prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import matplotlib.pyplot as plt import tifffile import numpy as np from polaris.micro import multi from polaris import spang def abc2theta(abc, theta): return abc[0] + abc[1]*np.cos(2*theta) + abc[2]*
np.sin(2*theta)
numpy.sin
import pytest from unittest.mock import patch, MagicMock import open_cp.predictors as testmod import open_cp.data import numpy as np def test_DataTrainer(): test = testmod.DataTrainer() with pytest.raises(TypeError): test.data = "string" test.data = testmod.data.TimedPoints([],[[],[]]) def test_GridPrediction_grid_coord(): g = testmod.GridPrediction(10, 20, xoffset=5, yoffset=15) assert(g.grid_coord(5, 15) == (0,0)) assert(g.grid_coord(14, 34) == (0,0)) assert(g.grid_coord(15, 34) == (1,0)) assert(g.grid_coord(14, 35) == (0,1)) assert(g.grid_coord(15, 35) == (1,1)) def test_GridPrediction_bounding_box_of_cell(): g = testmod.GridPrediction(10, 20, xoffset=5, yoffset=15) bb = g.bounding_box_of_cell(0,0) assert(bb.min == (5,15)) assert(bb.max == (15,35)) def test_GridPrediction(): class Test(testmod.GridPrediction): def __init__(self, xsize, ysize, xoffset = 0, yoffset = 0): super().__init__(xsize, ysize, xoffset, yoffset) def grid_risk(self, gx, gy): assert self.want == (gx, gy) test = Test(10, 10) test.want = (0, 0) test.risk(5, 6) test.want = (1, 2) test.risk(12, 21) def test_grid_risk(): mat = np.random.random((10,10)) pred = testmod.GridPredictionArray(10,15,mat,-20,-45) assert pred.grid_risk(0, 0) == mat[0, 0] assert pred.grid_risk(2, 3) == mat[3, 2] np.testing.assert_allclose(pred.grid_risk([2,3], [4,6]), [mat[4,2], mat[6,3]]) assert pred.risk(-20, -45) == mat[0, 0] assert pred.risk(0, 0) == mat[3, 2] np.testing.assert_allclose(pred.risk([0,-20], [0,-45]), [mat[3,2], mat[0,0]]) def test_GridPrediction_with_offset(): class Test(testmod.GridPrediction): def __init__(self, xsize, ysize, xoffset = 0, yoffset = 0): super().__init__(xsize, ysize, xoffset, yoffset) def grid_risk(self, gx, gy): assert self.want == (gx, gy) test = Test(10, 10, 25, 30) test.want = (0, 0) test.risk(25, 30) test.want = (0, 0) test.risk(34, 39) test.want = (1, 2) test.risk(25 + 15, 30 + 20 + 8) def a_valid_grid_prediction_array(): matrix = np.array([[1,2,3], [4,5,6]]) return testmod.GridPredictionArray(10, 10, matrix) def test_GridPredictionArray(): gpa = a_valid_grid_prediction_array() assert gpa.grid_risk(-1, 0) == 0 assert gpa.grid_risk(0, -1) == 0 assert gpa.grid_risk(0, 0) == 1 assert gpa.grid_risk(2, 1) == 6 assert gpa.grid_risk(2, 0) == 3 assert gpa.grid_risk(3, 0) == 0 assert gpa.grid_risk(0, 2) == 0 def test_GridPredictionArray_intensity_matrix_property(): gpa = a_valid_grid_prediction_array() np.testing.assert_allclose( gpa.intensity_matrix, [[1,2,3], [4,5,6]] ) def test_GridPredictionArray_mesh_data(): gpa = a_valid_grid_prediction_array() xcs, ycs = gpa.mesh_data() np.testing.assert_allclose( xcs, [0, 10, 20, 30] ) np.testing.assert_allclose( ycs, [0, 10, 20] ) def test_GridPredictionArray_clone(): matrix = np.array([[1,2,3], [4,5,6]]) gpa = testmod.GridPredictionArray(5, 10, matrix, 1, 2) cl = gpa.clone() assert (gpa.xoffset, gpa.yoffset) == (cl.xoffset, cl.yoffset) assert (gpa.xextent, gpa.yextent) == (cl.xextent, cl.yextent) assert (gpa.xsize, gpa.ysize) == (cl.xsize, cl.ysize) np.testing.assert_allclose(gpa.intensity_matrix, cl.intensity_matrix) cl.intensity_matrix[0] = [7,8,9] np.testing.assert_allclose(gpa.intensity_matrix, [[1,2,3],[4,5,6]]) np.testing.assert_allclose(cl.intensity_matrix, [[7,8,9],[4,5,6]]) def test_GridPredictionArray_masked_clone(): mask = np.array([[True, True, False], [False, False, True]]) matrix = np.ma.masked_array([[1,2,3], [4,5,6]], mask=mask) gpa = testmod.GridPredictionArray(5, 10, matrix, 1, 2) cl = gpa.clone() assert (gpa.xoffset, gpa.yoffset) == (cl.xoffset, cl.yoffset) assert (gpa.xextent, gpa.yextent) == (cl.xextent, cl.yextent) assert (gpa.xsize, gpa.ysize) == (cl.xsize, cl.ysize) np.testing.assert_allclose(gpa.intensity_matrix, cl.intensity_matrix) cl.intensity_matrix[0] = [7,8,9] cl.intensity_matrix.mask[0] = [True, True, False] cl.intensity_matrix.mask[1,1] = True
np.testing.assert_allclose(gpa.intensity_matrix, [[1,2,3],[4,5,6]])
numpy.testing.assert_allclose
# Copyright 2018-2020 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests for the CV parameter-shift CVParamShiftTape""" import pytest import numpy as np import pennylane as qml from pennylane.tape import CVParamShiftTape hbar = 2 class TestGradMethod: """Tests for parameter gradient methods""" def test_non_differentiable(self): """Test that a non-differentiable parameter is correctly marked""" with CVParamShiftTape() as tape: qml.FockState(1, wires=0) qml.Displacement(0.543, 0, wires=[1]) qml.Beamsplitter(0, 0, wires=[0, 1]) qml.expval(qml.X(wires=[0])) assert tape._grad_method(0) is None assert tape._grad_method(1) == "A" assert tape._grad_method(2) == "A" assert tape._grad_method(3) == "A" assert tape._grad_method(4) == "A" tape._update_gradient_info() assert tape._par_info[0]["grad_method"] is None assert tape._par_info[1]["grad_method"] == "A" assert tape._par_info[2]["grad_method"] == "A" assert tape._par_info[3]["grad_method"] == "A" assert tape._par_info[4]["grad_method"] == "A" def test_no_graph_exception(self): """Test that an exception is raised for analytically differentiable operations if use_graph=False""" with CVParamShiftTape() as tape: qml.Rotation(0.543, wires=[0]) qml.expval(qml.P(0)) with pytest.raises(ValueError, match="must always use the graph"): tape._grad_method(0, use_graph=False) def test_independent(self): """Test that an independent variable is properly marked as having a zero gradient""" with CVParamShiftTape() as tape: qml.Rotation(0.543, wires=[0]) qml.Rotation(-0.654, wires=[1]) qml.expval(qml.P(0)) assert tape._grad_method(0) == "A" assert tape._grad_method(1) == "0" tape._update_gradient_info() assert tape._par_info[0]["grad_method"] == "A" assert tape._par_info[1]["grad_method"] == "0" def test_finite_diff(self, monkeypatch): """If an op has grad_method=F, this should be respected by the CVParamShiftTape""" monkeypatch.setattr(qml.Rotation, "grad_method", "F") with CVParamShiftTape() as tape: qml.Rotation(0.543, wires=[0]) qml.Squeezing(0.543, 0, wires=[0]) qml.expval(qml.P(0)) assert tape._grad_method(0) == "F" assert tape._grad_method(1) == "A" assert tape._grad_method(2) == "A" def test_non_gaussian_operation(self): """Test that a non-Gaussian operation succeeding a differentiable Gaussian operation results in numeric differentiation.""" with CVParamShiftTape() as tape: qml.Rotation(1.0, wires=[0]) qml.Rotation(1.0, wires=[1]) # Non-Gaussian qml.Kerr(1.0, wires=[1]) qml.expval(qml.P(0)) qml.expval(qml.X(1)) # First rotation gate has no succeeding non-Gaussian operation assert tape._grad_method(0) == "A" # Second rotation gate does no succeeding non-Gaussian operation assert tape._grad_method(1) == "F" # Kerr gate does not support the parameter-shift rule assert tape._grad_method(2) == "F" with CVParamShiftTape() as tape: qml.Rotation(1.0, wires=[0]) qml.Rotation(1.0, wires=[1]) # entangle the modes qml.Beamsplitter(1.0, 0.0, wires=[0, 1]) # Non-Gaussian qml.Kerr(1.0, wires=[1]) qml.expval(qml.P(0)) qml.expval(qml.X(1)) # After entangling the modes, the Kerr gate now succeeds # both initial rotations assert tape._grad_method(0) == "F" assert tape._grad_method(1) == "F" assert tape._grad_method(2) == "F" def test_probability(self): """Probability is the expectation value of a higher order observable, and thus only supports numerical differentiation""" with CVParamShiftTape() as tape: qml.Rotation(0.543, wires=[0]) qml.Squeezing(0.543, 0, wires=[0]) qml.probs(wires=0) assert tape._grad_method(0) == "F" assert tape._grad_method(1) == "F" assert tape._grad_method(2) == "F" def test_variance(self): """If the variance of the observable is first order, then parameter-shift is supported. If the observable is second order, however, only finite-differences is supported.""" with CVParamShiftTape() as tape: qml.Rotation(1.0, wires=[0]) qml.var(qml.P(0)) # first order assert tape._grad_method(0) == "A" with CVParamShiftTape() as tape: qml.Rotation(1.0, wires=[0]) qml.var(qml.NumberOperator(0)) # second order assert tape._grad_method(0) == "F" with CVParamShiftTape() as tape: qml.Rotation(1.0, wires=[0]) qml.Rotation(1.0, wires=[1]) qml.Beamsplitter(0.5, 0.0, wires=[0, 1]) qml.var(qml.NumberOperator(0)) # second order qml.expval(qml.NumberOperator(1)) assert tape._grad_method(0) == "F" assert tape._grad_method(1) == "F" assert tape._grad_method(2) == "F" assert tape._grad_method(3) == "F" def test_second_order_expectation(self): """Test that the expectation of a second-order observable forces the gradient method to use the second-order parameter-shift rule""" with CVParamShiftTape() as tape: qml.Rotation(1.0, wires=[0]) qml.expval(qml.NumberOperator(0)) # second order assert tape._grad_method(0) == "A2" def test_unknown_op_grad_method(self, monkeypatch): """Test that an exception is raised if an operator has a grad method defined that the CV parameter-shift tape doesn't recognize""" monkeypatch.setattr(qml.Rotation, "grad_method", "B") with CVParamShiftTape() as tape: qml.Rotation(1.0, wires=0) qml.expval(qml.X(0)) with pytest.raises(ValueError, match="unknown gradient method"): tape._grad_method(0) class TestTransformObservable: """Tests for the _transform_observable method""" def test_incorrect_heisenberg_size(self, monkeypatch): """The number of dimensions of a CV observable Heisenberg representation does not match the ev_order attribute.""" monkeypatch.setattr(qml.P, "ev_order", 2) with pytest.raises(ValueError, match="Mismatch between the polynomial order"): CVParamShiftTape._transform_observable(qml.P(0), np.identity(3), device_wires=[0]) def test_higher_order_observable(self, monkeypatch): """An exception should be raised if the observable is higher than 2nd order.""" monkeypatch.setattr(qml.P, "ev_order", 3) with pytest.raises(NotImplementedError, match="order > 2 not implemented"): CVParamShiftTape._transform_observable(qml.P(0), np.identity(3), device_wires=[0]) def test_first_order_transform(self, tol): """Test that a first order observable is transformed correctly""" # create a symmetric transformation Z = np.arange(3**2).reshape(3, 3) Z = Z.T + Z obs = qml.X(0) res = CVParamShiftTape._transform_observable(obs, Z, device_wires=[0]) # The Heisenberg representation of the X # operator is simply... X expected = np.array([0, 1, 0]) @ Z assert isinstance(res, qml.PolyXP) assert res.wires.labels == (0,) assert np.allclose(res.data[0], expected, atol=tol, rtol=0) def test_second_order_transform(self, tol): """Test that a second order observable is transformed correctly""" # create a symmetric transformation Z = np.arange(3**2).reshape(3, 3) Z = Z.T + Z obs = qml.NumberOperator(0) res = CVParamShiftTape._transform_observable(obs, Z, device_wires=[0]) # The Heisenberg representation of the number operator # is (X^2 + P^2) / (2*hbar) - 1/2 A = np.array([[-0.5, 0, 0], [0, 0.25, 0], [0, 0, 0.25]]) expected = A @ Z + Z @ A assert isinstance(res, qml.PolyXP) assert res.wires.labels == (0,) assert np.allclose(res.data[0], expected, atol=tol, rtol=0) def test_device_wire_expansion(self, tol): """Test that the transformation works correctly for the case where the transformation applies to more wires than the observable.""" # create a 3-mode symmetric transformation wires = qml.wires.Wires([0, "a", 2]) ndim = 1 + 2 * len(wires) Z = np.arange(ndim**2).reshape(ndim, ndim) Z = Z.T + Z obs = qml.NumberOperator(0) res = CVParamShiftTape._transform_observable(obs, Z, device_wires=wires) # The Heisenberg representation of the number operator # is (X^2 + P^2) / (2*hbar) - 1/2. We use the ordering # I, X0, Xa, X2, P0, Pa, P2. A = np.diag([-0.5, 0.25, 0.25, 0, 0, 0, 0]) expected = A @ Z + Z @ A assert isinstance(res, qml.PolyXP) assert res.wires == wires assert np.allclose(res.data[0], expected, atol=tol, rtol=0) class TestParameterShiftLogic: """Test for the dispatching logic of the parameter shift method""" def test_force_order2(self, mocker): """Test that if the force_order2 keyword argument is provided, the second order parameter shift rule is forced""" dev = qml.device("default.gaussian", wires=1) with CVParamShiftTape() as tape: qml.Displacement(1.0, 0.0, wires=[0]) qml.Rotation(2.0, wires=[0]) qml.expval(qml.X(0)) tape.trainable_params = {0, 1, 2} spy1 = mocker.spy(tape, "parameter_shift_first_order") spy2 = mocker.spy(tape, "parameter_shift_second_order") tape.jacobian(dev, method="analytic", force_order2=False) spy1.assert_called() spy2.assert_not_called() tape.jacobian(dev, method="analytic", force_order2=True) spy2.assert_called() def test_no_poly_xp_support(self, mocker, monkeypatch, caplog): """Test that if a device does not support PolyXP and the second-order parameter-shift rule is required, we fallback to finite differences.""" dev = qml.device("default.gaussian", wires=1) monkeypatch.delitem(dev._observable_map, "PolyXP") with CVParamShiftTape() as tape: qml.Rotation(1.0, wires=[0]) qml.expval(qml.NumberOperator(0)) tape.trainable_params = {0} assert tape.analytic_pd == tape.parameter_shift spy_analytic = mocker.spy(tape, "analytic_pd") spy_first_order_shift = mocker.spy(tape, "parameter_shift_first_order") spy_second_order_shift = mocker.spy(tape, "parameter_shift_second_order") spy_transform = mocker.spy(qml.operation.CVOperation, "heisenberg_tr") spy_numeric = mocker.spy(tape, "numeric_pd") with pytest.warns(UserWarning, match="does not support the PolyXP observable"): tape.jacobian(dev, method="analytic") spy_analytic.assert_called() spy_first_order_shift.assert_not_called() spy_second_order_shift.assert_not_called() spy_transform.assert_not_called() spy_numeric.assert_called() def test_no_poly_xp_support_variance(self, mocker, monkeypatch, caplog): """Test that if a device does not support PolyXP and the variance parameter-shift rule is required, we fallback to finite differences.""" dev = qml.device("default.gaussian", wires=1) monkeypatch.delitem(dev._observable_map, "PolyXP") with CVParamShiftTape() as tape: qml.Rotation(1.0, wires=[0]) qml.var(qml.X(0)) tape.trainable_params = {0} assert tape.analytic_pd == tape.parameter_shift_var spy1 = mocker.spy(tape, "parameter_shift_first_order") spy2 = mocker.spy(tape, "parameter_shift_second_order") spy_numeric = mocker.spy(tape, "numeric_pd") with pytest.warns(UserWarning, match="does not support the PolyXP observable"): tape.jacobian(dev, method="analytic") spy1.assert_not_called() spy2.assert_not_called() spy_numeric.assert_called() class TestExpectationQuantumGradients: """Tests for the quantum gradients of various gates with expectation value output""" def test_rotation_gradient(self, mocker, tol): """Test the gradient of the rotation gate""" dev = qml.device("default.gaussian", wires=2, hbar=hbar) alpha = 0.5643 theta = 0.23354 with CVParamShiftTape() as tape: qml.Displacement(alpha, 0.0, wires=[0]) qml.Rotation(theta, wires=[0]) qml.expval(qml.X(0)) tape._update_gradient_info() tape.trainable_params = {2} spy1 = mocker.spy(CVParamShiftTape, "parameter_shift_first_order") spy2 = mocker.spy(CVParamShiftTape, "parameter_shift_second_order") grad_A = tape.jacobian(dev, method="analytic") spy1.assert_called() spy2.assert_not_called() grad_A2 = tape.jacobian(dev, method="analytic", force_order2=True) spy2.assert_called() expected = -hbar * alpha * np.sin(theta) assert np.allclose(grad_A, expected, atol=tol, rtol=0) assert np.allclose(grad_A2, expected, atol=tol, rtol=0) def test_beamsplitter_gradient(self, mocker, tol): """Test the gradient of the beamsplitter gate""" dev = qml.device("default.gaussian", wires=2, hbar=hbar) alpha = 0.5643 theta = 0.23354 with CVParamShiftTape() as tape: qml.Displacement(alpha, 0.0, wires=[0]) qml.Beamsplitter(theta, 0.0, wires=[0, 1]) qml.expval(qml.X(0)) tape._update_gradient_info() tape.trainable_params = {2} spy1 = mocker.spy(CVParamShiftTape, "parameter_shift_first_order") spy2 = mocker.spy(CVParamShiftTape, "parameter_shift_second_order") grad_A = tape.jacobian(dev, method="analytic") spy1.assert_called() spy2.assert_not_called() grad_A2 = tape.jacobian(dev, method="analytic", force_order2=True) spy2.assert_called() expected = -hbar * alpha * np.sin(theta) assert np.allclose(grad_A, expected, atol=tol, rtol=0) assert np.allclose(grad_A2, expected, atol=tol, rtol=0) def test_displacement_gradient(self, mocker, tol): """Test the gradient of the displacement gate""" dev = qml.device("default.gaussian", wires=2, hbar=hbar) r = 0.5643 phi = 0.23354 with CVParamShiftTape() as tape: qml.Displacement(r, phi, wires=[0]) qml.expval(qml.X(0)) tape._update_gradient_info() tape.trainable_params = {0, 1} spy1 = mocker.spy(CVParamShiftTape, "parameter_shift_first_order") spy2 = mocker.spy(CVParamShiftTape, "parameter_shift_second_order") grad_A = tape.jacobian(dev, method="analytic") spy1.assert_called() spy2.assert_not_called() grad_A2 = tape.jacobian(dev, method="analytic", force_order2=True) spy2.assert_called() expected = [hbar * np.cos(phi), -hbar * r * np.sin(phi)] assert np.allclose(grad_A, expected, atol=tol, rtol=0) assert np.allclose(grad_A2, expected, atol=tol, rtol=0) def test_squeezed_gradient(self, mocker, tol): """Test the gradient of the squeezed gate. We also ensure that the gradient is correct even when an operation with no Heisenberg representation is a descendent.""" dev = qml.device("default.gaussian", wires=2, hbar=hbar) class Rotation(qml.operation.CVOperation): """Dummy operation that does not support heisenberg representation""" num_wires = 1 num_params = 1 grad_method = "A" alpha = 0.5643 r = 0.23354 with CVParamShiftTape() as tape: qml.Displacement(alpha, 0.0, wires=[0]) qml.Squeezing(r, 0.0, wires=[0]) # The following two gates have no effect # on the circuit gradient and expectation value qml.Beamsplitter(0.0, 0.0, wires=[0, 1]) Rotation(0.543, wires=[1]) qml.expval(qml.X(0)) tape._update_gradient_info() tape.trainable_params = {2} spy1 = mocker.spy(CVParamShiftTape, "parameter_shift_first_order") spy2 = mocker.spy(CVParamShiftTape, "parameter_shift_second_order") grad_A = tape.jacobian(dev, method="analytic") spy1.assert_called() spy2.assert_not_called() grad_A2 = tape.jacobian(dev, method="analytic", force_order2=True) spy2.assert_called() expected = -np.exp(-r) * hbar * alpha assert np.allclose(grad_A, expected, atol=tol, rtol=0) assert np.allclose(grad_A2, expected, atol=tol, rtol=0) def test_squeezed_number_state_gradient(self, mocker, tol): """Test the numerical gradient of the squeeze gate with with number state expectation is correct""" dev = qml.device("default.gaussian", wires=2, hbar=hbar) r = 0.23354 with CVParamShiftTape() as tape: qml.Squeezing(r, 0.0, wires=[0]) # the fock state projector is a 'non-Gaussian' observable qml.expval(qml.FockStateProjector(np.array([2, 0]), wires=[0, 1])) tape._update_gradient_info() tape.trainable_params = {0} assert tape._par_info[0]["grad_method"] == "F" spy = mocker.spy(CVParamShiftTape, "parameter_shift") grad = tape.jacobian(dev) spy.assert_not_called() # (d/dr) |<2|S(r)>|^2 = 0.5 tanh(r)^3 (2 csch(r)^2 - 1) sech(r) expected = 0.5 * np.tanh(r) ** 3 * (2 / (np.sinh(r) ** 2) - 1) / np.cosh(r) assert np.allclose(grad, expected, atol=tol, rtol=0) def test_multiple_squeezing_gradient(self, mocker, tol): """Test that the gradient of a circuit with two squeeze gates is correct.""" dev = qml.device("default.gaussian", wires=2, hbar=hbar) r0, phi0, r1, phi1 = [0.4, -0.3, -0.7, 0.2] with CVParamShiftTape() as tape: qml.Squeezing(r0, phi0, wires=[0]) qml.Squeezing(r1, phi1, wires=[0]) qml.expval(qml.NumberOperator(0)) # second order tape._update_gradient_info() spy2 = mocker.spy(CVParamShiftTape, "parameter_shift_second_order") grad_A2 = tape.jacobian(dev, method="analytic", force_order2=True) spy2.assert_called() # check against the known analytic formula expected = np.zeros([4]) expected[0] = np.cosh(2 * r1) * np.sinh(2 * r0) + np.cos(phi0 - phi1) * np.cosh( 2 * r0 ) * np.sinh(2 * r1) expected[1] = -0.5 * np.sin(phi0 - phi1) * np.sinh(2 * r0) * np.sinh(2 * r1) expected[2] = np.cos(phi0 - phi1) * np.cosh(2 * r1) * np.sinh(2 * r0) + np.cosh( 2 * r0 ) * np.sinh(2 * r1) expected[3] = 0.5 * np.sin(phi0 - phi1) * np.sinh(2 * r0) * np.sinh(2 * r1) assert np.allclose(grad_A2, expected, atol=tol, rtol=0) def test_multiple_second_order_observables(self, mocker, tol): """Test that the gradient of a circuit with multiple second order observables is correct""" dev = qml.device("default.gaussian", wires=2, hbar=hbar) r = [0.4, -0.7, 0.1, 0.2] p = [0.1, 0.2, 0.3, 0.4] with CVParamShiftTape() as tape: qml.Squeezing(r[0], p[0], wires=[0]) qml.Squeezing(r[1], p[1], wires=[0]) qml.Squeezing(r[2], p[2], wires=[1]) qml.Squeezing(r[3], p[3], wires=[1]) qml.expval(qml.NumberOperator(0)) # second order qml.expval(qml.NumberOperator(1)) # second order tape._update_gradient_info() spy2 = mocker.spy(CVParamShiftTape, "parameter_shift_second_order") grad_A2 = tape.jacobian(dev, method="analytic", force_order2=True) spy2.assert_called() # check against the known analytic formula def expected_grad(r, p): return np.array( [ np.cosh(2 * r[1]) * np.sinh(2 * r[0]) + np.cos(p[0] - p[1]) * np.cosh(2 * r[0]) * np.sinh(2 * r[1]), -0.5 * np.sin(p[0] - p[1]) * np.sinh(2 * r[0]) * np.sinh(2 * r[1]), np.cos(p[0] - p[1]) * np.cosh(2 * r[1]) * np.sinh(2 * r[0]) + np.cosh(2 * r[0]) * np.sinh(2 * r[1]), 0.5 * np.sin(p[0] - p[1]) * np.sinh(2 * r[0]) * np.sinh(2 * r[1]), ] ) expected = np.zeros([2, 8]) expected[0, :4] = expected_grad(r[:2], p[:2]) expected[1, 4:] = expected_grad(r[2:], p[2:]) assert np.allclose(grad_A2, expected, atol=tol, rtol=0) @pytest.mark.parametrize("obs", [qml.X, qml.Identity]) @pytest.mark.parametrize( "op", [qml.Displacement(0.1, 0.2, wires=0), qml.TwoModeSqueezing(0.1, 0.2, wires=[0, 1])] ) def test_gradients_gaussian_circuit(self, op, obs, mocker, tol): """Tests that the gradients of circuits of gaussian gates match between the finite difference and analytic methods.""" tol = 1e-2 with CVParamShiftTape() as tape: qml.Displacement(0.5, 0, wires=0) qml.apply(op) qml.Beamsplitter(1.3, -2.3, wires=[0, 1]) qml.Displacement(-0.5, 0.1, wires=0) qml.Squeezing(0.5, -1.5, wires=0) qml.Rotation(-1.1, wires=0) qml.expval(obs(wires=0)) dev = qml.device("default.gaussian", wires=2) res = tape.execute(dev) tape._update_gradient_info() tape.trainable_params = set(range(2, 2 + op.num_params)) # check that every parameter is analytic for i in range(op.num_params): assert tape._par_info[2 + i]["grad_method"][0] == "A" spy = mocker.spy(CVParamShiftTape, "parameter_shift_first_order") grad_F = tape.jacobian(dev, method="numeric") grad_A2 = tape.jacobian(dev, method="analytic", force_order2=True) spy.assert_not_called() assert np.allclose(grad_A2, grad_F, atol=tol, rtol=0) if obs.ev_order == 1: grad_A = tape.jacobian(dev, method="analytic") spy.assert_called() assert np.allclose(grad_A, grad_F, atol=tol, rtol=0) @pytest.mark.parametrize("t", [0, 1]) def test_interferometer_unitary(self, t, tol): """An integration test for CV gates that support analytic differentiation if succeeding the gate to be differentiated, but cannot be differentiated themselves (for example, they may be Gaussian but accept no parameters, or may accept a numerical array parameter.). This ensures that, assuming their _heisenberg_rep is defined, the quantum gradient analytic method can still be used, and returns the correct result. Currently, the only such operation is qml.InterferometerUnitary. In the future, we may consider adding a qml.GaussianTransfom operator. """ if t == 1: pytest.xfail( "There is a bug in the second order CV parameter-shift rule; " "phase arguments return the incorrect derivative." ) # Note: this bug currently affects PL core as well: # # dev = qml.device("default.gaussian", wires=2) # # U = np.array([[ 0.51310276+0.81702166j, 0.13649626+0.22487759j], # [ 0.26300233+0.00556194j, -0.96414101-0.03508489j]]) # # @qml.qnode(dev) # def circuit(r, phi): # qml.Displacement(r, phi, wires=0) # qml.InterferometerUnitary(U, wires=[0, 1]) # return qml.expval(qml.X(0)) # # r = 0.543 # phi = 0. # # >>> print(circuit.jacobian([r, phi], options={"force_order2":False})) # [[ 1.02620552 0.14823494]] # >>> print(circuit.jacobian([r, phi], options={"force_order2":True})) # [[ 1.02620552 -0.88728552]] U = np.array( [ [0.51310276 + 0.81702166j, 0.13649626 + 0.22487759j], [0.26300233 + 0.00556194j, -0.96414101 - 0.03508489j], ] ) with CVParamShiftTape() as tape: qml.Displacement(0.543, 0, wires=0) qml.InterferometerUnitary(U, wires=[0, 1]) qml.expval(qml.X(0)) tape._update_gradient_info() tape.trainable_params = {t} assert tape._par_info[0]["grad_method"] == "A" assert tape._par_info[1]["grad_method"] == "A" dev = qml.device("default.gaussian", wires=2) grad_F = tape.jacobian(dev, method="numeric") grad_A = tape.jacobian(dev, method="analytic") grad_A2 = tape.jacobian(dev, method="analytic", force_order2=True) # the different methods agree assert np.allclose(grad_A, grad_F, atol=tol, rtol=0) assert np.allclose(grad_A2, grad_F, atol=tol, rtol=0) class TestVarianceQuantumGradients: """Tests for the quantum gradients of various gates with variance measurements""" def test_first_order_observable(self, tol): """Test variance of a first order CV observable""" dev = qml.device("default.gaussian", wires=1) r = 0.543 phi = -0.654 with CVParamShiftTape() as tape: qml.Squeezing(r, 0, wires=0) qml.Rotation(phi, wires=0) qml.var(qml.X(0)) tape.trainable_params = {0, 2} res = tape.execute(dev) expected = np.exp(2 * r) * np.sin(phi) ** 2 + np.exp(-2 * r) * np.cos(phi) ** 2 assert np.allclose(res, expected, atol=tol, rtol=0) # circuit jacobians grad_F = tape.jacobian(dev, method="numeric") grad_A = tape.jacobian(dev, method="analytic") expected = np.array( [ [ 2 * np.exp(2 * r) * np.sin(phi) ** 2 - 2 * np.exp(-2 * r) * np.cos(phi) ** 2, 2 * np.sinh(2 * r) * np.sin(2 * phi), ] ] ) assert
np.allclose(grad_A, expected, atol=tol, rtol=0)
numpy.allclose
"""Test model.""" import argparse import base64 from datetime import datetime import os import shutil import cv2 import numpy as np import socketio import eventlet import eventlet.wsgi from PIL import Image from flask import Flask from io import BytesIO #import lineDetector import torch from torch.autograd import Variable import torchvision.transforms as transforms import matplotlib.pylab as plt #from lineDetector import canny_edge_detector, create_coordinates, region_of_interest, display_lines, average_slope_intercept import numpy as np from model import * sio = socketio.Server() app = Flask(__name__) model = None prev_image_array = None transformations = transforms.Compose( [transforms.Lambda(lambda x: (x / 127.5) - 1.0)]) class SimplePIController: def __init__(self, Kp, Ki): self.Kp = Kp self.Ki = Ki self.set_point = 0. self.error = 0. self.integral = 0. def set_desired(self, desired): self.set_point = desired def update(self, measurement): # proportional error self.error = self.set_point - measurement # integral error self.integral += self.error return self.Kp * self.error + self.Ki * self.integral controller = SimplePIController(10, 0.0010) set_speed = 20 controller.set_desired(set_speed) # MAX_SPEED = 15 # MIN_SPEED = 10 # speed_limit = MAX_SPEED #image_buf = np.zeros((1, 59, 255, 3)) #state_buf = np.zeros((1,4)) #font = cv2.FONT_HERSHEY_SIMPLEX #bottomLeftCornerOfText = (10,10) #fontScale = 0.3 #fontColor = (255,0,0) #lineType = 2 def drawDirection(img, steeringAngle): centerOfImg = (150, 150) axesLength = (25, 100) angleRot = 0 startAngle = 0 endAngle = int(90 * steeringAngle / 1.2) colorRed = (0, 0, 255) colorGreen = (0, 255, 0) thickness = 2 #image = cv2.ellipse(image, center_coordinates, axesLength, anglerot, startAngle, endAngle, color, thickness) if steeringAngle > 0: center_coordinates = (150 + 25, 140) startAngle = 0 angleRot = 180 poly = cv2.ellipse2Poly(center_coordinates, axesLength, angleRot, startAngle, endAngle, 10) polyarray = np.array(poly) polyCasted =
np.int32([polyarray])
numpy.int32
import logging from os.path import dirname, join, realpath import numpy as np import pandas as pd import matplotlib.pyplot as plt import astroplan as ap from scipy.constants import c as c_light_ms from tqdm import tqdm from skimage import io from skimage import transform as tf from scipy.interpolate import interp1d from scipy.optimize import curve_fit from scipy.stats import ttest_ind, norm, t from astropy import units as u from astropy.constants import c from astropy.utils.iers import IERS_Auto from cats.simulator.detector import Crires from cats.extractor.runner import CatsRunner from exoorbit.orbit import Orbit # TODO List: # - automatically mask points before fitting with SME # - if star and planet steps aren't run manually, we use the initial values # instead we should load the data if possible # - Tests for all the steps # - Refactoring of the steps, a lot of the code is strewm all over the place # - Determine Uncertainties for each point def shear(x, shear=1, inplace=False): afine_tf = tf.AffineTransform(shear=shear) modified = tf.warp(x, inverse_map=afine_tf) return modified def gauss(x, height, mu, sig, floor): return height * np.exp(-(((x - mu) / sig) ** 2) / 2) + floor def gaussfit(x, y, p0=None): """ Fit a simple gaussian to data gauss(x, a, mu, sigma, floor) = a * exp(-z**2/2) + floor with z = (x - mu) / sigma Parameters ---------- x : array(float) x values y : array(float) y values Returns ------- gauss(x), parameters fitted values for x, fit paramters (a, mu, sigma) """ if p0 is None: p0 = [np.max(y) - np.min(y), 0, 1, np.min(y)] popt, _ = curve_fit(gauss, x, y, p0=p0) return gauss(x, *popt), popt def welch_t(a, b, ua=None, ub=None): # t = (mean(a) - mean(b)) / sqrt(std(a)**2 + std(b)**2) if ua is None: ua = a.std() / np.sqrt(a.size) if ub is None: ub = b.std() / np.sqrt(b.size) xa = a.mean() xb = b.mean() t = (xa - xb) / np.sqrt(ua**2 + ub**2) return t # Update IERS tables if necessary IERS_Auto() # Detector setting = "K/2/4" detectors = [1, 2, 3] orders = [7, 6, 5, 4, 3, 2] detector = Crires(setting, detectors, orders=orders) # Linelist linelist = join(dirname(__file__), "crires_k_2_4.lin") # Star info star = "WASP-107" planet = "b" # Initialize the CATS runner dataset = "WASP-107b_SNR200" base_dir = realpath(join(dirname(__file__), f"../datasets/{dataset}")) raw_dir = join(base_dir, "Spectrum_00") medium_dir = join(base_dir, "medium") done_dir = join(base_dir, "done") runner = CatsRunner( detector, star, planet, linelist, base_dir=base_dir, raw_dir=raw_dir, medium_dir=medium_dir, done_dir=done_dir, ) rv_step = 0.25 rv_range = 200 runner.configuration["cross_correlation"]["rv_range"] = rv_range runner.configuration["cross_correlation"]["rv_points"] = int((2 * rv_range + 1) / rv_step) runner.configuration["cross_correlation_reference"]["rv_range"] = rv_range runner.configuration["cross_correlation_reference"]["rv_points"] = int((2 * rv_range + 1) / rv_step) # Override data with known information star = runner.star planet = runner.planet orbit = Orbit(star, planet) planet.radius = 1 * u.Rjup planet.mass = 1 * u.Mjup atmosphere_height = planet.atm_scale_height(star.teff) snr = star.radius ** 2 / (2 * planet.radius * atmosphere_height) snr = snr.decompose() velocity_semi_amplitude = orbit.radial_velocity_semiamplitude_planet() t_exp = c / (2 * np.pi * velocity_semi_amplitude) * planet.period / detector.resolution t_exp = t_exp.decompose() print("SNR required: ", snr) print("Maximum exposure time: ", t_exp) print(f"Planet Velocity Kp {velocity_semi_amplitude.to('km/s')}") # Run the Runner # data = runner.run(["solve_problem"]) # d = data["solve_problem"] # for k, v in d.items(): # plt.plot(v.wavelength, v.flux, label=f"{k}") # plt.legend() # plt.show() # data = runner.run_module("cross_correlation_reference", load=False) data = runner.run_module("cross_correlation", load=True) spectra = runner.data["spectra"] # Barycentric correction observer = ap.Observer.at_site("paranal") obstime = spectra.datetime[len(spectra)//2] sky_location = star.coordinates sky_location.obstime = obstime sky_location.location = observer.location correction = sky_location.radial_velocity_correction() # runner.steps["cross_correlation"].plot(data, sysrem_iterations=5, sysrem_iterations_afterwards=6) # for i in range(3, 10): # plt.plot(np.sum(data[f"{i}"][10:27], axis=0) / 100, label=f"{i}") # for j in range(10): # plt.plot(np.sum(data[f"{i}.{j}"][10:27], axis=0) / 100, label=f"{i}.{j}") data = data["7"] config = runner.configuration["cross_correlation"] rv_range = config["rv_range"] rv_points = config["rv_points"] rv_step = (2 * rv_range + 1) / rv_points rv = np.linspace(-rv_range, rv_range, rv_points) plt.imshow(data, aspect="auto", origin="lower") plt.xlabel("rv [km/s]") xticks = plt.xticks()[0][1:-1] xticks_labels = np.interp(xticks, np.arange(len(rv)), rv) xticks_labels = [f"{x:.3g}" for x in xticks_labels] plt.xticks(xticks, labels=xticks_labels) plt.show() datetime = spectra.datetime phi = (datetime - planet.time_of_transit) / planet.period phi = phi.to_value(1) # We only care about the fraction phi = phi % 1 c_light = c_light_ms * 1e-3 interpolator = interp1d(rv, data, kind="linear", bounds_error=False) vsys_min, vsys_max = 0, 25 kp_min, kp_max = 0, 300 vsys = np.linspace(vsys_min, vsys_max, int((vsys_max-vsys_min+1)//rv_step)) kp = np.linspace(kp_min, kp_max, int((kp_max-kp_min+1)//rv_step)) combined = np.zeros((len(kp), len(vsys))) for i, vs in enumerate(tqdm(vsys)): for j, k in enumerate(tqdm(kp, leave=False)): vp = vs + k * np.sin(2 * np.pi * phi) # shifted = [np.interp(vp[i], rv, data[i], left=np.nan, right=np.nan) for i in range(len(vp))] shifted = np.diag(interpolator(vp)) combined[j, i] = np.nansum(shifted) # Normalize to the number of input spectra combined /= data.shape[0] combined /= combined.std() # Normalize to median 0 median = np.nanmedian(combined) combined -= median kp_peak = combined.shape[0] // 2 kp_width = kp_peak for i in range(3): # Determine the peak position in vsys and kp kp_width_int = int(np.ceil(kp_width)) mean_vsys = np.nanmean(combined[kp_peak-kp_width_int+1:kp_peak+kp_width_int+1, :], axis=0) vsys_peak = np.argmax(mean_vsys) # And then fit gaussians to determine the width curve, vsys_popt = gaussfit( vsys, mean_vsys, p0=[mean_vsys[vsys_peak] - np.min(mean_vsys), vsys[vsys_peak], 1,
np.min(mean_vsys)
numpy.min
import matplotlib as mpl import matplotlib.patches as patches import matplotlib.pyplot as plt import networkx as nx import numpy as np import seaborn as sns from src.utils import get_points_to_plot # Standard colors for uniform plots COLOR_SILVER = '#C0C0C0' COLOR_SILVER_RGB = (192 / 255, 192 / 255, 192 / 255) + (0.2,) COLOR_INDIGO_RGB = (55 / 255, 0 / 255, 175 / 255) + (0.5,) COLOR_CARNATION_RGB = np.array((247 / 255, 96 / 255, 114 / 255, 1)).reshape((1, -1)) CMAP = plt.cm.get_cmap('Blues') def get_nb_points(data): if data.xs is not None: return len(data.xs) elif data.A is not None: return len(data.A) else: raise KeyError('What data are you using?') def append_to_binary(number, new_digit): return int(str(bin(number) + str(new_digit)), 2) def get_next_id(current_id, direction): if current_id == 0: if direction == 'left': return 1 else: return 2 level = int(np.ceil(np.log2(current_id))) if direction == 'left': return current_id + 2 ** level + 1 else: return current_id + 2 ** level + 2 def plot_dataset(data, colors, ax=None, eq_cuts=None, cmap=None, add_colorbar=True, pos=None): if data.xs is not None: ax = plot_dataset_metric(data.xs, data.cs, colors, eq_cuts, ax, cmap, add_colorbar) elif data.G is not None: ax, pos = plot_dataset_graph(data.G, data.ys, colors, ax, cmap, add_colorbar, pos) return ax, pos def add_colorbar_to_ax(ax, cmap): cb = plt.colorbar(mpl.cm.ScalarMappable(norm=mpl.colors.Normalize(vmin=0, vmax=1), cmap=cmap), ax=ax, orientation='vertical') cb.ax.set_title('p', y=-.05) return ax def plot_dataset_graph(G, ys, colors, ax, cmap, add_colorbar, pos): if pos is None: pos = get_position(G, ys) nx.draw_networkx(G, pos=pos, ax=ax, node_color=colors, edge_color=COLOR_SILVER, with_labels=False, edgecolors='black') if add_colorbar: ax = add_colorbar_to_ax(ax, cmap) return ax, pos def plot_dataset_metric(xs, cs, colors, eq_cuts, ax, cmap, add_colorbar): plt.style.use('ggplot') plt.ioff() ax.tick_params(axis='x', colors=(0, 0, 0, 0)) ax.tick_params(axis='y', colors=(0, 0, 0, 0)) ax.set_aspect('equal', 'box') ax.grid() xs_embedded, cs_embedded = get_points_to_plot(xs, cs) sc = ax.scatter(xs_embedded[:, 0], xs_embedded[:, 1], color=colors, vmin=0, vmax=1, edgecolor='black') if eq_cuts is not None: for eq in eq_cuts: x, y = get_lines(xs, eq) ax.plot(x, y, 'k--') if add_colorbar: ax = add_colorbar_to_ax(ax, cmap) return ax def labels_to_colors(ys, cmap): nb_points = len(ys) colors = np.zeros((nb_points, 4)) normalize_ys = mpl.colors.Normalize(vmin=0, vmax=np.max(ys)) for y in np.unique(ys): idx_current = (ys == y).nonzero()[0] color = cmap(normalize_ys(y)) colors[idx_current, :] = np.array(color).reshape((1, -1)) return colors def plot_soft_predictions(data, contracted_tree, eq_cuts=None, id_node=0, path=None): plt.style.use('ggplot') plt.ioff() cmap_groundtruth = plt.cm.get_cmap('tab10') cmap_heatmap = plt.cm.get_cmap('Blues') if path is not None: output_path = path output_path.mkdir(parents=True, exist_ok=True) if data.ys is not None: fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(11, 10)) colors = labels_to_colors(data.ys, cmap=cmap_groundtruth) ax, pos = plot_dataset(data, colors, eq_cuts=eq_cuts, ax=ax, add_colorbar=False) fig.savefig(output_path / f"groundtruth.svg") plt.close(fig) plot_soft_prediction_node(data, contracted_tree.root, eq_cuts=eq_cuts, id_node=0, cmap=cmap_heatmap, path=path, pos=pos) def plot_soft_prediction_node(data, node, eq_cuts, id_node, cmap, path, pos): colors = cmap(node.p) if eq_cuts is not None: if len(node.characterizing_cuts) != 0: id_characterizing_cuts = list(node.characterizing_cuts.keys()) eq_characterizing_cuts = eq_cuts[id_characterizing_cuts] else: eq_characterizing_cuts = [] else: eq_characterizing_cuts = [] fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(20, 10)) plot_dataset(data, colors, eq_cuts=eq_characterizing_cuts, ax=ax, cmap=cmap, pos=pos) fig.savefig(path / f"node_nb_{id_node:02d}.svg") plt.close(fig) if node.left_child is not None: id_left = get_next_id(id_node, 'left') plot_soft_prediction_node(data, node.left_child, eq_cuts, id_left, cmap, path, pos=pos) if node.right_child is not None: id_right = get_next_id(id_node, 'right') plot_soft_prediction_node(data, node.right_child, eq_cuts, id_right, cmap, path, pos=pos) def plot_hard_predictions(data, ys_predicted, path=None): cmap_groundtruth = plt.cm.get_cmap('BuPu') cmap_predictions = plt.cm.get_cmap('OrRd') if path is not None: output_path = path output_path.mkdir(parents=True, exist_ok=True) if data.ys is not None: fig, (ax_true, ax_predicted) = plt.subplots(nrows=1, ncols=2, figsize=(20, 10)) colors_true = labels_to_colors(data.ys, cmap=cmap_groundtruth) ax_true = plot_dataset(data, colors_true, ax=ax_true, add_colorbar=False) else: fig, ax_predicted = plt.subplots(nrows=1, ncols=1, figsize=(20, 10)) colors_predicted = labels_to_colors(ys_predicted, cmap=cmap_predictions) ax_predicted = plot_dataset(data, colors_predicted, ax=ax_predicted, add_colorbar=False) fig.savefig(output_path / f"hard_clustering.svg") plt.close(fig) def get_position(G, ys): if ys is not None: pos = nx.random_layout(G) ncls = np.max(ys) + 1 xoff = np.sin(2 * np.pi * ys / ncls) * 2 yoff = np.cos(2 * np.pi * ys / ncls) * 2 for v in G: pos[v][0] += xoff[v] pos[v][1] += yoff[v] pos = nx.spring_layout(G, pos=pos, iterations=1) elif nx.is_connected(G): pos = nx.spectral_layout(G) pos = nx.spring_layout(G, pos=pos, k=.5, iterations=100) else: pos = nx.kamada_kawai_layout(G) pos = nx.spring_layout(G, pos=pos, k=.5, iterations=100) return pos def plot_cuts(data, cuts, nb_cuts_to_plot, path): plt.style.use('ggplot') plt.ioff() if path is not None: path = path / 'cuts' path.mkdir(parents=True, exist_ok=True) value_cuts = cuts.values order_cuts = cuts.costs eq_cuts = cuts.equations nb_cuts_to_plot = min(nb_cuts_to_plot, len(value_cuts)) pos = None for i in np.arange(nb_cuts_to_plot): eq = [eq_cuts[i]] if eq_cuts is not None else None fig, pos = plot_cut(data, cut=value_cuts[i], order=order_cuts[i], eq=eq, pos=pos) if path is not None: fig.savefig(path / f"cut number {i}.svg") plt.close(fig) def get_lines(xs, eq): min_x, max_x = np.min(xs[:, 0]), np.max(xs[:, 0]) min_y, max_y = np.min(xs[:, 1]), np.max(xs[:, 1]) x_range = np.linspace(min_x, max_x, 100) y_range = np.linspace(min_y, max_y, 100) if eq[0] == 0: x = x_range y = np.zeros_like(x_range) y.fill(-eq[2] / eq[1]) elif eq[1] == 0: x =
np.zeros_like(y_range)
numpy.zeros_like
from math import sqrt import time import numpy as np import itertools import heapq from pyspark.sql import Row ''' Author:Reza ''' def calculate_similarity(alpha_user_did_score, c2): # we don't need did_list in dataframe def __helper(did_list, user_score_matrix, top_n_similar_user_list, c1_list): user_score_matrix = np.array(user_score_matrix) m = user_score_matrix.shape[1] alpha_dids, alpha_score_matrix = alpha_user_did_score alpha_score_matrix = np.array(alpha_score_matrix) cross_mat = np.matmul(user_score_matrix, alpha_score_matrix.transpose()) similarity_list = np.sqrt(m) - np.sqrt(np.maximum(np.expand_dims(c1_list, 1) + c2 - (2 * cross_mat), 0.0)) result = [] for did, cosimilarity, top_n_similar_user in itertools.izip(did_list, similarity_list, top_n_similar_user_list): user_score_s = list(itertools.izip(alpha_dids, cosimilarity.tolist())) user_score_s.extend(top_n_similar_user) user_score_s = heapq.nlargest(top_n_value, user_score_s, key=lambda x: x[1]) result.append(user_score_s) return result return __helper top_n_value = 3 block_user = [Row(did_list=[u'1', u'2'], score_matrix=[[0.10000000149011612, 0.800000011920929, 0.8999999761581421], [ 0.10000000149011612, 0.800000011920929, 0.8999999761581421]], c1_list=[1.4600000381469727, 1.4600000381469727])] block_user_did_score = (block_user[0]['did_list'], block_user[0]['score_matrix']) c2 = np.array(block_user[0]['c1_list']) user_score_matrix_1_2 = [[0.1, 0.8, 0.9], [0.1, 0.8, 0.9]] top_n_similar_user_1_2 = [[], []] c1_list_1_2 = [1.4600000381469727, 1.4600000381469727] top_n_similar_user_1_2 = calculate_similarity(block_user_did_score, c2)([1, 2], user_score_matrix_1_2, top_n_similar_user_1_2, c1_list_1_2) # print(top_n_similar_user_1_2) user_score_matrix_3_4 = [[0.1, 0.8, 0.9], [0.1, 0.8, 0.9]] top_n_similar_user_3_4 = [[], []] c1_list_3_4 = [1.4600000381469727, 1.4600000381469727] top_n_similar_user_3_4 = calculate_similarity(block_user_did_score, c2)([3, 4], user_score_matrix_3_4, top_n_similar_user_3_4, c1_list_3_4) # print(top_n_similar_user_3_4) # second block user/cross user block_user = [Row(did_list=[u'3', u'4'], score_matrix=[[0.10000000149011612, 0.800000011920929, 0.8999999761581421], [ 0.10000000149011612, 0.800000011920929, 0.8999999761581421]], c1_list=[1.4600000381469727, 1.4600000381469727])] block_user_did_score = (block_user[0]['did_list'], block_user[0]['score_matrix']) c2 =
np.array(block_user[0]['c1_list'])
numpy.array
#!/usr/bin/env python __author__ = '<NAME>' #======================================================================== import os, sys import copy import time import uuid import pickle import subprocess import numpy as np import tensorflow as tf from gryffin.utilities import Logger from gryffin.utilities.decorators import thread #======================================================================== class DescriptorGenerator(Logger): eta = 1e-3 max_iter = 10**3 def __init__(self, config): self.config = config self.is_generating = False self.exec_name = '%s/descriptor_generator/generation_process.py' % self.config.get('home') # define registers self.auto_gen_descs = {} self.comp_corr_coeffs = {} self.gen_descs_cov = {} self.min_corrs = {} self.reduced_gen_descs = {} self.weights = {} self.sufficient_indices = {} @thread def single_generate(self, descs, objs, feature_index, result_dict = None): # collect all relevant properties sim_dict = {} for prop in dir(self): if callable(getattr(self, prop)) or prop.startswith(('__', 'W', 'config')): continue sim_dict[prop] = getattr(self, prop) sim_dict['num_samples'] = descs.shape[0] sim_dict['num_descs'] = descs.shape[1] sim_dict['descs'] = descs sim_dict['objs'] = objs sim_dict['grid_descs'] = self.config.feature_descriptors[feature_index] identifier = str(uuid.uuid4())[:8] config_name = '%s/descriptor_generation_%d_%s.pkl' % (self.config.get('scratch_dir'), feature_index, identifier) with open(config_name, 'wb') as content: pickle.dump(sim_dict, content) # FNULL = open(os.devnull, 'w') # subprocess.call('%s %s' % (self.exec_name, config_name), shell = True, stdout = FNULL, stderr = subprocess.STDOUT) subprocess.call('python %s %s' % (self.exec_name, config_name), shell = True) print('SUBMITTED DESC GENERATION') results_name = '%s/completed_descriptor_generation_%d_%s.pkl' % (self.config.get('scratch_dir'), feature_index, identifier) # wait for results to be written while not os.path.isfile(results_name): time.sleep(0.05) current_size = 0 while current_size != os.path.getsize(results_name): current_size = os.path.getsize(results_name) time.sleep(0.05) time.sleep(0.2) try: with open(results_name, 'rb') as content: results = pickle.load(content) except EOFError: time.sleep(2) with open(results_name, 'rb') as content: results = pickle.load(content) self.min_corrs[feature_index] = results['min_corrs'] self.auto_gen_descs[feature_index] = results['auto_gen_descs'] self.comp_corr_coeffs[feature_index] = results['comp_corr_coeffs'] self.gen_descs_cov[feature_index] = results['gen_descs_cov'] self.reduced_gen_descs[feature_index] = results['reduced_gen_descs'] self.weights[feature_index] = results['weights'] self.sufficient_indices[feature_index] = results['sufficient_indices'] # print("WEIGHTS", feature_index, self.weights[feature_index]) # print("REDUCED_DESCS", feature_index, results['reduced_gen_descs'].shape) result_dict[feature_index] = results['reduced_gen_descs'] os.remove(config_name) os.remove(results_name) @thread def generate(self, obs_params, obs_objs): import time start = time.time() self.is_generating = True result_dict = {} feature_types = self.config.feature_types feature_descriptors = self.config.feature_descriptors # print('FEATURE DESCRIPTORS', feature_descriptors, np.array(feature_descriptors[0]).shape) # print('*'*10) # for element in feature_descriptors: # print(element) # print('*'*10) for feature_index, feature_options in enumerate(self.config.feature_options): if feature_types[feature_index] == 'continuous': self.weights[feature_index] = None self.reduced_gen_descs[feature_index] = None result_dict[feature_index] = None continue if feature_descriptors[feature_index] is None: self.weights[feature_index] = None self.reduced_gen_descs[feature_index] = None result_dict[feature_index] = None continue if feature_descriptors[feature_index].shape[1] == 1: self.weights[feature_index] = np.array([[1.]]) self.reduced_gen_descs[feature_index] = feature_descriptors[feature_index] result_dict[feature_index] = feature_descriptors[feature_index] continue sampled_params = obs_params[:, feature_index].astype(np.int32) sampled_descriptors = feature_descriptors[feature_index][sampled_params] sampled_objs = np.reshape(obs_objs, (len(obs_objs), 1)) self.single_generate(sampled_descriptors, sampled_objs, feature_index, result_dict) # avoid parallel execution if not desired if not self.config.get('parallel'): if feature_types[feature_index] == 'continuous': continue while not feature_index in result_dict: time.sleep(0.1) for feature_index in range(len(self.config.feature_options)): if feature_types[feature_index] == 'continuous': continue while not feature_index in result_dict: time.sleep(0.1) gen_feature_descriptors = [result_dict[feature_index] for feature_index in range(len(result_dict.keys()))] self.gen_feature_descriptors = gen_feature_descriptors self.is_generating = False end = time.time() self.desc_gen_time = end - start def get_descriptors(self): while self.is_generating: time.sleep(0.1) if hasattr(self, 'gen_feature_descriptors'): print('[TIME: ', self.desc_gen_time, ' (descriptor generation)') return self.gen_feature_descriptors else: return self.config.feature_descriptors def get_summary(self): summary = {} feature_types = self.config.feature_types if not hasattr(self, 'gen_feature_descriptors'): for feature_index in range(len(self.config.feature_options)): contribs = {} if feature_types[feature_index] == 'continuous': continue feature_descriptors = self.config.feature_descriptors[feature_index] if feature_descriptors is None: continue for desc_index in range(feature_descriptors.shape[1]): desc_summary_dict = {} desc_summary_dict['relevant_given_descriptors'] = np.arange(len(feature_descriptors[:, desc_index])) desc_summary_dict['given_descriptor_contributions'] = np.ones(len(feature_descriptors[:, desc_index])) contribs['descriptor_%d' % desc_index] = copy.deepcopy(desc_summary_dict) summary['feature_%d' % feature_index] = copy.deepcopy(contribs) return summary for feature_index in range(len(self.config.feature_options)): if feature_types[feature_index] == 'continuous': continue weights = self.weights[feature_index] reduced_gen_descs = self.reduced_gen_descs[feature_index] sufficient_indices = self.sufficient_indices[feature_index] if weights is None: continue if len(sufficient_indices) == 0: continue # normalize weights normed_weights = np.empty(weights.shape) for index, weight_elements in enumerate(weights): normed_weights[index] = weight_elements / np.sum(np.abs(weight_elements)) # identify contributing indices contribs = {} # for new_desc_index in range(reduced_gen_descs.shape[1]): for new_desc_index in sufficient_indices: desc_summary_dict = {} relevant_weights = normed_weights[new_desc_index] sorting_indices = np.argsort(np.abs(relevant_weights)) cumulative_sum = np.cumsum(
np.abs(relevant_weights[sorting_indices])
numpy.abs
import time import math import numpy as np import seaborn as sns import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.patches as patches from collections import defaultdict import ethologger.utils.auxiliary as aux mpl.rcParams["agg.path.chunksize"] = 10000 class VisualizationWrapper: def __init__(self, fps=30, tick_stepsize=1.5, time_scale=3600): self.palette = "tab20" self.fps = fps self.time_scale = time_scale self.tick_stepsize = tick_stepsize self.figsize = (30, 30) self.x_grid = {"alpha": 0.5, "which": "major"} self.y_grid = {"alpha": 0.5, "which": "major"} self.xtick_params = { "direction": "out", "length": 6, "width": 2, "labelrotation": 0, "labelsize": 30, } self.ytick_params = { "direction": "out", "length": 6, "width": 2, "labelrotation": 0, "labelsize": 30, } self.fontsize = { "tick": 30, "label": 30, "title": 40, "legend": 30, "legend_title": 35, } sns.set_context("talk") def palette_values(self, num_values): return np.array(sns.color_palette(self.palette, num_values)) def _set_title(self, ax, title_=None): if title_ is not None: ax.set_title(title_, fontsize=self.fontsize["title"]) return ax def _set_suptitle(self, fig, suptitle_=None): if suptitle_ is not None: fig.suptitle(suptitle_, fontsize=self.fontsize["title"] + 5) return fig def _set_yaxis(self, ax, ylabel_=None, yticks_=None, yticklabels_=None): if ylabel_ is not None: ax.set_ylabel(ylabel_, fontsize=self.fontsize["label"]) if yticks_ is not None: ax.set_yticks(yticks_) if yticklabels_ is not None: ax.set_yticklabels(yticklabels_, fontsize=self.fontsize["tick"]) return ax def _set_xaxis(self, ax, xlabel_=None, xticks_=None, xticklabels_=None): if xlabel_ is not None: ax.set_xlabel(xlabel_, fontsize=self.fontsize["label"]) if xticks_ is not None: ax.set_xticks(xticks_) if xticklabels_ is not None: ax.set_xticklabels(xticklabels_, fontsize=self.fontsize["tick"]) return ax def _set_all( self, fig, ax, xlabel_=None, ylabel_=None, xticks_=None, yticks_=None, xticklabels_=None, yticklabels_=None, title_=None, suptitle_=None, ): self._set_xaxis(ax, xlabel_=xlabel_, xticks_=xticks_, xticklabels_=xticklabels_) self._set_yaxis(ax, ylabel_=ylabel_, yticks_=yticks_, yticklabels_=yticklabels_) self._set_title(ax, title_=title_) self._set_suptitle(fig, suptitle_=suptitle_) ax.tick_params(axis="x", **self.xtick_params) ax.tick_params(axis="y", **self.ytick_params) return fig, ax def _get_xtick_expt(self, num_time_point): return ( np.arange( 0, num_time_point, int((self.fps * self.time_scale) * self.tick_stepsize), ) / (self.fps * self.time_scale) ) @staticmethod def _set_gender_defined_colors(fig): m_palette_idx_dict = {} f_palette_idx_dict = {} num_m_palette = 0 num_f_palette = 0 for ax in fig.axes: lines = ax.get_lines() for line in lines: name = line.get_label() if "FlyM" in name and name not in m_palette_idx_dict.keys(): m_palette_idx_dict[name] = num_m_palette num_m_palette += 1 elif "FlyF" in name and name not in f_palette_idx_dict.keys(): f_palette_idx_dict[name] = num_f_palette num_f_palette += 1 elif ( name not in f_palette_idx_dict.keys() and name not in m_palette_idx_dict.keys() ): raise ValueError( f"Given expt. name {name} are not compatible with naming convention." ) else: pass m_palette = sns.color_palette("magma", num_m_palette) f_palette = sns.color_palette("crest", num_f_palette) lines_labels = [] for ax in fig.axes: lines = ax.get_lines() for line in lines: name = line.get_label() if "FlyM" in name: line.set_color(m_palette[m_palette_idx_dict[name]]) elif "FlyF" in name: line.set_color(f_palette[f_palette_idx_dict[name]]) else: raise ValueError( f"Given expt. name {name} are not compatible with naming convention." ) lines_labels.append(ax.get_legend_handles_labels()) labels = [] handles = [] for (hnd_list, lbl_list) in lines_labels: for idx, lbl in enumerate(lbl_list): if lbl not in labels: labels.append(lbl) handles.append(hnd_list[idx]) fig_legend = fig.legend( handles, labels, loc="center left", bbox_to_anchor=(1, 0.5), fontsize=30, ) for line in fig_legend.get_lines(): line.set_linewidth(8.0) return fig @staticmethod def _get_opt_label_name(opt, label="", label_name_dict=None, lw=32): if label_name_dict is None: if opt == "annotation": txt = "Annotation" elif opt == "clustering": txt = "Cluster" else: txt = "Label" else: txt = "" if label_name_dict is not None and label != "": txt += f"{label_name_dict[label]}" elif label_name_dict is None and label != "": txt += f"-{label}" else: pass title_ = aux.txt_wrap(txt, lw=lw) return title_ @staticmethod def _get_legend_patch(palette, label_name_dict=None): if label_name_dict is not None: legend_tn = [ patches.Patch(color=(palette[i]), label=str(lbl) + ":" + name) for i, (lbl, name) in enumerate(label_name_dict.items()) ] else: legend_tn = [ patches.Patch(color=clr, label=i) for i, clr in enumerate(palette) ] return legend_tn @staticmethod def _get_square_length(plot_dict): len_dict = len(plot_dict) ncols = int(math.sqrt(len_dict)) nrows = int(math.ceil(len_dict / ncols)) return nrows, ncols @staticmethod def _set_hour_to_HM_formatter(fig): for ax in fig.axes: formatter = mpl.ticker.FuncFormatter( lambda hour, x: aux.get_HM_from_hour(hour) ) ax.xaxis.set_major_formatter(formatter) return fig @staticmethod def _set_sec_to_MS_formatter(fig): for ax in fig.axes: formatter = mpl.ticker.FuncFormatter( lambda sec, x: time.strftime("%M:%S", time.gmtime(sec)) ) ax.xaxis.set_major_formatter(formatter) return fig def _get_palette(self, values, c=None): if c is not None: assert isinstance(c, np.ndarray) c = c.astype(int) num_classes = np.max(c) + 1 palette = np.array(sns.color_palette(self.palette, num_classes)) palette_ = palette[c] elif isinstance(values, dict): if "hue" in values.keys(): palette = np.array( sns.color_palette(self.palette, len(set(values["hue"]))) ) palette_ = palette[[i for i, _ in enumerate(values["hue"])]] else: palette = np.array(sns.color_palette(self.palette, len(values["x"]))) palette_ = palette[[i for i, _ in enumerate(values["x"])]] else: palette_ = self.palette return palette_ # Plotting methods; def scatterplot(self, values, c=None, label_name_dict=None, **kwargs): third_dim = values.shape[1] > 2 if c is not None: assert isinstance(c, np.ndarray) c = c.astype(int) fig = plt.figure(figsize=self.figsize) if third_dim: ax = fig.add_subplot(111, projection="3d") else: ax = fig.add_subplot(aspect="equal") if c is None: if third_dim: _ = ax.scatter( (values[:, 0]), (values[:, 1]), (values[:, 2]), rasterized=True, **kwargs, ) else: _ = ax.scatter( (values[:, 0]), (values[:, 1]), rasterized=True, **kwargs ) else: if label_name_dict is not None: num_classes = len(label_name_dict.keys()) else: num_classes = np.max(c) + 1 palette = np.array(sns.color_palette(self.palette, num_classes)) if third_dim: _ = ax.scatter( (values[:, 0]), (values[:, 1]), (values[:, 2]), c=(palette[c]), **kwargs, ) else: _ = ax.scatter( (values[:, 0]), (values[:, 1]), c=(palette[c]), rasterized=True, **kwargs, ) box = ax.get_position() ax.set_position([box.x0, box.y0, box.width * 0.9, box.height * 0.9]) if label_name_dict is not None: legend_tn = self.__class__._get_legend_patch(palette, label_name_dict) else: legend_tn = self.__class__._get_legend_patch(palette) lgnd = ax.legend( loc="upper right", bbox_to_anchor=(1.25, 0.75), handles=legend_tn, fontsize=self.fontsize["legend"], title="clusters", title_fontsize=self.fontsize["legend_title"], ) ax.add_artist(lgnd) for lbl in range(0, num_classes): if lbl in c: mu_x = np.mean(values[(c == lbl, 0)]) mu_y = np.mean(values[(c == lbl, 1)]) if third_dim: mu_z = np.mean(values[(c == lbl, 2)]) ax.text( mu_x, mu_y, mu_z, (str(lbl)), size=20, zorder=1, color="black", weight="bold", horizontalalignment="center", verticalalignment="center", ) else: ax.annotate( (str(lbl)), (mu_x, mu_y), size=20, color="black", weight="bold", horizontalalignment="center", verticalalignment="center", ) return fig, ax def spectogram( self, coefs, frequencies, title="Power Spectrum", xlabel="Time (hour)", ylabel="period (sec)", **kwargs, ): cmap_ = plt.cm.seismic periods = 1.0 / frequencies time = np.arange(0, coefs.shape[0]) / (self.fps * self.time_scale) xticks = self._get_xtick_expt(coefs.shape[0]) xticklabels_ = xticks yticklabels_ = 2 ** np.arange( np.ceil(np.log2(periods.min())), np.ceil(np.log2(periods.max())) ) yticks = np.log2(yticklabels_) fig = plt.figure(figsize=self.figsize) ax = fig.add_subplot() im = ax.contourf( time, np.log2(periods), np.swapaxes(np.log2(coefs + 1), 0, 1), cmap=cmap_, ) fig, ax = self._set_all( fig, ax, title_=title, xlabel_=xlabel, xticklabels_=xticklabels_, ylabel_=ylabel, yticks_=yticks, yticklabels_=yticklabels_, ) cbar_ax = fig.add_axes([0.95, 0.5, 0.03, 0.25]) fig.colorbar(im, cax=cbar_ax, orientation="vertical") return fig, ax def lineplot( self, values, labels=None, log_scale=False, title="Feature Value", ylabel="Value", xlabel="Time (hour)", ax=None, legend=True, **kwargs, ): multiple_values = values.ndim > 1 if ax is None: fig = plt.figure(figsize=self.figsize) ax = fig.add_subplot() else: fig = ax.figure xticks_ = self._get_xtick_expt(values.shape[0]) xticklabels_ = xticks_ time = np.arange(0, values.shape[0]) / (self.fps * self.time_scale) if multiple_values: palette = np.array(sns.color_palette(self.palette, values.shape[1])) for i in range(values.shape[1]): try: ax.plot(time, values[:, i], label=labels[i], c=palette[i], **kwargs) except (IndexError, TypeError): ax.plot(time, values[:, i], **kwargs) else: try: ax.plot(time, values, label=labels, **kwargs) except TypeError: ax.plot(time, values, **kwargs) if legend and labels is not None and multiple_values: legend_tn = [ patches.Patch(color=(palette[i]), label=labels[i]) for i in range(0, values.shape[1]) ] lgnd = ax.legend( loc="center left", bbox_to_anchor=(1, 0.5), handles=legend_tn, fontsize=self.fontsize["legend"], ) ax.add_artist(lgnd) elif legend and labels is not None: ax.legend() else: pass fig, ax = self._set_all( fig, ax, title_=title, xlabel_=xlabel, xticks_=xticks_, xticklabels_=xticklabels_, ylabel_=ylabel, ) ax.xaxis.grid(**self.x_grid) ax.yaxis.grid(**self.y_grid) if log_scale: ax.set_yscale("log") return fig, ax def heatmap( self, values, title=None, ylabel=None, xlabel=None, **kwargs, ): fig = plt.figure(figsize=self.figsize) ax = fig.add_subplot() ax = sns.heatmap(values, ax=ax, **kwargs) fig, ax = self._set_all( fig, ax, suptitle_=title, xlabel_=xlabel, ylabel_=ylabel ) return fig, ax def clustermap( self, values, title=None, ylabel=None, xlabel=None, **kwargs, ): cg = sns.clustermap(values, figsize=self.figsize, **kwargs) ax = cg.ax_heatmap self._set_all(cg.fig, ax, suptitle_=title, xlabel_=xlabel, ylabel_=ylabel) return cg, ax def barplot( self, values, c=None, title=None, ylabel=None, xlabel=None, xticklabels_=None, ax=None, **kwargs, ): fig, ax = self.aux_snsplot( values, c=c, title=title, ylabel=ylabel, xlabel=xlabel, xticklabels_=xticklabels_, ax=ax, function=sns.barplot, **kwargs, ) return fig, ax def boxplot( self, values, c=None, title=None, ylabel=None, xlabel=None, xticklabels_=None, ax=None, **kwargs, ): fig, ax = self.aux_snsplot( values, c=c, title=title, ylabel=ylabel, xlabel=xlabel, xticklabels_=xticklabels_, ax=ax, function=sns.boxplot, **kwargs, ) return fig, ax def boxenplot( self, values, c=None, title=None, ylabel=None, xlabel=None, xticklabels_=None, ax=None, **kwargs, ): fig, ax = self.aux_snsplot( values, c=c, title=title, ylabel=ylabel, xlabel=xlabel, xticklabels_=xticklabels_, ax=ax, function=sns.boxenplot, **kwargs, ) return fig, ax def aux_snsplot( self, values, c=None, title=None, ylabel=None, xlabel=None, xticklabels_=None, ax=None, function=None, **kwargs, ): assert function is not None palette_ = self._get_palette(values, c) if ax is None: fig = plt.figure(figsize=self.figsize) ax = fig.add_subplot() else: fig = ax.figure if isinstance(values, dict): ax = function( ax=ax, x=values["x"], y=values["y"], hue=values.get("hue", None), palette=palette_, **kwargs, ) xticks = None else: xticks = np.arange(values.shape[0]) ax = function(ax=ax, x=xticks, y=values, palette=palette_, **kwargs) ax = self._set_xaxis(ax, xticks_=xticks, xticklabels_=xticklabels_) fig, ax = self._set_all(fig, ax, title_=title, xlabel_=xlabel, ylabel_=ylabel) return fig, ax def feature_trajectory_plot( self, values, value_names_dict, label, name, opt="", label_name_dict=None, **kwargs, ): nrows, ncols = self.__class__._get_square_length(value_names_dict) fig, axes = plt.subplots(ncols=ncols, nrows=nrows, figsize=self.figsize) time = np.arange(0, values.shape[0]) / (self.fps * self.time_scale) values_aligned = values[:, :, :] - values[0, :, :] for i, (_, val_name) in enumerate(value_names_dict.items()): for j in range(values_aligned.shape[-1]): axes[i // ncols, i % ncols].plot( time, values_aligned[:, i, j], c="midnightblue", **kwargs ) fig, axes[i // ncols, i % ncols] = self._set_all( fig, axes[i // ncols, i % ncols], title_=aux.txt_wrap(f"{val_name} Trajectories", lw=20), ylabel_="Feature Value", xlabel_="Time (seconds)", ) fig = self.__class__._set_sec_to_MS_formatter(fig) lbl_name = self.__class__._get_opt_label_name( opt, label, label_name_dict=label_name_dict ) fig = self._set_suptitle(fig, f"Trajectories of {lbl_name} of {name}") fig.tight_layout() return fig, axes def label_hspan_feature_plot( self, frame_values, frame_labels, value_names, span_palette, name, annotate_hspan=True, shift=0, title="Feature Values", ylabel="Value", xlabel="Time (hour)", ignore_label=None, label_name_dict=None, opt="", **kwargs, ): if ignore_label is None: ignore_label = [] self.palette = "tab20b" fig, ax = self.lineplot( frame_values, labels=value_names, title=title, xlabel=xlabel, ylabel=ylabel, **kwargs, ) change_points = aux.cont_intvls(frame_labels) time_step = self.fps * self.time_scale for i in range(1, change_points.shape[0]): label = frame_labels[change_points[i - 1]] if label in ignore_label: alpha = 0 else: alpha = 1 ax.axvspan( change_points[i - 1] / time_step, change_points[i] / time_step, facecolor=span_palette[label], alpha=alpha, ) if annotate_hspan: midpoint = (change_points[i] + change_points[i - 1]) // 2 y = np.mean(frame_values[midpoint, :]) rng = np.random.default_rng() y_jittered = y * (1 + rng.uniform(0, 1) * 0.005) - rng.uniform(0, 300) ax.annotate(text=str(label), xy=(midpoint / time_step, y_jittered)) if label_name_dict is not None: legend_tn = self.__class__._get_legend_patch(span_palette, label_name_dict) else: legend_tn = self.__class__._get_legend_patch(span_palette) lgnd_title = f"{self.__class__._get_opt_label_name(opt)}s" lgnd = ax.legend( loc="center left", bbox_to_anchor=(-0.45, 0.5), handles=legend_tn, fontsize=self.fontsize["legend"], title=lgnd_title, title_fontsize=self.fontsize["legend_title"], ) ax.add_artist(lgnd) ax.set_xticklabels(ax.get_xticks() + shift / time_step) fig = self.__class__._set_hour_to_HM_formatter(fig) xticklabels_ = ax.get_xticklabels() start = aux.get_HM_from_hour(xticklabels_[0].get_text()) end = aux.get_HM_from_hour(xticklabels_[-1].get_text()) intvl = f"{start}-{end}" suptitle_ = f"{opt.title()} Label Spanned Feature Plots ~ {intvl} of {name}" fig = self._set_suptitle(fig, suptitle_) return fig, ax def coverage_clustermap( self, coverage_dict, title=None, xlabel=None, ylabel=None, xticklabels_=1, yticklabels_=1, ): heatval = np.zeros( (len(coverage_dict.keys()), len(list(coverage_dict.values())[0])) ) for lbl, values_dict in coverage_dict.items(): for lbl_v, val in values_dict.items(): heatval[lbl, lbl_v] = val cg, ax = self.clustermap( heatval, ylabel=ylabel, xlabel=xlabel, xticklabels=xticklabels_, yticklabels=yticklabels_, cbar_kws={"shrink": 0.5}, tree_kws={"linewidths": 5}, cmap="mako", cbar_pos=(-0.07, 0.32, 0.03, 0.2), ) self._set_suptitle(cg.fig, title) return cg, ax def label_occupation_barplot( self, occupation_dict, name, title=None, xlabel=None, ylabel=None, xticklabels_=None, ): occupation_label = {} for i, (key, val) in enumerate(occupation_dict.items()): occupation_label[i] = val.get(name, 0) / self.fps * 60 occ_time = np.zeros(len(occupation_label.keys())) for key, val in occupation_label.items(): occ_time[key] = val c = np.array(list(occupation_label.keys())) return self.barplot( occ_time, c=c, xticklabels_=xticklabels_, xlabel=xlabel, ylabel=ylabel, title=title, ) def evolution_rate_plot(self, evolution_rate_dict, opt="", label_name_dict=None): nrows, ncols = self.__class__._get_square_length(evolution_rate_dict) fig, axes = plt.subplots(ncols=ncols, nrows=nrows, figsize=self.figsize) for idx, (lbl, c_evol_dict) in enumerate(evolution_rate_dict.items()): evol_rates = np.full( ( max(rate.shape[0] for rate in c_evol_dict.values()), len(c_evol_dict.keys()), ), np.nan, ) labels_expt = [] for i, (name, rate) in enumerate(c_evol_dict.items()): evol_rates[0 : rate.shape[0], i] = rate labels_expt.append(name) title_ = self.__class__._get_opt_label_name( opt, lbl, label_name_dict=label_name_dict ) row = idx // ncols col = idx % ncols self.tick_stepsize = 4 self.xtick_params["labelrotation"] = 90 fig, axes[row, col] = self.lineplot( evol_rates, labels=labels_expt, title=title_, xlabel="Time (hour)", ax=axes[row, col], legend=False, lw=3, ) fig = self.__class__._set_gender_defined_colors(fig) fig = self.__class__._set_hour_to_HM_formatter(fig) fig = self._set_suptitle(fig, f"Evolution Rates for {opt.title()}") fig.tight_layout() return fig, axes def observation_time_histogram( self, bout_details_dict, name=None, opt="", label_name_dict=None, ): nrows, ncols = self.__class__._get_square_length(bout_details_dict) fig, axes = plt.subplots(ncols=ncols, nrows=nrows, figsize=self.figsize) for idx, (lbl, bout_details) in enumerate(bout_details_dict.items()): durations = [] mid_bout = [] row = idx // ncols col = idx % ncols for detail_dict in bout_details: durations.append(detail_dict["duration"] / self.fps) mid_bout.append( (detail_dict["end"] + detail_dict["start"]) / 2 / self.fps / 60 / 60 ) title_ = self.__class__._get_opt_label_name( opt, lbl, label_name_dict=label_name_dict, lw=40 ) axes[row, col].hist( mid_bout, 10, alpha=0.75, density=True, edgecolor="black" ) axes[row, col] = self._set_title(axes[row, col], title_) axes[row, col] = self._set_xaxis(axes[row, col], "Time (hour)") if name is None: suptitle_ = aux.txt_wrap(f"{opt.title()} Observation Times") else: suptitle_ = aux.txt_wrap(f"{opt.title()} Observation Times of {name}") fig = self.__class__._set_hour_to_HM_formatter(fig) fig = self._set_suptitle(fig, suptitle_) fig.tight_layout() return fig, axes def feature_distn_boxenplot( self, frame_values, frame_labels, value_names_dict, name=None, label_name_dict=None, opt="", ): values = defaultdict(list) nrows, ncols = self.__class__._get_square_length(value_names_dict) fig, axes = plt.subplots(ncols=ncols, nrows=nrows, figsize=self.figsize) xlabel_ = self.__class__._get_opt_label_name(opt) for j, (_, val_name) in enumerate(value_names_dict.items()): row = j // ncols col = j % ncols values["y"] = frame_values[:, j] values["x"] = frame_labels unique_lbls = np.unique(frame_labels) if label_name_dict is None: xticklabels_ = sorted(unique_lbls) else: xticklabels_ = [label_name_dict[lb] for lb in sorted(unique_lbls)] fig, axes[row, col] = self.boxenplot( values, title=aux.txt_wrap(f"{val_name}", lw=20), ylabel="Value", xlabel=xlabel_, xticklabels_=xticklabels_, showfliers=False, ax=axes[row, col], ) axes[row, col].tick_params( axis="x", labelsize=math.ceil(self.fontsize["tick"] / 2) ) if name is not None: suptitle_ = aux.txt_wrap( f"{opt.title()} Feature Value Boxen-plots of {name}" ) else: suptitle_ = aux.txt_wrap(f"{opt.title()} Feature Value Boxen-plots") fig = self._set_suptitle(fig, suptitle_) fig.tight_layout() return fig, axes def feature_distn_clustermap( self, frame_values, frame_labels, value_names_dict, name=None, label_name_dict=None, opt="", ): unique_lbls = np.unique(frame_labels) heat_val = np.zeros((len(value_names_dict.values()), len(unique_lbls))) if name is not None: title = aux.txt_wrap( f"{opt.title()} Clustermap of Feature Value Distributions of {name}" ) else: title = aux.txt_wrap( f"{opt.title()} Clustermap of Feature Value Distributions" ) for i, (_, _) in enumerate(value_names_dict.items()): for j, c in enumerate(sorted(unique_lbls)): heat_val[i, j] =
np.mean(frame_values[frame_labels == c, i])
numpy.mean
#*************************************************************************************************** # Copyright 2015, 2019 National Technology & Engineering Solutions of Sandia, LLC (NTESS). # Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights # in this software. # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 or in the LICENSE file in the root pyGSTi directory. #*************************************************************************************************** """Core integrated routines for detecting and characterizing crosstalk""" import numpy as _np from . import objects as _obj from ... import objects as _pygobjs from ... import io as _pygio import pcalg from gsq.ci_tests import ci_test_dis import collections from sympy import isprime def tuple_replace_at_index(tup, ix, val): return tup[:ix] + (val,) + tup[ix + 1:] def load_pygsti_dataset(filename): """ Loads a pygsti dataset from file. This is a wrapper that just checks the first line, and replaces it with the newer outcome specification format if its the old type. """ try: # file = open(filename, "r") open(filename, "r") except IOError: print("File not found, or other file IO error.") # lines = file.readlines() # file.close() # if lines[0] == "## Columns = 00 count, 01 count, 10 count, 11 count\n": # lines[0] = "## Columns = 0:0 count, 0:1 count, 1:0 count, 1:1 count\n" # file = open(filename, "w") # file.writelines(lines) # file.close() data = _pygio.load_dataset(filename) return data def flatten(l): """ Flattens an irregualr list. From https://stackoverflow.com/questions/2158395/flatten-an-irregular-list-of-lists """ for el in l: if isinstance(el, collections.Iterable) and not isinstance(el, (str, bytes)): yield from flatten(el) else: yield el def form_ct_data_matrix(ds, number_of_regions, settings, filter_lengths=[]): # This converts a DataSet to an array since the code below uses arrays if type(ds) == _pygobjs.dataset.DataSet: opstr = ds.keys()[0] temp = ds.auxInfo[opstr]['settings'] num_settings = len(temp) settings_shape = _np.shape(settings) # Check that settings is a list of length number_of_regions assert((len(settings_shape) == 1) and (settings_shape[0] == number_of_regions)) "settings should be a list of the same length as number_of_regions." dscopy = ds.copy_nonstatic() # filter out lengths not in filter_lengths if len(filter_lengths) > 0: for k in dscopy.keys(): if len(k) not in filter_lengths: dscopy.remove([k]) dscopy.done_adding_data() # num columns = number of settings + number of regions (b/c we assume one outcome per region) #num_columns = num_settings + number_of_regions num_data = len(dscopy.keys()) data = [] collect_settings = {key: [] for key in range(num_settings)} for row in range(num_data): opstr = dscopy.keys()[row] templine_set = [0] * num_settings settings_row = dscopy.auxInfo[opstr]['settings'] for key in settings_row: if len(key) == 1: # single region/qubit gate templine_set[key[0]] = settings_row[key] collect_settings[key[0]].append(settings_row[key]) else: # two-region/two-qubit gate print("Two qubit gate, not sure what to do!!") # TODO return outcomes_row = dscopy[opstr] for outcome in outcomes_row: templine_out = [0] * number_of_regions if len(outcome[0]) == 1: # outcomes labeled by bitstrings for r in range(number_of_regions): templine_out[r] = int(outcome[0][0][r]) num_rep = int(outcome[2]) templine_out.append(templine_set) flattened_line = list(flatten(templine_out)) else: # outcomes labeled by tuples of bits for r in range(number_of_regions): templine_out[r] = int(outcome[0][r]) num_rep = int(outcome[2]) templine_out.append(templine_set) flattened_line = list(flatten(templine_out)) for r in range(num_rep): data.append(flattened_line) #num_seqs = [len(set(collect_settings[i])) for i in range(num_settings)] data = _np.asarray(data) # if the dataset is specified by a string assume its a filename with a saved numpy array elif type(ds) == str: data = _np.loadtxt(ds) data = data.astype(int) data_shape = _np.shape(data) settings_shape = _np.shape(settings) # Check that the input data is a 2D array assert(len(data_shape) == 2) "Input data format is incorrect!If the input is a numpy array it must be 2-dimensional." # Check that settings is a list of length number_of_regions assert((len(settings_shape) == 1) and (settings_shape[0] == number_of_regions)) "settings should be a list of the same length as number_of_regions." # The number of columns in the data must be consistent with the number of settings assert(data_shape[1] == (sum(settings) + number_of_regions)) "Mismatch between the number of settings specified for each region and the number of columns in data" num_data = data_shape[0] #num_columns = data_shape[1] # if neither a pygsti data set or string, assume a numpy array was passed in else: data_shape = _np.shape(ds) settings_shape = _np.shape(settings) # Check that the input data is a 2D array assert(len(data_shape) == 2) "Input data format is incorrect!If the input is a numpy array it must be 2-dimensional." # Check that settings is a list of length number_of_regions assert((len(settings_shape) == 1) and (settings_shape[0] == number_of_regions)) "settings should be a list of the same length as number_of_regions." # The number of columns in the data must be consistent with the number of settings assert(data_shape[1] == (sum(settings) + number_of_regions)) "Mismatch between the number of settings specified for each region and the number of columns in data" data = ds data_shape = _np.shape(data) return data, data_shape def do_basic_crosstalk_detection(ds, number_of_regions, settings, confidence=0.95, verbosity=1, name=None, assume_independent_settings=True, filter_lengths=[]): """ Implements crosstalk detection on multiqubit data (fine-grained data with entries for each experiment). Parameters ---------- ds : pyGSTi DataSet or numpy array The multiqubit data to analyze. If this is a numpy array, it must contain time series data and it must be 2-dimensional with each entry being a sequence of settings and measurment outcomes for each qubit region. A region is a set of one or more qubits and crosstalk is assessed between regions. The first n entries are the outcomes and the following entries are settings. number_of_regions: int, number of regions in experiment settings: list of length number_of_regions, indicating the number of settings for each qubit region. confidence : float, optional verbosity : int, optional name : str, optional filter_lengths : list of lengths. If this is not empty the dataset will be filtered and the analysis will only be done on the sequences of lengths specified in this list. This argument is only used if the dataset is passed in as a pyGSTi DataSet Returns ------- results : CrosstalkResults object The results of the crosstalk detection analysis. This contains: output skeleton graph and DAG from PC Algorithm indicating regions with detected crosstalk, all of the input information. """ # -------------------------- # # Format and check the input # # -------------------------- # # This converts a DataSet to an array since the code below uses arrays # -------------------------- # if type(ds) != _pygobjs.dataset.DataSet: data_shape = _np.shape(ds) settings_shape = _np.shape(settings) # Check that the input data is a 2D array assert(len(data_shape) == 2), \ "Input data format is incorrect!If the input is a numpy array it must be 2-dimensional." # Check that settings is a list of length number_of_regions assert((len(settings_shape) == 1) and (settings_shape[0] == number_of_regions)) "settings should be a list of the same length as number_of_regions." # The number of columns in the data must be consistent with the number of settings assert(data_shape[1] == (sum(settings) + number_of_regions)) "Mismatch between the number of settings specified for each region and the number of columns in data" data = ds num_data = data_shape[0] num_columns = data_shape[1] # This converts a DataSet to an array, as the code below uses arrays if type(ds) == _pygobjs.dataset.DataSet: opstr = ds.keys()[0] temp = ds.auxInfo[opstr]['settings'] num_settings = len(temp) settings_shape = _np.shape(settings) # Check that settings is a list of length number_of_regions assert((len(settings_shape) == 1) and (settings_shape[0] == number_of_regions)) "settings should be a list of the same length as number_of_regions." dscopy = ds.copy_nonstatic() # filter out lengths not in filter_lengths if len(filter_lengths) > 0: for k in dscopy.keys(): if len(k) not in filter_lengths: dscopy.remove([k]) dscopy.done_adding_data() # num columns = number of settings + number of regions (b/c we assume one outcome per region) num_columns = num_settings + number_of_regions num_data = len(dscopy.keys()) data = [] collect_settings = {key: [] for key in range(num_settings)} for row in range(num_data): opstr = dscopy.keys()[row] templine_set = [0] * num_settings settings_row = dscopy.auxInfo[opstr]['settings'] for key in settings_row: if len(key) == 1: # single region/qubit gate templine_set[key[0]] = settings_row[key] collect_settings[key[0]].append(settings_row[key]) else: # two-region/two-qubit gate print("Two qubit gate, not sure what to do!!") # TODO return outcomes_row = dscopy[opstr] for outcome in outcomes_row: templine_out = [0] * number_of_regions if len(outcome[0]) == 1: # outcomes labeled by bitstrings for r in range(number_of_regions): templine_out[r] = int(outcome[0][0][r]) num_rep = int(outcome[2]) templine_out.append(templine_set) flattened_line = list(flatten(templine_out)) else: # outcomes labeled by tuples of bits for r in range(number_of_regions): templine_out[r] = int(outcome[0][1][0][r]) # templine_out[r] = int(outcome[0][r]) # print(templine_out[r]) num_rep = int(outcome[2]) templine_out.append(templine_set) flattened_line = list(flatten(templine_out)) for r in range(num_rep): data.append(flattened_line) data = _np.asarray(data) # if the dataset is specified by a string assume its a filename with a saved numpy array elif type(ds) == str: data = _np.loadtxt(ds) data = data.astype(int) data_shape = _np.shape(data) settings_shape = _np.shape(settings) # Check that the input data is a 2D array assert(len(data_shape) == 2) "Input data format is incorrect!If the input is a numpy array it must be 2-dimensional." # Check that settings is a list of length number_of_regions assert((len(settings_shape) == 1) and (settings_shape[0] == number_of_regions)) "settings should be a list of the same length as number_of_regions." # The number of columns in the data must be consistent with the number of settings assert(data_shape[1] == (sum(settings) + number_of_regions)) "Mismatch between the number of settings specified for each region and the number of columns in data" num_data = data_shape[0] num_columns = data_shape[1] # if neither a pygsti data set or string, assume a numpy array was passed in else: data_shape =
_np.shape(ds)
numpy.shape
"""Test the LinearSystemComp.""" import unittest import numpy as np from openmdao.api import Group, Problem, IndepVarComp from openmdao.api import LinearSystemComp, ScipyIterativeSolver, DirectSolver from openmdao.devtools.testutil import assert_rel_error class TestLinearSystem(unittest.TestCase): """Test the LinearSystemComp class with a 3x3 linear system.""" def test_linear_system(self): """Check against the scipy solver.""" model = Group() x = np.array([1, 2, -3]) A = np.array([[5.0, -3.0, 2.0], [1.0, 7.0, -4.0], [1.0, 0.0, 8.0]]) b = A.dot(x) model.add_subsystem('p1', IndepVarComp('A', A)) model.add_subsystem('p2', IndepVarComp('b', b)) lingrp = model.add_subsystem('lingrp', Group(), promotes=['*']) lingrp.add_subsystem('lin', LinearSystemComp(size=3, partial_type="matrix_free")) model.connect('p1.A', 'lin.A') model.connect('p2.b', 'lin.b') prob = Problem(model) prob.setup() lingrp = prob.model.get_subsystem('lingrp') lingrp.linear_solver = ScipyIterativeSolver() prob.set_solver_print(level=0) prob.run_model() assert_rel_error(self, prob['lin.x'], x, .0001) assert_rel_error(self, prob.model._residuals.get_norm(), 0.0, 1e-10) def test_linear_system_solve_linear(self): """Check against solve_linear.""" x = np.array([1, 2, -3]) A = np.array([[1., 1., 1.], [1., 2., 3.], [0., 1., 3.]]) b = A.dot(x) b_T = A.T.dot(x) def check_derivs(lin_sys_comp): prob = Problem() prob.model.add_subsystem('p1', IndepVarComp('A', A)) prob.model.add_subsystem('p2', IndepVarComp('b', b)) lingrp = prob.model.add_subsystem('lingrp', Group(), promotes=['*']) lingrp.add_subsystem('lin', lin_sys_comp) prob.model.connect('p1.A', 'lin.A') prob.model.connect('p2.b', 'lin.b') prob.setup(check=False) prob.set_solver_print(level=0) prob.run_model() prob.model.run_linearize() # prob.check_partials() # Compare against calculated derivs # Ainv = np.linalg.inv(A) # Don't use linalg.inv or a mathematician will die Ainv = np.array([[3., -2., 1.], [-3., 3., -2.], [1., -1., 1.]]) dx_dA =
np.outer(Ainv, -x)
numpy.outer
