V/self.N).abs().argmin() # Find idx to look up in fatality table factor = f_table[self.iso2]['fatality_ratio'][idx] return factor def sim_seir(self): df2 = self.df2 ix = pd.date_range(start=df2.index[0], end=default_maxT, freq='D') # Expand time-sample, to include forecast later df3 = df2.reindex(ix) x_init = self.get_initial_conditions() x_data = np.array(x_init) gamma_tilde_fc = self.df2['gamma_tilde'].values gamma_tilde_sm_fc = self.df2['gamma_tilde_sm'].values pdth_t_targ = [] # Death prob when vaccines are targeted pdth_t_base = [] # Base death prob if vaccines are given randomly pdth_t_fc = self.df2['pdth_t'].values pdth_t_base_fc = pdth_t_fc.copy() gamma_mob_fc = self.df2['gamma_mob'].values mob_fc = self.df2['google_smooth'].values # Load parameters if hasattr(self, 'best_params'): beta0, beta1, rho, rhos_1, rhos_2 = self.best_params else: df_param = pd.read_csv(f'../params/{param_load_folder}/param_est.csv') beta0, beta1, rho, rhos_1, rhos_2 = df_param[self.iso2] for t in range(self.maxT): factor = self.fatality_factor(x_init[-1]) eta = self.target_weight if t<len(self.df2): # In sample pdth_t = pdth_t_fc[t] pdth_base = pdth_t/(eta*factor + 1-eta) pdth_targ = factor*pdth_base # if t==len(self.df2): # Parse pdth_base of hospitalised/N # y = pdth_t_base # X = self.df2['HD_HR'].shift(30) # Use lagged hospitalised as the predictor # X = sm.add_constant(X) # reg_pdth = sm.OLS(y,X, missing='drop').fit() # thetas = reg_pdth.params # self.best_theta = thetas # pdb.set_trace() # pdth_t_basex = y - thetas[0] - thetas[1]*X # Base death prob, parsed of hospitalisation wave # self.df2['pdth_base'] = pdth_t_base # self.df2['pdth_base_x'] = pdth_t_basex if t>len(self.df2)-1: # Out of sample # Death probability if self.pdth_assump == 'martingale': # Martingale death rate pdth_base = pdth_t_base[-1] elif self.pdth_assump == 'treatment': # Death prob slowly declines to assumed minimum and assumed halflife pdth_base = self.pdth_theta*pdth_t_base[-1] + (1-self.pdth_theta)*self.pdth_min pdth_base = max(pdth_base, self.pdth_min) # To get around pdth=0 for countries with very few cases pdth_t = (eta*factor + 1-eta)*pdth_base pdth_targ = factor*pdth_base # Gamma_tilde if self.gamma_tilde_model == 'AR1': gamma_tilde = rho*gamma_tilde_sm_fc[t-1] elif self.gamma_tilde_model == 'AR2': gamma_tilde = rhos_1*gamma_tilde_sm_fc[t-1] + rhos_2*gamma_tilde_sm_fc[t-2] elif self.gamma_tilde_model =='shock': if t < len(self.df2) + self.gamma_shock_length: gamma_tilde = gamma_tilde_sm_fc[len(self.df2)-1] + self.gamma_shock_depth else: gamma_tilde = rho*gamma_tilde_sm_fc[t-1] # Mobility and overall gamma_t mob_t = self.mobility_choice(x_init, gamma_tilde, pdth_t) mob_t = max(mob_t, max_lockdown) gamma_mob_t = beta0*np.exp(beta1*mob_t) gamma_t = gamma_tilde + gamma_mob_t # Append to data array gamma_tilde_sm_fc = np.append(gamma_tilde_sm_fc, gamma_tilde) gamma_tilde_fc = np.append(gamma_tilde_fc, gamma_tilde) gamma_mob_fc = np.append(gamma_mob_fc, gamma_mob_t) mob_fc = np.append(mob_fc, mob_t) pdth_t_fc = np.append(pdth_t_fc, pdth_t) pdth_t_base.append(pdth_base) pdth_t_targ.append(pdth_targ) # For in sample, use 'true' inputs gamma_t = gamma_tilde_fc[t] + gamma_mob_fc[t] p_dth = pdth_t_fc[t] if t < range(self.maxT)[-1]: # Stop forecasting at the final period x_next = self.step_seir(t, x_init, gamma_t, p_dth) x_data = np.vstack((x_data, np.array(x_next))) x_init = x_next # Fill dataframe col_temp = ['S', 'E', 'I', 'AR', 'DHR', 'DQR', 'AD', 'DHD', 'DQD', 'R', 'D', 'TH', 'DVR', 'DVD', 'DD', 'DT', 'V'] df4 = pd.DataFrame(x_data, columns=col_temp, index=df3.index) df3 = df3.merge(df4, how='left', left_index=True, right_index=True) df3['gamma_tilde_fc'] = gamma_tilde_fc df3['gamma_mob_fc'] = gamma_mob_fc df3['gamma_t_fc'] = df3['gamma_tilde_fc'] + df3['gamma_mob_fc'] df3['mob_fc'] = mob_fc df3['pdth_t_fc'] = pdth_t_fc df3['pdth_t_base'] =
np.array(pdth_t_base)
numpy.array
import matplotlib.pyplot as plt import numpy as np import pandas as pd # Deep Recurrent Reinforcement Learning: 1 capa LSTM y 4 capas Dense, Funcion de activacion tanh, 12 episodes, 50 iteraciones drnnLSTMtanhMakespan0=[799, 798, 799, 799, 805, 806, 799, 805, 805, 800, 798, 798] drnnLSTMtanhMakespan1=[800, 798, 796, 800, 796, 794, 795, 798, 800, 798, 805, 798] drnnLSTMtanhMakespan2=[796, 800, 798, 804, 800, 798, 798, 798, 800, 800, 802, 797] drnnLSTMtanhMakespan3=[805, 800, 800, 803, 794, 802, 800, 798, 799, 804, 799, 806] drnnLSTMtanhMakespan4=[796, 798, 795, 798, 796, 799, 800, 796, 796, 798, 806, 800] drnnLSTMtanhMakespan5=[798, 798, 799, 800, 800, 808, 798, 798, 801, 796, 799, 798] drnnLSTMtanhMakespan6=[800, 796, 805, 798, 798, 796, 799, 800, 803, 800, 798, 800] drnnLSTMtanhMakespan7=[799, 805, 802, 805, 800, 799, 800, 799, 805, 800, 794, 796] drnnLSTMtanhMakespan8=[799, 798, 800, 798, 798, 800, 800, 800, 804, 799, 800, 804] drnnLSTMtanhMakespan9=[795, 800, 795, 796, 798, 796, 797, 800, 797, 798, 796, 795] drnnLSTMtanhMakespan10=[804, 799, 805, 798, 798, 798, 805, 800, 796, 804, 796, 799] drnnLSTMtanhMakespan11=[795, 803, 805, 798, 795, 801, 798, 798, 804, 803, 799, 804] drnnLSTMtanhMakespan12=[798, 798, 799, 800, 798, 798, 799, 799, 801, 796, 799, 798] drnnLSTMtanhMakespan13=[798, 798, 799, 797, 796, 796, 800, 797, 805, 800, 800, 794] drnnLSTMtanhMakespan14=[800, 798, 798, 796, 800, 800, 798, 798, 802, 798, 802, 798] drnnLSTMtanhMakespan15=[796, 796, 800, 801, 800, 800, 796, 794, 796, 800, 796, 798] drnnLSTMtanhMakespan16=[798, 798, 795, 797, 795, 799, 800, 796, 795, 796, 800, 800] drnnLSTMtanhMakespan17=[794, 795, 800, 798, 795, 796, 798, 796, 795, 794, 798, 796] drnnLSTMtanhMakespan18=[797, 795, 794, 794, 800, 796, 796, 795, 798, 795, 798, 794] drnnLSTMtanhMakespan19=[797, 795, 795, 796, 798, 799, 795, 799, 795, 794, 795, 795] drnnLSTMtanhMakespan20=[796, 794, 798, 797, 798, 799, 795, 795, 797, 795, 795, 792] drnnLSTMtanhMakespan21=[797, 795, 797, 793, 794, 794, 800, 794, 798, 795, 797, 795] drnnLSTMtanhMakespan22=[794, 800, 798, 795, 795, 796, 796, 799, 795, 794, 795, 795] drnnLSTMtanhMakespan23=[795, 795, 794, 795, 794, 794, 797, 799, 796, 794, 794, 795] drnnLSTMtanhMakespan24=[798, 795, 795, 795, 792, 794, 795, 794, 794, 795, 795, 795] drnnLSTMtanhMakespan25=[794, 792, 794, 795, 795, 794, 794, 794, 794, 795, 794, 793] drnnLSTMtanhMakespan26=[794, 794, 795, 796, 798, 795, 794, 794, 794, 794, 795, 794] drnnLSTMtanhMakespan27=[795, 794, 795, 795, 795, 794, 794, 794, 794, 794, 795, 795] drnnLSTMtanhMakespan28=[795, 794, 794, 795, 794, 795, 795, 795, 795, 794, 795, 794] drnnLSTMtanhMakespan29=[792, 794, 795, 794, 794, 795, 794, 793, 795, 794, 795, 792] drnnLSTMtanhMakespan30=[795, 794, 795, 795, 794, 794, 794, 795, 794, 794, 794, 794] drnnLSTMtanhMakespan31=[794, 794, 795, 794, 795, 793, 795, 795, 795, 792, 794, 794] drnnLSTMtanhMakespan32=[795, 795, 794, 793, 795, 795, 795, 795, 794, 794, 795, 794] drnnLSTMtanhMakespan33=[793, 794, 795, 793, 792, 795, 794, 794, 794, 794, 794, 795] drnnLSTMtanhMakespan34=[794, 795, 795, 794, 794, 794, 794, 793, 794, 794, 794, 794] drnnLSTMtanhMakespan35=[794, 794, 797, 793, 792, 794, 793, 794, 795, 794, 795, 792] drnnLSTMtanhMakespan36=[794, 794, 793, 794, 795, 797, 795, 795, 794, 795, 793, 794] drnnLSTMtanhMakespan37=[795, 793, 795, 794, 795, 798, 795, 794, 795, 793, 795, 794] drnnLSTMtanhMakespan38=[794, 795, 793, 795, 794, 794, 794, 794, 794, 794, 797, 795] drnnLSTMtanhMakespan39=[794, 794, 795, 794, 795, 795, 794, 795, 794, 795, 798, 797] drnnLSTMtanhMakespan40=[795, 795, 794, 795, 794, 795, 795, 794, 794, 794, 795, 795] drnnLSTMtanhMakespan41=[794, 795, 792, 794, 794, 798, 795, 794, 794, 794, 793, 795] drnnLSTMtanhMakespan42=[793, 795, 794, 793, 794, 794, 792, 794, 795, 794, 794, 793] drnnLSTMtanhMakespan43=[793, 792, 793, 794, 794, 795, 792, 794, 795, 794, 795, 794] drnnLSTMtanhMakespan44=[793, 794, 795, 795, 794, 794, 795, 798, 794, 792, 795, 794] drnnLSTMtanhMakespan45=[795, 794, 794, 794, 794, 792, 794, 795, 794, 796, 795, 794] drnnLSTMtanhMakespan46=[794, 793, 793, 795, 795, 794, 794, 794, 794, 796, 794, 794] drnnLSTMtanhMakespan47=[794, 794, 795, 794, 794, 795, 792, 795, 794, 795, 795, 794] drnnLSTMtanhMakespan48=[794, 795, 794, 794, 794, 792, 794, 795, 796, 794, 794, 795] drnnLSTMtanhMakespan49=[794, 794, 794, 794, 794, 794, 792, 794, 793, 794, 795, 794] drnnLSTMtanhRewards0=[-0.1759911894273128, -0.17580964970257765, -0.1759911894273128, -0.1759911894273128, -0.177078750549934, -0.17725973169122497, -0.1759911894273128, -0.177078750549934, -0.177078750549934, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765] drnnLSTMtanhRewards1=[-0.17617264919621228, -0.17580964970257765, -0.17544633017412387, -0.17617264919621228, -0.17544633017412387, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.17580964970257765, -0.17580964970257765] drnnLSTMtanhRewards2=[-0.17544633017412387, -0.17617264919621228, -0.17580964970257765, -0.1768976897689769, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17653532907770195, -0.17562802996914942] drnnLSTMtanhRewards3=[-0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.17671654929577466, -0.17508269018743108, -0.17653532907770195, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.1768976897689769, -0.1759911894273128, -0.17725973169122497] drnnLSTMtanhRewards4=[-0.17580964970257765, -0.17544633017412387, -0.17526455026455026, -0.17580964970257765, -0.17544633017412387, -0.1759911894273128, -0.17617264919621228, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17725973169122497, -0.17617264919621228] drnnLSTMtanhRewards5=[-0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17617264919621228, -0.17617264919621228, -0.1776214552648934, -0.17580964970257765, -0.17580964970257765, -0.1763540290620872, -0.17544633017412387, -0.1759911894273128, -0.17580964970257765] drnnLSTMtanhRewards6=[-0.17617264919621228, -0.17544633017412387, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.1759911894273128, -0.17617264919621228, -0.17671654929577466, -0.17617264919621228, -0.17580964970257765, -0.17617264919621228] drnnLSTMtanhRewards7=[-0.1759911894273128, -0.177078750549934, -0.17653532907770195, -0.177078750549934, -0.17617264919621228, -0.1759911894273128, -0.17617264919621228, -0.1759911894273128, -0.177078750549934, -0.17617264919621228, -0.17508269018743108, -0.17544633017412387] drnnLSTMtanhRewards8=[-0.1759911894273128, -0.17580964970257765, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17617264919621228, -0.1768976897689769, -0.1759911894273128, -0.17617264919621228, -0.1768976897689769] drnnLSTMtanhRewards9=[-0.17526455026455026, -0.17617264919621228, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17544633017412387, -0.17562802996914942, -0.17617264919621228, -0.17562802996914942, -0.17580964970257765, -0.17544633017412387, -0.17526455026455026] drnnLSTMtanhRewards10=[-0.1768976897689769, -0.1759911894273128, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.17617264919621228, -0.17544633017412387, -0.1768976897689769, -0.17544633017412387, -0.1759911894273128] drnnLSTMtanhRewards11=[-0.17526455026455026, -0.17671654929577466, -0.177078750549934, -0.17580964970257765, -0.17526455026455026, -0.1763540290620872, -0.17580964970257765, -0.17580964970257765, -0.1768976897689769, -0.17671654929577466, -0.1759911894273128, -0.1768976897689769] drnnLSTMtanhRewards12=[-0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.1759911894273128, -0.1763540290620872, -0.17544633017412387, -0.1759911894273128, -0.17580964970257765] drnnLSTMtanhRewards13=[-0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17562802996914942, -0.17544633017412387, -0.17544633017412387, -0.17617264919621228, -0.17562802996914942, -0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.17508269018743108] drnnLSTMtanhRewards14=[-0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17653532907770195, -0.17580964970257765, -0.17653532907770195, -0.17580964970257765] drnnLSTMtanhRewards15=[-0.17544633017412387, -0.17544633017412387, -0.17617264919621228, -0.1763540290620872, -0.17617264919621228, -0.17617264919621228, -0.17544633017412387, -0.17508269018743108, -0.17544633017412387, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765] drnnLSTMtanhRewards16=[-0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.1759911894273128, -0.17617264919621228, -0.17544633017412387, -0.17544633017412387, -0.17526455026455026, -0.17617264919621228, -0.17617264919621228] drnnLSTMtanhRewards17=[-0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17617264919621228, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17544633017412387] drnnLSTMtanhRewards18=[-0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17617264919621228, -0.17544633017412387, -0.17544633017412387, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.17508269018743108] drnnLSTMtanhRewards19=[-0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.1759911894273128, -0.17526455026455026, -0.1759911894273128, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026] drnnLSTMtanhRewards20=[-0.17544633017412387, -0.17508269018743108, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765, -0.1759911894273128, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17471872931833224] drnnLSTMtanhRewards21=[-0.17562802996914942, -0.17526455026455026, -0.17562802996914942, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17617264919621228, -0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026] drnnLSTMtanhRewards22=[-0.17508269018743108, -0.17617264919621228, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17544633017412387, -0.1759911894273128, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026] drnnLSTMtanhRewards23=[-0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17562802996914942, -0.1759911894273128, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026] drnnLSTMtanhRewards24=[-0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026] drnnLSTMtanhRewards25=[-0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.1749007498897221] drnnLSTMtanhRewards26=[-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drnnLSTMtanhRewards27=[-0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026] drnnLSTMtanhRewards28=[-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drnnLSTMtanhRewards29=[-0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224] drnnLSTMtanhRewards30=[-0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drnnLSTMtanhRewards31=[-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108] drnnLSTMtanhRewards32=[-0.17526455026455026, -0.17526455026455026, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drnnLSTMtanhRewards33=[-0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026] drnnLSTMtanhRewards34=[-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drnnLSTMtanhRewards35=[-0.17508269018743108, -0.17508269018743108, -0.17562802996914942, -0.17471872931833224, -0.1749007498897221, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224] drnnLSTMtanhRewards36=[-0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17508269018743108] drnnLSTMtanhRewards37=[-0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108] drnnLSTMtanhRewards38=[-0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026] drnnLSTMtanhRewards39=[-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17562802996914942] drnnLSTMtanhRewards40=[-0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026] drnnLSTMtanhRewards41=[-0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17526455026455026] drnnLSTMtanhRewards42=[-0.1749007498897221, -0.17526455026455026, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221] drnnLSTMtanhRewards43=[-0.1749007498897221, -0.17471872931833224, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drnnLSTMtanhRewards44=[-0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108] drnnLSTMtanhRewards45=[-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108] drnnLSTMtanhRewards46=[-0.17508269018743108, -0.1749007498897221, -0.1749007498897221, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108] drnnLSTMtanhRewards47=[-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108] drnnLSTMtanhRewards48=[-0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026] drnnLSTMtanhRewards49=[-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] # Deep Recurrent Reinforcement Learning: 1 capa LSTM y 4 capas Dense, Funcion de activacion relu, 12 episodes, 50 iteraciones drnnLSTMreluMakespan0=[805, 800, 800, 800, 794, 800, 798, 809, 795, 800, 798, 798] drnnLSTMreluMakespan1=[798, 798, 796, 799, 800, 796, 796, 798, 798, 794, 798, 800] drnnLSTMreluMakespan2=[805, 805, 798, 799, 806, 799, 806, 799, 800, 798, 805, 795] drnnLSTMreluMakespan3=[800, 800, 800, 796, 800, 800, 799, 806, 808, 798, 797, 798] drnnLSTMreluMakespan4=[805, 805, 795, 796, 799, 804, 798, 794, 798, 794, 796, 810] drnnLSTMreluMakespan5=[798, 798, 798, 795, 800, 798, 796, 802, 800, 800, 805, 801] drnnLSTMreluMakespan6=[800, 798, 798, 795, 800, 796, 800, 798, 799, 796, 805, 800] drnnLSTMreluMakespan7=[800, 800, 800, 799, 798, 798, 800, 805, 800, 799, 800, 801] drnnLSTMreluMakespan8=[799, 800, 800, 799, 795, 795, 805, 795, 798, 800, 798, 800] drnnLSTMreluMakespan9=[800, 796, 805, 798, 798, 795, 805, 800, 799, 795, 800, 805] drnnLSTMreluMakespan10=[805, 798, 805, 800, 801, 805, 799, 805, 798, 800, 800, 798] drnnLSTMreluMakespan11=[798, 803, 800, 797, 795, 796, 794, 799, 800, 800, 800, 796] drnnLSTMreluMakespan12=[799, 798, 799, 795, 798, 795, 798, 798, 798, 795, 798, 798] drnnLSTMreluMakespan13=[798, 798, 799, 796, 798, 796, 800, 799, 796, 794, 796, 795] drnnLSTMreluMakespan14=[796, 798, 806, 799, 804, 798, 805, 798, 800, 805, 794, 800] drnnLSTMreluMakespan15=[806, 795, 800, 796, 798, 796, 810, 798, 799, 798, 800, 800] drnnLSTMreluMakespan16=[799, 796, 798, 798, 798, 800, 798, 810, 796, 805, 800, 795] drnnLSTMreluMakespan17=[798, 798, 798, 794, 798, 805, 801, 798, 800, 799, 798, 798] drnnLSTMreluMakespan18=[795, 800, 794, 798, 797, 798, 794, 800, 797, 796, 794, 794] drnnLSTMreluMakespan19=[798, 802, 794, 798, 799, 795, 797, 795, 800, 796, 797, 796] drnnLSTMreluMakespan20=[794, 797, 795, 794, 799, 795, 795, 795, 800, 797, 794, 798] drnnLSTMreluMakespan21=[799, 798, 796, 795, 794, 798, 795, 795, 798, 798, 795, 794] drnnLSTMreluMakespan22=[794, 794, 795, 797, 795, 795, 795, 792, 794, 795, 794, 794] drnnLSTMreluMakespan23=[794, 794, 794, 794, 795, 796, 793, 794, 795, 794, 797, 795] drnnLSTMreluMakespan24=[794, 792, 792, 794, 796, 792, 794, 795, 794, 792, 796, 795] drnnLSTMreluMakespan25=[794, 795, 795, 794, 794, 792, 795, 792, 795, 794, 794, 794] drnnLSTMreluMakespan26=[795, 794, 794, 795, 794, 794, 793, 794, 797, 795, 794, 795] drnnLSTMreluMakespan27=[794, 794, 795, 796, 795, 797, 794, 794, 795, 801, 794, 795] drnnLSTMreluMakespan28=[795, 795, 795, 795, 794, 792, 794, 797, 794, 795, 795, 795] drnnLSTMreluMakespan29=[794, 792, 798, 794, 797, 795, 793, 795, 795, 794, 795, 795] drnnLSTMreluMakespan30=[795, 794, 798, 794, 794, 795, 792, 796, 794, 796, 794, 794] drnnLSTMreluMakespan31=[794, 795, 795, 794, 795, 794, 795, 795, 794, 794, 795, 795] drnnLSTMreluMakespan32=[798, 794, 794, 794, 798, 792, 795, 795, 795, 796, 794, 795] drnnLSTMreluMakespan33=[794, 796, 794, 794, 794, 795, 794, 794, 797, 793, 793, 795] drnnLSTMreluMakespan34=[794, 794, 795, 794, 794, 793, 794, 795, 793, 795, 795, 794] drnnLSTMreluMakespan35=[798, 796, 795, 794, 795, 795, 795, 795, 794, 795, 797, 795] drnnLSTMreluMakespan36=[794, 796, 794, 794, 794, 794, 795, 795, 797, 796, 795, 795] drnnLSTMreluMakespan37=[795, 794, 796, 795, 795, 795, 795, 794, 792, 797, 794, 793] drnnLSTMreluMakespan38=[794, 798, 794, 792, 794, 792, 795, 797, 793, 794, 794, 797] drnnLSTMreluMakespan39=[792, 794, 794, 794, 792, 795, 795, 795, 794, 794, 795, 794] drnnLSTMreluMakespan40=[792, 795, 795, 792, 795, 795, 794, 795, 794, 795, 794, 795] drnnLSTMreluMakespan41=[794, 797, 795, 794, 795, 795, 798, 794, 795, 796, 796, 794] drnnLSTMreluMakespan42=[794, 795, 795, 795, 794, 795, 795, 794, 794, 795, 793, 795] drnnLSTMreluMakespan43=[795, 794, 795, 794, 795, 795, 792, 794, 794, 795, 794, 795] drnnLSTMreluMakespan44=[795, 794, 792, 795, 794, 794, 795, 794, 796, 795, 796, 794] drnnLSTMreluMakespan45=[795, 794, 793, 794, 793, 795, 794, 794, 795, 794, 795, 794] drnnLSTMreluMakespan46=[794, 796, 793, 794, 794, 795, 799, 795, 794, 794, 794, 794] drnnLSTMreluMakespan47=[794, 794, 794, 794, 795, 793, 795, 795, 794, 795, 795, 795] drnnLSTMreluMakespan48=[794, 794, 795, 794, 795, 795, 795, 794, 794, 795, 795, 794] drnnLSTMreluMakespan49=[795, 795, 795, 794, 795, 795, 794, 795, 793, 793, 792, 792] drnnLSTMreluRewards0=[-0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.17617264919621228, -0.17508269018743108, -0.17617264919621228, -0.17580964970257765, -0.1778021978021978, -0.17526455026455026, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765] drnnLSTMreluRewards1=[-0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.1759911894273128, -0.17617264919621228, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.17508269018743108, -0.17580964970257765, -0.17617264919621228] drnnLSTMreluRewards2=[-0.177078750549934, -0.177078750549934, -0.17580964970257765, -0.1759911894273128, -0.17725973169122497, -0.1759911894273128, -0.17725973169122497, -0.1759911894273128, -0.17617264919621228, -0.17580964970257765, -0.177078750549934, -0.17526455026455026] drnnLSTMreluRewards3=[-0.17617264919621228, -0.17617264919621228, -0.17617264919621228, -0.17544633017412387, -0.17617264919621228, -0.17617264919621228, -0.1759911894273128, -0.17725973169122497, -0.1776214552648934, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765] drnnLSTMreluRewards4=[-0.177078750549934, -0.177078750549934, -0.17526455026455026, -0.17544633017412387, -0.1759911894273128, -0.1768976897689769, -0.17580964970257765, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17544633017412387, -0.17798286090969018] drnnLSTMreluRewards5=[-0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.17617264919621228, -0.17580964970257765, -0.17544633017412387, -0.17653532907770195, -0.17617264919621228, -0.17617264919621228, -0.177078750549934, -0.1763540290620872] drnnLSTMreluRewards6=[-0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.17617264919621228, -0.17544633017412387, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.17544633017412387, -0.177078750549934, -0.17617264919621228] drnnLSTMreluRewards7=[-0.17617264919621228, -0.17617264919621228, -0.17617264919621228, -0.1759911894273128, -0.17580964970257765, -0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.17617264919621228, -0.1759911894273128, -0.17617264919621228, -0.1763540290620872] drnnLSTMreluRewards8=[-0.1759911894273128, -0.17617264919621228, -0.17617264919621228, -0.1759911894273128, -0.17526455026455026, -0.17526455026455026, -0.177078750549934, -0.17526455026455026, -0.17580964970257765, -0.17617264919621228, -0.17580964970257765, -0.17617264919621228] drnnLSTMreluRewards9=[-0.17617264919621228, -0.17544633017412387, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.17526455026455026, -0.17617264919621228, -0.1759911894273128, -0.17526455026455026, -0.17617264919621228, -0.177078750549934] drnnLSTMreluRewards10=[-0.177078750549934, -0.17580964970257765, -0.177078750549934, -0.17617264919621228, -0.1763540290620872, -0.1759911894273128, -0.177078750549934, -0.177078750549934, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765] drnnLSTMreluRewards11=[-0.17580964970257765, -0.17671654929577466, -0.17617264919621228, -0.17562802996914942, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108, -0.1759911894273128, -0.17617264919621228, -0.17617264919621228, -0.17617264919621228, -0.17544633017412387] drnnLSTMreluRewards12=[-0.1759911894273128, -0.17580964970257765, -0.1759911894273128, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.17580964970257765] drnnLSTMreluRewards13=[-0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17544633017412387, -0.17580964970257765, -0.17544633017412387, -0.17617264919621228, -0.1759911894273128, -0.17544633017412387, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026] drnnLSTMreluRewards14=[-0.17544633017412387, -0.17580964970257765, -0.17725973169122497, -0.1759911894273128, -0.1768976897689769, -0.17580964970257765, -0.177078750549934, -0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.17508269018743108, -0.17617264919621228] drnnLSTMreluRewards15=[-0.17725973169122497, -0.17526455026455026, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765, -0.17544633017412387, -0.17798286090969018, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228] drnnLSTMreluRewards16=[-0.1759911894273128, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17617264919621228, -0.17580964970257765, -0.17798286090969018, -0.17544633017412387, -0.177078750549934, -0.17617264919621228, -0.17526455026455026] drnnLSTMreluRewards17=[-0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17508269018743108, -0.17580964970257765, -0.177078750549934, -0.1763540290620872, -0.17580964970257765, -0.17617264919621228, -0.1759911894273128, -0.17580964970257765, -0.17580964970257765] drnnLSTMreluRewards18=[-0.17526455026455026, -0.17617264919621228, -0.17508269018743108, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765, -0.17508269018743108, -0.17617264919621228, -0.17562802996914942, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108] drnnLSTMreluRewards19=[-0.17580964970257765, -0.17653532907770195, -0.17508269018743108, -0.17580964970257765, -0.1759911894273128, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17617264919621228, -0.17544633017412387, -0.17562802996914942, -0.17544633017412387] drnnLSTMreluRewards20=[-0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.1759911894273128, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17617264919621228, -0.17562802996914942, -0.17508269018743108, -0.17580964970257765] drnnLSTMreluRewards21=[-0.1759911894273128, -0.17580964970257765, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108] drnnLSTMreluRewards22=[-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108] drnnLSTMreluRewards23=[-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026] drnnLSTMreluRewards24=[-0.17508269018743108, -0.17471872931833224, -0.17471872931833224, -0.17508269018743108, -0.17544633017412387, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17471872931833224, -0.17544633017412387, -0.17526455026455026] drnnLSTMreluRewards25=[-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drnnLSTMreluRewards26=[-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026] drnnLSTMreluRewards27=[-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17562802996914942, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.1763540290620872, -0.17508269018743108, -0.17526455026455026] drnnLSTMreluRewards28=[-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17562802996914942, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026] drnnLSTMreluRewards29=[-0.17508269018743108, -0.17471872931833224, -0.17580964970257765, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026] drnnLSTMreluRewards30=[-0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17544633017412387, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108] drnnLSTMreluRewards31=[-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026] drnnLSTMreluRewards32=[-0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17471872931833224, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108, -0.17526455026455026] drnnLSTMreluRewards33=[-0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17562802996914942, -0.1749007498897221, -0.1749007498897221, -0.17526455026455026] drnnLSTMreluRewards34=[-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108] drnnLSTMreluRewards35=[-0.17580964970257765, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026] drnnLSTMreluRewards36=[-0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026] drnnLSTMreluRewards37=[-0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17471872931833224, -0.17562802996914942, -0.17508269018743108, -0.1749007498897221] drnnLSTMreluRewards38=[-0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17471872931833224, -0.17526455026455026, -0.17562802996914942, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17562802996914942] drnnLSTMreluRewards39=[-0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drnnLSTMreluRewards40=[-0.17471872931833224, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026] drnnLSTMreluRewards41=[-0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.17544633017412387, -0.17508269018743108] drnnLSTMreluRewards42=[-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026] drnnLSTMreluRewards43=[-0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026] drnnLSTMreluRewards44=[-0.17526455026455026, -0.17508269018743108, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108] drnnLSTMreluRewards45=[-0.17526455026455026, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drnnLSTMreluRewards46=[-0.17508269018743108, -0.17544633017412387, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.1759911894273128, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drnnLSTMreluRewards47=[-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026] drnnLSTMreluRewards48=[-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108] drnnLSTMreluRewards49=[-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.1749007498897221, -0.17471872931833224, -0.17471872931833224] # Deep Recurrent Reinforcement Learning: 1 capa GRU y 4 capas Dense, Funcion de activacion tanh, 12 episodes, 50 iteraciones drnnGRUtanhMakespan0 = [798, 799, 798, 804, 805, 799, 801, 801, 801, 799, 798, 796] drnnGRUtanhMakespan1 = [800, 798, 798, 798, 798, 798, 801, 798, 795, 796, 800, 796] drnnGRUtanhMakespan2 = [795, 804, 805, 800, 800, 796, 804, 800, 795, 798, 798, 801] drnnGRUtanhMakespan3 = [806, 796, 794, 797, 798, 800, 800, 808, 805, 798, 800, 809] drnnGRUtanhMakespan4 = [805, 801, 795, 798, 798, 800, 796, 796, 805, 798, 799, 798] drnnGRUtanhMakespan5 = [804, 799, 798, 804, 796, 799, 798, 805, 796, 805, 798, 800] drnnGRUtanhMakespan6 = [800, 799, 794, 801, 799, 796, 800, 804, 797, 796, 800, 798] drnnGRUtanhMakespan7 = [798, 800, 810, 810, 805, 800, 795, 798, 800, 805, 799, 800] drnnGRUtanhMakespan8 = [798, 797, 800, 800, 804, 805, 798, 798, 801, 795, 798, 809] drnnGRUtanhMakespan9 = [803, 800, 800, 805, 805, 798, 804, 803, 805, 801, 810, 801] drnnGRUtanhMakespan10 = [798, 799, 798, 798, 805, 804, 805, 798, 799, 798, 800, 800] drnnGRUtanhMakespan11 = [796, 795, 805, 800, 800, 798, 795, 804, 805, 798, 800, 800] drnnGRUtanhMakespan12 = [799, 799, 809, 800, 799, 799, 797, 805, 799, 800, 798, 795] drnnGRUtanhMakespan13 = [805, 800, 800, 805, 800, 799, 798, 801, 798, 797, 805, 800] drnnGRUtanhMakespan14 = [800, 798, 800, 800, 800, 804, 804, 799, 799, 800, 798, 798] drnnGRUtanhMakespan15 = [805, 800, 795, 800, 804, 795, 800, 798, 799, 798, 800, 796] drnnGRUtanhMakespan16 = [806, 795, 801, 799, 799, 796, 796, 794, 802, 796, 800, 802] drnnGRUtanhMakespan17 = [796, 800, 798, 800, 794, 800, 804, 805, 798, 810, 800, 798] drnnGRUtanhMakespan18 = [798, 800, 794, 794, 797, 798, 800, 805, 798, 798, 804, 798] drnnGRUtanhMakespan19 = [796, 800, 806, 799, 796, 800, 798, 805, 798, 799, 797, 805] drnnGRUtanhMakespan20 = [805, 800, 799, 796, 805, 805, 805, 794, 809, 796, 800, 797] drnnGRUtanhMakespan21 = [798, 800, 800, 800, 798, 801, 796, 801, 801, 801, 795, 799] drnnGRUtanhMakespan22 = [798, 801, 797, 800, 799, 795, 799, 799, 800, 801, 800, 799] drnnGRUtanhMakespan23 = [800, 798, 799, 805, 794, 800, 798, 796, 796, 804, 800, 794] drnnGRUtanhMakespan24 = [800, 800, 798, 805, 804, 799, 798, 801, 800, 798, 798, 798] drnnGRUtanhMakespan25 = [798, 798, 798, 795, 800, 803, 798, 798, 800, 799, 796, 798] drnnGRUtanhMakespan26 = [796, 798, 798, 798, 805, 796, 798, 798, 805, 795, 801, 796] drnnGRUtanhMakespan27 = [794, 796, 796, 800, 800, 798, 800, 798, 802, 798, 797, 798] drnnGRUtanhMakespan28 = [799, 799, 800, 800, 798, 802, 799, 798, 795, 795, 794, 798] drnnGRUtanhMakespan29 = [798, 796, 796, 797, 796, 798, 800, 800, 796, 798, 800, 795] drnnGRUtanhMakespan30 = [799, 798, 795, 795, 800, 795, 798, 798, 799, 798, 805, 799] drnnGRUtanhMakespan31 = [795, 799, 794, 794, 796, 795, 795, 794, 798, 797, 798, 795] drnnGRUtanhMakespan32 = [797, 798, 795, 796, 798, 795, 797, 798, 795, 794, 795, 796] drnnGRUtanhMakespan33 = [799, 795, 794, 794, 798, 795, 798, 797, 800, 796, 795, 794] drnnGRUtanhMakespan34 = [798, 795, 798, 796, 798, 794, 796, 798, 798, 798, 796, 797] drnnGRUtanhMakespan35 = [795, 798, 796, 798, 794, 801, 795, 800, 795, 800, 794, 800] drnnGRUtanhMakespan36 = [798, 799, 796, 797, 795, 794, 800, 795, 795, 794, 795, 795] drnnGRUtanhMakespan37 = [799, 798, 795, 795, 794, 795, 795, 796, 805, 795, 798, 796] drnnGRUtanhMakespan38 = [798, 794, 795, 795, 795, 796, 795, 796, 800, 798, 797, 796] drnnGRUtanhMakespan39 = [794, 795, 795, 797, 795, 795, 794, 794, 798, 795, 794, 798] drnnGRUtanhMakespan40 = [795, 795, 795, 795, 795, 795, 794, 794, 793, 797, 794, 795] drnnGRUtanhMakespan41 = [794, 794, 795, 793, 795, 795, 792, 794, 795, 794, 794, 794] drnnGRUtanhMakespan42 = [795, 795, 795, 796, 794, 797, 795, 795, 792, 795, 796, 793] drnnGRUtanhMakespan43 = [794, 795, 795, 794, 795, 794, 798, 794, 797, 795, 794, 794] drnnGRUtanhMakespan44 = [795, 795, 793, 794, 795, 794, 795, 795, 794, 794, 795, 794] drnnGRUtanhMakespan45 = [794, 794, 794, 794, 794, 794, 795, 794, 794, 794, 796, 795] drnnGRUtanhMakespan46 = [795, 794, 795, 794, 794, 794, 793, 794, 795, 795, 794, 797] drnnGRUtanhMakespan47 = [794, 794, 794, 794, 795, 794, 795, 792, 794, 795, 794, 794] drnnGRUtanhMakespan48 = [795, 794, 794, 794, 795, 798, 794, 794, 794, 795, 794, 794] drnnGRUtanhMakespan49 = [795, 795, 794, 795, 793, 795, 796, 794, 795, 794, 794, 797] drnnGRUtanhRewards0 = [-0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.1768976897689769, -0.177078750549934, -0.1759911894273128, -0.1763540290620872, -0.1763540290620872, -0.1763540290620872, -0.1759911894273128, -0.17580964970257765, -0.17544633017412387] drnnGRUtanhRewards1 = [-0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.1763540290620872, -0.17580964970257765, -0.17526455026455026, -0.17544633017412387, -0.17617264919621228, -0.17544633017412387] drnnGRUtanhRewards2 = [-0.17526455026455026, -0.1768976897689769, -0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.17544633017412387, -0.1768976897689769, -0.17617264919621228, -0.17526455026455026, -0.17580964970257765, -0.17580964970257765, -0.1763540290620872] drnnGRUtanhRewards3 = [-0.17725973169122497, -0.17544633017412387, -0.17508269018743108, -0.17562802996914942, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.1776214552648934, -0.177078750549934, -0.17580964970257765, -0.17617264919621228, -0.1778021978021978] drnnGRUtanhRewards4 = [-0.177078750549934, -0.1763540290620872, -0.17526455026455026, -0.17580964970257765, -0.17580964970257765, -0.17617264919621228, -0.17544633017412387, -0.17544633017412387, -0.177078750549934, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765] drnnGRUtanhRewards5 = [-0.1768976897689769, -0.1759911894273128, -0.17580964970257765, -0.1768976897689769, -0.17544633017412387, -0.1759911894273128, -0.17580964970257765, -0.177078750549934, -0.17544633017412387, -0.177078750549934, -0.17580964970257765, -0.17617264919621228] drnnGRUtanhRewards6 = [-0.17617264919621228, -0.1759911894273128, -0.17508269018743108, -0.1763540290620872, -0.1759911894273128, -0.17544633017412387, -0.17617264919621228, -0.1768976897689769, -0.17562802996914942, -0.17544633017412387, -0.17617264919621228, -0.17580964970257765] drnnGRUtanhRewards7 = [-0.17580964970257765, -0.17617264919621228, -0.17798286090969018, -0.177078750549934, -0.17798286090969018, -0.17617264919621228, -0.17526455026455026, -0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.1759911894273128, -0.17617264919621228] drnnGRUtanhRewards8 = [-0.17580964970257765, -0.17562802996914942, -0.17617264919621228, -0.17617264919621228, -0.1768976897689769, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.1763540290620872, -0.17580964970257765, -0.1778021978021978] drnnGRUtanhRewards9 = [-0.17671654929577466, -0.17617264919621228, -0.17617264919621228, -0.177078750549934, -0.177078750549934, -0.17580964970257765, -0.1768976897689769, -0.17671654929577466, -0.177078750549934, -0.1763540290620872, -0.17798286090969018, -0.1763540290620872] drnnGRUtanhRewards10 = [-0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.1768976897689769, -0.177078750549934, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228] drnnGRUtanhRewards11 = [-0.17544633017412387, -0.17526455026455026, -0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.17526455026455026, -0.1768976897689769, -0.177078750549934, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228] drnnGRUtanhRewards12 = [-0.1759911894273128, -0.1759911894273128, -0.1778021978021978, -0.17617264919621228, -0.1759911894273128, -0.1759911894273128, -0.17562802996914942, -0.177078750549934, -0.1759911894273128, -0.17617264919621228, -0.17580964970257765, -0.17526455026455026] drnnGRUtanhRewards13 = [-0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.177078750549934, -0.17617264919621228, -0.1759911894273128, -0.17580964970257765, -0.1763540290620872, -0.17580964970257765, -0.17562802996914942, -0.177078750549934, -0.17617264919621228] drnnGRUtanhRewards14 = [-0.17617264919621228, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17617264919621228, -0.1768976897689769, -0.1768976897689769, -0.1759911894273128, -0.1759911894273128, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765] drnnGRUtanhRewards15 = [-0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.17526455026455026, -0.1768976897689769, -0.17526455026455026, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17617264919621228, -0.17544633017412387] drnnGRUtanhRewards16 = [-0.17725973169122497, -0.17526455026455026, -0.1763540290620872, -0.1759911894273128, -0.1759911894273128, -0.17544633017412387, -0.17544633017412387, -0.17508269018743108, -0.17653532907770195, -0.17544633017412387, -0.17617264919621228, -0.17653532907770195] drnnGRUtanhRewards17 = [-0.17544633017412387, -0.17617264919621228, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17508269018743108, -0.1768976897689769, -0.177078750549934, -0.17580964970257765, -0.17798286090969018, -0.17617264919621228, -0.17580964970257765] drnnGRUtanhRewards18 = [-0.17580964970257765, -0.17617264919621228, -0.17508269018743108, -0.17508269018743108, -0.17562802996914942, -0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.1768976897689769, -0.17580964970257765] drnnGRUtanhRewards19 = [-0.17544633017412387, -0.17617264919621228, -0.17725973169122497, -0.1759911894273128, -0.17544633017412387, -0.17617264919621228, -0.17580964970257765, -0.177078750549934, -0.17580964970257765, -0.17562802996914942, -0.1759911894273128, -0.177078750549934] drnnGRUtanhRewards20 = [-0.17617264919621228, -0.177078750549934, -0.1759911894273128, -0.17544633017412387, -0.177078750549934, -0.177078750549934, -0.177078750549934, -0.17508269018743108, -0.1778021978021978, -0.17544633017412387, -0.17617264919621228, -0.17562802996914942] drnnGRUtanhRewards21 = [-0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.1763540290620872, -0.17544633017412387, -0.1763540290620872, -0.1763540290620872, -0.1763540290620872, -0.17526455026455026, -0.1759911894273128] drnnGRUtanhRewards22 = [-0.17580964970257765, -0.1763540290620872, -0.17562802996914942, -0.17617264919621228, -0.1759911894273128, -0.17526455026455026, -0.1759911894273128, -0.1759911894273128, -0.17617264919621228, -0.1763540290620872, -0.17617264919621228, -0.1759911894273128] drnnGRUtanhRewards23 = [-0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.177078750549934, -0.17508269018743108, -0.17617264919621228, -0.17580964970257765, -0.17544633017412387, -0.17544633017412387, -0.1768976897689769, -0.17617264919621228, -0.17508269018743108] drnnGRUtanhRewards24 = [-0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.177078750549934, -0.1768976897689769, -0.17580964970257765, -0.1763540290620872, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765] drnnGRUtanhRewards25 = [-0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.17617264919621228, -0.17580964970257765, -0.17671654929577466, -0.17580964970257765, -0.17617264919621228, -0.1759911894273128, -0.17544633017412387, -0.17580964970257765] drnnGRUtanhRewards26 = [-0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.17526455026455026, -0.1763540290620872, -0.17544633017412387] drnnGRUtanhRewards27 = [-0.17508269018743108, -0.17544633017412387, -0.17544633017412387, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.17617264919621228, -0.17580964970257765, -0.17653532907770195, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765] drnnGRUtanhRewards28 = [-0.1759911894273128, -0.1759911894273128, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.17653532907770195, -0.17580964970257765, -0.1759911894273128, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765] drnnGRUtanhRewards29 = [-0.17580964970257765, -0.17544633017412387, -0.17544633017412387, -0.17562802996914942, -0.17544633017412387, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765, -0.17617264919621228, -0.17526455026455026] drnnGRUtanhRewards30 = [-0.1759911894273128, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17617264919621228, -0.17526455026455026, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.1759911894273128] drnnGRUtanhRewards31 = [-0.17526455026455026, -0.1759911894273128, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765, -0.17526455026455026] drnnGRUtanhRewards32 = [-0.17562802996914942, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026] drnnGRUtanhRewards33 = [-0.1759911894273128, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17580964970257765, -0.17562802996914942, -0.17617264919621228, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108] drnnGRUtanhRewards34 = [-0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17544633017412387, -0.17508269018743108, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17562802996914942] drnnGRUtanhRewards35 = [-0.17526455026455026, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17508269018743108, -0.1763540290620872, -0.17526455026455026, -0.17617264919621228, -0.17526455026455026, -0.17617264919621228, -0.17508269018743108, -0.17617264919621228] drnnGRUtanhRewards36 = [-0.17580964970257765, -0.1759911894273128, -0.17544633017412387, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17617264919621228, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026] drnnGRUtanhRewards37 = [-0.1759911894273128, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.177078750549934, -0.17526455026455026, -0.17580964970257765, -0.17544633017412387] drnnGRUtanhRewards38 = [-0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17544633017412387, -0.17617264919621228, -0.17580964970257765, -0.17562802996914942, -0.17544633017412387] drnnGRUtanhRewards39 = [-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765] drnnGRUtanhRewards40 = [-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17562802996914942, -0.17508269018743108, -0.17526455026455026] drnnGRUtanhRewards41 = [-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drnnGRUtanhRewards42 = [-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17544633017412387, -0.1749007498897221] drnnGRUtanhRewards43 = [-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108] drnnGRUtanhRewards44 = [-0.17526455026455026, -0.17526455026455026, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drnnGRUtanhRewards45 = [-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026] drnnGRUtanhRewards46 = [-0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17562802996914942] drnnGRUtanhRewards47 = [-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108] drnnGRUtanhRewards48 = [-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108] drnnGRUtanhRewards49 = [-0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17562802996914942] # Deep Recurrent Reinforcement Learning: 1 capa GRU y 4 capas Dense, Funcion de activacion relu, 12 episodes, 50 iteraciones drnnGRUreluMakespan0 = [800, 799, 798, 797, 798, 800, 800, 796, 800, 794, 800, 800] drnnGRUreluMakespan1 = [798, 800, 805, 795, 799, 808, 795, 800, 796, 798, 799, 798] drnnGRUreluMakespan2 = [799, 800, 806, 800, 800, 805, 805, 798, 799, 807, 800, 800] drnnGRUreluMakespan3 = [798, 795, 799, 800, 800, 796, 798, 800, 800, 804, 805, 800] drnnGRUreluMakespan4 = [811, 800, 799, 800, 805, 798, 798, 799, 796, 804, 805, 804] drnnGRUreluMakespan5 = [799, 795, 797, 800, 798, 800, 800, 798, 800, 797, 800, 798] drnnGRUreluMakespan6 = [798, 800, 798, 799, 797, 798, 800, 796, 801, 799, 795, 798] drnnGRUreluMakespan7 = [800, 804, 795, 801, 796, 806, 805, 798, 800, 799, 799, 804] drnnGRUreluMakespan8 = [800, 799, 799, 800, 805, 796, 800, 800, 810, 796, 800, 798] drnnGRUreluMakespan9 = [794, 800, 799, 805, 800, 800, 798, 798, 796, 795, 798, 796] drnnGRUreluMakespan10 = [798, 800, 798, 801, 795, 802, 796, 809, 800, 800, 798, 795] drnnGRUreluMakespan11 = [804, 800, 799, 799, 798, 803, 798, 798, 805, 803, 800, 796] drnnGRUreluMakespan12 = [800, 799, 805, 797, 798, 796, 799, 794, 799, 805, 799, 800] drnnGRUreluMakespan13 = [796, 800, 798, 800, 795, 799, 800, 804, 800, 794, 805, 805] drnnGRUreluMakespan14 = [800, 795, 796, 798, 798, 801, 805, 794, 800, 801, 801, 796] drnnGRUreluMakespan15 = [798, 800, 796, 796, 798, 794, 797, 800, 796, 801, 795, 799] drnnGRUreluMakespan16 = [800, 805, 794, 800, 799, 800, 805, 801, 798, 800, 801, 799] drnnGRUreluMakespan17 = [797, 803, 801, 808, 794, 799, 799, 800, 805, 796, 801, 796] drnnGRUreluMakespan18 = [805, 800, 800, 804, 799, 798, 800, 799, 804, 796, 800, 804] drnnGRUreluMakespan19 = [804, 798, 800, 799, 799, 799, 805, 795, 801, 799, 799, 805] drnnGRUreluMakespan20 = [799, 804, 796, 798, 796, 798, 800, 805, 799, 810, 800, 800] drnnGRUreluMakespan21 = [798, 799, 799, 805, 798, 798, 805, 798, 794, 799, 798, 798] drnnGRUreluMakespan22 = [799, 798, 798, 796, 798, 805, 799, 798, 798, 799, 796, 798] drnnGRUreluMakespan23 = [798, 805, 808, 798, 798, 805, 810, 796, 804, 799, 800, 799] drnnGRUreluMakespan24 = [798, 796, 798, 795, 800, 798, 799, 798, 797, 805, 798, 800] drnnGRUreluMakespan25 = [799, 796, 799, 798, 805, 798, 798, 800, 796, 794, 810, 798] drnnGRUreluMakespan26 = [799, 798, 805, 800, 802, 798, 799, 799, 799, 794, 802, 797] drnnGRUreluMakespan27 = [798, 800, 805, 796, 798, 795, 802, 796, 798, 800, 798, 794] drnnGRUreluMakespan28 = [796, 805, 798, 800, 800, 798, 810, 798, 798, 798, 796, 796] drnnGRUreluMakespan29 = [800, 798, 798, 802, 794, 798, 796, 808, 800, 800, 798, 799] drnnGRUreluMakespan30 = [798, 796, 798, 798, 794, 798, 794, 800, 796, 794, 800, 800] drnnGRUreluMakespan31 = [794, 802, 797, 799, 798, 800, 799, 799, 796, 796, 798, 798] drnnGRUreluMakespan32 = [799, 798, 794, 795, 798, 805, 804, 797, 795, 800, 796, 798] drnnGRUreluMakespan33 = [803, 799, 805, 796, 794, 798, 797, 798, 798, 794, 794, 798] drnnGRUreluMakespan34 = [810, 796, 795, 798, 799, 798, 796, 795, 795, 797, 798, 798] drnnGRUreluMakespan35 = [799, 799, 799, 799, 795, 798, 795, 800, 796, 795, 795, 796] drnnGRUreluMakespan36 = [795, 797, 798, 799, 799, 799, 800, 794, 796, 795, 798, 800] drnnGRUreluMakespan37 = [800, 798, 799, 794, 800, 796, 798, 798, 797, 800, 794, 798] drnnGRUreluMakespan38 = [800, 799, 794, 796, 795, 800, 796, 804, 800, 795, 800, 798] drnnGRUreluMakespan39 = [794, 798, 795, 804, 805, 799, 798, 800, 796, 798, 795, 794] drnnGRUreluMakespan40 = [799, 798, 796, 798, 798, 799, 800, 796, 798, 798, 799, 798] drnnGRUreluMakespan41 = [796, 798, 800, 797, 799, 796, 797, 796, 799, 804, 805, 798] drnnGRUreluMakespan42 = [798, 794, 795, 799, 799, 798, 797, 798, 798, 798, 798, 795] drnnGRUreluMakespan43 = [799, 798, 794, 794, 795, 794, 795, 799, 799, 800, 799, 794] drnnGRUreluMakespan44 = [795, 796, 795, 799, 794, 795, 794, 796, 795, 794, 795, 796] drnnGRUreluMakespan45 = [794, 797, 794, 795, 796, 795, 794, 799, 795, 794, 798, 798] drnnGRUreluMakespan46 = [795, 795, 794, 795, 794, 794, 792, 794, 795, 797, 794, 794] drnnGRUreluMakespan47 = [798, 796, 797, 798, 794, 798, 794, 797, 794, 803, 798, 798] drnnGRUreluMakespan48 = [795, 794, 796, 798, 795, 794, 796, 795, 796, 794, 796, 796] drnnGRUreluMakespan49 = [798, 798, 796, 798, 798, 796, 796, 798, 798, 798, 796, 798] drnnGRUreluRewards0 = [-0.17617264919621228, -0.1759911894273128, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17544633017412387, -0.17617264919621228, -0.17508269018743108, -0.17617264919621228, -0.17617264919621228] drnnGRUreluRewards1 = [-0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.17526455026455026, -0.1759911894273128, -0.1776214552648934, -0.17526455026455026, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765] drnnGRUreluRewards2 = [-0.1759911894273128, -0.17617264919621228, -0.17725973169122497, -0.17617264919621228, -0.17617264919621228, -0.177078750549934, -0.177078750549934, -0.17580964970257765, -0.1759911894273128, -0.1774406332453826, -0.17617264919621228, -0.17617264919621228] drnnGRUreluRewards3 = [-0.17580964970257765, -0.17526455026455026, -0.1759911894273128, -0.17617264919621228, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.1768976897689769, -0.177078750549934, -0.17617264919621228] drnnGRUreluRewards4 = [-0.1781634446397188, -0.17617264919621228, -0.1759911894273128, -0.17617264919621228, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17544633017412387, -0.1768976897689769, -0.177078750549934, -0.1768976897689769] drnnGRUreluRewards5 = [-0.1759911894273128, -0.17526455026455026, -0.17562802996914942, -0.17617264919621228, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.17617264919621228, -0.17562802996914942, -0.17617264919621228, -0.17580964970257765] drnnGRUreluRewards6 = [-0.17580964970257765, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.17562802996914942, -0.17580964970257765, -0.17544633017412387, -0.17617264919621228, -0.1763540290620872, -0.1759911894273128, -0.17526455026455026, -0.17580964970257765] drnnGRUreluRewards7 = [-0.17617264919621228, -0.1768976897689769, -0.17526455026455026, -0.1763540290620872, -0.17544633017412387, -0.17725973169122497, -0.177078750549934, -0.17580964970257765, -0.17617264919621228, -0.1759911894273128, -0.1759911894273128, -0.1768976897689769] drnnGRUreluRewards8 = [-0.17617264919621228, -0.1759911894273128, -0.1759911894273128, -0.17617264919621228, -0.177078750549934, -0.17544633017412387, -0.17617264919621228, -0.17617264919621228, -0.17798286090969018, -0.17544633017412387, -0.17617264919621228, -0.17580964970257765] drnnGRUreluRewards9 = [-0.17508269018743108, -0.17617264919621228, -0.1759911894273128, -0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17526455026455026, -0.17580964970257765, -0.17544633017412387] drnnGRUreluRewards10 = [-0.17580964970257765, -0.17617264919621228, -0.17580964970257765, -0.1763540290620872, -0.17526455026455026, -0.17653532907770195, -0.17544633017412387, -0.1778021978021978, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.17526455026455026] drnnGRUreluRewards11 = [-0.1768976897689769, -0.17617264919621228, -0.1759911894273128, -0.1759911894273128, -0.17580964970257765, -0.17671654929577466, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.17671654929577466, -0.17617264919621228, -0.17544633017412387] drnnGRUreluRewards12 = [-0.17617264919621228, -0.1759911894273128, -0.177078750549934, -0.17562802996914942, -0.17580964970257765, -0.17544633017412387, -0.1759911894273128, -0.17508269018743108, -0.1759911894273128, -0.177078750549934, -0.1759911894273128, -0.17617264919621228] drnnGRUreluRewards13 = [-0.17544633017412387, -0.17617264919621228, -0.17580964970257765, -0.17617264919621228, -0.17526455026455026, -0.1759911894273128, -0.17617264919621228, -0.1768976897689769, -0.17617264919621228, -0.17508269018743108, -0.177078750549934, -0.177078750549934] drnnGRUreluRewards14 = [-0.17617264919621228, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.1763540290620872, -0.177078750549934, -0.17508269018743108, -0.17617264919621228, -0.1763540290620872, -0.1763540290620872, -0.17544633017412387] drnnGRUreluRewards15 = [-0.17580964970257765, -0.17617264919621228, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17508269018743108, -0.17562802996914942, -0.17617264919621228, -0.17544633017412387, -0.1763540290620872, -0.17526455026455026, -0.1759911894273128] drnnGRUreluRewards16 = [-0.17617264919621228, -0.177078750549934, -0.17508269018743108, -0.17617264919621228, -0.1759911894273128, -0.17617264919621228, -0.177078750549934, -0.1763540290620872, -0.17580964970257765, -0.17617264919621228, -0.1763540290620872, -0.1759911894273128] drnnGRUreluRewards17 = [-0.17562802996914942, -0.17671654929577466, -0.1763540290620872, -0.1776214552648934, -0.17508269018743108, -0.1759911894273128, -0.17617264919621228, -0.1759911894273128, -0.177078750549934, -0.17544633017412387, -0.1763540290620872, -0.17544633017412387] drnnGRUreluRewards18 = [-0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.1768976897689769, -0.1759911894273128, -0.17580964970257765, -0.17617264919621228, -0.1759911894273128, -0.1768976897689769, -0.17544633017412387, -0.17617264919621228, -0.1768976897689769] drnnGRUreluRewards19 = [-0.1768976897689769, -0.17580964970257765, -0.17617264919621228, -0.1759911894273128, -0.1759911894273128, -0.1759911894273128, -0.177078750549934, -0.17526455026455026, -0.1763540290620872, -0.1759911894273128, -0.1759911894273128, -0.177078750549934] drnnGRUreluRewards20 = [-0.1759911894273128, -0.1768976897689769, -0.17544633017412387, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.1759911894273128, -0.17798286090969018, -0.17617264919621228, -0.17617264919621228] drnnGRUreluRewards21 = [-0.17580964970257765, -0.1759911894273128, -0.1759911894273128, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.17580964970257765, -0.17508269018743108, -0.1759911894273128, -0.17580964970257765, -0.17580964970257765] drnnGRUreluRewards22 = [-0.1759911894273128, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.177078750549934, -0.1759911894273128, -0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17544633017412387, -0.17580964970257765] drnnGRUreluRewards23 = [-0.17580964970257765, -0.177078750549934, -0.1776214552648934, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.17798286090969018, -0.17544633017412387, -0.1768976897689769, -0.1759911894273128, -0.17617264919621228, -0.1759911894273128] drnnGRUreluRewards24 = [-0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17562802996914942, -0.177078750549934, -0.17580964970257765, -0.17617264919621228] drnnGRUreluRewards25 = [-0.1759911894273128, -0.17544633017412387, -0.1759911894273128, -0.17580964970257765, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.17617264919621228, -0.17544633017412387, -0.17508269018743108, -0.17798286090969018, -0.17580964970257765] drnnGRUreluRewards26 = [-0.1759911894273128, -0.17580964970257765, -0.177078750549934, -0.17617264919621228, -0.17653532907770195, -0.17580964970257765, -0.1759911894273128, -0.1759911894273128, -0.1759911894273128, -0.17508269018743108, -0.17653532907770195, -0.17562802996914942] drnnGRUreluRewards27 = [-0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17653532907770195, -0.17544633017412387, -0.17580964970257765, -0.17617264919621228, -0.17580964970257765, -0.17508269018743108] drnnGRUreluRewards28 = [-0.17544633017412387, -0.177078750549934, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.17798286090969018, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17544633017412387] drnnGRUreluRewards29 = [-0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17653532907770195, -0.17508269018743108, -0.17580964970257765, -0.17544633017412387, -0.1776214552648934, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128] drnnGRUreluRewards30 = [-0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17617264919621228, -0.17544633017412387, -0.17508269018743108, -0.17617264919621228, -0.17617264919621228] drnnGRUreluRewards31 = [-0.17508269018743108, -0.17653532907770195, -0.17562802996914942, -0.1759911894273128, -0.17580964970257765, -0.17617264919621228, -0.1759911894273128, -0.1759911894273128, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765] drnnGRUreluRewards32 = [-0.1759911894273128, -0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.1768976897689769, -0.177078750549934, -0.17562802996914942, -0.17526455026455026, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765] drnnGRUreluRewards33 = [-0.17671654929577466, -0.1759911894273128, -0.177078750549934, -0.17544633017412387, -0.17508269018743108, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765] drnnGRUreluRewards34 = [-0.17798286090969018, -0.17544633017412387, -0.17526455026455026, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17580964970257765, -0.17580964970257765] drnnGRUreluRewards35 = [-0.1759911894273128, -0.1759911894273128, -0.1759911894273128, -0.1759911894273128, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17617264919621228, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387] drnnGRUreluRewards36 = [-0.17526455026455026, -0.17562802996914942, -0.17580964970257765, -0.1759911894273128, -0.1759911894273128, -0.1759911894273128, -0.17617264919621228, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17580964970257765, -0.17617264919621228] drnnGRUreluRewards37 = [-0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.17508269018743108, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.17562802996914942, -0.17617264919621228, -0.17508269018743108, -0.17580964970257765] drnnGRUreluRewards38 = [-0.17617264919621228, -0.1759911894273128, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17617264919621228, -0.17544633017412387, -0.1768976897689769, -0.17617264919621228, -0.17526455026455026, -0.17617264919621228, -0.17580964970257765] drnnGRUreluRewards39 = [-0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.1768976897689769, -0.177078750549934, -0.1759911894273128, -0.17580964970257765, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108] drnnGRUreluRewards40 = [-0.1759911894273128, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765] drnnGRUreluRewards41 = [-0.17544633017412387, -0.17580964970257765, -0.17617264919621228, -0.17562802996914942, -0.1759911894273128, -0.17544633017412387, -0.17562802996914942, -0.17544633017412387, -0.1759911894273128, -0.1768976897689769, -0.177078750549934, -0.17580964970257765] drnnGRUreluRewards42 = [-0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.1759911894273128, -0.1759911894273128, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026] drnnGRUreluRewards43 = [-0.1759911894273128, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.1759911894273128, -0.1759911894273128, -0.17617264919621228, -0.1759911894273128, -0.17508269018743108] drnnGRUreluRewards44 = [-0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.1759911894273128, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387] drnnGRUreluRewards45 = [-0.17508269018743108, -0.17562802996914942, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.1759911894273128, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17580964970257765] drnnGRUreluRewards46 = [-0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17562802996914942, -0.17508269018743108, -0.17508269018743108] drnnGRUreluRewards47 = [-0.17580964970257765, -0.17544633017412387, -0.17562802996914942, -0.17580964970257765, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17562802996914942, -0.17508269018743108, -0.17671654929577466, -0.17580964970257765, -0.17580964970257765] drnnGRUreluRewards48 = [-0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108, -0.17544633017412387, -0.17544633017412387] drnnGRUreluRewards49 = [-0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765] # Deep Reinforcement Learning: 5 capas Dense, Funcion de activacion tanh, 12 episodios, 50 iteraciones drlTanhMakespan0 = [794, 794, 805, 799, 810, 800, 794, 810, 804, 806, 812, 808] drlTanhMakespan1 = [796, 795, 795, 798, 799, 800, 800, 795, 797, 796, 797, 799] drlTanhMakespan2 = [800, 797, 798, 801, 799, 800, 796, 795, 797, 796, 794, 798] drlTanhMakespan3 = [800, 795, 799, 796, 799, 798, 795, 799, 795, 799, 798, 796] drlTanhMakespan4 = [809, 795, 795, 800, 797, 795, 798, 798, 799, 799, 798, 798] drlTanhMakespan5 = [795, 795, 795, 799, 795, 798, 795, 800, 795, 796, 795, 805] drlTanhMakespan6 = [794, 800, 795, 793, 798, 795, 794, 798, 795, 799, 795, 796] drlTanhMakespan7 = [795, 795, 795, 795, 798, 795, 797, 797, 795, 795, 798, 797] drlTanhMakespan8 = [795, 795, 795, 794, 800, 800, 794, 795, 794, 794, 797, 795] drlTanhMakespan9 = [793, 794, 796, 795, 796, 800, 794, 797, 793, 795, 798, 795] drlTanhMakespan10 = [795, 795, 797, 794, 795, 798, 797, 795, 798, 794, 794, 794] drlTanhMakespan11 = [795, 795, 795, 795, 797, 795, 795, 794, 795, 795, 795, 794] drlTanhMakespan12 = [794, 798, 795, 794, 795, 795, 795, 797, 799, 795, 795, 795] drlTanhMakespan13 = [795, 797, 795, 800, 796, 795, 796, 795, 795, 795, 798, 794] drlTanhMakespan14 = [795, 795, 796, 794, 794, 794, 797, 795, 798, 795, 795, 793] drlTanhMakespan15 = [799, 794, 795, 795, 795, 796, 801, 797, 795, 794, 795, 799] drlTanhMakespan16 = [795, 795, 796, 798, 795, 795, 795, 795, 795, 798, 798, 796] drlTanhMakespan17 = [800, 798, 795, 795, 798, 794, 795, 795, 797, 795, 796, 794] drlTanhMakespan18 = [797, 800, 798, 797, 796, 794, 799, 797, 795, 796, 799, 798] drlTanhMakespan19 = [797, 800, 795, 794, 794, 796, 795, 798, 796, 798, 797, 795] drlTanhMakespan20 = [794, 795, 795, 799, 798, 797, 795, 795, 798, 795, 798, 795] drlTanhMakespan21 = [796, 795, 795, 795, 795, 797, 798, 794, 797, 795, 796, 794] drlTanhMakespan22 = [799, 796, 795, 795, 795, 795, 796, 795, 796, 798, 796, 795] drlTanhMakespan23 = [799, 799, 795, 796, 796, 799, 796, 797, 794, 794, 798, 796] drlTanhMakespan24 = [795, 795, 797, 800, 797, 795, 795, 796, 795, 795, 798, 799] drlTanhMakespan25 = [795, 797, 795, 795, 795, 795, 800, 796, 795, 797, 795, 795] drlTanhMakespan26 = [795, 795, 799, 794, 797, 794, 794, 798, 794, 796, 795, 798] drlTanhMakespan27 = [796, 796, 795, 796, 798, 797, 794, 795, 794, 794, 794, 798] drlTanhMakespan28 = [795, 795, 794, 798, 796, 796, 800, 797, 797, 796, 795, 794] drlTanhMakespan29 = [795, 795, 798, 800, 797, 794, 796, 794, 792, 794, 794, 795] drlTanhMakespan30 = [798, 797, 795, 799, 797, 800, 798, 799, 797, 800, 794, 796] drlTanhMakespan31 = [794, 795, 800, 798, 800, 794, 800, 798, 799, 798, 798, 798] drlTanhMakespan32 = [795, 795, 795, 794, 794, 794, 793, 795, 794, 793, 794, 795] drlTanhMakespan33 = [794, 797, 792, 794, 795, 795, 797, 795, 795, 794, 792, 795] drlTanhMakespan34 = [795, 794, 795, 798, 795, 796, 794, 795, 794, 794, 795, 794] drlTanhMakespan35 = [796, 794, 797, 793, 794, 798, 795, 794, 793, 793, 795, 794] drlTanhMakespan36 = [795, 795, 794, 795, 795, 795, 794, 795, 795, 793, 795, 794] drlTanhMakespan37 = [794, 794, 798, 794, 794, 796, 795, 794, 793, 795, 795, 792] drlTanhMakespan38 = [794, 796, 795, 794, 798, 798, 795, 795, 794, 794, 795, 794] drlTanhMakespan39 = [794, 795, 795, 796, 792, 794, 795, 794, 795, 794, 794, 795] drlTanhMakespan40 = [798, 795, 794, 795, 794, 794, 793, 795, 794, 794, 797, 794] drlTanhMakespan41 = [795, 792, 795, 794, 794, 795, 794, 795, 792, 797, 795, 795] drlTanhMakespan42 = [792, 794, 794, 795, 794, 794, 795, 794, 792, 794, 794, 794] drlTanhMakespan43 = [794, 796, 794, 793, 795, 795, 793, 798, 794, 794, 798, 794] drlTanhMakespan44 = [794, 794, 794, 794, 795, 794, 793, 794, 794, 795, 795, 794] drlTanhMakespan45 = [790, 794, 793, 794, 793, 794, 795, 794, 791, 795, 795, 794] drlTanhMakespan46 = [792, 794, 794, 794, 794, 794, 794, 793, 794, 794, 794, 794] drlTanhMakespan47 = [794, 794, 794, 794, 794, 794, 794, 794, 792, 795, 793, 795] drlTanhMakespan48 = [794, 794, 792, 792, 797, 794, 792, 794, 794, 795, 794, 795] drlTanhMakespan49 = [795, 794, 794, 796, 794, 797, 794, 794, 794, 794, 794, 794] drlTanhMakespan50 = [794, 792, 795, 794, 794, 794, 794, 794, 795, 794, 795, 794] drlTanhMakespan51 = [794, 792, 796, 795, 794, 794, 795, 794, 795, 795, 795, 794] drlTanhMakespan52 = [794, 794, 795, 792, 795, 795, 795, 792, 794, 793, 795, 794] drlTanhMakespan53 = [794, 792, 794, 792, 794, 794, 794, 795, 795, 794, 794, 792] drlTanhMakespan54 = [795, 793, 794, 794, 794, 792, 795, 794, 794, 792, 794, 796] drlTanhMakespan55 = [795, 794, 794, 795, 795, 793, 794, 795, 794, 797, 795, 792] drlTanhMakespan56 = [795, 795, 792, 795, 794, 795, 794, 794, 794, 795, 795, 795] drlTanhMakespan57 = [795, 792, 795, 794, 795, 795, 792, 795, 794, 797, 792, 792] drlTanhMakespan58 = [795, 795, 794, 795, 792, 794, 794, 794, 792, 792, 792, 793] drlTanhMakespan59 = [795, 794, 792, 794, 794, 794, 792, 794, 794, 794, 793, 795] drlTanhMakespan60 = [794, 795, 795, 795, 798, 794, 794, 794, 794, 794, 794, 792] drlTanhMakespan61 = [792, 795, 794, 794, 795, 794, 792, 795, 795, 794, 794, 795] drlTanhMakespan62 = [795, 794, 794, 794, 799, 794, 792, 794, 795, 795, 794, 793] drlTanhMakespan63 = [791, 795, 792, 796, 794, 794, 792, 795, 793, 794, 792, 794] drlTanhRewards0 = [-0.17508269018743108, -0.17508269018743108, -0.177078750549934, -0.1759911894273128, -0.17798286090969018, -0.17617264919621228, -0.17508269018743108, -0.17798286090969018, -0.1768976897689769, -0.17725973169122497, -0.17834394904458598, -0.1776214552648934] drlTanhRewards1 = [-0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17617264919621228, -0.1759911894273128, -0.17617264919621228, -0.17526455026455026, -0.17562802996914942, -0.17544633017412387, -0.17562802996914942, -0.1759911894273128] drlTanhRewards2 = [-0.17617264919621228, -0.17562802996914942, -0.17580964970257765, -0.1763540290620872, -0.1759911894273128, -0.17617264919621228, -0.17544633017412387, -0.17526455026455026, -0.17562802996914942, -0.17508269018743108, -0.17544633017412387, -0.17580964970257765] drlTanhRewards3 = [-0.17617264919621228, -0.1759911894273128, -0.17526455026455026, -0.17544633017412387, -0.1759911894273128, -0.17580964970257765, -0.17526455026455026, -0.1759911894273128, -0.17526455026455026, -0.1759911894273128, -0.17580964970257765, -0.17544633017412387] drlTanhRewards4 = [-0.1778021978021978, -0.17526455026455026, -0.17526455026455026, -0.17617264919621228, -0.17562802996914942, -0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765] drlTanhRewards5 = [-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.1759911894273128, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17617264919621228, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.177078750549934] drlTanhRewards6 = [-0.17508269018743108, -0.17617264919621228, -0.17526455026455026, -0.1749007498897221, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.1759911894273128, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17544633017412387] drlTanhRewards7 = [-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17562802996914942, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17562802996914942] drlTanhRewards8 = [-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17617264919621228, -0.17508269018743108, -0.17617264919621228, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026] drlTanhRewards9 = [-0.1749007498897221, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17544633017412387, -0.17617264919621228, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.1749007498897221, -0.17580964970257765, -0.17526455026455026] drlTanhRewards10 = [-0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drlTanhRewards11 = [-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026] drlTanhRewards12 = [-0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.1759911894273128, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026] drlTanhRewards13 = [-0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17617264919621228, -0.17544633017412387, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17508269018743108] drlTanhRewards14 = [-0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.1749007498897221] drlTanhRewards15 = [-0.1759911894273128, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17562802996914942, -0.1763540290620872, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.1759911894273128] drlTanhRewards16 = [-0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.17544633017412387] drlTanhRewards17 = [-0.17617264919621228, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108] drlTanhRewards18 = [-0.17562802996914942, -0.17617264919621228, -0.17580964970257765, -0.17562802996914942, -0.17544633017412387, -0.1759911894273128, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17544633017412387, -0.1759911894273128, -0.17580964970257765] drlTanhRewards19 = [-0.17562802996914942, -0.17617264919621228, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.17562802996914942, -0.17526455026455026] drlTanhRewards20 = [-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.1759911894273128, -0.17580964970257765, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026] drlTanhRewards21 = [-0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17562802996914942, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108] drlTanhRewards22 = [-0.1759911894273128, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17544633017412387, -0.17526455026455026] drlTanhRewards23 = [-0.1759911894273128, -0.1759911894273128, -0.17544633017412387, -0.17544633017412387, -0.17526455026455026, -0.1759911894273128, -0.17544633017412387, -0.17562802996914942, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17544633017412387] drlTanhRewards24 = [-0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17617264919621228, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17580964970257765, -0.1759911894273128] drlTanhRewards25 = [-0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17617264919621228, -0.17544633017412387, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026] drlTanhRewards26 = [-0.17526455026455026, -0.17526455026455026, -0.1759911894273128, -0.17508269018743108, -0.17562802996914942, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17580964970257765] drlTanhRewards27 = [-0.17544633017412387, -0.17544633017412387, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17562802996914942, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108] drlTanhRewards28 = [-0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17544633017412387, -0.17562802996914942, -0.17544633017412387, -0.17617264919621228, -0.17562802996914942, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108] drlTanhRewards29 = [-0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17617264919621228, -0.17562802996914942, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026] drlTanhRewards30 = [-0.17580964970257765, -0.17562802996914942, -0.17526455026455026, -0.1759911894273128, -0.17562802996914942, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.17562802996914942, -0.17617264919621228, -0.17508269018743108, -0.17544633017412387] drlTanhRewards31 = [-0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17508269018743108, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17580964970257765] drlTanhRewards32 = [-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026] drlTanhRewards33 = [-0.17508269018743108, -0.17562802996914942, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17471872931833224, -0.17526455026455026] drlTanhRewards34 = [-0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drlTanhRewards35 = [-0.17544633017412387, -0.17508269018743108, -0.17562802996914942, -0.1749007498897221, -0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.1749007498897221, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108] drlTanhRewards36 = [-0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108] drlTanhRewards37 = [-0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224] drlTanhRewards38 = [-0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drlTanhRewards39 = [-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026] drlTanhRewards40 = [-0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17562802996914942, -0.17508269018743108] drlTanhRewards41 = [-0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026] drlTanhRewards42 = [-0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drlTanhRewards43 = [-0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.1749007498897221, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108] drlTanhRewards44 = [-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108] drlTanhRewards45 = [-0.1749007498897221, -0.17435444714191128, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17453662842012357, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108] drlTanhRewards46 = [-0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drlTanhRewards47 = [-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026] drlTanhRewards48 = [-0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17471872931833224, -0.17508269018743108, -0.17562802996914942, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026] drlTanhRewards49 = [-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17562802996914942, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drlTanhRewards50 = [-0.17508269018743108, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108] drlTanhRewards51 = [-0.17508269018743108, -0.17471872931833224, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108] drlTanhRewards52 = [-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108] drlTanhRewards53 = [-0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224] drlTanhRewards54 = [-0.17526455026455026, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17544633017412387] drlTanhRewards55 = [-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17471872931833224] drlTanhRewards56 = [-0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026] drlTanhRewards57 = [-0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17562802996914942, -0.17471872931833224, -0.17471872931833224] drlTanhRewards58 = [-0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17471872931833224, -0.17471872931833224, -0.1749007498897221] drlTanhRewards59 = [-0.17526455026455026, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17526455026455026] drlTanhRewards60 = [-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224] drlTanhRewards61 = [-0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026] drlTanhRewards62 = [-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1759911894273128, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.1749007498897221] drlTanhRewards63 = [-0.17453662842012357, -0.17471872931833224, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17526455026455026, -0.1749007498897221, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108] # Deep Reinforcement Learning: 5 capas Dense, Funcion de activacion relu, 12 episodios, 50 iteraciones drlReluMakespan0 = [796, 798, 809, 798, 796, 800, 798, 799, 800, 794, 800, 798] drlReluMakespan1 = [800, 800, 801, 806, 804, 806, 808, 798, 796, 796, 798, 800] drlReluMakespan2 = [805, 805, 798, 800, 800, 798, 801, 799, 800, 806, 800, 800] drlReluMakespan3 = [798, 799, 798, 795, 798, 808, 803, 800, 798, 795, 799, 800] drlReluMakespan4 = [805, 805, 799, 796, 798, 803, 799, 800, 800, 800, 795, 794] drlReluMakespan5 = [799, 796, 795, 800, 801, 796, 800, 795, 803, 800, 800, 805] drlReluMakespan6 = [799, 795, 798, 794, 805, 796, 795, 799, 798, 795, 804, 796] drlReluMakespan7 = [795, 798, 799, 798, 798, 799, 795, 794, 796, 794, 795, 805] drlReluMakespan8 = [805, 794, 794, 795, 798, 795, 798, 795, 799, 800, 796, 798] drlReluMakespan9 = [797, 797, 797, 794, 795, 794, 794, 797, 796, 795, 801, 799] drlReluMakespan10 = [799, 794, 797, 795, 794, 794, 795, 795, 795, 796, 797, 799] drlReluMakespan11 = [796, 798, 800, 795, 805, 794, 798, 796, 795, 794, 798, 795] drlReluMakespan12 = [800, 795, 794, 798, 800, 805, 800, 798, 804, 799, 794, 803] drlReluMakespan13 = [796, 799, 798, 794, 800, 794, 795, 796, 798, 795, 794, 799] drlReluMakespan14 = [795, 798, 798, 798, 805, 798, 798, 798, 795, 794, 800, 796] drlReluMakespan15 = [795, 798, 795, 805, 798, 794, 795, 798, 796, 794, 795, 796] drlReluMakespan16 = [798, 795, 796, 799, 796, 798, 798, 795, 795, 795, 795, 799] drlReluMakespan17 = [794, 798, 796, 798, 795, 801, 794, 798, 797, 795, 796, 801] drlReluMakespan18 = [798, 795, 798, 798, 801, 798, 795, 795, 797, 800, 794, 800] drlReluMakespan19 = [795, 798, 794, 800, 796, 795, 798, 797, 795, 794, 796, 796] drlReluMakespan20 = [794, 794, 795, 795, 795, 795, 796, 798, 799, 799, 799, 795] drlReluMakespan21 = [802, 796, 794, 797, 797, 800, 794, 794, 804, 803, 798, 797] drlReluMakespan22 = [794, 795, 795, 795, 798, 795, 794, 799, 794, 803, 795, 794] drlReluMakespan23 = [794, 798, 799, 794, 795, 795, 799, 795, 796, 795, 797, 799] drlReluMakespan24 = [795, 794, 797, 800, 794, 795, 795, 795, 795, 800, 800, 798] drlReluMakespan25 = [795, 794, 797, 796, 798, 795, 795, 794, 799, 795, 794, 798] drlReluMakespan26 = [801, 795, 800, 794, 794, 796, 800, 798, 798, 799, 794, 796] drlReluMakespan27 = [796, 795, 796, 795, 796, 795, 795, 800, 794, 794, 794, 796] drlReluMakespan28 = [794, 794, 795, 796, 794, 795, 795, 797, 794, 794, 796, 795] drlReluMakespan29 = [793, 794, 795, 800, 795, 795, 794, 798, 798, 796, 795, 794] drlReluMakespan30 = [802, 794, 794, 798, 794, 796, 805, 794, 800, 794, 796, 794] drlReluMakespan31 = [797, 794, 794, 794, 800, 800, 794, 794, 798, 795, 794, 798] drlReluMakespan32 = [794, 798, 794, 795, 794, 795, 798, 794, 794, 795, 794, 798] drlReluMakespan33 = [798, 794, 798, 795, 794, 793, 797, 798, 794, 794, 801, 793] drlReluMakespan34 = [794, 798, 794, 795, 794, 793, 798, 795, 794, 800, 794, 795] drlReluMakespan35 = [794, 796, 794, 796, 806, 795, 795, 795, 796, 795, 795, 799] drlReluMakespan36 = [795, 794, 794, 796, 796, 798, 794, 796, 794, 795, 794, 795] drlReluMakespan37 = [795, 794, 795, 798, 794, 794, 794, 794, 794, 794, 795, 797] drlReluMakespan38 = [794, 798, 794, 798, 797, 794, 794, 795, 795, 794, 795, 795] drlReluMakespan39 = [797, 794, 795, 796, 796, 796, 798, 794, 794, 795, 794, 798] drlReluMakespan40 = [798, 795, 795, 798, 792, 795, 795, 794, 795, 794, 798, 794] drlReluMakespan41 = [795, 794, 794, 794, 794, 794, 798, 793, 794, 794, 794, 793] drlReluMakespan42 = [794, 794, 794, 794, 799, 794, 795, 794, 796, 794, 794, 794] drlReluMakespan43 = [794, 797, 795, 794, 795, 794, 794, 795, 794, 794, 793, 794] drlReluMakespan44 = [794, 792, 793, 794, 794, 796, 794, 798, 795, 794, 794, 796] drlReluMakespan45 = [795, 794, 799, 794, 794, 793, 794, 795, 795, 793, 796, 794] drlReluMakespan46 = [794, 796, 794, 794, 794, 794, 794, 793, 799, 792, 794, 794] drlReluMakespan47 = [795, 794, 793, 794, 796, 797, 794, 794, 795, 794, 794, 794] drlReluMakespan48 = [794, 794, 794, 792, 794, 794, 795, 794, 794, 794, 794, 794] drlReluMakespan49 = [794, 794, 795, 792, 797, 797, 794, 794, 792, 800, 795, 795] drlReluRewards0 = [-0.17544633017412387, -0.17580964970257765, -0.1778021978021978, -0.17544633017412387, -0.17580964970257765, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.17508269018743108, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765] drlReluRewards1 = [-0.17617264919621228, -0.17617264919621228, -0.1763540290620872, -0.17725973169122497, -0.1768976897689769, -0.17725973169122497, -0.1776214552648934, -0.17580964970257765, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17617264919621228] drlReluRewards2 = [-0.177078750549934, -0.177078750549934, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.1763540290620872, -0.1759911894273128, -0.17617264919621228, -0.17725973169122497, -0.17617264919621228, -0.17617264919621228] drlReluRewards3 = [-0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.1776214552648934, -0.17671654929577466, -0.17617264919621228, -0.17580964970257765, -0.17526455026455026, -0.1759911894273128, -0.17617264919621228] drlReluRewards4 = [-0.177078750549934, -0.177078750549934, -0.1759911894273128, -0.17544633017412387, -0.17580964970257765, -0.17671654929577466, -0.1759911894273128, -0.17617264919621228, -0.17617264919621228, -0.17617264919621228, -0.17526455026455026, -0.17508269018743108] drlReluRewards5 = [-0.1759911894273128, -0.17544633017412387, -0.17526455026455026, -0.17617264919621228, -0.1763540290620872, -0.17544633017412387, -0.17526455026455026, -0.17617264919621228, -0.17671654929577466, -0.17617264919621228, -0.17617264919621228, -0.177078750549934] drlReluRewards6 = [-0.1759911894273128, -0.17526455026455026, -0.17580964970257765, -0.17508269018743108, -0.177078750549934, -0.17544633017412387, -0.17526455026455026, -0.1759911894273128, -0.17580964970257765, -0.17526455026455026, -0.1768976897689769, -0.17544633017412387] drlReluRewards7 = [-0.17526455026455026, -0.1759911894273128, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.177078750549934] drlReluRewards8 = [-0.177078750549934, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.1759911894273128, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765] drlReluRewards9 = [-0.17562802996914942, -0.17562802996914942, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17562802996914942, -0.17544633017412387, -0.17526455026455026, -0.1763540290620872, -0.1759911894273128] drlReluRewards10 = [-0.1759911894273128, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17562802996914942, -0.1759911894273128] drlReluRewards11 = [-0.17544633017412387, -0.17580964970257765, -0.17617264919621228, -0.17526455026455026, -0.177078750549934, -0.17508269018743108, -0.17580964970257765, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17526455026455026] drlReluRewards12 = [-0.17617264919621228, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.17617264919621228, -0.17580964970257765, -0.1768976897689769, -0.1759911894273128, -0.17508269018743108, -0.17671654929577466] drlReluRewards13 = [-0.17544633017412387, -0.1759911894273128, -0.17580964970257765, -0.17508269018743108, -0.17617264919621228, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.1759911894273128] drlReluRewards14 = [-0.17526455026455026, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17617264919621228, -0.17544633017412387] drlReluRewards15 = [-0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.177078750549934, -0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17544633017412387, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387] drlReluRewards16 = [-0.17580964970257765, -0.17526455026455026, -0.17544633017412387, -0.1759911894273128, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.1759911894273128] drlReluRewards17 = [-0.17508269018743108, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.1763540290620872, -0.17508269018743108, -0.17580964970257765, -0.17562802996914942, -0.17526455026455026, -0.17544633017412387, -0.1763540290620872] drlReluRewards18 = [-0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.17580964970257765, -0.1763540290620872, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17617264919621228, -0.17508269018743108, -0.17617264919621228] drlReluRewards19 = [-0.17526455026455026, -0.17580964970257765, -0.17508269018743108, -0.17617264919621228, -0.17544633017412387, -0.17526455026455026, -0.17580964970257765, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17544633017412387] drlReluRewards20 = [-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.1759911894273128, -0.1759911894273128, -0.1759911894273128, -0.17526455026455026] drlReluRewards21 = [-0.17653532907770195, -0.17544633017412387, -0.17562802996914942, -0.17508269018743108, -0.17562802996914942, -0.17617264919621228, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.1768976897689769, -0.17671654929577466, -0.17562802996914942] drlReluRewards22 = [-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.1759911894273128, -0.17508269018743108, -0.17671654929577466, -0.17526455026455026, -0.17508269018743108] drlReluRewards23 = [-0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.1759911894273128, -0.17508269018743108, -0.17526455026455026, -0.1759911894273128, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17562802996914942, -0.1759911894273128] drlReluRewards24 = [-0.17526455026455026, -0.17508269018743108, -0.17562802996914942, -0.17617264919621228, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765] drlReluRewards25 = [-0.17526455026455026, -0.17508269018743108, -0.17562802996914942, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.1759911894273128, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765] drlReluRewards26 = [-0.1763540290620872, -0.17526455026455026, -0.17617264919621228, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17508269018743108, -0.17544633017412387] drlReluRewards27 = [-0.17544633017412387, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17617264919621228, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387] drlReluRewards28 = [-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026] drlReluRewards29 = [-0.1749007498897221, -0.17526455026455026, -0.17508269018743108, -0.17617264919621228, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108] drlReluRewards30 = [-0.17653532907770195, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17544633017412387, -0.177078750549934, -0.17508269018743108, -0.17617264919621228, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108] drlReluRewards31 = [-0.17562802996914942, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17617264919621228, -0.17617264919621228, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17508269018743108, -0.17580964970257765] drlReluRewards32 = [-0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765] drlReluRewards33 = [-0.17580964970257765, -0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.1749007498897221, -0.17562802996914942, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.1763540290620872, -0.1749007498897221] drlReluRewards34 = [-0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.1749007498897221, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17617264919621228, -0.17508269018743108, -0.17526455026455026] drlReluRewards35 = [-0.17508269018743108, -0.17544633017412387, -0.17725973169122497, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.1759911894273128] drlReluRewards36 = [-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026] drlReluRewards37 = [-0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17562802996914942] drlReluRewards38 = [-0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17580964970257765, -0.17562802996914942, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026] drlReluRewards39 = [-0.17562802996914942, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765] drlReluRewards40 = [-0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17471872931833224, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108] drlReluRewards41 = [-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221] drlReluRewards42 = [-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1759911894273128, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drlReluRewards43 = [-0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108] drlReluRewards44 = [-0.17508269018743108, -0.17471872931833224, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387] drlReluRewards45 = [-0.17526455026455026, -0.17508269018743108, -0.1759911894273128, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.1749007498897221, -0.17544633017412387, -0.17508269018743108] drlReluRewards46 = [-0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.1759911894273128, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108] drlReluRewards47 = [-0.17526455026455026, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17544633017412387, -0.17562802996914942, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drlReluRewards48 = [-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drlReluRewards49 = [-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17562802996914942, -0.17562802996914942, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17617264919621228, -0.17526455026455026, -0.17526455026455026] if __name__ == "__main__": ############################################## ############################################## ############################################## # Deep Recurrent Reinforcement Learning with 1 GRU layer and 4 Dense layers drnnGRUtanhMakespan = [] drnnGRUtanhRewards = [] drnnGRUtanhMakespanList = [] drnnGRUtanhRewardsList = [] drnnGRUtanhMakespanValues = [] drnnGRUtanhRewardsValues = [] drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan0)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan1)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan2)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan3)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan4)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan5)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan6)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan7)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan8)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan9)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan10)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan11)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan12)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan13)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan14)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan15)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan16)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan17)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan18)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan19)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan20)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan21)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan22)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan23)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan24)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan25)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan26)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan27)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan28)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan29)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan30)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan31)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan32)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan33)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan34)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan35)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan36)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan37)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan38)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan39)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan40)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan41)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan42)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan43)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan44)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan45)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan46)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan47)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan48)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan49)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards0)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards1)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards2)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards3)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards4)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards5)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards6)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards7)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards8)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards9)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards10)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards11)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards12)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards13)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards14)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards15)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards16)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards17)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards18)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards19)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards20)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards21)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards22)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards23)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards24)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards25)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards26)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards27)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards28)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards29)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards30)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards31)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards32)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards33)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards34)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards35)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards36)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards37)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards38)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards39)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards40)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards41)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards42)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards43)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards44)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards45)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards46)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards47)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards48)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards49)) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan0) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan1) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan2) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan3) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan4) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan5) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan6) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan7) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan8) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan9) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan10) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan11) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan12) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan13) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan14) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan15) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan16) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan17) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan18) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan19) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan20) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan21) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan22) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan23) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan24) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan25) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan26) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan27) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan28) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan29) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan30) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan31) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan32) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan33) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan34) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan35) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan36) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan37) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan38) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan39) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan40) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan41) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan42) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan43) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan44) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan45) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan46) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan47) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan48) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan49) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards0) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards1) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards2) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards3) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards4) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards5) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards6) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards7) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards8) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards9) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards10) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards11) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards12) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards13) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards14) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards15) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards16) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards17) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards18) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards19) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards20) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards21) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards22) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards23) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards24) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards25) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards26) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards27) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards28) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards29) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards30) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards31) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards32) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards33) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards34) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards35) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards36) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards37) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards38) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards39) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards40) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards41) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards42) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards43) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards44) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards45) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards46) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards47) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards48) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards49) drnnGRUreluMakespan = [] drnnGRUreluRewards = [] drnnGRUreluMakespanList = [] drnnGRUreluRewardsList = [] drnnGRUreluMakespanValues = [] drnnGRUreluRewardsValues = [] drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan0)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan1)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan2)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan3)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan4)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan5)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan6)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan7)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan8)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan9)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan10)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan11)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan12)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan13)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan14)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan15)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan16)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan17)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan18)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan19)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan20)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan21)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan22)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan23)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan24)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan25)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan26)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan27)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan28)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan29)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan30)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan31)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan32)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan33)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan34)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan35)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan36)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan37)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan38)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan39)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan40)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan41)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan42)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan43)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan44)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan45)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan46)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan47)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan48)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan49)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards0)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards1)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards2)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards3)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards4)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards5)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards6)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards7)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards8)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards9)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards10)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards11)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards12)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards13)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards14)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards15)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards16)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards17)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards18)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards19)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards20)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards21)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards22)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards23)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards24)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards25)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards26)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards27)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards28)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards29)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards30)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards31)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards32)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards33)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards34)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards35)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards36)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards37)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards38)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards39)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards40)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards41)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards42)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards43)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards44)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards45)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards46)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards47)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards48)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards49)) drnnGRUreluMakespanList.append(drnnGRUreluMakespan0) drnnGRUreluMakespanList.append(drnnGRUreluMakespan1) drnnGRUreluMakespanList.append(drnnGRUreluMakespan2) drnnGRUreluMakespanList.append(drnnGRUreluMakespan3) drnnGRUreluMakespanList.append(drnnGRUreluMakespan4) drnnGRUreluMakespanList.append(drnnGRUreluMakespan5) drnnGRUreluMakespanList.append(drnnGRUreluMakespan6) drnnGRUreluMakespanList.append(drnnGRUreluMakespan7) drnnGRUreluMakespanList.append(drnnGRUreluMakespan8) drnnGRUreluMakespanList.append(drnnGRUreluMakespan9) drnnGRUreluMakespanList.append(drnnGRUreluMakespan10) drnnGRUreluMakespanList.append(drnnGRUreluMakespan11) drnnGRUreluMakespanList.append(drnnGRUreluMakespan12) drnnGRUreluMakespanList.append(drnnGRUreluMakespan13) drnnGRUreluMakespanList.append(drnnGRUreluMakespan14) drnnGRUreluMakespanList.append(drnnGRUreluMakespan15) drnnGRUreluMakespanList.append(drnnGRUreluMakespan16) drnnGRUreluMakespanList.append(drnnGRUreluMakespan17) drnnGRUreluMakespanList.append(drnnGRUreluMakespan18) drnnGRUreluMakespanList.append(drnnGRUreluMakespan19) drnnGRUreluMakespanList.append(drnnGRUreluMakespan20) drnnGRUreluMakespanList.append(drnnGRUreluMakespan21) drnnGRUreluMakespanList.append(drnnGRUreluMakespan22) drnnGRUreluMakespanList.append(drnnGRUreluMakespan23) drnnGRUreluMakespanList.append(drnnGRUreluMakespan24) drnnGRUreluMakespanList.append(drnnGRUreluMakespan25) drnnGRUreluMakespanList.append(drnnGRUreluMakespan26) drnnGRUreluMakespanList.append(drnnGRUreluMakespan27) drnnGRUreluMakespanList.append(drnnGRUreluMakespan28) drnnGRUreluMakespanList.append(drnnGRUreluMakespan29) drnnGRUreluMakespanList.append(drnnGRUreluMakespan30) drnnGRUreluMakespanList.append(drnnGRUreluMakespan31) drnnGRUreluMakespanList.append(drnnGRUreluMakespan32) drnnGRUreluMakespanList.append(drnnGRUreluMakespan33) drnnGRUreluMakespanList.append(drnnGRUreluMakespan34) drnnGRUreluMakespanList.append(drnnGRUreluMakespan35) drnnGRUreluMakespanList.append(drnnGRUreluMakespan36) drnnGRUreluMakespanList.append(drnnGRUreluMakespan37) drnnGRUreluMakespanList.append(drnnGRUreluMakespan38) drnnGRUreluMakespanList.append(drnnGRUreluMakespan39) drnnGRUreluMakespanList.append(drnnGRUreluMakespan40) drnnGRUreluMakespanList.append(drnnGRUreluMakespan41) drnnGRUreluMakespanList.append(drnnGRUreluMakespan42) drnnGRUreluMakespanList.append(drnnGRUreluMakespan43) drnnGRUreluMakespanList.append(drnnGRUreluMakespan44) drnnGRUreluMakespanList.append(drnnGRUreluMakespan45) drnnGRUreluMakespanList.append(drnnGRUreluMakespan46) drnnGRUreluMakespanList.append(drnnGRUreluMakespan47) drnnGRUreluMakespanList.append(drnnGRUreluMakespan48) drnnGRUreluMakespanList.append(drnnGRUreluMakespan49) drnnGRUreluRewardsList.append(drnnGRUreluRewards0) drnnGRUreluRewardsList.append(drnnGRUreluRewards1) drnnGRUreluRewardsList.append(drnnGRUreluRewards2) drnnGRUreluRewardsList.append(drnnGRUreluRewards3) drnnGRUreluRewardsList.append(drnnGRUreluRewards4) drnnGRUreluRewardsList.append(drnnGRUreluRewards5) drnnGRUreluRewardsList.append(drnnGRUreluRewards6) drnnGRUreluRewardsList.append(drnnGRUreluRewards7) drnnGRUreluRewardsList.append(drnnGRUreluRewards8) drnnGRUreluRewardsList.append(drnnGRUreluRewards9) drnnGRUreluRewardsList.append(drnnGRUreluRewards10) drnnGRUreluRewardsList.append(drnnGRUreluRewards11) drnnGRUreluRewardsList.append(drnnGRUreluRewards12) drnnGRUreluRewardsList.append(drnnGRUreluRewards13) drnnGRUreluRewardsList.append(drnnGRUreluRewards14) drnnGRUreluRewardsList.append(drnnGRUreluRewards15) drnnGRUreluRewardsList.append(drnnGRUreluRewards16) drnnGRUreluRewardsList.append(drnnGRUreluRewards17) drnnGRUreluRewardsList.append(drnnGRUreluRewards18) drnnGRUreluRewardsList.append(drnnGRUreluRewards19) drnnGRUreluRewardsList.append(drnnGRUreluRewards20) drnnGRUreluRewardsList.append(drnnGRUreluRewards21) drnnGRUreluRewardsList.append(drnnGRUreluRewards22) drnnGRUreluRewardsList.append(drnnGRUreluRewards23) drnnGRUreluRewardsList.append(drnnGRUreluRewards24) drnnGRUreluRewardsList.append(drnnGRUreluRewards25) drnnGRUreluRewardsList.append(drnnGRUreluRewards26) drnnGRUreluRewardsList.append(drnnGRUreluRewards27) drnnGRUreluRewardsList.append(drnnGRUreluRewards28) drnnGRUreluRewardsList.append(drnnGRUreluRewards29) drnnGRUreluRewardsList.append(drnnGRUreluRewards30) drnnGRUreluRewardsList.append(drnnGRUreluRewards31) drnnGRUreluRewardsList.append(drnnGRUreluRewards32) drnnGRUreluRewardsList.append(drnnGRUreluRewards33) drnnGRUreluRewardsList.append(drnnGRUreluRewards34) drnnGRUreluRewardsList.append(drnnGRUreluRewards35) drnnGRUreluRewardsList.append(drnnGRUreluRewards36) drnnGRUreluRewardsList.append(drnnGRUreluRewards37) drnnGRUreluRewardsList.append(drnnGRUreluRewards38) drnnGRUreluRewardsList.append(drnnGRUreluRewards39) drnnGRUreluRewardsList.append(drnnGRUreluRewards40) drnnGRUreluRewardsList.append(drnnGRUreluRewards41) drnnGRUreluRewardsList.append(drnnGRUreluRewards42) drnnGRUreluRewardsList.append(drnnGRUreluRewards43) drnnGRUreluRewardsList.append(drnnGRUreluRewards44) drnnGRUreluRewardsList.append(drnnGRUreluRewards45) drnnGRUreluRewardsList.append(drnnGRUreluRewards46) drnnGRUreluRewardsList.append(drnnGRUreluRewards47) drnnGRUreluRewardsList.append(drnnGRUreluRewards48) drnnGRUreluRewardsList.append(drnnGRUreluRewards49) for vector in drnnGRUtanhMakespanList: for element in vector: drnnGRUtanhMakespanValues.append(element) for vector in drnnGRUtanhRewardsList: for element in vector: drnnGRUtanhRewardsValues.append(element) ################## for vector in drnnGRUreluMakespanList: for element in vector: drnnGRUreluMakespanValues.append(element) for vector in drnnGRUreluRewardsList: for element in vector: drnnGRUreluRewardsValues.append(element) ##################### smoothGRUtanhMakespanValues = pd.Series(drnnGRUtanhMakespanValues).rolling(12).mean() plt.plot(smoothGRUtanhMakespanValues) plt.xlabel("Episodios") plt.ylabel("Segundos") plt.title("'Makespan' con red neuronal profunda que incluye 1 capa GRU") plt.show() smoothGRUtanhRewardsValues = pd.Series(drnnGRUtanhRewardsValues).rolling(12).mean() plt.plot(smoothGRUtanhRewardsValues) plt.xlabel("Episodios") plt.ylabel("Premio") plt.title("'Reward' con red neuronal profunda que incluye 1 capa GRU") plt.show() ##################### smoothGRUreluMakespanValues = pd.Series(drnnGRUreluMakespanValues).rolling(12).mean() plt.plot(smoothGRUreluMakespanValues) plt.xlabel("Episodios") plt.ylabel("Segundos") plt.title("'Makespan' con red neuronal profunda que incluye 1 capa GRU y ReLU") plt.show() smoothGRUreluRewardsValues = pd.Series(drnnGRUreluRewardsValues).rolling(12).mean() plt.plot(smoothGRUreluRewardsValues) plt.xlabel("Episodios") plt.ylabel("Premio") plt.title("'Reward' con red neuronal profunda que incluye 1 capa GRU y ReLU") plt.show() ################### plt.plot(smoothGRUtanhMakespanValues, color='blue', label='tanh') plt.plot(smoothGRUreluMakespanValues, color='orange', label='relu') plt.xlabel("Episodios") plt.ylabel("Segundos") plt.title("'Makespan' con red neuronal profunda que incluye 1 capa GRU") plt.legend() plt.show() ################### plt.plot(smoothGRUtanhRewardsValues, color='blue', label='tanh') plt.plot(smoothGRUreluRewardsValues, color='orange', label='relu') plt.xlabel("Episodios") plt.ylabel("Premio") plt.title("'Reward' con red neuronal profunda que incluye 1 capa GRU") plt.legend() plt.show() ################### drnnLSTMtanhMakespan = [] drnnLSTMtanhRewards = [] drnnLSTMtanhMakespanList = [] drnnLSTMtanhRewardsList = [] drnnLSTMtanhMakespanValues = [] drnnLSTMtanhRewardsValues = [] drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan0)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan1)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan2)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan3)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan4)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan5)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan6)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan7)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan8)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan9)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan10)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan11)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan12)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan13)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan14)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan15)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan16)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan17)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan18)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan19)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan20)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan21)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan22)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan23)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan24)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan25)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan26)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan27)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan28)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan29)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan30)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan31)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan32)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan33)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan34)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan35)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan36)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan37)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan38)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan39)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan40)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan41)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan42)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan43)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan44)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan45)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan46)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan47)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan48)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan49)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards0)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards1)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards2)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards3)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards4)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards5)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards6)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards7)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards8)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards9)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards10)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards11)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards12)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards13)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards14)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards15)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards16)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards17)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards18)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards19)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards20)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards21)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards22)) drnnLSTMtanhRewards.append(
np.mean(drnnLSTMtanhRewards23)
numpy.mean
import numpy as np import cv2 as cv2 import glob as glob import os from math import ceil from datetime import datetime from skimage.feature import hog import joblib from sklearn.svm import LinearSVC from sklearn.model_selection import train_test_split def get_resize_info(input_path): # loop through every training image to find the median shape name_list = glob.glob(input_path, recursive=True) shape_matrix = np.zeros((len(name_list), 2)) for i in range(len(name_list)): img = cv2.imread(name_list[i], 0) shape_matrix[i, :] = img.shape median = np.ceil(
np.median(shape_matrix, axis=0)
numpy.median
import pytest import numpy as np import numpy.testing as npt import pandas as pd import pandas.testing as pdt import networkx as nx from mossspider import NetworkTMLE @pytest.fixture def sm_network(): """Loads a small network for short test runs and checks of data set creations""" G = nx.Graph() G.add_nodes_from([(1, {'W': 1, 'A': 1, 'Y': 1, 'C': 1}), (2, {'W': 0, 'A': 0, 'Y': 0, 'C': -1}), (3, {'W': 0, 'A': 1, 'Y': 0, 'C': 5}), (4, {'W': 0, 'A': 0, 'Y': 1, 'C': 0}), (5, {'W': 1, 'A': 0, 'Y': 0, 'C': 0}), (6, {'W': 1, 'A': 0, 'Y': 1, 'C': 0}), (7, {'W': 0, 'A': 1, 'Y': 0, 'C': 10}), (8, {'W': 0, 'A': 0, 'Y': 0, 'C': -5}), (9, {'W': 1, 'A': 1, 'Y': 0, 'C': -5})]) G.add_edges_from([(1, 2), (1, 3), (1, 9), (2, 3), (2, 6), (3, 4), (4, 7), (5, 7), (5, 9) ]) return G @pytest.fixture def r_network(): """Loads network from the R library tmlenet for comparison""" df = pd.read_csv("tests/tmlenet_r_data.csv") df['IDs'] = df['IDs'].str[1:].astype(int) df['NETID_split'] = df['Net_str'].str.split() G = nx.DiGraph() G.add_nodes_from(df['IDs']) for i, c in zip(df['IDs'], df['NETID_split']): if type(c) is list: for j in c: G.add_edge(i, int(j[1:])) # Adding attributes for node in G.nodes(): G.nodes[node]['W'] = np.int(df.loc[df['IDs'] == node, 'W1']) G.nodes[node]['A'] = np.int(df.loc[df['IDs'] == node, 'A']) G.nodes[node]['Y'] = np.int(df.loc[df['IDs'] == node, 'Y']) return G class TestNetworkTMLE: def test_error_node_ids(self): G = nx.Graph() G.add_nodes_from([(1, {'A': 1, 'Y': 1}), (2, {'A': 0, 'Y': 1}), ("N", {'A': 1, 'Y': 0}), (4, {'A': 0, 'Y': 0})]) with pytest.raises(ValueError): NetworkTMLE(network=G, exposure='A', outcome='Y') def test_error_self_loops(self): G = nx.Graph() G.add_nodes_from([(1, {'A': 1, 'Y': 1}), (2, {'A': 0, 'Y': 1}), (3, {'A': 1, 'Y': 0}), (4, {'A': 0, 'Y': 0})]) G.add_edges_from([(1, 1), (1, 2), (3, 4)]) with pytest.raises(ValueError): NetworkTMLE(network=G, exposure='A', outcome='Y') def test_error_nonbinary_a(self): G = nx.Graph() G.add_nodes_from([(1, {'A': 2, 'Y': 1}), (2, {'A': 5, 'Y': 1}), (3, {'A': 1, 'Y': 0}), (4, {'A': 0, 'Y': 0})]) with pytest.raises(ValueError): NetworkTMLE(network=G, exposure='A', outcome='Y') def test_error_degree_restrictions(self, r_network): with pytest.raises(ValueError): NetworkTMLE(network=r_network, exposure='A', outcome='Y', degree_restrict=2) with pytest.raises(ValueError): NetworkTMLE(network=r_network, exposure='A', outcome='Y', degree_restrict=[0, 1, 2]) with pytest.raises(ValueError): NetworkTMLE(network=r_network, exposure='A', outcome='Y', degree_restrict=[2, 0]) def test_error_fit_gimodel(self, r_network): tmle = NetworkTMLE(network=r_network, exposure='A', outcome='Y') # tmle.exposure_model('W') tmle.exposure_map_model('W', distribution=None) tmle.outcome_model('A + W') with pytest.raises(ValueError): tmle.fit(p=0.0, samples=10) def test_error_fit_gsmodel(self, r_network): tmle = NetworkTMLE(network=r_network, exposure='A', outcome='Y') tmle.exposure_model('W') # tmle.exposure_map_model('W', distribution=None) tmle.outcome_model('A + W') with pytest.raises(ValueError): tmle.fit(p=0.0, samples=10) def test_error_gs_distributions(self, r_network): tmle = NetworkTMLE(network=r_network, exposure='A', outcome='Y') with pytest.raises(ValueError): tmle.exposure_map_model('W', measure='mean', distribution=None) with pytest.raises(ValueError): tmle.exposure_map_model('W', measure='mean', distribution='multinomial') def test_error_fit_qmodel(self, r_network): tmle = NetworkTMLE(network=r_network, exposure='A', outcome='Y') tmle.exposure_model('W') tmle.exposure_map_model('W', distribution=None) # tmle.outcome_model('A + W') with pytest.raises(ValueError): tmle.fit(p=0.0, samples=10) def test_error_p_bound(self, r_network): tmle = NetworkTMLE(network=r_network, exposure='A', outcome='Y') tmle.exposure_model('W') tmle.exposure_map_model('W', distribution=None) tmle.outcome_model('A + W') # For single 'p' with pytest.raises(ValueError): tmle.fit(p=1.5, samples=10) # For multiple 'p' with pytest.raises(ValueError): tmle.fit(p=[0.1, 1.5, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1], samples=100) def test_error_p_type(self, r_network): tmle = NetworkTMLE(network=r_network, exposure='A', outcome='Y') tmle.exposure_model('W') tmle.exposure_map_model('W', distribution=None) tmle.outcome_model('A + W') with pytest.raises(ValueError): tmle.fit(p=5, samples=10) def test_error_summary(self, r_network): tmle = NetworkTMLE(network=r_network, exposure='A', outcome='Y') tmle.exposure_model('W') tmle.exposure_map_model('W', distribution=None) tmle.outcome_model('A + W') with pytest.raises(ValueError): tmle.summary() def test_df_creation(self, sm_network): columns = ["_original_id_", "W", "A", "Y", "A_sum", "A_mean", "W_sum", "W_mean", "degree"] expected = pd.DataFrame([[1, 1, 1, 1, 2, 2/3, 1, 1/3, 3], [2, 0, 0, 0, 2, 2/3, 2, 2/3, 3], [3, 0, 1, 0, 1, 1/3, 1, 1/3, 3], [4, 0, 0, 1, 2, 1, 0, 0, 2], [5, 1, 0, 0, 2, 1, 1, 1/2, 2], [6, 1, 0, 1, 0, 0, 0, 0, 1], [7, 0, 1, 0, 0, 0, 1, 1/2, 2], [8, 0, 0, 0, 0, 0, 0, 0, 0], [9, 1, 1, 0, 1, 1/2, 2, 1, 2]], columns=columns, index=[0, 1, 2, 3, 4, 5, 6, 7, 8]) tmle = NetworkTMLE(network=sm_network, exposure='A', outcome='Y') created = tmle.df # Checking that expected is the same as the created assert tmle._continuous_outcome is False pdt.assert_frame_equal(expected, created[columns], check_dtype=False) def test_df_creation_restricted(self, sm_network): expected = pd.DataFrame([[1, 1, 1, 2, 2/3, 1, 1/3, 3], [0, 0, 0, 2, 2/3, 2, 2/3, 3], [0, 1, 0, 1, 1/3, 1, 1/3, 3], [0, 0, 1, 2, 1, 0, 0, 2], [1, 0, 0, 2, 1, 1, 1/2, 2], [1, 0, 1, 0, 0, 0, 0, 1], [0, 1, 0, 0, 0, 1, 1/2, 2], [0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 0, 1, 1/2, 2, 1, 2]], columns=["W", "A", "Y", "A_sum", "A_mean", "W_sum", "W_mean", "degree"], index=[0, 1, 2, 3, 4, 5, 6, 7, 8]) expected_r = pd.DataFrame([[0, 0, 1, 2, 1, 0, 0, 2], [1, 0, 0, 2, 1, 1, 1/2, 2], [1, 0, 1, 0, 0, 0, 0, 1], [0, 1, 0, 0, 0, 1, 1/2, 2], [0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 0, 1, 1/2, 2, 1, 2]], columns=["W", "A", "Y", "A_sum", "A_mean", "W_sum", "W_mean", "degree"], index=[3, 4, 5, 6, 7, 8]) tmle = NetworkTMLE(network=sm_network, exposure='A', outcome='Y', degree_restrict=[0, 2]) created = tmle.df created_r = tmle.df_restricted # Checking that expected is the same as the created pdt.assert_frame_equal(expected, created[["W", "A", "Y", "A_sum", "A_mean", "W_sum", "W_mean", "degree"]], check_dtype=False) pdt.assert_frame_equal(expected_r, created_r[["W", "A", "Y", "A_sum", "A_mean", "W_sum", "W_mean", "degree"]], check_dtype=False) def test_restricted_number(self, sm_network): tmle = NetworkTMLE(network=sm_network, exposure='A', outcome='Y', degree_restrict=[0, 2]) n_created = tmle.df.shape[0] n_created_r = tmle.df_restricted.shape[0] assert 6 == n_created_r assert 3 == n_created - n_created_r tmle = NetworkTMLE(network=sm_network, exposure='A', outcome='Y', degree_restrict=[1, 3]) n_created = tmle.df.shape[0] n_created_r = tmle.df_restricted.shape[0] assert 8 == n_created_r assert 1 == n_created - n_created_r def test_continuous_processing(self): G = nx.Graph() y_list = [1, -1, 5, 0, 0, 0, 10, -5] G.add_nodes_from([(1, {'A': 0, 'Y': y_list[0]}), (2, {'A': 1, 'Y': y_list[1]}), (3, {'A': 1, 'Y': y_list[2]}), (4, {'A': 0, 'Y': y_list[3]}), (5, {'A': 1, 'Y': y_list[4]}), (6, {'A': 1, 'Y': y_list[5]}), (7, {'A': 0, 'Y': y_list[6]}), (8, {'A': 0, 'Y': y_list[7]})]) tmle = NetworkTMLE(network=G, exposure='A', outcome='Y', continuous_bound=0.0001) # Checking all flagged parts are correct assert tmle._continuous_outcome is True assert tmle._continuous_min_ == -5.0001 assert tmle._continuous_max_ == 10.0001 assert tmle._cb_ == 0.0001 # Checking that TMLE bounding works as intended maximum = 10.0001 minimum = -5.0001 y_bound = (np.array(y_list) - minimum) / (maximum - minimum) pdt.assert_series_equal(pd.Series(y_bound, index=[0, 1, 2, 3, 4, 5, 6, 7]), tmle.df['Y'], check_dtype=False, check_names=False) def test_df_creation_continuous(self, sm_network): expected = pd.DataFrame([[1, 1, 2, 1, 3], [0, 0, 2, 2, 3], [0, 1, 1, 1, 3], [0, 0, 2, 0, 2], [1, 0, 2, 1, 2], [1, 0, 0, 0, 1], [0, 1, 0, 1, 2], [0, 0, 0, 0, 0], [1, 1, 1, 2, 2]], columns=["W", "A", "A_sum", "W_sum", "degree"], index=[0, 1, 2, 3, 4, 5, 6, 7, 8]) expected["C"] = [4.00001333e-01, 2.66669778e-01, 6.66664444e-01, 3.33335556e-01, 3.33335556e-01, 3.33335556e-01, 9.99993333e-01, 6.66657778e-06, 6.66657778e-06] tmle = NetworkTMLE(network=sm_network, exposure='A', outcome='C', continuous_bound=0.0001) created = tmle.df # Checking that expected is the same as the created assert tmle._continuous_outcome is True pdt.assert_frame_equal(expected[["W", "A", "C", "A_sum", "W_sum", "degree"]], created[["W", "A", "C", "A_sum", "W_sum", "degree"]], check_dtype=False) def test_no_consecutive_ids(self): G = nx.Graph() G.add_nodes_from([(1, {'W': 1, 'A': 1, 'Y': 1}), (2, {'W': 0, 'A': 0, 'Y': 0}), (3, {'W': 0, 'A': 1, 'Y': 0}), (4, {'W': 0, 'A': 0, 'Y': 1}), (5, {'W': 1, 'A': 0, 'Y': 0}), (7, {'W': 1, 'A': 0, 'Y': 1}), (9, {'W': 0, 'A': 1, 'Y': 0}), (11, {'W': 0, 'A': 0, 'Y': 0}), (12, {'W': 1, 'A': 1, 'Y': 0})]) G.add_edges_from([(1, 2), (1, 3), (1, 12), (2, 3), (2, 7), (3, 4), (4, 9), (5, 9), (5, 12)]) expected = pd.DataFrame([[1, 1, 1, 1, 2, 2 / 3, 1, 1 / 3, 3], [2, 0, 0, 0, 2, 2/3, 2, 2/3, 3], [3, 0, 1, 0, 1, 1 / 3, 1, 1 / 3, 3], [4, 0, 0, 1, 2, 1, 0, 0, 2], [5, 1, 0, 0, 2, 1, 1, 1 / 2, 2], [7, 1, 0, 1, 0, 0, 0, 0, 1], [8, 0, 1, 0, 0, 0, 1, 1 / 2, 2], [11, 0, 0, 0, 0, 0, 0, 0, 0], [12, 1, 1, 0, 1, 1 / 2, 2, 1, 2] ], columns=["_original_id_", "W", "A", "Y", "A_sum", "A_mean", "W_sum", "W_mean", "degree"], index=[0, 1, 2, 3, 4, 5, 6, 7, 8]) tmle = NetworkTMLE(network=G, exposure='A', outcome='Y') created = tmle.df.sort_values(by='_original_id_').reset_index() pdt.assert_frame_equal(expected[["W", "A", "Y", "A_sum", "A_mean", "W_sum", "W_mean", "degree"]], created[["W", "A", "Y", "A_sum", "A_mean", "W_sum", "W_mean", "degree"]], check_dtype=False) def test_df_creation_nonparametric(self, sm_network): columns = ["_original_id_", "A", "A_map1", "A_map2", "A_map3"] expected = pd.DataFrame([[1, 1, 0, 1, 1], [2, 0, 1, 1, 0], [3, 1, 1, 0, 0], [4, 0, 1, 1, 0], [5, 0, 1, 1, 0], [6, 0, 0, 0, 0], [7, 1, 0, 0, 0], [8, 0, 0, 0, 0], [9, 1, 1, 0, 0]], columns=columns, index=[0, 1, 2, 3, 4, 5, 6, 7, 8]) tmle = NetworkTMLE(network=sm_network, exposure='A', outcome='Y') created = tmle.df.sort_values(by='_original_id_').reset_index() # Checking that expected is the same as the created pdt.assert_frame_equal(expected[columns], created[columns], check_dtype=False) def test_summary_measures_creation(self, sm_network): columns = ["_original_id_", "A_sum", "A_mean", "A_var", "W_sum", "W_mean", "W_var"] neighbors_w = {1: np.array([0, 0, 1]), 2: np.array([0, 1, 1]), 3: np.array([0, 0, 1]), 4: np.array([0, 0]), 5: np.array([0, 1]), 6: np.array([0]), 7: np.array([0, 1]), 9: np.array([1, 1])} neighbors_a = {1: np.array([0, 1, 1]), 2: np.array([0, 1, 1]), 3: np.array([0, 0, 1]), 4: np.array([1, 1]), 5: np.array([1, 1]), 6: np.array([0]), 7: np.array([0, 0]), 9: np.array([0, 1])} expected = pd.DataFrame([[1, np.sum(neighbors_a[1]), np.mean(neighbors_a[1]), np.var(neighbors_a[1]), np.sum(neighbors_w[1]), np.mean(neighbors_w[1]), np.var(neighbors_w[1])], [2, np.sum(neighbors_a[2]), np.mean(neighbors_a[2]), np.var(neighbors_a[2]), np.sum(neighbors_w[2]), np.mean(neighbors_w[2]), np.var(neighbors_w[2])], [3, np.sum(neighbors_a[3]), np.mean(neighbors_a[3]), np.var(neighbors_a[3]), np.sum(neighbors_w[3]), np.mean(neighbors_w[3]), np.var(neighbors_w[3])], [4, np.sum(neighbors_a[4]), np.mean(neighbors_a[4]), np.var(neighbors_a[4]), np.sum(neighbors_w[4]), np.mean(neighbors_w[4]), np.var(neighbors_w[4])], [5, np.sum(neighbors_a[5]), np.mean(neighbors_a[5]), np.var(neighbors_a[5]), np.sum(neighbors_w[5]), np.mean(neighbors_w[5]), np.var(neighbors_w[5])], [6, np.sum(neighbors_a[6]), np.mean(neighbors_a[6]), np.var(neighbors_a[6]), np.sum(neighbors_w[6]), np.mean(neighbors_w[6]), np.var(neighbors_w[6])], [7, np.sum(neighbors_a[7]), np.mean(neighbors_a[7]), np.var(neighbors_a[7]), np.sum(neighbors_w[7]), np.mean(neighbors_w[7]), np.var(neighbors_w[7])], [8, 0, 0, 0, 0, 0, 0], # Isolates are = 0 [9, np.sum(neighbors_a[9]), np.mean(neighbors_a[9]), np.var(neighbors_a[9]), np.sum(neighbors_w[9]), np.mean(neighbors_w[9]), np.var(neighbors_w[9])]], columns=columns, index=[0, 1, 2, 3, 4, 5, 6, 7, 8]) tmle = NetworkTMLE(network=sm_network, exposure='A', outcome='Y') created = tmle.df # Checking that expected is the same as the created assert tmle._continuous_outcome is False pdt.assert_frame_equal(expected, created[columns], check_dtype=False) def test_distance_measures_creation(self, sm_network): columns = ["_original_id_", "A_mean_dist", "A_var_dist", "W_mean_dist", "W_var_dist"] neighbors_w = {1: np.array([-1, -1, 0]), 2: np.array([0, 1, 1]), 3: np.array([0, 0, 1]), 4: np.array([0, 0]), 5: np.array([-1, 0]), 6: np.array([-1]), 7: np.array([0, 1]), 9: np.array([0, 0])} neighbors_a = {1: np.array([-1, 0, 0]), 2: np.array([0, 1, 1]), 3: np.array([-1, -1, 0]), 4: np.array([1, 1]), 5: np.array([1, 1]), 6: np.array([0]), 7: np.array([-1, -1]), 9: np.array([-1, 0])} expected = pd.DataFrame([[1, np.mean(neighbors_a[1]), np.var(neighbors_a[1]), np.mean(neighbors_w[1]), np.var(neighbors_w[1])], [2, np.mean(neighbors_a[2]), np.var(neighbors_a[2]), np.mean(neighbors_w[2]), np.var(neighbors_w[2])], [3, np.mean(neighbors_a[3]), np.var(neighbors_a[3]), np.mean(neighbors_w[3]), np.var(neighbors_w[3])], [4, np.mean(neighbors_a[4]),
np.var(neighbors_a[4])
numpy.var
import os import time import numpy as np import pybullet as p from surrol.tasks.psm_env import PsmsEnv from surrol.utils.pybullet_utils import ( get_link_pose, step ) from surrol.utils.robotics import get_matrix_from_pose_2d from surrol.const import ASSET_DIR_PATH import time from stable_baselines3.common.env_checker import check_env class NeedleRegrasp_custom(PsmsEnv): ACTION_MODE = 'pitch' WORKSPACE_LIMITS1 = ((0.55, 0.6), (0.01, 0.08), (0.695, 0.745)) WORKSPACE_LIMITS2 = ((0.55, 0.6), (-0.08, -0.01), (0.695, 0.745)) SCALING = 5. def _env_setup(self): super(NeedleRegrasp_custom, self)._env_setup() self.has_object = True self._waypoint_goal = True # robot for psm, workspace_limits in ((self.psm1, self.workspace_limits1), (self.psm2, self.workspace_limits2)): pos = (workspace_limits[0].mean(), workspace_limits[1].mean(), workspace_limits[2].mean()) # orn = p.getQuaternionFromEuler(np.deg2rad([0, np.random.uniform(-45, -135), -90])) orn = p.getQuaternionFromEuler(np.deg2rad([0, -90, -90])) # reduce difficulty # psm.reset_joint(self.QPOS_PSM1) joint_positions = psm.inverse_kinematics((pos, orn), psm.EEF_LINK_INDEX) psm.reset_joint(joint_positions) self.block_gripper = False # set the constraint psm = self.psm1 workspace_limits = self.workspace_limits1 # needle limits_span = (workspace_limits[:, 1] - workspace_limits[:, 0]) / 3 sample_space = workspace_limits.copy() sample_space[:, 0] += limits_span sample_space[:, 1] -= limits_span # Load the needle obj_id = p.loadURDF(os.path.join(ASSET_DIR_PATH, 'needle/needle_40mm.urdf'), (0.01 * self.SCALING, 0, 0), (0, 0, 0, 1), useFixedBase=False, globalScaling=self.SCALING) # Needle appearance p.changeVisualShape(obj_id, -1, specularColor=(80, 80, 80)) # Make needle rigid self.obj_ids['rigid'].append(obj_id) self.obj_id, self.obj_link1, self.obj_link2 = self.obj_ids['rigid'][0], 4, 5 while True: # open the jaw psm.open_jaw() # TODO: strange thing that if we use --num_env=1 with openai baselines, the qs vary before and after step! step(0.5) # set the position until the psm can grasp it pos_needle = np.random.uniform(low=sample_space[:, 0], high=sample_space[:, 1]) pitch = np.random.uniform(low=-105., high=-75.) # reduce difficulty orn_needle = p.getQuaternionFromEuler(np.deg2rad([-90, pitch, 90])) p.resetBasePositionAndOrientation(obj_id, pos_needle, orn_needle) # record the needle pose and move the psm to grasp the needle pos_waypoint, orn_waypoint = get_link_pose(obj_id, self.obj_link2) # the right side waypoint orn_waypoint = np.rad2deg(p.getEulerFromQuaternion(orn_waypoint)) p.resetBasePositionAndOrientation(obj_id, (0, 0, 0.01 * self.SCALING), (0, 0, 0, 1)) # get the eef pose according to the needle pose orn_tip = p.getQuaternionFromEuler(np.deg2rad([90, -90 - orn_waypoint[1], 90])) pose_tip = [pos_waypoint + np.array([0.0015 * self.SCALING, 0, 0]), orn_tip] pose_eef = psm.pose_tip2eef(pose_tip) # move the psm pose_world = get_matrix_from_pose_2d(pose_eef) action_rcm = psm.pose_world2rcm(pose_world) success = psm.move(action_rcm) if success is False: continue step(1) p.resetBasePositionAndOrientation(obj_id, pos_needle, orn_needle) cid = p.createConstraint(obj_id, -1, -1, -1, p.JOINT_FIXED, [0, 0, 0], [0, 0, 0], pos_needle, childFrameOrientation=orn_needle) psm.close_jaw() step(0.5) p.removeConstraint(cid) self._activate(0) self._step_callback() step(1) self._step_callback() if self._activated >= 0: break def _sample_goal(self) -> np.ndarray: """ Samples a new goal and returns it. """ workspace_limits = self.workspace_limits2 goal = workspace_limits.mean(axis=1) + np.random.randn(3) * 0.005 * self.SCALING goal.clip(workspace_limits[:, 0], workspace_limits[:, 1]) return goal.copy() def _sample_goal_callback(self): """ Define waypoints """ super()._sample_goal_callback() # Initialising 6 waypoints self._waypoints = [None, None, None, None, None, None] # Position of one grasping point on the needle pos_obj1, _ = get_link_pose(self.obj_id, self.obj_link2) # Position of second grasping point on the needle pos_obj2, _ = get_link_pose(self.obj_id, self.obj_link1) # Making positions ndarrays pos_obj1, pos_obj2 = np.array(pos_obj1), np.array(pos_obj2) # Distance between the two grasping points pos_dis = np.linalg.norm(pos_obj1 - pos_obj2) # Same pitch angels for both grasps pitch1, pitch2 = np.deg2rad(-30), np.deg2rad(-30) # Open gripper jaw = 0.8 #################################################################### ############# MOVING BOTH PSMS TO THE MIDDLE ####################### #################################################################### # Position of the tip for the PSM1 (with needle) pos_tip1 = (pos_obj1[0] + 0.002 * self.SCALING, pos_dis / 2, pos_obj1[2]) # Orientation of the tip for the PSM1 (with needle) orn_tip1 = p.getQuaternionFromEuler(np.deg2rad([90, -30, 90])) # Pose of the tip for the PSM1 (with needle) pose_tip1 = [pos_tip1, orn_tip1] # Position of the EE for the PSM1 (with needle) pos_eef1, _ = self.psm1.pose_tip2eef(pose_tip1) # Position of the tip for the PSM2 (without needle) pos_tip2 = (pos_obj1[0] - 0.002 * self.SCALING, - pos_dis / 2, pos_obj1[2]) # Orientation of the tip for the PSM2 (without needle) orn_tip2 = p.getQuaternionFromEuler(np.deg2rad([90, -150, 90])) # Pose of the tip for the PSM2 (without needle) pose_tip2 = [pos_tip2, orn_tip2] # Position of the EE for the PSM2 (without needle) pos_eef2, _ = self.psm2.pose_tip2eef(pose_tip2) # Move both PSMs to the middle self._waypoints[0] = np.array([pos_eef1[0], pos_eef1[1], pos_eef1[2], pitch1, -jaw, pos_eef2[0], pos_eef2[1], pos_eef2[2], pitch2, jaw]) #################################################################### ################## PSM2 APPROACH NEEDLE ############################ #################################################################### # Move PSM1 a little back pose_tip1[0] = (pos_obj1[0], pos_dis / 2, pos_obj1[2]) pos_eef1, _ = self.psm1.pose_tip2eef(pose_tip1) # Move PSM2 forwards towards the needle pose_tip2[0] = (pos_obj1[0] + 0.002 * self.SCALING, - pos_dis / 2, pos_obj1[2]) pos_eef2, _ = self.psm2.pose_tip2eef(pose_tip2) self._waypoints[1] = np.array([pos_eef1[0], pos_eef1[1], pos_eef1[2], pitch1, -jaw, pos_eef2[0], pos_eef2[1], pos_eef2[2], pitch2, jaw]) #################################################################### ################## PSM2 GRASP, PSM1 RELEASE ######################## #################################################################### # PSM2 grasp self._waypoints[2] = np.array([pos_eef1[0], pos_eef1[1], pos_eef1[2], pitch1, -jaw, pos_eef2[0], pos_eef2[1], pos_eef2[2], pitch2, -jaw]) # PSM1 RELEASE self._waypoints[3] = np.array([pos_eef1[0], pos_eef1[1], pos_eef1[2], pitch1, jaw, pos_eef2[0], pos_eef2[1], pos_eef2[2], pitch2, -jaw]) #################################################################### ############### ADJUST POSES TO AVOID COLLISION #################### #################################################################### # Move PSM1 a little back and to the right pose_tip1[0] = (pos_obj1[0] - 0.005 * self.SCALING, pos_dis / 2 + 0.01 * self.SCALING, pos_obj1[2]) pos_eef1, _ = self.psm1.pose_tip2eef(pose_tip1) # Move PSM2 a little to the front pose_tip2[0] = (pos_obj1[0] + 0.005 * self.SCALING, - pos_dis / 2, pos_obj1[2]) pos_eef2, _ = self.psm2.pose_tip2eef(pose_tip2) self._waypoints[4] = np.array([pos_eef1[0], pos_eef1[1], pos_eef1[2], pitch1, jaw, pos_eef2[0], pos_eef2[1], pos_eef2[2], pitch2, -jaw]) #################################################################### #################### MOVE PSM2 TO RED DOT ########################## #################################################################### # PSM2 tip position must match goal position pose_tip2[0] = (self.goal[0], self.goal[1], self.goal[2]) # Convert to EE position pos_eef2, _ = self.psm2.pose_tip2eef(pose_tip2) # Place self._waypoints[5] = np.array([pos_eef1[0], pos_eef1[1], pos_eef1[2], pitch1, jaw, pos_eef2[0], pos_eef2[1], pos_eef2[2], pitch2, -jaw]) def _meet_contact_constraint_requirement(self): """ add a contact constraint to the grasped needle to make it stable """ return True def get_oracle_action(self, obs) -> np.ndarray: """ Define a human expert strategy """ # six waypoints executed in sequential order action = np.zeros(10) action[4], action[9] = 0.8, -0.8 pitch_scaling = np.deg2rad(15) for i, waypoint in enumerate(self._waypoints): time.sleep(0.2) if waypoint is None: continue delta_pos1 = (waypoint[0: 3] - obs['observation'][0: 3]) / 0.01 / self.SCALING delta_pitch1 = ((waypoint[3] - obs['observation'][4]) / pitch_scaling).clip(-1, 1) delta_pos2 = (waypoint[5: 8] - obs['observation'][7: 10]) / 0.01 / self.SCALING delta_pitch2 = ((waypoint[8] - obs['observation'][11]) / pitch_scaling).clip(-1, 1) if np.abs(delta_pos1).max() > 1: delta_pos1 /= np.abs(delta_pos1).max() if np.abs(delta_pos2).max() > 1: delta_pos2 /= np.abs(delta_pos2).max() scale_factor = 0.5 delta_pos1 *= scale_factor delta_pos2 *= scale_factor action = np.array([delta_pos1[0], delta_pos1[1], delta_pos1[2], delta_pitch1, waypoint[4], delta_pos2[0], delta_pos2[1], delta_pos2[2], delta_pitch2, waypoint[9]]) if np.linalg.norm(delta_pos1) * 0.01 / scale_factor < 1e-4 and np.abs(delta_pitch1) < 2. \ and np.linalg.norm(delta_pos2) * 0.01 / scale_factor < 1e-4 and