import logging from typing import Dict, List, Tuple, Iterable, Union, Any, Callable import os from overrides import overrides import spacy import numpy as np from random import shuffle from itertools import combinations from operator import itemgetter from collections import defaultdict from tqdm import tqdm from copy import deepcopy from nltk.corpus.reader.bracket_parse import BracketParseCorpusReader from nltk.tree import Tree from allennlp.common.file_utils import cached_path from allennlp.data.dataset_readers.dataset_reader import DatasetReader from allennlp.data.dataset_readers.dataset_utils import enumerate_spans from allennlp.data.fields import Field, TextField, SpanField, ListField, SequenceLabelField, \ ArrayField, LabelField, MetadataField from allennlp.data.instance import Instance from allennlp.data.token_indexers import SingleIdTokenIndexer, TokenIndexer from allennlp.data.tokenizers import Token logger = logging.getLogger(__name__) def strip_functional_tags(tree: Tree) -> None: """ Removes all functional tags from constituency labels in an NLTK tree. We also strip off anything after a =, - or | character, because these are functional tags which we don't want to use. This modification is done in-place. """ clean_label = tree.label().split("=")[0].split("-")[0].split("|")[0] tree.set_label(clean_label) for child in tree: if not isinstance(child[0], str): strip_functional_tags(child) def get_trees_from_bracket_file(filename) -> List[Tree]: directory, filename = os.path.split(filename) trees = list(BracketParseCorpusReader(root=directory, fileids=[filename]).parsed_sents()) modified_trees = [] for tree in trees: strip_functional_tags(tree) # This is un-needed and clutters the label space. # All the trees also contain a root S node. if tree.label() == "VROOT" or tree.label() == "TOP": tree = tree[0] modified_trees.append(tree) return modified_trees class MyToken: def __init__(self, text, idx): self.text = text self.idx = idx def __str__(self): return str((self.text, self.idx)) def __repr__(self): return str((self.text, self.idx)) def str2bool(text): text = text.lower() if text == 'true': return True elif text == 'false': return False raise Exception('cannot be converted to bool') def adjust_tokens_wrt_char_boundary(tokens: List[Token], char_boundaries: List[int]): ''' positions indicated by char_boundaries should be segmented. If one of the indices is 3, it mean that there is a boundary between the 3rd and 4th char. Indices in char_boundaries should be in ascending order. ''' new_tokens: List[MyToken] = [] cb_ind = 0 for tok in tokens: start = tok.idx end = tok.idx + len(tok.text) ext_bd = [] while cb_ind < len(char_boundaries) and char_boundaries[cb_ind] <= end: bd = char_boundaries[cb_ind] if bd != start and bd != end: # boundary not detected by tokenizer ext_bd.append(bd) cb_ind += 1 for s, e in zip([start] + ext_bd, ext_bd + [end]): text = tok.text[s - start:e - start] new_tokens.append(MyToken(text, s)) return new_tokens class BratDoc: EVENT_JOIN_SYM = '->' NEG_SPAN_LABEL = '<NEG_SPAN>' NEG_SPAN_PAIR_LABEL = '<NEG_SPAN_PAIR>' def __init__(self, id: str, doc: Union[str, List[str]], # span_id -> (span_label, start_ind, end_ind), # where start_ind is inclusive and end_ind is exclusive spans: Dict[str, Tuple[str, int, int]], # (span_id1, span_id2) -> span_pair_label span_pairs: Dict[Tuple[str, str], str], bracket_file: str = None, tree: Tree = None): self.id = id self.doc = doc # can be str of chars or a list of tokens self.spans = spans self.span_pairs = span_pairs self.bracket_file = bracket_file self.tree = tree def get_span_weights(self) -> Dict[str, float]: ''' compute the weight of the span by how many times it appears in span pairs ''' span2count: Dict[str, int] = defaultdict(lambda: 0) for sid1, sid2 in self.span_pairs: span2count[sid1] += 1 span2count[sid2] += 1 return dict((k, float(span2count[k])) for k in self.spans) # can be zero def skip_span_pairs(self, labels: set): self.span_pairs = dict((k, v) for k, v in self.span_pairs.items() if v not in labels) def skip_span(self, labels: set): self.spans = dict((k, v) for k, v in self.spans.items() if v not in labels) def remove_span_not_in_pair(self): sp_set = set(k_ for k in self.span_pairs for k_ in k) self.spans = dict((k, v) for k, v in self.spans.items() if k in sp_set) def filter(self, max_span_width: int = None): ''' remove spans longer than max_span_width ''' if max_span_width is None: return new_spans = {} for sid, (slabel, sind, eind) in self.spans.items(): if eind - sind <= max_span_width: new_spans[sid] = (slabel, sind, eind) new_span_pairs = {} for (sid1, sid2), slabel in self.span_pairs.items(): if sid1 in new_spans and sid2 in new_spans: new_span_pairs[(sid1, sid2)] = slabel self.spans = new_spans self.span_pairs = new_span_pairs def truncate(self, max_doc_len): ''' truncate the document ''' # if doc is list of tokens, max_doc_len is the number of tokens to keep # if doc is str, max_doc_len is the number of characters to keep self.doc = self.doc[:max_doc_len] new_spans = {} for sid, (slabel, sind, eind) in self.spans.items(): if sind >= max_doc_len or eind > max_doc_len: continue new_spans[sid] = (slabel, sind, eind) new_span_pairs = {} for (sid1, sid2), slabel in self.span_pairs.items(): if sid1 in new_spans and sid2 in new_spans: new_span_pairs[(sid1, sid2)] = slabel self.spans = new_spans self.span_pairs = new_span_pairs def build_cluster(self, inclusive=False) -> List[List[Tuple[int, int]]]: cluster: Dict[Tuple[int, int], int] = {} num_clusters = 0 num_overlap_pairs = 0 for k1, k2 in self.span_pairs: offset = 1 if inclusive else 0 span_parent = (self.spans[k1][1], self.spans[k1][2] - offset) span_child = (self.spans[k2][1], self.spans[k2][2] - offset) if self.spans[k1][1] < self.spans[k2][2]: num_overlap_pairs += 1 if span_child not in cluster and span_parent not in cluster: cluster[span_child] = num_clusters cluster[span_parent] = num_clusters num_clusters += 1 elif span_child in cluster and span_parent in cluster: if cluster[span_parent] != cluster[span_child]: # merge from_clu = cluster[span_parent] to_clu = cluster[span_child] for k in cluster: if cluster[k] == from_clu: cluster[k] = to_clu elif span_child in cluster: cluster[span_parent] = cluster[span_child] elif span_parent in cluster: cluster[span_child] = cluster[span_parent] result = defaultdict(list) for k, v in cluster.items(): result[v].append(k) return list(result.values()) def enumerate_spans(self, *args, **kwargs): for start, end in enumerate_spans(self.doc, *args, **kwargs): yield start, end + 1 # enumerate_spans is inclusive def get_all_neg_spans(self, max_span_width: int = None) -> Dict[str, Tuple[str, int, int]]: ''' get all negative spans ''' pos_span_poss = set((v[1], v[2]) for k, v in self.spans.items()) if type(self.doc) is not list: raise Exception('doc must be tokenized before getting all spans') neg_spans = {} for start, end in self.enumerate_spans(offset=0, max_span_width=max_span_width): if (start, end) not in pos_span_poss: # 'TN' for 'T' and negative neg_spans['TN' + str(len(neg_spans) + 1)] = (self.NEG_SPAN_LABEL, start, end) return neg_spans def get_negative_spans_and_span_pairs(self, neg_ratio: float, max_span_width: int = None, neg_spans: Dict[str, Tuple[str, int, int]] = None) \ -> Tuple[Dict[str, Tuple[str, int, int]], Dict[Tuple[str, str], str]]: ''' Get negatvie spans and span pairs and the number is proportional to the number of words. When neg_spans is provided, directly use it to generate negative pairs. ''' seq_len = len(self.doc) # At least one negative example. This is for special cases where the sentences are really short num_neg = max(1, int(neg_ratio * seq_len)) if neg_spans is None: # generate negative spans pos_span_poss = set((v[1], v[2]) for k, v in self.spans.items()) if type(self.doc) is not list: raise Exception('doc must be tokenized before generating negative samples') all_spans = list(self.enumerate_spans(offset=0, max_span_width=max_span_width)) shuffle(all_spans) neg_spans = {} for start, end in all_spans: if (start, end) not in pos_span_poss: if len(neg_spans) >= num_neg: break # 'TN' for 'T' and negative neg_spans['TN' + str(len(neg_spans) + 1)] = (self.NEG_SPAN_LABEL, start, end) # generate negative span pairs pos_span_pair_ids = set(self.span_pairs.keys()) all_span_ids = list(self.spans.keys()) + list(neg_spans.keys()) neg_span_pairs = {} used = set() def comb(): for i in range(len(all_span_ids) * len(all_span_ids)): # n^2 iterations at most r1, r2 = np.random.randint(0, len(all_span_ids), 2) yield all_span_ids[r1], all_span_ids[r2] for s1, s2 in comb(): if (s1, s2) not in pos_span_pair_ids and (s1, s2) not in used: if len(neg_span_pairs) >= num_neg: break neg_span_pairs[(s1, s2)] = self.NEG_SPAN_PAIR_LABEL used.add((s1, s2)) return neg_spans, neg_span_pairs def to_word(self, tokenizer): ''' segment doc and convert char-based index to word-based index ''' # tokenize toks = tokenizer(self.doc) char_bd = set() for sid, (slabel, start, end) in self.spans.items(): char_bd.add(start) char_bd.add(end) toks = adjust_tokens_wrt_char_boundary(toks, char_boundaries=sorted(char_bd)) words = [tok.text for tok in toks] # TODO: add normalization? # build char ind to token ind mapping idxs = [(tok.idx, tok.idx + len(tok.text)) for tok in toks] sidx2tidx = dict((s[0], i) for i, s in enumerate(idxs)) # char start ind -> token ind eidx2tidx = dict((s[1], i) for i, s in enumerate(idxs)) # char end ind -> token ind # convert spans new_spans = {} for sid, (span_label, sidx, eidx) in self.spans.items(): if sidx in sidx2tidx and eidx in eidx2tidx: new_spans[sid] = (span_label, sidx2tidx[sidx], eidx2tidx[eidx] + 1) # end index is exclusive else: # remove blanks and re-check span_str = self.doc[sidx:eidx] blank_str = len(span_str) - len(span_str.lstrip()) blank_end = len(span_str) - len(span_str.rstrip()) sidx += blank_str eidx -= blank_end if sidx in sidx2tidx and eidx in eidx2tidx: new_spans[sid] = (span_label, sidx2tidx[sidx], eidx2tidx[eidx] + 1) # end index is exclusive else: # the annotation boundary is not consistent with the tokenization boundary raise Exception # convert span pairs new_span_pairs = dict(((s1, s2), v) for (s1, s2), v in self.span_pairs.items() if s1 in new_spans and s2 in new_spans) return BratDoc(self.id, words, new_spans, new_span_pairs, bracket_file=self.bracket_file, tree=self.tree) def split_by_sentence(self, sentencizer=None) -> List: ''' split into multiple docs by sentence boundary ''' sents = list(sentencizer(self.doc)) # sentencizer should return the offset between two adjacent sentences # split bracket file if self.bracket_file: trees = get_trees_from_bracket_file(self.bracket_file) assert len(trees) == len(sents), '#sent not equal to #tree' # collect spans for each sentence spans_ord = sorted(self.spans.items(), key=lambda x: (x[1][1], x[1][2])) # sorted by start ind and end ind num_skip_char = 0 span_ind = 0 spans_per_sent = [] for i, (sent, off) in enumerate(sents): num_skip_char += off spans_per_sent.append([]) cur_span = spans_per_sent[-1] # start ind and end ind should be not larger than a threshold while span_ind < len(spans_ord) and \ spans_ord[span_ind][1][1] < num_skip_char + len(sent) and \ spans_ord[span_ind][1][2] <= num_skip_char + len(sent): if spans_ord[span_ind][1][1] < num_skip_char or \ spans_ord[span_ind][1][2] <= num_skip_char: logger.warning('span is spreaded across sentences') span_ind += 1 continue sid, (slabel, sind, eind) = spans_ord[span_ind] cur_span.append((sid, (slabel, sind - num_skip_char, eind - num_skip_char))) span_ind += 1 num_skip_char += len(sent) # collect span pairs for each sentence pair_count = 0 brat_doc_li = [] for i, spans in enumerate(spans_per_sent): if len(sents[i][0]) <= 0: # skip empty sentences continue span_ids = set(span[0] for span in spans) span_pair = dict(((s1, s2), v) for (s1, s2), v in self.span_pairs.items() if s1 in span_ids and s2 in span_ids) pair_count += len(span_pair) tree = trees[i] if self.bracket_file else None brat_doc_li.append(BratDoc(self.id, sents[i][0], dict(spans), span_pair, tree=tree)) # TODO: span pairs across sentences are allowed #assert pair_count == len(self.span_pairs), 'some span pairs are spreaded across sentences' return brat_doc_li @classmethod def dummy(cls): return cls('id', ['token'], {}, {}) @classmethod def from_file(cls, text_file: str, ann_file: str, bracket_file: str = None): ''' read text and annotations from files in BRAT format ''' with open(text_file, 'r') as txtf: doc = txtf.read().rstrip() spans = {} span_pairs = {} eventid2triggerid = {} # e.g., E10 -> T27 with open(ann_file, 'r') as annf: for l in annf: if l.startswith('#'): # skip comment continue if l.startswith('T'): # 1. there are some special chars at the end of the line, so we only strip \n # 2. there are \t in text spans, so we only split twice ann = l.rstrip('\t\n').split('\t', 2) else: ann = l.rstrip().split('\t') aid = ann[0] if aid.startswith('T'): # text span annotation # TODO: consider non-contiguous span span_label, sind, eind = ann[1].split(';')[0].split(' ') sind, eind = int(sind), int(eind) spans[aid] = (span_label, sind, eind) # TODO: sometime there are spaces, sometimes not, so we cannot assert # sanity check #if len(ann) > 2 and ann[1].find(';') < 0: # assert ann[2] == doc[sind:eind] elif aid.startswith('E'): # event span annotation events = ann[1].split(' ') trigger_type, trigger_aid = events[0].split(':') eventid2triggerid[aid] = trigger_aid for event in events[1:]: arg_type, arg_aid = event.split(':') span_pairs[(trigger_aid, arg_aid)] = trigger_type + cls.EVENT_JOIN_SYM + arg_type elif aid.startswith('R'): # relation annotation rel = ann[1].split(' ') assert len(rel) == 3 rel_type = rel[0] arg1_aid = rel[1].split(':')[1] arg2_aid = rel[2].split(':')[1] span_pairs[(arg1_aid, arg2_aid)] = rel_type elif aid.startswith('N'): # normalization annotation # TODO: how to deal with normalization? pass elif not aid[0].istitle(): continue # skip lines not starting with upper case characters else: raise NotImplementedError # convert event id to text span id span_pairs_converted = {} for (sid1, sid2), v in span_pairs.items(): if sid1.startswith('E'): sid1 = eventid2triggerid[sid1] if sid2.startswith('E'): sid2 = eventid2triggerid[sid2] span_pairs_converted[(sid1, sid2)] = v return cls(ann_file, doc, spans, span_pairs_converted, bracket_file=bracket_file) @staticmethod def normalize_word(word): if word == '/.' or word == '/?': return word[1:] else: return word class Brat: def doc_iter(self, root_dir: str, sentencizer=None): ''' generate a brat doc for each pair of files (.txt and .ann). If sentencizer is not None, the document is splitted into several sentences. ''' for root, dirs, files in os.walk(root_dir, followlinks=True): for file in files: if not file.endswith('.txt'): continue text_file = os.path.join(root, file) ann_file = os.path.join(root, file[:-4] + '.ann') bracket_file = os.path.join(root, file[:-4] + '.bracket') if not os.path.exists(ann_file): continue if not os.path.exists(bracket_file): bracket_file = None brat_doc = BratDoc.from_file(text_file, ann_file, bracket_file=bracket_file) if sentencizer: yield from brat_doc.split_by_sentence(sentencizer=sentencizer) else: yield brat_doc @DatasetReader.register('brat') class BratReader(DatasetReader): ''' Read files in BRAT format. The directory should contain pairs of files whose extensions are '.txt' and '.ann' respectively. Each text file is a document, and is annotated by chars. ''' PADDING_LABEL = '<PADDING_LABEL>' def __init__(self, default_task: str, task_sample_rate: List[int] = None, span_weighted_by_pairs: Dict[str, bool] = None, restart_file: bool = True, use_neg: Dict[str, bool] = None, # number of negative spans/span pairs per positive one max_span_width: Dict[str, int] = None, # max number of words in a span max_sent_len: Dict[str, int] = None, # max length of a sentence max_num_sample: Dict[str, int] = None, # max number of samples for each task remove_span_not_in_pair: Dict[str, bool] = None, # e.g., predicates without args in SRL eval_span_pair_skip: Dict[str, List] = None, # skip these labels during evaluation sentencizer: Dict[str, str] = None, task_sampler: str = None, tokenizer: Dict[str, str] = None, token_indexers: Dict[str, TokenIndexer] = None, lazy: bool = False) -> None: super(BratReader, self).__init__(lazy) self._default_task = default_task self._task_sample_rate = task_sample_rate # task name -> whether to use weights for span loss (not use by default) self._span_weighted_by_pairs = span_weighted_by_pairs or defaultdict(lambda: False) self._restart_file = restart_file if use_neg is None: use_neg = defaultdict(lambda: True) self._use_neg = use_neg if max_span_width is None: max_span_width = defaultdict(lambda: None) # default is not restriction self._max_span_width = max_span_width if max_sent_len is None: max_sent_len = defaultdict(lambda: None) # default not truncate self._max_sent_len = max_sent_len if max_num_sample is None: max_num_sample = defaultdict(lambda: None) # default no limit self._max_num_sample = max_num_sample self._task_sampler = task_sampler if remove_span_not_in_pair is None: remove_span_not_in_pair = defaultdict(lambda: False) self._remove_span_not_in_pair = remove_span_not_in_pair self._eval_span_pair_skip = None if eval_span_pair_skip is not None: self._eval_span_pair_skip = defaultdict(set) for k, v in eval_span_pair_skip.items(): self._eval_span_pair_skip[k].update(v) self._token_indexers = token_indexers or {'tokens': SingleIdTokenIndexer()} self._nlp = spacy.load('en_core_web_sm', disable=['parser', 'tagger', 'ner']) self._nlp.add_pipe(self._nlp.create_pipe('sentencizer')) # sentencizer def sentencizer_spacy(doc): # TODO: use sentencizer might cause lots of spans across sentences n_newline = 0 for i, _sent in enumerate(doc.split('\n')): prev = -n_newline sents = self._nlp(_sent) sents.is_parsed = True # spacy's bug for j, sent in enumerate(sents.sents): off = sent.start_char - prev prev = sent.end_char yield sent.text, off n_newline = len(_sent) - sent.end_char n_newline += 1 # for "\n" def sentencizer_newline(doc): for i, _sent in enumerate(doc.split('\n')): yield _sent, 0 if i == 0 else 1 def sentencizer_concat(doc): yield doc.replace('\n', ' '), 0 n2sentencizer = { 'spacy': sentencizer_spacy, 'newline': sentencizer_newline, 'concat': sentencizer_concat } if sentencizer is None: self._sentencizer = defaultdict(lambda: sentencizer_newline) else: self._sentencizer = dict((k, n2sentencizer[v]) for k, v in sentencizer.items()) # tokenizer tokenizer_spacy = lambda sent: self._nlp(sent) def tokenizer_space(sent): tokens = [] offset = 0 for i, t in enumerate(sent.split(' ')): tokens.append(MyToken(t, offset)) offset += len(t) + 1 # for space return tokens n2tokenizer = { 'spacy': tokenizer_spacy, 'space': tokenizer_space } if tokenizer is None: self._tokenizer = defaultdict(lambda: tokenizer_spacy) else: self._tokenizer: Dict[str, Callable] = dict((k, n2tokenizer[v]) for k, v in tokenizer.items()) @overrides def _read(self, file_path: str): task_fp_li = file_path.split(':') # dirs for multiple tasks are separated by ":" task_fp_li = [tfp.split('|', 2) for tfp in task_fp_li] # each task is of the format "task|e2e|filepath" task_fp_li = [(task, str2bool(e2e), file_path) for task, e2e, file_path in task_fp_li] is_training = file_path.find('/train') != -1 task_sample_rate = self._task_sample_rate if task_sample_rate is None: # use uniform sampling as default task_sample_rate = [1] * len(task_fp_li) assert len(task_sample_rate) == len(task_fp_li), 'length inconsistent' # use task sampler instead of specifying sampling rate manually if is_training and self._task_sampler: if not hasattr(self, '_num_samples'): self._num_samples = np.array([list(self._read_one_task( file_path, task=task, e2e=e2e, estimate_count=True))[0] for task, e2e, file_path in task_fp_li]) logger.info('#samples estimation: {}'.format(self._num_samples)) if self._task_sampler == 'log': task_sample_rate = self._num_samples / np.min(self._num_samples) task_sample_rate =
np.log2(task_sample_rate + 1)
numpy.log2
import pickle import torch import torchvision.transforms as transforms import torch.nn.functional as F import numpy as np import os import clip from PIL import Image from sklearn.decomposition import PCA from ZSSGAN.utils.text_templates import imagenet_templates, part_templates, imagenet_templates_small class DirectionLoss(torch.nn.Module): def __init__(self, loss_type='mse'): super(DirectionLoss, self).__init__() self.loss_type = loss_type self.loss_func = { 'mse': torch.nn.MSELoss, 'cosine': torch.nn.CosineSimilarity, 'mae': torch.nn.L1Loss }[loss_type]() def forward(self, x, y): if self.loss_type == "cosine": return 1. - self.loss_func(x, y) return self.loss_func(x, y) class CLIPLoss(torch.nn.Module): def __init__(self, device, lambda_direction=1., lambda_patch=0., lambda_global=0., \ lambda_manifold=0., lambda_texture=0., patch_loss_type='mae', \ direction_loss_type='cosine', clip_model='ViT-B/32', args=None): super(CLIPLoss, self).__init__() self.device = device self.args = args self.model_name = clip_model self.model, clip_preprocess = clip.load(clip_model, device=self.device) # self.model.requires_grad_(False) self.clip_preprocess = clip_preprocess self.preprocess = transforms.Compose([transforms.Normalize(mean=[-1.0, -1.0, -1.0], std=[2.0, 2.0, 2.0])] + # Un-normalize from [-1.0, 1.0] (GAN output) to [0, 1]. clip_preprocess.transforms[:2] + # to match CLIP input scale assumptions clip_preprocess.transforms[4:]) # + skip convert PIL to tensor self.target_direction = None self.patch_text_directions = None self.patch_loss = DirectionLoss(patch_loss_type) self.direction_loss = DirectionLoss(direction_loss_type) self.patch_direction_loss = torch.nn.CosineSimilarity(dim=2) self.lambda_global = lambda_global self.lambda_patch = lambda_patch self.lambda_direction = lambda_direction self.lambda_manifold = lambda_manifold self.lambda_texture = lambda_texture self.alpha = args.alpha self.src_text_features = None self.target_text_features = None self.angle_loss = torch.nn.L1Loss() self.id_loss = DirectionLoss('cosine') # self.model_cnn, preprocess_cnn = clip.load("RN50", device=self.device) # self.preprocess_cnn = transforms.Compose([transforms.Normalize(mean=[-1.0, -1.0, -1.0], std=[2.0, 2.0, 2.0])] + # Un-normalize from [-1.0, 1.0] (GAN output) to [0, 1]. # preprocess_cnn.transforms[:2] + # to match CLIP input scale assumptions # preprocess_cnn.transforms[4:]) # + skip convert PIL to tensor self.texture_loss = torch.nn.MSELoss() self.pca_components = None self.condition = None self.pca_threshold = None self.clip_mean = None self.pca = self.get_pca() def get_pca(self): orig_sample_path = os.path.join('../weights/clip_mean/', f"{self.args.dataset}_{self.model_name[-2::]}_samples.pkl") with open(orig_sample_path, 'rb') as f: X = pickle.load(f) X = np.array(X) self.samples = X self.clip_mean = torch.from_numpy(np.mean(X, axis=0)).float().to(self.device) # Define a pca and train it pca = PCA(n_components=self.args.pca_dim) pca.fit(X) # Get the standar deviation of samples and set threshold for each dimension # threshold = np.sqrt(pca.explained_variance_) * self.alpha # self.pca_threshold = torch.from_numpy(threshold).float().to(self.device) # self.pca_components = torch.from_numpy(pca.components_).float().to(self.device) return pca def tokenize(self, strings: list): return clip.tokenize(strings).to(self.device) def encode_text(self, tokens: list) -> torch.Tensor: return self.model.encode_text(tokens) def encode_images(self, images: torch.Tensor) -> torch.Tensor: images = self.preprocess(images).to(self.device) return self.model.encode_image(images) def encode_images_with_cnn(self, images: torch.Tensor) -> torch.Tensor: images = self.preprocess_cnn(images).to(self.device) return self.model_cnn.encode_image(images) def distance_with_templates(self, img: torch.Tensor, class_str: str, templates=imagenet_templates) -> torch.Tensor: text_features = self.get_text_features(class_str, templates) image_features = self.get_image_features(img) similarity = image_features @ text_features.T return 1. - similarity def get_text_features(self, class_str: str, templates=imagenet_templates, norm: bool = True) -> torch.Tensor: template_text = self.compose_text_with_templates(class_str, templates) tokens = clip.tokenize(template_text).to(self.device) text_features = self.encode_text(tokens).detach() if norm: text_features /= text_features.norm(dim=-1, keepdim=True) return text_features def get_image_features(self, img: torch.Tensor, norm: bool = True) -> torch.Tensor: image_features = self.encode_images(img) if norm: image_features /= image_features.clone().norm(dim=-1, keepdim=True) return image_features def get_similar_img(self, tgt_vec): tgt = tgt_vec[0].cpu().numpy() sim = np.dot(self.samples, tgt) orders = np.argsort(sim)[::-1] print("Orders: {}, Similarities: {}".format(orders[0:20], sim[orders[0:20]])) src = self.samples[orders[0:1]] src = src * sim[orders[0:1], None] src = torch.from_numpy(src).to(tgt_vec.device, dtype=tgt_vec.dtype).mean(axis=0, keepdim=True) # src /= src.norm(dim=-1, keepdim=True) return src def supress_normal_features(self, vec, is_target=False): ''' Supress normal features of the given vector based on original StyleGAN Params: vec: the vector to be supressed ''' if self.args.supress == 0: return vec elif self.args.supress == 1: if self.condition is None or isinstance(self.condition, np.ndarray): self.condition = torch.from_numpy(self.condition).unsqueeze(0).float().to(vec.device) print("The number of style and special attrs: ", self.condition.sum()) return vec elif self.args.supress == 2: if self.clip_mean is not None: vec = vec - self.clip_mean vec_pca = vec @ self.pca_components.t() if self.condition is None: self.condition = (vec_pca[0].abs() > self.pca_threshold).unsqueeze(0).float() return vec_pca * self.condition if is_target else vec_pca else: raise RuntimeError(f"The choice {self.args.supress} is illegal! Please choose it among 0, 1, 2.") def keep_normal_features(self, vec): ''' Keep normal features of the given vector based on original StyleGAN ''' if self.args.supress == 0: return vec * 0 elif self.args.supress == 1: return vec * (1 - self.condition) elif self.args.supress == 2: if self.clip_mean is not None: vec = vec - self.clip_mean vec_pca = vec @ self.pca_components.t() # return vec_pca * (1 - self.condition) return vec_pca else: raise RuntimeError(f"The choice {self.args.supress} is illegal! Please choose it among 0, 1, 2.") def get_pca_features(self, vec): ''' Convert CLIP features to PCA features ''' if self.clip_mean is None: return vec vec = vec - self.clip_mean return vec @ self.pca_components.t() def compute_text_direction(self, source_class: str, target_class: str) -> torch.Tensor: source_features = self.clip_mean target_features = self.get_text_features(target_class) # Supress normal features and keep special features in the text feature # target_features = self.supress_normal_features(target_features, is_target=True) # source_features = self.supress_normal_features(source_features, is_target=True) # source_features = 0 text_direction = (target_features - source_features).mean(axis=0, keepdim=True) # text_direction = target_features.mean(axis=0, keepdim=True) text_direction /= text_direction.norm(dim=-1, keepdim=True) return text_direction def get_raw_img_features(self, imgs: str): pre_i = self.clip_preprocess(Image.open(imgs)).unsqueeze(0).to(self.device) encoding = self.model.encode_image(pre_i) encoding /= encoding.norm(dim=-1, keepdim=True) return encoding def compute_img2img_direction(self, source_images: torch.Tensor, target_images: list) -> torch.Tensor: with torch.no_grad(): target_encodings = [] for target_img in target_images: preprocessed = self.clip_preprocess(Image.open(target_img)).unsqueeze(0).to(self.device) encoding = self.model.encode_image(preprocessed) encoding /= encoding.norm(dim=-1, keepdim=True) target_encodings.append(encoding) target_encoding = torch.cat(target_encodings, axis=0) # target_encoding = self.supress_normal_features(target_encoding, is_target=True) target_encoding = target_encoding.mean(dim=0, keepdim=True) # src_encoding = self.get_image_features(source_images) # src_encoding = src_encoding.mean(dim=0, keepdim=True) src_encoding = self.clip_mean # src_encoding = self.supress_normal_features(src_encoding, is_target=True) direction = target_encoding - src_encoding direction /= direction.norm(dim=-1, keepdim=True) return direction def compute_corresponding_img2img_direction(self, source_images: list, target_images: list) -> torch.Tensor: with torch.no_grad(): target_encodings = [] for target_img in target_images: preprocessed = self.clip_preprocess(Image.open(target_img)).unsqueeze(0).to(self.device) encoding = self.model.encode_image(preprocessed) encoding /= encoding.norm(dim=-1, keepdim=True) target_encodings.append(encoding) target_encoding = torch.cat(target_encodings, axis=0) # target_encoding = self.supress_normal_features(target_encoding, is_target=True) target_encoding = target_encoding.mean(dim=0, keepdim=True) source_encodings = [] for source_img in source_images: preprocessed = self.clip_preprocess(Image.open(source_img)).unsqueeze(0).to(self.device) encoding = self.model.encode_image(preprocessed) encoding /= encoding.norm(dim=-1, keepdim=True) source_encodings.append(encoding) source_encoding = torch.cat(source_encodings, axis=0) # target_encoding = self.supress_normal_features(target_encoding, is_target=True) source_encoding = source_encoding.mean(dim=0, keepdim=True) direction = target_encoding - source_encoding direction /= direction.norm(dim=-1, keepdim=True) return direction def set_text_features(self, source_class: str, target_class: str) -> None: source_features = self.get_text_features(source_class).mean(axis=0, keepdim=True) self.src_text_features = source_features / source_features.norm(dim=-1, keepdim=True) target_features = self.get_text_features(target_class).mean(axis=0, keepdim=True) self.target_text_features = target_features / target_features.norm(dim=-1, keepdim=True) def clip_angle_loss(self, src_img: torch.Tensor, source_class: str, target_img: torch.Tensor, target_class: str) -> torch.Tensor: if self.src_text_features is None: self.set_text_features(source_class, target_class) cos_text_angle = self.target_text_features @ self.src_text_features.T text_angle = torch.acos(cos_text_angle) src_img_features = self.get_image_features(src_img).unsqueeze(2) target_img_features = self.get_image_features(target_img).unsqueeze(1) cos_img_angle = torch.clamp(target_img_features @ src_img_features, min=-1.0, max=1.0) img_angle = torch.acos(cos_img_angle) text_angle = text_angle.unsqueeze(0).repeat(img_angle.size()[0], 1, 1) cos_text_angle = cos_text_angle.unsqueeze(0).repeat(img_angle.size()[0], 1, 1) return self.angle_loss(cos_img_angle, cos_text_angle) def compose_text_with_templates(self, text: str, templates=imagenet_templates) -> list: return [template.format(text) for template in templates] def clip_directional_loss(self, src_img: torch.Tensor, source_class: str, target_img: torch.Tensor, target_class: str) -> torch.Tensor: if self.target_direction is None: self.target_direction = self.compute_text_direction(source_class, target_class) src_encoding = self.get_image_features(src_img) # src_encoding = self.supress_normal_features(src_encoding, is_target=True) target_encoding = self.get_image_features(target_img) # target_encoding = self.supress_normal_features(target_encoding, is_target=True) edit_direction = (target_encoding - src_encoding) edit_direction /= edit_direction.clone().norm(dim=-1, keepdim=True) return self.direction_loss(edit_direction, self.target_direction).mean() def pca_directional_loss(self, src_img: torch.Tensor, source_class: str, target_img: torch.Tensor, target_class: str) -> torch.Tensor: if self.target_direction is None: self.target_direction = self.compute_text_direction(source_class, target_class) # if self.args.use_mean: # src_encoding = self.clip_mean # else: src_encoding = self.get_image_features(src_img) src_encoding = self.get_pca_features(src_encoding) target_encoding = self.get_image_features(target_img) target_encoding = self.get_pca_features(target_encoding) edit_direction = (target_encoding - src_encoding) edit_direction /= edit_direction.clone().norm(dim=-1, keepdim=True) return self.direction_loss(edit_direction, self.target_direction).mean() def global_clip_loss(self, img: torch.Tensor, text) -> torch.Tensor: if not isinstance(text, list): text = [text] tokens = clip.tokenize(text).to(self.device) image = self.preprocess(img) logits_per_image, _ = self.model(image, tokens) return (1. - logits_per_image / 100).mean() def adaptive_global_clip_loss(self, img: torch.Tensor, text) -> torch.Tensor: if self.alpha == 0: return self.global_clip_loss(img, text) text_features = self.get_text_features(text, templates=['{}']) img_features = self.get_image_features(img) text_features = text_features - self.pca_mean.unsqueeze(0) text_features = text_features @ self.pca_cov.t() img_features = img_features - self.pca_mean.unsqueeze(0) img_features = img_features @ self.pca_cov.t() logits_per_img = img_features @ text_features.t() return (1. - logits_per_img).mean() def random_patch_centers(self, img_shape, num_patches, size): batch_size, channels, height, width = img_shape half_size = size // 2 patch_centers = np.concatenate([
np.random.randint(half_size, width - half_size, size=(batch_size * num_patches, 1))
numpy.random.randint
# -*- coding: utf-8 -*- """ Created on Sat Aug 04 22:18:20 2018 @author0: MIUK @author1: FS Generate datasets for ANN training testing. TODO: Ensure compatibility with ANN scripts TODO: Look at shape of Nuke's input file """ from ..utility import bipartite import numpy as np def gen_dataset(nb_train, nb_test, nb_m, e_min = 0, e_max = np.log(2), subsyst = ['A', 'B'], check_e = False, states = False): """ Generate data_set of measures based on random states of uniformly distributed entropies Arguments nb_training: int how many training examples do we want nb_testing: int how many testing examples do we want nb_m: int How many measurements are we doing e_min: float Min entropy e_max: float Max entropy check_e: bool Verify that entanglement required is the same as the one obtained states: bool should we return the underlying states used info Output ------ res: (train, test, info) train/test: (X, Y, states(optional)) info: str Provides information about the columns and parameters used to generate the data """ info = [] info.append("Number of measuremets: {0} ".format(nb_m)) info.append("Ent min/max required {0}/{1}".format(e_min, e_max)) nb_total = nb_train + nb_test ent = np.random.uniform(e_min, e_max, nb_total) lambd = bipartite.ent_to_lambda(ent) st = bipartite.rdm_states_from_lambda(lambd) if check_e: ent_final = bipartite.entangl_of_states(st) assert np.allclose(ent_final, ent), "Entanglement produced don't match" X = np.zeros((nb_total, 3 * len(subsyst))) for i, ss in enumerate(subsyst): info.append("X[{0}:{1}] X, Y, Z measurements on subsyst {2}".format(3*i, 3*i+2, ss)) X[:, (3 * i)] = bipartite.meas_one_sub(st, nb_m, [1,0,0], ss) X[:, (3 * i + 1)] = bipartite.meas_one_sub(st, nb_m, [0,1,0], ss) X[:, (3 * i + 2)] = bipartite.meas_one_sub(st, nb_m, [0,0,1], ss) index =
np.arange(nb_total)
numpy.arange
"""Decompose an x-polarized plane wave into the VSHs""" import numpy as np import matplotlib.pyplot as plt import miepy ### source definition source = miepy.sources.plane_wave.from_string(polarization='x') k = 2*np.pi/1 Nmax = 5 ### grid plane x =
np.linspace(-.3,.3,30)
numpy.linspace
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import os import torch import numpy as np import scipy.misc as m from tqdm import tqdm from torch.utils import data from PIL import Image from data.augmentations import * from data.base_dataset import BaseDataset from data.randaugment import RandAugmentMC import random def recursive_glob(rootdir=".", suffix=""): """Performs recursive glob with given suffix and rootdir :param rootdir is the root directory :param suffix is the suffix to be searched """ return [ os.path.join(looproot, filename) for looproot, _, filenames in os.walk(rootdir) #os.walk: traversal all files in rootdir and its subfolders for filename in filenames if filename.endswith(suffix) ] class Cityscapes_loader(BaseDataset): """cityscapesLoader https://www.cityscapes-dataset.com Data is derived from CityScapes, and can be downloaded from here: https://www.cityscapes-dataset.com/downloads/ Many Thanks to @fvisin for the loader repo: https://github.com/fvisin/dataset_loaders/blob/master/dataset_loaders/images/cityscapes.py """ colors = [ # [ 0, 0, 0], [128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156], [190, 153, 153], [153, 153, 153], [250, 170, 30], [220, 220, 0], [107, 142, 35], [152, 251, 152], [0, 130, 180], [220, 20, 60], [255, 0, 0], [0, 0, 142], [0, 0, 70], [0, 60, 100], [0, 80, 100], [0, 0, 230], [119, 11, 32], ] label_colours = dict(zip(range(19), colors)) mean_rgb = { "pascal": [103.939, 116.779, 123.68], "cityscapes": [0.0, 0.0, 0.0], } # pascal mean for PSPNet and ICNet pre-trained model def __init__(self, opt, logger, augmentations = None, split='train'): """__init__ :param opt: parameters of dataset :param writer: save the result of experiment :param logger: logging file :param augmentations: """ self.opt = opt self.root = opt.tgt_rootpath self.split = split self.augmentations = augmentations self.randaug = RandAugmentMC(2, 10) self.n_classes = opt.n_class self.img_size = (2048, 1024) self.mean = np.array(self.mean_rgb['cityscapes']) self.files = {} self.paired_files = {} self.images_base = os.path.join(self.root, "leftImg8bit", self.split) self.annotations_base = os.path.join( self.root, "gtFine", self.split ) self.files = sorted(recursive_glob(rootdir=self.images_base, suffix=".png")) #find all files from rootdir and subfolders with suffix = ".png" #self.void_classes = [0, 1, 2, 3, 4, 5, 6, 9, 10, 14, 15, 16, 18, 29, 30, -1] if self.n_classes == 19: self.valid_classes = [7, 8, 11, 12, 13, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33,] self.class_names = ["unlabelled","road","sidewalk","building","wall", "fence","pole","traffic_light","traffic_sign","vegetation", "terrain","sky","person","rider","car", "truck","bus","train","motorcycle","bicycle", ] self.to19 = dict(zip(range(19), range(19))) elif self.n_classes == 16: self.valid_classes = [7, 8, 11, 12, 13, 17, 19, 20, 21, 23, 24, 25, 26, 28, 32, 33,] self.class_names = ["unlabelled","road","sidewalk","building","wall", "fence","pole","traffic_light","traffic_sign","vegetation", "sky","person","rider","car","bus", "motorcycle","bicycle", ] self.to19 = dict(zip(range(16), [0,1,2,3,4,5,6,7,8,10,11,12,13,15,17,18])) elif self.n_classes == 13: self.valid_classes = [7, 8, 11, 19, 20, 21, 23, 24, 25, 26, 28, 32, 33,] self.class_names = ["unlabelled","road","sidewalk","building","traffic_light", "traffic_sign","vegetation","sky","person","rider", "car","bus","motorcycle","bicycle", ] self.to19 = dict(zip(range(13), [0,1,2,6,7,8,10,11,12,13,15,17,18])) self.ignore_index = 250 self.class_map = dict(zip(self.valid_classes, range(self.n_classes))) #zip: return tuples if not self.files: raise Exception( "No files for split=[%s] found in %s" % (self.split, self.images_base) ) print("Found %d %s images" % (len(self.files), self.split)) def __len__(self): """__len__""" return len(self.files) def __getitem__(self, index): """__getitem__ :param index: """ img_path = self.files[index].rstrip() lbl_path = os.path.join( self.annotations_base, img_path.split(os.sep)[-2], os.path.basename(img_path)[:-15] + "gtFine_labelIds.png", ) img = Image.open(img_path) lbl = Image.open(lbl_path) img = img.resize(self.img_size, Image.BILINEAR) lbl = lbl.resize(self.img_size, Image.NEAREST) img = np.array(img, dtype=np.uint8) lbl = np.array(lbl, dtype=np.uint8) lbl = self.encode_segmap(np.array(lbl, dtype=np.uint8)) img_full = img.copy().astype(np.float64) img_full -= self.mean img_full = img_full.astype(float) / 255.0 img_full = img_full.transpose(2, 0, 1) lp, lpsoft, weak_params = None, None, None if self.split == 'train' and self.opt.used_save_pseudo: if self.opt.proto_rectify: lpsoft = np.load(os.path.join(self.opt.path_soft, os.path.basename(img_path).replace('.png', '.npy'))) else: lp_path = os.path.join(self.opt.path_LP, os.path.basename(img_path)) lp = Image.open(lp_path) lp = lp.resize(self.img_size, Image.NEAREST) lp = np.array(lp, dtype=np.uint8) if self.opt.threshold and self.opt.threshold > 0: conf = np.load(os.path.join(self.opt.path_LP, os.path.basename(img_path).replace('.png', '_conf.npy'))) lp[conf <= self.opt.threshold] = 250 input_dict = {} if self.augmentations!=None: img, lbl, lp, lpsoft, weak_params = self.augmentations(img, lbl, lp, lpsoft) img_strong, params = self.randaug(Image.fromarray(img)) img_strong, _, _ = self.transform(img_strong, lbl) input_dict['img_strong'] = img_strong input_dict['params'] = params img, lbl_, lp = self.transform(img, lbl, lp) input_dict['img'] = img input_dict['img_full'] = torch.from_numpy(img_full).float() input_dict['label'] = lbl_ input_dict['lp'] = lp input_dict['lpsoft'] = lpsoft input_dict['weak_params'] = weak_params #full2weak input_dict['img_path'] = self.files[index] input_dict = {k:v for k, v in input_dict.items() if v is not None} return input_dict def transform(self, img, lbl, lp=None, check=True): """transform :param img: :param lbl: """ # img = m.imresize( # img, (self.img_size[0], self.img_size[1]) # ) # uint8 with RGB mode img = np.array(img) # img = img[:, :, ::-1] # RGB -> BGR img = img.astype(np.float64) img -= self.mean img = img.astype(float) / 255.0 # NHWC -> NCHW img = img.transpose(2, 0, 1) classes = np.unique(lbl) lbl = np.array(lbl) lbl = lbl.astype(float) # lbl = m.imresize(lbl, (self.img_size[0], self.img_size[1]), "nearest", mode="F") lbl = lbl.astype(int) if not np.all(classes == np.unique(lbl)): print("WARN: resizing labels yielded fewer classes") #TODO: compare the original and processed ones if check and not np.all(np.unique(lbl[lbl != self.ignore_index]) < self.n_classes): #todo: understanding the meaning print("after det", classes, np.unique(lbl)) raise ValueError("Segmentation map contained invalid class values") img = torch.from_numpy(img).float() lbl = torch.from_numpy(lbl).long() if lp is not None: classes =
np.unique(lp)
numpy.unique
#!/usr/bin/env python import sys sys.path.append(r'C:\Program Files (x86)\Keysight\SD1\Libraries\Python') from BaseDriver import LabberDriver, Error, IdError import keysightSD1 import numpy as np import os import time class Driver(LabberDriver): """ This class implements the Keysight PXI digitizer""" def performOpen(self, options={}): """Perform the operation of opening the instrument connection""" # number of demod blocks in the FPGA self.num_of_demods = 5 # self.demod_n_pts = self.num_of_demods * 15 self.demod_n_pts = 80 self.bit_stream_name = '' # set time step and resolution self.nBit = 16 self.bitRange = float(2**(self.nBit - 1) - 1) # timeout self.timeout_ms = int(1000 * self.dComCfg['Timeout']) # get PXI chassis self.chassis = int(self.dComCfg.get('PXI chassis', 1)) # create AWG instance self.dig = keysightSD1.SD_AIN() AWGPart = self.dig.getProductNameBySlot( self.chassis, int(self.comCfg.address)) self.log('Serial:', self.dig.getSerialNumberBySlot( self.chassis, int(self.comCfg.address))) if not isinstance(AWGPart, str): raise Error('Unit not available') # check that model is supported dOptionCfg = self.dInstrCfg['options'] for validId, validName in zip( dOptionCfg['model_id'], dOptionCfg['model_str']): if AWGPart.find(validId) >= 0: # id found, stop searching break else: # loop fell through, raise ID error raise IdError(AWGPart, dOptionCfg['model_id']) # set model self.setModel(validName) # sampling rate and number of channles is set by model if validName in ('M3102', 'M3302'): # 500 MHz models self.dt = 2E-9 self.nCh = 4 else: # assume 100 MHz for all other models self.dt = 10E-9 self.nCh = 4 # create list of sampled data self.lTrace = [np.array([])] * self.nCh self.demod_output_ssb = np.zeros((0,), dtype='complex') self.demod_buffer = np.zeros((0,), dtype=np.int16) self.dig.openWithSlot(AWGPart, self.chassis, int(self.comCfg.address)) # get hardware version - changes numbering of channels hw_version = self.dig.getHardwareVersion() if hw_version >= 4: # KEYSIGHT - channel numbers start with 1 self.ch_index_zero = 1 else: # SIGNADYNE - channel numbers start with 0 self.ch_index_zero = 0 self.log('HW:', hw_version) self.configure_FPGA() def configure_FPGA(self, reset=False): """Load FPGA bitstream and setup triggers""" self.fpga_config = self.getValue('FPGA Hardware') if reset or self.fpga_config == 'Only signals': bitstream = os.path.join( os.path.dirname(__file__), 'firmware_FPGAFlow_Clean_2018-05-31T22_22_11.sbp') elif self.fpga_config in ('FPGA I/Q and signals', 'Only FPGA I/Q'): bitstream = os.path.join( os.path.dirname(__file__), 'firmware_FPGAFlow_Demod_v4_IQx5_2018-09-02T19_14_50.sbp') # don't reload if correct bitstream is already loaded if bitstream == self.bit_stream_name: return if (self.dig.FPGAload(bitstream)) < 0: if self.fpga_config != 'Only signals': raise Error('FPGA not loaded, check FPGA version...') self.bit_stream_name = bitstream if self.fpga_config != 'Only signals': for n in range(self.num_of_demods): LO_freq = self.getValue('LO freq %d' % (n + 1)) self.setFPGALOfreq(n + 1, LO_freq) self.setFPGATrigger() def getHwCh(self, n): """Get hardware channel number for channel n. n starts at 0""" return n + self.ch_index_zero def performClose(self, bError=False, options={}): """Perform the close instrument connection operation""" # do not check for error if close was called with an error try: # flush all memory for n in range(self.nCh): self.log('Close ch:', n, self.dig.DAQflush(self.getHwCh(n))) # remove firmware self.configure_FPGA(reset=True) # close instrument self.dig.close() except Exception: # never return error here pass def performSetValue(self, quant, value, sweepRate=0.0, options={}): """Perform the Set Value instrument operation. This function should return the actual value set by the instrument""" # start with setting local quant value quant.setValue(value) # if changing FPGA operation, reload firmware if quant.name == 'FPGA Hardware': new_value = self.getValue('FPGA Hardware') # only reload if operation mode changed if new_value != self.fpga_config: self.configure_FPGA() # check if channel-specific, if so get channel + name if quant.name.startswith('Ch') and len(quant.name) > 6: ch = int(quant.name[2]) - 1 name = quant.name[6:] else: ch, name = None, '' if (quant.name.startswith('FPGA Voltage') or quant.name.startswith('FPGA Single-shot')): demod_num = int(quant.name[-1]) - 1 # proceed depending on command if quant.name in ('External Trig Source', 'External Trig Config', 'Trig Sync Mode'): extSource = int(self.getCmdStringFromValue('External Trig Source')) trigBehavior = int( self.getCmdStringFromValue('External Trig Config')) sync = int(self.getCmdStringFromValue('Trig Sync Mode')) self.dig.DAQtriggerExternalConfig(0, extSource, trigBehavior, sync) elif quant.name in ('Trig I/O', ): # get direction and sync from index of comboboxes direction = int(self.getCmdStringFromValue('Trig I/O')) self.dig.triggerIOconfig(direction) elif quant.name in ( 'Analog Trig Channel', 'Analog Trig Config', 'Trig Threshold'): # get trig channel trigCh = self.getValueIndex('Analog Trig Channel') mod = int(self.getCmdStringFromValue('Analog Trig Config')) threshold = self.getValue('Trig Threshold') self.dig.channelTriggerConfig(self.getHwCh(trigCh), mod, threshold) elif name in ('Range', 'Impedance', 'Coupling'): # set range, impedance, coupling at once rang = self.getRange(ch) imp = int(self.getCmdStringFromValue('Ch%d - Impedance' % (ch + 1))) coup = int(self.getCmdStringFromValue('Ch%d - Coupling' % (ch + 1))) self.dig.channelInputConfig(self.getHwCh(ch), rang, imp, coup) # FPGA configuration if quant.name.startswith('LO freq'): demod_num = int(quant.name[-1]) LO_freq = self.getValue('LO freq ' + str(demod_num)) value = self.setFPGALOfreq(demod_num, LO_freq) elif quant.name in ('Skip time', 'Integration time'): self.setFPGATrigger() return value def performGetValue(self, quant, options={}): """Perform the Set Value instrument operation. This function should return the actual value set by the instrument""" # check if channel-specific, if so get channel + name if quant.name.startswith('Ch') and len(quant.name) > 6: ch = int(quant.name[2]) - 1 name = quant.name[6:] else: ch, name = None, '' if (quant.name.startswith('FPGA Voltage') or quant.name.startswith('FPGA Single-shot')): demod_num = int(quant.name[-1]) - 1 if (name == 'Signal' or quant.name.startswith('FPGA Voltage') or quant.name.startswith('FPGA Single-shot')): if self.isHardwareLoop(options): """Get data from round-robin type averaging""" (seq_no, n_seq) = self.getHardwareLoopIndex(options) # acquisition was started when arming, just read data if name == 'Signal': return quant.getTraceDict( self.reshaped_traces[ch][seq_no], dt=self.dt) elif quant.name.startswith('FPGA Voltage I,'): return self.demod_output_I[demod_num] elif quant.name.startswith('FPGA Single-shot I,'): return quant.getTraceDict( self.demod_output_vector_I[demod_num][seq_no], dt=1) elif quant.name.startswith('FPGA Voltage Q,'): return self.demod_output_Q[demod_num] elif quant.name.startswith('FPGA Single-shot Q,'): return quant.getTraceDict( self.demod_output_vector_Q[demod_num][seq_no], dt=1) elif quant.name.startswith('FPGA Single-shot REF,'): return quant.getTraceDict( self.demod_output_vector_ref[demod_num][seq_no], dt=1) elif quant.name.startswith('FPGA Voltage NP,'): return self.demod_output_NP[demod_num] elif quant.name.startswith('FPGA Single-shot NP,'): return quant.getTraceDict( self.demod_output_vector_NP[demod_num][seq_no], dt=1) elif quant.name.startswith('FPGA Voltage,'): return self.demod_output_ssb[demod_num, :, seq_no].mean() elif quant.name.startswith('FPGA Single-shot,'): return quant.getTraceDict( self.demod_output_ssb[demod_num, :, seq_no], dt=1) # get traces if first call if self.isFirstCall(options): # don't arm and measure if in arm/trig mode, was done at arm if not self.isHardwareTrig(options): self.getTraces() # return correct data if name == 'Signal': value = quant.getTraceDict(self.lTrace[ch], dt=self.dt) elif quant.name.startswith('FPGA Voltage I,'): value = self.demod_output_I[demod_num] elif quant.name.startswith('FPGA Single-shot I,'): value = quant.getTraceDict( self.demod_output_vector_I[demod_num], dt=1) elif quant.name.startswith('FPGA Voltage Q,'): value = self.demod_output_Q[demod_num] elif quant.name.startswith('FPGA Single-shot Q,'): value = quant.getTraceDict( self.demod_output_vector_Q[demod_num], dt=1) elif quant.name.startswith('FPGA Single-shot REF,'): value = quant.getTraceDict( self.demod_output_vector_ref[demod_num], dt=1) elif quant.name.startswith('FPGA Voltage NP,'): return self.demod_output_NP[demod_num] elif quant.name.startswith('FPGA Single-shot NP,'): return quant.getTraceDict( self.demod_output_vector_NP[demod_num], dt=1) elif quant.name.startswith('FPGA Voltage,'): value = np.mean(self.demod_output_ssb[demod_num]) elif quant.name.startswith('FPGA Single-shot,'): # if no records, don't average over number of averages if self.demod_output_ssb.shape[2] <= 1: value = quant.getTraceDict( self.demod_output_ssb[demod_num, :, 0], dt=1) else: # records are being used, average over number of averages value = quant.getTraceDict( self.demod_output_ssb[demod_num].mean(0), dt=1) else: # for all others, return local value value = quant.getValue() return value def performArm(self, quant_names, options={}): """Perform the instrument arm operation""" # only arm digitizer if about to measure read-only values for name in quant_names: quant = self.getQuantity(name) if quant.isPermissionRead(): break else: # loop fell through, no read-only quantity, don't arm return # arm by calling get traces if self.isHardwareLoop(options): # in hardware looping, number of records is set by the looping (seq_no, n_seq) = self.getHardwareLoopIndex(options) # show status before starting acquisition self.reportStatus('Digitizer - Waiting for signal') # get data self.getTraces(bArm=True, bMeasure=False, n_seq=n_seq) # report arm completed, to allow client to continue self.report_arm_completed() # directly start collecting data (digitizer buffer is limited) self.getTraces(bArm=False, bMeasure=True, n_seq=n_seq) # after measurement is done, re-shape data and place in buffer self.reshaped_traces = [] for trace in self.lTrace: if len(trace) > 0: trace = trace.reshape((n_seq, trace.size // n_seq)) self.reshaped_traces.append(trace) else: self.getTraces(bArm=True, bMeasure=False) # report arm completed, to allow client to continue self.report_arm_completed() self.getTraces(bArm=False, bMeasure=True) def getTraces(self, bArm=True, bMeasure=True, n_seq=0): """Get all active traces""" # # test timing # import time # t0 = time.clock() # lT = [] # find out which traces to get lCh = [] iChMask = 0 for n in range(self.nCh): if self.fpga_config == 'Only signals': # normal operation if self.getValue('Ch%d - Enabled' % (n + 1)): lCh.append(n) iChMask += 2**n elif self.fpga_config == 'FPGA I/Q and signals': # mixed signal/demod, always enable ch 4 (used for demod) if (n == 3) or self.getValue('Ch%d - Enabled' % (n + 1)): lCh.append(n) iChMask += 2**n elif self.fpga_config == 'Only FPGA I/Q': # if only fpga demod, don't read any AWGs but ch 4 (demod) if n == 3: lCh.append(n) iChMask += 2**n else: continue # get current settings if self.fpga_config in ('Only signals', 'FPGA I/Q and signals'): nPts = int(self.getValue('Number of samples')) elif self.fpga_config == 'Only FPGA I/Q': nPts = self.demod_n_pts nCyclePerCall = int(self.getValue('Records per Buffer')) # in hardware loop mode, ignore records and use number of sequences if n_seq > 0: nSeg = n_seq else: nSeg = int(self.getValue('Number of records')) nAv = int(self.getValue('Number of averages')) # trigger delay is in 1/sample rate nTrigDelay = int(round(self.getValue('Trig Delay') / self.dt)) # special high-speed FPGA mode, don't convert, just transfer if (self.fpga_config == 'Only FPGA I/Q' and self.getValue('Hide I/Q') and not self.getValue('Convert data while streaming')): only_transfer_fgpa = True else: only_transfer_fgpa = False if bArm: # clear old data self.dig.DAQflushMultiple(iChMask) self.lTrace = [np.array([])] * self.nCh self.smsb_info_str = [] self.demod_counter = 0 # only re-allocate large output matrix if necessary (slow) if self.demod_output_ssb.size != (self.num_of_demods * nSeg * nAv): self.demod_output_ssb = np.zeros( (self.num_of_demods, nSeg * nAv), dtype='complex') else: # matrix has right size, just reshape self.demod_output_ssb = self.demod_output_ssb.reshape( (self.num_of_demods, nSeg * nAv)) # create new binary demod data buffer, if size changed buf = (nPts * nSeg * nAv) if only_transfer_fgpa else (nPts * nSeg) if self.demod_buffer.size != buf: self.demod_buffer = np.zeros(buf, dtype=np.int16) # only initiate diagnostic traces if in use if not self.getValue('Hide I/Q'): self.demod_output_vector_I = np.zeros( [self.num_of_demods, nSeg], dtype='complex') self.demod_output_I = np.zeros( self.num_of_demods, dtype='complex') self.demod_output_vector_Q = np.zeros( [self.num_of_demods, nSeg], dtype='complex') self.demod_output_Q = np.zeros( self.num_of_demods, dtype='complex') self.demod_output_vector_ref = np.zeros( [self.num_of_demods, nSeg], dtype='complex') self.demod_output_ref = np.zeros( self.num_of_demods, dtype='complex') self.demod_output_SSB = np.zeros( self.num_of_demods, dtype='complex') self.demod_output_vector_NP = np.zeros( [self.num_of_demods, nSeg]) self.demod_output_NP = np.zeros(self.num_of_demods) self.moment_I2 = np.zeros( [self.num_of_demods, nSeg], dtype='complex') self.moment_Q2 = np.zeros( [self.num_of_demods, nSeg], dtype='complex') # configure trigger for all active channels for nCh in lCh: self.lTrace[nCh] = np.zeros((nSeg * nPts)) # channel number depens on hardware version ch = self.getHwCh(nCh) # extra config for trig mode if self.getValue('Trig Mode') == 'Digital trigger': extSource = int( self.getCmdStringFromValue('External Trig Source')) trigBehavior = int( self.getCmdStringFromValue('External Trig Config')) sync = int(self.getCmdStringFromValue('Trig Sync Mode')) self.dig.DAQtriggerExternalConfig( ch, extSource, trigBehavior, sync) self.dig.DAQdigitalTriggerConfig( ch, extSource, trigBehavior) elif self.getValue('Trig Mode') == 'Analog channel': digitalTriggerMode = 0 digitalTriggerSource = 0 trigCh = self.getValueIndex('Analog Trig Channel') analogTriggerMask = 2**trigCh #analogTriggerMask = int('1111',2) self.dig.DAQdigitalTriggerConfig( ch, digitalTriggerSource, digitalTriggerMode) self.dig.DAQanalogTriggerConfig( ch, analogTriggerMask) # config daq and trig mode trigMode = int(self.getCmdStringFromValue('Trig Mode')) self.dig.DAQconfig(ch, nPts, nSeg * nAv, nTrigDelay, trigMode) # TODO change nPts # start acquiring data self.dig.DAQstartMultiple(iChMask) #self.wait(1) # lT.append('Start %.1f ms' % (1000*(time.clock()-t0))) # # return if not measure if not bMeasure: return # define number of cycles to read at a time nCycleTotal = nSeg * nAv nCall = int(np.ceil(nCycleTotal / nCyclePerCall)) lScale = [(self.getRange(ch) / self.bitRange) for ch in range(self.nCh)] # keep track of progress in percent old_percent = -1 # self.log('nCall:' + str(nCall), level = 30) # proceed depending on segment or not segment if only_transfer_fgpa: # just transfer fpga data, do conversion after to allow fast stream ch = self.getHwCh(3) count = 0 for n in range(nCall): # number of cycles for this call, could be fewer for last call nCycle = min(nCyclePerCall, nCycleTotal - (n * nCyclePerCall)) # channel number depens on hardware version data = self.DAQread(self.dig, ch, nPts * nCycle, int(3000 + self.timeout_ms / nCall)) # TODO change nPts # stop if no data if data.size == 0: return # store data in long vector, convert later self.demod_buffer[count:(count + data.size)] = data count += data.size # report progress, only report integer percent if nCall >= 1: new_percent = int(100 * n / nCall) if new_percent > old_percent: old_percent = new_percent self.reportStatus( 'Acquiring traces ({}%)'.format(new_percent) + ', FPGA Demod buffer: ' + ', '.join(self.smsb_info_str)) # break if stopped from outside if self.isStopped(): break # finally, get demod values self.getDemodValues(self.demod_buffer, nPts, nSeg, nSeg) elif nSeg <= 1: # non-segmented acquisiton for n in range(nCall): # number of cycles for this call, could be fewer for last call nCycle = min(nCyclePerCall, nCycleTotal - (n * nCyclePerCall)) # self.log('nCycle:' + str(nCycle), level = 30) # capture traces one by one for nCh in lCh: # channel number depens on hardware version ch = self.getHwCh(nCh) data = self.DAQread(self.dig, ch, nPts * nCycle, int(3000 + self.timeout_ms / nCall)) # stop if no data if data.size == 0: return # different operation for signals vs demod data if self.fpga_config == 'Only signals' or nCh < 3: # average data = data.reshape((nCycle, nPts)).mean(0) # adjust scaling to account for summing averages scale = lScale[nCh] * (nCycle / nAv) # convert to voltage, add to total average self.lTrace[nCh] += data * scale else: # for demod, immediately get demodulated values self.getDemodValues(data, nPts, nSeg, nCycle) # report progress, only report integer percent if nCall >= 1: new_percent = int(100 * n / nCall) if new_percent > old_percent: old_percent = new_percent self.reportStatus( 'Acquiring traces ({}%)'.format(new_percent) + ', FPGA Demod buffer: ' + ', '.join(self.smsb_info_str)) # break if stopped from outside if self.isStopped(): break # lT.append('N: %d, Tot %.1f ms' % (n, 1000 * (time.clock() - t0))) else: # segmented acquisition, get calls per segment (nCallSeg, extra_call) = divmod(nSeg, nCyclePerCall) # pre-calculate list of cycles/call, last call may have more cycles if nCallSeg == 0: nCallSeg = 1 lCyclesSeg = [nSeg] else: lCyclesSeg = [nCyclePerCall] * nCallSeg lCyclesSeg[-1] = nCyclePerCall + extra_call # pre-calculate scale, should include scaling for averaging lScale = np.array(lScale, dtype=float) / nAv for n in range(nAv): count = 0 # loop over number of calls per segment for m, nCycle in enumerate(lCyclesSeg): # capture traces one by one for nCh in lCh: # channel number depens on hardware version ch = self.getHwCh(nCh) data = self.DAQread(self.dig, ch, nPts * nCycle, int(3000 + self.timeout_ms / nCall)) # stop if no data if data.size == 0: return # different operation for signals vs demod data if self.fpga_config == 'Only signals' or nCh < 3: # standard operation, store data in one long vector self.lTrace[nCh][count:(count + data.size)] += \ data * lScale[nCh] else: # store raw demod data, will be extracted later self.demod_buffer[count:(count + data.size)] = data count += data.size # after one full set of records, convert demod data if self.fpga_config != 'Only signals': self.getDemodValues(self.demod_buffer, nPts, nSeg, nSeg) # report progress, only report integer percent if nAv >= 1: new_percent = int(100 * n / nAv) if new_percent > old_percent: old_percent = new_percent self.reportStatus( 'Acquiring traces ({}%)'.format(new_percent) + ', FPGA Demod buffer: ' + ', '.join(self.smsb_info_str)) # break if stopped from outside if self.isStopped(): break # at the end, convert binary data to I/Q values if self.fpga_config != 'Only signals': self.demod_output_ssb = self.demod_output_ssb.reshape( (self.num_of_demods, nAv, nSeg)) # lT.append('N: %d, Tot %.1f ms' % (n, 1000 * (time.clock() - t0))) # # log timing info # self.log(': '.join(lT)) def getRange(self, ch): """Get channel range, as voltage. Index start at 0""" rang = float(self.getCmdStringFromValue('Ch%d - Range' % (ch + 1))) # range depends on impedance if self.getValue('Ch%d - Impedance' % (ch + 1)) == 'High': rang = rang * 2 # special case if range is .25, 0.5, or 1, scale to 0.2, .4, .8 if rang < 1.1: rang *= 0.8 return rang def DAQread(self, dig, nDAQ, nPoints, timeOut): """Read data diretly to numpy array""" if dig._SD_Object__handle > 0: if nPoints > 0: data = (keysightSD1.c_short * nPoints)() nPointsOut = dig._SD_Object__core_dll.SD_AIN_DAQread( dig._SD_Object__handle, nDAQ, data, nPoints, timeOut) if nPointsOut > 0: return np.frombuffer(data, dtype=np.int16, count=nPoints) else: return np.array([], dtype=np.int16) else: return keysightSD1.SD_Error.INVALID_VALUE else: return keysightSD1.SD_Error.MODULE_NOT_OPENED def getDemodValues(self, demod_raw, nPts, nSeg, nCycle): """get Demod IQ data from Ch1/2/3 Trace""" accum_length = self.getValue('Integration time') lScale = [(self.getRange(ch) / self.bitRange) for ch in range(self.nCh)] self.smsb_info_str = [] nDemods = self.num_of_demods use_phase_ref = self.getValue('Use phase reference signal') for n in range(nDemods): y1_lsb = demod_raw[((n * 15) + 0)::nPts] y1_msb = demod_raw[((n * 15) + 1)::nPts] x1_lsb = demod_raw[((n * 15) + 2)::nPts] x1_msb = demod_raw[((n * 15) + 3)::nPts] y1x1_smsb = demod_raw[((n * 15) + 4)::nPts] x1_smsb = y1x1_smsb.astype('int8') y1_smsb = y1x1_smsb.astype('int16') >> 8 y2_lsb = demod_raw[((n * 15) + 5)::nPts] y2_msb = demod_raw[((n * 15) + 6)::nPts] x2_lsb = demod_raw[((n * 15) + 7)::nPts] x2_msb = demod_raw[((n * 15) + 8)::nPts] y2x2_smsb = demod_raw[((n * 15) + 9)::nPts] x2_smsb = y2x2_smsb.astype('int8') y2_smsb = y2x2_smsb.astype('int16') >> 8 y1_int64 = ( y1_lsb.astype('uint16') + y1_msb.astype('uint16') * (2 ** 16) + y1_smsb.astype('int8') * (2**32)) x1_int64 = ( x1_lsb.astype('uint16') + x1_msb.astype('uint16') * (2 ** 16) + x1_smsb.astype('int8') * (2**32)) y2_int64 = ( y2_lsb.astype('uint16') + y2_msb.astype('uint16') * (2 ** 16) + y2_smsb.astype('int8') * (2**32)) x2_int64 = ( x2_lsb.astype('uint16') + x2_msb.astype('uint16') * (2 ** 16) + x2_smsb.astype('int8') * (2**32)) smsb_info = [np.max(np.abs(x1_smsb)), np.max(np.abs(y1_smsb)), np.max(np.abs(x2_smsb)), np.max(np.abs(y2_smsb))] smsb_temp_info_str = str(int(max(smsb_info) / 1.24)) + '%' self.smsb_info_str.append(smsb_temp_info_str) warning_thr = 124 # warning indication that overflow can occur if np.any(np.array(smsb_info)) > warning_thr: warning_str = ( 'Warning! overflow may occur in FPGA demod block: %d, %s' % (n, str(smsb_info))) self.log(warning_str, level=30) demod_temp_I = ( (x1_int64.astype('int64') + 1j * y1_int64.astype('int64')) / 2**43 / accum_length * lScale[0]) demod_temp_Q = ( (x2_int64.astype('int64') + 1j * y2_int64.astype('int64')) / 2**43 / accum_length * lScale[1]) # store final values in large array, get indices for current call k = self.demod_counter n_values = demod_temp_I.size if self.getValue('LO freq %d' % (n + 1)) <= 0: self.demod_output_ssb[n, k:(k + n_values)] = 0.5 * ( np.real(demod_temp_I) + np.imag(demod_temp_Q) - 1j * (np.imag(demod_temp_I) - np.real(demod_temp_Q)) ) else: self.demod_output_ssb[n, k:(k + n_values)] = 0.5 * ( np.real(demod_temp_I) - np.imag(demod_temp_Q) + 1j * (np.imag(demod_temp_I) + np.real(demod_temp_Q)) ) # self.demod_output_ssb[n] = np.real(self.demod_output_vector_I[n]) - np.imag(self.demod_output_vector_Q[n]) - 1j*(np.imag(self.demod_output_vector_I[n]) + np.real(self.demod_output_vector_Q[n])) if use_phase_ref or (not self.getValue('Hide I/Q')): # extract reference signal y3_lsb = demod_raw[((n * 15) + 10)::nPts] y3_msb = demod_raw[((n * 15) + 11)::nPts] x3_lsb = demod_raw[((n * 15) + 12)::nPts] x3_msb = demod_raw[((n * 15) + 13)::nPts] y3x3_smsb = demod_raw[((n * 15) + 14)::nPts] x3_smsb = y3x3_smsb.astype('int8') y3_smsb = y3x3_smsb.astype('int16') >> 8 y3_int64 = ( y3_lsb.astype('uint16') + y3_msb.astype('uint16') * (2 ** 16) + y3_smsb.astype('int8') * (2**32)) x3_int64 = ( x3_lsb.astype('uint16') + x3_msb.astype('uint16') * (2 ** 16) + x3_smsb.astype('int8') * (2**32)) demod_temp_ref = ( (x3_int64.astype('int64') + 1j * y3_int64.astype('int64')) / 2**43 / accum_length * lScale[2]) # subtract the reference angle if use_phase_ref: ref = np.arctan2(demod_temp_ref.imag, demod_temp_ref.real) self.demod_output_ssb[n, k:(k + n_values)] /= ( np.cos(ref) - 1j * np.sin(ref)) # if advanced values not in use, don't calculate to save time if self.getValue('Hide I/Q'): continue nAv = self.getValue('Number of averages') if nSeg <= 1: demod_temp_I = demod_temp_I.reshape((nCycle, 1)).mean(0) demod_temp_Q = demod_temp_Q.reshape((nCycle, 1)).mean(0) demod_temp_ref = demod_temp_ref.reshape((nCycle, 1)).mean(0) self.demod_output_vector_I[n] += demod_temp_I / nAv * nCycle self.demod_output_vector_Q[n] += demod_temp_Q / nAv * nCycle self.demod_output_vector_ref[n] += demod_temp_ref / nAv * nCycle self.moment_I2[n] += np.power( np.abs(demod_temp_I), 2) / nAv * nCycle self.moment_Q2[n] += np.power(
np.abs(demod_temp_Q)
numpy.abs
# coding: utf-8 ## Trains a One vs. Rest SVM classifier on the fisher vector video outputs. import os, sys, collections, random, string import numpy as np from tempfile import TemporaryFile from sklearn.pipeline import Pipeline from sklearn.svm import LinearSVC from sklearn import svm from sklearn.multiclass import OneVsRestClassifier import sklearn.metrics as metrics import matplotlib.pyplot as plt import logging logging.basicConfig(filename='output.log',level=logging.DEBUG) #class_index_file = "/Users/Bryan/CS/CS_Research/code/CS221/class_index.npz" class_index_file = "/home/parallels/Documents/idt_fv/class_index.npz" class_index_file_loaded = np.load(class_index_file) class_index = class_index_file_loaded['class_index'][()] index_class = class_index_file_loaded['index_class'][()] #training_output = '/Users/Bryan/CS/CS_Research/code/CS221/UCF101_Fishers/train' #testing_output = '/Users/Bryan/CS/CS_Research/code/CS221/UCF101_Fishers/test' training_output = '/home/parallels/Documents/idt_fv/data/UCF101_Fishers/train' testing_output = '/home/parallels/Documents/idt_fv/data/UCF101_Fishers/test' ################################################################ # Useful Helper functions # ################################################################ #Transforms a list of videos into a dictionary of video name (in lower case) to list of videos. def toDict(videos): videos_by_class = dict() for video in videos: #we assume each of the videos has the following format: # v_BasketballDunk_g02_c02.fisher.npz name = string.lower(video.split('_')[1]) if name not in videos_by_class: videos_by_class[name] = [] videos_by_class[name].append(video) return videos_by_class # videos: dictionary of class_name to fisher.npz files # percentage: percent of the data that is used for testing. default is 20% # Returns two lists: # 1. Training data (which will always include the first few entries from each category since it is assumed # that these videos helped contruct the gmm) # 2. Testing data. def split_inputData(videos, percentage): training_data = [] testing_data = [] for category in videos: num = len(videos[category]) num_testing = int(round(percentage*num)) # always add the first two elements to the training data training_data += videos[category][0:2] remaining_vids = videos[category][2:] random.shuffle(remaining_vids) testing_data += remaining_vids[0:num_testing] training_data += remaining_vids[num_testing:] return (training_data, testing_data) #Returns: # 1. np.ndarray where of verticallys stacked fisher vectors. # 2. np.array of class labels # Inputs: # videos: is a list of fisher.npz files # fisher_path: path to the fisher vector directory # class_index: dictionary from video name to the class. def make_FV_matrix(videos, fisher_path, class_index): matrix = [] target = [] for video in videos: vid_path = os.path.join(fisher_path,video) matrix.append(np.load(vid_path)['fish']) name = string.lower(video.split('_')[1]) target.append(class_index[name]) X = np.vstack(matrix) Y = np.array(target) return (X,Y) #Given a dictionary of 'Class name' to list of .fisher files, #Returns # 1. list of .fisher files of 'K' from each class. # 2. Class number of each .fisher file def cut_inputData(vid_dict, K): vids = [] for k,v in vid_dict.iteritems(): vids.extend(v[:K]) return vids #Given a dictionary of 'Class name' to list of .fisher files, #Returns # 1. list of .fisher files of 'K' from each class. # 2. Class number of each .fisher file def cut_inputData2(vid_dict, K, class_index): vids = [] targets = [] for k,v in vid_dict.iteritems(): vids.extend(v[:K]) targets.extend(K*[class_index[k]]) return (vids,targets) #Returns the Mean Average Precision (mAP) to evaluate the performance of a run #Arguments: # 1. classifier such as sklearn.multiclass.OneVsRestClassifier # 2. X_test: data to classify # 3. Y_test: class labels. # Returns: (mAP, [aps]) def metric_mAP(classifier, X_test, Y_test, verbose=False): estimators = classifier.estimators_ classes = classifier.classes_ aps = [] for estimator,class_num in zip(estimators, classes): aps.append(metric_AP(estimator, class_num, X_test, Y_test, verbose=verbose)) map_val = np.mean(aps) if verbose: logging.info("mean AP = %.3f" % map_val) return map_val #Average Precision def metric_AP(estimator, class_num, X_test, Y_test, verbose=False): scores = estimator.decision_function(X_test) #Sorted list of (original_index,score) tuples. scores_sorted = sorted(enumerate(scores), key=lambda x:x[1], reverse=True) # collect the positive results in the dataset positive_ranks = [i for i,score in enumerate(scores_sorted) if Y_test[score[0]]==class_num] # accumulate trapezoids with this basis recall_step = 1.0 / len(positive_ranks) ap = 0 for ntp,rank in enumerate(positive_ranks): # ntp = nb of true positives so far # rank = nb of retrieved items so far # y-size on left side of trapezoid: precision_0 = ntp/float(rank) if rank > 0 else 1.0 # y-size on right side of trapezoid: precision_1 = (ntp + 1) / float(rank + 1) ap += (precision_1 + precision_0) * recall_step / 2.0 if verbose: logging.info("class %d, AP = %.3f" % (class_num, ap)) return ap #For a sklearn.multiclass.OneVsRestClassifier, calculate the mAP (mean interpolated average precision), # accuracy score, and average Precision def metric_scores(classifier, X_test, Y_test, verbose=False): mAP = metric_mAP(classifier, X_test, Y_test,verbose=verbose) X_test_predictions = classifier.predict(X_test) accuracy_score = metrics.accuracy_score(Y_test, X_test_predictions) avg_Precision = metrics.precision_score(Y_test, X_test_predictions, average='macro') avg_Recall = metrics.recall_score(Y_test, X_test_predictions, average='macro') return (mAP, accuracy_score, avg_Precision, avg_Recall) #Need to get T training and all testing videos for a limited number 'C' classes. def limited_input(training_dict, testing_dict, C, T): tkeys_overC = [k for k in training_dict.keys() if len(training_dict[k]) >= T] sampleClasses = random.sample(tkeys_overC,C) train_vids = [] test_vids = [] for vid_class in sampleClasses: train_vids.extend(training_dict[vid_class][:T]) test_vids.extend(testing_dict[vid_class]) return (train_vids, test_vids) #Need to get T training videos for all classes in the input dictionary def limited_input1(input_dict, T): vids = [] for k,v in input_dict.iteritems(): if len(v) <= T: vids.extend(v) else: vids.extend(random.sample(v,T)) return vids #Helper methods for plotting metrics. #plot_confusion_matrix(Y_test, X_test_predictions) def plot_confusion_matrix(y_test, y_pred):# Compute confusion matrix cm = metrics.confusion_matrix(y_test, y_pred) print(cm) # Show confusion matrix in a separate window plt.matshow(cm) plt.title('Confusion matrix') plt.colorbar() plt.ylabel('True label') plt.xlabel('Predicted label') plt.show() #Returns a PCA matrix. #Arguments: # 1. inputX: input data matrix # 2. n_samples: Number of rows from the inputX matrix to sample to construct PCA matrix. # 3. pca_dim: Number of PCA components to retain. This will be the reduced feature dimension # of the input matrix. # Returns the PCA transform matrix. # use pca_transform as np.dot(inputX, pca_transform) #X_train_PCA = np.dot(X_train, pca_transform) #X_test_PCA = np.dot(X_test, pca_transform) def train_PCA(inputX, n_samples, pca_dim): n_samples = min(n_samples, inputX.shape[0]) sample_indices = np.random.choice(inputX.shape[0], n_samples) sample = inputX[sample_indices] mean = sample.mean(axis = 0) #for each row sample = sample - mean cov = np.dot(sample.T, sample) #eigvecs are normalized. orig_comps = inputX.shape[1] eigvals, eigvecs = np.linalg.eig(cov) perm = eigvals.argsort() # sort by increasing eigenvalue pca_transform = eigvecs[:, perm[orig_comps-pca_dim:orig_comps]] # eigenvectors for the 64 last eigenvalues return pca_transform from sklearn.model_selection import cross_validate from sklearn.model_selection import learning_curve def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None, n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)): """ Generate a simple plot of the test and traning learning curve. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. title : string Title for the chart. X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples) or (n_samples, n_features), optional Target relative to X for classification or regression; None for unsupervised learning. ylim : tuple, shape (ymin, ymax), optional Defines minimum and maximum yvalues plotted. cv : integer, cross-validation generator, optional If an integer is passed, it is the number of folds (defaults to 3). Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects n_jobs : integer, optional Number of jobs to run in parallel (default 1). """ plt.figure() plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel("Training examples") plt.ylabel("Score") train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean =
np.mean(test_scores, axis=1)
numpy.mean
import time import json import tqdm from ltron.ldraw.documents import LDrawMPDMainFile from ltron.bricks.brick_scene import BrickScene from pathlib import Path # from ltron.gym.components.scene import SceneComponent from ltron.gym.components.episode import MaxEpisodeLengthComponent from ltron.gym.components.render import ColorRenderComponent from matplotlib.pyplot import imshow import matplotlib.pyplot as plt # from ltron.gym.ltron_env import LtronEnv from ltron.gym.components.viewpoint import ( ControlledAzimuthalViewpointComponent, RandomizedAzimuthalViewpointComponent, FixedAzimuthalViewpointComponent) from ltron.bricks.brick_shape import BrickShape import copy import collections import math import os import numpy import random import tqdm def compute_boxsize_old(instances, scene): instance_tran = {} for k in instances: instance_tran[k] = scene.instances.instances[k].transform instance_pos = {} for k in instances: instance_pos[k] = scene.instances.instances[k].brick_shape.bbox point = [] for ins, bbox in instance_pos.items(): minb = bbox[0] maxb = bbox[1] point.append((numpy.matmul(instance_tran[ins], numpy.array([minb[0], minb[1], minb[2], 1])))[:3]) point.append((numpy.matmul(instance_tran[ins], numpy.array([maxb[0], minb[1], minb[2], 1])))[:3]) point.append((numpy.matmul(instance_tran[ins], numpy.array([minb[0], maxb[1], minb[2], 1])))[:3]) point.append((numpy.matmul(instance_tran[ins], numpy.array([minb[0], minb[1], maxb[2], 1])))[:3]) point.append((numpy.matmul(instance_tran[ins], numpy.array([maxb[0], maxb[1], minb[2], 1])))[:3]) point.append((numpy.matmul(instance_tran[ins], numpy.array([minb[0], maxb[1], maxb[2], 1])))[:3]) point.append((numpy.matmul(instance_tran[ins], numpy.array([maxb[0], minb[1], maxb[2], 1])))[:3]) point.append((numpy.matmul(instance_tran[ins], numpy.array([maxb[0], maxb[1], maxb[2], 1])))[:3]) min_y = 100000 max_y = -1000000 min_x = 100000 max_x = -100000 min_z = 100000 max_z = -1000000 for p in point: if p[1] > max_y: max_y = p[1] if p[1] < min_y: min_y = p[1] if p[0] > max_x: max_x = p[0] if p[0] < min_x: min_x = p[0] if p[2] > max_z: max_z = p[2] if p[2] < min_z: min_z = p[2] # if abs(max_y - min_y) - 35 > 0: return 10000 # else: return -1000 return max(abs(max_y - min_y), abs(max_x - min_x), abs(max_z - min_z)) # The complete parameter is somehow not working def compute_boxsize(instance, scene, complete=False): if complete: all_vertices = numpy.concatenate([scene.instances[ins].bbox_vertices for ins in scene.instances]) else: all_vertices = numpy.concatenate([ scene.instances[i].bbox_vertices() for i in instance], axis=1) bbox_min =
numpy.min(all_vertices[:3], axis=1)
numpy.min
import ismrmrd import os import itertools import logging import numpy as np import numpy.fft as fft import matplotlib.pyplot as plt import xml.dom.minidom import base64 import ctypes import re import mrdhelper # Folder for debug output files debugFolder = "/tmp/share/debug" def process(connection, config, metadata): logging.info("Config: \n%s", config) # Continuously parse incoming data parsed from MRD messages acqGroup = [] imgGroup = [] try: for item in connection: # ---------------------------------------------------------- # Raw k-space data messages # ---------------------------------------------------------- if isinstance(item, ismrmrd.Acquisition): # Accumulate all imaging readouts in a group if (not item.is_flag_set(ismrmrd.ACQ_IS_NOISE_MEASUREMENT) and not item.is_flag_set(ismrmrd.ACQ_IS_PARALLEL_CALIBRATION) and not item.is_flag_set(ismrmrd.ACQ_IS_PHASECORR_DATA)): acqGroup.append(item) # When this criteria is met, run process_raw() on the accumulated # data, which returns images that are sent back to the client. if item.is_flag_set(ismrmrd.ACQ_LAST_IN_SLICE): logging.info("Processing a group of k-space data") image = process_raw(acqGroup, config, metadata) connection.send_image(image) acqGroup = [] # ---------------------------------------------------------- # Image data messages # ---------------------------------------------------------- if isinstance(item, ismrmrd.Image): # Only process magnitude images -- send phase images back without modification (fallback for images with unknown type) if (item.image_type is ismrmrd.IMTYPE_MAGNITUDE) or (item.image_type == 0): imgGroup.append(item) else: tmpMeta = ismrmrd.Meta.deserialize(item.attribute_string) tmpMeta['Keep_image_geometry'] = 1 item.attribute_string = tmpMeta.serialize() connection.send_image(item) continue # Images and waveform data are not supported in this example elif isinstance(item, ismrmrd.Acquisition) or isinstance(item, ismrmrd.Waveform): continue elif item is None: break else: logging.error("Unsupported data type %s", type(item).__name__) if len(imgGroup) > 0: logging.info("Processing a group of images (untriggered)") image = process_image(imgGroup, config, metadata) connection.send_image(image) imgGroup = [] finally: connection.send_close() def process_raw(group, config, metadata): # Create folder, if necessary if not os.path.exists(debugFolder): os.makedirs(debugFolder) logging.debug("Created folder " + debugFolder + " for debug output files") # Format data into single [cha PE RO phs] array lin = [acquisition.idx.kspace_encode_step_1 for acquisition in group] phs = [acquisition.idx.phase for acquisition in group] # Use the zero-padded matrix size data = np.zeros((group[0].data.shape[0], metadata.encoding[0].encodedSpace.matrixSize.y, metadata.encoding[0].encodedSpace.matrixSize.x, max(phs)+1), group[0].data.dtype) rawHead = [None]*(max(phs)+1) for acq, lin, phs in zip(group, lin, phs): if (lin < data.shape[1]) and (phs < data.shape[3]): # TODO: Account for asymmetric echo in a better way data[:,lin,-acq.data.shape[1]:,phs] = acq.data # center line of k-space is encoded in user[5] if (rawHead[phs] is None) or (np.abs(acq.getHead().idx.kspace_encode_step_1 - acq.getHead().idx.user[5]) < np.abs(rawHead[phs].idx.kspace_encode_step_1 - rawHead[phs].idx.user[5])): rawHead[phs] = acq.getHead() # Flip matrix in RO/PE to be consistent with ICE data = np.flip(data, (1, 2)) logging.debug("Raw data is size %s" % (data.shape,)) np.save(debugFolder + "/" + "raw.npy", data) # Fourier Transform data = fft.fftshift( data, axes=(1, 2)) data = fft.ifft2( data, axes=(1, 2)) data = fft.ifftshift(data, axes=(1, 2)) # Sum of squares coil combination # Data will be [PE RO phs] data = np.abs(data) data = np.square(data) data = np.sum(data, axis=0) data = np.sqrt(data) logging.debug("Image data is size %s" % (data.shape,)) np.save(debugFolder + "/" + "img.npy", data) # Normalize and convert to int16 data *= 32767/data.max() data = np.around(data) data = data.astype(np.int16) # Remove readout oversampling offset = int((data.shape[1] - metadata.encoding[0].reconSpace.matrixSize.x)/2) data = data[:,offset:offset+metadata.encoding[0].reconSpace.matrixSize.x] # Remove phase oversampling offset = int((data.shape[0] - metadata.encoding[0].reconSpace.matrixSize.y)/2) data = data[offset:offset+metadata.encoding[0].reconSpace.matrixSize.y,:] logging.debug("Image without oversampling is size %s" % (data.shape,)) np.save(debugFolder + "/" + "imgCrop.npy", data) # Format as ISMRMRD image data imagesOut = [] for phs in range(data.shape[2]): # Create new MRD instance for the processed image # NOTE: from_array() takes input data as [x y z coil], which is # different than the internal representation in the "data" field as # [coil z y x], so we need to transpose tmpImg = ismrmrd.Image.from_array(data[...,phs].transpose()) # Set the header information tmpImg.setHead(mrdhelper.update_img_header_from_raw(tmpImg.getHead(), rawHead[phs])) tmpImg.field_of_view = (ctypes.c_float(metadata.encoding[0].reconSpace.fieldOfView_mm.x), ctypes.c_float(metadata.encoding[0].reconSpace.fieldOfView_mm.y), ctypes.c_float(metadata.encoding[0].reconSpace.fieldOfView_mm.z)) tmpImg.image_index = phs # Set ISMRMRD Meta Attributes tmpMeta = ismrmrd.Meta() tmpMeta['DataRole'] = 'Image' tmpMeta['ImageProcessingHistory'] = ['FIRE', 'PYTHON'] tmpMeta['WindowCenter'] = '16384' tmpMeta['WindowWidth'] = '32768' tmpMeta['Keep_image_geometry'] = 1 xml = tmpMeta.serialize() logging.debug("Image MetaAttributes: %s", xml) tmpImg.attribute_string = xml imagesOut.append(tmpImg) # Call process_image() to create RGB images imagesOut = process_image(imagesOut, config, metadata) return imagesOut def process_image(images, config, metadata): # Create folder, if necessary if not os.path.exists(debugFolder): os.makedirs(debugFolder) logging.debug("Created folder " + debugFolder + " for debug output files") logging.debug("Processing data with %d images of type %s", len(images), ismrmrd.get_dtype_from_data_type(images[0].data_type)) # Extract image data into a 5D array of size [img cha z y x] data = np.stack([img.data for img in images]) head = [img.getHead() for img in images] meta = [ismrmrd.Meta.deserialize(img.attribute_string) for img in images] # Reformat data to the more intuitive [x y z cha img] data = data.transpose() # Reformat data again to [y x z cha img], i.e. [row col] for the first two # dimensions. Note we will need to undo this later prior to sending back # to the client data = data.transpose((1, 0, 2, 3, 4)) # Display MetaAttributes for first image logging.debug("MetaAttributes[0]: %s", ismrmrd.Meta.serialize(meta[0])) # Optional serialization of ICE MiniHeader if 'IceMiniHead' in meta[0]: logging.debug("IceMiniHead[0]: %s", base64.b64decode(meta[0]['IceMiniHead']).decode('utf-8')) logging.debug("Original image data is size %s" % (data.shape,)) np.save(debugFolder + "/" + "imgOrig.npy", data) if data.shape[3] != 1: logging.error("Multi-channel data is not supported") return [] # Normalize to (0.0, 1.0) as expected by get_cmap() data = data.astype(float) data -= data.min() data *= 1/data.max() # Apply colormap cmap = plt.get_cmap('jet') rgb = cmap(data) # Remove alpha channel # Resulting shape is [row col z rgb img] rgb = rgb[...,0:-1] rgb = rgb.transpose((0, 1, 2, 5, 4, 3)) rgb =
np.squeeze(rgb, 5)
numpy.squeeze
import scipy from glob import glob import numpy as np import pandas as pd import matplotlib.pyplot as plt import os import cv2 from utils import * from os import listdir from os.path import isfile, join, isdir class AU2Emotion(): #https://imotions.com/blog/facial-action-coding-system/ def __init__(self): self.aus = ["AU01_c" , "AU02_c" , "AU04_c", "AU05_c", "AU06_c", "AU07_c", "AU09_c", "AU10_c", "AU12_c", "AU14_c", "AU15_c", "AU17_c" , "AU20_c" , "AU23_c", "AU25_c", "AU26_c" , "AU45_c"] self.au2idx = {1:0, 2:1, 4:2, 5:3, 6:4, 7:5, 9:6, 10:7, 12:8, 14:9, 15:10, 17:11, 20:12, 23:13, 25:14, 26:15, 45:17} self.emotion2au = {"joy": [6,12], "sadness": [1, 4, 15], "surprise": [1, 2, 5, 26], "fear": [1,2,4,5,7,20,26], "anger": [4, 5, 7, 23], #"disgust": [9,15,16], "contempt": [12,14]} def emotion2aus(self,emotion,batch_size): au_list = self.emotion2au[emotion] au_list_idx = [self.au2idx[i] for i in au_list] au_vect = np.zeros((batch_size,len(self.aus))) for i in range(len(self.aus)): if i in au_list_idx: au_vect[:,i] = 1 return au_vect def get_idx(self,lab_vect,emotion): au_list = self.emotion2au[emotion] au_list_idx = [self.au2idx[i] for i in au_list] idx = np.argwhere(np.take(lab_vect,au_list_idx,axis=1).sum(axis=1)==len(au_list_idx)) return idx def get_00000_num(num): if num < 10: return '00000'+str(num) elif num < 100: return '0000'+str(num) elif num < 1000: return '000'+str(num) elif num < 10000: return '00'+str(num) elif num < 100000: return '0'+str(num) elif num < 1000000: return str(num) else: raise Exception("number too high:"+str(num)) class InMemoryDataLoader(): def __init__(self, dataset_name, img_res=(112, 112,3), root_data_path=None, # path_image_dir=None, normalize=True, # csv_columns = ['frame', 'AU01_r', 'AU02_r', 'AU04_r', 'AU05_r', 'AU06_r', 'AU07_r', 'AU09_r', 'AU10_r', # 'AU12_r', 'AU14_r', 'AU15_r', 'AU17_r', 'AU20_r', 'AU23_r', 'AU25_r', 'AU26_r', 'AU45_r', # 'AU01_c', 'AU02_c', 'AU04_c', 'AU05_c', 'AU06_c', 'AU07_c', 'AU09_c', 'AU10_c', 'AU12_c', # 'AU14_c', 'AU15_c', 'AU17_c', 'AU20_c', 'AU23_c', 'AU25_c', 'AU26_c', 'AU28_c', 'AU45_c'], csv_columns = ['frame', 'AU01_r', 'AU02_r', 'AU04_r', 'AU05_r', 'AU06_r', 'AU07_r', 'AU09_r', 'AU10_r', 'AU12_r', 'AU14_r', 'AU15_r', 'AU17_r', 'AU20_r', 'AU23_r', 'AU25_r', 'AU26_r', 'AU45_r'], max_images=-1, image_patter_fn = 'frame_det_00_FRAME_ID.bmp'): self.dataset_name = dataset_name self.img_res = img_res self.root_data_path = root_data_path #self.path_csv = path_csv #self.path_image_dir = path_image_dir self.csv_columns = csv_columns self.max_images = max_images self.image_patter_fn = image_patter_fn # image_patter_fn.replace('FRAME_ID','1') ## self.normalize = normalize ## load dataset self._load_internally() def gen_rand_cond(self,batch_size=1,add_noise=False): idx = np.random.choice(self.lab_vect.shape[0],size=batch_size) cond = self.lab_vect[idx] if add_noise: cond += np.random.uniform(-0.1, 0.1, cond.shape) cond = np.clip(a=cond,a_min=0,a_max=5) return cond def gen_rand_cond_for_binary_au(self,bt): au_num = bt.shape[1] alist = [] for i in range(au_num): _bt = bt.copy() _bt[:,i] = np.ones_like(_bt[:,i]) - _bt[:,i] alist.append(_bt) #cond = np.concatenate(alist,axis=0) return alist def _process_data_dir(self, im_dir, other_dir='processed', csv_fn='EmotioNet.csv', img_dirn='EmotioNet_aligned'): labels = pd.read_csv(join(self.root_data_path,im_dir,other_dir,csv_fn)) labels.columns = [i.strip() for i in labels.columns] print(">> removing",
np.sum(labels['success']==0)
numpy.sum
""" Created on May 22, 2018 @author: Moritz """ import numpy as np def sample_identity_node(node, n_samples, rand_gen=None, ranges=None): if ranges is None or ranges[node.scope[0]] is None: return rand_gen.choice(node.vals, n_samples) else: # Generate bins for the specified range rang = ranges[node.scope[0]] # Iterate over the specified ranges intervals = rang.get_ranges() probs = np.zeros(len(intervals)) bin_vals = [] for i, interval in enumerate(intervals): if len(interval) == 1: lower =
np.searchsorted(node.vals, interval[0], side="left")
numpy.searchsorted
""" desispec.quicklook.qlresolution =============================== Quicklook version of resolution object that can calculate resolution efficiently from psf information Author: <NAME> """ import numpy as np import scipy.sparse import scipy.special class QuickResolution(scipy.sparse.dia_matrix): """ Quicklook version of the resolution mimicking desispec.resolution.Resolution with some reduction in dimentionality. Contains code from Resolution implementation Note that this is similar to desispec.resolution.Resolution, though faster and differing in implementation details that should be cross checked before merging these or replacing one with the other """ def __init__(self,mu=None,sigma=None,wdict=None,waves=None,ndiag=9): self.__ndiag=ndiag if ndiag & 0x1 == 0: raise ValueError("Need odd numbered diagonals, got %d"%ndiag) def _binIntegral(x,mu=None,sigma=None): """ x: bin boundaries vector (self.__ndiag,) mu: means vector of shape[nwave,1] sigma: sigmas of shape[nwave,1] """ nvecs=1 if sigma is not None: nvecs=sigma.shape[0] if mu is None: mu=np.zeros((nvecs,1)) if sigma is None: sigma=np.ones(mu.shape)*0.5 sx=(np.tile(x,(mu.shape[0],1))-mu)/(sigma*
np.sqrt(2)
numpy.sqrt
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #ZPLSC elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #VEL3DK elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PARAD elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' ## #MOPAK elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': #uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/10-PHSEND103/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/10-PHSEND107/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/09-PCO2WB103/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/09-PCO2WB104/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/05-ADCPTB104/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/05-ADCPSI103/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/07-VEL3DC108/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/07-VEL3DC107/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/08-OPTAAD106/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/08-OPTAAC104/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #CSPP Data below elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'seawater_pressure' var_list[5].name = 'seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_inst/dpc_ctd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'dpc_ctd_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_wfp/dpc_ctd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'dpc_ctd_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample' var_list[0].name = 'time' var_list[1].name = 'corrected_dissolved_oxygen' var_list[2].name = 'seawater_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_inst/dpc_optode_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_wfp/dpc_optode_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3A-FLORTD104/streamed/flort_d_data_record' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/04-FLNTUA103/recovered_inst/dpc_flnturtd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a' var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient ' var_list[3].name = 'flntu_x_mmp_cds_bback_total' var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'ug/L' var_list[2].units = 'm-1 sr-1' var_list[3].units = 'm-1' var_list[4].units = 'ppb' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/03-FLCDRA103/recovered_wfp/dpc_flcdrtd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a' var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient ' var_list[3].name = 'flntu_x_mmp_cds_bback_total' var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'ug/L' var_list[2].units = 'm-1 sr-1' var_list[3].units = 'm-1' var_list[4].units = 'ppb' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2B-PHSENA108/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3C-PARADA102/streamed/parad_sa_sample' var_list[0].name = 'time' var_list[1].name = 'par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3D-SPKIRA102/streamed/spkir_data_record' var_list[0].name = 'time' var_list[1].name = 'spkir_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4A-NUTNRA102/streamed/nutnr_a_sample' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4F-PCO2WA102/streamed/pco2w_a_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4B-VELPTD106/streamed/velpt_velocity_data' var_list[0].name = 'time' var_list[1].name = 'velpt_d_eastward_velocity' var_list[2].name = 'velpt_d_northward_velocity' var_list[3].name = 'velpt_d_upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[9].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' var_list[9].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/02-VEL3DA105/recovered_inst/dpc_acm_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_a_eastward_velocity' var_list[2].name = 'vel3d_a_northward_velocity' var_list[3].name = 'vel3d_a_upward_velocity_ascending' var_list[4].name = 'vel3d_a_upward_velocity_descending' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'm/s' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/02-VEL3DA105/recovered_wfp/dpc_acm_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_a_eastward_velocity' var_list[2].name = 'vel3d_a_northward_velocity' var_list[3].name = 'vel3d_a_upward_velocity_ascending' var_list[4].name = 'vel3d_a_upward_velocity_descending' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'm/s' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4A-CTDPFA109/streamed/ctdpf_optode_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'seawater_pressure' var_list[5].name = 'seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'DOSTA' and method == 'Streamed': #uframe_dataset_name = 'CE04OSPS/PC01B/4A-DOSTAD109/streamed/ctdpf_optode_sample' uframe_dataset_name = 'CE04OSPS/PC01B/4A-CTDPFA109/streamed/ctdpf_optode_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'seawater_pressure' #also use this for the '4A-DOSTAD109/streamed/ctdpf_optode_sample' stream var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4B-PHSENA106/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4D-PCO2WA105/streamed/pco2w_a_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #Coastal Pioneer CSM Data Streams elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #WAVSS elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' #PCO2A elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PCO2A elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #FDCHP elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2-hr' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/02-PRESFC000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD35/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD35/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/04-VELPTB000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/04-VELPTB000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD35/04-VELPTB000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/01-ADCPTF000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/01-ADCPTF000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/01-ADCPTF000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/01-ADCPTF000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/01-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/01-ADCPSJ000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #Coastal Pioneer WireFollowing Profilers (WFP elif platform_name == 'CP04OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/SBS11/02-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSPM/SBS11/02-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP04OSPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP04OSPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP04OSPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP04OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP04OSPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP01CNPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP01CNPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP01CNPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP01CNPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP01CNPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMCI' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMCI/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCI/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCI/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCI/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCI/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCI/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMCO' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMCO/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCO/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCO/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCO/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCO/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCO/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUI/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMUI' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMUI/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUI/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUI/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUI/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUI/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUI/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUI/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUI/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUI/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUI/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUI/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUO/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMUO' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMUO/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUO/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUO/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUO/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUO/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUO/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUO/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUO/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUO/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUO/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUO/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP03ISPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP03ISPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP03ISPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP03ISPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP03ISPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP03ISPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data =