np.abs(delta_pitch2)
numpy.abs
#!/usr/bin/env python3 # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorrt as trt import os import sys import platform import onnx import ctypes import struct import numpy as np sys.path.insert(0, os.getcwd()) from importlib import import_module from code.common import logging, dict_get, BENCHMARKS from code.common import get_system from code.common.builder import BenchmarkBuilder import pycuda.autoinit RN50Calibrator = import_module("code.resnet50.tensorrt.calibrator").RN50Calibrator AUTOSINIAN_CNN_PLUGIN_LIBRARY = "code/resnet50/tensorrt/libautosiniancnnplugin_ampere.so" if pycuda.autoinit.device.compute_capability()[0] > 7 else "code/resnet50/tensorrt/libautosiniancnnplugin_turing.so" if not os.path.isfile(AUTOSINIAN_CNN_PLUGIN_LIBRARY): raise IOError("{}\n".format( "Failed to load library ({}).".format(AUTOSINIAN_CNN_PLUGIN_LIBRARY) )) ctypes.CDLL(AUTOSINIAN_CNN_PLUGIN_LIBRARY) class ResNet50(BenchmarkBuilder): """Resnet50 engine builder.""" def __init__(self, args): workspace_size = dict_get(args, "workspace_size", default=(1 << 30)) logging.info("Use workspace_size: {:}".format(workspace_size)) super().__init__(args, name=BENCHMARKS.ResNet50, workspace_size=workspace_size) # Model path self.model_path = dict_get(args, "model_path", default="code/resnet50/tensorrt/ofa_autosinian_is176.onnx") logging.info("Using AutoSinian optimized once-for-all network") self.cache_file = None self.need_calibration = False if self.precision == "int8": # Get calibrator variables calib_batch_size = dict_get(self.args, "calib_batch_size", default=1) calib_max_batches = dict_get(self.args, "calib_max_batches", default=500) force_calibration = dict_get(self.args, "force_calibration", default=False) cache_file = dict_get(self.args, "cache_file", default="code/resnet50/tensorrt/calibrator.cache") preprocessed_data_dir = dict_get(self.args, "preprocessed_data_dir", default="build/preprocessed_data") calib_data_map = dict_get(self.args, "calib_data_map", default="data_maps/imagenet/cal_map.txt") calib_image_dir = os.path.join(preprocessed_data_dir, "imagenet/ResNet50/fp32") # Set up calibrator self.calibrator = RN50Calibrator(calib_batch_size=calib_batch_size, calib_max_batches=calib_max_batches, force_calibration=force_calibration, cache_file=cache_file, image_dir=calib_image_dir, calib_data_map=calib_data_map) self.builder_config.int8_calibrator = self.calibrator self.cache_file = cache_file self.need_calibration = force_calibration or not os.path.exists(cache_file) def initialize(self): """ Parse input ONNX file to a TRT network. Apply layer optimizations and fusion plugins on network. """ # Query system id for architecture self.system = get_system() self.gpu_arch = self.system.arch # Create network. self.network = self.builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) # Parse from onnx file. parser = trt.OnnxParser(self.network, self.logger) with open(self.model_path, "rb") as f: model = f.read() success = parser.parse(model) if not success: raise RuntimeError("ofa_autusinian onnx model processing failed! Error: {:}".format(parser.get_error(0).desc())) # Set input dtype and format input_tensor = self.network.get_input(0) if self.input_dtype == "int8": input_tensor.dtype = trt.int8 scale = struct.unpack('!f', bytes.fromhex('3caa5293'))[0] input_tensor.dynamic_range = (-scale*127.0, scale*127.0) if self.input_format == "linear": input_tensor.allowed_formats = 1 << int(trt.TensorFormat.LINEAR) elif self.input_format == "chw4": input_tensor.allowed_formats = 1 << int(trt.TensorFormat.CHW4) # Get the layers we care about. nb_layers = self.network.num_layers while self.network.num_outputs > 0: logging.info("Unmarking output: {:}".format(self.network.get_output(0).name)) self.network.unmark_output(self.network.get_output(0)) #add top-k last_fc_layer = self.network.get_layer(nb_layers - 1) topk_layer = self.network.add_topk(last_fc_layer.get_output(0), trt.TopKOperation.MAX, 1, 2) topk_layer.name = "topk_layer" topk_layer.get_output(0).name = "topk_layer_output_value" topk_layer.get_output(1).name = "topk_layer_output_index" self.network.mark_output(topk_layer.get_output(1)) if self.network.num_outputs != 1: logging.warning("num outputs should be 1 after unmarking! Has {:}".format(self.network.num_outputs)) raise Exception if self.precision == "int8" and self.batch_size > 1 and (not self.need_calibration): self.autosinian_optimize() self.initialized = True def autosinian_optimize(self): logging.info("Applying AutoSinian Optimization...") optimize_points = [(10,15), (21,26), (27,32), (38,43), (44,49), (55,60), (61,66), (67,72), (78,83), (84,89), (90,95), (0,4), (5,9), (16,20), (33,37), (50,54), (73,77), (96,100)] optimizer = AutoSinian_Optimizer(self.cache_file) for point in optimize_points: optimizer.optimize(self.network, point) class AutoSinian_Optimizer: '''AutoSinian optimizer, optimize the hardware implementation of the layers.''' def __init__(self, cache_file = None): self.plugin_registery = trt.get_plugin_registry() foundPlugin = False for plugin_creator in self.plugin_registery.plugin_creator_list: if plugin_creator.name == self.name: self.creator = self.plugin_registery.get_plugin_creator(self.name,'1','') foundPlugin = True if self.creator else False break assert(foundPlugin), "fail to found %s!" % self.name self.scale_map = {} with open(cache_file, "r") as f: for line in f: pair = line.rstrip().split(':') if len(pair) == 2: self.scale_map[pair[0]] = struct.unpack('!f', bytes.fromhex(pair[1]))[0] self.count = 0 @property def name(self): return "AutoSinianCNN_TRT" def optimize(self, network, point): fields = trt.PluginFieldCollection() saved = [] #values must be alive when creating the plugin. inputs = [network.get_layer(point[0]).get_input(0)] append_fields(network, point[0], fields, saved, self.scale_map) append_fields(network, point[0]+2, fields, saved, self.scale_map) append_fields(network, point[0]+4, fields, saved, self.scale_map) plugin=self.creator.create_plugin(self.name, fields) if plugin is None: raise Exception("Plugin creation failed") plugin_layer = network.add_plugin_v2(inputs, plugin) plugin_layer.name = self.name + "_%d" % self.count self.count += 1 origin_output = network.get_layer(point[1]).get_output(0) plugin_output = plugin_layer.get_output(0) assert(origin_output.name in self.scale_map), "%s not found!" % origin_output.name dynamic_range=self.scale_map[origin_output.name]*127.0 plugin_output.set_dynamic_range(-dynamic_range, dynamic_range) for j in range(network.num_layers): layer = network.get_layer(j) if layer.name==plugin_layer.name : continue for k in range(layer.num_inputs): if layer.get_input(k) == origin_output: layer.set_input(k, plugin_output) def append_fields(network, index, fields, saved, scale_map): layer = network.get_layer(index) assert(isinstance(layer, trt.ILayer) and (layer.type == trt.LayerType.CONVOLUTION)), "must be a conv layer" layer.__class__ = trt.IConvolutionLayer output_layer = layer npa1 = np.array([layer.kernel_size.h], dtype=np.int32) saved.append(npa1) npa2 = np.array([layer.num_output_maps], dtype=np.int32) saved.append(npa2) npa3 = np.array([layer.num_groups], dtype=np.int32) saved.append(npa3) npa4 = np.array([layer.stride.h], dtype=np.int32) saved.append(npa4) npa5 = np.array([layer.pre_padding[0]], dtype=np.int32) saved.append(npa5) npa6 =
np.array([layer.post_padding[0]], dtype=np.int32)
numpy.array
# # Author: <NAME> # and <NAME> <<EMAIL>) # Lincense: Academic Free License (AFL) v3.0 # import numpy as np from math import pi from mpi4py import MPI try: from scipy import comb except ImportError: from scipy.special import comb import prosper.em as em import prosper.utils.parallel as parallel import prosper.utils.tracing as tracing from prosper.utils.datalog import dlog from prosper.em.camodels import CAModel class BSC_ET(CAModel): """Binary Sparse Coding Implements learning and inference of a Binary Sparse coding model under a variational approximation Attributes ---------- comm : MPI communicator D : int number of features gamma : int approximation parameter for maximum number of non-zero states H : int number of latent variables Hprime : int approximation parameter for latent space trunctation K : int number of different values the latent variables can take no_states : (..., Hprime) ndarray number of different states of latent variables except singleton states and zero state single_state_matrix : ((K-1)*H, H) ndarray matrix that holds all possible singleton states state_abs : (no_states, ) ndarray number of non-zero elements in the rows of the state_matrix state_matrix : (no_states, Hprime) ndarray latent variable states taken into account during the em algorithm states : (K,) ndarray the differnt values that a latent variable can take must include 0 and one more integer to_learn : list list of strings included in model_params.keys() that specify which parameters are going to be optimized References ---------- [1] <NAME>, <NAME>, <NAME>, <NAME>, and <NAME> (2010). Binary Sparse Coding. Proc. LVA/ICA 2010, LNCS 6365, 450-457. [2] <NAME> and <NAME> (2010). Expectation Truncation and the Benefits of Preselection in Training Generative Models. Journal of Machine Learning Research 11:2855-2900. """ def __init__(self, D, H, Hprime, gamma, to_learn=['W', 'pi', 'sigma'], comm=MPI.COMM_WORLD): CAModel.__init__(self, D, H, Hprime, gamma, to_learn, comm) @tracing.traced def generate_from_hidden(self, model_params, my_hdata): """ Generate data according to the MCA model while the latents are given in my_hdata['s']. This method does _not_ obey gamma: The generated data may have more than gamma active causes for a given datapoint. """ W = model_params['W'].T pies = model_params['pi'] sigma = model_params['sigma'] H, D = W.shape s = my_hdata['s'] my_N, _ = s.shape # Create output arrays, y is data y = np.zeros( (my_N, D) ) for n in range(my_N): # Combine accoring do magnitude-max rulew for h in range(H): if s[n,h]: y[n] += W[h] # Add noise according to the model parameters y += np.random.normal( scale=sigma, size=(my_N, D) ) # Build return structure return { 'y': y, 's': s } @tracing.traced def select_Hprimes(self, model_params, data): """ Return a new data-dictionary which has been annotated with a data['candidates'] dataset. A set of self.Hprime candidates will be selected. """ my_y = data['y'] W = model_params['W'].T Hprime = self.Hprime my_N, D = my_y.shape candidates = np.zeros( (my_N, Hprime), dtype=np.int ) for n in range(my_N): sim = np.inner(W,my_y[n])/ np.sqrt(np.diag(np.inner(W,W)))/ np.sqrt(np.inner(my_y[n],my_y[n])) candidates[n] = np.argsort(sim)[-Hprime:] data['candidates'] = candidates return data @tracing.traced def E_step(self, anneal, model_params, my_data): """ BSC E_step my_data variables used: my_data['y'] Datapoints my_data['can'] Candidate H's according to selection func. Annealing variables used: anneal['T'] Temperature for det. annealing anneal['N_cut_factor'] 0.: no truncation; 1. trunc. according to model """ comm = self.comm my_y = my_data['y'].copy() my_cand = my_data['candidates'] my_N, D = my_data['y'].shape H = self.H SM = self.state_matrix # shape: (no_states, Hprime) state_abs = self.state_abs # shape: (no_states,) W = model_params['W'].T pies = model_params['pi'] sigma = model_params['sigma'] try: mu = model_params['mu'] except: mu = np.zeros(D) model_params['mu'] = mu # Precompute beta = 1./anneal['T'] pre1 = -1./2./sigma/sigma pil_bar = np.log( pies/(1.-pies) ) # Allocate return structures F = np.empty( [my_N, 1+H+self.no_states] ) pre_F = np.empty( [my_N, 1+H+ self.no_states] ) denoms = np.zeros(my_N) # Pre-fill pre_F: pre_F[:,0] = 0. pre_F[:,1:H+1] = pil_bar pre_F[:,1+H:] = pil_bar * state_abs # is (no_states,) # Iterate over all datapoints tracing.tracepoint("E_step:iterating") for n in range(my_N): y = my_data['y'][n,:] - mu cand = my_data['candidates'][n,:] # Zero active hidden causes log_prod_joint = pre1 * (y**2).sum() F[n,0] = log_prod_joint # Hidden states with one active cause log_prod_joint = pre1 * ((W-y)**2).sum(axis=1) F[n,1:H+1] = log_prod_joint # Handle hidden states with more than 1 active cause W_ = W[cand] # is (Hprime x D) Wbar = np.dot(SM,W_) log_prod_joint = pre1 * ((Wbar-y)**2).sum(axis=1) F[n,1+H:] = log_prod_joint if anneal['anneal_prior']: F = beta * (pre_F + F) else: F = pre_F + beta * F return { 'logpj': F } @tracing.traced def M_step(self, anneal, model_params, my_suff_stat, my_data): """ BSC M_step my_data variables used: my_data['y'] Datapoints my_data['candidates'] Candidate H's according to selection func. Annealing variables used: anneal['T'] Temperature for det. annealing anneal['N_cut_factor'] 0.: no truncation; 1. trunc. according to model """ comm = self.comm H, Hprime = self.H, self.Hprime gamma = self.gamma W = model_params['W'].T pies = model_params['pi'] sigma = model_params['sigma'] mu = model_params['mu'] # Read in data: my_y = my_data['y'].copy() candidates = my_data['candidates'] logpj_all = my_suff_stat['logpj'] all_denoms = np.exp(logpj_all).sum(axis=1) my_N, D = my_y.shape N = comm.allreduce(my_N) # Joerg's data noise idea data_noise_scale = anneal['data_noise'] if data_noise_scale > 0: my_y += my_data['data_noise'] SM = self.state_matrix # shape: (no_states, Hprime) # To compute et_loglike: my_ldenom_sum = 0.0 ldenom_sum = 0.0 # Precompute factor for pi update A_pi_gamma = 0 B_pi_gamma = 0 for gamma_p in range(gamma+1): A_pi_gamma += comb(H,gamma_p) * (pies**gamma_p) * ((1-pies)**(H-gamma_p)) B_pi_gamma += gamma_p * comb(H,gamma_p) * (pies**gamma_p) * ((1-pies)**(H-gamma_p)) E_pi_gamma = pies * H * A_pi_gamma / B_pi_gamma # Truncate data if anneal['Ncut_factor'] > 0.0: tracing.tracepoint("M_step:truncating") #alpha = 0.9 # alpha from ET paper #N_use = int(alpha * (N * (1 - (1 - A_pi_gamma) * anneal['Ncut_factor']))) N_use = int(N * (1 - (1 - A_pi_gamma) * anneal['Ncut_factor'])) cut_denom = parallel.allsort(all_denoms)[-N_use] which = np.array(all_denoms >= cut_denom) candidates = candidates[which] logpj_all = logpj_all[which] my_y = my_y[which] my_N, D = my_y.shape N_use = comm.allreduce(my_N) else: N_use = N dlog.append('N', N_use) # Calculate truncated Likelihood L = H *
np.log(1-pies)
numpy.log
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import math import unittest from data_manager import DataManager from hd_cells import HDCells from place_cells import PlaceCells class DataManagerTest(unittest.TestCase): def setUp(self): self.data_manager = DataManager() def test_value_range(self): # Pos range is -4.5 ~ 4.5 (実際は-4.03~4.03あたり) self.assertLessEqual( np.max(self.data_manager.pos_xs), 4.5) self.assertGreaterEqual(np.min(self.data_manager.pos_xs), -4.5) # Angle range is -pi ~ pi self.assertLessEqual(
np.max(self.data_manager.angles)
numpy.max
import numpy as np a=np.array([[1,2,3,4],[5,6,7,8]]) print(a) # Get dimensions print(a.ndim) #Get shape print(a.shape) b= np.array([3,4,5,6],dtype='int16') print(a*b) print(b.ndim) print(b.dtype) print(b.itemsize) print(b.nbytes) a=np.array([[1,2,3,4,5,6,7],[8,9,10,11,12,13,14]]) print(a) print(a.shape) print(a[0,5]) print(a[0,:]) print(a[:,3]) print(a[0,1:7:2]) a[1,:]=22 print(a) b= np.array([[[1,2],[3,4]],[[5,6],[7,8]]]) print(b) print(b[0,1,1]) print(b[:,1,:]) # Initialize all zero matrix a=np.zeros((2,3)) print(a) b=np.ones((2,2)) print(b) # initalize with any random value b=np.full((2,2),98,dtype='float32') print(b) #full_like method b=np.full_like(b,4) print(b) # initialize random decimal numbers b=np.random.rand(4,2) print(b) b= np.random.random_sample(b.shape) print(b) b=np.random.randint(-2,20,size=(3,3)) print(b) # identity matrix b=np.identity(5) print(b) #Repeat an array a=np.array([1,2,3]) a=np.repeat(a,3) print(a) a=np.array([[1,2,3],[4,5,6]]) a=np.array([[1,2,3]]) a=np.repeat(a,4,axis=0) print(a) # print # [[1. 1. 1. 1. 1.] # [1. 0. 0. 0. 1.] # [1. 0. 9. 0. 1.] # [1. 0. 0. 0. 1.] # [1. 1. 1. 1. 1.]] a=
np.ones((5,5))
numpy.ones
import json import os from collections import OrderedDict from copy import deepcopy import SimpleITK as sitk from batchgenerators.augmentations.utils import resize_segmentation # resize_softmax_output from skimage.transform import resize from torch.optim import lr_scheduler from torch import nn import numpy as np import torch from scipy.ndimage import binary_fill_holes ''' This code is not intended to be looked at by anyone. It is messy. It is undocumented. And the entire training pipeline is missing. ''' max_num_filters_3d = 320 max_num_filters_2d = 480 join = os.path.join def load_json(file): with open(file, 'r') as f: a = json.load(f) return a def resize_image(image, old_spacing, new_spacing, order=3, cval=0): new_shape = (int(np.round(old_spacing[0]/new_spacing[0]*float(image.shape[0]))), int(np.round(old_spacing[1]/new_spacing[1]*float(image.shape[1]))), int(np.round(old_spacing[2]/new_spacing[2]*float(image.shape[2])))) if any([i != j for i, j in zip(image.shape, new_shape)]): res = resize(image, new_shape, order=order, mode='edge', cval=cval) else: res = image return res class ConvDropoutNormNonlin(nn.Module): def __init__(self, input_channels, output_channels, conv_op=nn.Conv2d, conv_kwargs=None, norm_op=nn.BatchNorm2d, norm_op_kwargs=None, dropout_op=nn.Dropout2d, dropout_op_kwargs=None, nonlin=nn.LeakyReLU, nonlin_kwargs=None): super(ConvDropoutNormNonlin, self).__init__() if nonlin_kwargs is None: nonlin_kwargs = {'negative_slope': 1e-2, 'inplace': True} if dropout_op_kwargs is None: dropout_op_kwargs = {'p': 0.5, 'inplace': True} if norm_op_kwargs is None: norm_op_kwargs = {'eps': 1e-5, 'affine': True, 'momentum': 0.1} if conv_kwargs is None: conv_kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1, 'dilation': 1, 'bias': True} self.nonlin_kwargs = nonlin_kwargs self.nonlin = nonlin self.dropout_op = dropout_op self.dropout_op_kwargs = dropout_op_kwargs self.norm_op_kwargs = norm_op_kwargs self.conv_kwargs = conv_kwargs self.conv_op = conv_op self.norm_op = norm_op self.conv = self.conv_op(input_channels, output_channels, **self.conv_kwargs) if self.dropout_op is not None and self.dropout_op_kwargs['p'] is not None and self.dropout_op_kwargs[ 'p'] > 0: self.dropout = self.dropout_op(**self.dropout_op_kwargs) else: self.dropout = None self.instnorm = self.norm_op(output_channels, **self.norm_op_kwargs) self.lrelu = nn.LeakyReLU(**self.nonlin_kwargs) def forward(self, x): x = self.conv(x) if self.dropout is not None: x = self.dropout(x) return self.lrelu(self.instnorm(x)) def pad_nd_image(image, new_shape=None, mode="edge", kwargs=None, return_slicer=False, shape_must_be_divisible_by=None): if kwargs is None: kwargs = {} if new_shape is not None: old_shape = np.array(image.shape[-len(new_shape):]) else: assert shape_must_be_divisible_by is not None assert isinstance(shape_must_be_divisible_by, (list, tuple, np.ndarray)) new_shape = image.shape[-len(shape_must_be_divisible_by):] old_shape = new_shape num_axes_nopad = len(image.shape) - len(new_shape) new_shape = [max(new_shape[i], old_shape[i]) for i in range(len(new_shape))] if not isinstance(new_shape, np.ndarray): new_shape = np.array(new_shape) if shape_must_be_divisible_by is not None: if not isinstance(shape_must_be_divisible_by, (list, tuple, np.ndarray)): shape_must_be_divisible_by = [shape_must_be_divisible_by] * len(new_shape) else: assert len(shape_must_be_divisible_by) == len(new_shape) for i in range(len(new_shape)): if new_shape[i] % shape_must_be_divisible_by[i] == 0: new_shape[i] -= shape_must_be_divisible_by[i] new_shape = np.array([new_shape[i] + shape_must_be_divisible_by[i] - new_shape[i] % shape_must_be_divisible_by[i] for i in range(len(new_shape))]) difference = new_shape - old_shape pad_below = difference // 2 pad_above = difference // 2 + difference % 2 pad_list = [[0, 0]]*num_axes_nopad + list([list(i) for i in zip(pad_below, pad_above)]) res = np.pad(image, pad_list, mode, **kwargs) if not return_slicer: return res else: pad_list = np.array(pad_list) pad_list[:, 1] = np.array(res.shape) - pad_list[:, 1] slicer = list(slice(*i) for i in pad_list) return res, slicer class NeuralNetwork(nn.Module): def __init__(self): super(NeuralNetwork, self).__init__() def get_device(self): if next(self.parameters()).device == "cpu": return "cpu" else: return next(self.parameters()).device.index def set_device(self, device): if device == "cpu": self.cpu() else: self.cuda(device) def forward(self, x): raise NotImplementedError class SegmentationNetwork(NeuralNetwork): def __init__(self): self.input_shape_must_be_divisible_by = None self.conv_op = None super(NeuralNetwork, self).__init__() self.inference_apply_nonlin = lambda x:x def predict_3D(self, x, do_mirroring, num_repeats=1, use_train_mode=False, batch_size=1, mirror_axes=(2, 3, 4), tiled=False, tile_in_z=True, step=2, patch_size=None, regions_class_order=None, use_gaussian=False, pad_border_mode="edge", pad_kwargs=None): """ :param x: (c, x, y , z) :param do_mirroring: :param num_repeats: :param use_train_mode: :param batch_size: :param mirror_axes: :param tiled: :param tile_in_z: :param step: :param patch_size: :param regions_class_order: :param use_gaussian: :return: """ current_mode = self.training if use_train_mode is not None and use_train_mode: self.train() elif use_train_mode is not None and not use_train_mode: self.eval() else: pass assert len(x.shape) == 4, "data must have shape (c,x,y,z)" if self.conv_op == nn.Conv3d: if tiled: res = self._internal_predict_3D_3Dconv_tiled(x, num_repeats, batch_size, tile_in_z, step, do_mirroring, mirror_axes, patch_size, regions_class_order, use_gaussian, pad_border_mode, pad_kwargs=pad_kwargs) else: res = self._internal_predict_3D_3Dconv(x, do_mirroring, num_repeats, patch_size, batch_size, mirror_axes, regions_class_order, pad_border_mode, pad_kwargs=pad_kwargs) elif self.conv_op == nn.Conv2d: if tiled: res = self._internal_predict_3D_2Dconv_tiled(x, do_mirroring, num_repeats, batch_size, mirror_axes, step, patch_size, regions_class_order, use_gaussian, pad_border_mode, pad_kwargs=pad_kwargs) else: res = self._internal_predict_3D_2Dconv(x, do_mirroring, num_repeats, patch_size, batch_size, mirror_axes, regions_class_order, pad_border_mode, pad_kwargs=pad_kwargs) else: raise RuntimeError("Invalid conv op, cannot determine what dimensionality (2d/3d) the network is") if use_train_mode is not None: self.train(current_mode) return res def _internal_maybe_mirror_and_pred_3D(self, x, num_repeats, mirror_axes, do_mirroring=True): with torch.no_grad(): a = torch.zeros(x.shape).float() if self.get_device() == "cpu": a = a.cpu() else: a = a.cuda(self.get_device()) if do_mirroring: mirror_idx = 8 else: mirror_idx = 1 all_preds = [] for i in range(num_repeats): for m in range(mirror_idx): data_for_net = np.array(x) do_stuff = False if m == 0: do_stuff = True pass if m == 1 and (4 in mirror_axes): do_stuff = True data_for_net = data_for_net[:, :, :, :, ::-1] if m == 2 and (3 in mirror_axes): do_stuff = True data_for_net = data_for_net[:, :, :, ::-1, :] if m == 3 and (4 in mirror_axes) and (3 in mirror_axes): do_stuff = True data_for_net = data_for_net[:, :, :, ::-1, ::-1] if m == 4 and (2 in mirror_axes): do_stuff = True data_for_net = data_for_net[:, :, ::-1, :, :] if m == 5 and (2 in mirror_axes) and (4 in mirror_axes): do_stuff = True data_for_net = data_for_net[:, :, ::-1, :, ::-1] if m == 6 and (2 in mirror_axes) and (3 in mirror_axes): do_stuff = True data_for_net = data_for_net[:, :, ::-1, ::-1, :] if m == 7 and (2 in mirror_axes) and (3 in mirror_axes) and (4 in mirror_axes): do_stuff = True data_for_net = data_for_net[:, :, ::-1, ::-1, ::-1] if do_stuff: _ = a.data.copy_(torch.from_numpy(np.copy(data_for_net))) p = self.inference_apply_nonlin(self(a)) p = p.data.cpu().numpy() if m == 0: pass if m == 1 and (4 in mirror_axes): p = p[:, :, :, :, ::-1] if m == 2 and (3 in mirror_axes): p = p[:, :, :, ::-1, :] if m == 3 and (4 in mirror_axes) and (3 in mirror_axes): p = p[:, :, :, ::-1, ::-1] if m == 4 and (2 in mirror_axes): p = p[:, :, ::-1, :, :] if m == 5 and (2 in mirror_axes) and (4 in mirror_axes): p = p[:, :, ::-1, :, ::-1] if m == 6 and (2 in mirror_axes) and (3 in mirror_axes): p = p[:, :, ::-1, ::-1, :] if m == 7 and (2 in mirror_axes) and (3 in mirror_axes) and (4 in mirror_axes): p = p[:, :, ::-1, ::-1, ::-1] all_preds.append(p) return
np.vstack(all_preds)
numpy.vstack
import sys import time import numpy as np from psychopy import visual, core, event #import some libraries from PsychoPy import optotrak.ndiapiconstants import optotrak.client as oclient import optotrak.datarecorder as dr import linalg.routines as lr ndi = optotrak.ndiapiconstants.NDI opt = oclient.connect(oclient.InstanceType.Emulator) # pygame seems to be faster than pyglet # pyglet is the default library windowed = True if windowed: mywin = visual.Window([800,600], monitor="testMonitor", units="deg") else: mywin = visual.Window(size=(1920, 1080), fullscr=True, screen=0, allowGUI=False, allowStencil=False, winType='pyglet', # 'pyglet', 'pygame' monitor=u'testMonitor', color=[0, 0, 0], colorSpace='rgb', blendMode='avg', useFBO=False, units="cm", #waitBlanking=True ) #create some stimuli nmarkers = 4 fixation = visual.GratingStim(win=mywin, size=0.2, pos=[0,0], sf=0, rgb=-1) circles = [visual.Circle(win=mywin, radius=0.5, edges=100, lineColor=[1.0, 0.0, 0.0], fillColor=[1.0, 0.0, 0.0], autoDraw=False) for i in range(nmarkers)] for i in range(nmarkers): circles[i].setPos([0.0, 0.0]) arm_endpoint = visual.Circle(win=mywin, radius=0.5, edges=100, lineColor=[1.0, 0.0, 0.0], fillColor=[1.0, 0.0, 0.0], autoDraw=False) if True: recorder = dr.OptotrakDataRecorder(opt) recorder.sleep_period = 0.001 recorder.init_optotrak(nummarkers=nmarkers, collecttime=10.0, datafps=120) recorder.start_pulling_thread() while recorder.realtimedatabuffer.is_empty(): time.sleep(0.1) bias =
np.array([0.0, 0.0, -2500.0])
numpy.array
#!/usr/bin/env python import sys import numpy as np import argparse Res31 = {'ALA': 'A', 'CYS': 'C', 'ASP': 'D', 'GLU': 'E', 'PHE': 'F', 'GLY': 'G', 'HIS': 'H', 'ILE': 'I', 'LYS': 'K', 'LEU': 'L', 'MET': 'M', 'ASN': 'N', 'PRO': 'P', 'GLN': 'Q', 'ARG': 'R', 'SER': 'S', 'THR': 'T', 'VAL': 'V', 'TRP': 'W', 'TYR': 'Y', 'ASX': 'N', 'GLX': 'Q', 'UNK': 'X', 'INI': 'K', 'AAR': 'R', 'ACE': 'X', 'ACY': 'G', 'AEI': 'T', 'AGM': 'R', 'ASQ': 'D', 'AYA': 'A', 'BHD': 'D', 'CAS': 'C', 'CAY': 'C', 'CEA': 'C', 'CGU': 'E', 'CME': 'C', 'CMT': 'C', 'CSB': 'C', 'CSD': 'C', 'CSE': 'C', 'CSO': 'C', 'CSP': 'C', 'CSS': 'C', 'CSW': 'C', 'CSX': 'C', 'CXM': 'M', 'CYG': 'C', 'CYM': 'C', 'DOH': 'D', 'EHP': 'F', 'FME': 'M', 'FTR': 'W', 'GL3': 'G', 'H2P': 'H', 'HIC': 'H', 'HIP': 'H', 'HTR': 'W', 'HYP': 'P', 'KCX': 'K', 'LLP': 'K', 'LLY': 'K', 'LYZ': 'K', 'M3L': 'K', 'MEN': 'N', 'MGN': 'Q', 'MHO': 'M', 'MHS': 'H', 'MIS': 'S', 'MLY': 'K', 'MLZ': 'K', 'MSE': 'M', 'NEP': 'H', 'NPH': 'C', 'OCS': 'C', 'OCY': 'C', 'OMT': 'M', 'OPR': 'R', 'PAQ': 'Y', 'PCA': 'Q', 'PHD': 'D', 'PRS': 'P', 'PTH': 'Y', 'PYX': 'C', 'SEP': 'S', 'SMC': 'C', 'SME': 'M', 'SNC': 'C', 'SNN': 'D', 'SVA': 'S', 'TPO': 'T', 'TPQ': 'Y', 'TRF': 'W', 'TRN': 'W', 'TRO': 'W', 'TYI': 'Y', 'TYN': 'Y', 'TYQ': 'Y', 'TYS': 'Y', 'TYY': 'Y', 'YOF': 'Y', 'FOR': 'X', '---': '-', 'PTR': 'Y', 'LCX': 'K', 'SEC': 'D', 'MCL': 'K', 'LDH': 'K'} typecode = "ARNDCQEGHILKMFPSTWYVX" Ntype = 21 code_dict = dict() def read_pdb(pdb_file, hydrogen=False): main_chain_atoms = ['N', 'CA', 'C', 'O'] fp_file = open(pdb_file) lines = fp_file.readlines() fp_file.close() chain_dict = dict() for line in lines: if line[:6] == 'ATOM ': chain_id = line[21] res_idx = line[22:27] # not integer atom_idx = int(line[6:11].strip()) atomname = line[12:16] atomname2 = atomname.strip() res_name = line[17:20] altloc = line[16] coor = np.array([float(line[30:38]), float(line[38:46]), float(line[46:54])], dtype=np.float32) if altloc != ' ' and altloc != 'A': continue if atomname2[0] == 'H' and not hydrogen: continue if chain_id not in chain_dict: chain_dict[chain_id] = dict() if res_idx not in chain_dict[chain_id]: chain_dict[chain_id][res_idx] = { 'res_name': res_name, 'atom': dict()} chain_dict[chain_id][res_idx]['atom'][atom_idx] = { 'atomname': atomname, 'coor': coor, 'line': line} chain_keys = sorted(chain_dict.keys()) for chain_id in chain_keys: chain = chain_dict[chain_id] res_idx_keys = sorted(chain.keys()) for res_idx in res_idx_keys: residue = chain[res_idx] res_name = residue['res_name'] atom_dict = residue['atom'] atom_keys = sorted(atom_dict.keys()) sg_coor = [] for atom_idx in atom_keys: atom = atom_dict[atom_idx] atomname = atom['atomname'] coor = atom['coor'] if atomname == ' CA ': chain_dict[chain_id][res_idx]['CA'] = coor if res_name != 'GLY': chain_dict[chain_id][res_idx]['CB'] = coor if atomname == ' CB ': chain_dict[chain_id][res_idx]['CB'] = coor atomname2 = atomname.strip() if res_name != 'GLY': if (atomname2 not in main_chain_atoms) and (atomname2[0] != 'H'): sg_coor += [coor] if res_name != 'GLY': sg_coor =
np.concatenate([sg_coor])
numpy.concatenate
import sys, numpy, scipy.ndimage from collections import defaultdict, deque import itertools import copy import re file_name = "Input.txt" size = 12 # 3 or 12 sqrt num_tiles tile_size = 10 ''' with open(file_name, "r") as fp: lines = fp.readlines() lines = [x.strip() for x in lines] line = lines[0].strip() toks = line.split(",") nums = [int(n) for n in toks] ''' ''' with open(file_name, "r") as fp: lines = fp.readlines() lines = [x.strip() for x in lines] ''' with open(file_name, "r") as fp: lines = fp.readlines() lines = [x.strip() for x in lines] tiles = {} tiles_data = {} index = 0 # hash of sides and reversed sides: ids tile_sides = defaultdict(list) def R(s): return ''.join(reversed(s)) while index < len(lines): tile_no = int(lines[index][5:9]) index += 1 tile_data = [] for _ in range(10): data = ['0' if x == '.' else '1' for x in lines[index]] tile_data.append(data) index += 1 index += 1 tiles_data[tile_no] = tile_data # Initially left to right, top to bottom l = '' for i in range(tile_size): l += tile_data[i][0] r = '' for i in range(tile_size): r += tile_data[i][-1] t = '' for i in range(tile_size): t += tile_data[0][i] b = '' for i in range(tile_size): b += tile_data[-1][i] tiles[tile_no] = (l, t, r, b) tile_sides[l].append((tile_no, (l, t, r, b), '0')) tile_sides[R(l)].append((tile_no, (R(l), b, R(r), t), 'h')) tile_sides[r].append((tile_no, (r, R(t), l, R(b)), 'v')) tile_sides[R(r)].append((tile_no, (R(r), R(b), R(l), R(t)), '180')) tile_sides[t].append((tile_no, (t, l, b, r), '90h')) tile_sides[R(t)].append((tile_no, (R(t), r, R(b), l), '90')) tile_sides[b].append((tile_no, (b, R(l), t, R(r)), '270')) tile_sides[R(b)].append((tile_no, (R(b), R(r), R(t), R(l)), '270h')) print(tiles) print(tiles_data) print(len(tiles)) print(len(tile_sides)) def find_runs(tile_data, tile_key, tile_dict, run_size, so_far, results): # print(f"Level {run_size} {tile_data} {so_far}") if run_size == 1: results.append(so_far) # print(f"RETURN {so_far}") return # print(f"find_runs {tile_data} rs = {run_size}") l1,t1,r1,b1 = tile_data # for k,t in tile_dict.items() # l2,t2,r2,b2 = t for opts in tile_sides[r1]: key2 = opts[0] if key2 == tile_key: continue if key2 not in tile_dict: continue l2,t2,r2,b2 = opts[1] if r1 == l2: # r == l # r -> l op = opts[2] run = (l2, t2, r2, b2) # tile_copy = dict(tile_dict) del tile_copy[key2] find_runs(run, key2, tile_copy, run_size-1, so_far + [(key2, run, op)], results) ''' if r1 == l2: # r == l # r -> l op = '0' run = (l2, t2, r2, b2) # find_runs(run, key2, tile_copy, run_size-1, so_far + [(key2, run, op)], results) if r1 == R(l2): # flip horiz around x axis op = 'h' run = (R(l2), b2, R(r2), t2) # find_runs(run, key2, tile_copy, run_size-1, so_far + [(key2, run, op)], results) if r1 == r2: # flipv around y axis op = 'v' run = (r2, R(t2), l2, R(b2)) # find_runs(run, key2, tile_copy, run_size-1, so_far + [(key2, run, op)], results) if r1 == R(r2): # rot 180 op = '180' run = (R(r2), R(b2), R(l2), R(t2)) # find_runs(run, key2, tile_copy, run_size-1, so_far + [(key2, run, op)], results) if r1 == t2: # rot90+fliph op = '90h' run = (t2, l2, b2, r2) find_runs(run, key2, tile_copy, run_size-1, so_far + [(key2, run, op)], results) if r1 == R(t2): # rot90 op = '90' run = (R(t2), r2, R(b2), l2) find_runs(run, key2, tile_copy, run_size-1, so_far + [(key2, run, op)], results) if r1 == b2: # rot 270 op = '270' run = (b2, R(l2), t2, R(r2)) # find_runs(run, key2, tile_copy, run_size-1, so_far + [(key2, run, op)], results) if r1 == R(b2): # rot 270 + fliph op = '270h' run = (R(b2), R(l2), R(t2), R(r2)) find_runs(run, key2, tile_copy, run_size-1, so_far + [(key2, run, op)], results) ''' return def find_vertical(run, run_size, all_results, results): if len(run) == run_size: results.append(run) return if run == [3]: print("3") pass for next_row_index in range(len(all_results)): if run == [3] and next_row_index == 19: print("19") if next_row_index in run: # Already in current run_size continue used_keys = set() for run_index in run: for res in all_results[run_index]: used_keys.add(res[0]) next_row_keys = set() for res in all_results[next_row_index]: next_row_keys.add(res[0]) if not used_keys.isdisjoint(next_row_keys): # common keys continue # check if stitched ok = True for col in range(size): if all_results[run[-1]][col][1][3] != all_results[next_row_index][col][1][1]: ok = False break if not ok: continue # Recurse find_vertical(run + [next_row_index], run_size, all_results, results) return all_results = [] for k,v in tiles.items(): l,t,r,b = v tiles_copy = copy.deepcopy(tiles) del tiles_copy[k] results = [] # print(f"k= '{k}'") run = (l, t, r, b) op = '0' find_runs(run, k, tiles_copy, size, [(k, run, op)], results) # for res in results: all_results.append(res) results = [] run = (R(l), b, R(r), t) # op = 'h' find_runs(run, k, tiles_copy, size, [(k, run, op)], results) # for res in results: all_results.append(res) results = [] run = (r, R(t), l, R(b)) # op = 'v' find_runs(run, k, tiles_copy, size, [(k, run, op)], results) # for res in results: all_results.append(res) results = [] run = (R(r), R(b), R(l), R(t)) # op = '180' find_runs(run, k, tiles_copy, size, [(k, run, op)], results) # for res in results: all_results.append(res) results = [] run = (t, l, b, r) op = '90h' find_runs(run, k, tiles_copy, size, [(k, run, op)], results) # for res in results: all_results.append(res) results = [] run = (R(t), r, R(b), l) op = '90' find_runs(run, k, tiles_copy, size, [(k, run, op)], results) ## for res in results: all_results.append(res) results = [] run = (b, R(l), t, R(r)) # op = '270' find_runs(run, k, tiles_copy, size, [(k, run, op)], results) ## for res in results: all_results.append(res) results = [] run = (R(b), R(r), R(t), R(l)) op = '270h' find_runs(run, k, tiles_copy, size, [(k, run, op)], results) # for res in results: all_results.append(res) #print(f"ALL ({len(all_results)}) = ") #for i in range(len(all_results)): # print(f" {i}: {all_results[i]}") #print(f"len = {len(all_results)}") print(f"ALL_RESULTS=") for _index,ar in enumerate(all_results): for _ar in ar: print(f" {_index}: {_ar[0]} {_ar[2]} ", end='') print('') print('') print(f"Got {len(all_results)} all_results") tile_keys = set([k for k,_ in tiles_data.items()]) print(f"tile_keys = {tile_keys}") results = [] for i in range(len(all_results)): find_vertical([i], size, all_results, results) if results: r0 = results[0] good_squares = [all_results[x] for x in r0] print(f"FOUND {len(results)} RESULTS = {results}") # print(f"good_squares {good_squares}") print("Solutions:") for res in results: for index in res: for r in all_results[index]: print(f"{r[0]} ", end='') print('') print('') for i in range(size): print(f"{i}: {good_squares[i]}") solution = good_squares[0][0][0] * good_squares[0][-1][0] * good_squares[-1][0][0] * good_squares[-1][-1][0] print(f"Solution1 = {solution}") def apply_op(data, op): data = numpy.array(data) if op == '0': pass elif op == 'h': data = numpy.flip(data, 0) elif op == 'v': data = numpy.flip(data, 1) elif op == '180': data = numpy.rot90(data, 2) elif op == '90h': data = numpy.rot90(data, 1) data = numpy.flip(data, 0) elif op == '90': data = numpy.rot90(data, 1) elif op == '270': data = numpy.rot90(data, 3) elif op == '270h': data = numpy.rot90(data, 3) data = numpy.flip(data, 0) else: 0/0 return data # ##### ''' big_image = numpy.zeros((size*tile_size, size*tile_size), int) for row in range(size): for y in range(0, tile_size): for col in range(size): tile_data = tiles_data[good_squares[row][col][0]] tdata = [] for _r in tile_data: tdata.append([0 if _x == '0' else 1 for _x in _r]) op = good_squares[row][col][2] if good_squares[row][col][0] == 1951: print(f"key = 1951 tdata=\n{tdata} col={col} y={y}") tdata = apply_op(tdata, op) if good_squares[row][col][0] == 1951: print(f"op = {op} tdata=\n{tdata}") for x in range(0, tile_size): big_image[row*tile_size + y][col*(tile_size) + (x)] = tdata[y][x] print(f"BIG_IMAGE = \n{big_image}") ''' # ##### # Create stiched image image = numpy.zeros((size*(tile_size-2), size*(tile_size-2)), int) for row in range(size): for y in range(1, tile_size-1): for col in range(size): tile_data = tiles_data[good_squares[row][col][0]] tdata = [] for _r in tile_data: tdata.append([0 if _x == '0' else 1 for _x in _r]) op = good_squares[row][col][2] tdata = apply_op(tdata, op) for x in range(1, tile_size-1): image[row*(tile_size-2) + y-1][col*(tile_size-2) + (x-1)] = tdata[y][x] print(f"IMAGE = \n{image}") ''' image = [] for row in range(size): for y in range(1, tile_size-1): row_data = [0 for _ in range(size * (tile_size-2))] for col in range(size): tile_data = tiles_data[good_squares[row][col][0]] tdata = [] for _r in tile_data: tdata.append([0 if _x == '0' else 1 for _x in _r]) op = good_squares[row][col][2] tdata = apply_op(tdata, op) for x in range(1, tile_size-1): row_data[col*(tile_size-2) + (x-1)] = tdata[y][x] image.append(row_data) ''' ''' print("Image=") for row in image: for c in row: # print('.' if c == 0 else '#', end='') print(c, end='') print('') print('') ''' array = image print(f"ARRAY = \n{array}") kernel = [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1], [0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0]] kernel = numpy.array(kernel) kernel_count = 15 print(f"Kernel = \n{kernel}") ''' # # ## ## ### # # # # # # ''' def find_max_matches(convolve, kernel_count): max_vals = 0 max = 0 for row in convolve: for col in row: if col == kernel_count: max_vals += 1 if col > max: max = col print(f"max_vals={max_vals} max = {max}") return max_vals answer = 0 while True: arr = array # 0 convolve = scipy.ndimage.convolve(arr, kernel, None, 'constant', 0) answer = find_max_matches(convolve, kernel_count) if answer: break arr = numpy.flip(array, 0) # h convolve = scipy.ndimage.convolve(arr, kernel, None, 'constant', 0) answer = find_max_matches(convolve, kernel_count) if answer: break arr = numpy.flip(array, 1) # v convolve = scipy.ndimage.convolve(arr, kernel, None, 'constant', 0) answer = find_max_matches(convolve, kernel_count) if answer: break arr = numpy.rot90(array, 2) # 180 convolve = scipy.ndimage.convolve(arr, kernel, None, 'constant', 0) answer = find_max_matches(convolve, kernel_count) if answer: break arr = numpy.rot90(array) # 90h arr = numpy.flip(arr, 0) convolve = scipy.ndimage.convolve(arr, kernel, None, 'constant', 0) answer = find_max_matches(convolve, kernel_count) if answer: break arr = numpy.rot90(array, 1) # 90 convolve = scipy.ndimage.convolve(arr, kernel, None, 'constant', 0) answer = find_max_matches(convolve, kernel_count) if answer: break arr = numpy.rot90(array, 3) # 270 convolve = scipy.ndimage.convolve(arr, kernel, None, 'constant', 0) answer = find_max_matches(convolve, kernel_count) if answer: break arr = numpy.rot90(array, 3) # 270h arr =
numpy.flip(arr, 0)
numpy.flip
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test cases for the bfloat16 Python type.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np # pylint: disable=unused-import,g-bad-import-order from tensorflow.python import pywrap_tensorflow from tensorflow.python.framework import dtypes from tensorflow.python.platform import test bfloat16 = pywrap_tensorflow.TF_bfloat16_type() class Bfloat16Test(test.TestCase): def float_values(self): """Returns values that should round trip exactly to float and back.""" epsilon = float.fromhex("1.0p-7") return [ 0.0, 1.0, -1, 0.5, -0.5, epsilon, 1.0 + epsilon, 1.0 - epsilon, -1.0 - epsilon, -1.0 + epsilon, 3.5, 42.0, 255.0, 256.0, float("inf"), float("-inf"), float("nan")] def _assertFloatIdentical(self, v, w): if math.isnan(v): self.assertTrue(math.isnan(w)) else: self.assertEqual(v, w) def testRoundTripToFloat(self): for v in self.float_values(): self._assertFloatIdentical(v, float(bfloat16(v))) def testRoundTripToInt(self): for v in [-256, -255, -34, -2, -1, 0, 1, 2, 10, 47, 128, 255, 256, 512]: self.assertEqual(v, int(bfloat16(v))) def testStr(self): self.assertEqual("0", str(bfloat16(0.0))) self.assertEqual("1", str(bfloat16(1.0))) self.assertEqual("-3.5", str(bfloat16(-3.5))) self.assertEqual("0.0078125", str(bfloat16(float.fromhex("1.0p-7")))) self.assertEqual("inf", str(bfloat16(float("inf")))) self.assertEqual("-inf", str(bfloat16(float("-inf")))) self.assertEqual("nan", str(bfloat16(float("nan")))) def testRepr(self): self.assertEqual("bfloat16(0)", repr(bfloat16(0))) self.assertEqual("bfloat16(1)", repr(bfloat16(1))) self.assertEqual("bfloat16(-3.5)", repr(bfloat16(-3.5))) self.assertEqual("bfloat16(0.0078125)", repr(bfloat16(float.fromhex("1.0p-7")))) self.assertEqual("bfloat16(inf)", repr(bfloat16(float("inf")))) self.assertEqual("bfloat16(-inf)", repr(bfloat16(float("-inf")))) self.assertEqual("bfloat16(nan)", repr(bfloat16(float("nan")))) def testHash(self): self.assertEqual(0, hash(bfloat16(0.0))) self.assertEqual(0x3f80, hash(bfloat16(1.0))) self.assertEqual(0x7fc0, hash(bfloat16(float("nan")))) # Tests for Python operations def testNegate(self): for v in self.float_values(): self._assertFloatIdentical(-v, float(-bfloat16(v))) def testAdd(self): self._assertFloatIdentical(0, float(bfloat16(0) + bfloat16(0))) self._assertFloatIdentical(1, float(bfloat16(1) + bfloat16(0))) self._assertFloatIdentical(0, float(bfloat16(1) + bfloat16(-1))) self._assertFloatIdentical(5.5, float(bfloat16(2) + bfloat16(3.5))) self._assertFloatIdentical(1.25, float(bfloat16(3.5) + bfloat16(-2.25))) self._assertFloatIdentical(float("inf"), float(bfloat16(float("inf")) + bfloat16(-2.25))) self._assertFloatIdentical(float("-inf"), float(bfloat16(float("-inf")) + bfloat16(-2.25))) self.assertTrue(math.isnan(float(bfloat16(3.5) + bfloat16(float("nan"))))) def testSub(self): self._assertFloatIdentical(0, float(bfloat16(0) - bfloat16(0))) self._assertFloatIdentical(1, float(bfloat16(1) - bfloat16(0))) self._assertFloatIdentical(2, float(bfloat16(1) - bfloat16(-1))) self._assertFloatIdentical(-1.5, float(bfloat16(2) - bfloat16(3.5))) self._assertFloatIdentical(5.75, float(bfloat16(3.5) - bfloat16(-2.25))) self._assertFloatIdentical(float("-inf"), float(bfloat16(-2.25) - bfloat16(float("inf")))) self._assertFloatIdentical(float("inf"), float(bfloat16(-2.25) - bfloat16(float("-inf")))) self.assertTrue(math.isnan(float(bfloat16(3.5) - bfloat16(float("nan"))))) def testMul(self): self._assertFloatIdentical(0, float(bfloat16(0) * bfloat16(0))) self._assertFloatIdentical(0, float(bfloat16(1) * bfloat16(0))) self._assertFloatIdentical(-1, float(bfloat16(1) * bfloat16(-1))) self._assertFloatIdentical(-7.875, float(bfloat16(3.5) * bfloat16(-2.25))) self._assertFloatIdentical(float("-inf"), float(bfloat16(float("inf")) * bfloat16(-2.25))) self._assertFloatIdentical(float("inf"), float(bfloat16(float("-inf")) * bfloat16(-2.25))) self.assertTrue(math.isnan(float(bfloat16(3.5) * bfloat16(float("nan"))))) def testDiv(self): self.assertTrue(math.isnan(float(bfloat16(0) / bfloat16(0)))) self._assertFloatIdentical(float("inf"), float(bfloat16(1) / bfloat16(0))) self._assertFloatIdentical(-1, float(bfloat16(1) / bfloat16(-1))) self._assertFloatIdentical(-1.75, float(bfloat16(3.5) / bfloat16(-2))) self._assertFloatIdentical(float("-inf"), float(bfloat16(float("inf")) / bfloat16(-2.25))) self._assertFloatIdentical(float("inf"), float(bfloat16(float("-inf")) / bfloat16(-2.25))) self.assertTrue(math.isnan(float(bfloat16(3.5) / bfloat16(float("nan"))))) def testLess(self): for v in self.float_values(): for w in self.float_values(): self.assertEqual(v < w, bfloat16(v) < bfloat16(w)) def testLessEqual(self): for v in self.float_values(): for w in self.float_values(): self.assertEqual(v <= w, bfloat16(v) <= bfloat16(w)) def testGreater(self): for v in self.float_values(): for w in self.float_values(): self.assertEqual(v > w, bfloat16(v) > bfloat16(w)) def testGreaterEqual(self): for v in self.float_values(): for w in self.float_values(): self.assertEqual(v >= w, bfloat16(v) >= bfloat16(w)) def testEqual(self): for v in self.float_values(): for w in self.float_values(): self.assertEqual(v == w, bfloat16(v) == bfloat16(w)) def testNotEqual(self): for v in self.float_values(): for w in self.float_values(): self.assertEqual(v != w, bfloat16(v) != bfloat16(w)) def testNan(self): a = np.isnan(bfloat16(float("nan"))) self.assertTrue(a) np.testing.assert_allclose(np.array([1.0, a]),
np.array([1.0, a])
numpy.array
# -*- coding: utf-8 -*- """ Created on Tue Mar 5 12:34:57 2019 @author: yijin """ import numpy as np # machine limits epsilon eps = np.finfo(float).eps def gradient_descent(w, x, y): "Logistic regression: e(w) = ln(1+e**(-y*wT*x)" err0 = -y*x[0]/(1 + np.exp(y*np.dot(w, x))) err1 = -y*x[1]/(1 + np.exp(y*np.dot(w, x))) err2 = -y*x[2]/(1 + np.exp(y*np.dot(w, x))) return np.array([err0, err1, err2]) sum_out = 0 sum_iter = 0 for i in range(100): data_set = np.random.uniform(low=-1, high=1.0+eps, size=(2,2)) # y = m*x + c A = np.column_stack((data_set[:,0], np.ones(2))) y = data_set[:,1] m, c =
np.linalg.lstsq(A, y, rcond=None)
numpy.linalg.lstsq
import os import re import unittest import numpy as np import wfdb class TestAnnotation(unittest.TestCase): """ Testing read and write of WFDB annotations, including Physionet streaming. Target files created using the original WFDB Software Package version 10.5.24 """ def test_1(self): """ Target file created with: rdann -r sample-data/100 -a atr > ann-1 """ annotation = wfdb.rdann("sample-data/100", "atr") # This is not the fault of the script. The annotation file specifies a # length 3 annotation.aux_note[0] = "(N" # aux_note field with a null written after '(N' which the script correctly picks up. I am just # getting rid of the null in this unit test to compare with the regexp output below which has # no null to detect in the output text file of rdann. # Target data from WFDB software package lines = tuple(open("tests/target-output/ann-1", "r")) nannot = len(lines) target_time = [None] * nannot target_sample = np.empty(nannot, dtype="object") target_symbol = [None] * nannot target_subtype = np.empty(nannot, dtype="object") target_chan = np.empty(nannot, dtype="object") target_num = np.empty(nannot, dtype="object") target_aux_note = [None] * nannot RXannot = re.compile( "[ \t]*(?P<time>[\[\]\w\.:]+) +(?P<sample>\d+) +(?P<symbol>.) +(?P<subtype>\d+) +(?P<chan>\d+) +(?P<num>\d+)\t?(?P<aux_note>.*)" ) for i in range(0, nannot): ( target_time[i], target_sample[i], target_symbol[i], target_subtype[i], target_chan[i], target_num[i], target_aux_note[i], ) = RXannot.findall(lines[i])[0] # Convert objects into integers target_sample = target_sample.astype("int") target_num = target_num.astype("int") target_subtype = target_subtype.astype("int") target_chan = target_chan.astype("int") # Compare comp = [ np.array_equal(annotation.sample, target_sample), np.array_equal(annotation.symbol, target_symbol), np.array_equal(annotation.subtype, target_subtype), np.array_equal(annotation.chan, target_chan), np.array_equal(annotation.num, target_num), annotation.aux_note == target_aux_note, ] # Test file streaming pn_annotation = wfdb.rdann( "100", "atr", pn_dir="mitdb", return_label_elements=["label_store", "symbol"], ) pn_annotation.aux_note[0] = "(N" pn_annotation.create_label_map() # Test file writing annotation.wrann(write_fs=True) write_annotation = wfdb.rdann( "100", "atr", return_label_elements=["label_store", "symbol"] ) write_annotation.create_label_map() assert comp == [True] * 6 assert annotation.__eq__(pn_annotation) assert annotation.__eq__(write_annotation) def test_2(self): """ Annotation file with many aux_note strings. Target file created with: rdann -r sample-data/100 -a atr > ann-2 """ annotation = wfdb.rdann("sample-data/12726", "anI") # Target data from WFDB software package lines = tuple(open("tests/target-output/ann-2", "r")) nannot = len(lines) target_time = [None] * nannot target_sample = np.empty(nannot, dtype="object") target_symbol = [None] * nannot target_subtype = np.empty(nannot, dtype="object") target_chan = np.empty(nannot, dtype="object") target_num = np.empty(nannot, dtype="object") target_aux_note = [None] * nannot RXannot = re.compile( "[ \t]*(?P<time>[\[\]\w\.:]+) +(?P<sample>\d+) +(?P<symbol>.) +(?P<subtype>\d+) +(?P<chan>\d+) +(?P<num>\d+)\t?(?P<aux_note>.*)" ) for i in range(0, nannot): ( target_time[i], target_sample[i], target_symbol[i], target_subtype[i], target_chan[i], target_num[i], target_aux_note[i], ) = RXannot.findall(lines[i])[0] # Convert objects into integers target_sample = target_sample.astype("int") target_num = target_num.astype("int") target_subtype = target_subtype.astype("int") target_chan = target_chan.astype("int") # Compare comp = [ np.array_equal(annotation.sample, target_sample), np.array_equal(annotation.symbol, target_symbol), np.array_equal(annotation.subtype, target_subtype), np.array_equal(annotation.chan, target_chan), np.array_equal(annotation.num, target_num), annotation.aux_note == target_aux_note, ] # Test file streaming pn_annotation = wfdb.rdann( "12726", "anI", pn_dir="prcp", return_label_elements=["label_store", "symbol"], ) pn_annotation.create_label_map() # Test file writing annotation.wrann(write_fs=True) write_annotation = wfdb.rdann( "12726", "anI", return_label_elements=["label_store", "symbol"] ) write_annotation.create_label_map() assert comp == [True] * 6 assert annotation.__eq__(pn_annotation) assert annotation.__eq__(write_annotation) def test_3(self): """ Annotation file with custom annotation types Target file created with: rdann -r sample-data/1003 -a atr > ann-3 """ annotation = wfdb.rdann("sample-data/1003", "atr") # Target data from WFDB software package lines = tuple(open("tests/target-output/ann-3", "r")) nannot = len(lines) target_time = [None] * nannot target_sample = np.empty(nannot, dtype="object") target_symbol = [None] * nannot target_subtype = np.empty(nannot, dtype="object") target_chan = np.empty(nannot, dtype="object") target_num =
np.empty(nannot, dtype="object")
numpy.empty
import numpy as np import scipy.io as sio import torch.utils.data from torch.utils.data import DataLoader import pdb class NeuralData(torch.utils.data.Dataset): def __init__(self, data, data2, num_trials_per_class=91): self.data = data self.data2 = data2 self.num_trials_per_class = num_trials_per_class self.size = data.shape[0] def __getitem__(self, index): input1_data = self.data[index] input2_data = self.data2[index] target = index // self.num_trials_per_class return input1_data, input2_data, target def __len__(self): return self.size def break_correlations(data): # data is a TxN matrix, representing trials by neurons (and I want to permute the neurons across trials differently to break single trial correlations) permuted_data = np.zeros_like(data) for i in range(data.shape[1]): permuted_data[:, i] = np.random.permutation(data[:, i]) return permuted_data def get_neural_nocorr_loader(workers=0, batch_size=10, time1=None, time2=None, deltat=None): data = sio.loadmat('data/ps4_realdata.mat') # load the .mat file. NumTrainData = data['train_trial'].shape[0] NumClass = data['train_trial'].shape[1] NumTestData = data['test_trial'].shape[0] trainDataArr = np.zeros((NumClass, NumTrainData, 97)) # contains the firing rates for all neurons on all 8 x 91 trials in the training set testDataArr = np.zeros((NumClass, NumTestData, 97)) # for the testing set. for classIX in range(NumClass): for trainDataIX in range(NumTrainData): trainDataArr[classIX, trainDataIX, :] = np.sum(data['train_trial'][trainDataIX, classIX][1][:, 350:550], 1) for testDataIX in range(NumTestData): testDataArr[classIX, testDataIX, :] = np.sum(data['test_trial'][testDataIX, classIX][1][:, 350:550], 1) # permute the data to break the single trial correlations trainDataArrNoCorr = np.zeros((NumClass, NumTrainData, 97)) for classIX in range(NumClass): trainDataArrNoCorr[classIX, :, :] = break_correlations(trainDataArr[classIX, :, :]) trainData = trainDataArr.reshape(-1, 97) trainDataNoCorr = trainDataArrNoCorr.reshape(-1, 97) testData = testDataArr.reshape(-1, 97) trainset = NeuralData(data=trainData, data2=trainDataNoCorr) testset = NeuralData(data=testData, data2=testData) trainloader = DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=workers) testloader = DataLoader(testset, batch_size=100, shuffle=False, num_workers=workers) return trainloader, testloader # get different time windows def get_neural_time_loader(workers=0, batch_size=10, time1=150, time2=350, deltat=100): data = sio.loadmat('data/ps4_realdata.mat') # load the .mat file. NumTrainData = data['train_trial'].shape[0] NumClass = data['train_trial'].shape[1] NumTestData = data['test_trial'].shape[0] trainDataArr = np.zeros((NumClass, NumTrainData, 97)) # contains the firing rates for all neurons on all 8 x 91 trials in the training set trainDataArr2 = np.zeros((NumClass, NumTrainData, 97)) testDataArr = np.zeros((NumClass, NumTestData, 97)) # for the testing set. testDataArr2 = np.zeros((NumClass, NumTestData, 97)) # for the testing set. for classIX in range(NumClass): for trainDataIX in range(NumTrainData): trainDataArr[classIX, trainDataIX, :] = np.sum(data['train_trial'][trainDataIX, classIX][1][:, time1:time1 + deltat], 1) trainDataArr2[classIX, trainDataIX, :] = np.sum(data['train_trial'][trainDataIX, classIX][1][:, time2:time2 + deltat], 1) for testDataIX in range(NumTestData): testDataArr[classIX, testDataIX, :] = np.sum(data['test_trial'][testDataIX, classIX][1][:, time1:time1 + deltat], 1) testDataArr2[classIX, testDataIX, :] =
np.sum(data['test_trial'][testDataIX, classIX][1][:, time2:time2 + deltat], 1)
numpy.sum
''' A simple Bax-Sneppen 2D model with basic functions to populate and advance the model. This code was built by <NAME>, <NAME>, <NAME> and <NAME>, all master students Computational Science at the University of Amsterdam. ''' import itertools from copy import deepcopy from scipy.stats import multivariate_normal import numpy as np class BaxSneppen2D(object): ''' A simple Bax-Sneppen 2D model with basic functions to populate and advance the model. ''' def __init__(self, slum_size=(15, 15), empty_percent=0.3, cell_decrease_factor=0.8): # Set the cell decrease factor parameter. self.cell_decrease_factor = cell_decrease_factor # Set some variables to keep track of the slum. self.state = np.ones(slum_size) * 2 self.ages = np.ones(slum_size) * -1 self.neighbour_counts = {} # Populate the grid. self.populate(empty_percent, slum_size) # Get the neighbour counts of the empty cells self.init_neighbour_counts() # Normal distribution used to add values to the grid. x_mean = slum_size[0]*0.5 y_mean = slum_size[1]*0.5 cov = np.array([[x_mean*0.8, 0], [0, y_mean*0.8]]) self.mvn = multivariate_normal([x_mean, y_mean], cov) self.slum_size = slum_size def populate(self, empty_percent, slum_size): ''' Determines the next slum a cell wants to go to, with a preference to cells with cells that are more satisfied. PARAMETERS =================================================== empty_percent: float The percent of cells which have to become empty. Range between 0 and 1. slum_size: (int, int) The size of the slum which has to be populated. ''' if empty_percent == 1: return for x_cell in range(slum_size[0]): for y_cell in range(slum_size[1]): self.state[x_cell][y_cell] = np.random.uniform(0, 1, 1) self.ages[x_cell][y_cell] = 0 empty = np.random.choice(range(slum_size[0] * slum_size[1]), empty_percent * slum_size[0] * slum_size[1], replace=False) for i in empty: self.state[i % slum_size[0]][i // slum_size[0]] = 2 self.ages[i % slum_size[0]][i // slum_size[0]] = -1 def get_min_val(self): ''' Returns the minimum cell value in the state. PARAMETERS =================================================== None RETURNS =================================================== float The minimum cell value in the state. Range between 0 and 1. ''' return np.min(self.state) # This is a logical function to have within the class. # pylint: disable=no-self-use def count_neighbours(self, state, x_cell, y_cell): ''' Returns the index of the cell with the minimum cell value in the state. PARAMETERS =================================================== state: numpy.ndarray The state in which the cell resides. x_cell: integer The x-coordinate of the cell. y_cell: integer The y-coordinate of the cell RETURNS =================================================== integer The number of neighbours of the cell at (x_cell, y_cell). ''' neighbours = 0 combinations = [[-1, 0], [1, 0], [0, -1], [0, 1]] for x_dif, y_dif in combinations: x_coor = (x_cell + x_dif) % len(state) y_coor = (y_cell + y_dif) % len(state[0]) if state[x_coor][y_coor] != 2: neighbours += 1 return neighbours def init_neighbour_counts(self): ''' Initialises the neighbour counts of all cells. PARAMETERS =================================================== None ''' for x_cell in range(len(self.state)): for y_cell in range(len(self.state[0])): if self.state[x_cell][y_cell] == 2: count = self.count_neighbours(self.state, x_cell, y_cell) self.neighbour_counts[(x_cell, y_cell)] = count def update_neighbour_counts(self, state, x_cell, y_cell, update_value): ''' Returns the index of the cell with the minimum cell value in the state. PARAMETERS =================================================== state: numpy.ndarray The state in which the cell resides. x_cell: integer The x-coordinate of the cell. y_cell: integer The y-coordinate of the cell update_value: integer The change in the neighbour count. ''' combinations = [[-1, 0], [1, 0], [0, -1], [0, 1]] if update_value < 0: self.neighbour_counts[(x_cell, y_cell)] = self.count_neighbours(state, x_cell, y_cell) for x_dif, y_dif in combinations: x_coor = (x_cell + x_dif) % len(state) y_coor = (y_cell + y_dif) % len(state[0]) if state[x_coor][y_coor] == 2: self.neighbour_counts[(x_coor, y_coor)] += update_value def get_min_val_index(self): ''' Returns the index of the cell with the minimum cell value in the state. PARAMETERS =================================================== None RETURNS =================================================== float The index of the cell with the minimum cell value in the state. ''' return np.argmin(self.state) def get_avg_val(self): ''' Returns the average cell value in the state. PARAMETERS =================================================== None RETURNS =================================================== float The average cell value in the state. Range between 0 and 1. ''' non_empty = self.state[self.state != 2] if non_empty.any(): return np.mean(non_empty) return 0 def has_empty(self): ''' Returns if there is an empty cell in the state. PARAMETERS =================================================== None RETURNS =================================================== boolean Whether the state has an empty cell. ''' empty = np.where(self.state == 2) if not empty[0].any(): return False return True def get_density(self): ''' Returns the density of the current state. PARAMETERS =================================================== None RETURNS =================================================== float The density of the current state. If the state is empty, -1 is returned. ''' non_empty_size =
np.sum(self.state != 2)
numpy.sum
#!/usr/bin/env python # coding: utf-8 """ Tools for plotting data from Dimitris' global high resolution model once read into xarray Dataset. """ import numpy as np import xarray as xr import gsw import scipy as sp from scipy import interpolate def distance(lon, lat, p=np.array([0]), axis=-1): """ From gsw: Great-circle distance in m between lon, lat points. Parameters ---------- lon, lat : array-like, 1-D or 2-D (shapes must match) Longitude, latitude, in degrees. p : array-like, scalar, 1-D or 2-D, optional, default is 0 Sea pressure (absolute pressure minus 10.1325 dbar), dbar axis : int, -1, 0, 1, optional The axis or dimension along which *lat and lon* vary. This differs from most functions, for which axis is the dimension along which p increases. Returns ------- distance : 1-D or 2-D array distance in meters between adjacent points. """ earth_radius = 6371e3 if not lon.shape == lat.shape: raise ValueError('lon, lat shapes must match; found %s, %s' % (lon.shape, lat.shape)) if not (lon.ndim in (1, 2) and lon.shape[axis] > 1): raise ValueError('lon, lat must be 1-D or 2-D with more than one point' ' along axis; found shape %s and axis %s' % (lon.shape, axis)) if lon.ndim == 1: one_d = True lon = lon[np.newaxis, :] lat = lat[np.newaxis, :] axis = -1 else: one_d = False one_d = one_d and p.ndim == 1 if axis == 0: indm = (slice(0, -1), slice(None)) indp = (slice(1, None), slice(None)) else: indm = (slice(None), slice(0, -1)) indp = (slice(None), slice(1, None)) if np.all(p == 0): z = 0 else: lon, lat, p = np.broadcast_arrays(lon, lat, p) p_mid = 0.5 * (p[indm] + p[indp]) lat_mid = 0.5 * (lat[indm] + lat[indp]) z = z_from_p(p_mid, lat_mid) lon = np.radians(lon) lat = np.radians(lat) dlon = np.diff(lon, axis=axis) dlat = np.diff(lat, axis=axis) a = ((np.sin(dlat / 2)) ** 2 + np.cos(lat[indm]) * np.cos(lat[indp]) * (np.sin(dlon / 2)) ** 2) angles = 2 * np.arctan2(np.sqrt(a), np.sqrt(1 - a)) distance = (earth_radius + z) * angles if one_d: distance = distance[0] return distance def model_bathy_section(lon,lat,d,res=1,ext=0): """Extract Samoan Passage bathymetry along sections defined by lon/lat coordinates. Parameters ---------- lon : arraylike Longitude position along section lat : arraylike Latitude position along section d : Dataset Model Dataset to access lon/lat/BottomDepth res : float Bathymetry resolution ext : float Extension on both sides in km. Set to 0 for no extension Returns ------- out : dict Dictionary with output variables """ # Make sure lon and lat have the same dimensions assert lon.shape==lat.shape, 'lat and lon must have the same size' # Make sure lon and lat have at least 3 elements assert len(lon)>1 and len(lat)>1, 'lon/lat must have at least 2 elements' # Load bathymetry # plon = b['lon'] plon = d.lon.values # plat = b['lat'] plat = d.lat.values # ptopo = -b['merged'] ptopo = d.BottomDepth.values # 2D interpolation function used below f = interpolate.f = interpolate.RectBivariateSpline(plat,plon,ptopo) # calculate distance between original points dist = np.cumsum(distance(lon, lat, np.array([0]))/1000) # distance 0 as first element dist = np.insert(dist,0,0) # Extend lon and lat if ext>0 if ext: ''' Linear fit to start and end points. Do two separate fits if more than 4 data points are give. Otherwise fit all points together. Need to calculate distance first and then scale the lon/lat extension with distance. ''' if len(lon)<5: # only one fit for 4 or less data points dlo = np.abs(lon[0]-lon[-1]) dla = np.abs(lat[0]-lat[-1]) dd = np.abs(dist[0]-dist[-1]) # fit either against lon or lat, depending on orientation of section if dlo>dla: bfit = np.polyfit(lon,lat,1) # extension expressed in longitude (scale dist to lon) lonext = 1.1*ext/dd*dlo if lon[0]<lon[-1]: elon = np.array([lon[0]-lonext,lon[-1]+lonext]) else: elon = np.array([lon[0]+lonext,lon[-1]-lonext]) blat = np.polyval(bfit,elon) nlon = np.hstack((elon[0],lon,elon[-1])) nlat = np.hstack((blat[0],lat,blat[-1])) else: bfit = np.polyfit(lat,lon,1) # extension expressed in latitude (scale dist to lat) latext = 1.1*ext/dd*dla if lat[0]<lat[-1]: elat = np.array([lat[0]-lonext,lat[-1]+lonext]) else: elat = np.array([lat[0]+lonext,lat[-1]-lonext]) blon = np.polyval(bfit,elat) nlon = np.hstack((blon[0],lon,blon[-1])) nlat = np.hstack((elat[0],lat,elat[-1])) else: # one fit on each side of the section as it may change direction dlo1 = np.abs(lon[0]-lon[2]) dla1 = np.abs(lat[0]-lat[2]) dd1 = np.abs(dist[0]-dist[2]) dlo2 = np.abs(lon[-3]-lon[-1]) dla2 = np.abs(lat[-3]-lat[-1]) dd2 = np.abs(dist[-3]-dist[-1]) # deal with one side first if dlo1>dla1: bfit1 = np.polyfit(lon[0:3],lat[0:3],1) lonext1 = 1.1*ext/dd1*dlo1 if lon[0]<lon[2]: elon1 = np.array([lon[0]-lonext1,lon[0]]) else: elon1 = np.array([lon[0]+lonext1,lon[0]]) elat1 = np.polyval(bfit1,elon1) else: bfit1 = np.polyfit(lat[0:3],lon[0:3],1) latext1 = 1.1*ext/dd1*dla1 if lat[0]<lat[2]: elat1 = np.array([lat[0]-latext1,lat[0]]) else: elat1 = np.array([lat[0]+latext1,lat[0]]) elon1 = np.polyval(bfit1,elat1) # now the other side if dlo2>dla2: bfit2 = np.polyfit(lon[-3:],lat[-3:],1) lonext2 = 1.1*ext/dd2*dlo2 if lon[-3]<lon[-1]: elon2 = np.array([lon[-1],lon[-1]+lonext2]) else: elon2 = np.array([lon[-1],lon[-1]-lonext2]) elat2 = np.polyval(bfit2,elon2) else: bfit2 = np.polyfit(lat[-3:],lon[-3:],1) latext2 = 1.1*ext/dd2*dla2 if lat[-3]<lat[-1]: elat2 = np.array([lat[-1],lat[-1]+latext2]) else: elat2 = np.array([lat[-1],lat[-1]-latext2]) elon2 = np.polyval(bfit2,elat2) # combine everything nlon = np.hstack((elon1[0],lon,elon2[1])) nlat = np.hstack((elat1[0],lat,elat2[1])) lon = nlon lat = nlat # Original points (but including extension if there are any) olat = lat olon = lon # Interpolated points ilat = [] ilon = [] # Output dict out = {} # calculate distance between points dist2 = distance(lon,lat,
np.array([0])
numpy.array
import os from PIL import Image from lib.detect import detect import numpy as np from tqdm import tqdm import cv2 from lib.detect import resize_img,load_pil,adjust_ratio,restore_polys,plot_boxes import torch import lanms import shapely from shapely.geometry import Polygon from lib.swt import SWT def get_negative_sample(score_map,negative_thresh=0.5): '''Get the third negative samples reduce FN Input: score map: <numpy.ndarray, (m,n)> Output: negative map: <numpy.ndarray, (m,n)> ''' score_map = score_map[0, :, :] negative_map = np.zeros(score_map.shape) postive_score = (score_map>negative_thresh)*1.0 # 膨胀 kernel = np.ones((4, 4), np.uint8) postive_score = cv2.dilate(postive_score, kernel, iterations=1) xy_negative = np.argwhere(score_map*(1-postive_score)) xy_negative = xy_negative[np.argsort(xy_negative[:, 0])] valid_score = score_map[xy_negative[:, 0], xy_negative[:, 1]] # 5 x n xy_negative = xy_negative[np.argsort(valid_score)] # negative_number = xy_negative.shape[0] xy_negative = xy_negative[:int(xy_negative.shape[0] / 3), :].T #取前1/3的值作为负样本进行监督 negative_map[xy_negative[0], xy_negative[1]] = 1 return negative_map def get_boxes(score, geo, score_thresh=0.9, nms_thresh=0.2): '''get boxes from feature map Input: score : score map from model <numpy.ndarray, (1,row,col)> geo : geo map from model <numpy.ndarray, (5,row,col)> score_thresh: threshold to segment score map nms_thresh : threshold in nms Output: boxes : final polys <numpy.ndarray, (n,9)> ''' score = score[0,:,:] xy_text = np.argwhere(score > score_thresh) # n x 2, format is [r, c] if xy_text.size == 0: return None,None xy_text = xy_text[
np.argsort(xy_text[:, 0])
numpy.argsort
from PIL import Image import numpy as np def get_size_and_grad(height_len, width_len): correct = True flag = 0 while correct: if flag > 0: print("размеру мозаики должен быть делителем для ширины и высоты изображения, " "а градация серого должна быть меньше 128") print('Введите размер мозаики и градацию серого через пробел: ') flag += 1 array = input().split(' ') array = [int(x) for x in array] if height_len % array[0] == 0 and width_len % array[0] == 0 and array[1] < 128: correct = False print('Данные корректы, ищите результат в папке.') return(array[0], array[1]) def search_grey(i, j, array, size, grad): sum = int(
np.sum(array[i:i + size, j:j + size, 0])
numpy.sum
""" Generate a bunch of trimesh objects, in meter radian """ import math import numpy as np import basis.trimesh.primitives as tp import basis.trimesh as trm import basis.robot_math as rm import shapely.geometry as shpg def gen_box(extent=np.array([1, 1, 1]), homomat=np.eye(4)): """ :param extent: x, y, z (origin is 0) :param homomat: rotation and translation :return: a Trimesh object (Primitive) author: weiwei date: 20191228osaka """ return tp.Box(box_extents=extent, box_transform=homomat) def gen_stick(spos=np.array([0, 0, 0]), epos=np.array([0.1, 0, 0]), thickness=0.005, type="rect", sections=8): """ interface to genrectstick/genroundstick :param spos: 1x3 nparray :param epos: 1x3 nparray :param thickness: 0.005 m by default :param type: rect or round :param sections: # of discretized sectors used to approximate a cylinder :return: author: weiwei date: 20191228osaka """ if type == "rect": return gen_rectstick(spos, epos, thickness, sections=sections) if type == "round": return gen_roundstick(spos, epos, thickness, count=[sections / 2.0, sections / 2.0]) def gen_rectstick(spos=np.array([0, 0, 0]), epos=np.array([0.1, 0, 0]), thickness=.005, sections=8): """ :param spos: 1x3 nparray :param epos: 1x3 nparray :param thickness: 0.005 m by default :param sections: # of discretized sectors used to approximate a cylinder :return: a Trimesh object (Primitive) author: weiwei date: 20191228osaka """ pos = spos height = np.linalg.norm(epos - spos) if np.allclose(height, 0): rotmat = np.eye(3) else: rotmat = rm.rotmat_between_vectors(np.array([0, 0, 1]), epos - spos) homomat = rm.homomat_from_posrot(pos, rotmat) return tp.Cylinder(height=height, radius=thickness / 2.0, sections=sections, homomat=homomat) def gen_roundstick(spos=np.array([0, 0, 0]), epos=np.array([0.1, 0, 0]), thickness=0.005, count=[8, 8]): """ :param spos: :param epos: :param thickness: :return: a Trimesh object (Primitive) author: weiwei date: 20191228osaka """ pos = spos height = np.linalg.norm(epos - spos) if np.allclose(height, 0): rotmat = np.eye(3) else: rotmat = rm.rotmat_between_vectors(np.array([0, 0, 1]), epos - spos) homomat = rm.homomat_from_posrot(pos, rotmat) return tp.Capsule(height=height, radius=thickness / 2.0, count=count, homomat=homomat) def gen_dashstick(spos=np.array([0, 0, 0]), epos=np.array([0.1, 0, 0]), thickness=0.005, lsolid=None, lspace=None, sections=8, sticktype="rect"): """ :param spos: 1x3 nparray :param epos: 1x3 nparray :param thickness: 0.005 m by default :param lsolid: length of the solid section, 1*thickness if None :param lspace: length of the empty section, 1.5*thickness if None :return: author: weiwei date: 20191228osaka """ solidweight = 1.6 spaceweight = 1.07 if not lsolid: lsolid = thickness * solidweight if not lspace: lspace = thickness * spaceweight length, direction = rm.unit_vector(epos - spos, toggle_length=True) nstick = math.floor(length / (lsolid + lspace)) vertices = np.empty((0, 3)) faces = np.empty((0, 3)) for i in range(0, nstick): tmp_spos = spos + (lsolid * direction + lspace * direction) * i tmp_stick = gen_stick(spos=tmp_spos, epos=tmp_spos + lsolid * direction, thickness=thickness, type=sticktype, sections=sections) tmp_stick_faces = tmp_stick.faces + len(vertices) vertices = np.vstack((vertices, tmp_stick.vertices)) faces = np.vstack((faces, tmp_stick_faces)) # wrap up the last segment tmp_spos = spos + (lsolid * direction + lspace * direction) * nstick tmp_epos = tmp_spos + lsolid * direction final_length, _ = rm.unit_vector(tmp_epos - spos, toggle_length=True) if final_length > length: tmp_epos = epos tmp_stick = gen_stick(spos=tmp_spos, epos=tmp_epos, thickness=thickness, type=sticktype, sections=sections) tmp_stick_faces = tmp_stick.faces + len(vertices) vertices = np.vstack((vertices, tmp_stick.vertices)) faces = np.vstack((faces, tmp_stick_faces)) return trm.Trimesh(vertices=vertices, faces=faces) def gen_sphere(pos=np.array([0, 0, 0]), radius=0.02, subdivisions=2): """ :param pos: 1x3 nparray :param radius: 0.02 m by default :param subdivisions: levels of icosphere discretization :return: author: weiwei date: 20191228osaka """ return tp.Sphere(sphere_radius=radius, sphere_center=pos, subdivisions=subdivisions) def gen_ellipsoid(pos=np.array([0, 0, 0]), axmat=np.eye(3), subdivisions=5): """ :param pos: :param axmat: 3x3 mat, each column is an axis of the ellipse :param subdivisions: levels of icosphere discretization :return: author: weiwei date: 20191228osaka """ homomat = rm.homomat_from_posrot(pos, axmat) sphere = tp.Sphere(sphere_radius=1, sphere_center=pos, subdivisions=subdivisions) vertices = rm.homomat_transform_points(homomat, sphere.vertices) return trm.Trimesh(vertices=vertices, faces=sphere.faces) def gen_dumbbell(spos=np.array([0, 0, 0]), epos=np.array([0.1, 0, 0]), thickness=0.005, sections=8, subdivisions=1): """ NOTE: return stick+spos_ball+epos_ball also work, but it is a bit slower :param spos: 1x3 nparray :param epos: 1x3 nparray :param thickness: 0.005 m by default :param sections: :param subdivisions: levels of icosphere discretization :return: author: weiwei date: 20191228osaka """ stick = gen_rectstick(spos=spos, epos=epos, thickness=thickness, sections=sections) spos_ball = gen_sphere(pos=spos, radius=thickness, subdivisions=subdivisions) epos_ball = gen_sphere(pos=epos, radius=thickness, subdivisions=subdivisions) vertices = np.vstack((stick.vertices, spos_ball.vertices, epos_ball.vertices)) sposballfaces = spos_ball.faces + len(stick.vertices) endballfaces = epos_ball.faces + len(spos_ball.vertices) + len(stick.vertices) faces = np.vstack((stick.faces, sposballfaces, endballfaces)) return trm.Trimesh(vertices=vertices, faces=faces) def gen_cone(spos=
np.array([0, 0, 0])
numpy.array
import numpy as np #for array processing from PIL import Image #for Image Array conversion Image.MAX_IMAGE_PIXELS = None #to remove limit on maximum number of pixels to be processed # 3x3 edge detection def edgeDetection(): kernel=
np.array([[1,0,-1],[2,0,-2],[1,0,-1]])
numpy.array
from torch import optim, nn import coloredlogs import logging import os import torch import numpy as np from datetime import datetime from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter from transformers import AdamW, get_constant_schedule_with_warmup import datasets.utils import models.utils from datasets.episode import EpisodeDataset from models.base_models import BERTSequenceModel from models.seq_meta import SeqMetaModel logger = logging.getLogger('MAML Log') coloredlogs.install(logger=logger, level='DEBUG', fmt='%(asctime)s - %(name)s - %(levelname)s - %(message)s') class MAML: def __init__(self, config): now = datetime.now() date_time = now.strftime("%m-%d-%H-%M-%S") self.tensorboard_writer = SummaryWriter(log_dir='runs/MAML-' + date_time) self.base_path = config['base_path'] self.stamp = config['stamp'] self.updates = config['num_updates'] self.meta_epochs = config['num_meta_epochs'] self.early_stopping = config['early_stopping'] self.meta_lr = config.get('meta_lr', 1e-3) self.meta_weight_decay = config.get('meta_weight_decay', 0.0) self.stopping_threshold = config.get('stopping_threshold', 1e-3) self.meta_batch_size = config.get('meta_batch_size', 16) self.fomaml = config.get('fomaml', False) self.multi_gpu = torch.cuda.device_count() > 1 and config.get('multi_gpu', False) if self.multi_gpu: self.n_devices = torch.cuda.device_count() logger.info('Using {} GPUs'.format(self.n_devices)) if 'seq' in config['meta_model']: self.meta_model = SeqMetaModel(config) if self.fomaml: logger.info('FOMAML instantiated') else: logger.info('MAML instantiated') def _replicate_model(self): replica_meta_models = models.utils.replicate_model_to_gpus(self.meta_model, list(range(self.n_devices))) return replica_meta_models def _multi_gpu_training(self, train_episodes): chunked_train_episodes = [] for i in range(self.n_devices): chunk = train_episodes[i::self.n_devices] chunked_train_episodes.append([chunk]) kwargs_tup = ({'updates': self.updates}, ) * self.n_devices parallel_outputs = nn.parallel.parallel_apply(self.replica_meta_models, chunked_train_episodes, kwargs_tup, list(range(self.n_devices))) losses, accuracies, precisions, recalls, f1s = [], [], [], [], [] for i in range(self.n_devices): losses.extend(parallel_outputs[i][0]) accuracies.extend(parallel_outputs[i][1]) precisions.extend(parallel_outputs[i][2]) recalls.extend(parallel_outputs[i][3]) f1s.extend(parallel_outputs[i][4]) target_device = next(self.meta_model.learner.parameters()).device for name, param in self.meta_model.learner.named_parameters(): if param.requires_grad: grad_sum = 0 for r in self.replica_meta_models: for n, p in r.learner.named_parameters(): if n == name: grad_sum += p.grad.to(target_device) param.grad = grad_sum / self.n_devices return losses, accuracies, precisions, recalls, f1s def _synchronize_weights(self): for rm in self.replica_meta_models[1:]: rm.learner.load_state_dict(self.meta_model.learner.state_dict()) rm.learner.zero_grad() def initialize_optimizer_scheduler(self): learner_params = [p for p in self.meta_model.learner.parameters() if p.requires_grad] if isinstance(self.meta_model.learner, BERTSequenceModel): meta_optimizer = AdamW(learner_params, lr=self.meta_lr, weight_decay=self.meta_weight_decay) lr_scheduler = get_constant_schedule_with_warmup(meta_optimizer, num_warmup_steps=100) else: meta_optimizer = optim.Adam(learner_params, lr=self.meta_lr, weight_decay=self.meta_weight_decay) lr_scheduler = optim.lr_scheduler.StepLR(meta_optimizer, step_size=200, gamma=0.5) return meta_optimizer, lr_scheduler def training(self, train_episodes, val_episodes): meta_optimizer, lr_scheduler = self.initialize_optimizer_scheduler() best_loss = float('inf') best_f1 = 0 patience = 0 global_step = 0 model_path = os.path.join(self.base_path, 'saved_models', 'MetaModel-{}.h5'.format(self.stamp)) logger.info('Model name: MetaModel-{}.h5'.format(self.stamp)) episode_train_dataset = EpisodeDataset(train_episodes) episode_train_dataloader = DataLoader(episode_train_dataset, batch_size=self.meta_batch_size, collate_fn=datasets.utils.prepare_task_batch, shuffle=True) if self.multi_gpu: self.replica_meta_models = self._replicate_model() for epoch in range(self.meta_epochs): logger.info('Starting epoch {}'.format(epoch+1)) losses, accuracies, precisions, recalls, f1s = [], [], [], [], [] for idx, epts in enumerate(episode_train_dataloader): logger.info('Iteration {}/{}'.format(idx+1, len(episode_train_dataloader))) meta_optimizer.zero_grad() if not self.multi_gpu: ls, acc, prec, rcl, f1 = self.meta_model(epts, self.updates) else: ls, acc, prec, rcl, f1 = self._multi_gpu_training(epts) meta_optimizer.step() lr_scheduler.step() global_step += 1 if self.multi_gpu: self._synchronize_weights() losses.extend(ls) accuracies.extend(acc) precisions.extend(prec) recalls.extend(rcl) f1s.extend(f1) # Log params and grads into tensorboard # for name, param in self.meta_model.named_parameters(): # if param.requires_grad and param.grad is not None: # self.tensorboard_writer.add_histogram('Params/' + name, param.data.view(-1), global_step=global_step) # self.tensorboard_writer.add_histogram('Grads/' + name, param.grad.data.view(-1), # global_step=global_step) avg_loss = np.mean(losses) avg_accuracy = np.mean(accuracies) avg_precision = np.mean(precisions) avg_recall = np.mean(recalls) avg_f1 = np.mean(f1s) logger.info('Meta train epoch {}: Avg loss = {:.5f}, avg accuracy = {:.5f}, avg precision = {:.5f}, ' 'avg recall = {:.5f}, avg F1 score = {:.5f}'.format(epoch + 1, avg_loss, avg_accuracy, avg_precision, avg_recall, avg_f1)) self.tensorboard_writer.add_scalar('Loss/train', avg_loss, global_step=epoch+1) self.tensorboard_writer.add_scalar('F1/train', avg_f1, global_step=epoch+1) losses, accuracies, precisions, recalls, f1s = self.meta_model(val_episodes, self.updates, testing=True) avg_loss = np.mean(losses) avg_accuracy = np.mean(accuracies) avg_precision = np.mean(precisions) avg_recall = np.mean(recalls) avg_f1 =
np.mean(f1s)
numpy.mean
#!/usr/bin/env python """ tidal_energy.py State Estimation and Analysis for PYthon Module to compute tidal energy from a column of data. Written by <NAME> on 03/30/16 Copyright (c)2019 University of Hawaii under the MIT-License. Notes ----- Barotropic to Baroclinic conversion is given by: .. math:: C=1 / T_t \int_0^T_t P'_t * wbar_t * dt, (1) where, T_t is the tidal period for consituent, t, P' is the pressure perturbation, wbar is the vertical velocity. Hence, conversion is the time average of the vertical motion of the bottom pressure perturbation. We can do it spectrally if we represent P'_t and wbar_t as waves: .. math:: P'_t = Amp_P'_t * sin( 2 * pi * t / T_t + Pha_P'_t ) (2) \\ wbar_t = Amp_wbar_t * sin( 2 * pi * t / T_t + Pha_wbar_t ) (3) If we substitute (2) and (3) into (1) using trig. identity and integrate over the period (recall that integrating a wave over one period is zero): .. math:: Conversion = 0.5 * Amp_P'_t * Amp_wbar_t * cos( Pha_P'_t - Pha_wbar_t )(4) Energy Flux is given by: .. math:: Flux_u = 1 / T_t * \int_0^T_t u'_t * P'_t * dt, (5) \\ Flux_v = 1 / T_t * \int_0^T_t v'_t * P'_t * dt, (6) where u' and v' are the velocity anomalies for the constituent, t. As per above, we can express as waves to yield: .. math:: Flux_u = 0.5 * Amp_u'_t * Amp_P'_t * cos( Pha_u'_t - Pha_P'_t ) (7) \\ Flux_v = 0.5 * Amp_v'_t * Amp_P'_t * cos( Pha_v'_t - Pha_P'_t ) (8) Displacement is given by: .. math:: Displace = \int_0^T_t/2 g * rho'_t / ( rho0 * N_t**2 ) * dt, (9) where rho' is the density anomaly and N**2 is the Brunt-Vaisala. NOTE: this is integrated over one-half period becuase (by definition), it would integrate to zero. However, if we know the tidal vertical velocity, then we can integrate it for one-half period for the todal displacement: .. math:: Displace = \int_0^T_t/2 w_t * dt \\ = \int_0^T_t/2 Amp_w_t * sin( 2 * pi * t / T_t ) (10) \\ = Amp_w_t * T_t / pi Horizontal Kinetic Energy is given by: .. math:: HKE = 0.5 * rho0 * 1 / T_t * \int_0^T_t (u'_t**2 + v'_t**2) * dt (11) substitute u' and v' as waveforms and integrate over a period, .. math:: HKE = 0.5 * rho0 * 0.5 * ( Amp_u'_t**2 _ Amp_v'_t**2 ) (12) Available Potential Energy is given by: .. math:: APE = 0.5 * rho0 * 1 / T_t * \int_0^T_t N_t**2 * Displace_t**2 * dt (13) For this, we will use the time-average N**2 (not at the specific tidal frequency) and use (10); hence, it becomes: .. math:: APE = 0.5 * rho0 * (Amp_w_t * T_t / pi)**2 * 1/T_t \int_0^T_t N**2 * dt (14) """ import numpy as np import seapy _rho0 = 1000 class energetics(): """ This class is a container for the energetics produced by the tidal_energy calculation to simplify access to the resulting data. """ def __init__(self, tides, energy, integrals, ellipse): try: self.tides = tides.tolist() except AttributeError: self.tides = tides self.energy = energy if len(tides) != energy.shape[0]: raise ValueError( "The number of tides and energy values are inconsistent") self.integrals = integrals self.ellipse = ellipse pass def __getitem__(self, key): """ Return the energetics for a tidal constituent """ t = self.tides.index(key.upper()) return {"conversion": self.integrals[t, 2], "flux_u": self.energy[t, :, 0], "flux_v": self.energy[t, :, 1], "disp": self.energy[t, :, 2], "hke": self.energy[t, :, 3], "ape": self.energy[t, :, 4], "total_flux_u": self.integrals[t, 0], "total_flux_v": self.integrals[t, 1], "total_hke": self.integrals[t, 3], "total_ape": self.integrals[t, 4], "ellipse": self.ellipse[key.upper()]} pass def tidal_energy(time, hz, u, v, w, pressure, bvf=None, tides=None, ubar=None, vbar=None, wbar=None): """ Calculate aspects of tidal energy from the given data: baroclinic energy flux, HKE, APE, displacement, and conversion. This only works for a single depth profile, and the arrays are to be 2D with dimensions of [time, depth] with depth index 0 as the bottom and inded -1 as the surface. Likewise, the hz field is oriented the same. Parameters ---------- time : list of datetime, times of data hz : ndarray, Thickness of the water column represented by 3D quantities [m] u : ndarray, u-component of 3D velocity [m s**-1] v : ndarray, v-component of 3D velocity [m s**-1] w : ndarray, w-component of 3D velocity [m s**-1] pressure : ndarray, pressure of the 3D field [dbar] bvf : ndarray, optional Brunt-Vaisala Frequency of the 3D field [s**-1]. If not specified the APE will not be computed tides: list of strings, optional The names of the tides to use for analysis. If none provided, use the defaults from seapy.tide ubar : ndarray, optional u-component of barotropic velocity [m s**-1]. If none provided, compute from u vbar : ndarray, optional v-component of barotropic velocity [m s**-1]. If none provided, compute from v wbar : ndarray, optional w-component of barotropic velocity [m s**-1]. If none provided, compute from w Returns ------- energetics : class, The energetics for each tidal consituent as well as the vertically integrated properties. The energetics class provides various methods for accessing the data """ # Ensure arrays as needed u = np.ma.array(u) v = np.ma.array(v) w = np.ma.array(w) pressure = np.ma.array(pressure) # Setup the thicknesses in time hz = np.ma.array(hz) if hz.ndims == 1: hz = np.tile(hz, (u.shape[0])) total_h = np.sum(hz, axis=1) ndep = hz.shape[1] # If BVF not given, set to zero if bvf: bvf = np.ma.array(bvf).mean(axis=0) else: bvf = np.zeros(ndep) # Setup the tides tides = seapy.tide._set_tides(tides) ntides = len(tides) period = 3600 / seapy.tide.frequency(tides) # Setup the barotropic velocities if ubar and vbar: ubar = np.ma.array(ubar) vbar = np.ma.array(vbar) wbar = np.ma.array(wbar) else: ubar = np.sum(hz * u, axis=1) / total_h vbar = np.sum(hz * v, axis=1) / total_h wbar = np.sum(hz * w, axis=1) / total_h # Calculate Pressure Anomalies p_prime = pressure - pressure.mean(axis=0) # Apply baroclinicity p_prime -=
np.sum(p_prime * hz)
numpy.sum
############################################################################### # evolveddiskdf.py: module that builds a distribution function as a # steady-state DF + subsequent evolution # # This module contains the following classes: # # evolveddiskdf - top-level class that represents a distribution function ############################################################################### from __future__ import print_function _NSIGMA= 4. _NTS= 1000 _PROFILE= False import sys import math import copy import time as time_module import warnings import numpy as nu from scipy import integrate from galpy.util import galpyWarning from galpy.orbit import Orbit from galpy.potential import calcRotcurve from galpy.df_src.df import df, _APY_LOADED from galpy.potential_src.Potential import _check_c from galpy.util.bovy_quadpack import dblquad from galpy.util import bovy_plot from galpy.util.bovy_conversion import physical_conversion, \ potential_physical_input, time_in_Gyr if _APY_LOADED: from astropy import units _DEGTORAD= math.pi/180. _RADTODEG= 180./math.pi _NAN= nu.nan class evolveddiskdf(df): """Class that represents a diskdf as initial DF + subsequent secular evolution""" def __init__(self,initdf,pot,to=0.): """ NAME: __init__ PURPOSE: initialize INPUT: initdf - the df at the start of the evolution (at to) (units are transferred) pot - potential to integrate orbits in to= initial time (time at which initdf is evaluated; orbits are integrated from current t back to to) (can be Quantity) OUTPUT: instance HISTORY: 2011-03-30 - Written - Bovy (NYU) """ if initdf._roSet: ro= initdf._ro else: ro= None if initdf._voSet: vo= initdf._vo else: vo= None df.__init__(self,ro=ro,vo=vo) self._initdf= initdf self._pot= pot if _APY_LOADED and isinstance(to,units.Quantity): to= to.to(units.Gyr).value/time_in_Gyr(self._vo,self._ro) self._to= to @physical_conversion('phasespacedensity2d',pop=True) def __call__(self,*args,**kwargs): """ NAME: __call__ PURPOSE: evaluate the distribution function INPUT: Orbit instance: a) Orbit instance alone: use initial state and t=0 b) Orbit instance + t: Orbit instance *NOT* called (i.e., Orbit's initial condition is used, call Orbit yourself), t can be Quantity If t is a list of t, DF is returned for each t, times must be in descending order and equally spaced (does not work with marginalize...) marginalizeVperp - marginalize over perpendicular velocity (only supported with 1a) above) + nsigma, +scipy.integrate.quad keywords marginalizeVlos - marginalize over line-of-sight velocity (only supported with 1a) above) + nsigma, +scipy.integrate.quad keywords log= if True, return the log (not for deriv, bc that can be negative) integrate_method= method argument of orbit.integrate deriv= None, 'R', or 'phi': calculates derivative of the moment wrt R or phi **not with the marginalize options** OUTPUT: DF(orbit,t) HISTORY: 2011-03-30 - Written - Bovy (NYU) 2011-04-15 - Added list of times option - Bovy (NYU) """ integrate_method= kwargs.pop('integrate_method','dopr54_c') # Must match Python fallback for non-C potentials here, bc odeint needs # custom t list to avoid numerically instabilities if '_c' in integrate_method and not _check_c(self._pot): if ('leapfrog' in integrate_method \ or 'symplec' in integrate_method): integrate_method= 'leapfrog' else: integrate_method= 'odeint' deriv= kwargs.get('deriv',None) if isinstance(args[0],Orbit): if len(args) == 1: t= 0. else: t= args[1] else: raise IOError("Input to __call__ not understood; this has to be an Orbit instance with optional time") if isinstance(t,list): t= nu.array(t) tlist= True elif isinstance(t,nu.ndarray) and \ not (hasattr(t,'isscalar') and t.isscalar): tlist= True else: tlist= False if _APY_LOADED and isinstance(t,units.Quantity): t= t.to(units.Gyr).value/time_in_Gyr(self._vo,self._ro) if kwargs.pop('marginalizeVperp',False): if tlist: raise IOError("Input times to __call__ is a list; this is not supported in conjunction with marginalizeVperp") if kwargs.pop('log',False): return nu.log(self._call_marginalizevperp(args[0],integrate_method=integrate_method,**kwargs)) else: return self._call_marginalizevperp(args[0],integrate_method=integrate_method,**kwargs) elif kwargs.pop('marginalizeVlos',False): if tlist: raise IOError("Input times to __call__ is a list; this is not supported in conjunction with marginalizeVlos") if kwargs.pop('log',False): return nu.log(self._call_marginalizevlos(args[0],integrate_method=integrate_method,**kwargs)) else: return self._call_marginalizevlos(args[0],integrate_method=integrate_method,**kwargs) #Integrate back if tlist: if self._to == t[0]: if kwargs.get('log',False): return nu.log([self._initdf(args[0],use_physical=False)]) else: return [self._initdf(args[0],use_physical=False)] ts= self._create_ts_tlist(t,integrate_method) o= args[0] #integrate orbit if _PROFILE: #pragma: no cover start= time_module.time() if not deriv is None: #Also calculate the derivative of the initial df with respect to R, phi, vR, and vT, and the derivative of Ro wrt R/phi etc., to calculate the derivative; in this case we also integrate a small area of phase space if deriv.lower() == 'r': dderiv= 10.**-10. tmp= o.R(use_physical=False)+dderiv dderiv= tmp-o.R(use_physical=False) msg= o._orb.integrate_dxdv([dderiv,0.,0.,0.],ts,self._pot,method=integrate_method) elif deriv.lower() == 'phi': dderiv= 10.**-10. tmp= o.phi(use_physical=False)+dderiv dderiv= tmp-o.phi(use_physical=False) msg= o._orb.integrate_dxdv([0.,0.,0.,dderiv],ts,self._pot,method=integrate_method) if msg > 0.: # pragma: no cover print("Warning: dxdv integration inaccurate, returning zero everywhere ... result might not be correct ...") if kwargs.get('log',False) and deriv is None: return nu.zeros(len(t))-nu.finfo(nu.dtype(nu.float64)).max else: return nu.zeros(len(t)) o._orb.orbit= o._orb.orbit_dxdv[:,0:4] else: o.integrate(ts,self._pot,method=integrate_method) if _PROFILE: #pragma: no cover int_time= (time_module.time()-start) #Now evaluate the DF if _PROFILE: #pragma: no cover start= time_module.time() if integrate_method == 'odeint': retval= [] os= [o(self._to+t[0]-ti,use_physical=False) for ti in t] retval= nu.array(self._initdf(os,use_physical=False)) else: if len(t) == 1: orb_array= o.getOrbit().T orb_array= orb_array[:,1] else: orb_array= o.getOrbit().T retval= self._initdf(orb_array,use_physical=False) if (isinstance(retval,float) or len(retval.shape) == 0) \ and nu.isnan(retval): retval= 0. elif not isinstance(retval,float) and len(retval.shape) > 0: retval[(nu.isnan(retval))]= 0. if len(t) > 1: retval= retval[::-1] if _PROFILE: #pragma: no cover df_time= (time_module.time()-start) tot_time= int_time+df_time print(int_time/tot_time, df_time/tot_time, tot_time) if not deriv is None: if integrate_method == 'odeint': dlnfdRo= nu.array([self._initdf._dlnfdR(o.R(self._to+t[0]-ti,use_physical=False), o.vR(self._to+t[0]-ti,use_physical=False), o.vT(self._to+t[0]-ti,use_physical=False)) for ti in t]) dlnfdvRo= nu.array([self._initdf._dlnfdvR(o.R(self._to+t[0]-ti,use_physical=False), o.vR(self._to+t[0]-ti,use_physical=False), o.vT(self._to+t[0]-ti,use_physical=False)) for ti in t]) dlnfdvTo= nu.array([self._initdf._dlnfdvT(o.R(self._to+t[0]-ti,use_physical=False), o.vR(self._to+t[0]-ti,use_physical=False), o.vT(self._to+t[0]-ti,use_physical=False)) for ti in t]) dRo= nu.array([o._orb.orbit_dxdv[list(ts).index(self._to+t[0]-ti),4] for ti in t])/dderiv dvRo= nu.array([o._orb.orbit_dxdv[list(ts).index(self._to+t[0]-ti),5] for ti in t])/dderiv dvTo= nu.array([o._orb.orbit_dxdv[list(ts).index(self._to+t[0]-ti),6] for ti in t])/dderiv #print(dRo, dvRo, dvTo) dlnfderiv= dlnfdRo*dRo+dlnfdvRo*dvRo+dlnfdvTo*dvTo retval*= dlnfderiv else: if len(t) == 1: dlnfdRo= self._initdf._dlnfdR(orb_array[0], orb_array[1], orb_array[2]) dlnfdvRo= self._initdf._dlnfdvR(orb_array[0], orb_array[1], orb_array[2]) dlnfdvTo= self._initdf._dlnfdvT(orb_array[0], orb_array[1], orb_array[2]) else: dlnfdRo= nu.array([self._initdf._dlnfdR(orb_array[0,ii], orb_array[1,ii], orb_array[2,ii]) for ii in range(len(t))]) dlnfdvRo= nu.array([self._initdf._dlnfdvR(orb_array[0,ii], orb_array[1,ii], orb_array[2,ii]) for ii in range(len(t))]) dlnfdvTo= nu.array([self._initdf._dlnfdvT(orb_array[0,ii], orb_array[1,ii], orb_array[2,ii]) for ii in range(len(t))]) dorb_array= o._orb.orbit_dxdv.T if len(t) == 1: dorb_array= dorb_array[:,1] dRo= dorb_array[4]/dderiv dvRo= dorb_array[5]/dderiv dvTo= dorb_array[6]/dderiv #print(dRo, dvRo, dvTo) dlnfderiv= dlnfdRo*dRo+dlnfdvRo*dvRo+dlnfdvTo*dvTo if len(t) > 1: dlnfderiv= dlnfderiv[::-1] retval*= dlnfderiv else: if self._to == t and deriv is None: if kwargs.get('log',False): return nu.log(self._initdf(args[0],use_physical=False)) else: return self._initdf(args[0],use_physical=False) elif self._to == t and not deriv is None: if deriv.lower() == 'r': return self._initdf(args[0])*self._initdf._dlnfdR(args[0]._orb.vxvv[0], args[0]._orb.vxvv[1], args[0]._orb.vxvv[2]) elif deriv.lower() == 'phi': return 0. if integrate_method == 'odeint': ts= nu.linspace(t,self._to,_NTS) else: ts= nu.linspace(t,self._to,2) o= args[0] #integrate orbit if not deriv is None: ts= nu.linspace(t,self._to,_NTS) #Also calculate the derivative of the initial df with respect to R, phi, vR, and vT, and the derivative of Ro wrt R/phi etc., to calculate the derivative; in this case we also integrate a small area of phase space if deriv.lower() == 'r': dderiv= 10.**-10. tmp= o.R(use_physical=False)+dderiv dderiv= tmp-o.R(use_physical=False) o._orb.integrate_dxdv([dderiv,0.,0.,0.],ts,self._pot,method=integrate_method) elif deriv.lower() == 'phi': dderiv= 10.**-10. tmp= o.phi(use_physical=False)+dderiv dderiv= tmp-o.phi(use_physical=False) o._orb.integrate_dxdv([0.,0.,0.,dderiv],ts,self._pot,method=integrate_method) o._orb.orbit= o._orb.orbit_dxdv[:,0:4] else: o.integrate(ts,self._pot,method=integrate_method) #int_time= (time.time()-start) #Now evaluate the DF if o.R(self._to-t,use_physical=False) <= 0.: if kwargs.get('log',False): return -nu.finfo(nu.dtype(nu.float64)).max else: return nu.finfo(nu.dtype(nu.float64)).eps #start= time.time() retval= self._initdf(o(self._to-t,use_physical=False), use_physical=False) #print( int_time/(time.time()-start)) if nu.isnan(retval): print(retval, o._orb.vxvv, o(self._to-t)._orb.vxvv) if not deriv is None: thisorbit= o(self._to-t)._orb.vxvv dlnfdRo= self._initdf._dlnfdR(thisorbit[0], thisorbit[1], thisorbit[2]) dlnfdvRo= self._initdf._dlnfdvR(thisorbit[0], thisorbit[1], thisorbit[2]) dlnfdvTo= self._initdf._dlnfdvT(thisorbit[0], thisorbit[1], thisorbit[2]) indx= list(ts).index(self._to-t) dRo= o._orb.orbit_dxdv[indx,4]/dderiv dvRo= o._orb.orbit_dxdv[indx,5]/dderiv dvTo= o._orb.orbit_dxdv[indx,6]/dderiv dlnfderiv= dlnfdRo*dRo+dlnfdvRo*dvRo+dlnfdvTo*dvTo retval*= dlnfderiv if kwargs.get('log',False) and deriv is None: if tlist: out= nu.log(retval) out[retval == 0.]= -nu.finfo(nu.dtype(nu.float64)).max else: if retval == 0.: out= -nu.finfo(nu.dtype(nu.float64)).max else: out= nu.log(retval) return out else: return retval def vmomentsurfacemass(self,R,n,m,t=0.,nsigma=None,deg=False, epsrel=1.e-02,epsabs=1.e-05,phi=0., grid=None,gridpoints=101,returnGrid=False, hierarchgrid=False,nlevels=2, print_progress=False, integrate_method='dopr54_c', deriv=None): """ NAME: vmomentsurfacemass PURPOSE: calculate the an arbitrary moment of the velocity distribution at (R,phi) times the surfacmass INPUT: R - radius at which to calculate the moment (in natural units) phi= azimuth (rad unless deg=True) n - vR^n m - vT^m t= time at which to evaluate the DF (can be a list or ndarray; if this is the case, list needs to be in descending order and equally spaced) nsigma - number of sigma to integrate the velocities over (based on an estimate, so be generous, but not too generous) deg= azimuth is in degree (default=False) epsrel, epsabs - scipy.integrate keywords (the integration calculates the ratio of this vmoment to that of the initial DF) grid= if set to True, build a grid and use that to evaluate integrals; if set to a grid-objects (such as returned by this procedure), use this grid; if this was created for a list of times, moments are calculated for each time gridpoints= number of points to use for the grid in 1D (default=101) returnGrid= if True, return the grid object (default=False) hierarchgrid= if True, use a hierarchical grid (default=False) nlevels= number of hierarchical levels for the hierarchical grid print_progress= if True, print progress updates integrate_method= orbit.integrate method argument deriv= None, 'R', or 'phi': calculates derivative of the moment wrt R or phi **onnly with grid options** OUTPUT: <vR^n vT^m x surface-mass> at R,phi (no support for units) COMMENT: grid-based calculation is the only one that is heavily tested (although the test suite also tests the direct calculation) HISTORY: 2011-03-30 - Written - Bovy (NYU) """ #if we have already precalculated a grid, use that if not grid is None and isinstance(grid,evolveddiskdfGrid): if returnGrid: return (self._vmomentsurfacemassGrid(n,m,grid),grid) else: return self._vmomentsurfacemassGrid(n,m,grid) elif not grid is None \ and isinstance(grid,evolveddiskdfHierarchicalGrid): if returnGrid: return (self._vmomentsurfacemassHierarchicalGrid(n,m,grid), grid) else: return self._vmomentsurfacemassHierarchicalGrid(n,m,grid) #Otherwise we need to do some more work if deg: az= phi*_DEGTORAD else: az= phi if nsigma is None: nsigma= _NSIGMA if _PROFILE: #pragma: no cover start= time_module.time() if hasattr(self._initdf,'_estimatemeanvR') \ and hasattr(self._initdf,'_estimatemeanvT') \ and hasattr(self._initdf,'_estimateSigmaR2') \ and hasattr(self._initdf,'_estimateSigmaT2'): sigmaR1= nu.sqrt(self._initdf._estimateSigmaR2(R,phi=az)) sigmaT1= nu.sqrt(self._initdf._estimateSigmaT2(R,phi=az)) meanvR= self._initdf._estimatemeanvR(R,phi=az) meanvT= self._initdf._estimatemeanvT(R,phi=az) else: warnings.warn("No '_estimateSigmaR2' etc. functions found for initdf in evolveddf; thus using potentially slow sigmaR2 etc functions", galpyWarning) sigmaR1= nu.sqrt(self._initdf.sigmaR2(R,phi=az,use_physical=False)) sigmaT1= nu.sqrt(self._initdf.sigmaT2(R,phi=az,use_physical=False)) meanvR= self._initdf.meanvR(R,phi=az,use_physical=False) meanvT= self._initdf.meanvT(R,phi=az,use_physical=False) if _PROFILE: #pragma: no cover setup_time= (time_module.time()-start) if not grid is None and isinstance(grid,bool) and grid: if not hierarchgrid: if _PROFILE: #pragma: no cover start= time_module.time() grido= self._buildvgrid(R,az,nsigma,t, sigmaR1,sigmaT1,meanvR,meanvT, gridpoints,print_progress, integrate_method,deriv) if _PROFILE: #pragma: no cover grid_time= (time_module.time()-start) print(setup_time/(setup_time+grid_time), \ grid_time/(setup_time+grid_time), \ setup_time+grid_time) if returnGrid: return (self._vmomentsurfacemassGrid(n,m,grido),grido) else: return self._vmomentsurfacemassGrid(n,m,grido) else: #hierarchical grid grido= evolveddiskdfHierarchicalGrid(self,R,az,nsigma,t, sigmaR1,sigmaT1,meanvR, meanvT, gridpoints,nlevels,deriv, print_progress=print_progress) if returnGrid: return (self._vmomentsurfacemassHierarchicalGrid(n,m, grido), grido) else: return self._vmomentsurfacemassHierarchicalGrid(n,m,grido) #Calculate the initdf moment and then calculate the ratio initvmoment= self._initdf.vmomentsurfacemass(R,n,m,nsigma=nsigma, phi=phi) if initvmoment == 0.: initvmoment= 1. norm= sigmaR1**(n+1)*sigmaT1**(m+1)*initvmoment if isinstance(t,(list,nu.ndarray)): raise IOError("list of times is only supported with grid-based calculation") return dblquad(_vmomentsurfaceIntegrand, meanvT/sigmaT1-nsigma, meanvT/sigmaT1+nsigma, lambda x: meanvR/sigmaR1 -nu.sqrt(nsigma**2.-(x-meanvT/sigmaT1)**2.), lambda x: meanvR/sigmaR1 +nu.sqrt(nsigma**2.-(x-meanvT/sigmaT1)**2.), (R,az,self,n,m,sigmaR1,sigmaT1,t,initvmoment), epsrel=epsrel,epsabs=epsabs)[0]*norm @potential_physical_input @physical_conversion('angle',pop=True) def vertexdev(self,R,t=0.,nsigma=None,deg=False, epsrel=1.e-02,epsabs=1.e-05,phi=0., grid=None,gridpoints=101,returnGrid=False, sigmaR2=None,sigmaT2=None,sigmaRT=None,surfacemass=None, hierarchgrid=False,nlevels=2, integrate_method='dopr54_c'): """ NAME: vertexdev PURPOSE: calculate the vertex deviation of the velocity distribution at (R,phi) INPUT: R - radius at which to calculate the moment (can be Quantity) phi= azimuth (rad unless deg=True; can be Quantity) t= time at which to evaluate the DF (can be a list or ndarray; if this is the case, list needs to be in descending order and equally spaced) (can be Quantity) sigmaR2, sigmaT2, sigmaRT= if set the vertex deviation is simply calculated using these nsigma - number of sigma to integrate the velocities over (based on an estimate, so be generous) deg= azimuth is in degree (default=False); do not set this when giving phi as a Quantity epsrel, epsabs - scipy.integrate keywords (the integration calculates the ratio of this vmoment to that of the initial DF) grid= if set to True, build a grid and use that to evaluate integrals; if set to a grid-objects (such as returned by this procedure), use this grid gridpoints= number of points to use for the grid in 1D (default=101) returnGrid= if True, return the grid object (default=False) hierarchgrid= if True, use a hierarchical grid (default=False) nlevels= number of hierarchical levels for the hierarchical grid integrate_method= orbit.integrate method argument OUTPUT: vertex deviation in rad HISTORY: 2011-03-31 - Written - Bovy (NYU) """ #The following aren't actually the moments, but they are the moments #times the surface-mass density; that drops out if isinstance(grid,evolveddiskdfGrid) or \ isinstance(grid,evolveddiskdfHierarchicalGrid): grido= grid elif (sigmaR2 is None or sigmaT2 is None or sigmaRT is None) \ and isinstance(grid,bool) and grid: #Precalculate the grid (sigmaR2_tmp,grido)= self.vmomentsurfacemass(R,2,0,deg=deg,t=t, nsigma=nsigma,phi=phi, epsrel=epsrel, epsabs=epsabs,grid=grid, gridpoints=gridpoints, returnGrid=True, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) else: grido= False if sigmaR2 is None: sigmaR2= self.sigmaR2(R,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=grido, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method, use_physical=False) if sigmaT2 is None: sigmaT2= self.sigmaT2(R,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=grido, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method, use_physical=False) if sigmaRT is None: sigmaRT= self.sigmaRT(R,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=grido, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method, use_physical=False) warnings.warn("In versions >1.3, the output unit of evolveddiskdf.vertexdev has been changed to radian (from degree before)",galpyWarning) if returnGrid and ((isinstance(grid,bool) and grid) or isinstance(grid,evolveddiskdfGrid) or isinstance(grid,evolveddiskdfHierarchicalGrid)): return (-nu.arctan(2.*sigmaRT/(sigmaR2-sigmaT2))/2.,grido) else: return -nu.arctan(2.*sigmaRT/(sigmaR2-sigmaT2))/2. @potential_physical_input @physical_conversion('velocity',pop=True) def meanvR(self,R,t=0.,nsigma=None,deg=False,phi=0., epsrel=1.e-02,epsabs=1.e-05, grid=None,gridpoints=101,returnGrid=False, surfacemass=None, hierarchgrid=False,nlevels=2,integrate_method='dopr54_c'): """ NAME: meanvR PURPOSE: calculate the mean vR of the velocity distribution at (R,phi) INPUT: R - radius at which to calculate the moment(/ro) (can be Quantity) phi= azimuth (rad unless deg=True; can be Quantity) t= time at which to evaluate the DF (can be a list or ndarray; if this is the case, list needs to be in descending order and equally spaced) (can be Quantity) surfacemass= if set use this pre-calculated surfacemass nsigma - number of sigma to integrate the velocities over (based on an estimate, so be generous) deg= azimuth is in degree (default=False); do not set this when giving phi as a Quantity epsrel, epsabs - scipy.integrate keywords (the integration calculates the ratio of this vmoment to that of the initial DF) grid= if set to True, build a grid and use that to evaluate integrals; if set to a grid-objects (such as returned by this procedure), use this grid gridpoints= number of points to use for the grid in 1D (default=101) returnGrid= if True, return the grid object (default=False) hierarchgrid= if True, use a hierarchical grid (default=False) nlevels= number of hierarchical levels for the hierarchical grid integrate_method= orbit.integrate method argument OUTPUT: mean vR HISTORY: 2011-03-31 - Written - Bovy (NYU) """ if isinstance(grid,evolveddiskdfGrid) or \ isinstance(grid,evolveddiskdfHierarchicalGrid): grido= grid vmomentR= self.vmomentsurfacemass(R,1,0,deg=deg,t=t,phi=phi, nsigma=nsigma, epsrel=epsrel, epsabs=epsabs,grid=grid, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) elif isinstance(grid,bool) and grid: #Precalculate the grid (vmomentR,grido)= self.vmomentsurfacemass(R,1,0,deg=deg,t=t, nsigma=nsigma,phi=phi, epsrel=epsrel, epsabs=epsabs,grid=grid, gridpoints=gridpoints, returnGrid=True, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) else: grido= False vmomentR= self.vmomentsurfacemass(R,1,0,deg=deg,t=t,phi=phi, nsigma=nsigma, epsrel=epsrel, epsabs=epsabs,grid=grid, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels,integrate_method=integrate_method) if surfacemass is None: surfacemass= self.vmomentsurfacemass(R,0,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=grido, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels,integrate_method=integrate_method) out= vmomentR/surfacemass if returnGrid and ((isinstance(grid,bool) and grid) or isinstance(grid,evolveddiskdfGrid) or isinstance(grid,evolveddiskdfHierarchicalGrid)): return (out,grido) else: return out @potential_physical_input @physical_conversion('velocity',pop=True) def meanvT(self,R,t=0.,nsigma=None,deg=False,phi=0., epsrel=1.e-02,epsabs=1.e-05, grid=None,gridpoints=101,returnGrid=False, surfacemass=None, hierarchgrid=False,nlevels=2,integrate_method='dopr54_c'): """ NAME: meanvT PURPOSE: calculate the mean vT of the velocity distribution at (R,phi) INPUT: R - radius at which to calculate the moment (can be Quantity) phi= azimuth (rad unless deg=True; can be Quantity) t= time at which to evaluate the DF (can be a list or ndarray; if this is the case, list needs to be in descending order and equally spaced) (can be Quantity) surfacemass= if set use this pre-calculated surfacemass nsigma - number of sigma to integrate the velocities over (based on an estimate, so be generous) deg= azimuth is in degree (default=False); do not set this when giving phi as a Quantity epsrel, epsabs - scipy.integrate keywords (the integration calculates the ratio of this vmoment to that of the initial DF) grid= if set to True, build a grid and use that to evaluate integrals; if set to a grid-objects (such as returned by this procedure), use this grid gridpoints= number of points to use for the grid in 1D (default=101) returnGrid= if True, return the grid object (default=False) hierarchgrid= if True, use a hierarchical grid (default=False) nlevels= number of hierarchical levels for the hierarchical grid integrate_method= orbit.integrate method argument OUTPUT: mean vT HISTORY: 2011-03-31 - Written - Bovy (NYU) """ if isinstance(grid,evolveddiskdfGrid) or \ isinstance(grid,evolveddiskdfHierarchicalGrid): grido= grid vmomentT= self.vmomentsurfacemass(R,0,1,deg=deg,t=t, nsigma=nsigma,phi=phi, epsrel=epsrel, epsabs=epsabs,grid=grid, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) elif isinstance(grid,bool) and grid: #Precalculate the grid (vmomentT,grido)= self.vmomentsurfacemass(R,0,1,deg=deg,t=t, nsigma=nsigma,phi=phi, epsrel=epsrel, epsabs=epsabs,grid=grid, gridpoints=gridpoints, returnGrid=True, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) else: grido= False vmomentT= self.vmomentsurfacemass(R,0,1,deg=deg,t=t, nsigma=nsigma,phi=phi, epsrel=epsrel, epsabs=epsabs,grid=grid, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels,integrate_method=integrate_method) if surfacemass is None: surfacemass= self.vmomentsurfacemass(R,0,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=grido, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) out= vmomentT/surfacemass if returnGrid and ((isinstance(grid,bool) and grid) or isinstance(grid,evolveddiskdfGrid) or isinstance(grid,evolveddiskdfHierarchicalGrid)): return (out,grido) else: return out @potential_physical_input @physical_conversion('velocity2',pop=True) def sigmaR2(self,R,t=0.,nsigma=None,deg=False,phi=0., epsrel=1.e-02,epsabs=1.e-05, grid=None,gridpoints=101,returnGrid=False, surfacemass=None,meanvR=None, hierarchgrid=False,nlevels=2, integrate_method='dopr54_c'): """ NAME: sigmaR2 PURPOSE: calculate the radial variance of the velocity distribution at (R,phi) INPUT: R - radius at which to calculate the moment (can be Quantity) phi= azimuth (rad unless deg=True; can be Quantity) t= time at which to evaluate the DF (can be a list or ndarray; if this is the case, list needs to be in descending order and equally spaced) (can be Quantity) surfacemass, meanvR= if set use this pre-calculated surfacemass and mean vR nsigma - number of sigma to integrate the velocities over (based on an estimate, so be generous) deg= azimuth is in degree (default=False); do not set this when giving phi as a Quantity epsrel, epsabs - scipy.integrate keywords (the integration calculates the ratio of this vmoment to that of the initial DF) grid= if set to True, build a grid and use that to evaluate integrals; if set to a grid-objects (such as returned by this procedure), use this grid gridpoints= number of points to use for the grid in 1D (default=101) returnGrid= if True, return the grid object (default=False) hierarchgrid= if True, use a hierarchical grid (default=False) nlevels= number of hierarchical levels for the hierarchical grid integrate_method= orbit.integrate method argument OUTPUT: variance of vR HISTORY: 2011-03-31 - Written - Bovy (NYU) """ #The following aren't actually the moments, but they are the moments #times the surface-mass density if isinstance(grid,evolveddiskdfGrid) or \ isinstance(grid,evolveddiskdfHierarchicalGrid): grido= grid sigmaR2= self.vmomentsurfacemass(R,2,0,deg=deg,t=t,phi=phi, nsigma=nsigma, epsrel=epsrel, epsabs=epsabs,grid=grido, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) elif (meanvR is None or surfacemass is None ) \ and isinstance(grid,bool) and grid: #Precalculate the grid (sigmaR2,grido)= self.vmomentsurfacemass(R,2,0,deg=deg,t=t, nsigma=nsigma,phi=phi, epsrel=epsrel, epsabs=epsabs,grid=grid, gridpoints=gridpoints, returnGrid=True, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) else: grido= False sigmaR2= self.vmomentsurfacemass(R,2,0,deg=deg,t=t, nsigma=nsigma,phi=phi, epsrel=epsrel, epsabs=epsabs,grid=grido, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) if surfacemass is None: surfacemass= self.vmomentsurfacemass(R,0,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=grido, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) if meanvR is None: meanvR= self.vmomentsurfacemass(R,1,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=grido, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method)/surfacemass out= sigmaR2/surfacemass-meanvR**2. if returnGrid and ((isinstance(grid,bool) and grid) or isinstance(grid,evolveddiskdfGrid) or isinstance(grid,evolveddiskdfHierarchicalGrid)): return (out,grido) else: return out @potential_physical_input @physical_conversion('velocity2',pop=True) def sigmaT2(self,R,t=0.,nsigma=None,deg=False,phi=0., epsrel=1.e-02,epsabs=1.e-05, grid=None,gridpoints=101,returnGrid=False, surfacemass=None,meanvT=None, hierarchgrid=False,nlevels=2, integrate_method='dopr54_c'): """ NAME: sigmaT2 PURPOSE: calculate the tangential variance of the velocity distribution at (R,phi) INPUT: R - radius at which to calculate the moment (can be Quantity) phi= azimuth (rad unless deg=True; can be Quantity) t= time at which to evaluate the DF (can be a list or ndarray; if this is the case, list needs to be in descending order and equally spaced) (can be Quantity) surfacemass, meanvT= if set use this pre-calculated surfacemass and mean tangential velocity nsigma - number of sigma to integrate the velocities over (based on an estimate, so be generous) deg= azimuth is in degree (default=False); do not set this when giving phi as a Quantity epsrel, epsabs - scipy.integrate keywords (the integration calculates the ratio of this vmoment to that of the initial DF) grid= if set to True, build a grid and use that to evaluate integrals; if set to a grid-objects (such as returned by this procedure), use this grid gridpoints= number of points to use for the grid in 1D (default=101) returnGrid= if True, return the grid object (default=False) hierarchgrid= if True, use a hierarchical grid (default=False) nlevels= number of hierarchical levels for the hierarchical grid integrate_method= orbit.integrate method argument OUTPUT: variance of vT HISTORY: 2011-03-31 - Written - Bovy (NYU) """ if isinstance(grid,evolveddiskdfGrid) or \ isinstance(grid,evolveddiskdfHierarchicalGrid): grido= grid sigmaT2= self.vmomentsurfacemass(R,0,2,deg=deg,t=t,phi=phi, nsigma=nsigma, epsrel=epsrel, epsabs=epsabs,grid=grido, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) elif (meanvT is None or surfacemass is None ) \ and isinstance(grid,bool) and grid: #Precalculate the grid (sigmaT2,grido)= self.vmomentsurfacemass(R,0,2,deg=deg,t=t, nsigma=nsigma,phi=phi, epsrel=epsrel, epsabs=epsabs,grid=grid, gridpoints=gridpoints, returnGrid=True, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) else: grido= False sigmaT2= self.vmomentsurfacemass(R,0,2,deg=deg,t=t, nsigma=nsigma,phi=phi, epsrel=epsrel, epsabs=epsabs,grid=grido, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) if surfacemass is None: surfacemass= self.vmomentsurfacemass(R,0,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=grido, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) if meanvT is None: meanvT= self.vmomentsurfacemass(R,0,1,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=grido, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method)/surfacemass out= sigmaT2/surfacemass-meanvT**2. if returnGrid and ((isinstance(grid,bool) and grid) or isinstance(grid,evolveddiskdfGrid) or isinstance(grid,evolveddiskdfHierarchicalGrid)): return (out,grido) else: return out @potential_physical_input @physical_conversion('velocity2',pop=True) def sigmaRT(self,R,t=0.,nsigma=None,deg=False, epsrel=1.e-02,epsabs=1.e-05,phi=0., grid=None,gridpoints=101,returnGrid=False, surfacemass=None,meanvR=None,meanvT=None, hierarchgrid=False,nlevels=2, integrate_method='dopr54_c'): """ NAME: sigmaRT PURPOSE: calculate the radial-tangential co-variance of the velocity distribution at (R,phi) INPUT: R - radius at which to calculate the moment (can be Quantity) phi= azimuth (rad unless deg=True; can be Quantity) t= time at which to evaluate the DF (can be a list or ndarray; if this is the case, list needs to be in descending order and equally spaced) (can be Quantity) surfacemass, meanvR, meavT= if set use this pre-calculated surfacemass and mean vR and vT nsigma - number of sigma to integrate the velocities over (based on an estimate, so be generous) deg= azimuth is in degree (default=False); do not set this when giving phi as a Quantity epsrel, epsabs - scipy.integrate keywords (the integration calculates the ration of this vmoment to that of the initial DF) grid= if set to True, build a grid and use that to evaluate integrals; if set to a grid-objects (such as returned by this procedure), use this grid gridpoints= number of points to use for the grid in 1D (default=101) returnGrid= if True, return the grid object (default=False) hierarchgrid= if True, use a hierarchical grid (default=False) nlevels= number of hierarchical levels for the hierarchical grid integrate_method= orbit.integrate method argument OUTPUT: covariance of vR and vT HISTORY: 2011-03-31 - Written - Bovy (NYU) """ #The following aren't actually the moments, but they are the moments #times the surface-mass density if isinstance(grid,evolveddiskdfGrid) or \ isinstance(grid,evolveddiskdfHierarchicalGrid): grido= grid sigmaRT= self.vmomentsurfacemass(R,1,1,deg=deg,t=t,phi=phi, nsigma=nsigma, epsrel=epsrel, epsabs=epsabs,grid=grido, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) elif (meanvR is None or surfacemass is None ) \ and isinstance(grid,bool) and grid: #Precalculate the grid (sigmaRT,grido)= self.vmomentsurfacemass(R,1,1,deg=deg,t=t, nsigma=nsigma,phi=phi, epsrel=epsrel, epsabs=epsabs,grid=grid, gridpoints=gridpoints, returnGrid=True, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) else: grido= False sigmaRT= self.vmomentsurfacemass(R,1,1,deg=deg,t=t, nsigma=nsigma,phi=phi, epsrel=epsrel, epsabs=epsabs,grid=grido, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) if surfacemass is None: surfacemass= self.vmomentsurfacemass(R,0,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=grido, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) if meanvR is None: meanvR= self.vmomentsurfacemass(R,1,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=grido, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method)/surfacemass if meanvT is None: meanvT= self.vmomentsurfacemass(R,0,1,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=grido, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method)/surfacemass out= sigmaRT/surfacemass-meanvR*meanvT if returnGrid and ((isinstance(grid,bool) and grid) or isinstance(grid,evolveddiskdfGrid) or isinstance(grid,evolveddiskdfHierarchicalGrid)): return (out,grido) else: return out @potential_physical_input @physical_conversion('frequency-kmskpc',pop=True) def oortA(self,R,t=0.,nsigma=None,deg=False,phi=0., epsrel=1.e-02,epsabs=1.e-05, grid=None,gridpoints=101,returnGrids=False, derivRGrid=None,derivphiGrid=None,derivGridpoints=101, derivHierarchgrid=False, hierarchgrid=False,nlevels=2,integrate_method='dopr54_c'): """ NAME: oortA PURPOSE: calculate the Oort function A at (R,phi,t) INPUT: R - radius at which to calculate A (can be Quantity) phi= azimuth (rad unless deg=True; can be Quantity t= time at which to evaluate the DF (can be a list or ndarray; if this is the case, list needs to be in descending order and equally spaced) (can be Quantity) nsigma - number of sigma to integrate the velocities over (based on an estimate, so be generous) deg= azimuth is in degree (default=False); do not set this when giving phi as a Quantity epsrel, epsabs - scipy.integrate keywords grid= if set to True, build a grid and use that to evaluate integrals; if set to a grid-objects (such as returned by this procedure), use this grid derivRGrid, derivphiGrid= if set to True, build a grid and use that to evaluate integrals of the derivatives of the DF;if set to a grid-objects (such as returned by this procedure), use this grid gridpoints= number of points to use for the grid in 1D (default=101) derivGridpoints= number of points to use for the grid in 1D (default=101) returnGrid= if True, return the grid objects (default=False) hierarchgrid= if True, use a hierarchical grid (default=False) derivHierarchgrid= if True, use a hierarchical grid (default=False) nlevels= number of hierarchical levels for the hierarchical grid integrate_method= orbit.integrate method argument OUTPUT: Oort A at R,phi,t HISTORY: 2011-10-16 - Written - Bovy (NYU) """ #First calculate the grids if they are not given if isinstance(grid,bool) and grid: (surfacemass,grid)= self.vmomentsurfacemass(R,0,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=True, gridpoints=gridpoints, returnGrid=True, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) elif isinstance(grid,evolveddiskdfGrid) or \ isinstance(grid,evolveddiskdfHierarchicalGrid): surfacemass= self.vmomentsurfacemass(R,0,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=grid, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) if isinstance(derivRGrid,bool) and derivRGrid: (dsurfacemassdR,derivRGrid)= self.vmomentsurfacemass(R,0,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=True, gridpoints=derivGridpoints, returnGrid=True, hierarchgrid=derivHierarchgrid, nlevels=nlevels, integrate_method=integrate_method,deriv='R') elif isinstance(derivRGrid,evolveddiskdfGrid) or \ isinstance(derivRGrid,evolveddiskdfHierarchicalGrid): dsurfacemassdR= self.vmomentsurfacemass(R,0,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=derivRGrid, gridpoints=derivGridpoints, returnGrid=False, hierarchgrid=derivHierarchgrid, nlevels=nlevels, integrate_method=integrate_method,deriv='R') if isinstance(derivphiGrid,bool) and derivphiGrid: (dsurfacemassdphi,derivphiGrid)= self.vmomentsurfacemass(R,0,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=True, gridpoints=derivGridpoints, returnGrid=True, hierarchgrid=derivHierarchgrid, nlevels=nlevels, integrate_method=integrate_method,deriv='phi') elif isinstance(derivphiGrid,evolveddiskdfGrid) or \ isinstance(derivphiGrid,evolveddiskdfHierarchicalGrid): dsurfacemassdphi= self.vmomentsurfacemass(R,0,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=derivphiGrid, gridpoints=derivGridpoints, returnGrid=False, hierarchgrid=derivHierarchgrid, nlevels=nlevels, integrate_method=integrate_method,deriv='phi') #2A= meanvT/R-dmeanvR/R/dphi-dmeanvphi/dR #meanvT meanvT= self.meanvT(R,t=t,nsigma=nsigma,deg=deg,phi=phi, epsrel=epsrel,epsabs=epsabs, grid=grid,gridpoints=gridpoints,returnGrid=False, surfacemass=surfacemass, hierarchgrid=hierarchgrid, nlevels=nlevels,integrate_method=integrate_method, use_physical=False) dmeanvRdphi= (self.vmomentsurfacemass(R,1,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=derivphiGrid, gridpoints=derivGridpoints, returnGrid=False, hierarchgrid=derivHierarchgrid, nlevels=nlevels, integrate_method=integrate_method,deriv='phi') /surfacemass -self.vmomentsurfacemass(R,1,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=grid, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) /surfacemass**2.*dsurfacemassdphi) dmeanvTdR= (self.vmomentsurfacemass(R,0,1,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=derivRGrid, gridpoints=derivGridpoints, returnGrid=False, hierarchgrid=derivHierarchgrid, nlevels=nlevels, integrate_method=integrate_method,deriv='R') /surfacemass -self.vmomentsurfacemass(R,0,1,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=grid, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) /surfacemass**2.*dsurfacemassdR) if returnGrids: return (0.5*(meanvT/R-dmeanvRdphi/R-dmeanvTdR),grid, derivRGrid,derivphiGrid) else: return 0.5*(meanvT/R-dmeanvRdphi/R-dmeanvTdR) @potential_physical_input @physical_conversion('frequency-kmskpc',pop=True) def oortB(self,R,t=0.,nsigma=None,deg=False,phi=0., epsrel=1.e-02,epsabs=1.e-05, grid=None,gridpoints=101,returnGrids=False, derivRGrid=None,derivphiGrid=None,derivGridpoints=101, derivHierarchgrid=False, hierarchgrid=False,nlevels=2,integrate_method='dopr54_c'): """ NAME: oortB PURPOSE: calculate the Oort function B at (R,phi,t) INPUT: R - radius at which to calculate B (can be Quantity) phi= azimuth (rad unless deg=True; can be Quantity) t= time at which to evaluate the DF (can be a list or ndarray; if this is the case, list needs to be in descending order and equally spaced) (can be Quantity) nsigma - number of sigma to integrate the velocities over (based on an estimate, so be generous) deg= azimuth is in degree (default=False); do not set this when giving phi as a Quantity epsrel, epsabs - scipy.integrate keywords grid= if set to True, build a grid and use that to evaluate integrals; if set to a grid-objects (such as returned by this procedure), use this grid derivRGrid, derivphiGrid= if set to True, build a grid and use that to evaluat integrals of the derivatives of the DF: if set to a grid-objects (such as returned by this procedure), use this grid gridpoints= number of points to use for the grid in 1D (default=101) derivGridpoints= number of points to use for the grid in 1D (default=101) returnGrid= if True, return the grid objects (default=False) hierarchgrid= if True, use a hierarchical grid (default=False) derivHierarchgrid= if True, use a hierarchical grid (default=False) nlevels= number of hierarchical levels for the hierarchical grid integrate_method= orbit.integrate method argument OUTPUT: Oort B at R,phi,t HISTORY: 2011-10-16 - Written - Bovy (NYU) """ #First calculate the grids if they are not given if isinstance(grid,bool) and grid: (surfacemass,grid)= self.vmomentsurfacemass(R,0,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=True, gridpoints=gridpoints, returnGrid=True, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) elif isinstance(grid,evolveddiskdfGrid) or \ isinstance(grid,evolveddiskdfHierarchicalGrid): surfacemass= self.vmomentsurfacemass(R,0,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=grid, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) if isinstance(derivRGrid,bool) and derivRGrid: (dsurfacemassdR,derivRGrid)= self.vmomentsurfacemass(R,0,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=True, gridpoints=derivGridpoints, returnGrid=True, hierarchgrid=derivHierarchgrid, nlevels=nlevels, integrate_method=integrate_method,deriv='R') elif isinstance(derivRGrid,evolveddiskdfGrid) or \ isinstance(derivRGrid,evolveddiskdfHierarchicalGrid): dsurfacemassdR= self.vmomentsurfacemass(R,0,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=derivRGrid, gridpoints=derivGridpoints, returnGrid=False, hierarchgrid=derivHierarchgrid, nlevels=nlevels, integrate_method=integrate_method,deriv='R') if isinstance(derivphiGrid,bool) and derivphiGrid: (dsurfacemassdphi,derivphiGrid)= self.vmomentsurfacemass(R,0,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=True, gridpoints=derivGridpoints, returnGrid=True, hierarchgrid=derivHierarchgrid, nlevels=nlevels, integrate_method=integrate_method,deriv='phi') elif isinstance(derivphiGrid,evolveddiskdfGrid) or \ isinstance(derivphiGrid,evolveddiskdfHierarchicalGrid): dsurfacemassdphi= self.vmomentsurfacemass(R,0,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=derivphiGrid, gridpoints=derivGridpoints, returnGrid=False, hierarchgrid=derivHierarchgrid, nlevels=nlevels, integrate_method=integrate_method,deriv='phi') #2B= -meanvT/R+dmeanvR/R/dphi-dmeanvphi/dR #meanvT meanvT= self.meanvT(R,t=t,nsigma=nsigma,deg=deg,phi=phi, epsrel=epsrel,epsabs=epsabs, grid=grid,gridpoints=gridpoints,returnGrid=False, surfacemass=surfacemass, hierarchgrid=hierarchgrid, nlevels=nlevels,integrate_method=integrate_method, use_physical=False) dmeanvRdphi= (self.vmomentsurfacemass(R,1,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=derivphiGrid, gridpoints=derivGridpoints, returnGrid=False, hierarchgrid=derivHierarchgrid, nlevels=nlevels, integrate_method=integrate_method,deriv='phi') /surfacemass -self.vmomentsurfacemass(R,1,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=grid, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) /surfacemass**2.*dsurfacemassdphi) dmeanvTdR= (self.vmomentsurfacemass(R,0,1,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=derivRGrid, gridpoints=derivGridpoints, returnGrid=False, hierarchgrid=derivHierarchgrid, nlevels=nlevels, integrate_method=integrate_method,deriv='R') /surfacemass -self.vmomentsurfacemass(R,0,1,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=grid, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) /surfacemass**2.*dsurfacemassdR) if returnGrids: return (0.5*(-meanvT/R+dmeanvRdphi/R-dmeanvTdR),grid, derivRGrid,derivphiGrid) else: return 0.5*(-meanvT/R+dmeanvRdphi/R-dmeanvTdR) @potential_physical_input @physical_conversion('frequency-kmskpc',pop=True) def oortC(self,R,t=0.,nsigma=None,deg=False,phi=0., epsrel=1.e-02,epsabs=1.e-05, grid=None,gridpoints=101,returnGrids=False, derivRGrid=None,derivphiGrid=None,derivGridpoints=101, derivHierarchgrid=False, hierarchgrid=False,nlevels=2,integrate_method='dopr54_c'): """ NAME: oortC PURPOSE: calculate the Oort function C at (R,phi,t) INPUT: R - radius at which to calculate C (can be Quantity) phi= azimuth (rad unless deg=True; can be Quantity) t= time at which to evaluate the DF (can be a list or ndarray; if this is the case, list needs to be in descending order and equally spaced) (can be Quantity) nsigma - number of sigma to integrate the velocities over (based on an estimate, so be generous) deg= azimuth is in degree (default=False); do not set this when giving phi as a Quantity epsrel, epsabs - scipy.integrate keywords grid= if set to True, build a grid and use that to evaluate integrals; if set to a grid-objects (such as returned by this procedure), use this grid derivRGrid, derivphiGrid= if set to True, build a grid and use that to evaluate integrals of the derivatives of the DF; if set to a grid-objects (such as returned by this procedure), use this grid gridpoints= number of points to use for the grid in 1D (default=101) derivGridpoints= number of points to use for the grid in 1D (default=101) returnGrid= if True, return the grid objects (default=False) hierarchgrid= if True, use a hierarchical grid (default=False) derivHierarchgrid= if True, use a hierarchical grid (default=False) nlevels= number of hierarchical levels for the hierarchical grid integrate_method= orbit.integrate method argument OUTPUT: Oort C at R,phi,t HISTORY: 2011-10-16 - Written - Bovy (NYU) """ #First calculate the grids if they are not given if isinstance(grid,bool) and grid: (surfacemass,grid)= self.vmomentsurfacemass(R,0,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=True, gridpoints=gridpoints, returnGrid=True, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) elif isinstance(grid,evolveddiskdfGrid) or \ isinstance(grid,evolveddiskdfHierarchicalGrid): surfacemass= self.vmomentsurfacemass(R,0,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=grid, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) if isinstance(derivRGrid,bool) and derivRGrid: (dsurfacemassdR,derivRGrid)= self.vmomentsurfacemass(R,0,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=True, gridpoints=derivGridpoints, returnGrid=True, hierarchgrid=derivHierarchgrid, nlevels=nlevels, integrate_method=integrate_method,deriv='R') elif isinstance(derivRGrid,evolveddiskdfGrid) or \ isinstance(derivRGrid,evolveddiskdfHierarchicalGrid): dsurfacemassdR= self.vmomentsurfacemass(R,0,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=derivRGrid, gridpoints=derivGridpoints, returnGrid=False, hierarchgrid=derivHierarchgrid, nlevels=nlevels, integrate_method=integrate_method,deriv='R') if isinstance(derivphiGrid,bool) and derivphiGrid: (dsurfacemassdphi,derivphiGrid)= self.vmomentsurfacemass(R,0,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=True, gridpoints=derivGridpoints, returnGrid=True, hierarchgrid=derivHierarchgrid, nlevels=nlevels, integrate_method=integrate_method,deriv='phi') elif isinstance(derivphiGrid,evolveddiskdfGrid) or \ isinstance(derivphiGrid,evolveddiskdfHierarchicalGrid): dsurfacemassdphi= self.vmomentsurfacemass(R,0,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=derivphiGrid, gridpoints=derivGridpoints, returnGrid=False, hierarchgrid=derivHierarchgrid, nlevels=nlevels, integrate_method=integrate_method,deriv='phi') #2C= -meanvR/R-dmeanvT/R/dphi+dmeanvR/dR #meanvR meanvR= self.meanvR(R,t=t,nsigma=nsigma,deg=deg,phi=phi, epsrel=epsrel,epsabs=epsabs, grid=grid,gridpoints=gridpoints,returnGrid=False, surfacemass=surfacemass, hierarchgrid=hierarchgrid, nlevels=nlevels,integrate_method=integrate_method, use_physical=False) dmeanvTdphi= (self.vmomentsurfacemass(R,0,1,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=derivphiGrid, gridpoints=derivGridpoints, returnGrid=False, hierarchgrid=derivHierarchgrid, nlevels=nlevels, integrate_method=integrate_method,deriv='phi') /surfacemass -self.vmomentsurfacemass(R,0,1,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=grid, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) /surfacemass**2.*dsurfacemassdphi) dmeanvRdR= (self.vmomentsurfacemass(R,1,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=derivRGrid, gridpoints=derivGridpoints, returnGrid=False, hierarchgrid=derivHierarchgrid, nlevels=nlevels, integrate_method=integrate_method,deriv='R') /surfacemass -self.vmomentsurfacemass(R,1,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=grid, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) /surfacemass**2.