np.array([])
numpy.array
# V-REP as tethered robotics simulation environment # Python Wrapper # <NAME> 20170410 # import the vrep library from vrepper.lib import vrep from vrepper.lib.vrepConst import sim_handle_all, simx_headeroffset_server_state, \ sim_scripttype_childscript from inspect import getargspec import types import numpy as np import socket from contextlib import closing from vrepper.utils import check_ret, blocking, oneshot, instance, deprecated from vrepper.vrep_object import vrepobject class vrepper(object): """ class holding a v-rep simulation environment and allowing to call all the V-Rep remote functions ("simx..") """ def __init__(self, port_num=None, dir_vrep='', headless=False, suppress_output=True): if port_num is None: port_num = self.find_free_port_to_use() self.port_num = port_num if dir_vrep == '': print('(vrepper) trying to find V-REP executable in your PATH') import distutils.spawn as dsp path_vrep = dsp.find_executable('vrep.sh') # fix for linux if path_vrep == None: path_vrep = dsp.find_executable('vrep') else: path_vrep = dir_vrep + 'vrep' print('(vrepper) path to your V-REP executable is:', path_vrep) if path_vrep is None: raise Exception("Sorry I couldn't find V-Rep binary. " "Please make sure it's in the PATH environmental variable") # start V-REP in a sub process # vrep.exe -gREMOTEAPISERVERSERVICE_PORT_DEBUG_PREENABLESYNC # where PORT -> 19997, DEBUG -> FALSE, PREENABLESYNC -> TRUE # by default the server will start at 19997, # use the -g argument if you want to start the server on a different port. args = [path_vrep, '-gREMOTEAPISERVERSERVICE_' + str(self.port_num) + '_FALSE_TRUE'] if headless: args.append('-h') # instance created but not started. self.instance = instance(args, suppress_output) self.cid = -1 # clientID of the instance when connected to server, # to differentiate between instances in the driver self.started = False # is the simulation currently running (as far as we know) self.sim_running = False # assign every API function call from vrep to self vrep_methods = [a for a in dir(vrep) if not a.startswith('__') and isinstance(getattr(vrep, a), types.FunctionType)] def assign_from_vrep_to_self(name): wrapee = getattr(vrep, name) arg0 = getargspec(wrapee)[0][0] if arg0 == 'clientID': def func(*args, **kwargs): return wrapee(self.cid, *args, **kwargs) else: def func(*args, **kwargs): return wrapee(*args, **kwargs) setattr(self, name, func) for name in vrep_methods: assign_from_vrep_to_self(name) def find_free_port_to_use( self): # https://stackoverflow.com/questions/1365265/on-localhost-how-do-i-pick-a-free-port-number with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s: s.bind(('', 0)) return s.getsockname()[1] # start everything def start(self): if self.started == True: raise RuntimeError('you should not call start() more than once') print('(vrepper) starting an instance of V-REP...') self.instance.start() # try to connect to V-REP instance via socket retries = 0 while True: print('(vrepper) trying to connect to server on port', self.port_num, 'retry:', retries) # vrep.simxFinish(-1) # just in case, close all opened connections self.cid = self.simxStart( '127.0.0.1', self.port_num, waitUntilConnected=True, doNotReconnectOnceDisconnected=True, timeOutInMs=1000, commThreadCycleInMs=0) # Connect to V-REP if self.cid != -1: print('(vrepper) Connected to remote API server!') break else: retries += 1 if retries > 15: self.end() raise RuntimeError('(vrepper) Unable to connect to V-REP after 15 retries.') # Now try to retrieve data in a blocking fashion (i.e. a service call): objs, = check_ret(self.simxGetObjects( sim_handle_all, blocking)) print('(vrepper) Number of objects in the scene: ', len(objs)) # Now send some data to V-REP in a non-blocking fashion: self.simxAddStatusbarMessage( '(vrepper)Hello V-REP!', oneshot) # setup a useless signal self.simxSetIntegerSignal('asdf', 1, blocking) print('(vrepper) V-REP instance started, remote API connection created. Everything seems to be ready.') self.started = True return self # kill everything, clean up def end(self): print('(vrepper) shutting things down...') # Before closing the connection to V-REP, make sure that the last command sent out had time to arrive. You can guarantee this with (for example): # vrep.simxGetPingTime(clientID) # Now close the connection to V-REP: if self.sim_running: self.stop_simulation() self.simxFinish() self.instance.end() print('(vrepper) everything shut down.') return self def load_scene(self, fullpathname): print('(vrepper) loading scene from', fullpathname) try: check_ret(self.simxLoadScene(fullpathname, 0, # assume file is at server side blocking)) except: print('(vrepper) scene loading failure') raise print('(vrepper) scene successfully loaded') def start_blocking_simulation(self): self.start_simulation(True) def start_nonblocking_simulation(self): self.start_simulation(False) def start_simulation(self, is_sync): # IMPORTANT # you should poll the server state to make sure # the simulation completely stops before starting a new one while True: # poll the useless signal (to receive a message from server) check_ret(self.simxGetIntegerSignal( 'asdf', blocking)) # check server state (within the received message) e = self.simxGetInMessageInfo( simx_headeroffset_server_state) # check bit0 not_stopped = e[1] & 1 if not not_stopped: break # enter sync mode check_ret(self.simxSynchronous(is_sync)) check_ret(self.simxStartSimulation(blocking)) self.sim_running = True def make_simulation_synchronous(self, sync): if not self.sim_running: print('(vrepper) simulation doesn\'t seem to be running. starting up') self.start_simulation(sync) else: check_ret(self.simxSynchronous(sync)) def stop_simulation(self): check_ret(self.simxStopSimulation(oneshot), ignore_one=True) self.sim_running = False @deprecated('Please use method "stop_simulation" instead.') def stop_blocking_simulation(self): self.stop_simulation() def step_blocking_simulation(self): check_ret(self.simxSynchronousTrigger()) def get_object_handle(self, name): handle, = check_ret(self.simxGetObjectHandle(name, blocking)) return handle def get_object_by_handle(self, handle, is_joint=True): """ Get the vrep object for a given handle :param int handle: handle code :param bool is_joint: True if the object is a joint that can be moved :returns: vrepobject """ return vrepobject(self, handle, is_joint) def get_object_by_name(self, name, is_joint=True): """ Get the vrep object for a given name :param str name: name of the object :param bool is_joint: True if the object is a joint that can be moved :returns: vrepobject """ return self.get_object_by_handle(self.get_object_handle(name), is_joint) @staticmethod def create_params(ints=[], floats=[], strings=[], bytes=''): if bytes == '': bytes_in = bytearray() else: bytes_in = bytes return (ints, floats, strings, bytes_in) def call_script_function(self, function_name, params, script_name="remoteApiCommandServer"): """ Calls a function in a script that is mounted as child in the scene :param str script_name: the name of the script that contains the function :param str function_name: the name of the function to call :param tuple params: the parameters to call the function with (must be 4 parameters: list of integers, list of floats, list of string, and bytearray :returns: tuple (res_ints, res_floats, res_strs, res_bytes) WHERE list res_ints is a list of integer results list res_floats is a list of floating point results list res_strs is a list of string results bytearray res_bytes is a bytearray containing the resulting bytes """ assert type(params) is tuple assert len(params) == 4 return check_ret(self.simxCallScriptFunction( script_name, sim_scripttype_childscript, function_name, params[0], # integers params[1], # floats params[2], # strings params[3], # bytes blocking )) def get_global_variable(self, name, is_first_time): if is_first_time: return vrep.simxGetFloatSignal(self.cid, name, vrep.simx_opmode_streaming) else: return vrep.simxGetFloatSignal(self.cid, name, vrep.simx_opmode_buffer) def _convert_byte_image_to_color(self, res, img): reds = np.zeros(res[0] * res[1], dtype=np.uint8) greens = np.zeros(res[0] * res[1], dtype=np.uint8) blues = np.zeros(res[0] * res[1], dtype=np.uint8) for i in range(0, len(img), 3): reds[int(i / 3)] = img[i] & 255 greens[int(i / 3)] = img[i + 1] & 255 blues[int(i / 3)] = img[i + 2] & 255 img_out = np.zeros((res[0], res[1], 3), dtype=np.uint8) img_out[:, :, 0] =
np.array(reds)
numpy.array
""" AI library in python using numpy Author: <NAME> (<EMAIL>) https://www.github.com/srirambandi MIT License """ import numpy as np # the Parameter object: stores weights and derivatives of weights(after backprop) # of each layer in the model class Parameter: def __init__(self, shape=(0, 0), data=None, grad=None, eval_grad=True, node_id=None, graph=None, init_zeros=False, init_ones=False, constant=1.0, uniform=False, low=-1.0, high = 1.0, normal=False, mean=0.0, std=0.01): # properties self.shape = shape self.data = data self.grad = grad self.eval_grad = eval_grad # if the parameter is a variable or an input/constant # node id - in the bfs like graph walk during forward pass, the node numeber # of the path ie., the latest backward op of which this parameter was an output self.node_id = node_id if graph is not None: # graph object this parameter belongs to self.graph = graph else: self.graph = G # constant initializations self.init_zeros = init_zeros self.init_ones = init_ones self.constant = constant # initializing from distributions self.uniform = uniform self.low = low # high and low of uniform self.high = high # distribution to initialize the parameter self.mean = mean # mean and variance of the gaussian self.std = std # distribution to initialize the parameter # creating weight and gradient tensors self.init_params() def init_params(self): if self.data is not None: # initiating weights with passed data object of kind list/numpy-ndarray if not isinstance(self.data, np.ndarray): self.data = np.array(self.data) self.shape = self.data.shape # resolving conflict with passed shape and data shape elif self.init_zeros: # initiating with zeros of given shape self.data = np.zeros(self.shape) elif self.init_ones: # initiating with ones(or a constant) of given shape self.data = np.ones(self.shape) * self.constant elif self.uniform: # random initiation with uniform distribution self.data = np.random.uniform(self.low, self.high, self.shape) else: # random initiation with gaussian distribution self.normal = True self.data = np.random.normal(self.mean, self.std, self.shape) # setting gradient of parameter wrt some scalar, as zeros if self.grad is None: self.grad = np.zeros(self.shape) else: if not isinstance(self.grad, np.ndarray): self.grad = np.array(self.grad) assert self.data.shape == self.grad.shape, 'data and grad should be of same shape' def __repr__(self): parameter_schema = 'Parameter(shape={}, eval_grad={}) containing:\n'.format(self.shape, self.eval_grad) parameter_schema += 'Data: {}'.format(self.data) return parameter_schema # this function computes the gradients of the parameters, by executing # the backprop ops in reverse order to the forward propagation with chain rule def backward(self, grad=None, to=None): # assign gradient if self.node_id is None: return if grad is not None: if not isinstance(grad, np.ndarray): self.grad = np.array(grad) if to is None: to_node_id = 0 # execute backward all the way to start else: to_node_id = to.node_id + 1 # execute backward to just before this node for node in reversed(self.graph.nodes[to_node_id:int(self.node_id) + 1]): node['backprop_op']() # executing the back-propagation operation def __getitem__(self, key): axis = [] return_scalar = True for _ in range(len(key)): if isinstance(key[_], int): axis.append(_) if isinstance(key[_], slice): return_scalar = False axis = tuple(axis) if return_scalar: return self.data[key] else: return Parameter(data=np.expand_dims(self.data[key], axis=axis), grad=np.expand_dims(self.grad[key], axis=axis)) def __add__(self, other): if not isinstance(other, Parameter): other = Parameter(data=other, eval_grad=False, graph=self.graph) assert self.shape == other.shape, ('Objects not of same shape. Use G.add() with axis argument', self.shape, other.shape) return self.graph.add(self, other) def __sub__(self, other): if not isinstance(other, Parameter): other = Parameter(data=other, eval_grad=False, graph=self.graph) assert self.shape == other.shape, ('Objects not of same shape. Use G.subtract() with axis argument', self.shape, other.shape) return self.graph.subtract(self, other) def __mul__(self, other): if not isinstance(other, Parameter): other = Parameter(data=other, eval_grad=False, graph=self.graph) assert self.shape == other.shape, ('Objects not of same shape. Use G.multiply() with axis argument', self.shape, other.shape) return self.graph.multiply(self, other) def __matmul__(self, other): if not isinstance(other, Parameter): other = Parameter(data=other, eval_grad=False, graph=self.graph) return self.graph.dot(self, other) def __truediv__(self, other): if not isinstance(other, Parameter): other = Parameter(data=other, eval_grad=False, graph=self.graph) assert self.shape == other.shape, 'Objects not of same shape. Use G.divide() with axis argument' return self.graph.divide(self, other) def __pow__(self, other): return self.graph.power(self, other) # transpose def T(self): self.data = self.data.T self.grad = self.grad.T self.shape = tuple(reversed(self.shape)) return self # Computational Graph wannabe: stores the backward operation for every # forward operation during forward-propagation, in a breadth-fist manner class ComputationalGraph: def __init__(self, grad_mode=True): self.grad_mode = grad_mode self.nodes = list() # functions required for deep learning models and their respective backward operations def dot(self, W, x): # dot product of vectors and matrices assert W.shape[1] == x.shape[0], 'shape mismatch in dot() operation - W: {}, x: {}'.format(W.shape, x.shape) out = Parameter(data=np.dot(W.data, x.data), graph=self) if self.grad_mode: def backward(): # useful: http://cs231n.stanford.edu/slides/2018/cs231n_2018_ds02.pdf # print('dot') if W.eval_grad: W.grad += np.dot(out.grad, x.data.T) if x.eval_grad: x.grad += np.dot(out.grad.T, W.data).T # return (x.grad, W.grad) node = {'func': '@', 'inputs': [W, x], 'outputs': [out], 'backprop_op': lambda: backward()} out.node_id = len(self.nodes) self.nodes.append(node) return out def add(self, x, y, axis=()): # element wise addition # bias should be passed in position of y out = Parameter(data=np.add(x.data, y.data), graph=self) if self.grad_mode: def backward(): # print('add') if x.eval_grad: x.grad += out.grad if y.eval_grad: y.grad += np.sum(out.grad, axis = axis).reshape(y.shape) # in case of unequal sizes of inputs # return (x.grad, y.grad) node = {'func': '+', 'inputs': [x, y], 'outputs': [out], 'backprop_op': lambda: backward()} out.node_id = len(self.nodes) self.nodes.append(node) return out def subtract(self, x, y, axis=()): # element wise subtraction out = Parameter(data=np.subtract(x.data, y.data), graph=self) if self.grad_mode: def backward(): # print('subtract') if x.eval_grad: x.grad += out.grad if y.eval_grad: y.grad -= np.sum(out.grad, axis=axis).reshape(y.shape) # in case of unequal sizes of inputs # return (x.grad, y.grad) node = {'func': '-', 'inputs': [x, y], 'outputs': [out], 'backprop_op': lambda: backward()} out.node_id = len(self.nodes) self.nodes.append(node) return out def multiply(self, x, y, axis=()): # element wise vector multiplication out = Parameter(data=np.multiply(x.data, y.data), graph=self) if self.grad_mode: def backward(): # print('multiply') if x.eval_grad: x.grad += np.multiply(out.grad, y.data) if y.eval_grad: y.grad += np.sum(np.multiply(out.grad, x.data), axis=axis).reshape(y.shape) # in case of unequal sizes of inputs # return (x.grad, y.grad) node = {'func': '*', 'inputs': [x, y], 'outputs': [out], 'backprop_op': lambda: backward()} out.node_id = len(self.nodes) self.nodes.append(node) return out def divide(self, x, y, axis=()): # element wise vector division out = Parameter(data= np.divide(x.data, y.data + 1e-8), graph=self) if self.grad_mode: def backward(): # print('divide') if x.eval_grad: x.grad += np.multiply(out.grad, np.divide(1.0, y.data + 1e-8)) if y.eval_grad: y.grad += np.sum(np.multiply(out.grad, np.multiply(out.data, np.divide(-1.0, y.data + 1e-8))), axis=axis).reshape(y.shape) # in case of unequal sizes of inputs # return (x.grad, y.grad) node = {'func': '/', 'inputs': [x, y], 'outputs': [out], 'backprop_op': lambda: backward()} out.node_id = len(self.nodes) self.nodes.append(node) return out def sum(self, h, axis=None): # sum of all elements in the matrix if axis == None: res = np.sum(h.data).reshape(1, 1) else: res = np.sum(h.data, axis=axis, keepdims=True) out = Parameter(data=res, graph=self) if self.grad_mode: def backward(): # print('sum') if h.eval_grad: h.grad += out.grad # return h.grad node = {'func': 'sum', 'inputs': [h], 'outputs': [out], 'backprop_op': lambda: backward()} out.node_id = len(self.nodes) self.nodes.append(node) return out def power(self, h, exp): # element wise power out = Parameter(h.shape, init_zeros=True, graph=self) out.data = np.power(h.data, exp) if exp >= 0 else np.power(h.data + 1e-8, exp) # numerical stability for -ve power if self.grad_mode: def backward(): # print('power') if h.eval_grad: if exp >= 0: h.grad += np.multiply(out.grad, exp * np.power(h.data, exp - 1)) else: h.grad += np.multiply(out.grad, exp * np.power(h.data + 1e-8, exp - 1)) # return h.grad node = {'func': '^{}'.format(exp), 'inputs': [h], 'outputs': [out], 'backprop_op': lambda: backward()} out.node_id = len(self.nodes) self.nodes.append(node) return out def log(self, h): # element wise logarithm out = Parameter(data=np.log(h.data + 1e-8), graph=self) # numerical stability for values ~0 if self.grad_mode: def backward(): # print('log') if h.eval_grad: h.grad += np.multiply(out.grad, np.divide(1.0, h.data + 1e-8)) # return h.grad node = {'func': 'log', 'inputs': [h], 'outputs': [out], 'backprop_op': lambda: backward()} out.node_id = len(self.nodes) self.nodes.append(node) return out # layers functions def conv1d(self, x, K, s=(1,), p=(0,)): # faster 1d convolution operation if not isinstance(s, tuple): s = (s,) if not isinstance(p, tuple): p = (p,) C = K.shape[1] # number of input channels F = K.shape[0] # number of output filters i = x.shape[1:-1] # input channel shape k = K.shape[2:] # kernel filter shape N = x.shape[-1] # Batch size # Figure out output dimensions o = tuple(map(lambda i, k, s, p: int((i + 2*p - k)/s + 1), i, k, s, p)) pad_i = tuple(map(lambda i, p: i + 2*p, i, p)) # padding the input pad_x = np.pad(x.data, ((0, 0), (*p, *p), (0, 0)), mode='constant') # get strided view of padded input by picking appropriate strides shape = (C, *k, *o, N) strides = (pad_i[0] * N, N, s[0] * N, 1) strides = pad_x.itemsize * np.array(strides) stride_x = np.lib.stride_tricks.as_strided(pad_x, shape=shape, strides=strides) x_cols = np.ascontiguousarray(stride_x) x_cols = x_cols.reshape(C * k[0], o[0] * N) # convolution operation - matrix multiplication of strided array with kernel out = K.data.reshape(F, -1).dot(x_cols) # Reshape the output out = out.reshape(F, *o, N) out = np.ascontiguousarray(out) out = Parameter(data=out, graph=self) if self.grad_mode: def backward(): # print('conv1d') if K.eval_grad: K.grad += np.ascontiguousarray(out.grad.reshape(F, -1).dot(x_cols.T).reshape(K.shape)) if x.eval_grad: pad_x_grad = np.zeros(pad_x.shape) for r in range(out.shape[1]): # solving gradient for input feature map that caused the elements in r position of every output filter # in every batch; similar to kernel gradient method, but the matrix collapses along filters dimention using sum _ = out.grad[:, r, :].reshape(F, 1, 1, N) pad_x_grad[:, r*s[0]:r*s[0] + k[0], :] += np.sum(np.multiply(_, K.data.reshape(*K.shape, 1)), axis=0) # cutting the padded portion from the input-feature-map's gradient # and updating the gradient of actual input feature map(non-padded) - unpadding and updating x.grad += pad_x_grad[:, p[0]:pad_x_grad.shape[1]-p[0], :] # return (K.grad, x.grad) node = {'func': 'conv1d', 'inputs': [x, K], 'outputs': [out], 'backprop_op': lambda: backward()} out.node_id = len(self.nodes) self.nodes.append(node) return out def conv2d_old(self, x, K, s=(1, 1), p=(0, 0)): # useful: https://arxiv.org/pdf/1603.07285.pdf # 2d convolution operation - simple but inefficient implementation # Conv2d lasyer uses conv2d_faster for faster computation if not isinstance(s, tuple): s = (s, s) if not isinstance(p, tuple): p = (p, p) F = K.shape[0] # number of output filters C = K.shape[1] # number of input channels k = K.shape[2:] # don't confuse b/w K(big) - the kernel set and k(small) - a single kernel's shape, of some cth-channel in a kth-filter i = x.shape[1:-1] # input shape of any channel of the input feature map before padding N = x.shape[-1] # batch size of the input o = tuple(map(lambda i, k, s, p: int((i + 2*p - k)/s + 1), i, k, s, p)) pad_i = tuple(map(lambda i, p: i + 2*p, i, p)) out = np.zeros((F, *o, N)) # output feature maps pad_x = np.pad(x.data, ((0, 0), p, p, (0, 0)), mode='constant') pad_x = pad_x.reshape(1, *pad_x.shape) # convolution function computing cross-correlation instead of actual convolution - otherwise have to use # flipped kernels which doesn't effect learning kernel = K.data.reshape(*K.shape, 1) for r in range(out.shape[1]): # convolving operation here for c in range(out.shape[2]): # traversing rous and columns of feature map # multiplying traversed grid portions of padded input feature maps with kernel grids element-wise # and summing the resulting matrix to produce elements of output maps, over all filters and batches out[:, r, c, :] += np.sum(np.multiply(pad_x[:, :, r*s[0]:r*s[0] + k[0], c*s[1]:c*s[1] + k[1], :], kernel), axis=(1, 2, 3)) out = Parameter(data=out, graph=self) if self.grad_mode: def backward(): # print('conv2d') if K.eval_grad: for r in range(out.shape[1]): for c in range(out.shape[2]): # solving gradient for each kernel filter that caused the elements in r, c position of every output filter # in every bacth; sketch and think, with input stacked fi times to make computation fast _ = out.grad[:, r, c, :].reshape(F, 1, 1, 1, N) # updating the kernel filter set gradient - there will be RxC such updates K.grad += np.sum(np.multiply(_, pad_x[:, :, r*s[0]:r*s[0] + k[0], c*s[1]:c*s[1] + k[1], :]), axis = -1) if x.eval_grad: pad_x_grad = np.zeros((C, *pad_i, N)) for r in range(out.shape[1]): for c in range(out.shape[2]): # solving gradient for input feature map that caused the elements in r, c position of every output filter # in every batch; similar to kernel gradient method, but the matrix collapses along filters dimention using sum _ = out.grad[:, r, c, :].reshape(F, 1, 1, 1, N) pad_x_grad[:, r*s[0]:r*s[0] + k[0], c*s[1]:c*s[1] + k[1], :] += np.sum(np.multiply(_, kernel), axis=0) # cutting the padded portion from the input-feature-map's gradient # and updating the gradient of actual input feature map(non-padded) - unpadding and updating x.grad += pad_x_grad[:, p[0]:pad_x_grad.shape[1]-p[0], p[1]:pad_x_grad.shape[2]-p[1], :] # return (K.grad, x.grad) node = {'func': 'conv2d', 'inputs': [x, K], 'outputs': [out], 'backprop_op': lambda: backward()} out.node_id = len(self.nodes) self.nodes.append(node) return out def conv2d(self, x, K, s=(1, 1), p=(0, 0)): # faster 2d convolution operation if not isinstance(s, tuple): s = (s, s) if not isinstance(p, tuple): p = (p, p) C = K.shape[1] # number of input channels F = K.shape[0] # number of output filters i = x.shape[1:-1] # input channel shape k = K.shape[2:] # kernel filter shape N = x.shape[-1] # Batch size # Figure out output dimensions o = tuple(map(lambda i, k, s, p: int((i + 2*p - k)/s + 1), i, k, s, p)) pad_i = tuple(map(lambda i, p: i + 2*p, i, p)) # padding the input pad_x = np.pad(x.data, ((0, 0), p, p, (0, 0)), mode='constant') # get strided view of padded input by picking appropriate strides shape = (C, *k, *o, N) strides = (pad_i[0] * pad_i[1] * N, pad_i[1] * N, N, s[0] * pad_i[1] * N, s[1] * N, 1) strides = pad_x.itemsize * np.array(strides) stride_x = np.lib.stride_tricks.as_strided(pad_x, shape=shape, strides=strides) x_cols = np.ascontiguousarray(stride_x) x_cols = x_cols.reshape(C * k[0] * k[1], o[0] * o[1] * N) # convolution operation - matrix multiplication of strided array with kernel out = K.data.reshape(F, -1).dot(x_cols) # Reshape the output out = out.reshape(F, *o, N) out = np.ascontiguousarray(out) out = Parameter(data=out, graph=self) if self.grad_mode: def backward(): # print('conv2d') if K.eval_grad: K.grad += np.ascontiguousarray(out.grad.reshape(F, -1).dot(x_cols.T).reshape(K.shape)) if x.eval_grad: pad_x_grad = np.zeros(pad_x.shape) for r in range(out.shape[1]): for c in range(out.shape[2]): # solving gradient for input feature map that caused the elements in r, c position of every output filter # in every batch; similar to kernel gradient method, but the matrix collapses along filters dimention using sum _ = out.grad[:, r, c, :].reshape(F, 1, 1, 1, N) pad_x_grad[:, r*s[0]:r*s[0] + k[0], c*s[1]:c*s[1] + k[1], :] += np.sum(np.multiply(_, K.data.reshape(*K.shape, 1)), axis=0) # cutting the padded portion from the input-feature-map's gradient # and updating the gradient of actual input feature map(non-padded) - unpadding and updating x.grad += pad_x_grad[:, p[0]:pad_x_grad.shape[1]-p[0], p[1]:pad_x_grad.shape[2]-p[1], :] # return (K.grad, x.grad) node = {'func': 'conv2d', 'inputs': [x, K], 'outputs': [out], 'backprop_op': lambda: backward()} out.node_id = len(self.nodes) self.nodes.append(node) return out def conv_transpose2d_old(self, x, K, s=(1, 1), p=(0, 0), a=(0, 0)): # useful: https://arxiv.org/pdf/1603.07285.pdf # 2d convolutional transpose operation - simple but inefficient implementation # ConvTranspose2d lasyer uses conv_transpose2d_faster for faster computation if not isinstance(s, tuple): s = (s, s) if not isinstance(p, tuple): p = (p, p) if not isinstance(a, tuple): a = (a, a) F = K.shape[0] # number of filters - here number of feature input planes C = K.shape[1] # number of input channels - here number of image output planes k = K.shape[2:] # don't confuse b/w K(big) - the kernel set and k(small) - a single kernel's shape, of some cth-channel in a kth-filter i = x.shape[1:-1] # input shape of any channel of the input feature map before padding N = x.shape[-1] # batch size of the input o = tuple((map(lambda i, k, s, p, a: int((i - 1)*s + a + k - 2*p), i, k, s, p, a))) pad_o = tuple(map(lambda o, p: o + 2*p, o, p)) pad_out = np.zeros((C, *pad_o, N)) # output feature maps # convolution function computing cross-correlation instead of actual convolution like conv2d kernel = K.data.reshape(*K.shape, 1) for r in range(x.shape[1]): for c in range(x.shape[2]): # computing output image feature map by convolving across each element of input feature map with kernel _ = x.data[:, r, c, :].reshape(F, 1, 1, 1, N) pad_out[:, r*s[0]:r*s[0] + k[0], c*s[1]:c*s[1] + k[1], :] += np.sum(np.multiply(_, kernel), axis=0) # cutting the padded portion from the input-feature-map's gradient # and updating the gradient of actual input feature map(non-padded) - unpadding and updating out = pad_out[:, p[0]:pad_out.shape[1]-p[0], p[1]:pad_out.shape[2]-p[1], :] out = Parameter(data=out, graph=self) if self.grad_mode: def backward(): # print('conv_transpose2d') pad_out_grad = np.pad(out.grad, ((0, 0), p, p, (0, 0)), mode='constant') pad_out_grad = pad_out_grad.reshape(1, *pad_out_grad.shape) if K.eval_grad: for r in range(x.shape[1]): for c in range(x.shape[2]): # solving gradient for each kernel filter _ = x.data[:, r, c, :].reshape(F, 1, 1, 1, N) # updating the kernel filter set gradient - there will be RxC such updates K.grad += np.sum(np.multiply(_, pad_out_grad[:, :, r*s[0]:r*s[0] + k[0], c*s[1]:c*s[1] + k[1], :]), axis = -1) if x.eval_grad: for r in range(x.shape[1]): for c in range(x.shape[2]): # solving gradient for input feature map x.grad[:, r, c, :] += np.sum(np.multiply(pad_out_grad[:, :, r*s[0]:r*s[0] + k[0], c*s[1]:c*s[1] + k[1], :], kernel), axis=(1, 2, 3)) # return (K.grad, x.grad) node = {'func': 'conv_transpose2d', 'inputs': [x, K], 'outputs': [out], 'backprop_op': lambda: backward()} out.node_id = len(self.nodes) self.nodes.append(node) return out def conv_transpose2d(self, x, K, s=(1, 1), p=(0, 0), a=(0, 0)): # faster 2d convolution operation if not isinstance(s, tuple): s = (s, s) if not isinstance(p, tuple): p = (p, p) if not isinstance(a, tuple): a = (a, a) F = K.shape[0] # number of input filters C = K.shape[1] # number of output channels i = x.shape[1:-1] # input channel shape k = K.shape[2:] # kernel filter shape N = x.shape[-1] # Batch size o = tuple((map(lambda i, k, s, p, a: int((i - 1)*s + a + k - 2*p), i, k, s, p, a))) pad_o = tuple(map(lambda o, p: o + 2*p, o, p)) pad_out = np.zeros((C, *pad_o, N)) for r in range(x.shape[1]): for c in range(x.shape[2]): # computing output image feature map by convolving across each element of input feature map with kernel _ = x.data[:, r, c, :].reshape(F, 1, 1, 1, N) pad_out[:, r*s[0]:r*s[0] + k[0], c*s[1]:c*s[1] + k[1], :] += np.sum(np.multiply(_, K.data.reshape(*K.shape, 1)), axis=0) # cutting the padded portion from the input-feature-map's gradient # and updating the gradient of actual input feature map(non-padded) - unpadding and updating out = pad_out[:, p[0]:pad_out.shape[1]-p[0], p[1]:pad_out.shape[2]-p[1], :] out = Parameter(data=out, graph=self) if self.grad_mode: def backward(): # print('conv_transpose2d') # padding the output gradient pad_out_grad = np.pad(out.grad, ((0, 0), p, p, (0, 0)), mode='constant') # get strided view of padded output gradient by picking appropriate strides shape = (C, *k, *i, N) strides = (pad_o[0] * pad_o[1] * N, pad_o[1] * N, N, s[0] * pad_o[1] * N, s[1] * N, 1) strides = pad_out_grad.itemsize * np.array(strides) stride_out_grad = np.lib.stride_tricks.as_strided(pad_out_grad, shape=shape, strides=strides) out_grad_cols = np.ascontiguousarray(stride_out_grad) out_grad_cols = out_grad_cols.reshape(C * k[0] * k[1], i[0] * i[1] * N) if K.eval_grad: K.grad += np.ascontiguousarray(x.data.reshape(F, -1).dot(out_grad_cols.T).reshape(K.shape)) if x.eval_grad: x_grad = K.data.reshape(F, -1).dot(out_grad_cols) # Reshape the gradient x_grad = x_grad.reshape(F, *i, N) x.grad += np.ascontiguousarray(x_grad) # return (K.grad, x.grad) node = {'func': 'conv_transpose2d', 'inputs': [x, K], 'outputs': [out], 'backprop_op': lambda: backward()} out.node_id = len(self.nodes) self.nodes.append(node) return out def max_pool2d(self, x, k=None, s=None, p=(0, 0)): # maxpool layer(no params), used generally after Conv2d - simple but inefficient implementation # useful: https://arxiv.org/pdf/1603.07285.pdf if s is None: s = k if not isinstance(k, tuple): k = (k, k) if not isinstance(s, tuple): s = (s, s) F = x.shape[0] # number of input filter planes i = x.shape[1:-1] # input shape of any channel of the input feature map before padding N = x.shape[-1] # Batch size o = tuple(map(lambda i, k, s, p: int((i + 2*p - k)/s + 1), i, k, s, p)) pad_i = tuple(map(lambda i, p: i + 2*p, i, p)) out = np.zeros((F, *o, N)) pad_x = np.pad(x.data, ((0, 0), p, p, (0, 0)), mode='constant') for r in range(out.shape[1]): # convolving operation here(kinda) for c in range(out.shape[2]): # traversing rous and columns of feature map # Selecting max element in the current position where kernel sits on feature map # The kernel moves in a convolution manner similar to conv2d _ = pad_x[:, r*s[0]:r*s[0] + k[0], c*s[1]:c*s[1] + k[1], :] out[:, r, c, :] = np.max(_, axis=(1, 2)) if self.grad_mode: # seems inefficient; will improve this whole maxpool op later # Also storing value 1 at locations in the input that caused the output values(max locations); makes life easy during backprop # if multiple 0s occur and max is 0 then it shouldn't count. weeding out such cases by assigning # NaN and later zeroing out their gradient locations too; this was a bug which is fixed now :) out[:, r, c, :][out[:, r, c, :] == 0] = np.nan _ -= out[:, r, c, :].reshape(F, 1, 1, N) _[np.isnan(_)] = -1 # removing all zeros locations # can't use '_' object from above for the below assignment, so using the entire notation :( pad_x[:, r*s[0]:r*s[0] + k[0], c*s[1]:c*s[1] + k[1], :] = np.where(pad_x[:, r*s[0]:r*s[0] + k[0], c*s[1]:c*s[1] + k[1], :] < 0, 0, 1.0) out[:, r, c, :][np.isnan(out[:, r, c, :])] = 0 out = Parameter(data=out, graph=self) if self.grad_mode: def backward(): # print('maxpool2d') if x.eval_grad: for r in range(out.shape[1]): for c in range(out.shape[2]): # multiplying each 'mask' like volume(single 1s in the volumes along all batches) with the gradient # at region whose value was caused by the mask region's input pad_x[:, r*s[0]:r*s[0] + k[0], c*s[1]:c*s[1] + k[1], :] *= out.grad[:, r, c, :].reshape(F, 1, 1, N) # cutting the padded portion from the input gradient # and updating the gradient of actual input(non-padded) - unpadding and updating x.grad += pad_x[:, p[0]:pad_x.shape[1]-p[0], p[1]:pad_x.shape[2]-p[1], :] # return (x.grad) node = {'func': 'maxpool', 'inputs': [x], 'outputs': [out], 'backprop_op': lambda: backward()} out.node_id = len(self.nodes) self.nodes.append(node) return out def max_pool2d_faster(self, x, k=(2, 2), s=(2,2), p=(0, 0)): # maxpool layer(no params) # useful: https://arxiv.org/pdf/1603.07285.pdf F = x.shape[0] # number of input filter planes i = x.shape[1:-1] # input shape of any channel of the input feature map before padding N = x.shape[-1] # Batch size # Figure out output dimensions o = tuple(map(lambda i, k, s, p: int((i + 2*p - k)/s + 1), i, k, s, p)) pad_i = tuple(map(lambda i, p: i + 2*p, i, p)) # padding the input pad_x = np.pad(x.data, ((0, 0), p, p, (0, 0)), mode='constant') # get strided view of padded input by picking appropriate strides shape = (F, *k, *o, N) strides = (pad_i[0] * pad_i[1] * N, pad_i[1] * N, N, s[0] * pad_i[1] * N, s[1] * N, 1) strides = pad_x.itemsize * np.array(strides) stride_x = np.lib.stride_tricks.as_strided(pad_x, shape=shape, strides=strides) x_cols = np.ascontiguousarray(stride_x) x_cols = x_cols.reshape(F, k[0] * k[1], *o, N) # store indices of the max location of each patch max_indices = np.argmax(x_cols, axis=1) out = np.max(x_cols, axis=1) out = Parameter(data=out, graph=self) if self.grad_mode: def backward(): # print('maxpool2d') if x.eval_grad: for r in range(out.shape[1]): for c in range(out.shape[2]): # multiplying each 'mask' like volume(single 1s in the volumes along all batches) with the gradient # at region whose value was caused by the mask region's input pad_x[:, r*s[0]:r*s[0] + k[0], c*s[1]:c*s[1] + k[1], :] *= out.grad[:, r, c, :].reshape(F, 1, 1, N) # cutting the padded portion from the input gradient # and updating the gradient of actual input(non-padded) - unpadding and updating x.grad += pad_x[:, p[0]:pad_x.shape[1]-p[0], p[1]:pad_x.shape[2]-p[1], :] # return (x.grad) node = {'func': 'maxpool', 'inputs': [x], 'outputs': [out], 'backprop_op': lambda: backward()} out.node_id = len(self.nodes) self.nodes.append(node) return out def dropout(self, x, p=0.5): # dropout regularization layer! # useful: https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf if self.grad_mode: # drop activation units randomly during training # a unit is present with probability p dropout_mask = np.random.binomial(np.ones(x.shape, dtype='int64'), p) else: # scale activations of units by p during testing # units are always present dropout_mask = p # drop/sclae out = Parameter(data=dropout_mask*x.data, graph=self) if self.grad_mode: def backward(): # print('dropout') if x.eval_grad: x.grad += out.grad*dropout_mask # only activated units get gradients # return x.grad node = {'func': 'dropout', 'inputs': [x], 'outputs': [out], 'backprop_op': lambda: backward()} out.node_id = len(self.nodes) self.nodes.append(node) return out # hidden and output units activations def relu(self, z): # element wise ReLU activations out = Parameter(data=np.maximum(z.data, 0), graph=self) if self.grad_mode: def backward(): # print('relu') if z.eval_grad: z.grad += out.grad.copy() z.grad[z.data < 0] = 0 # return z.grad node = {'func': 'relu', 'inputs': [z], 'outputs': [out], 'backprop_op': lambda: backward()} out.node_id = len(self.nodes) self.nodes.append(node) return out def lrelu(self, z, alpha=1e-2): # element wise Leaky ReLU activations out = Parameter(data=np.maximum(z.data, alpha * z.data), graph=self) if self.grad_mode: def backward(): # print('lrelu') if z.eval_grad: z.grad += out.grad.copy() z.grad[z.data < 0] *= alpha # return z.grad node = {'func': 'lrelu', 'inputs': [z], 'outputs': [out], 'backprop_op': lambda: backward()} out.node_id = len(self.nodes) self.nodes.append(node) return out def sigmoid(self, z): # element wise sigmoid activations shape = z.shape out = Parameter(shape, init_zeros=True, graph=self) out.data = 1.0/(1.0 + np.exp(-1.0*z.data)) if self.grad_mode: def backward(): # print('sigmoid') if z.eval_grad: z.grad += np.multiply(np.multiply(out.data, 1.0 - out.data), out.grad) # return z.grad node = {'func': 'sigmoid', 'inputs': [z], 'outputs': [out], 'backprop_op': lambda: backward()} out.node_id = len(self.nodes) self.nodes.append(node) return out def softmax(self, z): # calculates probs for the unnormalized log probabilities of previous layer shape = z.shape out = Parameter(shape, init_zeros=True, graph=self) out.data = np.exp(z.data - np.max(z.data)) / np.sum(np.exp(z.data - np.max(z.data)), axis=0).reshape(1, -1) if self.grad_mode: def backward(): # print('softmax') if z.eval_grad: # directly coding the end result instead of formula - easy this way z.grad += out.data - np.where(out.grad == 0, 0, 1.0) # return z.grad node = {'func': 'softmax', 'inputs': [z], 'outputs': [out], 'backprop_op': lambda: backward()} out.node_id = len(self.nodes) self.nodes.append(node) return out def tanh(self, z): # element wise tanh activations out = Parameter(data=np.tanh(z.data), graph=self) if self.grad_mode: def backward(): # print('tanh') if z.eval_grad: z.grad += np.multiply(1 - np.multiply(out.data, out.data), out.grad) # return z.grad node = {'func': 'tanh', 'inputs': [z], 'outputs': [out], 'backprop_op': lambda: backward()} out.node_id = len(self.nodes) self.nodes.append(node) return out # data manipulation/view functions def split(self, W, sections=1, axis=0): outs = np.split(W.data, sections, axis=axis) outs_list = list() for e in outs: o = Parameter(data=e, graph=self) outs_list.append(o) if self.grad_mode: def backward(): # print('split') outs_grads = [o.grad for o in outs_list] if W.eval_grad: W.grad += np.concatenate(outs_grads, axis=axis) # return W.grad node = {'func': 'split', 'inputs': [W], 'outputs': outs_list, 'backprop_op': lambda: backward()} for out in outs_list: out.node_id = len(self.nodes) self.nodes.append(node) return outs_list def cat(self, inputs_list, axis=0): indices = [input.shape[axis] for input in inputs_list] indices = [sum(indices[:_+1]) for _ in range(len(indices))] out = Parameter(data=np.concatenate(inputs_list, axis=axis), graph=self) if self.grad_mode: def backward(): # print('cat') input_grads = np.split(out.grad, indices, axis=axis) for _ in range(len(inputs_list)): if inputs_list[_].eval_grad: inputs_list[_].grad += input_grads[_] # return *[input.grad for input in inputs_list] node = {'func': 'cat', 'inputs': [inputs_list], 'outputs': [out], 'backprop_op': lambda: backward()} out.node_id = len(self.nodes) self.nodes.append(node) return out def T(self, x): # transpose out = Parameter(data=x.data.T, graph=self) if self.grad_mode: def backward(): # print('T') if x.eval_grad: x.grad += out.grad.T # return x.grad node = {'func': 'transpose', 'inputs': [x], 'outputs': [out], 'backprop_op': lambda: backward()} out.node_id = len(self.nodes) self.nodes.append(node) return out def reshape(self, x, new_shape=None): old_shape = x.shape batch_size = old_shape[-1] if new_shape == None: # flatten new_shape = x.data.reshape(-1, batch_size).shape else: new_shape = (*new_shape, batch_size) out = Parameter(new_shape, init_zeros=True, graph=self) out.data = x.data.reshape(new_shape) if self.grad_mode: def backward(): # print('reshape') if x.eval_grad: x.grad += out.grad.reshape(old_shape) # return x.grad node = {'func': 'reshape', 'inputs': [x], 'outputs': [out], 'backprop_op': lambda: backward()} out.node_id = len(self.nodes) self.nodes.append(node) return out G = ComputationalGraph() # generic module class to add useful features like save/load model from files, get parameters etc. class Module(object): def __init__(self): pass def __repr__(self): module_schema = str(self.__class__.__name__) + '(\n' for name, layer in self.get_module_layers().items(): module_schema += ' ' + str(name) + ': ' + str(layer) + '\n' module_schema += ')' return module_schema def save(self, file=None): # model.save() - saves the state of the network print('saving model...') save_dict = dict() module_layers = self.get_module_layers() for layer_name, layer in module_layers.items(): layer_params = layer.get_module_params() for param_name, param in layer_params.items(): layer_params[param_name] = param.data module_layers[layer_name] = layer_params module_params = self.get_module_params() for param_name, param in module_params.items(): module_params[param_name] = param.data save_dict['module_layers'] = module_layers save_dict['module_params'] = module_params if file == None: file = self.__class__.__name__+'.npy' np.save(file, save_dict) print('Successfully saved model in {}'.format(file)) def load(self, file=None): # model.load() - loads the state of net from a file print('loading model...') if file == None: file = self.__class__.__name__+'.npy' load_dict = np.load(file, allow_pickle=True).item() module_layers_stored = load_dict['module_layers'] module_params_stored = load_dict['module_params'] module_layers_actual = self.get_module_layers() module_params_actual = self.get_module_params() for layer_name, layer_stored in module_layers_stored.items(): if layer_name in module_layers_actual: for param_name, param in layer_stored.items(): layer_actual = module_layers_actual[layer_name] setattr(layer_actual, str(param_name), Parameter(data=param)) for param_name, param in module_params_stored.items(): if param_name in module_params_actual: setattr(self,str(param_name), Parameter(data=param)) print('Successfully loaded model from {}'.format(file)) def get_module_layers(self): # returns a dictionary of parametrized layers in the module attributes = self.__dict__ layers = ['Linear', 'Conv2d', 'ConvTranspose2d', 'LSTM', 'RNN', 'BatchNorm', 'Maxpool2d', 'Dropout'] module_layers = dict() for name in attributes: if attributes[name].__class__.__name__ in layers: module_layers[name] = attributes[name] return module_layers def get_module_params(self): # returns a dictionary of parameters in the module attributes = self.__dict__ module_params = dict() for name in attributes: if attributes[name].__class__.__name__ in ['Parameter']: if attributes[name].eval_grad: module_params[name] = attributes[name] return module_params def parameters(self): # access parameters of the module with this function all_params = list() for layer in list(self.get_module_layers().values()): all_params.extend(layer.parameters()) all_params.extend(list(self.get_module_params().values())) return all_params # linear affine transformation: y = Wx + b # the general feed-forward network class Linear(Module): def __init__(self, input_features=0, output_features=0, bias=True, graph=G): super(Linear, self).__init__() self.input_features = input_features # previous layer units self.output_features = output_features # next layer units self.bias = bias self.graph = graph self.init_params() def init_params(self): root_k = np.sqrt(1. / self.input_features) self.W = Parameter((self.output_features, self.input_features), uniform=True, low=-root_k, high=root_k, graph=self.graph) # weight volume self.b = Parameter((self.output_features, 1), uniform=True, low=-root_k, high=root_k, graph=self.graph) # bias vector def __repr__(self): return('Linear(input_features={}, output_features={}, bias={})'.format( self.input_features, self.output_features, self.bias)) def __call__(self, x): # easy callable return self.forward(x) def forward(self, x): # making the input compatible with graph operations if not isinstance(x, Parameter): x = Parameter(data=x, eval_grad=False, graph=self.graph) # flatten the input if it came from layers like Conv2d if len(x.shape) > 2: x = self.graph.reshape(x) # y = Wx + b out = self.graph.dot(self.W, x) # matmul if self.bias: # adding bias out = self.graph.add(out, self.b, axis=(-1,)) return out # 1D convolutional neural network class Conv1d(Module): def __init__(self, input_channels=None, output_channels=None, kernel_size=None, stride=(1,), padding=(0,), bias=True, graph=G): super(Conv1d, self).__init__() self.input_channels = input_channels self.output_channels = output_channels if not isinstance(kernel_size, tuple): kernel_size = (kernel_size,) if not isinstance(stride, tuple): stride = (stride,) if not isinstance(padding, tuple): padding = (padding,) self.kernel_size = kernel_size self.filter_size = (self.input_channels, *(self.kernel_size)) self.stride = stride self.padding = padding self.bias = bias self.graph = graph self.init_params() def init_params(self): root_k = np.sqrt(1. / (self.input_channels * self.kernel_size[0])) self.K = Parameter((self.output_channels, *self.filter_size), uniform=True, low=-root_k, high=root_k, graph=self.graph) self.b = Parameter((self.output_channels, 1, 1), uniform=True, low=-root_k, high=root_k, graph=self.graph) def __repr__(self): return('Conv1d({}, {}, kernel_size={}, stride={}, padding={}, bias={})'.format( self.input_channels, self.output_channels, self.kernel_size, self.stride, self.padding, self.bias)) def __call__(self, x): # easy callable return self.forward(x) def forward(self, x): if not isinstance(x, Parameter): x = Parameter(data=x, eval_grad=False, graph=self.graph) # convolution operation out = self.graph.conv1d(x, self.K, self.stride, self.padding) if self.bias: # adding bias out = self.graph.add(out, self.b, axis=(-2, -1)) return out # 2D convolutional neural network class Conv2d(Module): def __init__(self, input_channels=None, output_channels=None, kernel_size=None, stride=(1, 1), padding=(0, 0), bias=True, graph=G): super(Conv2d, self).__init__() self.input_channels = input_channels self.output_channels = output_channels if not isinstance(kernel_size, tuple): kernel_size = (kernel_size, kernel_size) if not isinstance(stride, tuple): stride = (stride, stride) if not isinstance(padding, tuple): padding = (padding, padding) self.kernel_size = kernel_size self.filter_size = (self.input_channels, *(self.kernel_size)) self.stride = stride self.padding = padding self.bias = bias self.graph = graph self.init_params() def init_params(self): root_k = np.sqrt(1. / (self.input_channels * self.kernel_size[0] * self.kernel_size[1])) self.K = Parameter((self.output_channels, *self.filter_size), uniform=True, low=-root_k, high=root_k, graph=self.graph) self.b = Parameter((self.output_channels, 1, 1, 1), uniform=True, low=-root_k, high=root_k, graph=self.graph) def __repr__(self): return('Conv2d({}, {}, kernel_size={}, stride={}, padding={}, bias={})'.format( self.input_channels, self.output_channels, self.kernel_size, self.stride, self.padding, self.bias)) def __call__(self, x): # easy callable return self.forward(x) def forward(self, x): if not isinstance(x, Parameter): x = Parameter(data=x, eval_grad=False, graph=self.graph) # convolution operation out = self.graph.conv2d(x, self.K, self.stride, self.padding) if self.bias: # adding bias out = self.graph.add(out, self.b, axis=(-3, -2, -1)) return out # 2d transposed convolutional neural network class ConvTranspose2d(Module): def __init__(self, input_channels=None, output_channels=None, kernel_size=None, stride=(1, 1), padding=(0, 0), a=(0, 0), bias=True, graph=G): super(ConvTranspose2d, self).__init__() self.input_channels = input_channels self.output_channels = output_channels if not isinstance(kernel_size, tuple): kernel_size = (kernel_size, kernel_size) if not isinstance(stride, tuple): stride = (stride, stride) if not isinstance(padding, tuple): padding = (padding, padding) if not isinstance(a, tuple): a = (a, a) self.kernel_size = kernel_size self.filter_size = (self.output_channels, *(self.kernel_size)) self.stride = stride self.padding = padding self.a = a # for fixing a single output shape over many possible self.bias = bias self.graph = graph self.init_params() def init_params(self): root_k = np.sqrt(1. / (self.output_channels * self.kernel_size[0] * self.kernel_size[1])) self.K = Parameter((self.input_channels, *self.filter_size), uniform=True, low=-root_k, high=root_k, graph=self.graph) self.b = Parameter((self.output_channels, 1, 1, 1), uniform=True, low=-root_k, high=root_k, graph=self.graph) def __repr__(self): return('ConvTranspose2d({}, {}, kernel_size={}, stride={}, padding={}, a={}, bias={})'.format( self.input_channels, self.output_channels, self.kernel_size, self.stride, self.padding, self.a, self.bias)) def __call__(self, x): # easy callable return self.forward(x) def forward(self, x): if not isinstance(x, Parameter): x = Parameter(data=x, eval_grad=False, graph=self.graph) # convolution transpose operation out = self.graph.conv_transpose2d(x, self.K, self.stride, self.padding, self.a) if self.bias: # adding bias out = self.graph.add(out, self.b, axis=(-3, -2, -1)) return out # sequence models: LSTM cell class LSTM(Module): def __init__(self, input_size, hidden_size, bias=True, graph=G): super(LSTM, self).__init__() self.input_size = input_size # size of the input at each recurrent tick self.hidden_size = hidden_size # size of hidden units h and c self.bias = bias self.graph = graph self.init_params() def init_params(self): root_k = np.sqrt(1. / self.hidden_size) self.W_ih = Parameter((4*self.hidden_size, self.input_size), uniform=True, low=-root_k, high=root_k, graph=self.graph) # input to hidden weight volume self.W_hh = Parameter((4*self.hidden_size, self.hidden_size), uniform=True, low=-root_k, high=root_k, graph=self.graph) # hidden to hidden weight volume self.b_ih = Parameter((4*self.hidden_size, 1), uniform=True, low=-root_k, high=root_k, graph=self.graph) # input to hidden bias vector self.b_hh = Parameter((4*self.hidden_size, 1), uniform=True, low=-root_k, high=root_k, graph=self.graph) # hidden to hidden bias vector def __repr__(self): return('LSTM(input_size={}, hidden_size={}, bias={})'.format( self.input_size, self.hidden_size, self.bias)) def __call__(self, x, hidden): # easy callable return self.forward(x, hidden) def forward(self, x, hidden): h, c = hidden if not isinstance(x, Parameter): x = Parameter(data=x, eval_grad=False, graph=self.graph) i_h = self.graph.dot(self.W_ih, x) if self.bias: i_h = self.graph.add(i_h, self.b_ih, axis=(-1,)) h_h = self.graph.dot(self.W_hh, h) if self.bias: h_h = self.graph.add(h_h, self.b_hh, axis=(-1,)) gates = self.graph.add(i_h, h_h) # forget, input, gate(also called cell gate - different from cell state), output gates of the lstm cell # useful: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ f, i, g, o = self.graph.split(gates, sections=4, axis=0) f = self.graph.sigmoid(f) i = self.graph.sigmoid(i) g = self.graph.tanh(g) o = self.graph.sigmoid(o) c = self.graph.add(self.graph.multiply(f, c), self.graph.multiply(i, g)) h = self.graph.multiply(o, self.graph.tanh(c)) return (h, c) # sequence models: RNN cell class RNN(Module): def __init__(self, input_size, hidden_size, bias=True, graph=G): super(RNN, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.bias = bias self.graph = graph self.init_params() def init_params(self): root_k =
np.sqrt(1. / self.hidden_size)
numpy.sqrt
""" Copyright (c) Microsoft Corporation. All rights reserved. Licensed under the MIT License. """ import logging import os import time import numpy as np import torch import torch.nn.functional as F from parse import parse # Some tricks to make rasterio faster when using vsicurl # see https://github.com/pangeo-data/cog-best-practices RASTERIO_BEST_PRACTICES = dict( CURL_CA_BUNDLE="/etc/ssl/certs/ca-certificates.crt", GDAL_DISABLE_READDIR_ON_OPEN="EMPTY_DIR", AWS_NO_SIGN_REQUEST="YES", GDAL_MAX_RAW_BLOCK_CACHE_SIZE="200000000", GDAL_SWATH_SIZE="200000000", VSI_CURL_CACHE_SIZE="200000000", ) NAIP_BLOB_ROOT = "https://naipblobs.blob.core.windows.net/naip" LOGGER = logging.getLogger("main") # Filter method def filter_polygon(**kwargs): """Decides whether a predicted polygon is valid based on the range of the aspect ratio and area stats from the Delmarava dataset. """ return all( [ ( kwargs["distance_to_nearest_road"] is None or kwargs["distance_to_nearest_road"] > 0 ), kwargs["rectangle_aspect_ratio"] > 3.4, kwargs["rectangle_aspect_ratio"] < 20.49, kwargs["rectangle_area"] > 525.69, kwargs["rectangle_area"] < 8106.53, ] ) # Helper function for parsing results def convert_results_to_series(results): series = {key: [] for key in results[0].keys()} for epoch in results: for k, v in epoch.items(): series[k].append(v) return series def parse_fn_parts(run): parsed_run = None if "_rotation" in run: parsed_run = parse( "{training_set}_{model}_{negative_sample_probability:f}_{lr:f}_rotation", run, ).named parsed_run["rotation"] = True else: parsed_run = parse( "{training_set}_{model}_{negative_sample_probability:f}_{lr:f}", run ).named parsed_run["rotation"] = False return parsed_run # Method for creating torch tensor from input chip def chip_transformer(img): img = img / 255.0 img =
np.rollaxis(img, 2, 0)
numpy.rollaxis
import os import ssl from argparse import ArgumentParser from keras.applications import ResNet50, VGG19, VGG16, InceptionV3, \ MobileNetV2, InceptionResNetV2, Xception, DenseNet201, MobileNet, \ NASNetMobile, NASNetLarge from keras.applications.imagenet_utils import preprocess_input import numpy as np from keras.preprocessing.image import ImageDataGenerator from tensorflow.python.keras.models import load_model ssl._create_default_https_context = ssl._create_unverified_context MODELS = { 'DenseNet201': {'IMG_SIZE': 224, 'PROCESSING': 'torch', 'TRANSFER_LEARNING': DenseNet201}, 'MobileNetV2': {'IMG_SIZE': 224, 'PROCESSING': 'tf', 'TRANSFER_LEARNING': MobileNetV2}, 'VGG19': {'IMG_SIZE': 224, 'PROCESSING': 'caffe', 'TRANSFER_LEARNING': VGG19}, 'NASNetMobile': {'IMG_SIZE': 224, 'PROCESSING': 'tf', 'TRANSFER_LEARNING': NASNetMobile}, 'InceptionResNetV2': {'IMG_SIZE': 299, 'PROCESSING': 'tf', 'TRANSFER_LEARNING': InceptionResNetV2}, 'InceptionV3': {'IMG_SIZE': 299, 'PROCESSING': 'tf', 'TRANSFER_LEARNING': InceptionV3}, 'ResNet50': {'IMG_SIZE': 224, 'PROCESSING': 'caffe', 'TRANSFER_LEARNING': ResNet50}, 'Xception': {'IMG_SIZE': 299, 'PROCESSING': 'tf', 'TRANSFER_LEARNING': Xception}, } def reshape_data(data, pretrained_model): return np.reshape(data, ( len(data), pretrained_model.output_shape[1] * pretrained_model.output_shape[2] * pretrained_model.output_shape[3])) def get_feat_count(output_shape): count = 1 for i in range(1, len(output_shape)): count = count * output_shape[i] return count def get_pretrained_model(model_name, photos_type, model_dir=False, weights_dir=False): model_dir = model_dir if model_dir else os.path.join(os.path.curdir, 'models') weights_dir = os.path.join(os.path.curdir, weights_dir) if weights_dir else os.path.join(os.path.curdir, 'weights') print(weights_dir) for model in os.listdir(weights_dir): print(model) if model_name.lower() in model.lower() and photos_type in model.lower(): print(os.path.join(model_dir, model)) model_path = '{}.h5'.format(model.replace('/weights/', '/models/').replace('_weights_', '_model_').split('_score')[0]) print(model_path) pretrained_model = load_model(os.path.join(os.path.join(model_dir, model_path))) pretrained_model.load_weights(os.path.join(os.path.join(weights_dir, model))) print('Loaded model: {}'.format(model_name)) return pretrained_model raise Exception('no model found') def eval_model(train_dir, model_name, weights, evaluation=False): print(model_name) model = MODELS[model_name] img_size = model['IMG_SIZE'] orig_model = model['TRANSFER_LEARNING']( weights='imagenet', include_top=False, input_shape=(img_size, img_size, 3)) datagen = ImageDataGenerator() generator = datagen.flow_from_directory( train_dir, target_size=(model['IMG_SIZE'], model['IMG_SIZE']), batch_size=1, class_mode='binary', shuffle=False) if evaluation: return generator.labels[0:len(generator.labels)+1] photos_type = 'photoshop' if 'photoshop' in train_dir else 'flipped' if 'flipped' in train_dir else 'gan' print(photos_type) pretrained_model = get_pretrained_model(model_name, photos_type, weights_dir=weights) predictions = [] score = 0 for inputs_batch, labels_batch in generator: features_batch = orig_model.predict( preprocess_input(inputs_batch, mode=model['PROCESSING'])) op_shape = features_batch.shape features_batch = np.reshape(features_batch, ( inputs_batch.shape[0], op_shape[-3] * op_shape[-2] * op_shape[-1])) prediction = pretrained_model.predict(features_batch, verbose=0) if np.round(prediction[0], 2) >= 0.5: predictions.append(1) else: predictions.append(0) scores = pretrained_model.evaluate(features_batch, labels_batch, verbose=0) score += scores[1] * 100 if len(predictions) >= len(generator.labels): break print('Total score for: {} - {}%'.format(model_name, round(score / len(predictions), 2))) return predictions def main(): parser = ArgumentParser(__doc__) parser.add_argument("--eval", required=False, help="folder containing two directories for evaluation") parser.add_argument("--pic", required=False, help="picture for prediction") parser.add_argument("--predict", required=False, help="directory for predictions") parser.add_argument("--weights", required=True, default='./weights/', help="directory for weights") args = parser.parse_args() if args.eval: eval_dir = os.path.relpath(args.eval) any_model = list(MODELS.keys())[0] truth = eval_model(eval_dir, any_model, evaluation=True, weights=args.weights) print('Truth: {}'.format(truth)) votes = [] combined_votes = [] for key, _ in MODELS.items(): single_model_vote = eval_model(eval_dir, key, weights=args.weights) print('{}: predictions {}'.format(key, single_model_vote)) votes.append(single_model_vote) item = 0 for element in single_model_vote: try: combined_votes[item] = (combined_votes[item] + element) / 2 except IndexError: combined_votes.append(element) item += 1 print('{}: combined {}'.format(key, combined_votes)) # average_votes = np.average(np.array(votes), axis=0) # print(average_votes) final_predictions = np.where(
np.array(combined_votes)
numpy.array
from abc import ABCMeta from abc import abstractmethod from ..np_utils import ops import numpy as np class Match(object): """Class to store results from the matcher. This class is used to store the results from the matcher. It provides convenient methods to query the matching results. """ def __init__(self, match_results, use_matmul_gather=False): if match_results.shape.ndims != 1: raise ValueError('match_results should have rank 1') if match_results.dtype != np.int32: raise ValueError('match_results should be an int32 or int64 scalar ' 'tensor') self._match_results = match_results # TODO # if use_matmul_gather: # self._gather_op = ops.matmul_gather_on_zeroth_axis @property def match_results(self): return self._match_results def matched_column_indices(self): return self._reshape_and_cast(np.where(np.greater(self._match_results, -1))) def matched_column_indicator(self): return np.greater_equal(self._match_results, 0) def num_matched_columns(self): return np.size(self.matched_column_indices()) def unmatched_column_indices(self): return self._reshape_and_cast(np.where(np.equal(self._match_results, -1))) def unmatched_column_indicator(self): return
np.equal(self._match_results, -1)
numpy.equal
# Python program to create # Image Classifier using CNN # Importing the required libraries import cv2 import os import numpy as np from random import shuffle from tqdm import tqdm import tflearn from tflearn.layers.conv import conv_2d, max_pool_2d from tflearn.layers.core import input_data, dropout, fully_connected from tflearn.layers.estimator import regression import tensorflow as tf '''Setting up the env''' TRAIN_DIR = "v_data\\train" TEST_DIR = "v_data\\test" IMG_SIZE = 100 LR = 1e-3 '''Setting up the model which will help with tensorflow models''' MODEL_NAME = 'smollan-{}-{}.model'.format(LR, '6conv-basic') def get_label_name(path): dirs = os.listdir(path) return np.identity(len(dirs),dtype=int), dirs def create_train_data(): i = 0 training_data = [] labels,dirs = get_label_name(TRAIN_DIR) images = [] j = 0 label_dirs = get_all_image_names(TRAIN_DIR) for _img in label_dirs: img = cv2.imread(_img, cv2.IMREAD_GRAYSCALE) img = cv2.resize(img, (IMG_SIZE, IMG_SIZE)) if(_img.find("cars") != -1): training_data.append([
np.array(img)
numpy.array
""" A module for a fast looping through a dataset (using python's multiprocessing) Author: <NAME> (<EMAIL>) and <NAME> Last update: March 9, 2014 """ import multiprocessing import numpy as np import h5py, os, sys, time import utils __all__ = ['FastLoop'] def _worker_call(worker, pipe): work_package = pipe.recv() while work_package != "fika": pipe.send(worker(work_package)) work_package = pipe.recv() class FastLoop(object): def __init__(self, inputfile, outputfile, Nprocesses, Njobs, loopfunc, updaterate, *args, **kwargs): self.inputfile = inputfile self.outputfile = outputfile self.index = 0 self.Nprocesses = Nprocesses self.Njobs = Njobs self.framerate_update = updaterate self.loopfunc = loopfunc self.args = args self.kwargs = kwargs self.load() def load(self): with h5py.File(self.inputfile, 'r') as datafile: self.input = {item:datafile[item][:] for item in datafile.keys()} with h5py.File(self.outputfile, 'r') as datafile: self.output = {item:datafile[item][:] for item in datafile.keys()} #pass #@profile def next(self): self.index += 1 #with h5py.File(self.inputfile, 'r') as datafile: data = datafile['data'][self.index-1] data = {item:self.input[item][self.index-1] for item in self.input} input = {'i':self.index-1, 'data':data, 'args':self.args, 'kwargs':self.kwargs} return input #@profile def save(self, res): for k in res: #with h5py.File(self.outputfile, 'a') as file: # if not k == 'i': # file[k][res['i']] = res[k] if not k == 'i': self.output[k][res['i']] = res[k] #if res[k].ndim == 0: # self.output[k][res['i']] = res[k] #else: # self.output[k][res['i']][...] = res[k] #@profile def write(self, progress = 1.): utils.progressbar(progress, 'Saving results to file') with h5py.File(self.outputfile, 'a') as datafile: for item in self.output: datafile[item][...] = self.output[item] #@profile def start(self): # Decide how many parallel processes to use available_cpus = multiprocessing.cpu_count() if self.Nprocesses == 'max': self.Nprocesses = available_cpus elif self.Nprocesses > available_cpus: self.Nprocesses = available_cpus # Initialize lists keeping track of read/write pipes pipes_end_host = list(np.zeros(self.Nprocesses)) pipes_end_worker = list(np.zeros(self.Nprocesses)) processes = list(np.zeros(self.Nprocesses)) # Start multiple processes for i in range(self.Nprocesses): pipes_end_host[i], pipes_end_worker[i] = multiprocessing.Pipe() processes[i] = multiprocessing.Process(target=_worker_call, args=(self.loopfunc, pipes_end_worker[i],) ) processes[i].start() # Variables to keep track of jobs started/done Njobs_done = 0 Njobs_started = 0 # Send initial jobs for r in pipes_end_host: r.send(self.next()) Njobs_started += 1 # Some parameters for diagnostics t_start = time.time() message = 'Datarate %.2f Hz; job %i/%i; process' # This is the main loop, it waits for new jobs and sends the input while Njobs_done < self.Njobs: for r in pipes_end_host: if r.poll(): result = r.recv() if Njobs_started < self.Njobs: r.send(self.next()) Njobs_started += 1 self.save(result) Njobs_done += 1 # Give some feedback to the command line once in a while if ((Njobs_done + 1) % self.framerate_update) == 0: progress = float(Njobs_done) / self.Njobs datarate = (Njobs_done + 1) / (time.time() - t_start) utils.progressbar(progress, message %(datarate, Njobs_done + 1, self.Njobs), t_start) # Close all processes for i in range(self.Nprocesses): pipes_end_host[i].send('fika') processes[i].join() pipes_end_host[i].close() # =================================== # Some code for testing/profiling # =================================== if __name__ == '__main__': from fitting import fit_photon_histograms import logging logging.captureWarnings(True) histfile = h5py.File('testing/histogram.h5', 'r') Hmap = histfile['data/histogram'] Hbinsize = histfile['data/histogramBinsize'][0] Hcount = histfile['data/histogramCount'][0] Hmin = histfile['data/histogramMin'][0] Hnbins = histfile['data/histogramNbins'][0] Hbins =
np.linspace(Hmin, Hnbins + Hmin - 1, Hnbins)
numpy.linspace
import os import sys import numpy as np import _pickle as pkl import matplotlib.pyplot as plt import plotly.express as px from rulefit import RuleFit from sklearn.model_selection import train_test_split import itertools import pandas as pd from colorsys import hsv_to_rgb from tqdm import tqdm from sklearn.tree import _tree from utils import * from scipy.stats import random_correlation from sklearn.decomposition import TruncatedSVD from sklearn.ensemble import RandomForestClassifier from sklearn.base import clone import plotly.graph_objects as go class FeatureVec(object): "Feature-vector class." def __init__( self, mode, max_depth=3, feature_names=None, max_sentences=20000, exp_rand_tree_size=True, tree_generator=None, ): ''' mode: 'classify' or 'regress' max_depth: maximum depth of trained trees feature_names: names of features max_sentences: maximum number of extracted sentences exp_rand_tree_size: Having trees with different sizes tree_generator: Tree generator model (overwrites above features) ''' self.feature_names = feature_names self.mode = mode max_leafs = 2 ** max_depth num_trees = max_sentences // max_leafs if tree_generator is None: tree_generator = RandomForestClassifier(num_trees, max_depth=max_depth) self.exp_rand_tree_size = exp_rand_tree_size self.rf = RuleFit( rfmode=mode, tree_size=max_leafs, max_rules=max_sentences, tree_generator=tree_generator, exp_rand_tree_size=True, fit_lasso=False, Cs=10.**np.arange(-4, 1), cv=3) def fit(self, X, y, restart=True, bagging=0): '''Fit the tree model. X: inputs y: outputs (integer class label or real value) restart: To train from scratch tree generator model bagging: If >0 applies bagging on trees to compute confidence intervals ''' if not bagging: bagging = 0 dimred = TruncatedSVD(2) self.rf.fit(X, y, restart=restart) rules = self.rf.get_rules()['rule'].values cm = cooccurance_matrix(rules, X.shape[-1]) vectors = dimred.fit_transform(cm) vectors = normalize_angles(vectors) self.norms = np.clip(np.linalg.norm(vectors, axis=-1, keepdims=True), 1e-12, None) vectors /= np.max(self.norms) self.vectors = vectors self.importance =
np.linalg.norm(self.vectors, axis=-1)
numpy.linalg.norm
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """single dataloader""" import os.path from PIL import Image import numpy as np from src.data.base_dataloader import getSoft, getfeats def soft_border_process(opt, mask, center, rws, rhs): """soft_border_process""" imgsize = opt.fineSize maskn = mask[0].asnumpy() masks = [np.ones([imgsize, imgsize]), np.ones([imgsize, imgsize]), np.ones([imgsize, imgsize]), np.ones([imgsize, imgsize])] masks[0][1:] = maskn[:-1] masks[1][:-1] = maskn[1:] masks[2][:, 1:] = maskn[:, :-1] masks[3][:, :-1] = maskn[:, 1:] masks2 = [maskn - e for e in masks] bound = np.minimum.reduce(masks2) bound = -bound xb = [] yb = [] for i in range(4): xbi = [center[i, 0] - rws[i] / 2, center[i, 0] + rws[i] / 2 - 1] ybi = [center[i, 1] - rhs[i] / 2, center[i, 1] + rhs[i] / 2 - 1] for j in range(2): maskx = bound[:, xbi[j]] masky = bound[ybi[j], :] xb += [(1 - maskx) * 10000 + maskx * xbi[j]] yb += [(1 - masky) * 10000 + masky * ybi[j]] soft = 1 - getSoft([imgsize, imgsize], xb, yb) soft =
np.expand_dims(soft, axis=0)
numpy.expand_dims
# -*- coding: utf-8 -*- # _realizeNTF_ct.py # Module providing the realizeNTF_ct function # Copyright 2013 <NAME> # This file is part of python-deltasigma. # # python-deltasigma is a 1:1 Python replacement of Richard Schreier's # MATLAB delta sigma toolbox (aka "delsigma"), upon which it is heavily based. # The delta sigma toolbox is (c) 2009, <NAME>. # # python-deltasigma is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # LICENSE file for the licensing terms. """Module providing the realizeNTF_ct() function """ from __future__ import division, print_function from warnings import warn import numpy as np import numpy.linalg as linalg from scipy.signal import dimpulse, ss2zpk from ._evalTFP import evalTFP from ._impL1 import impL1 from ._padb import padb from ._pulse import pulse from ._utils import _get_zpk, carray, eps def realizeNTF_ct(ntf, form='FB', tdac=(0, 1), ordering=None, bp=None, ABCDc=None, method='LOOP'): """Realize an NTF with a continuous-time loop filter. **Parameters:** ntf : object A noise transfer function (NTF). form : str, optional A string specifying the topology of the loop filter. * 'FB': Feedback form, * 'FF': Feedforward form For the FB structure, the elements of ``Bc`` are calculated so that the sampled pulse response matches the L1 impulse response. For the FF structure, ``Cc`` is calculated. tdac : sequence, optional The timing for the feedback DAC(s). If ``tdac[0] >= 1``, direct feedback terms are added to the quantizer. Multiple timings (one or more per integrator) for the FB topology can be specified by making tdac a list of lists, e.g. ``tdac = [[1, 2], [1, 2], [[0.5, 1], [1, 1.5]], []]`` In this example, the first two integrators have DACs with ``[1, 2]`` timing, the third has a pair of DACs, one with ``[0.5, 1]`` timing and the other with ``[1, 1.5]`` timing, and there is no direct feedback DAC to the quantizer. ordering : sequence, optional A vector specifying which NTF zero-pair to use in each resonator Default is for the zero-pairs to be used in the order specified in the NTF. bp : sequence, optional A vector specifying which resonator sections are bandpass. The default (``zeros(...)``) is for all sections to be lowpass. ABCDc : ndarray, optional The loop filter structure, in state-space form. If this argument is omitted, ABCDc is constructed according to "form." method : str, optional The default fitting method is ``'LOOP'``, which means that the DT and CT loop responses will be matched. Alternatively, it is possible to set the method to ``'NTF'``, which will result in the NTF responses to be matched. See :ref:`discrete-time-to-continuous-time-mapping` for a more in-depth discussion. **Returns:** ABCDc : ndarray A state-space description of the CT loop filter tdac2 : ndarray A matrix with the DAC timings, including ones that were automatically added. **Example:** Realize the NTF :math:`(1 - z^{-1})^2` with a CT system (cf with the example at :func:`mapCtoD`).:: from deltasigma import * ntf = ([1, 1], [0, 0], 1) ABCDc, tdac2 = realizeNTF_ct(ntf, 'FB') Returns: ABCDc:: [[ 0. 0. 1. -1. ] [ 1. 0. 0. -1.49999999] [ 0. 1. 0. 0. ]] tdac2:: [[-1. -1.] [ 0. 1.]] """ ntf_z, ntf_p, _ = _get_zpk(ntf) ntf_z = carray(ntf_z) ntf_p = carray(ntf_p) order = max(ntf_p.shape) order2 = int(np.floor(order/2.)) odd = order - 2*order2 # compensate for limited accuracy of zero calculation ntf_z[np.abs(ntf_z - 1) < eps**(1./(1. + order))] = 1. method = method.upper() if method not in ('LOOP', 'NTF'): raise ValueError('Unimplemented matching method %s.' % method) # check if multiple timings mode if (type(tdac) == list or type(tdac) == tuple) and len(tdac) and \ (type(tdac[0]) == list or type(tdac[0]) == tuple): if len(tdac) != order + 1: msg = 'For multi-timing tdac, len(tdac) ' + \ ' must be order+1.' raise ValueError(msg) if form != 'FB': msg = "Currently only supporting form='FB' " + \ 'for multi-timing tdac' raise ValueError(msg) multi_timing = True else: # single timing tdac = carray(tdac) if np.prod(tdac.shape) != 2: msg = 'For single-timing tdac, len(tdac) must be 2.' raise ValueError(msg) tdac.reshape((2,)) multi_timing = False if ordering is None: ordering = np.arange(order2) if bp is None: bp = np.zeros((order2,)) if not multi_timing: # Need direct terms for every interval of memory in the DAC n_direct = np.ceil(tdac[1]) - 1 if tdac[0] > 0 and tdac[0] < 1 and tdac[1] > 1 and tdac[1] < 2: n_extra = n_direct - 1 # tdac pulse spans a sample point else: n_extra = n_direct tdac2 = np.vstack( (np.array((-1, -1)), np.array(tdac).reshape((1, 2)), 0.5*np.dot(np.ones((n_extra, 1)), np.array([[-1, 1]])) + np.cumsum(np.ones((n_extra, 2)), 0) + (n_direct - n_extra) )) else: n_direct = 0 n_extra = 0 if ABCDc is None: ABCDc = np.zeros((order + 1, order + 2)) # Stuff the A portion if odd: ABCDc[0, 0] = np.real(np.log(ntf_z[0])) ABCDc[1, 0] = 1 dline = np.array([0, 1, 2]) for i in range(order2): n = bp[i] i1 = 2*i + odd zi = 2*ordering[i] + odd w = np.abs(np.angle(ntf_z[zi])) ABCDc[i1 + dline, i1] = np.array([0, 1, n]) ABCDc[i1 + dline, i1 + 1] = np.array([-w**2, 0, 1 - n]) ABCDc[0, order] = 1 # 2006.10.02 Changed to -1 to make FF STF have +ve gain at DC ABCDc[0, order + 1] = -1 Ac = ABCDc[:order, :order] if form == 'FB': Cc = ABCDc[order, :order].reshape((1, -1)) if not multi_timing: Bc = np.hstack((np.eye(order), np.zeros((order, 1)))) Dc = np.hstack((np.zeros((1, order)), np.array([[1]]))) tp = np.tile(np.array(tdac).reshape((1, 2)), (order + 1, 1)) else: #Assemble tdac2, Bc and Dc tdac2 = np.array([[-1, -1]]) Bc = None Dc = None Bci = np.hstack((np.eye(order), np.zeros((order, 1)))) Dci = np.hstack((
np.zeros((1, order))
numpy.zeros
import math import numpy as np from onireader._onireader import Device as _Device from onireader._onireader import ANY_DEVICE, PixelFormat class Intrinsics: def __init__(self, fx, fy, cx, cy): self.fx = fx self.fy = fy self.cx = cx self.cy = cy def __str__(self): return "Intrinsics: fx={}, fy={}, cx={}, cy={}".format( self.fx, self.fy, self.cx, self.cy) def __repr__(self): return str(self) class Device(_Device): def __init__(self): super(Device, self).__init__() def open(self, device_uri=None): if device_uri is None: device_uri = "" return super(Device, self).open(device_uri) def find_best_fit_modes(self, width, height, depth_format=PixelFormat.DEPTH_1_MM, rgb_format=PixelFormat.RGB888): depth_vmodes = self.get_depth_video_modes() rgb_vmodes = self.get_color_video_modes() target_res =
np.array([width, height])
numpy.array
import numpy as np import torch from torch.backends import cudnn cudnn.enabled = True import voc12.data import scipy.misc import importlib from torch.utils.data import DataLoader import torchvision from tool import imutils, pyutils import argparse from PIL import Image import torch.nn.functional as F import os.path import matplotlib.pyplot as plt import imageio if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--weights", default=r"C:\Users\johny\Desktop\Transformer-Explainability-main\psa-master\voc12\vgg_cls.pth", type=str), parser.add_argument("--network", default="network.vgg16_cls", type=str), parser.add_argument("--infer_list", default=r"C:\Users\johny\Desktop\Transformer-Explainability-main\psa-master\voc12\val.txt", type=str) parser.add_argument("--num_workers", default=1, type=int) parser.add_argument("--voc12_root", default = r"C:\Users\johny\Desktop\Transformer-Explainability-main\ours\VOCdevkit\VOC2012", required=False, type=str) parser.add_argument("--low_alpha", default=4, type=int) parser.add_argument("--high_alpha", default=32, type=int) parser.add_argument("--out_cam", default=r"C:\Users\johny\Desktop\Transformer-Explainability-main\psa-master\out_cam", type=str) parser.add_argument("--out_la_crf", default=r"C:\Users\johny\Desktop\Transformer-Explainability-main\psa-master\out_la_crf", type=str) parser.add_argument("--out_ha_crf", default=r"C:\Users\johny\Desktop\Transformer-Explainability-main\psa-master\out_ha_crf", type=str) parser.add_argument("--out_cam_pred", default=r"C:\Users\johny\Desktop\Transformer-Explainability-main\psa-master\out_cam_pred", type=str) args = parser.parse_args() model = getattr(importlib.import_module(args.network), 'Net')() model.load_state_dict(torch.load(args.weights)) model.eval() model.cuda() infer_dataset = voc12.data.VOC12ClsDatasetMSF(args.infer_list, voc12_root=args.voc12_root, scales=(1, 0.5, 1.5, 2.0), inter_transform=torchvision.transforms.Compose( [np.asarray, model.normalize, imutils.HWC_to_CHW])) infer_data_loader = DataLoader(infer_dataset, shuffle=False, num_workers=args.num_workers, pin_memory=True) n_gpus = torch.cuda.device_count() model_replicas = torch.nn.parallel.replicate(model, list(range(n_gpus))) for iter, (img_name, img_list, label) in enumerate(infer_data_loader): img_name = img_name[0]; label = label[0] img_path = voc12.data.get_img_path(img_name, args.voc12_root) orig_img = np.asarray(Image.open(img_path)) orig_img_size = orig_img.shape[:2] def _work(i, img): with torch.no_grad(): with torch.cuda.device(i%n_gpus): cam = model_replicas[i%n_gpus].forward_cam(img.cuda()) cam = F.upsample(cam, orig_img_size, mode='bilinear', align_corners=False)[0] cam = cam.cpu().numpy() * label.clone().view(20, 1, 1).numpy() if i % 2 == 1: cam = np.flip(cam, axis=-1) return cam thread_pool = pyutils.BatchThreader(_work, list(enumerate(img_list)), batch_size=12, prefetch_size=0, processes=args.num_workers) cam_list = thread_pool.pop_results() # cam_list = [np.asarray(cam_list)] sum_cam = np.sum(cam_list, axis=0) norm_cam = sum_cam / (np.max(sum_cam, (1, 2), keepdims=True) + 1e-5) cam_dict = {} for i in range(20): if label[i] > 1e-5: cam_dict[i] = norm_cam[i] if args.out_cam is not None:
np.save(args.out_cam +"/"+ img_name + '.npy', cam_dict)
numpy.save
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Jun 6 14:40:17 2020 @author: lukepinkel """ import numpy as np import scipy as sp def fo_fc_fd(f, x, eps=None, args=()): if eps is None: eps = (np.finfo(float).eps)**(1.0/3.0) n = len(np.asarray(x)) g, h = np.zeros(n), np.zeros(n) for i in range(n): h[i] = eps g[i] = (f(x+h, *args) - f(x, *args)) / eps h[i] = 0 return g def so_fc_fd(f, x, eps=None, args=()): if eps is None: eps = (np.finfo(float).eps)**(1.0/3.0) n = len(np.asarray(x)) H, hi, hj = np.zeros((n, n)), np.zeros(n),
np.zeros(n)
numpy.zeros
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.ops.ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from tensorflow.python.framework import random_seed from tensorflow.python.ops import init_ops # Returns true iff the two initializers produce the same tensor to # within a tiny tolerance. def identicaltest(tc, init1, init2, use_gpu): """Tests if two initializations are identical to within tiny tolerances. Args: tc: An instance of TensorFlowTestCase. init1: An Initializer that generates a tensor of a given shape init2: An Initializer that generates a tensor of a given shape use_gpu: Use gpu if true. Returns: True or False as determined by test. """ num = 100 with tc.test_session(use_gpu=use_gpu, graph=tf.Graph()): t1 = init1([num]).eval() with tc.test_session(use_gpu=use_gpu, graph=tf.Graph()): t2 = init2([num]).eval() return np.allclose(t1, t2, rtol=1e-15, atol=1e-15) def duplicated_initializer(tc, init, use_gpu, graph_seed): """Tests duplicated random initializer within the same graph. This test generates two random kernels from the same initializer to the same graph, and checks if the results are close enough. Even given the same global, seed, two different instances of random kernels should generate different results. Args: tc: An instance of TensorFlowTestCase. init: An Initializer that generates a tensor of a given shape use_gpu: Use gpu if true. graph_seed: A graph-level seed to use. Returns: True or False as determined by test. """ num = 100 with tc.test_session(use_gpu=use_gpu, graph=tf.Graph()): random_seed.set_random_seed(graph_seed) t1 = init([num]).eval() t2 = init([num]).eval() return np.allclose(t1, t2, rtol=1e-15, atol=1e-15) def _init_sampler(tc, init, num, use_gpu): """Returns a func to generate a random tensor of shape [num]. Args: tc: An instance of TensorFlowTestCase. init: An Initializer that generates a tensor of a given shape num: Size of 1D tensor to create. use_gpu: Use gpu if true. Returns: Function to generate a random tensor. """ def func(): with tc.test_session(use_gpu=use_gpu): return init([num]).eval() return func class ConstantInitializersTest(tf.test.TestCase): def testZerosInitializer(self): with self.test_session(): shape = [2, 3] x = tf.get_variable("x", shape=shape, initializer=tf.zeros_initializer) x.initializer.run() self.assertAllEqual(x.eval(), np.zeros(shape)) def testOnesInitializer(self): with self.test_session(): shape = [2, 3] x = tf.get_variable("x", shape=shape, initializer=tf.ones_initializer) x.initializer.run() self.assertAllEqual(x.eval(), np.ones(shape)) def testConstantZeroInitializer(self): with self.test_session(): shape = [2, 3] x = tf.get_variable("x", shape=shape, initializer=tf.constant_initializer(0.0)) x.initializer.run() self.assertAllEqual(x.eval(), np.zeros(shape)) def testConstantOneInitializer(self): with self.test_session(): shape = [2, 3] x = tf.get_variable("x", shape=shape, initializer=tf.constant_initializer(1.0)) x.initializer.run() self.assertAllEqual(x.eval(), np.ones(shape)) class RandomNormalInitializationTest(tf.test.TestCase): def testInitializerIdentical(self): for use_gpu in [False, True]: for dtype in [tf.float32, tf.float64]: init1 = tf.random_normal_initializer(0.0, 1.0, seed=1, dtype=dtype) init2 = tf.random_normal_initializer(0.0, 1.0, seed=1, dtype=dtype) self.assertTrue(identicaltest(self, init1, init2, use_gpu)) def testInitializerDifferent(self): for use_gpu in [False, True]: for dtype in [tf.float32, tf.float64]: init1 = tf.random_normal_initializer(0.0, 1.0, seed=1, dtype=dtype) init2 = tf.random_normal_initializer(0.0, 1.0, seed=2, dtype=dtype) self.assertFalse(identicaltest(self, init1, init2, use_gpu=use_gpu)) def testDuplicatedInitializer(self): for use_gpu in [False, True]: init = tf.random_normal_initializer(0.0, 1.0) self.assertFalse(duplicated_initializer(self, init, use_gpu, 1)) def testInvalidDataType(self): self.assertRaises( ValueError, tf.random_normal_initializer, 0.0, 1.0, dtype=tf.string) class TruncatedNormalInitializationTest(tf.test.TestCase): def testInitializerIdentical(self): for use_gpu in [False, True]: for dtype in [tf.float32, tf.float64]: init1 = tf.truncated_normal_initializer(0.0, 1.0, seed=1, dtype=dtype) init2 = tf.truncated_normal_initializer(0.0, 1.0, seed=1, dtype=dtype) self.assertTrue(identicaltest(self, init1, init2, use_gpu)) def testInitializerDifferent(self): for use_gpu in [False, True]: for dtype in [tf.float32, tf.float64]: init1 = tf.truncated_normal_initializer(0.0, 1.0, seed=1, dtype=dtype) init2 = tf.truncated_normal_initializer(0.0, 1.0, seed=2, dtype=dtype) self.assertFalse(identicaltest(self, init1, init2, use_gpu=use_gpu)) def testDuplicatedInitializer(self): for use_gpu in [False, True]: init = tf.truncated_normal_initializer(0.0, 1.0) self.assertFalse(duplicated_initializer(self, init, use_gpu, 1)) def testInvalidDataType(self): self.assertRaises( ValueError, tf.truncated_normal_initializer, 0.0, 1.0, dtype=tf.string) class RandomUniformInitializationTest(tf.test.TestCase): def testInitializerIdentical(self): for use_gpu in [False, True]: for dtype in [tf.float32, tf.float64]: init1 = tf.random_uniform_initializer(0.0, 1.0, seed=1, dtype=dtype) init2 = tf.random_uniform_initializer(0.0, 1.0, seed=1, dtype=dtype) self.assertTrue(identicaltest(self, init1, init2, use_gpu)) def testInitializerDifferent(self): for use_gpu in [False, True]: for dtype in [tf.float32, tf.float64]: init1 = tf.random_uniform_initializer(0.0, 1.0, seed=1, dtype=dtype) init2 = tf.random_uniform_initializer(0.0, 1.0, seed=2, dtype=dtype) self.assertFalse(identicaltest(self, init1, init2, use_gpu)) def testDuplicatedInitializer(self): for use_gpu in [False, True]: init = tf.random_uniform_initializer(0.0, 1.0) self.assertFalse(duplicated_initializer(self, init, use_gpu, 1)) def testInvalidDataType(self): self.assertRaises( ValueError, tf.random_uniform_initializer, 0.0, 1.0, dtype=tf.string) class UniformUnitScalingInitializationTest(tf.test.TestCase): def testInitializerIdentical(self): for use_gpu in [False, True]: for dtype in [tf.float32, tf.float64]: init1 = tf.uniform_unit_scaling_initializer(seed=1, dtype=dtype) init2 = tf.uniform_unit_scaling_initializer(seed=1, dtype=dtype) self.assertTrue(identicaltest(self, init1, init2, use_gpu)) init3 = tf.uniform_unit_scaling_initializer(1.5, seed=1, dtype=dtype) init4 = tf.uniform_unit_scaling_initializer(1.5, seed=1, dtype=dtype) self.assertTrue(identicaltest(self, init3, init4, use_gpu)) def testInitializerDifferent(self): for use_gpu in [False, True]: for dtype in [tf.float32, tf.float64]: init1 = tf.uniform_unit_scaling_initializer(seed=1, dtype=dtype) init2 = tf.uniform_unit_scaling_initializer(seed=2, dtype=dtype) init3 = tf.uniform_unit_scaling_initializer(1.5, seed=1, dtype=dtype) self.assertFalse(identicaltest(self, init1, init2, use_gpu)) self.assertFalse(identicaltest(self, init1, init3, use_gpu)) self.assertFalse(identicaltest(self, init2, init3, use_gpu)) def testDuplicatedInitializer(self): for use_gpu in [False, True]: init = tf.uniform_unit_scaling_initializer() self.assertFalse(duplicated_initializer(self, init, use_gpu, 1)) def testInvalidDataType(self): self.assertRaises( ValueError, tf.uniform_unit_scaling_initializer, dtype=tf.string) class RandomWalkShapeTest(tf.test.TestCase): def testRandomWalk(self): # Fully known shape. rnd1 = init_ops._random_walk([1, 2], tf.nn.relu) self.assertEqual([1, 2], rnd1.get_shape()) # TODO(vrv): move to sequence_ops_test? class RangeTest(tf.test.TestCase): def _Range(self, start, limit, delta): with self.test_session(): tf_ans = tf.range(start, limit, delta, name="range") self.assertEqual([len(range(start, limit, delta))], tf_ans.get_shape()) return tf_ans.eval() def testBasic(self): self.assertTrue(np.array_equal( self._Range(0, 5, 1), np.array([0, 1, 2, 3, 4]))) self.assertTrue(np.array_equal( self._Range(0, 5, 2), np.array([0, 2, 4]))) self.assertTrue(np.array_equal( self._Range(0, 6, 2), np.array([0, 2, 4]))) self.assertTrue(np.array_equal( self._Range(13, 32, 7), np.array([13, 20, 27]))) self.assertTrue(np.array_equal( self._Range(100, 500, 100), np.array([100, 200, 300, 400]))) self.assertEqual(tf.range(0, 5, 1).dtype, tf.int32) def testLimitOnly(self): with self.test_session(): self.assertAllEqual(np.arange(5), tf.range(5).eval()) def testEmpty(self): for start in 0, 5: self.assertTrue(np.array_equal(self._Range(start, start, 1), [])) # TODO(vrv): move to sequence_ops_test? class LinSpaceTest(tf.test.TestCase): def _gpu_modes(self): if tf.test.is_gpu_available(): return [False, True] else: return [False] def _LinSpace(self, start, stop, num): # NOTE(touts): Needs to pass a graph to get a new session each time. with tf.Graph().as_default() as graph: with self.test_session(graph=graph, force_gpu=self.force_gpu): tf_ans = tf.linspace(start, stop, num, name="linspace") self.assertEqual([num], tf_ans.get_shape()) return tf_ans.eval() def testPositive(self): for self.force_gpu in self._gpu_modes(): self.assertArrayNear(self._LinSpace(1., 5., 1), np.array([1.]), 1e-5) self.assertArrayNear(self._LinSpace(1., 5., 2), np.array([1., 5.]), 1e-5) self.assertArrayNear(self._LinSpace(1., 5., 3), np.array([1., 3., 5.]), 1e-5) self.assertArrayNear(self._LinSpace(1., 5., 4), np.array([1., 7. / 3., 11. / 3., 5.]), 1e-5) def testNegative(self): for self.force_gpu in self._gpu_modes(): self.assertArrayNear(self._LinSpace(-1., -5., 1), np.array([-1.]), 1e-5) self.assertArrayNear(self._LinSpace(-1., -5., 2),
np.array([-1., -5.])