*dsurfacemassdR) if returnGrids: return (0.5*(-meanvR/R-dmeanvTdphi/R+dmeanvRdR),grid, derivRGrid,derivphiGrid) else: return 0.5*(-meanvR/R-dmeanvTdphi/R+dmeanvRdR) @potential_physical_input @physical_conversion('frequency-kmskpc',pop=True) def oortK(self,R,t=0.,nsigma=None,deg=False,phi=0., epsrel=1.e-02,epsabs=1.e-05, grid=None,gridpoints=101,returnGrids=False, derivRGrid=None,derivphiGrid=None,derivGridpoints=101, derivHierarchgrid=False, hierarchgrid=False,nlevels=2,integrate_method='dopr54_c'): """ NAME: oortK PURPOSE: calculate the Oort function K at (R,phi,t) INPUT: R - radius at which to calculate K (can be Quantity) phi= azimuth (rad unless deg=True; can be Quantity) t= time at which to evaluate the DF (can be a list or ndarray; if this is the case, list needs to be in descending order and equally spaced) (can be Quantity) nsigma - number of sigma to integrate the velocities over (based on an estimate, so be generous) deg= azimuth is in degree (default=False); do not set this when giving phi as a Quantity epsrel, epsabs - scipy.integrate keywords grid= if set to True, build a grid and use that to evaluate integrals; if set to a grid-objects (such as returned by this procedure), use this grid derivRGrid, derivphiGrid= if set to True, build a grid and use that to evaluate integrals of the derivatives of the DF; if set to a grid-objects (such as returned by this procedure), use this grid gridpoints= number of points to use for the grid in 1D (default=101) derivGridpoints= number of points to use for the grid in 1D (default=101) returnGrid= if True, return the grid objects (default=False) hierarchgrid= if True, use a hierarchical grid (default=False) derivHierarchgrid= if True, use a hierarchical grid (default=False) nlevels= number of hierarchical levels for the hierarchical grid integrate_method= orbit.integrate method argument OUTPUT: Oort K at R,phi,t HISTORY: 2011-10-16 - Written - Bovy (NYU) """ #First calculate the grids if they are not given if isinstance(grid,bool) and grid: (surfacemass,grid)= self.vmomentsurfacemass(R,0,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=True, gridpoints=gridpoints, returnGrid=True, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) elif isinstance(grid,evolveddiskdfGrid) or \ isinstance(grid,evolveddiskdfHierarchicalGrid): surfacemass= self.vmomentsurfacemass(R,0,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=grid, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) if isinstance(derivRGrid,bool) and derivRGrid: (dsurfacemassdR,derivRGrid)= self.vmomentsurfacemass(R,0,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=True, gridpoints=derivGridpoints, returnGrid=True, hierarchgrid=derivHierarchgrid, nlevels=nlevels, integrate_method=integrate_method,deriv='R') elif isinstance(derivRGrid,evolveddiskdfGrid) or \ isinstance(derivRGrid,evolveddiskdfHierarchicalGrid): dsurfacemassdR= self.vmomentsurfacemass(R,0,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=derivRGrid, gridpoints=derivGridpoints, returnGrid=False, hierarchgrid=derivHierarchgrid, nlevels=nlevels, integrate_method=integrate_method,deriv='R') if isinstance(derivphiGrid,bool) and derivphiGrid: (dsurfacemassdphi,derivphiGrid)= self.vmomentsurfacemass(R,0,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=True, gridpoints=derivGridpoints, returnGrid=True, hierarchgrid=derivHierarchgrid, nlevels=nlevels, integrate_method=integrate_method,deriv='phi') elif isinstance(derivphiGrid,evolveddiskdfGrid) or \ isinstance(derivphiGrid,evolveddiskdfHierarchicalGrid): dsurfacemassdphi= self.vmomentsurfacemass(R,0,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=derivphiGrid, gridpoints=derivGridpoints, returnGrid=False, hierarchgrid=derivHierarchgrid, nlevels=nlevels, integrate_method=integrate_method,deriv='phi') #2K= meanvR/R+dmeanvT/R/dphi+dmeanvR/dR #meanvR meanvR= self.meanvR(R,t=t,nsigma=nsigma,deg=deg,phi=phi, epsrel=epsrel,epsabs=epsabs, grid=grid,gridpoints=gridpoints,returnGrid=False, surfacemass=surfacemass, hierarchgrid=hierarchgrid, nlevels=nlevels,integrate_method=integrate_method, use_physical=False) dmeanvTdphi= (self.vmomentsurfacemass(R,0,1,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=derivphiGrid, gridpoints=derivGridpoints, returnGrid=False, hierarchgrid=derivHierarchgrid, nlevels=nlevels, integrate_method=integrate_method,deriv='phi') /surfacemass -self.vmomentsurfacemass(R,0,1,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=grid, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) /surfacemass**2.*dsurfacemassdphi) dmeanvRdR= (self.vmomentsurfacemass(R,1,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=derivRGrid, gridpoints=derivGridpoints, returnGrid=False, hierarchgrid=derivHierarchgrid, nlevels=nlevels, integrate_method=integrate_method,deriv='R') /surfacemass -self.vmomentsurfacemass(R,1,0,deg=deg,t=t,phi=phi, nsigma=nsigma,epsrel=epsrel, epsabs=epsabs,grid=grid, gridpoints=gridpoints, returnGrid=False, hierarchgrid=hierarchgrid, nlevels=nlevels, integrate_method=integrate_method) /surfacemass**2.*dsurfacemassdR) if returnGrids: return (0.5*(meanvR/R+dmeanvTdphi/R+dmeanvRdR),grid, derivRGrid,derivphiGrid) else: return 0.5*(meanvR/R+dmeanvTdphi/R+dmeanvRdR) def _vmomentsurfacemassGrid(self,n,m,grid): """Internal function to evaluate vmomentsurfacemass using a grid rather than direct integration""" if len(grid.df.shape) == 3: tlist= True else: tlist= False if tlist: nt= grid.df.shape[2] out= [] for ii in range(nt): out.append(nu.dot(grid.vRgrid**n,nu.dot(grid.df[:,:,ii],grid.vTgrid**m))*\ (grid.vRgrid[1]-grid.vRgrid[0])*(grid.vTgrid[1]-grid.vTgrid[0])) return nu.array(out) else: return nu.dot(grid.vRgrid**n,nu.dot(grid.df,grid.vTgrid**m))*\ (grid.vRgrid[1]-grid.vRgrid[0])*(grid.vTgrid[1]-grid.vTgrid[0]) def _buildvgrid(self,R,phi,nsigma,t,sigmaR1,sigmaT1,meanvR,meanvT, gridpoints,print_progress,integrate_method,deriv): """Internal function to grid the vDF at a given location""" out= evolveddiskdfGrid() out.sigmaR1= sigmaR1 out.sigmaT1= sigmaT1 out.meanvR= meanvR out.meanvT= meanvT out.vRgrid= nu.linspace(meanvR-nsigma*sigmaR1,meanvR+nsigma*sigmaR1, gridpoints) out.vTgrid= nu.linspace(meanvT-nsigma*sigmaT1,meanvT+nsigma*sigmaT1, gridpoints) if isinstance(t,(list,nu.ndarray)): nt= len(t) out.df= nu.zeros((gridpoints,gridpoints,nt)) for ii in range(gridpoints): for jj in range(gridpoints-1,-1,-1):#Reverse, so we get the peak before we get to the extreme lags NOT NECESSARY if print_progress: #pragma: no cover sys.stdout.write('\r'+"Velocity gridpoint %i out of %i" % \ (jj+ii*gridpoints+1,gridpoints*gridpoints)) sys.stdout.flush() thiso= Orbit([R,out.vRgrid[ii],out.vTgrid[jj],phi]) out.df[ii,jj,:]= self(thiso,nu.array(t).flatten(), integrate_method=integrate_method, deriv=deriv,use_physical=False) out.df[ii,jj,nu.isnan(out.df[ii,jj,:])]= 0. #BOVY: for now if print_progress: sys.stdout.write('\n') #pragma: no cover else: out.df= nu.zeros((gridpoints,gridpoints)) for ii in range(gridpoints): for jj in range(gridpoints): if print_progress: #pragma: no cover sys.stdout.write('\r'+"Velocity gridpoint %i out of %i" % \ (jj+ii*gridpoints+1,gridpoints*gridpoints)) sys.stdout.flush() thiso= Orbit([R,out.vRgrid[ii],out.vTgrid[jj],phi]) out.df[ii,jj]= self(thiso,t, integrate_method=integrate_method, deriv=deriv,use_physical=False) if nu.isnan(out.df[ii,jj]): out.df[ii,jj]= 0. #BOVY: for now if print_progress: sys.stdout.write('\n') #pragma: no cover return out def _create_ts_tlist(self,t,integrate_method): #Check input if not all(t == sorted(t,reverse=True)): raise IOError("List of times has to be sorted in descending order") #Initialize if integrate_method == 'odeint': _NTS= 1000 tmax= nu.amax(t) ts= nu.linspace(tmax,self._to,_NTS) #Add other t ts= list(ts) ts.extend([self._to+tmax-ti for ti in t if ti != tmax]) else: if len(t) == 1: #Special case this because it is confusing ts= nu.array([t[0],self._to]) else: ts= -t+self._to+nu.amax(t) #sort ts= list(ts) ts.sort(reverse=True) return nu.array(ts) def _call_marginalizevperp(self,o,integrate_method='dopr54_c',**kwargs): """Call the DF, marginalizing over perpendicular velocity""" #Get d, l, vlos l= o.ll(obs=[1.,0.,0.],ro=1.)*_DEGTORAD vlos= o.vlos(ro=1.,vo=1.,obs=[1.,0.,0.,0.,0.,0.]) R= o.R(use_physical=False) phi= o.phi(use_physical=False) #Get local circular velocity, projected onto the los if isinstance(self._pot,list): vcirc= calcRotcurve([p for p in self._pot if not p.isNonAxi],R)[0] else: vcirc= calcRotcurve(self._pot,R)[0] vcirclos= vcirc*math.sin(phi+l) #Marginalize alphalos= phi+l if not 'nsigma' in kwargs or ('nsigma' in kwargs and \ kwargs['nsigma'] is None): nsigma= _NSIGMA else: nsigma= kwargs['nsigma'] kwargs.pop('nsigma',None) #BOVY: add asymmetric drift here? if math.fabs(math.sin(alphalos)) < math.sqrt(1./2.): sigmaR1= nu.sqrt(self._initdf.sigmaT2(R,phi=phi, use_physical=False)) #Slight abuse cosalphalos= math.cos(alphalos) tanalphalos= math.tan(alphalos) return integrate.quad(_marginalizeVperpIntegrandSinAlphaSmall, -nsigma,nsigma, args=(self,R,cosalphalos,tanalphalos, vlos-vcirclos,vcirc, sigmaR1,phi), **kwargs)[0]/math.fabs(cosalphalos)*sigmaR1 else: sigmaR1= nu.sqrt(self._initdf.sigmaR2(R,phi=phi, use_physical=False)) sinalphalos= math.sin(alphalos) cotalphalos= 1./math.tan(alphalos) return integrate.quad(_marginalizeVperpIntegrandSinAlphaLarge, -nsigma,nsigma, args=(self,R,sinalphalos,cotalphalos, vlos-vcirclos,vcirc,sigmaR1,phi), **kwargs)[0]/math.fabs(sinalphalos)*sigmaR1 def _call_marginalizevlos(self,o,integrate_method='dopr54_c',**kwargs): """Call the DF, marginalizing over line-of-sight velocity""" #Get d, l, vperp l= o.ll(obs=[1.,0.,0.],ro=1.)*_DEGTORAD vperp= o.vll(ro=1.,vo=1.,obs=[1.,0.,0.,0.,0.,0.]) R= o.R(use_physical=False) phi= o.phi(use_physical=False) #Get local circular velocity, projected onto the perpendicular #direction if isinstance(self._pot,list): vcirc= calcRotcurve([p for p in self._pot if not p.isNonAxi],R)[0] else: vcirc= calcRotcurve(self._pot,R)[0] vcircperp= vcirc*math.cos(phi+l) #Marginalize alphaperp= math.pi/2.+phi+l if not 'nsigma' in kwargs or ('nsigma' in kwargs and \ kwargs['nsigma'] is None): nsigma= _NSIGMA else: nsigma= kwargs['nsigma'] kwargs.pop('nsigma',None) if math.fabs(math.sin(alphaperp)) < math.sqrt(1./2.): sigmaR1= nu.sqrt(self._initdf.sigmaT2(R,phi=phi, use_physical=False)) #slight abuse va= vcirc-self._initdf.meanvT(R,phi=phi,use_physical=False) cosalphaperp= math.cos(alphaperp) tanalphaperp= math.tan(alphaperp) #we can reuse the VperpIntegrand, since it is just another angle return integrate.quad(_marginalizeVperpIntegrandSinAlphaSmall, -va/sigmaR1-nsigma, -va/sigmaR1+nsigma, args=(self,R,cosalphaperp,tanalphaperp, vperp-vcircperp,vcirc, sigmaR1,phi), **kwargs)[0]/math.fabs(cosalphaperp)*sigmaR1 else: sigmaR1= nu.sqrt(self._initdf.sigmaR2(R,phi=phi, use_physical=False)) sinalphaperp= math.sin(alphaperp) cotalphaperp= 1./math.tan(alphaperp) #we can reuse the VperpIntegrand, since it is just another angle return integrate.quad(_marginalizeVperpIntegrandSinAlphaLarge, -nsigma,nsigma, args=(self,R,sinalphaperp,cotalphaperp, vperp-vcircperp,vcirc,sigmaR1,phi), **kwargs)[0]/math.fabs(sinalphaperp)*sigmaR1 def _vmomentsurfacemassHierarchicalGrid(self,n,m,grid): """Internal function to evaluate vmomentsurfacemass using a hierarchical grid rather than direct integration, rather unnecessary""" return grid(n,m) class evolveddiskdfGrid(object): """(not quite) Empty class since it is only used to store some stuff""" def __init__(self): return None def plot(self,tt=0): """ NAME: plot PURPOSE: plot the velocity distribution INPUT: t= optional time index OUTPUT: plot of velocity distribution to output device HISTORY: 2011-06-27 - Written - Bovy (NYU) """ xrange= [self.vRgrid[0],self.vRgrid[len(self.vRgrid)-1]] yrange= [self.vTgrid[0],self.vTgrid[len(self.vTgrid)-1]] if len(self.df.shape) == 3: plotthis= self.df[:,:,tt] else: plotthis= self.df bovy_plot.bovy_dens2d(plotthis.T,cmap='gist_yarg',origin='lower', aspect=(xrange[1]-xrange[0])/\ (yrange[1]-yrange[0]), extent=[xrange[0],xrange[1], yrange[0],yrange[1]], xlabel=r'$v_R / v_0$', ylabel=r'$v_T / v_0$') class evolveddiskdfHierarchicalGrid(object): """Class that holds a hierarchical velocity grid""" def __init__(self,edf,R,phi,nsigma,t,sigmaR1,sigmaT1,meanvR,meanvT, gridpoints,nlevels,deriv,upperdxdy=None,print_progress=False, nlevelsTotal=None): """ NAME: __init__ PURPOSE: Initialize a hierarchical grid INPUT: edf - evolveddiskdf instance R - Radius phi- azimuth nsigma - number of sigma to integrate over t- time sigmaR1 - radial dispersion sigmaT1 - tangential dispersion meanvR - mean of radial velocity meanvT - mean of tangential velocity gridpoints- number of gridpoints nlevels- number of levels to build deriv- None, 'R', or 'phi': calculates derivative of the moment wrt R or phi upperdxdy= area element of previous hierarchical level print_progress= if True, print progress on building the grid OUTPUT: object HISTORY: 2011-04-21 - Written - Bovy (NYU) """ self.sigmaR1= sigmaR1 self.sigmaT1= sigmaT1 self.meanvR= meanvR self.meanvT= meanvT self.gridpoints= gridpoints self.vRgrid= nu.linspace(self.meanvR-nsigma*self.sigmaR1, self.meanvR+nsigma*self.sigmaR1, self.gridpoints) self.vTgrid= nu.linspace(self.meanvT-nsigma*self.sigmaT1, self.meanvT+nsigma*self.sigmaT1, self.gridpoints) self.t= t if nlevelsTotal is None: nlevelsTotal= nlevels self.nlevels= nlevels self.nlevelsTotal= nlevelsTotal if isinstance(t,(list,nu.ndarray)): nt= len(t) self.df= nu.zeros((gridpoints,gridpoints,nt)) dxdy= (self.vRgrid[1]-self.vRgrid[0])\ *(self.vTgrid[1]-self.vTgrid[0]) if nlevels > 0: xsubmin= int(gridpoints)//4 xsubmax= gridpoints-int(gridpoints)//4 else: xsubmin= gridpoints xsubmax= 0 ysubmin, ysubmax= xsubmin, xsubmax for ii in range(gridpoints): for jj in range(gridpoints): if print_progress: #pragma: no cover sys.stdout.write('\r'+"Velocity gridpoint %i out of %i" % \ (jj+ii*gridpoints+1,gridpoints*gridpoints)) sys.stdout.flush() #If this is part of a subgrid, ignore if nlevels > 1 and ii >= xsubmin and ii < xsubmax \ and jj >= ysubmin and jj < ysubmax: continue thiso= Orbit([R,self.vRgrid[ii],self.vTgrid[jj],phi]) self.df[ii,jj,:]= edf(thiso,nu.array(t).flatten(), deriv=deriv) self.df[ii,jj,nu.isnan(self.df[ii,jj,:])]= 0.#BOVY: for now #Multiply in area, somewhat tricky for edge objects if upperdxdy is None or (ii != 0 and ii != gridpoints-1\ and jj != 0 and jj != gridpoints-1): self.df[ii,jj,:]*= dxdy elif ((ii == 0 or ii == gridpoints-1) and \ (jj != 0 and jj != gridpoints-1))\ or \ ((jj == 0 or jj == gridpoints-1) and \ (ii != 0 and ii != gridpoints-1)): #edge self.df[ii,jj,:]*= 1.5*dxdy/1.5 #turn this off for now else: #corner self.df[ii,jj,:]*= 2.25*dxdy/2.25 #turn this off for now if print_progress: sys.stdout.write('\n') #pragma: no cover else: self.df= nu.zeros((gridpoints,gridpoints)) dxdy= (self.vRgrid[1]-self.vRgrid[0])\ *(self.vTgrid[1]-self.vTgrid[0]) if nlevels > 0: xsubmin= int(gridpoints)//4 xsubmax= gridpoints-int(gridpoints)//4 else: xsubmin= gridpoints xsubmax= 0 ysubmin, ysubmax= xsubmin, xsubmax for ii in range(gridpoints): for jj in range(gridpoints): if print_progress: #pragma: no cover sys.stdout.write('\r'+"Velocity gridpoint %i out of %i" % \ (jj+ii*gridpoints+1,gridpoints*gridpoints)) sys.stdout.flush() #If this is part of a subgrid, ignore if nlevels > 1 and ii >= xsubmin and ii < xsubmax \ and jj >= ysubmin and jj < ysubmax: continue thiso= Orbit([R,self.vRgrid[ii],self.vTgrid[jj],phi]) self.df[ii,jj]= edf(thiso,t,deriv=deriv) if nu.isnan(self.df[ii,jj]): self.df[ii,jj]= 0. #BOVY: for now #Multiply in area, somewhat tricky for edge objects if upperdxdy is None or (ii != 0 and ii != gridpoints-1\ and jj != 0 and jj != gridpoints-1): self.df[ii,jj]*= dxdy elif ((ii == 0 or ii == gridpoints-1) and \ (jj != 0 and jj != gridpoints-1))\ or \ ((jj == 0 or jj == gridpoints-1) and \ (ii != 0 and ii != gridpoints-1)): #edge self.df[ii,jj]*= 1.5*dxdy/1.5#turn this off for now else: #corner self.df[ii,jj]*= 2.25*dxdy/2.25#turn this off for now if print_progress: sys.stdout.write('\n') #pragma: no cover if nlevels > 1: #Set up subgrid subnsigma= (self.meanvR-self.vRgrid[xsubmin])/self.sigmaR1 self.subgrid= evolveddiskdfHierarchicalGrid(edf,R,phi, subnsigma,t, sigmaR1, sigmaT1, meanvR, meanvT, gridpoints, nlevels-1, deriv, upperdxdy=dxdy, print_progress=print_progress, nlevelsTotal=nlevelsTotal) else: self.subgrid= None return None def __call__(self,n,m): """Call""" if isinstance(self.t,(list,nu.ndarray)): tlist= True else: tlist= False if tlist: nt= self.df.shape[2] out= [] for ii in range(nt): #We already multiplied in the area out.append(nu.dot(self.vRgrid**n,nu.dot(self.df[:,:,ii], self.vTgrid**m))) if self.subgrid is None: return nu.array(out) else: return nu.array(out)+ self.subgrid(n,m) else: #We already multiplied in the area thislevel= nu.dot(self.vRgrid**n,nu.dot(self.df,self.vTgrid**m)) if self.subgrid is None: return thislevel else: return thislevel+self.subgrid(n,m) def plot(self,tt=0,vmax=None,aspect=None,extent=None): """ NAME: plot PURPOSE: plot the velocity distribution INPUT: t= optional time index OUTPUT: plot of velocity distribution to output device HISTORY: 2011-06-27 - Written - Bovy (NYU) """ if vmax is None: vmax= self.max(tt=tt)*2. #Figure out how big of a grid we need dvR= (self.vRgrid[1]-self.vRgrid[0]) dvT= (self.vTgrid[1]-self.vTgrid[0]) nvR= len(self.vRgrid) nvT= len(self.vTgrid) nUpperLevels= self.nlevelsTotal-self.nlevels nvRTot= nvR*2**nUpperLevels nvTTot= nvT*2**nUpperLevels plotthis=
nu.zeros((nvRTot,nvTTot))
numpy.zeros
import os import sys import itertools import unittest import numpy as np from io import StringIO from numpy.testing import assert_almost_equal try: from scipy.sparse import load_npz except ImportError: load_npz = None import openmdao.api as om from openmdao.utils.general_utils import set_pyoptsparse_opt from openmdao.utils.coloring import _compute_coloring, array_viz, compute_total_coloring from openmdao.utils.mpi import MPI from openmdao.utils.testing_utils import use_tempdirs from openmdao.test_suite.tot_jac_builder import TotJacBuilder from openmdao.utils.general_utils import run_driver import openmdao.test_suite try: from parameterized import parameterized except ImportError: from openmdao.utils.assert_utils import SkipParameterized as parameterized try: from openmdao.vectors.petsc_vector import PETScVector except ImportError: PETScVector = None # check that pyoptsparse is installed OPT, OPTIMIZER = set_pyoptsparse_opt('SNOPT') if OPTIMIZER: from openmdao.drivers.pyoptsparse_driver import pyOptSparseDriver class CounterGroup(om.Group): def __init__(self, *args, **kwargs): self._solve_count = 0 self._solve_nl_count = 0 self._apply_nl_count = 0 super().__init__(*args, **kwargs) def _solve_linear(self, *args, **kwargs): super()._solve_linear(*args, **kwargs) self._solve_count += 1 def _solve_nonlinear(self, *args, **kwargs): super()._solve_nonlinear(*args, **kwargs) self._solve_nl_count += 1 def _apply_nonlinear(self, *args, **kwargs): super()._apply_nonlinear(*args, **kwargs) self._apply_nl_count += 1 # note: size must be an even number SIZE = 10 class DynPartialsComp(om.ExplicitComponent): def __init__(self, size): super().__init__() self.size = size self.num_computes = 0 def setup(self): self.add_input('y', np.ones(self.size)) self.add_input('x', np.ones(self.size)) self.add_output('g', np.ones(self.size)) # turn on dynamic partial coloring self.declare_coloring(wrt='*', method='cs', perturb_size=1e-5, num_full_jacs=2, tol=1e-20) def compute(self, inputs, outputs): outputs['g'] = np.arctan(inputs['y'] / inputs['x']) self.num_computes += 1 def run_opt(driver_class, mode, assemble_type=None, color_info=None, derivs=True, recorder=None, has_lin_constraint=True, has_diag_partials=True, partial_coloring=False, use_vois=True, auto_ivc=False, **options): p = om.Problem(model=CounterGroup()) if assemble_type is not None: p.model.linear_solver = om.DirectSolver(assemble_jac=True) p.model.options['assembled_jac_type'] = assemble_type # the following were randomly generated using np.random.random(10)*2-1 to randomly # disperse them within a unit circle centered at the origin. x_init = np.array([ 0.55994437, -0.95923447, 0.21798656, -0.02158783, 0.62183717, 0.04007379, 0.46044942, -0.10129622, 0.27720413, -0.37107886]) y_init = np.array([ 0.52577864, 0.30894559, 0.8420792 , 0.35039912, -0.67290778, -0.86236787, -0.97500023, 0.47739414, 0.51174103, 0.10052582]) r_init = .7 if auto_ivc: p.model.set_input_defaults('x', x_init) p.model.set_input_defaults('y', y_init) p.model.set_input_defaults('r', r_init) else: indeps = p.model.add_subsystem('indeps', om.IndepVarComp(), promotes_outputs=['*']) indeps.add_output('x', x_init) indeps.add_output('y', y_init) indeps.add_output('r', r_init) if partial_coloring: arctan_yox = om.ExecComp('g=arctan(y/x)', shape=SIZE) arctan_yox.declare_coloring(wrt='*', method='cs', perturb_size=1e-5, num_full_jacs=2, tol=1e-20) else: arctan_yox = om.ExecComp('g=arctan(y/x)', shape=SIZE, has_diag_partials=has_diag_partials) p.model.add_subsystem('arctan_yox', arctan_yox) p.model.add_subsystem('circle', om.ExecComp('area=pi*r**2')) p.model.add_subsystem('r_con', om.ExecComp('g=x**2 + y**2 - r', has_diag_partials=has_diag_partials, g=np.ones(SIZE), x=np.ones(SIZE), y=np.ones(SIZE))) thetas = np.linspace(0, np.pi/4, SIZE) p.model.add_subsystem('theta_con', om.ExecComp('g = x - theta', has_diag_partials=has_diag_partials, g=np.ones(SIZE), x=np.ones(SIZE), theta=thetas)) p.model.add_subsystem('delta_theta_con', om.ExecComp('g = even - odd', has_diag_partials=has_diag_partials, g=np.ones(SIZE//2), even=np.ones(SIZE//2), odd=np.ones(SIZE//2))) p.model.add_subsystem('l_conx', om.ExecComp('g=x-1', has_diag_partials=has_diag_partials, g=np.ones(SIZE), x=np.ones(SIZE))) IND = np.arange(SIZE, dtype=int) ODD_IND = IND[1::2] # all odd indices EVEN_IND = IND[0::2] # all even indices if auto_ivc: p.model.promotes('circle', inputs=['r']) p.model.promotes('r_con', inputs=['r', 'x', 'y']) p.model.promotes('l_conx', inputs=['x']) p.model.promotes('arctan_yox', inputs=['x', 'y']) else: p.model.connect('r', ('circle.r', 'r_con.r')) p.model.connect('x', ['r_con.x', 'arctan_yox.x', 'l_conx.x']) p.model.connect('y', ['r_con.y', 'arctan_yox.y']) p.model.connect('arctan_yox.g', 'theta_con.x') p.model.connect('arctan_yox.g', 'delta_theta_con.even', src_indices=EVEN_IND) p.model.connect('arctan_yox.g', 'delta_theta_con.odd', src_indices=ODD_IND) p.driver = driver_class() if 'method' in options: p.model.approx_totals(method=options['method']) del options['method'] if 'dynamic_total_coloring' in options: p.driver.declare_coloring(tol=1e-15) del options['dynamic_total_coloring'] p.driver.options.update(options) if use_vois: p.model.add_design_var('x') p.model.add_design_var('y') p.model.add_design_var('r', lower=.5, upper=10) # nonlinear constraints p.model.add_constraint('r_con.g', equals=0) p.model.add_constraint('theta_con.g', lower=-1e-5, upper=1e-5, indices=EVEN_IND) p.model.add_constraint('delta_theta_con.g', lower=-1e-5, upper=1e-5) # this constrains x[0] to be 1 (see definition of l_conx) p.model.add_constraint('l_conx.g', equals=0, linear=False, indices=[0,]) # linear constraint (if has_lin_constraint is set) p.model.add_constraint('y', equals=0, indices=[0,], linear=has_lin_constraint) p.model.add_objective('circle.area', ref=-1) # setup coloring if color_info is not None: p.driver.use_fixed_coloring(color_info) if recorder: p.driver.add_recorder(recorder) p.setup(mode=mode, derivatives=derivs) if use_vois: p.run_driver() else: p.run_model() return p @use_tempdirs class SimulColoringPyoptSparseTestCase(unittest.TestCase): @unittest.skipUnless(OPTIMIZER == 'SNOPT', "This test requires SNOPT.") def test_dynamic_total_coloring_snopt_auto(self): # first, run w/o coloring p = run_opt(pyOptSparseDriver, 'auto', optimizer='SNOPT', print_results=False) p_color = run_opt(pyOptSparseDriver, 'auto', optimizer='SNOPT', print_results=False, dynamic_total_coloring=True) assert_almost_equal(p['circle.area'], np.pi, decimal=7) assert_almost_equal(p_color['circle.area'], np.pi, decimal=7) # - coloring saves 16 solves per driver iter (5 vs 21) # - initial solve for linear constraints takes 21 in both cases (only done once) # - dynamic case does 3 full compute_totals to compute coloring, which adds 21 * 3 solves # - (total_solves - N) / (solves_per_iter) should be equal between the two cases, # - where N is 21 for the uncolored case and 21 * 4 for the dynamic colored case. self.assertEqual((p.model._solve_count - 21) / 21, (p_color.model._solve_count - 21 * 4) / 5) @unittest.skipUnless(OPTIMIZER == 'SNOPT', "This test requires SNOPT.") def test_dynamic_total_coloring_snopt_auto_autoivc(self): # first, run w/o coloring p = run_opt(pyOptSparseDriver, 'auto', optimizer='SNOPT', print_results=False, auto_ivc=True) p_color = run_opt(pyOptSparseDriver, 'auto', optimizer='SNOPT', print_results=False, dynamic_total_coloring=True, auto_ivc=True) assert_almost_equal(p['circle.area'], np.pi, decimal=7) assert_almost_equal(p_color['circle.area'], np.pi, decimal=7) # - coloring saves 16 solves per driver iter (5 vs 21) # - initial solve for linear constraints takes 21 in both cases (only done once) # - dynamic case does 3 full compute_totals to compute coloring, which adds 21 * 3 solves # - (total_solves - N) / (solves_per_iter) should be equal between the two cases, # - where N is 21 for the uncolored case and 21 * 4 for the dynamic colored case. self.assertEqual((p.model._solve_count - 21) / 21, (p_color.model._solve_count - 21 * 4) / 5) @unittest.skipUnless(OPTIMIZER == 'SNOPT', "This test requires SNOPT.") def test_dynamic_total_coloring_snopt_auto_dyn_partials(self): # first, run w/o coloring p = run_opt(pyOptSparseDriver, 'auto', optimizer='SNOPT', print_results=False) p_color = run_opt(pyOptSparseDriver, 'auto', optimizer='SNOPT', print_results=False, dynamic_total_coloring=True, partial_coloring=True) assert_almost_equal(p['circle.area'], np.pi, decimal=7) assert_almost_equal(p_color['circle.area'], np.pi, decimal=7) # - coloring saves 16 solves per driver iter (5 vs 21) # - initial solve for linear constraints takes 21 in both cases (only done once) # - dynamic case does 3 full compute_totals to compute coloring, which adds 21 * 3 solves # - (total_solves - N) / (solves_per_iter) should be equal between the two cases, # - where N is 21 for the uncolored case and 21 * 4 for the dynamic colored case. self.assertEqual((p.model._solve_count - 21) / 21, (p_color.model._solve_count - 21 * 4) / 5) partial_coloring = p_color.model._get_subsystem('arctan_yox')._coloring_info['coloring'] expected = [ "self.declare_partials(of='g', wrt='x', rows=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], cols=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9])", "self.declare_partials(of='g', wrt='y', rows=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], cols=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9])", ] decl_partials_calls = partial_coloring.get_declare_partials_calls().strip() for i, d in enumerate(decl_partials_calls.split('\n')): self.assertEqual(d.strip(), expected[i]) fwd_solves, rev_solves = p_color.driver._coloring_info['coloring'].get_row_var_coloring('delta_theta_con.g') self.assertEqual(fwd_solves, 4) self.assertEqual(rev_solves, 0) @unittest.skipUnless(OPTIMIZER == 'SNOPT', "This test requires SNOPT.") def test_dynamic_total_coloring_snopt_auto_dyn_partials_assembled_jac(self): # first, run w/o coloring p = run_opt(pyOptSparseDriver, 'auto', assemble_type='csc', optimizer='SNOPT', print_results=False) p_color = run_opt(pyOptSparseDriver, 'auto', assemble_type='csc', optimizer='SNOPT', print_results=False, dynamic_total_coloring=True, partial_coloring=True) assert_almost_equal(p['circle.area'], np.pi, decimal=7) assert_almost_equal(p_color['circle.area'], np.pi, decimal=7) # - coloring saves 16 solves per driver iter (5 vs 21) # - initial solve for linear constraints takes 21 in both cases (only done once) # - dynamic case does 3 full compute_totals to compute coloring, which adds 21 * 3 solves # - (total_solves - N) / (solves_per_iter) should be equal between the two cases, # - where N is 21 for the uncolored case and 21 * 4 for the dynamic colored case. # This has been changed to greater or equal to 28 iterations. This change arose when updating # to pyOptSparse v2.1.0 and SNOPT 7.7 self.assertGreaterEqual((p.model._solve_count - 21) / 21, (p_color.model._solve_count - 21 * 4) / 5) @unittest.skipUnless(OPTIMIZER == 'SNOPT', "This test requires SNOPT.") def test_dynamic_total_coloring_snopt_auto_assembled(self): # first, run w/o coloring p = run_opt(pyOptSparseDriver, 'auto', assemble_type='dense', optimizer='SNOPT', print_results=False) p_color = run_opt(pyOptSparseDriver, 'auto', assemble_type='dense', optimizer='SNOPT', print_results=False, dynamic_total_coloring=True) assert_almost_equal(p['circle.area'], np.pi, decimal=7) assert_almost_equal(p_color['circle.area'], np.pi, decimal=7) # - coloring saves 16 solves per driver iter (5 vs 21) # - initial solve for linear constraints takes 21 in both cases (only done once) # - dynamic case does 3 full compute_totals to compute coloring, which adds 21 * 3 solves # - (total_solves - N) / (solves_per_iter) should be equal between the two cases, # - where N is 21 for the uncolored case and 21 * 4 for the dynamic colored case. self.assertEqual((p.model._solve_count - 21) / 21, (p_color.model._solve_count - 21 * 4) / 5) @unittest.skipUnless(OPTIMIZER == 'SNOPT', "This test requires SNOPT.") def test_dynamic_fwd_simul_coloring_snopt_approx_cs(self): # first, run w/o coloring p = run_opt(pyOptSparseDriver, 'fwd', optimizer='SNOPT', print_results=False, has_lin_constraint=False, method='cs') p_color = run_opt(pyOptSparseDriver, 'fwd', optimizer='SNOPT', has_lin_constraint=False, has_diag_partials=True, print_results=False, dynamic_total_coloring=True, method='cs') assert_almost_equal(p['circle.area'], np.pi, decimal=7) assert_almost_equal(p_color['circle.area'], np.pi, decimal=7) # - fwd coloring saves 16 nonlinear solves per driver iter (6 vs 22). # - dynamic coloring takes 66 nonlinear solves (22 each for 3 full jacs) # - (total_solves - 2) / (solves_per_iter) should be equal to # (total_color_solves - 2 - dyn_solves) / color_solves_per_iter self.assertEqual((p.model._solve_nl_count - 2) / 22, (p_color.model._solve_nl_count - 2 - 66) / 6) @unittest.skipUnless(OPTIMIZER == 'SNOPT', "This test requires SNOPT.") def test_dynamic_fwd_simul_coloring_snopt_approx_fd(self): # first, run w/o coloring p = run_opt(pyOptSparseDriver, 'fwd', optimizer='SNOPT', print_results=False, has_lin_constraint=False, method='cs') p_color = run_opt(pyOptSparseDriver, 'fwd', optimizer='SNOPT', has_lin_constraint=False, has_diag_partials=True, print_results=False, dynamic_total_coloring=True, method='fd') assert_almost_equal(p['circle.area'], np.pi, decimal=7) assert_almost_equal(p_color['circle.area'], np.pi, decimal=7) # - fwd coloring saves 16 nonlinear solves per driver iter (6 vs 22). # - dynamic coloring takes 66 nonlinear solves (22 each for 3 full jacs) # - (total_solves - 2) / (solves_per_iter) should be equal to # (total_color_solves - 2 - dyn_solves) / color_solves_per_iter self.assertEqual((p.model._solve_nl_count - 2) / 22, (p_color.model._solve_nl_count - 2 - 66) / 6) def test_size_zero_array_in_component(self): class DynamicPartialsComp(om.ExplicitComponent): def __init__(self, size): super().__init__() self.size = size self.num_computes = 0 def setup(self): self.add_input('y', np.ones(self.size)) self.add_input('x', np.ones(self.size)) self.add_output('g', np.ones(self.size)) self.declare_partials('*', '*', method='cs') # turn on dynamic partial coloring self.declare_coloring(wrt='*', method='cs', perturb_size=1e-5, num_full_jacs=2, tol=1e-20, orders=20, show_summary=True, show_sparsity=True) def compute(self, inputs, outputs): outputs['g'] = np.arctan(inputs['y'] / inputs['x']) self.num_computes += 1 SIZE = 0 p = om.Problem() arctan_yox = p.model.add_subsystem('arctan_yox', DynamicPartialsComp(SIZE)) p.driver = om.ScipyOptimizeDriver() p.driver.options['optimizer'] = 'SLSQP' p.driver.options['disp'] = False p.driver.declare_coloring(show_summary=True, show_sparsity=True) p.setup(mode='fwd') with self.assertRaises(Exception) as context: p.run_driver() self.assertEqual(str(context.exception), "'arctan_yox' <class DynamicPartialsComp>: 'arctan_yox.g' is an array of size 0") def test_size_zero_array_declare_partials(self): class DynamicPartialsComp(om.ExplicitComponent): def __init__(self, size): super().__init__() self.size = size self.num_computes = 0 def setup(self): self.add_input('y', np.ones(self.size)) self.add_input('x', np.ones(self.size)) self.add_output('g', np.ones(self.size)) self.add_output('r', np.ones(1)) self.declare_partials('r', 'y', method='cs') # turn on dynamic partial coloring self.declare_coloring(wrt='*', method='cs', perturb_size=1e-5, num_full_jacs=2, tol=1e-20, orders=20, show_summary=True, show_sparsity=True) def compute(self, inputs, outputs): outputs['g'] = np.arctan(inputs['y'] / inputs['x']) self.num_computes += 1 SIZE = 0 p = om.Problem() arctan_yox = p.model.add_subsystem('arctan_yox', DynamicPartialsComp(SIZE)) p.driver = om.ScipyOptimizeDriver() p.driver.options['optimizer'] = 'SLSQP' p.driver.options['disp'] = False p.driver.declare_coloring(show_summary=True, show_sparsity=True) p.setup(mode='fwd') with self.assertRaises(Exception) as context: p.run_driver() self.assertEqual(str(context.exception), "'arctan_yox' <class DynamicPartialsComp>: 'arctan_yox.y' is an array of size 0") def test_dynamic_total_coloring_pyoptsparse_slsqp_auto(self): try: from pyoptsparse import OPT except ImportError: raise unittest.SkipTest("This test requires pyoptsparse.") try: OPT('SLSQP') except: raise unittest.SkipTest("This test requires pyoptsparse SLSQP.") p_color = run_opt(pyOptSparseDriver, 'auto', optimizer='SLSQP', print_results=False, dynamic_total_coloring=True) assert_almost_equal(p_color['circle.area'], np.pi, decimal=7) # run w/o coloring p = run_opt(pyOptSparseDriver, 'auto', optimizer='SLSQP', print_results=False) assert_almost_equal(p['circle.area'], np.pi, decimal=7) # - coloring saves 16 solves per driver iter (5 vs 21) # - initial solve for linear constraints takes 21 in both cases (only done once) # - dynamic case does 3 full compute_totals to compute coloring, which adds 21 * 3 solves # - (total_solves - N) / (solves_per_iter) should be equal between the two cases, # - where N is 21 for the uncolored case and 21 * 4 for the dynamic colored case. self.assertEqual((p.model._solve_count - 21) / 21, (p_color.model._solve_count - 21 * 4) / 5) # test __repr__ rep = repr(p_color.driver._coloring_info['coloring']) self.assertEqual(rep.replace('L', ''), 'Coloring (direction: fwd, ncolors: 5, shape: (22, 21), pct nonzero: 13.42, tol: 1e-15') @unittest.skipUnless(OPTIMIZER == 'SNOPT', "This test requires SNOPT.") def test_print_options_total_with_coloring_fwd(self): # first, run w/o coloring p = run_opt(pyOptSparseDriver, 'fwd', optimizer='SNOPT', print_results=False) p_color = run_opt(pyOptSparseDriver, 'fwd', optimizer='SNOPT', print_results=False, dynamic_total_coloring=True, debug_print=['totals']) failed, output = run_driver(p_color) self.assertFalse(failed, "Optimization failed.") assert_almost_equal(p['circle.area'], np.pi, decimal=7) assert_almost_equal(p_color['circle.area'], np.pi, decimal=7) self.assertTrue('In mode: fwd, Solving variable(s) using simul coloring:' in output) self.assertTrue("('indeps.y', [1, 3, 5, 7, 9])" in output) self.assertTrue('Elapsed Time:' in output) @unittest.skipUnless(OPTIMIZER == 'SNOPT', "This test requires SNOPT.") def test_print_options_total_with_coloring_rev(self): # first, run w/o coloring p = run_opt(pyOptSparseDriver, 'rev', optimizer='SNOPT', print_results=False) p_color = run_opt(pyOptSparseDriver, 'rev', optimizer='SNOPT', print_results=False, dynamic_total_coloring=True, debug_print=['totals']) failed, output = run_driver(p_color) self.assertFalse(failed, "Optimization failed.") self.assertTrue('In mode: rev, Solving variable(s) using simul coloring:' in output) self.assertTrue("('r_con.g', [0])" in output) self.assertTrue('Elapsed Time:' in output) @use_tempdirs @unittest.skipUnless(OPTIMIZER == 'SNOPT', "This test requires SNOPT.") class SimulColoringRecordingTestCase(unittest.TestCase): def test_recording(self): # coloring involves an underlying call to run_model (and final_setup), # this verifies that it is handled properly by the recording setup logic recorder = om.SqliteRecorder('cases.sql') p = run_opt(pyOptSparseDriver, 'auto', assemble_type='csc', optimizer='SNOPT', dynamic_total_coloring=True, print_results=False, recorder=recorder) cr = om.CaseReader('cases.sql') self.assertEqual(cr.list_cases(out_stream=None), ['rank0:pyOptSparse_SNOPT|%d' % i for i in range(p.driver.iter_count)]) @use_tempdirs class SimulColoringPyoptSparseRevTestCase(unittest.TestCase): """Reverse coloring tests for pyoptsparse.""" @unittest.skipUnless(OPTIMIZER == 'SNOPT', "This test requires SNOPT.") def test_dynamic_rev_simul_coloring_snopt(self): # first, run w/o coloring p = run_opt(pyOptSparseDriver, 'rev', optimizer='SNOPT', print_results=False) p_color = run_opt(pyOptSparseDriver, 'rev', optimizer='SNOPT', print_results=False, dynamic_total_coloring=True) assert_almost_equal(p['circle.area'], np.pi, decimal=7) assert_almost_equal(p_color['circle.area'], np.pi, decimal=7) # - rev coloring saves 11 solves per driver iter (11 vs 22) # - initial solve for linear constraints takes 1 in both cases (only done once) # - dynamic case does 3 full compute_totals to compute coloring, which adds 22 * 3 solves # - (total_solves - N) / (solves_per_iter) should be equal between the two cases, # - where N is 1 for the uncolored case and 22 * 3 + 1 for the dynamic colored case. self.assertEqual((p.model._solve_count - 1) / 22, (p_color.model._solve_count - 1 - 22 * 3) / 11) # improve coverage of coloring.py coloring = p_color.driver._coloring_info['coloring'] coloring.display_txt() with open(os.devnull, 'w') as f: array_viz(coloring.get_dense_sparsity(), prob=p_color, stream=f) array_viz(coloring.get_dense_sparsity(), stream=f) def test_dynamic_rev_simul_coloring_pyoptsparse_slsqp(self): try: from pyoptsparse import OPT except ImportError: raise unittest.SkipTest("This test requires pyoptsparse.") try: OPT('SLSQP') except: raise unittest.SkipTest("This test requires pyoptsparse SLSQP.") p_color = run_opt(pyOptSparseDriver, 'rev', optimizer='SLSQP', print_results=False, dynamic_total_coloring=True) assert_almost_equal(p_color['circle.area'], np.pi, decimal=7) # Tests a bug where coloring ran the model when not needed. self.assertEqual(p_color.model.iter_count, 9) # run w/o coloring p = run_opt(pyOptSparseDriver, 'rev', optimizer='SLSQP', print_results=False) assert_almost_equal(p['circle.area'], np.pi, decimal=7) # - coloring saves 11 solves per driver iter (11 vs 22) # - initial solve for linear constraints takes 1 in both cases (only done once) # - dynamic case does 3 full compute_totals to compute coloring, which adds 22 * 3 solves # - (total_solves - N) / (solves_per_iter) should be equal between the two cases, # - where N is 1 for the uncolored case and 22 * 3 + 1 for the dynamic colored case. self.assertEqual((p.model._solve_count - 1) / 22, (p_color.model._solve_count - 1 - 22 * 3) / 11) @use_tempdirs class SimulColoringScipyTestCase(unittest.TestCase): def test_bad_mode(self): p_color_fwd = run_opt(om.ScipyOptimizeDriver, 'fwd', optimizer='SLSQP', disp=False, dynamic_total_coloring=True) coloring = p_color_fwd.driver._coloring_info['coloring'] with self.assertRaises(Exception) as context: p_color = run_opt(om.ScipyOptimizeDriver, 'rev', color_info=coloring, optimizer='SLSQP', disp=False) self.assertEqual(str(context.exception), "Simultaneous coloring does forward solves but mode has been set to 'rev'") def test_dynamic_total_coloring_auto(self): # first, run w/o coloring p = run_opt(om.ScipyOptimizeDriver, 'auto', optimizer='SLSQP', disp=False) p_color = run_opt(om.ScipyOptimizeDriver, 'auto', optimizer='SLSQP', disp=False, dynamic_total_coloring=True) assert_almost_equal(p['circle.area'], np.pi, decimal=7) assert_almost_equal(p_color['circle.area'], np.pi, decimal=7) # - bidirectional coloring saves 16 solves per driver iter (5 vs 21) # - initial solve for linear constraints takes 21 in both cases (only done once) # - dynamic case does 3 full compute_totals to compute coloring, which adds 21 * 3 solves # - (total_solves - N) / (solves_per_iter) should be equal between the two cases, # - where N is 21 for the uncolored case and 21 * 4 for the dynamic colored case. self.assertEqual((p.model._solve_count - 21) / 21, (p_color.model._solve_count - 21 * 4) / 5) def test_problem_total_coloring_auto(self): p = run_opt(om.ScipyOptimizeDriver, 'auto', optimizer='SLSQP', disp=False, use_vois=False) coloring = compute_total_coloring(p, of=['r_con.g', 'theta_con.g', 'delta_theta_con.g', 'l_conx.g', 'y', 'circle.area'], wrt=['x', 'y', 'r']) self.assertEqual(coloring.total_solves(), 5) def test_problem_total_coloring_auto_mixed_vois(self): p = run_opt(om.ScipyOptimizeDriver, 'auto', optimizer='SLSQP', disp=False,) coloring = compute_total_coloring(p, of=['r_con.g', 'theta_con.g', 'delta_theta_con.g', 'l_conx.g', 'y', 'circle.area'], wrt=['x', 'y', 'r']) self.assertEqual(coloring.total_solves(), 5) coloring.display_txt() # leave this in because at one point it caused an exception def test_simul_coloring_example(self): SIZE = 10 p = om.Problem() p.model.add_subsystem('arctan_yox', om.ExecComp('g=arctan(y/x)', has_diag_partials=True, g=np.ones(SIZE), x=np.ones(SIZE), y=np.ones(SIZE)), promotes_inputs=['x', 'y']) p.model.add_subsystem('circle', om.ExecComp('area=pi*r**2'), promotes_inputs=['r']) p.model.add_subsystem('r_con', om.ExecComp('g=x**2 + y**2 - r', has_diag_partials=True, g=np.ones(SIZE), x=np.ones(SIZE), y=np.ones(SIZE)), promotes_inputs=['r', 'x', 'y']) thetas = np.linspace(0, np.pi/4, SIZE) p.model.add_subsystem('theta_con', om.ExecComp('g = x - theta', has_diag_partials=True, g=np.ones(SIZE), x=np.ones(SIZE), theta=thetas)) p.model.add_subsystem('delta_theta_con', om.ExecComp('g = even - odd', has_diag_partials=True, g=np.ones(SIZE//2), even=np.ones(SIZE//2), odd=np.ones(SIZE//2))) p.model.add_subsystem('l_conx', om.ExecComp('g=x-1', has_diag_partials=True, g=
np.ones(SIZE)
numpy.ones
import numpy as np k = np.arange(18) s = 5.0/3.0 fat = [s] for i in np.arange(1,18): fat = np.append(fat, fat[i-1]*(s+i)) def sN2(T): c = [0.0, 0.88, 4.9, 48.0, 32.0] return c[0] + c[1]*np.exp(-c[2]*300.0/T) + c[3]*np.exp(-c[4]*300.0/T) def sO2(T): c = [25.1] return c[0] def sNO(T): c = [43.0] return c[0] def sO(T): c = [32.0] return c[0] def sNO2(T): c = [82.0, 9.0, 0.54] return c[0] + c[1]*(300.0/T)**c[2] def sNOBRE(T): c = [0.0] return c[0] def sH2(T): c = [0.0] return c[0] def sCO(T): c = [5.9, 5.3, 7.0, 22.1, 14.0] return c[0] + c[1]*np.exp(-c[2]*300.0/T) + c[3]*np.exp(-c[4]*300.0/T) def sH2O(T): c = [28.2, 3.39, 0.15, 2.95] x = c[2]*(300.0/T) + c[3]*(300.0/T)**2.0 S = ((x**s)*np.exp(-x)*(x**k)/fat).sum() return c[0]*( (1.0+x)*np.exp(-x) + c[1]*S*x**(0.333) ) def sOH(T): c = [82.0] return c[0] def sH(T): c = [12.0] return c[0] def sN2O(T): c = [59.0, 0.99, 3.98, 0.16] x = c[2]*(300.0/T) + c[3]*(300.0/T)**2.0 S = ((x**s)*
np.exp(-x)
numpy.exp
import os import numpy as np import matplotlib.pyplot as plt def compute_uncertainty_bounds(est: np.array, std: np.array): return np.maximum(0, est - 2 * std), est + 2 * std def plot_market_estimates(data: dict, est: np.array, std: np.array): """ It makes a market estimation plot with prices, trends, uncertainties and volumes. Parameters ---------- data: dict Downloaded data. est: np.array Price trend estimate at market-level. std: np.array Standard deviation estimate of price trend at market-level. """ print('\nPlotting market estimation...') fig = plt.figure(figsize=(10, 3)) logp = np.log(data['price']) t = logp.shape[1] lb, ub = compute_uncertainty_bounds(est, std) plt.grid(axis='both') plt.title("Market", fontsize=15) avg_price = np.exp(logp.mean(0)) l1 = plt.plot(data["dates"], avg_price, label="avg. price in {}".format(data['default_currency']), color="C0") l2 = plt.plot(data["dates"], est[0], label="trend", color="C1") l3 = plt.fill_between(data["dates"], lb[0], ub[0], alpha=0.2, label="+/- 2 st. dev.", color="C0") plt.ylabel("avg. price in {}".format(data['default_currency']), fontsize=12) plt.twinx() l4 = plt.bar(data["dates"], data['volume'].mean(0), width=1, color='g', alpha=0.2, label='avg. volume') l4[0].set_edgecolor('r') for d in range(1, t): if avg_price[d] - avg_price[d - 1] < 0: l4[d].set_color('r') plt.ylabel("avg. volume", fontsize=12) ll = l1 + l2 + [l3] + [l4] labels = [l.get_label() for l in ll] plt.legend(ll, labels, loc="upper left") fig_name = 'market_estimation.png' fig.savefig(fig_name, dpi=fig.dpi) print('Market estimation plot has been saved to {}/{}.'.format(os.getcwd(), fig_name)) def plot_sector_estimates(data: dict, info: dict, est: np.array, std: np.array): """ It makes a plot for each sector with prices, trends, uncertainties and volumes. Parameters ---------- data: dict Downloaded data. info: dict Model hierarchy information. est: np.array Price trend estimate at sector-level. std: np.array Standard deviation estimate of price trend at sector-level. """ print('\nPlotting sector estimation...') num_columns = 3 logp = np.log(data['price']) t = logp.shape[1] lb, ub = compute_uncertainty_bounds(est, std) NA_sectors = np.where(np.array([sec[:2] for sec in info['unique_sectors']]) == "NA")[0] num_NA_sectors = len(NA_sectors) fig = plt.figure(figsize=(20, max(info['num_sectors'] - num_NA_sectors, 5))) j = 0 for i in range(info['num_sectors']): if i not in NA_sectors: j += 1 plt.subplot(int(np.ceil((info['num_sectors'] - num_NA_sectors) / num_columns)), num_columns, j) plt.grid(axis='both') plt.title(info['unique_sectors'][i], fontsize=15) idx_sectors = np.where(np.array(info['sectors_id']) == i)[0] avg_price = np.exp(logp[idx_sectors].reshape(-1, t).mean(0)) l1 = plt.plot(data["dates"], avg_price, label="avg. price in {}".format(data['default_currency']), color="C0") l2 = plt.plot(data["dates"], est[i], label="trend", color="C1") l3 = plt.fill_between(data["dates"], lb[i], ub[i], alpha=0.2, label="+/- 2 st. dev.", color="C0") plt.ylabel("avg. price in {}".format(data['default_currency']), fontsize=12) plt.xticks(rotation=45) plt.twinx() l4 = plt.bar(data["dates"], data['volume'][np.where(
np.array(info['sectors_id'])
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Generator to yield resampled volume data for training and validation """ # %% from keras.models import load_model, Model from matplotlib import pyplot as plt import numpy as np import os from os import path import random import SimpleITK as sitk from stl import mesh from utils import data_loading_funcs as dlf from utils import mhd_utils as mu from utils import reg_evaluator as regev from utils import volume_resampler_3d as vr import tensorflow as tf from utils import registration_reader as rr import scipy #from augment_data import augment # %% class VolumeDataGenerator(object): """Generate volume image for training or validation #Arguments """ def __init__(self, data_folder, case_num_range, case_num_range_2=None, max_registration_error = 20.0): self.data_folder = data_folder cases = [] # Go through all the case for caseIdx in range(case_num_range[0], case_num_range[1]+1): caseFolder = 'Case{:04d}'.format(caseIdx) full_case = path.join(data_folder, caseFolder) if not path.isdir(full_case): continue else: cases.append(caseIdx) if case_num_range_2 != None: for caseIdx in range(case_num_range_2[0], case_num_range_2[1]+1): caseFolder = 'Case{:04d}'.format(caseIdx) full_case = path.join(data_folder, caseFolder) if not path.isdir(full_case): continue else: cases.append(caseIdx) self.good_cases = np.asarray(cases, dtype=np.int32) self.num_cases = self.good_cases.size random.seed() self.e_t = 0.5 self.e_rot = 1 self.isMultiGauss = False self.max_error = max_registration_error print('VolumeDataGenerator: max_registration_error = {}'.format(self.max_error)) #self.width, self.height, self.depth = 96, 96, 32 # ----- # def get_sample_multi_gauss(self,mean,cov): return np.random.multivariate_normal(mean,cov) def get_num_cases(self): return self.num_cases # ----- # def _get_random_value(self, r, center, hasSign): randNumber = random.random() * r + center if hasSign: sign = random.random() > 0.5 if sign == False: randNumber *= -1 return randNumber # ----- # def get_array_from_itk_matrix(self, itk_mat): mat = np.reshape(np.asarray(itk_mat), (3,3)) return mat # ----- # def generate(self, shuffle=True, shape=(96,96,96)): """ """ currentIdx = 0 np.random.seed() (width, height, depth) = shape print('Shuffle = {}'.format(shuffle)) while True: idx = currentIdx % self.num_cases currentIdx += 1 # Shuffle cases if idx == 0: if shuffle: case_array = np.random.permutation(self.good_cases) else: case_array = self.good_cases case_no = case_array[idx] sampledFixed, sampledMoving, err, params = self.create_sample(case_no, shape) #sampledFixed, sampledMoving, pos_neg, err, params = self.create_sample(450, shape) print('Sample generated frome Case{:04d}'.format(case_no)) # Put into 4D array sample4D = np.zeros((depth, height, width, 2), dtype=np.ubyte) sample4D[:,:,:,0] = sitk.GetArrayFromImage(sampledFixed) sample4D[:,:,:,1] = sitk.GetArrayFromImage(sampledMoving) yield sample4D, err, params # ----- # def generate_batch(self, batch_size=32, shape=(96,96,32)): """Used for keras training and validation """ batch_index = 0 np.random.seed() (width, height, depth) = shape while True: # Shuffle cases if batch_index == 0: case_array = np.random.permutation(self.good_cases) #current_index = (batch_index * batch_size) % self.num_cases current_index = batch_index * batch_size if (current_index + batch_size) < self.num_cases: current_batch_size = batch_size batch_index += 1 else: # handle special case where only 1 sample left for the batch if (self.num_cases - current_index) > 1: current_batch_size = self.num_cases - current_index else: current_batch_size = 2 current_index -= 1 batch_index = 0 batch_samples = np.zeros((current_batch_size, depth, height, width, 2), dtype=np.ubyte) #batch_labels = [] batch_errors = [] batch_params = [] for k in range(current_batch_size): case_no = case_array[k + current_index] #print(case_no) sampledFixed, sampledMoving, err, params = self.create_sample(case_no, shape) # Put into 4D array sample4D = np.zeros((depth, height, width, 2), dtype=np.ubyte) sample4D[:,:,:,0] = sitk.GetArrayFromImage(sampledFixed) sample4D[:,:,:,1] = sitk.GetArrayFromImage(sampledMoving) batch_samples[k, :,:,:,:] = sample4D #batch_labels.append(pos_neg) batch_errors.append([err]) batch_params.append(params) #yield (batch_samples, [np.asarray(batch_errors), np.asarray(batch_params)]) yield (batch_samples, np.asarray(batch_params)) #yield (batch_samples, np.asarray(batch_errors)) def generate_batch_classification(self, batch_size=32, shape=(96,96,32)): """Used for keras training and validation """ batch_index = 0 np.random.seed() (width, height, depth) = shape while True: # Shuffle cases if batch_index == 0: case_array =
np.random.permutation(self.good_cases)
numpy.random.permutation
# -*- coding: utf-8 -*- """ Regularization path OT solvers """ # Author: <NAME> <<EMAIL>> # License: MIT License import numpy as np import scipy.sparse as sp def recast_ot_as_lasso(a, b, C): r"""This function recasts the l2-penalized UOT problem as a Lasso problem. Recall the l2-penalized UOT problem defined in :ref:`[41] <references-regpath>` .. math:: \text{UOT}_{\lambda} = \min_T <C, T> + \lambda \|T 1_m - \mathbf{a}\|_2^2 + \lambda \|T^T 1_n - \mathbf{b}\|_2^2 s.t. T \geq 0 where : - :math:`C` is the cost matrix - :math:`\lambda` is the l2-regularization parameter - :math:`\mathbf{a}` and :math:`\mathbf{b}` are the source and target \ distributions - :math:`T` is the transport plan to optimize The problem above can be reformulated as a non-negative penalized linear regression problem, particularly Lasso .. math:: \text{UOT2}_{\lambda} = \min_{\mathbf{t}} \gamma \mathbf{c}^T \mathbf{t} + 0.5 * \|H \mathbf{t} - \mathbf{y}\|_2^2 s.t. \mathbf{t} \geq 0 where : - :math:`\mathbf{c}` is the flattened version of the cost matrix :math:`C` - :math:`\mathbf{y}` is the concatenation of vectors :math:`\mathbf{a}` \ and :math:`\mathbf{b}` - :math:`H` is a metric matrix, see :ref:`[41] <references-regpath>` for \ the design of :math:`H`. The matrix product :math:`H\mathbf{t}` \ computes both the source marginal and the target marginals. - :math:`\mathbf{t}` is the flattened version of the transport plan \ :math:`T` Parameters ---------- a : np.ndarray (dim_a,) Histogram of dimension dim_a b : np.ndarray (dim_b,) Histogram of dimension dim_b C : np.ndarray, shape (dim_a, dim_b) Cost matrix Returns ------- H : np.ndarray (dim_a+dim_b, dim_a*dim_b) Design matrix that contains only 0 and 1 y : np.ndarray (ns + nt, ) Concatenation of histograms :math:`\mathbf{a}` and :math:`\mathbf{b}` c : np.ndarray (ns * nt, ) Flattened array of the cost matrix Examples -------- >>> import ot >>> a = np.array([0.2, 0.3, 0.5]) >>> b = np.array([0.1, 0.9]) >>> C = np.array([[16., 25.], [28., 16.], [40., 36.]]) >>> H, y, c = ot.regpath.recast_ot_as_lasso(a, b, C) >>> H.toarray() array([[1., 1., 0., 0., 0., 0.], [0., 0., 1., 1., 0., 0.], [0., 0., 0., 0., 1., 1.], [1., 0., 1., 0., 1., 0.], [0., 1., 0., 1., 0., 1.]]) >>> y array([0.2, 0.3, 0.5, 0.1, 0.9]) >>> c array([16., 25., 28., 16., 40., 36.]) References ---------- .. [41] <NAME>., <NAME>., <NAME>., <NAME>., and <NAME>. (2021). Unbalanced optimal transport through non-negative penalized linear regression. NeurIPS. """ dim_a = np.shape(a)[0] dim_b = np.shape(b)[0] y = np.concatenate((a, b)) c = C.flatten() jHa = np.arange(dim_a * dim_b) iHa = np.repeat(np.arange(dim_a), dim_b) jHb = np.arange(dim_a * dim_b) iHb = np.tile(np.arange(dim_b), dim_a) + dim_a j = np.concatenate((jHa, jHb)) i = np.concatenate((iHa, iHb)) H = sp.csc_matrix((np.ones(dim_a * dim_b * 2), (i, j)), shape=(dim_a + dim_b, dim_a * dim_b)) return H, y, c def recast_semi_relaxed_as_lasso(a, b, C): r"""This function recasts the semi-relaxed l2-UOT problem as Lasso problem. .. math:: \text{semi-relaxed UOT} = \min_T <C, T> + \lambda \|T 1_m - \mathbf{a}\|_2^2 s.t. T^T 1_n = \mathbf{b} \mathbf{t} \geq 0 where : - :math:`C` is the metric cost matrix - :math:`\lambda` is the l2-regularization parameter - :math:`\mathbf{a}` and :math:`\mathbf{b}` are the source and target \ distributions - :math:`T` is the transport plan to optimize The problem above can be reformulated as follows .. math:: \text{semi-relaxed UOT2} = \min_t \gamma \mathbf{c}^T t + 0.5 * \|H_r \mathbf{t} - \mathbf{a}\|_2^2 s.t. H_c \mathbf{t} = \mathbf{b} \mathbf{t} \geq 0 where : - :math:`\mathbf{c}` is flattened version of the cost matrix :math:`C` - :math:`\gamma = 1/\lambda` is the l2-regularization parameter - :math:`H_r` is a metric matrix which computes the sum along the \ rows of the transport plan :math:`T` - :math:`H_c` is a metric matrix which computes the sum along the \ columns of the transport plan :math:`T` - :math:`\mathbf{t}` is the flattened version of :math:`T` Parameters ---------- a : np.ndarray (dim_a,) Histogram of dimension dim_a b : np.ndarray (dim_b,) Histogram of dimension dim_b C : np.ndarray, shape (dim_a, dim_b) Cost matrix Returns ------- Hr : np.ndarray (dim_a, dim_a * dim_b) Auxiliary matrix constituted by 0 and 1, which computes the sum along the rows of transport plan :math:`T` Hc : np.ndarray (dim_b, dim_a * dim_b) Auxiliary matrix constituted by 0 and 1, which computes the sum along the columns of transport plan :math:`T` c : np.ndarray (ns * nt, ) Flattened array of the cost matrix Examples -------- >>> import ot >>> a = np.array([0.2, 0.3, 0.5]) >>> b = np.array([0.1, 0.9]) >>> C = np.array([[16., 25.], [28., 16.], [40., 36.]]) >>> Hr,Hc,c = ot.regpath.recast_semi_relaxed_as_lasso(a, b, C) >>> Hr.toarray() array([[1., 1., 0., 0., 0., 0.], [0., 0., 1., 1., 0., 0.], [0., 0., 0., 0., 1., 1.]]) >>> Hc.toarray() array([[1., 0., 1., 0., 1., 0.], [0., 1., 0., 1., 0., 1.]]) >>> c array([16., 25., 28., 16., 40., 36.]) """ dim_a = np.shape(a)[0] dim_b = np.shape(b)[0] c = C.flatten() jHr = np.arange(dim_a * dim_b) iHr = np.repeat(np.arange(dim_a), dim_b) jHc = np.arange(dim_a * dim_b) iHc = np.tile(np.arange(dim_b), dim_a) Hr = sp.csc_matrix((np.ones(dim_a * dim_b), (iHr, jHr)), shape=(dim_a, dim_a * dim_b)) Hc = sp.csc_matrix((np.ones(dim_a * dim_b), (iHc, jHc)), shape=(dim_b, dim_a * dim_b)) return Hr, Hc, c def ot_next_gamma(phi, delta, HtH, Hty, c, active_index, current_gamma): r""" This function computes the next value of gamma if a variable is added in the next iteration of the regularization path. We look for the largest value of gamma such that the gradient of an inactive variable vanishes .. math:: \max_{i \in \bar{A}} \frac{\mathbf{h}_i^T(H_A \phi - \mathbf{y})} {\mathbf{h}_i^T H_A \delta - \mathbf{c}_i} where : - A is the current active set - :math:`\mathbf{h}_i` is the :math:`i` th column of the design \ matrix :math:`{H}` - :math:`{H}_A` is the sub-matrix constructed by the columns of \ :math:`{H}` whose indices belong to the active set A - :math:`\mathbf{c}_i` is the :math:`i` th element of the cost vector \ :math:`\mathbf{c}` - :math:`\mathbf{y}` is the concatenation of the source and target \ distributions - :math:`\phi` is the intercept of the solutions at the current iteration - :math:`\delta` is the slope of the solutions at the current iteration Parameters ---------- phi : np.ndarray (size(A), ) Intercept of the solutions at the current iteration delta : np.ndarray (size(A), ) Slope of the solutions at the current iteration HtH : np.ndarray (dim_a * dim_b, dim_a * dim_b) Matrix product of :math:`{H}^T {H}` Hty : np.ndarray (dim_a + dim_b, ) Matrix product of :math:`{H}^T \mathbf{y}` c: np.ndarray (dim_a * dim_b, ) Flattened array of the cost matrix :math:`{C}` active_index : list Indices of active variables current_gamma : float Value of the regularization parameter at the beginning of the current \ iteration Returns ------- next_gamma : float Value of gamma if a variable is added to active set in next iteration next_active_index : int Index of variable to be activated References ---------- .. [41] <NAME>., <NAME>., <NAME>., <NAME>., and <NAME>. (2021). Unbalanced optimal transport through non-negative penalized linear regression. NeurIPS. """ M = (HtH[:, active_index].dot(phi) - Hty) / \ (HtH[:, active_index].dot(delta) - c + 1e-16) M[active_index] = 0 M[M > (current_gamma - 1e-10 * current_gamma)] = 0 return np.max(M),
np.argmax(M)
numpy.argmax
#! /usr/bin/env python # encoding: utf-8 # Copied from https://github.com/mauriciovander/silence-removal/blob/master/segment.py import numpy import scipy.io.wavfile as wf import sys from synth.config import config class VoiceActivityDetectionYAM: def __init__(self, sr, ms, channel): self.__sr = sr self.__channel = channel self.__step = int(sr/50) self.__buffer_size = int(sr/50) self.__buffer_back = numpy.array([],dtype=numpy.int16) self.__buffer = numpy.array([],dtype=numpy.int16) self.__out_buffer_back = numpy.array([],dtype=numpy.int16) self.__out_buffer = numpy.array([],dtype=numpy.int16) self.__n = 0 self.__VADthd = 0. self.__VADn = 0. self.__silence_counter = 0 self.__segment_count = 0 self.__voice_detected = False self.__silence_thd_ms = ms self.out_segments = [] self.out_segments_back = [] # Voice Activity Detection # Adaptive threshold def vad(self, _frame): frame =
numpy.array(_frame)
numpy.array
"""Script that calculates the parameters for a log normal distribution given the input To use: python calculate_parameters file1.csv file2.csv ... fileN.csv [optional output_dir=output] The details of the calculations in this script are in the appendix of the docs. """ import sys, csv from scipy.optimize import minimize, Bounds, NonlinearConstraint from scipy.stats import norm, lognorm import numpy as np def main(files, output_dir): to_ignore = 0 for file in files: company_sizes = read_file(file) parameters = {} options = [] for key, size_dist in company_sizes.items(): option_1 = max_likelihood(size_dist) option_2 = match_expectation(size_dist) options.append((option_1, option_2)) if option_1 is not None: var = lognorm.var(option_1[1],scale=np.exp(option_1[0])) elif option_2 is not None: option_1 = option_2 var = lognorm.var(option_2[1],scale=np.exp(option_2[0])) else: continue if option_1[0] == 0 and option_2[1] == 1: for n in size_dist.values(): to_ignore += n print('ignoring ' + key) else: parameters[key] = option_1 #max_likelyhood(size_dist) with open(output_dir + file[:-4] + '_out.csv', 'w') as csvfile: writer = csv.writer(csvfile) for key, params in parameters.items(): writer.writerow([key, params[0], params[1]]) print(to_ignore) """ size_dist parameter is a dictionary with form {'lower-upper': n, ... 'lower+': n} like the ONS size distributions return mean and standard deviation (not variance) """ def match_expectation(size_dist): result = minimize(lambda x: expectation_difference(x, size_dist), (0, 1), bounds=Bounds([-np.inf, 0], [np.inf, np.inf])) if result.success: return result.x else: return None def max_likelihood(size_dist, distribution_mean=None): """ Returns the estimated mean, sd from size dist Arguments ------------ size_dist: dict of the form {str: float or int} where the string is 'a_i-a_i+1' or 'a_n+' and the float or int is the proportion or number of companies in that bin. (optional) distribution_mean: if the mean of the distribution is known then this is a constraint that can be used to improve the estimation. """ if distribution_mean is None: result = minimize(lambda x: -likelihood(x, size_dist), (0.5, 1.5), jac=lambda x: -likelihood_jacobian(x, size_dist), bounds=Bounds([-np.inf, 0], [np.inf, np.inf])) else: result = minimize(lambda x: -likelihood(x, size_dist), (0.5, 1.5), jac=lambda x: -likelihood_jacobian(x, size_dist), bounds=Bounds([-np.inf, 0], [np.inf, np.inf]), constraints={'type': 'eq', 'fun': lambda x: np.exp(x[0] + x[1] ** 2 / 2) - distribution_mean}) #print(result) if result.success: return result.x else: return None def likelihood(params, size_dist): mean, sd = params total = 0 for size_band, n in size_dist.items(): if '-' in size_band: lower = int(size_band.split('-')[0]) upper = int(size_band.split('-')[1]) + 1 else: lower = int(size_band.split('+')[0]) upper = np.inf if upper == np.inf: x = 1 - norm.cdf((np.log(lower) - mean) / sd) elif lower == 0: x = norm.cdf((np.log(upper) - mean) / sd) else: x = norm.cdf((
np.log(upper)
numpy.log
"""Dynamic Imaging of Coherent Sources (DICS).""" # Authors: <NAME> <<EMAIL>> # # License: BSD (3-clause) from copy import deepcopy import numpy as np from scipy import linalg from ..utils import logger, verbose, warn from ..forward import _subject_from_forward from ..minimum_norm.inverse import combine_xyz, _check_reference from ..source_estimate import _make_stc from ..time_frequency import CrossSpectralDensity, csd_epochs from ._lcmv import _prepare_beamformer_input, _setup_picks, _reg_pinv from ..externals import six @verbose def _apply_dics(data, info, tmin, forward, noise_csd, data_csd, reg, label=None, picks=None, pick_ori=None, real_filter=False, verbose=None): """Dynamic Imaging of Coherent Sources (DICS).""" is_free_ori, _, proj, vertno, G =\ _prepare_beamformer_input(info, forward, label, picks, pick_ori) Cm = data_csd.data.copy() # Take real part of Cm to compute real filters if real_filter: Cm = Cm.real # Tikhonov regularization using reg parameter to control for # trade-off between spatial resolution and noise sensitivity # eq. 25 in Gross and Ioannides, 1999 Phys. Med. Biol. 44 2081 Cm_inv, _ = _reg_pinv(Cm, reg) del Cm # Compute spatial filters W = np.dot(G.T, Cm_inv) n_orient = 3 if is_free_ori else 1 n_sources = G.shape[1] // n_orient for k in range(n_sources): Wk = W[n_orient * k: n_orient * k + n_orient] Gk = G[:, n_orient * k: n_orient * k + n_orient] Ck = np.dot(Wk, Gk) # TODO: max-power is not implemented yet, however DICS does employ # orientation picking when one eigen value is much larger than the # other if is_free_ori: # Free source orientation Wk[:] = np.dot(linalg.pinv(Ck, 0.1), Wk) else: # Fixed source orientation Wk /= Ck # Noise normalization noise_norm = np.dot(np.dot(Wk.conj(), noise_csd.data), Wk.T) noise_norm = np.abs(noise_norm).trace() Wk /= np.sqrt(noise_norm) # Pick source orientation normal to cortical surface if pick_ori == 'normal': W = W[2::3] is_free_ori = False if isinstance(data, np.ndarray) and data.ndim == 2: data = [data] return_single = True else: return_single = False subject = _subject_from_forward(forward) for i, M in enumerate(data): if len(M) != len(picks): raise ValueError('data and picks must have the same length') if not return_single: logger.info("Processing epoch : %d" % (i + 1)) # Apply SSPs if info['projs']: M = np.dot(proj, M) # project to source space using beamformer weights if is_free_ori: sol = np.dot(W, M) logger.info('combining the current components...') sol = combine_xyz(sol) else: # Linear inverse: do not delay compuation due to non-linear abs sol = np.dot(W, M) tstep = 1.0 / info['sfreq'] if np.iscomplexobj(sol): sol = np.abs(sol) # XXX : STC cannot contain (yet?) complex values yield _make_stc(sol, vertices=vertno, tmin=tmin, tstep=tstep, subject=subject) logger.info('[done]') @verbose def dics(evoked, forward, noise_csd, data_csd, reg=0.05, label=None, pick_ori=None, real_filter=False, verbose=None): """Dynamic Imaging of Coherent Sources (DICS). Compute a Dynamic Imaging of Coherent Sources (DICS) [1]_ beamformer on evoked data and return estimates of source time courses. .. note:: Fixed orientation forward operators with ``real_filter=False`` will result in complex time courses, in which case absolute values will be returned. .. note:: This implementation has not been heavily tested so please report any issues or suggestions. Parameters ---------- evoked : Evoked Evoked data. forward : dict Forward operator. noise_csd : instance of CrossSpectralDensity The noise cross-spectral density. data_csd : instance of CrossSpectralDensity The data cross-spectral density. reg : float The regularization for the cross-spectral density. label : Label | None Restricts the solution to a given label. pick_ori : None | 'normal' If 'normal', rather than pooling the orientations by taking the norm, only the radial component is kept. real_filter : bool If True, take only the real part of the cross-spectral-density matrices to compute real filters as in [2]_. Default is False. verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Returns ------- stc : SourceEstimate | VolSourceEstimate Source time courses See Also -------- dics_epochs Notes ----- For more information about ``real_filter``, see the `supplemental information <http://www.cell.com/cms/attachment/616681/4982593/mmc1.pdf>`_ from [2]_. References ---------- .. [1] <NAME> al. Dynamic imaging of coherent sources: Studying neural interactions in the human brain. PNAS (2001) vol. 98 (2) pp. 694-699 .. [2] <NAME>, <NAME>, <NAME> (2011) Oscillatory Synchronization in Large-Scale Cortical Networks Predicts Perception. Neuron 69:387-396. """ # noqa: E501 _check_reference(evoked) info = evoked.info data = evoked.data tmin = evoked.times[0] picks = _setup_picks(picks=None, info=info, forward=forward) data = data[picks] stc = _apply_dics(data, info, tmin, forward, noise_csd, data_csd, reg=reg, label=label, pick_ori=pick_ori, picks=picks, real_filter=real_filter) return six.advance_iterator(stc) @verbose def dics_epochs(epochs, forward, noise_csd, data_csd, reg=0.05, label=None, pick_ori=None, return_generator=False, real_filter=False, verbose=None): """Dynamic Imaging of Coherent Sources (DICS). Compute a Dynamic Imaging of Coherent Sources (DICS) beamformer on single trial data and return estimates of source time courses. .. note:: Fixed orientation forward operators with ``real_filter=False`` will result in complex time courses, in which case absolute values will be returned. .. warning:: This implementation has not been heavily tested so please report any issues or suggestions. Parameters ---------- epochs : Epochs Single trial epochs. forward : dict Forward operator. noise_csd : instance of CrossSpectralDensity The noise cross-spectral density. data_csd : instance of CrossSpectralDensity The data cross-spectral density. reg : float The regularization for the cross-spectral density. label : Label | None Restricts the solution to a given label. pick_ori : None | 'normal' If 'normal', rather than pooling the orientations by taking the norm, only the radial component is kept. return_generator : bool Return a generator object instead of a list. This allows iterating over the stcs without having to keep them all in memory. real_filter : bool If True, take only the real part of the cross-spectral-density matrices to compute real filters as in [1]_. Default is False. verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Returns ------- stc: list | generator of SourceEstimate | VolSourceEstimate The source estimates for all epochs See Also -------- dics References ---------- .. [1] <NAME>, <NAME>, <NAME> (2011) Oscillatory Synchronization in Large-Scale Cortical Networks Predicts Perception. Neuron 69:387-396. """ _check_reference(epochs) info = epochs.info tmin = epochs.times[0] picks = _setup_picks(picks=None, info=info, forward=forward) data = epochs.get_data()[:, picks, :] stcs = _apply_dics(data, info, tmin, forward, noise_csd, data_csd, reg=reg, label=label, pick_ori=pick_ori, picks=picks, real_filter=real_filter) if not return_generator: stcs = list(stcs) return stcs @verbose def dics_source_power(info, forward, noise_csds, data_csds, reg=0.05, label=None, pick_ori=None, real_filter=False, verbose=None): """Dynamic Imaging of Coherent Sources (DICS). Calculate source power in time and frequency windows specified in the calculation of the data cross-spectral density matrix or matrices. Source power is normalized by noise power. NOTE : This implementation has not been heavily tested so please report any issues or suggestions. Parameters ---------- info : dict Measurement info, e.g. epochs.info. forward : dict Forward operator. noise_csds : instance or list of instances of CrossSpectralDensity The noise cross-spectral density matrix for a single frequency or a list of matrices for multiple frequencies. data_csds : instance or list of instances of CrossSpectralDensity The data cross-spectral density matrix for a single frequency or a list of matrices for multiple frequencies. reg : float The regularization for the cross-spectral density. label : Label | None Restricts the solution to a given label. pick_ori : None | 'normal' If 'normal', rather than pooling the orientations by taking the norm, only the radial component is kept. real_filter : bool If True, take only the real part of the cross-spectral-density matrices to compute real filters. verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Returns ------- stc : SourceEstimate | VolSourceEstimate Source power with frequency instead of time. Notes ----- The original reference is: <NAME>. Dynamic imaging of coherent sources: Studying neural interactions in the human brain. PNAS (2001) vol. 98 (2) pp. 694-699 """ if isinstance(data_csds, CrossSpectralDensity): data_csds = [data_csds] if isinstance(noise_csds, CrossSpectralDensity): noise_csds = [noise_csds] def csd_shapes(x): return tuple(c.data.shape for c in x) if (csd_shapes(data_csds) != csd_shapes(noise_csds) or any(len(set(csd_shapes(c))) > 1 for c in [data_csds, noise_csds])): raise ValueError('One noise CSD matrix should be provided for each ' 'data CSD matrix and vice versa. All CSD matrices ' 'should have identical shape.') frequencies = [] for data_csd, noise_csd in zip(data_csds, noise_csds): if not np.allclose(data_csd.frequencies, noise_csd.frequencies): raise ValueError('Data and noise CSDs should be calculated at ' 'identical frequencies') # If CSD is summed over multiple frequencies, take the average # frequency if(len(data_csd.frequencies) > 1): frequencies.append(np.mean(data_csd.frequencies)) else: frequencies.append(data_csd.frequencies[0]) fmin = frequencies[0] if len(frequencies) > 2: fstep = [] for i in range(len(frequencies) - 1): fstep.append(frequencies[i + 1] - frequencies[i]) if not np.allclose(fstep, np.mean(fstep), 1e-5): warn('Uneven frequency spacing in CSD object, frequencies in the ' 'resulting stc file will be inaccurate.') fstep = fstep[0] elif len(frequencies) > 1: fstep = frequencies[1] - frequencies[0] else: fstep = 1 # dummy value picks = _setup_picks(picks=None, info=info, forward=forward) is_free_ori, _, proj, vertno, G =\ _prepare_beamformer_input(info, forward, label, picks=picks, pick_ori=pick_ori) n_orient = 3 if is_free_ori else 1 n_sources = G.shape[1] // n_orient source_power = np.zeros((n_sources, len(data_csds))) n_csds = len(data_csds) logger.info('Computing DICS source power...') for i, (data_csd, noise_csd) in enumerate(zip(data_csds, noise_csds)): if n_csds > 1: logger.info(' computing DICS spatial filter %d out of %d' % (i + 1, n_csds)) Cm = data_csd.data.copy() # Take real part of Cm to compute real filters if real_filter: Cm = Cm.real # Tikhonov regularization using reg parameter to control for # trade-off between spatial resolution and noise sensitivity # eq. 25 in Gross and Ioannides, 1999 Phys. Med. Biol. 44 2081 Cm_inv, _ = _reg_pinv(Cm, reg) del Cm # Compute spatial filters W = np.dot(G.T, Cm_inv) for k in range(n_sources): Wk = W[n_orient * k: n_orient * k + n_orient] Gk = G[:, n_orient * k: n_orient * k + n_orient] Ck = np.dot(Wk, Gk) if is_free_ori: # Free source orientation Wk[:] = np.dot(linalg.pinv(Ck, 0.1), Wk) else: # Fixed source orientation Wk /= Ck # Noise normalization noise_norm = np.dot(np.dot(Wk.conj(), noise_csd.data), Wk.T) noise_norm =
np.abs(noise_norm)
numpy.abs
"""Learn ideal points with the text-based ideal point model (TBIP). Let y_{dv} denote the counts of word v in document d. Let x_d refer to the ideal point of the author of document d. Then we model: theta, beta ~ Gamma(alpha, alpha) x, eta ~ N(0, 1) y_{dv} ~ Pois(sum_k theta_dk beta_kv exp(x_d * eta_kv). We perform variational inference to provide estimates for the posterior distribution of each latent variable. We take reparameterization gradients, using a lognormal variational family for the positive variables (theta, beta) and a normal variational family for the real variables (x, eta). The directory `data/{data_name}/clean/` should have the following four files: 1. `counts.npz`: a [num_documents, num_words] sparse matrix containing the word counts for each document. 2. `author_indices.npy`: a [num_documents] vector where each entry is an integer in the set {0, 1, ..., num_authors - 1}, indicating the author of the corresponding document in `counts.npz`. 3. `vocabulary.txt`: a [num_words]-length file where each line is a string denoting the corresponding word in the vocabulary. 4. `author_map.txt`: a [num_authors]-length file where each line is a string denoting the name of an author in the corpus. We provide more details in our paper [1]. #### References [1]: <NAME>, <NAME>, <NAME>. Text-Based Ideal Points. In _Conference of the Association for Computational Linguistics_, 2020. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import os import time from absl import flags import numpy as np import scipy.sparse as sparse import tensorflow as tf import tensorflow_probability as tfp flags.DEFINE_float("learning_rate", default=0.01, help="Adam learning rate.") flags.DEFINE_integer("max_steps", default=1000000, help="Number of training steps to run.") flags.DEFINE_integer("num_topics", default=50, help="Number of topics.") flags.DEFINE_integer("batch_size", default=1024, help="Batch size.") flags.DEFINE_integer("num_samples", default=1, help="Number of samples to use for ELBO approximation.") flags.DEFINE_enum("counts_transformation", default="nothing", enum_values=["nothing", "binary", "sqrt", "log"], help="Transformation used on counts data.") flags.DEFINE_boolean("pre_initialize_parameters", default=True, help="Whether to use pre-initialized document and topic " "intensities (with Poisson factorization).") flags.DEFINE_string("data", default="senate-speeches-114", help="Data source being used.") flags.DEFINE_integer("senate_session", default=113, help="Senate session (used only when data is " "'senate-speech-comparisons'.") flags.DEFINE_integer("print_steps", default=500, help="Number of steps to print and save results.") flags.DEFINE_integer("seed", default=123, help="Random seed to be used.") FLAGS = flags.FLAGS def build_input_pipeline(data_dir, batch_size, random_state, counts_transformation="nothing"): """Load data and build iterator for minibatches. Args: data_dir: The directory where the data is located. There must be four files inside the rep: `counts.npz`, `author_indices.npy`, `author_map.txt`, and `vocabulary.txt`. batch_size: The batch size to use for training. random_state: A NumPy `RandomState` object, used to shuffle the data. counts_transformation: A string indicating how to transform the counts. One of "nothing", "binary", "log", or "sqrt". """ counts = sparse.load_npz(os.path.join(data_dir, "counts.npz")) num_documents, num_words = counts.shape author_indices = np.load( os.path.join(data_dir, "author_indices.npy")).astype(np.int32) num_authors =
np.max(author_indices + 1)
numpy.max
import numpy as np import torch import torch.multiprocessing as mp from torch.multiprocessing import Pool def init_nnf(source_size, target_size=None): target_size = source_size if target_size is None else target_size y, x = np.meshgrid(np.linspace(0, target_size[1]-1, source_size[1], dtype=np.int32), np.linspace(0, target_size[0]-1, source_size[0], dtype=np.int32)) return np.stack((x, y), axis=2) def upSample_nnf(nnf, target_size=None): target_size = [x * 2 for x in nnf.shape] if target_size is None else target_size ratio = np.array([target_size[0] / nnf.shape[0], target_size[1] / nnf.shape[1]]) coords = np.stack(np.meshgrid(
np.arange(target_size[1])
numpy.arange
import visr_bear import numpy as np import numpy.testing as npt from pathlib import Path import scipy.signal as sig from utils import data_path def do_render(renderer, period, objects=None, direct_speakers=None, hoa=None): not_none = [x for x in [objects, direct_speakers, hoa] if x is not None][0] length = not_none.shape[1] dummy_samples = np.zeros((0, length), dtype=np.float32) output = np.zeros((2, length), dtype=np.float32) def convert(samples): if samples is None: return dummy_samples return samples.astype(np.float32, order="C", copy=False) objects = convert(objects) direct_speakers = convert(direct_speakers) hoa = convert(hoa) for i in range(length // period): s = np.s_[:, i * period : (i + 1) * period] renderer.process(objects[s], direct_speakers[s], hoa[s], output[s]) return output def correlate(a, b): """returns (delay, correlation), where correlation is the full cross-correlation, and delay is a vector of delays corresponding to the delay from a to b for each sample in correlation.""" correlation = np.correlate(b, a, mode="full") delay = np.arange(len(correlation)) - (len(a) - 1) return delay, correlation period = 512 def render_directspeakers_front(data_file, samples): config = visr_bear.api.Config() config.num_objects_channels = 0 config.num_direct_speakers_channels = 1 config.period_size = period config.data_path = data_file renderer = visr_bear.api.Renderer(config) dsi = visr_bear.api.DirectSpeakersInput() dsi.rtime = visr_bear.api.Time(0, 1) dsi.duration = visr_bear.api.Time(1, 1) renderer.add_direct_speakers_block(0, dsi) return do_render(renderer, period, direct_speakers=samples) def render_objects_front(data_file, samples): config = visr_bear.api.Config() config.num_objects_channels = 1 config.num_direct_speakers_channels = 0 config.period_size = period config.data_path = data_file renderer = visr_bear.api.Renderer(config) oi = visr_bear.api.ObjectsInput() oi.rtime = visr_bear.api.Time(0, 1) oi.duration = visr_bear.api.Time(1, 1) oi.type_metadata.position = visr_bear.api.PolarPosition(0, 0, 1) renderer.add_objects_block(0, oi) return do_render(renderer, period, objects=samples) def render_diffuse_front(data_file, samples): config = visr_bear.api.Config() config.num_objects_channels = 1 config.num_direct_speakers_channels = 0 config.period_size = period config.data_path = data_file renderer = visr_bear.api.Renderer(config) oi = visr_bear.api.ObjectsInput() oi.rtime = visr_bear.api.Time(0, 1) oi.duration = visr_bear.api.Time(1, 1) oi.type_metadata.position = visr_bear.api.PolarPosition(0, 0, 1) oi.type_metadata.diffuse = 1.0 renderer.add_objects_block(0, oi) return do_render(renderer, period, objects=samples) def render_hoa_omni(data_file, samples): config = visr_bear.api.Config() config.num_objects_channels = 0 config.num_direct_speakers_channels = 0 config.num_hoa_channels = 1 config.period_size = period config.data_path = data_file renderer = visr_bear.api.Renderer(config) hi = visr_bear.api.HOAInput() hi.rtime = visr_bear.api.Time(0, 1) hi.duration = visr_bear.api.Time(1, 1) hi.channels = [0] hi.type_metadata.orders = [0] hi.type_metadata.degrees = [0] hi.type_metadata.normalization = "SN3D" renderer.add_hoa_block(0, hi) return do_render(renderer, period, hoa=samples) def test_objects_direct_speakers_delays(): """check that delays between direct/diffuse/directspeakers paths match. These share the same IRs so can be tested exactly.""" files_dir = Path(__file__).parent / "files" data_file = str(files_dir / "unity_brirs_decorrelators.tf") input_samples = np.random.normal(size=(1, 48000)).astype(np.float32) direct_speakers_samples = render_directspeakers_front(data_file, input_samples) objects_samples = render_objects_front(data_file, input_samples) diffuse_samples = render_diffuse_front(data_file, input_samples) # skip 2 periods, because the gains settle during the first period, and # some of this will still be coming through the delays in the second period npt.assert_allclose( direct_speakers_samples[:, 2 * period :], objects_samples[:, 2 * period :], atol=2e-4, ) npt.assert_allclose( direct_speakers_samples[:, 2 * period :], diffuse_samples[:, 2 * period :], atol=2e-4, ) def test_objects_hoa_delays(): """check that delays between objects and HOA paths match. These use different IRs, so check with cross-correlation.""" input_samples = np.zeros(shape=(1, 10240)).astype(np.float32) input_samples[:, 4800] = 1.0 objects_samples = render_objects_front(data_path, input_samples) hoa_samples = render_hoa_omni(data_path, input_samples) def check_delay(a, b): osa = 4 a_osa = sig.resample(a, len(a) * osa) b_osa = sig.resample(b, len(b) * osa) delay, correlation = correlate(a_osa, b_osa) # check that 0 delay is a peak comparable with the delay that has the # highest correlation assert correlation[
np.where(delay == 0)
numpy.where
# --- # jupyter: # jupytext: # formats: ipynb,py:percent # text_representation: # extension: .py # format_name: percent # format_version: '1.2' # jupytext_version: 1.1.3 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # %% [markdown] # # Dimensionality Reduction in [Bayer and Luetticke (2018)](https://cepr.org/active/publications/discussion_papers/dp.php?dpno=13071) # # [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/econ-ark/HARK/BayerLuetticke?filepath=HARK%2FBayerLuetticke%2FDCT-Copula-Illustration.ipynb) # # This companion to the [main notebook](TwoAsset.ipynb) explains in more detail how the authors reduce the dimensionality of their problem # # - Based on original slides by <NAME> and <NAME> # - Original Jupyter notebook by <NAME> # - Further edits by <NAME>, <NAME> # # %% [markdown] # ### Preliminaries # # In Steady-state Equilibrium (StE) in the model, in any given period, a consumer in state $s$ (which comprises liquid assets $m$, illiquid assets $k$, and human capital $\newcommand{hLev}{h}\hLev$) has two key choices: # 1. To adjust ('a') or not adjust ('n') their holdings of illiquid assets $k$ # 1. Contingent on that choice, decide the level of consumption, yielding consumption functions: # * $c_n(s)$ - nonadjusters # * $c_a(s)$ - adjusters # # The usual envelope theorem applies here, so marginal value wrt the liquid asset equals marginal utility with respect to consumption: # $[\frac{d v}{d m} = \frac{d u}{d c}]$. # In practice, the authors solve their problem using the marginal value of money $\texttt{Vm} = dv/dm$, but because the marginal utility function is invertible it is trivial to recover $\texttt{c}$ from $(u^{\prime})^{-1}(\texttt{Vm} )$. The consumption function is therefore computed from the $\texttt{Vm}$ function # %% {"code_folding": [0]} # Setup stuff # This is a jupytext paired notebook that autogenerates a corresponding .py file # which can be executed from a terminal command line via "ipython [name].py" # But a terminal does not permit inline figures, so we need to test jupyter vs terminal # Google "how can I check if code is executed in the ipython notebook" def in_ipynb(): try: if str(type(get_ipython())) == "<class 'ipykernel.zmqshell.ZMQInteractiveShell'>": return True else: return False except NameError: return False # Determine whether to make the figures inline (for spyder or jupyter) # vs whatever is the automatic setting that will apply if run from the terminal if in_ipynb(): # %matplotlib inline generates a syntax error when run from the shell # so do this instead get_ipython().run_line_magic('matplotlib', 'inline') else: get_ipython().run_line_magic('matplotlib', 'auto') # The tools for navigating the filesystem import sys import os # Find pathname to this file: my_file_path = os.path.dirname(os.path.abspath("DCT-Copula-Illustration.ipynb")) # Relative directory for pickled code code_dir = os.path.join(my_file_path, "../Assets/Two") sys.path.insert(0, code_dir) sys.path.insert(0, my_file_path) # %% {"code_folding": []} # Load precalculated Stationary Equilibrium (StE) object EX3SS import pickle os.chdir(code_dir) # Go to the directory with pickled code ## EX3SS_20.p is the information in the stationary equilibrium ## (20: the number of illiquid and liquid weath gridpoints) ### The comments above are original, but it seems that there are 30 not 20 points now EX3SS=pickle.load(open("EX3SS_20.p", "rb")) # %% [markdown] # ### Dimensions # # The imported StE solution to the problem represents the functions at a set of gridpoints of # * liquid assets ($n_m$ points), illiquid assets ($n_k$), and human capital ($n_h$) # * In the code these are $\{\texttt{nm,nk,nh}\}$ # # So even if the grids are fairly sparse for each state variable, the total number of combinations of the idiosyncratic state gridpoints is large: $n = n_m \times n_k \times n_h$. So, e.g., $\bar{c}$ is a set of size $n$ containing the level of consumption at each possible _combination_ of gridpoints. # # In the "real" micro problem, it would almost never happen that a continuous variable like $m$ would end up being exactly equal to one of the prespecified gridpoints. But the functions need to be evaluated at such non-grid points. This is addressed by linear interpolation. That is, if, say, the grid had $m_{8} = 40$ and $m_{9} = 50$ then and a consumer ended up with $m = 45$ then the approximation is that $\tilde{c}(45) = 0.5 \bar{c}_{8} + 0.5 \bar{c}_{9}$. # # %% {"code_folding": [0]} # Show dimensions of the consumer's problem (state space) print('c_n is of dimension: ' + str(EX3SS['mutil_c_n'].shape)) print('c_a is of dimension: ' + str(EX3SS['mutil_c_a'].shape)) print('Vk is of dimension:' + str(EX3SS['Vk'].shape)) print('Vm is of dimension:' + str(EX3SS['Vm'].shape)) print('For convenience, these are all constructed from the same exogenous grids:') print(str(len(EX3SS['grid']['m']))+' gridpoints for liquid assets;') print(str(len(EX3SS['grid']['k']))+' gridpoints for illiquid assets;') print(str(len(EX3SS['grid']['h']))+' gridpoints for individual productivity.') print('') print('Therefore, the joint distribution is of size: ') print(str(EX3SS['mpar']['nm'])+ ' * '+str(EX3SS['mpar']['nk'])+ ' * '+str(EX3SS['mpar']['nh'])+ ' = '+ str(EX3SS['mpar']['nm']*EX3SS['mpar']['nk']*EX3SS['mpar']['nh'])) # %% [markdown] # ### Dimension Reduction # # The authors use different dimensionality reduction methods for the consumer's problem and the distribution across idiosyncratic states # %% [markdown] # #### Representing the consumer's problem with Basis Functions # # The idea is to find an efficient "compressed" representation of our functions (e.g., the consumption function), which BL do using tools originally developed for image compression. The analogy to image compression is that nearby pixels are likely to have identical or very similar colors, so we need only to find an efficient way to represent how the colors _change_ from one pixel to nearby ones. Similarly, consumption at a given point $s_{i}$ is likely to be close to consumption point at another point $s_{j}$ that is "close" in the state space (similar wealth, income, etc), so a function that captures that similarity efficiently can preserve most of the information without keeping all of the points. # # Like linear interpolation, the [DCT transformation](https://en.wikipedia.org/wiki/Discrete_cosine_transform) is a method of representing a continuous function using a finite set of numbers. It uses a set of independent [basis functions](https://en.wikipedia.org/wiki/Basis_function) to do this. # # But it turns out that some of those basis functions are much more important than others in representing the steady-state functions. Dimension reduction is accomplished by basically ignoring all basis functions that make "small enough" contributions to the representation of the function. # # ##### When might this go wrong? # # Suppose the consumption function changes in a recession in ways that change behavior radically at some states. Like, suppose unemployment almost never happens in steady state, but it can happen in temporary recessions. Suppose further that, even for employed people, in a recession, _worries_ about unemployment cause many of them to prudently withdraw some of their illiquid assets -- behavior opposite of what people in the same state would be doing during expansions. In that case, the basis functions that represented the steady state function would have had no incentive to be able to represent well the part of the space that is never seen in steady state, so any functions that might help do so might well have been dropped in the dimension reduction stage. # # On the whole, it seems unlikely that this kind of thing is a major problem, because the vast majority of the variation that people experience is idiosyncratic. There is always unemployment, for example; it just moves up and down a bit with aggregate shocks, but since the experience of unemployment is in fact well represented in the steady state the method should have no trouble capturing it. # # Where the method might have more trouble is in representing economies in which there are multiple equilibria in which behavior is quite different. # %% [markdown] # #### For the distribution of agents across states: Copula # # The other tool the authors use is the ["copula"](https://en.wikipedia.org/wiki/Copula_(probability_theory)), which allows us to represent the distribution of people across idiosyncratic states efficiently # # The copula is computed from the joint distribution of states in StE and will be used to transform the [marginal distributions](https://en.wikipedia.org/wiki/Marginal_distribution) back to joint distributions. (For an illustration of how the assumptions used when modeling asset price distributions using copulas can fail see [Salmon](https://www.wired.com/2009/02/wp-quant/)) # # * A copula is a representation of the joint distribution expressed using a mapping between the uniform joint CDF and the marginal distributions of the variables # # * The crucial assumption is that what aggregate shocks do is to squeeze or distort the steady state distribution, but leave the rank structure of the distribution the same # * An example of when this might not hold is the following. Suppose that in expansions, the people at the top of the distribution of illiquid assets (the top 1 percent, say) are also at the top 1 percent of liquid assets. But in recessions the bottom 99 percent get angry at the top 1 percent of illiquid asset holders and confiscate part of their liquid assets (the illiquid assets can't be confiscated quickly because they are illiquid). Now the people in the top 99 percent of illiquid assets might be in the _bottom_ 1 percent of liquid assets. # # - In this case we just need to represent how the mapping from ranks into levels of assets # # - This reduces the number of points for which we need to track transitions from $3600 = 30 \times 30 \times 4$ to $64 = 30+30+4$. Or the total number of points we need to contemplate goes from $3600^2 \approx 13 $million to $64^2=4096$. # %% {"code_folding": [0]} # Get some specs about the copula, which is precomputed in the EX3SS object print('The copula consists of two parts: gridpoints and values at those gridpoints:'+ \ '\n gridpoints have dimensionality of '+str(EX3SS['Copula']['grid'].shape) + \ '\n where the first element is total number of gridpoints' + \ '\n and the second element is number of idiosyncratic state variables' + \ '\n whose values also are of dimension of '+str(EX3SS['Copula']['value'].shape[0]) + \ '\n each entry of which is the probability that all three of the' '\n state variables are below the corresponding point.') # %% {"code_folding": [0]} ## Import BL codes import sys # Relative directory for BL codes sys.path.insert(0,'../../../..') # comment by TW: this is not the same as in TwoAsset.ipynb. from HARK.BayerLuetticke.Assets.Two.FluctuationsTwoAsset import FluctuationsTwoAsset # %% {"code_folding": [0]} ## Import other necessary libraries import numpy as np #from numpy.linalg import matrix_rank import scipy as sc import matplotlib.pyplot as plt import time import scipy.fftpack as sf # scipy discrete fourier transforms from mpl_toolkits.mplot3d import Axes3D from matplotlib.ticker import LinearLocator, FormatStrFormatter from matplotlib import cm from matplotlib import lines import seaborn as sns import copy as cp from scipy import linalg #linear algebra # %% {"code_folding": [0]} ## Choose an aggregate shock to perturb(one of three shocks: MP, TFP, Uncertainty) # EX3SS['par']['aggrshock'] = 'MP' # EX3SS['par']['rhoS'] = 0.0 # Persistence of variance # EX3SS['par']['sigmaS'] = 0.001 # STD of variance shocks #EX3SS['par']['aggrshock'] = 'TFP' #EX3SS['par']['rhoS'] = 0.95 #EX3SS['par']['sigmaS'] = 0.0075 EX3SS['par']['aggrshock'] = 'Uncertainty' EX3SS['par']['rhoS'] = 0.84 # Persistence of variance EX3SS['par']['sigmaS'] = 0.54 # STD of variance shocks # %% {"code_folding": []} ## Choose an accuracy of approximation with DCT ### Determines number of basis functions chosen -- enough to match this accuracy ### EX3SS is precomputed steady-state pulled in above EX3SS['par']['accuracy'] = 0.99999 # %% {"code_folding": []} ## Implement state reduction and DCT ### Do state reduction on steady state EX3SR=FluctuationsTwoAsset(**EX3SS) # Takes StE result as input and get ready to invoke state reduction operation SR=EX3SR.StateReduc() # StateReduc is operated # %% {"code_folding": [0]} # Measuring the effectiveness of the state reduction print('What are the results from the state reduction?') #print('Newly added attributes after the operation include \n'+str(set(SR.keys())-set(EX3SS.keys()))) print('\n') print('To achieve an accuracy of '+str(EX3SS['par']['accuracy'])+'\n') print('The dimension of the policy functions is reduced to '+str(SR['indexMUdct'].shape[0]) \ +' from '+str(EX3SS['mpar']['nm']*EX3SS['mpar']['nk']*EX3SS['mpar']['nh']) ) print('The dimension of the marginal value functions is reduced to '+str(SR['indexVKdct'].shape[0]) \ + ' from ' + str(EX3SS['Vk'].shape)) print('The total number of control variables is '+str(SR['Contr'].shape[0])+'='+str(SR['indexMUdct'].shape[0]) + \ '+'+str(SR['indexVKdct'].shape[0])+'+ # of other macro controls') print('\n') print('The copula represents the joint distribution with a vector of size '+str(SR['Gamma_state'].shape) ) print('The dimension of states including exogenous state, is ' +str(SR['Xss'].shape[0])) print('It simply stacks all grids of different\ \n state variables regardless of their joint distributions.\ \n This is due to the assumption that the rank order remains the same.') print('The total number of state variables is '+str(SR['State'].shape[0]) + '='+\ str(SR['Gamma_state'].shape[1])+'+ the number of macro states (like the interest rate)') # %% [markdown] # ### Graphical Illustration # # #### Policy/value functions # # Taking the consumption function as an example, we plot consumption by adjusters and non-adjusters over a range of $k$ and $m$ that encompasses 100 as well 90 percent of the mass of the distribution function,respectively. # # We plot the functions for the each of the 4 values of the wage $h$. # # %% {"code_folding": [0]} ## Graphical illustration xi = EX3SS['par']['xi'] invmutil = lambda x : (1./x)**(1./xi) ### convert marginal utilities back to consumption function mut_StE = EX3SS['mutil_c'] mut_n_StE = EX3SS['mutil_c_n'] # marginal utility of non-adjusters mut_a_StE = EX3SS['mutil_c_a'] # marginal utility of adjusters c_StE = invmutil(mut_StE) cn_StE = invmutil(mut_n_StE) ca_StE = invmutil(mut_a_StE) ### grid values dim_StE = mut_StE.shape mgrid = EX3SS['grid']['m'] kgrid = EX3SS['grid']['k'] hgrid = EX3SS['grid']['h'] # %% {"code_folding": [0]} ## Define some functions to be used next def dct3d(x): x0=sf.dct(x.copy(),axis=0,norm='ortho') x1=sf.dct(x0.copy(),axis=1,norm='ortho') x2=sf.dct(x1.copy(),axis=2,norm='ortho') return x2 def idct3d(x): x2 = sf.idct(x.copy(),axis=2,norm='ortho') x1 = sf.idct(x2.copy(),axis=1,norm='ortho') x0 = sf.idct(x1.copy(),axis=0,norm='ortho') return x0 def DCTApprox(fullgrids,dct_index): dim=fullgrids.shape dctcoefs = dct3d(fullgrids) dctcoefs_rdc = np.zeros(dim) dctcoefs_rdc[dct_index]=dctcoefs[dct_index] approxgrids = idct3d(dctcoefs_rdc) return approxgrids # %% [markdown] # Depending on the accuracy level, the DCT operation choses the necessary number of basis functions used to approximate consumption function at the full grids. This is illustrated in the p31-p34 in this [slides](https://www.dropbox.com/s/46fdxh0aphazm71/presentation_method.pdf?dl=0). We show this for both 1-dimensional (m or k) or 2-dimenstional grids (m and k) in the following. # %% {"code_folding": []} ## 2D graph of consumption function: c(m) fixing k and h ## list of accuracy levels Accuracy_BL = 0.99999 # From BL Accuracy_Less0 = 0.999 Accuracy_Less1 = 0.99 Accuracy_Less2 = 0.95 acc_lst = np.array([Accuracy_BL,Accuracy_Less0,Accuracy_Less1,Accuracy_Less2]) ## c(m) fixing k and h fig = plt.figure(figsize=(8,8)) fig.suptitle('c at full grids and c approximated by DCT in different accuracy levels' '\n non-adjusters, fixing k and h', fontsize=(13)) fig.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=None, hspace=0.3) for idx in range(len(acc_lst)): EX3SS_cp =cp.deepcopy(EX3SS) EX3SS_cp['par']['accuracy'] = acc_lst[idx] EX3SR_cp=FluctuationsTwoAsset(**EX3SS_cp) # Takes StE result as input and get ready to invoke state reduction operation SR_cp=EX3SR_cp.StateReduc() mut_rdc_idx_flt_cp = SR_cp['indexMUdct'] mut_rdc_idx_cp = np.unravel_index(mut_rdc_idx_flt_cp,dim_StE,order='F') nb_bf_cp = len(mut_rdc_idx_cp[0]) print(str(nb_bf_cp) +" basis functions used.") c_n_approx_cp = DCTApprox(cn_StE,mut_rdc_idx_cp) c_a_approx_cp = DCTApprox(ca_StE,mut_rdc_idx_cp) cn_diff_cp = c_n_approx_cp-cn_StE # choose the fix grid of h and k hgrid_fix=2 # fix level of h as an example kgrid_fix=10 # fix level of k as an example # get the corresponding c function approximated by dct cVec = c_a_approx_cp[:,kgrid_fix,hgrid_fix] ## plots ax = fig.add_subplot(2,2,idx+1) ax.plot(mgrid,cVec,label='c approximated by DCT') ax.plot(mgrid,ca_StE[:,kgrid_fix,hgrid_fix],'--',label='c at full grids') ax.plot(mgrid,cVec,'r*') ax.set_xlabel('m',fontsize=13) ax.set_ylabel(r'$c(m)$',fontsize=13) ax.set_title(r'accuracy=${}$'.format(acc_lst[idx])) ax.legend(loc=0) # %% {"code_folding": [0]} ## 2D graph of consumption function: c(k) fixing m and h fig = plt.figure(figsize=(8,8)) fig.suptitle('c at full grids and c approximated by DCT in different accuracy levels' '\n non-adjusters, fixing m and h', fontsize=(13)) fig.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=None, hspace=0.3) for idx in range(len(acc_lst)): EX3SS_cp =cp.deepcopy(EX3SS) EX3SS_cp['par']['accuracy'] = acc_lst[idx] EX3SR_cp=FluctuationsTwoAsset(**EX3SS_cp) # Takes StE result as input and get ready to invoke state reduction operation SR_cp=EX3SR_cp.StateReduc() mut_rdc_idx_flt_cp= SR_cp['indexMUdct'] mut_rdc_idx_cp = np.unravel_index(mut_rdc_idx_flt_cp,dim_StE,order='F') nb_bf_cp = len(mut_rdc_idx_cp[0]) print(str(nb_bf_cp) +" basis functions used.") c_n_approx_cp = DCTApprox(cn_StE,mut_rdc_idx_cp) c_a_approx_cp = DCTApprox(ca_StE,mut_rdc_idx_cp) cn_diff_cp = c_n_approx_cp-cn_StE # choose the fix grid of h and m hgrid_fix=2 # fix level of h as an example mgrid_fix=10 # fix level of k as an example # get the corresponding c function approximated by dct cVec = c_n_approx_cp[mgrid_fix,:,hgrid_fix] ## plots ax = fig.add_subplot(2,2,idx+1) ax.plot(kgrid,cVec,label='c approximated by DCT') ax.plot(kgrid,cn_StE[mgrid_fix,:,hgrid_fix],'--',label='c at full grids') ax.plot(kgrid,cVec,'r*') ax.set_xlabel('k',fontsize=13) ax.set_ylabel(r'$c(k)$',fontsize=13) ax.set_title(r'accuracy=${}$'.format(acc_lst[idx])) ax.legend(loc=0) # %% {"code_folding": [0]} ## Set the population density for plotting graphs print('Input: plot the graph for bottom x (0-1) of the distribution.') mass_pct = float(input()) print('Input:choose the accuracy level for DCT, i.e. 0.99999 in the basline of Bayer and Luetticke') Accuracy_BS = float(input()) ## baseline accuracy level # %% {"code_folding": [0]} # Restore the solution corresponding to the original BL accuracy EX3SS['par']['accuracy'] = Accuracy_BS EX3SR=FluctuationsTwoAsset(**EX3SS) # Takes StE result as input and get ready to invoke state reduction operation SR=EX3SR.StateReduc() # StateReduc is operated ## meshgrids for plots mmgrid,kkgrid = np.meshgrid(mgrid,kgrid) ## indexMUdct is one dimension, needs to be unraveled to 3 dimensions mut_rdc_idx_flt = SR['indexMUdct'] mut_rdc_idx = np.unravel_index(mut_rdc_idx_flt,dim_StE,order='F') ## Note: the following chunk of codes can be used to recover the indices of grids selected by DCT. not used here. #nb_dct = len(mut_StE.flatten()) #mut_rdc_bool = np.zeros(nb_dct) # boolean array of 30 x 30 x 4 #for i in range(nb_dct): # mut_rdc_bool[i]=i in list(SR['indexMUdct']) #mut_rdc_bool_3d = (mut_rdc_bool==1).reshape(dim_StE) #mut_rdc_mask_3d = (mut_rdc_bool).reshape(dim_StE) ## For BL accuracy level, get dct compressed c functions at all grids c_n_approx = DCTApprox(cn_StE,mut_rdc_idx) c_a_approx = DCTApprox(ca_StE,mut_rdc_idx) # Get the joint distribution calculated elsewhere joint_distr = EX3SS['joint_distr'] # %% {"code_folding": [0]} ## Functions used to plot consumption functions at the trimmed grids def WhereToTrim2d(joint_distr,mass_pct): """ parameters ----------- marginal1: marginal pdf in the 1st dimension marginal2: marginal pdf in the 2nd dimension mass_pct: bottom percentile to keep returns ---------- trim1_idx: idx for trimming in the 1s dimension trim2_idx: idx for trimming in the 1s dimension """ marginal1 = joint_distr.sum(axis=0) marginal2 = joint_distr.sum(axis=1) ## this can handle cases where the joint_distr itself is a marginal distr from 3d, ## i.e. marginal.cumsum().max() =\= 1 trim1_idx = (np.abs(marginal1.cumsum()-mass_pct*marginal1.cumsum().max())).argmin() trim2_idx = (np.abs(marginal2.cumsum()-mass_pct*marginal2.cumsum().max())).argmin() return trim1_idx,trim2_idx def TrimMesh2d(grids1,grids2,trim1_idx,trim2_idx,drop=True): if drop ==True: grids_trim1 = grids1.copy() grids_trim2 = grids2.copy() grids_trim1=grids_trim1[:trim1_idx] grids_trim2=grids_trim2[:trim2_idx] grids1_trimmesh, grids2_trimmesh = np.meshgrid(grids_trim1,grids_trim2) else: grids_trim1 = grids1.copy() grids_trim2 = grids2.copy() grids_trim1[trim1_idx:]=np.nan grids_trim2[trim2_idx:]=np.nan grids1_trimmesh, grids2_trimmesh = np.meshgrid(grids_trim1,grids_trim2) return grids1_trimmesh,grids2_trimmesh # %% {"code_folding": [0]} ## Other configurations for plotting distr_min = 0 distr_max = np.nanmax(joint_distr) fontsize_lg = 13 ## lower bound for grid mmin = np.nanmin(mgrid) kmin = np.nanmin(kgrid) # %% {"code_folding": [0]} # For non-adjusters: 3D surface plots of consumption function at full grids and approximated by DCT ## at all grids and grids after dct first for non-adjusters and then for adjusters fig = plt.figure(figsize=(14,14)) fig.suptitle('Consumption of non-adjusters at grid points of m and k \n where ' +str(int(mass_pct*100))+ ' % of the agents are distributed \n (for each h)', fontsize=(fontsize_lg)) for hgrid_id in range(EX3SS['mpar']['nh']): ## get the grids and distr for fixed h hgrid_fix = hgrid_id distr_fix = joint_distr[:,:,hgrid_fix] c_n_approx_fix = c_n_approx[:,:,hgrid_fix] c_n_StE_fix = cn_StE[:,:,hgrid_fix] ## additions to the above cell ## for each h grid, take the 90% mass of m and k as the maximum of the m and k axis mk_marginal = joint_distr[:,:,hgrid_fix] mmax_idx, kmax_idx = WhereToTrim2d(mk_marginal,mass_pct) mmax, kmax = mgrid[mmax_idx],kgrid[kmax_idx] mmgrid_trim,kkgrid_trim = TrimMesh2d(mgrid,kgrid,mmax_idx,kmax_idx) c_n_approx_trim = c_n_approx_fix.copy() c_n_approx_trim = c_n_approx_trim[:kmax_idx:,:mmax_idx] # the dimension is transposed for meshgrid. distr_fix_trim = distr_fix.copy() cn_StE_trim = c_n_StE_fix.copy() cn_StE_trim = cn_StE_trim[:kmax_idx,:mmax_idx] distr_fix_trim = distr_fix_trim[:kmax_idx,:mmax_idx] ## find the maximum z zmax =
np.nanmax(c_n_approx_trim)
numpy.nanmax
""" .. module:: PhotonPipe :synopsis: A recreation / port of key functionality of the GALEX mission pipeline to generate calibrated and sky-projected photon-level data from raw spacecraft and detector telemetry. Generates time-tagged photon lists given mission-produced -raw6, -scst, and -asprta data. """ from __future__ import absolute_import, division, print_function # Core and Third Party imports. from astropy.io import fits as pyfits from builtins import str from builtins import range import csv import numpy as np import os import time # gPhoton imports. import gPhoton.cal as cal from gPhoton.CalUtils import (clk_cen_scl_slp, get_stim_coefs, find_fuv_offset, post_csp_caldata, rtaph_yac, rtaph_yac2, compute_stimstats, create_ssd) from gPhoton.FileUtils import load_aspect, web_query_aspect, download_data from gPhoton.gnomonic import gnomfwd_simple, gnomrev_simple from gPhoton.MCUtils import print_inline # ------------------------------------------------------------------------------ def photonpipe(outbase, band, raw6file=None, scstfile=None, aspfile=None, ssdfile=None, nullfile=None, verbose=0, retries=20, eclipse=None): """ Apply static and sky calibrations to -raw6 GALEX data, producing fully aspect-corrected and time-tagged photon list files. :param raw6file: Name of the raw6 file to use. :type raw6file: str :param scstfile: Spacecraft state file to use. :type scstfile: str :param band: Name of the band to use, either 'FUV' or 'NUV'. :type band: str :param outbase: Base of the output file names. :type outbase: str :param aspfile: Name of aspect file to use. :type aspfile: int :param ssdfile: Name of Stim Separation Data file to use. :type ssdfile: int :param nullfile: Name of output file to record NULL lines. :type nullfile: int :param verbose: Note used. Included for consistency with other tools. :type verbose: int :param retries: Number of query retries to attempt before giving up. :type retries: int """ startt = time.time() # Scale factor for the time column in the output csv so that it # can be recorded as an int in the database. dbscale = 1000 # This number determines the size of the chunks that gPhoton reads # in from the raw6 for processing. Even if your machine has a lot # of memory, making this number bigger is unlikely to improve the # processing time much because so much is eaten up by the .csv write. chunksz = 1000000 # These are just constants for the mission. detsize = 1.25 # Detector size in degrees pltscl = 68.754932 # Plate scale aspum = pltscl/1000.0 arcsecperpixel = 1.5 xi_xsc, xi_ysc, eta_xsc, eta_ysc = 0., 1., 1., 0. # Determine the eclipse number from the raw6 header. if not raw6file: if not eclipse: raise ValueError('Must specifiy eclipse if no raw6file.') else: raw6file = download_data( eclipse,band,'raw6',datadir=os.path.dirname(outbase)) if raw6file==None: print('Unable to retrieve raw6 file for this eclipse.') return hdulist = pyfits.open(raw6file) hdr = hdulist[0].header hdulist.close() if eclipse and (eclipse!=hdr['eclipse']): # just a consistency check print("Warning: eclipse mismatch {e0} vs. {e1} (header)".format( e0=eclipse,e1=hdr['eclipse'])) eclipse = hdr['eclipse'] print("Processing eclipse "+str(eclipse)+".") # Returns detector constants. print("Band is "+band+".") (xclk, yclk, xcen, ycen, xscl, yscl, xslp, yslp) = clk_cen_scl_slp(band, eclipse) # This determines the values for the post-CSP detector stim scaling # and detector constant corrections. Mx, Bx, My, By, stimsep = 1, 0, 1, 0, 0 if eclipse > 37460: (Mx, Bx, My, By, stimsep, yactbl) = compute_stimstats(raw6file, band, eclipse) wig2, wig2data, wlk2, wlk2data, clk2, clk2data = post_csp_caldata() print("Loading wiggle files...") wiggle_x, _ = cal.wiggle(band, 'x') wiggle_y, _ = cal.wiggle(band, 'y') print("Loading walk files...") walk_x, _ = cal.walk(band, 'x') walk_y, _ = cal.walk(band, 'y') print("Loading linearity files...") linearity_x, _ = cal.linearity(band, 'x') linearity_y, _ = cal.linearity(band, 'y') # This is for the post-CSP stim distortion corrections. print("Loading distortion files...") if eclipse > 37460: print(" Using stim separation of :"+str(stimsep)) distortion_x, disthead = cal.distortion(band, 'x', eclipse, stimsep) distortion_y, _ = cal.distortion(band, 'y', eclipse, stimsep) (cube_x0, cube_dx, cube_y0, cube_dy, cube_d0, cube_dd, cube_nd, cube_nc, cube_nr) = (disthead['DC_X0'], disthead['DC_DX'], disthead['DC_Y0'], disthead['DC_DY'], disthead['DC_D0'], disthead['DC_DD'], disthead['NAXIS3'], disthead['NAXIS1'], disthead['NAXIS2']) if band == 'FUV': if not scstfile: if not eclipse: raise ValueError('Must specifiy eclipse if no scstfile.') else: scstfile = download_data( eclipse,band,'scst',datadir=os.path.dirname(outbase)) if scstfile==None: print('Unable to retrieve SCST file for this eclipse.') return xoffset, yoffset = find_fuv_offset(scstfile) else: xoffset, yoffset = 0., 0. if os.path.isfile(str(ssdfile)): print("SSD file provided: "+str(ssdfile)) stim_coef0, stim_coef1 = get_stim_coefs(ssdfile) elif ssdfile: print("SSD file requested: "+str(ssdfile)) stim_coef0, stim_coef1 = create_ssd(raw6file, band, eclipse, ssdfile) else: print("No SSD file provided or requested.") stim_coef0, stim_coef1 = create_ssd(raw6file, band, eclipse) print(" stim_coef0, stim_coef1 = "+str(stim_coef0)+", "+str(stim_coef1)) print("Loading mask file...") mask, maskinfo = cal.mask(band) npixx = mask.shape[0] npixy = mask.shape[1] pixsz = maskinfo['CDELT2'] maskfill = detsize/(npixx*pixsz) print("Loading aspect data...") if aspfile: (aspra, aspdec, asptwist, asptime, aspheader, aspflags) = load_aspect(aspfile) else: (aspra, aspdec, asptwist, asptime, aspheader, aspflags) = web_query_aspect(eclipse, retries=retries) minasp, maxasp = min(asptime), max(asptime) trange = [minasp, maxasp] print(" trange= ( {t0} , {t1} )".format(t0=trange[0], t1=trange[1])) ra0, dec0, roll0 = aspheader['RA'], aspheader['DEC'], aspheader['ROLL'] print(" [avgRA, avgDEC, avgROLL] = [{RA}, {DEC}, {ROLL}]".format( RA=aspra.mean(), DEC=aspdec.mean(), ROLL=asptwist.mean())) # This projects the aspect solutions onto the MPS field centers. print("Computing aspect vectors...") (xi_vec, eta_vec) = gnomfwd_simple(aspra, aspdec, ra0, dec0, -asptwist, 1.0/36000.0, 0.) print("Loading raw6 file...") raw6hdulist = pyfits.open(raw6file, memmap=1) raw6htab = raw6hdulist[1].header nphots = raw6htab['NAXIS2'] print(" "+str(nphots)+" events") cnt = 0 outfile = outbase+'.csv' print("Preparing output file "+outfile) spreadsheet = csv.writer(open(outfile, 'w'), delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL) # If specified, dump lines with NULLS into a separate csv file. if nullfile: nullfile = outbase+'_NULL.csv' print("Preparing output file "+nullfile) NULLspreadsheet = csv.writer(open(nullfile, 'w'), delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL) print("") for i in range(int(nphots/chunksz)+1): a = time.time() csvrows = [] chunkbeg, chunkend = i*chunksz, (i+1)*chunksz if chunkend > nphots: chunkend = nphots chunkid = " "+str(i+1)+" of "+str(int(nphots/chunksz)+1)+": " print_inline(chunkid+"Unpacking raw6 data...") t = np.array(raw6hdulist[1].data.field('t')[chunkbeg:chunkend]) phb1 = np.array(raw6hdulist[1].data.field('phb1')[chunkbeg:chunkend], dtype='int64') phb2 = np.array(raw6hdulist[1].data.field('phb2')[chunkbeg:chunkend], dtype='int64') phb3 = np.array(raw6hdulist[1].data.field('phb3')[chunkbeg:chunkend], dtype='int64') phb4 = np.array(raw6hdulist[1].data.field('phb4')[chunkbeg:chunkend], dtype='int64') phb5 = np.array(raw6hdulist[1].data.field('phb5')[chunkbeg:chunkend], dtype='int64') # Bitwise "decoding" of the raw6 telemetry. q = ((phb4 & 3) << 3) + ((phb5 & 224) >> 5) xb = phb1 >> 5 xamc = ( np.array(((phb1 & 31) << 7), dtype='int16') + np.array(((phb2 & 254) >> 1), dtype='int16') - np.array(((phb1 & 16) << 8), dtype='int16')) yb = ((phb2 & 1) << 2) + ((phb3 & 192) >> 6) yamc = ( np.array(((phb3 & 63) << 6), dtype='int16') + np.array(((phb4 & 252) >> 2), dtype='int16') - np.array(((phb3 & 32) << 7), dtype='int16')) xa = ((phb5 & 16) >> 4) + ((phb5 & 3) << 3) + ((phb5 & 12) >> 1) xraw0 = xb*xclk + xamc yraw0 = yb*yclk + yamc ya = np.array(((((yraw0/(2*yclk) - xraw0/(2*xclk)) + 10)*32) + xa), dtype='int64') % 32 xraw = xraw0 + np.array((((xa+7) % 32) - 16), dtype='int64') * xslp yraw = yraw0 + np.array((((ya+7) % 32) - 16), dtype='int64') * yslp # Centering and scaling. x = (xraw - xcen)*xscl y = (yraw - ycen)*yscl # Post-CSP 'yac' corrections. if eclipse > 37460: x = Mx*x+Bx y = My*y+By yac = rtaph_yac(yactbl, ya, yb, yamc, eclipse) y = y-yac yac = rtaph_yac2(q, xb, yb, ya, y, aspum, wig2, wig2data, wlk2, wlk2data, clk2, clk2data) y = y + yac # [Future] This and other ugly lines like it below are for the purpose # of memory management. There is likely a more Pythonic way. (phb1, phb2, phb3, phb4, phb5, xb, xamc, yb, yamc, xraw0, yraw0, xraw, yraw) = ([], [], [], [], [], [], [], [], [], [], [], [], []) flags = np.zeros(len(t)) print_inline(chunkid+"Applying wiggle correction...") x_as = x*aspum y_as = y*aspum fptrx = x_as/10. + 240. fptry = y_as/10. + 240. x_as, y_as = [], [] # This and other lines like it below are to verify that the # event is still on the detector. cut = ((fptrx > 0.) & (fptrx < 479.) & (fptry > 0.) & (fptry < 479.) & (flags == 0)) flags[np.where(cut == False)[0]] = 8 ix = np.where(cut == True)[0] blt = fptrx-np.array(fptrx, dtype='int64') blu = fptry-np.array(fptry, dtype='int64') wigx, wigy = np.zeros(len(t)), np.zeros(len(t)) wigx[ix] = ( (1-blt[ix])*(wiggle_x[xa[ix], np.array(fptrx[ix], dtype='int64')]) + (blt[ix])*(wiggle_x[xa[ix], np.array(fptrx[ix], dtype='int64')+1])) wigy[ix] = ( (1-blu[ix])*(wiggle_y[ya[ix], np.array(fptry[ix], dtype='int64')]) + (blu[ix])*(wiggle_y[ya[ix], np.array(fptry[ix], dtype='int64')+1])) xdig = x + wigx/(10.*aspum) ydig = y + wigy/(10.*aspum) wigx, wigy = [], [] print_inline(chunkid+"Applying walk correction...") xdig_as = xdig*aspum ydig_as = ydig*aspum fptrx = xdig_as/10. + 240. fptry = ydig_as/10. + 240. xdig_as, ydig_as = [], [] cut = ((fptrx > 0.) & (fptrx < 479.) & (fptry > 0.) & (fptry < 479.) & (flags == 0)) flags[np.where(cut == False)[0]] = 9 ix = np.where(cut == True)[0] cut[ix] = ((walk_x[q[ix], np.array(fptry[ix], dtype='int64'), np.array(fptrx[ix], dtype='int64')] != -999) | (walk_x[q[ix], np.array(fptry[ix], dtype='int64'), np.array(fptrx[ix], dtype='int64')+1] != -999) | (walk_x[q[ix], np.array(fptry[ix], dtype='int64')+1, np.array(fptrx[ix], dtype='int64')] != -999) | (walk_x[q[ix], np.array(fptry[ix], dtype='int64')+1, np.array(fptrx[ix], dtype='int64')+1] != -999) | (walk_y[q[ix], np.array(fptry[ix], dtype='int64'), np.array(fptrx[ix], dtype='int64')] != -999) | (walk_y[q[ix], np.array(fptry[ix], dtype='int64'), np.array(fptrx[ix], dtype='int64')+1] != -999) | (walk_y[q[ix], np.array(fptry[ix], dtype='int64')+1, np.array(fptrx[ix], dtype='int64')] != -999) | (walk_y[q[ix], np.array(fptry[ix], dtype='int64')+1, np.array(fptrx[ix], dtype='int64')+1] != -999)) flags[np.where(cut == False)[0]] = 9 ix = np.where(cut == True)[0] blt = fptrx-np.array(fptrx, dtype='int64') blu = fptry-np.array(fptry, dtype='int64') walkx, walky = np.zeros(len(t)), np.zeros(len(t)) walkx[ix] = ( (1-blt[ix])*(1-blu[ix])*( walk_x[q[ix], np.array(fptry[ix], dtype='int64'), np.array(fptrx[ix], dtype='int64')])+ (blt[ix])*(1-blu[ix])*( walk_x[q[ix], np.array(fptry[ix], dtype='int64'), np.array(fptrx[ix], dtype='int64')+1])+ (1-blt[ix])*(blu[ix])*( walk_x[q[ix], np.array(fptry[ix], dtype='int64')+1, np.array(fptrx[ix], dtype='int64')]) + (blt[ix])*(blu[ix])*( walk_x[q[ix], np.array(fptry[ix], dtype='int64')+1, np.array(fptrx[ix], dtype='int64')+1])) walky[ix] = ( (1-blt[ix])*(1-blu[ix])*( walk_y[q[ix], np.array(fptry[ix], dtype='int64'), np.array(fptrx[ix], dtype='int64')]) + (blt[ix])*(1-blu[ix])*( walk_y[q[ix], np.array(fptry[ix], dtype='int64'), np.array(fptrx[ix], dtype='int64')+1]) + (1-blt[ix])*(blu[ix])*( walk_y[q[ix],
np.array(fptry[ix], dtype='int64')
numpy.array
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Sawyer environment for pushing objects.""" import metaworld.envs.mujoco.cameras as camera_configs from metaworld.google import glfw import mujoco_py import numpy as np from collections import OrderedDict from gym.spaces import Dict, Box from metaworld.envs.env_util import get_stat_in_paths, \ create_stats_ordered_dict, get_asset_full_path from metaworld.envs.mujoco.sawyer_xyz.base import SawyerXYZEnv from metaworld.envs.mujoco.utils.rotation import euler2quat from metaworld.envs.mujoco.sawyer_xyz.base import OBS_TYPE sideview_cam = camera_configs.create_sawyer_camera_init( lookat=(0.2, 0.75, 0.4), distance=0.8, elevation=-55, azimuth=180, trackbodyid=-1, ) topview_cam = camera_configs.create_sawyer_camera_init( lookat=(0., 1.0, 0.5), distance=0.6, elevation=-45, azimuth=270, trackbodyid=-1, ) # list of changes # object position has been changed to have lower variance # the constant for pushing reward has been changed from 1000 -> 10 # added reset_goal function # the observation "with_goal" has been changed class SawyerReachPushPickPlaceEnv(SawyerXYZEnv): def __init__( self, random_init=False, task_types=['pick_place', 'reach', 'push'], task_type='pick_place', obs_type='plain', goal_low=(-0.1, 0.8, 0.05), goal_high=(0.1, 0.9, 0.3), liftThresh=0.04, sampleMode='equal', rotMode='fixed', #'fixed', **kwargs): self.quick_init(locals()) hand_low = (-0.5, 0.40, 0.05) hand_high = (0.5, 1, 0.5) obj_low = (-0.02, 0.58, 0.02) obj_high = (0.02, 0.62, 0.02) SawyerXYZEnv.__init__( self, frame_skip=5, action_scale=1. / 100, hand_low=hand_low, hand_high=hand_high, model_name=self.model_name, **kwargs) self.task_type = task_type self.init_config = { 'obj_init_angle': .3, 'obj_init_pos': np.array([0, 0.6, 0.02]), 'hand_init_pos': np.array([0, .6, .2]), } # we only do one task from [pick_place, reach, push] # per instance of SawyerReachPushPickPlaceEnv. # Please only set task_type from constructor. if self.task_type == 'pick_place': self.goal = np.array([0.1, 0.8, 0.2]) elif self.task_type == 'reach': self.goal = np.array([-0.1, 0.8, 0.2]) elif self.task_type == 'push': self.goal = np.array([0.1, 0.8, 0.02]) else: raise NotImplementedError self.obj_init_angle = self.init_config['obj_init_angle'] self.obj_init_pos = self.init_config['obj_init_pos'] self.hand_init_pos = self.init_config['hand_init_pos'] assert obs_type in OBS_TYPE self.obs_type = obs_type if goal_low is None: goal_low = self.hand_low if goal_high is None: goal_high = self.hand_high self.random_init = random_init self.liftThresh = liftThresh self.max_path_length = 150 self.rotMode = rotMode self.sampleMode = sampleMode self.task_types = task_types if rotMode == 'fixed': self.action_space = Box( np.array([-1, -1, -1, -1]), np.array([1, 1, 1, 1]), ) elif rotMode == 'rotz': self.action_rot_scale = 1. / 50 self.action_space = Box( np.array([-1, -1, -1, -np.pi, -1]), np.array([1, 1, 1, np.pi, 1]), ) elif rotMode == 'quat': self.action_space = Box( np.array([-1, -1, -1, 0, -1, -1, -1, -1]), np.array([1, 1, 1, 2 * np.pi, 1, 1, 1, 1]), ) else: self.action_space = Box( np.array([-1, -1, -1, -np.pi / 2, -np.pi / 2, 0, -1]), np.array([1, 1, 1, np.pi / 2, np.pi / 2, np.pi * 2, 1]), ) self.obj_and_goal_space = Box( np.hstack((obj_low, goal_low)), np.hstack((obj_high, goal_high)), ) self.goal_space = Box(np.array(goal_low),
np.array(goal_high)
numpy.array
# File: problem1.py # Author: <NAME> # Date: 11/06/2019 # Class: ECE 555 - Probability for Electrical Engineers # Description: # Write and run a program to simulate an M/E2/1 queue and obtain realizations of # the four stochastic processes defined in Example 6.2. Plot these realizations. You # may use a simulation language such as SIMULA or GPSS or you may use one # of the standard high-level languages. You will have to generate random deviates # of the interarrival time distribution (assume arrival rate λ = 1 per second) and # the service time distribution (assume mean service time 0.8 s) using methods of # Chapter 3. import math import queue import numpy as np import matplotlib.pyplot as plt def getErlang2(u1, u2, l=1): return (-np.log(u1)/(2*l)) + (-np.log(u2)/(2*l)) # u is a number drawn from a random uniform distribution (between 0 and 1) # l is the rate of the exp distrbution def getEXP(u,l=1): return -np.log(u)/l # Returns a list of all the values from a given list larger than a specific value def getSmaller(list2Check, value): return [x for x in list2Check if x <= value] def getBetween(list2Check, small_val, big_val): return [x for x in list2Check if x >= small_val and x <= big_val] def addToQueue(list2Check, que): # add to queue if que.empty(): for value in list2Check: que.put(value) return que # When queue has elementsd for value in list2Check: # add to queue if value > que.queue[-1]: que.put(value) return que def graph(x, xlabel, ylabel, title, isDiscrete=True): if isDiscrete: y = [i for i in range(len(x))] plt.scatter(x,y) else: plt.plot(x) plt.title(title) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.show() return 0 # # Arrival time = exponentially distributed # Service time = erlang distribution # Iterations = number of seconds def simulate_M_E2_1(total_jobs=1000, arrival_rate=1, mean_service_time=0.8): k = total_jobs # Total number of jobs rand_samples1 = np.random.random_sample((k,)) rand_samples2 = np.random.random_sample((k,)) rand_samples3 = np.random.random_sample((k,)) arrival_queue = queue.Queue(maxsize=k-1) service_queue = queue.Queue(maxsize=1) arrival_times = np.zeros(k) continuous_arrivals = np.zeros(k) service_times = np.zeros(k) continuous_service = np.zeros(k) N_k = np.zeros(k+1) exit_times = np.copy(N_k) # related to X_t and Y_t W_n =
np.zeros(k+1)
numpy.zeros
# next is to add accel and see the difference # add stiffness too import numpy as np from scipy import signal, stats from matplotlib import pyplot as plt from all_functions import * import pickle from warnings import simplefilter def exp2_learning_curves_cal_fcn(errors_all): average_curve_mean = errors_all.mean(0).mean(1) q0_curve_mean = errors_all[0].mean(1) q1_curve_mean = errors_all[1].mean(1) average_curve_std = errors_all.mean(0).std(1) q0_curve_std = errors_all[0].std(1) q1_curve_std = errors_all[1].std(1) return average_curve_mean, q0_curve_mean, q1_curve_mean, average_curve_std, q0_curve_std, q1_curve_std simplefilter(action='ignore', category=FutureWarning) import matplotlib matplotlib.rcParams['pdf.fonttype'] = 42 matplotlib.rcParams['ps.fonttype'] = 42 experiment_ID = "experiment_2_2way" number_of_refinements = 5 errors_all_cyc_A_A = np.load("./results/{}/errors_all_cyc_A_A.npy".format(experiment_ID)) errors_all_cyc_A_B = np.load("./results/{}/errors_all_cyc_A_B.npy".format(experiment_ID)) errors_all_cyc_B_B = np.load("./results/{}/errors_all_cyc_B_B.npy".format(experiment_ID)) errors_all_cyc_B_A = np.load("./results/{}/errors_all_cyc_B_A.npy".format(experiment_ID)) errors_all_p2p_A_A = np.load("./results/{}/errors_all_p2p_A_A.npy".format(experiment_ID)) errors_all_p2p_A_B = np.load("./results/{}/errors_all_p2p_A_B.npy".format(experiment_ID)) errors_all_p2p_B_B = np.load("./results/{}/errors_all_p2p_B_B.npy".format(experiment_ID)) errors_all_p2p_B_A = np.load("./results/{}/errors_all_p2p_B_A.npy".format(experiment_ID)) number_of_mods = 8 errors_all = np.zeros((number_of_mods,)+errors_all_cyc_A_A.shape) average_curve_mean_all = np.zeros([number_of_mods,number_of_refinements+1]) q0_curve_mean_all = np.zeros([number_of_mods,number_of_refinements+1]) q1_curve_mean_all= np.zeros([number_of_mods,number_of_refinements+1]) average_curve_std_all = np.zeros([number_of_mods,number_of_refinements+1]) q0_curve_std_all = np.zeros([number_of_mods,number_of_refinements+1]) q1_curve_std_all= np.zeros([number_of_mods,number_of_refinements+1]) errors_all = \
np.array([errors_all_cyc_A_A, errors_all_cyc_B_A, errors_all_cyc_B_B, errors_all_cyc_A_B, errors_all_p2p_A_A, errors_all_p2p_B_A, errors_all_p2p_B_B, errors_all_p2p_A_B])
numpy.array
from numpy import zeros, ones, ndarray, average from networkx import adjacency_matrix, Graph from scipy.sparse import diags, lil_matrix, spmatrix from scipy.sparse.linalg import lsqr def forward_hierarchical_levels(graph, weight=None): """Returns the forward hierarchical levels of the nodes of a network as an array. Parameters ---------- graph : Graph, array A NetworkX graph or numpy/sparse array weight : string or None If you have weighted edges insert weight='string', where string is your underlying weight attribute. Only relevant if graph object is a networkx graph instance. Otherwise the default is None. Returns ------- forward hierarchical levels : array A Nx1 dimensional array indexed by the nodes, in the same order as graph.nodes if graph object, otherwise indexed in the same the numpy/sparse array, holding the value of their forward hierarchical levels. References ---------- .. [1] <NAME>., <NAME>., <NAME>., & <NAME>. (2019). Graph hierarchy and spread of infections. arXiv preprint arXiv:1908.04358.""" if isinstance(graph, ndarray): A = graph.transpose() k_in = A.sum(axis=1) elif isinstance(graph, spmatrix): A = graph.transpose() k_in = A.sum(axis=1).A1 elif isinstance(graph, Graph): A = adjacency_matrix(graph, weight=weight).transpose() k_in = A.sum(axis=1).A1 D_in = diags(k_in, 0) L_in = D_in - A return lsqr(L_in, k_in)[0] def backward_hierarchical_levels(graph, weight=None): """Returns the backward hierarchical levels of the nodes of a network as an array. This is the transpose of the original graph, so out-edges now become in-edges. Parameters ---------- graph : Graph, array A NetworkX graph or numpy/sparse array weight : string or None If you have weighted edges insert weight='string', where string is your underlying weight attribute. Only relevant if graph object is a networkx graph instance. Otherwise the default is None. Returns ------- backward hierarchical levels : array A Nx1 dimensional array indexed by the nodes, in the same order as graph.nodes if graph object, otherwise indexed in the same the numpy/sparse array, holding the value of their forward hierarchical levels. References ---------- .. [1] <NAME>., <NAME>., <NAME>., & <NAME>. (2019). Graph hierarchy and spread of infections. arXiv preprint arXiv:1908.04358.""" if isinstance(graph, ndarray): A = graph k_in = A.sum(axis=1) elif isinstance(graph, spmatrix): A = graph k_in = A.sum(axis=1).A1 elif isinstance(graph, Graph): A = adjacency_matrix(graph, weight=weight) k_in = A.sum(axis=1).A1 D_in = diags(k_in, 0) L_in = D_in - A return lsqr(L_in, k_in)[0] def hierarchical_levels(graph, weight=None): """Returns the hierarchical levels of the nodes of a network as an array which aids visualisation of the hierarchical structure in the network. Parameters ---------- graph : Graph A NetworkX graph or numpy/sparse array weight : string or None If you have weighted edges insert weight='string', where string is your underlying weight attribute. Only relevant if graph object is a networkx graph instance. Otherwise the default is None. Returns ------- hierarchical levels : array A Nx1 dimensional array indexed by the nodes, in the same order as graph.nodes, holding the value of their hierarchical levels. References ---------- .. [1] <NAME>., <NAME>., <NAME>., & <NAME>. (2019). Graph hierarchy and spread of infections. arXiv preprint arXiv:1908.04358.""" return 0.5*(forward_hierarchical_levels(graph, weight=weight) - backward_hierarchical_levels(graph, weight=weight)) def sparse_forward_hierarchical_differences(graph, weight=None): ''' Just a copy of the forward hierarchical differences function that returns the sparse matrix, instead of the dense representation, in lil format''' if isinstance(graph, (ndarray, spmatrix)): A = graph.transpose() elif isinstance(graph, Graph): A = adjacency_matrix(graph, weight=weight).transpose() s = forward_hierarchical_levels(graph, weight=weight) TD = lil_matrix(A.shape, dtype=float) for i, j in zip(A.nonzero()[0], A.nonzero()[1]): TD[i,j] = s[i] - s[j] return TD def forward_hierarchical_differences(graph, weight=None): """Returns the forward hierarchical differences over the edges of a network in the form of a weighted adjacency matrix Parameters ---------- graph : Graph, array A NetworkX graph or numpy/sparse array weight : string If you have weighted edges insert weight='string', where string is your underlying weight attribute. Only relevant if graph object is a networkx graph instance. Otherwise the default is None. Returns ------- forward hierarchical differences : array A NxN dimensional array representing a weighted adjacency matrix, with the edge weights corresponding to the forward hierarchical differences. The column index represents the source node of the edge and the row index represents the destination node of the edge. References ---------- .. [1] <NAME>., <NAME>., <NAME>., & <NAME>. (2019). Graph hierarchy and spread of infections. arXiv preprint arXiv:1908.04358.""" TD = sparse_forward_hierarchical_differences(graph, weight=weight) return TD.toarray() def sparse_backward_hierarchical_differences(graph, weight=None): ''' Just a copy of the backward hierarchical differences function that returns the sparse matrix, instead of the dense representation, in lil format''' if isinstance(graph, (ndarray, spmatrix)): A = graph elif isinstance(graph, Graph): A = adjacency_matrix(graph, weight=weight) s = backward_hierarchical_levels(graph, weight=weight) TD = lil_matrix(A.shape, dtype=float) for i, j in zip(A.nonzero()[0], A.nonzero()[1]): TD[i,j] = s[i] - s[j] return TD def backward_hierarchical_differences(graph, weight=None): """Returns the backward hierarchical differences over the edges of a network in the form of a weighted adjacency matrix Parameters ---------- graph : Graph, array A NetworkX graph or numpy/sparse array weight : string or None If you have weighted edges insert weight='string', where string is your underlying weight attribute. Only relevant if graph object is a networkx graph instance. Otherwise the default is None. Returns ------- backward hierarchical differences : array A NxN dimensional array representing a weighted adjacency matrix, with the edge weights corresponding to the backward hierarchical differences. The column index represents the source node of the edge and the row index represents the destination node of the edge. References ---------- .. [1] <NAME>., <NAME>., <NAME>., & <NAME>. (2019). Graph hierarchy and spread of infections. arXiv preprint arXiv:1908.04358.""" TD = sparse_backward_hierarchical_differences(graph, weight=weight) return TD.toarray() def forward_hierarchical_incoherence(graph, weight=None): """Returns the forward hierarchical differences over the edges of a network in the form of a weighted adjacency matrix, mean of the distribution of differences and standard deviation of this distribution. Parameters ---------- graph : Graph, array A NetworkX graph or numpy/sparse array weight : string or None If you have weighted edges insert weight='string', where string is your underlying weight attribute. Only relevant if graph object is a networkx graph instance. Otherwise the default is None. Returns ------- forward hierarchical differences : sparse array A NxN sparse dimensional sparse array representing a weighted adjancency matrix, with the edge weights corresponding to the forward hierarchical differences. The column index represents the source node of the edge and the row index represents the destination node of the edge. mean hierarchical difference : float The mean of the distribution of forward hierarchical differences. forward hierarchical incoherence : float The standard deviation of the distribution of forward hierarchical differences. References ---------- .. [1] <NAME>., <NAME>., <NAME>., & <NAME>. (2019). Graph hierarchy and spread of infections. arXiv preprint arXiv:1908.04358.""" if isinstance(graph, ndarray): A = graph.transpose() TD = forward_hierarchical_differences(graph, weight=weight) m = average(TD, weights=A) m2 = average(TD**2, weights=A) elif isinstance(graph, spmatrix): A = graph.transpose() TD = sparse_forward_hierarchical_differences(graph, weight=weight).tocsc() m = (A.multiply(TD)).sum() / A.sum() m2 = (A.multiply(TD.power(2))).sum() / A.sum() elif isinstance(graph, Graph): A = adjacency_matrix(graph, weight=weight).transpose() TD = sparse_forward_hierarchical_differences(graph, weight=weight).tocsc() m = (A.multiply(TD)).sum() / A.sum() m2 = (A.multiply(TD.power(2))).sum() / A.sum() std = (m2 - m**2)**0.5 return TD, m, std def backward_hierarchical_incoherence(graph, weight=None): """Returns the backward hierarchical differences over the edges of a network in the form of a weighted adjacency matrix, mean of the distribution of differences and standard deviation of this distribution. Parameters ---------- graph : Graph, array A NetworkX graph or numpy/sparse array weight : string If you have weighted edges insert weight='string', where string is your underlying weight attribute. Only relevant if graph object is a networkx graph instance. Otherwise the default is None. Returns ------- backward hierarchical differences : sparse array A NxN dimensional sparse array representing a weighted adjancency matrix, with the edge weights corresponding to the backward hierarchical differences. The column index represents the source node of the edge and the row index represents the destination node of the edge. mean hierarchical difference : float The mean of the distribution of backward hierarchical differences. backward hierarchical incoherence : float The standard deviation of the distribution of backward hierarchical differences. References ---------- .. [1] <NAME>., <NAME>., <NAME>., & <NAME>. (2019). Graph hierarchy and spread of infections. arXiv preprint arXiv:1908.04358.""" if isinstance(graph, ndarray): A = graph TD = backward_hierarchical_differences(graph, weight=weight) m = average(TD, weights=A) m2 = average(TD**2, weights=A) elif isinstance(graph, spmatrix): A = graph TD = sparse_backward_hierarchical_differences(graph, weight=weight).tocsr() m = (A.multiply(TD)).sum() / A.sum() m2 = (A.multiply(TD.power(2))).sum() / A.sum() elif isinstance(graph, Graph): A = adjacency_matrix(graph, weight=weight) TD = sparse_backward_hierarchical_differences(graph, weight=weight).tocsr() m = (A.multiply(TD)).sum() / A.sum() m2 = (A.multiply(TD.power(2))).sum() / A.sum() std = (m2 - m**2)**0.5 return TD, m, std # Returns a measure of equitable controllability over the full graph/network def forward_democracy_coefficient(graph, weight=None): """Returns the forward democracy coeffcient of a graph, a topological network metric. Parameters ---------- graph : Graph, array A NetworkX graph or numpy/sparse array weight : string If you have weighted edges insert weight='string', where string is your underlying weight attribute. Only relevant if graph object is a networkx graph instance. Otherwise the default is None. Returns ------- forward democracy coefficient : float forward democracy coefficient of a graph References ---------- .. [1] <NAME>., <NAME>., <NAME>., & <NAME>. (2019). Graph hierarchy and spread of infections. arXiv preprint arXiv:1908.04358.""" if isinstance(graph, ndarray): A = graph.transpose() TD = forward_hierarchical_differences(graph, weight=weight) m = average(TD, weights=A) elif isinstance(graph, spmatrix): A = graph.transpose() TD = sparse_forward_hierarchical_differences(graph, weight=weight).tocsc() m = (A.multiply(TD)).sum() / A.sum() elif isinstance(graph, Graph): A = adjacency_matrix(graph, weight=weight).transpose() TD = sparse_forward_hierarchical_differences(graph, weight=weight).tocsc() m = (A.multiply(TD)).sum() / A.sum() return 1 - m # Returns a measure of equitable controllability over the full graph/network def backward_democracy_coefficient(graph, weight=None): """Returns the backward democracy coeffcient of a graph, a topological network metric. Parameters ---------- graph : Graph, array A NetworkX graph or numpy/sparse array weight : string or None If you have weighted edges insert weight='string', where string is your underlying weight attribute. Only relevant if graph object is a networkx graph instance. Otherwise the default is None. Returns ------- backward democracy coefficient : float backward democracy coefficient of a graph References ---------- .. [1] <NAME>., <NAME>., <NAME>., & <NAME>. (2019). Graph hierarchy and spread of infections. arXiv preprint arXiv:1908.04358.""" if isinstance(graph, ndarray): A = graph TD = backward_hierarchical_differences(graph, weight=weight) m = average(TD, weights=A) elif isinstance(graph, spmatrix): A = graph TD = sparse_backward_hierarchical_differences(graph, weight=weight).tocsr() m = (A.multiply(TD)).sum() / A.sum() elif isinstance(graph, Graph): A = adjacency_matrix(graph, weight=weight) TD = sparse_backward_hierarchical_differences(graph, weight=weight).tocsr() m = (A.multiply(TD)).sum() / A.sum() return 1 - m def node_forward_influence_centrality(graph, node, weight=None): """Returns the forward influence centrality of the given node in the network. Parameters ---------- graph : Graph, array A NetworkX graph or numpy/sparse array node : number Label of the node as determined by the indexing of the graph.nodes() call or the index of the numpy/sparse array. weight : string If you have weighted edges insert weight='string', where string is your underlying weight attribute. Only relevant if graph object is a networkx graph instance. Otherwise the default is None. Returns ------- forward influence centrality : float A node's forward influence centrality. References ---------- .. [1] <NAME>., <NAME>., <NAME>., & <NAME>. (2019). Graph hierarchy and spread of infections. arXiv preprint arXiv:1908.04358.""" if isinstance(graph, ndarray): A = graph.transpose() index = node TD = forward_hierarchical_differences(graph, weight=weight) if A[index].sum() == 0: m = 0 else: m = average(TD[index], weights=A[index]) elif isinstance(graph, spmatrix): A = graph.transpose() index = node TD = sparse_forward_hierarchical_differences(graph, weight=weight).tocsc() if A[index].sum() == 0: m = 0 else: m = (A[index].multiply(TD[index])).sum() / A[index].sum() elif isinstance(graph, Graph): A = adjacency_matrix(graph, weight=weight).transpose() index = list(graph.nodes).index(node) TD = sparse_forward_hierarchical_differences(graph, weight=weight).tocsc() if A[index].sum() == 0: m = 0 else: m = (A[index].multiply(TD[index])).sum() / A[index].sum() return 1 - m def node_backward_influence_centrality(graph, node, weight=None): """Returns the backward influence centrality of the given node in the network. Parameters ---------- graph : Graph array A NetworkX graph or numpy/sparse array node : number Label of the node as determined by the indexing of the graph.nodes() call or the index of the numpy/sparse array. weight : string or None If you have weighted edges insert weight='string', where string is your underlying weight attribute. Only relevant if graph object is a networkx graph instance, otherwise the default is None. Returns ------- backward influence centrality : float A node's backward influence centrality. References ---------- .. [1] <NAME>., <NAME>., <NAME>., & <NAME>. (2019). Graph hierarchy and spread of infections. arXiv preprint arXiv:1908.04358.""" if isinstance(graph, ndarray): A = graph index = node TD = backward_hierarchical_differences(graph, weight=weight) if A[index].sum() == 0: m = 0 else: m = average(TD[index], weights=A[index]) elif isinstance(graph, spmatrix): A = graph index = node TD = sparse_backward_hierarchical_differences(graph, weight=weight).tocsr() if A[index].sum() == 0: m = 0 else: m = (A[index].multiply(TD[index])).sum() / A[index].sum() elif isinstance(graph, Graph): A = adjacency_matrix(graph, weight=weight) index = list(graph.nodes).index(node) TD = sparse_backward_hierarchical_differences(graph, weight=weight).tocsr() if A[index].sum() == 0: m = 0 else: m = (A[index].multiply(TD[index])).sum() / A[index].sum() return 1 - m def forward_influence_centrality(graph, weight=None): """Returns the forward influence centrality of the nodes in a network as an array. Parameters ---------- graph : Graph, array A NetworkX graph or numpy/sparse array weight : string or None If you have weighted edges insert weight='string', where string is your underlying weight attribute. Only relevant if graph object is a networkx graph instance, otherwise the default is None. Returns ------- forward influence centrality : array A Nx1 dimensional array indexed by the nodes, in the same order as graph.nodes, holding the value of their forward influence centralities. References ---------- .. [1] <NAME>., <NAME>., <NAME>., & <NAME>. (2019). Graph hierarchy and spread of infections. arXiv preprint arXiv:1908.04358.""" if isinstance(graph, ndarray): A = graph.transpose() TD = forward_hierarchical_differences(graph, weight=weight) m = zeros((TD.shape[0], 1)) for i in range(m.shape[0]): if A[i].sum() == 0: m[i] = 0 else: m[i] = average(TD[i], weights=A[i]) elif isinstance(graph, spmatrix): A = graph.transpose() TD = sparse_forward_hierarchical_differences(graph, weight=weight).tocsc() m = zeros((TD.shape[0], 1)) for i in range(m.shape[0]): if A[i].sum() == 0: m[i] = 0 else: m[i] = (A[i].multiply(TD[i])).sum() / A[i].sum() elif isinstance(graph, Graph): A = adjacency_matrix(graph, weight=weight).transpose() TD = sparse_forward_hierarchical_differences(graph, weight=weight).tocsc() m =