numpy.array
from interface.terminal.cmd_info import error import pdb import inspect import csv, yaml import glob, os import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import AutoMinorLocator from csv import writer from analysis.mesure import * def zero_to_nan(values): """Replace every 0 with 'nan' and return a copy.""" return [float('nan') if x==0 else x for x in values] def divergence_aux(f): """ Computes the divergence of the vector field f, corresponding to dFx/dx + dFy/dy + ... :param f: List of ndarrays, where every item of the list is one dimension of the vector field :return: Single ndarray of the same shape as each of the items in f, which corresponds to a scalar field """ num_dims = len(f) return np.ufunc.reduce(np.add, [np.gradient(f[i], axis=i) for i in range(num_dims)]) def precision_indicators(Cd,Cl,save_field_x_ite, noise=True): if noise: Cd_max = np.max(Cd[int(len(Cd)*(3/4))::save_field_x_ite]) Cd_min = np.min(Cd[int(len(Cd)*(3/4))::save_field_x_ite]) Cl_max = np.max(Cl[int(len(Cl)*(3/4))::save_field_x_ite]) Cl_min = np.min(Cl[int(len(Cl)*(3/4))::save_field_x_ite]) else: Cd_max = np.max(Cd) Cd_min = np.min(Cd) Cl_max = np.max(Cl) Cl_min = np.min(Cl) Cl = zero_to_nan(Cl) Cd = zero_to_nan(Cd) Cl_mean = np.nanmean(Cl[save_field_x_ite:]) Cd_mean = np.nanmean(Cd[save_field_x_ite:]) DCd = (Cd_max-Cd_min) DCl = (Cl_max-Cl_min) center = [Cd_min + DCd/2 , Cl_min + DCl/2] return Cd_max, Cd_min, Cd_mean, Cl_max, Cl_min, Cl_mean, center, DCd, DCl def calculate_coeficients(in_dir, alpha, Re, Nx, Ny, Nt, dx, dy, dt, Lx, Ly, xD, D, distance=0.2): DOMAIN = Domain(x=Nx, y=Ny, boundaries=OPEN, bounds=Box[0:Lx, 0:Ly]) CYLINDER_2 = HardGeometryMask(Sphere([xD, Ly/2], radius=D/2 + distance )) >> DOMAIN.scalar_grid() p_field = np.load(f'{in_dir}A_{alpha}_RE_{Re}_dx_{Nx}_{Ny}_pressure_field.npy') ite = np.load(f'{in_dir}A_{alpha}_RE_{Re}_dx_{Nx}_{Ny}_iteration_field.npy') vforce=np.zeros(Nt) hforce=np.zeros(Nt) for z, itera in enumerate(ite): hforce[itera], vforce[itera] = calculate_forces(p_field[z,0], CYLINDER_2, dx, dy) t, t_null_vel, _, _, _ = detect_stationary(vforce, Nt, dt) if t_null_vel <= Nt/3: t_null_vel = int(Nt/2) #PASS FORCE TO COEFICIENT density=1 V0=1 Cl = (vforce*2)/(density*V0*V0*D) Cd = (hforce*2)/(density*V0*V0*D) return t, t_null_vel, Cl, Cd def calculate_performance_coeficients(in_dir, alpha, Re, Nx, Ny): with open(f'{in_dir}A_{alpha}_RE_{Re}_dx_{Nx}_{Ny}_performance_results.csv') as file: csv_reader = csv.reader(file, delimiter=',') poisson_time = 0 ite_time = 0 unet_inference_time = 0 cg_inference_time = 0 for row in csv_reader: if row[1] == "run_init": time_init = float(row[2]) if row[1] == "run_end": total_time = float(row[2]) - time_init if "init_iteration_" in row[1]: ite_init = float(row[2]) if "_>init_post" in row[1]: ite_time = ite_time + (float(row[2]) - ite_init) if "init_poisson__" in row[1]: poisson_init = float(row[2]) if "end_poisson__" in row[1]: poisson_time = poisson_time + (float(row[2])-poisson_init) if "_>UNET_inference_interval" in row[1]: unet_inference_time += float(row[3]) if "_>CG_inference_interval" in row[1]: cg_inference_time += float(row[3]) return total_time, ite_time, poisson_time, unet_inference_time, cg_inference_time #################### def divergence_time(in_dir, out_dir, meta_out_dir, ax, fig, last_ite, dir_name, alpha, Re, Nx, Ny, y_lim=[], meta=False, meta_within_case=False, meta_within_alpha=False): if not meta and not meta_within_case and not meta_within_alpha: fig, ax = plt.subplots() #1.Import the velocity fields u_field = np.load(f'{in_dir}A_{alpha}_RE_{Re}_dx_{Nx}_{Ny}_velocity_x_field.npy') v_field = np.load(f'{in_dir}A_{alpha}_RE_{Re}_dx_{Nx}_{Ny}_velocity_y_field.npy') ite = np.load(f'{in_dir}A_{alpha}_RE_{Re}_dx_{Nx}_{Ny}_iteration_field.npy') #2.Calculate the divergence field dive = [] for j, _ in enumerate(ite): dive.append( np.sum( divergence_aux([u_field[j,0],v_field[j,0]]) ) / (Nx*Ny) ) #3.Plot saux = r"$\alpha$=" newline = "\n" if meta: mlabel = f'{dir_name} {saux}{alpha}' elif meta_within_alpha: mlabel = f'{dir_name}' elif meta_within_case: mlabel = f'{saux}{alpha}' else: mlabel = [] ax.plot(ite[1:], dive[1:], '--o', label=mlabel if mlabel else "") if last_ite: # or (not meta and not meta_within_case and not meta_within_alpha): ax.set(xlabel='iteration', ylabel='Average Divergence', title=f'{f"{dir_name + newline}" if not meta and not meta_within_alpha else ""}' + f'[' + f'{ f"Alpha={alpha}, " if not meta and not meta_within_case else ""}' +f'Re={Re}, N=[{Nx}x{Ny}] ]\n') if mlabel: ax.legend() if not y_lim: pass else: ax.set_ylim([y_lim[0], y_lim[1]]) ax.xaxis.set_minor_locator(AutoMinorLocator(4)) ax.yaxis.set_minor_locator(AutoMinorLocator(4)) ax.grid(which='major', color='#CCCCCC', linestyle='-', alpha=1) ax.grid(which='minor', color='#CCCCCC', linestyle='--', alpha=0.5) fig.savefig(f"{meta_out_dir if (meta or meta_within_alpha) else out_dir}A_{alpha if not meta_within_case and not meta else 'XX'}_RE_{Re}_dx_{Nx}_{Ny}_Divergence_Average_Residual.png") plt.close() def divergence_timestep(in_dir, out_dir, dir_name, alpha, Re, Nx, Ny, Lx, Ly, xD, D, dx, dy, time_step=20, zoom=True): zoom_position=[xD-D,xD+D,Ly/2-D,Ly/2+D] if zoom: [x1,x2,y1,y2] = zoom_position x1 = int(x1/dx) x2 = int(x2/dx) y1 = int(y1/dy) y2 = int(y2/dy) else: x = np.arange(0, Lx +dx/2, dx) y = np.arange(0, Ly +dy/2, dy) x1 = 0 x2 = len(x) y1 = 0 y2 = len(y) u_field = np.load(f'{in_dir}A_{alpha}_RE_{Re}_dx_{Nx}_{Ny}_velocity_x_field.npy') v_field = np.load(f'{in_dir}A_{alpha}_RE_{Re}_dx_{Nx}_{Ny}_velocity_y_field.npy') fig, ax = plt.subplots(nrows=1, figsize=(6, 5.4)) im = ax.imshow( divergence_aux([u_field[time_step,0][x1:x2,y1:y2],v_field[time_step,0][x1:x2,y1:y2]]) , vmin= -np.max(np.abs( divergence_aux([u_field[time_step,0][x1:x2,y1:y2],v_field[time_step,0][x1:x2,y1:y2]]) )), vmax= np.max(np.abs( divergence_aux([u_field[time_step,0][x1:x2,y1:y2],v_field[time_step,0][x1:x2,y1:y2]]) )), interpolation='bilinear', cmap =plt.get_cmap('seismic')) saux = r"$\alpha$" newline = "\n" ax.set_title(f'{dir_name+newline}Divergence @ iteration={time_step} [{saux}={alpha} Re={Re}, N=[{Nx}x{Ny}] ]') cbar = fig.colorbar(im, extend='both', shrink=0.9, ax=ax) cbar.set_label('divergence') fig.savefig(f"{out_dir}A_{alpha}_RE_{Re}_dx_{Nx}_{Ny}_Divergence_snap.png") def forces_time(in_dir, out_dir, meta_out_dir, ax, fig, last_ite, save_field_x_ite, dir_name, alpha, Re, Nx, Ny, Nt, dx, dy, dt, Lx, Ly, xD, D, y_lim=[], distance=0.2, meta=False, meta_within_case=False, meta_within_alpha=False): if not meta and not meta_within_case and not meta_within_alpha: fig, ax = plt.subplots() #1.Calculate the forces coeficients t, t_null_vel, Cl, Cd = calculate_coeficients(in_dir, alpha, Re, Nx, Ny, Nt, dx, dy, dt, Lx, Ly, xD, D, distance) #2.1.Plot the coeficients over time saux = r"$\alpha$=" newline = "\n" if meta: mlabel = f'{dir_name} {saux}{alpha}' elif meta_within_alpha: mlabel = f'{dir_name}' elif meta_within_case: mlabel = f'{saux}{alpha}' else: mlabel = [] ax.plot(t[::save_field_x_ite], Cl[::save_field_x_ite], label='Cl ' + mlabel if mlabel else "Cl") ax.plot(t[::save_field_x_ite], Cd[::save_field_x_ite], label='Cd ' + mlabel if mlabel else "Cd") #2.2.Figure labels and saving if last_ite: ax.set(xlabel='time [s]', ylabel='Coefficient', title=f'{f"{dir_name + newline}" if not meta and not meta_within_alpha else ""}' + f'Force probe [' + f'{ f"Alpha={alpha}, " if not meta and not meta_within_case else ""}' +f'Re={Re}, N=[{Nx}x{Ny}] ]') ax.legend() if not y_lim: pass else: ax.set_ylim([y_lim[0], y_lim[1]]) ax.xaxis.set_major_locator(MultipleLocator((Nt*dt)/10)) ax.xaxis.set_minor_locator(AutoMinorLocator(4)) ax.yaxis.set_minor_locator(AutoMinorLocator(4)) ax.grid(which='major', color='#CCCCCC', linestyle='-', alpha=1) ax.grid(which='minor', color='#CCCCCC', linestyle='--', alpha=0.5) fig.savefig(f"{meta_out_dir if (meta or meta_within_alpha) else out_dir}A_{alpha if not meta_within_case and not meta else 'XX'}_RE_{Re}_dx_{Nx}_{Ny}_d_{distance}_Forces_time.png") plt.close() def forces_phase_diagram(in_dir, in_ref, out_dir, meta_out_dir, ax, fig, last_ite, save_field_x_ite, dir_name, alpha, Re, Nx, Ny, Nt, dx, dy, dt, Lx, Ly,xD, D, distance=0.2, precision=False, meta=False, meta_within_case=False, meta_within_alpha=False): if not meta and not meta_within_case and not meta_within_alpha: fig, ax = plt.subplots() _, _, Cl, Cd = calculate_coeficients(in_dir, alpha, Re, Nx, Ny, Nt, dx, dy, dt, Lx, Ly, xD, D, distance) #3.Plot saux = r"$\alpha$=" newline = "\n" if meta: mlabel = f'{dir_name} {saux}{alpha}' elif meta_within_alpha: mlabel = f'{dir_name}' elif meta_within_case: mlabel = f'{saux}{alpha}' else: mlabel = [] ax.plot(Cd[int(len(Cd)*(3/4))::save_field_x_ite], Cl[int(len(Cl)*(3/4))::save_field_x_ite], 'x-', label=mlabel if mlabel else "") if precision: Cd_max, Cd_min, Cd_mean, Cl_max, Cl_min, Cl_mean, center, DCd, DCl = precision_indicators(Cd,Cl,save_field_x_ite) ax.plot([Cd_min, Cd_max, Cd_max, Cd_min, Cd_min],[Cl_min, Cl_min, Cl_max, Cl_max, Cl_min],'--r') ax.plot(center[0], center[1], 'ro') ax.plot(Cd_mean, Cl_mean, 'go') ax.text(center[0]+0.01, center[1]+0.01, f'C=[{np.round(center[0],2)},{np.round(center[1],2)}]\n'+r'$\Delta Cd$ ' + f'={np.round(DCd,2)}\n'+r'$\Delta Cl$'+f'={np.round(DCl,2)}') if in_ref: Cl_kang = np.load(f'{in_ref}A_{alpha}_RE_{Re}_Cl_Kang1999.npy') Cd_kang = np.load(f'{in_ref}A_{alpha}_RE_{Re}_Cd_Kang1999.npy') ax.plot(Cd_kang, Cl_kang, 'k--', label=f'(Kang 1999) {saux}{alpha}') if precision: Cd_max, Cd_min, Cd_mean, Cl_max, Cl_min, Cl_mean, center, DCd, DCl = precision_indicators(Cd_kang,Cl_kang,1, noise=False) ax.plot([Cd_min, Cd_max, Cd_max, Cd_min, Cd_min],[Cl_min, Cl_min, Cl_max, Cl_max, Cl_min],'--k') ax.plot(center[0], center[1], 'ko') ax.plot(Cd_mean, Cl_mean, 'go') ax.text(center[0]+0.01, center[1]+0.01, f'C=[{np.round(center[0],2)},{np.round(center[1],2)}]\n'+r'$\Delta Cd$ ' + f'={np.round(DCd,2)}\n'+r'$\Delta Cl$'+f'={np.round(DCl,2)}') if last_ite: ax.set(xlabel='Cd [·]', ylabel='Cl [·]', title=f'{f"{dir_name + newline}" if not meta and not meta_within_alpha else ""}' + f'Phase Diagram [' + f'{ f"Alpha={alpha}, " if not meta and not meta_within_case else ""}' +f'Re={Re}, N=[{Nx}x{Ny}] ]') if mlabel: ax.legend() ax.xaxis.set_minor_locator(AutoMinorLocator(4)) ax.yaxis.set_minor_locator(AutoMinorLocator(4)) ax.grid(which='major', color='#CCCCCC', linestyle='-', alpha=1) ax.grid(which='minor', color='#CCCCCC', linestyle='--', alpha=0.5) if not precision: fig.savefig(f"{meta_out_dir if (meta or meta_within_alpha) else out_dir}A_{alpha if not meta_within_case and not meta else 'XX'}_RE_{Re}_dx_{Nx}_{Ny}_d_{distance}_Forces_ss.png") else: fig.savefig(f"{meta_out_dir if (meta or meta_within_alpha) else out_dir}A_{alpha if not meta_within_case and not meta else 'XX'}_RE_{Re}_dx_{Nx}_{Ny}_d_{distance}_Precision_ss.png") plt.close() def evaluate_precision(in_dir, in_ref, out_dir, meta_out_dir, ax, fig, last_ite, save_field_x_ite, dir_name, alpha, Re, Nx, Ny, Nt, dx, dy, dt, Lx, Ly,xD, D, meta=False, meta_within_case=False, meta_within_alpha=False): if not meta and not meta_within_case and not meta_within_alpha: fig, ax = plt.subplots() #1.Calculate precision coeficients #Reference values if 'reference' in in_ref: Cl = np.load(f'{in_ref}A_{alpha}_RE_{Re}_Cl_Kang1999.npy') Cd = np.load(f'{in_ref}A_{alpha}_RE_{Re}_Cd_Kang1999.npy') _, _, _, _, _, _, center_ref, DCd_ref, DCl_ref = precision_indicators(Cd,Cl,save_field_x_ite, noise=False) else: _, _, Cl, Cd = calculate_coeficients(in_ref, alpha, Re, Nx, Ny, Nt, dx, dy, dt, Lx, Ly,xD, D, distance=0.2) _, _, _, _, _, _, center_ref, DCd_ref, DCl_ref = precision_indicators(Cd,Cl,save_field_x_ite, noise=True) #Compare vlues _, _, Cl, Cd = calculate_coeficients(in_dir, alpha, Re, Nx, Ny, Nt, dx, dy, dt, Lx, Ly,xD, D, distance=0.2) _, _, _, _, _, _, center, DCd, DCl = precision_indicators(Cd,Cl,save_field_x_ite, noise=True) #2.Calculate error with respect reference error_center = np.round(0.5*( 100*((center[0] - center_ref[0])/center_ref[0]) + 100*((center[1] - center_ref[1])/center_ref[1]) ),2) error_box = np.round(0.5*( 100*((DCl - DCl_ref)/DCl_ref) + 100*((DCd - DCd_ref)/DCd_ref) ),2) #3.FILE save with open(f"{meta_out_dir if (meta or meta_within_alpha) else out_dir}A_{alpha if not meta_within_case and not meta else 'XX'}_RE_{Re}_dx_{Nx}_{Ny}_Precision_Evaluation.csv", 'a', newline='') as f_object: writer_object = writer(f_object) writer_object.writerow([dir_name, alpha, np.round(center,2), np.round(DCd,2), np.round(DCl,2), np.round(center_ref,2), np.round(DCd_ref,2),
np.round(DCl_ref,2)
numpy.round
import sys import re import numpy as np from scipy.optimize import minimize,LinearConstraint from numpy import savetxt,loadtxt from scipy.stats import chi2 import os import time version="QCv1.1" def read_files_for_P(file, quartets, gnum, GENE_NUM): topologies = [] genes_pp = {} NN= GENE_NUM gnums = [] # quartets = {} with open(os.path.expanduser(file)) as f: lines = f.readlines() lines = [l.strip() for l in lines] #12 Acunomia_m,Afronomia_ci,Aust,Die,| Acunomia_m Aust | Afronomia_circumnitens Dieunomia_heteropoda for k,line in enumerate(lines): if not line: continue x = line.split("|")[0] qtree = x.split()[1] freq = int(x.split()[0]) tree = line.split("|")[1:] tree = [" ".join(sorted(st.strip().split(" "))) for st in tree] tree.sort() tree = "|".join(tree) # print(tree) # genes_pp[tree] = [0]*GENE_NUM if "- -" in tree: continue # if qtree=='47,62,66,84,': # print(tree,(qtree in quartets.keys()),freq) if qtree in quartets.keys(): if not tree in quartets[qtree]: quartets[qtree][tree] = [0]*GENE_NUM else: quartets[qtree] = {} quartets[qtree][tree] = [0]*GENE_NUM quartets[qtree][tree][gnum] = freq if k%1000 == 0: print(".",end="") print(file) # prev, l = -1, -1 # for k,line in enumerate(lines): # # [&W 000 1.000000] ((A,C),B,D); # parts = line.split() # tree = parts[-1] # pp = float(parts[2][:-1]) # gnum = int(parts[1])-1 # if gnum != prev: # l += 1 # prev = gnum # if tree in genes_pp.keys(): # genes_pp[tree][l] = pp # else: # #genes_pp[tree] = [0]*GENE_NUM # #genes_pp[tree] = [0]*GENE_NUM # genes_pp[tree] = [0]*NN # genes_pp[tree][l] = pp # # trees.append((tree,pp)) # # if trees: # # maps.append(max(trees,key=lambda x:x[1])) # # else: # # maps.append(('',-1)) return quartets def convert_quartet_to_newick(qstr): parts = qstr.split("|") newick = "(("+",".join(parts[0].split())+"),("+",".join(parts[1].split())+"));" return newick def print_tofile(quartets, files): nfiles = len(files) nq = len(quartets) eachf = nq/nfiles + 1 filestr = "" i = 0 plist = [] for q,qdict in quartets.items(): topologies = list(qdict.keys()) print(topologies) P = convert_to_array(qdict, topologies, GENE_NUM) P += 10 ** -8 P = P/P.sum(axis=0,keepdims=1) np.set_printoptions(suppress=True) np.set_printoptions(threshold=sys.maxsize) #pstr = np.array2string(P, precision=2, separator=',') filestr += " ".join([convert_quartet_to_newick(qstr) for qstr in topologies])+'\n' plist.append(P) i += 1 if i % int(nq/nfiles) == 0 : with open(files[int(i/eachf)]+".top",'w') as f: f.write(filestr) np.savez(files[int(i/eachf)], *plist) plist = [] filestr = "" def print_toafile(quartets, file): # nfiles = len(files) # nq = len(quartets) # eachf = nq/nfiles + 1 filestr = "" i = 0 plist = [] for q,qdict in quartets.items(): topologies = list(qdict.keys()) P = convert_to_array(qdict, topologies, GENE_NUM) P += 10 ** -8 P = P/P.sum(axis=0,keepdims=1) np.set_printoptions(suppress=True) np.set_printoptions(threshold=sys.maxsize) #pstr = np.array2string(P, precision=2, separator=',') filestr += " ".join(topologies)+'\n' #filestr += " ".join([convert_quartet_to_newick(qstr) for qstr in topologies])+'\n' plist.append(P) with open(file+".top",'w') as f: f.write(filestr) np.savez(file, *plist) def convert_to_array(genes_pp,topologies,GENE_NUM): # topologies = list(genes_pp.keys()) P = np.zeros((3, GENE_NUM)) for i,top in enumerate(topologies): P[i,] = np.array(genes_pp[top]) # for j in range(GENE_NUM): # if P[:,j].sum() < 0.99: # print(j, P[:,j].sum()) return P def f1(d, i, P): return -np.log(P[i,]+np.exp(-d)*(1/3.0 - P[i,])).sum() def f2(d, i, P): return -np.log((1-np.exp(-d))*P[i,]+np.exp(-d-np.log(3.0))).sum() def jacobian(d, i, P): return -((3*P[i,]-1)/(1+3*P[i,]*(np.exp(d)-1))).sum() def hessian(d, i, P): return -(( 3 * np.exp(d) * P[i,] * (1 - 3 * P[i,]) )/(1+3*P[i,]*(np.exp(d)-1))**2).sum() def find_genetrees(P, best_ind, d, topologies): P[best_ind,] *= (1 - 2/3*np.exp(-d)) # print(list(range(3)),best_ind, list(range(3)).remove(best_ind)) lst = list(range(3)) lst.remove(best_ind) for i in lst: P[i,] *= (1/3*np.exp(-d)) gene_indices = np.argmax(P,axis=0) genetrees = [topologies[i] for i in gene_indices] return genetrees if __name__ == "__main__": start_time = time.time() file = sys.argv[1] print(version) N = 3 genes = [] with open(file) as f: lines = f.readlines() lines = [l.strip() for l in lines] GENE_NUM = len(lines) quartets = {} for l in lines: fo = l.split(" ")[1] #print(l) #print(l.split('\t')) gnum = int(l.split()[0]) quartets = read_files_for_P(fo, quartets, gnum,GENE_NUM) #print(topologies) print(len(quartets)) # files = [sys.argv[2]+str(j)+".tre" for j in range(int(sys.argv[3])) ] # print_toafile(quartets,sys.argv[2]) # exit() # print(quartets) printstr = "" for q,qdict in quartets.items(): # print(q+":") topologies = list(qdict.keys()) print(topologies) xx = 3 - len(topologies) for i in range(xx): qdict['- - | - -'+str(i)] = [0]*GENE_NUM topologies = list(qdict.keys()) # topologies = [convert_quartet_to_newick(qstr) for qstr in list(qdict.keys())] # print(str(topologies)+":") P = convert_to_array(qdict, topologies, GENE_NUM) # print(P) np.set_printoptions(suppress=True) np.set_printoptions(threshold=sys.maxsize) # print(np.transpose(P)) # print("All sums to 1:", end=" ") print((P.sum(axis=0) > 0.99).all()) print(P) P += 10 ** -8 P = P/P.sum(axis=0,keepdims=1) print(P) results = [] for i in range(3): res = minimize(f1, [0.01], method='trust-constr', jac=jacobian, hess=hessian,bounds=[(0,np.inf)],args=(i,P)) results.append(res) topologies = [convert_quartet_to_newick(qstr) for qstr in list(qdict.keys())] best_ind =
np.argmin([r.fun for r in results])
numpy.argmin
# -*- coding:utf-8 -*- import os import random import numpy as np from skimage import io, transform label_map = {'calling_images': 0, 'smoking_images': 1, 'normal_images': 2} def load_min_batch(data_list, label_list, height=240, width=320): assert len(data_list) == len(label_list) images = [] labels = [] for index in range(len(data_list)): image = io.imread(data_list[index]) image = transform.resize(image, (height, width)) images.append(image) labels.append(label_map[label_list[index]]) images = np.asarray(images, np.float32) labels = np.asarray(labels, np.int32) return images, labels def load_file(dir_path): datas = [] labels = [] for dir_name in os.listdir(dir_path): dir = os.path.join(dir_path, dir_name) if os.path.isdir(dir): for image in os.listdir(dir): datas.append(os.path.join(dir, image)) labels.append(dir_name) elif os.path.isfile(dir_name): print("This is a normal file") continue else: print("This is a special file") continue return datas, labels def shuffle_data(datas, labels): num_data = len(datas) arr = np.arange(num_data)
np.random.shuffle(arr)
numpy.random.shuffle
import numpy as np from Bio import SeqIO, Seq import cPickle as pickle import pandas as pd from util import * fs=16 alpha="ACGT-N" save_as='.fasta.gz' def hypermutation_statistics(): ''' use pre-calculated files on mutation prevalence in different reads types to produce analysis figures ''' mut_files = glob.glob('data/*_mutation_statistics.pkl.gz') hyper_mut_stats = {} for fname in mut_files: outprefix, pat, region, sdate = get_outprefix(fname) with myopen(fname) as ifile: hyper_mut_stats[outprefix] = pickle.load(ifile) #reformat data structure from itertools import product mutations = [a+'->'+d for a,d in product(alpha, alpha) if a!=d] all_muts = {'good':defaultdict(list), 'hyper':defaultdict(list)} for sample in hyper_mut_stats: for mtype in all_muts: for mi,mut in enumerate(mutations): if len(hyper_mut_stats[sample][mtype]): all_muts[mtype][mut].extend(hyper_mut_stats[sample][mtype][:,mi]) else: print("no data on",mtype,sample) # plot distribitions of different transitions in sequences classified as good and hyper mutant plt.figure() tmp = [] for mtype,muts in all_muts.iteritems(): for mut in ['G->A', 'A->G', 'C->T', 'T->C']: tmp.extend([(mut, mtype, x) for x in muts[mut]]) data = pd.DataFrame(tmp, columns=['mutation', 'type', 'count']) data.loc[data.loc[:,'type']=='hyper', 'type'] = 'hypermutants' data.loc[data.loc[:,'type']=='good', 'type'] = 'other reads' sns.violinplot(x='mutation', y='count', hue='type',data=data, inner=None, split=True, scale='width', bw=0.5, cut=0) plt.legend(title=None, fontsize=fs*0.8) plt.tick_params(labelsize = fs*0.8) plt.ylabel('number of mutations', fontsize=fs) plt.xlabel('', fontsize=fs) plt.savefig('figures/mutation_count.pdf') # plot the diffferent types of muations in different sequence subsets for seqtype in ['good', 'hyper', 'suspicious']: plt.figure() for sample in hyper_mut_stats: plt.plot(hyper_mut_stats[sample][seqtype].mean(axis=0), label=sample+str(len(hyper_mut_stats[sample][seqtype]))) plt.ylabel('mean number of mutations') plt.legend(loc=1, fontsize=8) plt.xticks(np.arange(30), mutations, rotation=60, fontsize=8) plt.savefig('figures/mean_number_of_mutations_'+seqtype+'.pdf') def hyper_mut_ratio(latex=True): ''' calculate the fraction of reads that are hypermutated, the number of stop codons in good and reads, as well as the fraction of reads that are obviously impaired ''' good_files = filter(lambda x:'RNA' not in x, glob.glob('data/*_DNA_clustered_good'+save_as)) hyper_files = filter(lambda x:'RNA' not in x, glob.glob('data/*_DNA_hyper'+save_as)) read_count = defaultdict(dict) for fnames, seqtype in [(good_files, 'good'),(hyper_files, 'hyper')]: for fname in fnames: outprefix, pat, region, sdate = get_outprefix(fname) print(outprefix) if region!='p17': continue read_count[outprefix][seqtype] = 0 stop_distribution = [] with myopen(fname) as ifile: for si, seq in enumerate(SeqIO.parse(ifile, 'fasta')): nread = get_DNA_read_count(seq.name) read_count[outprefix][seqtype] += nread seq_str = str(seq.seq) nstops = Seq.translate(seq_str.replace('-','')[20:]).count('*') # p17 starts at position 20 in the amplicon stop_distribution.append((nread, nstops)) stop_distribution =
np.array(stop_distribution, dtype=float)
numpy.array
"""Collection of functions to process mini batches.""" import numpy as np from sklearn.preprocessing import OneHotEncoder def invert_full_matrix_np(full_adjacency): full_adjacency = np.squeeze(full_adjacency) n_nodes = full_adjacency.shape[1] full_adjacency = np.append(np.zeros([1, n_nodes]), full_adjacency, axis=0) full_adjacency[0, 0] = 1 adjacency = np.eye(n_nodes) -
np.linalg.inv(full_adjacency)
numpy.linalg.inv
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest import numpy as np from astropy.table import Table, Column, QTable, table_helpers, NdarrayMixin, unique from astropy.utils.compat import NUMPY_LT_1_22, NUMPY_LT_1_22_1 from astropy.utils.exceptions import AstropyUserWarning from astropy import time from astropy import units as u from astropy import coordinates def sort_eq(list1, list2): return sorted(list1) == sorted(list2) def test_column_group_by(T1): for masked in (False, True): t1 = Table(T1, masked=masked) t1a = t1['a'].copy() # Group by a Column (i.e. numpy array) t1ag = t1a.group_by(t1['a']) assert np.all(t1ag.groups.indices == np.array([0, 1, 4, 8])) # Group by a Table t1ag = t1a.group_by(t1['a', 'b']) assert np.all(t1ag.groups.indices == np.array([0, 1, 3, 4, 5, 7, 8])) # Group by a numpy structured array t1ag = t1a.group_by(t1['a', 'b'].as_array()) assert np.all(t1ag.groups.indices == np.array([0, 1, 3, 4, 5, 7, 8])) def test_table_group_by(T1): """ Test basic table group_by functionality for possible key types and for masked/unmasked tables. """ for masked in (False, True): t1 = Table(T1, masked=masked) # Group by a single column key specified by name tg = t1.group_by('a') assert np.all(tg.groups.indices == np.array([0, 1, 4, 8])) assert str(tg.groups) == "<TableGroups indices=[0 1 4 8]>" assert str(tg['a'].groups) == "<ColumnGroups indices=[0 1 4 8]>" # Sorted by 'a' and in original order for rest assert tg.pformat() == [' a b c d ', '--- --- --- ---', ' 0 a 0.0 4', ' 1 b 3.0 5', ' 1 a 2.0 6', ' 1 a 1.0 7', ' 2 c 7.0 0', ' 2 b 5.0 1', ' 2 b 6.0 2', ' 2 a 4.0 3'] assert tg.meta['ta'] == 1 assert tg['c'].meta['a'] == 1 assert tg['c'].description == 'column c' # Group by a table column tg2 = t1.group_by(t1['a']) assert tg.pformat() == tg2.pformat() # Group by two columns spec'd by name for keys in (['a', 'b'], ('a', 'b')): tg = t1.group_by(keys) assert np.all(tg.groups.indices == np.array([0, 1, 3, 4, 5, 7, 8])) # Sorted by 'a', 'b' and in original order for rest assert tg.pformat() == [' a b c d ', '--- --- --- ---', ' 0 a 0.0 4', ' 1 a 2.0 6', ' 1 a 1.0 7', ' 1 b 3.0 5', ' 2 a 4.0 3', ' 2 b 5.0 1', ' 2 b 6.0 2', ' 2 c 7.0 0'] # Group by a Table tg2 = t1.group_by(t1['a', 'b']) assert tg.pformat() == tg2.pformat() # Group by a structured array tg2 = t1.group_by(t1['a', 'b'].as_array()) assert tg.pformat() == tg2.pformat() # Group by a simple ndarray tg = t1.group_by(np.array([0, 1, 0, 1, 2, 1, 0, 0])) assert np.all(tg.groups.indices == np.array([0, 4, 7, 8])) assert tg.pformat() == [' a b c d ', '--- --- --- ---', ' 2 c 7.0 0', ' 2 b 6.0 2', ' 1 a 2.0 6', ' 1 a 1.0 7', ' 2 b 5.0 1', ' 2 a 4.0 3', ' 1 b 3.0 5', ' 0 a 0.0 4'] def test_groups_keys(T1): tg = T1.group_by('a') keys = tg.groups.keys assert keys.dtype.names == ('a',) assert np.all(keys['a'] == np.array([0, 1, 2])) tg = T1.group_by(['a', 'b']) keys = tg.groups.keys assert keys.dtype.names == ('a', 'b') assert np.all(keys['a'] == np.array([0, 1, 1, 2, 2, 2])) assert np.all(keys['b'] == np.array(['a', 'a', 'b', 'a', 'b', 'c'])) # Grouping by Column ignores column name tg = T1.group_by(T1['b']) keys = tg.groups.keys assert keys.dtype.names is None def test_groups_iterator(T1): tg = T1.group_by('a') for ii, group in enumerate(tg.groups): assert group.pformat() == tg.groups[ii].pformat() assert group['a'][0] == tg['a'][tg.groups.indices[ii]] def test_grouped_copy(T1): """ Test that copying a table or column copies the groups properly """ for masked in (False, True): t1 = Table(T1, masked=masked) tg = t1.group_by('a') tgc = tg.copy() assert np.all(tgc.groups.indices == tg.groups.indices) assert
np.all(tgc.groups.keys == tg.groups.keys)
numpy.all
#!/usr/bin/python # coding: UTF-8 # # Author: <NAME> # Contact: <EMAIL> # # Last update: 12/03/2017 # # Feel free to contact for any information. # # You can cite this code by referencing: # <NAME>, "Python implementation of Kuramoto systems," 2017-, # [Online] Available: http://www.laszukdawid.com/codes # # LICENCE: # This program is free software on GNU General Public Licence version 3. # For details of the copyright please see: http://www.gnu.org/licenses/. from __future__ import print_function import numpy as np from scipy.integrate import ode __version__ = '0.3' __author__ = '<NAME>' class Kuramoto(object): """ Implementation of Kuramoto coupling model [1] with harmonic terms and possible perturbation. It uses NumPy and Scipy's implementation of Runge-Kutta 4(5) for numerical integration. Usage example: >>> kuramoto = Kuramoto(initial_values) >>> phase = kuramoto.solve(X) [1] Kuramoto, Y. (1984). Chemical Oscillations, Waves, and Turbulence (Vol. 19). doi: doi.org/10.1007/978-3-642-69689-3 """ _noises = { 'logistic': np.random.logistic, 'normal': np.random.normal, 'uniform': np.random.uniform, 'custom': None } noise_types = _noises.keys() def __init__(self, init_values, noise=None): """ Passed arguments should be a dictionary with NumPy arrays for initial phase (Y0), intrisic frequencies (W) and coupling matrix (K). """ self.dtype = np.float32 self.dt = 1. self.init_phase = np.array(init_values['Y0']) self.W = np.array(init_values['W']) self.K =
np.array(init_values['K'])
numpy.array
import os import pandas as pd import numpy as np import datetime from logging import getLogger from libcity.data.dataset import AbstractDataset from libcity.data.utils import generate_dataloader from libcity.utils import StandardScaler, NormalScaler, NoneScaler, \ MinMax01Scaler, MinMax11Scaler, LogScaler, ensure_dir class TrafficStateDataset(AbstractDataset): """ 交通状态预测数据集的基类。 默认使用`input_window`的数据预测`output_window`对应的数据,即一个X,一个y。 一般将外部数据融合到X中共同进行预测,因此数据为[X, y]。 默认使用`train_rate`和`eval_rate`在样本数量(num_samples)维度上直接切分训练集、测试集、验证集。 """ def __init__(self, config): self.config = config self.dataset = self.config.get('dataset', '') self.batch_size = self.config.get('batch_size', 64) self.cache_dataset = self.config.get('cache_dataset', True) self.num_workers = self.config.get('num_workers', 0) self.pad_with_last_sample = self.config.get('pad_with_last_sample', True) self.train_rate = self.config.get('train_rate', 0.7) self.eval_rate = self.config.get('eval_rate', 0.1) self.scaler_type = self.config.get('scaler', 'none') self.ext_scaler_type = self.config.get('ext_scaler', 'none') self.load_external = self.config.get('load_external', False) self.normal_external = self.config.get('normal_external', False) self.add_time_in_day = self.config.get('add_time_in_day', False) self.add_day_in_week = self.config.get('add_day_in_week', False) self.input_window = self.config.get('input_window', 12) self.output_window = self.config.get('output_window', 12) self.parameters_str = \ str(self.dataset) + '_' + str(self.input_window) + '_' + str(self.output_window) + '_' \ + str(self.train_rate) + '_' + str(self.eval_rate) + '_' + str(self.scaler_type) + '_' \ + str(self.batch_size) + '_' + str(self.load_external) + '_' + str(self.add_time_in_day) + '_' \ + str(self.add_day_in_week) + '_' + str(self.pad_with_last_sample) self.cache_file_name = os.path.join('./libcity/cache/dataset_cache/', 'traffic_state_{}.npz'.format(self.parameters_str)) self.cache_file_folder = './libcity/cache/dataset_cache/' ensure_dir(self.cache_file_folder) self.data_path = './raw_data/' + self.dataset + '/' if not os.path.exists(self.data_path): raise ValueError("Dataset {} not exist! Please ensure the path " "'./raw_data/{}/' exist!".format(self.dataset, self.dataset)) # 加载数据集的config.json文件 self.weight_col = self.config.get('weight_col', '') self.data_col = self.config.get('data_col', '') self.ext_col = self.config.get('ext_col', '') self.geo_file = self.config.get('geo_file', self.dataset) self.rel_file = self.config.get('rel_file', self.dataset) self.data_files = self.config.get('data_files', self.dataset) self.ext_file = self.config.get('ext_file', self.dataset) self.output_dim = self.config.get('output_dim', 1) self.time_intervals = self.config.get('time_intervals', 300) # s self.init_weight_inf_or_zero = self.config.get('init_weight_inf_or_zero', 'inf') self.set_weight_link_or_dist = self.config.get('set_weight_link_or_dist', 'dist') self.calculate_weight_adj = self.config.get('calculate_weight_adj', False) self.weight_adj_epsilon = self.config.get('weight_adj_epsilon', 0.1) # 初始化 self.data = None self.feature_name = {'X': 'float', 'y': 'float'} # 此类的输入只有X和y self.adj_mx = None self.scaler = None self.ext_scaler = None self.feature_dim = 0 self.ext_dim = 0 self.num_nodes = 0 self.num_batches = 0 self._logger = getLogger() if os.path.exists(self.data_path + self.geo_file + '.geo'): self._load_geo() else: raise ValueError('Not found .geo file!') if os.path.exists(self.data_path + self.rel_file + '.rel'): # .rel file is not necessary self._load_rel() else: self.adj_mx = np.zeros((len(self.geo_ids), len(self.geo_ids)), dtype=np.float32) def _load_geo(self): """ 加载.geo文件,格式[geo_id, type, coordinates, properties(若干列)] """ geofile = pd.read_csv(self.data_path + self.geo_file + '.geo') self.geo_ids = list(geofile['geo_id']) self.num_nodes = len(self.geo_ids) self.geo_to_ind = {} self.ind_to_geo = {} for index, idx in enumerate(self.geo_ids): self.geo_to_ind[idx] = index self.ind_to_geo[index] = idx self._logger.info("Loaded file " + self.geo_file + '.geo' + ', num_nodes=' + str(len(self.geo_ids))) def _load_grid_geo(self): """ 加载.geo文件,格式[geo_id, type, coordinates, row_id, column_id, properties(若干列)] """ geofile = pd.read_csv(self.data_path + self.geo_file + '.geo') self.geo_ids = list(geofile['geo_id']) self.num_nodes = len(self.geo_ids) self.geo_to_ind = {} self.geo_to_rc = {} for index, idx in enumerate(self.geo_ids): self.geo_to_ind[idx] = index for i in range(geofile.shape[0]): self.geo_to_rc[geofile['geo_id'][i]] = [geofile['row_id'][i], geofile['column_id'][i]] self.len_row = max(list(geofile['row_id'])) + 1 self.len_column = max(list(geofile['column_id'])) + 1 self._logger.info("Loaded file " + self.geo_file + '.geo' + ', num_grids=' + str(len(self.geo_ids)) + ', grid_size=' + str((self.len_row, self.len_column))) def _load_rel(self): """ 加载.rel文件,格式[rel_id, type, origin_id, destination_id, properties(若干列)], 生成N*N的矩阵,其中权重所在的列名用全局参数`weight_col`来指定, 全局参数`calculate_weight_adj`表示是否需要对加载的.rel的默认权重进行进一步计算, 如果需要,则调用函数self._calculate_adjacency_matrix()进行计算 Returns: np.ndarray: self.adj_mx, N*N的邻接矩阵 """ relfile = pd.read_csv(self.data_path + self.rel_file + '.rel') self._logger.info('set_weight_link_or_dist: {}'.format(self.set_weight_link_or_dist)) self._logger.info('init_weight_inf_or_zero: {}'.format(self.init_weight_inf_or_zero)) if self.weight_col != '': # 根据weight_col确认权重列 if isinstance(self.weight_col, list): if len(self.weight_col) != 1: raise ValueError('`weight_col` parameter must be only one column!') self.weight_col = self.weight_col[0] self.distance_df = relfile[~relfile[self.weight_col].isna()][[ 'origin_id', 'destination_id', self.weight_col]] else: if len(relfile.columns) > 5 or len(relfile.columns) < 4: # properties不只一列,且未指定weight_col,报错 raise ValueError("Don't know which column to be loaded! Please set `weight_col` parameter!") elif len(relfile.columns) == 4: # 4列说明没有properties列,那就是rel文件中有的代表相邻,否则不相邻 self.calculate_weight_adj = False self.set_weight_link_or_dist = 'link' self.init_weight_inf_or_zero = 'zero' self.distance_df = relfile[['origin_id', 'destination_id']] else: # len(relfile.columns) == 5, properties只有一列,那就默认这一列是权重列 self.weight_col = relfile.columns[-1] self.distance_df = relfile[~relfile[self.weight_col].isna()][[ 'origin_id', 'destination_id', self.weight_col]] # 把数据转换成矩阵的形式 self.adj_mx = np.zeros((len(self.geo_ids), len(self.geo_ids)), dtype=np.float32) if self.init_weight_inf_or_zero.lower() == 'inf' and self.set_weight_link_or_dist.lower() != 'link': self.adj_mx[:] = np.inf for row in self.distance_df.values: if row[0] not in self.geo_to_ind or row[1] not in self.geo_to_ind: continue if self.set_weight_link_or_dist.lower() == 'dist': # 保留原始的距离数值 self.adj_mx[self.geo_to_ind[row[0]], self.geo_to_ind[row[1]]] = row[2] else: # self.set_weight_link_or_dist.lower()=='link' 只保留01的邻接性 self.adj_mx[self.geo_to_ind[row[0]], self.geo_to_ind[row[1]]] = 1 self._logger.info("Loaded file " + self.rel_file + '.rel, shape=' + str(self.adj_mx.shape)) # 计算权重 if self.calculate_weight_adj: self._calculate_adjacency_matrix() def _load_grid_rel(self): """ 根据网格结构构建邻接矩阵,一个格子跟他周围的8个格子邻接 Returns: np.ndarray: self.adj_mx, N*N的邻接矩阵 """ self.adj_mx = np.zeros((len(self.geo_ids), len(self.geo_ids)), dtype=np.float32) dirs = [[0, 1], [1, 0], [-1, 0], [0, -1], [1, 1], [1, -1], [-1, 1], [-1, -1]] for i in range(self.len_row): for j in range(self.len_column): index = i * self.len_column + j # grid_id for d in dirs: nei_i = i + d[0] nei_j = j + d[1] if nei_i >= 0 and nei_i < self.len_row and nei_j >= 0 and nei_j < self.len_column: nei_index = nei_i * self.len_column + nei_j # neighbor_grid_id self.adj_mx[index][nei_index] = 1 self.adj_mx[nei_index][index] = 1 self._logger.info("Generate grid rel file, shape=" + str(self.adj_mx.shape)) def _calculate_adjacency_matrix(self): """ 使用带有阈值的高斯核计算邻接矩阵的权重,如果有其他的计算方法,可以覆盖这个函数, 公式为:$ w_{ij} = \exp \left(- \\frac{d_{ij}^{2}}{\sigma^{2}} \\right) $, $\sigma$ 是方差, 小于阈值`weight_adj_epsilon`的值设为0:$ w_{ij}[w_{ij}<\epsilon]=0 $ Returns: np.ndarray: self.adj_mx, N*N的邻接矩阵 """ self._logger.info("Start Calculate the weight by Gauss kernel!") distances = self.adj_mx[~np.isinf(self.adj_mx)].flatten() std = distances.std() self.adj_mx = np.exp(-np.square(self.adj_mx / std)) self.adj_mx[self.adj_mx < self.weight_adj_epsilon] = 0 def _load_dyna(self, filename): """ 加载数据文件(.dyna/.grid/.od/.gridod),子类必须实现这个方法来指定如何加载数据文件,返回对应的多维数据, 提供5个实现好的方法加载上述几类文件,并转换成不同形状的数组: `_load_dyna_3d`/`_load_grid_3d`/`_load_grid_4d`/`_load_grid_od_4d`/`_load_grid_od_6d` Args: filename(str): 数据文件名,不包含后缀 Returns: np.ndarray: 数据数组 """ raise NotImplementedError('Please implement the function `_load_dyna()`.') def _load_dyna_3d(self, filename): """ 加载.dyna文件,格式[dyna_id, type, time, entity_id, properties(若干列)], .geo文件中的id顺序应该跟.dyna中一致, 其中全局参数`data_col`用于指定需要加载的数据的列,不设置则默认全部加载 Args: filename(str): 数据文件名,不包含后缀 Returns: np.ndarray: 数据数组, 3d-array: (len_time, num_nodes, feature_dim) """ # 加载数据集 self._logger.info("Loading file " + filename + '.dyna') dynafile = pd.read_csv(self.data_path + filename + '.dyna') if self.data_col != '': # 根据指定的列加载数据集 if isinstance(self.data_col, list): data_col = self.data_col.copy() else: # str data_col = [self.data_col].copy() data_col.insert(0, 'time') data_col.insert(1, 'entity_id') dynafile = dynafile[data_col] else: # 不指定则加载所有列 dynafile = dynafile[dynafile.columns[2:]] # 从time列开始所有列 # 求时间序列 self.timesolts = list(dynafile['time'][:int(dynafile.shape[0] / len(self.geo_ids))]) self.idx_of_timesolts = dict() if not dynafile['time'].isna().any(): # 时间没有空值 self.timesolts = list(map(lambda x: x.replace('T', ' ').replace('Z', ''), self.timesolts)) self.timesolts = np.array(self.timesolts, dtype='datetime64[ns]') for idx, _ts in enumerate(self.timesolts): self.idx_of_timesolts[_ts] = idx # 转3-d数组 feature_dim = len(dynafile.columns) - 2 df = dynafile[dynafile.columns[-feature_dim:]] len_time = len(self.timesolts) data = [] for i in range(0, df.shape[0], len_time): data.append(df[i:i+len_time].values) data = np.array(data, dtype=np.float) # (len(self.geo_ids), len_time, feature_dim) data = data.swapaxes(0, 1) # (len_time, len(self.geo_ids), feature_dim) self._logger.info("Loaded file " + filename + '.dyna' + ', shape=' + str(data.shape)) return data def _load_grid_3d(self, filename): """ 加载.grid文件,格式[dyna_id, type, time, row_id, column_id, properties(若干列)], .geo文件中的id顺序应该跟.dyna中一致, 其中全局参数`data_col`用于指定需要加载的数据的列,不设置则默认全部加载, Args: filename(str): 数据文件名,不包含后缀 Returns: np.ndarray: 数据数组, 3d-array: (len_time, num_grids, feature_dim) """ # 加载数据集 self._logger.info("Loading file " + filename + '.grid') gridfile = pd.read_csv(self.data_path + filename + '.grid') if self.data_col != '': # 根据指定的列加载数据集 if isinstance(self.data_col, list): data_col = self.data_col.copy() else: # str data_col = [self.data_col].copy() data_col.insert(0, 'time') data_col.insert(1, 'row_id') data_col.insert(2, 'column_id') gridfile = gridfile[data_col] else: # 不指定则加载所有列 gridfile = gridfile[gridfile.columns[2:]] # 从time列开始所有列 # 求时间序列 self.timesolts = list(gridfile['time'][:int(gridfile.shape[0] / len(self.geo_ids))]) self.idx_of_timesolts = dict() if not gridfile['time'].isna().any(): # 时间没有空值 self.timesolts = list(map(lambda x: x.replace('T', ' ').replace('Z', ''), self.timesolts)) self.timesolts = np.array(self.timesolts, dtype='datetime64[ns]') for idx, _ts in enumerate(self.timesolts): self.idx_of_timesolts[_ts] = idx # 转3-d数组 feature_dim = len(gridfile.columns) - 3 df = gridfile[gridfile.columns[-feature_dim:]] len_time = len(self.timesolts) data = [] for i in range(0, df.shape[0], len_time): data.append(df[i:i + len_time].values) data = np.array(data, dtype=np.float) # (len(self.geo_ids), len_time, feature_dim) data = data.swapaxes(0, 1) # (len_time, len(self.geo_ids), feature_dim) self._logger.info("Loaded file " + filename + '.grid' + ', shape=' + str(data.shape)) return data def _load_grid_4d(self, filename): """ 加载.grid文件,格式[dyna_id, type, time, row_id, column_id, properties(若干列)], .geo文件中的id顺序应该跟.dyna中一致, 其中全局参数`data_col`用于指定需要加载的数据的列,不设置则默认全部加载 Args: filename(str): 数据文件名,不包含后缀 Returns: np.ndarray: 数据数组, 4d-array: (len_time, len_row, len_column, feature_dim) """ # 加载数据集 self._logger.info("Loading file " + filename + '.grid') gridfile = pd.read_csv(self.data_path + filename + '.grid') if self.data_col != '': # 根据指定的列加载数据集 if isinstance(self.data_col, list): data_col = self.data_col.copy() else: # str data_col = [self.data_col].copy() data_col.insert(0, 'time') data_col.insert(1, 'row_id') data_col.insert(2, 'column_id') gridfile = gridfile[data_col] else: # 不指定则加载所有列 gridfile = gridfile[gridfile.columns[2:]] # 从time列开始所有列 # 求时间序列 self.timesolts = list(gridfile['time'][:int(gridfile.shape[0] / len(self.geo_ids))]) self.idx_of_timesolts = dict() if not gridfile['time'].isna().any(): # 时间没有空值 self.timesolts = list(map(lambda x: x.replace('T', ' ').replace('Z', ''), self.timesolts)) self.timesolts = np.array(self.timesolts, dtype='datetime64[ns]') for idx, _ts in enumerate(self.timesolts): self.idx_of_timesolts[_ts] = idx # 转4-d数组 feature_dim = len(gridfile.columns) - 3 df = gridfile[gridfile.columns[-feature_dim:]] len_time = len(self.timesolts) data = [] for i in range(self.len_row): tmp = [] for j in range(self.len_column): index = (i * self.len_column + j) * len_time tmp.append(df[index:index + len_time].values) data.append(tmp) data = np.array(data, dtype=np.float) # (len_row, len_column, len_time, feature_dim) data = data.swapaxes(2, 0).swapaxes(1, 2) # (len_time, len_row, len_column, feature_dim) self._logger.info("Loaded file " + filename + '.grid' + ', shape=' + str(data.shape)) return data def _load_od_4d(self, filename): """ 加载.od文件,格式[dyna_id, type, time, origin_id, destination_id properties(若干列)], .geo文件中的id顺序应该跟.dyna中一致, 其中全局参数`data_col`用于指定需要加载的数据的列,不设置则默认全部加载 Args: filename(str): 数据文件名,不包含后缀 Returns: np.ndarray: 数据数组, 4d-array: (len_time, len_row, len_column, feature_dim) """ self._logger.info("Loading file " + filename + '.od') odfile = pd.read_csv(self.data_path + filename + '.od') if self.data_col != '': # 根据指定的列加载数据集 if isinstance(self.data_col, list): data_col = self.data_col.copy() else: # str data_col = [self.data_col].copy() data_col.insert(0, 'time') data_col.insert(1, 'origin_id') data_col.insert(2, 'destination_id') odfile = odfile[data_col] else: # 不指定则加载所有列 odfile = odfile[odfile.columns[2:]] # 从time列开始所有列 # 求时间序列 self.timesolts = list(odfile['time'][:int(odfile.shape[0] / self.num_nodes / self.num_nodes)]) self.idx_of_timesolts = dict() if not odfile['time'].isna().any(): # 时间没有空值 self.timesolts = list(map(lambda x: x.replace('T', ' ').replace('Z', ''), self.timesolts)) self.timesolts = np.array(self.timesolts, dtype='datetime64[ns]') for idx, _ts in enumerate(self.timesolts): self.idx_of_timesolts[_ts] = idx feature_dim = len(odfile.columns) - 3 df = odfile[odfile.columns[-feature_dim:]] len_time = len(self.timesolts) data = np.zeros((self.num_nodes, self.num_nodes, len_time, feature_dim)) for i in range(self.num_nodes): origin_index = i * len_time * self.num_nodes # 每个起点占据len_t*n行 for j in range(self.num_nodes): destination_index = j * len_time # 每个终点占据len_t行 index = origin_index + destination_index data[i][j] = df[index:index + len_time].values data = data.transpose((2, 0, 1, 3)) # (len_time, num_nodes, num_nodes, feature_dim) self._logger.info("Loaded file " + filename + '.od' + ', shape=' + str(data.shape)) return data def _load_grid_od_4d(self, filename): """ 加载.gridod文件,格式[dyna_id, type, time, origin_row_id, origin_column_id, destination_row_id, destination_column_id, properties(若干列)], .geo文件中的id顺序应该跟.dyna中一致, 其中全局参数`data_col`用于指定需要加载的数据的列,不设置则默认全部加载 Args: filename(str): 数据文件名,不包含后缀 Returns: np.ndarray: 数据数组, 4d-array: (len_time, num_grids, num_grids, feature_dim) """ # 加载数据集 self._logger.info("Loading file " + filename + '.gridod') gridodfile = pd.read_csv(self.data_path + filename + '.gridod') if self.data_col != '': # 根据指定的列加载数据集 if isinstance(self.data_col, list): data_col = self.data_col.copy() else: # str data_col = [self.data_col].copy() data_col.insert(0, 'time') data_col.insert(1, 'origin_row_id') data_col.insert(2, 'origin_column_id') data_col.insert(3, 'destination_row_id') data_col.insert(4, 'destination_column_id') gridodfile = gridodfile[data_col] else: # 不指定则加载所有列 gridodfile = gridodfile[gridodfile.columns[2:]] # 从time列开始所有列 # 求时间序列 self.timesolts = list(gridodfile['time'][:int(gridodfile.shape[0] / len(self.geo_ids) / len(self.geo_ids))]) self.idx_of_timesolts = dict() if not gridodfile['time'].isna().any(): # 时间没有空值 self.timesolts = list(map(lambda x: x.replace('T', ' ').replace('Z', ''), self.timesolts)) self.timesolts = np.array(self.timesolts, dtype='datetime64[ns]') for idx, _ts in enumerate(self.timesolts): self.idx_of_timesolts[_ts] = idx # 转4-d数组 feature_dim = len(gridodfile.columns) - 5 df = gridodfile[gridodfile.columns[-feature_dim:]] len_time = len(self.timesolts) data = np.zeros((len(self.geo_ids), len(self.geo_ids), len_time, feature_dim)) for oi in range(self.len_row): for oj in range(self.len_column): origin_index = (oi * self.len_column + oj) * len_time * len(self.geo_ids) # 每个起点占据len_t*n行 for di in range(self.len_row): for dj in range(self.len_column): destination_index = (di * self.len_column + dj) * len_time # 每个终点占据len_t行 index = origin_index + destination_index # print(index, index + len_time) # print((oi, oj), (di, dj)) # print(oi * self.len_column + oj, di * self.len_column + dj) data[oi * self.len_column + oj][di * self.len_column + dj] = df[index:index + len_time].values data = data.transpose((2, 0, 1, 3)) # (len_time, num_grids, num_grids, feature_dim) self._logger.info("Loaded file " + filename + '.gridod' + ', shape=' + str(data.shape)) return data def _load_grid_od_6d(self, filename): """ 加载.gridod文件,格式[dyna_id, type, time, origin_row_id, origin_column_id, destination_row_id, destination_column_id, properties(若干列)], .geo文件中的id顺序应该跟.dyna中一致, 其中全局参数`data_col`用于指定需要加载的数据的列,不设置则默认全部加载 Args: filename(str): 数据文件名,不包含后缀 Returns: np.ndarray: 数据数组, 6d-array: (len_time, len_row, len_column, len_row, len_column, feature_dim) """ # 加载数据集 self._logger.info("Loading file " + filename + '.gridod') gridodfile = pd.read_csv(self.data_path + filename + '.gridod') if self.data_col != '': # 根据指定的列加载数据集 if isinstance(self.data_col, list): data_col = self.data_col.copy() else: # str data_col = [self.data_col].copy() data_col.insert(0, 'time') data_col.insert(1, 'origin_row_id') data_col.insert(2, 'origin_column_id') data_col.insert(3, 'destination_row_id') data_col.insert(4, 'destination_column_id') gridodfile = gridodfile[data_col] else: # 不指定则加载所有列 gridodfile = gridodfile[gridodfile.columns[2:]] # 从time列开始所有列 # 求时间序列 self.timesolts = list(gridodfile['time'][:int(gridodfile.shape[0] / len(self.geo_ids) / len(self.geo_ids))]) self.idx_of_timesolts = dict() if not gridodfile['time'].isna().any(): # 时间没有空值 self.timesolts = list(map(lambda x: x.replace('T', ' ').replace('Z', ''), self.timesolts)) self.timesolts = np.array(self.timesolts, dtype='datetime64[ns]') for idx, _ts in enumerate(self.timesolts): self.idx_of_timesolts[_ts] = idx # 转6-d数组 feature_dim = len(gridodfile.columns) - 5 df = gridodfile[gridodfile.columns[-feature_dim:]] len_time = len(self.timesolts) data = np.zeros((self.len_row, self.len_column, self.len_row, self.len_column, len_time, feature_dim)) for oi in range(self.len_row): for oj in range(self.len_column): origin_index = (oi * self.len_column + oj) * len_time * len(self.geo_ids) # 每个起点占据len_t*n行 for di in range(self.len_row): for dj in range(self.len_column): destination_index = (di * self.len_column + dj) * len_time # 每个终点占据len_t行 index = origin_index + destination_index # print(index, index + len_time) data[oi][oj][di][dj] = df[index:index + len_time].values data = data.transpose((4, 0, 1, 2, 3, 5)) # (len_time, len_row, len_column, len_row, len_column, feature_dim) self._logger.info("Loaded file " + filename + '.gridod' + ', shape=' + str(data.shape)) return data def _load_ext(self): """ 加载.ext文件,格式[ext_id, time, properties(若干列)], 其中全局参数`ext_col`用于指定需要加载的数据的列,不设置则默认全部加载 Returns: np.ndarray: 外部数据数组,shape: (timeslots, ext_dim) """ # 加载数据集 extfile = pd.read_csv(self.data_path + self.ext_file + '.ext') if self.ext_col != '': # 根据指定的列加载数据集 if isinstance(self.ext_col, list): ext_col = self.ext_col.copy() else: # str ext_col = [self.ext_col].copy() ext_col.insert(0, 'time') extfile = extfile[ext_col] else: # 不指定则加载所有列 extfile = extfile[extfile.columns[1:]] # 从time列开始所有列 # 求时间序列 self.ext_timesolts = extfile['time'] self.idx_of_ext_timesolts = dict() if not extfile['time'].isna().any(): # 时间没有空值 self.ext_timesolts = list(map(lambda x: x.replace('T', ' ').replace('Z', ''), self.ext_timesolts)) self.ext_timesolts = np.array(self.ext_timesolts, dtype='datetime64[ns]') for idx, _ts in enumerate(self.ext_timesolts): self.idx_of_ext_timesolts[_ts] = idx # 求外部特征数组 feature_dim = len(extfile.columns) - 1 df = extfile[extfile.columns[-feature_dim:]].values self._logger.info("Loaded file " + self.ext_file + '.ext' + ', shape=' + str(df.shape)) return df def _add_external_information(self, df, ext_data=None): """ 将外部数据和原始交通状态数据结合到高维数组中,子类必须实现这个方法来指定如何融合外部数据和交通状态数据, 如果不想加外部数据,可以把交通状态数据`df`直接返回, 提供3个实现好的方法适用于不同形状的交通状态数据跟外部数据结合: `_add_external_information_3d`/`_add_external_information_4d`/`_add_external_information_6d` Args: df(np.ndarray): 交通状态数据多维数组 ext_data(np.ndarray): 外部数据 Returns: np.ndarray: 融合后的外部数据和交通状态数据 """ raise NotImplementedError('Please implement the function `_add_external_information()`.') def _add_external_information_3d(self, df, ext_data=None): """ 增加外部信息(一周中的星期几/day of week,一天中的某个时刻/time of day,外部数据) Args: df(np.ndarray): 交通状态数据多维数组, (len_time, num_nodes, feature_dim) ext_data(np.ndarray): 外部数据 Returns: np.ndarray: 融合后的外部数据和交通状态数据, (len_time, num_nodes, feature_dim_plus) """ num_samples, num_nodes, feature_dim = df.shape is_time_nan = np.isnan(self.timesolts).any() data_list = [df] if self.add_time_in_day and not is_time_nan: time_ind = (self.timesolts - self.timesolts.astype("datetime64[D]")) / np.timedelta64(1, "D") time_in_day = np.tile(time_ind, [1, num_nodes, 1]).transpose((2, 1, 0)) data_list.append(time_in_day) # Todo if self.add_day_in_week and not is_time_nan: dayofweek = [] for day in self.timesolts.astype("datetime64[D]"): dayofweek.append(datetime.datetime.strptime(str(day), '%Y-%m-%d').weekday()) day_in_week = np.zeros(shape=(num_samples, num_nodes, 7)) day_in_week[np.arange(num_samples), :, dayofweek] = 1 data_list.append(day_in_week) # 外部数据集 if ext_data is not None: if not is_time_nan: indexs = [] for ts in self.timesolts: ts_index = self.idx_of_ext_timesolts[ts] indexs.append(ts_index) select_data = ext_data[indexs] # T * ext_dim 选出所需要的时间步的数据 for i in range(select_data.shape[1]): data_ind = select_data[:, i] data_ind = np.tile(data_ind, [1, num_nodes, 1]).transpose((2, 1, 0)) data_list.append(data_ind) else: # 没有给出具体的时间戳,只有外部数据跟原数据等长才能默认对接到一起 if ext_data.shape[0] == df.shape[0]: select_data = ext_data # T * ext_dim for i in range(select_data.shape[1]): data_ind = select_data[:, i] data_ind = np.tile(data_ind, [1, num_nodes, 1]).transpose((2, 1, 0)) data_list.append(data_ind) data = np.concatenate(data_list, axis=-1) return data def _add_external_information_4d(self, df, ext_data=None): """ 增加外部信息(一周中的星期几/day of week,一天中的某个时刻/time of day,外部数据) Args: df(np.ndarray): 交通状态数据多维数组, (len_time, len_row, len_column, feature_dim) ext_data(np.ndarray): 外部数据 Returns: np.ndarray: 融合后的外部数据和交通状态数据, (len_time, len_row, len_column, feature_dim_plus) """ num_samples, len_row, len_column, feature_dim = df.shape is_time_nan =
np.isnan(self.timesolts)
numpy.isnan
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Test Initial State Custom """ import unittest from test.aqua import QiskitAquaTestCase import numpy as np from qiskit.aqua import AquaError, aqua_globals from qiskit.aqua.components.initial_states import Custom class TestInitialStateCustom(QiskitAquaTestCase): """ Test Initial State Custom """ def test_qubits_2_zero_vector(self): """ qubits 2 zero vector test """ custom = Custom(2, state='zero') cct = custom.construct_circuit('vector') np.testing.assert_array_equal(cct, [1.0, 0.0, 0.0, 0.0]) def test_qubits_5_zero_vector(self): """ qubits 5 zero vector test """ custom = Custom(5, state='zero') cct = custom.construct_circuit('vector') np.testing.assert_array_equal(cct, [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) def test_qubits_2_zero_circuit(self): """ qubits 2 zero circuit test """ custom = Custom(2, state='zero') cct = custom.construct_circuit('circuit') self.assertEqual(cct.qasm(), 'OPENQASM 2.0;\ninclude "qelib1.inc";\nqreg q[2];\n') def test_qubits_5_zero_circuit(self): """ qubits 5 zero circuit test """ custom = Custom(5, state='zero') cct = custom.construct_circuit('circuit') self.assertEqual(cct.qasm(), 'OPENQASM 2.0;\ninclude "qelib1.inc";\nqreg q[5];\n') def test_qubits_2_uniform_vector(self): """ qubits 2 uniform vector test """ custom = Custom(2, state='uniform') cct = custom.construct_circuit('vector') np.testing.assert_array_equal(cct, [0.5]*4) def test_qubits_5_uniform_vector(self): """ qubits 5 uniform vector test """ custom = Custom(5, state='uniform') cct = custom.construct_circuit('vector') np.testing.assert_array_almost_equal(cct, [0.1767767]*32) def test_qubits_2_uniform_circuit(self): """ qubits 2 uniform circuit test """ custom = Custom(2, state='uniform') cct = custom.construct_circuit('circuit') self.assertEqual(cct.qasm(), 'OPENQASM 2.0;\ninclude "qelib1.inc";\nqreg q[2];\n' 'u2(0.0,3.141592653589793) q[0];\nu2(0.0,3.141592653589793) q[1];\n') def test_qubits_2_random_vector(self): """ qubits 2 random vector test """ custom = Custom(2, state='random') cct = custom.construct_circuit('vector') prob = np.sqrt(np.sum([x**2 for x in cct])) self.assertAlmostEqual(prob, 1.0) def test_qubits_5_random_vector(self): """ qubits 5 random vector test """ custom = Custom(5, state='random') cct = custom.construct_circuit('vector') prob = np.sqrt(np.sum([x**2 for x in cct])) self.assertAlmostEqual(prob, 1.0) def test_qubits_2_given_vector(self): """ qubits 2 given vector test """ custom = Custom(2, state_vector=[0.5]*4) cct = custom.construct_circuit('vector') np.testing.assert_array_equal(cct, [0.5]*4) def test_qubits_5_given_vector(self): """ qubits 5 given vector test """ custom = Custom(5, state_vector=[1.0]*32) cct = custom.construct_circuit('vector')
np.testing.assert_array_almost_equal(cct, [0.1767767]*32)
numpy.testing.assert_array_almost_equal
#Copyright (c) 2017 <NAME>. #Cura is released under the terms of the LGPLv3 or higher. import gc from UM.Job import Job from UM.Application import Application from UM.Mesh.MeshData import MeshData from UM.Preferences import Preferences from UM.View.GL.OpenGLContext import OpenGLContext from UM.Message import Message from UM.i18n import i18nCatalog from UM.Logger import Logger from UM.Math.Vector import Vector from cura.Scene.BuildPlateDecorator import BuildPlateDecorator from cura.Scene.CuraSceneNode import CuraSceneNode from cura.Settings.ExtruderManager import ExtruderManager from cura import LayerDataBuilder from cura import LayerDataDecorator from cura import LayerPolygon import numpy from time import time from cura.Settings.ExtrudersModel import ExtrudersModel catalog = i18nCatalog("cura") ## Return a 4-tuple with floats 0-1 representing the html color code # # \param color_code html color code, i.e. "#FF0000" -> red def colorCodeToRGBA(color_code): if color_code is None: Logger.log("w", "Unable to convert color code, returning default") return [0, 0, 0, 1] return [ int(color_code[1:3], 16) / 255, int(color_code[3:5], 16) / 255, int(color_code[5:7], 16) / 255, 1.0] class ProcessSlicedLayersJob(Job): def __init__(self, layers): super().__init__() self._layers = layers self._scene = Application.getInstance().getController().getScene() self._progress_message = Message(catalog.i18nc("@info:status", "Processing Layers"), 0, False, -1) self._abort_requested = False self._build_plate_number = None ## Aborts the processing of layers. # # This abort is made on a best-effort basis, meaning that the actual # job thread will check once in a while to see whether an abort is # requested and then stop processing by itself. There is no guarantee # that the abort will stop the job any time soon or even at all. def abort(self): self._abort_requested = True def setBuildPlate(self, new_value): self._build_plate_number = new_value def getBuildPlate(self): return self._build_plate_number def run(self): Logger.log("d", "Processing new layer for build plate %s..." % self._build_plate_number) start_time = time() view = Application.getInstance().getController().getActiveView() if view.getPluginId() == "SimulationView": view.resetLayerData() self._progress_message.show() Job.yieldThread() if self._abort_requested: if self._progress_message: self._progress_message.hide() return Application.getInstance().getController().activeViewChanged.connect(self._onActiveViewChanged) # The no_setting_override is here because adding the SettingOverrideDecorator will trigger a reslice new_node = CuraSceneNode(no_setting_override = True) new_node.addDecorator(BuildPlateDecorator(self._build_plate_number)) # Force garbage collection. # For some reason, Python has a tendency to keep the layer data # in memory longer than needed. Forcing the GC to run here makes # sure any old layer data is really cleaned up before adding new. gc.collect() mesh = MeshData() layer_data = LayerDataBuilder.LayerDataBuilder() layer_count = len(self._layers) # Find the minimum layer number # When using a raft, the raft layers are sent as layers < 0. Instead of allowing layers < 0, we # instead simply offset all other layers so the lowest layer is always 0. It could happens that # the first raft layer has value -8 but there are just 4 raft (negative) layers. min_layer_number = 0 negative_layers = 0 for layer in self._layers: if layer.id < min_layer_number: min_layer_number = layer.id if layer.id < 0: negative_layers += 1 current_layer = 0 for layer in self._layers: # Negative layers are offset by the minimum layer number, but the positive layers are just # offset by the number of negative layers so there is no layer gap between raft and model abs_layer_number = layer.id + abs(min_layer_number) if layer.id < 0 else layer.id + negative_layers layer_data.addLayer(abs_layer_number) this_layer = layer_data.getLayer(abs_layer_number) layer_data.setLayerHeight(abs_layer_number, layer.height) layer_data.setLayerThickness(abs_layer_number, layer.thickness) for p in range(layer.repeatedMessageCount("path_segment")): polygon = layer.getRepeatedMessage("path_segment", p) extruder = polygon.extruder line_types = numpy.fromstring(polygon.line_type, dtype="u1") # Convert bytearray to numpy array line_types = line_types.reshape((-1,1)) points = numpy.fromstring(polygon.points, dtype="f4") # Convert bytearray to numpy array if polygon.point_type == 0: # Point2D points = points.reshape((-1,2)) # We get a linear list of pairs that make up the points, so make numpy interpret them correctly. else: # Point3D points = points.reshape((-1,3)) line_widths =
numpy.fromstring(polygon.line_width, dtype="f4")
numpy.fromstring
''' Example that shows the transient planar sensor signal after irradiation. ''' import numpy as np import matplotlib.pyplot as plt from scipy import integrate from scarce import silicon, solver, sensor, tools def transient_irrad(): # For CCE important parameters fluence = 5e15 # Neq/cm2 V_bias = -1000. n_eff_0 = 1.7e12 # Calculate effective doping concentration after irradiation n_eff = silicon.get_eff_acceptor_concentration(fluence=fluence, n_eff_0=n_eff_0, is_ntype=True, is_oxygenated=True) # Planar sensor parameters width = 50. thickness = 200. temperature = 300. pitch = 45. n_pixel = 9 V_readout = 0. resolution = 200 # Create sensor pot_w_descr, pot_descr = sensor.planar_sensor(n_eff=n_eff, V_bias=V_bias, V_readout=V_readout, temperature=temperature, n_pixel=n_pixel, width=width, pitch=pitch, thickness=thickness, resolution=resolution, # Might have to be adjusted # when changing the # geometry smoothing=0.01) # Start parameters of e-h pairs # Create 10 e-h pairs every 5 um in y xx, yy = np.meshgrid(
np.linspace(0, width, 1)
numpy.linspace
import numpy as np import cv2 import warnings warnings.filterwarnings('ignore') import matplotlib matplotlib.use('Qt5Agg') import matplotlib.pyplot as plt import os import scipy import imageio from scipy.ndimage import gaussian_filter1d, gaussian_filter from sklearn import linear_model from sklearn.model_selection import train_test_split from matplotlib.colors import ListedColormap import statsmodels.api as sm import pandas as pd from statsmodels.stats.anova import AnovaRM from sklearn import linear_model from helper_code.registration_funcs import model_arena, get_arena_details from helper_code.processing_funcs import speed_colors from helper_code.analysis_funcs import * from important_code.shuffle_test import permutation_test, permutation_correlation plt.rcParams.update({'font.size': 30}) def plot_traversals(self): ''' plot all traversals across the arena ''' # initialize parameters sides = ['back', 'front'] # sides = ['back'] types = ['spontaneous'] #, 'evoked'] fast_color = np.array([.5, 1, .5]) slow_color = np.array([1, .9, .9]) edge_vector_color = np.array([1, .95, .85]) homing_vector_color = np.array([.725, .725, .725]) edge_vector_color = np.array([.98, .9, .6])**4 homing_vector_color = np.array([0, 0, 0]) non_escape_color = np.array([0,0,0]) condition_colors = [[.5,.5,.5], [.3,.5,.8], [0,.7,1]] time_thresh = 15 #20 for ev comparison speed_thresh = 2 p = 0 HV_cutoff = .681 # .5 for exploratory analysis # initialize figures fig, fig2, fig3, ax, ax2, ax3 = initialize_figures_traversals(self) #, types = len(types)+1) # initialize lists for stats all_data = [] all_conditions = [] edge_vector_time_all = np.array([]) # loop over spontaneous vs evoked for t, type in enumerate(types): # loop over experiments and conditions for c, (experiment, condition) in enumerate(zip(self.experiments, self.conditions)): strategies = [0, 0, 0] # extract experiments from nested list sub_experiments, sub_conditions = extract_experiments(experiment, condition) # initialize the arena arena, arena_color, scaling_factor, obstacle = initialize_arena(self, sub_experiments, sub_conditions) path_ax, path_fig = get_arena_plot(obstacle, sub_conditions, sub_experiments) # initialize edginess all_traversals_edgy = {} all_traversals_homy = {} proportion_edgy = {} for s in sides: all_traversals_edgy[s] = [] all_traversals_homy[s] = [] proportion_edgy[s] = [] m = 0 # loop over each experiment and condition for e, (experiment, condition) in enumerate(zip(sub_experiments, sub_conditions)): # loop over each mouse in the experiment for i, mouse in enumerate(self.analysis[experiment][condition]['back traversal']): mouse_data = [] print(mouse) # loop over back and front sides for s, start in enumerate(sides): if start == 'front' and type == 'evoked': continue # find all the paths across the arena traversal = self.analysis[experiment][condition][start + ' traversal'][mouse] # get the duration of those paths # duration = traversal[t*5+3] if traversal: if traversal[t*5]: x_end_loc = np.array([x_loc[-1] * scaling_factor for x_loc in np.array(traversal[t * 5 + 0])[:, 0]]) if traversal[4] < 10: continue number_of_edge_vectors = np.sum((np.array(traversal[t*5+3]) < speed_thresh) * \ (np.array(traversal[t*5+2]) > HV_cutoff) * \ # (abs(x_end_loc - 50) < 30) * \ (np.array(traversal[t*5+1]) < time_thresh*30*60) ) / min(traversal[4], time_thresh) * time_thresh # print(traversal[4]) number_of_homing_vectors = np.sum((np.array(traversal[t*5+3]) < speed_thresh) * \ (np.array(traversal[t*5+2]) < HV_cutoff) * \ # (abs(x_end_loc - 50) < 30) * \ (np.array(traversal[t*5+1]) < time_thresh*30*60) )/ min(traversal[4], time_thresh) * time_thresh all_traversals_edgy[start].append( number_of_edge_vectors ) all_traversals_homy[start].append(number_of_homing_vectors) # print(number_of_edge_vectors) mouse_data.append(number_of_edge_vectors) # get the time of edge vectors if condition == 'obstacle' and 'wall' in experiment: edge_vector_idx = ( (np.array(traversal[t * 5 + 3]) < speed_thresh) * (np.array(traversal[t * 5 + 2]) > HV_cutoff) ) edge_vector_time = np.array(traversal[t*5+1])[edge_vector_idx] / 30 / 60 edge_vector_time_all = np.concatenate((edge_vector_time_all, edge_vector_time)) # prop_edgy = np.sum((np.array(traversal[t*5 + 3]) < speed_thresh) * \ # (np.array(traversal[t*5 + 2]) > HV_cutoff) * \ # (np.array(traversal[t * 5 + 1]) < time_thresh * 30 * 60)) / \ # np.sum((np.array(traversal[t * 5 + 3]) < speed_thresh) * \ # (np.array(traversal[t * 5 + 1]) < time_thresh * 30 * 60)) else: all_traversals_edgy[start].append(0) all_traversals_homy[start].append(0) # if np.isnan(prop_edgy): prop_edgy = .5 # prop_edgy = prop_edgy / .35738 # proportion_edgy[start].append(prop_edgy) traversal_coords = np.array(traversal[t*5+0]) pre_traversal = np.array(traversal[10]) else: # all_traversals_edginess[start].append(0) continue m += .5 # loop over all paths show = False if show and traversal: for trial in range(traversal_coords.shape[0]): # make sure it qualifies if traversal[t * 5 + 3][trial] > speed_thresh: continue if traversal[t*5+1][trial] > time_thresh*30*60: continue if not len(pre_traversal[0][0]): continue # if abs(traversal_coords[trial][0][-1]*scaling_factor - 50) > 30: continue # downsample to get even coverage # if c == 2 and np.random.random() > (59 / 234): continue # if c == 1 and np.random.random() > (59 / 94): continue if traversal[t*5+2][trial]> HV_cutoff: plot_color = edge_vector_color else: plot_color = homing_vector_color display_traversal(scaling_factor, traversal_coords, pre_traversal, trial, path_ax, plot_color) if mouse_data: # all_data.append(mouse_data) all_conditions.append(c) # save image path_fig.savefig(os.path.join(self.summary_plots_folder, self.labels[c] + ' traversals.eps'), format='eps', bbox_inches='tight', pad_inches=0) # plot the data if type == 'spontaneous' and len(sides) > 1: plot_number_edgy = np.array(all_traversals_edgy['front']).astype(float) + np.array(all_traversals_edgy['back']).astype(float) plot_number_homy = np.array(all_traversals_homy['front']).astype(float) + np.array(all_traversals_homy['back']).astype(float) print(np.sum(plot_number_edgy + plot_number_homy)) # plot_proportion_edgy = (np.array(proportion_edgy['front']).astype(float) + np.array(proportion_edgy['back']).astype(float)) / 2 plot_proportion_edgy = plot_number_edgy / (plot_number_edgy + plot_number_homy) all_data.append(plot_number_edgy) else: plot_number_edgy = np.array(all_traversals_edgy[sides[0]]).astype(float) plot_number_homy = np.array(all_traversals_homy[sides[0]]).astype(float) plot_proportion_edgy = plot_number_edgy / (plot_number_edgy + plot_number_homy) # plot_proportion_edgy = np.array(proportion_edgy[sides[0]]).astype(float) for i, (plot_data, ax0) in enumerate(zip([plot_number_edgy, plot_number_homy], [ax, ax3])): #, plot_proportion_edgy , ax2 print(plot_data) print(np.sum(plot_data)) # plot each trial # scatter_axis = scatter_the_axis( (p*4/3+.5/3), plot_data) ax0.scatter(np.ones_like(plot_data)* (p*4/3+.5/3)* 3 - .2, plot_data, color=[0,0,0, .4], edgecolors='none', s=25, zorder=99) # do kde # if i==0: bw = .5 # else: bw = .02 bw = .5 kde = fit_kde(plot_data, bw=bw) plot_kde(ax0, kde, plot_data, z=4 * p + .8, vertical=True, normto=.3, color=[.5, .5, .5], violin=False, clip=True) ax0.plot([4 * p + -.2, 4 * p + -.2], [np.percentile(plot_data, 25), np.percentile(plot_data, 75)], color = [0,0,0]) ax0.plot([4 * p + -.4, 4 * p + -.0], [np.percentile(plot_data, 50), np.percentile(plot_data, 50)], color = [1,1,1], linewidth = 2) # else: # # kde = fit_kde(plot_data, bw=.03) # # plot_kde(ax0, kde, plot_data, z=4 * p + .8, vertical=True, normto=1.2, color=[.5, .5, .5], violin=False, clip=True) # bp = ax0.boxplot([plot_data, [0, 0]], positions=[4 * p + -.2, -10], showfliers=False, zorder=99) # ax0.set_xlim([-1, 4 * len(self.experiments) - 1]) p+=1 # plot a stacked bar of strategies # fig3 = plot_strategies(strategies, homing_vector_color, non_escape_color, edge_vector_color) # fig3.savefig(os.path.join(self.summary_plots_folder, 'Traversal categories - ' + self.labels[c] + '.png'), format='png', bbox_inches = 'tight', pad_inches = 0) # fig3.savefig(os.path.join(self.summary_plots_folder, 'Traversal categories - ' + self.labels[c] + '.eps'), format='eps', bbox_inches = 'tight', pad_inches = 0) # make timing hist plt.figure() bins = np.arange(0,22.5,2.5) plt.hist(edge_vector_time_all, bins = bins, color = [0,0,0], weights = np.ones_like(edge_vector_time_all) / 2.5 / m) #condition_colors[c]) plt.ylim([0,2.1]) plt.show() # # save the plot fig.savefig(os.path.join(self.summary_plots_folder, 'Traversal # EVS comparison.png'), format='png', bbox_inches='tight', pad_inches=0) fig.savefig(os.path.join(self.summary_plots_folder, 'Traversal # EVS comparison.eps'), format='eps', bbox_inches='tight', pad_inches=0) fig3.savefig(os.path.join(self.summary_plots_folder, 'Traversal # HVS comparison.png'), format='png', bbox_inches='tight', pad_inches=0) fig3.savefig(os.path.join(self.summary_plots_folder, 'Traversal # HVS comparison.eps'), format='eps', bbox_inches='tight', pad_inches=0) group_A = [[d] for d in all_data[0]] group_B = [[d] for d in all_data[2]] permutation_test(group_A, group_B, iterations = 100000, two_tailed = False) group_A = [[d] for d in all_data[2]] group_B = [[d] for d in all_data[1]] permutation_test(group_A, group_B, iterations = 10000, two_tailed = True) # fig2.savefig(os.path.join(self.summary_plots_folder, 'Traversal proportion edgy.png'), format='png', bbox_inches='tight', pad_inches=0) # fig2.savefig(os.path.join(self.summary_plots_folder, 'Traversal proportion edgy.eps'), format='eps', bbox_inches='tight', pad_inches=0) plt.show() def plot_speed_traces(self, speed = 'absolute'): ''' plot the speed traces ''' max_speed = 60 # loop over experiments and conditions for c, (experiment, condition) in enumerate(zip(self.experiments, self.conditions)): # extract experiments from nested list sub_experiments, sub_conditions = extract_experiments(experiment, condition) # get the number of trials number_of_trials = get_number_of_trials(sub_experiments, sub_conditions, self.analysis) number_of_mice = get_number_of_mice(sub_experiments, sub_conditions, self.analysis) RT, end_idx, scaling_factor, speed_traces, subgoal_speed_traces, time, time_axis, trial_num = \ initialize_variables(number_of_trials, self,sub_experiments) # create custom colormap colormap = speed_colormap(scaling_factor, max_speed, n_bins=256, v_min=0, v_max=max_speed) # loop over each experiment and condition for e, (experiment, condition) in enumerate(zip(sub_experiments, sub_conditions)): # loop over each mouse for i, mouse in enumerate(self.analysis[experiment][condition]['speed']): # control analysis if self.analysis_options['control'] and not mouse=='control': continue if not self.analysis_options['control'] and mouse=='control': continue # loop over each trial for trial in range(len(self.analysis[experiment][condition]['speed'][mouse])): if trial > 2: continue trial_num = fill_in_trial_data(RT, condition, end_idx, experiment, mouse, scaling_factor, self, speed_traces, subgoal_speed_traces, time, trial, trial_num) # print some useful metrics print_metrics(RT, end_idx, number_of_mice, number_of_trials) # put the speed traces on the plot fig = show_speed_traces(colormap, condition, end_idx, experiment, number_of_trials, speed, speed_traces, subgoal_speed_traces, time_axis, max_speed) # save the plot fig.savefig(os.path.join(self.summary_plots_folder,'Speed traces - ' + self.labels[c] + '.png'), format='png', bbox_inches = 'tight', pad_inches = 0) fig.savefig(os.path.join(self.summary_plots_folder,'Speed traces - ' + self.labels[c] + '.eps'), format='eps', bbox_inches = 'tight', pad_inches = 0) plt.show() print('done') def plot_escape_paths(self): ''' plot the escape paths ''' # initialize parameters edge_vector_color = [np.array([1, .95, .85]), np.array([.98, .9, .6])**4] homing_vector_color = [ np.array([.725, .725, .725]), np.array([0, 0, 0])] non_escape_color = np.array([0,0,0]) fps = 30 escape_duration = 18 #6 #9 for food # 18 for U min_distance_to_shelter = 30 HV_cutoff = 0.681 #.75 #.7 # initialize all data for stats all_data = [[], [], [], []] all_conditions = [] # loop over experiments and conditions for c, (experiment, condition) in enumerate(zip(self.experiments, self.conditions)): # extract experiments from nested list sub_experiments, sub_conditions = extract_experiments(experiment, condition) # initialize the arena arena, arena_color, scaling_factor, obstacle = initialize_arena(self, sub_experiments, sub_conditions) # more arena stuff for this analysis type arena_reference = arena_color.copy() arena_color[arena_reference == 245] = 255 get_arena_details(self, experiment=sub_experiments[0]) shelter_location = [s / scaling_factor / 10 for s in self.shelter_location] # initialize strategy array strategies = np.array([0,0,0]) path_ax, path_fig = get_arena_plot(obstacle, sub_conditions, sub_experiments) # loop over each experiment and condition for e, (experiment, condition) in enumerate(zip(sub_experiments, sub_conditions)): if 'void' in experiment or 'dark' in experiment or ('off' in experiment and condition == 'no obstacle') or 'quick' in experiment: escape_duration = 18 elif 'food' in experiment: escape_duration = 9 else: escape_duration = 12 # loop over each mouse for i, mouse in enumerate(self.analysis[experiment][condition]['speed']): print(mouse) # control analysis if self.analysis_options['control'] and not mouse=='control': continue if not self.analysis_options['control'] and mouse=='control': continue # color based on visual vs tactile obst avoidance # if mouse == 'CA7190' or mouse == 'CA3210' or mouse == 'CA3155' or mouse == 'CA8100': # edge_vector_color = [np.array([.6, .4, .99]),np.array([.6, .4, .99])] # homing_vector_color = [np.array([.6, .4, .99]),np.array([.6, .4, .99])] # else: # edge_vector_color = [np.array([.8, .95, 0]),np.array([.8, .95, 0])] # homing_vector_color = [np.array([.8, .95, 0]),np.array([.8, .95, 0])] # show escape paths show_escape_paths(HV_cutoff, arena, arena_color, arena_reference, c, condition, edge_vector_color, escape_duration, experiment, fps, homing_vector_color, min_distance_to_shelter, mouse, non_escape_color, scaling_factor, self, shelter_location, strategies, path_ax, determine_strategy = False) #('dark' in experiment and condition=='obstacle')) # save image # scipy.misc.imsave(os.path.join(self.summary_plots_folder, 'Escape paths - ' + self.labels[c] + '.png'), arena_color[:,:,::-1]) imageio.imwrite(os.path.join(self.summary_plots_folder, 'Escape paths - ' + self.labels[c] + '.png'), arena_color[:,:,::-1]) path_fig.savefig(os.path.join(self.summary_plots_folder, 'Escape plot - ' + self.labels[c] + '.png'), format='png', bbox_inches='tight', pad_inches=0) path_fig.savefig(os.path.join(self.summary_plots_folder, 'Escape plot - ' + self.labels[c] + '.eps'), format='eps', bbox_inches='tight', pad_inches=0) # plot a stacked bar of strategies fig = plot_strategies(strategies, homing_vector_color, non_escape_color, edge_vector_color) fig.savefig(os.path.join(self.summary_plots_folder, 'Escape categories - ' + self.labels[c] + '.png'), format='png', bbox_inches = 'tight', pad_inches = 0) fig.savefig(os.path.join(self.summary_plots_folder, 'Escape categories - ' + self.labels[c] + '.eps'), format='eps', bbox_inches = 'tight', pad_inches = 0) plt.show() print('escape') # strategies = np.array([4,5,0]) # fig = plot_strategies(strategies, homing_vector_color, non_escape_color, edge_vector_color) # plt.show() # fig.savefig(os.path.join(self.summary_plots_folder, 'Trajectory by previous edge-vectors 2.png'), format='png', bbox_inches='tight', pad_inches=0) # fig.savefig(os.path.join(self.summary_plots_folder, 'Trajectory by previous edge-vectors 2.eps'), format='eps', bbox_inches='tight', pad_inches=0) # group_A = [[0],[1],[0,0,0],[0,0],[0,1],[1,0],[0,0,0]] # group_B = [[1,0,0],[0,0,0,0],[0,0,0],[1,0,0],[0,0,0]] # permutation_test(group_B, group_A, iterations = 10000, two_tailed = False) obstacle = [[0],[1],[0,0,0],[0,0],[0,1],[1],[0,0,0], [1]] # obstacle_exp = [[0,1],[0,0,0,0,1],[0,1],[0]] open_field = [[1,0,0,0,0],[0,0,0,0,0],[0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0,0,0]] # U_shaped = [[0,1],[1,1], [1,1], [0,0,1], [0,0,0], [0], [1], [0], [0,1], [0,1,0,0], [0,0,0]] # permutation_test(open_field, obstacle, iterations = 10000, two_tailed = False) # do same edgy homing then stop to both obstacle = [[0],[1],[0,0,0],[0,0],[0,1],[1],[0,0,0], [1], [1], [0,0,0]] open_field = [[1],[0,0,0],[0,0,0],[1,0,0],[0,0,0],[0,0,1]] #stop at 3 trials # do same edgy homing then stop to both --> exclude non escapes obstacle = [[0],[1],[0,0,0],[0],[0,1],[1],[0,0,0], [1], [1], [0,0,0]] open_field = [[1],[0,0],[0,0,0],[1,0,0],[0,0,0],[0,1]] #stop at 3 trials def plot_edginess(self): # initialize parameters fps = 30 escape_duration = 12 #9 #6 HV_cutoff = .681 #.681 ETD = 10 #10 traj_loc = 40 edge_vector_color = np.array([.98, .9, .6])**5 edge_vector_color = np.array([.99, .94, .6]) ** 3 # edge_vector_color = np.array([.99, .95, .6]) ** 5 homing_vector_color = np.array([0, 0, 0]) # homing_vector_color = np.array([.85, .65, .8]) # edge_vector_color = np.array([.65, .85, .7]) # colors for diff conditions colors = [np.array([.7, 0, .3]), np.array([0, .8, .5])] colors = [np.array([.3,.3,.3]), np.array([1, .2, 0]), np.array([0, .8, .4]), np.array([0, .7, .9])] colors = [np.array([.3, .3, .3]), np.array([1, .2, 0]), np.array([.7, 0, .7]), np.array([0, .7, .9]), np.array([0,1,0])] # colors = [np.array([0, 0, 0]), np.array([0, 0, 0]),np.array([0, 0, 0]), np.array([0, 0, 0])] offset = [0,.2, .2, 0] # initialize figures fig, fig2, fig3, fig4, _, ax, ax2, ax3 = initialize_figures(self) # initialize all data for stats all_data = [[],[],[],[]] all_conditions = [] mouse_ID = []; m = 1 dist_data_EV_other_all = [] delta_ICs, delta_x_end = [], [] time_to_shelter, was_escape = [], [] repetitions = 1 for rand_select in range(repetitions): m = -1 # loop over experiments and conditions for c, (experiment, condition) in enumerate(zip(self.experiments, self.conditions)): num_trials_total = 0 num_trials_escape = 0 # extract experiments from nested list sub_experiments, sub_conditions = extract_experiments(experiment, condition) # get the number of trials number_of_trials = get_number_of_trials(sub_experiments, sub_conditions, self.analysis) number_of_mice = get_number_of_mice(sub_experiments, sub_conditions, self.analysis) t_total = 0 # initialize array to fill in with each trial's data edginess, end_idx, time_since_down, time_to_shelter, time_to_shelter_all, prev_edginess, scaling_factor, time_in_center, trial_num, _, _, dist_to_SH, dist_to_other_SH = \ initialize_variable_edginess(number_of_trials, self, sub_experiments) mouse_ID_trial = edginess.copy() # loop over each experiment and condition for e, (experiment, condition) in enumerate(zip(sub_experiments, sub_conditions)): if 'void' in experiment or 'dark' in experiment or ('off' in experiment and condition == 'no obstacle') or 'quick' in experiment: escape_duration = 18 elif 'food' in experiment: escape_duration = 12 else: escape_duration = 12 # elif 'up' in experiment and 'probe' in condition: # escape_duration = 12 # loop over each mouse for i, mouse in enumerate(self.analysis[experiment][condition]['start time']): m+=1 # initialize mouse data for stats mouse_data = [[],[],[],[]] print(mouse) skip_mouse = False if self.analysis_options['control'] and not mouse=='control': continue if not self.analysis_options['control'] and mouse=='control': continue # loop over each trial prev_homings = [] x_edges_used = [] t = 0 for trial in range(len(self.analysis[experiment][condition]['end time'][mouse])): trial_num += 1 # impose conditions if 'food' in experiment: if t > 12: continue if condition == 'no obstacle' and self.analysis[experiment][condition]['start time'][mouse][trial] < 20: continue num_trials_total += 1 elif 'void' in experiment: if t > 5: continue else: if t>2: continue # if trial > 2: continue num_trials_total += 1 # if trial!=2: continue # if 'off' in experiment and trial: continue # if trial < 3 and 'wall down' in experiment: continue # if condition == 'obstacle' and not 'non' in experiment and \ # self.analysis[experiment][condition]['start time'][mouse][trial] < 20: continue # if c == 0 and not (trial > 0): continue # if c == 1 and not (trial): continue # if c == 2 and not (trial == 0): continue # if trial and ('lights on off' in experiment and not 'baseline' in experiment): continue if 'Square' in experiment: HV_cutoff = .56 HV_cutoff = 0 y_idx = self.analysis[experiment][condition]['path'][mouse][trial][1] if y_idx[0] * scaling_factor > 50: continue else: # skip certain trials y_start = self.analysis[experiment][condition]['path'][mouse][trial][1][0] * scaling_factor x_start = self.analysis[experiment][condition]['path'][mouse][trial][0][0] * scaling_factor # print(y_start) # print(x_start) if y_start > 25: continue if abs(x_start-50) > 30: continue end_idx[trial_num] = self.analysis[experiment][condition]['end time'][mouse][trial] RT = self.analysis[experiment][condition]['RT'][mouse][trial] if np.isnan(end_idx[trial_num]) or (end_idx[trial_num] > escape_duration * fps): # if not ('up' in experiment and 'probe' in condition and not np.isnan(RT)): # mouse_data[3].append(0) continue ''' check for previous edgy homings ''' # if 'dark' in experiment or True: # num_prev_edge_vectors, x_edge = get_num_edge_vectors(self, experiment, condition, mouse, trial) # # print(num_prev_edge_vectors) # if num_prev_edge_vectors and c: continue # if not num_prev_edge_vectors and not c: continue # if num_prev_edge_vectors < 3 and (c==0): continue # if num_prev_edge_vectors > 0 and c < 4: continue # if t>1 and c == 2: continue # if num_prev_edge_vectors >= 2: print('prev edgy homing'); continue # if x_edge in x_edges_used: print('prev edgy escape'); continue # # print('-----------' + mouse + '--------------') # # if self.analysis[experiment][condition]['edginess'][mouse][trial] <= HV_cutoff: # print(' HV ') # else: # print(' EDGY ') # # edgy trial has occurred # print('EDGY TRIAL ' + str(trial)) # x_edges_used.append(x_edge) # # # select only *with* prev homings # if not num_prev_edge_vectors: # if not x_edge in x_edges_used: # if self.analysis[experiment][condition]['edginess'][mouse][trial] > HV_cutoff: # x_edges_used.append(x_edge) # continue # print(t) num_trials_escape += 1 # add data edginess[trial_num] = self.analysis[experiment][condition]['edginess'][mouse][trial] time_since_down[trial_num] = np.sqrt((x_start - 50)**2 + (y_start - 50)**2 )# self.analysis[experiment][condition]['start angle'][mouse][trial] print(edginess[trial_num]) if 'Square' in experiment: if edginess[trial_num] <=-.3: # and False: #.15 edginess[trial_num] = np.nan continue # edginess to current edge as opposed to specific edge if (('moves left' in experiment and condition == 'no obstacle') \ or ('moves right' in experiment and condition== 'obstacle')): # and False: if edginess[trial_num] <= -0: # and False: edginess[trial_num] = np.nan continue edginess[trial_num] = edginess[trial_num] - 1 # shelter edginess if False: y_pos = self.analysis[experiment][condition]['path'][mouse][trial][1][:int(end_idx[trial_num])] * scaling_factor x_pos = self.analysis[experiment][condition]['path'][mouse][trial][0][:int(end_idx[trial_num])] * scaling_factor # get the latter phase traj y_pos_1 = 55 y_pos_2 = 65 x_pos_1 = x_pos[np.argmin(abs(y_pos - y_pos_1))] x_pos_2 = x_pos[np.argmin(abs(y_pos - y_pos_2))] #where does it end up slope = (y_pos_2 - y_pos_1) / (x_pos_2 - x_pos_1) intercept = y_pos_1 - x_pos_1 * slope x_pos_proj = (80 - intercept) / slope # compared to x_pos_shelter_R = 40 #40.5 # defined as mean of null dist # if 'long' in self.labels[c]: # x_pos_shelter_R += 18 # compute the metric shelter_edginess = (x_pos_proj - x_pos_shelter_R) / 18 edginess[trial_num] = -shelter_edginess # if condition == 'obstacle' and 'left' in experiment:edginess[trial_num] = -edginess[trial_num] # for putting conditions together # get previous edginess #TEMPORARY COMMENT # if not t: # SH_data = self.analysis[experiment][condition]['prev homings'][mouse][-1] # time_to_shelter.append(np.array(SH_data[2])) # was_escape.append(np.array(SH_data[4])) if False: # or True: time_to_shelter, SR = get_prev_edginess(ETD, condition, experiment, mouse, prev_edginess, dist_to_SH, dist_to_other_SH, scaling_factor, self, traj_loc, trial, trial_num, edginess, delta_ICs, delta_x_end) print(prev_edginess[trial_num]) print(trial + 1) print('') # get time in center # time_in_center[trial_num] = self.analysis[experiment][condition]['time exploring obstacle'][mouse][trial] # time_in_center[trial_num] = num_PORHVs # if num_PORHVs <= 1: # edginess[trial_num] = np.nan # continue # if (prev_edginess[trial_num] < HV_cutoff and not t) or skip_mouse: # edginess[trial_num] = np.nan # skip_mouse = True # continue ''' qualify by prev homings ''' # if prev_edginess[trial_num] < .4: # and c: # edginess[trial_num] = np.nan # prev_edginess[trial_num] = np.nan # continue num_prev_edge_vectors, x_edge = get_num_edge_vectors(self, experiment, condition, mouse, trial, ETD = 10) # print(str(num_prev_edge_vectors) + ' EVs') # # if not num_prev_edge_vectors >= 1 and c ==0: # edginess[trial_num] = np.nan # t+=1 # continue # if not num_prev_edge_vectors < 1 and c ==1: # edginess[trial_num] = np.nan # t+=1 # continue # print(num_prev_edge_vectors) # if num_prev_edge_vectors !