zeros((TD.shape[0], 1))
numpy.zeros
#!/usr/bin/env python """ Test projection and grid routines. Generally test all available pyproj projection presets but not basemap since they are slower. """ import tracpy import tracpy.calcs import os import numpy as np import matplotlib.tri as mtri # List projection setup for use in tests # pyproj-based setups projpyproj = ['galveston', 'nwgom-pyproj'] projbasemap = ['nwgom'] # don't usually test with this since slow def test_proj_init(): """Test initialization of preset pyproj projections.""" # loop through projection presets for projsetup in projpyproj: # Get projection object proj = tracpy.tools.make_proj(setup=projsetup) assert proj def test_grid_init(): """Test initialization of grid.""" # loop through projection presets for projsetup in projpyproj: # Get projection object proj = tracpy.tools.make_proj(setup=projsetup) grid_filename = os.path.join('input', 'grid.nc') # Read in grid grid = tracpy.inout.readgrid(grid_filename, proj, usespherical=True) assert grid def test_proj_variant(): """Test creating a projection with different than built-in variables.""" pass def test_proj_iteration(): """Test projection conversion back and forth between spaces. Set up a projection, then convert between spaces and check that the result is close to the starting values. """ # loop through projection presets for projsetup in projpyproj: # Get projection object. Can use either 'galveston' or 'nwgom-pyproj' # built in projection setups to test quickly ('nwgom' is for use with # usebasemap=True and thus is slow for testing). proj = tracpy.tools.make_proj(setup=projsetup) grid_filename = os.path.join('input', 'grid.nc') # Read in grid grid = tracpy.inout.readgrid(grid_filename, proj, usespherical=True) # convert back and forth lon_rho2, lat_rho2 = grid.proj(grid.x_rho, grid.y_rho, inverse=True) print(grid.lat_rho[0, :]) print(lat_rho2[0, :]) print(grid.lon_rho[0, :]) print(lon_rho2[0, :]) assert np.allclose(grid.lat_rho, lat_rho2) assert np.allclose(grid.lon_rho, lon_rho2) def test_grid_triangulation_spherical(): """Test that the grid triangulations are valid: spherical test cases.""" # loop through projection presets for projsetup in projpyproj: # Get projection object proj = tracpy.tools.make_proj(setup=projsetup) grid_filename = os.path.join('input', 'grid.nc') # Read in grid grid = tracpy.inout.readgrid(grid_filename, proj, usespherical=True) assert mtri.LinearTriInterpolator(grid.trir, grid.x_rho.flatten()) def test_grid_triangulation_projected(): """Test that the grid triangulations are valid: projected test cases.""" # loop through projection presets for projsetup in projpyproj: # Get projection object proj = tracpy.tools.make_proj(setup=projsetup) grid_filename = os.path.join('input', 'gridxy.nc') # Read in grid grid = tracpy.inout.readgrid(grid_filename, proj, usespherical=False) assert mtri.LinearTriInterpolator(grid.trir, grid.x_rho.flatten()) def test_interpolation(): """Test interpolation with grid space and projected grid the same. Create a test case with the 'projected' grid in grid space coordinates. When interpolating between them, there should be a shift because the rho points in projected space are not in the same setup as grid coords. """ # Get projection object proj = tracpy.tools.make_proj(setup='nwgom-pyproj') grid_filename = os.path.join('input', 'gridij.nc') # Read in grid grid = tracpy.inout.readgrid(grid_filename, proj, usespherical=False) # Do some interpolating # projected grid to grid space, delaunay X, Y, _ = tracpy.tools.interpolate2d(grid.x_rho[2, 3], grid.y_rho[2, 3], grid, 'd_xy2ij') # There is a shift between the rho grid and the grid space grid because # of the staggered layout. Grid space counts from the u/v grid and # therefore is a little different from the rho grid. assert np.allclose(X, grid.x_rho[2, 3] + 0.5) assert
np.allclose(Y, grid.y_rho[2, 3] + 0.5)
numpy.allclose
# coding: utf-8 # In[1]: import numpy as np import random from scipy.spatial import distance from sklearn.preprocessing import StandardScaler #Store Data Variables import json with open('feature_data.json', 'r') as f: features = json.load(f) from scipy.io import loadmat train_idxs = loadmat('cuhk03_new_protocol_config_labeled.mat')['train_idx'].flatten() query_idxs = loadmat('cuhk03_new_protocol_config_labeled.mat')['query_idx'].flatten() labels = loadmat('cuhk03_new_protocol_config_labeled.mat')['labels'].flatten() gallery_idxs = loadmat('cuhk03_new_protocol_config_labeled.mat')['gallery_idx'].flatten() filelist = loadmat('cuhk03_new_protocol_config_labeled.mat')['filelist'].flatten() camId = loadmat('cuhk03_new_protocol_config_labeled.mat')['camId'].flatten() # In[9]: #scaler = StandardScaler() #features = scaler.fit_transform(features) X = np.array(features) print(X) y = np.array(labels) filelist = np.array(filelist) camId = np.array(camId) # In[10]: mask_train = np.array(train_idxs).ravel() mask_query = np.array(query_idxs).ravel() mask_gallery = np.array(gallery_idxs).ravel() mask_train = np.subtract(mask_train, 1) mask_query =
np.subtract(mask_query, 1)
numpy.subtract
# Copyright (c) 2019 ipychord3 authors # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """This module contains some of the old function with sf_ prefix """ import logging from copy import deepcopy from collections import namedtuple import matplotlib.pyplot as plt from matplotlib.figure import figaspect from matplotlib.font_manager import FontProperties from matplotlib.patches import Wedge from matplotlib.path import Path import skimage.draw as sidraw import skimage.transform as sitransform import numpy as np from scipy import ndimage from scipy.ndimage.filters import median_filter from . import cmaps # setup logging logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) # we can't use TK backend, it will crash with python 3.4 on windows: # https://github.com/ipython/ipython/issues/8921#issuecomment-151046708 # matplotlib.use('TkAgg') # matplotlib.use('Qt4Agg') # ---------------------------------------------------------------------------- # Miscellaneous # ---------------------------------------------------------------------------- Circle = namedtuple('Circle', ['center', 'radius']) Rectangle = namedtuple('Rectangle', ['corner', 'width', 'height']) Polygon = namedtuple('Polygon', ['vertices']) RingSector = namedtuple('RingSector', ['theta1', 'theta2', 'radius', 'width', 'center']) def handle_close(event): """Handle the closing of a figure, it stops the event loop so the program can continue """ fig = event.canvas.figure logger.debug("stopping blocking event loop") fig.canvas.stop_event_loop() def prepare_patter_for_show(img, ulev=None, dlev=None, log=0, med=None, over=None, neg=False, mag=False, clip=True): """prepare pattern for show Scales the pattern and computes ``ulev`` and ``dlev`` A copy of the pattern is returned. :param img: the image dictionary :type img: dict :param ulev: show the image in certain interval, ulev defines the upper level. :type ulev: float :param dlev: defines the down level :type dlev: float :param log: show the image in log scale coordinate :log==0: show it in linear coordinate :log==1: show it in log() coordinate :log==2: show it in log(log()) coordinate :type log: int :param med: use median filter to estimate ulev, ``3 < med < 15`` otherwise ``med=5`` :type med: float :param over: overestimation of the scales :type over: float :param neg: show the negative side of the image :type neg: bool :param mag: show magnitude of image :type mag: bool :param clip: clip negative values :type clip: bool :return: scaled pattern, ulev, dlev :rtype: pattern dict, float, float """ img = deepcopy(img) if mag: img['map'] = np.absolute(img['map']) if neg: mask = img['map'] <= 0.0 img['map'] *= mask img['map'] *= -1.0 if clip: img['map'] = img['map'] * (img['map'] >= 0.0) if log == 0: logger.info("The image is shown in the linear coordinates") if ulev is None: if med is not None: if not 3 < med < 15: med = 5 ulev = ndimage.median_filter(img['map'], med).max() logger.debug("ulev is None: estimated with median %g linear as %g" %(med, ulev)) else: ulev = img['map'].max() logger.debug("ulev is None: estimated directly as %g" %ulev) logger.debug("linear ulev = %g" %ulev) else: logger.debug("ulev set by user as %g" %ulev) if dlev is None: dlev = img['map'].min() logger.debug("dlev is None: estimated as %g" %dlev) else: logger.debug("dlev set as: %g" %dlev) elif log == 1: img['map'] = np.log(img['map']+1.0) if ulev is None: logger.debug("estimating ulev") ulev = (img['map']+1.0).max() dlev = (img['map']+1.0).min() logger.debug("log scale used: dlev = %g, ulev = %g" % (dlev, ulev)) elif log == 2: img['map'] = np.log(np.log(img['map']+1.0)+1.0) if ulev is None: ulev = (img['map']+1.0).max() dlev = (img['map']+1.0).min() logger.debug("double log scale used: dlev = %g, ulev = %g" % (dlev, ulev)) if over is not None: ulev /= over logger.info("overestimated ulev corrected to %g" % ulev) return img, ulev, dlev # ---------------------------------------------------------------------------- # Interactive functions # ---------------------------------------------------------------------------- def show(img, ulev=None, dlev=None, log=0, med=None, win=None, block=False, show=True, cmap='viridis', over=None, neg=False, mag=False, clip=True, scalefig=1.2): """ show the image under different conditions .. note:: This function can not show the positive and negative value in one image except we use the absolute value to show all the values in one image. :param img: the image dictionary :type img: dict :param ulev: show the image in certain interval, ulev defines the upper level. :type ulev: float :param dlev: defines the down level :type dlev: float :param log: show the image in log scale coordinate :log==0: show it in linear coordinate :log==1: show it in log() coordinate :log==2: show it in log(log()) coordinate :type log: int :param med: use median filter to estimate ulev, ``3 < med < 15`` otherwise ``med=5`` :type med: float :param win: :type win: matplotlib window, int :param block: show the image in the interactive way and block the command line :type block: bool :param show: show the figure :type show: bool :param cmap: colormap to be passed to ``imshow``, delauft ``ipychord3.cmaps.lut05()`` :type cmap: matplotlib.colors.Colormap or string :param over: overestimation of the scales :type over: float :param neg: show the negative side of the image :type neg: bool :param mag: show magnitude of image :type mag: bool :param clip: clip negative values :type clip: bool :param float scalefig: scale the figure by factor :return: figure :rtype: matplotlib figure object """ # protect the virgin img kwargs_for_prepare = {'ulev': ulev, 'dlev': dlev, 'log': log, 'med': med, 'over': over, 'neg': neg, 'mag': mag, 'clip': clip} img, ulev, dlev = prepare_patter_for_show(img, **kwargs_for_prepare) # create figure w, h = figaspect(img['map']) if win is None: fig = plt.figure(figsize=(scalefig*w, scalefig*h)) else: fig = plt.figure(win, figsize=(scalefig*w, scalefig*h)) logger.info("dlev = %g ulev = %g" % (dlev, ulev)) # create the axis and show the image ax = plt.Axes(fig, [0., 0., 1., 1.]) fig.add_axes(ax) ax.imshow(img['map'], interpolation='nearest', vmin=dlev, vmax=ulev, cmap=cmap, origin='upper') ax.set_aspect('equal') ax.set_axis_off() if 'filename' in img: fig.canvas.set_window_title(img['filename']+'_sf_show') elif 'title' in img: fig.canvas.set_window_title(img['title']) else: fig.canvas.set_window_title('sf.show pattern') fig._sf_kwargs_for_prepare = kwargs_for_prepare if not show: return fig elif block: # now we start an extra event loop for this figure # it will block the program until fig.canvas.stop_event_loop() is called fig.canvas.mpl_connect('close_event', handle_close) fig.show() logger.debug("starting blocking event loop") fig.canvas.start_event_loop(timeout=-1) else: fig.show() logger.debug("show non-blocking figure: starting event loop to force drawing of figure") fig.canvas.start_event_loop(timeout=.01) # start extra event loop for a short time to # force drawing of the figure logger.debug("show non-blocking figure: event loop exited") return fig def killcircle(img, fig={}): """Select circles in figure and mask them in the pattern :param img: pattern dict :param fig: a dictionary with keyword arguments for ``sf.show`` or a matplotlib figure .. note:: If you use ``sf.show`` the figure must be created using ``block=False``. If a dict is passed ``block`` will be set to ``False``. :returns: masked pattern, mask, circles :raises RuntimeError: if no circles have been drawn .. hint:: :Draw circle: left mouse button to set center, set radius by clicking left button again :Modify circle: use +/- keys to increase/decrease radius by 1 px use arrow-keys to move center :Delete circle: backspace :Select circle: use "ctrl+[0..6]" to select one of the first 7 circles """ if isinstance(fig, dict): logger.debug('creating figure') fig['block'] = False fig = show(img, **fig) selector = SelectCircles(fig) circles = selector.circles imgmask, mask = mask_circles(img, circles) return imgmask, mask, circles def killbox(img, fig={}): """Select rectangles in figure and mask the pattern :param img: pattern dict :param fig: a dictionary with keyword arguments for ``sf.show`` or a matplotlib figure .. note:: If you use ``sf.show`` the figure must be created using ``block=False``. If a dict is passed ``block`` will be set to ``False``. :returns: masked pattern, mask, rectangles :raises RuntimeError: if no rectangles have been drawn .. hint:: :Draw rectangle: left mouse button to set corner, set other corner by clicking left button again :Modify circle: use +/-/*/_ keys to increase/decrease x/y by 1 px use arrow-keys to first corner :Delete rectangle: backspace """ if isinstance(fig, dict): logger.debug('creating figure') fig['block'] = False fig = show(img, **fig) selector = SelectRectangles(fig) rectangles = selector.rectangles imgmask, mask = mask_rectangles(img, rectangles) return imgmask, mask, rectangles def killpoly(img, fig={}): """Select polygons in figure and mask them in the pattern :param img: pattern dict :param fig: a dictionary with keyword arguments for ``sf.show`` or a matplotlib figure .. note:: If you use ``sf.show`` the figure must be created using ``block=False``. If a dict is passed ``block`` will be set to ``False``. :returns: masked pattern, mask, polygons :raises RuntimeError: if no polygons have been drawn .. hint:: :Draw polygon: left mouse button to set vertices, set last vertex with right mouse button :Modify polygon: use `shift-backspace` to delete a vertex :Delete polygon: backspace """ if isinstance(fig, dict): logger.debug('creating figure') fig['block'] = False fig = show(img, **fig) selector = SelectPolygons(fig) polygons = selector.polygons imgmask, mask = mask_polygons(img, polygons) return imgmask, mask, polygons def kill_ringsector(img, fig={}, center=None): """Select ring sectors in figure and mask them in the pattern :param img: pattern dict :param fig: a dictionary with keyword arguments for ``sf.show`` or a matplotlib figure .. note:: If you use ``sf.show`` the figure must be created using ``block=False``. If a dict is passed ``block`` will be set to ``False``. :returns: masked pattern, mask, masks, sectors :raises RuntimeError: if no sectors have been drawn .. hint:: :Draw sector: left mouse button to set vertices, adjust position with keyboard (see ctrl-h), press space to draw new sector :Delete sector: backspace """ if isinstance(fig, dict): logger.debug('creating figure') fig['block'] = False fig = show(img, **fig) selector = SelectRingSectors(fig, center=center) sectors = selector.sectors imgmask, mask, masks = mask_ring_sectors(img, sectors) return imgmask, mask, masks, sectors def create_peak_masks(img, fig={}, center=None): """Select ring sectors in figure to select peaks and a corresponding reference. This function returns a stacked list of masks [peak_mask, reference_mask] :param img: pattern dict :param fig: a dictionary with keyword arguments for ``sf.show`` or a matplotlib figure .. note:: If you use ``sf.show`` the figure must be created using ``block=False``. If a dict is passed ``block`` will be set to ``False``. :returns: masks, sectors :raises RuntimeError: if no sectors have been drawn .. hint:: :Draw sector: left mouse button to set vertices, adjust position with keyboard (see ctrl-h), press space to draw new sector. :Delete sector: backspace """ if isinstance(fig, dict): logger.debug('creating figure') fig['block'] = False fig = show(img, **fig) selector = SelectTwoRingSectors(fig, center=center) sectors = selector.sectors mask = make_peak_mask(img, sectors) return mask, sectors def rotate_pattern(img, fig={}, angle=None): """ Rotates the pattern by interactively by 0.3° / 1° or non-interactive by ``angle`` :param img: pattern dict :param fig: a dictionary with keyword arguments for ``sf.show`` or a matplotlib figure .. note:: If you use ``sf.show`` the figure must be created using ``block=False``. If a dict is passed ``block`` will be set to ``False``. :param angle: if not ``None`` rotate pattern by ``angle`` without opening a figure window :returns: rotated pattern, angle .. hint:: :rotate clockwise: ``r``: 0.3° ``R``: 1° :rotate anticlockwise: ``a``: 0.3° ``A``: 1° """ img = deepcopy(img) if angle is not None: img['map'] = ndimage.rotate(img['map'], angle, mode='constant', cval=0.0) img['beam_position'] = midpnt(img) else: if isinstance(fig, dict): logger.debug('creating figure') fig['block'] = False fig = show(img, **fig) rot = RotatePattern(fig, img) img = rot.img angle = rot.angle return img, angle def debye(img, fig, center=None): """Draw the Debye-Scherrer rings, calculates diameter and center of each and returns the mean center for mirroring :param fig: a dictionary with keyword arguments for ``sf.show`` or a matplotlib figure .. note:: If you use ``sf.show`` the figure must be created using ``block=False``. If a dict is passed ``block`` will be set to ``False``. :param center: set the beam position (x, y) :returns: ``[center x, center y, circles]`` :raises RuntimeError: if no circles have been drawn """ if isinstance(fig, dict): logger.debug('creating figure') fig['block'] = False fig = show(img, **fig) print('Draw circles in Debye-Scherrer rings to calculate their diameter \ and center.') selector = SelectCirclesSameCenter(fig, center) centers = [] circles = selector.circles if not circles: raise RuntimeError("You have to create at least one circle") logger.debug("length of circles = %d" % len(circles)) for i, circle in enumerate(circles): d = 2 * circle.radius center = circle.center centers.append(center) print("Circle %d: (%.4f, %.4f)@%.4f" % (i + 1, center[0], center[1], d)) return circles[0].center[0], circles[0].center[1], circles # ---------------------------------------------------------------------------- # Modifier functions # ---------------------------------------------------------------------------- def mask_circles(img, circles): """mask ``circle`` in ``img`` :param img: pattern dict :param circles: list of ``sf.Circle``'s :returns: masked image, mask """ imgmask = deepcopy(img) mask =
np.ones_like(imgmask['map'], dtype=np.uint8)
numpy.ones_like
import tensorflow as tf import numpy as np import pickle, argparse, os from os.path import join, exists from SCFNet import Network from semantic3d_test import ModelTester from helper_ply import read_ply from helper_dp import DataProcessing as DP class cfg: k_n = 16 # KNN num_layers = 5 # Number of layers num_points = 65536 # Number of input points num_classes = 8 # Number of valid classes sub_grid_size = 0.06 # preprocess_parameter batch_size = 3 # batch_size during training val_batch_size = 16 # batch_size during validation and test train_steps = 1000 # Number of steps per epochs val_steps = 100 # Number of validation steps per epoch sub_sampling_ratio = [4, 4, 4, 4, 2] # sampling ratio of random sampling at each layer d_out = [16, 64, 128, 256, 512] # feature dimension noise_init = 3.5 # noise initial parameter max_epoch = 100 # maximum epoch during training learning_rate = 1e-2 # initial learning rate lr_decays = {i: 0.95 for i in range(0, 500)} # decay rate of learning rate train_sum_dir = 'train_log' saving = True saving_path = None augment_scale_anisotropic = True augment_symmetries = [True, False, False] augment_rotation = 'vertical' augment_scale_min = 0.8 augment_scale_max = 1.2 augment_noise = 0.001 augment_occlusion = 'none' augment_color = 0.8 class Semantic3D: def __init__(self): self.name = 'Semantic3D' self.path = './data/semantic3d' self.label_to_names = {0: 'unlabeled', 1: 'man-made terrain', 2: 'natural terrain', 3: 'high vegetation', 4: 'low vegetation', 5: 'buildings', 6: 'hard scape', 7: 'scanning artefacts', 8: 'cars'} self.num_classes = len(self.label_to_names) self.label_values = np.sort([k for k, v in self.label_to_names.items()]) self.label_to_idx = {l: i for i, l in enumerate(self.label_values)} self.ignored_labels = np.sort([0]) self.original_folder = join(self.path, 'original_data') self.full_pc_folder = join(self.path, 'original_ply') self.sub_pc_folder = join(self.path, 'input_{:.3f}'.format(cfg.sub_grid_size)) # Following KPConv to do the train-validation split self.all_splits = [0, 1, 4, 5, 3, 4, 3, 0, 1, 2, 3, 4, 2, 0, 5] self.val_split = 1 # Initial training-validation-testing files self.train_files = [] self.val_files = [] self.test_files = [] cloud_names = [file_name[:-4] for file_name in os.listdir(self.original_folder) if file_name[-4:] == '.txt'] for pc_name in cloud_names: if exists(join(self.original_folder, pc_name + '.labels')): self.train_files.append(join(self.sub_pc_folder, pc_name + '.ply')) else: self.test_files.append(join(self.full_pc_folder, pc_name + '.ply')) # elif '-reduced' in pc_name: # self.test_files.append(join(self.full_pc_folder, pc_name + '.ply')) self.train_files = np.sort(self.train_files) self.test_files = np.sort(self.test_files) for i, file_path in enumerate(self.train_files): if self.all_splits[i] == self.val_split: self.val_files.append(file_path) self.train_files = np.sort([x for x in self.train_files if x not in self.val_files]) # Initiate containers self.val_proj = [] self.val_labels = [] self.test_proj = [] self.test_labels = [] self.possibility = {} self.min_possibility = {} self.class_weight = {} self.input_trees = {'training': [], 'validation': [], 'test': []} self.input_colors = {'training': [], 'validation': [], 'test': []} self.input_labels = {'training': [], 'validation': []} # Ascii files dict for testing self.ascii_files = { 'MarketplaceFeldkirch_Station4_rgb_intensity-reduced.ply': 'marketsquarefeldkirch4-reduced.labels', 'sg27_station10_rgb_intensity-reduced.ply': 'sg27_10-reduced.labels', 'sg28_Station2_rgb_intensity-reduced.ply': 'sg28_2-reduced.labels', 'StGallenCathedral_station6_rgb_intensity-reduced.ply': 'stgallencathedral6-reduced.labels', 'birdfountain_station1_xyz_intensity_rgb.ply': 'birdfountain1.labels', 'castleblatten_station1_intensity_rgb.ply': 'castleblatten1.labels', 'castleblatten_station5_xyz_intensity_rgb.ply': 'castleblatten5.labels', 'marketplacefeldkirch_station1_intensity_rgb.ply': 'marketsquarefeldkirch1.labels', 'marketplacefeldkirch_station4_intensity_rgb.ply': 'marketsquarefeldkirch4.labels', 'marketplacefeldkirch_station7_intensity_rgb.ply': 'marketsquarefeldkirch7.labels', 'sg27_station10_intensity_rgb.ply': 'sg27_10.labels', 'sg27_station3_intensity_rgb.ply': 'sg27_3.labels', 'sg27_station6_intensity_rgb.ply': 'sg27_6.labels', 'sg27_station8_intensity_rgb.ply': 'sg27_8.labels', 'sg28_station2_intensity_rgb.ply': 'sg28_2.labels', 'sg28_station5_xyz_intensity_rgb.ply': 'sg28_5.labels', 'stgallencathedral_station1_intensity_rgb.ply': 'stgallencathedral1.labels', 'stgallencathedral_station3_intensity_rgb.ply': 'stgallencathedral3.labels', 'stgallencathedral_station6_intensity_rgb.ply': 'stgallencathedral6.labels'} self.load_sub_sampled_clouds(cfg.sub_grid_size) def load_sub_sampled_clouds(self, sub_grid_size): tree_path = join(self.path, 'input_{:.3f}'.format(sub_grid_size)) files = np.hstack((self.train_files, self.val_files, self.test_files)) for i, file_path in enumerate(files): cloud_name = file_path.split('/')[-1][:-4] print('Load_pc_' + str(i) + ': ' + cloud_name) if file_path in self.val_files: cloud_split = 'validation' elif file_path in self.train_files: cloud_split = 'training' else: cloud_split = 'test' # elif file_path in self.test_files: # cloud_split = 'test' # Name of the input files kd_tree_file = join(tree_path, '{:s}_KDTree.pkl'.format(cloud_name)) sub_ply_file = join(tree_path, '{:s}.ply'.format(cloud_name)) # read ply with data data = read_ply(sub_ply_file) sub_colors = np.vstack((data['red'], data['green'], data['blue'])).T if cloud_split == 'test': sub_labels = None else: sub_labels = data['class'] # Read pkl with search tree with open(kd_tree_file, 'rb') as f: search_tree = pickle.load(f) self.input_trees[cloud_split] += [search_tree] self.input_colors[cloud_split] += [sub_colors] if cloud_split in ['training', 'validation']: self.input_labels[cloud_split] += [sub_labels] # Get validation and test re_projection indices print('\nPreparing reprojection indices for validation and test') for i, file_path in enumerate(files): # get cloud name and split cloud_name = file_path.split('/')[-1][:-4] # Validation projection and labels if file_path in self.val_files: proj_file = join(tree_path, '{:s}_proj.pkl'.format(cloud_name)) with open(proj_file, 'rb') as f: proj_idx, labels = pickle.load(f) self.val_proj += [proj_idx] self.val_labels += [labels] # Test projection if file_path in self.test_files: proj_file = join(tree_path, '{:s}_proj.pkl'.format(cloud_name)) with open(proj_file, 'rb') as f: proj_idx, labels = pickle.load(f) self.test_proj += [proj_idx] self.test_labels += [labels] print('finished') return # Generate the input data flow def get_batch_gen(self, split): if split == 'training': num_per_epoch = cfg.train_steps * cfg.batch_size elif split == 'validation': num_per_epoch = cfg.val_steps * cfg.val_batch_size elif split == 'test': num_per_epoch = cfg.val_steps * cfg.val_batch_size # Reset possibility self.possibility[split] = [] self.min_possibility[split] = [] self.class_weight[split] = [] # Random initialize for i, tree in enumerate(self.input_trees[split]): self.possibility[split] += [np.random.rand(tree.data.shape[0]) * 1e-3] self.min_possibility[split] += [float(np.min(self.possibility[split][-1]))] if split != 'test': _, num_class_total = np.unique(np.hstack(self.input_labels[split]), return_counts=True) self.class_weight[split] += [np.squeeze([num_class_total / np.sum(num_class_total)], axis=0)] def spatially_regular_gen(): # Generator loop for i in range(num_per_epoch): # num_per_epoch # Choose the cloud with the lowest probability cloud_idx = int(np.argmin(self.min_possibility[split])) # choose the point with the minimum of possibility in the cloud as query point point_ind = np.argmin(self.possibility[split][cloud_idx]) # Get all points within the cloud from tree structure points = np.array(self.input_trees[split][cloud_idx].data, copy=False) # Center point of input region center_point = points[point_ind, :].reshape(1, -1) # Add noise to the center point noise = np.random.normal(scale=cfg.noise_init / 10, size=center_point.shape) pick_point = center_point + noise.astype(center_point.dtype) query_idx = self.input_trees[split][cloud_idx].query(pick_point, k=cfg.num_points)[1][0] # Shuffle index query_idx = DP.shuffle_idx(query_idx) # Get corresponding points and colors based on the index queried_pc_xyz = points[query_idx] queried_pc_xyz[:, 0:2] = queried_pc_xyz[:, 0:2] - pick_point[:, 0:2] queried_pc_colors = self.input_colors[split][cloud_idx][query_idx] if split == 'test': queried_pc_labels = np.zeros(queried_pc_xyz.shape[0]) queried_pt_weight = 1 else: queried_pc_labels = self.input_labels[split][cloud_idx][query_idx] queried_pc_labels = np.array([self.label_to_idx[l] for l in queried_pc_labels]) queried_pt_weight = np.array([self.class_weight[split][0][n] for n in queried_pc_labels]) # Update the possibility of the selected points dists = np.sum(np.square((points[query_idx] - pick_point).astype(np.float32)), axis=1) delta = np.square(1 - dists / np.max(dists)) * queried_pt_weight self.possibility[split][cloud_idx][query_idx] += delta self.min_possibility[split][cloud_idx] = float(np.min(self.possibility[split][cloud_idx])) if True: yield (queried_pc_xyz, queried_pc_colors.astype(np.float32), queried_pc_labels, query_idx.astype(np.int32), np.array([cloud_idx], dtype=np.int32)) gen_func = spatially_regular_gen gen_types = (tf.float32, tf.float32, tf.int32, tf.int32, tf.int32) gen_shapes = ([None, 3], [None, 3], [None], [None], [None]) return gen_func, gen_types, gen_shapes def get_tf_mapping(self): # Collect flat inputs def tf_map(batch_xyz, batch_features, batch_labels, batch_pc_idx, batch_cloud_idx): batch_features = tf.map_fn(self.tf_augment_input, [batch_xyz, batch_features], dtype=tf.float32) input_points = [] input_neighbors = [] input_pools = [] input_up_samples = [] for i in range(cfg.num_layers): neigh_idx = tf.py_func(DP.knn_search, [batch_xyz, batch_xyz, cfg.k_n], tf.int32) sub_points = batch_xyz[:, :tf.shape(batch_xyz)[1] // cfg.sub_sampling_ratio[i], :] pool_i = neigh_idx[:, :tf.shape(batch_xyz)[1] // cfg.sub_sampling_ratio[i], :] up_i = tf.py_func(DP.knn_search, [sub_points, batch_xyz, 1], tf.int32) input_points.append(batch_xyz) input_neighbors.append(neigh_idx) input_pools.append(pool_i) input_up_samples.append(up_i) batch_xyz = sub_points input_list = input_points + input_neighbors + input_pools + input_up_samples input_list += [batch_features, batch_labels, batch_pc_idx, batch_cloud_idx] return input_list return tf_map # data augmentation @staticmethod def tf_augment_input(inputs): xyz = inputs[0] features = inputs[1] theta = tf.random_uniform((1,), minval=0, maxval=2 * np.pi) # Rotation matrices c, s = tf.cos(theta), tf.sin(theta) cs0 = tf.zeros_like(c) cs1 = tf.ones_like(c) R = tf.stack([c, -s, cs0, s, c, cs0, cs0, cs0, cs1], axis=1) stacked_rots = tf.reshape(R, (3, 3)) # Apply rotations transformed_xyz = tf.reshape(tf.matmul(xyz, stacked_rots), [-1, 3]) # Choose random scales for each example min_s = cfg.augment_scale_min max_s = cfg.augment_scale_max if cfg.augment_scale_anisotropic: s = tf.random_uniform((1, 3), minval=min_s, maxval=max_s) else: s = tf.random_uniform((1, 1), minval=min_s, maxval=max_s) symmetries = [] for i in range(3): if cfg.augment_symmetries[i]: symmetries.append(tf.round(tf.random_uniform((1, 1))) * 2 - 1) else: symmetries.append(tf.ones([1, 1], dtype=tf.float32)) s *= tf.concat(symmetries, 1) # Create N x 3 vector of scales to multiply with stacked_points stacked_scales = tf.tile(s, [tf.shape(transformed_xyz)[0], 1]) # Apply scales transformed_xyz = transformed_xyz * stacked_scales noise = tf.random_normal(tf.shape(transformed_xyz), stddev=cfg.augment_noise) transformed_xyz = transformed_xyz + noise rgb = features[:, :3] stacked_features = tf.concat([transformed_xyz, rgb], axis=-1) return stacked_features def init_input_pipeline(self): print('Initiating input pipelines') cfg.ignored_label_inds = [self.label_to_idx[ign_label] for ign_label in self.ignored_labels] gen_function, gen_types, gen_shapes = self.get_batch_gen('training') gen_function_val, _, _ = self.get_batch_gen('validation') gen_function_test, _, _ = self.get_batch_gen('test') self.train_data = tf.data.Dataset.from_generator(gen_function, gen_types, gen_shapes) self.val_data = tf.data.Dataset.from_generator(gen_function_val, gen_types, gen_shapes) self.test_data = tf.data.Dataset.from_generator(gen_function_test, gen_types, gen_shapes) self.batch_train_data = self.train_data.batch(cfg.batch_size) self.batch_val_data = self.val_data.batch(cfg.val_batch_size) self.batch_test_data = self.test_data.batch(cfg.val_batch_size) map_func = self.get_tf_mapping() self.batch_train_data = self.batch_train_data.map(map_func=map_func) self.batch_val_data = self.batch_val_data.map(map_func=map_func) self.batch_test_data = self.batch_test_data.map(map_func=map_func) self.batch_train_data = self.batch_train_data.prefetch(cfg.batch_size) self.batch_val_data = self.batch_val_data.prefetch(cfg.val_batch_size) self.batch_test_data = self.batch_test_data.prefetch(cfg.val_batch_size) iter = tf.data.Iterator.from_structure(self.batch_train_data.output_types, self.batch_train_data.output_shapes) self.flat_inputs = iter.get_next() self.train_init_op = iter.make_initializer(self.batch_train_data) self.val_init_op = iter.make_initializer(self.batch_val_data) self.test_init_op = iter.make_initializer(self.batch_test_data) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--gpu', type=int, default=0, help='the number of GPUs to use [default: 0]') parser.add_argument('--mode', type=str, default='train', help='options: train, test, vis') parser.add_argument('--model_path', type=str, default='None', help='pretrained model path') FLAGS = parser.parse_args() GPU_ID = FLAGS.gpu os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ['CUDA_VISIBLE_DEVICES'] = str(GPU_ID) os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' Mode = FLAGS.mode dataset = Semantic3D() dataset.init_input_pipeline() if Mode == 'train': model = Network(dataset, cfg) model.train(dataset) elif Mode == 'test': cfg.saving = False model = Network(dataset, cfg) if FLAGS.model_path is not 'None': chosen_snap = FLAGS.model_path else: chosen_snapshot = -1 logs = np.sort([os.path.join('results', f) for f in os.listdir('results') if f.startswith('Log')]) chosen_folder = logs[-1] snap_path = join(chosen_folder, 'snapshots') snap_steps = [int(f[:-5].split('-')[-1]) for f in os.listdir(snap_path) if f[-5:] == '.meta'] chosen_step =
np.sort(snap_steps)
numpy.sort
# coding=UTF-8 import os import os.path import numpy as np import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import pickle from PIL import Image from load.load_mnist import load from source.k_means import k_means, mask_one_hot, draw_heatmap, entropy_score from sklearn.datasets import load_iris def gaussian(x, mu, sigma): d = len(mu) dev = np.linalg.det(sigma) ** .5 coefficient = 1./(2. * np.pi) ** (d * .5) / dev return coefficient * np.exp(-.5 * (x - mu).T @ np.linalg.inv(sigma) @ (x - mu)) def e_step(data, pi, mu, sigma, K): burden_rate = np.array([pi[k] * np.diag(gaussian(data, mu[:, k, np.newaxis], sigma[k])) for k in range(K)]) # N = n(data, mu, sigma) # 60000 * 60000 # burden_rate = pi * N / np.sum(pi * N) # 10 * 60000 return burden_rate.T def m_step(data, burden_rate, K): s =
np.sum(burden_rate, axis=0)
numpy.sum
from torch.utils.data import Dataset import numpy as np from utils import generate_file_name_from_labels from constants import META_PATH, DATA_PATH, label_dict, folder_labels from obspy import read import os import warnings from kymatio.numpy import Scattering1D import matplotlib.pyplot as plt from PIL import Image from pathlib import Path os.environ['KMP_DUPLICATE_LIB_OK'] = 'True' class QuakeDataSet(Dataset): def __init__(self, ld_files, ld_folders, ld_unlabeled, excerpt_len, transforms=[], mode='train'): """ Args: ld_files (list): A list of dictionaries where the dictionary contains parameters for _load_data func ld_folders (list): List of dictionaries where each dictionary contains parameters for _load_data_from_folder func ld_unlabeled (list) List of dictionaries where each dict contains params for _load_unlabeled func excerpt_len (int): Length of each trace in final training data. Each signal will be padded/trimmed to this len. transforms (list): A list of strings listing transforms to apply. Supported transforms: 'wavelet' - Applies wavelet scattering transform mode (str): mode can be 'train' or any other str. For train, random offset sampling is performed. """ self.X, self.Y, self.X_names, self.X_users, self.X_ids, self.X_imgs = [], [], [], [], [], [] self.excerpt_len = excerpt_len self.mode = mode self.transforms = transforms self.avg = False if ld_files is not None: for ld_file in ld_files: x, y, x_names, x_ids, x_users, x_imgs = self._load_data(**ld_file) self.X.extend(x) self.Y.extend(y) self.X_names.extend(x_names) self.X_ids.extend(x_ids) self.X_users.extend(x_users) if not x_imgs: self.X_imgs.extend(len(y)*[-1]) else: self.X_imgs.extend(x_imgs) if ld_folders is not None: for ld_folder in ld_folders: x, y, x_names, x_imgs = self._load_data_from_folder(**ld_folder) self.X.extend(x) self.Y.extend(y) self.X_names.extend(x_names) # In case of folders, we don't keep track of subject ids / users # As folders are different data sources (not from Zooniverse) self.X_ids.extend(len(y)*[-1]) self.X_users.extend(len(y)*[-1]) if not x_imgs: self.X_imgs.extend(len(y)*[-1]) else: self.X_imgs.extend(x_imgs) if ld_unlabeled is not None: for func_params in ld_unlabeled: x, y, x_names, x_imgs = self._load_unlabeled(**func_params) self.X.extend(x) self.Y.extend(y) self.X_names.extend(x_names) self.X_ids.extend(len(y) * [-1]) self.X_users.extend(len(y) * [-1]) if not x_imgs: self.X_imgs.extend(len(y) * [-1]) else: self.X_imgs.extend(x_imgs) # Convert to numpy self.Y = np.array(self.Y, dtype='int64') self.X_ids = np.array(self.X_ids, dtype='int64') self.X_users = np.array(self.X_users, dtype='int64') # Print data distribution self.get_distribution() # Initialize the transforms # Note: This is too slow to perform dynamically; for now don't use inside dataset class. for transform in self.transforms: if transform == 'wavelet': self.scattering = Scattering1D(J=6, Q=16, shape=self.excerpt_len) def __getitem__(self, item): # Pad the data to fixed excerpt length cur_item = self.X[item] t_item = [] for feature in cur_item: if self.avg: feature = self._avg_data(feature) transformed_data = self._pad_data(feature) t_item.append(transformed_data) t_item = np.array(t_item, dtype='float32') # Apply any specified transforms - Currently only supports wavelet transform # Note: Too slow, so avoid using inside dataset class for transform in self.transforms: if transform == 'wavelet': t_item = self.scattering(t_item) return {'data': t_item, 'label': self.Y[item], 'sub_id': self.X_ids[item], 'user': self.X_users[item], 'img':
np.array(self.X_imgs[item], dtype='float32')
numpy.array
import numpy as np from .representations import * ########### I/O UTILITIES ############## def fix_pyscf_l1(fock, frame, orbs): """ pyscf stores l=1 terms in a xyz order, corresponding to (m=1, 0, -1). this converts into a canonical form where m is sorted as (-1, 0,1) """ idx = [] iorb = 0; atoms = list(frame.symbols) for atype in atoms: cur=() for ia, a in enumerate(orbs[atype]): n,l,m = a if (n,l) != cur: if l == 1: idx += [iorb+1, iorb+2, iorb] else: idx += range(iorb, iorb+2*l+1) iorb += 2*l+1 cur = (n,l) return fock[idx][:,idx] ########### HAMILTONIAN MANIPULATION ########### def lowdin_orthogonalize(fock, s): """ lowdin orthogonalization of a fock matrix computing the square root of the overlap matrix """ eva, eve = np.linalg.eigh(s) sm12 = eve @ np.diag(1.0/np.sqrt(eva)) @ eve.T return sm12 @ fock @ sm12 ########## ORBITAL INDEXING ############## def orbs_base(orbs): # converts list of orbitals into an index to access different sub-blocks norbs = 0 io_base = {} el_dict = {} for el in orbs.keys(): io_base[el] = norbs cur_a = () for na, la, ma in orbs[el]: if cur_a == (na,la): continue cur_a = (na, la) el_dict[(na+io_base[el], la)] = el norbs+=1 return io_base, el_dict ############ matrix/block manipulations ############### def matrix_to_blocks(fock, frame, orbs): """ splits an atomic orbital matrix to (uncoupled momentum) orbital blocks. """ # maps atom types to different n indices io_base, _ = orbs_base(orbs) # prepares storage diaglist = {} offdlist_p = {} offdlist_m = {} heterolist = {} # creates storage. these are the blocks of the matrix we'll have to fill up later lorbs = [] for el_a in orbs.keys(): for ia, a in enumerate(orbs[el_a]): na, la, ma = a na += io_base[el_a] # adds element offset for el_b in orbs.keys(): for ib, b in enumerate(orbs[el_b]): nb, lb, mb = b nb += io_base[el_b] # adds element offset if ( (nb>na or (nb==na and lb>=la)) and not (na,la,nb,lb) in lorbs ): orb = (na,la,nb,lb) lorbs.append(orb) if el_a == el_b: diaglist[orb] = [] offdlist_p[orb] = [] offdlist_m[orb] = [] else: heterolist[orb] = [] # reads in and partitions into blocks ki = 0 nat = len(frame.numbers) for i in range(nat): el_a = frame.symbols[i] cur_a = () for ia, oa in enumerate(orbs[el_a]): na, la, ma = oa na += io_base[el_a] # we read the Hamiltonian in blocks if (cur_a == (na,la)): continue cur_a = (na,la) kj = 0 for j in range(nat): el_b = frame.symbols[j] cur_b = () for ib, ob in enumerate(orbs[el_b]): nb, lb, mb = ob nb += io_base[el_b] # adds element offset if (cur_b == (nb,lb)): continue # only read at the beginning of each m block cur_b = (nb,lb) if (nb<na or (nb==na and lb<la)): continue orb = (na,la,nb,lb) blockij = fock[ki+ia:ki+ia+2*la+1, kj+ib:kj+ib+2*lb+1] if (i==j): diaglist[orb].append(blockij) elif (i<j and el_a == el_b): blockji= fock[kj+ia:kj+ia+2*la+1, ki+ib:ki+ib+2*lb+1] offdlist_p[orb].append((blockij+blockji)/np.sqrt(2)) offdlist_m[orb].append((blockij-blockji)/np.sqrt(2)) elif(el_a != el_b): heterolist[orb].append(blockij) kj += len(orbs[el_b]) ki += len(orbs[el_a]) # stores as ndarray for more flexible indexing for orb in lorbs: for d in [diaglist, offdlist_p, offdlist_m, heterolist]: if orb in d: d[orb] = np.asarray(d[orb]) return dict( diag=diaglist, offd_p=offdlist_p, offd_m=offdlist_m, hete=heterolist) def matrix_to_ij_indices(fock, frame, orbs): """ Creates indices to the atoms involved in each block """ # maps atom types to different n indices io_base, _ = orbs_base(orbs) # prepares storage diaglist = {} offdlist_p = {} offdlist_m = {} heterolist = {} # creates storage. these are the blocks of the matrix we'll have to fill up later lorbs = [] for el_a in orbs.keys(): for ia, a in enumerate(orbs[el_a]): na, la, ma = a na += io_base[el_a] # adds element offset for el_b in orbs.keys(): for ib, b in enumerate(orbs[el_b]): nb, lb, mb = b nb += io_base[el_b] # adds element offset if ( (nb>na or (nb==na and lb>=la)) and not (na,la,nb,lb) in lorbs ): orb = (na,la,nb,lb) lorbs.append(orb) if el_a == el_b: diaglist[orb] = [] offdlist_p[orb] = [] offdlist_m[orb] = [] else: heterolist[orb] = [] # reads in and partitions into blocks ki = 0 nat = len(frame.numbers) for i in range(nat): el_a = frame.symbols[i] cur_a = () for ia, oa in enumerate(orbs[el_a]): na, la, ma = oa na += io_base[el_a] # we read the Hamiltonian in blocks if (cur_a == (na,la)): continue cur_a = (na,la) kj = 0 for j in range(nat): el_b = frame.symbols[j] cur_b = () for ib, ob in enumerate(orbs[el_b]): nb, lb, mb = ob nb += io_base[el_b] # adds element offset if (cur_b == (nb,lb)): continue # only read at the beginning of each m block cur_b = (nb,lb) if (nb<na or (nb==na and lb<la)): continue orb = (na,la,nb,lb) blockij = (i,j) if (i==j): diaglist[orb].append(blockij) elif (i<j and el_a == el_b): offdlist_p[orb].append(blockij) offdlist_m[orb].append(blockij) elif(el_a != el_b): heterolist[orb].append(blockij) kj += len(orbs[el_b]) ki += len(orbs[el_a]) # stores as ndarray for more flexible indexing for orb in lorbs: for d in [diaglist, offdlist_p, offdlist_m, heterolist]: if orb in d: d[orb] = np.asarray(d[orb]) return dict( diag=diaglist, offd_p=offdlist_p, offd_m=offdlist_m, hete=heterolist) def blocks_to_matrix(blocks, frame, orbs): """ assembles (uncoupled momentum) orbital blocks into a matrix form NB - the l terms are stored in canonical order, m=-l..l """ io_base, _ = orbs_base(orbs) norbs = 0 for el in list(frame.symbols): norbs+= len(orbs[el]) nat = len(list(frame.symbols)) unfock = np.zeros((norbs, norbs)) bidx = {} for k in blocks.keys(): bidx[k] = {} for bk in blocks[k].keys(): bidx[k][bk] = 0 cur_a = () ki = 0 nat = len(frame.numbers) for i in range(nat): el_a = frame.symbols[i] cur_a = () for ia, oa in enumerate(orbs[el_a]): na, la, ma = oa na += io_base[el_a] # we read the Hamiltonian in blocks if (cur_a == (na,la)): continue cur_a = (na,la) kj = 0 for j in range(nat): el_b = frame.symbols[j] cur_b = () for ib, ob in enumerate(orbs[el_b]): nb, lb, mb = ob nb += io_base[el_b] # adds element offset if (cur_b == (nb,lb)): continue # only read at the beginning of each m block cur_b = (nb,lb) if (nb<na or (nb==na and lb<la)): continue orb = (na,la,nb,lb) if (i==j): blockij = blocks['diag'][orb][bidx['diag'][orb]] unfock[ki+ia:ki+ia+2*la+1, kj+ib:kj+ib+2*lb+1] = blockij unfock[ki+ib:ki+ib+2*lb+1, kj+ia:kj+ia+2*la+1] = blockij.T bidx['diag'][orb] += 1 elif (el_a == el_b and i<j): blockij = ( ( blocks['offd_p'][orb][bidx['offd_p'][orb]] if orb in blocks['offd_p'] else 0) + ( blocks['offd_m'][orb][bidx['offd_m'][orb]] if orb in blocks['offd_m'] else 0) )/
np.sqrt(2)
numpy.sqrt
from __future__ import print_function import os, sys import pickle import time import glob import numpy as np import torch from model import PVSE from loss import cosine_sim, order_sim from vocab import Vocabulary from data import get_test_loader from logger import AverageMeter from option import parser, verify_input_args ORDER_BATCH_SIZE = 100 def encode_data(model, data_loader, use_gpu=False): """Encode all images and sentences loadable by data_loader""" # switch to evaluate mode model.eval() use_mil = model.module.mil if hasattr(model, 'module') else model.mil # numpy array to keep all the embeddings img_embs, txt_embs = None, None for i, data in enumerate(data_loader): img, txt, txt_len, ids = data if torch.cuda.is_available(): img, txt, txt_len = img.cuda(), txt.cuda(), txt_len.cuda() # compute the embeddings img_emb, txt_emb, _, _, _, _ = model.forward(img, txt, txt_len) del img, txt, txt_len # initialize the output embeddings if img_embs is None: if use_gpu: emb_sz = [len(data_loader.dataset), img_emb.size(1), img_emb.size(2)] \ if use_mil else [len(data_loader.dataset), img_emb.size(1)] img_embs = torch.zeros(emb_sz, dtype=img_emb.dtype, requires_grad=False).cuda() txt_embs = torch.zeros(emb_sz, dtype=txt_emb.dtype, requires_grad=False).cuda() else: emb_sz = (len(data_loader.dataset), img_emb.size(1), img_emb.size(2)) \ if use_mil else (len(data_loader.dataset), img_emb.size(1)) img_embs = np.zeros(emb_sz) txt_embs = np.zeros(emb_sz) # preserve the embeddings by copying from gpu and converting to numpy img_embs[ids] = img_emb if use_gpu else img_emb.data.cpu().numpy().copy() txt_embs[ids] = txt_emb if use_gpu else txt_emb.data.cpu().numpy().copy() return img_embs, txt_embs def i2t(images, sentences, nreps=1, npts=None, return_ranks=False, order=False, use_gpu=False): """ Images->Text (Image Annotation) Images: (nreps*N, K) matrix of images Captions: (nreps*N, K) matrix of sentences """ if use_gpu: assert not order, 'Order embedding not supported in GPU mode' if npts is None: npts = int(images.shape[0] / nreps) index_list = [] ranks, top1 = np.zeros(npts), np.zeros(npts) for index in range(npts): # Get query image im = images[nreps * index] im = im.reshape((1,) + im.shape) # Compute scores if use_gpu: if len(sentences.shape) == 2: sim = im.mm(sentences.t()).view(-1) else: _, K, D = im.shape sim_kk = im.view(-1, D).mm(sentences.view(-1, D).t()) sim_kk = sim_kk.view(im.size(0), K, sentences.size(0), K) sim_kk = sim_kk.permute(0,1,3,2).contiguous() sim_kk = sim_kk.view(im.size(0), -1, sentences.size(0)) sim, _ = sim_kk.max(dim=1) sim = sim.flatten() else: if order: if index % ORDER_BATCH_SIZE == 0: mx = min(images.shape[0], nreps * (index + ORDER_BATCH_SIZE)) im2 = images[nreps * index:mx:nreps] sim_batch = order_sim(torch.Tensor(im2).cuda(), torch.Tensor(sentences).cuda()) sim_batch = sim_batch.cpu().numpy() sim = sim_batch[index % ORDER_BATCH_SIZE] else: sim = np.tensordot(im, sentences, axes=[2, 2]).max(axis=(0,1,3)).flatten() \ if len(sentences.shape) == 3 else np.dot(im, sentences.T).flatten() if use_gpu: _, inds_gpu = sim.sort() inds = inds_gpu.cpu().numpy().copy()[::-1] else: inds = np.argsort(sim)[::-1] index_list.append(inds[0]) # Score rank = 1e20 for i in range(nreps * index, nreps * (index + 1), 1): tmp = np.where(inds == i)[0][0] if tmp < rank: rank = tmp ranks[index] = rank top1[index] = inds[0] # Compute metrics r1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks) r5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks) r10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks) medr = np.floor(np.median(ranks)) + 1 meanr = ranks.mean() + 1 if return_ranks: return (r1, r5, r10, medr, meanr), (ranks, top1) else: return (r1, r5, r10, medr, meanr) def t2i(images, sentences, nreps=1, npts=None, return_ranks=False, order=False, use_gpu=False): """ Text->Images (Image Search) Images: (nreps*N, K) matrix of images Captions: (nreps*N, K) matrix of sentences """ if use_gpu: assert not order, 'Order embedding not supported in GPU mode' if npts is None: npts = int(images.shape[0] / nreps) if use_gpu: ims = torch.stack([images[i] for i in range(0, len(images), nreps)]) else: ims = np.array([images[i] for i in range(0, len(images), nreps)]) ranks, top1 = np.zeros(nreps * npts),
np.zeros(nreps * npts)
numpy.zeros
import numpy as np from multiprocessing import Pool from functools import partial from tqdm import trange from sys import exit from PreFRBLE.convenience import * from PreFRBLE.parameter import * from PreFRBLE.physics import * from PreFRBLE.LikelihoodFunction import LikelihoodFunction from PreFRBLE.Scenario import Scenario ############################################################################ ############### MATHEMATICAL LIKELIHOOD STANDARD OPERATIONS ################ ############################################################################ ### !!! depreceated, remove def Likelihood( data=np.arange(1,3), bins=10, range=None, density=True, log=False, weights=None, **kwargs ): """ wrapper for numpy.histogram that allows for log-scaled probability density function, used to compute likelihood function """ if log: if range is not None: range = np.log10(range) h, x = np.histogram( np.log10(np.abs(data)), bins=bins, range=range, weights=weights ) x = 10.**x h = h.astype('float64') if density: h = h / ( np.sum( h )*np.diff(x) ) else: if range is None: range = ( np.min(data), np.max(data) ) h, x = np.histogram( data, bins=bins, range=range, density=density, weights=weights ) L = LikelihoodFunction( P=h, x=x, **kwargs ) return L # return h, x Histogram = Likelihood ## old name, replace everywhere ### !!! depreceated, remove def LikelihoodSmooth( P=[], x=[], dev=[], mode='MovingAverage' ): """ Smooth likelihood function P(x) modes available: MovingAverage : smooth using moving average over 5 neighbouring boxes """ norm = LikelihoodNorm( P=P, x=x, dev=dev ) if mode == 'MovingAverage': box_pts = 5 P = np.convolve( P, np.ones(box_pts)/box_pts, mode='same' ) ## smoothing doesn't conserve normalization P *= norm/LikelihoodNorm( P=P, x=x, dev=dev ) res = [P, x] if len(dev)>0: res.append(dev) return res ### !!! depreceated, remove def LikelihoodNorm( P=[], x=[], dev=[] ): """ Compute norm of likelihood function P """ return np.sum(P*np.diff(x)) ### !!! depreceated, remove def LikelihoodDeviation( P=[], x=[], N=1 ): """ compute relative deviation (Poisson noise) of likelihood function of individual model obtained from sample of N events """ res = ( P*np.diff(x)*N )**-0.5 res[ np.isinf(res) + np.isnan(res)] = 0 return res ### !!! depreceated, remove def Likelihoods( measurements=[], P=[], x=[], dev=[], minimal_likelihood=0., density=False ): """ returns likelihoods for given measurements according to likelihood function given by P and x Parameters --------- measurements : array_like measurements for which the likelihood shall be returned P : array_like, shape(N) likelihood function x : array_like, shape(N+1) range of bins in likelihood function dev : array_like, shape(N), optional deviation of likelihood function, if given, return deviation of returned likelihoods minimal_likelihood : float value returned in case that measurement is outside x density : boolean if True, return probability density ( P ) instead of probability ( P*dx ) Returns ------- likelihoods: numpy array, shape( len(measurements) ) likelihood of measurements = value of P*dx for bin, where measurement is found """ likelihoods = np.zeros( len( measurements ) ) ## collector for likelihoods of measurements deviations = likelihoods.copy() prob = P if density else P*np.diff(x) ## probability for obtaining measure from within bin isort = np.argsort( measurements ) ## sorted order of measurements i = 0 ## marker for current bin ## for each measurement (in ascending order) for m, i_s in zip( np.array(measurements)[isort], isort ): ## check bins >= previous results for xi in x[i:]: ## whether measure is inside if m >= xi: ## measure is bigger than current bin range ## set marker and continue with next bin i += 1 continue else: ## otherwise, measure is in the bin ## put result in correct place and stop checking bins likelihoods[i_s] = prob[i-1] if i > 0 else minimal_likelihood ## if that was the lowest bound, probability is ->zero if measurement is outside the range of P, i. e. P~0 if len(dev): deviations[i_s] = dev[i-1] if i > 0 else 1 break ## continue with the next measurement else: ## if measure is bigger than the last bin likelihoods[i_s] = minimal_likelihood ## probability is zero if measurement is outside the range of P, i. e. P~0 if len(dev): deviations[i_s] = 1 # likelihoods = np.array( likelihoods ) if len(dev): return likelihoods, deviations else: return likelihoods ### !!! depreceated, remove def RandomSample( N=1, P=np.array(0), x=np.array(0), log=True ): """ returns sample of size N according to likelihood function P(x) Parameter --------- P, x : array-like renormalized probability density function, i. e. sum(P*np.diff(x))=1 log: indicates whether x is log-scaled Output ------ res : list of N values, distributed according to P(x) """ Pd = P*np.diff(x) if np.round( np.sum(Pd), 4) != 1: sys.exit( "function is not normalized, %f != 1" % (np.sum(Pd)) ) f = Pd.max() lo, hi = x[0], x[-1] if log: lo, hi = np.log10( [lo,hi] ) res = [] while len(res) < N: ## create random uniform sample in the desired range r = np.random.uniform( high=hi, low=lo, size=N ) if log: r = 10.**r ## randomly reject candiates with chance = 1 - P to recreate P z = np.random.uniform( size=N ) ## obtain probability for bins where measures measures are found p = Likelihoods( r, P/f, x, density=False ) ### renormalize pdf to maximum value of probability, such that values at maximum probability are never rejected. This minimizes the number of rejected random draws res.extend( r[ np.where( z < p )[0] ] ) return res[:N] ### !!! depreceated, remove def LikelihoodShift( P=[], x=[], dev=[], shift=1. ): """ Shift x-values of likelihood function and renormalize accordingly: P'(x|shift) = shift * P(shift*x|1) """ # x' = shift*x, thus P' = P dx/dx' = P / shift res = [ P/shift, x*shift ] if len(dev): res.append(dev) return res def LikelihoodsAdd( *Ls, shrink=False, weights=None, dev_weights=None, renormalize=1, min=None, max=None, smooth=True, scenario=False ): """ add together several likelihood functions Parameters ---------- Ls : array-like list of LikelihoodFunction objects to be added shrink : integer determine number of bins in result, otherwise use size of Ps[0] weights : array-like, len=Ls.shape[0], optional provide weights for the likelihood functions, assumed =1 if not given dev_weights : array-like, len=Ps.shape[0], optional provide deviation for the weights, used to compute error of result renormalize : float renormalization of result min, max : float indicate minimum and/or maximum value of summed function smooth : boolean if True, return smoothed L ( LikelihoodSmooth ) scenario : Scenario-object scenario described by summed LikelihoodFunction Returns ------- LikelihoodFunction : summed likelihood """ if len(Ls) == 1: ## if only one function is given, return the original L = Ls[0] ### !!! depreceated if renormalize: ## maybe renormalized to new value L.Renormalize( renormalize ) ### !!! depreceated if smooth: ### !!! depreceated L.smooth() return L ## new function support l = len(Ls[0].P) if shrink: l = shrink x_min = min if min else np.min( [L.x.min() for L in Ls] ) x_max = max if max else np.max( [L.x.max() for L in Ls] ) if Ls[0].log: x = 10.**np.linspace( np.log10(x_min), np.log10(x_max), l+1 ) else: x = np.linspace( x_min, x_max, l+1 ) if weights is None: weights = np.ones( len(Ls) ) if dev_weights is None: dev_weights = np.zeros( len(Ls) ) P = np.zeros( l ) dev = P.copy() ## for each function for i_L, (L, w) in enumerate( zip(Ls, weights) ): ## loop through target bins for ib, (b0, b1) in enumerate( zip( x, x[1:] ) ): ## start where bins are not too low if b1 < L.x[0]: continue ## stop when bins become too high if b0 > L.x[-1]: break ## identify contributing bins ix, = np.where( ( L.x[:-1] < b1 ) * ( L.x[1:] > b0 ) ) if len(ix) == 0: continue ## skip if none elif len(ix) == 1: P[ib] += w * L.P[ix] ## add if one if len(L.dev)>0: dev[ib] += (w * L.P[ix])**2 * ( L.dev[ix]**2 + dev_weights[i_L]**2 ) else: ## compute average of contributing bins ## get corresponding ranges x_ = L.x[np.append(ix,ix[-1]+1)].copy() ## restrict range to within target bin x_[0], x_[-1] = b0, b1 ## add weighed average to target likelihood add = w * np.sum( L.P[ix]*np.diff(x_) ) / (b1-b0) P[ib] += add if len(L.dev)>0: dev[ib] += add**2 * ( np.sum( ( L.dev[ix]*L.P[ix]*np.diff(x_) )**2 ) /np.sum( ( L.P[ix]*np.diff(x_) )**2 ) + dev_weights[i_L]**2 ) dev = np.sqrt(dev)/P dev[ np.isnan(dev) ] = 0 L = LikelihoodFunction( P=P, x=x, dev=dev, typ=Ls[0].typ, measure=Ls[0].measure ) ### this L is still missing scenario L.Renormalize( renormalize ) if smooth: L.Smooth() return L ### !!! old version, remove def LikelihoodsAdd_old( Ps=[], xs=[], devs=[], log=True, shrink=False, weights=None, dev_weights=None, renormalize=False, min=None, max=None, smooth=True ): """ add together several likelihood functions Parameters ---------- Ps : array-like list of likelihood functions xs : array-like list of bin ranges of likelihood functions devs : array-like, optional list of deviations of likelihood functions, used to compute deviation of result log : boolean indicate wether xs are log-scaled shrink : integer determine number of bins in result, otherwise use size of Ps[0] weights : array-like, len=Ps.shape[0], optional provide weights for the likelihood functions dev_weights : array-like, len=Ps.shape[0], optional provide deviation for the weights renormalize : float, optional renormlization of result min, max : float indicate minimum and/or maximum value of added function smooth : boolean if True, return smoothed P ( LikelihoodSmooth ) Returns ------- P, x, (dev) : summed likelihood function values, range, (deviation) """ if len(Ps) == 1: ## if only one function is given, return the original P, x = Ps[0], xs[0] norm = 1 if renormalize: ## maybe renormalized to new value norm = renormalize/np.sum( P*np.diff(x) ) P *= norm if smooth: P, x = LikelihoodSmooth( P=P, x=x ) res = [P, x] if len(devs) > 0: res.append( devs[0] ) return res ## new function support l = len(Ps[0]) if shrink: l = shrink x_min = min if min else np.min(xs) x_max = max if max else np.max(xs) if log: x = 10.**np.linspace( np.log10(x_min), np.log10(x_max), l+1 ) else: x = np.linspace( x_min, x_max, l+1 ) if weights is None: weights = np.ones( len(Ps) ) if dev_weights is None: dev_weights = np.zeros( len(Ps) ) P = np.zeros( l ) dev = P.copy() ## for each function for i_f, (f, x_f, w) in enumerate( zip(Ps, xs, weights) ): ## loop through target bins for ib, (b0, b1) in enumerate( zip( x, x[1:] ) ): ## stop when bins become too high if b0 > x_f[-1]: break ## identify contributing bins ix, = np.where( ( x_f[:-1] < b1 ) * ( x_f[1:] > b0 ) ) if len(ix) == 0: continue ## skip if none elif len(ix) == 1: P[ib] += w * f[ix] ## add if one if len(devs)>0: dev[ib] += (w * f[ix])**2 * ( devs[i_f][ix]**2 + dev_weights[i_f]**2 ) else: ## compute average of contributing bins ## get corresponding ranges x_ = x_f[np.append(ix,ix[-1]+1)] ## restrict range to within target bin x_[0], x_[-1] = b0, b1 ## add weighed average to target likelihood add = w * np.sum( f[ix]*np.diff(x_) ) / (b1-b0) P[ib] += add if len(devs)>0: dev[ib] += add**2 * ( np.sum( ( devs[i_f][ix]*f[ix]*np.diff(x_) )**2 ) /np.sum( ( f[ix]*np.diff(x_) )**2 ) + dev_weights[i_f]**2 ) if len(devs)>0: dev = np.sqrt(dev)/P dev[ np.isnan(dev) ] = 0 if renormalize: P *= renormalize/np.sum( P*np.diff(x) ) if smooth: P, x, dev = LikelihoodSmooth( P=P, x=x, dev=dev ) res = [P,x] if len(devs)>0: res.append( dev ) return res ### !!! depreceated, remove def LikelihoodShrink( P=np.array(0), x=np.array(0), dev=[], bins=100, log=True, renormalize=False, **kwargs_LikelihoodsAdd ): """ reduce number of bins in likelihood function, contains normalization """ ### Actual work is done by LikelihoodsAdd, which adds up several P to new range with limited number of bins ### to shrink function, add P=0 with identical range devs = [dev,np.zeros(len(dev))] if len(dev) > 0 else [] renorm = renormalize if renormalize else np.sum( P*np.diff(x) ) return LikelihoodsAdd( [P, np.zeros(len(P))], [x,x], devs=devs, shrink=bins, log=log, renormalize=renorm, **kwargs_LikelihoodsAdd ) def LikelihoodsConvolve( *Ls, dev=True, N=50000, absolute=False, renormalize=False, smooth=True, shrink=False ): """ compute convolution of likelihood functions P in brute force method, i. e. add samples of size N of each P Parameter --------- Ls : list of LikelihoodFunction objects insert likelihood functions as lists [P,x] N : integer size of sample to compute convolution and corresponding deviation dev : boolean indicate whether to return the relative deviation based on shot noise of sample with size N shrink : boolean (depreceated) if True, reduce number of bins of result to standard number of bins absolute : boolean indicate whether likelihood describes absolute value (possibly negative) if True, allow to values to cancel out by assuming same likelihood for positive and negative values smooth : boolean if True, return smoothed P ( LikelihoodSmooth ) renormalize : float (depreceated) renormalization factor of final result. False to keep normalization after convolution Returns ------- P, x, (dev) : convolve likelihood function values, range (and relative deviation, if dev=True) """ samples = [] for L in Ls: norm = L.Norm() ## obtain sample sample = L.RandomSample( N=N ) # sample = np.array( RandomSample( N=N, P=P[0]/norm, x=P[1], log=log ) ) ### requires norm = 1. other cases are cared for later ## account for norm < 1, i. e. distribution only contributes to amount norm of values if norm != 1: ### random number of 1-norm events put to 0 sample[np.random.rand(N) > norm] = 0 ## account for values to potentially cancel each other if absolute: ### random half of sample with negative sign sample[np.random.rand(N) > 0.5] *= -1 ### assume same likelihood for positive and negative values samples.append( sample ) ## compute likelihood L = LikelihoodFunction( measure=Ls[0].measure, typ=Ls[0].typ ) L.Likelihood( np.abs( np.sum( samples, axis=0 ) ), log=log, bins=Ls[0].P.size ) if smooth: L.Smooth() L.ShotNoise( N=N ) return L ### !!! depreceated, remove def LikelihoodsConvolve_old( *Ps, dev=True, log=True, N=50000, absolute=False, renormalize=False, smooth=True, shrink=False ): """ compute convolution of likelihood functions P in brute force method, i. e. add samples of size N of each P Parameter --------- Ps : likelihood functions insert likelihood functions as lists [P,x] N : integer size of sample to compute convolution and corresponding deviation dev : boolean indicate whether to return the relative deviation based on shot noise of sample with size N shrink : boolean (depreceated) if True, reduce number of bins of result to standard number of bins log : boolean indicates whether x_f and x_g are log-scaled absolute : boolean indicate whether likelihood describes absolute value (possibly negative) if True, allow to values to cancel out by assuming same likelihood for positive and negative values smooth : boolean if True, return smoothed P ( LikelihoodSmooth ) renormalize : float (depreceated) renormalization factor of final result. False to keep normalization after convolution Returns ------- P, x, (dev) : convolve likelihood function values, range (and relative deviation, if dev=True) """ samples = [] for P in Ps: norm = LikelihoodNorm( *P ) ## obtain sample sample = np.array( RandomSample( N=N, P=P[0]/norm, x=P[1], log=log ) ) ### requires norm = 1. other cases are cared for later ## account for norm < 1, i. e. distribution only contributes to amount norm of values if norm != 1: sample[np.random.rand(N) > norm] = 0 ## account for values to potentially cancel each other if absolute: sample[np.random.rand(N) > 0.5] *= -1 ### assume same likelihood for positive and negative values samples.append( sample ) ## compute likelihood P, x = Likelihood( np.abs( np.sum( samples, axis=0 ) ), log=log, bins=len(Ps[0][0]) ) if smooth: P, x = LikelihoodSmooth( P=P, x=x ) res = [ P, x ] if dev: res.append( LikelihoodDeviation( P=P, x=x, N=N ) ) return res ### !!! depreceated, remove def Likelihood2Expectation( P=np.array(0), x=np.array(0), log=True, density=True, sigma=1, std_nan=np.nan ): """ computes the estimate value and deviation from likelihood function P (must be normalized to 1) Parameters -------- P : array_like, shape(N) likelihood function x : array_like, shape(N+1) range of bins in likelihood function log : boolean indicates, whether x is log-scaled density : boolean indicates whether P is probability density, should always be true sigma : integer indicates the sigma range to be returned. must be contained in sigma_probability in physics.py std_nan value returned in case that P=0 everywhere. if not NaN, should reflect upper limit Returns ------- expect: float expectation value of likelihood function deviation: numpy_array, shape(1,2) lower and uppper bound of sigma standard deviation width is given such to easily work with plt.errorbar( 1, expect, deviation ) """ if log: x_log = np.log10(x) x_ = x_log[:-1] + np.diff(x_log)/2 else: x_ = x[:-1] + np.diff(x)/2 ## need probability function, i. e. sum(P)=1 if density: P_ = P*np.diff(x) else: P_ = P if np.round( np.sum( P_ ), 2) != 1: if np.all(P_ == 0): return std_nan #, [std_nan,std_nan] sys.exit( 'P is not normalized' ) ## mean is probabilty weighted sum of possible values expect = np.sum( x_*P_ ) if log: expect = 10.**expect ## exactly compute sigma range P_cum = np.cumsum( P_ ) ## find where half of remaining probability 1-P(sigma) is entailed in x <= x_lo lo = expect - first( zip(x, P_cum), condition= lambda x: x[1] > 0.5*(1-sigma_probability[sigma]) )[0] ## find where half of remaining probability 1-P(sigma) is entailed in x >= x_hi hi = - expect + first( zip(x[1:], P_cum), condition= lambda x: x[1] > 1- 0.5*(1-sigma_probability[sigma]) )[0] ## if z is clearly within one bin, hi drops negative value #hi = np.abs(hi) # x_std = np.sqrt( np.sum( P_ * ( x_ - expect)**2 ) ) ### only works for gaussian, so never deviation = np.array([lo,hi]).reshape([2,1]) return expect, deviation ### keep def WeighBayesFactor( bayes=1, weight=1 ): """ Weigh the significance of Bayes factor bayes with weight w""" w_log = np.log10(weight) return 10.**( np.log10(bayes) * (1+np.abs(w_log))**(1 - 2*(w_log<0) - (w_log==0) ) ) ### keep def BayesTotalLog( bayes, axis=None ): """ return log10 of total bayes factor along axis """ return np.nansum(