=0 and c==3: # edginess[trial_num] = np.nan # t+=1 # continue # if num_prev_edge_vectors != 1 and c == 2: # edginess[trial_num] = np.nan # t += 1 # continue # if num_prev_edge_vectors != 2 and num_prev_edge_vectors != 3 and c ==1: # edginess[trial_num] = np.nan # t += 1 # continue # # if num_prev_edge_vectors < 4 and c ==0: # edginess[trial_num] = np.nan # t += 1 # continue # # print(trial + 1) # print(prev_edginess[trial_num]) # print(edginess[trial_num]) # print('') # print(t) # get time since obstacle removal? # time_since_down[trial_num] = self.analysis[experiment][condition]['start time'][mouse][trial] - self.analysis[experiment]['probe']['start time'][mouse][0] # add data for stats mouse_data[0].append(int(edginess[trial_num] > HV_cutoff)) mouse_data[1].append(edginess[trial_num]) mouse_data[2].append(prev_edginess[trial_num]) mouse_data[3].append(self.analysis[experiment][condition]['start time'][mouse][trial] - self.analysis[experiment][condition]['start time'][mouse][0]) mouse_ID_trial[trial_num] = m t += 1 t_total += 1 #append data for stats if mouse_data[0]: all_data[0].append(mouse_data[0]) all_data[1].append(mouse_data[1]) all_data[2].append(mouse_data[2]) all_data[3].append(mouse_data[3]) all_conditions.append(c) mouse_ID.append(m); m+= 1 else: print(mouse) print('0 trials') # get prev homings time_to_shelter_all.append(time_to_shelter) dist_data_EV_other_all = np.append(dist_data_EV_other_all, dist_to_other_SH[edginess > HV_cutoff]) # print(t_total) ''' plot edginess by condition ''' # get the data # data = abs(edginess) data = edginess plot_data = data[~np.isnan(data)] # print(np.percentile(plot_data, 25)) # print(np.percentile(plot_data, 50)) # print(np.percentile(plot_data, 75)) # print(np.mean(plot_data > HV_cutoff)) # plot each trial scatter_axis = scatter_the_axis(c, plot_data) ax.scatter(scatter_axis[plot_data>HV_cutoff], plot_data[plot_data>HV_cutoff], color=edge_vector_color[::-1], s=15, zorder = 99) ax.scatter(scatter_axis[plot_data<=HV_cutoff], plot_data[plot_data<=HV_cutoff], color=homing_vector_color[::-1], s=15, zorder = 99) bp = ax.boxplot([plot_data, [0,0]], positions = [3 * c - .2, -10], showfliers=False, zorder=99) plt.setp(bp['boxes'], color=[.5,.5,.5], linewidth = 2) plt.setp(bp['whiskers'], color=[.5,.5,.5], linewidth = 2) plt.setp(bp['medians'], linewidth=2) ax.set_xlim([-1, 3 * len(self.experiments) - 1]) # ax.set_ylim([-.1, 1.15]) ax.set_ylim([-.1, 1.3]) #do kde try: if 'Square' in experiment: kde = fit_kde(plot_data, bw=.06) plot_kde(ax, kde, plot_data, z=3*c + .3, vertical=True, normto=.8, color=[.5,.5,.5], violin=False, clip=False, cutoff = HV_cutoff+0.0000001, cutoff_colors = [homing_vector_color[::-1], edge_vector_color[::-1]]) ax.set_ylim([-1.5, 1.5]) else: kde = fit_kde(plot_data, bw=.04) plot_kde(ax, kde, plot_data, z=3*c + .3, vertical=True, normto=1.3, color=[.5,.5,.5], violin=False, clip=True, cutoff = HV_cutoff, cutoff_colors = [homing_vector_color[::-1], edge_vector_color[::-1]]) except: pass # plot the polar plot or initial trajectories # plt.figure(fig4.number) fig4 = plt.figure(figsize=( 5, 5)) # ax4 = plt.subplot(1,len(self.experiments),len(self.experiments) - c, polar=True) ax4 = plt.subplot(1, 1, 1, polar=True) plt.axis('off') ax.margins(0, 0) ax.xaxis.set_major_locator(plt.NullLocator()) ax.yaxis.set_major_locator(plt.NullLocator()) ax4.set_xlim([-np.pi / 2 - .1, 0]) # ax4.set_xlim([-np.pi - .1, 0]) mean_value_color = max(0, min(1, np.mean(plot_data))) mean_value_color = np.sum(plot_data > HV_cutoff) / len(plot_data) mean_value = np.mean(plot_data) value_color = mean_value_color * edge_vector_color[::-1] + (1 - mean_value_color) * homing_vector_color[::-1] ax4.arrow(mean_value + 3 * np.pi / 2, 0, 0, 1.9, color=[abs(v)**1 for v in value_color], alpha=1, width = 0.05, linewidth=2) ax4.plot([0, 0 + 3 * np.pi / 2], [0, 2.25], color=[.5,.5,.5], alpha=1, linewidth=1, linestyle = '--') ax4.plot([0, 1 + 3 * np.pi / 2], [0, 2.25], color=[.5,.5,.5], alpha=1, linewidth=1, linestyle = '--') # ax4.plot([0, -1 + 3 * np.pi / 2], [0, 2.25], color=[.5, .5, .5], alpha=1, linewidth=1, linestyle='--') scatter_axis_EV = scatter_the_axis_polar(plot_data[plot_data > HV_cutoff], 2.25, 0) #0.05 scatter_axis_HV = scatter_the_axis_polar(plot_data[plot_data <= HV_cutoff], 2.25, 0) ax4.scatter(plot_data[plot_data > HV_cutoff] + 3 * np.pi/2, scatter_axis_EV, s = 30, color=edge_vector_color[::-1], alpha = .8, edgecolors = None) ax4.scatter(plot_data[plot_data <= HV_cutoff] + 3 * np.pi/2, scatter_axis_HV, s = 30, color=homing_vector_color[::-1], alpha=.8, edgecolors = None) fig4.savefig(os.path.join(self.summary_plots_folder, 'Angle comparison - ' + self.labels[c] + '.png'), format='png', transparent=True, bbox_inches='tight', pad_inches=0) fig4.savefig(os.path.join(self.summary_plots_folder, 'Angle comparison - ' + self.labels[c] + '.eps'), format='eps', transparent=True, bbox_inches='tight', pad_inches=0) # print(len(plot_data)) if len(plot_data) > 1 and False: # or True: ''' plot the correlation ''' # do both prev homings and time in center # np.array(time_since_down) # 'Time since removal' for plot_data_corr, fig_corr, ax_corr, data_label in zip([prev_edginess, time_in_center], [fig2, fig3], [ax2, ax3], ['Prior homings','Exploration']): # plot_data_corr = plot_data_corr[~np.isnan(data)] # plot data ax_corr.scatter(plot_data_corr, plot_data, color=colors[c], s=60, alpha=1, edgecolors=colors[c]/2, linewidth=1) #color=[.5, .5, .5] #edgecolors=[.2, .2, .2] # do correlation r, p = scipy.stats.pearsonr(plot_data_corr, plot_data) print(r, p) # do linear regression plot_data_corr, prediction = do_linear_regression(plot_data, plot_data_corr) # plot linear regresssion ax_corr.plot(plot_data_corr, prediction['Pred'].values, color=colors[c], linewidth=1, linestyle='--', alpha=.7) #color=[.0, .0, .0] ax_corr.fill_between(plot_data_corr, prediction['lower'].values, prediction['upper'].values, color=colors[c], alpha=.075) #color=[.2, .2, .2] fig_corr.savefig(os.path.join(self.summary_plots_folder, 'Edginess by ' + data_label + ' - ' + self.labels[c] + '.png'), format='png') fig_corr.savefig(os.path.join(self.summary_plots_folder, 'Edginess by ' + data_label + ' - ' + self.labels[c] + '.eps'), format='eps') # test correlation and stats thru permutation test # data_x = list(np.array(all_data[2])[np.array(all_conditions) == c]) # data_y = list(np.array(all_data[1])[np.array(all_conditions) == c]) # permutation_correlation(data_x, data_y, iterations=10000, two_tailed=False, pool_all = True) print(num_trials_escape) print(num_trials_total) print(num_trials_escape / num_trials_total) # save the plot fig.savefig(os.path.join(self.summary_plots_folder, 'Edginess comparison.png'), format='png', bbox_inches='tight', pad_inches=0) fig.savefig(os.path.join(self.summary_plots_folder, 'Edginess comparison.eps'), format='eps', bbox_inches='tight', pad_inches=0) # fig5.savefig(os.path.join(self.summary_plots_folder, 'Angle dist comparison.png'), format='png', bbox_inches='tight', pad_inches=0) # fig5.savefig(os.path.join(self.summary_plots_folder, 'Angle dist comparison.eps'), format='eps', bbox_inches='tight', pad_inches=0) plt.show() time_to_shelter_all = np.concatenate(list(flatten(time_to_shelter_all))).astype(float) np.percentile(time_to_shelter_all, 25) np.percentile(time_to_shelter_all, 75) group_A = list(np.array(all_data[0])[np.array(all_conditions) == 2]) group_B = list(np.array(all_data[0])[np.array(all_conditions) == 3]) permutation_test(group_A, group_B, iterations = 10000, two_tailed = False) group_A = list(np.array(all_data[1])[(np.array(all_conditions) == 1) + (np.array(all_conditions) == 2)]) group_B = list(np.array(all_data[1])[np.array(all_conditions) == 3]) permutation_test(group_A, group_B, iterations = 10000, two_tailed = False) import pandas df = pandas.DataFrame(data={"mouse_id": mouse_ID, "condition": all_conditions, "x-data": all_data[2], "y-data": all_data[1]}) df.to_csv("./Foraging Path Types.csv", sep=',', index=False) group_B = list(flatten(np.array(all_data[0])[np.array(all_conditions) == 1])) np.sum(group_B) / len(group_B) np.percentile(abs(time_since_down[edginess < HV_cutoff]), 50) np.percentile(abs(time_since_down[edginess < HV_cutoff]), 25) np.percentile(abs(time_since_down[edginess < HV_cutoff]), 75) np.percentile(abs(time_since_down[edginess > HV_cutoff]), 50) np.percentile(abs(time_since_down[edginess > HV_cutoff]), 25) np.percentile(abs(time_since_down[edginess > HV_cutoff]), 75) group_A = [[d] for d in abs(time_since_down[edginess > HV_cutoff])] group_B = [[d] for d in abs(time_since_down[edginess < HV_cutoff])] permutation_test(group_A, group_B, iterations=10000, two_tailed=True) WE = np.concatenate(was_escape) TTS_spont = np.concatenate(time_to_shelter)[~WE] TTS_escape = np.concatenate(time_to_shelter)[WE] trials = np.array(list(flatten(all_data[3]))) edgy = np.array(list(flatten(all_data[0]))) np.mean(edgy[trials == 0]) np.mean(edgy[trials == 1]) np.mean(edgy[trials == 2]) np.mean(edgy[trials == 3]) np.mean(edgy[trials == 4]) np.mean(edgy[trials == 5]) np.mean(edgy[trials == 6]) np.mean(edgy[trials == 7]) np.mean(edgy[trials == 8]) np.mean(edgy[trials == 9]) np.mean(edgy[trials == 10]) np.mean(edgy[trials == 11]) np.mean(edgy[trials == 12]) np.mean(edgy[trials == 13]) ''' TRADITIONAL METRICS ''' def plot_metrics_by_strategy(self): ''' plot the escape paths ''' # initialize parameters edge_vector_color = np.array([1, .95, .85]) homing_vector_color = np.array([.725, .725, .725]) non_escape_color = np.array([0,0,0]) ETD = 10#0 traj_loc = 40 fps = 30 # escape_duration = 12 #12 #9 #12 9 for food 12 for dark HV_cutoff = .681 #.65 edgy_cutoff = .681 # loop over experiments and conditions for c, (experiment, condition) in enumerate(zip(self.experiments, self.conditions)): # extract experiments from nested list sub_experiments, sub_conditions = extract_experiments(experiment, condition) # get the number of trials number_of_trials = get_number_of_trials(sub_experiments, sub_conditions, self.analysis) number_of_mice = get_number_of_mice(sub_experiments, sub_conditions, self.analysis) # initialize array to fill in with each trial's data efficiency, efficiency_RT, end_idx, num_prev_homings_EV, duration_RT, duration, prev_edginess, edginess, _, _, _, _, \ _, _, _, _, _, scaling_factor, time, trial_num, trials, edginess, avg_speed, avg_speed_RT, peak_speed, RT, escape_speed, strategy = \ initialize_variables_efficiency(number_of_trials, self, sub_experiments) mouse_id = efficiency.copy() m = 0 # loop over each experiment and condition for e, (experiment, condition) in enumerate(zip(sub_experiments, sub_conditions)): # loop over each mouse for i, mouse in enumerate(self.analysis[experiment][condition]['speed']): print(mouse) # control analysis if self.analysis_options['control'] and not mouse=='control': continue if not self.analysis_options['control'] and mouse=='control': continue # loop across all trials t = 0 for trial in range(len(self.analysis[experiment][condition]['end time'][mouse])): if 'food' in experiment: escape_duration = 9 else: escape_duration = 12 trial_num += 1 # impose coniditions - escape duration end_time = self.analysis[experiment][condition]['end time'][mouse][trial] if np.isnan(end_time) or (end_time > (escape_duration * fps)): continue # skip certain trials y_start = self.analysis[experiment][condition]['path'][mouse][trial][1][0] * scaling_factor x_start = self.analysis[experiment][condition]['path'][mouse][trial][0][0] * scaling_factor # needs to start at top if y_start > 25: continue if abs(x_start - 50) > 30: continue # get the strategy used # edgy_escape = self.analysis[experiment][condition]['edginess'][mouse][trial] > edgy_cutoff # is it a homing vector # strategy_code = 0 # TEMPORARY COMMENTING # if not edgy_escape: # if self.analysis[experiment][condition]['edginess'][mouse][trial] < HV_cutoff: strategy_code = 0 # homing vector # else: continue # else: # get the strategy used -- NUMBER OF PREVIOUS EDGE VECTOR HOMINGS time_to_shelter, SR = get_prev_edginess(ETD, condition, experiment, mouse, prev_edginess, [], [], scaling_factor, self, traj_loc, trial, trial_num, edginess, [], []) if t > 2: continue # if c == 0 and trial: continue # if c == 1 and trial != 2: continue t+=1 # if prev_edginess[trial_num] >= HV_cutoff: strategy_code = 1 # path learning # elif prev_edginess[trial_num] < HV_cutoff: strategy_code = 2 # map-based # else: continue # how many prev homings to that edge: if 0, then map-based, if >1, then PL if len(self.analysis[experiment]['probe']['start time'][mouse]): edge_time = self.analysis[experiment]['probe']['start time'][mouse][0] - 1 else: edge_time = 19 edge_time = np.min((edge_time, self.analysis[experiment][condition]['start time'][mouse][trial])) # print(edge_time) num_edge_vectors, _ = get_num_edge_vectors(self, experiment, condition, mouse, trial, ETD=ETD, time_threshold=edge_time, other_side = False) num_edge_vectors = get_num_homing_vectors(self, experiment, condition, mouse, trial, spontaneous = False, time_threshold = edge_time) print(num_edge_vectors) # if 'wall up' in experiment and 'no' in condition: num_edge_vectors = 0 # print(num_edge_vectors) if False or True: if num_edge_vectors == 1: strategy_code = 1 # print('EV -- ' + mouse + ' - trial ' + str(trial)) elif num_edge_vectors == 0: strategy_code = 0 # print('NO EV -- ' + mouse + ' - trial ' + str(trial)) else: continue else: strategy_code = 0 strategy[trial_num] = strategy_code # add data for each metric RT[trial_num] = self.analysis[experiment][condition]['RT'][mouse][trial] avg_speed[trial_num] = np.mean(self.analysis[experiment][condition]['speed'][mouse][trial][10*fps : 10*fps+int(end_time)]) * scaling_factor * 30 avg_speed_RT[trial_num] = np.mean(self.analysis[experiment][condition]['speed'][mouse][trial][10*fps + int(RT[trial_num]*30) : 10*fps+int(end_time)]) * scaling_factor * 30 peak_speed[trial_num] = np.max(self.analysis[experiment][condition]['speed'][mouse][trial][10*fps : 10*fps+int(end_time)])*fps*scaling_factor escape_speed[trial_num] = self.analysis[experiment][condition]['optimal path length'][mouse][trial] * scaling_factor / (end_time/30) efficiency[trial_num] = np.min((1, self.analysis[experiment][condition]['optimal path length'][mouse][trial] / \ self.analysis[experiment][condition]['full path length'][mouse][trial])) efficiency_RT[trial_num] = np.min((1, self.analysis[experiment][condition]['optimal RT path length'][mouse][trial] / \ self.analysis[experiment][condition]['RT path length'][mouse][trial])) duration_RT[trial_num] = (end_time / fps - RT[trial_num]) / self.analysis[experiment][condition]['optimal RT path length'][mouse][trial] / scaling_factor * 100 duration[trial_num] = end_time / fps / self.analysis[experiment][condition]['optimal path length'][mouse][trial] / scaling_factor * 100 # duration[trial_num] = trial # duration_RT[trial_num] = self.analysis[experiment][condition]['start time'][mouse][trial] avg_speed[trial_num] = self.analysis[experiment][condition]['time exploring far (pre)'][mouse][trial] / 60 # add data for stats mouse_id[trial_num] = m m+=1 # for metric, data in zip(['Reaction time', 'Peak speed', 'Avg speed', 'Path efficiency - RT','Duration - RT', 'Duration'],\ # [RT, peak_speed, avg_speed_RT, efficiency_RT, duration_RT, duration]): # for metric, data in zip(['Reaction time', 'Avg speed', 'Path efficiency - RT'], #,'Peak speed', 'Duration - RT', 'Duration'], \ # [RT, avg_speed_RT, efficiency_RT]): #peak_speed, , duration_RT, duration for metric, data in zip(['Path efficiency - RT'], [efficiency_RT]): # for metric, data in zip([ 'Duration - RT'], # [ duration_RT]): # for metric, data in zip(['trial', 'time', 'time exploring back'], # [duration, duration_RT, avg_speed]): # format data x_data = strategy[~np.isnan(data)] y_data = data[~np.isnan(data)] if not c: OF_data = y_data # make figure fig, ax = plt.subplots(figsize=(11, 9)) plt.axis('off') # ax.margins(0, 0) ax.xaxis.set_major_locator(plt.NullLocator()) ax.yaxis.set_major_locator(plt.NullLocator()) # ax.set_title(metric) if 'Reaction time' in metric: ax.plot([-.75, 3], [0, 0], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [1, 1], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [2, 2], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [3, 3], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [4, 4], linestyle='--', color=[.5, .5, .5, .5]) elif 'Peak speed' in metric: ax.plot([-.75, 3], [40, 40], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [80, 80], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [120, 120], linestyle='--', color=[.5, .5, .5, .5]) elif 'Avg speed' in metric: ax.plot([-.75, 3], [25, 25], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [50, 50], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [75, 75], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [0, 0], linestyle='--', color=[.5, .5, .5, .5]) elif 'Path efficiency' in metric: ax.plot([-.75, 3], [.5,.5], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [.75, .75], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [1, 1], linestyle='--', color=[.5, .5, .5, .5]) elif 'Duration' in metric: ax.plot([-.75, 3], [0, 0], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [10, 10], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [5, 5], linestyle='--', color=[.5, .5, .5, .5]) elif 'time' == metric: ax.plot([-.75, 3], [0, 0], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [10, 10], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [20, 20], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [30, 30], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [40, 40], linestyle='--', color=[.5, .5, .5, .5]) elif 'exploring' in metric: ax.plot([-.75, 3], [2.5, 2.5], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [5.0, 5.0], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [7.5, 7.5], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [0, 0], linestyle='--', color=[.5, .5, .5, .5]) #initialize stats array stats_data = [[], [], []] # go thru each strategy for s in [0,1,2]: # format data if not np.sum(x_data==s): continue plot_data = y_data[x_data==s] median = np.percentile(plot_data, 50); third_quartile = np.percentile(plot_data, 75); first_quartile = np.percentile(plot_data, 25) # print(first_quartile) # print(median) # print(third_quartile) # if 'Reaction' in metric: print(str(first_quartile), str(median), str(third_quartile)) IQR = third_quartile - first_quartile # remove outliers if not metric == 'trial': outliers = abs(plot_data - median) > 2*IQR # plot_data = plot_data[~outliers] # plot all data ax.scatter(np.ones_like(plot_data)*s, plot_data, color=[0,0,0], s=30, zorder = 99) # plot kde if 'efficiency' in metric: bw_factor = .02 elif 'speed' in metric or 'efficiency' in metric or metric == 'time': bw_factor = .04 elif 'exploring' in metric: bw_factor = .06 elif 'Duration' in metric: bw_factor = .07 else: bw_factor = .09 kde = fit_kde(plot_data, bw=np.median(y_data)*bw_factor) plot_kde(ax, kde, plot_data, z= s + .1, vertical=True, normto=.4, color=[.75, .75, .75], violin=False, clip=True) # plot errorbar ax.errorbar(s - .15, median, yerr=np.array([[median - first_quartile], [third_quartile - median]]), color=[0, 0, 0], capsize=10, capthick=3, alpha=1, linewidth=3) ax.scatter(s - .15, median, color=[0, 0, 0], s=175, alpha=1) # print(len(plot_data)) # get mouse ids for stats mouse_id_stats = mouse_id[~np.isnan(data)] mouse_id_stats = mouse_id_stats[x_data==s] if not metric == 'trial': mouse_id_stats = mouse_id_stats[~outliers] # for m in np.unique(mouse_id_stats): # stats_data[s].append( list(plot_data[mouse_id_stats==m]) ) print(metric) # for ss in [[0,1]]: #, [0,2], [1,2]]: # group_A = stats_data[ss[0]] # group_B = stats_data[ss[1]] # permutation_test(group_A, group_B, iterations=10000, two_tailed=True) # save figure fig.savefig(os.path.join(self.summary_plots_folder, metric + ' - ' + self.labels[c] + '.png'), format='png', bbox_inches='tight', pad_inches=0) fig.savefig(os.path.join(self.summary_plots_folder, metric + ' - ' + self.labels[c] + '.eps'), format='eps', bbox_inches='tight', pad_inches=0) plt.show() plt.close('all') group_A = [[e] for e in tr1_eff] group_B = [[e] for e in tr3_eff] group_C = [[e] for e in OF_eff] permutation_test(group_A, group_B, iterations=10000, two_tailed=True) permutation_test(group_A, group_C, iterations=10000, two_tailed=True) permutation_test(group_B, group_C, iterations=10000, two_tailed=True) ''' DIST OF TURN ANGLES ''' # def plot_metrics_by_strategy(self): # ''' plot the escape paths ''' # # ETD = 10 # traj_loc = 40 # # fps = 30 # escape_duration = 12 # # colors = [[.3,.3,.3,.5], [.5,.5,.8, .5]] # # # make figure # fig, ax = plt.subplots(figsize=(11, 9)) # fig2, ax2 = plt.subplots(figsize=(11, 9)) # # plt.axis('off') # # ax.margins(0, 0) # # ax.xaxis.set_major_locator(plt.NullLocator()) # # ax.yaxis.set_major_locator(plt.NullLocator()) # all_angles_pre = [] # all_angles_escape = [] # # # # loop over experiments and conditions # for c, (experiment, condition) in enumerate(zip(self.experiments, self.conditions)): # # extract experiments from nested list # sub_experiments, sub_conditions = extract_experiments(experiment, condition) # # get the number of trials # number_of_trials = get_number_of_trials(sub_experiments, sub_conditions, self.analysis) # number_of_mice = get_number_of_mice(sub_experiments, sub_conditions, self.analysis) # # initialize array to fill in with each trial's data # shape = self.analysis[sub_experiments[0]]['obstacle']['shape'] # scaling_factor = 100 / shape[0] # turn_angles_pre = [] # turn_angles_escape = [] # # # loop over each experiment and condition # for e, (experiment, condition) in enumerate(zip(sub_experiments, sub_conditions)): # # loop over each mouse # for i, mouse in enumerate(self.analysis[experiment][condition]['speed']): # print(mouse) # # control analysis # if self.analysis_options['control'] and not mouse=='control': continue # if not self.analysis_options['control'] and mouse=='control': continue # # loop across all trials # t = 0 # for trial in range(len(self.analysis[experiment][condition]['end time'][mouse])): # # impose coniditions - escape duration # end_time = self.analysis[experiment][condition]['end time'][mouse][trial] # if np.isnan(end_time) or (end_time > (escape_duration * fps)): continue # # # ## COMMENT ONE OR THE OTHER IF TESTING PRE OR ESCAPE # #pre # # if trial < 2: continue # # if t: continue # # # escape # if t > 2: continue # # # skip certain trials # y_start = self.analysis[experiment][condition]['path'][mouse][trial][1][0] * scaling_factor # x_start = self.analysis[experiment][condition]['path'][mouse][trial][0][0] * scaling_factor # # needs to start at top # if y_start > 25: continue # if abs(x_start - 50) > 30: continue # # turn_angles_pre.append(list(abs(np.array(self.analysis[experiment][condition]['prev movements'][mouse][trial][3])))) # >145 # turn_angles_escape.append(abs(self.analysis[experiment][condition]['movement'][mouse][trial][2])) # >145 # # # # turn_angles_pre.append(list(np.array(self.analysis[experiment][condition]['prev movements'][mouse][trial][3]))) # # turn_angles_escape.append(self.analysis[experiment][condition]['movement'][mouse][trial][2]) # # t += 1 # # # # # format data # hist_data_pre = np.array(list(flatten(turn_angles_pre))) # hist_data_escape = np.array(list(flatten(turn_angles_escape))) # # # for permutation test # # all_angles_pre.append(turn_angles_pre) # # all_angles_escape.append([[tae] for tae in turn_angles_escape]) # # ax.set_title('Prior movement angles') # ax2.set_title('Escape movement angles') # ax.plot([0, 0], [0, .4], linestyle='--', color=[.5, .5, .5, .5]) # ax.plot([90, 90],[0, .4], linestyle='--', color=[.5, .5, .5, .5]) # ax.plot([180, 180],[0, .4], linestyle='--', color=[.5, .5, .5, .5]) # ax2.plot([0, 0], [0, .4], linestyle='--', color=[.5, .5, .5, .5]) # ax2.plot([90, 90],[0, .4], linestyle='--', color=[.5, .5, .5, .5]) # ax2.plot([180, 180],[0, .4], linestyle='--', color=[.5, .5, .5, .5]) # # # format data # bin_width = 30 # hist_pre, n, _ = ax.hist(hist_data_pre, bins=np.arange(-0, 180+bin_width, bin_width), color=colors[c], weights = np.ones_like(hist_data_pre) * 1/ len(hist_data_pre)) # hist_escape, n, _ = ax2.hist(hist_data_escape, bins=np.arange(-0, 180+bin_width, bin_width), color=colors[c], weights = np.ones_like(hist_data_escape) * 1/ len(hist_data_escape)) # # count_pre, n = np.histogram(hist_data_pre, bins=np.arange(-0, 180+bin_width, bin_width)) # count_escape, n = np.histogram(hist_data_escape, bins=np.arange(-0, 180+bin_width, bin_width)) # # # for chi squared # all_angles_pre.append(count_pre) # all_angles_escape.append(count_escape) # # # # save figure # fig.savefig(os.path.join(self.summary_plots_folder, 'Prior Angle dist.png'), format='png', bbox_inches='tight', pad_inches=0) # fig.savefig(os.path.join(self.summary_plots_folder, 'Prior Angle dist.eps'), format='eps', bbox_inches='tight', pad_inches=0) # # save figure # fig2.savefig(os.path.join(self.summary_plots_folder, 'Escape Angle dist.png'), format='png', bbox_inches='tight', pad_inches=0) # fig2.savefig(os.path.join(self.summary_plots_folder, 'Escape Angle dist.eps'), format='eps', bbox_inches='tight', pad_inches=0) # # plt.show() # # # scipy.stats.chi2_contingency(all_angles_pre) # scipy.stats.chi2_contingency(all_angles_escape) # # # group_A = all_angles_pre[0] # group_B = all_angles_pre[1] # permutation_test(group_A, group_B, iterations = 10000, two_tailed = True) # # group_A = all_angles_escape[0] # group_B = all_angles_escape[1] # permutation_test(group_A, group_B, iterations = 10000, two_tailed = True) # # plt.close('all') # # ''' # DIST OF EDGE VECTORS # ''' # def plot_metrics_by_strategy(self): # ''' plot the escape paths ''' # # ETD = 10 # traj_loc = 40 # # fps = 30 # escape_duration = 12 # # dist_thresh = 5 # time_thresh = 20 # # colors = [[.3,.3,.3,.5], [.5,.5,.8, .5]] # # # make figure # fig1, ax1 = plt.subplots(figsize=(11, 9)) # fig2, ax2 = plt.subplots(figsize=(11, 9)) # # plt.axis('off') # # ax.margins(0, 0) # # ax.xaxis.set_major_locator(plt.NullLocator()) # # ax.yaxis.set_major_locator(plt.NullLocator()) # all_EVs = [] # all_HVs = [] # # # # loop over experiments and conditions # for c, (experiment, condition) in enumerate(zip(self.experiments, self.conditions)): # # extract experiments from nested list # sub_experiments, sub_conditions = extract_experiments(experiment, condition) # # get the number of trials # number_of_trials = get_number_of_trials(sub_experiments, sub_conditions, self.analysis) # number_of_mice = get_number_of_mice(sub_experiments, sub_conditions, self.analysis) # # initialize array to fill in with each trial's data # shape = self.analysis[sub_experiments[0]]['obstacle']['shape'] # scaling_factor = 100 / shape[0] # EVs = [] # HVs = [] # edge_vector_time_exp = [] # # # loop over each experiment and condition # for e, (experiment, condition) in enumerate(zip(sub_experiments, sub_conditions)): # # loop over each mouse # for i, mouse in enumerate(self.analysis[experiment][condition]['speed']): # print(mouse) # # control analysis # if self.analysis_options['control'] and not mouse=='control': continue # if not self.analysis_options['control'] and mouse=='control': continue # # just take the last trial # trial = len(self.analysis[experiment][condition]['start time'][mouse])-1 # if trial < 0: # if condition == 'obstacle': # condition_use = 'no obstacle' # trial = 0 # elif condition == 'no obstacle': # condition_use = 'obstacle' # trial = len(self.analysis[experiment][condition]['start time'][mouse])-1 # if mouse == 'CA7220': trial = 1 #compensate for extra vid # else: condition_use = condition # # # get the prev homings # SH_data = self.analysis[experiment][condition_use]['prev homings'][mouse][trial] # # # get their start time # homing_time = np.array(SH_data[3]) # edge_vector_time_exp.append(list(homing_time)) # # # get their x value # SH_x = np.array(SH_data[0]) # # # only use spontaneous # stim_evoked = np.array(SH_data[4]) # SH_x = SH_x[~stim_evoked] # homing_time = homing_time[~stim_evoked] # # # normalize to 20 min # SH_x = SH_x[homing_time < time_thresh] / np.min((time_thresh, self.analysis[experiment][condition_use]['start time'][mouse][trial])) * 20 # # # get number of edge vectors # num_edge_vectors = np.sum(abs(SH_x - 25) < dist_thresh) + np.sum(abs(SH_x - 75) < dist_thresh) # num_homing_vectors = np.sum(abs(SH_x - 50) < dist_thresh) # print(num_edge_vectors) # # # # get the prev anti homings # anti_SH_data = self.analysis[experiment][condition_use]['prev anti-homings'][mouse][trial] # # # get their start time # homing_time = np.array(anti_SH_data[3]) # edge_vector_time_exp.append(list(homing_time)) # # # get their x value # anti_SH_x = np.array(anti_SH_data[0]) # # # limit to 20 min # anti_SH_x = anti_SH_x[homing_time < time_thresh] / np.min((time_thresh, self.analysis[experiment][condition_use]['start time'][mouse][trial])) * 20 # # # get number of edge vectors # num_anti_edge_vectors = np.sum(abs(anti_SH_x - 25) < dist_thresh) + np.sum(abs(anti_SH_x - 75) < dist_thresh) # num_anti_homing_vectors = np.sum(abs(anti_SH_x - 50) < dist_thresh) # print(num_anti_edge_vectors) # # # append to list # EVs.append(num_edge_vectors + num_anti_edge_vectors ) # HVs.append(num_edge_vectors + num_anti_edge_vectors - (num_homing_vectors + num_anti_homing_vectors)) # print(EVs) # all_EVs.append(EVs) # all_HVs.append(HVs) # # # make timing hist # plt.figure() # plt.hist(list(flatten(edge_vector_time_exp)), bins=np.arange(0, 22.5, 2.5)) #, color=condition_colors[c]) # # # plot EVs and HVs # for plot_data, ax, fig in zip([EVs, HVs], [ax1, ax2], [fig1, fig2]): # # scatter_axis = scatter_the_axis(c * 4 / 3 + .5 / 3, plot_data) # ax.scatter(scatter_axis, plot_data, color=[0, 0, 0], s=25, zorder=99) # # do kde # kde = fit_kde(plot_data, bw=.5) # plot_kde(ax, kde, plot_data, z=4 * c + .8, vertical=True, normto=1.2, color=[.5, .5, .5], violin=False, clip=False) # True) # # # save figure # fig.savefig(os.path.join(self.summary_plots_folder, 'EV dist - ' + self.labels[c] + '.png'), format='png', bbox_inches='tight', pad_inches=0) # fig.savefig(os.path.join(self.summary_plots_folder, 'EV dist - ' + self.labels[c] + '.eps'), format='eps', bbox_inches='tight', pad_inches=0) # # # plt.show() # # # group_A = all_EVs[1] # group_B = all_EVs[2] # permutation_test(group_A, group_B, iterations = 10000, two_tailed = True) # # group_A = all_HVs[0] # group_B = all_HVs[1] # permutation_test(group_A, group_B, iterations = 10000, two_tailed = True) # # plt.close('all') ''' PREDICTION PLOTS, BY TURN ANGLE OR EXPLORATION/EDGINESS | | v ''' def plot_prediction(self): by_angle_not_edginess = False if by_angle_not_edginess: # initialize parameters fps = 30 escape_duration = 12 ETD = 10 #4 traj_loc = 40 # initialize figures fig1, ax1, fig2, ax2, fig3, ax3 = initialize_figures_prediction(self) plt.close(fig2); plt.close(fig3) # loop over experiments and conditions for c, (experiment, condition) in enumerate(zip(self.experiments, self.conditions)): # extract experiments from nested list sub_experiments, sub_conditions = extract_experiments(experiment, condition) # get the number of trials number_of_trials = get_number_of_trials(sub_experiments, sub_conditions, self.analysis) number_of_mice = get_number_of_mice(sub_experiments, sub_conditions, self.analysis) mouse_trial_list = [] IC_x_all, IC_y_all, IC_angle_all, IC_time_all, turn_angles_all = [], [], [], [], [] # initialize array to fill in with each trial's data efficiency, efficiency_RT, end_idx, x_pred, y_pred, angle_pred, time_pred, mean_pred, initial_body_angle, initial_x, initial_y, x_edge, _, \ _, _, _, _, scaling_factor, time, trial_num, trials, edginess, prev_edginess, dist_to_SH, dist_to_other_SH, RT_all, avg_speed, _ = \ initialize_variables_efficiency(number_of_trials, self, sub_experiments) # initialize array to fill in with each trial's data edginess, end_idx, angle_turned, _, _, prev_edginess, scaling_factor, _, trial_num, _, _, dist_to_SH, dist_to_other_SH = \ initialize_variable_edginess(number_of_trials, self, sub_experiments) for shuffle_time in [False, True]: angle_turned_all, x_pred_all, y_pred_all, angle_pred_all, time_pred_all, mean_pred_all = [], [], [], [], [], [] num_repeats = shuffle_time * 499 + 1 #* 19 num_repeats = shuffle_time * 19 + 1 # * 19 prediction_scores_all = [] for r in range(num_repeats): trial_num = -1 # loop over each experiment and condition for e, (experiment_real, condition_real) in enumerate(zip(sub_experiments, sub_conditions)): # loop over each mouse for i, mouse_real in enumerate(self.analysis[experiment_real][condition_real]['start time']): if self.analysis_options['control'] and not mouse_real=='control': continue if not self.analysis_options['control'] and mouse_real=='control': continue # loop over each trial prev_homings = [] t = 0 for trial_real in range(len(self.analysis[experiment_real][condition_real]['end time'][mouse_real])): trial_num += 1 # impose conditions if t > 2: continue end_idx[trial_num] = self.analysis[experiment_real][condition_real]['end time'][mouse_real][trial_real] if np.isnan(end_idx[trial_num]): continue if (end_idx[trial_num] > escape_duration * fps): continue # skip certain trials y_start = self.analysis[experiment_real][condition_real]['path'][mouse_real][trial_real][1][0] * scaling_factor x_start = self.analysis[experiment_real][condition_real]['path'][mouse_real][trial_real][0][0] * scaling_factor if y_start > 25: continue if abs(x_start-50) > 30: continue # use different data if shuffle: # if shuffle_time: # experiment, condition, mouse, trial = mouse_trial_list[np.random.randint(len(mouse_trial_list))] # else: # experiment, condition, mouse, trial = experiment_real, condition_real, mouse_real, trial_real ''' just use real mouse ''' experiment, condition, mouse, trial = experiment_real, condition_real, mouse_real, trial_real ''' control ICs, real escape ''' # # get the angle turned during the escape angle_turned[trial_num] = self.analysis[experiment_real][condition_real]['movement'][mouse_real][trial_real][2] # angle_turned[trial_num] = abs(self.analysis[experiment_real][condition_real]['edginess'][mouse_real][trial_real]) # get the angle turned, delta x, delta y, and delta phi of previous homings bout_start_angle = self.analysis[experiment_real][condition_real]['movement'][mouse_real][trial_real][1] bout_start_position = self.analysis[experiment_real][condition_real]['movement'][mouse_real][trial_real][0] start_time = self.analysis[experiment_real][condition_real]['start time'][mouse_real][trial_real] # get initial conditions and endpoint quantities IC_x = np.array(self.analysis[experiment][condition]['prev movements'][mouse][trial][0][-ETD:]) IC_y = np.array(self.analysis[experiment][condition]['prev movements'][mouse][trial][1][-ETD:]) IC_angle = np.array(self.analysis[experiment][condition]['prev movements'][mouse][trial][2][-ETD:]) IC_time = np.array(self.analysis[experiment][condition]['prev homings'][mouse][trial][3][-ETD:]) turn_angles = np.array(self.analysis[experiment][condition]['prev movements'][mouse][trial][3][-ETD:]) # MOE = 10 # x_edge_trial = self.analysis[experiment][condition]['x edge'][mouse][trial] # SH_x = np.array(self.analysis[experiment][condition]['prev homings'][mouse][trial][0][-ETD:]) # if x_edge_trial > 50 and np.sum(SH_x > 25 + MOE): # IC_x = IC_x[SH_x > 25 + MOE] # IC_y = IC_y[SH_x > 25 + MOE] # IC_angle = IC_angle[SH_x > 25 + MOE] # IC_time = IC_time[SH_x > 25 + MOE] # turn_angles = turn_angles[SH_x > 25 + MOE] # elif np.sum(SH_x > 75 - MOE): # IC_x = IC_x[SH_x > 75 - MOE] # IC_y = IC_y[SH_x > 75 - MOE] # IC_angle = IC_angle[SH_x > 75 - MOE] # IC_time = IC_time[SH_x > 75 - MOE] # turn_angles = turn_angles[SH_x > 75 - MOE] if not shuffle_time: # gather previous movements IC_x_all = np.concatenate((IC_x_all, IC_x)) IC_y_all = np.concatenate((IC_y_all, IC_y)) IC_angle_all = np.concatenate((IC_angle_all, IC_angle)) IC_time_all = np.concatenate((IC_time_all, IC_time)) turn_angles_all = np.concatenate((turn_angles_all, turn_angles)) else: # sample randomly from these movements random_idx = np.random.choice(len(IC_x_all), len(IC_x_all), replace = False) IC_x = IC_x_all[random_idx] IC_y = IC_y_all[random_idx] IC_angle = IC_angle_all[random_idx] IC_time = IC_time_all[random_idx] turn_angles = turn_angles_all[random_idx] # calculate difference in ICs delta_x = abs( np.array(IC_x - bout_start_position[0]) ) delta_y = abs( np.array(IC_y - bout_start_position[1]) ) delta_angle = abs( np.array(IC_angle - bout_start_angle) ) delta_angle[delta_angle > 180] = 360 - delta_angle[delta_angle > 180] delta_time = start_time - np.array(IC_time) ''' prediction data -- angle turned is a function of prev movement and ICs ''' x_weights = (1 / (delta_x+.0001)) / np.sum(1/(delta_x+.0001)) y_weights = (1 / (delta_y+.0001)) / np.sum(1 / (delta_y+.0001)) angle_weights = (1 / (delta_angle+.0001)) / np.sum(1 / (delta_angle+.0001)) time_weights = (1 / (delta_time+.0001)) / np.sum(1 / (delta_time+.0001)) x_pred[trial_num] = np.sum(turn_angles * x_weights) y_pred[trial_num] = np.sum(turn_angles * y_weights) angle_pred[trial_num] = np.sum(turn_angles * angle_weights) time_pred[trial_num] = np.sum(turn_angles * time_weights) * 0 mean_pred[trial_num] = np.mean(turn_angles) * 0 # try mean pred is the *closest* angle to real # x_pred[trial_num] = 0 # y_pred[trial_num] = 0 # angle_pred[trial_num] = 0 # time_pred[trial_num] = 0 # mean_pred[trial_num] = turn_angles[np.argmin( abs(turn_angles - angle_turned[trial_num]) )] # ''' turn angle prediction to edginess prediction ''' if not shuffle_time: edginess[trial_num] = abs(self.analysis[experiment][condition]['edginess'][mouse][trial]) initial_body_angle[trial_num] = self.analysis[experiment_real][condition_real]['movement'][mouse_real][trial_real][1] initial_x[trial_num] = self.analysis[experiment_real][condition_real]['movement'][mouse_real][trial_real][0][0] initial_y[trial_num] = self.analysis[experiment_real][condition_real]['movement'][mouse_real][trial_real][0][1] x_edge[trial_num] = self.analysis[experiment][condition]['x edge'][mouse][trial_real] # add mouse and trial to list of mice and trials if not shuffle_time: mouse_trial_list.append([experiment, condition, mouse, trial]) t+=1 ''' concatenate??... ''' # angle_turned_all = np.concatenate((angle_turned_all, angle_turned)) # # x_pred_all = np.concatenate((x_pred_all, x_pred)) # y_pred_all = np.concatenate((y_pred_all, y_pred)) # angle_pred_all = np.concatenate((angle_pred_all, angle_pred)) # time_pred_all = np.concatenate((time_pred_all, time_pred )) # mean_pred_all = np.concatenate((mean_pred_all, mean_pred )) # # # IC_angle_array = np.ones((len(angle_turned_all[~np.isnan(angle_turned_all)]), 5)) # angle_metrics = [x_pred_all[~np.isnan(angle_turned_all)], y_pred_all[~np.isnan(angle_turned_all)], angle_pred_all[~np.isnan(angle_turned_all)], \ # time_pred_all[~np.isnan(angle_turned_all)], mean_pred_all[~np.isnan(angle_turned_all)]] # for i, angle_metric in enumerate(angle_metrics): # # IC_angle_array[:, i] = angle_metric # # # get the data # predict_data_y_all = [ angle_turned_all[~np.isnan(angle_turned_all)].reshape(-1, 1)] # for the movements input data ''' don't concatenate... ''' IC_angle_array = np.ones((len(angle_turned[~np.isnan(angle_turned)]), 5)) angle_metrics = [x_pred[~np.isnan(angle_turned)], y_pred[~np.isnan(angle_turned)], angle_pred[~np.isnan(angle_turned)], \ time_pred[~np.isnan(angle_turned)], mean_pred[~np.isnan(angle_turned)]] for i, angle_metric in enumerate(angle_metrics): # IC_angle_array[:, i] = angle_metric # get the data predict_data_y_all_angle = [angle_turned[~np.isnan(angle_turned)].reshape(-1, 1)] # for the movements input data predict_data_y_all_edgy = [edginess[~np.isnan(edginess)].reshape(-1, 1)] # for the movements input data data_y_labels = ['angle'] predict_data_x_all = [IC_angle_array] # turn angles predict_data_y_all = predict_data_y_all_angle # angles ''' predict edginess from turn angle ''' predict_edginess = True if predict_edginess: if not shuffle_time: initial_body_angle = initial_body_angle[~np.isnan(initial_body_angle)].reshape(-1, 1) initial_x = initial_x[~np.isnan(initial_x)].reshape(-1, 1) initial_y = initial_y[~np.isnan(initial_y)].reshape(-1, 1) x_edge = x_edge[~np.isnan(x_edge)].reshape(-1, 1) # create the model LR = linear_model.Ridge(alpha=.1) # train the model LR.fit(predict_data_x_all[0], predict_data_y_all_angle[0]) print(LR.score(predict_data_x_all[0], predict_data_y_all_angle[0])) # get the model prediction # model_prediction = LR.predict(predict_data_x_all[0]) model_prediction = predict_data_y_all_angle[0] # predict body angles after turn predicted_body_angle = initial_body_angle[~np.isnan(initial_body_angle)].reshape(-1, 1) - model_prediction predicted_body_angle[predicted_body_angle >180] = predicted_body_angle[predicted_body_angle >180] - 360 predicted_body_angle[(predicted_body_angle > 0) * (predicted_body_angle < 90)] = -1 # super edgy to the right predicted_body_angle[(predicted_body_angle > 0) * (predicted_body_angle > 90)] = 1 # super edgy to the right # predict position at y = 40; set reasonable boundaries x_at_40 = np.maximum(15 * np.ones_like(initial_x), np.minimum(90 * np.ones_like(initial_x), initial_x - (40 - initial_y) / np.tan(np.deg2rad(predicted_body_angle)) )) # get edginess y_pos_end = 86.5; x_pos_end = 50; y_edge = 50 slope = (y_pos_end - initial_y) / (x_pos_end - (initial_x+.0001)) intercept = initial_y - initial_x * slope distance_to_line = abs(40 - slope * x_at_40 - intercept) / np.sqrt((-slope) ** 2 + (1) ** 2) homing_vector_at_center = (40 - intercept) / slope # do line from starting position to edge position slope = (y_edge - initial_y) / (x_edge - initial_x) intercept = initial_y - initial_x * slope distance_to_edge = abs(40 - slope * x_at_40 - intercept) / np.sqrt((-slope) ** 2 + (1) ** 2) # compute the max possible deviation edge_vector_at_center = (40 - intercept) / slope line_to_edge_offset = abs(homing_vector_at_center - edge_vector_at_center) # + 5 # get index at center point (wall location) # prev_edginess = np.maximum(np.zeros_like(distance_to_line), np.minimum(1.2*np.ones_like(distance_to_line), # (distance_to_line - distance_to_edge + line_to_edge_offset) / (2 * line_to_edge_offset) )) prev_edginess = abs((distance_to_line - distance_to_edge + line_to_edge_offset) / (2 * line_to_edge_offset)) predict_data_x_all = [prev_edginess] # predicted prev edginess #scipy.stats.zscore( predict_data_y_all = predict_data_y_all_edgy # edginess # edgy input colors input_colors = [ [[0, .6, .4], [.5,.5,.5]], [[0, .6, .4], [.5,.5,.5]], [[.6, 0, .4], [.5,.5,.5]] ] # split the data for cross val num_trials = 1000 - 985 * shuffle_time #985 # loop acros angle prediction and traj prediction for i, (fig, ax, predict_data_x) in enumerate(zip([fig1, fig2, fig3],[ax1, ax2, ax3], predict_data_x_all)): # get prediction data predict_data_y = predict_data_y_all[i] # get color color = input_colors[i][int(shuffle_time)] # initialize prediction arrays prediction_scores = np.zeros(num_trials) for j in range(num_trials): test_size = 0.5 # test_size = 0.25 # if shuffle_time: test_size = 0.25 # get x-val set X_train, X_test, y_train, y_test = train_test_split(predict_data_x, \ predict_data_y, test_size=test_size, random_state=j) # create the model LR = linear_model.Ridge(alpha = .1) # .15, .5 # train the model LR.fit(X_train, y_train) # get the score prediction_scores[j] = LR.score(X_test, y_test) # exclude super negative ones # prediction_scores = prediction_scores[prediction_scores > np.percentile(prediction_scores, 10)] # put into larger array prediction_scores_all = np.concatenate((prediction_scores_all, prediction_scores)) print(np.median(prediction_scores_all)) # exclude super negative ones # prediction_scores_all = prediction_scores_all[prediction_scores_all > np.percentile(prediction_scores_all, 5)] #do kde kde = fit_kde(prediction_scores_all, bw=.03) # .04 plot_kde(ax, kde, prediction_scores_all, z = 0, vertical=False, color=color, violin=False, clip=False) # True) #plt.show() fig.savefig(os.path.join(self.summary_plots_folder,'Predictions of ' + data_y_labels[i] + ' - ' + self.labels[c] + '.png'), format='png') fig.savefig(os.path.join(self.summary_plots_folder,'Predictions of ' + data_y_labels[i] + ' - ' + self.labels[c] + '.eps'), format='eps') plt.show() print('hi') else: ''' PREDICTION PLOTS EDGINESS OR BY **EXPLORATION** ''' fps = 30 escape_duration = 12 ETD = 10 #4 traj_loc = 40 # mean_types = ['even', 'space', 'angle'] #, 'time', 'shelter time'] mean_types = ['space', 'angle', 'shelter time'] #, 'escape'] mean_type = 'even' mean_colors = [[0, .6, .4], [0, .6, .8], [0, .6, .8], [.4, 0, 1] ] mean_colors = [[0, .6, .4], [.4, 0, .8], [0, .6, .8], [.5, .5, .5]] # initialize figures fig1, ax1, fig2, ax2, fig3, ax3 = initialize_figures_prediction(self) for m, mean_type in enumerate(mean_types): # loop over experiments and conditions for c, (experiment, condition) in enumerate(zip(self.experiments, self.conditions)): # extract experiments from nested list sub_experiments, sub_conditions = extract_experiments(experiment, condition) # get the number of trials number_of_trials = get_number_of_trials(sub_experiments, sub_conditions, self.analysis) number_of_mice = get_number_of_mice(sub_experiments, sub_conditions, self.analysis) mouse_trial_list = [] # initialize array to fill in with each trial's data edginess, end_idx, angle_turned, _, _, prev_edginess, scaling_factor, _, trial_num, prev_movement_and_ICs, data_y_for_prev_movement, dist_to_SH, dist_to_other_SH = \ initialize_variable_edginess(number_of_trials, self, sub_experiments) # initialize array to fill in with each trial's data efficiency, efficiency_RT, end_idx, num_prev_homings_EV, num_prev_homings_front_EV, num_prev_homings_other_EV, num_prev_homings_HV, time_exploring_pre, time_exploring_post, distance_exploring_pre, distance_exploring_post, time_exploring_obstacle_pre, \ time_exploring_obstacle_post, time_exploring_far_pre, time_exploring_far_post, time_exploring_edge, time_exploring_other_edge, scaling_factor, time, trial_num, trials, edginess, prev_edginess, dist_to_SH, dist_to_other_SH, RT_all, avg_speed, _ = \ initialize_variables_efficiency(number_of_trials, self, sub_experiments) for shuffle_time in [False]: num_repeats = shuffle_time * 19 + 1 for r in range(num_repeats): trial_num = -1 # loop over each experiment and condition for e, (experiment_real, condition_real) in enumerate(zip(sub_experiments, sub_conditions)): # loop over each mouse for i, mouse_real in enumerate(self.analysis[experiment_real][condition_real]['start time']): if self.analysis_options['control'] and not mouse_real=='control': continue if not self.analysis_options['control'] and mouse_real=='control': continue # loop over each trial prev_homings = [] t = 0 for trial_real in range(len(self.analysis[experiment_real][condition_real]['end time'][mouse_real])): trial_num += 1 # impose conditions if t > 2: continue end_idx[trial_num] = self.analysis[experiment_real][condition_real]['end time'][mouse_real][trial_real] if np.isnan(end_idx[trial_num]): continue if (end_idx[trial_num] > escape_duration * fps): continue # skip certain trials y_start = self.analysis[experiment_real][condition_real]['path'][mouse_real][trial_real][1][0] * scaling_factor x_start = self.analysis[experiment_real][condition_real]['path'][mouse_real][trial_real][0][0] * scaling_factor if y_start > 25: continue if abs(x_start-50) > 30: continue # use different data if shuffle: if shuffle_time: experiment, condition, mouse, trial = mouse_trial_list[np.random.randint(len(mouse_trial_list))] else: experiment, condition, mouse, trial = experiment_real, condition_real, mouse_real, trial_real # just add real data for edginess etc if not shuffle_time: # add data edginess[trial_num] = abs(self.analysis[experiment][condition]['edginess'][mouse][trial]) # get previous edginess time_to_shelter, SR = get_prev_edginess(ETD, condition_real, experiment_real, mouse_real, prev_edginess, dist_to_SH, dist_to_other_SH, scaling_factor, self, traj_loc, trial_real, trial_num, edginess, [], [], mean = mean_type, get_initial_conditions=True) # _, _, prev_edginess_all, elig_idx = get_all_prev_edginess(ETD, condition, experiment, mouse, prev_edginess, dist_to_SH, dist_to_other_SH, scaling_factor, self, traj_loc, trial, trial_num, edginess, [], []) # add data fill_in_trial_data_efficiency(ETD, condition, efficiency, efficiency_RT, experiment, mouse, num_prev_homings_EV, num_prev_homings_front_EV, num_prev_homings_other_EV, num_prev_homings_HV, time_exploring_pre, time_exploring_post, distance_exploring_pre, distance_exploring_post, time_exploring_obstacle_pre, time_exploring_obstacle_post, time_exploring_far_pre, time_exploring_far_post, time_exploring_edge, time_exploring_other_edge, self, time, trial, trial_num, trials, edginess, t) # add mouse and trial to list of mice and trials if not shuffle_time: mouse_trial_list.append([experiment, condition, mouse, trial]) t+=1 # format mean prior trajectory if not shuffle_time: prev_edginess = prev_edginess[~np.isnan(edginess)] exploration_array = np.ones((len(edginess[~np.isnan(edginess)]), 2)) exploration_metrics = [time_exploring_far_pre[~np.isnan(edginess)], time_exploring_far_post[~np.isnan(edginess)]] for i, exploration_metric in enumerate(exploration_metrics): # exploration_array[:, i] = exploration_metric if shuffle_time: # regress out other variable m = (((np.mean(prev_edginess) * np.mean(exploration_array[:, i])) - np.mean(prev_edginess * exploration_array[:, i])) / ((np.mean(prev_edginess) ** 2) - np.mean(prev_edginess ** 2))) regressed_data = exploration_array[:, i] - prev_edginess * m exploration_array[:, i] = regressed_data if shuffle_time: # regress out exploration from mean prior traj for exploration_metric in exploration_metrics: m = (((np.mean(exploration_metric) * np.mean(prev_edginess)) - np.mean(exploration_metric * prev_edginess)) / ((np.mean(exploration_metric) ** 2) - np.mean(exploration_metric ** 2))) regressed_data = prev_edginess - exploration_array[:, 0] * m prev_edginess = regressed_data # get the data predict_data_y_all = [ edginess[~np.isnan(edginess)].reshape(-1, 1), # for the EXPLORATION input data edginess[~np.isnan(edginess)].reshape(-1, 1)] # for the mean edginess input data # turn_angle_for_prev_movement ] # for the movements input data data_y_labels = ['exploration','trajectory'] #, 'angle'] predict_data_x_all = [exploration_array, # exploration data prev_edginess.reshape(-1, 1)]#, # mean prev edginess # prev_movements_and_ICs_array] # all prev homing movements # edgy input colors input_colors = [ [[0, .6, .4], [.5,.5,.5]], [[0, .6, .4], [.5,.5,.5]], [[.6, 0, .4], [.5,.5,.5]] ] # split the data for cross val num_trials = 1000 # loop acros angle prediction and traj prediction for i, (fig, ax, predict_data_x) in enumerate(zip([fig1, fig2, fig3],[ax1, ax2, ax3], predict_data_x_all)): # get prediction data predict_data_y = predict_data_y_all[i] # get color color = input_colors[i][int(shuffle_time)] # color = mean_colors[m] # initialize prediction arrays prediction_scores = np.zeros(num_trials) for j in range(num_trials): test_size = 0.5 if shuffle_time and i==2: test_size = .025 # get x-val set X_train, X_test, y_train, y_test = train_test_split(predict_data_x, \ predict_data_y, test_size=test_size, random_state=j) # create the model # LR = linear_model.LinearRegression() # if i: # LR = linear_model.LogisticRegression() # else: LR = linear_model.Ridge(alpha = .1) # .15, .5 # train the model # try: LR.fit(X_train, y_train) # except: # print('i=h') # print(LR.coef_) # get the score prediction_scores[j] = LR.score(X_test, y_test) print(data_y_labels[i]) print(np.median(prediction_scores)) # exclude super negative ones prediction_scores = prediction_scores[prediction_scores > np.percentile(prediction_scores, 10)] # plot the scores # ax.scatter(prediction_scores, np.zeros_like(prediction_scores), color=color, s=20, alpha = .1) #do kde kde = fit_kde(prediction_scores, bw=.04) # .04 plot_kde(ax, kde, prediction_scores, z = 0, vertical=False, color=color, violin=False, clip=False) # True) fig.savefig(os.path.join(self.summary_plots_folder,'Prediction of ' + data_y_labels[i] + ' - ' + self.labels[c] + '.png'), format='png') fig.savefig(os.path.join(self.summary_plots_folder,'Precition of ' + data_y_labels[i] + ' - ' + self.labels[c] + '.eps'), format='eps') plt.show() print('hi') # # get the correlation # r, p = scipy.stats.pearsonr(exploration_array[:, 0], edginess) # print('r = ' + str(np.round(r, 3)) + '\np = ' + str(np.round(p, 3))) # # m = (((np.mean(prev_edginess) * np.mean(exploration_array[:, 0])) - np.mean(prev_edginess * exploration_array[:, 0])) / # ((np.mean(prev_edginess) ** 2) - np.mean(prev_edginess ** 2))) # # regressed_data = exploration_array[:, 0] - prev_edginess * m # r, p = scipy.stats.pearsonr(prev_edginess, regressed_data) # print('r = ' + str(np.round(r, 3)) + '\np = ' + str(np.round(p, 3))) # # # get the correlation after regressing out prev edginess # r, p = scipy.stats.pearsonr(regressed_data, edginess) # print('r = ' + str(np.round(r, 3)) + '\n= ' + str(np.round(p, 3))) # # # def plot_efficiency(self): # # initialize parameters # fps = 30 # traj_loc = 40 # escape_duration = 12 # 12 #6 # HV_cutoff = .681 # ETD = 10 # # ax2, fig2, ax3, fig3 = initialize_figures_efficiency(self) # efficiency_data = [[], [], [], []] # duration_data = [[], [], [], []] # # initialize arrays for stats # efficiency_data_all = [] # duration_data_all = [] # prev_homings_data_all = [] # all_conditions = [] # mouse_ID = []; # m = 1 # data_condition = ['naive', 'experienced'] # # data_condition = ['food','escape'] # # data_condition = ['OR - EV', 'OR - HV', 'OF'] # fig1, ax1 = plt.subplots(figsize=(13, 5)) # # colors = [[1,0,0],[0,0,0]] # kde_colors = [ [1, .4, .4], [.75, .75, .75]] # # # loop over experiments and conditions # for c, (experiment, condition) in enumerate(zip(self.experiments, self.conditions)): # # extract experiments from nested list # sub_experiments, sub_conditions = extract_experiments(experiment, condition) # # get the number of trials # number_of_trials = get_number_of_trials(sub_experiments, sub_conditions, self.analysis) # number_of_mice = get_number_of_mice(sub_experiments, sub_conditions, self.analysis) # # initialize array to fill in with each trial's data # efficiency, efficiency_RT, end_idx, num_prev_homings_EV, num_prev_homings_other_EV, num_prev_homings_HV, time_exploring, distance_exploring, time_exploring_obstacle, time_exploring_far, \ # scaling_factor, time, trial_num, trials, edginess, prev_edginess, dist_to_SH, dist_to_other_SH, RT_all, avg_speed, _ = \ # initialize_variables_efficiency(number_of_trials, self, sub_experiments) # # loop over each experiment and condition # for e, (experiment, condition) in enumerate(zip(sub_experiments, sub_conditions)): # if 'void' in experiment or 'dark' in experiment: # escape_duration = 12 # # loop over each mouse # for i, mouse in enumerate(self.analysis[experiment][condition]['full path length']): # # initialize arrays for stats # efficiency_data_mouse = [] # duration_data_mouse = [] # prev_homings_data_mouse = [] # # control analysis # if self.analysis_options['control'] and not mouse == 'control': continue # if not self.analysis_options['control'] and mouse == 'control': continue # # loop over each trial # t = 0 # for trial in range(len(self.analysis[experiment][condition]['end time'][mouse])): # # trial_num += 1 # if t > 2 and not 'food' in experiment and not 'void' in experiment: continue # # if t > 8: continue # # print(t) # # impose coniditions # end_idx[trial_num] = self.analysis[experiment][condition]['end time'][mouse][trial] # if (end_idx[trial_num] > escape_duration * fps) or np.isnan(end_idx[trial_num]): continue # # skip certain trials # y_start = self.analysis[experiment][condition]['path'][mouse][trial][1][0] * scaling_factor # x_start = self.analysis[experiment][condition]['path'][mouse][trial][0][0] * scaling_factor # if y_start > 25: continue # if abs(x_start - 50) > 25: continue # 25 # # # get prev edginess # _, _ = get_prev_edginess(ETD, condition, experiment, mouse, prev_edginess, dist_to_SH, dist_to_other_SH, # scaling_factor, self, traj_loc, trial, trial_num, edginess, [], []) # # # only do predict edgy: # # if c == 0: # # if prev_edginess[trial_num] <= HV_cutoff and 'down' in experiment: continue # # elif c == 1: # # if prev_edginess[trial_num] > HV_cutoff and 'down' in experiment: continue # # # add data # fill_in_trial_data_efficiency(ETD, condition, efficiency, efficiency_RT, experiment, mouse, num_prev_homings_EV, num_prev_homings_other_EV, num_prev_homings_HV, # time_exploring, distance_exploring, time_exploring_obstacle, time_exploring_far, # self, time, trial, trial_num, trials, edginess, t) # # # normalize end idx to # RT = self.analysis[experiment][condition]['RT'][mouse][trial] # if not RT: # print(RT) # continue # RT_all[trial_num] = RT # # avg_speed[trial_num] = self.analysis[experiment][condition]['RT path length'][mouse][trial] * scaling_factor / ( # (end_idx[trial_num] - RT) / fps) # # avg_speed[trial_num] = self.analysis[experiment][condition]['full path length'][mouse][trial] * scaling_factor / (end_idx[trial_num] / fps) # # end_idx[trial_num] = (end_idx[trial_num] / fps) / self.analysis[experiment][condition]['optimal path length'][mouse][ # trial] / scaling_factor * 100 # # # add data for stats # efficiency_data_mouse.append(efficiency[trial_num]) # # duration_data_mouse.append(end_idx[trial_num]) #TEMP COMMENTING # duration_data_mouse.append(RT) # prev_homings_data_mouse.append(num_prev_homings_EV[trial_num]) # # t += 1 # # # append data for stats # if efficiency_data_mouse: # efficiency_data_all.append(efficiency_data_mouse) # duration_data_all.append(duration_data_mouse) # prev_homings_data_all.append(prev_homings_data_mouse) # all_conditions.append(data_condition[c]) # mouse_ID.append(m); # m += 1 # # # format end ind # # end_idx = np.array([e/30 for e in end_idx]) # end_idx[np.isnan(efficiency)] = np.nan # # loop over data to plot # for i, (data, data_label) in enumerate(zip([efficiency_RT, end_idx, RT_all, avg_speed, edginess], # ['Efficiency'])): # , 'Duration', 'Reaction Time', 'Speed', 'Trajectory'])): #edginess, 'Trajectory', # # for i, (data, data_label) in enumerate(zip([edginess], ['Trajectory'])): # edginess, 'Trajectory', # # # for i, (data, data_label) in enumerate(zip([edginess, efficiency, end_idx], ['Trajectory', 'Efficiency', 'Duration'])): # # for x_data, x_data_label in zip([num_prev_homings], ['Prior homings']): # plot_data = data[~np.isnan(data)] # # # for x_data, x_data_label in zip([trials, time, num_prev_homings_EV, num_prev_homings_HV, prev_edginess, time_exploring, distance_exploring, time_exploring_far, time_exploring_obstacle], # # ['Trials', 'Time', 'Edge vector homings', 'Homing vector homings', 'Mean prior trajectory','Time exploring', 'Distance explored', 'Time exploring far side', 'Time exploring obstacle']): # # for x_data, x_data_label in zip([trials, time_exploring], ['trial number']): # , 'Time exploring']): # # print('\nCorrelation between ' + data_label + ' and ' + x_data_label) # # # only plot escapes # data_for_box_plot = data[~np.isnan(data)] # print(len(data_for_box_plot)) # x_data = x_data[~np.isnan(data)] # # # get the correlation # r, p = scipy.stats.pearsonr(x_data, data_for_box_plot) # print('r = ' + str(np.round(r, 3)) + '\np = ' + str(np.round(p, 3))) # # # initialize figure # plt.title(data_label + ' x ' + x_data_label) # # set up the figure # # if data_label=='Efficiency': ax1.set_ylim([-.03, 1.03]) # # elif data_label=='Duration': ax1.set_ylim([-.1, 7]) # # if np.max(x_data) < 5: # ax1.set_xticks(np.unique(x_data).astype(int)) # else: # ax1.set_xticks(np.arange(5, 25, 5)) # # ax1.set_xlim([5,20]) # # # jitter the axis # scatter_axis = scatter_the_axis_efficiency(plot_data, x_data + c/3 - .2) # # plot each trial # ax1.scatter(scatter_axis, plot_data, color=colors[c], s=15, alpha=1, edgecolor=colors[c], linewidth=1) # # for x in np.unique(x_data): # # plot kde # kde = fit_kde(plot_data[x_data==x], bw=.02) #.2) # .04 # plot_kde(ax1, kde, plot_data[x_data==x], z=x + c/3 - .15, vertical=True, normto=.15, color=kde_colors[c], violin=False, clip=True) # # # box and whisker # bp = ax1.boxplot([plot_data[x_data==x], [0, 0]], positions=[x + c / 3 - .2, -10], showfliers=False, widths = [0.05, .05], zorder=99) # plt.setp(bp['boxes'], color=[.5, .5, .5], linewidth=2) # plt.setp(bp['whiskers'], color=[.5, .5, .5], linewidth=2) # plt.setp(bp['medians'], linewidth=2) # ax1.set_xlim(.25, 3.75) # ax1.set_ylim(.5, 1.05) # # ax1.set_ylim(.95, 1.9) # ax1.set_xticks([1,2,3]) # ax1.set_xticklabels([1,2,3]) # # # # # # for each trial # # for x in np.unique(x_data): # # # plot kde # # kde = fit_kde(plot_data[x_data>=0], bw=.02) #.2) # .04 # # plot_kde(ax1, kde, plot_data[x_data>=0], z=x + c/3 - .15, vertical=True, normto=.15, color=kde_colors[c], violin=False, clip=True) # # # # # box and whisker # # bp = ax1.boxplot([plot_data[x_data>=0], [0, 0]], positions=[x + c / 3 - .2, -10], showfliers=False, widths = [0.05, .05], zorder=99) # # plt.setp(bp['boxes'], color=[.5, .5, .5], linewidth=2) # # plt.setp(bp['whiskers'], color=[.5, .5, .5], linewidth=2) # # plt.setp(bp['medians'], linewidth=2) # # ax1.set_xlim(.25, 3.75) # # ax1.set_ylim(.5, 1.05) # # # ax1.set_ylim(.95, 1.9) # # ax1.set_xticks([1,2,3]) # # ax1.set_xticklabels([1,2,3]) # # # # # jitter the axis # # scatter_axis = scatter_the_axis_efficiency(plot_data, np.ones_like(plot_data) * (x + c/3 - .2)) # # # plot each trial # # ax1.scatter(scatter_axis, plot_data, color=colors[c], s=15, alpha=1, edgecolor=colors[c], linewidth=1) # # # # ax1.plot([-1, 4], [1, 1], linestyle='--', color=[.5, .5, .5, .5]) # # save the plot # plt.savefig(os.path.join(self.summary_plots_folder, data_label + ' by ' + x_data_label + ' - ' + self.labels[c] + '.png'), format='png') # plt.savefig(os.path.join(self.summary_plots_folder, data_label + ' by ' + x_data_label + ' - ' + self.labels[c] + '.eps'), format='eps') # # plt.show() # print('done') # # # def plot_efficiency(self): # initialize parameters fps = 30 traj_loc = 40 escape_duration = 12 #12 #6 HV_cutoff = .681 ETD = 10 # ax2, fig2, ax3, fig3 = initialize_figures_efficiency(self) efficiency_data = [[],[],[],[]] duration_data = [[],[],[],[]] # initialize arrays for stats efficiency_data_all = [] duration_data_all = [] prev_homings_data_all = [] all_conditions = [] mouse_ID = []; m = 1 # data_condition = ['naive','experienced'] data_condition = ['escape', 'food'] # data_condition = ['OR - EV', 'OR - HV', 'OF'] # data_condition = ['Obstacle removed (no shelter)', 'obstacle removed', 'acute OR', 'obstacle'] colors = [[0,0,0],[1,0,0]] # plot_stuff = True do_traversals = False # loop over experiments and conditions for c, (experiment, condition) in enumerate(zip(self.experiments, self.conditions)): print(' - - - -- - - - -- - - - - - - -- - - - - - - - - -') # extract experiments from nested list sub_experiments, sub_conditions = extract_experiments(experiment, condition) # get the number of trials number_of_trials = get_number_of_trials(sub_experiments, sub_conditions, self.analysis) number_of_mice = get_number_of_mice(sub_experiments, sub_conditions, self.analysis) # initialize array to fill in with each trial's data efficiency, efficiency_RT, end_idx, num_prev_homings_EV, num_prev_homings_front_EV, num_prev_homings_other_EV, num_prev_homings_HV, time_exploring_pre, time_exploring_post, distance_exploring_pre, distance_exploring_post, time_exploring_obstacle_pre,\ time_exploring_obstacle_post,time_exploring_far_pre,time_exploring_far_post, time_exploring_edge, time_exploring_other_edge, scaling_factor, time, trial_num, trials, edginess, prev_edginess, dist_to_SH, dist_to_other_SH, RT_all, avg_speed, _ = \ initialize_variables_efficiency(number_of_trials, self, sub_experiments) # loop over each experiment and condition for e, (experiment, condition) in enumerate(zip(sub_experiments, sub_conditions)): if 'void' in experiment or 'dark' in experiment: escape_duration = 12 if 'food' in experiment: escape_duration = 9 # else:escape_duration = 9 # loop over each mouse for i, mouse in enumerate(self.analysis[experiment][condition]['start time']): print(mouse) # initialize arrays for stats efficiency_data_mouse = [] duration_data_mouse = [] prev_homings_data_mouse = [] # control analysis if self.analysis_options['control'] and not mouse=='control': continue if not self.analysis_options['control'] and mouse=='control': continue # loop over each trial t = 0 for trial in range(len(self.analysis[experiment][condition]['end time'][mouse])): trial_num += 1 if t > 2 and not 'food' in experiment and not 'void' in experiment and not 'dark' in experiment: continue if 'food' in experiment and condition == 'no obstacle' and self.analysis[experiment][condition]['start time'][mouse][trial] < 20: continue if t > 8: continue # if t > 2: continue # if 'on off' in experiment and trial: continue # print(t) # impose coniditions end_idx[trial_num] = self.analysis[experiment][condition]['end time'][mouse][trial] if (end_idx[trial_num] > escape_duration * fps) or np.isnan(end_idx[trial_num]): continue # skip certain trials y_start = self.analysis[experiment][condition]['path'][mouse][trial][1][0] * scaling_factor x_start = self.analysis[experiment][condition]['path'][mouse][trial][0][0] * scaling_factor if y_start > 25: continue if abs(x_start-50) > 30: continue #25 # get prev edginess _, _ = get_prev_edginess(ETD, condition, experiment, mouse, prev_edginess, dist_to_SH, dist_to_other_SH, scaling_factor, self, traj_loc, trial, trial_num, edginess, [], []) # only do predict edgy: # if c == 0: # if prev_edginess[trial_num] <= HV_cutoff and 'down' in experiment: continue # elif c == 1: # if prev_edginess[trial_num] > HV_cutoff and 'down' in experiment: continue # add data fill_in_trial_data_efficiency(ETD, condition, efficiency, efficiency_RT, experiment, mouse, num_prev_homings_EV,num_prev_homings_front_EV, num_prev_homings_other_EV,num_prev_homings_HV, time_exploring_pre, time_exploring_post, distance_exploring_pre, distance_exploring_post, time_exploring_obstacle_pre, time_exploring_obstacle_post, time_exploring_far_pre, time_exploring_far_post, time_exploring_edge, time_exploring_other_edge, self, time, trial, trial_num, trials, edginess, t) # if edginess[trial_num] < HV_cutoff: continue if do_traversals: traversal = self.analysis[experiment][condition]['back traversal'][mouse] # get the duration of those paths # duration = traversal[t*5+3] if traversal: x_edge = self.analysis[experiment][condition]['x edge'][mouse][trial] # if x_edge==25: x_edge = 75 # else: x_edge = 25 spont_edge = [] for trav in traversal[0 * 5 + 0]: spont_edge.append(trav[0][-1]*scaling_factor) esc_edge = [] for trav in traversal[1 * 5 + 0]: esc_edge.append(trav[0][-1]*scaling_factor) num_prev_homings_EV[trial_num] = np.sum((np.array(traversal[0 * 5 + 3]) < 1.5) * (abs(np.array(spont_edge)-x_edge) < 25) * \ (np.array(traversal[0 * 5 + 2]) > HV_cutoff) * \ (np.array(traversal[0 * 5 + 1]) < self.analysis[experiment][condition]['start time'][mouse][trial] * 30 * 60) * \ (np.array(traversal[0 * 5 + 1]) > (self.analysis[experiment][condition]['start time'][mouse][trial]-(15+20*('void' in experiment))) * 30 * 60)) + \ np.sum((np.array(traversal[1 * 5 + 3]) < 1.5) * (abs(np.array(esc_edge)-x_edge) < 25) * \ (np.array(traversal[1 * 5 + 2]) > HV_cutoff) * \ (np.array(traversal[1 * 5 + 1]) < self.analysis[experiment][condition]['start time'][mouse][trial] * 30 * 60) * \ (np.array(traversal[1 * 5 + 1]) > (self.analysis[experiment][condition]['start time'][mouse][trial] - (15+20*('void' in experiment))) * 30 * 60)) num_prev_homings_HV[trial_num] = np.sum((np.array(traversal[0 * 5 + 3]) < 1.5) * (abs(np.array(spont_edge)-x_edge) < 25) * \ (np.array(traversal[0 * 5 + 2]) < HV_cutoff) * \ (np.array(traversal[0 * 5 + 1]) < self.analysis[experiment][condition]['start time'][mouse][trial] * 30 * 60) * \ (np.array(traversal[0 * 5 + 1]) > (self.analysis[experiment][condition]['start time'][mouse][trial]-(15+20*('void' in experiment))) * 30 * 60)) + \ np.sum((np.array(traversal[1 * 5 + 3]) < 1.5) * (abs(np.array(esc_edge)-x_edge) < 25) * \ (np.array(traversal[1 * 5 + 2]) < HV_cutoff) * \ (np.array(traversal[1 * 5 + 1]) < self.analysis[experiment][condition]['start time'][mouse][trial] * 30 * 60) * \ (np.array(traversal[1 * 5 + 1]) > (self.analysis[experiment][condition]['start time'][mouse][trial] - (15+20*('void' in experiment))) * 30 * 60)) eligible_homings = ~((np.array(traversal[0 * 5 + 2]) > HV_cutoff) * (abs(np.array(spont_edge)-x_edge) > 40)) * (np.array(traversal[0 * 5 + 3]) < 3) * \ (np.array(traversal[0 * 5 + 1]) < self.analysis[experiment][condition]['start time'][mouse][trial] * 30 * 60) * \ (np.array(traversal[0 * 5 + 1]) > (self.analysis[experiment][condition]['start time'][mouse][trial] - 15) * 30 * 60) if np.sum(eligible_homings): mean_homing = np.mean(np.array(traversal[0 * 5 + 2])[eligible_homings]) else: mean_homing = 0 eligible_escapes = ~((np.array(traversal[1 * 5 + 2]) > HV_cutoff) * (abs(np.array(esc_edge) - x_edge) > 40)) * (np.array(traversal[1 * 5 + 3]) < 3) * \ (np.array(traversal[1 * 5 + 1]) < self.analysis[experiment][condition]['start time'][mouse][trial] * 30 * 60) * \ (np.array(traversal[1 * 5 + 1]) > (self.analysis[experiment][condition]['start time'][mouse][trial] - 15) * 30 * 60) if np.sum(eligible_escapes): mean_escape = np.mean(np.array(traversal[1 * 5 + 2])[eligible_escapes]) else: mean_escape = 0 prev_edginess[trial_num] = ( mean_homing * np.sum(eligible_homings) + mean_escape * np.sum(eligible_escapes) ) / \ (np.sum(eligible_homings) + np.sum(eligible_escapes)) else: num_prev_homings_EV[trial_num] = 0 # prev_edginess[trial_num] = 0 if np.isnan(prev_edginess[trial_num]): prev_edginess[trial_num] = 0 traversal = self.analysis[experiment][condition]['front traversal'][mouse] # get the duration of those paths # duration = traversal[t*5+3] if traversal: x_edge = self.analysis[experiment][condition]['x edge'][mouse][trial] spont_edge = [] for trav in traversal[0 * 5 + 0]: spont_edge.append(trav[0][-1]*scaling_factor) esc_edge = [] for trav in traversal[1 * 5 + 0]: esc_edge.append(trav[0][-1]*scaling_factor) num_prev_homings_other_EV[trial_num] = np.sum((np.array(traversal[0 * 5 + 3]) < 1.5) * (abs(np.array(spont_edge)-x_edge) < 25) * \ (np.array(traversal[0 * 5 + 2]) > HV_cutoff) * \ (np.array(traversal[0 * 5 + 1]) < self.analysis[experiment][condition]['start time'][mouse][trial] * 30 * 60)) else: num_prev_homings_other_EV[trial_num] = 0 # print(mouse) # print(trial + 1) # print(num_prev_homings_EV[trial_num]) # print(num_prev_homings_other_EV[trial_num]) # print(edginess[trial_num]) # print('') # normalize end idx to RT = self.analysis[experiment][condition]['RT'][mouse][trial] # if not RT: # print(RT) # continue RT_all[trial_num] = RT avg_speed[trial_num] = self.analysis[experiment][condition]['RT path length'][mouse][trial] * scaling_factor / ((end_idx[trial_num] - RT) / fps) # avg_speed[trial_num] = self.analysis[experiment][condition]['full path length'][mouse][trial] * scaling_factor / (end_idx[trial_num] / fps) time[trial_num] = self.analysis[experiment][condition]['start time'][mouse][trial] time[trial_num] = (end_idx[trial_num] / fps) / self.analysis[experiment][condition]['optimal path length'][mouse][trial] / scaling_factor * 100 time[trial_num] = abs(50 - x_start) end_idx[trial_num] = (end_idx[trial_num] / fps - RT) / self.analysis[experiment][condition]['optimal RT path length'][mouse][trial] / scaling_factor * 100 # add data for stats efficiency_data_mouse.append([efficiency_RT[trial_num], trial]) duration_data_mouse.append([end_idx[trial_num], trial]) #TEMP COMMENTING #RT # duration_data_mouse.append(num_prev_homings_EV[trial_num]) prev_homings_data_mouse.append(num_prev_homings_EV[trial_num]) t += 1 # print(trial+1) #append data for stats if efficiency_data_mouse: efficiency_data_all.append(efficiency_data_mouse) duration_data_all.append(duration_data_mouse) prev_homings_data_all.append(prev_homings_data_mouse) all_conditions.append(data_condition[c]) mouse_ID.append(m); m+= 1 # format end ind # end_idx = np.array([e/30 for e in end_idx]) end_idx[np.isnan(efficiency)] = np.nan # loop over data to plot # for i, (data, data_label) in enumerate(zip([edginess, efficiency_RT, end_idx, RT_all, avg_speed], ['Trajectory'])): #,'Efficiency', 'Duration', 'Reaction Time', 'Speed', 'Trajectory'])): #edginess, 'Trajectory', # for i, (data, data_label) in enumerate(zip([edginess], ['Trajectory'])): for i, (data, data_label) in enumerate(zip([end_idx], ['RT duration', 'RT duration', 'Efficiency', 'RT'])): # time, , efficiency_RT, RT_all # for i, (data, data_label) in enumerate(zip([RT_all], ['Reaction time'])): # for i, (data, data_label) in enumerate(zip([edginess, efficiency, end_idx], ['Trajectory', 'Efficiency', 'Duration'])): # for x_data, x_data_label in zip([num_prev_homings], ['Prior homings']): plot_data = data[~np.isnan(data)] if False or True: # for x_data, x_data_label in zip([trials, time, num_prev_homings_EV, num_prev_homings_other_EV, num_prev_homings_HV, prev_edginess, time_exploring, distance_exploring, time_exploring_far, time_exploring_obstacle, time_exploring_edge, time_exploring_other_edge], # ['Trials', 'Time', 'Edge vector homings','Other edge vector homings', 'Homing vector homings', 'Mean prior trajectory','Time exploring', 'Distance explored', 'Time exploring far side', 'Time exploring obstacle', 'Time exploring edge', 'Time exploring other edge']): # for x_data, x_data_label in zip([trials, time, time_exploring_pre, distance_exploring_pre, time_exploring_post, distance_exploring_post, # time_exploring_far_pre,time_exploring_far_post, time_exploring_obstacle_pre, time_exploring_obstacle_post, time_exploring_other_edge, time_exploring_edge], # ['Trials', 'Time', 'Time exploring (pre)', 'Distance explored (pre)', 'Time exploring (post)', 'Distance explored (post)', # 'Time exploring far side (pre)', 'Time exploring far side (post)', 'Time exploring obstacle (pre)', 'Time exploring obstacle (post)', # 'Time exploring other edge (pre)', 'Time exploring edge (pre)']): # num_homings_combined = (num_prev_homings_EV>0).astype(int) - (num_prev_homings_HV>0).astype(int) # num_homings_combined[num_prev_homings_EV==0] = -1 # # for x_data, x_data_label in zip([time, num_prev_homings_EV>0, num_prev_homings_EV, num_prev_homings_other_EV, num_prev_homings_other_EV>0, # num_prev_homings_front_EV, num_prev_homings_front_EV>0, prev_edginess, num_prev_homings_HV, num_prev_homings_HV>2, num_homings_combined], # ['Time', '1 Edge vector homings', 'Edge vector homings','Other edge vector homings','1 other edge vector homings', # 'Front edge vectors','1 front edge vector', 'Mean prior trajectory', 'Homing vector homings', '1 Homing vector homing', 'Combined homings']): # for x_data, x_data_label in zip([trials, num_prev_homings_EV>0, num_prev_homings_EV, prev_edginess], ['trial', '1 Edge vector homings', 'Edge vector homings', 'Mean prior trajectory']): for x_data, x_data_label in zip([trials], ['trial']): # ,edginess>HV_cutoff #, 'edginess' print('\nCorrelation between ' + data_label + ' and ' + x_data_label) # only plot escapes data_for_box_plot = data[~np.isnan(data)] x_data = x_data[~np.isnan(data)] print(np.sum(x_data==0)) # get the correlation r, p = scipy.stats.pearsonr(x_data, data_for_box_plot) print('r = ' + str(np.round(r, 3)) + '\np = ' + str(p)) if p < .05: print('SIGGY STATDUST') # m = (((np.mean(x_data) * np.mean(data_for_box_plot)) - np.mean(x_data * data_for_box_plot)) / # ((np.mean(x_data) ** 2) - np.mean(x_data ** 2))) # regressed_data = data_for_box_plot - x_data * m # r, p = scipy.stats.pearsonr(x_data, regressed_data) # print('r = ' + str(np.round(r, 3)) + '\np = ' + str(np.round(p, 3))) if plot_stuff and not np.isnan(r): fig1, ax1 = plt.subplots(figsize=(15, 15)) # initialize figure # fig1, ax1 = plt.subplots(figsize=(9, 9)) plt.title(data_label + ' x ' + x_data_label) # set up the figure # if data_label=='Efficiency': ax1.set_ylim([-.03, 1.03]) # elif data_label=='Duration': ax1.set_ylim([-.1, 7]) # if np.max(x_data) < 5: # ax1.set_xticks(np.unique(x_data).astype(int)) # else: # ax1.set_xticks(np.arange(5, 25, 5)) # ax1.set_xlim([5,20]) # jitter the axis scatter_axis = scatter_the_axis_efficiency(plot_data, x_data) # plot each trial ax1.scatter(scatter_axis, plot_data, color=colors[0], s=40, alpha=1, edgecolor=colors[0], linewidth=1) # ax1.scatter(scatter_axis[plot_data > HV_cutoff], plot_data[plot_data > HV_cutoff], color=[0,0,0], s=50, alpha=1, edgecolor=[0, 0, 0], linewidth=1) # do a linear regression try: x_data, prediction = do_linear_regression(plot_data, x_data.astype(int)) except: print('hi') # # plot kde kde = fit_kde(plot_data, bw=.02) #.2) # .04 plot_kde(ax1, kde, plot_data, z=c + .1, vertical=True, normto=.3, color=[.75, .75, .75], violin=False, clip=True) # True) # plot the linear regression # ax1.plot(x_data, prediction['Pred'].values, color=colors[0], linewidth=1, linestyle='--', alpha=.7) # ax1.fill_between(x_data, prediction['lower'].values, prediction['upper'].values, color=colors[0], alpha=.05) # 6 # save the plot plt.savefig(os.path.join(self.summary_plots_folder, data_label + ' by ' + x_data_label + ' - ' + self.labels[c] + '.png'), format='png') plt.savefig(os.path.join(self.summary_plots_folder, data_label + ' by ' + x_data_label + ' - ' + self.labels[c] + '.eps'), format='eps') # plt.show() # plt.close() # plot the boxplot # if data_label == 'Efficiency': # ax, fig = ax2, fig2 # efficiency_data[c] = plot_data # elif data_label == 'Duration': # ax, fig = ax3, fig3 # duration_data[c] = plot_data # else: continue # scatter_axis = scatter_the_axis_efficiency(plot_data, np.ones_like(plot_data)*c) # ax.scatter(scatter_axis, plot_data, color=[0, 0, 0], s=40, alpha=1, edgecolor=[0, 0, 0], linewidth=1) # # plot kde # kde = fit_kde(plot_data, bw=.02) #.2) # .04 # plot_kde(ax, kde, plot_data, z=c + .1, vertical=True, normto=.3, color=[.75, .75, .75], violin=False, clip=True) # True) # # plot errorbar # median = np.percentile(plot_data, 50) # third_quartile = np.percentile(plot_data, 75) # first_quartile = np.percentile(plot_data, 25) # ax.errorbar(c - .2, median, yerr=np.array([[median - first_quartile], [third_quartile - median]]), color=[0,0,0], capsize=10, capthick=3, alpha=1, linewidth=3) # ax.scatter(c - .2, median, color=[0,0,0], s=175, alpha=1) # # save the plot # fig.savefig(os.path.join(self.summary_plots_folder, data_label + ' comparison - ' + self.labels[c] + '.png'), format='png') # fig.savefig(os.path.join(self.summary_plots_folder, data_label + ' comparison - ' + self.labels[c] + '.eps'), format='eps') plt.show() # test correlation and stats thru permutation test data_x = prev_homings_data_all data_y = efficiency_data_all # permutation_correlation(data_x, data_y, iterations=10000, two_tailed=False, pool_all=False) # # # do t test # t, p = scipy.stats.ttest_ind(efficiency_data[0], efficiency_data[1], equal_var=False) # print('Efficiency: ' + str(p)) # print(np.mean(efficiency_data[0])) # print(np.mean(efficiency_data[1])) # # t, p = scipy.stats.ttest_ind(duration_data[0], duration_data[1], equal_var=False) # print('Duration: ' + str(p)) # print(np.mean(duration_data[0])) # print(np.mean(duration_data[1])) # efficiency_0 = [] efficiency_more = [] for m, mouse_data in enumerate(efficiency_data_all): EV_array = np.array(duration_data_all[m]) efficiency_array = np.array(mouse_data) if 0 in EV_array: efficiency_0.append(list(efficiency_array[EV_array==0])) if np.sum(EV_array==0)<len(EV_array): efficiency_more.append(list(efficiency_array[EV_array>0])) permutation_test(efficiency_0, efficiency_more, iterations=10000, two_tailed=False) # group_A = list(np.array(efficiency_data_all)[np.array(all_conditions) == 'OFn']) # group_B = list(np.array(efficiency_data_all)[np.array(all_conditions) == 'ORe']) # permutation_test(group_A, group_B, iterations = 10000, two_tailed = False) # group_A = list(np.array(duration_data_all)[
np.array(all_conditions)
numpy.array
import json import logging import os import torch import pandas as pd import numpy as np from typing import Dict, Any from src.model import MVAE from src.dataset import OneHotEncoding, Dataset JSON_CONTENT_TYPE = "application/json" logger = logging.getLogger(__name__) def model_fn(model_dir): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") logger.info("Current device: {}".format(device)) logger.info("Loading the model.") with open(os.path.join(model_dir, "MVAE.pt"), "rb") as f: model_state = torch.load(f) model = MVAE( input_size=model_state["args"]["input_size"], hidden_dim=model_state["args"]["hidden_dim"] ) model.load_state_dict(model_state["weights"]) model.to(device).eval() data_dir = os.environ["SM_CHANNEL_DATA_DIR"] item_map_df = pd.read_csv(os.path.join(data_dir, "item_map.csv")) idx2item_map = {idx: item for item, idx in item_map_df[["item_id", "item_idx"]].values} target_user_hist_df = pd.read_csv(os.path.join(data_dir, "target_user_hist.csv")) return dict( model=model, idx2item_map=idx2item_map, target_user_hist_df=target_user_hist_df, ) def input_fn(serialized_input_data, content_type=JSON_CONTENT_TYPE): logger.info("Deserializing the input data.") if content_type == JSON_CONTENT_TYPE: return json.loads(serialized_input_data) raise Exception(f"Requested unsupported ContentType in content_type: {content_type}") def output_fn(prediction_output, accept=JSON_CONTENT_TYPE): logger.info("Serializing the generated output.") if accept == JSON_CONTENT_TYPE: return json.dumps(prediction_output), accept raise Exception(f"Requested unsupported ContentType in Accept: {accept}") def predict_fn(inputs: Dict[str, Any], model: Dict[str, Any]): idx2item_map = model["idx2item_map"] target_user_hist_df = model["target_user_hist_df"] model = model["model"] user_id = inputs["user_id"] rec_k = inputs["rec_k"] device = torch.device("cuda" if torch.cuda.is_available() else "cpu") logger.info("Current device: {}".format(device)) target_user_hist = target_user_hist_df.query(f"user_id=={user_id}") dataset = Dataset(target_user_hist, transforms=[OneHotEncoding(model.input_size)]) with torch.no_grad(): batch = dataset[0] inputs = torch.from_numpy(batch["inputs"]) inputs = torch.unsqueeze(inputs, 0) targets = batch["targets"] score = model(inputs).detach().cpu().numpy().flatten() score = score * (1.0 - targets) indices = np.argpartition(score, -rec_k, axis=-1)[-rec_k:] score =
np.take_along_axis(score, indices, axis=-1)
numpy.take_along_axis
from scipy import optimize import numpy as np from matplotlib import pyplot as plt import scipy.integrate as integrate def curve(x, t): period = 2 * np.pi / x[1] if isinstance(t, float): t = np.array((t,)) y = np.ndarray((t.shape[0],)) for i in range(t.shape[0]): if t[i] < (period / 4): y[i] = x[0] * np.sin(t[i] * x[1]) elif t[i] > (period / 4) and t[i] < (1 - (period / 4)): y[i] = x[0] elif t[i] > (1 - (period / 4)) and t[i] < (1 + (period / 4)): y[i] = x[0] * np.sin((t[i] - 1 - period / 2) * x[1]) elif t[i] > (1 + (period / 4)) and t[i] < (2 - (period / 4)): y[i] = - x[0] else: y[i] = x[0] * np.sin((t[i] - 2) * x[1]) return y def curve_integral(x, t): integ = np.ndarray((t.shape[0]-1,)) for i in range(t.shape[0]-1): integ[i] = integrate.quad(lambda t: curve(x, t), 0, t[i+1])[0] return integ def generate_up_and_down_bow_target(ns, bow_speed=10, bow_acceleration=0.5): def objective_function(x, t): y = curve(x, t) integ = curve_integral(x,t) moy = (integ[int(n_points/2)-2] + integ[int(n_points/2)+2])/2 return np.array((bow_acceleration-x[0], bow_speed-x[1], y[-1], y[0], (moy-0.48)*1000)) n_points = 200 t =
np.linspace(0, 2, n_points)
numpy.linspace
import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from pynufft import NUFFT import pkg_resources import scipy.misc from OCTFrames import FrameManager,cachedOCT from octReader import OCTManager import scipy.ndimage import scipy as S from matplotlib.widgets import Slider import attr @attr.s(kw_only=True) class RadialVolume: angle:int = attr.ib(default=2*np.pi) scan_count:int = attr.ib(default=100) scan_depth:int = attr.ib(default=800) diameter:int = attr.ib(default=1000) def set_data(self,data): radius = int(self.diameter/2) volume = data[0,:,:,slice(0,self.scan_depth)] volume = np.transpose(volume, (1, 0, 2)) vol1 = np.flip(volume[:radius,:,:],axis=0) vol2 = volume[radius:,:,:] vol = np.hstack([vol1,vol2]) self.vol = vol def get_coords(self) -> np.ndarray: om = np.meshgrid(np.linspace(0,self.angle,self.scan_count*2), np.arange(0,int(self.diameter/2),1)) #rectangular plot of polar data theta = np.ravel(om[0]) r =
np.ravel(om[1])
numpy.ravel
from styx_msgs.msg import TrafficLight import tensorflow as tf import numpy as np import matplotlib.pyplot as plt from PIL import Image from PIL import ImageDraw from PIL import ImageColor import time from scipy.stats import norm import cv2 as cv import h5py from keras.models import load_model from keras import __version__ as keras_version class TLClassifierSimple(object): def __init__(self): # load the model for the traffic light bounding box detection SSD_GRAPH_FILE = './models/ssd_mobilenet_v1_coco_11_06_2017/frozen_inference_graph.pb' detection_graph = self.load_graph(SSD_GRAPH_FILE) # The input placeholder for the image. # `get_tensor_by_name` returns the Tensor with the associated name in the Graph. self.image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') # Each box represents a part of the image where a particular object was detected. self.detection_boxes = detection_graph.get_tensor_by_name( 'detection_boxes:0') # Each score represent how level of confidence for each of the objects. # Score is shown on the result image, together with the class label. self.detection_scores = detection_graph.get_tensor_by_name( 'detection_scores:0') # The classification of the object (integer id). self.detection_classes = detection_graph.get_tensor_by_name( 'detection_classes:0') self.sess = tf.Session(graph=detection_graph) # Load the model for the traffic light state classification global keras_version TL_CNN_H5 = './models/tl_state_classifier/model.h5' f = h5py.File(TL_CNN_H5, mode='r') model_version = f.attrs.get('keras_version') keras_version = str(keras_version).encode('utf8') # if model_version != keras_version: # print('You are using Keras version ', keras_version, # ', but the model was built using ', model_version) global tl_state_model tl_state_model = load_model(TL_CNN_H5) global tl_state_graph tl_state_graph = tf.get_default_graph() def filter_boxes(self, min_score, boxes, scores, classes): """Return boxes with a confidence >= `min_score`""" n = len(classes) idxs = [] for i in range(n): if scores[i] >= min_score and classes[i] == 10: idxs.append(i) filtered_boxes = boxes[idxs, ...] filtered_scores = scores[idxs, ...] filtered_classes = classes[idxs, ...] return filtered_boxes, filtered_scores, filtered_classes def to_image_coords(self, box, height, width): """ The original box coordinate output is normalized, i.e [0, 1]. This converts it back to the original coordinate based on the image size. """ box_coords = np.zeros_like(box) box_coords[0] = box[0] * height box_coords[1] = box[1] * width box_coords[2] = box[2] * height box_coords[3] = box[3] * width return box_coords def load_graph(self, graph_file): """Loads a frozen inference graph""" graph = tf.Graph() with graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(graph_file, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') return graph def crop_box(self, image, box): bottom, left, top, right = box[...] return image[int(bottom):int(top), int(left):int(right), :] def detect_tl_circles(self, img): height = img.shape[0] img = img[:, :, ::-1].copy() # convert to BGR gimg = cv.cvtColor(img, cv.COLOR_BGR2GRAY) gimg = cv.medianBlur(gimg, 5) circles = cv.HoughCircles(gimg, cv.HOUGH_GRADIENT, 1, int(height * 0.25), param1=50, param2=30, minRadius=0, maxRadius=0) if circles is not None: circles = np.uint16(np.around(circles))[0] return circles def sort_circles_by_y(self, circles): if circles is not None: if len(circles) == 3: # determine top, middle and bottom circle w.r.t. y-coord top_idx = np.argmin(circles[:, 1]) top_circ = circles[top_idx] circles = np.delete(circles, top_idx, axis=0) mid_idx = np.argmin(circles[:, 1]) mid_circ = circles[mid_idx] circles = np.delete(circles, mid_idx, axis=0) bot_circ = circles[0] return top_circ, mid_circ, bot_circ return None, None, None def apply_color_threshold(self, img): img = cv.cvtColor(img, cv.COLOR_BGR2HSV) img = cv.medianBlur(img, 5) # RED lower_red = np.array([0, 50, 50]) upper_red = np.array([30, 255, 255]) mask = cv.inRange(img, lower_red, upper_red) res = cv.bitwise_and(img, img, mask=mask) # since the H value is circular and red les between 160 and 30, # we have to deal with this here lower_red_1 = np.array([160, 50, 50]) upper_red_1 = np.array([180, 255, 255]) mask = cv.inRange(img, lower_red_1, upper_red_1) res_1 = cv.bitwise_and(img, img, mask=mask) res_red = cv.bitwise_or(res, res_1) # YELLOW lower_yellow = np.array([20, 50, 50]) upper_yellow =
np.array([30, 255, 255])
numpy.array
# Aggregate together statistics from different independent DGA runs. Also compare with DNS results for a unified UQ pipeline. import numpy as np import time from numpy import save,load import pandas as pd import matplotlib matplotlib.use('AGG') import matplotlib.pyplot as plt matplotlib.rcParams['font.size'] = 40 matplotlib.rcParams['font.family'] = 'serif' matplotlib.rcParams['savefig.bbox'] = 'tight' matplotlib.rcParams['savefig.pad_inches'] = 0.2 font = {'family': 'serif', 'size': 25,} import matplotlib.pyplot as plt import matplotlib.ticker as ticker import pickle import sys import subprocess import os from os import mkdir from os.path import join,exists from shutil import copyfile codefolder = "/home/jf4241/SHORT" os.chdir(codefolder) from model_obj import Model from hm_model import HoltonMassModel import hm_params import helper from data_obj import Data import function_obj from tpt_obj import TPT # ----------- Make folders ---------- datafolder = "/scratch/jf4241/SHORT_holtonmass" simfolder = join(datafolder,"runs") resultfolder = join(datafolder,"results") dayfolder = join(resultfolder,"2021-12-07") expfolder = join(dayfolder,"0") # ----------------------------------- algo_params,algo_param_string = hm_params.get_algo_params() physical_params,physical_param_string = hm_params.get_physical_params() # Set savefolder accordingly physical_param_folder = join(expfolder,physical_param_string) def compile_generalized_rates_dga(model,tpt_file_list,hm_params,algo_params,savefolder): # For each TPT output file, load it in and read the generalized rates Ntpt = len(tpt_file_list) keys = list(model.dam_dict.keys()) Nkeys = len(keys) Nmom = algo_params["num_moments"] rates_dga = dict() for k in range(Nkeys): rates_dga[keys[k]] = {"ab": np.zeros((Ntpt,Nmom+1)), "ba": np.zeros((Ntpt,Nmom+1))} for i in range(Ntpt): tpt = pickle.load(open(tpt_file_list[i],"rb")) for k in range(Nkeys): rates_dga[keys[k]]["ab"][i,:] = tpt.dam_moments[keys[k]]['rate_ab'] rates_dga[keys[k]]["ba"][i,:] = tpt.dam_moments[keys[k]]['rate_ba'] if i == 0: # Extract DNS info dam_dns = tpt.dam_emp long_from_label = tpt.long_from_label long_to_label = tpt.long_to_label t_long,x_long = model.load_long_traj(tpt.long_simfolder) del x_long del tpt ab_reactive_flag = 1*(long_from_label==-1)*(long_to_label==1) ba_reactive_flag = 1*(long_from_label==1)*(long_to_label==-1) num_rxn = np.sum(np.diff(ab_reactive_flag)==1) num_rxn = min(num_rxn,np.sum(np.diff(ba_reactive_flag)==1)) print("num_rxn = {}".format(num_rxn)) ab_starts = np.where(np.diff(ab_reactive_flag)==1)[0] + 1 ab_ends = np.where(np.diff(ab_reactive_flag)==-1)[0] + 1 ba_starts = np.where(np.diff(ba_reactive_flag)==1)[0] + 1 ba_ends = np.where(np.diff(ba_reactive_flag)==-1)[0] + 1 num_rxn = np.sum(np.diff(ab_reactive_flag)==1) num_rxn = min(num_rxn,np.sum(np.diff(ba_reactive_flag)==1)) num_rxn -= 1 # For the periods Nt = len(t_long) dt = t_long[1] - t_long[0] print("num_rxn = {}".format(num_rxn)) # ------------------- Generalized rates --------------------- # Look at time from one ab_start to the next, and treat that as the IID random variables. Do a bootstrap estimate Nboot = 500 Nab = num_rxn #len(ab_starts) Nba = num_rxn #len(ba_starts) ret = {'ab': np.diff(ab_starts)*dt, 'ba': np.diff(ba_starts)*dt} # Time of each one. The fundamental unit. genrate_dns = {} for key in keys: genrate_dns[key] = {} for dirn in ['ab','ba']: np.random.seed(1) genrate_dns[key][dirn] = {"mean": np.array([np.sum(dam_dns[key][dirn]**k)/np.sum(ret[dirn]) for k in range(Nmom+1)])} genrate_bootstrap = np.zeros((Nboot,Nmom+1)) for i in range(Nboot): idx = np.random.choice(np.arange(Nab),size=Nab,replace=True) genrate_bootstrap[i] = np.array([np.sum(dam_dns[key][dirn][idx]**k)/np.sum(ret[dirn][idx]) for k in range(Nmom+1)]) genrate_dns[key][dirn]["rmse"] = np.sqrt(np.mean((genrate_bootstrap - genrate_dns[key][dirn]["mean"])**2, axis=0)) genrate_dga = {} for key in keys: genrate_dga[key] = {} for dirn in ['ab','ba']: genrate_dga[key][dirn] = {"mean": np.mean(rates_dga[key][dirn], axis=0)} genrate_dga[key][dirn]["rmse"] = np.std(rates_dga[key][dirn], axis=0) genrate_dga[key][dirn]["min"] =
np.min(rates_dga[key][dirn], axis=0)
numpy.min
import numpy as np from scipy import interpolate,signal import matplotlib.pyplot as plt import math from scipy.io import wavfile import timeit class FDSAF: def __init__( self,filterlen): self.M = filterlen #self.w_f = np.fft.fft(np.concatenate((np.ones(1),np.zeros(2*self.M-1)))) self.w_f = np.fft.fft(np.zeros(2*self.M)) #self.w_f = np.fft.fft(np.concatenate((np.ones(self.M)/self.M,np.zeros(self.M)))) self.last_buffer =
np.zeros(self.M, dtype='float')
numpy.zeros
import socket import time, threading import tkinter as tk import tkinter.ttk as ttk import numpy as np import struct from queue import Queue from PIL import ImageTk, Image import robot import psutil import io import sys import math import cv2 as cv np.set_printoptions(threshold=sys.maxsize) from threading import Thread def rgb2gray(rgb):#rgb转换灰度 r, g, b = rgb[:,:,0], rgb[:,:,1], rgb[:,:,2] gray = 0.2989 * r + 0.5870 * g + 0.1140 * b return gray def gfunc(x,y,sigma):#高斯函数 return (math.exp(-(x**2 + y**2)/(2*(sigma**2))))/(2*3.14*(sigma**2)) def gaussFilter(size, sigma):#高斯滤波器 out = np.zeros(size) for i in range(size[0]): for j in range(size[1]): out[i,j] = gfunc(i-size[0]//2,j-size[1]//2, sigma ) return out/np.sum(out) #FLANN模板匹配算法 def template_match(img,query): sift = cv.SIFT_create() # numpy数组到opencv矩阵转换 img = cv.cvtColor(np.array(img), cv.COLOR_RGB2BGR) query = cv.cvtColor(np.array(query), cv.COLOR_RGB2BGR) # SIFT查找关键特征点和距离 kp1, des1 = sift.detectAndCompute(img, None) kp2, des2 = sift.detectAndCompute(query, None) # FLANN 参数 FLANN_INDEX_KDTREE = 0 index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5) search_params = dict(checks=50) # or pass empty dictionary flann = cv.FlannBasedMatcher(index_params, search_params) # FLANN 匹配相似像素点 matches = flann.knnMatch(des1, des2, k=2) # 判断是否满足相似条件的相似矩阵 matchesMask = [[0, 0] for i in range(len(matches))] for i, (m, n) in enumerate(matches): if m.distance < 0.7 * n.distance: matchesMask[i] = [1, 0] draw_params = dict(matchColor=(0, 255, 0), singlePointColor=(255, 0, 0), matchesMask=matchesMask, flags=0) img3 = cv.drawMatchesKnn(img, kp1, query, kp2, matches, None, **draw_params) img3 = cv.cvtColor(img3, cv.COLOR_BGR2RGB) return img3 def covFilter(img,filter): #滤波器卷积函数 img_arr = np.array(img) #re_arr = np.zeros_like(img_arr) re_arr = np.copy(img_arr) center_x = filter.shape[0]//2 #滤波器中心点 center_y = filter.shape[1]//2 #滤波器中心点 img_arr = np.pad(img_arr, ((center_x,center_x), (center_y,center_y), (0, 0)))#padding操作 re_arr = re_arr.astype(np.float64) img_arr = img_arr.astype(np.float64) re_arr =re_arr/255.0 #像素值转换0~255到0~1 img_arr =img_arr/255.0 #像素值转换0~255到0~1 re_arr = filter[center_x,center_y] * re_arr for x in range(0,filter.shape[0]): for y in range(0,filter.shape[1]): if x!=center_x and y!=center_y: re_arr = re_arr + filter[x,y] * img_arr[x:x+re_arr.shape[0],y:y+re_arr.shape[1],:] re_arr = re_arr.astype(np.float64) re_arr =re_arr*255.0 re_arr = re_arr.astype(np.uint8) """ for x in range(re_arr.shape[0]): for y in range(re_arr.shape[1]): re_arr[x,y,:] = np.mean(img_arr[x:x+9,y:y+9,:],axis=(0, 1)) print(re_arr.dtype) """ return re_arr #均值滤波器 def MeanFilter(img): img_arr = np.array(img) #re_arr = np.zeros_like(img_arr) re_arr = np.copy(img_arr) img_arr = np.pad(img_arr, ((4,4), (4,4), (0, 0))) re_arr = re_arr.astype(np.float64) img_arr = img_arr.astype(np.float64) re_arr =re_arr/255.0 img_arr =img_arr/255.0 #像素值转换0~255到0~1 for x in range(0,9): for y in range(0,9): if x!=4 and y!=4: re_arr = re_arr + img_arr[x:x+re_arr.shape[0],y:y+re_arr.shape[1],:] re_arr = re_arr.astype(np.float64) re_arr =re_arr/81.0*255.0 #平均值操作 re_arr = re_arr.astype(np.uint8) """ for x in range(re_arr.shape[0]): for y in range(re_arr.shape[1]): re_arr[x,y,:] = np.mean(img_arr[x:x+9,y:y+9,:],axis=(0, 1)) print(re_arr.dtype) """ return re_arr #Harris角点 def find_harris_corners(input_img, k=0.04, window_size=5, threshold = 10000.00): output_img =
np.copy(input_img)
numpy.copy
import numpy as np from scipy import integrate from scipy import interpolate # Cosmological parameters Om0 = 0.272 Ol0 = 1.0 - Om0 h = 0.704 ns = 0.961 sigma80 = 0.807 SPEEDOFLIGHT_KMS = 2.99792458e5 def nhat(alpha, delta): nhat = np.zeros(3) nhat[0] = np.cos(delta) * np.cos(alpha) nhat[1] = np.cos(delta) * np.sin(alpha) nhat[2] = np.sin(delta) return nhat def angsep(alpha1, alpha2, delta1, delta2): cos_ang = np.sin(delta1)*np.sin(delta2) + np.cos(delta1)*np.cos(delta2)*np.cos(alpha1-alpha2) ang = np.arccos(cos_ang) return ang class cosmo: def __init__(self, Om0=Om0, h=h, ns=ns, sigma80=sigma80, **kwargs): self.Om0 = Om0 self.Ol0 = 1.0 - self.Om0 self.Ob0 = 0.045 self.Tcmb0 = 2.7255 self.h = h self.ns = ns self.sigma80 = sigma80 self.H0 = 100.0 # [h km/s/Mpc] self.q0 = 0.5*self.Om0 - self.Ol0 self.gamma = 0.55 # growth index self._As = None self._sigmav = None self.log_xi_perp_interpolator = None self.xi_para_interpolator = None # Eisenstein & Hu (1998) zero baryon transfer function parameters ombom0 = self.Ob0 / self.Om0 # shorthand om0h2 = self.Om0 * self.h**2 ombh2 = self.Ob0 * self.h**2 self.theta2p7 = self.Tcmb0 / 2.7 # Equation 31 alphaGamma = 1.0 - 0.328*np.log(431.0*om0h2)*ombom0 + 0.38*np.log(22.3*om0h2)*ombom0**2 # Quantities for Equation 30 (computed in transferFunction) self.Gamma1 = self.Om0*self.h*alphaGamma self.Gamma2 = self.Om0*self.h*(1.0-alphaGamma) # Equation 26 self.s_EH98 = 44.5*np.log(9.83/om0h2) / np.sqrt(1.0+10.0*ombh2**0.75) # halofit spectral parameters self.rknl = None self.rneff = None self.rncur = None @property def dH(self): return (SPEEDOFLIGHT_KMS)/self.H0 * 1e3 # c/H_0 [h^-1 kpc] def E_Hub(self, z): """ Computes E(z) = H(z)/H0 """ E2 = self.Om0*(1.+z)**3 + self.Ol0 if np.all(E2 > 0.0): return np.sqrt(E2) else: return np.NaN def Omega_m(self, z): """ Evolution of omega matter with redshift """ EH = self.E_Hub(z) return self.Om0*(1.+z)**3 / EH**2 def Omega_v(self, z): """ Evolution of omega vacuum with redshift """ EH = self.E_Hub(z) return self.Ol0 / EH**2 def chi(self, z, use_lowz=False): """ Computes the comoving distance in units h^-1 kpc """ def _integrand(z): return 1.0/self.E_Hub(z) # 1/E(z) = H0/H(z) if use_lowz: # if z<<1 return self.dH * (z - 0.5*(1.+self.q0)*z**2) else: if np.isclose(z, 0.0): return 0.0 zp1 = z + 1.0 if np.isfinite(_integrand(z)): # prevent negative square roots if np.isclose(self.Om0, 1.0): # EdS return 2.*zp1*(1.-1./np.sqrt(zp1)) * self.dH elif np.isclose(self.Ol0, 1.0): # dS return z * self.dH else: y,err = integrate.quad(_integrand, 0.0, z, epsabs=1e-8) return y * self.dH else: return float(1e7) def chi_lowz(self, z): # accepts array input for z return self.dH*(z - 0.5*(1.+self.q0)*z**2) def ztot(self, z, v=0.0): return (1.0 + z) * (1.0 + v/SPEEDOFLIGHT_KMS) - 1.0 def kappa_v(self, z, v=0.0, use_lowz=False): dA_bar = self.chi(z, use_lowz) / (1.+z) dH = self.dH/self.E_Hub(z) return (1.0 - dH/dA_bar) * (v/SPEEDOFLIGHT_KMS) def dA(self, z, v=0.0, use_lowz=False): """ Computes angular diameter distance in units h^-1 kpc """ ret = self.chi(z, use_lowz) / (1.+z) if v == 0.0: ret *= 1.0 else: ret *= 1.0 - self.kappa_v(z, v, use_lowz) return ret def transferFunction(self, k): """ The zero-baryon transfer function according to Eisenstein & Hu 1998. This fitting function is significantly simpler than the full version and still approximates numerical calculations from a Boltzmann code to better than 10%, and almost as accurate when computing the variance or correlation function (see the Colossus code paper for details). """ kh = k*self.h # convert kh from hMpc^-1 to Mpc^-1 # Equation 30 Gamma = self.Gamma1 + self.Gamma2 / (1.0 + (0.43*kh*self.s_EH98)**4) # Equation 28 q = k * self.theta2p7 * self.theta2p7 / Gamma # Equation 29 C0 = 14.2 + 731.0 / (1.0 + 62.5*q) L0 = np.log(2.0*np.exp(1.0) + 1.8*q) Tk = L0 / (L0 + C0*q*q) return Tk def growthFactor(self, z): # D(a) return 1.0 def growthFactor_approx(self, z): # The Carroll, Press & Turner (1992) approximation, eq. 29 for g(Omega)=D/a om_m = self.Omega_m(z) om_v = self.Omega_v(z) g = 2.5*om_m/(om_m**(4./7.)-om_v+(1.+om_m/2.)*(1.+om_v/70.)) g0 = 2.5*self.Om0/(self.Om0**(4./7.)-self.Ol0+(1.+self.Om0/2.)*(1.+self.Ol0/70.)) return g/g0/(1.+z) # D def matterPowerSpectrum(self, k, z=0.0): """ The (linear) matter power spectrum at scale k k has units h/Mpc so P(k) has units of [k^-3] i.e. (Mpc/h)^3 """ T = self.transferFunction(k) D = self.growthFactor(z) Pk = self.As * D * D * T * T * k**self.ns return Pk def Delta2_L(self, k, z=0.0): """ Linear dimensionless matter power spectrum """ return k**3 * self.matterPowerSpectrum(k,z) / (2.*np.pi**2) @property def As(self): # scalar amplitude A_s of matter power spectrum if self._As is None: sigma80_int = self._sigmaExact() self._As = (self.sigma80 / sigma80_int)**2 return self._As def _sigmaExact(self): """ This computes the integral of sqrt[(sigma_80)^2 / A_s]. The infinite integral over k often causes trouble when the tophat filter is used. Thus we determine sensible limits and integrate over a finite k-volume. """ def _integrand(lnk): k = np.exp(lnk) x = k * 8.0 if x < 1e-3: W = 1.0 else: W = 3.0 / x**3 * (np.sin(x) - x * np.cos(x)) # FT of tophat filter T = self.transferFunction(k) P_unnorm = T * T * k**self.ns # equal to P(k)/A_s ret = P_unnorm * W**2 * k**3 # one factor of k due to the integration in log-k space return ret lnk_min, lnk_max = self._get_lnk_limits(_integrand) sigma2, _ = integrate.quad(_integrand, lnk_min, lnk_max, epsabs=1e-9, limit=100) sigma = np.sqrt(sigma2 / 2.0 / np.pi**2) if np.isnan(sigma): # raise Exception("Result is nan") print('sigma integral is NaN') print('with parameters Om0={}, sigma8={}'.format(self.Om0,self.sigma80)) return sigma def _sep(self, coord_obj1, coord_obj2, use_lowz=False): """ Computes the comoving seperation between two points and the angles made by the two lines of sight and the connecting line. Parameters ------------------------------------------------------- coord_obj1: array-like e.g. 3-tuple (z,RA,DEC) coord_obj2: array-like e.g. 3-tuple (z,RA,DEC) The angular coordinates RA and DEC are in degrees. Returns ------------------------------------------------------- (r,theta1,theta2): 3-tuple r is the comoving seperation (Mpc/h) theta1(2) in radians is the seperation angle between the LOS of object 1(2) and the connecting line. Notes ------------------------------------------------------- rhat is directed from point 1 to point 2 """ deg2rad = np.pi/180 z1, RA1, DEC1 = coord_obj1 z2, RA2, DEC2 = coord_obj2 alpha1 = RA1 * deg2rad alpha2 = RA2 * deg2rad delta1 = DEC1 * deg2rad delta2 = DEC2 * deg2rad nhat1 = nhat(alpha1, delta1) nhat2 = nhat(alpha2, delta2) xvec1 = self.chi(z1, use_lowz) * 1e-3 * nhat1 # since chi in kpc/h and want Mpc/h xvec2 = self.chi(z2, use_lowz) * 1e-3 * nhat2 rvec = xvec2 - xvec1 r = np.sqrt(np.dot(rvec,rvec)) if r < 1e-14: theta1 = np.pi/2 theta2 = np.pi/2 else: rhat = rvec/r theta1 = np.arccos(np.dot(rhat,nhat1)) theta2 = np.arccos(np.dot(rhat,nhat2)) return r, theta1, theta2 # units radians and Mpc/h def xiV_perp(self, r): def _integrand_perp(lnk, r): k = np.exp(lnk) Pk = self.matterPowerSpectrum(k) x = k * r if x < 1e-3: Kperp = 1/3. else: j1 =
np.sin(x)
numpy.sin
# Python imports import itertools import os from itertools import compress from xml.etree import ElementTree as ET # Third-party imports import numpy import numpy as np # PyCSEP imports from csep.utils.calc import bin1d_vec, cleaner_range, first_nonnan, last_nonnan from csep.utils.scaling_relationships import WellsAndCoppersmith from csep.models import Polygon def california_relm_collection_region(dh_scale=1, magnitudes=None, name="relm-california-collection", use_midpoint=True): """ Return collection region for California RELM testing region Args: dh_scale (int): factor of two multiple to change the grid size mangitudes (array-like): array representing the lower bin edges of the magnitude bins name (str): human readable identifer use_midpoints (bool): if true, treat values in file as midpoints. default = true. Returns: :class:`csep.core.spatial.CartesianGrid2D` Raises: ValueError: dh_scale must be a factor of two """ if dh_scale % 2 != 0 and dh_scale != 1: raise ValueError("dh_scale must be a factor of two or dh_scale must equal unity.") # we can hard-code the dh because we hard-code the filename dh = 0.1 root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) filepath = os.path.join(root_dir, 'artifacts', 'Regions', 'RELMCollectionArea.dat') points = numpy.loadtxt(filepath) if use_midpoint: origins = numpy.array(points) - dh / 2 else: origins = numpy.array(points) if dh_scale > 1: origins = increase_grid_resolution(origins, dh, dh_scale) dh = dh / dh_scale # turn points into polygons and make region object bboxes = compute_vertices(origins, dh) relm_region = CartesianGrid2D([Polygon(bbox) for bbox in bboxes], dh, name=name) if magnitudes is not None: relm_region.magnitudes = magnitudes return relm_region def california_relm_region(dh_scale=1, magnitudes=None, name="relm-california", use_midpoint=True): """ Returns class representing California testing region. This region can be used to create gridded datasets for earthquake forecasts. The XML file appears to use the midpoint, and the .dat file uses the origin in the "lower left" corner. Args: dh_scale: can resample this grid by factors of 2 Returns: :class:`csep.core.spatial.CartesianGrid2D` Raises: ValueError: dh_scale must be a factor of two """ if dh_scale % 2 != 0 and dh_scale != 1: raise ValueError("dh_scale must be a factor of two or dh_scale must equal unity.") # use default file path from python package root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) filepath = os.path.join(root_dir, 'artifacts', 'Regions', 'csep-forecast-template-M5.xml') csep_template = os.path.expanduser(filepath) points, dh = parse_csep_template(csep_template) if use_midpoint: origins = numpy.array(points) - dh / 2 else: origins = numpy.array(points) if dh_scale > 1: origins = increase_grid_resolution(origins, dh, dh_scale) dh = dh / dh_scale # turn points into polygons and make region object bboxes = compute_vertices(origins, dh) relm_region = CartesianGrid2D([Polygon(bbox) for bbox in bboxes], dh, name=name) if magnitudes is not None: relm_region.magnitudes = magnitudes return relm_region def italy_csep_region(dh_scale=1, magnitudes=None, name="csep-italy", use_midpoint=True): """ Returns class representing Italian testing region. This region can be used to create gridded datasets for earthquake forecasts. The region is defined by the file 'forecast.italy.M5.xml' and contains a spatially gridded region with 0.1° x 0.1° cells. Args: dh_scale: can resample this grid by factors of 2 magnitudes (array-like): bin edges for magnitudes. if provided, will be bound to the output region class. this argument provides a short-cut for creating space-magnitude regions. name (str): human readable identify given to the region use_midpoint (bool): if true, treat values in file as midpoints. default = true. Returns: :class:`csep.core.spatial.CartesianGrid2D` Raises: ValueError: dh_scale must be a factor of two """ if dh_scale % 2 != 0 and dh_scale != 1: raise ValueError("dh_scale must be a factor of two or dh_scale must equal unity.") # use default file path from python package root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) filepath = os.path.join(root_dir, 'artifacts', 'Regions', 'forecast.italy.M5.xml') csep_template = os.path.expanduser(filepath) points, dh = parse_csep_template(csep_template) if use_midpoint: origins = numpy.array(points) - dh / 2 else: origins = numpy.array(points) if dh_scale > 1: origins = increase_grid_resolution(origins, dh, dh_scale) dh = dh / dh_scale # turn points into polygons and make region object bboxes = compute_vertices(origins, dh) italy_region = CartesianGrid2D([Polygon(bbox) for bbox in bboxes], dh, name=name) if magnitudes is not None: italy_region.magnitudes = magnitudes return italy_region def italy_csep_collection_region(dh_scale=1, magnitudes=None, name="csep-italy-collection", use_midpoint=True): """ Return collection region for Italy CSEP collection region Args: dh_scale (int): factor of two multiple to change the grid size mangitudes (array-like): array representing the lower bin edges of the magnitude bins name (str): human readable identifer use_midpoint (bool): if true, treat values in file as midpoints. default = true. Returns: :class:`csep.core.spatial.CartesianGrid2D` Raises: ValueError: dh_scale must be a factor of two """ if dh_scale % 2 != 0 and dh_scale != 1: raise ValueError("dh_scale must be a factor of two or dh_scale must equal unity.") # we can hard-code the dh because we hard-code the filename dh = 0.1 root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) filepath = os.path.join(root_dir, 'artifacts', 'Regions', 'italy.collection.nodes.dat') points = numpy.loadtxt(filepath) if use_midpoint: origins = numpy.array(points) - dh / 2 else: origins = numpy.array(points) if dh_scale > 1: origins = increase_grid_resolution(origins, dh, dh_scale) dh = dh / dh_scale # turn points into polygons and make region object bboxes = compute_vertices(origins, dh) relm_region = CartesianGrid2D([Polygon(bbox) for bbox in bboxes], dh, name=name) if magnitudes is not None: relm_region.magnitudes = magnitudes return relm_region def global_region(dh=0.1, name="global", magnitudes=None): """ Creates a global region used for evaluating gridded forecasts on the global scale. The gridded region corresponds to the Args: dh: Returns: csep.utils.CartesianGrid2D: """ # generate latitudes lons = cleaner_range(-180.0, 179.9, dh) lats = cleaner_range(-90, 89.9, dh) coords = itertools.product(lons,lats) region = CartesianGrid2D([Polygon(bbox) for bbox in compute_vertices(coords, dh)], dh, name=name) if magnitudes is not None: region.magnitudes = magnitudes return region def magnitude_bins(start_magnitude, end_magnitude, dmw): """ Returns array holding magnitude bin edges. The output from this function is monotonically increasing and equally spaced bin edges that can represent magnitude bins. Args: start_magnitude (float) end_magnitude (float) dmw (float): magnitude spacing Returns: bin_edges (numpy.ndarray) """ # convert to integers to prevent accumulating floating point errors const = 10000 start = numpy.floor(const * start_magnitude) end = numpy.floor(const * end_magnitude) d = const * dmw return numpy.arange(start, end + d / 2, d) / const def create_space_magnitude_region(region, magnitudes): """Simple wrapper to create space-magnitude region """ if not isinstance(region, CartesianGrid2D): raise TypeError("region must be CartesianGrid2D") # bind to region class if magnitudes is None: raise ValueError("magnitudes should not be None if creating space-magnitude region.") region.magnitudes = magnitudes region.num_mag_bins = len(region.magnitudes) return region def parse_csep_template(xml_filename): """ Reads CSEP XML template file and returns the lat/lon values for the forecast. Returns: list of tuples where tuple is (lon, lat) """ tree = ET.parse(xml_filename) root = tree.getroot() points = [] for cell in root.iter('{http://www.scec.org/xml-ns/csep/forecast/0.1}cell'): points.append((float(cell.attrib['lon']), float(cell.attrib['lat']))) # get cell spacing data = root.find('{http://www.scec.org/xml-ns/csep/forecast/0.1}forecastData') dh_elem = data.find('{http://www.scec.org/xml-ns/csep/forecast/0.1}defaultCellDimension') dh_lat = float(dh_elem.attrib['latRange']) dh_lon = float(dh_elem.attrib['lonRange']) if not numpy.isclose(dh_lat, dh_lon): raise ValueError("dh_lat must equal dh_lon. grid needs to be regular.") return points, dh_lat def increase_grid_resolution(points, dh, factor): """ Takes a set of origin points and returns a new set with higher grid resolution. assumes the origin point is in the lower left corner. the new dh is dh / factor. This implementation requires that the decimation factor be a multiple of 2. Args: points: list of (lon,lat) tuples dh: old grid spacing factor: amount to reduce Returns: points: list of (lon,lat) tuples with spacing dh / scale """ # short-circuit recursion if factor == 1: return points # handle edge cases assert factor % 2 == 0 assert factor >= 1 # first start out new_points = set() new_dh = dh / 2 for point in points: bbox = compute_vertex(point, new_dh) for pnt in bbox: new_points.add(pnt) # call function again with new_points, new_dh, new_factor new_factor = factor / 2 return increase_grid_resolution(list(new_points), new_dh, new_factor) def masked_region(region, polygon): """ Build a new region based off the coordinates in the polygon. Args: region: CartesianGrid2D object polygon: Polygon object Returns: new_region: CartesianGrid2D object """ # contains is true if spatial cell in region is inside the polygon contains = polygon.contains(region.midpoints()) # compress only returns elements that are true, effectively removing elements outside of the polygons new_polygons = list(compress(region.polygons, contains)) # create new region with the spatial cells inside the polygon return CartesianGrid2D(new_polygons, region.dh) def generate_aftershock_region(mainshock_mw, mainshock_lon, mainshock_lat, num_radii=3, region=california_relm_region, **kwargs): """ Creates a spatial region around a given epicenter The method uses the Wells and Coppersmith scaling relationship to determine the average fault length and creates a circular region centered at (mainshock_lon, mainshock_lat) with radius = num_radii. Args: mainshock_mw (float): magnitude of mainshock mainshock_lon (float): epicentral longitude mainshock_lat (float): epicentral latitude num_radii (float/int): number of radii of circular region region (callable): returns :class:`csep.utils.spatial.CartesianGrid2D` **kwargs (dict): passed to region callable Returns: :class:`csep.utils.spatial.CartesianGrid2D` """ rupture_length = WellsAndCoppersmith.mag_length_strike_slip(mainshock_mw) * 1000 aftershock_polygon = Polygon.from_great_circle_radius((mainshock_lon, mainshock_lat), num_radii * rupture_length, num_points=100) aftershock_region = masked_region(region(**kwargs), aftershock_polygon) return aftershock_region def grid_spacing(vertices): """ Figures out the length and Args: vertices: Vertices describe a single node in grid. Returns: dh: grid spacing Raises: ValueError """ # get first two vertices a = vertices[0] b = vertices[1] # compute both differences, because unless point is the same one is bound to be the dh d1 = numpy.abs(b[0] - a[0]) d2 = numpy.abs(b[1] - a[1]) if not numpy.allclose(d1, d2): raise ValueError("grid spacing must be regular for cartesian grid.") dh =
numpy.max([d1, d2])
numpy.max
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Written by <NAME> and CBIG under MIT license: https://github.com/ThomasYeoLab/CBIG/blob/master/LICENSE.md """ import os import time import numpy as np from scipy.stats.stats import pearsonr import torch from utils import load_graph, preprocess_adj, normalized_laplacian from utils import rescale_laplacian, chebyshev_polynomial def mics_z_norm(train_y, valid_y, test_y): '''z normalize y of training, validation and test set based on training set Args: train_y (ndarray): training y data valid_y (ndarray): validation y data test_y (ndarray): testing y data Returns: Tuple: contains z-normed y data and std of training y data ''' # subtract mean of y of training set t_mu = train_y.mean(axis=0, keepdims=True) train_y = train_y - t_mu valid_y = valid_y - t_mu test_y = test_y - t_mu # divide std of y of training set t_sigma = train_y.std(axis=0) train_y = train_y / t_sigma[np.newaxis, :] valid_y = valid_y / t_sigma[np.newaxis, :] test_y = test_y / t_sigma[np.newaxis, :] # return processed y and std for future MAE calculation return [train_y, valid_y, test_y, t_sigma] def mics_z_norm_gcnn(input_y, train_mask): """z normalize y based on training data Args: input_y (ndarray): y data train_mask (ndarray): mask of training data Returns: Tuple: contains z-normed y data and std of training y data """ # get mean and std of training data y_tra = input_y[train_mask, :] t_mu = y_tra.mean(axis=0) t_sigma = y_tra.std(axis=0) # perform z-norm input_y = input_y - t_mu[np.newaxis, :] input_y = input_y / t_sigma[np.newaxis, :] return [input_y, t_sigma] def mics_z_norm_test(train_valid_y, test_y): """z normalize y test set based on training data for HCP dataset Args: train_valid_y (list): list of y data for both training and validation test_y (ndarray): test y data Returns: Tuple: z normed test y data, and std of training y data """ base_y = np.vstack(train_valid_y) t_v_mu = base_y.mean(axis=0) test_y = test_y - t_v_mu[np.newaxis, :] t_v_sigma = base_y.std(axis=0) test_y = test_y / t_v_sigma[np.newaxis, :] return test_y, t_v_sigma def mics_train_valid_split(train_valid_x, train_valid_y, fold=None, is_bnc=False): """split training and validation data (HCP only) Args: train_valid_x (list): list of y data for both training and validation train_valid_y (list): list of x data for both training and validation fold (int, optional): index of fold for validation, if None, no validation is going to be returned is_bnc (bool, optional): whether function is used for brainnetcnn Returns: Tuple: if fold is None, all data in list train_valid_x and y are combined as training x and y. If fold is not None, the corresponding fold is returned as validation data, while the remaining folds are combined as training data. """ if fold is not None: valid_index = fold valid_x = train_valid_x[valid_index] valid_y = train_valid_y[valid_index] train_valid_x = np.delete(train_valid_x, valid_index, axis=0) train_valid_y = np.delete(train_valid_y, valid_index, axis=0) tmp = list(train_valid_x[0].shape) tmp[0] = 0 train_x = np.zeros(tmp) train_y = np.zeros((0, train_valid_y[0].shape[-1])) for i in range(len(train_valid_x)): train_x = np.concatenate((train_x, train_valid_x[i]), axis=0) train_y = np.concatenate((train_y, train_valid_y[i]), axis=0) if is_bnc: train_x = np.expand_dims(train_x, axis=-1) if fold is not None: if is_bnc: valid_x = np.expand_dims(valid_x, axis=-1) t_mu = train_y.mean(axis=0) train_y = train_y - t_mu[np.newaxis, :] valid_y = valid_y - t_mu[np.newaxis, :] t_sigma = train_y.std(axis=0) train_y = train_y / t_sigma[np.newaxis, :] valid_y = valid_y / t_sigma[np.newaxis, :] return [train_x, valid_x, train_y, valid_y] t_mu = train_y.mean(axis=0) train_y = train_y - t_mu[np.newaxis, :] t_sigma = train_y.std(axis=0) train_y = train_y / t_sigma[np.newaxis, :] return [train_x, train_y] def mics_train_valid_mask_split(train_valid_mask, fold=None): """split training and validation mask for gcnn (HCP only) Args: train_valid_mask (list): list of training and validation mask fold (int, optional): index of fold for validation, if None, no validation is going to be returned Returns: Tuple: training and validation mask """ # Data split if fold is not None: valid_mask = train_valid_mask[fold] train_list = np.delete(train_valid_mask, fold, axis=0) else: valid_mask = None train_list = train_valid_mask train_mask = np.zeros(train_valid_mask[0].shape) for i in range(len(train_list)): train_mask = np.logical_or(train_mask, train_list[i]) return [train_mask, valid_mask] def mics_hcp_log(model_name, out_path, **kwargs): """calculate the test result and save the log Args: model_name (str): name of the model out_path (str): path to save the log npz file **kwargs: record of training, validation and test value Returns: None """ val_cor = kwargs['val_cor_log'] tes_cor = kwargs['tes_cor_log'] n_folds = tes_cor.shape[0] temp = np.mean(val_cor, axis=-1) temp = np.mean(temp, axis=1) index = np.argmax(temp, axis=-1) print('Optimal index for each fold at:', index) result = np.array([tes_cor[i, index[i], :] for i in range(n_folds)]) # avg = np.mean(result, axis=0) # err = np.std(result, axis=0) / np.sqrt(n_folds) temp = np.mean(result, axis=1) print('Optimal result for each fold:', temp) avg_a = np.mean(temp, axis=0) # err_a = np.std(temp, axis=0) / np.sqrt(n_folds) print('Final test result:', avg_a) kwargs['metric'] = avg_a # save record value for future use date_str = time.strftime("%Y_%m_%d_%H_%M") os.makedirs(out_path, exist_ok=True) file_str = 'HCP_' + model_name + '_' + date_str + '.npz' name_str = os.path.join(out_path, file_str) np.savez(name_str, **kwargs) print('log saved at:', file_str) return def mics_hcp_infer(model, x, y, sigma, x_train=None, y_train=None): """evaluate model prediction for given data (HCP only) Args: model (keras.models.Model): keras DNN model x (ndarray): input x data y (ndarray): y data sigma (ndarray): std of training y data x_train (ndarray, optional): training x data y_train (ndarray, optional): training y data Returns: Tuple: correlation and MAE between real and predicted y, and predicted y value """ y_pred = model.predict(x, batch_size=48, verbose=0) cor = np.zeros((y.shape[-1])) mae = np.zeros((y.shape[-1])) for i in range(y.shape[-1]): cor[i] = pearsonr(y_pred[:, i], y[:, i])[0] mae[i] = np.mean(np.abs(y_pred[:, i] - y[:, i])) * sigma[i] if x_train is None: return cor, mae, y_pred else: y_pred_t = model.predict(x_train, batch_size=48, verbose=0) cor_train = np.zeros((y_train.shape[-1])) for i in range(y_train.shape[-1]): cor_train[i] = pearsonr(y_pred_t[:, i], y_train[:, i])[0] return cor, mae, y_pred, cor_train def mics_hcp_gcnn_eval(preds, input_y, mask, sigma=None, train_mask=None): """evaluate model prediction for given data (HCP and gcnn only) Args: preds (ndarray): predicted y value input_y (ndarray): real y value mask (ndarray): mask on y value sigma (ndarray, optional): std of training y data train_mask (ndarray, optional): mask on training y value Returns: TYPE: correlation, loss and MAE between real and predicted y """ index = np.nonzero(mask)[0] pred = preds[index, :] real = input_y[index, :] los = np.mean(np.mean(np.square(pred - real), axis=-1)) cor = np.zeros((input_y.shape[-1])) mae = np.zeros((input_y.shape[-1])) for i in range(input_y.shape[-1]): cor[i] = pearsonr(pred[:, i], real[:, i])[0] if sigma is not None: mae[i] = np.mean(np.abs(pred[:, i] - real[:, i])) * sigma[i] if train_mask is None: return cor, los, mae else: index = np.nonzero(train_mask)[0] pred = preds[index, :] real = input_y[index, :] cor_train = np.zeros((input_y.shape[-1])) for i in range(input_y.shape[-1]): cor_train[i] = pearsonr(pred[:, i], real[:, i])[0] return cor, los, mae, cor_train def mics_infer_metric(dataloader, net, criterion, device, t_sigma=None, need_value=False): '''performance inference with net on data from dataloader and calculate metric Args: dataloader: dataloader to load data for PyTorch framework net: PyTorch deep learning network criterion: criterion for loss calculation t_sigma (float, optional): std of training y data, only use if sex is not the behavioral measuers need_value (bool, optional): whether return record of real and predicted value Returns: Tuple: if t_sigma is not None, correlation, MAE and loss are returned. If t_sigma is None, auccuracy and loss are returned. If need_value set to True, tuple returned also returns record of real and predicted y value alongside the metrics. If need_value is false, only metrics are returned. ''' # initialize variable for record record_loss = 0.0 if t_sigma is None: record_correct = 0.0 # count of correct prediction record_total = 0.0 # count of total prediction record_real = np.zeros((0)) record_pred = np.zeros((0, 2)) else: record_real = np.zeros((0, 1)) # real value record_pred = np.zeros((0, 1)) # prediction value # perform inference for (x, y) in dataloader: x, y = x.to(device), y.to(device) outputs = net(x) loss = criterion(outputs, y) record_loss += loss.item() record_real = np.concatenate((record_real, y.data.cpu().numpy()), axis=0) record_pred = np.concatenate((record_pred, outputs.data.cpu().numpy()), axis=0) if t_sigma is None: _, predicted = torch.max(outputs.data, 1) record_total += y.size(0) record_correct += (predicted == y.data).sum() # metric calculation loss = record_loss / len(dataloader) if t_sigma is None: aucc = record_correct.to(torch.float) / record_total if need_value: return aucc, loss, record_real, record_pred else: return aucc, loss else: corr = pearsonr(record_real, record_pred)[0] mae = np.mean(
np.abs(record_real - record_pred)
numpy.abs
""" .. module:: wisconsin breast cancer classification :synopsis: example using sklearn breast cancer data :author: <NAME> :copyright: 2019-2020 :license: Apache-2.0 """ import os import sys sys.path.insert(0, os.path.join('..', 'amicus')) sys.path.insert(0, os.path.join('..', '..', 'amicus')) import pathlib import pandas as pd import numpy as np import sklearn.datasets from amicus import Project # Loads cancer data and converts from numpy arrays to a pandas DataFrame. cancer = sklearn.datasets.load_breast_cancer() df = pd.DataFrame( data = np.c_[cancer['data'], cancer['target']], columns =
np.append(cancer['feature_names'], ['target'])
numpy.append
""" Group-wise function alignment using SRSF framework and Dynamic Programming moduleauthor:: <NAME> <<EMAIL>> """ import numpy as np import matplotlib.pyplot as plt import fdasrsf.utility_functions as uf import fdasrsf.bayesian_functions as bf import fdasrsf.fPCA as fpca import fdasrsf.geometry as geo from scipy.integrate import trapz, cumtrapz from scipy.interpolate import interp1d from scipy.linalg import svd, cholesky from scipy.cluster.hierarchy import linkage, fcluster from scipy.spatial.distance import squareform, pdist import GPy from numpy.linalg import norm, inv from numpy.random import rand, normal from joblib import Parallel, delayed from fdasrsf.fPLS import pls_svd from tqdm import tqdm import fdasrsf.plot_style as plot import fpls_warp as fpls import collections class fdawarp: """ This class provides alignment methods for functional data using the SRVF framework Usage: obj = fdawarp(f,t) :param f: (M,N): matrix defining N functions of M samples :param time: time vector of length M :param fn: aligned functions :param qn: aligned srvfs :param q0: initial srvfs :param fmean: function mean :param mqn: mean srvf :param gam: warping functions :param psi: srvf of warping functions :param stats: alignment statistics :param qun: cost function :param lambda: lambda :param method: optimization method :param gamI: inverse warping function :param rsamps: random samples :param fs: random aligned functions :param gams: random warping functions :param ft: random warped functions :param qs: random aligned srvfs :param type: alignment type :param mcmc: mcmc output if bayesian Author : <NAME> (JDT) <jdtuck AT sandia.gov> Date : 15-Mar-2018 """ def __init__(self, f, time): """ Construct an instance of the fdawarp class :param f: numpy ndarray of shape (M,N) of N functions with M samples :param time: vector of size M describing the sample points """ a = time.shape[0] if f.shape[0] != a: raise Exception('Columns of f and time must be equal') self.f = f self.time = time self.rsamps = False def srsf_align(self, method="mean", omethod="DP2", center=True, smoothdata=False, MaxItr=20, parallel=False, lam=0.0, cores=-1, grid_dim=7): """ This function aligns a collection of functions using the elastic square-root slope (srsf) framework. :param method: (string) warp calculate Karcher Mean or Median (options = "mean" or "median") (default="mean") :param omethod: optimization method (DP, DP2, RBFGS) (default = DP2) :param center: center warping functions (default = T) :param smoothdata: Smooth the data using a box filter (default = F) :param MaxItr: Maximum number of iterations (default = 20) :param parallel: run in parallel (default = F) :param lam: controls the elasticity (default = 0) :param cores: number of cores for parallel (default = -1 (all)) :param grid_dim: size of the grid, for the DP2 method only (default = 7) :type lam: double :type smoothdata: bool Examples >>> import tables >>> fun=tables.open_file("../Data/simu_data.h5") >>> f = fun.root.f[:] >>> f = f.transpose() >>> time = fun.root.time[:] >>> obj = fs.fdawarp(f,time) >>> obj.srsf_align() """ M = self.f.shape[0] N = self.f.shape[1] self.lam = lam if M > 500: parallel = True elif N > 100: parallel = True eps = np.finfo(np.double).eps f0 = self.f self.method = omethod methods = ["mean", "median"] self.type = method # 0 mean, 1-median method = [i for i, x in enumerate(methods) if x == method] if len(method) == 0: method = 0 else: method = method[0] # Compute SRSF function from data f, g, g2 = uf.gradient_spline(self.time, self.f, smoothdata) q = g / np.sqrt(abs(g) + eps) print("Initializing...") mnq = q.mean(axis=1) a = mnq.repeat(N) d1 = a.reshape(M, N) d = (q - d1) ** 2 dqq = np.sqrt(d.sum(axis=0)) min_ind = dqq.argmin() mq = q[:, min_ind] mf = f[:, min_ind] if parallel: out = Parallel(n_jobs=cores)(delayed(uf.optimum_reparam)(mq, self.time, q[:, n], omethod, lam, grid_dim) for n in range(N)) gam = np.array(out) gam = gam.transpose() else: gam = np.zeros((M,N)) for k in range(0,N): gam[:,k] = uf.optimum_reparam(mq,self.time,q[:,k],omethod,lam,grid_dim) gamI = uf.SqrtMeanInverse(gam) mf = np.interp((self.time[-1] - self.time[0]) * gamI + self.time[0], self.time, mf) mq = uf.f_to_srsf(mf, self.time) # Compute Karcher Mean if method == 0: print("Compute Karcher Mean of %d function in SRSF space..." % N) if method == 1: print("Compute Karcher Median of %d function in SRSF space..." % N) ds = np.repeat(0.0, MaxItr + 2) ds[0] = np.inf qun = np.repeat(0.0, MaxItr + 1) tmp = np.zeros((M, MaxItr + 2)) tmp[:, 0] = mq mq = tmp tmp = np.zeros((M, MaxItr+2)) tmp[:,0] = mf mf = tmp tmp = np.zeros((M, N, MaxItr + 2)) tmp[:, :, 0] = self.f f = tmp tmp = np.zeros((M, N, MaxItr + 2)) tmp[:, :, 0] = q q = tmp for r in range(0, MaxItr): print("updating step: r=%d" % (r + 1)) if r == (MaxItr - 1): print("maximal number of iterations is reached") # Matching Step if parallel: out = Parallel(n_jobs=cores)(delayed(uf.optimum_reparam)(mq[:, r], self.time, q[:, n, 0], omethod, lam, grid_dim) for n in range(N)) gam = np.array(out) gam = gam.transpose() else: for k in range(0,N): gam[:,k] = uf.optimum_reparam(mq[:, r], self.time, q[:, k, 0], omethod, lam, grid_dim) gam_dev = np.zeros((M, N)) vtil = np.zeros((M,N)) dtil = np.zeros(N) for k in range(0, N): f[:, k, r + 1] = np.interp((self.time[-1] - self.time[0]) * gam[:, k] + self.time[0], self.time, f[:, k, 0]) q[:, k, r + 1] = uf.f_to_srsf(f[:, k, r + 1], self.time) gam_dev[:, k] = np.gradient(gam[:, k], 1 / float(M - 1)) v = q[:, k, r + 1] - mq[:,r] d = np.sqrt(trapz(v*v, self.time)) vtil[:,k] = v/d dtil[k] = 1.0/d mqt = mq[:, r] a = mqt.repeat(N) d1 = a.reshape(M, N) d = (q[:, :, r + 1] - d1) ** 2 if method == 0: d1 = sum(trapz(d, self.time, axis=0)) d2 = sum(trapz((1 - np.sqrt(gam_dev)) ** 2, self.time, axis=0)) ds_tmp = d1 + lam * d2 ds[r + 1] = ds_tmp # Minimization Step # compute the mean of the matched function qtemp = q[:, :, r + 1] ftemp = f[:, :, r + 1] mq[:, r + 1] = qtemp.mean(axis=1) mf[:, r + 1] = ftemp.mean(axis=1) qun[r] = norm(mq[:, r + 1] - mq[:, r]) / norm(mq[:, r]) if method == 1: d1 = np.sqrt(sum(trapz(d, self.time, axis=0))) d2 = sum(trapz((1 - np.sqrt(gam_dev)) ** 2, self.time, axis=0)) ds_tmp = d1 + lam * d2 ds[r + 1] = ds_tmp # Minimization Step # compute the mean of the matched function stp = .3 vbar = vtil.sum(axis=1)*(1/dtil.sum()) qtemp = q[:, :, r + 1] ftemp = f[:, :, r + 1] mq[:, r + 1] = mq[:,r] + stp*vbar tmp = np.zeros(M) tmp[1:] = cumtrapz(mq[:, r + 1] * np.abs(mq[:, r + 1]), self.time) mf[:, r + 1] = np.median(f0[1, :])+tmp qun[r] = norm(mq[:, r + 1] - mq[:, r]) / norm(mq[:, r]) if qun[r] < 1e-2 or r >= MaxItr: break # Last Step with centering of gam if center: r += 1 if parallel: out = Parallel(n_jobs=cores)(delayed(uf.optimum_reparam)(mq[:, r], self.time, q[:, n, 0], omethod, lam, grid_dim) for n in range(N)) gam = np.array(out) gam = gam.transpose() else: for k in range(0,N): gam[:,k] = uf.optimum_reparam(mq[:, r], self.time, q[:, k, 0], omethod, lam, grid_dim) gam_dev = np.zeros((M, N)) for k in range(0, N): gam_dev[:, k] = np.gradient(gam[:, k], 1 / float(M - 1)) gamI = uf.SqrtMeanInverse(gam) gamI_dev = np.gradient(gamI, 1 / float(M - 1)) time0 = (self.time[-1] - self.time[0]) * gamI + self.time[0] mq[:, r + 1] = np.interp(time0, self.time, mq[:, r]) * np.sqrt(gamI_dev) for k in range(0, N): q[:, k, r + 1] = np.interp(time0, self.time, q[:, k, r]) * np.sqrt(gamI_dev) f[:, k, r + 1] = np.interp(time0, self.time, f[:, k, r]) gam[:, k] = np.interp(time0, self.time, gam[:, k]) else: gamI = uf.SqrtMeanInverse(gam) gamI_dev = np.gradient(gamI, 1 / float(M - 1)) # Aligned data & stats self.fn = f[:, :, r + 1] self.qn = q[:, :, r + 1] self.q0 = q[:, :, 0] mean_f0 = f0.mean(axis=1) std_f0 = f0.std(axis=1) mean_fn = self.fn.mean(axis=1) std_fn = self.fn.std(axis=1) self.gam = gam self.mqn = mq[:, r + 1] tmp = np.zeros(M) tmp[1:] = cumtrapz(self.mqn * np.abs(self.mqn), self.time) self.fmean = np.mean(f0[1, :]) + tmp fgam = np.zeros((M, N)) for k in range(0, N): time0 = (self.time[-1] - self.time[0]) * gam[:, k] + self.time[0] fgam[:, k] = np.interp(time0, self.time, self.fmean) var_fgam = fgam.var(axis=1) self.orig_var = trapz(std_f0 ** 2, self.time) self.amp_var = trapz(std_fn ** 2, self.time) self.phase_var = trapz(var_fgam, self.time) return def plot(self): """ plot plot functional alignment results Usage: obj.plot() """ M = self.f.shape[0] plot.f_plot(self.time, self.f, title="f Original Data") fig, ax = plot.f_plot(np.arange(0, M) / float(M - 1), self.gam, title="Warping Functions") ax.set_aspect('equal') plot.f_plot(self.time, self.fn, title="Warped Data") mean_f0 = self.f.mean(axis=1) std_f0 = self.f.std(axis=1) mean_fn = self.fn.mean(axis=1) std_fn = self.fn.std(axis=1) tmp = np.array([mean_f0, mean_f0 + std_f0, mean_f0 - std_f0]) tmp = tmp.transpose() plot.f_plot(self.time, tmp, title=r"Original Data: Mean $\pm$ STD") tmp = np.array([mean_fn, mean_fn + std_fn, mean_fn - std_fn]) tmp = tmp.transpose() plot.f_plot(self.time, tmp, title=r"Warped Data: Mean $\pm$ STD") plot.f_plot(self.time, self.fmean, title="$f_{mean}$") plt.show() return def gauss_model(self, n=1, sort_samples=False): """ This function models the functional data using a Gaussian model extracted from the principal components of the srvfs :param n: number of random samples :param sort_samples: sort samples (default = T) :type n: integer :type sort_samples: bool """ fn = self.fn time = self.time qn = self.qn gam = self.gam # Parameters eps = np.finfo(np.double).eps binsize = np.diff(time) binsize = binsize.mean() M = time.size # compute mean and covariance in q-domain mq_new = qn.mean(axis=1) mididx = np.round(time.shape[0] / 2) m_new = np.sign(fn[mididx, :]) * np.sqrt(np.abs(fn[mididx, :])) mqn = np.append(mq_new, m_new.mean()) qn2 = np.vstack((qn, m_new)) C = np.cov(qn2) q_s =
np.random.multivariate_normal(mqn, C, n)
numpy.random.multivariate_normal
import os from django.urls import path, include import face_recognition import cv2 from imutils.video import VideoStream import imutils import numpy as np from tensorflow.keras.models import load_model from tensorflow.keras.applications.mobilenet_v2 import preprocess_input from tensorflow.keras.preprocessing.image import img_to_array # load our serialized face detector model from disk prototxtPath = r"face_detector\deploy.prototxt" weightsPath = r"face_detector\res10_300x300_ssd_iter_140000.caffemodel" faceNet = cv2.dnn.readNet(prototxtPath, weightsPath) # load the face mask detector model from disk maskNet = load_model(r"C:\Users\mkjsr\OneDrive\Desktop\Django_mask_attendance\main_base\mask_detector.model") def detect_faces(frame,email): # grab the dimensions of the frame and then construct a blob # from it (h, w) = frame.shape[:2] blob = cv2.dnn.blobFromImage(frame, 1.0, (224, 224), (104.0, 177.0, 123.0)) # pass the blob through the network and obtain the face detections faceNet.setInput(blob) detections = faceNet.forward() print(detections.shape) # initialize our list of faces, their corresponding locations, # and the list of predictions from our face mask network faces = [] locs = [] lable = "Not Verified" BASE_DIR = os.path.dirname(os.path.abspath(__file__)) MEDIA_ROOT = os.path.join(BASE_DIR,'face_dataset') loc=(str(MEDIA_ROOT)+'\\'+str(email)+'.jpg') face_1_image = face_recognition.load_image_file(loc) small_frame_1 = cv2.resize(face_1_image, (0, 0), fx=0.25, fy=0.25) rgb_small_frame_1 = small_frame_1[:, :, ::-1] face_1_face_encoding = face_recognition.face_encodings(rgb_small_frame_1)[0] # loop over the detections for i in range(0, detections.shape[2]): # extract the confidence (i.e., probability) associated with # the detection confidence = detections[0, 0, i, 2] # filter out weak detections by ensuring the confidence is # greater than the minimum confidence if confidence > 0.5: # compute the (x, y)-coordinates of the bounding box for # the object box = detections[0, 0, i, 3:7] *
np.array([w, h, w, h])
numpy.array
from __future__ import print_function import numpy as np from dataflow.lib import err1d def extend(a, b): """ Extend *a* to match the number of dimensions of *b*. This adds dimensions to the end of *a* rather than the beginning. It is equivalent to *a[..., None, None]* with the right number of None elements to make the number of dimensions match (or np.newaxis if you prefer). For example:: from numpy.random import rand a, b = rand(3, 4), rand(3, 4, 2) a + b ==> ValueError: operands could not be broadcast together with shapes (3,4) (3,4,2) c = extend(a, b) + b c.shape ==> (3, 4, 2) Numpy broadcasting rules automatically extend arrays to the beginning, so the corresponding *lextend* function is not needed:: c = rand(3, 4) + rand(2, 3, 4) c.shape ==> (2, 3, 4) """ if np.isscalar(a): return a extra_dims = (np.newaxis,)*(b.ndim-a.ndim) return a[(..., *extra_dims)] def indent(text, prefix=" "): """ Add a prefix to every line in a string. """ return "\n".join(prefix+line for line in text.splitlines()) def group_data(datasets): """ Groups data files by intent and polarization cross section. Returns a dictionary with the groups, keyed by (intent,polarization). """ # TODO: also need to group by temperature/field groups = {} for d in datasets: groups.setdefault((d.intent, d.polarization), []).append(d) return groups def group_by_xs(datasets): """ Return datasets grouped by polarization cross section. """ cross_sections = {} for data in datasets: cross_sections.setdefault(data.polarization, []).append(data) #print("datasets", [":".join((d.name, d.entry, d.polarization, d.intent)) for d in datasets]) #print("xs", cross_sections) return cross_sections def group_by_key(key, datasets): """ Return datasets grouped by a value that can be found in a refldata file. Handle dotted namespace through recursive lookup. Handle union with comma. (e.g. key = "polarization,sample.name" would create group where sample.name and polarization are the same for all) """ groups = {} key_items = key.split(",") for data in datasets: groupkey = [] for item in key_items: item = item.strip() value = data for k in item.split("."): value = getattr(value, k) groupkey.append(value) groupkey = tuple(sorted(groupkey)) groups.setdefault(groupkey, []).append(data) return groups def group_by_intent(datasets): """ Return datasets grouped by intent. """ intents = {} for data in datasets: intents.setdefault(data.intent, []).append(data) #print("datasets", [":".join((d.name, d.entry, d.polarization, d.intent)) for d in datasets]) #print("xs", cross_sections) return intents def nearest(x, xp, fp=None): """ Return the *fp* value corresponding to the *xp* that is nearest to *x*. If *fp* is missing, return the index of the nearest value. """ if len(xp) == 1: if np.isscalar(x): return fp[0] if fp is not None else 0 else: return np.array(len(x)*(fp if fp is not None else [0])) # if fp is not provided, want to return f as an index into the array xp # for the target values x, so set it to integer indices. if fp is # provided, make sure it is an array. fp = np.arange(len(xp)) if fp is None else np.asarray(fp) # make sure that the xp array is sorted xp = np.asarray(xp) if np.any(np.diff(xp) < 0.): index = np.argsort(xp) xp, fp = xp[index], fp[index] # find the midpoints of xp and use that as the index xp = 0.5*(xp[:-1] + xp[1:]) return fp[np.searchsorted(xp, x)] def plot_sa(data): """ Plot spin asymmetry data. """ from matplotlib import pyplot as plt from uncertainties.unumpy import uarray as U, nominal_values, std_devs from dataflow.lib.errutil import interp # TODO: interp doesn't test for matching resolution data = dict((d.polarization, d) for d in data) pp, mm = data['++'], data['--'] v_pp = U(pp.v, pp.dv) v_mm = interp(pp.x, mm.x, U(mm.v, mm.dv)) sa = (v_pp - v_mm) / (v_pp + v_mm) v, dv = nominal_values(sa), std_devs(sa) plt.errorbar(pp.x, v, yerr=dv, fmt='.', label=pp.name) plt.xlabel("%s (%s)"%(pp.xlabel, pp.xunits) if pp.xunits else pp.xlabel) plt.ylabel(r'$(R^{++} -\, R^{--}) / (R^{++} +\, R^{--})$') def test_nearest(): # length 1 arrays xp, fp = [1], [5] assert nearest(0, xp) == 0 assert (nearest([0], xp) == [0]).all() assert (nearest([0, 1], xp) == [0, 0]).all() assert nearest(0, xp, fp) == fp[0] assert (nearest([0], xp, fp) == [fp[0]]).all() assert (nearest([0, 1], xp, fp) == [fp[0]]*2).all() # constants as arrays xp, fp = [1, 1, 1], [5, 5, 5] assert nearest(0, xp) == 0 assert (nearest([0], xp) == [0]).all() assert (nearest([0, 1], xp) == [0, 0]).all() assert nearest(0, xp, fp) == fp[0] assert (nearest([0], xp, fp) == [fp[0]]).all() assert (nearest([0, 1], xp, fp) == [fp[0]]*2).all() # actual arrays xp, fp = [1, 2, 3], [4, 5, 6] assert nearest(0, xp) == 0 assert (nearest([0], xp) == [0]).all() assert (nearest([0, 1, 1.1, 1.6, 2.1, 2.9, 3, 3.1], xp) == [0, 0, 0, 1, 1, 2, 2, 2]).all() assert nearest(0, xp, fp) == fp[0] assert (nearest([0], xp, fp) == [fp[0]]).all() assert (nearest([0, 1, 1.1, 1.6, 2.1, 2.9, 3, 3.1], xp, fp) == [fp[i] for i in [0, 0, 0, 1, 1, 2, 2, 2]]).all() # unsorted arrays xp, fp = [1, 3, 2], [4, 5, 6] assert nearest(0, xp) == 0 assert (nearest([0], xp) == [0]).all() assert (nearest([0, 1, 1.1, 1.6, 2.1, 2.9, 3, 3.1], xp) == [0, 0, 0, 2, 2, 1, 1, 1]).all() assert nearest(0, xp, fp) == fp[0] assert (nearest([0], xp, fp) == [fp[0]]).all() assert (nearest([0, 1, 1.1, 1.6, 2.1, 2.9, 3, 3.1], xp, fp) == [fp[i] for i in [0, 0, 0, 2, 2, 1, 1, 1]]).all() def poisson_average(y, dy, norm='monitor'): r""" Return the Poisson average of a rate vector *y +/- dy*. If y, dy is multidimensional then average the first dimension, returning an item of one fewer dimentsions. Use *norm='monitor'* When counting against monitor (the default) or *norm='time'* when counting against time. Use *norm='none'* if *y, dy* is unnormalized, and the poisson sum should be returned. The count rate is expressed as the number of counts in an interval $N$ divided by the interval $M$. The rate for the combined interval should match the rate you would get if you counted for the entire interval, which is $\sum N_i / \sum M_i$. We do this by inferring the counts and intervals from the rate and uncertainty, adding them together, and dividing to get the average rate over the entire interval. With counts $N$ and monitors $M$ both from Poisson distributions, the uncertainties are $\sqrt N$ and $\sqrt M$ respectively, and gaussian error propagation gives .. math:: :nowrap: \begin{eqnarray} y &=& N/M \\ \left(\frac{\Delta y}{y}\right)^2 &=& \left(\frac{\Delta N}{N}\right)^2 + \left(\frac{\Delta M}{M}\right)^2 \\ &=& \left(\frac{1}{N}\right) + \left(\frac{1}{M}\right) \\ \Delta y &=& y \sqrt{1/N + 1/M} \end{eqnarray} Inverting, we get .. math:: :nowrap: \begin{eqnarray} M &=& y (y+1) / \Delta y^2 \\ N &=& y M \end{eqnarray} When counts are zero, $y = 0$ and $M = 0$ according to the above formula. To correctly average intervals that may include zero counts, we need to be sure that the count uncertainty $\Delta N = 1$ when $N = 0$, which leads to a count rate of $0 \pm 1/M$, and the formula above needs to be adjusted accordingly, with $M = 1/ \Delta y$ when $N = 0$. To average a group of measurements $y_1, \ldots, y_n$ we first convert to counts and monitors, then set the rate to the sum of the counts over the sum of the monitors. This gives .. math:: :nowrap: \begin{eqnarray} M_i &=& y_i (y_i + 1) / \Delta y_i^2 \\ N_i &=& y_i M_i \\ \bar y &=& \sum N_i / \sum M_i \\ \Delta \bar y &=& \bar y \sqrt{1/\sum_{N_i} + 1/\sum_{M_i}} \end{eqnarray} When counting against time the monitor uncertainty $\Delta M$ is effectively zero compared to uncertainty in the counts, and so the formulas are a little simpler: .. math:: y &= N/M \\ \Delta y &= y \sqrt{1/N} \\ M &= y / \Delta y^2 \\ N &= y M Again, zero counts leads to $M = 1 / \Delta y$. Averaging gives .. math:: :nowrap: \begin{eqnarray} M_i &=& y_i / \Delta y_i^2 \\ N_i &=& y_i M_i \\ \bar y &=& \sum N_i / \sum M_i \\ \Delta \bar y &=& \bar y \sqrt{1/\sum_{N_i}} \end{eqnarray} Our expression does not account for detector efficiency, attenuators and dead-time correction. In practice we have an additional scaling value $A \pm \Delta A$ for each point, giving .. math:: :nowrap: \begin{eqnarray} y &=& A N/M \\ \left(\frac{\Delta y}{y}\right)^2 &=& \left(\frac{\Delta A}{A}\right)^2 + \left(\frac{\Delta N}{N}\right)^2 + \left(\frac{\Delta M}{M}\right)^2 \end{eqnarray} Clearly with two inputs $y$, $\Delta y$ we cannot uniquely recover the four parameters $A$, $\Delta A$, $M$, $N$, and Poisson averaging will not work properly. In these cases, a monitor weighted average is better for error propagation. Monitor weighted averaging works well for everything except data with many zero counts. """ if norm not in ("monitor", "time", "none"): raise ValueError("expected norm to be time, monitor or none") # Check whether we are combining rates or counts. If it is counts, # then simply sum them, and sum the uncertainty in quadrature. This # gives the expected result for poisson statistics, with counts over # the combined interval having variance equal to the sum of the counts. # It even gives correct results for very low count rates with many of # the individual counts giving zero, so long as variance on zero counts # is set to zero rather than one. if norm == "none": bar_y = np.sum(y, axis=0) bar_dy = np.sqrt(np.sum(dy**2, axis=0)) return bar_y, bar_dy dy = dy + (dy == 0) # Protect against zero counts in division # Recover monitor and counts monitors = y*(y+1)/dy**2 if norm == "monitor" else y/dy**2 # if "time" monitors[y == 0] = 1./dy[y == 0] # Special handling for 0 counts counts = y*monitors # Compute average rate combined_monitors = np.sum(monitors, axis=0) combined_counts = np.sum(counts, axis=0) bar_y = combined_counts/combined_monitors if norm == "time": bar_dy = bar_y * np.sqrt(1./combined_monitors) elif np.isscalar(bar_y): if bar_y == 0: # When bar_y is zero then 1/N is undefined and so sqrt(1/N + 1/M) fails. # Instead use |dy| = 1/M*sqrt((dN)^2 + 1/M) with dN = 1. bar_dy = 1./combined_monitors * np.sqrt(1. + 1./combined_monitors) else: # When bar_y is not zero then use |dy| = N/M * sqrt(1/N + 1/M) bar_dy = bar_y * np.sqrt(1./combined_counts + 1./combined_monitors) else: # Following the scalar case above, first build bar_dy assuming # that y is zero since it works for all y, then fill in the values # for y not zero. Can't do this the other way since the expression # for y not zero will raise errors when y is zero. bar_dy = 1./combined_monitors * np.sqrt(1. + 1./combined_monitors) idx = (bar_y != 0) bar_dy[idx] = bar_y[idx] * np.sqrt(1./combined_counts[idx] + 1./combined_monitors[idx]) #print("est. monitors:", monitors) #print("est. counts:", counts) #print("poisson avg", counts.shape, bar_y.shape, bar_dy.shape) return bar_y, bar_dy def gaussian_average(y, dy, w, dw=0): bar_y, bar_y_var = err1d.average(y, dy**2, w, dw**2) return bar_y,
np.sqrt(bar_y_var)
numpy.sqrt
""" @belovm96: Script for object encoding in 100k subset of Google's Conceptual Captions dataset Object encoder is Google's Universal Sentence Encoder, and the object prediction model is Inception (v.3) """ import tensorflow.compat.v1 as tf tf.disable_v2_behavior() from keras.applications.imagenet_utils import decode_predictions import tensorflow_hub as hub import os import numpy as np import PIL from keras.applications.inception_v3 import InceptionV3 from keras import Model #Using Google Universal Sentence Encoder def embed_useT(module): with tf.Graph().as_default(): sentences = tf.placeholder(tf.string) embed = hub.Module(module) embeddings = embed(sentences) session = tf.train.MonitoredSession() return lambda x: session.run(embeddings, {sentences: x}) #Encode images and save the object predictions to a file def caption_enc(img_list, obj_model, IMG_PATH): file = open('/home/jupyter/image-captioning-approaches/analysis/objects_in_images.txt','w') lst_enc = [] for i, img in enumerate(img_list): if i % 3000 == 0: print('Image', i) try: image = PIL.Image.open(os.path.join(IMG_PATH, img)) image = np.asarray(image.resize((299,299))) / 255.0 predict_obj = obj_model.predict(np.array([image])) top_labels = decode_predictions(predict_obj, top=5) obj_list = [label[1] for label in top_labels[0]] str_labels = " ".join(obj_list) lst_enc.append(str_labels.replace('_', ' ')) file.write(img+'\t'+str_labels.replace('_', ' ')+'\n') except: print(img, 'not an image...') file.close() return lst_enc img_path = '/dataset/google-cc/100k/images' list_100k_imgs = os.listdir(img_path) #Load Inception (v.3) CNN and Google's Universal Sentence Encoder img_model = InceptionV3(weights='imagenet') new_input = img_model.input new_output = img_model.output obj_pred = Model(new_input, new_output) embed = embed_useT('module_useT') #Create the list of the objects detected in images embed_imgs_100 = caption_enc(list_100k_imgs, obj_pred, img_path) #Encode the objects detected in images train_1 = embed_imgs_100[:45000] train_2 = embed_imgs_100[45000:70000] train_first = embed(train_1) train_sec = embed(train_2) enc_train = np.concatenate((train_first, train_sec)) val = embed_imgs_100[70000:79000] enc_val = embed(val) test = embed_imgs_100[79000:89000] enc_test = embed(test) #Save the encodings np.save("/home/jupyter/image-captioning-approaches/analysis/inception_enc_obj_train.npy", enc_train) np.save("/home/jupyter/image-captioning-approaches/analysis/inception_enc_obj_test.npy", enc_test)
np.save("/home/jupyter/image-captioning-approaches/analysis/inception_enc_obj_validation.npy", enc_val)
numpy.save
import scipy.linalg as la import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors """ Creating an entire pressure field based on the locations of various sources """ def pressure_field(positions,frequencies, field_points = -1, time = 0.0, areas = [0.001], velocities = [0.01], strengths = [0.01], phases = [0], x_range = [-1,1], y_range = [-1,1], z_range = [-1,1], point_density = 100, directivity_distance = 1000, num_directivity_points = 10000, method = "Monopole Addition", dimensions = 2, directivity_only = False, directivity_plot_alone = False, show_plots = False, pressure_limits = [-100,100]): # Making all arrays that describe the sources be equal lengths num_sources = len(positions) positions = np.asarray(positions) if np.size(frequencies) == 1: frequencies =
np.ones(num_sources)
numpy.ones
# Authors: <NAME> <<EMAIL>>, <NAME> <<EMAIL>> # Copyright (c) 2015, <NAME> and <NAME>. # License: GNU-GPL Style. # How to cite GBpy: # Banadaki, <NAME>. & <NAME>. "An efficient algorithm for computing the primitive # bases of a general lattice plane", # Journal of Applied Crystallography 48, 585-588 (2015). doi:10.1107/S1600576715004446 import numpy as np from . import integer_manipulations as int_man from . import misorient_fz as mis_fz from . import tools as trans import numpy.linalg as nla def proper_ptgrp(cryst_ptgrp): """ Returns the proper point group corresponding to a crystallographic point group Parameters ---------------- cryst_ptgrp: str Crystallogrphic point group in Schoenflies notation Returns ---------- proper_ptgrp: str Proper point group in Schoenflies notation """ if cryst_ptgrp in ['D3', 'D3d']: proper_ptgrp = 'D3' if cryst_ptgrp in ['D4', 'D4h']: proper_ptgrp = 'D4' if cryst_ptgrp in ['D6', 'D6h']: proper_ptgrp = 'D6' if cryst_ptgrp in ['O', 'Oh']: proper_ptgrp = 'O' # prop_grps = ['C1', 'C2', 'C3', 'C4', 'C6', 'D2', 'D3', 'D4', 'D6', # 'T', 'O'] # laue_grps = ['Ci', 'C2h', 'C3i', 'C4h', 'C6h', 'D2h', 'D3d', 'D4h', 'D6h', # 'Th', 'Oh'] # if cryst_ptgrp in laue_grps: # proper_ptgrp = # elif cryst_ptgrp in prop_grps: # proper_ptgrp = cryst_ptgrp return proper_ptgrp def largest_odd_factor(var_arr): """ Function that computes the larges odd factors of an array of integers Parameters ----------------- var_arr: numpy.array Array of integers whose largest odd factors needs to be computed Returns ------------ odd_d: numpy.array Array of largest odd factors of each integer in var_arr """ if var_arr.ndim == 1: odd_d = np.empty(np.shape(var_arr)) odd_d[:] = np.NaN ind1 = np.where((np.remainder(var_arr, 2) != 0) | (var_arr == 0))[0] if np.size(ind1) != 0: odd_d[ind1] = var_arr[ind1] ind2 = np.where((np.remainder(var_arr, 2) == 0) & (var_arr != 0))[0] if np.size(ind2) != 0: odd_d[ind2] = largest_odd_factor(var_arr[ind2] / 2.0) return odd_d else: raise Exception('Wrong Input Type') def compute_inp_params(lattice, sig_type): # Leila: for the tolerance value for D6 I chose 1e-2 # to get the values of mu and nu in table 2 in grimmers paper. """ tau and kmax necessary for possible integer quadruple combinations are computed Parameters ---------------- lattice: class Attributes of the underlying lattice class sig_type: {'common', 'specific'} Returns ----------- tau: float tau is a rational number :math:`= \\frac{\\nu}{\\mu}` tau is equal to (a/c)^2 kmax: float kmax is an integer that depends on :math:`\\mu \\ , \\nu` for hcp: kmax equals to F/\Sigma. kmax is always a divisor of 12\\mu\\nu. F/\Sigma is a dicisor of 6\\mu\\nu if \\nu is even and a divisor od 3\\mu\\nu if \\nu is a multiple of 4. """ lat_params = lattice.lat_params cryst_ptgrp = proper_ptgrp(lattice.cryst_ptgrp) if cryst_ptgrp == 'D3': c_alpha = np.cos(lat_params['alpha']) tau = c_alpha / (1 + 2 * c_alpha) if sig_type == 'specific': [nu, mu] = int_man.rat_approx(tau, 1e-8) rho = mu - 3 * nu kmax = 4 * mu * rho elif sig_type == 'common': kmax = [] if cryst_ptgrp == 'D4': tau = (lat_params['a'] ** 2) / (lat_params['c'] ** 2) if sig_type == 'specific': [nu, mu] = int_man.rat_approx(tau, 1e-8) kmax = 4 * mu * nu if sig_type == 'common': kmax = [] if cryst_ptgrp == 'D6': tau = (lat_params['a'] ** 2) / (lat_params['c'] ** 2) if sig_type == 'specific': [nu, mu] = int_man.rat_approx(tau, 1e-2) if np.remainder(nu, 2) == 0: if
np.remainder(nu, 4)
numpy.remainder
import time import Trekker import numpy as np import os import vtk import pickle import threading import math """ Thread to update the coordinates with the fiducial points co-registration method while the Navigation Button is pressed. Sleep function in run method is used to avoid blocking GUI and for better real-time navigation """ class ComputeTracts(threading.Thread): """ Thread to update the coordinates with the fiducial points co-registration method while the Navigation Button is pressed. Sleep function in run method is used to avoid blocking GUI and for better real-time navigation """ def __init__(self, tracker, position, n_tracts): threading.Thread.__init__(self) # trekker variables self.tracker = tracker self.position = position self.n_tracts = n_tracts # threading variable self._pause_ = False # self.mutex = threading.Lock() # self.start() def stop(self): # self.mutex.release() self._pause_ = True def run(self): if self._pause_: return else: # self.mutex.acquire() try: seed = self.position chunck_size = 10 nchuncks = math.floor(self.n_tracts / chunck_size) # print("The chunck_size: ", chunck_size) # print("The nchuncks: ", nchuncks) root = vtk.vtkMultiBlockDataSet() # n = 1 n_tracts = 0 # while n <= nchuncks: for n in range(nchuncks): # Compute the tracts trk_list = [] # for _ in range(chunck_size): self.tracker.set_seeds(np.repeat(seed, chunck_size, axis=0)) if self.tracker.run(): trk_list.extend(self.tracker.run()) # Transform tracts to array trk_arr = [
np.asarray(trk_n)
numpy.asarray
import numpy as np import os import torch import torchvision from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from torch.utils.data import Dataset, random_split from torchvision import transforms import PIL.Image as Image from sklearn.datasets import load_boston ## Custom PyTorch Dataset Class wrapper class CustomDataset(Dataset): def __init__(self, data, target, device=None, transform=None): self.transform = transform if device is not None: # Push the entire data to given device, eg: cuda:0 self.data = data.float().to(device) self.targets = target.long().to(device) else: self.data = data.float() self.targets = target.long() def __len__(self): return len(self.targets) def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() sample_data = self.data[idx] label = self.targets[idx] if self.transform is not None: sample_data = self.transform(sample_data) return (sample_data, label) # .astype('float32') class CustomDataset_WithId(Dataset): def __init__(self, data, target, transform=None): self.transform = transform self.data = data # .astype('float32') self.targets = target self.X = self.data self.Y = self.targets def __len__(self): return len(self.targets) def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() sample_data = self.data[idx] label = self.targets[idx] if self.transform is not None: sample_data = self.transform(sample_data) return sample_data, label, idx # .astype('float32') ## Utility function to load datasets from libsvm datasets def csv_file_load(path, dim, save_data=False): data = [] target = [] with open(path) as fp: line = fp.readline() while line: temp = [i for i in line.strip().split(",")] target.append(int(float(temp[-1]))) # Class Number. # Not assumed to be in (0, K-1) temp_data = [0] * dim count = 0 for i in temp[:-1]: # ind, val = i.split(':') temp_data[count] = float(i) count += 1 data.append(temp_data) line = fp.readline() X_data = np.array(data, dtype=np.float32) Y_label = np.array(target) if save_data: # Save the numpy files to the folder where they come from data_np_path = path + '.data.npy' target_np_path = path + '.label.npy' np.save(data_np_path, X_data) np.save(target_np_path, Y_label) return (X_data, Y_label) def libsvm_file_load(path, dim, save_data=False): data = [] target = [] with open(path) as fp: line = fp.readline() while line: temp = [i for i in line.strip().split(" ")] target.append(int(float(temp[0]))) # Class Number. # Not assumed to be in (0, K-1) temp_data = [0] * dim for i in temp[1:]: ind, val = i.split(':') temp_data[int(ind) - 1] = float(val) data.append(temp_data) line = fp.readline() X_data = np.array(data, dtype=np.float32) Y_label = np.array(target) if save_data: # Save the numpy files to the folder where they come from data_np_path = path + '.data.npy' target_np_path = path + '.label.npy' np.save(data_np_path, X_data)
np.save(target_np_path, Y_label)
numpy.save
import msgpack as msg import msgpack_numpy as m import numpy as np from io import BytesIO import json from pathlib import Path from mpl_toolkits.mplot3d import Axes3D from matplotlib import pyplot as plt from scipy.optimize import curve_fit from scipy.stats import linregress from ICalcify.fitting import FittingResult from ICalcify.regression import RegResult m.patch() class ObjectBranch(object): def __init__(self, name, dtype, branch): self.name = name self.dtype = dtype if type(branch) == list: self.branch = np.array(branch,dtype=object) elif type(branch) == np.array or type(branch) == np.ndarray: self.branch = branch else: raise TypeError('Argument \'Branch\' must be of type list, or numpy.(nd)array, got {}'.format(type(branch))) def __len__(self): return len(self.branch) def __repr__(self): return "{{Name: '{}', Type: '{}', Length: {}}}".format(self.name,self.dtype,self.__len__()) def __str__(self): ll = self.__len__() if ll > 20: return "Name: '{}'\n{}\n...\n{}\nType: '{}', Len: {}".format(self.name,"\n".join([str(x) for x in self.branch[:10]]), "\n".join([str(x) for x in self.branch[-10:]]),self.dtype,ll) else: return "Name: '{}'\n{}\nType: '{}', Len: {}".format(self.name,"\n".join([str(x) for x in self.branch]),self.dtype,ll) def __iter__(self): return self.branch.__iter__() def __next__(self): return self.branch.__next__() def _repr_html_(self): return "<h3><b>'{}':</b> Type: '{}', Length: {}</h3>".format(self.name,self.dtype,self.__len__()) def cut(self,callable): return Branch(f"{self.name}_Cut",self.dtype,self.branch[[callable(x) for x in self.branch]]) class StringBranch(ObjectBranch): def __init__(self,name,branch): branch = np.array(branch) super().__init__(name,'String',branch) class FloatBranch(ObjectBranch): def __init__(self,name,branch): branch = np.array(branch,dtype=np.float64) super().__init__(name,'f64',branch) def against(self, other): if not type(other) == FloatBranch: raise TypeError("Other branch must be of type FloatBranch") if not len(self.branch) == len(other.branch): raise RuntimeError("Both self and other branch must be the same length.") return PointBranch(f"{self.name} X {other.name}",np.array([[x,y] for x,y in zip(self.branch,other.branch)])) def plot(self,show=False,flag=None): if show: plt.figure() plt.plot(np.arange(self.__len__()),self.branch,label=f"{self.name}_{flag}" if flag else self.name) plt.legend() if show: plt.show() class ThreeVecBranch(ObjectBranch): def __init__(self,name,branch): if len(branch) > 0: if type(branch[0]) == dict: branch = np.array(list(map(ThreeVecBranch.from_dict,branch))) branch = np.array(branch) super().__init__(name,'ThreeVec',branch) def from_dict(obj): return np.array([obj['x0'],obj['x1'],obj['x2']]) def scatter(self,show=False): fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(self.branch[:,0],self.branch[:,1],self.branch[:,2],marker='o') ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') if show: plt.show() class ThreeMatBranch(ObjectBranch): def __init__(self,name,branch): if len(branch) > 0: if type(branch[0]) == dict: branch = np.array(list(map(ThreeMatBranch.from_dict,branch))) branch = np.array(branch) super().__init__(name,'ThreeMat',branch) def from_dict(obj): return np.array([np.array([obj[ky]['x0'],obj[ky]['x1'],obj[ky]['x2']]) for ky in obj]) class FourVecBranch(ObjectBranch): def __init__(self,name,branch): if len(branch) > 0: if type(branch[0]) == dict: branch = np.array(list(map(FourVecBranch.from_dict,branch))) branch = np.array(branch) super().__init__(name,'FourVec',branch) def from_dict(obj): return np.array([obj['x0'],obj['x1'],obj['x2'],obj['x3']]) class FourMatBranch(ObjectBranch): def __init__(self,name,branch): if len(branch) > 0: if type(branch[0]) == dict: branch = np.array(list(map(FourMatBranch.from_dict,branch))) branch = np.array(branch) super().__init__(name,'FourMat',branch) def from_dict(obj): return np.array([np.array([obj[ky]['x0'],obj[ky]['x1'],obj[ky]['x2'],obj[ky]['x3']]) for ky in obj]) class BinBranch(ObjectBranch): def __init__(self,name,branch): if len(branch) > 0: if type(branch[0]) == dict: branch = np.array(list(map(BinBranch.from_dict,branch)),dtype=object) else: branch = np.array([np.array([np.float64(x[0]),np.array(x[1],dtype=np.float64)],dtype='object') for x in branch],dtype=object) super().__init__(name,'Bin',branch) def from_dict(obj): return np.array([obj['count'],np.array(obj['range'])],dtype=object) def __str__(self): return "Name: '{}'\n{}\n...\n{}\nType: '{}', Len: {}".format( self.name,"\n".join(["{}, range({}, {})".format(int(x[0]),x[1][0],x[1][1]) for x in self.branch[:10]]), "\n".join(["{}, range({}, {})".format(int(x[0]),x[1][0],x[1][1]) for x in self.branch[-10:]]),self.dtype,self.__len__()) def plot(self,show=False,flag=None): if show: plt.figure() x = [] y = [] for bin in self.branch: x += list(bin[1]) y += [bin[0],bin[0]] plt.plot(x,y,label=f"{self.name}_{flag}" if flag else self.name) plt.legend() if show: plt.show() def fit(self,func): x = [] y = [] for bin in self.branch: x.append(bin[1].mean()) y.append(bin[0]) popt, pcov = curve_fit(func,x,y) return FittingResult(func,x,popt,pcov,self.name) class PointBranch(ObjectBranch): def __init__(self,name,branch): if len(branch) > 0: if type(branch[0]) == dict: branch = np.array(list(map(PointBranch.from_dict,branch))) branch = np.array(branch) super().__init__(name,'Point',branch) def from_dict(obj): return
np.array([obj['x'],obj['y']])
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Aug 21 09:20:05 2021 @author: <NAME> & <NAME> & <NAME> <EMAIL> """ from tkinter import * import numpy as np #import webbrowser menu_inicial = Tk() menu_inicial.title('Graphical User Interface for Attitude Coordinates of Satellites') #menu_inicial.iconbitmap('@/home/geovani/Documentos//Attitude-Parameters/icon.xbm') #menu_inicial.call('wm', 'iconphoto', menu_inicial._w, PhotoImage(file='/home/geovani/Documentos/Attitude-Parameters/icon.gif')) #menu_inicial['bg'] = "black" menu_inicial.resizable(0, 0) #menu_inicial.minsize(860, 200) #menu_inicial.maxsize(960, 200) #altura e largura do programa largura = 878 altura = 200 #resolução largura_screen = menu_inicial.winfo_screenwidth() altura_screen = menu_inicial.winfo_screenheight() #posicao da janela posx = largura_screen/2 - largura/2 posy = altura_screen/2 - altura/2 #definir a geometria menu_inicial.geometry("%dx%d+%d+%d" % (largura, altura, posx, posy)) #definir como iconic menu_inicial.state('iconic') def helpc(): toph = Toplevel() toph.title = ('Help') toph.resizable(0, 0) largura = 470 altura = 100 #resolução largura_screen = toph.winfo_screenwidth() altura_screen = toph.winfo_screenheight() #posicao da janela posx = largura_screen/2 - largura/2 posy = altura_screen/2 - altura/2 #definir a geometria toph.geometry("%dx%d+%d+%d" % (largura, altura, posx, posy)) #definir como iconic toph.state('iconic') labelh = Label(toph, text = "This is Graphical User Interface produced by <NAME> \n Oriented by Dr. <NAME> and Dr. <NAME>", font = "Arial 8", anchor = N, justify = RIGHT ).grid(row= 1, column = 1) label = Label(toph, text = "For more information: ", font = "Arial 8" ).grid(row=2, column=1) link1 = Label(toph, text="https://github.com/geovani-ribeiro/attitude-parameters", fg="blue", cursor="hand2") link1.grid(row=3, column=1) #link1.bind("<Button-1>", lambda: webbrowser.open("https://github.com/geovani-ribeiro/attitude-parameters")) #funções para o algoritmo def command1(): top1 = Toplevel() top1.title= ('Graphical User Interface for Attitude Coordinates of Satellites') top1.resizable(0, 0) # top1.iconbitmap('@/home/geovani/Documentos/icon.xbm') #altura e largura do programa largura = 980 altura = 200 #resolução largura_screen = top1.winfo_screenwidth() altura_screen = top1.winfo_screenheight() #posicao da janela posx = largura_screen/2 - largura/2 posy = altura_screen/2 - altura/2 #definir a geometria top1.geometry("%dx%d+%d+%d" % (largura, altura, posx, posy)) top1.maxsize(1000, 200) #definir como iconic top1.state('iconic') #definição das mensagens label_5 = Label(top1, text = "Enter the DCM data:", font = "Arial 11", justify = LEFT ).grid(row= 1, column = 1) #final phi_final = StringVar() e_final = StringVar() beta_final = StringVar() q_final = StringVar() sigma_final = StringVar() euler_final = StringVar() #funcao def dcm_calc(): cos_Phi = 1/2*(float(C11.get())+float(C22.get())+float(C33.get())-1) Phi = np.arccos(cos_Phi) e11 = 1/(2*np.sin(Phi))*(float(C23.get())-float(C32.get())) e12 = 1/(2*np.sin(Phi))*(float(C31.get())-float(C13.get())) e13 = 1/(2*
np.sin(Phi)
numpy.sin
import numpy as np import matplotlib.pyplot as plt def init_conc(D, C0): # Create a nutrient latice M = np.zeros((D,D)) M = M + C0 return M def seed(D,n_seed,C0): L = np.zeros((D,D)) occ = [] for n in range(n_seed): x,y = np.random.randint(0,D,size=2) if (x,y) in occ: x,y =
np.random.randint(0,D,size=2)
numpy.random.randint
import torch as torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence, pad_sequence from torch.utils.data import Dataset, DataLoader from torch.utils.tensorboard import SummaryWriter import collections import glob import numpy as np import tqdm import os import time import datetime from pytz import timezone class TrainingContext: def __init__(self, PRINT_EVERY=25): self.train_losses = [] self.valid_losses = [] self.checkpoint_epoch = 0 self.PRINT_EVERY = PRINT_EVERY self.device = torch.device("cpu") def _trainStep(self, batch): self.model.zero_grad() loss = self.applyModel(batch) loss_item = loss.item() loss.backward() self.optimizer.step() return loss_item def applyModel(self, batch): raise RuntimeError('not implemented') def trainLoop(self, epoch): self.model.train() tq = tqdm.tqdm(self.trainDL) losses = [] for bidx, batch in enumerate(tq): tq.set_description('Train: %i' % bidx) loss_item = self._trainStep(batch) losses.append(loss_item) if bidx % self.PRINT_EVERY == 0: mean_loss = np.mean(losses)/self.trainDL.batch_size tq.set_postfix(trainLoss = "{:.8f}".format(mean_loss)) #writer.add_scalar('loss/training', mean_loss, epoch*bidx) mean_loss = np.mean(losses)/self.trainDL.batch_size self.train_losses.append(mean_loss) return mean_loss def validStep(self, batch): loss = self.applyModel(batch) return loss.item() def validLoop(self, epoch): self.model.eval() losses = [] with torch.no_grad(): tq = tqdm.tqdm(self.validDL) for bidx, batch in enumerate(tq): tq.set_description('Valid: %i' % bidx) loss_item = self.validStep(batch) losses.append(loss_item) if bidx % self.PRINT_EVERY == 0: mean_loss = np.mean(losses)/self.validDL.batch_size tq.set_postfix(validLoss = "{:.8f}".format(mean_loss)) #writer.add_scalar('loss/validation', mean_loss, epoch*bidx) mean_loss =
np.mean(losses)
numpy.mean
from dataclasses import dataclass, fields from datetime import datetime import numpy as np import pandas as pd import re ROTARY_ENCODER_UNITS_PER_TURN = 8845.0 format_string = "%Y-%m-%d %H:%M:%S.%f" # for parsing the time strings @dataclass class Reward: """Holds information about a reward event in a logfile""" date_time: datetime rX: float # called rX due to indexing duplication in pandas with LogFilePositionLine X etc rZ: float reward_type: str = None def __eq__(self, other): if isinstance(other, Reward): return self.rX == other.rX and self.rZ == other.rZ return NotImplemented def __key(self): return (self.rX, self.rZ) def __hash__(self): return hash(self.__key()) def __lt__(self, other): if isinstance(other, Reward): return self.date_time < other.date_time return NotImplemented @dataclass class LogFilePositionLine: """Class for keeping track of position information on a line of a logfile""" date_time: datetime X: float Z: float Theta: float MX: float = 0.0 MY: float = 0.0 GainX: float = 0.0 GainY: float = 0.0 Fading: int = 0 RealTimeGainX: int = 0 RealTimeGainY: int = 0 Dark: int = 0 def __iter__(self): for field in fields(self): yield getattr(self, field.name) def __key(self): return (self.date_time) def __hash__(self): return hash(self.__key()) def __eq__(self, other): if isinstance(other, LogFilePositionLine): return self.__key() == other.__key() return NotImplemented def __lt__(self, other): if isinstance(other, LogFilePositionLine): return self.date_time < other.date_time return NotImplemented class LogFileParser: def __init__(self, log_file_name: str): self.first_time = None # important with open(log_file_name, 'r') as logfile: lines = logfile.readlines() # 1) deal with all the lines containing the position of the mouse log_pos_lines = [line for line in lines if 'GainX' in line] loglines = [] for line in log_pos_lines: items = line.split() date_time = items[0] + " " + items[1] dt = datetime.strptime(date_time, format_string) X, Z, Rot, MX, MY, GainX, GainY, Fading, RealTimeGainX, RealTimeGainY, Dark = self.__parse_line(line) theta = np.rad2deg(Rot / ROTARY_ENCODER_UNITS_PER_TURN) loglines.append(LogFilePositionLine( dt, X, Z, theta, MX, MY, GainX, GainY, Fading, RealTimeGainX, RealTimeGainY, Dark)) # now get the unique entries in the position data # this is only possible due to the custom methods defined # for the LogFilePositionLine class (__lt__, __eq__ & __hash__) self.PosLines = list(set(loglines)) # unordered so... self.PosLines.sort() # 2) extract all the reward-related information - all unique timestamps log_reward_lines = [line for line in lines if 'Reward'in line] rewards = [] for line in log_reward_lines: if re.search('Reward[0-9]Positioned',line): r = self.__get_reward__(line) r.reward_type = 'Automatic' rewards.append(r) if re.search('RewardPositioned',line): r = self.__get_reward__(line) r.reward_type = 'Automatic' rewards.append(r) if 'Manual Reward_activated' in line: r = self.__get_reward__(line) r.reward_type = 'Manual' rewards.append(r) if 'Reward_delivered' in line: r = self.__get_reward__(line) r.reward_type = 'Delivered' rewards.append(r) self.Rewards = rewards def __parse_line(self, line: str): items_to_parse = ["X", "Z", "Rot", "MX", "MY", "GainX", "GainY", "Fading", "RealTimeGainX", "RealTimeGainY", "Dark"] values_to_return = dict.fromkeys(items_to_parse, 0.0) for item in line.split(): key = item.split('=') if key[0] in items_to_parse: values_to_return[key[0]] = float(key[-1]) return values_to_return.values() def make_dataframe(self): # Get the unique times for all events in the logfile # be they position or reward occurences. These are used # as the indices for the pandas DataFrame pos_lines_set = set([line.date_time for line in self.PosLines]) reward_set = set([line.date_time for line in self.Rewards]) unique_times = list(set.union(pos_lines_set, reward_set)) unique_times.sort() first_time = unique_times[0] self.first_time = first_time unique_times = [times - first_time for times in unique_times] pos_d = {'PosX': pd.Series([line.X for line in self.PosLines], index=[line.date_time - first_time for line in self.PosLines]), 'PosY': pd.Series([line.Z for line in self.PosLines], index=[line.date_time - first_time for line in self.PosLines]) } pos_d = pd.DataFrame(pos_d) reward_d = pd.DataFrame([line for line in self.Rewards], index=[line.date_time - first_time for line in self.Rewards]) d = pos_d.append(reward_d) return d.sort_index() def __get_float_val__(self, line: str) -> float: return float(line.split("=")[-1]) def __get_int_val__(self, line: str) -> int: return int(line.split("=")[-1]) def __get_reward__(self, line: str) -> Reward: items = line.split() date_time = items[0] + " " + items[1] dt = datetime.strptime(date_time, format_string) X = self.__get_float_val__(items[-2]) Z = self.__get_float_val__(items[-1]) return Reward(dt, X, Z) def getX(self) -> list: return [line.X for line in self.PosLines] def getZ(self) -> list: return [line.Z for line in self.PosLines] def getTheta(self) -> list: return [line.Theta for line in self.PosLines] def getPosTimes(self) -> list: return [line.date_time for line in self.PosLines] def analyse_rewards(self): df = self.make_dataframe() not_nans = ~df['reward_type'].isna() delivered = df['reward_type'] == 'Delivered' dropped_rewards = df[np.logical_and(not_nans, ~delivered)] delivered_rewards = df[np.logical_and(not_nans, delivered)] times = self.getPosTimes() trial_duration = (times[-1]-times[0]).total_seconds() print(f"Trial duration(s): {trial_duration}") delivered_times = [] dropped_times = [] time_taken_to_deliver = [] for index, row in delivered_rewards.iterrows(): rx = row.rX rz = row.rZ delivered_time = index dropped_index = np.logical_and(dropped_rewards['rX']==rx, dropped_rewards['rZ']==rz) dropped = dropped_rewards[dropped_index] if len(dropped) > 0: dropped_time = dropped.index[0] dropped_times.append(dropped_time) delivered_times.append(delivered_time) time_taken_to_deliver.append((delivered_time-dropped_time).total_seconds()) print(f"Total dropped rewards = {len(dropped_times)}") print(f"Total delivered rewards = {len(delivered_times)}") # iterate through the list of dropped and delivered times pulling out the x and y # segments x = self.getX() y = self.getZ() xmin = np.abs(np.min(x)) ymin = np.abs(np.min(y)) tortuosity = [] for dropped, delivered in zip(dropped_times, delivered_times): start = df.index.searchsorted(dropped) # returns integer index into df end = df.index.searchsorted(delivered) sub_df = df[start:end] x = np.array(sub_df.PosX) y =
np.array(sub_df.PosY)
numpy.array
import pytest import numpy import io from gym.spaces import Box from unittest import mock def test_attributes(tennis_env): assert tennis_env.action_space.n == 2 ** 2 assert tennis_env.observation_space == Box(low=1., high=float('Inf'), shape=(1, 2)) assert tennis_env.starting_bank == 10 assert tennis_env.balance == tennis_env.starting_bank assert tennis_env.current_step == 0 assert numpy.array_equal(tennis_env.bet_size_matrix, numpy.ones(shape=(1, 2))) assert numpy.array_equal(tennis_env.players, numpy.array([['<NAME>.', '<NAME>.'], ['<NAME>.', '<NAME>.']])) @pytest.mark.parametrize("action,expected_reward", [(0, 0), (1, -1), (2, 0.11), (3, -0.89)]) def test_step(tennis_env, action, expected_reward): odds, reward, done, _ = tennis_env.step(action)
numpy.testing.assert_almost_equal(reward, expected_reward, 2)
numpy.testing.assert_almost_equal
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import unittest import numpy as np from onnx_tf.backend import prepare from onnx import helper from onnx import TensorProto from onnx_tf.common.legacy import legacy_onnx_pre_ver class TestModel(unittest.TestCase): """ Tests for models """ def _get_rnd(self, shape, low=-1.0, high=1.0): return np.random.uniform(low, high, np.prod(shape)) \ .reshape(shape) \ .astype(np.float32) def test_relu_node_inplace(self): X = np.random.randn(3, 2).astype(np.float32) Y_ref = np.clip(X, 0, np.inf) node_def = helper.make_node("Relu", ["X"], ["X1"]) graph_def = helper.make_graph( [node_def], name="test", inputs=[helper.make_tensor_value_info("X", TensorProto.FLOAT, [3, 2])], outputs=[ helper.make_tensor_value_info("X1", TensorProto.FLOAT, [3, 2]) ]) tf_rep = prepare(helper.make_model(graph_def)) output = tf_rep.run({"X": X}) np.testing.assert_almost_equal(output.X1, Y_ref) def test_initializer(self): if legacy_onnx_pre_ver(1, 2): raise unittest.SkipTest( "The current version of ONNX does not record correctly the opset of Cast." ) X = np.array([[1, 2], [3, 4]]).astype(np.float32) Y = np.array([[1, 2], [3, 4]]).astype(np.float32) weight = np.array([[1, 0], [0, 1]]) graph_def = helper.make_graph( [ helper.make_node("Add", ["X", "Y"], ["Z0"]), helper.make_node("Cast", ["Z0"], ["Z"], to=TensorProto.FLOAT), helper.make_node("Mul", ["Z", "weight"], ["W"]), helper.make_node("Tanh", ["W"], ["W1"]), helper.make_node("Sigmoid", ["W1"], ["W2"]) ], name="test_initializer", inputs=[ helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 2)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (2, 2)), helper.make_tensor_value_info("weight", TensorProto.FLOAT, (2, 2)), ], outputs=[ helper.make_tensor_value_info("W2", TensorProto.FLOAT, (2, 2)) ], initializer=[ helper.make_tensor("weight", TensorProto.FLOAT, [2, 2], weight.flatten().astype(float)) ]) def sigmoid(x): return 1 / (1 +
np.exp(-x)
numpy.exp
# # Copyright 2016-2018 Games Creators Club # # MIT License # import math import time import telemetry import traceback import numpy import cv2 import PIL import PIL.Image from PIL import ImageDraw import pyroslib import pyroslib.logging from pyroslib.logging import log, LOG_LEVEL_INFO, LOG_LEVEL_DEBUG, LOG_LEVEL_ALWAYS from rover import RoverState, normaiseAngle, angleDiference from challenge_utils import AgentClass, Action, WaitSensorData, WarmupAction, PID MINIMUM_SPEED = 60 MIN_ANGLE = 0.5 MAX_ANGLE = 45 HEADING_MIN_DISTANCE = 150 WALL_SPEED = 210 CORNER_SPEED = 170 CORNER_CROSS_SPEED = 240 MAX_CORNER_DISTANCE = 700 pyroslib.logging.LOG_LEVEL = LOG_LEVEL_INFO remotDebug = True size = (80, 64) class CameraData: def __init__(self): self.found = {'red': None, 'blue': None, 'yellow': None, 'green': None} def reset(self): self.found['red'] = None self.found['blue'] = None self.found['yellow'] = None self.found['green'] = None def hasAll(self): return self.found['red'] is not None and self.found['blue'] is not None and self.found['yellow'] is not None and self.found['green'] is not None def getFound(self): return self.found def foundAsString(self): return " ".join([("" if v is None else str(v)) + ":" + k for k, v in self.found.items()]) def setData(self, colour, data): if not self.hasAll(): self.found[colour] = data for c in self.found: if c != colour and self.found[c] == data: self.found[c] = None def missingColours(self): return ", ".join([p for p in self.found if self.found[p] is None]) class WaitCameraData(Action): def __init__(self, agent, next_action): super(WaitCameraData, self).__init__(agent) self.foundColours = agent.foundColours self.next_action = next_action self.started_scanning_time = None def start(self): self.started_scanning_time = time.time() self.foundColours.reset() pyroslib.publish("camera/format", "RGB " + str(size[0]) + "," + str(size[1]) + " False") pyroslib.publish("camera/wheels/format", "RGB " + str(size[0]) + "," + str(size[1]) + " False") pyroslib.publish("camera/camera1/format", "RGB " + str(size[0]) + "," + str(size[1]) + " False") pyroslib.publish("camera/camera2/format", "RGB " + str(size[0]) + "," + str(size[1]) + " False") pyroslib.publish("camera/raw/fetch", "") pyroslib.publish("camera/wheels/raw/fetch", "") pyroslib.publish("camera/camera1/raw/fetch", "") pyroslib.publish("camera/camera2/raw/fetch", "") self.agent.log_info("Started a wait for all camera data to arrive...") def next(self): if self.foundColours.hasAll(): self.agent.log_info("Scanning lasted " + ("{:7.3f}".format(time.time() - self.started_scanning_time)) + "!") self.agent.log_info("Received all colours " + ("stopping" if self.next_action is None else "starting action " + str(self.next_action.getActionName()))) return self.next_action return self def execute(self): self.agent.log_info("Waiting for sensor data to arrive...") def getActionName(self): return "Scan" class NebulaAction(Action): def __init__(self, agent, speed, next_action): super(NebulaAction, self).__init__(agent) self.speed = speed self.next_action = next_action self.direction_pid = PID(0.75, 0.2, 0.01, 1, 0) self.heading_pid = PID(0.3, 0, 0.01, 1, 0, diff_method=angleDiference) self.distance_pid = PID(0.75, 0.2, 0.01, 1, 0) self.distance_error = 0 self.rover_speed = 0 self.required_corner_distance = 210 self.required_side_distance = 150 self.required_keeping_side_distance = 180 self.last_speed = 0 self.last_speed_time = 0 def obtainRoverSpeed(self): self.rover_speed = self.rover.wheel_odos.averageSpeed() / 10 self.rover_speed = 25 def keepHeading(self): state = self.rover.getRoverState() # Keeping heading heading = state.heading.heading heading_output = -self.heading_pid.process(0, heading) if -MIN_ANGLE < heading_output < MIN_ANGLE: distance = 32000 else: heading_fix_rad = heading_output * math.pi / 180 distance = self.rover_speed / heading_fix_rad if 0 <= distance < HEADING_MIN_DISTANCE: distance = HEADING_MIN_DISTANCE elif -HEADING_MIN_DISTANCE < distance < 0: distance = -HEADING_MIN_DISTANCE return distance, heading_output def keepDirection(self, requested_angle, setpoint_distance, current_distance): state = self.rover.getRoverState() # Keeping direction angle_output = self.direction_pid.process(setpoint_distance, current_distance) angle = 0 if abs(angle_output) < 1: angle = 0 elif angle_output > 0 and angle_output > self.rover_speed: angle = math.pi / 4 elif angle_output < 0 and angle_output < -self.rover_speed: angle = -math.pi / 4 else: try: angle = math.asin(angle_output / self.rover_speed) except BaseException as ex: self.agent.log_always("Domain error") if angle > MAX_ANGLE: angle = MAX_ANGLE elif angle < -MAX_ANGLE: angle = -MAX_ANGLE angle = int(requested_angle + angle * 180 / math.pi) return angle, angle_output def calculateSpeed(self, speed_time): # Defining forward speed if self.last_speed_time == speed_time: return self.last_speed if self.distance_error <= 0: speed = -self.distance_error if speed > self.speed: speed = self.speed elif speed < MINIMUM_SPEED: speed = MINIMUM_SPEED else: speed = -self.distance_error if speed > -MINIMUM_SPEED: speed = -MINIMUM_SPEED elif speed < -self.speed: speed = -self.speed self.last_speed = speed self.last_speed_time = speed_time return speed def start(self): super(NebulaAction, self).start() # self.distance_pid = PID(0.75, 0.15, 0.1, 1, 0) # self.direction_pid = PID(0.20, 0, 0.005, 1, 0) # self.heading_pid = PID(0.25, 0.0, 0.01, 1, 0, diff_method=angleDiference) def end(self): super(NebulaAction, self).end() class GoToCornerKeepingHeadingAction(NebulaAction): def __init__(self, agent, speed, angle, next_action=None): super(GoToCornerKeepingHeadingAction, self).__init__(agent, speed, next_action) self.angle = angle self.prev_angle = angle - 45 self.next_angle = angle + 45 if self.prev_angle < 0: self.prev_angle += 360 if self.next_angle >= 360: self.next_angle -= 360 def hasRadar(self, state): return state.radar.radar[self.prev_angle] > 1 and state.radar.radar[self.next_angle] > 1 and state.radar.radar[self.angle] > 1 def start(self): super(GoToCornerKeepingHeadingAction, self).start() pyroslib.publish("sensor/distance/focus", str(self.prev_angle) + " " + str(self.next_angle) + " " + str(self.angle)) self.distance_pid = PID(0.75, 0.15, 0.1, 1, 0) self.direction_pid = PID(0.20, 0, 0.02, 0.4, 0) self.heading_pid = PID(0.25, 0.0, 0.01, 0.5, 0, diff_method=angleDiference) self.agent.log_info("Starting Corner with prev_angle={: 3d} angle={: 3d} next_angle={: 3d}".format(self.prev_angle, self.angle, self.next_angle)) def next(self): state = self.rover.getRoverState() if not self.hasRadar(state): self.agent.log_info( "waiting for radar prev_angle[{0}]={1} angle[{2}]={3} next_angle[{4}]={5}".format( self.prev_angle, int(state.radar.radar[self.prev_angle]) if state.radar.radar[self.prev_angle] is not None else "-", self.angle, int(state.radar.radar[self.angle]) if state.radar.radar[self.angle] is not None else "-", self.next_angle, int(state.radar.radar[self.next_angle]) if state.radar.radar[self.next_angle] is not None else "-")) return self self.obtainRoverSpeed() corner_distance = state.radar.radar[self.angle] left_side = state.radar.radar[self.prev_angle] right_side = state.radar.radar[self.next_angle] self.distance_error = self.distance_pid.process(self.required_corner_distance, corner_distance) average_side = int((left_side + right_side) / 2) if left_side > right_side: ratio = left_side / right_side else: ratio = right_side / left_side if corner_distance < self.required_corner_distance: self.agent.log_info( "reached corner distance rover_speed={: 4d} corner_dist={: 4d} dist_error={: 7.2f} left_dist={: 4d} right_dist={: 4d} heading={: 3d}".format( int(self.rover_speed), int(corner_distance), self.distance_error, int(left_side), int(right_side), int(state.heading.heading))) return self.next_action left_side = state.radar.radar[self.prev_angle] right_side = state.radar.radar[self.next_angle] if average_side < self.required_side_distance: self.agent.log_info( "reached side distance rover_speed={: 4d} corner_dist={: 4d} dist_error={: 7.2f} left_dist={: 4d} right_dist={: 4d} heading={: 3d}".format( int(self.rover_speed), int(corner_distance), self.distance_error, int(left_side), int(right_side), int(state.heading.heading))) return self.next_action return self def execute(self): state = self.rover.getRoverState() if self.hasRadar(state): corner_distance = state.radar.radar[self.angle] distance, heading_output = self.keepHeading() left_side = state.radar.radar[self.prev_angle] right_side = state.radar.radar[self.next_angle] angle, angle_output = self.keepDirection(self.angle, right_side, left_side) speed = self.calculateSpeed(state.radar.time) if corner_distance > MAX_CORNER_DISTANCE: angle = self.angle speed = CORNER_CROSS_SPEED corner_distance = state.radar.radar[self.angle] self.agent.log_info("rover_speed={: 4d} corner_dist={: 4d} dist_error={: 7.2f} left_dist={: 4d} right_dist={: 4d} angle_fix={: 7.2f} heading={: 3d} heading_fix={: 7.2f} speed={: 3d} angle={: 3d} distance={: 3d}".format( int(self.rover_speed), int(corner_distance), self.distance_error, int(left_side), int(right_side), angle_output, int(state.heading.heading), heading_output, int(speed), int(angle), int(distance))) # distance = 32000 self.rover.command(pyroslib.publish, speed, angle, distance) def getActionName(self): return "Corner[{:3d}]".format(self.angle) class FollowWallKeepingHeadingAction(NebulaAction): def __init__(self, agent, speed, wall_angle, direction_angle, next_action=None): super(FollowWallKeepingHeadingAction, self).__init__(agent, speed, next_action) self.wall_angle = wall_angle self.direction_angle = direction_angle @staticmethod def calculateRealDistance(side_distance, side_angle): if side_distance < 1: return 0 if side_angle > 180: side_angle = 360 - side_angle side_angle = side_angle * math.pi / 180 return math.sin(math.pi / 2 - side_angle) * side_distance def hasRadar(self, state): return state.radar.radar[self.wall_angle] > 1 and state.radar.radar[self.direction_angle] > 1 def start(self): super(FollowWallKeepingHeadingAction, self).start() pyroslib.publish("sensor/distance/focus", str(self.wall_angle) + " " + str(self.direction_angle)) self.distance_pid = PID(0.85, 0.1, 0.2, 0.8, 0) self.direction_pid = PID(0.20, 0, 0.01, 0.6, 0) self.heading_pid = PID(0.25, 0.02, 0.0, 1, 0, diff_method=angleDiference) def next(self): state = self.rover.getRoverState() if not self.hasRadar(state): self.agent.log_info( "waiting for radar wall_angle[{0}]={1} direction_angle[{2}]={3}".format( self.wall_angle, int(state.radar.radar[self.wall_angle]) if state.radar.radar[self.wall_angle] is not None else "-", self.direction_angle, int(state.radar.radar[self.direction_angle]) if state.radar.radar[self.direction_angle] is not None else "-")) return self self.obtainRoverSpeed() wall_distance = state.radar.radar[self.wall_angle] front_distance = state.radar.radar[self.direction_angle] self.distance_error = self.distance_pid.process(self.required_side_distance, front_distance) if front_distance < self.required_side_distance: self.agent.log_info("reached distance rover_speed={: 4d} front_dist={: 5d} dist_error={: 9.2f} wall_dist={: 5d} heading={: 3d}".format( int(self.rover_speed), int(front_distance), self.distance_error, int(wall_distance), int(state.heading.heading))) return self.next_action return self def execute(self): state = self.rover.getRoverState() if self.hasRadar(state): distance, heading_output = self.keepHeading() wall_distance = self.calculateRealDistance(state.radar.radar[self.wall_angle], state.heading.heading) if angleDiference(self.wall_angle, self.direction_angle) > 0: angle, angle_output = self.keepDirection(self.direction_angle, wall_distance, self.required_keeping_side_distance) else: angle, angle_output = self.keepDirection(self.direction_angle, self.required_keeping_side_distance, wall_distance) speed = self.calculateSpeed(state.radar.time) front_distance = state.radar.radar[self.direction_angle] self.agent.log_info("rover_speed={: 4d} front_dist={: 5d} dist_error={: 9.2f} wall_dist={: 5d} angle_fix={: 7.2f} heading={: 3d} heading_fix={: 7.2f} speed={: 3d} angle={: 3d} distance={: 3d}".format( int(self.rover_speed), int(front_distance), self.distance_error, int(wall_distance), angle_output, int(state.heading.heading), heading_output, int(speed), int(angle), int(distance))) self.rover.command(pyroslib.publish, speed, angle, distance) def getActionName(self): return "Wall[{0} on {1}]".format(self.direction_angle, self.wall_angle) class CalculateRouteAction(Action): def __init__(self, agent, speed, foundColours, next_action): super(CalculateRouteAction, self).__init__(agent) self.speed = speed self.foundColours = foundColours self.next_action = next_action self.colour_order = ['red', 'blue', 'yellow', 'green'] log(LOG_LEVEL_INFO, "Colour order " + str(self.colour_order)) self.wait = 0 self.prepared_action = None def calcualteAction(self, from_angle, to_colour): to_angle = self.foundColours.found[to_colour] colour_index = self.colour_order.index(to_colour) if colour_index < 3: following_action = self.calcualteAction(to_angle, self.colour_order[colour_index + 1]) else: following_action = self.next_action # follow_wall_speed = self.speed # go_to_corner_speed = self.speed follow_wall_speed = WALL_SPEED go_to_corner_speed = CORNER_SPEED if normaiseAngle(from_angle + 90) == to_angle: wall_angle = normaiseAngle(from_angle + 45) direction_angle = normaiseAngle(wall_angle + 90) # return FollowWallKeepingHeadingAction(self.agent, self.speed, wall_angle, direction_angle, following_action) return FollowWallKeepingHeadingAction(self.agent, follow_wall_speed, wall_angle, direction_angle, following_action) elif normaiseAngle(from_angle - 90) == to_angle: wall_angle = normaiseAngle(from_angle - 45) direction_angle = normaiseAngle(wall_angle - 90) # return FollowWallKeepingHeadingAction(self.agent, self.speed, wall_angle, direction_angle, following_action) return FollowWallKeepingHeadingAction(self.agent, follow_wall_speed, wall_angle, direction_angle, following_action) else: # return GoToCornerKeepingHeadingAction(self, self.speed, to_angle, following_action) return GoToCornerKeepingHeadingAction(self.agent, go_to_corner_speed, to_angle, following_action) def next(self): if self.wait == 0: self.agent.log_info("Calculating route (1) -> Corner " + str(self.foundColours.found['red'])) initial_angle = self.foundColours.found['red'] following_action = self.calcualteAction(initial_angle, 'blue') i = 1 a = following_action while a != self.next_action: i += 1 if isinstance(a, GoToCornerKeepingHeadingAction): self.agent.log_info("Calculating route (" + str(i) + ") -> Corner " + str(a.angle)) a = a.next_action else: self.agent.log_info("Calculating route (" + str(i) + ") -> Follow wall " + str(a.wall_angle) + " to " + str(a.direction_angle)) a = a.next_action self.prepared_action = GoToCornerKeepingHeadingAction(self.agent, self.speed, initial_angle, following_action) self.wait = 2 self.rover.command(pyroslib.publish, 0, initial_angle, 32000) self.agent.log_info("Wheels orientation {0} wait:{1:2d}".format(str(self.rover.current_state.wheel_orientations.orientations), self.wait)) else: self.agent.log_info("Wheels orientation {0} wait:{1:2d}".format(str(self.rover.current_state.wheel_orientations.orientations), self.wait)) self.wait -= 1 if self.wait == 0: return self.prepared_action return self def getActionName(self): return "Calculate" class StraightWheelsAction(Action): def __init__(self, agent, next_action): super(StraightWheelsAction, self).__init__(agent) self.next_action = next_action def next(self): self.rover.command(pyroslib.publish, 0, 0, 3200) return self.next_action class NebulaAgent(AgentClass): def __init__(self): super(NebulaAgent, self).__init__("nebula") self.foundColours = CameraData() def connected(self): super(NebulaAgent, self).connected() pyroslib.subscribeBinary("camera/raw", self.handleCameraMain) pyroslib.subscribeBinary("camera/wheels/raw", self.handleCameraWheels) pyroslib.subscribeBinary("camera/camera1/raw", self.handleCamera1) pyroslib.subscribeBinary("camera/camera2/raw", self.handleCamera2) pyroslib.publish("camera/format", "RGB " + str(size[0]) + "," + str(size[1]) + " False") pyroslib.publish("camera/wheels/format", "RGB " + str(size[0]) + "," + str(size[1]) + " False") pyroslib.publish("camera/camera1/format", "RGB " + str(size[0]) + "," + str(size[1]) + " False") pyroslib.publish("camera/camera2/format", "RGB " + str(size[0]) + "," + str(size[1]) + " False") def start(self, data): if not self.running: if data[0] == 'nebula': super(NebulaAgent, self).start(data) # speed = int(data[1]) speed = 160 speed = 200 calculate_route_action = CalculateRouteAction(self, speed, self.foundColours, self.stop_action) wait_camera_data_action = WaitCameraData(self, calculate_route_action) wait_sensor_data_action = WaitSensorData(self, wait_camera_data_action) # self.nextAction(wait_sensor_data_action) self.nextAction(wait_camera_data_action) elif data[0] == 'warmup': # super(NebulaAgent, self).start(data) self.nextAction(StraightWheelsAction(self, WaitSensorData(self, WarmupAction(self)))) elif data[0] == 'scan': super(NebulaAgent, self).start(data) self.nextAction(WaitCameraData(self, self.stop_action)) elif data[0] == 'combo': super(NebulaAgent, self).start(data) combo = data[1] # go_to_corner2_action = GoToCornerKeepingHeadingAction(self, CORNER_SPEED, 225, self.stop_action) # follow_right_wall_action = FollowWallKeepingHeadingAction(self, WALL_SPEED, 90, 0, go_to_corner2_action) # go_to_corner1_action = GoToCornerKeepingHeadingAction(self, CORNER_SPEED, 135, follow_right_wall_action) # follow_left_wall_action = FollowWallKeepingHeadingAction(self, WALL_SPEED, 270, 0, go_to_corner1_action) # wait_sensor_data_action = WaitSensorData(self, follow_left_wall_action) if combo == '1': # Comb 1 go_to_corner3_action = GoToCornerKeepingHeadingAction(self, CORNER_SPEED, 315, self.stop_action) follow_right_wall_action = FollowWallKeepingHeadingAction(self, WALL_SPEED, 90, 180, go_to_corner3_action) go_to_corner2_action = GoToCornerKeepingHeadingAction(self, CORNER_SPEED, 45, follow_right_wall_action) go_to_corner1_action = GoToCornerKeepingHeadingAction(self, CORNER_SPEED, 225, go_to_corner2_action) wait_sensor_data_action = WaitSensorData(self, go_to_corner1_action) elif combo == '2': # Comb 2 follow_right_wall_action = FollowWallKeepingHeadingAction(self, WALL_SPEED, 90, 0, self.stop_action) go_to_corner2_action = GoToCornerKeepingHeadingAction(self, CORNER_SPEED, 135, follow_right_wall_action) follow_left_wall_action = FollowWallKeepingHeadingAction(self, WALL_SPEED, 270, 0, go_to_corner2_action) go_to_corner1_action = GoToCornerKeepingHeadingAction(self, CORNER_SPEED, 225, follow_left_wall_action) wait_sensor_data_action = WaitSensorData(self, go_to_corner1_action) elif combo == '3': # Comb 3 follow_right_wall_action = FollowWallKeepingHeadingAction(self, WALL_SPEED, 90, 180, self.stop_action) follow_top_wall_action = FollowWallKeepingHeadingAction(self, WALL_SPEED, 0, 90, follow_right_wall_action) follow_left_wall_action = FollowWallKeepingHeadingAction(self, WALL_SPEED, 270, 0, follow_top_wall_action) go_to_corner1_action = GoToCornerKeepingHeadingAction(self, CORNER_SPEED, 225, follow_left_wall_action) wait_sensor_data_action = WaitSensorData(self, go_to_corner1_action) else: wait_sensor_data_action = WaitSensorData(self, self.stop_action) self.nextAction(wait_sensor_data_action) elif data[0] == 'walls': super(NebulaAgent, self).start(data) follow_bottom_wall_action = FollowWallKeepingHeadingAction(self, WALL_SPEED, 180, 270, self.stop_action) follow_right_wall_action = FollowWallKeepingHeadingAction(self, WALL_SPEED, 90, 180, follow_bottom_wall_action) follow_top_wall_action = FollowWallKeepingHeadingAction(self, WALL_SPEED, 0, 90, follow_right_wall_action) follow_left_wall_action = FollowWallKeepingHeadingAction(self, WALL_SPEED, 270, 0, follow_top_wall_action) wait_sensor_data_action = WaitSensorData(self, follow_left_wall_action) self.nextAction(wait_sensor_data_action) def handleCameraData(self, topic, message, source): # now = time.time() # delta = now - lastProcessed # lastProcessed = now pilImage = self._toPILImage(message) openCVImage = numpy.array(pilImage) result, value = self.processImageCV(openCVImage) self.log_info("For " + str(source) + " got " + ("None" if result is None else str(result)) + " for value " + str(value)) if result is not None: self.foundColours.setData(result, source) if not self.foundColours.hasAll(): self.log_info("Found " + self.foundColours.foundAsString() + " but not finished yet as " + self.foundColours.missingColours() + " " + ("are" if len(self.foundColours.missingColours()) > 1 else "is") + " still missing.") if self.running: pyroslib.publish(topic + "/fetch", "") pyroslib.publish("nebula/imagedetails", "working: " + self.foundColours.foundAsString()) else: self.log_info("So far " + self.foundColours.foundAsString() + " and finishing...") stopped = True pyroslib.publish("nebula/imagedetails", "found: " + self.foundColours.foundAsString()) def handleCameraMain(self, topic, message, groups): self.handleCameraData(topic, message, 225) def handleCameraWheels(self, topic, message, groups): self.handleCameraData(topic, message, 45) def handleCamera1(self, topic, message, groups): self.handleCameraData(topic, message, 315) def handleCamera2(self, topic, message, groups): self.handleCameraData(topic, message, 135) @staticmethod def _toPILImage(imageBytes): pilImage = PIL.Image.frombytes("RGB", size, imageBytes) return pilImage def processImageCV(self, image): def findColourNameHSV(hChannel, contour): mask = numpy.zeros(hChannel.shape[:2], dtype="uint8") cv2.drawContours(mask, [contour], -1, 255, -1) mask = cv2.erode(mask, None, iterations=2) maskAnd = hChannel.copy() cv2.bitwise_and(hChannel, mask, maskAnd) pyroslib.publish("nebula/processed", PIL.Image.fromarray(cv2.cvtColor(maskAnd, cv2.COLOR_GRAY2RGB)).tobytes("raw")) self.log_debug("Published mask ") hist = cv2.calcHist([hChannel], [0], mask, [255], [0, 255], False) value =
numpy.argmax(hist)
numpy.argmax