np.log10(bayes)
numpy.log10
""" BYNIS - (BY)te is encoded in the sum of (N)ode (I)Ds of a (S)ynthetic edge. - This method synthesizes the edges of network according to the message. - To mimic real-world networks, it uses a reference degree distribution. """ import struct import numpy as np from networkx.generators.random_graphs import powerlaw_cluster_graph import pandas as pd from tqdm import tqdm from sgcn.utils import get_bytewidth from sgcn.algorithms.base import Base from sgcn.logging import write_log # Byte-width to unsigned format in struct standard package bw2fmt = {1: "B", 2: "H", 4: "I", 8: "Q"} class BYNIS(Base): def __init__(self, engine): super().__init__(engine) def estimate_number_of_nodes(self, n_bytes): return int(np.ceil(10**np.round(np.log10(n_bytes)))) def encode(self, msg_bytes, pw=None, g_ref=None, directed=False, max_try_rename=20): """Encode the message bytes into the node IDs of a synthetic edge. """ stats = {} if pw: pw = 1
np.random.seed(pw)
numpy.random.seed
import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt IMG_DIM = 28 def tomat(vec): img_dim = int(np.sqrt(len(vec))) return vec.reshape((img_dim,img_dim)) def plot_1(img_vec): """img_mat must be single vector-representation of image to plot""" if len(img_vec.shape) <= 1: img_mat = tomat(img_vec) else: img_mat = img_vec # It was a matrix already fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.matshow(img_mat, cmap=mpl.cm.binary) ax.axis('off') plt.show() def plot_100(img_vec_array): first_100 = img_vec_array[:100] image_mat_10x10 = np.zeros((IMG_DIM*10, IMG_DIM*10)) for x in range(10): for y in range(10): # Replace sub-matrix with appropriate values image_mat_10x10[IMG_DIM*y : IMG_DIM*y+IMG_DIM, IMG_DIM*x : IMG_DIM*x+IMG_DIM] = tomat(first_100[10*y + x]) fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.matshow(image_mat_10x10, cmap=mpl.cm.binary) ax.axis('off') plt.show() return fig def sig(x): return 1 / (1 + np.exp(-x)) def w_scale(fan_in=100, fan_out=100): return 4*
np.sqrt(6/(fan_in+fan_out))
numpy.sqrt
#!/GPFS/zhangli_lab_permanent/zhuqingjie/env/py3_tf2/bin/python ''' @Time : 20/07/21 下午 03:25 @Author : zhuqingjie @User : zhu @FileName: analysis.py @Software: PyCharm ''' import pickle import warnings from pathlib import Path import cv2 import math import numpy as np import pandas as pd from easyFlyTracker.src_code.Camera_Calibration import Undistortion from easyFlyTracker.src_code.utils import NumpyArrayHasNanValuesExceptin from easyFlyTracker.src_code.utils import Pbar, equalizeHist_use_mask from easyFlyTracker.src_code.kernel_density_estimation import get_KernelDensity warnings.filterwarnings("ignore") class Analysis(): ''' 分析实验结果, 这里计算出来的结果涉及到长度的单位都是像素,比例尺在后续分析中使用,在这统一不使用比例尺。 ''' __doc__ = 'ana' def __init__( self, video_path, # 视频路径 output_dir, # 输出文件夹 roi_flys_flag, area_th=0.5, # 内圈面积占比 roi_flys_ids=None, ana_time_duration=10., # 分析移动距离的时候每个值需要统计的时间跨度 sleep_time_duration=10., # 统计睡眠信息的时候每个值需要统计的时间跨度 angle_time_duration=10, # 统计角度变化信息的时候每个值需要统计的时间跨度 sleep_dist_th_per_second=5, sleep_time_th=300, # 每秒睡眠状态持续多久算是真正的睡眠 Undistortion_model_path=None, # 畸变矫正参数路径 ): # 初始化各种文件夹及路径 self.video_path = Path(video_path) self.res_dir = Path(output_dir) # 保存用户需要的结果 self.cache_dir = Path(self.res_dir, '.cache') # 保存程序计算的中间结果 self.saved_dir = Path(self.cache_dir, 'analysis_result') # analysis计算出的结果 self.npy_file_path = Path(self.cache_dir, f'track.npy') self.npy_file_path_cor = Path(self.cache_dir, f'track_cor.npy') self.move_direction_pre_frame_path = Path(self.saved_dir, 'move_direction_pre_frame.npy') self.fly_angles_cor_path = Path(self.saved_dir, 'fly_angles_cor.npy') self.speeds_npy = Path(self.saved_dir, 'all_fly_speeds_per_frame.npy') self.dist_npy = Path(self.saved_dir, 'all_fly_dist_per_frame.npy') # self.angle_changes_path = Path(self.saved_dir, 'angle_changes.npy') config_pkl_path = Path(self.res_dir, 'config.pkl') self.cache_dir.mkdir(exist_ok=True) self.saved_dir.mkdir(exist_ok=True) self.Undistortion_model_path = Undistortion_model_path # load cps and radius config_pk = np.array(pickle.load(open(config_pkl_path, 'rb'))[0]) self.cps = config_pk[:, :2] self.dish_radius = int(round(float(np.mean(config_pk[:, -1])))) self.mask_imgs = np.load(Path(self.cache_dir, 'mask_imgs.npy')) self.mask_imgs = self.mask_imgs.astype(np.bool) self.roi_flys_flag = roi_flys_flag self.ana_time_duration = ana_time_duration self.sleep_time_duration = sleep_time_duration self.angle_time_duration = angle_time_duration self.sleep_dist_th_per_second = sleep_dist_th_per_second self.sleep_time_th = sleep_time_th self.region_radius = int(round(math.sqrt(area_th) * self.dish_radius)) cap = cv2.VideoCapture(str(video_path)) self.fps = round(cap.get(cv2.CAP_PROP_FPS)) self.video_frames_num = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) cap.release() # 果蝇总数,这个结果是综合了roi_flys_mask_arry和Dish_exclude后的结果 if roi_flys_ids == None: self.roi_flys_list = np.array([True] * len(self.cps)) else: self.roi_flys_list = np.array([False] * len(self.cps)) self.roi_flys_list[roi_flys_ids] = True self.roi_flys_id = [i for i, r in enumerate(self.roi_flys_list) if r] self.roi_flys_nubs = self.roi_flys_list.sum() # 初始化加载某些数据 self._get_all_res() self._get_speed_perframe_dist_perframe() # load heatmap heatmap_path = Path(self.cache_dir, 'heatmap.npy') self.heatmap = np.load(heatmap_path) def _get_all_res(self): if self.npy_file_path_cor.exists(): self.all_datas = np.load(self.npy_file_path_cor) else: res = np.load(self.npy_file_path) self.all_datas = np.transpose(res, [1, 0, 2]) self._cor() np.save(self.npy_file_path_cor, self.all_datas) def _cor(self): def _correction(l): ''' 对一个向量进行校正,以下规则: 1,不含有-1,不作处理直接return; 2,含有-1,使用线性插值去掉-1。 :param l: :return: ''' # l: 一个int或者float类型的数值list,形如[-1, -1, 88, 90, -1, -1, -1, 100],其中-1为异常点 if not (np.array(l) == -1).any(): # 不含有-1直接return return l # 因为pandas的方法不能对前面的坑进行插值,所以先把前面的坑补全了 if l[0] < 0: for i in range(len(l)): if l[i] > 0: l[:i] = l[i] break l = np.where(l < 0, np.nan, l) df = pd.DataFrame(data=l) df.interpolate(method="linear", inplace=True) return df.values[:, 0] def correction2D(ps): return list(zip(_correction(ps[:, 0]), _correction(ps[:, 1]))) res = [] for ps in self.all_datas: # 判断是不是空盘(空盘值全部为(-1,-1)),空盘直接返回 if ps.min() == -1 and ps.max() == -1: res.append(ps) else: res.append(correction2D(ps)) res = np.array(res) if np.isnan(res).sum() != 0: raise NumpyArrayHasNanValuesExceptin(res) self.all_datas = res def _get_speed_perframe_dist_perframe(self, redo=False): if self.speeds_npy.exists() and self.dist_npy.exists() and not redo: self.all_fly_speeds_per_frame = np.load(self.speeds_npy) self.all_fly_dist_per_frame = np.load(self.dist_npy) return fn = lambda x, y: math.sqrt(pow(x, 2) + pow(y, 2)) fn2 = lambda ps, k: fn(ps[k][0] - ps[k + 1][0], # 两点之间的距离 ps[k][1] - ps[k + 1][1]) all_fly_speeds = [] # 长度等于帧数 all_fly_displacement = [] # 长度等于帧数减一 mperframe = 1 / self.fps for fly in self.all_datas: # if not exc: # all_fly_displacement.append([0] * (self.all_datas.shape[1] - 1)) # all_fly_speeds.append([0] * self.all_datas.shape[1]) # continue ds = [fn2(fly, i) for i in range(len(fly) - 1)] all_fly_displacement.append(ds) ds = [ds[0]] + ds + [ds[-1]] speed = [(ds[i] + ds[i + 1]) / (2 * mperframe) for i in range(len(ds) - 1)] all_fly_speeds.append(speed) if np.isnan(all_fly_speeds).sum() != 0: raise NumpyArrayHasNanValuesExceptin(all_fly_speeds) if np.isnan(all_fly_displacement).sum() != 0: raise NumpyArrayHasNanValuesExceptin(all_fly_displacement) np.save(self.speeds_npy, all_fly_speeds) np.save(self.dist_npy, all_fly_displacement) self.all_fly_speeds_per_frame = np.array(all_fly_speeds) self.all_fly_dist_per_frame = np.array(all_fly_displacement) def PARAM_speed_displacement(self, redo=False): ''' 计算两个参数: time_duration_stat_speed:10分钟总速度/帧数/果蝇个数; time_duration_stat_displacement:10分钟总位移/果蝇个数 :return: 返回npy路径 ''' speed_npy = Path(self.saved_dir, f'speed_per_duration_{self.roi_flys_flag}.npy') disp_npy = Path(self.saved_dir, f'displacement_per_duration_{self.roi_flys_flag}.npy') if speed_npy.exists() and disp_npy.exists() and not redo: return speed_npy, disp_npy duration_frames = int(round(self.ana_time_duration * 60 * self.fps)) frame_start_ind = list(range(0, self.all_datas.shape[1], duration_frames)) all_fly_speeds = self.all_fly_speeds_per_frame * \ np.tile(self.roi_flys_list[:, np.newaxis], (1, self.all_fly_speeds_per_frame.shape[1])) all_fly_displacement = self.all_fly_dist_per_frame * \ np.tile(self.roi_flys_list[:, np.newaxis], (1, self.all_fly_dist_per_frame.shape[1])) # res = [] # for ind in frame_start_ind: # x = np.sum(self.all_fly_dist_per_frame[:, ind:ind + duration_frames], axis=1) # res.append(x) # res = np.stack(res, axis=-1) # res = res * 0.26876426270157516 # np.save(r'Z:\dataset\qususu\ceshishipin\v080\output_72hole_0330_v080\plot_images\qudashen.npy', res) # df = pd.DataFrame(data=res) # df.to_excel(r'Z:\dataset\qususu\ceshishipin\v080\output_72hole_0330_v080\plot_images\qudashen.xlsx') # exit() time_duration_stat_speed = [] # 10分钟总速度/帧数/果蝇个数 time_duration_stat_displacement = [] # 10分钟总位移/果蝇个数 for ind in frame_start_ind: time_duration_stat_speed.append( all_fly_speeds[:, ind:ind + duration_frames].sum() / duration_frames / self.roi_flys_nubs) time_duration_stat_displacement.append( all_fly_displacement[:, ind:ind + duration_frames].sum() / self.roi_flys_nubs) np.save(speed_npy, time_duration_stat_speed) np.save(disp_npy, time_duration_stat_displacement) return speed_npy, disp_npy def PARAM_dist_per_h(self): ''' 每小时的移动总距离/果蝇数量 :return: list ''' self._get_speed_perframe_dist_perframe() fps = self.fps dist_per_h = [] da = self.all_fly_dist_per_frame * \ np.tile(self.roi_flys_list[:, np.newaxis], (1, self.all_fly_dist_per_frame.shape[1])) duration_frames = int(round(fps * 60 * 60)) for i in range(0, da.shape[1], duration_frames): dist_per_h.append(np.sum(da[:, i:i + duration_frames]) / self.roi_flys_nubs) return dist_per_h def PARAM_sleep_status(self, redo=False): ''' 首先计算每一秒的睡眠状态,然后计算统计时间段(sleep_time_duration)内果蝇的总睡眠时长,计算方式为: 所有果蝇该时间段的总睡眠时长/果蝇数量 返回保存的npy路径 :param redo: :return: ''' npy_path = Path(self.saved_dir, f'sleep_time_per_duration_{self.roi_flys_flag}.npy') if npy_path.exists() and not redo: return str(npy_path) cache_all_sleep_status_path = Path(self.cache_dir, 'all_sleep_status.npy') def get_all_sleep_status(self): if cache_all_sleep_status_path.exists(): return np.load(cache_all_sleep_status_path) self._get_speed_perframe_dist_perframe() fps = self.fps all_dist_per_s = [] for i in range(self.all_fly_dist_per_frame.shape[0]): dist_per_s = [] for j in range(0, self.all_fly_dist_per_frame.shape[1], fps): dist_per_s.append(np.sum(self.all_fly_dist_per_frame[i, j:j + fps])) all_dist_per_s.append(dist_per_s) sleep_dist_th = self.sleep_dist_th_per_second all_sleep_status_per_s = np.array(all_dist_per_s) < sleep_dist_th self.all_sleep_status_per_s = all_sleep_status_per_s # all_sleep_status_per_s = np.delete(all_sleep_status_per_s, exclude_ids, axis=0) sleep_time_th = self.sleep_time_th all_sleep_status = [] for k, sleep_status_per_s in enumerate(all_sleep_status_per_s): sleep_time = 0 # 用于保存截止当前秒已经睡了多久(单位秒) sleep_status_per_s = np.concatenate( [sleep_status_per_s, np.array([False])]) # 在末尾加一个false,防止末尾是True时遍历结束时无法判断睡眠 sleep_status = np.zeros([len(sleep_status_per_s) - 1, ], np.bool) # 新创建的list,用于保存睡眠状态 for i, ss in enumerate(sleep_status_per_s): if ss: sleep_time += 1 else: # 到没睡的时候都判断一下,上一刻截止是不是满足睡眠条件 if sleep_time >= sleep_time_th: sleep_status[i - sleep_time:i] = True sleep_time = 0 all_sleep_status.append(sleep_status) # 每个果蝇每秒钟的睡眠状态 all_sleep_status = np.array(all_sleep_status) np.save(cache_all_sleep_status_path, all_sleep_status) return all_sleep_status all_sleep_status = get_all_sleep_status(self) all_sleep_status = all_sleep_status[self.roi_flys_id] dt = int(round(self.sleep_time_duration * 60)) # 多少秒 start_ind = list(range(0, all_sleep_status.shape[1], dt)) # 因为最后一个时间段可能不足设定的时间段,所以这里一块返回两者 values_durations = [] flys_num = self.roi_flys_nubs for i in range(len(start_ind) - 1): all_sleep_status_duration = all_sleep_status[:, start_ind[i]:start_ind[i + 1]] value = all_sleep_status_duration.sum() / flys_num value = value / 60 # 转化为分钟 sleep_flys_nubs = np.sum(all_sleep_status_duration, axis=-1).astype(np.bool).sum() proportion_of_sleep_flys = sleep_flys_nubs / flys_num # 当前时间段睡觉的果蝇的比例 values_durations.append([value, dt, proportion_of_sleep_flys]) last_da = all_sleep_status[:, start_ind[-1]:] value = last_da.sum() / flys_num value = value / 60 # 转化为分钟 sleep_flys_nubs = np.sum(last_da, axis=-1).astype(np.bool).sum() proportion_of_sleep_flys = sleep_flys_nubs / flys_num # 当前时间段睡觉的果蝇的比例 values_durations.append([value, last_da.shape[1], proportion_of_sleep_flys]) values_durations = np.array(values_durations) np.save(str(npy_path), values_durations) return str(npy_path) def PARAM_region_status(self): ''' 统计每一帧是否在内圈的结果,在为True,不在为False。注意,被排除的果盘也被置为False了 :return: 保存的npy路径 (果蝇数,帧数) ''' region_status_npy = Path(self.saved_dir, f'region_status.npy') if Path(region_status_npy).exists(): self.all_region_status = np.load(region_status_npy) return str(region_status_npy) cps = self.cps all_datas = self.all_datas.astype(np.float64) all_region_status = [] print('get_region_status:') pbar = Pbar(total=len(cps)) for i, (cp, da) in enumerate(zip(cps, all_datas)): dist_to_cp = lambda x: math.sqrt(math.pow(x[0] - cp[0], 2) + math.pow(x[1] - cp[1], 2)) region_status = np.array([dist_to_cp(p) < self.region_radius for p in da]) all_region_status.append(region_status) pbar.update() pbar.close() self.all_region_status = np.array(all_region_status) np.save(region_status_npy, self.all_region_status) return str(region_status_npy) def heatmap_to_pcolor(self, heat, mask): """ 转伪彩图 :return: """ # 尝试了生成16位的伪彩图,发现applyColorMap函数不支持 max_v, datatype = 255, np.uint8 heat = equalizeHist_use_mask(heat, mask, notuint8=True) heat = heat / heat.max() * max_v heat = np.round(heat).astype(datatype) heat = cv2.applyColorMap(heat, cv2.COLORMAP_JET) return heat def PARAM_heatmap(self, p): ''' 跟roi没有关系,算的是所有果蝇的热图。 :param p: :return: ''' heatmap = self.heatmap.copy() heatmaps = [] for mask, cp in zip(self.mask_imgs, self.cps): hm = heatmap * mask pcolor = self.heatmap_to_pcolor(hm, mask) pcolor *= np.tile(mask[:, :, None], (1, 1, 3)) # 只有在这mask一下,后面才能叠加 heatmaps.append(pcolor) heatmap_img = np.array(heatmaps).sum(axis=0).astype(np.uint8) # 叠加后的图像背景是黑的 mask_all = np.array(self.mask_imgs).sum(axis=0) mask_all = (mask_all == 0).astype(np.uint8) * 128 # 背景蓝色 bgr(128,0,0) heatmap_img[:, :, 0] += mask_all # cv2.imshow('', heatmap_img) # cv2.waitKeyEx() cv2.imwrite(str(p), heatmap_img) def PARAM_heatmap_barycenter(self, p, p_heatmap): ''' 计算热图重心,并可视化 :return: ''' def get_barycenter_of_mat(m): # 求矩阵重心 def get_barycenter_of_line(l): # 求直线重心 i = np.arange(len(l)) return np.sum(l * i) / np.sum(l) lx = np.sum(m, axis=0) ly = np.sum(m, axis=1) return (get_barycenter_of_line(lx), get_barycenter_of_line(ly)) barycps = [] heatmap = self.heatmap r = self.dish_radius for cp in self.cps: p0 = (cp[0] - r, cp[1] - r) m = heatmap[ p0[1]:p0[1] + 2 * r + 1, p0[0]:p0[0] + 2 * r + 1] barycp = get_barycenter_of_mat(m) barycps.append((barycp[0] + p0[0], barycp[1] + p0[1])) self.barycps = barycps img = cv2.imread(str(p_heatmap)) img =
np.zeros_like(img)
numpy.zeros_like
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for cartesian_4d_velocity_effector.py.""" import copy from absl.testing import absltest from absl.testing import parameterized from dm_control import mjcf from dm_robotics.geometry import geometry from dm_robotics.geometry import mujoco_physics from dm_robotics.moma.effectors import cartesian_4d_velocity_effector from dm_robotics.moma.effectors import test_utils from dm_robotics.moma.models.robots.robot_arms import sawyer import numpy as np class Cartesian4DVelocityEffectorTest(parameterized.TestCase): def test_zero_xy_rot_vel_pointing_down(self): # When the arm is pointing straight down, the default effector shouldn't # apply any X or Y rotations. arm = sawyer.Sawyer(with_pedestal=False) physics = mjcf.Physics.from_mjcf_model(arm.mjcf_model) effector_6d = test_utils.Spy6dEffector(arm.wrist_site) effector_4d = cartesian_4d_velocity_effector.Cartesian4dVelocityEffector( effector_6d, element=arm.wrist_site, effector_prefix='sawyer_4d') arm.set_joint_angles( physics, joint_angles=test_utils.SAFE_SAWYER_JOINTS_POS) physics.step() # propagate the changes to the rest of the physics. # Send an XYZ + Z rot command. We shouldn't see any XY rotation components. effector_4d.set_control(physics, command=np.ones(4) * 0.1) np.testing.assert_allclose(effector_6d.previous_action, [0.1, 0.1, 0.1, 0.0, 0.0, 0.1], atol=1e-3, rtol=0.0) def test_nonzero_xy_rot_vel_not_pointing_down(self): # When the arm is NOT pointing straight down, the default effector should # apply X and Y rotations to push it back to the desired quat. arm = sawyer.Sawyer(with_pedestal=False) physics = mjcf.Physics.from_mjcf_model(arm.mjcf_model) effector_6d = test_utils.Spy6dEffector(arm.wrist_site) effector_4d = cartesian_4d_velocity_effector.Cartesian4dVelocityEffector( effector_6d, element=arm.wrist_site, effector_prefix='sawyer_4d') # random offset to all joints. joint_angles = test_utils.SAFE_SAWYER_JOINTS_POS + 0.1 arm.set_joint_angles(physics, joint_angles=joint_angles) physics.step() # propagate the changes to the rest of the physics. # Send an XYZ + Z rot command. We SHOULD see XY rotation components. effector_4d.set_control(physics, command=
np.ones(4)
numpy.ones
import os import subprocess from platform import system as operating_system import threading from numpy.lib.function_base import average def clear_static(): for root, dirs, files in os.walk('src/static'): for file in files: #append the file name to the list print(os.path.join(root,file)) os.remove(os.path.join(root,file)) for root, dirs, files in os.walk('static'): for file in files: #append the file name to the list print(os.path.join(root,file)) os.remove(os.path.join(root,file)) import datetime as dt import pandas_datareader as pdr import pandas as pd # https://cnvrg.io/pytorch-lstm/ def get_stock_data(tag: str, start_date: dt.datetime, end_date: dt.datetime) -> pd.core.frame.DataFrame: for i in ['data', 'img']: os.system(f'mkdir {i}') if operating_system() == 'Windows': os.system('cls') else: os.system('clear') # forces tag into a list tag = [tag] # attempts to pull the data try: # get it from yahoo data = pdr.get_data_yahoo(tag, start=start_date, end=end_date) # generate a index """ Date,Adj Close,Close,High,Low,Open,Volume df = df.reindex(columns=column_names) ___ df = df[['favorite_color','grade','name','age']] ___ df1 = pd.DataFrame(df1,columns=['Name','Gender','Score','Rounded_score']) """ # write it out in the og format data.to_csv(f'data/{tag[0]}.csv') # so that it can be read in with open(f'data/{tag[0]}.csv', 'r') as in_file: lines = in_file.readlines() # and manipulated before being exported with open(f'data/{tag[0]}.csv', 'w+') as out_file: lines[0] = lines[0].replace('Attributes', 'Date') del lines[1:3] for i in lines: out_file.write(i) data = pd.read_csv(f'data/{tag[0]}.csv', index_col=0, parse_dates=True) data = data[['Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume']] # data["str_date"] = data["Date"] # data["Date"] = data["Date"].apply( # lambda x: dt.datetime( # *list( # map( # int, x.split('-') # ) # ) # ).toordinal() # ) # and loaded in as a dataframe and exported out as the function return data except Exception as e: # if the data is wrong, return a blank one print(e) return pd.DataFrame() from flask import url_for # Mathematical functions import math # Fundamental package for scientific computing with Python import numpy as np # Additional functions for analysing and manipulating data import pandas as pd # Date Functions from datetime import date, timedelta, datetime # This function adds plotting functions for calender dates from pandas.plotting import register_matplotlib_converters # Important package for visualization - we use this to plot the market data import matplotlib.pyplot as plt # Formatting dates import matplotlib.dates as mdates # Packages for measuring model performance / errors from sklearn.metrics import mean_absolute_error, mean_squared_error # Deep learning library, used for neural networks from keras.models import Sequential # Deep learning classes for recurrent and regular densely-connected layers from keras.layers import LSTM, Dense, Dropout # EarlyStopping during model training from keras.callbacks import EarlyStopping # This Scaler removes the median and scales the data according to the quantile range to normalize the price data from sklearn.preprocessing import RobustScaler def get_predictive_model(tag:str, start_date = pd.to_datetime('2020-01-01'), end_date = dt.datetime.today()): # pull in data from df = get_stock_data(tag, start_date, end_date) train_dfs = df.copy() # Indexing Batches train_df = train_dfs.sort_values(by=['Date']).copy() # We safe a copy of the dates index, before we need to reset it to numbers date_index = train_df.index # Adding Month and Year in separate columns d = pd.to_datetime(train_df.index) train_df['Month'] = d.strftime("%m") train_df['Year'] = d.strftime("%Y") # We reset the index, so we can convert the date-index to a number-index train_df = train_df.reset_index(drop=True).copy() FEATURES = ['High', 'Low', 'Open', 'Close', 'Volume', 'Month'] data = pd.DataFrame(train_df) data_filtered = data[FEATURES] # We add a prediction column and set dummy values to prepare the data for scaling data_filtered_ext = data_filtered.copy() data_filtered_ext['Prediction'] = data_filtered_ext['Close'] # Calculate the number of rows in the data nrows = data_filtered.shape[0] np_data_unscaled = np.array(data_filtered) np_data_unscaled =
np.reshape(np_data_unscaled, (nrows, -1))
numpy.reshape
"""Definitions of ground truth NSRTs for all environments.""" import itertools from typing import List, Sequence, Set, cast import numpy as np from predicators.src.envs import get_or_create_env from predicators.src.envs.behavior import BehaviorEnv from predicators.src.envs.behavior_options import grasp_obj_param_sampler, \ navigate_to_param_sampler, place_ontop_obj_pos_sampler from predicators.src.envs.doors import DoorsEnv from predicators.src.envs.painting import PaintingEnv from predicators.src.envs.pddl_env import _PDDLEnv from predicators.src.envs.playroom import PlayroomEnv from predicators.src.envs.repeated_nextto_painting import \ RepeatedNextToPaintingEnv from predicators.src.envs.satellites import SatellitesEnv from predicators.src.envs.tools import ToolsEnv from predicators.src.settings import CFG from predicators.src.structs import NSRT, Array, GroundAtom, LiftedAtom, \ Object, ParameterizedOption, Predicate, State, Type, Variable from predicators.src.utils import null_sampler def get_gt_nsrts(predicates: Set[Predicate], options: Set[ParameterizedOption]) -> Set[NSRT]: """Create ground truth NSRTs for an env.""" if CFG.env in ("cover", "cover_hierarchical_types", "cover_typed_options", "cover_regrasp", "cover_multistep_options", "pybullet_cover"): nsrts = _get_cover_gt_nsrts() elif CFG.env == "cluttered_table": nsrts = _get_cluttered_table_gt_nsrts() elif CFG.env == "cluttered_table_place": nsrts = _get_cluttered_table_gt_nsrts(with_place=True) elif CFG.env in ("blocks", "pybullet_blocks"): nsrts = _get_blocks_gt_nsrts() elif CFG.env == "behavior": nsrts = _get_behavior_gt_nsrts() # pragma: no cover elif CFG.env in ("painting", "repeated_nextto_painting"): nsrts = _get_painting_gt_nsrts() elif CFG.env == "tools": nsrts = _get_tools_gt_nsrts() elif CFG.env == "playroom": nsrts = _get_playroom_gt_nsrts() elif CFG.env == "repeated_nextto": nsrts = _get_repeated_nextto_gt_nsrts(CFG.env) elif CFG.env == "repeated_nextto_single_option": nsrts = _get_repeated_nextto_single_option_gt_nsrts() elif CFG.env == "screws": nsrts = _get_screws_gt_nsrts() elif CFG.env.startswith("pddl_"): nsrts = _get_pddl_env_gt_nsrts(CFG.env) elif CFG.env == "touch_point": nsrts = _get_touch_point_gt_nsrts() elif CFG.env == "stick_button": nsrts = _get_stick_button_gt_nsrts() elif CFG.env == "doors": nsrts = _get_doors_gt_nsrts() elif CFG.env == "coffee": nsrts = _get_coffee_gt_nsrts() elif CFG.env in ("satellites", "satellites_simple"): nsrts = _get_satellites_gt_nsrts() else: raise NotImplementedError("Ground truth NSRTs not implemented") # Filter out excluded predicates from NSRTs, and filter out NSRTs whose # options are excluded. final_nsrts = set() for nsrt in nsrts: if nsrt.option not in options: continue nsrt = nsrt.filter_predicates(predicates) final_nsrts.add(nsrt) return final_nsrts def _get_from_env_by_names(env_name: str, names: Sequence[str], env_attr: str) -> List: """Helper for loading types, predicates, and options by name.""" env = get_or_create_env(env_name) name_to_env_obj = {} for o in getattr(env, env_attr): name_to_env_obj[o.name] = o assert set(name_to_env_obj).issuperset(set(names)) return [name_to_env_obj[name] for name in names] def _get_types_by_names(env_name: str, names: Sequence[str]) -> List[Type]: """Load types from an env given their names.""" return _get_from_env_by_names(env_name, names, "types") def _get_predicates_by_names(env_name: str, names: Sequence[str]) -> List[Predicate]: """Load predicates from an env given their names.""" return _get_from_env_by_names(env_name, names, "predicates") def _get_options_by_names(env_name: str, names: Sequence[str]) -> List[ParameterizedOption]: """Load parameterized options from an env given their names.""" return _get_from_env_by_names(env_name, names, "options") def _get_cover_gt_nsrts() -> Set[NSRT]: """Create ground truth NSRTs for CoverEnv or environments that inherit from CoverEnv.""" # Types block_type, target_type, robot_type = _get_types_by_names( CFG.env, ["block", "target", "robot"]) # Objects block = Variable("?block", block_type) robot = Variable("?robot", robot_type) target = Variable("?target", target_type) # Predicates IsBlock, IsTarget, Covers, HandEmpty, Holding = \ _get_predicates_by_names(CFG.env, ["IsBlock", "IsTarget", "Covers", "HandEmpty", "Holding"]) # Options if CFG.env in ("cover", "pybullet_cover", "cover_hierarchical_types", "cover_regrasp"): PickPlace, = _get_options_by_names(CFG.env, ["PickPlace"]) elif CFG.env in ("cover_typed_options", "cover_multistep_options"): Pick, Place = _get_options_by_names(CFG.env, ["Pick", "Place"]) nsrts = set() # Pick parameters = [block] holding_predicate_args = [block] if CFG.env == "cover_multistep_options": parameters.append(robot) holding_predicate_args.append(robot) preconditions = {LiftedAtom(IsBlock, [block]), LiftedAtom(HandEmpty, [])} add_effects = {LiftedAtom(Holding, holding_predicate_args)} delete_effects = {LiftedAtom(HandEmpty, [])} if CFG.env in ("cover", "pybullet_cover", "cover_hierarchical_types", "cover_regrasp"): option = PickPlace option_vars = [] elif CFG.env == "cover_typed_options": option = Pick option_vars = [block] elif CFG.env == "cover_multistep_options": option = Pick option_vars = [block, robot] if CFG.env == "cover_multistep_options": def pick_sampler(state: State, goal: Set[GroundAtom], rng: np.random.Generator, objs: Sequence[Object]) -> Array: # The only things that change are the block's grasp, and the # robot's grip, holding, x, and y. assert len(objs) == 2 block, robot = objs assert block.is_instance(block_type) assert robot.is_instance(robot_type) bx, by = state.get(block, "x"), state.get(block, "y") rx, ry = state.get(robot, "x"), state.get(robot, "y") bw = state.get(block, "width") if CFG.cover_multistep_goal_conditioned_sampling: # Goal conditioned sampling currently assumes one goal. assert len(goal) == 1 goal_atom = next(iter(goal)) t = goal_atom.objects[1] tx, tw = state.get(t, "x"), state.get(t, "width") thr_found = False # target hand region # Loop over objects in state to find target hand region, # whose center should overlap with the target. for obj in state.data: if obj.type.name == "target_hand_region": tlb = state.get(obj, "lb") tub = state.get(obj, "ub") tm = (tlb + tub) / 2 # midpoint of hand region if tx - tw / 2 < tm < tx + tw / 2: thr_found = True break assert thr_found if CFG.cover_multistep_degenerate_oracle_samplers: desired_x = float(bx) elif CFG.cover_multistep_goal_conditioned_sampling: # Block position adjusted by target/ thr offset desired_x = bx + (tm - tx) else: desired_x = rng.uniform(bx - bw / 2, bx + bw / 2) # This option changes the grasp for the block from -1.0 to 1.0, so # the delta is 1.0 - (-1.0) = 2.0 block_param = [2.0] # The grip changes from -1.0 to 1.0. # The holding changes from -1.0 to 1.0. # x, y, grip, holding robot_param = [desired_x - rx, by - ry, 2.0, 2.0] param = block_param + robot_param return np.array(param, dtype=np.float32) else: def pick_sampler(state: State, goal: Set[GroundAtom], rng: np.random.Generator, objs: Sequence[Object]) -> Array: del goal # unused assert len(objs) == 1 b = objs[0] assert b.is_instance(block_type) if CFG.env == "cover_typed_options": lb = float(-state.get(b, "width") / 2) ub = float(state.get(b, "width") / 2) elif CFG.env in ("cover", "pybullet_cover", "cover_hierarchical_types", "cover_regrasp"): lb = float(state.get(b, "pose") - state.get(b, "width") / 2) lb = max(lb, 0.0) ub = float(state.get(b, "pose") + state.get(b, "width") / 2) ub = min(ub, 1.0) return np.array(rng.uniform(lb, ub, size=(1, )), dtype=np.float32) pick_nsrt = NSRT("Pick", parameters, preconditions, add_effects, delete_effects, set(), option, option_vars, pick_sampler) nsrts.add(pick_nsrt) # Place (to Cover) parameters = [block, target] holding_predicate_args = [block] if CFG.env == "cover_multistep_options": parameters = [block, robot, target] holding_predicate_args.append(robot) preconditions = { LiftedAtom(IsBlock, [block]), LiftedAtom(IsTarget, [target]), LiftedAtom(Holding, holding_predicate_args) } add_effects = { LiftedAtom(HandEmpty, []), LiftedAtom(Covers, [block, target]) } delete_effects = {LiftedAtom(Holding, holding_predicate_args)} if CFG.env == "cover_regrasp": Clear, = _get_predicates_by_names("cover_regrasp", ["Clear"]) preconditions.add(LiftedAtom(Clear, [target])) delete_effects.add(LiftedAtom(Clear, [target])) if CFG.env in ("cover", "pybullet_cover", "cover_hierarchical_types", "cover_regrasp"): option = PickPlace option_vars = [] elif CFG.env == "cover_typed_options": option = Place option_vars = [target] elif CFG.env == "cover_multistep_options": option = Place option_vars = [block, robot, target] if CFG.env == "cover_multistep_options": def place_sampler(state: State, goal: Set[GroundAtom], rng: np.random.Generator, objs: Sequence[Object]) -> Array: if CFG.cover_multistep_goal_conditioned_sampling: # Goal conditioned sampling currently assumes one goal. assert len(goal) == 1 goal_atom = next(iter(goal)) t = goal_atom.objects[1] tx, tw = state.get(t, "x"), state.get(t, "width") thr_found = False # target hand region # Loop over objects in state to find target hand region, # whose center should overlap with the target. for obj in state.data: if obj.type.name == "target_hand_region": lb = state.get(obj, "lb") ub = state.get(obj, "ub") m = (lb + ub) / 2 # midpoint of hand region if tx - tw / 2 < m < tx + tw / 2: thr_found = True break assert thr_found assert len(objs) == 3 block, robot, target = objs assert block.is_instance(block_type) assert robot.is_instance(robot_type) assert target.is_instance(target_type) rx = state.get(robot, "x") tx, tw = state.get(target, "x"), state.get(target, "width") if CFG.cover_multistep_degenerate_oracle_samplers: desired_x = float(tx) elif CFG.cover_multistep_goal_conditioned_sampling: desired_x = m # midpoint of hand region else: desired_x = rng.uniform(tx - tw / 2, tx + tw / 2) delta_x = desired_x - rx # This option changes the grasp for the block from 1.0 to -1.0, so # the delta is -1.0 - 1.0 = -2.0. # x, grasp block_param = [delta_x, -2.0] # The grip changes from 1.0 to -1.0. # The holding changes from 1.0 to -1.0. # x, grip, holding robot_param = [delta_x, -2.0, -2.0] param = block_param + robot_param return np.array(param, dtype=np.float32) else: def place_sampler(state: State, goal: Set[GroundAtom], rng: np.random.Generator, objs: Sequence[Object]) -> Array: del goal # unused assert len(objs) == 2 t = objs[-1] assert t.is_instance(target_type) lb = float(state.get(t, "pose") - state.get(t, "width") / 10) lb = max(lb, 0.0) ub = float(state.get(t, "pose") + state.get(t, "width") / 10) ub = min(ub, 1.0) return np.array(rng.uniform(lb, ub, size=(1, )), dtype=np.float32) place_nsrt = NSRT("Place", parameters, preconditions, add_effects, delete_effects, set(), option, option_vars, place_sampler) nsrts.add(place_nsrt) # Place (not on any target) if CFG.env == "cover_regrasp": parameters = [block] preconditions = { LiftedAtom(IsBlock, [block]), LiftedAtom(Holding, [block]) } add_effects = { LiftedAtom(HandEmpty, []), } delete_effects = {LiftedAtom(Holding, [block])} option = PickPlace option_vars = [] def place_on_table_sampler(state: State, goal: Set[GroundAtom], rng: np.random.Generator, objs: Sequence[Object]) -> Array: # Always at the current location. del goal, rng # this sampler is deterministic assert len(objs) == 1 held_obj = objs[0] x = state.get(held_obj, "pose") + state.get(held_obj, "grasp") return np.array([x], dtype=np.float32) place_on_table_nsrt = NSRT("PlaceOnTable", parameters, preconditions, add_effects, delete_effects, set(), option, option_vars, place_on_table_sampler) nsrts.add(place_on_table_nsrt) return nsrts def _get_cluttered_table_gt_nsrts(with_place: bool = False) -> Set[NSRT]: """Create ground truth NSRTs for ClutteredTableEnv.""" can_type, = _get_types_by_names("cluttered_table", ["can"]) HandEmpty, Holding, Untrashed = _get_predicates_by_names( "cluttered_table", ["HandEmpty", "Holding", "Untrashed"]) if with_place: Grasp, Place = _get_options_by_names("cluttered_table_place", ["Grasp", "Place"]) else: Grasp, Dump = _get_options_by_names("cluttered_table", ["Grasp", "Dump"]) nsrts = set() # Grasp can = Variable("?can", can_type) parameters = [can] option_vars = [can] option = Grasp preconditions = {LiftedAtom(HandEmpty, []), LiftedAtom(Untrashed, [can])} add_effects = {LiftedAtom(Holding, [can])} delete_effects = {LiftedAtom(HandEmpty, [])} def grasp_sampler(state: State, goal: Set[GroundAtom], rng: np.random.Generator, objs: Sequence[Object]) -> Array: del goal # unused assert len(objs) == 1 can = objs[0] # Need a max here in case the can is trashed already, in which case # both pose_x and pose_y will be -999. end_x = max(0.0, state.get(can, "pose_x")) end_y = max(0.0, state.get(can, "pose_y")) if with_place: start_x, start_y = 0.2, 0.1 else: start_x, start_y = rng.uniform(0.0, 1.0, size=2) # start from anywhere return
np.array([start_x, start_y, end_x, end_y], dtype=np.float32)
numpy.array
import json import logging import os from glob import glob from multiprocessing.pool import Pool from pathlib import Path import matplotlib.pyplot as plt import numpy as np import tifffile as tf from matplotlib.widgets import Button, RectangleSelector from scipy.interpolate import interp1d # from skimage.transform import resize from .util import resize_axis from .filter import selectiveMedianFilter tifffile_logger = logging.getLogger("tifffile") tifffile_logger.setLevel(logging.ERROR) POSITIONS = {x: i for i, x in enumerate("xyz")} __JOBSDIR__ = "_jobs" __DECONDIR__ = "_decon" __TMXDIR__ = "_tmx" class Selection3D: def __init__(self, coords=None): # keys are axis, values are array of (selector, axis_number) tuples self.selectors = [] self.coords = {} if coords is not None: self.coords = {"x": coords[0], "y": coords[1], "z": coords[2]} self.linked_axes = [] self.data_lim = [None, None, None] # x, y, z Data Size def width(self, axis): if axis not in self.coords: raise ValueError("Unknown axis: %s" % axis) return round(
np.diff(self.coords[axis])
numpy.diff
""" Document Localization using Recursive CNN Maintainer : <NAME> Email : <EMAIL> """ import imgaug.augmenters as iaa import csv import logging import os import xml.etree.ElementTree as ET import numpy as np from torchvision import transforms import utils.utils as utils # To incdude a new Dataset, inherit from Dataset and add all the Dataset specific parameters here. # Goal : Remove any data specific parameters from the rest of the code logger = logging.getLogger("iCARL") class Dataset: """ Base class to reprenent a Dataset """ def __init__(self, name): self.name = name self.data = [] self.labels = [] def getTransformsByImgaug(): return iaa.Sequential( [ iaa.Resize(32), # Add blur iaa.Sometimes( 0.05, iaa.OneOf( [ iaa.GaussianBlur( (0, 3.0) ), # blur images with a sigma between 0 and 3.0 iaa.AverageBlur( k=(2, 11) ), # blur image using local means with kernel sizes between 2 and 7 iaa.MedianBlur( k=(3, 11) ), # blur image using local medians with kernel sizes between 2 and 7 iaa.MotionBlur(k=15, angle=[-45, 45]), ] ), ), # Add color iaa.Sometimes( 0.05, iaa.OneOf( [ iaa.WithHueAndSaturation(iaa.WithChannels(0, iaa.Add((0, 50)))), iaa.AddToBrightness((-30, 30)), iaa.MultiplyBrightness((0.5, 1.5)), iaa.AddToHueAndSaturation((-50, 50), per_channel=True), iaa.Grayscale(alpha=(0.0, 1.0)), iaa.ChangeColorTemperature((1100, 10000)), iaa.KMeansColorQuantization(), ] ), ), # Add wether iaa.Sometimes( 0.05, iaa.OneOf( [ iaa.Clouds(), iaa.Fog(), iaa.Snowflakes(flake_size=(0.1, 0.4), speed=(0.01, 0.05)), iaa.Rain(speed=(0.1, 0.3)), ] ), ), # Add contrast iaa.Sometimes( 0.05, iaa.OneOf( [ iaa.GammaContrast((0.5, 2.0)), iaa.GammaContrast((0.5, 2.0), per_channel=True), iaa.SigmoidContrast(gain=(3, 10), cutoff=(0.4, 0.6)), iaa.SigmoidContrast( gain=(3, 10), cutoff=(0.4, 0.6), per_channel=True ), iaa.LogContrast(gain=(0.6, 1.4)), iaa.LogContrast(gain=(0.6, 1.4), per_channel=True), iaa.LinearContrast((0.4, 1.6)), iaa.LinearContrast((0.4, 1.6), per_channel=True), iaa.AllChannelsCLAHE(), iaa.AllChannelsCLAHE(clip_limit=(1, 10)), iaa.AllChannelsCLAHE(clip_limit=(1, 10), per_channel=True), iaa.Alpha((0.0, 1.0), iaa.HistogramEqualization()), iaa.Alpha((0.0, 1.0), iaa.AllChannelsHistogramEqualization()), iaa.AllChannelsHistogramEqualization(), ] ), ) ] ).augment_image class SmartDoc(Dataset): """ Class to include MNIST specific details """ def __init__(self, directory="data"): super().__init__("smartdoc") self.data = [] self.labels = [] for d in directory: self.directory = d self.train_transform = transforms.Compose( [ getTransformsByImgaug(), # transforms.Resize([32, 32]), # transforms.ColorJitter(1.5, 1.5, 0.9, 0.5), transforms.ToTensor(), ] ) self.test_transform = transforms.Compose( [ iaa.Sequential( [ iaa.Resize(32), ] ).augment_image, transforms.ToTensor(), ] ) logger.info("Pass train/test data paths here") self.classes_list = {} file_names = [] print(self.directory, "gt.csv") with open(os.path.join(self.directory, "gt.csv"), "r") as csvfile: spamreader = csv.reader( csvfile, delimiter=",", quotechar="|", quoting=csv.QUOTE_MINIMAL ) import ast for row in spamreader: file_names.append(row[0]) self.data.append(os.path.join(self.directory, row[0])) test = row[1].replace("array", "") self.labels.append((ast.literal_eval(test))) self.labels = np.array(self.labels) self.labels = np.reshape(self.labels, (-1, 8)) logger.debug("Ground Truth Shape: %s", str(self.labels.shape)) logger.debug("Data shape %s", str(len(self.data))) self.myData = [self.data, self.labels] class SmartDocDirectories(Dataset): """ Class to include MNIST specific details """ def __init__(self, directory="data"): super().__init__("smartdoc") self.data = [] self.labels = [] for folder in os.listdir(directory): if os.path.isdir(directory + "/" + folder): for file in os.listdir(directory + "/" + folder): images_dir = directory + "/" + folder + "/" + file if os.path.isdir(images_dir): list_gt = [] tree = ET.parse(images_dir + "/" + file + ".gt") root = tree.getroot() for a in root.iter("frame"): list_gt.append(a) im_no = 0 for image in os.listdir(images_dir): if image.endswith(".jpg"): # print(im_no) im_no += 1 # Now we have opened the file and GT. Write code to create multiple files and scale gt list_of_points = {} # img = cv2.imread(images_dir + "/" + image) self.data.append(os.path.join(images_dir, image)) for point in list_gt[int(float(image[0:-4])) - 1].iter( "point" ): myDict = point.attrib list_of_points[myDict["name"]] = ( int(float(myDict["x"])), int(float(myDict["y"])), ) ground_truth = np.asarray( ( list_of_points["tl"], list_of_points["tr"], list_of_points["br"], list_of_points["bl"], ) ) ground_truth = utils.sort_gt(ground_truth) self.labels.append(ground_truth) self.labels = np.array(self.labels) self.labels = np.reshape(self.labels, (-1, 8)) logger.debug("Ground Truth Shape: %s", str(self.labels.shape)) logger.debug("Data shape %s", str(len(self.data))) self.myData = [] for a in range(len(self.data)): self.myData.append([self.data[a], self.labels[a]]) class SelfCollectedDataset(Dataset): """ Class to include MNIST specific details """ def __init__(self, directory="data"): super().__init__("smartdoc") self.data = [] self.labels = [] for image in os.listdir(directory): # print (image) if image.endswith("jpg") or image.endswith("JPG"): if os.path.isfile(os.path.join(directory, image + ".csv")): with open(os.path.join(directory, image + ".csv"), "r") as csvfile: spamwriter = csv.reader( csvfile, delimiter=" ", quotechar="|", quoting=csv.QUOTE_MINIMAL, ) img_path = os.path.join(directory, image) gt = [] for row in spamwriter: gt.append(row) gt = np.array(gt).astype(np.float32) ground_truth = utils.sort_gt(gt) self.labels.append(ground_truth) self.data.append(img_path) self.labels =
np.array(self.labels)
numpy.array
from lumopt.geometries.geometry import Geometry from lumopt.utilities.materials import Material from lumopt.lumerical_methods.lumerical_scripts import set_spatial_interp, get_eps_from_sim import lumapi import numpy as np import scipy as sp from scipy.interpolate import RegularGridInterpolator from scipy.signal import convolve2d import matplotlib.pyplot as plt eps0 = sp.constants.epsilon_0 class TopologyOptimization2DParameters(Geometry): def __init__(self, params, eps_min, eps_max, x, y, z, filter_R, eta, beta): self.last_params=params self.eps_min=eps_min self.eps_max=eps_max self.eps = None self.x=x self.y=y self.z=z self.bounds=[(0,1)]*(len(x)*len(y)) self.filter_R = filter_R self.eta = eta self.beta = beta self.dx = x[1]-x[0] self.dy = y[1]-y[0] self.dz = z[1]-z[0] if (hasattr(z, "__len__") and len(z)>1) else 0 self.depth = z[-1]-z[0] if (hasattr(z, "__len__") and len(z)>1) else 220e-9 self.beta_factor = 1.2 self.discreteness = 0 self.unfold_symmetry = False #< We do not want monitors to unfold symmetry def use_interpolation(self): return True def calc_discreteness(self): ''' Computes a measure of discreteness. Is 1 when the structure is completely discrete and less when it is not. ''' rho = self.calc_params_from_eps(self.eps).flatten() return 1 - np.sum(4*rho*(1-rho)) / len(rho) def progress_continuation(self): self.discreteness = self.calc_discreteness() print("Discreteness: {}".format(self.discreteness)) # If it is sufficiently discrete (99%), we terminate if self.discreteness > 0.99: return False ## Otherwise, we increase beta and keep going self.beta *= self.beta_factor print('Beta is {}'.format(self.beta)) return True def to_file(self, filename): np.savez(filename, params=self.last_params, eps_min=self.eps_min, eps_max=self.eps_max, x=self.x, y=self.y, z=self.z, depth=self.depth, beta=self.beta) def calc_params_from_eps(self,eps): # Use the permittivity in z-direction. Does not really matter since this is just used for the initial guess and is (usually) heavily smoothed return (eps - self.eps_min) / (self.eps_max-self.eps_min) def set_params_from_eps(self,eps): # Use the permittivity in z-direction. Does not really matter since this is just used for the initial guess and is (usually) heavily smoothed self.last_params = self.calc_params_from_eps(eps) def extract_parameters_from_simulation(self, sim): sim.fdtd.selectpartial('import') sim.fdtd.eval('set("enabled",0);') sim.fdtd.selectpartial('initial_guess') sim.fdtd.eval('set("enabled",1);') eps = get_eps_from_sim(sim.fdtd, unfold_symmetry=False) sim.fdtd.selectpartial('initial_guess') sim.fdtd.eval('set("enabled",0);') sim.fdtd.selectpartial('import') sim.fdtd.eval('set("enabled",1);') reduced_eps = np.real(eps[0]) self.set_params_from_eps(reduced_eps) def get_eps_from_params(self, sim, params): rho = np.reshape(params, (len(self.x),len(self.y))) self.last_params = rho ## Use script function to convert the raw parameters to a permittivity distribution and get the result sim.fdtd.putv("topo_rho", rho) sim.fdtd.eval(('params = struct;' 'params.eps_levels=[{0},{1}];' 'params.filter_radius = {2};' 'params.beta = {3};' 'params.eta = {4};' 'params.dx = {5};' 'params.dy = {6};' 'params.dz = 0.0;' 'eps_geo = topoparamstoindex(params,topo_rho);').format(self.eps_min,self.eps_max,self.filter_R,self.beta,self.eta,self.dx,self.dy) ) eps = sim.fdtd.getv("eps_geo") return eps def initialize(self, wavelengths, opt): self.opt=opt pass def update_geometry(self, params, sim): self.eps = self.get_eps_from_params(sim, params) self.discreteness = self.calc_discreteness() def get_current_params_inshape(self): return self.last_params def get_current_params(self): params = self.get_current_params_inshape() return np.reshape(params,(-1)) if params is not None else None def plot(self,ax_eps): ax_eps.clear() x = self.x y = self.y eps = self.eps ax_eps.imshow(np.real(np.transpose(eps)), vmin=self.eps_min, vmax=self.eps_max, extent=[min(x)*1e6,max(x)*1e6,min(y)*1e6,max(y)*1e6], origin='lower') ax_eps.set_title('Eps') ax_eps.set_xlabel('x(um)') ax_eps.set_ylabel('y(um)') return True def write_status(self, f): f.write(', {:.4f}, {:.4f}'.format(self.beta, self.discreteness)) class TopologyOptimization2D(TopologyOptimization2DParameters): ''' ''' self_update = False def __init__(self, params, eps_min, eps_max, x, y, z=0, filter_R=200e-9, eta=0.5, beta=1): super().__init__(params, eps_min, eps_max, x, y, z, filter_R, eta, beta) @classmethod def from_file(cls, filename, z=0, filter_R=200e-9, eta=0.5, beta = None): data = np.load(filename) if beta is None: beta = data["beta"] return cls(data["params"], data["eps_min"], data["eps_max"], data["x"], data["y"], z = z, filter_R = filter_R, eta=eta, beta=beta) def set_params_from_eps(self,eps): # Use the permittivity in z-direction. Does not really matter since this is just used for the initial guess and is (usually) heavily smoothed super().set_params_from_eps(eps[:,:,0,0,2]) def calculate_gradients_on_cad(self, sim, forward_fields, adjoint_fields, wl_scaling_factor): lumapi.putMatrix(sim.fdtd.handle, "wl_scaling_factor", wl_scaling_factor) sim.fdtd.eval("V_cell = {};".format(self.dx*self.dy) + "dF_dEps = pinch(sum(2.0 * V_cell * eps0 * {0}.E.E * {1}.E.E,5),3);".format(forward_fields, adjoint_fields) + "num_wl_pts = length({0}.E.lambda);".format(forward_fields) + "for(wl_idx = [1:num_wl_pts]){" + " dF_dEps(:,:,wl_idx) = dF_dEps(:,:,wl_idx) * wl_scaling_factor(wl_idx);" + "}" + "dF_dEps = real(dF_dEps);") rho = self.get_current_params_inshape() sim.fdtd.putv("topo_rho", rho) sim.fdtd.eval(('params = struct;' 'params.eps_levels=[{0},{1}];' 'params.filter_radius = {2};' 'params.beta = {3};' 'params.eta = {4};' 'params.dx = {5};' 'params.dy = {6};' 'params.dz = 0.0;' 'topo_grad = topoparamstogradient(params,topo_rho,dF_dEps);').format(self.eps_min,self.eps_max,self.filter_R,self.beta,self.eta,self.dx,self.dy) ) topo_grad = sim.fdtd.getv("topo_grad") return topo_grad.reshape(-1, topo_grad.shape[-1]) def calculate_gradients(self, gradient_fields, sim): rho = self.get_current_params_inshape() # If we have frequency data (3rd dim), we need to adjust the dimensions of epsilon for broadcasting to work E_forward_dot_E_adjoint = np.atleast_3d(np.real(np.squeeze(np.sum(gradient_fields.get_field_product_E_forward_adjoint(),axis=-1)))) dF_dEps = 2*self.dx*self.dy*eps0*E_forward_dot_E_adjoint sim.fdtd.putv("topo_rho", rho) sim.fdtd.putv("dF_dEps", dF_dEps) sim.fdtd.eval(('params = struct;' 'params.eps_levels=[{0},{1}];' 'params.filter_radius = {2};' 'params.beta = {3};' 'params.eta = {4};' 'params.dx = {5};' 'params.dy = {6};' 'params.dz = 0.0;' 'topo_grad = topoparamstogradient(params,topo_rho,dF_dEps);').format(self.eps_min,self.eps_max,self.filter_R,self.beta,self.eta,self.dx,self.dy) ) topo_grad = sim.fdtd.getv("topo_grad") return topo_grad.reshape(-1, topo_grad.shape[-1]) def add_geo(self, sim, params=None, only_update = False): fdtd=sim.fdtd eps = self.eps if params is None else self.get_eps_from_params(sim, params.reshape(-1)) fdtd.putv('x_geo',self.x) fdtd.putv('y_geo',self.y) fdtd.putv('z_geo',np.array([self.z-self.depth/2,self.z+self.depth/2])) if not only_update: set_spatial_interp(sim.fdtd,'opt_fields','specified position') set_spatial_interp(sim.fdtd,'opt_fields_index','specified position') script=('select("opt_fields");' 'set("x min",{});' 'set("x max",{});' 'set("y min",{});' 'set("y max",{});').format(
np.amin(self.x)
numpy.amin
import numpy as np import scipy as sp from scipy.sparse import linalg import copy import moments.Spectrum_mod from . import Numerics import Jackknife as jk import LinearSystem_1D as ls1 import LinearSystem_2D as ls2 from . import Reversible #------------------------------------------------------------------------------ # Functions for the computation of the Phi-moments for multidimensional models: # we integrate the ode system on the Phi_n(i) to compute their evolution # we write it (and solve it) as an approximated linear system: # Phi_n' = Bn(N) + (1/(4N)Dn + S1n + S2n)Phi_n # where : # N is the total population size # Bn(N) is the mutation source term # 1/(4N)Dn is the drift effect matrix # S1n is the selection matrix for h = 0.5 # S2n is the effect of h != 0.5 #------------------------------------------------------------------------------ #----------------------------------- # functions to compute the matrices- #----------------------------------- # Mutations def _calcB(dims, u): # u is a list of mutation rates in each population # allows for different mutation rates in different pops B = np.zeros(dims) for k in range(len(dims)): ind = np.zeros(len(dims), dtype='int') ind[k] = int(1) tp = tuple(ind) B[tp] = (dims[k] - 1) * u[k] return B # Finite genome mutation model def _calcB_FB(dims, theta_fd, theta_bd): """ dims : List containing the pop sizes u: scalar forward mutation rate v: scalar backward mutation rate Returns mutation matrix for finite genome model """ if len(dims) == 1: return ls1.calcB_FB(dims[0], theta_fd, theta_bd) elif len(dims) == 2: # return list of mutation matrices return [ls2.calcB_FB1(dims, theta_fd, theta_bd), ls2.calcB_FB2(dims, theta_fd, theta_bd)] elif len(dims) == 3: return Reversible.calc_FB_3pop(dims, theta_fd, theta_bd) elif len(dims) == 4: return Reversible.calc_FB_4pop(dims, theta_fd, theta_bd) elif len(dims) == 5: return Reversible.calc_FB_5pop(dims, theta_fd, theta_bd) # Drift def _calcD(dims): """ dims : List containing the pop sizes Returns a list of drift matrices for each pair of pops """ res = [] for i in range(len(dims)): for j in range(i + 1, len(dims)): res.append([ls2.calcD1(np.array([dims[i], dims[j]])), ls2.calcD2(np.array([dims[i], dims[j]]))]) return res def _buildD(vd, dims, N): """ Builds the effective drift matrices by multiplying by the 1/4N coeff vd : List containing the drift matrices dims : List containing the pop sizes N : List containing the effective pop sizes for each pop Returns a list of effective drift matrices for each pair of pops """ if (len(dims) == 1): return [1.0 / 4 / N[0] * vd[0][0]] res = [] ctr = 0 for i in range(len(dims)): for j in range(i + 1, len(dims)): res.append(1.0/(4*N[i])*vd[ctr][0] + 1.0/(4*N[j])*vd[ctr][1]) ctr += 1 return res # Selection 1 def _calcS(dims, ljk): """ dims : List containing the pop sizes ljk : List containing the 1 jump jackknife matrices for each pair of pop Returns a list of selection matrices for each pair of pops """ res = [] for i in range(len(dims)): for j in range(i + 1, len(dims)): res.append([ls2.calcS_1(np.array([dims[i], dims[j]]), ljk[i]), ls2.calcS_2(np.array([dims[i], dims[j]]), ljk[j])]) return res def _buildS(vs, dims, s, h): """ Builds the effective selection matrices by multiplying by the correct coeff vs : List containing the selection matrices dims : List containing the pop sizes s : List containing the selection coefficients h : List containing the dominance coefficients Returns a list of effective selection matrices for each pair of pops """ if (len(dims) == 1): return [vs[0][0]] res = [] ctr = 0 for i in range(len(dims)): for j in range(i + 1, len(dims)): res.append(s[i]*h[i]*vs[ctr][0] + s[j]*h[j]*vs[ctr][1]) ctr += 1 return res # Selection 2 def _calcS2(dims, ljk): """ dims : List containing the pop sizes ljk : List containing the 2 jumps jackknife matrices for each pair of pop Returns a list of selection matrices for each pair of pops """ res = [] for i in range(len(dims)): for j in range(i + 1, len(dims)): res.append([ls2.calcS2_1(np.array([dims[i], dims[j]]), ljk[i]), ls2.calcS2_2(np.array([dims[i], dims[j]]), ljk[j])]) return res def _buildS2(vs, dims, s, h): """ Builds the effective selection matrices (part due to dominance) by multiplying by the correct coeff vs : List containing the selection matrices dims : List containing the pop sizes s : List containing the selection coefficients h : List containing the dominance coefficients Returns a list of effective selection matrices for each pair of pops """ if (len(dims) == 1): return [vs[0][0]] res = [] ctr = 0 for i in range(len(dims)): for j in range(i + 1, len(dims)): res.append(s[i]*(1-2.0*h[i])*vs[ctr][0] + s[j]*(1-2.0*h[j])*vs[ctr][1]) ctr += 1 return res # Migrations def _calcM(dims, ljk): """ dims : List containing the pop sizes ljk : List containing the 1 jump jackknife matrices for each pair of pop Returns a list of migration matrices for each pair of pops """ res = [] for i in range(len(dims)): for j in range(i + 1, len(dims)): res.append([ls2.calcM_1(np.array([dims[i], dims[j]]), ljk[j]), ls2.calcM_2(np.array([dims[i], dims[j]]), ljk[i])]) return res def _buildM(vm, dims, m): """ Builds the effective migration matrices by multiplying by the migration coeff vm : List containing the migration matrices dims : List containing the pop sizes m : matrix containing the migration coefficients Returns a list of effective migration matrices for each pair of pops """ res = [] ctr = 0 for i in range(len(dims)): for j in range(i + 1, len(dims)): res.append(m[i, j]*vm[ctr][0] + m[j, i]*vm[ctr][1]) ctr += 1 return res #---------------------------------- # updates for the time integration- #---------------------------------- # we solve a system like PX = QY # step 1 functions correspond to the QY computation # and step 2 to the resolution of PX = Y' # 2D #step 1 def _ud1_2pop_1(sfs, Q, dims): sfs = Q[0].dot(sfs.reshape(dims[0] * dims[1])).reshape(dims) return sfs # step 2 def _ud2_2pop_1(sfs, slv, dims): sfs = (slv[0](sfs.reshape(dims[0] * dims[1]))).reshape(dims) return sfs # for 3D, 4D and 5D cases, each couple of directions are coded separately to simplify the permutations... #------------------------------ # 3D # step 1 def _ud1_3pop_1(sfs, Q, dims): for i in range(int(dims[2])): sfs[:, :, i] = Q[0].dot(sfs[:, :, i].reshape(dims[0] * dims[1])).reshape(dims[0], dims[1]) return sfs def _ud1_3pop_2(sfs, Q, dims): for i in range(int(dims[1])): sfs[:, i, :] = Q[1].dot(sfs[:, i, :].reshape(dims[0] * dims[2])).reshape(dims[0], dims[2]) return sfs def _ud1_3pop_3(sfs, Q, dims): for i in range(int(dims[0])): sfs[i, :, :] = Q[2].dot(sfs[i, :, :].reshape(dims[1] * dims[2])).reshape(dims[1], dims[2]) return sfs # step 2 def _ud2_3pop_1(sfs, slv, dims): for i in range(int(dims[2])): sfs[:, :, i] = slv[0](sfs[:, :, i].reshape(dims[0] * dims[1])).reshape(dims[0], dims[1]) return sfs def _ud2_3pop_2(sfs, slv, dims): for i in range(int(dims[1])): sfs[:, i, :] = slv[1](sfs[:, i, :].reshape(dims[0] * dims[2])).reshape(dims[0], dims[2]) return sfs def _ud2_3pop_3(sfs, slv, dims): for i in range(int(dims[0])): sfs[i, :, :] = slv[2](sfs[i, :, :].reshape(dims[1] * dims[2])).reshape(dims[1], dims[2]) return sfs #------------------------------ # 4D # step 1 def _ud1_4pop_1(sfs, Q, dims): for i in range(int(dims[2])): for j in range(int(dims[3])): sfs[:, :, i, j] = Q[0].dot(sfs[:, :, i, j].reshape(dims[0] * dims[1])).reshape(dims[0], dims[1]) return sfs def _ud1_4pop_2(sfs, Q, dims): for i in range(int(dims[1])): for j in range(int(dims[3])): sfs[:, i, :, j] = Q[1].dot(sfs[:, i, :, j].reshape(dims[0] * dims[2])).reshape(dims[0], dims[2]) return sfs def _ud1_4pop_3(sfs, Q, dims): for i in range(int(dims[1])): for j in range(int(dims[2])): sfs[:, i, j, :] = Q[2].dot(sfs[:, i, j, :].reshape(dims[0] * dims[3])).reshape(dims[0], dims[3]) return sfs def _ud1_4pop_4(sfs, Q, dims): for i in range(int(dims[0])): for j in range(int(dims[3])): sfs[i, :, :, j] = Q[3].dot(sfs[i, :, :, j].reshape(dims[1] * dims[2])).reshape(dims[1], dims[2]) return sfs def _ud1_4pop_5(sfs, Q, dims): for i in range(int(dims[0])): for j in range(int(dims[2])): sfs[i, :, j, :] = Q[4].dot(sfs[i, :, j, :].reshape(dims[1] * dims[3])).reshape(dims[1], dims[3]) return sfs def _ud1_4pop_6(sfs, Q, dims): for i in range(int(dims[0])): for j in range(int(dims[1])): sfs[i, j, :, :] = Q[5].dot(sfs[i, j, :, :].reshape(dims[2] * dims[3])).reshape(dims[2], dims[3]) return sfs # step 2 def _ud2_4pop_1(sfs, slv, dims): for i in range(int(dims[2])): for j in range(int(dims[3])): sfs[:, :, i, j] = slv[0](sfs[:, :, i, j].reshape(dims[0] * dims[1])).reshape(dims[0], dims[1]) return sfs def _ud2_4pop_2(sfs, slv, dims): for i in range(int(dims[1])): for j in range(int(dims[3])): sfs[:, i, :, j] = slv[1](sfs[:, i, :, j].reshape(dims[0] * dims[2])).reshape(dims[0], dims[2]) return sfs def _ud2_4pop_3(sfs, slv, dims): for i in range(int(dims[1])): for j in range(int(dims[2])): sfs[:, i, j, :] = slv[2](sfs[:, i, j, :].reshape(dims[0] * dims[3])).reshape(dims[0], dims[3]) return sfs def _ud2_4pop_4(sfs, slv, dims): for i in range(int(dims[0])): for j in range(int(dims[3])): sfs[i, :, :, j] = slv[3](sfs[i, :, :, j].reshape(dims[1] * dims[2])).reshape(dims[1], dims[2]) return sfs def _ud2_4pop_5(sfs, slv, dims): for i in range(int(dims[0])): for j in range(int(dims[2])): sfs[i, :, j, :] = slv[4](sfs[i, :, j, :].reshape(dims[1] * dims[3])).reshape(dims[1], dims[3]) return sfs def _ud2_4pop_6(sfs, slv, dims): for i in range(int(dims[0])): for j in range(int(dims[1])): sfs[i, j, :, :] = slv[5](sfs[i, j, :, :].reshape(dims[2] * dims[3])).reshape(dims[2], dims[3]) return sfs #------------------------------ # 5D # step 1 def _ud1_5pop_1(sfs, Q, dims): for i in range(int(dims[0])): for j in range(int(dims[1])): for k in range(int(dims[2])): sfs[i, j, k, :, :] = Q[9].dot(sfs[i, j, k, :, :].reshape(dims[3] * dims[4])).reshape(dims[3], dims[4]) return sfs def _ud1_5pop_2(sfs, Q, dims): for i in range(int(dims[0])): for j in range(int(dims[1])): for k in range(int(dims[3])): sfs[i, j, :, k, :] = Q[8].dot(sfs[i, j, :, k, :].reshape(dims[2] * dims[4])).reshape(dims[2], dims[4]) return sfs def _ud1_5pop_3(sfs, Q, dims): for i in range(int(dims[0])): for j in range(int(dims[1])): for k in range(int(dims[4])): sfs[i, j, :, :, k] = Q[7].dot(sfs[i, j, :, :, k].reshape(dims[2] * dims[3])).reshape(dims[2], dims[3]) return sfs def _ud1_5pop_4(sfs, Q, dims): for i in range(int(dims[0])): for j in range(int(dims[2])): for k in range(int(dims[3])): sfs[i, :, j, k, :] = Q[6].dot(sfs[i, :, j, k, :].reshape(dims[1] * dims[4])).reshape(dims[1], dims[4]) return sfs def _ud1_5pop_5(sfs, Q, dims): for i in range(int(dims[0])): for j in range(int(dims[2])): for k in range(int(dims[4])): sfs[i, :, j, :, k] = Q[5].dot(sfs[i, :, j, :, k].reshape(dims[1] * dims[3])).reshape(dims[1], dims[3]) return sfs def _ud1_5pop_6(sfs, Q, dims): for i in range(int(dims[0])): for j in range(int(dims[3])): for k in range(int(dims[4])): sfs[i, :, :, j, k] = Q[4].dot(sfs[i, :, :, j, k].reshape(dims[1] * dims[2])).reshape(dims[1], dims[2]) return sfs def _ud1_5pop_7(sfs, Q, dims): for i in range(int(dims[1])): for j in range(int(dims[2])): for k in range(int(dims[3])): sfs[:, i, j, k, :] = Q[3].dot(sfs[:, i, j, k, :].reshape(dims[0] * dims[4])).reshape(dims[0], dims[4]) return sfs def _ud1_5pop_8(sfs, Q, dims): for i in range(int(dims[1])): for j in range(int(dims[2])): for k in range(int(dims[4])): sfs[:, i, j, :, k] = Q[2].dot(sfs[:, i, j, :, k].reshape(dims[0] * dims[3])).reshape(dims[0], dims[3]) return sfs def _ud1_5pop_9(sfs, Q, dims): for i in range(int(dims[1])): for j in range(int(dims[3])): for k in range(int(dims[4])): sfs[:, i, :, j, k] = Q[1].dot(sfs[:, i, :, j, k].reshape(dims[0] * dims[2])).reshape(dims[0], dims[2]) return sfs def _ud1_5pop_10(sfs, Q, dims): for i in range(int(dims[2])): for j in range(int(dims[3])): for k in range(int(dims[4])): sfs[:, :, i, j, k] = Q[0].dot(sfs[:, :, i, j, k].reshape(dims[0] * dims[1])).reshape(dims[0], dims[1]) return sfs # step 2 def _ud2_5pop_1(sfs, slv, dims): for i in range(int(dims[0])): for j in range(int(dims[1])): for k in range(int(dims[2])): sfs[i, j, k, :, :] = slv[9](sfs[i, j, k, :, :].reshape(dims[3] * dims[4])).reshape(dims[3], dims[4]) return sfs def _ud2_5pop_2(sfs, slv, dims): for i in range(int(dims[0])): for j in range(int(dims[1])): for k in range(int(dims[3])): sfs[i, j, :, k, :] = slv[8](sfs[i, j, :, k, :].reshape(dims[2] * dims[4])).reshape(dims[2], dims[4]) return sfs def _ud2_5pop_3(sfs, slv, dims): for i in range(int(dims[0])): for j in range(int(dims[1])): for k in range(int(dims[4])): sfs[i, j, :, :, k] = slv[7](sfs[i, j, :, :, k].reshape(dims[2] * dims[3])).reshape(dims[2], dims[3]) return sfs def _ud2_5pop_4(sfs, slv, dims): for i in range(int(dims[0])): for j in range(int(dims[2])): for k in range(int(dims[3])): sfs[i, :, j, k, :] = slv[6](sfs[i, :, j, k, :].reshape(dims[1] * dims[4])).reshape(dims[1], dims[4]) return sfs def _ud2_5pop_5(sfs, slv, dims): for i in range(int(dims[0])): for j in range(int(dims[2])): for k in range(int(dims[4])): sfs[i, :, j, :, k] = slv[5](sfs[i, :, j, :, k].reshape(dims[1] * dims[3])).reshape(dims[1], dims[3]) return sfs def _ud2_5pop_6(sfs, slv, dims): for i in range(int(dims[0])): for j in range(int(dims[3])): for k in range(int(dims[4])): sfs[i, :, :, j, k] = slv[4](sfs[i, :, :, j, k].reshape(dims[1] * dims[2])).reshape(dims[1], dims[2]) return sfs def _ud2_5pop_7(sfs, slv, dims): for i in range(int(dims[1])): for j in range(int(dims[2])): for k in range(int(dims[3])): sfs[:, i, j, k, :] = slv[3](sfs[:, i, j, k, :].reshape(dims[0] * dims[4])).reshape(dims[0], dims[4]) return sfs def _ud2_5pop_8(sfs, slv, dims): for i in range(int(dims[1])): for j in range(int(dims[2])): for k in range(int(dims[4])): sfs[:, i, j, :, k] = slv[2](sfs[:, i, j, :, k].reshape(dims[0] * dims[3])).reshape(dims[0], dims[3]) return sfs def _ud2_5pop_9(sfs, slv, dims): for i in range(int(dims[1])): for j in range(int(dims[3])): for k in range(int(dims[4])): sfs[:, i, :, j, k] = slv[1](sfs[:, i, :, j, k].reshape(dims[0] * dims[2])).reshape(dims[0], dims[2]) return sfs def _ud2_5pop_10(sfs, slv, dims): for i in range(int(dims[2])): for j in range(int(dims[3])): for k in range(int(dims[4])): sfs[:, :, i, j, k] = slv[0](sfs[:, :, i, j, k].reshape(dims[0] * dims[1])).reshape(dims[0], dims[1]) return sfs # update nD with permutations def _update_step1(sfs, Q, dims, order): assert(len(sfs.shape) == len(dims)) assert(len(Q) == len(dims) * (len(dims)-1) / 2) for i in order: sfs = eval('_ud1_' + str(len(dims)) + 'pop_' + str(i + 1) + '(sfs, Q, dims)') return sfs def _update_step2(sfs, slv, dims, order): assert(len(sfs.shape) == len(dims)) assert(len(slv) == len(dims) * (len(dims)-1) / 2) for i in order: sfs = eval('_ud2_' + str(len(dims)) + 'pop_' + str(i + 1) + '(sfs, slv, dims)') return sfs def _permute(tab): res = tab[1:] res.append(tab[0]) return res # timestep computation def compute_dt(sample_sizes, N, s, h, m, dt_default, factor=10.0): sample_sizes = np.array(sample_sizes, dtype=np.float64) N = np.amin(np.array(N)/sample_sizes) sel1 = np.amax(abs(np.array(s) * np.array(h) * sample_sizes)) sel2 = np.amax(abs(np.array(s) * (1-2.0*np.array(h)) * sample_sizes)) mig = np.amax(m) * np.amax(sample_sizes) eps = 10e-16 # to avoid division by zero return min(dt_default, factor * min(2*N, 1.0 / (mig+eps), 1.0 / (sel1+eps), 1.0 / (sel2+eps))) def compute_dt_bis(N, T, drift, selmig, dims): if callable(N): Nmin = N(0)#np.amin(N(0), N(T)) else: Nmin = N nbp = int(len(dims) * (len(dims)-1) / 2) D = _buildD(drift, dims, Nmin) Mat = [(D[i] + selmig[i]).todense() for i in range(nbp)] ev = [np.linalg.eigvals(Mat[i]) for i in range(nbp)] return 0 def _compute_dt_1pop(N, m, s, h, timescale_factor=0.15): maxVM = max(0.25/N, max(m),\ abs(s) * 2*max(np.abs(h + (1-2*h)*0.5) * 0.5*(1-0.5), np.abs(h + (1-2*h)*0.25) * 0.25*(1-0.25))) if maxVM > 0: dt = timescale_factor / maxVM else: dt = np.inf if dt == 0: raise ValueError('Timestep is zero. Values passed in are N=%f, m=%s,' 's=%f, h=%f.' % (N, str(m), s, h)) return dt def compute_dt(N, m=None, s=None, h=None, timescale_factor=0.1): #def compute_dt(N, m=None, s=None, h=None, timescale_factor=0.05): if m is None: m = np.zeros([len(N), len(N)]) if s is None: s = np.zeros(len(N)) if h is None: h = 0.5*np.ones(len(N)) timesteps = [_compute_dt_1pop(N[i], m[i, :], s[i], h[i], timescale_factor) for i in range(len(N))] return min(timesteps) def integrate_nD(sfs0, Npop, tf, dt_fac=0.1, gamma=None, h=None, m=None, theta=1.0, adapt_dt=False, finite_genome=False, theta_fd=None, theta_bd=None, frozen=[False]): """ N : total population size (vector N = (N1,...,Np)) tf : final simulation time (/2N1 generations) gamma : selection coefficients (vector gamma = (gamma1,...,gammap)) theta : mutation rate h : allele dominance (vector h = (h1,...,hp)) m : migration rates matrix (2D array, m[i,j] is the migration rate from pop j to pop i, normalized by 1/4N1) finite_genome : whether to integrate under the finite genome model if we integrate under finite genome model, theta_fd and theta_bd should be given for a "lambda" definition of N - with backward Euler integration scheme where t is the relative time in generations such as t = 0 initially Npop is a lambda function of the time t returning the vector N = (N1,...,Np) or directly the vector if N does not evolve in time """ sfs0 = np.array(sfs0) n = np.array(sfs0.shape)-1 # neutral case if the parameters are not provided if gamma is None: gamma = np.zeros(len(n)) if h is None: h = 0.5 * np.ones(len(n)) if m is None: m = np.zeros([len(n), len(n)]) s = np.array(gamma) h = np.array(h) Tmax = tf * 2.0 dt = Tmax * dt_fac # dimensions of the sfs dims = np.array(n + np.ones(len(n)), dtype=int) d = int(np.prod(dims)) # if theta is single value, mutation rate is same in each population if finite_genome == False: if hasattr(theta, "__len__"): u = np.array(theta) / 4.0 else: u = np.array([theta / 4.0] * len(dims)) else: if hasattr(theta_fd, "__len__"): u =
np.array(theta_fd)
numpy.array
""" Utility functions. Author: <NAME>, agilescientific.com Licence: Apache 2.0 Copyright 2022 Agile Scientific Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from .feature import is_standardized def is_numeric(a): """ Decide if a sequence is numeric. Args: a (array): A sequence. Returns: bool: True if a is numeric. Example: >>> is_numeric([1, 2, 3]) True >>> is_numeric(['a', 'b', 'c']) False """ a = np.asarray(a) return np.issubdtype(a.dtype, np.number) def generate_data(counts): """ Generate data from a list of counts. Args: counts (array): A sequence of class counts. Returns: array: A sequence of classes matching the counts. Example: >>> generate_data([3, 5]) [0, 0, 0, 1, 1, 1, 1, 1] """ data = [c * [i] for i, c in enumerate(counts)] return [item for sublist in data for item in sublist] def sorted_unique(a): """ Unique items in appearance order. `np.unique` is sorted, `set()` is unordered, `pd.unique()` is fast, but we don't have to rely on it. This does the job, and is not too slow. Args: a (array): A sequence. Returns: array: The unique items, in order of first appearance. Example: >>> sorted_unique([3, 0, 0, 1, 3, 2, 3]) array([3, 0, 1, 2]) """ a = np.asarray(a) _, idx = np.unique(a, return_index=True) return a[
np.sort(idx)
numpy.sort
import numpy as np import tensorflow as tf from functools import partial import cv2 as cv import random def gaussian_noise(img_set, mean=0, var=0.001): ret =
np.empty(img_set.shape)
numpy.empty