""" Copyright 2019 <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np import cv2 import sys import math import time import pprint import scipy.misc import traceback import random import os from skimage.transform import resize class CvFuncs: #plate control _is_broad = False #normal plates _charHeightMin = 34 _charHeightMax = 58 _n_vertical_deviation = 25 #broad plates _b_charHeightMin = 34 _b_charHeightMax = 58 _b_vertical_deviation = 30 #common filters _min_char_width = 5 #the maximum width of the bounding box of detected contours... boxes such as the ones encompassing the whole plate are eliminated to #not let them impact the weights and cogs and average widths _box_width_max = 80 _neighbor_gap_max = 15 #how many pixels can the group of character's bounding rects be apart _xDeviation = 10 #in pixels _yDeviation = 10 #in pixels debugEnabled = False #generates crazy amount of intermediate images which are useful for debugging imageStoreDir = "" #location of images to store at currentlyProcessedFileName = "" #data type of records in the list dtype_letter_rect = [('x',int),('y',int),('w',int),('h',int),('cogx',float),('cogy',float),('weight',int),('area',int)] brects_unsorted = [] brects_sorted = [] processed_cogx_list = [] processed_cogy_list = [] potential_char_height_avg = 0 y_avg = 0 box_width_avg = 0 max_allowed_char_width = 0 eligible_box_area_avg = 0 _width = 0 _height = 0 average_color = 0 #timings time_taken_by_skewCorrection = 0 time_taken_by_analyzeRects = 0 time_taken_by_breakupBoxesAndCalcWeights = 0 time_taken_by_eliminateByCog = 0 time_taken_by_eliminateByArea = 0 time_taken_by_determineBlackOrWhite = 0 time_taken_by_findAndAppendContours = 0 time_taken_by_extractLetters = 0 time_taken_by_findRectsNormalCase = 0 time_taken_by_assignNeighborWeights = 0 time_taken_by_eliminateByYDeviation = 0 #images plate = None #the extracted plate region from the input image thresh = None # this is the image we extract letters from masked = None white_bg = None def reset(self): self.brects_unsorted = [] self.brects_sorted = [] self.processed_cogx_list = [] self.potential_char_height_avg = 0 self.y_avg = 0 self.box_width_avg = 0 self.max_allowed_char_width = 0 self.eligible_box_area_avg = 0 self._width = 0 self._height = 0 self.average_color = 0 #timings self.time_taken_by_skewCorrection = 0 self.time_taken_by_analyzeRects = 0 self.time_taken_by_breakupBoxesAndCalcWeights = 0 self.time_taken_by_eliminateByCog = 0 self.time_taken_by_eliminateByArea = 0 self.time_taken_by_determineBlackOrWhite = 0 self.time_taken_by_findAndAppendContours = 0 self.time_taken_by_extractLetters = 0 self.time_taken_by_findRectsNormalCase = 0 self.time_taken_by_assignNeighborWeights = 0 self.time_taken_by_eliminateByYDeviation = 0 #images self.plate = None #the extracted plate region from the input image self.thresh = None # this is the image we extract letters from self.masked = None self.white_bg = None def makeIntermediateFileName(self, originalFilename, auxFileName): return "{}/{}_{}.jpg".format(self.imageStoreDir, originalFilename, auxFileName) def randomColor(self): return (255*random.random(), 255*random.random(), 255*random.random()) def saveRoundImage(self, round, filename, forceSave = False): """Utility function for saving images with highlighted brects_sorted drawn """ if not self.debugEnabled and forceSave is False: return round_img = self.plate.copy() i = 0 while i < len(self.brects_sorted): x,y,w,h,cogx,cogy,wr,area = self.brects_sorted[i] cv2.rectangle(round_img, (x, y), (x + w, y + h), self.randomColor(), 1) i = i + 1 #round_img_filename = "{}.round.{}.png".format(filename, round) round_img_filename = self.makeIntermediateFileName(filename, round) debugPath = os.path.join('.','debug') if not os.path.exists(debugPath): os.makedirs(debugPath) filePath = os.path.join(debugPath, round_img_filename) cv2.imwrite(filePath, round_img) def correct_skew(self, image): timeStart = time.time() #copied from http://www.pyimagesearch.com/2017/02/20/text-skew-correction-opencv-python/ #gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) gray = cv2.bitwise_not(image) thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1] coords = np.column_stack(np.where(thresh > 0)) angle = cv2.minAreaRect(coords)[-1] if angle < -45: angle = -(90 + angle) else: angle = -angle # rotate the image to deskew it (h, w) = image.shape[:2] center = (w // 2, h // 2) M = cv2.getRotationMatrix2D(center, angle, 1.0) rotated = cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE) self.time_taken_by_skewCorrection = time.time() - timeStart return rotated def analyzeRects(self,filename): """Round 1 pre process - calculate averages, avg width, avg height etc Gather statistics on the sorted rects for decision making Filters out rects which do not fall between the valid character heights min and max. Call after all rects have been found """ timeStart = time.time() potential_letters_y_sum =0 potential_letters_count = 0 potential_letters_height_sum =0 box_width_sum =0 box_width_count = 0 average_gap_sum = 0 #todo calculate and then exclude those which have more gap with the rest of the group i = 0 while i < len(self.brects_sorted): x,y,w,h,cogx,cogy,wr,area = self.brects_sorted[i] valid_roi = False if ((h >= self._charHeightMin and h <= self._charHeightMax) and w >= self._min_char_width): valid_roi = True if valid_roi and w <= self._box_width_max: box_width_sum = box_width_sum + w box_width_count = box_width_count + 1 potential_letters_y_sum = potential_letters_y_sum + y potential_letters_height_sum = potential_letters_height_sum + ((y+h)-y) potential_letters_count = potential_letters_count + 1 else: #print("del {}".format(self.brects_sorted[i])) self.brects_sorted = np.delete(self.brects_sorted, i) continue #process next i = i+1 #avoid divide by 0 errors.. if potential_letters_count == 0: potential_letters_count = 1 if box_width_count == 0: box_width_count = 1 if len(self.brects_sorted) == 0: return self.potential_char_height_avg = int(potential_letters_height_sum/potential_letters_count) self.y_avg = int(self._height / 2) self.box_width_avg = int(box_width_sum / box_width_count) # self.max_allowed_char_width = int(self.box_width_avg) if(self.debugEnabled): #save round image self.saveRoundImage('analyze-rects',filename) print("y_avg [{}] box_width_avg [{}] max_allowed_char_width[{}] potential_char_height_avg[{}]" .format(self.y_avg, self.box_width_avg, self.max_allowed_char_width, self.potential_char_height_avg)) print("Round 1 rects are: {}".format(len(self.brects_sorted))) pprint.pprint(self.brects_sorted) self.time_taken_by_analyzeRects = time.time() - timeStart def eliminateByYDeviation(self, filename): timeStart = time.time() v_deviation = self._n_vertical_deviation # if self._is_broad: # v_deviation = self._b_vertical_deviation imgh,imgw = self.thresh.shape imgh = imgh // 2 i = 0 while i < len(self.brects_sorted): x,y,w,h,cogx,cogy,wr,area = self.brects_sorted[i] if self.debugEnabled: print("y[{}] y_avg[{}] abs(y-y_avg)[{}] v_dev[{}] [{}]".format( y, self.y_avg, abs(y-self.y_avg), v_deviation, self.brects_sorted[i])) # if (abs(y-self.y_avg) > v_deviation): if abs(y-imgh) > 30: #remove the rect as it is not what we are interested in if self.debugEnabled: print("del for y_deviation [{}] <--\n".format(self.brects_sorted[i])) self.brects_sorted = np.delete(self.brects_sorted, i) continue #process next i = i + 1 self.brects_sorted = np.sort(self.brects_sorted, order=['x']) if self.debugEnabled: #save round image self.saveRoundImage('y_deviation',filename) print("eliminateByYDeviation leaving with [{}] rects".format(len(self.brects_sorted))) pprint.pprint(self.brects_sorted) self.time_taken_by_eliminateByYDeviation = time.time() - timeStart def breakupBoxesAndCalcWeights(self,filename): """Round 2 pre process - breakup any wider boxes into smaller ones of average char width and calculate weights based on how close a neighbor, for consecutive letters, the gap between (x+w) and w of next box must be less than "padding" """ timeStart = time.time() eligible_box_area_sum = 0 eligible_box_count = 0 i = 0 while i < len(self.brects_sorted): x,y,w,h,cogx,cogy,wr,area = self.brects_sorted[i] #outright discard boxes > 3 x max_allowed_char_width as that's noise if (w > 3*self.max_allowed_char_width): if self.debugEnabled: print("Round 2 - del for 3*max_allowed_char_width({}) [{}]\n".format(3*self.max_allowed_char_width,self.brects_sorted[i])) self.brects_sorted = np.delete(self.brects_sorted, i) continue if(h<20): if self.debugEnabled: print("h<20 [{}]\n".format(self.brects_sorted[i])) self.brects_sorted = np.delete(self.brects_sorted, i) continue if (w > self.max_allowed_char_width): # if (w > h): boxes_to_breakup_into = 2 #width_per_box = w / boxes_to_breakup_into width_per_box = w / 2 #print("w[{}] max_w[{}] parts[{}] - box [{},{},{},{}]".format(w,2, boxes_to_breakup_into, x,y,w,h)) if boxes_to_breakup_into > 1: #remove this box from brects_sorted self.brects_sorted = np.delete(self.brects_sorted, i) for ibox in range(0, boxes_to_breakup_into): #print( "new region x[{}] y[{}] w[{}] h[{}]\n".format(x+ (ibox*width_per_box), y, width_per_box,h)) nx = x+ (ibox*width_per_box) ncogx = (nx + (nx+width_per_box))/2 ncogy = (y + (y+h))/2 self.brects_sorted = np.append( self.brects_sorted, np.array([ (nx, y, width_per_box,h,ncogx,cogy,0,width_per_box*h) ], dtype=self.dtype_letter_rect) ) #dont increment index as current was deleted and the next one #is already in it's place continue else: #see below... increment to next element eligible_box_area_sum = eligible_box_area_sum + (w*h) eligible_box_count = eligible_box_count + 1 else: eligible_box_area_sum = eligible_box_area_sum + (w*h) eligible_box_count = eligible_box_count + 1 #process next i = i + 1 self.brects_sorted = np.sort(self.brects_sorted, order=['x']) #avoid divide by 0 errors if eligible_box_count ==0: eligible_box_count = eligible_box_count + 1 self.eligible_box_area_avg = eligible_box_area_sum/eligible_box_count if self.debugEnabled: #save round image self.saveRoundImage('newRects',filename) print("breakupBoxesAndCalcWeights rects are: {}".format(len(self.brects_sorted))) pprint.pprint(self.brects_sorted) self.time_taken_by_breakupBoxesAndCalcWeights = time.time() - timeStart def cog_doElimination(self,filename): #sort by width so that smaller boxes are kept and larger are eliminated # self.brects_sorted=np.sort(self.brects_sorted, order=['w']) i = 0 while i < len(self.brects_sorted): x,y,w,h,cogx,cogy,wr,area = self.brects_sorted[i] if self.debugEnabled: print("Comparing [{}][{}]@[{}]".format(cogx, cogy, self.brects_sorted[i])) j = i+1 while j < len(self.brects_sorted): x_j,y_j,w_j,h_j,cogx_j,cogy_j,wr_j,area_j = self.brects_sorted[j] if self.debugEnabled: print("\t with [{}][{}]@[{}]".format(cogx_j, cogy_j, self.brects_sorted[j])) found_gx = False found_gy = False if abs(cogx_j-cogx) <= self._xDeviation: found_gx = True if abs(cogy_j-cogy) <= self._yDeviation: found_gy = True if found_gx and found_gy: if self.debugEnabled: print("deleted (j) cog[{}][{}]@[{}] <--\n".format(cogx,cogy, self.brects_sorted[j])) self.brects_sorted = np.delete(self.brects_sorted, j) #break else: j = j+1 i = i + 1 # #restore ordering to order by x # self.brects_sorted=np.sort(self.brects_sorted, order=['x']) if self.debugEnabled: #save round image self.saveRoundImage('cog',filename) print("[cog] round rects are: {}".format(len(self.brects_sorted))) pprint.pprint(self.brects_sorted) def eliminateByCog(self, filename): #print("eliminateByCog entered") timeStart = time.time() self.cog_doElimination(filename) self.time_taken_by_eliminateByCog = self.time_taken_by_eliminateByCog + (time.time() - timeStart) #print("eliminateByCog exiting") def doRectsOverlap(self, r1l,r1r,r1t,r1b, r2l, r2r, r2t, r2b): """ https://stackoverflow.com/questions/306316/determine-if-two-rectangles-overlap-each-other """ return (r1l < r2r and r1r > r2l and r1t > r2b and r1b < r2t) def eliminateByOverlap(self): """ Compares every rect with others and Discards one of the two rects with larger area """ #print("eliminateByOverlap entered") #we make copy of the brects_sorted as we will be sorting by area sorted_rects = np.sort(self.brects_sorted, order=['area']) i = 0 while i < len(sorted_rects)-1: x1,y1,w1,h1,cogx1,cogy1,wr1,area1 = sorted_rects[i] x2,y2,w2,h2,cogx2,cogy2,wr2,area2 = sorted_rects[i+1] #print("eliminateByOverlap entered 2") #eliminated = False if self.doRectsOverlap(x1,x1+w1, y1, y1+h1, x2, x2+w2, y2, y2+h2): # eliminated = True msg = "Deleting rect at: " #eliminate the larger of the two rects if area1 > area2: sorted_rects = np.delete(sorted_rects, i) msg = msg + str(i) else: sorted_rects = np.delete(sorted_rects, i+1) msg = msg + str(i+1) i = i + 1 #process next if self.debugEnabled: print(msg) else: i = i+1 #restore x sorted array self.brects_sorted = np.sort(sorted_rects, order=['x']) #print("eliminateByOverlap exiting") if self.debugEnabled: #save round image self.saveRoundImage('overlap',self.currentlyProcessedFileName) print("eliminateByOverlap rects are: {}".format(len(self.brects_sorted))) pprint.pprint(self.brects_sorted) def filterPreExtract(self): """ Removes empty white only boxes Removes boxes which have a height less that avg(h)-threshold """ print("filterPreExtract entered") #we make copy of the brects_sorted as we will be sorting by area sorted_rects =
np.sort(self.brects_sorted, order=['area'])
numpy.sort
#VoidFinder Function to do just about everything import numpy as np from astropy.table import Table import time from .hole_combine import combine_holes, combine_holes_2 from .voidfinder_functions import mesh_galaxies, \ in_mask, \ not_in_mask, \ in_survey, \ save_maximals, \ mesh_galaxies_dict #build_mask, \ from .table_functions import add_row, \ subtract_row, \ to_vector, \ to_array, \ table_dtype_cast, \ table_divide from .volume_cut import volume_cut, check_hole_bounds from .avsepcalc import av_sep_calc from .mag_cutoff_function import mag_cut, field_gal_cut from ._voidfinder import _hole_finder from .constants import c from ._voidfinder_cython import check_mask_overlap ################################################################################ DtoR = np.pi/180. RtoD = 180./np.pi ################################################################################ def filter_galaxies(galaxy_table, survey_name, out_directory, mag_cut=True, dist_limits=None, rm_isolated=True, write_table=True, sep_neighbor=3, dist_metric='comoving', h=1.0, hole_grid_edge_length=5.0, magnitude_limit=-20.09, verbose=0): """ A hodge podge of miscellaneous tasks which need to be done to format the data into something the main find_voids() function can use. 1) Optional magnitude cut 2) Convert from ra-dec-redshift space into xyz space 3) Calculate the hole search grid shape 4) Optional remove isolated galaxies by partitioning them into wall (non-isolated) and field (isolated) groups 5) Optionally write out the wall and field galaxies to disk Parameters ========== galaxy_table : astropy.table of shape (N,?) variable number of required columns. If doing magnitude cut, must include 'rabsmag' column. If distance metric is 'comoving', must include 'Rgal' column, otherwise must include 'redshift'. Also must always include 'ra' and 'dec' survey_name : str Name of the galxy catalog, string value to prepend or append to output names out_directory : string Directory path for output files mag_cut : bool whether or not to cut on magnitude, removing galaxies less than magnitude_limit dist_limits : list of length 2 [Minimum distance, maximum distance] of galaxy sample (in units of Mpc/h) magnitude_limit : float value at which to perform magnitude cut rm_isolated : bool whether or not to perform Nth neighbor distance calculation, and use it to partition the input galaxies into wall and field galaxies write_table : bool use astropy.table.Table.write to write out the wall and field galaxies to file sep_neighbor : int, positive if rm_isolated_flag is true, find the Nth galaxy neighbors based on this value dist_metric : str Distance metric to use in calculations. Options are 'comoving' (default; distance dependent on cosmology) and 'redshift' (distance independent of cosmology). h : float Fractional value of Hubble's constant. Default value is 1 (where H0 = 100h). hole_grid_edge_length : float length in Mpc/h of the edge of one cell of a grid cube for the search grid verbose : int values greater than zero indicate to print output Returns ======= wall_gals_xyz : numpy.ndarray of shape (K,3) the galaxies which were designated not to be isolated field_gals_xyz : numpy.ndarray of shape (L,3) the galaxies designated as isolated hole_grid_shape : tuple of 3 integers (i,j,k) shape of the hole search grid coords_min : numpy.ndarray of shape (3,) coordinates of the minimum of the survey used for converting from xyz space into ijk space """ print('Filter Galaxies Start', flush=True) ############################################################################ # PRE-PROCESS DATA # Filter based on magnitude and convert from redshift to radius if necessary #--------------------------------------------------------------------------- # Remove faint galaxies if mag_cut: galaxy_table = galaxy_table[galaxy_table['rabsmag'] <= magnitude_limit] # Remove galaxies outside redshift range if dist_limits is not None: if dist_metric == 'comoving': distance_boolean = np.logical_and(galaxy_table['Rgal'] >= dist_limits[0], galaxy_table['Rgal'] <= dist_limits[1]) else: H0 = 100*h distance_boolean = np.logical_and(c*galaxy_table['redshift']/H0 >= dist_limits[0], c*galaxy_table['redshift']/H0 <= dist_limits[1]) galaxy_table = galaxy_table[distance_boolean] # Convert galaxy coordinates to Cartesian coords_xyz = ra_dec_to_xyz(galaxy_table, dist_metric, h) ############################################################################ ############################################################################ # Grid shape #--------------------------------------------------------------------------- hole_grid_shape, coords_min = calculate_grid(coords_xyz, hole_grid_edge_length) ############################################################################ ############################################################################ # Separation #--------------------------------------------------------------------------- if rm_isolated: wall_gals_xyz, field_gals_xyz = wall_field_separation(coords_xyz, sep_neighbor=sep_neighbor, verbose=verbose) else: wall_gals_xyz = coords_xyz field_gals_xyz =
np.array([])
numpy.array
# Author: <NAME> at 24/09/2021 <<EMAIL>> # Licence: MIT License # Copyright: <NAME> (2018) <<EMAIL>> # Author: <NAME> at 06/08/2021 <<EMAIL>> # Licence: MIT License # Copyright: <NAME> (2018) <<EMAIL>> import numpy as np from numpy.testing import assert_array_almost_equal from reservoirpy.nodes import Ridge, Reservoir def test_ridge_init(): node = Ridge(10, ridge=1e-8, transient=100) data = np.ones((1, 100)) res = node(data) assert node.Wout.shape == (100, 10) assert node.bias.shape == (1, 10) assert node.ridge == 1e-8 assert node.transient == 100 data = np.ones((10000, 100)) res = node.run(data) assert res.shape == (10000, 10) def test_ridge_partial_fit(): node = Ridge(10, ridge=1e-8, transient=10) X, Y = np.ones((5, 200, 100)), np.ones((5, 200, 10)) res = node.fit(X, Y) assert node.Wout.shape == (100, 10) assert_array_almost_equal(node.Wout,
np.ones((100, 10))
numpy.ones
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Sep 11 17:32:25 2018 @author: <NAME> MIT Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02109, USA Email: <EMAIL> Web: www.mnguenther.com """ from __future__ import print_function, division, absolute_import #::: plotting settings import seaborn as sns sns.set(context='paper', style='ticks', palette='deep', font='sans-serif', font_scale=1.5, color_codes=True) sns.set_style({"xtick.direction": "in","ytick.direction": "in"}) sns.set_context(rc={'lines.markeredgewidth': 1}) #::: modules import numpy as np import matplotlib.pyplot as plt from matplotlib.cm import get_cmap import os, sys from datetime import datetime #import warnings import emcee try: import celerite from celerite import terms except: pass # warnings.warn('Module "celerite" could not be imported. Some functionality might not be available.') try: import george from george import kernels except: pass # warnings.warn('Module "george" could not be imported. Some functionality might not be available.') import corner from multiprocessing import Pool, cpu_count from contextlib import closing from tqdm import tqdm #::: lightcurves modules from . import index_transits, index_eclipses, phase_fold, rebin_err, get_first_epoch np.random.seed(21) ############################################################################### #::: call the gp ############################################################################### def call_gp(params): log_sigma, log_rho, log_error_scale = params if GP_CODE=='celerite': kernel = terms.Matern32Term(log_sigma=log_sigma, log_rho=log_rho) gp = celerite.GP(kernel, mean=MEAN, fit_mean=False) #log_white_noise=np.log(yerr), gp.compute(xx, yerr=yyerr/err_norm*np.exp(log_error_scale)) return gp elif GP_CODE=='george': kernel = np.exp(log_sigma) * kernels.Matern32Kernel(log_rho) gp = george.GP(kernel, mean=MEAN, fit_mean=False) #log_white_noise=np.log(yerr), gp.compute(xx, yerr=yyerr/err_norm*np.exp(log_error_scale)) return gp else: raise ValueError('A bad thing happened.') ############################################################################### #::: priors ############################################################################### def external_log_prior(params): log_sigma, log_rho, log_error_scale = params lp = 0 if not (-15 < log_sigma < 15): lp = -np.inf if not (-15 < log_rho < 15): lp = -np.inf if not (-15 < log_error_scale < 0): lp = -np.inf return lp ############################################################################### #::: set up MCMC log probability function #::: (has to be top-level for pickle) ############################################################################### def log_probability(params): ''' works on xx, yy ''' # log_sigma, log_rho, log_error_scale = params try: gp = call_gp(params) ll = gp.log_likelihood(yy) lp = gp.log_prior() + external_log_prior(params) except: return -np.inf if not np.isfinite(lp): return -np.inf return ll + lp ############################################################################### #::: run ############################################################################### def gp_decor(x,y, yerr=None, ind_in=None, ind_out=None, period=None, epoch=None, width=None, width_2=None, secondary_eclipse=False, systematics_amplitude=None, systematics_timescale=None, mean=1., nwalkers=50, thin_by=50, burn_steps=2500, total_steps=5000, bin_width=None, gp_code='celerite', kernel='Matern32', method='median_posterior', chunk_size=2000, Nsamples_detr=10, Nsamples_plot=10, xlabel='x', ylabel='y', ydetr_label='ydetr', outdir='gp_decor', fname=None, fname_summary=None, multiprocess=False, multiprocess_cores=None, figstretch=1, rasterized=True): ''' Required Input: --------------- x : array of float x-values of the data set y : array of float y-values of the data set Optional Input: --------------- yerr : array of float / float errorbars on y-values of the data set; if None, these are estimated as std(y); this is only needed to set an initial guess for the GP-fit; white noise is fitted as a jitter term period : float period of a potential transit signal if None, no transit region will be masked epoch : float epoch of a potential transit signal if None, no transit region will be masked width : float width of the transit/primary eclipse region that should be masked (should be greater than the signal's width) if None, no transit region will be masked width_2 : float width of the secondary region that should be masked (should be greater than the signal's width) if None, no transit region will be masked secondary_eclipse : bool mask a secondary eclipse (currently assumes a circular orbit) systematics_timescale : float (defaut None) the timescale of the systeamtics must be in the same units as x if None, set to 1. (assuming usually x is in days, 1. day is reasonable) mean : float (default 1.) mean of the data set the default is 1., assuming usually y will be normalized flux nwalkers : int number of MCMC walkers thin_by : int thinning the MCMC chain by how much burn_steps : int how many steps to burn in the MCMC total_steps : int total MCMC steps (including burn_steps) bin_width : float (default None) run the GP on binned data and then evaluate on unbinned data (significant speed up for george) currently a bit buggy gp_code : str (default 'celerite') 'celerite' or 'george' which GP code to use method : str (default 'median_posterior') how to calculate the GP curve that's used for detrending 'mean_curve' : take Nsamples_detr and calculate many curves, detrend by the mean of all of them 'median_posterior' : take the median of the posterior and predict a single curve chunk_size : int (default 5000) calculate gp.predict in chunks of the entire light curve (to not crash memory) Nsamples_detr : float (default 10) only used if method=='mean_curve' how many samples used for detrending Nsampels_plot : float (default 10) only used if method=='mean_curve' how many samples used for plotting xlabel : str x axis label (for plots) ylabel : str y axis label (for plots) ydetr_label : str y_detr axis label (for plots) outdir : str name of the output directory fname : str prefix of the output files (e.g. a planet name) multiprocess : bool (default True) run MCMC on many cores ''' if (gp_code=='celerite') & ('celerite' not in sys.modules): raise ValueError('You are trying to use "celerite", but it is not installed.') elif (gp_code=='george') & ('george' not in sys.modules): raise ValueError('You are trying to use "george", but it is not installed.') #::: make it luser proof and recalculate the true first epoch if not any(v is None for v in [period, epoch, width]): epoch = get_first_epoch(x, epoch, period) #TODO: philosophical question: #use median of the posterior to get 1 "median" GP for detrending? #or use mean (and std) curves of many samples from the GP for detrending? #it definitely is way faster to simply use the "median"... #::: this is ugly, I know; #::: blame the multiprocessing and pickling issues, #::: which demand global variables for efficiency global xx global yy global yyerr global err_norm global GP_CODE global MEAN GP_CODE = gp_code MEAN = mean #::: outdir if not os.path.exists(outdir): os.makedirs(outdir) #::: print function that prints into console and logfile at the same time now = datetime.now().isoformat() def logprint(*text): print(*text) original = sys.stdout with open( os.path.join(outdir,fname+'logfile_'+now+'.log'), 'a' ) as f: sys.stdout = f print(*text) sys.stdout = original #::: fname if fname is not None: fname += '_gp_decor_' else: fname = 'gp_decor_' #::: MCMC plot settings if kernel=='Matern32': keys = ['gp_log_sigma', 'gp_log_rho', 'log_y_err'] names = [r'gp: $\log{\sigma}$', r'gp: $\log{\rho}$', r'$\log{(y_\mathrm{err})}$'] elif kernel=='SHOT': keys = ['gp_log_S0', 'gp_log_Q', 'log_omega0', 'log_y_err'] names = [r'gp: $\log{S_0}$', r'gp: $\log{Q}$', r'gp: $\log{\omega_0}$', r'$\log{(y_\mathrm{err})}$'] celerite.terms.SHOTerm discard = int(1.*burn_steps/thin_by) #::: phase-plot settings dt=1./1000. ferr_type='meansig' ferr_style='sem' sigmaclip=True logprint('\nStarting...') #::: guess yerr if not given if yerr is None: yerr = np.nanstd(y) * np.ones_like(y) #::: mask transit if required #::: if ind_in and ind_out are given, use these #::: otherwise, check if period, epoch and width are given if (ind_in is None) and (ind_out is None): if any(v is None for v in [period, epoch, width]): ind_in = [] ind_out = slice(None) #mark all data points as out of transit (i.e. no transit masked) else: if secondary_eclipse is True: ind_ecl1, ind_ecl2, ind_out = index_eclipses(x, epoch, period, width, width_2) ind_in = list(ind_ecl1)+list(ind_ecl2) else: ind_in, ind_out = index_transits(x, epoch, period, width) xx = x[ind_out] yy = y[ind_out] yyerr = yerr[ind_out] #::: binning if bin_width is not None: bintime_out, bindata_out, bindata_err_out, _ = rebin_err(xx, yy, ferr=yyerr, dt=bin_width, ferr_type='meansig', sigmaclip=True, ferr_style='sem' ) xx = bintime_out yy = bindata_out yyerr = bindata_err_out #::: save settings if not os.path.exists(outdir): os.makedirs(outdir) header = 'period,epoch,width,secondary_eclipse,'+\ 'nwalkers,thin_by,burn_steps,total_steps' X = np.column_stack(( period, epoch, width, secondary_eclipse, nwalkers, thin_by, burn_steps, total_steps )) np.savetxt( os.path.join(outdir,fname+'settings.csv'), X, header=header, delimiter=',', fmt='%s') #::: plot the data fig, ax = plt.subplots(figsize=(6*figstretch,4)) ax.errorbar(x[ind_out], y[ind_out], yerr=yerr[ind_out], fmt=".b", capsize=0, rasterized=rasterized) ax.errorbar(x[ind_in], y[ind_in], yerr=yerr[ind_in], fmt=".", color='skyblue', capsize=0, rasterized=rasterized) ax.set( xlabel=xlabel, ylabel=ylabel, title='Original data' ) fig.savefig( os.path.join(outdir,fname+'data.pdf'), bbox_inches='tight') plt.close(fig) if bin_width is not None: fig, ax = plt.subplots(figsize=(6*figstretch,4)) ax.errorbar(xx, yy, yerr=yyerr, fmt=".b", capsize=0, rasterized=rasterized) ax.set( xlabel=xlabel, ylabel=ylabel, title='Original data (binned)' ) fig.savefig( os.path.join(outdir,fname+'data_binned.pdf'), bbox_inches='tight') plt.close(fig) # err # #::: set up the GP model ## kernel = terms.RealTerm(log_a=1., log_c=1.) + terms.JitterTerm(log_sigma=np.log(yerr)) # kernel = terms.Matern32Term(log_sigma=1., log_rho=1.) + terms.JitterTerm(log_sigma=np.log(yerr)) # gp = celerite.GP(kernel, mean=mean) #log_white_noise=np.log(yerr), # gp.compute(xx, yerr=yerr) ## logprint("Initial log-likelihood: {0}".format(gp.log_likelihood(y))) #::: plot grid t = np.linspace(np.min(x), np.max(x), 2000) # ########################################################################### # #::: MLE fit # ########################################################################### # logprint 'Running MLE fit...' # # #::: define a cost function # def neg_log_like(params, yy, gp): # gp.set_parameter_vector(params) # return -gp.log_likelihood(yy) # # def grad_neg_log_like(params, yy, gp): # gp.set_parameter_vector(params) # return -gp.grad_log_likelihood(yy)[1] # # # #::: run the MLE fit # initial_params = gp.get_parameter_vector() ## logprint initial_params # bounds = gp.get_parameter_bounds() # soln = minimize(neg_log_like, initial_params, jac=grad_neg_log_like, # method="L-BFGS-B", bounds=bounds, args=(yy, gp)) # gp.set_parameter_vector(soln.x) ## logprint("Final log-likelihood: {0}".format(-soln.fun)) ## logprint soln.x # # # #::: evaluate MLE curve # mu, var = gp.predict(yy, t, return_var=True) # std = np.sqrt(var) # # # #::: plot the data and MLE fit # color = 'r' #"#ff7f0e" # fig, ax = plt.subplots() # ax.errorbar(xx, yy, yerr=np.exp(soln.x[2]), fmt="b.", capsize=0) # ax.errorbar(x[ind_in], y[ind_in], yerr=np.exp(soln.x[2]), fmt=".", color='skyblue', capsize=0) # ax.plot(t, mu, color='r', zorder=11) # ax.fill_between(t, mu+std, mu-std, color='r', alpha=0.3, edgecolor="none", zorder=10) # ax.set( xlabel=xlabel, ylabel=ylabel, title="MLE prediction"); # fig.savefig( os.path.join(outdir,fname+'MLE_fit.jpg'), dpi=100, bbox_inches='tight') # # #::: delete that gp instance # del gp ########################################################################### #::: MCMC fit ########################################################################### if multiprocess and not multiprocess_cores: multiprocess_cores = cpu_count()-1 logprint('\nRunning MCMC fit...') if multiprocess: logprint('\tRunning on', multiprocess_cores, 'CPUs.') #::: initial guesses #::: log(sigma) if systematics_amplitude is not None: log_sigma_init = np.log(systematics_amplitude) else: log_sigma_init = np.log(
np.nanstd(yy)
numpy.nanstd
# -*- coding: utf-8 -*- """ Created on Fri Jul 13 05:16:40 2018 @author: <NAME> """ import matplotlib.pyplot as plt # import matplotlib import numpy as np # import numpy import scipy as sp # import scipy from scipy import sparse # import sparse module from scipy import networkx as nx # import networkx # code for generating connectivity matrix from a connectivity list, for small or near-full network def calculate_network_mat(net_list): len_net =
np.amax(net_list)
numpy.amax
""" This module to performs linear analysis of coupled lattices. Notation is the same as in reference [3] In case some strange results appear in phase advances or beta functions, the reading of [2] is encouraged, since the authors discuss subtleties not addressed here for strong coupled motion. References: [1] <NAME>., & <NAME>. (1973). Parametrization of Linear Coupled Motion in Periodic Systems. IEEE Transactions on Nuclear Science, 20(3), 885–888. https://doi.org/10.1109/TNS.1973.4327279 [2] <NAME>., & <NAME>. (1999). Linear analysis of coupled lattices. Physical Review Special Topics - Accelerators and Beams, 2(7), 22–26. https://doi.org/10.1103/physrevstab.2.074001 [3] <NAME>, Some Useful Linear Coupling Approximations. C-A/AP/#101 Brookhaven Nat. Lab. (July 2003) """ import numpy as _np from mathphys.functions import get_namedtuple as _get_namedtuple from .. import lattice as _lattice from .. import tracking as _tracking from ..utils import interactive as _interactive from .miscellaneous import OpticsException as _OpticsException class EdwardsTeng(_np.record): """Edwards and Teng decomposition of the transfer matrices. Notation is the same as in reference [3]. In case some strange results appear in phase advances or beta functions, the reading of [2] is encouraged, since the authors discuss subtleties not addressed here for strong coupled motion. References: [1] <NAME>., & <NAME>. (1973). Parametrization of Linear Coupled Motion in Periodic Systems. IEEE Transactions on Nuclear Science, 20(3), 885–888. https://doi.org/10.1109/TNS.1973.4327279 [2] <NAME>., & <NAME>. (1999). Linear analysis of coupled lattices. Physical Review Special Topics - Accelerators and Beams, 2(7), 22–26. https://doi.org/10.1103/physrevstab.2.074001 [3] <NAME>, Some Useful Linear Coupling Approximations. C-A/AP/#101 Brookhaven Nat. Lab. (July 2003) Contains the decomposed parameters: spos (array, len(indices)x2x2) : longitudinal position [m] beta1 (array, len(indices)) : beta of first eigen-mode beta2 (array, len(indices)) : beta of second eigen-mode alpha1 (array, len(indices)) : alpha of first eigen-mode alpha2 (array, len(indices)) : alpha of second eigen-mode gamma1 (array, len(indices)) : gamma of first eigen-mode gamma2 (array, len(indices)) : gamma of second eigen-mode mu1 (array, len(indices)): phase advance of the first eigen-mode mu2 (array, len(indices)): phase advance of the second eigen-mode W (array, len(indices)x2x2) : matrices W in [3] """ DTYPE = '<f8' ORDER = _get_namedtuple('Order', field_names=[ 'spos', 'beta1', 'alpha1', 'mu1', 'beta2', 'alpha2', 'mu2', 'W_11', 'W_12', 'W_21', 'W_22', 'eta1', 'etap1', 'eta2', 'etap2', 'rx', 'px', 'ry', 'py', 'de', 'dl']) def __setattr__(self, attr, val): """.""" if attr == 'co': self._set_co(val) else: super().__setattr__(attr, val) def __str__(self): """.""" rst = '' rst += 'spos : '+'{0:+10.3e}'.format(self.spos) fmt = '{0:+10.3e}, {1:+10.3e}' rst += '\nrx, ry : '+fmt.format(self.rx, self.ry) rst += '\npx, py : '+fmt.format(self.px, self.py) rst += '\nde, dl : '+fmt.format(self.de, self.dl) rst += '\nmu1, mu2 : '+fmt.format(self.mu1, self.mu2) rst += '\nbeta1, beta2 : '+fmt.format(self.beta1, self.beta2) rst += '\nalpha1, alpha2: '+fmt.format(self.alpha1, self.alpha2) rst += '\neta1, eta2 : '+fmt.format(self.eta1, self.eta2) rst += '\netap1, etap2 : '+fmt.format(self.etap1, self.etap2) return rst @property def co(self): """Closed-Orbit in XY plane coordinates. Returns: numpy.ndarray (6, ): 6D phase space point around matrices were calculated. """ return _np.array([ self.rx, self.px, self.ry, self.py, self.de, self.dl]) @property def W(self): """2D mixing matrix from ref [3]. Returns: numpy.ndarray (2x2): W matrix from ref [3]. """ return _np.array([[self.W_11, self.W_12], [self.W_21, self.W_22]]) @W.setter def W(self, val): self[EdwardsTeng.ORDER.W_11] = val[0, 0] self[EdwardsTeng.ORDER.W_12] = val[0, 1] self[EdwardsTeng.ORDER.W_21] = val[1, 0] self[EdwardsTeng.ORDER.W_22] = val[1, 1] @property def d(self): """Parameter d from ref [3], calculated via equation 81. Returns: float: d from ref [3]. """ return _np.sqrt(1 - _np.linalg.det(self.W)) @property def R(self): """4D matrix that transforms from normal modes to XY plane. Returns: numpy.ndarray (4x4): R matrix from ref [3]. """ deyes = self.d * _np.eye(2) return _np.block([ [deyes, _symplectic_transpose(self.W)], [-self.W, deyes]]) @property def Rinv(self): """4D matrix that transforms from XY plane to normal modes. Returns: numpy.ndarray (4x4): Rinv matrix from ref [3]. """ deyes = self.d * _np.eye(2) return _np.block([ [deyes, -_symplectic_transpose(self.W)], [self.W, deyes]]) def from_normal_modes(self, pos): """Transform from normal modes to XY plane. Args: pos (numpy.ndarray): (4, N) or (6, N) positions in phase space in normal modes coordinates. Returns: pos (numpy.ndarray): (4, N) or (6, N) positions in phase space in XY coordinates. """ pos = pos.copy() pos[:4] = self.R @ pos[:4] return pos def to_normal_modes(self, pos): """Transform from XY plane to normal modes. Args: pos (numpy.ndarray): (4, N) or (6, N) positions in phase space in XY coordinates. Returns: pos (numpy.ndarray): (4, N) or (6, N) positions in phase space in normal mode coordinates. """ pos = pos.copy() pos[:4] = self.Rinv @ pos[:4] return pos def make_dict(self): """.""" cod = self.co beta = [self.beta1, self.beta2] alpha = [self.alpha1, self.alpha2] eta = [self.eta1, self.eta2] etap = [self.etap1, self.etap2] mus = [self.mu1, self.mu2] return { 'co': cod, 'beta': beta, 'alpha': alpha, 'eta': eta, 'etap': etap, 'mu': mus} @staticmethod def make_new(*args, **kwrgs): """Build a Twiss object.""" if args: if isinstance(args[0], dict): kwrgs = args[0] twi = EdwardsTengArray(1) cod = kwrgs.get('co', (0.0,)*6) twi['rx'], twi['px'], twi['ry'], twi['py'], twi['de'], twi['dl'] = cod twi['mu1'], twi['mu2'] = kwrgs.get('mu', (0.0, 0.0)) twi['beta1'], twi['beta2'] = kwrgs.get('beta', (0.0, 0.0)) twi['alpha1'], twi['alpha2'] = kwrgs.get('alpha', (0.0, 0.0)) twi['eta1'], twi['eta2'] = kwrgs.get('eta', (0.0, 0.0)) twi['etap1'], twi['etap2'] = kwrgs.get('etap', (0.0, 0.0)) return twi[0] def _set_co(self, value): """.""" try: leng = len(value) except TypeError: leng = 6 value = [value, ]*leng if leng != 6: raise ValueError('closed orbit must have 6 elements.') self[EdwardsTeng.ORDER.rx] = value[0] self[EdwardsTeng.ORDER.px] = value[1] self[EdwardsTeng.ORDER.ry] = value[2] self[EdwardsTeng.ORDER.py] = value[3] self[EdwardsTeng.ORDER.de] = value[4] self[EdwardsTeng.ORDER.dl] = value[5] class EdwardsTengArray(_np.ndarray): """Array of Edwards and Teng objects. Notation is the same as in reference [3] In case some strange results appear in phase advances or beta functions, the reading of [2] is encouraged, since the authors discuss subtleties not addressed here for strong coupled motion. References: [1] <NAME>., & <NAME>. (1973). Parametrization of Linear Coupled Motion in Periodic Systems. IEEE Transactions on Nuclear Science, 20(3), 885–888. https://doi.org/10.1109/TNS.1973.4327279 [2] <NAME>., & <NAME>. (1999). Linear analysis of coupled lattices. Physical Review Special Topics - Accelerators and Beams, 2(7), 22–26. https://doi.org/10.1103/physrevstab.2.074001 [3] <NAME>, Some Useful Linear Coupling Approximations. C-A/AP/#101 Brookhaven Nat. Lab. (July 2003) Contains the decomposed parameters: spos (array, len(indices)x2x2) : longitudinal position [m] beta1 (array, len(indices)) : beta of first eigen-mode beta2 (array, len(indices)) : beta of second eigen-mode alpha1 (array, len(indices)) : alpha of first eigen-mode alpha2 (array, len(indices)) : alpha of second eigen-mode gamma1 (array, len(indices)) : gamma of first eigen-mode gamma2 (array, len(indices)) : gamma of second eigen-mode mu1 (array, len(indices)): phase advance of the first eigen-mode mu2 (array, len(indices)): phase advance of the second eigen-mode L1 (array, len(indices)x2x2) : matrices L1 in [3] L2 (array, len(indices)x2x2) : matrices L2 in [3] W (array, len(indices)x2x2) : matrices W in [3] d (array, len(indices)): d parameter in [3] """ def __eq__(self, other): """.""" return _np.all(super().__eq__(other)) def __new__(cls, edteng=None, copy=True): """.""" length = 1 if isinstance(edteng, (int, _np.int)): length = edteng edteng = None elif isinstance(edteng, EdwardsTengArray): return edteng.copy() if copy else edteng if edteng is None: arr = _np.zeros( (length, len(EdwardsTeng.ORDER)), dtype=EdwardsTeng.DTYPE) elif isinstance(edteng, _np.ndarray): arr = edteng.copy() if copy else edteng elif isinstance(edteng, _np.record): arr = _np.ndarray( (edteng.size, len(EdwardsTeng.ORDER)), buffer=edteng.data) arr = arr.copy() if copy else arr fmts = [(fmt, EdwardsTeng.DTYPE) for fmt in EdwardsTeng.ORDER._fields] return super().__new__( cls, shape=(arr.shape[0], ), dtype=(EdwardsTeng, fmts), buffer=arr) @property def spos(self): """.""" return self['spos'] @spos.setter def spos(self, value): self['spos'] = value @property def beta1(self): """.""" return self['beta1'] @beta1.setter def beta1(self, value): self['beta1'] = value @property def alpha1(self): """.""" return self['alpha1'] @alpha1.setter def alpha1(self, value): self['alpha1'] = value @property def gamma1(self): """.""" return (1 + self['alpha1']*self['alpha1'])/self['beta1'] @property def mu1(self): """.""" return self['mu1'] @mu1.setter def mu1(self, value): self['mu1'] = value @property def beta2(self): """.""" return self['beta2'] @beta2.setter def beta2(self, value): self['beta2'] = value @property def alpha2(self): """.""" return self['alpha2'] @alpha2.setter def alpha2(self, value): self['alpha2'] = value @property def gamma2(self): """.""" return (1 + self['alpha2']*self['alpha2'])/self['beta2'] @property def mu2(self): """.""" return self['mu2'] @mu2.setter def mu2(self, value): self['mu2'] = value @property def W_11(self): """.""" return self['W_11'] @W_11.setter def W_11(self, val): self['W_11'] = val @property def W_12(self): """.""" return self['W_12'] @W_12.setter def W_12(self, val): self['W_12'] = val @property def W_21(self): """.""" return self['W_21'] @W_21.setter def W_21(self, val): self['W_21'] = val @property def W_22(self): """.""" return self['W_22'] @W_22.setter def W_22(self, val): self['W_22'] = val @property def W(self): """2D mixing matrix from ref [3]. Returns: numpy.ndarray (Nx2x2): W matrix from ref [3]. """ mat = _np.zeros((self.W_11.size, 2, 2)) mat[:, 0, 0] = self.W_11 mat[:, 0, 1] = self.W_12 mat[:, 1, 0] = self.W_21 mat[:, 1, 1] = self.W_22 return mat @W.setter def W(self, value): self.W_11 = value[:, 0, 0] self.W_12 = value[:, 0, 1] self.W_21 = value[:, 1, 0] self.W_22 = value[:, 1, 1] @property def d(self): """Parameter d from ref [3], calculated via equation 81. Returns: numpy.ndarray (N, ): d from ref [3]. """ return _np.sqrt(1-_np.linalg.det(self.W)) @property def R(self): """4D matrix that transforms from normal modes to XY plane. Returns: numpy.ndarray (Nx4x4): R matrix from ref [3]. """ deyes = self.d[:, None, None] * _np.eye(2) return _np.block([ [deyes, _symplectic_transpose(self.W)], [-self.W, deyes]]) @property def Rinv(self): """4D matrix that transforms from XY plane to normal modes. Returns: numpy.ndarray (Nx4x4): Rinv matrix from ref [3]. """ deyes = self.d[:, None, None] * _np.eye(2) return _np.block([ [deyes, -_symplectic_transpose(self.W)], [self.W, deyes]]) def from_normal_modes(self, pos): """Transform from normal modes to XY plane. Args: pos (numpy.ndarray): (4, len(self)) or (6, len(self)) positions in phase space in normal modes coordinates. Returns: numpy.ndarray: (4, len(self)) or (6, len(self)) positions in phase space in XY coordinates. """ pos = pos.copy() pos[:4] = _np.einsum('ijk,ki->ji', self.R, pos[:4]) return pos def to_normal_modes(self, pos): """Transform from XY plane to normal modes. Args: pos (numpy.ndarray): (4, len(self)) or (6, len(self)) positions in phase space in XY coordinates. Returns: numpy.ndarray: (4, len(self)) or (6, len(self)) positions in phase space in normal mode coordinates. """ pos = pos.copy() pos[:4] = _np.einsum('ijk,ki->ji', self.Rinv, pos[:4]) return pos @property def eta1(self): """.""" return self['eta1'] @eta1.setter def eta1(self, value): self['eta1'] = value @property def etap1(self): """.""" return self['etap1'] @etap1.setter def etap1(self, value): self['etap1'] = value @property def eta2(self): """.""" return self['eta2'] @eta2.setter def eta2(self, value): self['eta2'] = value @property def etap2(self): """.""" return self['etap2'] @etap2.setter def etap2(self, value): self['etap2'] = value @property def rx(self): """.""" return self['rx'] @rx.setter def rx(self, value): self['rx'] = value @property def px(self): """.""" return self['px'] @px.setter def px(self, value): self['px'] = value @property def ry(self): """.""" return self['ry'] @ry.setter def ry(self, value): self['ry'] = value @property def py(self): """.""" return self['py'] @py.setter def py(self, value): self['py'] = value @property def de(self): """.""" return self['de'] @de.setter def de(self, value): self['de'] = value @property def dl(self): """.""" return self['dl'] @dl.setter def dl(self, value): self['dl'] = value @property def co(self): """Trajectory in XY plane coordinates. Returns: numpy.ndarray (6, ): 6D phase space trajectory around matrices were calculated. """ return _np.array([ self.rx, self.px, self.ry, self.py, self.de, self.dl]) @co.setter def co(self, value): """.""" self.rx, self.py = value[0], value[1] self.ry, self.py = value[2], value[3] self.de, self.dl = value[4], value[5] @staticmethod def compose(edteng_list): """.""" if isinstance(edteng_list, (list, tuple)): for val in edteng_list: if not isinstance(val, (EdwardsTeng, EdwardsTengArray)): raise _OpticsException( 'can only compose lists of Twiss objects.') else: raise _OpticsException('can only compose lists of Twiss objects.') arrs = list() for val in edteng_list: arrs.append(_np.ndarray( (val.size, len(EdwardsTeng.ORDER)), buffer=val.data)) arrs = _np.vstack(arrs) return EdwardsTengArray(arrs) @_interactive def calc_edwards_teng( accelerator=None, init_edteng=None, indices='open', energy_offset=None): """Perform linear analysis of coupled lattices. Notation is the same as in reference [3] In case some strange results appear in phase advances or beta functions, the reading of [2] is encouraged, since the authors discuss subtleties not addressed here for strong coupled motion. References: [1] <NAME>., & <NAME>. (1973). Parametrization of Linear Coupled Motion in Periodic Systems. IEEE Transactions on Nuclear Science, 20(3), 885–888. https://doi.org/10.1109/TNS.1973.4327279 [2] <NAME>., & <NAME>. (1999). Linear analysis of coupled lattices. Physical Review Special Topics - Accelerators and Beams, 2(7), 22–26. https://doi.org/10.1103/physrevstab.2.074001 [3] <NAME>, Some Useful Linear Coupling Approximations. C-A/AP/#101 Brookhaven Nat. Lab. (July 2003) Args: accelerator (pyaccel.accelerator.Accelerator): lattice model energy_offset (float, optional): Energy Offset . Defaults to 0.0. init_edteng (pyaccel.optics.EdwardsTeng, optional): EdwardsTeng parameters at the start of first element. Defaults to None. energy_offset (float, optional): float denoting the energy deviation (used only for periodic solutions). Defaults to None. indices : may be a ((list, tuple, numpy.ndarray), optional): list of element indices where closed orbit data is to be returned or a string: 'open' : return the closed orbit at the entrance of all elements. 'closed' : equal 'open' plus the orbit at the end of the last element. If indices is None data will be returned only at the entrance of the first element. Defaults to 'open'. Returns: pyaccel.optics.EdwardsTengArray : array of decompositions of the transfer matrices numpy.ndarray (4x4): transfer matrix of the line/ring """ cod = None if init_edteng is not None: if energy_offset is not None: raise _OpticsException( 'energy_offset and init_teng are mutually ' 'exclusive options. Add the desired energy deviation to the ' 'appropriate position of init_edteng object.') # as a transport line: uses init_edteng fixed_point = init_edteng.co else: # as a periodic system: try to find periodic solution if accelerator.harmonic_number == 0: raise _OpticsException( 'Either harmonic number was not set or calc_edwards_teng was ' 'invoked for transport line without initial EdwardsTeng') cod = _tracking.find_orbit( accelerator, energy_offset=energy_offset, indices='closed') fixed_point = cod[0] m44, cum_mat = _tracking.find_m44( accelerator, indices='closed', fixed_point=fixed_point) indices = _tracking._process_indices(accelerator, indices) edteng = EdwardsTengArray(cum_mat.shape[0]) edteng.spos = _lattice.find_spos(accelerator, indices='closed') # Calculate initial matrices: if init_edteng is None: M = m44[:2, :2] N = m44[2:4, 2:4] m = m44[2:4, :2] n = m44[:2, 2:4] t = _np.trace(M - N) m_plus_nbar = m + _symplectic_transpose(n) det_m_plus_nbar = _np.linalg.det(m_plus_nbar) u = _np.sign(t) * _np.sqrt(t*t + 4*det_m_plus_nbar) dsqr = (1 + t/u)/2 W_over_d = -m_plus_nbar/(dsqr*u) d0 = _np.sqrt(dsqr) W0 = -m_plus_nbar/(d0*u) L10 = M - n @ W_over_d L20 = N + W_over_d @ n # Get initial betas and alphas. (Based on calc_twiss of trackcpp.) sin_mu1 = _np.sign(L10[0, 1]) * _np.sqrt( -L10[0, 1]*L10[1, 0] - (L10[0, 0] - L10[1, 1])**2/4.0) sin_mu2 = _np.sign(L20[0, 1]) * _np.sqrt( -L20[0, 1]*L20[1, 0] - (L20[0, 0] - L20[1, 1])**2/4.0) alpha10 = (L10[0, 0] - L10[1, 1])/2/sin_mu1 alpha20 = (L20[0, 0] - L20[1, 1])/2/sin_mu2 beta10 = L10[0, 1]/sin_mu1 beta20 = L20[0, 1]/sin_mu2 else: W0 = init_edteng.W d0 = init_edteng.d alpha10 = init_edteng.alpha1 alpha20 = init_edteng.alpha2 beta10 = init_edteng.beta1 beta20 = init_edteng.beta2 # #### Determine Twiss Parameters of uncoupled motion ######### # First get the initial transfer matrices decompositions. # (This method is based on equation 367 of ref[3]) M11 = cum_mat[:, :2, :2] M12 = cum_mat[:, :2, 2:4] M21 = cum_mat[:, 2:4, :2] M22 = cum_mat[:, 2:4, 2:4] L1 = (d0*M11 - M12@W0) / d0 L2 = (d0*M22 + M21@_symplectic_transpose(W0)) / d0 edteng.W = -(d0*M21 - M22@W0)@_symplectic_transpose(L1) # Get optical functions along the ring (Based on calc_twiss of trackcpp): edteng.beta1 = ( (L1[:, 0, 0]*beta10 - L1[:, 0, 1]*alpha10)**2 + L1[:, 0, 1]**2)/beta10 edteng.beta2 = ( (L2[:, 0, 0]*beta20 - L2[:, 0, 1]*alpha20)**2 + L2[:, 0, 1]**2)/beta20 edteng.alpha1 = -( (L1[:, 0, 0]*beta10 - L1[:, 0, 1]*alpha10) * (L1[:, 1, 0]*beta10 - L1[:, 1, 1]*alpha10) + L1[:, 0, 1]*L1[:, 1, 1])/beta10 edteng.alpha2 = -( (L2[:, 0, 0]*beta20 - L2[:, 0, 1]*alpha20) * (L2[:, 1, 0]*beta20 - L2[:, 1, 1]*alpha20) + L2[:, 0, 1]*L2[:, 1, 1])/beta20 mu1 = _np.arctan(L1[:, 0, 1]/( L1[:, 0, 0]*beta10 - L1[:, 0, 1]*alpha10)) mu2 = _np.arctan(L2[:, 0, 1]/( L2[:, 0, 0]*beta20 - L2[:, 0, 1]*alpha20)) # unwrap phases summ = _np.zeros(mu1.size) _np.cumsum(_np.diff(mu1) < 0, out=summ[1:]) mu1 += summ * _np.pi _np.cumsum(_np.diff(mu2) < 0, out=summ[1:]) mu2 += summ * _np.pi edteng.mu1 = mu1 edteng.mu2 = mu2 # ####### Handle dispersion function and orbit #######: dp = 1e-6 if cod is not None: coddp = _tracking.find_orbit( accelerator, energy_offset=fixed_point[4]+dp, indices='closed') else: cod, *_ = _tracking.line_pass( accelerator, fixed_point, indices='closed') etas_norm = _np.array([ init_edteng.eta1, init_edteng.etap1, init_edteng.eta2, init_edteng.etap2]) etas = init_edteng.from_normal_modes(etas_norm) fixed_point[:4] += dp * etas fixed_point[4] += dp coddp, *_ = _tracking.line_pass( accelerator, fixed_point, indices='closed') eta = (coddp - cod) / dp eta = edteng.to_normal_modes(eta) edteng.co = cod edteng.eta1 = eta[0] edteng.etap1 = eta[1] edteng.eta2 = eta[2] edteng.etap2 = eta[3] return edteng[indices], m44 def estimate_coupling_parameters(edteng_end): """Estimate minimum tune separation and emittance ratio. The estimative uses Edwards and Teng decomposition of the one turn matrix. Notation is the same as in reference [3] Reading of [2] is encouraged, since the authors discuss subtleties not addressed here for strong coupled motion. References: [1] <NAME>., & <NAME>. (1973). Parametrization of Linear Coupled Motion in Periodic Systems. IEEE Transactions on Nuclear Science, 20(3), 885–888. https://doi.org/10.1109/TNS.1973.4327279 [2] <NAME>., & <NAME>. (1999). Linear analysis of coupled lattices. Physical Review Special Topics - Accelerators and Beams, 2(7), 22–26. https://doi.org/10.1103/physrevstab.2.074001 [3] <NAME>, Some Useful Linear Coupling Approximations. C-A/AP/#101 Brookhaven Nat. Lab. (July 2003) Args: edteng_end (pyaccel.optics.EdwardsTengArray): EdwardsTeng parameters around the ring. Returns: min_tunesep (float) : estimative of minimum tune separation, Based on equation 85-87 of ref [3]: Assuming we are at the sum resonance, then T = 0. So we can write: mu1 = mu0 - minsep/2 mu2 = mu0 + minsep/2 where mu0 = (mu1 + mu2) / 2, and U = 2*sqrt(det(m+nbar)) However, we know that U = 2*cos(mu1) - 2*cos(mu2) U = 2*cos(mu0-minsep/2) - 2*cos(mu0+minsep/2) U = 4*sin(mu0) * sin(minsep/2) which yields, sin(minsep/2) = sqrt(det(m+nbar))/sin(mu0)/2 ratio (numpy.ndarray): estimative of invariant sharing ratio. Based on equation 216, 217 and 237 of ref [3]. The ratio is not invariant along the ring. So the whole vector is returned. An average of this value could be used to estimate the ratio. """ edt = edteng_end # ###### Estimative of emittance ratio ####### # Equations 216 and 217 of ref [3] D2 = edt.beta2*edt.W_22**2 + 2*edt.alpha2*edt.W_22*edt.W_12 D1 = edt.beta1*edt.W_11**2 - 2*edt.alpha1*edt.W_11*edt.W_12 D2 += edt.gamma2*edt.W_12**2 D1 += edt.gamma1*edt.W_12**2 # Equation 237 of ref [3] ratio = 1/edt.d**2 * _np.sqrt(D1*D2/edt.beta1/edt.beta2) # # This second formula is based on equation 258 of ref [3] which is # # approximately valid for weak coupling: # dsqr = edt.d ** 2 # ratio = (1-dsqr)/dsqr # ###### Estimate Minimum tune separation ##### # from equations 85, 86 and 89 of ref [3]: edt = edt[-1] dsqr = edt.d * edt.d U = 2*(
_np.cos(edt.mu1)
numpy.cos
# Copyright 2016-2019 The <NAME> at the California Institute of # Technology (Caltech), with support from the Paul Allen Family Foundation, # Google, & National Institutes of Health (NIH) under Grant U24CA224309-01. # All rights reserved. # # Licensed under a modified Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.github.com/vanvalenlab/deepcell-tf/LICENSE # # The Work provided may be used for non-commercial academic purposes only. # For any other use of the Work, including commercial use, please contact: # <EMAIL> # # Neither the name of Caltech nor the names of its contributors may be used # to endorse or promote products derived from this software without specific # prior written permission. # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for transform_utils""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from skimage.measure import label from tensorflow.python.platform import test from tensorflow.python.keras import backend as K from deepcell.utils import transform_utils def _get_image(img_h=300, img_w=300): bias = np.random.rand(img_w, img_h) * 64 variance = np.random.rand(img_w, img_h) * (255 - 64) img = np.random.rand(img_w, img_h) * variance + bias return img def _generate_test_masks(): img_w = img_h = 30 mask_images = [] for _ in range(8): imarray = np.random.randint(2, size=(img_w, img_h, 1)) mask_images.append(imarray) return mask_images class TransformUtilsTest(test.TestCase): def test_deepcell_transform_2d(self): # test single edge class maskstack = np.array([label(i) for i in _generate_test_masks()]) dc_maskstack = transform_utils.deepcell_transform( maskstack, data_format=None, separate_edge_classes=False) dc_maskstack_dil = transform_utils.deepcell_transform( maskstack, dilation_radius=1, data_format='channels_last', separate_edge_classes=False) self.assertEqual(dc_maskstack.shape[-1], 3) self.assertEqual(dc_maskstack_dil.shape[-1], 3) self.assertGreater( dc_maskstack_dil[..., 0].sum() + dc_maskstack_dil[..., 1].sum(), dc_maskstack[..., 0].sum() + dc_maskstack[..., 1].sum()) # test separate edge classes maskstack = np.array([label(i) for i in _generate_test_masks()]) dc_maskstack = transform_utils.deepcell_transform( maskstack, data_format=None, separate_edge_classes=True) dc_maskstack_dil = transform_utils.deepcell_transform( maskstack, dilation_radius=1, data_format='channels_last', separate_edge_classes=True) self.assertEqual(dc_maskstack.shape[-1], 4) self.assertEqual(dc_maskstack_dil.shape[-1], 4) self.assertGreater( dc_maskstack_dil[..., 0].sum() + dc_maskstack_dil[..., 1].sum(), dc_maskstack[..., 0].sum() + dc_maskstack[..., 1].sum()) def test_deepcell_transform_3d(self): frames = 10 img_list = [] for im in _generate_test_masks(): frame_list = [] for _ in range(frames): frame_list.append(label(im)) img_stack = np.array(frame_list) img_list.append(img_stack) # test single edge class maskstack = np.vstack(img_list) batch_count = maskstack.shape[0] // frames new_shape = (batch_count, frames, *maskstack.shape[1:]) maskstack = np.reshape(maskstack, new_shape) dc_maskstack = transform_utils.deepcell_transform( maskstack, data_format=None, separate_edge_classes=False) dc_maskstack_dil = transform_utils.deepcell_transform( maskstack, dilation_radius=2, data_format='channels_last', separate_edge_classes=False) self.assertEqual(dc_maskstack.shape[-1], 3) self.assertEqual(dc_maskstack_dil.shape[-1], 3) self.assertGreater( dc_maskstack_dil[..., 0].sum() + dc_maskstack_dil[..., 1].sum(), dc_maskstack[..., 0].sum() + dc_maskstack[..., 1].sum()) # test separate edge classes maskstack = np.vstack(img_list) batch_count = maskstack.shape[0] // frames new_shape = (batch_count, frames, *maskstack.shape[1:]) maskstack = np.reshape(maskstack, new_shape) dc_maskstack = transform_utils.deepcell_transform( maskstack, data_format=None, separate_edge_classes=True) dc_maskstack_dil = transform_utils.deepcell_transform( maskstack, dilation_radius=2, data_format='channels_last', separate_edge_classes=True) self.assertEqual(dc_maskstack.shape[-1], 4) self.assertEqual(dc_maskstack_dil.shape[-1], 4) self.assertGreater( dc_maskstack_dil[..., 0].sum() + dc_maskstack_dil[..., 1].sum(), dc_maskstack[..., 0].sum() + dc_maskstack[..., 1].sum()) def test_erode_edges_2d(self): for img in _generate_test_masks(): img = label(img) img = np.squeeze(img) erode_0 = transform_utils.erode_edges(img, erosion_width=0) erode_1 = transform_utils.erode_edges(img, erosion_width=1) erode_2 = transform_utils.erode_edges(img, erosion_width=2) self.assertEqual(img.shape, erode_0.shape) self.assertEqual(erode_0.shape, erode_1.shape) self.assertEqual(erode_1.shape, erode_2.shape) self.assertAllEqual(erode_0, img) self.assertGreater(np.sum(erode_0), np.sum(erode_1)) self.assertGreater(np.sum(erode_1), np.sum(erode_2)) # test too few dims with self.assertRaises(ValueError): erode_1 = transform_utils.erode_edges(img[0], erosion_width=1) def test_erode_edges_3d(self): mask_stack = np.array(_generate_test_masks()) unique = np.zeros(mask_stack.shape) for i, mask in enumerate(_generate_test_masks()): unique[i] = label(mask) unique = np.squeeze(unique) erode_0 = transform_utils.erode_edges(unique, erosion_width=0) erode_1 = transform_utils.erode_edges(unique, erosion_width=1) erode_2 = transform_utils.erode_edges(unique, erosion_width=2) self.assertEqual(unique.shape, erode_0.shape) self.assertEqual(erode_0.shape, erode_1.shape) self.assertEqual(erode_1.shape, erode_2.shape) self.assertAllEqual(erode_0, unique) self.assertGreater(np.sum(erode_0), np.sum(erode_1)) self.assertGreater(np.sum(erode_1), np.sum(erode_2)) # test too many dims with self.assertRaises(ValueError): unique = np.expand_dims(unique, axis=-1) erode_1 = transform_utils.erode_edges(unique, erosion_width=1) def test_distance_transform_3d(self): mask_stack = np.array(_generate_test_masks()) unique = np.zeros(mask_stack.shape) for i, mask in enumerate(_generate_test_masks()): unique[i] = label(mask) K.set_image_data_format('channels_last') bins = 3 distance = transform_utils.distance_transform_3d(unique, bins=bins) distance = np.expand_dims(distance, axis=-1) self.assertAllEqual(np.unique(distance), np.array([0, 1, 2])) self.assertEqual(distance.shape, unique.shape) bins = 4 distance = transform_utils.distance_transform_3d(unique, bins=bins) distance = np.expand_dims(distance, axis=-1) self.assertAllEqual(np.unique(distance), np.array([0, 1, 2, 3])) self.assertEqual(distance.shape, unique.shape) K.set_image_data_format('channels_first') unique = np.rollaxis(unique, -1, 1) bins = 3 distance = transform_utils.distance_transform_3d(unique, bins=bins) distance = np.expand_dims(distance, axis=1) self.assertAllEqual(np.unique(distance), np.array([0, 1, 2])) self.assertEqual(distance.shape, unique.shape) bins = 4 distance = transform_utils.distance_transform_3d(unique, bins=bins) distance = np.expand_dims(distance, axis=1) self.assertAllEqual(np.unique(distance), np.array([0, 1, 2, 3])) self.assertEqual(distance.shape, unique.shape) def test_distance_transform_2d(self): for img in _generate_test_masks(): K.set_image_data_format('channels_last') bins = 3 distance = transform_utils.distance_transform_2d(img, bins=bins) self.assertAllEqual(np.unique(distance), np.array([0, 1, 2])) self.assertEqual(np.expand_dims(distance, axis=-1).shape, img.shape) bins = 4 distance = transform_utils.distance_transform_2d(img, bins=bins) self.assertAllEqual(np.unique(distance), np.array([0, 1, 2, 3])) self.assertEqual(np.expand_dims(distance, axis=-1).shape, img.shape) K.set_image_data_format('channels_first') img = np.rollaxis(img, -1, 1) bins = 3 distance = transform_utils.distance_transform_2d(img, bins=bins) self.assertAllEqual(np.unique(distance), np.array([0, 1, 2])) self.assertEqual(
np.expand_dims(distance, axis=1)
numpy.expand_dims
# Copyright 2020 The TensorFlow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Utility modules for evaluating model from checkpoint. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import ast import numpy as np import tensorflow.compat.v1 as tf from tensorflow.compat.v1.io import gfile from tensorflow_graphics.projects.local_implicit_grid.core import implicit_nets as im from tensorflow_graphics.projects.local_implicit_grid.core import local_implicit_grid_layer as lig from tensorflow_graphics.projects.local_implicit_grid.core import model_g2g as g2g from tensorflow_graphics.projects.local_implicit_grid.core import model_g2v as g2v tf.logging.set_verbosity(tf.logging.ERROR) def parse_param_file(param_file): """Parse parameter file for parameters.""" with gfile.GFile(param_file, 'r') as fh: lines = fh.readlines() d = {} for l in lines: l = l.rstrip('\n') splits = l.split(':') key = splits[0] val_ = splits[1].strip() if not val_: val = '' else: try: val = ast.literal_eval(val_) except (ValueError, SyntaxError): val = str(val_) d[key] = val return d class RefinerEvaluator(object): """Load pretrained refiner and evaluate for a given code. """ def __init__(self, ckpt, codelen, dim=3, out_features=1, num_filters=128, point_batch=20000): self.ckpt = ckpt self.codelen = codelen self.dim = dim self.out_features = out_features self.num_filters = num_filters self.point_batch = point_batch self.graph = tf.Graph() self._init_graph() self.global_step_ = self.global_step.eval(session=self.sess) def _init_graph(self): """Initialize computation graph for tensorflow. """ with self.graph.as_default(): self.refiner = im.ImNet(dim=self.dim, in_features=self.codelen, out_features=self.out_features, num_filters=self.num_filters) self.global_step = tf.get_variable('global_step', shape=[], dtype=tf.int64) self.pts_ph = tf.placeholder(tf.float32, shape=[self.point_batch, 3]) self.lat_ph = tf.placeholder(tf.float32, shape=[self.codelen]) lat = tf.broadcast_to(self.lat_ph[tf.newaxis], [self.point_batch, self.codelen]) code = tf.concat((self.pts_ph, lat), axis=-1) # [pb, 3+c] vals = self.refiner(code, training=False) # [pb, 1] self.vals = tf.squeeze(vals, axis=1) # [pb] self.saver = tf.train.Saver() self.sess = tf.Session() self.saver.restore(self.sess, self.ckpt) def _get_grid_points(self, xmin, xmax, res): x = np.linspace(xmin, xmax, res) xyz = np.meshgrid(*tuple([x] * self.dim), indexing='ij') xyz = np.stack(xyz, axis=-1) xyz = xyz.reshape([-1, self.dim]) return xyz def eval_points(self, lat, points): """Evaluate network at locations specified by points. Args: lat: [self.codelen,] np array, latent code. points: [#v, self.dim] np array, point locations to evaluate. Returns: all_vals: [#v] np array, function values at locations. """ npt = points.shape[0] npb = int(np.ceil(float(npt)/self.point_batch)) all_vals = np.zeros([npt], dtype=np.float32) for idx in range(npb): sid = int(idx * self.point_batch) eid = int(min(npt, sid+self.point_batch)) pts = points[sid:eid] pad_w = self.point_batch - (eid - sid) pts = np.pad(pts, ((0, pad_w), (0, 0)), mode='constant') with self.graph.as_default(): val = self.sess.run(self.vals, feed_dict={self.pts_ph: pts, self.lat_ph: lat}) all_vals[sid:eid] = val[:(eid-sid)] return all_vals def eval_grid(self, lat, xmin=-1.0, xmax=1.0, res=64): """Evaluate network on a grid. Args: lat: [self.codelen,] np array, latent code. xmin: float, minimum coordinate value for grid. xmax: float, maximum coordinate value for grid. res: int, resolution (per dimension) of grid. Returns: grid_val: [res, res, res] np.float32 array, grid of values from query. """ grid_points = self._get_grid_points(xmin=xmin, xmax=xmax, res=res) point_val = self.eval_points(lat, grid_points) grid_val = point_val.reshape([res, res, res]) return grid_val class EncoderEvaluator(object): """Load pretrained grid encoder and evaluate single crops.""" def __init__(self, ckpt, in_grid_res=32, encoder_nf=32, codelen=32, grid_batch=128): """Initialization function. Args: ckpt: str, path to checkpoint. in_grid_res: int, resolution of grid to feed to encoder. encoder_nf: int, number of base filters for encoder. codelen: int, length of output latent code. grid_batch: int, batch size of cut-out grid to evaluate at a time. """ self.ckpt = ckpt self.codelen = codelen self.grid_batch = grid_batch self.in_grid_res = in_grid_res self.encoder_nf = encoder_nf self.graph = tf.Graph() self._init_graph() # creates self.sess def _init_graph(self): """Initialize computation graph for tensorflow. """ with self.graph.as_default(): self.encoder = g2v.GridEncoder(in_grid_res=self.in_grid_res, num_filters=self.encoder_nf, codelen=self.codelen, name='g2v') self.grid_ph = tf.placeholder( tf.float32, shape=[None, self.in_grid_res, self.in_grid_res, self.in_grid_res, 1]) self.lats = self.encoder(self.grid_ph, training=False) # [gb, codelen] self.saver = tf.train.Saver() self.sess = tf.Session() self.saver.restore(self.sess, self.ckpt) def eval_grid(self, grid): """Strided evaluation of full grid into feature grid. Args: grid: [batch, gres, gres, gres, 1] input feature grid. Returns: codes: [batch, codelen] output feature gird. """ # initialize output feature grid niters = int(np.ceil(grid.shape[0] / self.grid_batch)) codes = [] for idx in range(niters): sid = idx * self.grid_batch eid = min(sid+self.grid_batch, grid.shape[0]) c = self.sess.run(self.lats, feed_dict={self.grid_ph: grid[sid:eid]}) codes.append(c) codes = np.concatenate(codes, axis=0) return codes.astype(np.float32) class FullGridEncoderEvaluator(object): """Load pretrained grid encoder and evaluate a full input grid. Performs windowed encoding and outputs an encoded feature grid. """ def __init__(self, ckpt, in_grid_res=32, num_filters=32, codelen=128, grid_batch=128, gres=256, overlap=True): """Initialization function. Args: ckpt: str, path to checkpoint. in_grid_res: int, resolution of grid to feed to encoder. num_filters: int, number of base filters for encoder. codelen: int, length of output latent code. grid_batch: int, batch size of cut-out grid to evaluate at a time. gres: int, resolution of the full grid. overlap: bool, whether to do overlapping or non-overlapping cutout evaluations. """ self.ckpt = ckpt self.codelen = codelen self.grid_batch = grid_batch self.in_grid_res = in_grid_res self.gres = gres self.num_filters = num_filters self.graph = tf.Graph() self._init_graph() self.global_step_ = self.global_step.eval(session=self.sess) if overlap: ijk = np.arange(0, gres-int(in_grid_res/2), int(in_grid_res/2)) self.out_grid_res = ijk.shape[0] else: ijk = np.arange(0, gres, in_grid_res) self.out_grid_res = ijk.shape[0] self.ijk = np.meshgrid(ijk, ijk, ijk, indexing='ij') self.ijk = np.stack(self.ijk, axis=-1).reshape([-1, 3]) def _init_graph(self): """Initialize computation graph for tensorflow.""" with self.graph.as_default(): self.encoder = g2v.GridEncoder( in_grid_res=self.in_grid_res, num_filters=self.num_filters, codelen=self.codelen, name='g2v') self.global_step = tf.get_variable( 'global_step', shape=[], dtype=tf.int64) self.grid_ph = tf.placeholder( tf.float32, shape=[self.gres, self.gres, self.gres]) self.start_ph = tf.placeholder(tf.int32, shape=[self.grid_batch, 3]) self.ingrid = self._batch_slice(self.grid_ph, self.start_ph, self.in_grid_res, self.grid_batch) self.ingrid = self.ingrid[..., tf.newaxis] self.lats = self.encoder(self.ingrid, training=False) # [gb, codelen] self.saver = tf.train.Saver() self.sess = tf.Session() self.saver.restore(self.sess, self.ckpt) def _batch_slice(self, ary, start_ijk, w, batch_size): """Batched slicing of original grid. Args: ary: tensor, rank = 3. start_ijk: [batch_size, 3] tensor, starting index. w: width of cube to extract. batch_size: int, batch size. Returns: batched_slices: [batch_size, w, w, w] tensor, batched slices of ary. """ batch_size = start_ijk.shape[0] ijk = tf.range(w, dtype=tf.int32) slice_idx = tf.meshgrid(ijk, ijk, ijk, indexing='ij') slice_idx = tf.stack( slice_idx, axis=-1) # [in_grid_res, in_grid_res, in_grid_res, 3] slice_idx = tf.broadcast_to(slice_idx[tf.newaxis], [batch_size, w, w, w, 3]) offset = tf.broadcast_to( start_ijk[:, tf.newaxis, tf.newaxis, tf.newaxis, :], [batch_size, w, w, w, 3]) slice_idx += offset # [batch_size, in_grid_res, in_grid_res, in_grid_res, 3] batched_slices = tf.gather_nd(ary, slice_idx) # [batch_size, in_grid_res, in_grid_res, in_grid_res] return batched_slices def eval_grid(self, grid): """Strided evaluation of full grid into feature grid. Args: grid: [gres, gres, gres] input feature grid. Returns: ogrid: [out_grid_res, out_grid_res, out_grid_res, codelen] output feature gird. """ # initialize output feature grid ogrid = np.zeros([self.ijk.shape[0], self.codelen]) niters = np.ceil(self.ijk.shape[0] / self.grid_batch).astype(np.int) for idx in range(niters): sid = idx * self.grid_batch eid = min(sid + self.grid_batch, self.ijk.shape[0]) start_ijk = self.ijk[sid:eid] # pad if last iteration does not have a full batch pad_w = self.grid_batch - start_ijk.shape[0] start_ijk = np.pad(start_ijk, ((0, pad_w), (0, 0)), mode='constant') lats = self.sess.run( self.lats, feed_dict={ self.grid_ph: grid, self.start_ph: start_ijk }) ogrid[sid:eid] = lats[:eid - sid] ogrid = ogrid.reshape( [self.out_grid_res, self.out_grid_res, self.out_grid_res, self.codelen]) return ogrid.astype(np.float32) class LIGEvaluator(object): """Load pretrained grid refiner and evaluate a feature grid. """ def __init__(self, ckpt, size=(15, 15, 15), in_features=32, out_features=1, x_location_max=1, num_filters=32, min_grid_value=(0., 0., 0.), max_grid_value=(1., 1., 1.), net_type='imnet', method='linear', point_batch=20000, scope=''): """Initialization function. Args: ckpt: str, path to checkpoint. size: list or tuple of ints, grid dimension in each dimension. in_features: int, number of input channels. out_features: int, number of output channels. x_location_max: float, relative coordinate range for one voxel. num_filters: int, number of filters for refiner. min_grid_value: tuple, lower bound of query points. max_grid_value: tuple, upper bound of query points. net_type: str, one of occnet/deepsdf. method: str, one of linear/nn. point_batch: int, pseudo batch size for evaluating points. scope: str, scope of imnet layer. """ self.dim = 3 # hardcode for dim = 3 self.ckpt = ckpt self.size = size self.x_location_max = x_location_max self.num_filters = num_filters self.in_features = in_features self.out_features = out_features self.net_type = net_type self.method = method self.point_batch = point_batch self.scope = scope self.min_grid_value = min_grid_value self.max_grid_value = max_grid_value self.graph = tf.Graph() self._init_graph() def _init_graph(self): """Initialize computation graph for tensorflow. """ with self.graph.as_default(): self.lig = lig.LocalImplicitGrid(size=self.size, in_features=self.in_features, out_features=self.out_features, num_filters=self.num_filters, net_type=self.net_type, method=self.method, x_location_max=self.x_location_max, min_grid_value=self.min_grid_value, max_grid_value=self.max_grid_value, name='lig') self.pts_ph = tf.placeholder(tf.float32, shape=[self.point_batch, 3]) self.latgrid_ph = tf.placeholder(tf.float32, shape=[self.size[0], self.size[1], self.size[2], self.in_features]) self.latgrid = self.latgrid_ph[tf.newaxis] self.points = self.pts_ph[tf.newaxis] vals = self.lig(self.latgrid, self.points, training=False) # [1,npts,1] self.vals = tf.squeeze(vals, axis=[0, 2]) # [npts] self.map_dict = self._get_var_mapping(model=self.lig) self.saver = tf.train.Saver(self.map_dict) self.sess = tf.Session() self.saver.restore(self.sess, self.ckpt) def _get_grid_points(self, xmin, xmax, res): x =
np.linspace(xmin, xmax, res)
numpy.linspace
# -*- coding: utf-8 -*- # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """ Image assessment algorithms. Typical overlap and error computation measures to evaluate results from other processing units. """ import os import os.path as op import nibabel as nb import numpy as np from .. import config, logging from ..interfaces.base import ( SimpleInterface, BaseInterface, traits, TraitedSpec, File, InputMultiPath, BaseInterfaceInputSpec, isdefined, ) from ..interfaces.nipy.base import NipyBaseInterface iflogger = logging.getLogger("nipype.interface") class DistanceInputSpec(BaseInterfaceInputSpec): volume1 = File( exists=True, mandatory=True, desc="Has to have the same dimensions as volume2." ) volume2 = File( exists=True, mandatory=True, desc="Has to have the same dimensions as volume1." ) method = traits.Enum( "eucl_min", "eucl_cog", "eucl_mean", "eucl_wmean", "eucl_max", desc='""eucl_min": Euclidean distance between two closest points\ "eucl_cog": mean Euclidian distance between the Center of Gravity\ of volume1 and CoGs of volume2\ "eucl_mean": mean Euclidian minimum distance of all volume2 voxels\ to volume1\ "eucl_wmean": mean Euclidian minimum distance of all volume2 voxels\ to volume1 weighted by their values\ "eucl_max": maximum over minimum Euclidian distances of all volume2\ voxels to volume1 (also known as the Hausdorff distance)', usedefault=True, ) mask_volume = File(exists=True, desc="calculate overlap only within this mask.") class DistanceOutputSpec(TraitedSpec): distance = traits.Float() point1 = traits.Array(shape=(3,)) point2 = traits.Array(shape=(3,)) histogram = File() class Distance(BaseInterface): """Calculates distance between two volumes.""" input_spec = DistanceInputSpec output_spec = DistanceOutputSpec _hist_filename = "hist.pdf" def _find_border(self, data): from scipy.ndimage.morphology import binary_erosion eroded = binary_erosion(data) border = np.logical_and(data, np.logical_not(eroded)) return border def _get_coordinates(self, data, affine): if len(data.shape) == 4: data = data[:, :, :, 0] indices = np.vstack(np.nonzero(data)) indices = np.vstack((indices, np.ones(indices.shape[1]))) coordinates = np.dot(affine, indices) return coordinates[:3, :] def _eucl_min(self, nii1, nii2): from scipy.spatial.distance import cdist, euclidean origdata1 = np.asanyarray(nii1.dataobj).astype(bool) border1 = self._find_border(origdata1) origdata2 = np.asanyarray(nii2.dataobj).astype(bool) border2 = self._find_border(origdata2) set1_coordinates = self._get_coordinates(border1, nii1.affine) set2_coordinates = self._get_coordinates(border2, nii2.affine) dist_matrix = cdist(set1_coordinates.T, set2_coordinates.T) (point1, point2) = np.unravel_index(np.argmin(dist_matrix), dist_matrix.shape) return ( euclidean(set1_coordinates.T[point1, :], set2_coordinates.T[point2, :]), set1_coordinates.T[point1, :], set2_coordinates.T[point2, :], ) def _eucl_cog(self, nii1, nii2): from scipy.spatial.distance import cdist from scipy.ndimage.measurements import center_of_mass, label origdata1 = np.asanyarray(nii1.dataobj) origdata1 = (np.rint(origdata1) != 0) & ~np.isnan(origdata1) cog_t = np.array(center_of_mass(origdata1)).reshape(-1, 1) cog_t = np.vstack((cog_t, np.array([1]))) cog_t_coor = np.dot(nii1.affine, cog_t)[:3, :] origdata2 = np.asanyarray(nii2.dataobj) origdata2 = (np.rint(origdata2) != 0) & ~np.isnan(origdata2) (labeled_data, n_labels) = label(origdata2) cogs = np.ones((4, n_labels)) for i in range(n_labels): cogs[:3, i] = np.array(center_of_mass(origdata2, labeled_data, i + 1)) cogs_coor = np.dot(nii2.affine, cogs)[:3, :] dist_matrix = cdist(cog_t_coor.T, cogs_coor.T) return np.mean(dist_matrix) def _eucl_mean(self, nii1, nii2, weighted=False): from scipy.spatial.distance import cdist origdata1 = np.asanyarray(nii1.dataobj).astype(bool) border1 = self._find_border(origdata1) origdata2 = np.asanyarray(nii2.dataobj).astype(bool) set1_coordinates = self._get_coordinates(border1, nii1.affine) set2_coordinates = self._get_coordinates(origdata2, nii2.affine) dist_matrix = cdist(set1_coordinates.T, set2_coordinates.T) min_dist_matrix = np.amin(dist_matrix, axis=0) import matplotlib matplotlib.use(config.get("execution", "matplotlib_backend")) import matplotlib.pyplot as plt plt.figure() plt.hist(min_dist_matrix, 50, normed=1, facecolor="green") plt.savefig(self._hist_filename) plt.clf() plt.close() if weighted: return np.average(min_dist_matrix, weights=nii2.dataobj[origdata2].flat) else: return np.mean(min_dist_matrix) def _eucl_max(self, nii1, nii2): from scipy.spatial.distance import cdist origdata1 = np.asanyarray(nii1.dataobj) origdata1 = (np.rint(origdata1) != 0) & ~np.isnan(origdata1) origdata2 = np.asanyarray(nii2.dataobj) origdata2 = (np.rint(origdata2) != 0) & ~np.isnan(origdata2) if isdefined(self.inputs.mask_volume): maskdata = np.asanyarray(nb.load(self.inputs.mask_volume).dataobj) maskdata = (np.rint(maskdata) != 0) & ~np.isnan(maskdata) origdata1 = np.logical_and(maskdata, origdata1) origdata2 = np.logical_and(maskdata, origdata2) if origdata1.max() == 0 or origdata2.max() == 0: return np.nan border1 = self._find_border(origdata1) border2 = self._find_border(origdata2) set1_coordinates = self._get_coordinates(border1, nii1.affine) set2_coordinates = self._get_coordinates(border2, nii2.affine) distances = cdist(set1_coordinates.T, set2_coordinates.T) mins = np.concatenate((np.amin(distances, axis=0), np.amin(distances, axis=1))) return np.max(mins) def _run_interface(self, runtime): # there is a bug in some scipy ndimage methods that gets tripped by memory mapped objects nii1 = nb.load(self.inputs.volume1, mmap=False) nii2 = nb.load(self.inputs.volume2, mmap=False) if self.inputs.method == "eucl_min": self._distance, self._point1, self._point2 = self._eucl_min(nii1, nii2) elif self.inputs.method == "eucl_cog": self._distance = self._eucl_cog(nii1, nii2) elif self.inputs.method == "eucl_mean": self._distance = self._eucl_mean(nii1, nii2) elif self.inputs.method == "eucl_wmean": self._distance = self._eucl_mean(nii1, nii2, weighted=True) elif self.inputs.method == "eucl_max": self._distance = self._eucl_max(nii1, nii2) return runtime def _list_outputs(self): outputs = self._outputs().get() outputs["distance"] = self._distance if self.inputs.method == "eucl_min": outputs["point1"] = self._point1 outputs["point2"] = self._point2 elif self.inputs.method in ["eucl_mean", "eucl_wmean"]: outputs["histogram"] = os.path.abspath(self._hist_filename) return outputs class OverlapInputSpec(BaseInterfaceInputSpec): volume1 = File( exists=True, mandatory=True, desc="Has to have the same dimensions as volume2." ) volume2 = File( exists=True, mandatory=True, desc="Has to have the same dimensions as volume1." ) mask_volume = File(exists=True, desc="calculate overlap only within this mask.") bg_overlap = traits.Bool( False, usedefault=True, mandatory=True, desc="consider zeros as a label" ) out_file = File("diff.nii", usedefault=True) weighting = traits.Enum( "none", "volume", "squared_vol", usedefault=True, desc=( "'none': no class-overlap weighting is " "performed. 'volume': computed class-" "overlaps are weighted by class volume " "'squared_vol': computed class-overlaps " "are weighted by the squared volume of " "the class" ), ) vol_units = traits.Enum( "voxel", "mm", mandatory=True, usedefault=True, desc="units for volumes" ) class OverlapOutputSpec(TraitedSpec): jaccard = traits.Float(desc="averaged jaccard index") dice = traits.Float(desc="averaged dice index") roi_ji = traits.List(traits.Float(), desc=("the Jaccard index (JI) per ROI")) roi_di = traits.List(traits.Float(), desc=("the Dice index (DI) per ROI")) volume_difference = traits.Float(desc=("averaged volume difference")) roi_voldiff = traits.List(traits.Float(), desc=("volume differences of ROIs")) labels = traits.List(traits.Int(), desc=("detected labels")) diff_file = File(exists=True, desc="error map of differences") class Overlap(BaseInterface): """ Calculates Dice and Jaccard's overlap measures between two ROI maps. The interface is backwards compatible with the former version in which only binary files were accepted. The averaged values of overlap indices can be weighted. Volumes now can be reported in :math:`mm^3`, although they are given in voxels to keep backwards compatibility. Example ------- >>> overlap = Overlap() >>> overlap.inputs.volume1 = 'cont1.nii' >>> overlap.inputs.volume2 = 'cont2.nii' >>> res = overlap.run() # doctest: +SKIP """ input_spec = OverlapInputSpec output_spec = OverlapOutputSpec def _bool_vec_dissimilarity(self, booldata1, booldata2, method): from scipy.spatial.distance import dice, jaccard methods = {"dice": dice, "jaccard": jaccard} if not (np.any(booldata1) or np.any(booldata2)): return 0 return 1 - methods[method](booldata1.flat, booldata2.flat) def _run_interface(self, runtime): nii1 = nb.load(self.inputs.volume1) nii2 = nb.load(self.inputs.volume2) scale = 1.0 if self.inputs.vol_units == "mm": scale = np.prod(nii1.header.get_zooms()[:3]) data1 = np.asanyarray(nii1.dataobj) data1[np.logical_or(data1 < 0, np.isnan(data1))] = 0 max1 = int(data1.max()) data1 = data1.astype(np.min_scalar_type(max1)) data2 = np.asanyarray(nii2.dataobj).astype(np.min_scalar_type(max1)) data2[np.logical_or(data1 < 0, np.isnan(data1))] = 0 if isdefined(self.inputs.mask_volume): maskdata = np.asanyarray(nb.load(self.inputs.mask_volume).dataobj) maskdata = ~np.logical_or(maskdata == 0, np.isnan(maskdata)) data1[~maskdata] = 0 data2[~maskdata] = 0 res = [] volumes1 = [] volumes2 = [] labels = np.unique(data1[data1 > 0].reshape(-1)).tolist() if self.inputs.bg_overlap: labels.insert(0, 0) for l in labels: res.append( self._bool_vec_dissimilarity(data1 == l, data2 == l, method="jaccard") ) volumes1.append(scale * len(data1[data1 == l])) volumes2.append(scale * len(data2[data2 == l])) results = dict(jaccard=[], dice=[]) results["jaccard"] = np.array(res) results["dice"] = 2.0 * results["jaccard"] / (results["jaccard"] + 1.0) weights = np.ones((len(volumes1),), dtype=np.float32) if self.inputs.weighting != "none": weights = weights / np.array(volumes1) if self.inputs.weighting == "squared_vol": weights = weights**2 weights = weights / np.sum(weights) both_data = np.zeros(data1.shape) both_data[(data1 - data2) != 0] = 1 nb.save( nb.Nifti1Image(both_data, nii1.affine, nii1.header), self.inputs.out_file ) self._labels = labels self._ove_rois = results self._vol_rois = (np.array(volumes1) - np.array(volumes2)) / np.array(volumes1) self._dice = round(np.sum(weights * results["dice"]), 5) self._jaccard = round(np.sum(weights * results["jaccard"]), 5) self._volume = np.sum(weights * self._vol_rois) return runtime def _list_outputs(self): outputs = self._outputs().get() outputs["labels"] = self._labels outputs["jaccard"] = self._jaccard outputs["dice"] = self._dice outputs["volume_difference"] = self._volume outputs["roi_ji"] = self._ove_rois["jaccard"].tolist() outputs["roi_di"] = self._ove_rois["dice"].tolist() outputs["roi_voldiff"] = self._vol_rois.tolist() outputs["diff_file"] = os.path.abspath(self.inputs.out_file) return outputs class FuzzyOverlapInputSpec(BaseInterfaceInputSpec): in_ref = InputMultiPath( File(exists=True), mandatory=True, desc="Reference image. Requires the same dimensions as in_tst.", ) in_tst = InputMultiPath( File(exists=True), mandatory=True, desc="Test image. Requires the same dimensions as in_ref.", ) in_mask = File(exists=True, desc="calculate overlap only within mask") weighting = traits.Enum( "none", "volume", "squared_vol", usedefault=True, desc=( "'none': no class-overlap weighting is " "performed. 'volume': computed class-" "overlaps are weighted by class volume " "'squared_vol': computed class-overlaps " "are weighted by the squared volume of " "the class" ), ) out_file = File( "diff.nii", desc="alternative name for resulting difference-map", usedefault=True, ) class FuzzyOverlapOutputSpec(TraitedSpec): jaccard = traits.Float(desc="Fuzzy Jaccard Index (fJI), all the classes") dice = traits.Float(desc="Fuzzy Dice Index (fDI), all the classes") class_fji = traits.List( traits.Float(), desc="Array containing the fJIs of each computed class" ) class_fdi = traits.List( traits.Float(), desc="Array containing the fDIs of each computed class" ) class FuzzyOverlap(SimpleInterface): """Calculates various overlap measures between two maps, using the fuzzy definition proposed in: Crum et al., Generalized Overlap Measures for Evaluation and Validation in Medical Image Analysis, IEEE Trans. Med. Ima. 25(11),pp 1451-1461, Nov. 2006. in_ref and in_tst are lists of 2/3D images, each element on the list containing one volume fraction map of a class in a fuzzy partition of the domain. Example ------- >>> overlap = FuzzyOverlap() >>> overlap.inputs.in_ref = [ 'ref_class0.nii', 'ref_class1.nii' ] >>> overlap.inputs.in_tst = [ 'tst_class0.nii', 'tst_class1.nii' ] >>> overlap.inputs.weighting = 'volume' >>> res = overlap.run() # doctest: +SKIP """ input_spec = FuzzyOverlapInputSpec output_spec = FuzzyOverlapOutputSpec def _run_interface(self, runtime): # Load data refdata = nb.concat_images(self.inputs.in_ref).dataobj tstdata = nb.concat_images(self.inputs.in_tst).dataobj # Data must have same shape if not refdata.shape == tstdata.shape: raise RuntimeError( 'Size of "in_tst" %s must match that of "in_ref" %s.' % (tstdata.shape, refdata.shape) ) ncomp = refdata.shape[-1] # Load mask mask = np.ones_like(refdata, dtype=bool) if isdefined(self.inputs.in_mask): mask = np.asanyarray(nb.load(self.inputs.in_mask).dataobj) > 0 mask = np.repeat(mask[..., np.newaxis], ncomp, -1) assert mask.shape == refdata.shape # Drop data outside mask refdata = refdata[mask] tstdata = tstdata[mask] if np.any(refdata < 0.0): iflogger.warning( 'Negative values encountered in "in_ref" input, ' "taking absolute values." ) refdata = np.abs(refdata) if np.any(tstdata < 0.0): iflogger.warning( 'Negative values encountered in "in_tst" input, ' "taking absolute values." ) tstdata = np.abs(tstdata) if np.any(refdata > 1.0): iflogger.warning( 'Values greater than 1.0 found in "in_ref" input, ' "scaling values." ) refdata /= refdata.max() if np.any(tstdata > 1.0): iflogger.warning( 'Values greater than 1.0 found in "in_tst" input, ' "scaling values." ) tstdata /= tstdata.max() numerators = np.atleast_2d(np.minimum(refdata, tstdata).reshape((-1, ncomp))) denominators = np.atleast_2d(np.maximum(refdata, tstdata).reshape((-1, ncomp))) jaccards = numerators.sum(axis=0) / denominators.sum(axis=0) # Calculate weights weights = np.ones_like(jaccards, dtype=float) if self.inputs.weighting != "none": volumes = np.sum((refdata + tstdata) > 0, axis=1).reshape((-1, ncomp)) weights = 1.0 / volumes if self.inputs.weighting == "squared_vol": weights = weights**2 weights = weights / np.sum(weights) dices = 2.0 * jaccards / (jaccards + 1.0) # Fill-in the results object self._results["jaccard"] = float(weights.dot(jaccards)) self._results["dice"] = float(weights.dot(dices)) self._results["class_fji"] = [float(v) for v in jaccards] self._results["class_fdi"] = [float(v) for v in dices] return runtime class ErrorMapInputSpec(BaseInterfaceInputSpec): in_ref = File( exists=True, mandatory=True, desc="Reference image. Requires the same dimensions as in_tst.", ) in_tst = File( exists=True, mandatory=True, desc="Test image. Requires the same dimensions as in_ref.", ) mask = File(exists=True, desc="calculate overlap only within this mask.") metric = traits.Enum( "sqeuclidean", "euclidean", desc="error map metric (as implemented in scipy cdist)", usedefault=True, mandatory=True, ) out_map = File(desc="Name for the output file") class ErrorMapOutputSpec(TraitedSpec): out_map = File(exists=True, desc="resulting error map") distance = traits.Float(desc="Average distance between volume 1 and 2") class ErrorMap(BaseInterface): """Calculates the error (distance) map between two input volumes. Example ------- >>> errormap = ErrorMap() >>> errormap.inputs.in_ref = 'cont1.nii' >>> errormap.inputs.in_tst = 'cont2.nii' >>> res = errormap.run() # doctest: +SKIP """ input_spec = ErrorMapInputSpec output_spec = ErrorMapOutputSpec _out_file = "" def _run_interface(self, runtime): # Get two numpy data matrices nii_ref = nb.load(self.inputs.in_ref) ref_data = np.squeeze(nii_ref.dataobj) tst_data = np.squeeze(nb.load(self.inputs.in_tst).dataobj) assert ref_data.ndim == tst_data.ndim # Load mask comps = 1 mapshape = ref_data.shape if ref_data.ndim == 4: comps = ref_data.shape[-1] mapshape = ref_data.shape[:-1] if isdefined(self.inputs.mask): msk = np.asanyarray(nb.load(self.inputs.mask).dataobj) if mapshape != msk.shape: raise RuntimeError( "Mask should match volume shape, \ mask is %s and volumes are %s" % (list(msk.shape), list(mapshape)) ) else: msk = np.ones(shape=mapshape) # Flatten both volumes and make the pixel differennce mskvector = msk.reshape(-1) msk_idxs = np.where(mskvector == 1) refvector = ref_data.reshape(-1, comps)[msk_idxs].astype(np.float32) tstvector = tst_data.reshape(-1, comps)[msk_idxs].astype(np.float32) diffvector = refvector - tstvector # Scale the difference if self.inputs.metric == "sqeuclidean": errvector = diffvector**2 if comps > 1: errvector = np.sum(errvector, axis=1) else: errvector = np.squeeze(errvector) elif self.inputs.metric == "euclidean": errvector =
np.linalg.norm(diffvector, axis=1)
numpy.linalg.norm
# Copyright 2018 The GraphNets Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Utilities for `utils_np_test` and `utils_tf_test`. This provides a base class for tests involving `graphs.GraphsTuple` containing either numpy or tensorflow data. This base class is populated with test data and also provides a convenience method for asserting graph equality. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import contextlib import itertools from graph_nets import graphs from graph_nets import utils_np import numpy as np import tensorflow as tf @contextlib.contextmanager def assert_new_op_prefixes(test, expected_prefix, assert_some_new_ops=True): """Asserts the namescope of tf ops created within the context manager.""" ops_before = [n.name for n in tf.get_default_graph().as_graph_def().node] yield ops_after = [n.name for n in tf.get_default_graph().as_graph_def().node] new_ops = set(ops_after) - set(ops_before) prefix_length = len(expected_prefix) if assert_some_new_ops: test.assertNotEqual(0, len(new_ops)) for op_name in new_ops: test.assertEqual(expected_prefix, op_name[:prefix_length]) def mask_leading_dimension(tensor): return tf.placeholder_with_default(tensor, [None] + tensor.get_shape().as_list()[1:]) class GraphsTest(tf.test.TestCase): """A base class for tests that operate on GraphsNP or GraphsTF.""" def populate_test_data(self, max_size): """Populates the class fields with data used for the tests. This creates a batch of graphs with number of nodes from 0 to `num`, number of edges ranging from 1 to `num`, plus an empty graph with no nodes and no edges (so that the total number of graphs is 1 + (num ** (num + 1)). The nodes states, edges states and global states of the graphs are created to have different types and shapes. Those graphs are stored both as dictionaries (in `self.graphs_dicts_in`, without `n_node` and `n_edge` information, and in `self.graphs_dicts_out` with these two fields filled), and a corresponding numpy `graphs.GraphsTuple` is stored in `self.reference_graph`. Args: max_size: The maximum number of nodes and edges (inclusive). """ filt = lambda x: (x[0] > 0) or (x[1] == 0) n_node, n_edge = zip(*list( filter(filt, itertools.product( range(max_size + 1), range(max_size + 1))))) graphs_dicts = [] nodes = [] edges = [] receivers = [] senders = [] globals_ = [] def _make_default_state(shape, dtype): return np.arange(np.prod(shape)).reshape(shape).astype(dtype) for i, (n_node_, n_edge_) in enumerate(zip(n_node, n_edge)): n = _make_default_state([n_node_, 7, 11], "f4") + i * 100. e = _make_default_state([n_edge_, 13, 14], np.float64) + i * 100. + 1000. r = _make_default_state([n_edge_], np.int32) % n_node[i] s = (_make_default_state([n_edge_], np.int32) + 1) % n_node[i] g = _make_default_state([5, 3], "f4") - i * 100. - 1000. nodes.append(n) edges.append(e) receivers.append(r) senders.append(s) globals_.append(g) graphs_dict = dict(nodes=n, edges=e, receivers=r, senders=s, globals=g) graphs_dicts.append(graphs_dict) # Graphs dicts without n_node / n_edge (to be used as inputs). self.graphs_dicts_in = graphs_dicts # Graphs dicts with n_node / n_node (to be checked against outputs). self.graphs_dicts_out = [] for dict_ in self.graphs_dicts_in: completed_dict = dict_.copy() completed_dict["n_node"] = completed_dict["nodes"].shape[0] completed_dict["n_edge"] = completed_dict["edges"].shape[0] self.graphs_dicts_out.append(completed_dict) # pylint: disable=protected-access offset = utils_np._compute_stacked_offsets(n_node, n_edge) # pylint: enable=protected-access self.reference_graph = graphs.GraphsTuple(**dict( nodes=np.concatenate(nodes, axis=0), edges=np.concatenate(edges, axis=0), receivers=np.concatenate(receivers, axis=0) + offset, senders=np.concatenate(senders, axis=0) + offset, globals=np.stack(globals_), n_node=
np.array(n_node)
numpy.array
import pyfits import chimera from chimera import config import numpy as np from pyraf import iraf from datetime import datetime, timedelta MONTHS = {"Jan": 1, "Feb": 2, "March": 3, "April": 4, "May": 5, "June": 6, "July": 7, "Aug": 8, "Sept": 9, "Oct": 10, "Nov": 11, "Dec": 12} class Aperphot: def __init__(self, sci_file, coords): self.sci_file = sci_file self.coords = coords # load configuration file cfg = config.Config() self.cfg_data = cfg.load() # Set header keyword parameters self.setkeywords() # Set parameters self.setparams() def setkeywords(self): """ Set FITS image header keyword parameters. Parameters ---------- Returns ------- None """ header = pyfits.getheader(self.sci_file, ignore_missing_end = True) self.nx = header["NAXIS1"] self.ny = header["NAXIS2"] self.nframes = header["NAXIS3"] self.exptime = header["EXPTIME"] self.kintime = header["KINCYCTI"] self.sn = header["SERIALN"].split("=")[1].strip() self.amptype = header["AMPTYPE"].split()[0] self.emgain = header["EMGAIN"] self.hreadout = header["HREADOUT"].strip() self.preampg = header["PREAMPG"].strip() utcstart = header["UTCSTART"] self.utcstart = self.parser(utcstart) return def setparams(self): """ Set datapars, centerpars, fitskypars and photpars. Parameteres ----------- Returns ------- None """ # Set parameters for daophot self.fwhmpsf = self.cfg_data["Phot"]["fwhmpsf"] self.sigma = self.cfg_data["Phot"]["sigma"] self.exposure = self.cfg_data["Phot"]["exposure"] self.calgorithm = self.cfg_data["Phot"]["calgorithm"] self.cbox = self.cfg_data["Phot"]["cbox"] self.maxshift = self.cfg_data["Phot"]["maxshift"] self.salgorithm = self.cfg_data["Phot"]["salgorithm"] self.annulus = self.cfg_data["Phot"]["annulus"] self.dannulus = self.cfg_data["Phot"]["dannulus"] self.apertures = self.cfg_data["Phot"]["apertures"] self.zmag = self.cfg_data["Phot"]["zmag"] self.readnoise = float(self.cfg_data["Detector"][self.sn][self.amptype][self.hreadout][self.preampg][1]) self.epadu = float(self.cfg_data["Detector"][self.sn][self.amptype][self.hreadout][self.preampg][0]) if self.amptype == "EMGAIN": self.readnoise /= self.emgain self.epadu /= self.emgain # Set parameters for phot self.method = "exact" self.inner_radius = 14 self.outer_radius = 30 return def setiraf(self): """ Set IRAF global parameters and load DAOPHOT package for aperture photometry. Parameters ---------- Returns ------- None """ iraf.prcacheOff() iraf.set(writepars=0) # Load IRAF packages iraf.noao(_doprint = 0) iraf.noao.digiphot(_doprint = 0) iraf.noao.digiphot.daophot(_doprint = 0) return def parser(self, utcstart): """ Datetime parser for CHIMERA UTCSTART header keyword. Parameters ---------- utcstart : string Datetime for start of frame (in UTC) Returns ------- dt : datetime struct Datetime structure """ month, date, year, time = utcstart.split("-") month = MONTHS[month] date = int(date) year = int(year) hour, minu, sec = time.split(":") hour = int(hour) minu = int(minu) sec, ms = sec.split(".") sec = int(sec) ms = int(ms) * 1000 dt = datetime(year, month, date, hour, minu, sec, ms) return dt def addtime(self, secs): """ Add time in seconds to UTC datetime. Parameters ---------- secs : float Time to add to UTC in seconds. Returns ------- dt : datetime structure """ td = timedelta(0, secs) return self.utcstart + td def daocog(self, tolerance = 0.01): """ Curve of growth to determine nominal aperture for photometry using DAOPHOT. Parameters ---------- tolerance : float Magnitude difference tolerance between different apertures Returns ------- aperture : float Nominal aperture radius for photmetry """ # load iraf packages self.setiraf() # Randomly peform curve of growth on 5 frames framenum = np.random.randint(1, self.nframes, 5) apertures = np.linspace(2,20,19) # Iterate through the frames and determine nominal aperture nom_aper = np.zeros(5, dtype = np.float32) cnt = 0 for val in framenum: outfile = self.sci_file.replace(".fits", "." + str(val) + ".cog.phot.1") iraf.delete(outfile) self.daophot(val, self.coords, outfile, apertures = "2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20") mags = iraf.pdump(outfile, "mag", "yes", Stdout = 1) mags = [mag if mag != 'INDEF' else 30.0 for mag in mags] mags_arr = np.array(mags[1].split(),dtype = np.float32) mags_diff = np.diff(mags_arr) idx = np.where((np.abs(mags_diff) < tolerance) & (np.abs(mags_diff) != 0.0)) if len(idx[0]) != 0: nom_aper[cnt] = apertures[idx[0][0]] else: nom_aper[cnt] = 10.0 cnt += 1 iraf.delete(outfile) return np.median(nom_aper) def cog(self, window_size, method, tolerance = 0.01): """ Curve of growth to determine nominal aperture for photometry using astropy photutils. Parameters ---------- tolerance : float Magnitude difference tolerance between different apertures Returns ------- aperture : float Nominal aperture radius for photmetry """ # Aperture values in pixels apertures = np.array([2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]) naper = apertures.shape[0] # Randomly perform curve of growth on 5 frames framenum = np.random.randint(1, self.nframes, 5) apertures = np.linspace(2,20,19) # Read input image and star position image = chimera.fitsread(self.sci_file) pos = np.loadtxt(self.coords, ndmin = 2) # Iterate through the frames and determine nominal aperture nom_aper = np.zeros(5, dtype = np.float32) cnt = 0 for val in framenum: mags_arr = np.zeros(len(apertures)) objpos = chimera.recenter(image[val,:,:], pos, window_size, method) for i in range(naper): flux = self.phot(image[val,:,:], objpos, aper = apertures[i]) try: mags_arr[i] = -2.5 * np.log10(flux['flux']) except: mags_arr[i] = -2.5 *
np.log10(flux['flux'][1])
numpy.log10
"""Create Figures and Extract Results for CVPR paper. Author: <NAME> Email : <EMAIL> """ from __future__ import print_function import os from os.path import join, isdir, isfile from collections import OrderedDict import cPickle as pickle import numpy as np from scipy.misc import imsave import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import spiker from spiker.models import utils from spiker.data import ddd17 def compute_log_curve(log_name, num_runs=4): """Compute log curve, provide mean and standard deviation.""" log_collector = [] for run_idx in range(1, num_runs+1): # prepare log path log_file = join(spiker.SPIKER_EXPS+"-run-%d" % (run_idx), log_name, "csv_history.log") log_dict = utils.parse_csv_log(log_file) log_collector.append(log_dict) # compute for train loss train_loss = np.vstack( (log_collector[0]["loss"][np.newaxis, ...], log_collector[1]["loss"][np.newaxis, ...], log_collector[2]["loss"][np.newaxis, ...], log_collector[3]["loss"][np.newaxis, ...])) train_loss = train_loss.astype("float64") train_loss_mean = np.mean(train_loss, axis=0) train_loss_std = np.std(train_loss, axis=0) # compute for test loss test_loss = np.vstack( (log_collector[0]["val_loss"][np.newaxis, ...], log_collector[1]["val_loss"][np.newaxis, ...], log_collector[2]["val_loss"][np.newaxis, ...], log_collector[3]["val_loss"][np.newaxis, ...])) test_loss = test_loss.astype("float64") test_loss_mean = np.mean(test_loss, axis=0) test_loss_std = np.std(test_loss, axis=0) # compute for train mse train_mse = np.vstack( (log_collector[0]["mean_squared_error"][np.newaxis, ...], log_collector[1]["mean_squared_error"][np.newaxis, ...], log_collector[2]["mean_squared_error"][np.newaxis, ...], log_collector[3]["mean_squared_error"][np.newaxis, ...])) train_mse = train_mse.astype("float64") train_mse_mean = np.mean(train_mse, axis=0) train_mse_std = np.std(train_mse, axis=0) # compute for test mse test_mse = np.vstack( (log_collector[0]["val_mean_squared_error"][np.newaxis, ...], log_collector[1]["val_mean_squared_error"][np.newaxis, ...], log_collector[2]["val_mean_squared_error"][np.newaxis, ...], log_collector[3]["val_mean_squared_error"][np.newaxis, ...])) test_mse = test_mse.astype("float64") test_mse_mean = np.mean(test_mse, axis=0) test_mse_std = np.std(test_mse, axis=0) trloss = (train_loss_mean, train_loss_std) teloss = (test_loss_mean, test_loss_std) trmse = (train_mse_mean, train_mse_std) temse = (test_mse_mean, test_mse_std) return trloss, teloss, trmse, temse def get_best_result(log_dict, mode="regress"): """Get result from a list of log files.""" logs = OrderedDict() sum_score = 0 for log_item in log_dict: csv_log = utils.parse_csv_log(log_dict[log_item]) if mode == "regress": logs[log_item] = np.min(csv_log["val_mean_squared_error"]) sum_score += logs[log_item] elif mode == "class": logs[log_item] = np.max(csv_log["val_accuracy"]) sum_score += logs[log_item] elif mode == "binary": logs[log_item] = np.max(csv_log["val_binary_accuracy"]) sum_score += logs[log_item] return logs, sum_score def get_log_file_dict(env="day", mode="full", task="steering", exp_dir=spiker.SPIKER_EXPS): """Get data.""" data_range = 8 if env == "day" else 7 log_file_dict = OrderedDict() for idx in xrange(data_range): file_base = task+"-"+env+"-%d-" % (idx+1)+mode log_file_dict[file_base] = join(exp_dir, file_base, "csv_history.log") return log_file_dict def get_log_file_dict_review(env="day", mode="full", task="steering", exp_dir=spiker.SPIKER_EXPS): """Get data.""" data_range = 7 if env == "day" else 8 log_file_dict = OrderedDict() for idx in xrange(data_range): file_base = task+"-"+env+"-%d-" % (idx+1)+mode+"-review" log_file_dict[file_base] = join(exp_dir, file_base, "csv_history.log") return log_file_dict # option = "get-full-results" # option = "get-dvs-results" # option = "get-aps-results" # option = "get-loss-curves" # option = "get-results-reproduce" # option = "get-results-reproduce-steer" option = "get-steering-results" # option = "get-steering-results-review" # option = "get-steering-results-combined" # option = "attribute-hist" # option = "get-steer-loss-curves" # option = "get-results-reproduce-steer-all" # option = "export-images-for-dataset" # option = "export-rate" # option = "align-fps-events" if option == "get-full-results": steer_day_logs = get_log_file_dict("day", "full", "steering") accel_day_logs = get_log_file_dict("day", "full", "accel") brake_day_logs = get_log_file_dict("day", "full", "brake") steer_night_logs = get_log_file_dict("night", "full", "steering") accel_night_logs = get_log_file_dict("night", "full", "accel") brake_night_logs = get_log_file_dict("night", "full", "brake") # get results steer_day_res, steer_day_sum = get_best_result(steer_day_logs) accel_day_res, accel_day_sum = get_best_result(accel_day_logs) brake_day_res, brake_day_sum = get_best_result( brake_day_logs, mode="binary") steer_night_res, steer_night_sum = get_best_result(steer_night_logs) accel_night_res, accel_night_sum = get_best_result(accel_night_logs) brake_night_res, brake_night_sum = get_best_result( brake_night_logs, mode="binary") print ("-"*30) for key in steer_night_res: print (key, ":", np.sqrt(steer_night_res[key])*180/np.pi) for key in steer_day_res: print (key, ":", np.sqrt(steer_day_res[key])*180/np.pi) print (np.sqrt((steer_day_sum+steer_night_sum)/15)*180/np.pi) print ("-"*30) for key in accel_night_res: print (key, ":", np.sqrt(accel_night_res[key])*100) for key in accel_day_res: print (key, ":", np.sqrt(accel_day_res[key])*100) print (np.sqrt((accel_day_sum+accel_night_sum)/15)*100) print ("-"*30) print (brake_night_res) print (brake_day_res) print ("-"*30) print ((brake_day_sum+brake_night_sum)/15) elif option == "get-steering-results": sensor_mode = "aps" # collecting logs # run 1 day_logs_1 = get_log_file_dict("day", sensor_mode, "steering", spiker.SPIKER_EXPS+"-run-1") night_logs_1 = get_log_file_dict("night", sensor_mode, "steering", spiker.SPIKER_EXPS+"-run-1") # run 2 day_logs_2 = get_log_file_dict("day", sensor_mode, "steering", spiker.SPIKER_EXPS+"-run-2") night_logs_2 = get_log_file_dict("night", sensor_mode, "steering", spiker.SPIKER_EXPS+"-run-2") # run 3 day_logs_3 = get_log_file_dict("day", sensor_mode, "steering", spiker.SPIKER_EXPS+"-run-3") night_logs_3 = get_log_file_dict("night", sensor_mode, "steering", spiker.SPIKER_EXPS+"-run-3") # run 4 day_logs_4 = get_log_file_dict("day", sensor_mode, "steering", spiker.SPIKER_EXPS+"-run-4") night_logs_4 = get_log_file_dict("night", sensor_mode, "steering", spiker.SPIKER_EXPS+"-run-4") # collect results day_res_1, day_sum_1 = get_best_result(day_logs_1) night_res_1, night_sum_1 = get_best_result(night_logs_1) day_res_2, day_sum_2 = get_best_result(day_logs_2) night_res_2, night_sum_2 = get_best_result(night_logs_2) day_res_3, day_sum_3 = get_best_result(day_logs_3) night_res_3, night_sum_3 = get_best_result(night_logs_3) day_res_4, day_sum_4 = get_best_result(day_logs_4) night_res_4, night_sum_4 = get_best_result(night_logs_4) # calculate mean and variance for key in night_res_1: temp_res = np.array([night_res_1[key], night_res_2[key], night_res_3[key], night_res_4[key]]) temp_res = np.sqrt(temp_res)*180/np.pi print (key, ":", temp_res.mean(), temp_res.std()) for key in day_res_1: temp_res = np.array([day_res_1[key], day_res_2[key], day_res_3[key], day_res_4[key]]) temp_res = np.sqrt(temp_res)*180/np.pi print (key, ":", temp_res.mean(), "std:", temp_res.std(), "best", temp_res.argmin()) print (temp_res) avg_error = np.array([day_sum_1+night_sum_1, day_sum_2+night_sum_2, day_sum_3+night_sum_3, day_sum_4+night_sum_4])/15. avg_error = np.sqrt(avg_error)*180/np.pi print ("Average Error:", avg_error.mean(), "std:", avg_error.std()) elif option == "get-steering-results-review": sensor_mode = "full" # collecting logs # run 1 day_logs_1 = get_log_file_dict_review( "day", sensor_mode, "steering", spiker.SPIKER_EXPS+"-review-1") night_logs_1 = get_log_file_dict_review( "night", sensor_mode, "steering", spiker.SPIKER_EXPS+"-review-1") # run 2 day_logs_2 = get_log_file_dict_review( "day", sensor_mode, "steering", spiker.SPIKER_EXPS+"-review-2") night_logs_2 = get_log_file_dict_review( "night", sensor_mode, "steering", spiker.SPIKER_EXPS+"-review-2") # run 3 day_logs_3 = get_log_file_dict_review( "day", sensor_mode, "steering", spiker.SPIKER_EXPS+"-review-3") night_logs_3 = get_log_file_dict_review( "night", sensor_mode, "steering", spiker.SPIKER_EXPS+"-review-3") # run 4 day_logs_4 = get_log_file_dict_review( "day", sensor_mode, "steering", spiker.SPIKER_EXPS+"-review-4") night_logs_4 = get_log_file_dict_review( "night", sensor_mode, "steering", spiker.SPIKER_EXPS+"-review-4") # collect results day_res_1, day_sum_1 = get_best_result(day_logs_1) night_res_1, night_sum_1 = get_best_result(night_logs_1) day_res_2, day_sum_2 = get_best_result(day_logs_2) night_res_2, night_sum_2 = get_best_result(night_logs_2) day_res_3, day_sum_3 = get_best_result(day_logs_3) night_res_3, night_sum_3 = get_best_result(night_logs_3) day_res_4, day_sum_4 = get_best_result(day_logs_4) night_res_4, night_sum_4 = get_best_result(night_logs_4) # calculate mean and variance for key in night_res_1: temp_res = np.array([night_res_1[key], night_res_2[key], night_res_3[key], night_res_4[key]]) temp_res = np.sqrt(temp_res)*180/np.pi print (key, ":", temp_res.mean(), temp_res.std()) for key in day_res_1: temp_res = np.array([day_res_1[key], day_res_2[key], day_res_3[key], day_res_4[key]]) temp_res = np.sqrt(temp_res)*180/np.pi print (key, ":", temp_res.mean(), temp_res.std(), "best", temp_res.argmin()) # print (temp_res) avg_error = np.array([day_sum_1+night_sum_1, day_sum_2+night_sum_2, day_sum_3+night_sum_3, day_sum_4+night_sum_4])/15. avg_error = np.sqrt(avg_error)*180/np.pi print ("Average Error:", avg_error.mean(), "std:", avg_error.std()) elif option == "get-steering-results-combined": sensor_mode = "full" # collecting logs # run 1 day_logs_1 = get_log_file_dict("day", sensor_mode, "steering", spiker.SPIKER_EXPS+"-run-1") night_logs_1 = get_log_file_dict("night", sensor_mode, "steering", spiker.SPIKER_EXPS+"-run-1") # run 2 day_logs_2 = get_log_file_dict("day", sensor_mode, "steering", spiker.SPIKER_EXPS+"-run-2") night_logs_2 = get_log_file_dict("night", sensor_mode, "steering", spiker.SPIKER_EXPS+"-run-2") # run 3 day_logs_3 = get_log_file_dict("day", sensor_mode, "steering", spiker.SPIKER_EXPS+"-run-3") night_logs_3 = get_log_file_dict("night", sensor_mode, "steering", spiker.SPIKER_EXPS+"-run-3") # run 4 day_logs_4 = get_log_file_dict("day", sensor_mode, "steering", spiker.SPIKER_EXPS+"-run-4") night_logs_4 = get_log_file_dict("night", sensor_mode, "steering", spiker.SPIKER_EXPS+"-run-4") # collect results day_res_1, day_sum_1 = get_best_result(day_logs_1) night_res_1, night_sum_1 = get_best_result(night_logs_1) day_res_2, day_sum_2 = get_best_result(day_logs_2) night_res_2, night_sum_2 = get_best_result(night_logs_2) day_res_3, day_sum_3 = get_best_result(day_logs_3) night_res_3, night_sum_3 = get_best_result(night_logs_3) day_res_4, day_sum_4 = get_best_result(day_logs_4) night_res_4, night_sum_4 = get_best_result(night_logs_4) # calculate mean and variance for key in night_res_1: temp_res = np.array([night_res_1[key], night_res_2[key], night_res_3[key], night_res_4[key]]) temp_res = np.sqrt(temp_res)*180/np.pi print (key, ":", temp_res.mean(), temp_res.std()) for key in day_res_1: temp_res = np.array([day_res_1[key], day_res_2[key], day_res_3[key], day_res_4[key]]) temp_res = np.sqrt(temp_res)*180/np.pi print (key, ":", temp_res.mean(), temp_res.std(), "best", temp_res.argmin()) # collecting logs # run 1 day_logs_1 = get_log_file_dict_review( "day", sensor_mode, "steering", spiker.SPIKER_EXPS+"-review-1") night_logs_1 = get_log_file_dict_review( "night", sensor_mode, "steering", spiker.SPIKER_EXPS+"-review-1") # run 2 day_logs_2 = get_log_file_dict_review( "day", sensor_mode, "steering", spiker.SPIKER_EXPS+"-review-2") night_logs_2 = get_log_file_dict_review( "night", sensor_mode, "steering", spiker.SPIKER_EXPS+"-review-2") # run 3 day_logs_3 = get_log_file_dict_review( "day", sensor_mode, "steering", spiker.SPIKER_EXPS+"-review-3") night_logs_3 = get_log_file_dict_review( "night", sensor_mode, "steering", spiker.SPIKER_EXPS+"-review-3") # run 4 day_logs_4 = get_log_file_dict_review( "day", sensor_mode, "steering", spiker.SPIKER_EXPS+"-review-4") night_logs_4 = get_log_file_dict_review( "night", sensor_mode, "steering", spiker.SPIKER_EXPS+"-review-4") # collect results day_res_1_r, day_sum_1_r = get_best_result(day_logs_1) night_res_1_r, night_sum_1_r = get_best_result(night_logs_1) day_res_2_r, day_sum_2_r = get_best_result(day_logs_2) night_res_2_r, night_sum_2_r = get_best_result(night_logs_2) day_res_3_r, day_sum_3_r = get_best_result(day_logs_3) night_res_3_r, night_sum_3_r = get_best_result(night_logs_3) day_res_4_r, day_sum_4_r = get_best_result(day_logs_4) night_res_4_r, night_sum_4_r = get_best_result(night_logs_4) # calculate mean and variance for key in night_res_1_r: temp_res = np.array([night_res_1_r[key], night_res_2_r[key], night_res_3_r[key], night_res_4_r[key]]) temp_res = np.sqrt(temp_res)*180/np.pi print (key, ":", temp_res.mean(), temp_res.std()) for key in day_res_1_r: temp_res = np.array([day_res_1_r[key], day_res_2_r[key], day_res_3_r[key], day_res_4_r[key]]) temp_res = np.sqrt(temp_res)*180/np.pi print (key, ":", temp_res.mean(), temp_res.std(), "best", temp_res.argmin()) avg_error = np.array([day_sum_1+night_sum_1+day_sum_1_r+night_sum_1_r, day_sum_2+night_sum_2+day_sum_2_r+night_sum_2_r, day_sum_3+night_sum_3+day_sum_3_r+night_sum_3_r, day_sum_4+night_sum_4+day_sum_4_r+night_sum_4_r])/30. avg_error = np.sqrt(avg_error)*180/np.pi print ("Average Error:", avg_error.mean(), "std:", avg_error.std()) elif option == "get-dvs-results": steer_day_logs = get_log_file_dict("day", "dvs", "steering") accel_day_logs = get_log_file_dict("day", "dvs", "accel") brake_day_logs = get_log_file_dict("day", "dvs", "brake") steer_night_logs = get_log_file_dict("night", "dvs", "steering") accel_night_logs = get_log_file_dict("night", "dvs", "accel") brake_night_logs = get_log_file_dict("night", "dvs", "brake") # get results steer_day_res, steer_day_sum = get_best_result(steer_day_logs) accel_day_res, accel_day_sum = get_best_result(accel_day_logs) brake_day_res, brake_day_sum = get_best_result( brake_day_logs, mode="binary") steer_night_res, steer_night_sum = get_best_result(steer_night_logs) accel_night_res, accel_night_sum = get_best_result(accel_night_logs) brake_night_res, brake_night_sum = get_best_result( brake_night_logs, mode="binary") print ("-"*30) for key in steer_night_res: print (key, ":", np.sqrt(steer_night_res[key])*180/np.pi) for key in steer_day_res: print (key, ":", np.sqrt(steer_day_res[key])*180/np.pi) print (
np.sqrt((steer_day_sum+steer_night_sum)/15)
numpy.sqrt
""" @Origin : main.py by <NAME> @Contact: <EMAIL> @Time: 2018/10/13 10:39 PM modified by {<NAME>, <NAME>} @Contact: {cat0626, <EMAIL> @File: train.py @Time: 2021.09.29 """ import torch import torch.nn as nn import torch.optim as optim from torch.optim.lr_scheduler import CosineAnnealingLR import numpy as np from torch.utils.data import DataLoader import sklearn.metrics as metrics import torch.nn.functional as F from data import ModelNet40 from model import PointNet, DGCNN from util import cal_loss from modelnetc_utils import eval_corrupt_wrapper, ModelNetC def train_vanilla(args, io): train_loader = DataLoader(ModelNet40(args, partition='train'), num_workers=8, batch_size=args.batch_size, shuffle=True, drop_last=True) test_loader = DataLoader(ModelNet40(args, partition='test'), num_workers=8, batch_size=args.test_batch_size, shuffle=True, drop_last=False) device = torch.device("cuda" if args.cuda else "cpu") #Try to load models if args.model == 'pointnet': model = PointNet(args).to(device) elif args.model == 'dgcnn': model = DGCNN(args).to(device) else: raise Exception("Not implemented") print(str(model)) model = nn.DataParallel(model) print("Let's use", torch.cuda.device_count(), "GPUs!") if args.use_sgd: print("Use SGD") opt = optim.SGD(model.parameters(), lr=args.lr*100, momentum=args.momentum, weight_decay=1e-4) else: print("Use Adam") opt = optim.Adam(model.parameters(), lr=args.lr, weight_decay=1e-4) scheduler = CosineAnnealingLR(opt, args.epochs, eta_min=args.lr) criterion = cal_loss best_test_acc = 0 for epoch in range(args.epochs): #################### # Train #################### train_loss = 0.0 count = 0.0 model.train() train_pred = [] train_true = [] for data, label in train_loader: data, label = data.to(device), label.to(device).squeeze() data = data.permute(0, 2, 1) batch_size = data.size()[0] opt.zero_grad() logits = model(data) loss = criterion(logits, label) loss.backward() opt.step() preds = logits.max(dim=1)[1] count += batch_size train_loss += loss.item() * batch_size train_true.append(label.cpu().numpy()) train_pred.append(preds.detach().cpu().numpy()) scheduler.step() train_true = np.concatenate(train_true) train_pred = np.concatenate(train_pred) outstr = 'Train %d, loss: %.6f, train acc: %.6f, train avg acc: %.6f' % (epoch, train_loss*1.0/count, metrics.accuracy_score( train_true, train_pred), metrics.balanced_accuracy_score( train_true, train_pred)) io.cprint(outstr) #################### # Test #################### test_loss = 0.0 count = 0.0 model.eval() test_pred = [] test_true = [] for data, label in test_loader: data, label = data.to(device), label.to(device).squeeze() data = data.permute(0, 2, 1) batch_size = data.size()[0] logits = model(data) loss = criterion(logits, label) preds = logits.max(dim=1)[1] count += batch_size test_loss += loss.item() * batch_size test_true.append(label.cpu().numpy()) test_pred.append(preds.detach().cpu().numpy()) test_true = np.concatenate(test_true) test_pred =
np.concatenate(test_pred)
numpy.concatenate
""" First test at plate detection. Follow this steps: 1. Turn image greyscale 2. Apply bilateral filter 3. Apply Canny and find contours 4. Get all rectangles from contours 5. Get contours size and sort them 6. Find contours with exactly 4 sides 7. Crop section of image 8. Apply tesseract OCR """ import cv2 import numpy as np import imutils import pytesseract from PIL import Image def auto_canny(image, sigma=0.55): # compute the median of the single channel pixel intensities v = np.median(image) # apply automatic Canny edge detection using the computed median lower = int(max(0, (1.0 - sigma) * v)) upper = int(min(255, (1.0 + sigma) * v)) edged = cv2.Canny(image, lower, upper) # return the edged image return edged image = cv2.imread('plate_dataset/IMG_8123.png') image = imutils.resize(image, width=1000) # Check if necessary image = image[100:520, 250:750] gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3,3)) rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 3)) tophat = cv2.morphologyEx(gray, cv2.MORPH_TOPHAT, rectKernel) blackHat = cv2.morphologyEx(gray, cv2.MORPH_BLACKHAT, rectKernel) add = cv2.add(gray, tophat) sub = cv2.subtract(add, blackHat) cv2.imshow("", sub) cv2.waitKey(0) ret, thresh = cv2.threshold(sub,30,255,cv2.THRESH_TRIANGLE) # ret, thresh = cv2.threshold(sub,0,255,cv2.THRESH_BINARY | cv2.THRESH_OTSU) thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel) thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, rectKernel) # perform a series of erosions and dilations to remove # any small blobs of noise from the thresholded image thresh = cv2.erode(thresh, None, iterations=5) thresh = cv2.dilate(thresh, None, iterations=8) edged = auto_canny(thresh) cv2.imshow("thresh.png", thresh) cv2.waitKey(0) cv2.imshow("", edged) cv2.waitKey(0) cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = imutils.grab_contours(cnts) cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:30] number_plate = [] peri = cv2.arcLength(cnts[0], True) approx = cv2.approxPolyDP(cnts[0], 0.018 * peri, True) number_plate.append(approx) cv2.drawContours(image, number_plate, -1, (0,255,0), 3) gray = cv2.bilateralFilter(gray,11,17,17) # Masking the part other than the number plate mask = np.zeros(gray.shape,np.uint8) new_image = cv2.drawContours(mask,number_plate,0,255,0) new_image = cv2.bitwise_and(image,image,mask=mask) # Now crop (x, y) = np.where(mask == 255) (topx, topy) = (
np.min(x)
numpy.min
''' episodestats.py implements statistic that are used in producing employment statistics for the lifecycle model ''' import h5py import numpy as np import numpy_financial as npf import matplotlib.pyplot as plt import matplotlib as mpl import seaborn as sns from scipy.stats import norm #import locale from tabulate import tabulate import pandas as pd import scipy.optimize from tqdm import tqdm_notebook as tqdm from . empstats import Empstats from scipy.stats import gaussian_kde #locale.setlocale(locale.LC_ALL, 'fi_FI') def modify_offsettext(ax,text): ''' For y axis ''' x_pos = 0.0 y_pos = 1.0 horizontalalignment='left' verticalalignment='bottom' offset = ax.yaxis.get_offset_text() #value=offset.get_text() # value=float(value) # if value>=1e12: # text='biljoonaa' # elif value>1e9: # text=str(value/1e9)+' miljardia' # elif value==1e9: # text=' miljardia' # elif value>1e6: # text=str(value/1e6)+' miljoonaa' # elif value==1e6: # text='miljoonaa' # elif value>1e3: # text=str(value/1e3)+' tuhatta' # elif value==1e3: # text='tuhatta' offset.set_visible(False) ax.text(x_pos, y_pos, text, transform=ax.transAxes, horizontalalignment=horizontalalignment, verticalalignment=verticalalignment) class Labels(): def get_labels(self,language='English'): labels={} if language=='English': labels['osuus tilassa x']='Proportion in state {} [%]' labels['age']='Age [y]' labels['ratio']='Proportion [%]' labels['unemp duration']='Length of unemployment [y]' labels['scaled freq']='Scaled frequency' labels['probability']='probability' labels['telp']='Employee pension premium' labels['sairausvakuutus']='Health insurance' labels['työttömyysvakuutusmaksu']='Unemployment insurance' labels['puolison verot']='Partners taxes' labels['taxes']='Taxes' labels['asumistuki']='Housing benefit' labels['toimeentulotuki']='Supplementary benefit' labels['tyottomyysturva']='Unemployment benefit' labels['paivahoito']='Daycare' labels['elake']='Pension' labels['tyollisyysaste']='Employment rate' labels['tyottomien osuus']='Proportion of unemployed' labels['havainto']='Observation' labels['tyottomyysaste']='Unemployment rate [%]' labels['tyottomien osuus']='Proportion of unemployed [%]' labels['tyollisyysaste %']='Employment rate [%]' labels['ero osuuksissa']='Difference in proportions [%]' labels['osuus']='proportion' labels['havainto, naiset']='data, women' labels['havainto, miehet']='data, men' labels['palkkasumma']='Palkkasumma [euroa]' labels['Verokiila %']='Verokiila [%]' labels['Työnteko [hlö/htv]']='Työnteko [hlö/htv]' labels['Työnteko [htv]']='Työnteko [htv]' labels['Työnteko [hlö]']='Työnteko [hlö]' labels['Työnteko [miljoonaa hlö/htv]']='Työnteko [miljoonaa hlö/htv]' labels['Työnteko [miljoonaa htv]']='Työnteko [miljoonaa htv]' labels['Työnteko [miljoonaa hlö]']='Työnteko [miljoonaa hlö]' labels['Osatyönteko [%-yks]']='Osa-aikatyössä [%-yks]' labels['Muut tulot [euroa]']='Muut tulot [euroa]' labels['Henkilöitä']='Henkilöitä' labels['Verot [euroa]']='Verot [euroa]' labels['Verot [[miljardia euroa]']='Verot [[miljardia euroa]' labels['Verokertymä [euroa]']='Verokertymä [euroa]' labels['Verokertymä [miljardia euroa]']='Verokertymä [miljardia euroa]' labels['Muut tarvittavat tulot [euroa]']='Muut tarvittavat tulot [euroa]' labels['Muut tarvittavat tulot [miljardia euroa]']='Muut tarvittavat tulot [miljardia euroa]' labels['malli']='Life cycle model' else: labels['osuus tilassa x']='Osuus tilassa {} [%]' labels['age']='Ikä [v]' labels['ratio']='Osuus tilassa [%]' labels['unemp duration']='työttömyysjakson pituus [v]' labels['scaled freq']='skaalattu taajuus' labels['probability']='todennäköisyys' labels['telp']='TEL-P' labels['sairausvakuutus']='Sairausvakuutus' labels['työttömyysvakuutusmaksu']='Työttömyysvakuutusmaksu' labels['puolison verot']='puolison verot' labels['taxes']='Verot' labels['asumistuki']='Asumistuki' labels['toimeentulotuki']='Toimeentulotuki' labels['tyottomyysturva']='Työttömyysturva' labels['paivahoito']='Päivähoito' labels['elake']='Eläke' labels['tyollisyysaste']='työllisyysaste' labels['tyottomien osuus']='työttömien osuus' labels['havainto']='havainto' labels['tyottomyysaste']='Työttömyysaste [%]' labels['tyottomien osuus']='Työttömien osuus väestöstö [%]' labels['tyollisyysaste %']='Työllisyysaste [%]' labels['ero osuuksissa']='Ero osuuksissa [%]' labels['osuus']='Osuus' labels['havainto, naiset']='havainto, naiset' labels['havainto, miehet']='havainto, miehet' labels['palkkasumma']='Palkkasumma [euroa]' labels['Verokiila %']='Verokiila [%]' labels['Työnteko [hlö/htv]']='Työnteko [hlö/htv]' labels['Työnteko [htv]']='Työnteko [htv]' labels['Työnteko [hlö]']='Työnteko [hlö]' labels['Työnteko [miljoonaa hlö/htv]']='Työnteko [miljoonaa hlö/htv]' labels['Työnteko [miljoonaa htv]']='Työnteko [miljoonaa htv]' labels['Työnteko [miljoonaa hlö]']='Työnteko [miljoonaa hlö]' labels['Osatyönteko [%-yks]']='Osa-aikatyössä [%-yks]' labels['Muut tulot [euroa]']='Muut tulot [euroa]' labels['Henkilöitä']='Henkilöitä' labels['Verot [euroa]']='Verot [euroa]' labels['Verot [[miljardia euroa]']='Verot [[miljardia euroa]' labels['Verokertymä [euroa]']='Verokertymä [euroa]' labels['Verokertymä [miljardia euroa]']='Verokertymä [miljardia euroa]' labels['Muut tarvittavat tulot [euroa]']='Muut tarvittavat tulot [euroa]' labels['Muut tarvittavat tulot [miljardia euroa]']='Muut tarvittavat tulot [miljardia euroa]' labels['malli']='elinkaarimalli' return labels class EpisodeStats(): def __init__(self,timestep,n_time,n_emps,n_pop,env,minimal,min_age,max_age,min_retirementage,year=2018,version=3,params=None,gamma=0.92,lang='English'): self.version=version self.gamma=gamma self.params=params self.lab=Labels() self.reset(timestep,n_time,n_emps,n_pop,env,minimal,min_age,max_age,min_retirementage,year,params=params,lang=lang) print('version',version) def reset(self,timestep,n_time,n_emps,n_pop,env,minimal,min_age,max_age,min_retirementage,year,version=None,params=None,lang=None,dynprog=False): self.min_age=min_age self.max_age=max_age self.min_retirementage=min_retirementage self.minimal=minimal if params is not None: self.params=params if lang is None: self.language='English' else: self.language=lang if version is not None: self.version=version self.setup_labels() self.n_employment=n_emps self.n_time=n_time self.timestep=timestep # 0.25 = 3kk askel self.inv_timestep=int(np.round(1/self.timestep)) # pitää olla kokonaisluku self.n_pop=n_pop self.year=year self.env=env self.reaalinen_palkkojenkasvu=0.016 self.palkkakerroin=(0.8*1+0.2*1.0/(1+self.reaalinen_palkkojenkasvu))**self.timestep self.elakeindeksi=(0.2*1+0.8*1.0/(1+self.reaalinen_palkkojenkasvu))**self.timestep self.dynprog=dynprog if self.minimal: self.version=0 if self.version in set([0,101]): self.n_groups=1 else: self.n_groups=6 self.empstats=Empstats(year=self.year,max_age=self.max_age,n_groups=self.n_groups,timestep=self.timestep,n_time=self.n_time, min_age=self.min_age) self.init_variables() def init_variables(self): n_emps=self.n_employment self.empstate=np.zeros((self.n_time,n_emps)) self.gempstate=np.zeros((self.n_time,n_emps,self.n_groups)) self.deceiced=np.zeros((self.n_time,1)) self.alive=np.zeros((self.n_time,1)) self.galive=np.zeros((self.n_time,self.n_groups)) self.rewstate=np.zeros((self.n_time,n_emps)) self.poprewstate=np.zeros((self.n_time,self.n_pop)) self.salaries_emp=np.zeros((self.n_time,n_emps)) #self.salaries=np.zeros((self.n_time,self.n_pop)) self.actions=np.zeros((self.n_time,self.n_pop)) self.popempstate=np.zeros((self.n_time,self.n_pop)) self.popunemprightleft=np.zeros((self.n_time,self.n_pop)) self.popunemprightused=np.zeros((self.n_time,self.n_pop)) self.tyoll_distrib_bu=np.zeros((self.n_time,self.n_pop)) self.unemp_distrib_bu=np.zeros((self.n_time,self.n_pop)) self.siirtyneet=np.zeros((self.n_time,n_emps)) self.siirtyneet_det=np.zeros((self.n_time,n_emps,n_emps)) self.pysyneet=np.zeros((self.n_time,n_emps)) self.aveV=np.zeros((self.n_time,self.n_pop)) self.time_in_state=np.zeros((self.n_time,n_emps)) self.stat_tyoura=np.zeros((self.n_time,n_emps)) self.stat_toe=np.zeros((self.n_time,n_emps)) self.stat_pension=np.zeros((self.n_time,n_emps)) self.stat_paidpension=np.zeros((self.n_time,n_emps)) self.out_of_work=np.zeros((self.n_time,n_emps)) self.stat_unemp_len=np.zeros((self.n_time,self.n_pop)) self.stat_wage_reduction=np.zeros((self.n_time,n_emps)) self.stat_wage_reduction_g=np.zeros((self.n_time,n_emps,self.n_groups)) self.infostats_group=np.zeros((self.n_pop,1)) self.infostats_taxes=np.zeros((self.n_time,1)) self.infostats_wagetaxes=np.zeros((self.n_time,1)) self.infostats_taxes_distrib=np.zeros((self.n_time,n_emps)) self.infostats_etuustulo=np.zeros((self.n_time,1)) self.infostats_etuustulo_group=np.zeros((self.n_time,self.n_groups)) self.infostats_perustulo=np.zeros((self.n_time,1)) self.infostats_palkkatulo=np.zeros((self.n_time,1)) self.infostats_palkkatulo_eielakkeella=np.zeros((self.n_time,1)) self.infostats_palkkatulo_group=np.zeros((self.n_time,self.n_groups)) self.infostats_palkkatulo_eielakkeella_group=np.zeros((self.n_time,1)) self.infostats_ansiopvraha=np.zeros((self.n_time,1)) self.infostats_ansiopvraha_group=np.zeros((self.n_time,self.n_groups)) self.infostats_asumistuki=np.zeros((self.n_time,1)) self.infostats_asumistuki_group=np.zeros((self.n_time,self.n_groups)) self.infostats_valtionvero=np.zeros((self.n_time,1)) self.infostats_valtionvero_group=np.zeros((self.n_time,self.n_groups)) self.infostats_kunnallisvero=np.zeros((self.n_time,1)) self.infostats_kunnallisvero_group=np.zeros((self.n_time,self.n_groups)) self.infostats_valtionvero_distrib=np.zeros((self.n_time,n_emps)) self.infostats_kunnallisvero_distrib=np.zeros((self.n_time,n_emps)) self.infostats_ptel=np.zeros((self.n_time,1)) self.infostats_tyotvakmaksu=np.zeros((self.n_time,1)) self.infostats_tyoelake=np.zeros((self.n_time,1)) self.infostats_kokoelake=np.zeros((self.n_time,1)) self.infostats_opintotuki=np.zeros((self.n_time,1)) self.infostats_isyyspaivaraha=np.zeros((self.n_time,1)) self.infostats_aitiyspaivaraha=np.zeros((self.n_time,1)) self.infostats_kotihoidontuki=np.zeros((self.n_time,1)) self.infostats_sairauspaivaraha=np.zeros((self.n_time,1)) self.infostats_toimeentulotuki=np.zeros((self.n_time,1)) self.infostats_tulot_netto=np.zeros((self.n_time,1)) self.infostats_pinkslip=np.zeros((self.n_time,n_emps)) self.infostats_pop_pinkslip=np.zeros((self.n_time,self.n_pop)) self.infostats_chilren18_emp=np.zeros((self.n_time,n_emps)) self.infostats_chilren7_emp=np.zeros((self.n_time,n_emps)) self.infostats_chilren18=np.zeros((self.n_time,1)) self.infostats_chilren7=np.zeros((self.n_time,1)) self.infostats_tyelpremium=np.zeros((self.n_time,self.n_pop)) self.infostats_paid_tyel_pension=np.zeros((self.n_time,self.n_pop)) self.infostats_sairausvakuutus=np.zeros((self.n_time)) self.infostats_pvhoitomaksu=np.zeros((self.n_time,self.n_pop)) self.infostats_ylevero=np.zeros((self.n_time,1)) self.infostats_ylevero_distrib=np.zeros((self.n_time,n_emps)) self.infostats_irr=np.zeros((self.n_pop,1)) self.infostats_npv0=np.zeros((self.n_pop,1)) self.infostats_mother_in_workforce=np.zeros((self.n_time,1)) self.infostats_children_under3=np.zeros((self.n_time,self.n_pop)) self.infostats_children_under7=np.zeros((self.n_time,self.n_pop)) self.infostats_unempwagebasis=np.zeros((self.n_time,self.n_pop)) self.infostats_unempwagebasis_acc=np.zeros((self.n_time,self.n_pop)) self.infostats_toe=np.zeros((self.n_time,self.n_pop)) self.infostats_ove=np.zeros((self.n_time,n_emps)) self.infostats_kassanjasen=np.zeros((self.n_time)) self.infostats_poptulot_netto=np.zeros((self.n_time,self.n_pop)) self.infostats_pop_wage=np.zeros((self.n_time,self.n_pop)) self.infostats_pop_pension=np.zeros((self.n_time,self.n_pop)) self.infostats_equivalent_income=np.zeros(self.n_time) self.infostats_alv=np.zeros(self.n_time) self.infostats_puoliso=np.zeros(self.n_time) self.pop_predrew=np.zeros((self.n_time,self.n_pop)) if self.version==101: self.infostats_savings=np.zeros((self.n_time,self.n_pop)) self.sav_actions=np.zeros((self.n_time,self.n_pop)) def add(self,n,act,r,state,newstate,q=None,debug=False,plot=False,aveV=None,pred_r=None): if self.version==0: emp,_,_,a,_,_=self.env.state_decode(state) # current employment state newemp,newpen,newsal,a2,tis,next_wage=self.env.state_decode(newstate) g=0 bu=0 ove=0 jasen=0 puoliso=0 elif self.version==1: # v1 emp,_,_,_,a,_,_,_,_,_,_,_,_,_=self.env.state_decode(state) # current employment state newemp,g,newpen,newsal,a2,tis,paidpens,pink,toe,ura,oof,bu,wr,p=self.env.state_decode(newstate) ove=0 jasen=0 puoliso=0 elif self.version==2: # v2 emp,_,_,_,a,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_=self.env.state_decode(state) # current employment state newemp,g,newpen,newsal,a2,tis,paidpens,pink,toe,ura,bu,wr,upr,uw,uwr,pr,c3,c7,c18,unemp_left,aa,toe58=self.env.state_decode(newstate) ove=0 jasen=0 puoliso=0 elif self.version==3: # v3 emp,_,_,_,a,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_=self.env.state_decode(state) # current employment state newemp,g,newpen,newsal,a2,tis,paidpens,pink,toe,toek,ura,bu,wr,upr,uw,uwr,pr,c3,c7,c18,unemp_left,aa,toe58,ove,jasen=self.env.state_decode(newstate) puoliso=0 elif self.version==4: # v3 emp,_,_,_,a,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_=self.env.state_decode(state) # current employment state newemp,g,newpen,newsal,a2,tis,paidpens,pink,toe,toek,ura,bu,wr,upr,uw,uwr,pr,\ c3,c7,c18,unemp_left,aa,toe58,ove,jasen,puoliso,puoliso_tyossa,puoliso_palkka=self.env.state_decode(newstate) elif self.version==101: emp,_,_,a,_,_,_=self.env.state_decode(state) # current employment state newemp,newpen,newsal,a2,tis,next_wage,savings=self.env.state_decode(newstate) g=0 bu=0 ove=0 jasen=0 t=int(np.round((a2-self.min_age)*self.inv_timestep))#-1 if a2>a and newemp>=0: # new state is not reset (age2>age) if a2>self.min_retirementage and newemp==3 and self.version in set([1,2,3,4]): newemp=2 if self.version in set([1,2,3,4]): self.empstate[t,newemp]+=1 self.alive[t]+=1 self.rewstate[t,newemp]+=r self.poprewstate[t,n]=r self.actions[t,n]=act self.popempstate[t,n]=newemp #self.salaries[t,n]=newsal self.salaries_emp[t,newemp]+=newsal self.time_in_state[t,newemp]+=tis if tis<=0.25 and newemp==5: self.infostats_mother_in_workforce[t]+=1 self.infostats_pinkslip[t,newemp]+=pink self.infostats_pop_pinkslip[t,n]=pink self.gempstate[t,newemp,g]+=1 self.stat_wage_reduction[t,newemp]+=wr self.stat_wage_reduction_g[t,newemp,g]+=wr self.galive[t,g]+=1 self.stat_tyoura[t,newemp]+=ura self.stat_toe[t,newemp]+=toe self.stat_pension[t,newemp]+=newpen self.stat_paidpension[t,newemp]+=paidpens self.stat_unemp_len[t,n]=tis self.popunemprightleft[t,n]=-self.env.unempright_left(newemp,tis,bu,a2,ura) self.popunemprightused[t,n]=bu self.infostats_group[n]=int(g) self.infostats_unempwagebasis[t,n]=uw self.infostats_unempwagebasis_acc[t,n]=uwr self.infostats_toe[t,n]=toe self.infostats_ove[t,newemp]+=ove self.infostats_kassanjasen[t]+=jasen self.infostats_pop_wage[t,n]=newsal self.infostats_pop_pension[t,n]=newpen self.infostats_puoliso[t]+=puoliso if q is not None: #print(newsal,q['palkkatulot']) self.infostats_taxes[t]+=q['verot']*self.timestep*12 self.infostats_wagetaxes[t]+=q['verot_ilman_etuuksia']*self.timestep*12 self.infostats_taxes_distrib[t,newemp]+=q['verot']*self.timestep*12 self.infostats_etuustulo[t]+=q['etuustulo_brutto']*self.timestep*12 self.infostats_etuustulo_group[t,g]+=q['etuustulo_brutto']*self.timestep*12 self.infostats_perustulo[t]+=q['perustulo']*self.timestep*12 self.infostats_palkkatulo[t]+=q['palkkatulot']*self.timestep*12 self.infostats_palkkatulo_eielakkeella[t]+=q['palkkatulot_eielakkeella']*self.timestep*12 self.infostats_ansiopvraha[t]+=q['ansiopvraha']*self.timestep*12 self.infostats_asumistuki[t]+=q['asumistuki']*self.timestep*12 self.infostats_valtionvero[t]+=q['valtionvero']*self.timestep*12 self.infostats_valtionvero_distrib[t,newemp]+=q['valtionvero']*self.timestep*12 self.infostats_kunnallisvero[t]+=q['kunnallisvero']*self.timestep*12 self.infostats_kunnallisvero_distrib[t,newemp]+=q['kunnallisvero']*self.timestep*12 self.infostats_ptel[t]+=q['ptel']*self.timestep*12 self.infostats_tyotvakmaksu[t]+=q['tyotvakmaksu']*self.timestep*12 self.infostats_tyoelake[t]+=q['elake_maksussa']*self.timestep*12 self.infostats_kokoelake[t]+=q['kokoelake']*self.timestep*12 self.infostats_opintotuki[t]+=q['opintotuki']*self.timestep*12 self.infostats_isyyspaivaraha[t]+=q['isyyspaivaraha']*self.timestep*12 self.infostats_aitiyspaivaraha[t]+=q['aitiyspaivaraha']*self.timestep*12 self.infostats_kotihoidontuki[t]+=q['kotihoidontuki']*self.timestep*12 self.infostats_sairauspaivaraha[t]+=q['sairauspaivaraha']*self.timestep*12 self.infostats_toimeentulotuki[t]+=q['toimtuki']*self.timestep*12 self.infostats_tulot_netto[t]+=q['kateen']*self.timestep*12 self.infostats_tyelpremium[t,n]=q['tyel_kokomaksu']*self.timestep*12 self.infostats_paid_tyel_pension[t,n]=q['puhdas_tyoelake']*self.timestep*12 self.infostats_sairausvakuutus[t]+=q['sairausvakuutus']*self.timestep*12 self.infostats_pvhoitomaksu[t,n]=q['pvhoito']*self.timestep*12 self.infostats_ylevero[t]+=q['ylevero']*self.timestep*12 self.infostats_ylevero_distrib[t,newemp]=q['ylevero']*self.timestep*12 self.infostats_poptulot_netto[t,n]=q['kateen']*self.timestep*12 self.infostats_children_under3[t,n]=c3 self.infostats_children_under7[t,n]=c7 self.infostats_npv0[n]=q['multiplier'] self.infostats_equivalent_income[t]+=q['eq'] if 'alv' in q: self.infostats_alv[t]+=q['alv'] #self.infostats_kassanjasen[t]+=1 elif self.version in set([0,101]): self.empstate[t,newemp]+=1 self.alive[t]+=1 self.rewstate[t,newemp]+=r self.infostats_tulot_netto[t]+=q['netto'] # already at annual level self.infostats_poptulot_netto[t,n]=q['netto'] self.poprewstate[t,n]=r self.popempstate[t,n]=newemp #self.salaries[t,n]=newsal self.salaries_emp[t,newemp]+=newsal self.time_in_state[t,newemp]+=tis self.infostats_equivalent_income[t]+=q['eq'] self.infostats_pop_wage[t,n]=newsal self.infostats_pop_pension[t,n]=newpen if self.dynprog and pred_r is not None: self.pop_predrew[t,n]=pred_r if self.version==101: self.infostats_savings[t,n]=savings self.actions[t,n]=act[0] self.sav_actions[t,n]=act[1] else: self.actions[t,n]=act # if self.version in set([1,2,3]): # self.gempstate[t,newemp,g]+=1 # self.stat_wage_reduction[t,newemp]+=wr # self.galive[t,g]+=1 # self.stat_tyoura[t,newemp]+=ura # self.stat_toe[t,newemp]+=toe # self.stat_pension[t,newemp]+=newpen # self.stat_paidpension[t,newemp]+=paidpens # self.stat_unemp_len[t,n]=tis # self.popunemprightleft[t,n]=0 # self.popunemprightused[t,n]=0 if aveV is not None: self.aveV[t,n]=aveV if not emp==newemp: self.siirtyneet[t,emp]+=1 self.siirtyneet_det[t,emp,newemp]+=1 else: self.pysyneet[t,emp]+=1 elif newemp<0: self.deceiced[t]+=1 def scale_error(self,x,target=None,averaged=False): return (target-self.comp_scaled_consumption(x,averaged=averaged)) def comp_employed_ratio_by_age(self,emp=None,grouped=False,g=0): if emp is None: if grouped: emp=np.squeeze(self.gempstate[:,:,g]) else: emp=self.empstate nn=np.sum(emp,1) if self.minimal: tyoll_osuus=(emp[:,1]+emp[:,3])/nn htv_osuus=(emp[:,1]+0.5*emp[:,3])/nn tyoll_osuus=np.reshape(tyoll_osuus,(tyoll_osuus.shape[0],1)) htv_osuus=np.reshape(htv_osuus,(htv_osuus.shape[0],1)) else: # työllisiksi lasketaan kokoaikatyössä olevat, osa-aikaiset, ve+työ, ve+osatyö # isyysvapaalla olevat jötetty pois, vaikka vapaa kestöö alle 3kk tyoll_osuus=(emp[:,1]+emp[:,8]+emp[:,9]+emp[:,10]) htv_osuus=(emp[:,1]+0.5*emp[:,8]+emp[:,9]+0.5*emp[:,10]) tyoll_osuus=np.reshape(tyoll_osuus,(tyoll_osuus.shape[0],1)) htv_osuus=np.reshape(htv_osuus,(htv_osuus.shape[0],1)) return tyoll_osuus,htv_osuus def comp_employed_aggregate(self,emp=None,start=20,end=63.5,grouped=False,g=0): if emp is None: if grouped: emp=self.gempstate[:,:,g] else: emp=self.empstate nn=np.sum(emp,1) if self.minimal: tyoll_osuus=(emp[:,1]+emp[:,3])/nn htv_osuus=(emp[:,1]+0.5*emp[:,3])/nn else: # työllisiksi lasketaan kokoaikatyössä olevat, osa-aikaiset, ve+työ, ve+osatyö # isyysvapaalla olevat jötetty pois, vaikka vapaa kestöö alle 3kk tyoll_osuus=(emp[:,1]+emp[:,8]+emp[:,9]+emp[:,10])/nn htv_osuus=(emp[:,1]+0.5*emp[:,8]+emp[:,9]+0.5*emp[:,10])/nn htv_osuus=self.comp_state_stats(htv_osuus,start=start,end=end,ratio=True) tyoll_osuus=self.comp_state_stats(tyoll_osuus,start=start,end=end,ratio=True) return tyoll_osuus,htv_osuus def comp_group_ps(self): return self.comp_palkkasumma(grouped=True) def comp_palkkasumma(self,start=19,end=68,grouped=False,scale_time=True): demog2=self.empstats.get_demog() if scale_time: scale=self.timestep else: scale=1.0 min_cage=self.map_age(start) max_cage=self.map_age(end)+1 if grouped: scalex=demog2/self.n_pop*self.timestep ps=np.zeros((self.n_time,6)) ps_norw=np.zeros((self.n_time,6)) a_ps=np.zeros(6) a_ps_norw=np.zeros(6) for k in range(self.n_pop): g=int(self.infostats_group[k,0]) for t in range(min_cage,max_cage): e=int(self.popempstate[t,k]) if e in set([1,10]): ps[t,g]+=self.infostats_pop_wage[t,k] ps_norw[t,g]+=self.infostats_pop_wage[t,k] elif e in set([8,9]): ps[t,g]+=self.infostats_pop_wage[t,k]*self.timestep for g in range(6): a_ps[g]=np.sum(scalex[min_cage:max_cage]*ps[min_cage:max_cage,g]) a_ps_norw[g]=np.sum(scalex[min_cage:max_cage]*ps_norw[min_cage:max_cage,g]) else: scalex=demog2/self.n_pop*self.timestep ps=np.zeros((self.n_time,1)) ps_norw=np.zeros((self.n_time,1)) for k in range(self.n_pop): for t in range(min_cage,max_cage): e=int(self.popempstate[t,k]) if e in set([1,10]): ps[t,0]+=self.infostats_pop_wage[t,k] ps_norw[t,0]+=self.infostats_pop_wage[t,k] elif e in set([8,9]): ps[t,0]+=self.infostats_pop_wage[t,k] a_ps=np.sum(scalex[min_cage:max_cage]*ps[min_cage:max_cage]) a_ps_norw=np.sum(scalex[min_cage:max_cage]*ps_norw[min_cage:max_cage]) return a_ps,a_ps_norw def comp_stats_agegroup(self,border=[19,35,50]): n_groups=len(border) low=border.copy() high=border.copy() high[0:n_groups-1]=border[1:n_groups] high[-1]=65 employed=np.zeros(n_groups) unemployed=np.zeros(n_groups) ahtv=np.zeros(n_groups) parttimeratio=np.zeros(n_groups) unempratio=np.zeros(n_groups) empratio=np.zeros(n_groups) i_ps=np.zeros(n_groups) i_ps_norw=np.zeros(n_groups) for n in range(n_groups): l=low[n] h=high[n] htv,tyollvaikutus,tyollaste,tyotosuus,tyottomat,osatyollaste=\ self.comp_tyollisyys_stats(self.empstate,scale_time=True,start=l,end=h,agegroups=True) ps,ps_norw=self.comp_palkkasumma(start=l,end=h) print(f'l {l} h {h}\nhtv {htv}\ntyollaste {tyollaste}\ntyotosuus {tyotosuus}\ntyottomat {tyottomat}\nosatyollaste {osatyollaste}\nps {ps}') employed[n]=tyollvaikutus ahtv[n]=htv unemployed[n]=tyottomat unempratio[n]=tyotosuus empratio[n]=tyollaste parttimeratio[n]=osatyollaste i_ps[n]=ps i_ps_norw[n]=ps_norw return employed,ahtv,unemployed,parttimeratio,i_ps,i_ps_norw,unempratio,empratio def comp_unemployed_ratio_by_age(self,emp=None,grouped=False,g=0): if emp is None: if grouped: emp=self.gempstate[:,:,g] else: emp=self.empstate nn=np.sum(emp,1) if self.minimal: tyot_osuus=emp[:,0]/nn tyot_osuus=np.reshape(tyot_osuus,(tyot_osuus.shape[0],1)) else: # työllisiksi lasketaan kokoaikatyössä olevat, osa-aikaiset, ve+työ, ve+osatyö # isyysvapaalla olevat jötetty pois, vaikka vapaa kestöö alle 3kk tyot_osuus=(emp[:,0]+emp[:,4]+emp[:,13])[:,None] #tyot_osuus=np.reshape(tyot_osuus,(tyot_osuus.shape[0],1)) return tyot_osuus def comp_unemployed_aggregate(self,emp=None,start=20,end=63.5,scale_time=True,grouped=False,g=0): if emp is None: if grouped: emp=self.gempstate[:,:,g] else: emp=self.empstate nn=np.sum(emp,1) if self.minimal: tyot_osuus=emp[:,0]/nn else: tyot_osuus=(emp[:,0]+emp[:,4]+emp[:,13])/nn #print(f'tyot_osuus {tyot_osuus}') unemp=self.comp_state_stats(tyot_osuus,start=start,end=end,ratio=True) return unemp def comp_parttime_aggregate(self,emp=None,start=20,end=63.5,scale_time=True,grouped=False,g=0): ''' Lukumäärätiedot (EI HTV!) ''' if emp is None: if grouped: emp=self.gempstate[:,:,g] else: emp=self.empstate nn=np.sum(emp,1) if not self.minimal: tyossa=(emp[:,1]+emp[:,10]+emp[:,8]+emp[:,9])/nn osatyossa=(emp[:,10]+emp[:,8])/nn else: tyossa=emp[:,1]/nn osatyossa=0*tyossa osatyo_osuus=osatyossa/tyossa osatyo_osuus=self.comp_state_stats(osatyo_osuus,start=start,end=end,ratio=True) kokotyo_osuus=1-osatyo_osuus return kokotyo_osuus,osatyo_osuus def comp_parttime_ratio_by_age(self,emp=None,grouped=False,g=0): if emp is None: if grouped: emp=self.gempstate[:,:,g] else: emp=self.empstate nn=np.sum(emp,1) if self.minimal: kokotyo_osuus=(emp[:,1])/nn osatyo_osuus=(emp[:,3])/nn else: if grouped: for g in range(6): kokotyo_osuus=(emp[:,1,g]+emp[:,9,g])/nn osatyo_osuus=(emp[:,8,g]+emp[:,10,g])/nn else: kokotyo_osuus=(emp[:,1]+emp[:,9])/nn osatyo_osuus=(emp[:,8]+emp[:,10])/nn osatyo_osuus=np.reshape(osatyo_osuus,(osatyo_osuus.shape[0],1)) kokotyo_osuus=np.reshape(kokotyo_osuus,(osatyo_osuus.shape[0],1)) return kokotyo_osuus,osatyo_osuus def comp_employed_ratio(self,emp): tyoll_osuus,htv_osuus=self.comp_employed_ratio_by_age(emp) tyot_osuus=self.comp_unemployed_ratio_by_age(emp) kokotyo_osuus,osatyo_osuus=self.comp_parttime_ratio_by_age(emp) return tyoll_osuus,htv_osuus,tyot_osuus,kokotyo_osuus,osatyo_osuus def comp_unemployed_detailed(self,emp): if self.minimal: ansiosid_osuus=emp[:,0]/np.sum(emp,1) tm_osuus=ansiosid_osuus*0 else: # työllisiksi lasketaan kokoaikatyössä olevat, osa-aikaiset, ve+työ, ve+osatyö # isyysvapaalla olevat jötetty pois, vaikka vapaa kestöö alle 3kk ansiosid_osuus=(emp[:,0]+emp[:,4])/np.sum(emp,1) tm_osuus=(emp[:,13])/np.sum(emp,1) return ansiosid_osuus,tm_osuus def comp_tyollisyys_stats(self,emp,scale_time=True,start=19,end=68,full=False,tyot_stats=False,agg=False,shapes=False,only_groups=False,g=0,agegroups=False): demog2=self.empstats.get_demog() if scale_time: scale=self.timestep else: scale=1.0 min_cage=self.map_age(start) max_cage=self.map_age(end)+1 scalex=demog2[min_cage:max_cage]/self.n_pop*scale if only_groups: tyollosuus,htvosuus,tyot_osuus,kokotyo_osuus,osatyo_osuus=self.comp_employed_ratio(emp) else: tyollosuus,htvosuus,tyot_osuus,kokotyo_osuus,osatyo_osuus=self.comp_employed_ratio(emp) htv=np.sum(scalex*htvosuus[min_cage:max_cage]) tyollvaikutus=np.sum(scalex*tyollosuus[min_cage:max_cage]) tyottomat=np.sum(scalex*tyot_osuus[min_cage:max_cage]) osatyollvaikutus=np.sum(scalex*osatyo_osuus[min_cage:max_cage]) kokotyollvaikutus=np.sum(scalex*kokotyo_osuus[min_cage:max_cage]) haj=np.mean(np.std(tyollosuus[min_cage:max_cage])) tyollaste=tyollvaikutus/(np.sum(scalex)*self.n_pop) osatyollaste=osatyollvaikutus/(kokotyollvaikutus+osatyollvaikutus) kokotyollaste=kokotyollvaikutus/(kokotyollvaikutus+osatyollvaikutus) if tyot_stats: if agg: #d2=np.squeeze(demog2) tyolliset_osuus=np.squeeze(tyollosuus) tyottomat_osuus=np.squeeze(tyot_osuus) return tyolliset_ika,tyottomat_ika,htv_ika,tyolliset_osuus,tyottomat_osuus else: d2=np.squeeze(demog2) tyolliset_ika=np.squeeze(scale*d2*np.squeeze(htvosuus)) tyottomat_ika=np.squeeze(scale*d2*np.squeeze(tyot_osuus)) htv_ika=np.squeeze(scale*d2*np.squeeze(htvosuus)) tyolliset_osuus=np.squeeze(tyollosuus) tyottomat_osuus=np.squeeze(tyot_osuus) return tyolliset_ika,tyottomat_ika,htv_ika,tyolliset_osuus,tyottomat_osuus elif full: return htv,tyollvaikutus,haj,tyollaste,tyollosuus,osatyollvaikutus,kokotyollvaikutus,osatyollaste,kokotyollaste elif agegroups: tyot_osuus=self.comp_unemployed_aggregate(start=start,end=end) return htv,tyollvaikutus,tyollaste,tyot_osuus,tyottomat,osatyollaste else: return htv,tyollvaikutus,haj,tyollaste,tyollosuus def comp_employment_stats(self,scale_time=True,returns=False): demog2=self.empstats.get_demog() if scale_time: scale=self.timestep else: scale=1.0 min_cage=self.map_age(self.min_age) max_cage=self.map_age(self.max_age)+1 scalex=np.squeeze(demog2/self.n_pop*self.timestep) d=np.squeeze(demog2[min_cage:max_cage]) self.ratiostates=self.empstate/self.alive self.demogstates=(self.empstate.T*scalex).T if self.minimal>0: self.stats_employed=self.demogstates[:,0]+self.demogstates[:,3] self.stats_parttime=self.demogstates[:,3] self.stats_unemployed=self.demogstates[:,0] self.stats_all=np.sum(self.demogstates,1) else: self.stats_employed=self.demogstates[:,0]+self.demogstates[:,10]+self.demogstates[:,8]+self.demogstates[:,9] self.stats_parttime=self.demogstates[:,10]+self.demogstates[:,8] self.stats_unemployed=self.demogstates[:,0]+self.demogstates[:,4]+self.demogstates[:,13] self.stats_all=np.sum(self.demogstates,1) if returns: return self.stats_employed,self.stats_parttime,self.stats_unemployed # def test_emp(self): # g_emp=0 # g_htv=0 # g_10=0 # g_1=0 # g_8=0 # g_9=0 # g_x=0 # scalex=1 # # demog2=self.empstats.get_demog() # scalex=np.squeeze(demog2/self.n_pop*self.timestep) # # # for g in range(6): # q=self.comp_participants(grouped=True,g=g) # #g_1+=np.sum(self.gempstate[:,1,g]) # #g_10+=np.sum(self.gempstate[:,10,g]) # #g_8+=np.sum(self.gempstate[:,8,g]) # #g_9+=np.sum(self.gempstate[:,9,g]) # g_emp+=q['palkansaajia'] # g_htv+=q['htv'] # g_x+=np.sum((self.gempstate[:,1,g]+self.gempstate[:,10,g])*scalex) # # q=self.comp_participants() # s_1=np.sum(self.empstate[:,1]) # s_10=np.sum(self.empstate[:,10]) # s_8=np.sum(self.empstate[:,8]) # s_9=np.sum(self.empstate[:,9]) # s_x=np.sum((self.empstate[:,1]+self.empstate[:,10])*scalex) # emp=q['palkansaajia'] # htv=q['htv'] # # print(f'htv {htv} vs g_htv {g_htv}') # print(f'emp {emp} vs g_emp {g_emp}') # print(f's_x {s_x} vs g_x {g_x}') # #print(f's_1 {s_1} vs g_1 {g_1}') # #print(f's_10 {s_10} vs g_10 {g_10}') # #print(f's_8 {s_8} vs g_8 {g_8}') # #print(f's_9 {s_9} vs g_9 {g_9}') def comp_participants(self,scale=True,include_retwork=True,grouped=False,g=0): ''' <NAME> lkm scalex olettaa, että naisia & miehiä yhtä paljon. Tämän voisi tarkentaa. ''' demog2=self.empstats.get_demog() scalex=np.squeeze(demog2/self.n_pop*self.timestep) #print('version',self.version) q={} if self.version in set([1,2,3,4]): if grouped: #print('group=',g) emp=np.squeeze(self.gempstate[:,:,g]) q['yhteensä']=np.sum(np.sum(emp,axis=1)*scalex) if include_retwork: q['palkansaajia']=np.sum((emp[:,1]+emp[:,10]+emp[:,8]+emp[:,9])*scalex) q['htv']=np.sum((emp[:,1]+0.5*emp[:,10]+0.5*emp[:,8]+emp[:,9])*scalex) else: q['palkansaajia']=np.sum((emp[:,1]+emp[:,10])*scalex) q['htv']=np.sum((emp[:,1]+0.5*emp[:,10])*scalex) q['ansiosidonnaisella']=np.sum((emp[:,0]+emp[:,4])*scalex) q['tmtuella']=np.sum(emp[:,13]*scalex) q['isyysvapaalla']=np.sum(emp[:,6]*scalex) q['kotihoidontuella']=np.sum(emp[:,7]*scalex) q['vanhempainvapaalla']=np.sum(emp[:,5]*scalex) else: q['yhteensä']=np.sum(np.sum(self.empstate[:,:],axis=1)*scalex) if include_retwork: q['palkansaajia']=np.sum((self.empstate[:,1]+self.empstate[:,10]+self.empstate[:,8]+self.empstate[:,9])*scalex) q['htv']=np.sum((self.empstate[:,1]+0.5*self.empstate[:,10]+0.5*self.empstate[:,8]+self.empstate[:,9])*scalex) else: q['palkansaajia']=
np.sum((self.empstate[:,1]+self.empstate[:,10])*scalex)
numpy.sum
import numpy as np class FDBuffer(object): """A block of possibly-zero frequency-domain samples of a given size. Attributes: is_zero (bool): Are all samples in this block zero? If False, then buffer is not Null. buffer (None or array): Complex samples. """ def __init__(self, block_size): self.block_size = block_size self.is_zero = True self.buffer = None def alloc_buffer(self): if self.buffer is None: self.buffer = np.zeros(self.block_size + 1, dtype=np.complex) def clear(self): self.is_zero = True if self.buffer is not None: self.buffer.fill(0) def __iadd__(self, other): if not other.is_zero: self.alloc_buffer() self.buffer += other.buffer self.is_zero = False return self @classmethod def from_td(cls, block_size, td): b = cls(block_size) if np.any(td): b.is_zero = False b.buffer = np.fft.rfft(td, block_size * 2) return b def to_td(self, td): if not self.is_zero: td[:] = np.fft.irfft(self.buffer)[:self.block_size] def FDBuffers_to_td(buffers): """Turn a list of frequency-domain buffers into an array of time-domain samples of the same shape.""" td = np.zeros((len(buffers), buffers[0].block_size)) for buf, td_channel in zip(buffers, td): buf.to_td(td_channel) return td def fma(x, a, b): """Implement x += a * b for FDBuffer arguments""" if (not a.is_zero) and (not b.is_zero): x.alloc_buffer() x.buffer += a.buffer * b.buffer x.is_zero = False class MatrixBlockConvolver(object): """Apply a matrix of time-domain filters. This can be more efficient than using OverlapSaveConvolver if some input or output channels are reused, as we only need to FFT each input and output channel once. Parameters: block_size (int): time domain block size for input and output blocks n_in (int): number of input channels n_out (int): number of output channels filters (list): Single-channel filters to apply. Each element is a 3-tuple containing the input channel number, output channel number, and a single channel filter. """ class FDConvolverChannel(object): """A single channel of concolution in the frequency domain.""" def __init__(self, block_size, f): self.block_size = block_size self.filter_blocks_fd = [] self.blocks_fd = [] for start in range(0, len(f), self.block_size): end = min(len(f), start + self.block_size) self.filter_blocks_fd.append( FDBuffer.from_td(self.block_size, f[start:end])) self.blocks_fd.append(FDBuffer(self.block_size)) def filter_block(self, in_block_fd): # clear the returned block from the previous frame self.blocks_fd[-1].clear() for filter_block, block in zip(self.filter_blocks_fd, self.blocks_fd): fma(block, filter_block, in_block_fd) self.blocks_fd.append(self.blocks_fd.pop(0)) return self.blocks_fd[-1] def __init__(self, block_size, n_in, n_out, filters): self.block_size = block_size self.filters = [(in_ch, out_ch, self.FDConvolverChannel(block_size, filter)) for in_ch, out_ch, filter in filters] self.input_block =
np.zeros((n_in, block_size * 2))
numpy.zeros
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ############################################################################## # inversion of ETAS parameters # # as described by Mizrahi et al., 2021 # <NAME>, <NAME>, <NAME>; # The Effect of Declustering on the Size Distribution of Mainshocks. # Seismological Research Letters 2021; doi: https://doi.org/10.1785/0220200231 ############################################################################## from scipy.optimize import minimize from scipy.special import gamma as gamma_func, gammaln, gammaincc, exp1 import pandas as pd import numpy as np import geopandas as gpd import datetime as dt import json import os import pprint from functools import partial import pyproj from shapely.geometry import Polygon import shapely.ops as ops from mc_b_est import round_half_up, estimate_beta_tinti def coppersmith(mag, typ): # result is in km # typ is one of the following: # 1: strike slip fault # 2: reverse fault # 3: normal fault # 4: oblique fault if typ == 1: # surface rupture length SRL = np.power(10, (0.74 * mag - 3.55)) # subsurface rupture length SSRL = np.power(10, (0.62 * mag - 2.57)) # rupture width RW = np.power(10, (0.27 * mag - 0.76)) # rupture area RA = np.power(10, (0.9 * mag - 3.42)) # average slip AD = np.power(10, (0.9 * mag - 6.32)) elif typ == 2: # surface rupture length SRL = np.power(10, (0.63 * mag - 2.86)) # subsurface rupture length SSRL = np.power(10, (0.58 * mag - 2.42)) # rupture width RW = np.power(10, (0.41 * mag - 1.61)) # rupture area RA = np.power(10, (0.98 * mag - 3.99)) # average slip AD = np.power(10, (0.08 * mag - 0.74)) elif typ == 3: # surface rupture length SRL = np.power(10, (0.5 * mag - 2.01)) # subsurface rupture length SSRL = np.power(10, (0.5 * mag - 1.88)) # rupture width RW = np.power(10, (0.35 * mag - 1.14)) # rupture area RA = np.power(10, (0.82 * mag - 2.87)) # average slip AD = np.power(10, (0.63 * mag - 4.45)) elif typ == 4: # surface rupture length SRL = np.power(10, (0.69 * mag - 3.22)) # subsurface rupture length SSRL = np.power(10, (0.59 * mag - 2.44)) # rupture width RW = np.power(10, (0.32 * mag - 1.01)) # rupture area RA = np.power(10, (0.91 * mag - 3.49)) # average slip AD = np.power(10, (0.69 * mag - 4.80)) return { 'SRL': SRL, 'SSRL': SSRL, 'RW': RW, 'RA': RA, 'AD': AD } def rectangle_surface(lat1, lat2, lon1, lon2): l = [[lat1, lon1], [lat2, lon1], [lat2, lon2], [lat1, lon2]] polygon = Polygon(l) geom_area = ops.transform( partial( pyproj.transform, pyproj.Proj('EPSG:4326'), pyproj.Proj( proj='aea', lat1=polygon.bounds[0], lat2=polygon.bounds[2])), polygon) return geom_area.area / 1e6 def polygon_surface(polygon): geom_area = ops.transform( partial( pyproj.transform, pyproj.Proj('EPSG:4326'), pyproj.Proj( proj='aea', lat_1=polygon.bounds[0], lat_2=polygon.bounds[2])), polygon) return geom_area.area / 1e6 def hav(theta): return np.square(np.sin(theta / 2)) def haversine(lat_rad_1, lat_rad_2, lon_rad_1, lon_rad_2, earth_radius=6.3781e3): # to calculate distance on a sphere d = 2 * earth_radius * np.arcsin( np.sqrt( hav(lat_rad_1 - lat_rad_2) + np.cos(lat_rad_1) * np.cos(lat_rad_2) * hav(lon_rad_1 - lon_rad_2) ) ) return d def branching_ratio(theta, beta): log10_mu, log10_k0, a, log10_c, omega, log10_tau, log10_d, gamma, rho = theta k0 = np.power(10, log10_k0) c = np.power(10, log10_c) d = np.power(10, log10_d) tau = np.power(10, log10_tau) eta = beta * k0 * np.pi * np.power(d, -rho) * np.power(tau, -omega) * np.exp(c / tau) * upper_gamma_ext(-omega,c / tau) / (rho * (-a + beta + gamma * rho)) return eta def to_days(timediff): return timediff / dt.timedelta(days=1) def upper_gamma_ext(a, x): if a > 0: return gammaincc(a, x) * gamma_func(a) elif a == 0: return exp1(x) else: return (upper_gamma_ext(a + 1, x) - np.power(x, a)*np.exp(-x)) / a def parameter_array2dict(theta): return dict(zip( ['log10_mu', 'log10_k0', 'a', 'log10_c', 'omega', 'log10_tau', 'log10_d', 'gamma', 'rho'], theta )) def parameter_dict2array(parameters): order = ['log10_mu', 'log10_k0', 'a', 'log10_c', 'omega', 'log10_tau', 'log10_d', 'gamma', 'rho'] return np.array([ parameters[key] for key in order ]) def set_initial_values(ranges=None): if ranges is None: log10_mu_range = (-10, 0) log10_k0_range = (-4, 0) a_range = (0.01, 5.) log10_c_range = (-8, 0) omega_range = (-0.99, 1) log10_tau_range = (0.01, 5) log10_d_range = (-4, 1) gamma_range = (0.01, 5.) rho_range = (0.01, 5.) else: log10_mu_range, log10_k0_range, a_range, log10_c_range, omega_range, log10_tau_range, log10_d_range, gamma_range, rho_range = ranges log10_mu = np.random.uniform(*log10_mu_range) log10_k0 = np.random.uniform(*log10_k0_range) a = np.random.uniform(*a_range) log10_c = np.random.uniform(*log10_c_range) omega = np.random.uniform(*omega_range) log10_tau = np.random.uniform(*log10_tau_range) log10_d = np.random.uniform(*log10_d_range) gamma = np.random.uniform(*gamma_range) rho = np.random.uniform(*rho_range) return [ log10_mu, log10_k0, a, log10_c, omega, log10_tau, log10_d, gamma, rho ] def prepare_catalog(data, mc, coppersmith_multiplier, timewindow_start, timewindow_end, earth_radius, delta_m=0): # precalculates distances in time and space between events that are potentially related to each other calc_start = dt.datetime.now() # only use data above completeness magnitude if delta_m > 0: data["magnitude"] = round_half_up(data["magnitude"] / delta_m) * delta_m relevant = data.query("magnitude >= @mc").copy() relevant.sort_values(by='time', inplace=True) # all entries can be sources, but targets only after timewindow start targets = relevant.query("time>=@timewindow_start").copy() # calculate some source stuff relevant["distance_range_squared"] = np.square( coppersmith(relevant["magnitude"], 4)["SSRL"] * coppersmith_multiplier ) relevant["source_to_end_time_distance"] = to_days(timewindow_end - relevant["time"]) relevant["pos_source_to_start_time_distance"] = to_days(timewindow_start - relevant["time"]).apply( lambda x: max(x, 0) ) # translate target lat, lon to radians for spherical distance calculation targets['target_lat_rad'] = np.radians(targets['latitude']) targets['target_lon_rad'] = np.radians(targets['longitude']) targets["target_time"] = targets["time"] targets["target_id"] = targets.index targets["target_time"] = targets["time"] # columns that are needed later targets["source_id"] = 'i' targets["source_magnitude"] = 0.0 targets["time_distance"] = 0.0 targets["spatial_distance_squared"] = 0.0 targets["source_to_end_time_distance"] = 0.0 targets["pos_source_to_start_time_distance"] = 0.0 targets = targets.sort_values(by="time") # define index and columns that are later going to be needed if pd.__version__ >= '0.24.0': index = pd.MultiIndex( levels=[[], []], names=["source_id", "target_id"], codes=[[], []] ) else: index = pd.MultiIndex( levels=[[], []], names=["source_id", "target_id"], labels=[[], []] ) columns = [ "target_time", "source_magnitude", "spatial_distance_squared", "time_distance", "source_to_end_time_distance", "pos_source_to_start_time_distance" ] res_df = pd.DataFrame(index=index, columns=columns) df_list = [] print(' number of sources:', len(relevant.index)) print(' number of targets:', len(targets.index)) for source in relevant.itertuples(): stime = source.time # filter potential targets if source.time < timewindow_start: potential_targets = targets.copy() else: potential_targets = targets.query( "time>@stime" ).copy() targets = potential_targets.copy() if potential_targets.shape[0] == 0: continue # get values of source event slatrad = np.radians(source.latitude) slonrad = np.radians(source.longitude) drs = source.distance_range_squared # get source id and info of target events potential_targets["source_id"] = source.Index potential_targets["source_magnitude"] = source.magnitude # calculate space and time distance from source to target event potential_targets["time_distance"] = to_days(potential_targets["target_time"] - stime) potential_targets["spatial_distance_squared"] = np.square( haversine( slatrad, potential_targets['target_lat_rad'], slonrad, potential_targets['target_lon_rad'], earth_radius ) ) # filter for only small enough distances potential_targets.query("spatial_distance_squared <= @drs", inplace=True) # calculate time distance from source event to timewindow boundaries for integration later potential_targets["source_to_end_time_distance"] = source.source_to_end_time_distance potential_targets["pos_source_to_start_time_distance"] = source.pos_source_to_start_time_distance # append to resulting dataframe df_list.append(potential_targets) res_df = pd.concat(df_list)[["source_id", "target_id"] + columns].reset_index().set_index( ["source_id", "target_id"]) print(' took', (dt.datetime.now() - calc_start), 'to prepare the distances\n') return res_df def triggering_kernel(metrics, params): # given time distance in days and squared space distance in square km and magnitude of target event, # calculate the (not normalized) likelihood, that source event triggered target event time_distance, spatial_distance_squared, m = metrics theta, mc = params log10_mu, log10_k0, a, log10_c, omega, log10_tau, log10_d, gamma, rho = theta mu = np.power(10, log10_mu) k0 = np.power(10, log10_k0) c = np.power(10, log10_c) tau =
np.power(10, log10_tau)
numpy.power
import numpy as np import matplotlib.pyplot as plt import argparse from planet import tools import functools import os import sys from scipy import stats from collections import OrderedDict # name = 'hard_negative' # name = 'contra_traj12' # name = 'contra_step' name = 'log_likeli' name = 'planning' OUT_DIR = 'out_cem/' + name PALETTE = 10 * ( '#377eb8', '#4daf4a', '#984ea3', '#e41a1c', '#ff7f00', '#a65628', '#f781bf', '#888888', '#a6cee3', '#b2df8a', '#cab2d6', '#fb9a99', '#fdbf6f') ''' python -m planet.scripts.plot_cem --logdir logload/ ''' def upper_tri_masking(A): m = A.shape[0] r = np.arange(m) mask = r[:, None] < r return A[mask] def stratify_by_iter(trajs, part_s=3): num_parts = int(np.ceil(10 / part_s)) num_iters = trajs.shape[0] itr = np.arange(num_iters) % 10 batch = {} prev =
np.zeros_like(itr)
numpy.zeros_like
from .transients import ihpss from .onset import OnsetDetector, ODF from .consensus import ConsensusBeatTracker from .params import DEFAULTS import numpy def align_beats_onsets(beats, onsets, thresh): i = 0 j = 0 aligned_beats = [] while i < len(onsets) and j < len(beats): curr_onset = onsets[i] curr_beat = beats[j] if
numpy.abs(curr_onset - curr_beat)
numpy.abs
# coding=UTF-8 from manimlib.imports import * import numpy as np numbers = [21, 99, 49, 11, 66, 5, 78, 86] class Sort(Scene): def construct(self): # 显示文字 text1 = Text("归并排序\n\n采用分治法\n先二分成无数个子序列\n再对每个子序列排序\n最后合并为有序序列", color=WHITE, font="黑体") text1.scale(1.5) text1.move_to(np.array([0.0, 0.0, 0.0])) self.play(ShowCreation(text1)) self.wait(2) self.play(Uncreate(text1)) # 1级 group1 = VGroup() for i in range(8): group1.add(Square(side_length=1)) if i > 0: group1[i].next_to(group1[i-1], RIGHT, 0) group1.move_to(np.array([0.0, 3.0, 0.0])) self.play(FadeIn(group1)) # 数字 elements = [] for i in range(len(numbers)): elements.append(Integer(numbers[i])) elements[i].move_to(np.array([-3.5 + i * 1.0, 3.0, 0.0])) self.play(ShowCreation(elements[i])) # 2级 arrow1to2_1 = Arrow(start=
np.array([-0.5, 2.5, 0.0])
numpy.array
import numpy as np import matplotlib.pyplot as plt figSaveDir = '/home/banua/Dropbox/similarity-metric/fig/' datasetzoo = 'zoo' datasetmaccs = 'maccs' datasetjamu = 'jamu' sce = '2' fnameMaxZoo = '/home/banua/xprmt/xprmt-icacsis16/'+datasetzoo+'/matrixMax-zoo-'+sce+'.csv' fnameMaxMaccs = '/home/banua/xprmt/xprmt-icacsis16/'+datasetmaccs+'/matrixMax-maccs-'+sce+'.csv' fnameMaxJamu = '/home/banua/xprmt/xprmt-icacsis16/'+datasetjamu+'/matrixMax-jamu-'+sce+'.csv' x = np.arange(101) maxZoo = np.loadtxt(fnameMaxZoo, delimiter='\t') maxzoostd = [np.std(maxZoo[i, :]) for i in range(0, maxZoo.shape[0])] maxZoo = [np.average(maxZoo[i, :]) for i in range(0, maxZoo.shape[0])] maxMaccs = np.loadtxt(fnameMaxMaccs, delimiter='\t') maxMaccsstd = [np.std(maxMaccs[i, :]) for i in range(0, maxMaccs.shape[0])] maxMaccs = [np.average(maxMaccs[i, :]) for i in range(0, maxMaccs.shape[0])] maxJamu = np.loadtxt(fnameMaxJamu, delimiter='\t') maxJamustd = [
np.std(maxJamu[i, :])
numpy.std
# -*- coding: utf-8 -*- import numpy as np import pandas as pd import utility_functions as utilfunc import sys import config # Import from support function repo import dispatch_functions as dFuncs import tariff_functions as tFuncs import decorators np.seterr(divide='ignore', invalid='ignore') #============================================================================== # Load logger logger = utilfunc.get_logger() #============================================================================== #%% def calc_system_size_and_financial_performance(agent): """ This function accepts the characteristics of a single agent and evaluates the financial performance of a set of solar+storage system sizes. The system size with the highest NPV is selected. Parameters ---------- agent : pandas.Series Single agent (row) from an agent dataframe. Returns ------- pandas.Series Agent with system size, business model and corresponding financial performance. """ #=========================================================================# # Setup #=========================================================================# try: in_cols = list(agent.index) if config.VERBOSE: logger.info(' ') logger.info("\tRunning system size calculations for: {}, {}, {}".format(agent['state'], agent['tariff_class'], agent['sector_abbr'])) logger.info('real_discount: {}'.format(agent['discount_rate'])) logger.info('loan_rate: {}'.format(agent['loan_rate'])) logger.info('down_payment: {}'.format(agent['down_payment'])) # Set resolution of dispatcher d_inc_n_est = 10 DP_inc_est = 12 d_inc_n_acc = 20 DP_inc_acc = 12 # Extract load profile load_profile = np.array(agent['consumption_hourly']) agent.loc['timesteps_per_year'] = 1 # Extract load profile pv_cf_profile = np.array(agent['solar_cf_profile']) / 1e3 agent['naep'] = float(np.sum(pv_cf_profile)) # Create battery object batt = dFuncs.Battery() batt_ratio = 3.0 tariff = tFuncs.Tariff(dict_obj=agent.loc['tariff_dict']) # Create export tariff object if agent['nem_system_size_limit_kw'] != 0: export_tariff = tFuncs.Export_Tariff(full_retail_nem=True) export_tariff.periods_8760 = tariff.e_tou_8760 export_tariff.prices = tariff.e_prices_no_tier else: export_tariff = tFuncs.Export_Tariff(full_retail_nem=False) original_bill, original_results = tFuncs.bill_calculator(load_profile, tariff, export_tariff) if config.VERBOSE: logger.info('original_bill: {}'.format(original_bill)) agent['first_year_elec_bill_without_system'] = original_bill * agent['elec_price_multiplier'] if config.VERBOSE: logger.info('multiplied original bill: {}'.format(agent['first_year_elec_bill_without_system'])) if agent['first_year_elec_bill_without_system'] == 0: agent['first_year_elec_bill_without_system']=1.0 agent['first_year_elec_cents_per_kwh_without_system'] = agent['first_year_elec_bill_without_system'] / agent['load_per_customer_in_bin_kwh'] #=========================================================================# # Estimate bill savings revenue from a set of solar+storage system sizes #=========================================================================# max_size_load = agent.loc['load_per_customer_in_bin_kwh']/agent.loc['naep'] max_size_roof = agent.loc['developable_roof_sqft'] * agent.loc['developable_buildings_pct'] * agent.loc['pv_power_density_w_per_sqft']/1000.0 agent.loc['max_pv_size'] = min([max_size_load, max_size_roof, agent.loc['nem_system_size_limit_kw']]) if config.VERBOSE: logger.info('max_size_load: {}'.format(max_size_load)) logger.info('max_size_roof: {}'.format(max_size_roof)) dynamic_sizing = True #False if dynamic_sizing: pv_sizes = np.arange(0, 1.1, 0.1) * agent.loc['max_pv_size'] else: # Size the PV system depending on NEM availability, either to 95% of load w/NEM, or 50% w/o NEM. In both cases, roof size is a constraint. if export_tariff.full_retail_nem==True: pv_sizes = np.array([min(max_size_load * 0.95, max_size_roof)]) else: pv_sizes = np.array([min(max_size_load * 0.5, max_size_roof)]) batt_powers = np.zeros(1) # Calculate the estimation parameters for each PV size est_params_df = pd.DataFrame(index=pv_sizes) est_params_df['estimator_params'] = 'temp' for pv_size in pv_sizes: load_and_pv_profile = load_profile - pv_size*pv_cf_profile est_params_df.at[pv_size, 'estimator_params'] = dFuncs.calc_estimator_params(load_and_pv_profile, tariff, export_tariff, batt.eta_charge, batt.eta_discharge) # Create df with all combinations of solar+storage sizes system_df = pd.DataFrame(dFuncs.cartesian([pv_sizes, batt_powers]), columns=['pv', 'batt_kw']) system_df['est_bills'] = None pv_kwh_by_year = np.array([sum(x) for x in np.split(np.array(pv_cf_profile), agent.loc['timesteps_per_year'])]) pv_kwh_by_year = np.concatenate([(pv_kwh_by_year - ( pv_kwh_by_year * agent.loc['pv_deg'] * i)) for i in range(1, agent.loc['economic_lifetime']+1)]) system_df['kwh_by_timestep'] = system_df['pv'].apply(lambda x: x * pv_kwh_by_year) n_sys = len(system_df) for i in system_df.index: pv_size = system_df['pv'][i].copy() load_and_pv_profile = load_profile - pv_size*pv_cf_profile # for buy all sell all agents: calculate value of generation based on wholesale prices and subtract from original bill if agent.loc['compensation_style'] == 'Buy All Sell All': sell_all = np.sum(pv_size * pv_cf_profile * agent.loc['wholesale_elec_use_per_kwh']) system_df.loc[i, 'est_bills'] = original_bill - sell_all # for net billing agents: if system size within policy limits, set sell rate to wholesale price -- otherwise, set sell rate to 0 elif (agent.loc['compensation_style'] == 'Net Billing (Wholesale)') or (agent.loc['compensation_style'] == 'Net Billing (Avoided Cost)'): export_tariff = tFuncs.Export_Tariff(full_retail_nem=False) if pv_size<=agent.loc['nem_system_size_limit_kw']: if agent.loc['compensation_style'] == 'Net Billing (Wholesale)': export_tariff.set_constant_sell_price(agent.loc['wholesale_elec_usd_per_kwh']) elif agent.loc['compensation_style'] == 'Net Billing (Avoided Cost)': export_tariff.set_constant_sell_price(agent.loc['hourly_excess_sell_rate_usd_per_kwh']) else: export_tariff.set_constant_sell_price(0.) batt_power = system_df['batt_kw'][i].copy() batt.set_cap_and_power(batt_power*batt_ratio, batt_power) if batt_power > 0: estimator_params = est_params_df.loc[system_df['pv'][i].copy(), 'estimator_params'] estimated_results = dFuncs.determine_optimal_dispatch(load_profile, pv_size*pv_cf_profile, batt, tariff, export_tariff, estimator_params=estimator_params, estimated=True, DP_inc=DP_inc_est, d_inc_n=d_inc_n_est, estimate_demand_levels=True) system_df.loc[i, 'est_bills'] = estimated_results['bill_under_dispatch'] else: bill_with_PV, _ = tFuncs.bill_calculator(load_and_pv_profile, tariff, export_tariff) system_df.loc[i, 'est_bills'] = bill_with_PV #+ one_time_charge # for net metering agents: if system size within policy limits, set full_retail_nem=True -- otherwise set export value to wholesale price elif agent.loc['compensation_style'] == 'Net Metering': if pv_size<=agent.loc['nem_system_size_limit_kw']: export_tariff = tFuncs.Export_Tariff(full_retail_nem=True) export_tariff.periods_8760 = tariff.e_tou_8760 export_tariff.prices = tariff.e_prices_no_tier else: export_tariff = tFuncs.Export_Tariff(full_retail_nem=False) export_tariff.set_constant_sell_price(agent.loc['wholesale_elec_usd_per_kwh']) batt_power = system_df['batt_kw'][i].copy() batt.set_cap_and_power(batt_power*batt_ratio, batt_power) if batt_power > 0: estimator_params = est_params_df.loc[system_df['pv'][i].copy(), 'estimator_params'] estimated_results = dFuncs.determine_optimal_dispatch(load_profile, pv_size*pv_cf_profile, batt, tariff, export_tariff, estimator_params=estimator_params, estimated=True, DP_inc=DP_inc_est, d_inc_n=d_inc_n_est, estimate_demand_levels=True) system_df.loc[i, 'est_bills'] = estimated_results['bill_under_dispatch'] else: bill_with_PV, _ = tFuncs.bill_calculator(load_and_pv_profile, tariff, export_tariff) system_df.loc[i, 'est_bills'] = bill_with_PV #+ one_time_charge # for agents with no compensation mechanism: set sell rate to 0 and calculate bill with net load profile else: export_tariff = tFuncs.Export_Tariff(full_retail_nem=False) export_tariff.set_constant_sell_price(0.) batt_power = system_df['batt_kw'][i].copy() batt.set_cap_and_power(batt_power*batt_ratio, batt_power) if batt_power > 0: estimator_params = est_params_df.loc[system_df['pv'][i].copy(), 'estimator_params'] estimated_results = dFuncs.determine_optimal_dispatch(load_profile, pv_size*pv_cf_profile, batt, tariff, export_tariff, estimator_params=estimator_params, estimated=True, DP_inc=DP_inc_est, d_inc_n=d_inc_n_est, estimate_demand_levels=True) system_df.loc[i, 'est_bills'] = estimated_results['bill_under_dispatch'] else: bill_with_PV, _ = tFuncs.bill_calculator(load_and_pv_profile, tariff, export_tariff) system_df.loc[i, 'est_bills'] = bill_with_PV #+ one_time_charge # Calculate bill savings cash flow # elec_price_multiplier is the scalar increase in the cost of electricity since 2016, when the tariffs were curated # elec_price_escalator is this agent's assumption about how the price of electricity will change in the future. avg_est_bill_savings = (original_bill - np.array(system_df['est_bills'])).reshape([n_sys, 1]) * agent['elec_price_multiplier'] est_bill_savings = np.zeros([n_sys, agent['economic_lifetime']+1]) est_bill_savings[:,1:] = avg_est_bill_savings escalator = (np.zeros(agent['economic_lifetime']+1) + agent['elec_price_escalator'] + 1)**list(range(agent['economic_lifetime']+1)) degradation = (np.zeros(agent['economic_lifetime']+1) + 1 - agent['pv_deg'])**list(range(agent['economic_lifetime']+1)) est_bill_savings = est_bill_savings * escalator * degradation system_df['est_bill_savings'] = est_bill_savings[:, 1] # simple representation of 70% minimum of batt charging from PV in order to # qualify for the ITC. Here, if batt kW is greater than 25% of PV kW, no ITC. batt_chg_frac = np.where(system_df['pv'] >= system_df['batt_kw']*4.0, 1.0, 0) #=========================================================================# # Determine financial performance of each system size #=========================================================================# if 'investment_incentive_pct' in agent.index: if agent['investment_incentive_year_cutoff'] >= agent['year']: investment_incentives = np.full(system_df.shape[0], agent['investment_incentive_pct']) else: investment_incentives = np.zeros(system_df.shape[0]) else: investment_incentives = np.zeros(system_df.shape[0]) if 'capacity_incentive' in agent.index: raise NotImplementedError else: capacity_based_incentives = np.zeros(system_df.shape[0]) if 'production_incentive' in agent.index: raise NotImplementedError else: production_based_incentives = np.tile(np.array([0]*agent.loc['economic_lifetime']), (system_df.shape[0],1)) if 'cash_incentives' in agent.index: raise NotImplementedError else: cash_incentives = np.array([0]*system_df.shape[0]) cf_results_est = cashflow_constructor(bill_savings=est_bill_savings, pv_size=np.array(system_df['pv']), pv_price=agent.loc['pv_price_per_kw'], pv_om=agent.loc['pv_om_per_kw'], batt_cap=np.array(system_df['batt_kw'])*batt_ratio, batt_power=np.array(system_df['batt_kw']), batt_cost_per_kw=agent.loc['batt_price_per_kw'], batt_cost_per_kwh=agent.loc['batt_price_per_kwh'], batt_om_per_kw=agent.loc['batt_om_per_kw'], batt_om_per_kwh=agent.loc['batt_om_per_kwh'], batt_chg_frac=batt_chg_frac, sector=agent.loc['sector_abbr'], itc=agent.loc['itc_fraction'], deprec_sched=agent.loc['deprec_sch'], fed_tax_rate=agent['tax_rate'], state_tax_rate=0, real_d=agent['discount_rate'], analysis_years=agent.loc['economic_lifetime'], inflation=agent.loc['inflation'], down_payment_fraction=agent.loc['down_payment'], loan_rate=agent.loc['loan_rate'], loan_term=agent.loc['loan_term'], cash_incentives=cash_incentives, ibi=investment_incentives, cbi=capacity_based_incentives, pbi=production_based_incentives) system_df['npv'] = cf_results_est['npv'] #=========================================================================# # Select system size and business model for this agent #=========================================================================# index_of_best_fin_perform_ho = system_df['npv'].idxmax() opt_pv_size = system_df['pv'][index_of_best_fin_perform_ho].copy() opt_batt_power = system_df['batt_kw'][index_of_best_fin_perform_ho].copy() opt_batt_cap = opt_batt_power*batt_ratio batt.set_cap_and_power(opt_batt_cap, opt_batt_power) tariff = tFuncs.Tariff(dict_obj=agent.loc['tariff_dict']) # for buy all sell all agents: calculate value of generation based on wholesale prices and subtract from original bill if agent.loc['compensation_style'] == 'Buy All Sell All': sell_all = np.sum(opt_pv_size * pv_cf_profile * agent.loc['wholesale_elec_usd_per_kwh']) opt_bill = original_bill - sell_all # package into "dummy" dispatch results dictionary accurate_results = {'bill_under_dispatch' : opt_bill, 'batt_dispatch_profile' : np.zeros(len(load_profile))} # for net billing agents: if system size within policy limits, set sell rate to wholesale price -- otherwise, set sell rate to 0 elif (agent.loc['compensation_style'] == 'Net Billing (Wholesale)') or (agent.loc['compensation_style'] == 'Net Billing (Avoided Cost)'): export_tariff = tFuncs.Export_Tariff(full_retail_nem=False) if opt_pv_size<=agent.loc['nem_system_size_limit_kw']: if agent.loc['compensation_style'] == 'Net Billing (Wholesale)': export_tariff.set_constant_sell_price(agent.loc['wholesale_elec_usd_per_kwh']) elif agent.loc['compensation_style'] == 'Net Billing (Avoided Cost)': export_tariff.set_constant_sell_price(agent.loc['hourly_excess_sell_rate_usd_per_kwh']) else: export_tariff.set_constant_sell_price(0.) accurate_results = dFuncs.determine_optimal_dispatch(load_profile, opt_pv_size*pv_cf_profile, batt, tariff, export_tariff, estimated=False, d_inc_n=d_inc_n_acc, DP_inc=DP_inc_acc) # for net metering agents: if system size within policy limits, set full_retail_nem=True -- otherwise set export value to wholesale price elif agent.loc['compensation_style'] == 'Net Metering': export_tariff = tFuncs.Export_Tariff(full_retail_nem=True) if opt_pv_size<=agent.loc['nem_system_size_limit_kw']: export_tariff = tFuncs.Export_Tariff(full_retail_nem=True) export_tariff.periods_8760 = tariff.e_tou_8760 export_tariff.prices = tariff.e_prices_no_tier else: export_tariff = tFuncs.Export_Tariff(full_retail_nem=False) export_tariff.set_constant_sell_price(agent.loc['wholesale_elec_usd_per_kwh']) accurate_results = dFuncs.determine_optimal_dispatch(load_profile, opt_pv_size*pv_cf_profile, batt, tariff, export_tariff, estimated=False, d_inc_n=d_inc_n_acc, DP_inc=DP_inc_acc) else: export_tariff = tFuncs.Export_Tariff(full_retail_nem=False) export_tariff.set_constant_sell_price(0.) accurate_results = dFuncs.determine_optimal_dispatch(load_profile, opt_pv_size*pv_cf_profile, batt, tariff, export_tariff, estimated=False, d_inc_n=d_inc_n_acc, DP_inc=DP_inc_acc) # add system size class system_size_breaks = [0.0, 2.5, 5.0, 10.0, 20.0, 50.0, 100.0, 250.0, 500.0, 750.0, 1000.0, 1500.0, 3000.0] #=========================================================================# # Determine dispatch trajectory for chosen system size #=========================================================================# opt_bill = accurate_results['bill_under_dispatch'] #+ one_time_charge agent.loc['first_year_elec_bill_with_system'] = opt_bill * agent.loc['elec_price_multiplier'] agent.loc['first_year_elec_bill_savings'] = agent.loc['first_year_elec_bill_without_system'] - agent.loc['first_year_elec_bill_with_system'] agent.loc['first_year_elec_bill_savings_frac'] = agent.loc['first_year_elec_bill_savings'] / agent.loc['first_year_elec_bill_without_system'] opt_bill_savings = np.zeros([1, agent.loc['economic_lifetime'] + 1]) opt_bill_savings[:, 1:] = (original_bill - opt_bill) opt_bill_savings = opt_bill_savings * agent.loc['elec_price_multiplier'] * escalator * degradation # If the batt kW is less than 25% of the PV kW, apply the ITC if opt_pv_size >= opt_batt_power*4: batt_chg_frac = 1.0 else: batt_chg_frac = 0.0 cash_incentives = np.array([cash_incentives[index_of_best_fin_perform_ho]]) investment_incentives = np.array([investment_incentives[index_of_best_fin_perform_ho]]) capacity_based_incentives = np.array([capacity_based_incentives[index_of_best_fin_perform_ho]]) production_based_incentives = np.array(production_based_incentives[index_of_best_fin_perform_ho]) cf_results_opt = cashflow_constructor(bill_savings=opt_bill_savings, pv_size=opt_pv_size, pv_price=agent.loc['pv_price_per_kw'], pv_om=agent.loc['pv_om_per_kw'], batt_cap=opt_batt_cap, batt_power=opt_batt_power, batt_cost_per_kw=agent.loc['batt_price_per_kw'], batt_cost_per_kwh=agent.loc['batt_price_per_kwh'], batt_om_per_kw=agent['batt_om_per_kw'], batt_om_per_kwh=agent['batt_om_per_kwh'], batt_chg_frac=batt_chg_frac, sector=agent.loc['sector_abbr'], itc=agent.loc['itc_fraction'], deprec_sched=agent.loc['deprec_sch'], fed_tax_rate=agent.loc['tax_rate'], state_tax_rate=0, real_d=agent.loc['discount_rate'], analysis_years=agent.loc['economic_lifetime'], inflation=agent.loc['inflation'], down_payment_fraction=agent.loc['down_payment'], loan_rate=agent.loc['loan_rate'], loan_term=agent.loc['loan_term'], cash_incentives=cash_incentives, ibi=investment_incentives, cbi=capacity_based_incentives, pbi=production_based_incentives) #=========================================================================# # Package results #=========================================================================# agent['pv_kw'] = opt_pv_size agent['batt_kw'] = opt_batt_power agent['batt_kwh'] = opt_batt_cap agent['npv'] = cf_results_opt['npv'][0] agent['cash_flow'] = cf_results_opt['cf'][0] agent['batt_dispatch_profile'] = accurate_results['batt_dispatch_profile'] agent['bill_savings'] = opt_bill_savings agent['aep'] = agent['pv_kw'] * agent['naep'] agent['cf'] = agent['naep']/8760 agent['system_size_factors'] = np.where(agent['pv_kw'] == 0, 0, pd.cut([agent['pv_kw']], system_size_breaks))[0] agent['export_tariff_results'] = original_results out_cols = list(agent.index) new_cols = [i for i in out_cols if i not in in_cols] + ['agent_id'] agent = agent.loc[agent.index.isin(new_cols)] except Exception as e: logger.info(' ') logger.info('--------------------------------------------') logger.info("failed in calc_system_size_and_financial_performance") logger.info(('Error on line {}'.format(sys.exc_info()[-1].tb_lineno), type(e), e)) logger.info('agent that failed') logger.info(agent) logger.info('--------------------------------------------') agent.to_pickle('agent_that_failed.pkl') return agent #%% @decorators.fn_timer(logger = logger, tab_level = 2, prefix = '') def calc_financial_performance(dataframe): """ Function to calculate the payback period and join it on the agent dataframe. Parameters ---------- dataframe : pandas.DataFrame Agent dataframe Returns ------- pandas.DataFrame Agent dataframe with `payback_period` joined on dataframe """ # dataframe = dataframe.reset_index() cfs = np.vstack(dataframe['cash_flow']).astype(np.float) # calculate payback period tech_lifetime = np.shape(cfs)[1] - 1 payback = calc_payback_vectorized(cfs, tech_lifetime) # calculate time to double ttd = calc_ttd(cfs) metric_value = np.where(dataframe['sector_abbr']=='res', payback, ttd) dataframe['metric_value'] = metric_value dataframe = dataframe.set_index('agent_id') return dataframe #%% @decorators.fn_timer(logger = logger, tab_level = 2, prefix = '') def calc_max_market_share(dataframe, max_market_share_df): """ Calculates the maximum marketshare available for each agent. Parameters ---------- dataframe : pandas.DataFrame Attributes ---------- metric_value : float max_market_share_df : pandas.DataFrame Set by :meth:`settings.ScenarioSettings.get_max_marketshare`. Returns ------- pandas.DataFrame Input DataFrame with `max_market_share` and `metric` columns joined on. """ in_cols = list(dataframe.columns) dataframe = dataframe.reset_index() dataframe['business_model'] = 'host_owned' dataframe['metric'] = 'payback_period' # Convert metric value to integer as a primary key, then bound within max market share ranges max_payback = max_market_share_df[max_market_share_df.metric == 'payback_period'].metric_value.max() min_payback = max_market_share_df[max_market_share_df.metric == 'payback_period'].metric_value.min() max_mbs = max_market_share_df[max_market_share_df.metric == 'percent_monthly_bill_savings'].metric_value.max() min_mbs = max_market_share_df[max_market_share_df.metric == 'percent_monthly_bill_savings'].metric_value.min() # copy the metric valeus to a new column to store an edited version metric_value_bounded = dataframe['metric_value'].values.copy() # where the metric value exceeds the corresponding max market curve bounds, set the value to the corresponding bound metric_value_bounded[np.where((dataframe.metric == 'payback_period') & (dataframe['metric_value'] < min_payback))] = min_payback metric_value_bounded[np.where((dataframe.metric == 'payback_period') & (dataframe['metric_value'] > max_payback))] = max_payback metric_value_bounded[np.where((dataframe.metric == 'percent_monthly_bill_savings') & (dataframe['metric_value'] < min_mbs))] = min_mbs metric_value_bounded[np.where((dataframe.metric == 'percent_monthly_bill_savings') & (dataframe['metric_value'] > max_mbs))] = max_mbs dataframe['metric_value_bounded'] = metric_value_bounded # scale and round to nearest int dataframe['metric_value_as_factor'] = [int(round(i,1) * 100) for i in dataframe['metric_value_bounded']] # add a scaled key to the max_market_share dataframe too max_market_share_df['metric_value_as_factor'] = [int(round(float(i), 1) * 100) for i in max_market_share_df['metric_value']] # Join the max_market_share table and dataframe in order to select the ultimate mms based on the metric value. dataframe = pd.merge(dataframe, max_market_share_df[['sector_abbr', 'max_market_share','metric_value_as_factor', 'metric', 'business_model']], how = 'left', on = ['sector_abbr','metric_value_as_factor','metric', 'business_model']) # Derate the maximum market share for commercial and industrial customers in leased buildings by (2/3) # based on the owner occupancy status (1 = owner-occupied, 2 = leased) dataframe['max_market_share'] = np.where(dataframe['owner_occupancy_status'] == 2, dataframe['max_market_share']/3,dataframe['max_market_share']) # out_cols = in_cols + ['max_market_share', 'metric'] out_cols = in_cols + ['max_market_share', 'metric_value_as_factor', 'metric', 'metric_value_bounded'] return dataframe[out_cols] def calc_ttd(cfs): """ Calculate time to double investment based on the MIRR. This is used for the commercial and industrial sectors. Parameters ---------- cfs : numpy.ndarray Project cash flows ($/yr). Returns ------- ttd : numpy.ndarray Time to double investment (years). """ irrs = virr(cfs, precision = 0.005, rmin = 0, rmax1 = 0.3, rmax2 = 0.5) # suppress errors due to irrs of nan with np.errstate(invalid = 'ignore'): irrs = np.where(irrs<=0,1e-6,irrs) ttd = np.log(2) / np.log(1 + irrs) ttd[ttd <= 0] = 0 ttd[ttd > 30] = 30.1 # also deal with ttd of nan by setting to max payback period (this should only occur when cashflows = 0) if not np.all(np.isnan(ttd) == np.all(cfs == 0, axis = 1)): raise Exception("np.nan found in ttd for non-zero cashflows") ttd[np.isnan(ttd)] = 30.1 return ttd.round(decimals = 1) # must be rounded to nearest 0.1 to join with max_market_share #%% def cashflow_constructor(bill_savings, pv_size, pv_price, pv_om, batt_cap, batt_power, batt_cost_per_kw, batt_cost_per_kwh, batt_om_per_kw, batt_om_per_kwh, batt_chg_frac, sector, itc, deprec_sched, fed_tax_rate, state_tax_rate, real_d, analysis_years, inflation, down_payment_fraction, loan_rate, loan_term, cash_incentives=np.array([0]), ibi=np.array([0]), cbi=np.array([0]), pbi=np.array([[0]]), print_statements=False): """ Calculate the system cash flows based on the capex, opex, bill savings, incentives, tax implications, and other factors Parameters ---------- bill_savings : "numpy.ndarray" Annual bill savings ($/yr) from system adoption from 1st year through system lifetime pv_size : "numpy.float64" system capacity selected by agent (kW) pv_price : "float" system capex ($/kW) pv_om : "float" system operation and maintanence cost ($/kW) batt_cap : "numpy.float64" energy capacity of battery selected (kWh) batt_power : "numpy.float64" demand capacity of battery selected (kW) batt_cost_per_kw : "float" capex of battery per kW installed ($/kW) batt_cost_per_kwh : "float" capex of battery per kWh installed ($/kWh) batt_om_per_kw : "float" opex of battery per kW installed ($/kW-yr) batt_om_per_kwh : "float" opex of battery per kW installed ($/kWh-yr) batt_chg_frac : "int" fraction of the battery's energy that it gets from a co-hosted PV system. Used for ITC calculation. sector : "str" agent sector itc : "float" fraction of capex offset by federal investment tax credit deprec_sched : "list" fraction of capex eligible for tax-based depreciation fed_tax_rate : "float" average tax rate as fraction from federal taxes state_tax_rate : "int" average tax rate as fraction from state taxes real_d : "float" annua discount rate in real terms analysis_years : "int" number of years to use in economic analysis inflation : "float" annual average inflation rate as fraction e.g. 0.025 down_payment_fraction : "int" fraction of capex used as system down payment loan_rate_real : "float" real interest rate for debt payments loan_term : "int" number of years for loan term cash_incentives : "numpy.ndarray" array describing eligible cash-based incentives e.g. $ ibi : "numpy.ndarray" array describing eligible investment-based incentives e.g. 0.2 cbi : "numpy.ndarray" array describing eligible one-time capacity-based incentives e.g. $/kW pbi : "numpy.ndarray" array describing eligible ongoing performance-based incentives e.g $/kWh-yr Returns ------- cf : 'dtype Annual cash flows of project investment ($/yr) cf_discounted : 'dtype' Annual discounted cash flows of project investment ($/yr) npv : 'dtype' Net present value ($) of project investment using WACC bill_savings : 'dtype' Nominal cash flow of the annual bill savings over the lifetime of the system after_tax_bill_savings : 'dtype' Effective after-tax bill savings (electricity costs are tax-deductible for commercial entities) pv_cost : 'dtype' Capex of system in ($) batt_cost : 'dtype' Capex of battery in ($) installed_cost : 'dtype' Combined capex of system + battery up_front_cost : 'dtype Capex in 0th year as down payment batt_om_cf : 'dtype' Annual cashflows of battery opex operating_expenses : 'dtype' Combined annual opex of system + battery ($/yr) pv_itc_value : 'dtype' Absolute value of investment tax credit for system ($) batt_itc_value : 'dtype' Absolute value of investment tax credit for battery ($) itc_value : 'dtype' Absolute value of investment tax credit for combined system + battery ($) deprec_basis : 'dtype' Absolute value of depreciable basis of system ($) deprec_deductions : 'dtype' Annual amount of depreciable capital in given year ($) initial_debt : 'dtype' Amount of debt for loan ($) annual_principal_and_interest_payment : 'dtype' Annual amount of debt service payment, principal + interest ($) debt_balance : 'dtype' Annual amount of debt remaining in given year ($) interest_payments : 'dtype' Annual amount of interest payment in given year ($) principal_and_interest_payments : 'dtype' Array of annual principal and interest payments ($) total_taxable_income : 'dtype' Amount of stateincome from incentives eligible for taxes state_deductions : 'dtype' Reduction to state taxable income from interest, operating expenses, or bill savings depending on sector total_taxable_state_income_less_deductions : 'dtype' Total taxable state income less any applicable deductions state_income_taxes : 'dtype' Amount of state income tax i.e. net taxable income by tax rate fed_deductions : 'dtype' Reduction to federal taxable income from interest, operating expenses, or bill savings depending on sector total_taxable_fed_income_less_deductions : 'dtype' Total taxable federal income less any applicable deductions fed_income_taxes : 'dtype' Amount of federal income tax i.e. net taxable income by tax rate interest_payments_tax_savings : 'dtype' Amount of tax savings from deductions of interest payments operating_expenses_tax_savings : 'dtype' Amount of tax savings from deductions of operating expenses deprec_deductions_tax_savings : 'dtype' Amount of tax savings from deductions of capital depreciation elec_OM_deduction_decrease_tax_liability : 'dtype' Amount of tax savings from deductions of electricity costs as deductible business expense Todo ---- 1) Sales tax basis and rate 2) note that sales tax goes into depreciable basis 3) Propery taxes (res can deduct from income taxes, I think) 4) insurance 5) add pre-tax cash flow 6) add residential mortgage option 7) add carbon tax revenue 8) More exhaustive checking. I have confirmed basic formulations against SAM, but there are many permutations that haven't been checked. 9) make incentives reduce depreciable basis 10) add a flag for high incentive levels 11) battery price schedule, for replacements 12) improve inverter replacement 13) improve battery replacement 14) add inflation adjustment for replacement prices 15) improve deprec schedule handling 16) Make financing unique to each agent 17) Make battery replacements depreciation an input, with default of 7 year MACRS 18) Have a better way to deal with capacity vs effective capacity and battery costs 19) Make it so it can accept different loan terms """ #################### Massage inputs ######################################## # If given just a single value for an agent-specific variable, repeat that # variable for each agent. This assumes that the variable is intended to be # applied to each agent. if np.size(np.shape(bill_savings)) == 1: shape = (1, analysis_years + 1) else: shape = (np.shape(bill_savings)[0], analysis_years + 1) n_agents = shape[0] if np.size(sector) != n_agents or n_agents == 1: sector = np.repeat(sector, n_agents) if np.size(fed_tax_rate) != n_agents or n_agents == 1: fed_tax_rate = np.repeat(fed_tax_rate, n_agents) if np.size(state_tax_rate) != n_agents or n_agents == 1: state_tax_rate = np.repeat(state_tax_rate, n_agents) if np.size(itc) != n_agents or n_agents == 1: itc = np.repeat(itc, n_agents) if np.size(pv_size) != n_agents or n_agents == 1: pv_size = np.repeat(pv_size, n_agents) if np.size(pv_price) != n_agents or n_agents == 1: pv_price = np.repeat(pv_price, n_agents) if np.size(pv_om) != n_agents or n_agents == 1: pv_om = np.repeat(pv_om, n_agents) if np.size(batt_cap) != n_agents or n_agents == 1: batt_cap = np.repeat(batt_cap, n_agents) if np.size(batt_power) != n_agents or n_agents == 1: batt_power = np.repeat(batt_power, n_agents) if np.size(batt_cost_per_kw) != n_agents or n_agents == 1: batt_cost_per_kw = np.repeat(batt_cost_per_kw, n_agents) if np.size(batt_cost_per_kwh) != n_agents or n_agents == 1: batt_cost_per_kwh =
np.repeat(batt_cost_per_kwh,n_agents)
numpy.repeat
import sys import scipy.ndimage import os.path import HebbLearn as hl import numpy as np import matplotlib.pyplot as plt try: import h5py except: print('h5py cannot be loaded - may cause error') pass fl = hl.NonlinearGHA() num_textures = 688 if os.path.isfile('textures.npy'): print('==> Load previously saved textures data') textures = np.load('textures.npy') else: print('==> Loading data') textures = np.zeros((512,512,num_textures)) for i in range(num_textures): fn = '/home/rabadi/data/textures/' + str(i) + '.jpg' try: textures[:,:,i] = scipy.ndimage.imread(fn, flatten=True)/255 except: print('dimensionality miss-match - fixing') tmp = scipy.ndimage.imread(fn, flatten=True)/255 if (np.shape(tmp)[0] < 512): tmp = np.concatenate((tmp, np.random.rand(512-np.shape(tmp)[0],np.shape(tmp)[1])), axis=0) if (np.shape(tmp)[1] < 512): tmp = np.concatenate((tmp, np.random.rand(512, 512-np.shape(tmp)[1])), axis=1) textures[:,:,i] = tmp np.save('textures.npy',textures) random = np.random.rand(512,512,np.shape(textures)[2]) random = random/np.max(random) # make sure all normalized print('==> mean centering data') pop_mean = np.mean(np.concatenate((random,textures),axis=2)) random = random - pop_mean textures = textures - pop_mean pop_std = np.std(np.concatenate((random,textures),axis=2)) random = random/pop_std textures = textures/pop_std #plt.imshow(textures[:,:,0], cmap=plt.get_cmap('gray')) #plt.show() if len(sys.argv)>1: filter_size = int(sys.argv[1]) step_size = int(sys.argv[2]) out_dimension = int(sys.argv[3]) LR = float(sys.argv[4]) n_samples = int(sys.argv[5]) else: filter_size = 512 step_size = 512 out_dimension = 1 LR = 1 n_samples = 500 nonlinearity = hl.LINEAR LR=0 #print('==> Training') #random_k = fl.Train(random[:,:,:n_samples], filter_size, step_size, out_dimension, LR, nonlinearity) #textures_k = fl.Train(textures[:,:,:n_samples], filter_size, step_size, out_dimension, LR, nonlinearity) #np.save('textures-k.npy',textures_k) #output = fl.ImageReconstruction(textures[:,:,0], textures_k, filter_size, step_size, nonlinearity) #plt.imshow(output, cmap=plt.get_cmap('gray')) #plt.show() print('==> Classification performance') tex_vex = np.reshape(textures, (512*512,num_textures), order='F').T rand_vex = np.reshape(random, (512*512,num_textures), order='F').T diff_mean = (np.mean(rand_vex[:n_samples,:], axis=0) - np.mean(tex_vex[:n_samples,:], axis=0)) test = np.concatenate((tex_vex[500:600,:], rand_vex[500:600,:]), axis=0) y = np.ones((200,1)) y[:100]=-1 shuff = np.random.permutation(200) test = test[shuff,:] y = y[shuff] corr = 0 print('==> Training') k_tex = fl.Train(textures[:,:,:n_samples], filter_size, step_size, out_dimension, LR, nonlinearity) k_rand = fl.Train(random[:,:,:n_samples], filter_size, step_size, out_dimension, LR, nonlinearity) tex_pop = np.zeros((512,512)) rand_pop = np.zeros((512,512)) for i in range(n_samples): tex_pop = tex_pop + fl.ImageReconstruction(textures[:,:,i],
np.reshape(k_tex,(1,262144,1))
numpy.reshape